
An APL Compiler

Timothy Budd

An APL Compiler

With 15 Illustrations

Springer -Verlag
New York Berlin Heidelberg
London Paris Tokyo

Timothy Budd
Department of Computer Science
Oregon State University
Corvallis, Oregon 97331
USA

Library of Congress Cataloging-in-Publication Data
Budd, Timothy.

An APL compiler.
Bibliography: p.
Includes index.
I. APL (Computer program language) 2. Compilers

(Computer progral11s) L Title.
QA 76.73.A27B83 1988 005.13'3 87-28507

© 1988 by Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA),
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by
the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy provided by the author.

9 8 7 6 5 432 I

ISBN-13:978-0-387-96643-4
DOl: 10.1007/978-1-4612-3806-5

e-ISBN-13:978-1-4612-3806-5

Preface

It was Richard Lipton, my graduate advisor, who in H)77 first
discussed with me the simple idea that eventually grew into the
APL compiler. At the time, he was on leave from Yale University,
where I was working towards my doctorate, and spending a year at
the University of California at Berkeley. While we were at
Berkeley a student named Brownell Charlstrom and I developed a
system using threaded code on a PDP-ll that experimented with
some of Dick's ideas. Unfortunately, the system was difficult to
use, and the threaded code was not as fast as we had hoped.
Interest waned, and the project languished.

In H)80, having finished my dissertation work at Yale, I
accepted a position at the University of Arizona and once more
started to think about the problem of generating code for an APL
like language. In time I developed another system, the first of
many versions of the APL compiler. Although the broad outline of
the technique that Dick had proposed remained the same, and
indeed remained throughout the project, in detail almost
everything changed. Instead of producing threaded code, I
generated actual executable code. Since I didn't want to bother

vi An APL Compiler

with low-level machine details, I selected C as my target language.
Instead of using a vector of subscript positions to represent an
element I wanted to generate, I used an index into the raveled
representation of an expression. By these and many other changes
I was finally able to generate code that was considerably faster in
execution than the threaded code system developed at Berkeley.
However, with the change in request format from a vector of
subscript positions to an index into the ravel ordering of the result
a few functions, notably the transpose functions, caused problems,
and I was eventually forced to use a system in which some requests
were presented using vectors and some using indices (this demand
driven, space efficient, code generation technique is described in
more detail in Chapters 3 through 7).

At about this time I became aware of a paper that was
presented by Leo Guibas and Douglas Wyatt at the Fifth ACM
Principles of Programming Languages Conference in Tucson,
Arizona. They had a novel method for generating code for just the
APL functions, the transpose functions, that were causing me
trouble. I also acquired a student, Joseph Treat, who was working
towards his masters degree at the University of Arizona. I set Joe
to reading the Guibas/Wyatt paper, and shortly afterwards he was
able to integrate their method into the APL compiler. Thus, we
were finally able to eliminate totally the vector form of element
request, and the compiler started to take on its present form. Joe
continued looking at various implementation issues for another
year, among other things implementing the dataflow analysis
system described in Chapter 2. Then Joe -graduated, the grant
funding ran out, and once more the project languished.

In 1985 I took a leave of absence from the University of
Arizona and spent time at the Centrum voor Wiskunde en
Informatica in Amsterdam, The Netherlands. While there I was
contacted by Dr. Sandor Suhai, from the Deutsches Krebs
forschungszentrum in Heidelberg. He was interested in my work
on APL and invited me to Heidelberg to give a talk. While I am
almost certain that the software I gave to Dr. Suhai did not suit his
needs (he was looking for a more commercial product, not the type
of software, and nonexistent support, that you get in a typical
software research project), his invitation did have the effect of
forcing me to review the APL compiler project in its entirety. In
so doing I concluded that the time was right (indeed, overdue) to
describe the whole project in one place, instead of the myriad small

Preface vii

papers that we had published from time to time outlining various
aspects of the project. This book is the result.

I have already mentioned most of the people to whom lowe
acknowledgements. To Dick, Joe, and Dr. Suhai I am of course
most grateful. I wish to thank Alan Perlis for showing me, during
my graduate school years, just exactly how intellectually
challenging and powerful this strange language APL could be. I
also wish to thank Lambert Meertens, my nominal supervisor for
my year in Amsterdam, for permitting me to work on this
manuscript despite whatever personal feelings he might have had
towards the language APL. I thank Marion Hakanson for getting
the troff typesetting system working for me at OSu. Finally, a few
people have made a number of useful comments on earlier drafts of
this manuscript: In particular, I wish to thank Ed Cherlin and Rick
Wodtli.

Some readers might be interested in obtaining the code for the
APL compiler. I distribute the source, subject to the usual
caveats found in academically developed software; namely, that it
is distributed on an a&is basis, with no guarantee of support, nor
any guarantee of its suitability for any use whatsoever. As our
interests were in research in code generation and not in developing
a commercial quality APL system, there are some features, even
some rather basic features, that one might expect to find in an
APL system that are missing from our system. These are
described in more detail in Appendix 1. Because of these
omissions, and because we cannot afford to offer any support for a
system that is undoubtedly, despite our best efforts, still buggy, the
APL compiler as it stands now is potentially of only limited utility
for other purposes. If, despite these warnings, individuals are still
interested in obtaining the system, they can write to me at the
following address for details.

Tim Budd
Department of Computer Science
Oregon State University
Corvallis, Oregon
97331

Contents

Chapter 1. Why A Compiler?
1.1. APL Terminology
1.2. The Disadvantages of a Compiler
1.3. The Compiler Passes

1.3.1. The Parsing Pass
1.3.2. The Inferencing Pass
1.3.3. The Access Determination Pass
1.3.4. The Resource Allocation Pass
1.3.5. The Code Generation Pass

1.4. Compiling for a Vector Machine

Chapter 2. The Inferencing Pass
2.1. A Hierarchy of Attributes
2.2. Expression Flow Analysis
2.3. Intraprocedural Dataflow Analysis
2.4. Interprocedural Dataflow Analysis
2.5. An Example - The Spiral of Primes

2.5.1. Statement Analysis

1
3
6
6
7
7
8
8
8
8

11
13
15
18
21
22
25

x An APL Compiler

2.5.2. Intraprocedural Analysis
2.5.3. Interprocedural Analysis
2.5.4. The Importance of Declarations
2.5.5. The Size of the Generated Programs

Chapter 3. Code Generation Overview
3.1. Demand Driven Evaluation
3.2. Boxes
3.3. When Not to use Space Efficient Evaluation
3.4. A Note on Notation

Chapter 4. Simple Space Efficient Functions
4.1. Assignment

4.1.1. Nested Assignment
4.1.2. Assignment to Quad

4.2. Leaves
4.2.1. Constants
4.2.2. Identifiers

4.3. Primitive Scalar functions
4.4. Ravel, Reshape and Iota
4.5. Outer Product
4.6. Subscripting
4.7. Mod and Div

Chapter 5. Further Space Efficient Functions
5.1. Expansion Vectors
5.2. Reduction
5.3. Scan
5.4. Compression and Expansion
5.5. Catenation
5.6. Dyadic Rotation
5.7. Inner Product and Decode

Chapter 6. Structural Functions
6.1. Computing the Stepper

6.1.1. Monadic Transpose
6.1.2. Take
6.1.3. Drop
6.1.4. Reversal
6.1.5. Dyadic Transpose

6.2. The Accessor

26
27
28
29

33
35
38
41
43

45
46
46
48
49
49
50
51
52
53
55
58

59
60
62
68
71
75
77
78

81
84
84
84
85
85
85
86

Contents

6.3. Sequential Access
6.4. A Nonobvious Optimization

Chapter 7. Space Inefficient Functions
7.1. Semi Space Efficient Functions
7.2. Collectors
7.3. Branching

Chapter 8. Compiling for a Vector Machine
8.1. Machine Model
8.2. Columns and Request Forms
8.3. Code Generation

8.3.1. Reduction
8.3.2. Scan
8.3.3. Compression and Expansion
8.3.4. Catenation
8.3.5. Dyadic Rotation
8.3.6. Structural Functions
8.3.7. Outer Product and Subscript

Chapter 9. Epilogue

Appendix 1. The Language of the APL Compiler

Appendix 2. A Simple Example
A Critique

Appendix 3. A Longer Example

References

Index

xi

87
88

91
92
93
94

97
98
98

100
100
101
102
103
103
104
104

107

111

119
129

131

147

153

Chapter 1

Why A Compiler ?

The language APL presents a number of novel problems for a
compiler writer: weak variable typing, run time changes in variable
shape, and a host of primitive operations, among others. For this
reason, many p~ople have over time voiced the opinion that a
compiler for the language was inherently impossible and that only
an interpreter provided the necessary flexibility. One result of the
APL compiler project described here is to cast a great deal of
doubt on this position.

Our intention in developing a compiler for the language APL
had less to do with an affinity for the language APL per se than
with a desire to investigate the issues raised by the development of
a compiler for a very high level language. The aim of the APL
compiler project was to investigate whether nontrivial compiled
code could be produced for an APL-like language, which we called
APLc. The adjective APL-like is important here. Since our
interest was in code generation and not in producing yet another
APL system, we felt at liberty to change certain of the basic
features of the language if doing so would result in the compiler
being able to generate significantly better code and would not

2 An APL Compiler

destroy the essential APLness of the language. The latter is, of
course, a very subjective opinion, and it is certainly true that there
are some in the APL community who feel that any change in the
basic semantics of the language produces something that is not
APL. Nonetheless, it is the opinion of the author that the
language APLc is still recognizably (or, some might say,
unrecognizably) APL.

The essential features of APL that we sought to preserve in
developing the APL compiler were:
1. The use of arbitrary size, homogeneous arrays as a basic

datatype, and
2. The set of functions that one associates with APL for

operating on such arrays.
Among the features of the language APL that we felt free to

meddle with in developing APLc were the following:
1. The elimination of dynamic scoping in favor of static scoping.

It was our experience that few APL programmers use dynamic
scoping, and it did complicate many of the algorithms that we
were interested in. Since it seemed only a marginal issue in
the larger problem of code generation, we removed it. [Lisp is
another major computer language that utilizes dynamic
scoping. It is interesting to note that recent dialects of Lisp,
such as Scheme (Abelson 1985) and T (Slade 1987), have also
replaced, this feature with static scopingj.

2. A change in the order of evaluation rules. Although we retain
the syntactic rule that says that the right argument of a
function is the whole expression to its right, this does not
imply necessarily that the right argument will be evaluated
before the left. Some functions, for example reshape, will
evaluate their left argument prior to examining the right.
Although this differs from many APL implementations, it is
actually what the APL standard calls a "consistent extension"
of the language.

3. The introduction of lazy evaluation semantics. Consider an
expression such as:

01/66-:-03

The usual APL semantics would insist upon an error being
reported when 6 was divided by O. The lazy evaluation
technique that we wanted to use in the APL compiler would

1. Why A Compiler? 3

not report this error, since the result would never be used,
having been compressed out. Again, the APL standard
permits this interpretation as a consistent extension.

4. The introduction of (largely optional) declarations. It was
necessary to introduce some declarations in order to determine
the meaning of ambiguous tokens at compile time and thus
insure a proper parse of a program. Conventional interpreter
systems avoid this problem by not assigning meanings to
certain tokens until just prior to execution, something a
compiler cannot do. Having opened the doors this much, we
went on to allow further optional declarations to give hints to
the compiler concerning variable type and rank, thus
permitting the compiler to produce better code. Again, some
Lisp systems, such as Franz Lisp (Wilensky 1984) have pursued
a similar policy with respect to declarations.
A more complete description of the differences between

conventional APL and the language accepted by the APL compiler
is presented in the first appendix.

1.1. APL Terminology
One source of confusion between the APL community and the

programming languages community at large is the fact that the
language APL has assigned different meanings to some technical
terms and also has introduced new terms not commonly known or
used in descriptions of other programming languages. Thus,
discussions of APL are often confusing to individuals who are not
familiar with the language.

An array is a potentially multidimensional, rectilinear
collection of homogeneously typed values; that is, an array can be a
matrix of numeric values, or of character values, but not both.
The number of dimensions in any array is called the rank of the
array. An array of rank 1 (that is, dimension one) is called a
vector. A scalar quantity is considered to be an array of rank O.

Functions in APL, including user defined functions, have either
zero, one or two arguments; and are referred to as niladic,
monadic or dyadic, respectively. For reasons we describe in
Appendix 1, in the initial version of the APL compiler we do not
permit the user to create niladic functions.

The term primitive scalar function may be unfamiliar to non
APL users. Dyadic primitive scalar functions correspond largely to

4 An APL Compiler

the type of operations commonly found in other general purpose
programming languages, such as arithmetic functions, logical or
relational operations. A list of the dyadic scalar functions is given
in Figure 1.1. APL has generalized these functions to apply to
multidimensional arrays in a pointwise fashion between
corresponding elements. For example,

1 2
4 5
7 8

3 7
6 + 8
9 9

4
5
6

186 4
2 - 12 10 8
3 16 14 12

There are also monadic scalar functions. In Chapter 5, the
question of whether a dyadic primitive scalar. function has an
identity element will be important in determining the type of code
that we will generate. So that we can later refer to this
information, we have included a list of identity values for each
function in Figure 1.1.

Whereas other programming languages may refer to the
addition function as an operator, APL has defined this term in a
much more restricted fashion. An operator in APL is a constructor
used to build functions that extend the scope or purpose of a
primitive dyadic scalar function in a special way. An example of
an operator is reduction, which takes a primitive scalar function
and extends it by placing it between elements of an array along
some dimension. For example, if A is the two dimensional array,

123
456
789

the plus reduction (written as +/A) is the vector of row-sums for
A:

1 +
4 +
7 +

2
5
8

+
+
+

3
6
9

6
15
24

1. Why A Compiler? 5

symbol function identity

+ addition 0
subtraction 0

X multiplication 1
division 1

* exponentiation 1
I residue 0 I

e:> logarithm none
0 circular (trigonometric) none
\/ boolean or 0
/\ boolean and 1
\/ not-or none
/\ not-and none
! combinations 1
r ceiling minimum number
l floor maximum number
> greater than none
> greater than or equal none
< less than none
< less than or equal none
- equal 1
=1= not equal 0

Figure 1.1: The APL Primitive Scalar Functions

In addition to reduction, other operators are scan, inner
product, and outer product. For a more detailed description of
APL there are any number of good textbooks, for example,
(Gilman and Rose 1976) or (Polivka and Pakin 1975). .

6 An APL Compiler

1.2. The Disadvantages of a Compiler

It would be dishonest not to point out that in certain
circumstances there are advantages of an interpreter that cannot
be matched by a compiler. Most fundamentally, a compiler is just
one of many steps between conception and execution of a program,
a path frequently riddled with loops and false starts. The phrase
"debug/execute cycle" is often used to describe the typical
programming process, in which the programmer makes numerous
changes to a program before the final product is realized. An
interpreter can minimize the number of operations required
between iterations in this cycle and thus can make the program
development process faster. With a compiler the time between
successive iterations of this cycle is typically much longer, and thus
the program development process advances much more slowly.

Similarly, many APL systems provide a pleasant programming
environment, offering such features as the automatic retention of
functions and data between computer sessions. This is difficult to
duplicate using a pure compiler. Various combined
compiler /interpreter systems have been constructed for both APL
and LISP that try to minimize this problem. They retain the
interpreter and the nice interpretative environment but permit the
user to compile certain functions selectively into machine code for
greater execution speed. While providing many of the advantages
of both techniques, the major disadvantage of this method is that
it requires the large run-time system (including the interpreter) to
be present during execution.

As we have already noted, we were interested first and
foremost in the quality of code we could generate. Thus, our
programming "environment" is a rather primitive batch-style
system; the programmer submits an APL program to the compiler,
which generates an equivalent C program. This C program is
then, in turn, passed to the C compiler, which generates the final
executable file. This is not to say that our techniques could not be
embedded in a better programming environment, merely that we
have not done so.

1.3. The Compiler Passes
One advantage of a compiler over an interpreter is that the

user is usually not overly concerned with the size of a compiler,
whereas an interpreter must coexist with the user's data at run

1. Why A Compiler? 7

time and must therefore be as small as possible. This freedom
permits one to consider somewhat costly operations, such as
dataflow analysis, that would probably not be possible in an
interpreter.

The APL compiler is structured in a conventional fashion, as a
number of different passes. The intermediate form used to
communicate between the passes consists of a symbol table and an
extended abstract syntax tree, with the nodes of the syntax tree
holding such information as the type, rank, and shape of the result
that the function associated with the node will produce at run
time. The following sections describe the purposes of each of the
passes.

1.3.1. The Parsing Pass
While the syntax for APL expressions is so regular that it can

almost be recognized by a finite state automaton, the addition of
declarations complicated the grammar to a sufficient extent that
more powerful tools were required. The parser for the APL
compiler was therefore written using a conventional LALR parser
generator. Since this parsing step is no different from parsers for
more conventional languages, which are adequately described in
the literature (such as Aho et al. 1986), we will not discuss it any
further in this book. We note only that the intermediate
representation u,sed between the passes consists of a symbol table
and an abstract syntax tree for each user function, and as the
various passes operate, more fields in the syntax tree nodes are
filled in.

1.3.2. The Inferencing Pass
The quality of code that can be generated by the APL

compiler depends to a very great extent upon how much
information can be obtained about the type, rank, and shape of the
results that will be generated by expressions at run time. Much of
this information is implicitly contained in a program, if only it can
be discovered. The inferencing pass uses dataflow techniques in
propagating information around the syntax tree. The algorithms
used by this pass will be discussed in more detail in Chapter 2.

8 An APL Compiler

1.3.3. The Access Determination Pass

Chapter 3 describes the space efficient demand driven
evaluation technique used by the APL compiler. This method
requests values from an expression one element at a time, thus
generating only those values that contribute to a final result. As
we will see in Chapters 4 through 7, which describe the algorithms
generated for the various APL functions, many optimizations can
be performed if it is known that values for a result will be accessed
in ravel (or sequential) order. This pass of the compiler merely
marks those nodes that will be so processed.

1.3.4. The Resource Allocation Pass

In a conventional compiler, resources refer to objects, such as
registers, that are usually limited in number and must therefore be
shared. The APL compiler, on the other hand, generates code in a
high-level language, C. In this context, resources refer to variables
of various types in the generated code. Since there are no limits on
the number of variables that can be declared in a C function, the
resource allocation strategy is to give everybody whatever resources
they require. This pass merely determines the number of resources
that will be required by the algorithms generated in the final pass.

1.3.5. The Code Generation Pass

The code generation pass is the real heart of the APL
compiler, and the principal feature that distinguishes the compiler
from compilers for more conventional languages. The code
generated by the APL compiler must be efficient in execution
speed but must still be able to operate when types, ranks, and
shapes are not known at compile time. Chapters 3 through 7
describe the algorithms used in the generated code produced by the
APL compiler.

1.4. Compiling for a Vector Machine

APL is one of very few languages in which vectors and arrays
appear as basic datatypes. Thus, the language would appear to be
a natural match for those machines that have the ability to
manipulate vectors of values in one instruction. Chapter 8
describes how the algorithms developed in the previous chapters
might be modified or extended to make use of vector instructions.

1. Why A Compiler?

anAPL
Program

Parser

Type and Shape
Inferencer

Access
Determination

Resource
Allocation

Code
Generation

C
Program

C
Compiler

Executable
Program

9

Chapter 2

The Inferencing Pass

Since conventional APL does not have declarations for
identifier type and shape, and even in the language accepted by the
APL compiler. such declarations are optional, information
concerning how a variable will be used must be inferred indirectly
from an examination of the program text. Such information can
be extremely beneficial. Consider the simple statement:

1+-1+1
If the identifier 1 is known to be a scalar integer, considerably
better code can be generated than if the program must be prepared
to manipulate data of arbitrary type and shape (Wiedmann 1978).
On the other hand, without such information the necessity of
checking argument conformability prior to each primitive function
can be one of the more time consuming tasks of an APL system.
Thus, the ability to acquire information concerning variable usage
is a critical factor in the success of an APL implementation. One
of the most efficient means of obtaining this information is by
means of dataflow analysis.

The dataflow algorithms described in this chapter produce
information on two attributes of interest in code generation,

12 An APL Compiler

expression type and expression shape. The latter can be further
subdivided into rank and size. Although these attributes are
distinct, the methods used to obtain information about them are
similar and the gathering of information about both attributes can
be performed in parallel. Information that could be obtained by
other dataflow techniques and might be of interest to the compiler
writer, such as live-dead analysis, or use-def chaining (Aho et al.
1986) are not considered here. Although other dataflow algorithms
have been described in the literature (see the references for pointers
to some of the papers), the algorithms given here are shorter,
simpler, and tailored more directly to the language accepted by the
APL Compiler.

For the purpose of explaining the dataflow algorithms
described here, two differences between standard APL and the
language accepted by the APL compiler are important. The first
change involves the introduction of declarations. In remaining as
close as possible to the APL spirit, the only necessary declarations
are for global variables and for functions. This is the minimal
amount of information necessary for the parser to distinguish the
nature of every token at compile time. Although ambiguities
concerning whether an identifier is a function or a variable are not
common in APL programs, it is possible to construct examples
where such a determination cannot be made at compile time
without the use of declarations.1 More extensive declarations of
variable types and/or ranks are permitted and, if provided, give
hints to the compiler that may result in the generation of better
code. An example of this is discussed in a later section.

A second, and more fundamental, change to the language
involves the elimination of dynamic scoping in favor of a two level
static scoping. In this scheme variables are either local, in which
case they can only be accessed or modified in the procedure in
which they appear, or global, in which case they can be accessed or
modified in any procedure. Dynamic scoping prevents one from, in

1. Similarly, it is also' necessary to rule out niladic functions or to require de
clarations of function valence. Consider F G expr, for example, where expr
is an expression and F and G are known to be functions; Either F is niladic
and G dyadic, or both F and G are monadic functions. As we explain in more
detail in Appendix 1, we were faced with a choice of either requiring declara
tions of valence as well as function names, or of disallowing niladic functions.
In the APL compiler we chose to disallow the use of niladic functions.

2. The Inferencing Pass 13

general, establishing at compile time a definite link between a
variable reference and a variable instance. Thus, it is much more
difficult to discover information profitably about variable usage by
a static examination of the code. Dataflow algorithms that work in
a dynamically scoped environment tend to be both more complex
and less effective than the algorithms presented here.

On the other hand, there are important characteristics of the
language APL that simplify the task of dataflow analysis. For
example, APL statements are unusually rich and complex. It is
quite sensible to discuss analysis of individual APL statements in
isolation for the purpose of discovering type and shape information,
independent of any further intra- or inter-procedural analysis.
This is in contrast to many other languages in which, for example,
the average statement may involve one or fewer operations (Knuth
1971). Also, APL programs tend to be quite short, and thus an
algorithm that has asymptotically poor running time, say O(n3),
where n is the number of lines in a function, may be quite
reasonable when the average function contains ten or fewer lines.

2.1. A Hierarchy of Attributes
We start by describing a hierarchy of classifications for the

attributes of interest, namely shape and type. .As we have already
noted, in the language accepted by th~ APL compiler the user is
allowed to provide optional declarations of variable attributes.
Although declarations are not part of standard APL, the intent is
to aid the code generator in the task of producing efficient code,
while still providing the full generality of APL. The result is that
attributes can be of two varieties, namely declared attributes
(attributes the user has explicitly declared to be valid) and inferred
attributes (attributes inferred by the dataflow algorithm from
analysis of the code). Pragmatically speaking, the only difference
between an identifier that has been declared to possess certain
attributes and one not declared is the initial values given to the
identifier attributes before analysis begins. A later pass in the
compiler insures that declared attributes are not violated, which
may necessitate producing run time checks.

A partial ordering of the attribute type is shown in Figure 2.1.
The attribute undefined is given to undeclared local variables prior
to their first assignment; thereafter, all expressions should be given
one of the other attributes. In APL the type boolean refers to the
integers 0 and 1, and thus the attribute integer is a generalization

14 An APL Compiler

of boolean. The attribute any is given to an expression that can
potentially produce a result of any type.

Number Character

Integer Real

/
Boolean

Undefined

Figure 2.1: Partial Ordering for Attribute Type

Arbitrary

/AT~
FIXed size

Scalar Vector Ar

~I/ray
Unknown

Figure 2.2: Partial Ordering for Attribute Shape

2. The Inferencing Pass 15

A similar partial ordering for the attribute shape is given in
Figure 2.2. The attribute unknown is analogous to undefined for
type. This is certainly not the only hierarchy that could be
proposed. For example, one could argue that shape scalar should
be considered to be a special case of shape vector. Experience with
the code generator indicated, however, that whereas the special
cases for scalar and vector were extremely important, code that
was general enough to work for both scalars and vectors was
seldom much smaller or faster than the code required to handle the
general case. Thus, the given hierarchy represents a pragmatic
description of the most important categories. Similarly, experience
with the code generator indicates that very little is gained by exact
knowledge of an expression rank if the rank is greater than 1 (that
is, other than a scalar or a vector). Therefore, the decision was
made not to permit declarations of rank other than for scalars and
vectors. Nevertheless, information obtained during dataflow
analysis concerning expression rank can be useful in predicting
later scalar or vector shapes. For this reason inferred information
concerning array ranks and shapes is preserved, when available.

The dataflow algorithms described here can be divided into
three parts. The first algorithm is concerned with the analysis and
propagation of information within a single statement. On the next
level an algorithm is presented for the analysis of attributes within
a single function. Finally, a third algorithm is used for the analysis
and propagation' of information between functions. These parts
will be described separately in the following sections.

2.2. Expression Flow Analysis
The initial pass of the APL compiler transforms an APL

expression into an abstract syntax tree. The dataflow analysis
algorithms then operate on this tree representation to propagate
type and rank information. To do this, the tree is traversed
bottom up, inferences moving from the leaves into the interior
nodes. For the leaf nodes, information is given by other sources:
for example, constants have a fixed type and size; variables and
functions may have been declared; or information may have been
inferred from previous statements (see next section). Associated
with each function is an algorithm for determining the resulting
type and shape, assuming the type and shape of the arguments are
known. For many functions this information can be codified as a
table. For example, Figure 2.3 gives the shape transformation

16 An APL Compiler

matrix for the binary plus operation. Figure 2.4 gives a similar
matrix for type. In both cases the column index is given by the left
argument and the row index by the right argument. By
maintaining the distinction between declared and inferred
attributes, it is possible to perform some compatibility type
checking at compile time.

+ scalar vector array unknown

scalar scalar vector array unknown

vector vector vectorl error3 unknown2

array array error3 array unknown2

unknown unknown unknown2 unknown2 unknown2

Notes:
1. Can check conformability at compile time
2. Must che~k conform ability at run time
3. Can issue conformability error immediately

Figure 2.3: Shape Inference Figure for Binary Plus Operation

Figure 2.5 illustrates how shape and type information can be
propagated through an expression tree. The tree in this instance
represents the idiom (Perlis and Rugaber 1979) for computing the
number of primes less than a given quantity (in this case 200).
Appendix 2 describes the code generated for this expression.

2. The Inferencing Pass

+ boolean int real num char any

boolean int int real num error any

int int int real num error any

real real real real num error any

num num num num num error any

char error error error error error error

any any any any any error any

Figure 2.4: Type inference table for plus operation

function type rank and shape

A~ integer scalar
+/ iJlteger scalar
2= boolean vector 200
+/- integer vector 200
0= boolean array 200 200

1 0.1 integer array 200 200
L 200 integer vector 200
200 integer scalar

Figure 2.5: Propagated information for the expression
A ~ + /2 =+1-0 =(L 200) 0.1 L 200

17

18 An APL Compiler

2.3. Intraprocedural DataHow Analysis
The control flow graph for an APL function can be

represented as a sequence of expressions linked by directed arcs,
signifying possible control transfer (Figure 2.6). In standard APL,
every statement could potentially be the target of a goto arrow,
however, newer programming practices have tended to limit
transfer to statements possessing a designated label. The APL
compiler insists that all transfers are to a labelled statement.
There is a natural linear ordering for statements given by the order
in which they appear in the program text, and this permits us to
refer to "forward" branches and "backward" branches. Unlike
more structured languages, we are not in general guaranteed that a
control flow graph for an APL function will possess any nice
properties, such as being reducible (Muchnick and Jones 1981).
Thus, many conventional dataflow algorithms are not generally
applicable. The algorithm presented in this section makes no
assumptions concerning the topology of the control flow graph.

Figure 2.6: A Typical Control Flow Graph

We associate with each node in the control flow graph a list,
called an identifier attribute list. This list records, for each
identifier used in the function, the most general attributes observed
for that identifier at the given location. There is also one such list
maintained for the "current environment" as the algorithm steps
through the function. We can say that one attribute list is more
general than a second if any identifier in the first has a more
general attribute than the corresponding identifier in the second
list, regardless of the relationships among the remaining identifiers.
Similarly, we can define a merge operation that takes two lists and
forms a new list by selecting, for each identifier, the most general

2. The Inferencing Pass 19

attributes from either list.
Given the conventional APL dynamic scoping rule, there is, in

general, no guarantee that a local variable possessing some
attributes prior to a function call will still possess those attributes
following the function return. By discarding dynamic scoping in
favor of a two-level static scoping, we eliminate this problem and
greatly facilitate the gathering of information about variable
attributes.

Having defined an identifier attribute list, the dataflow
algorithm can be described as follows:
step 0 Initialize all identifier attribute lists to Undefined

Unknown. In the current environment list initialize globals
and functions to Any-Arbitrary Array, unless other
declarations have been provided. Initialize all other
declared identifiers as per their declarations.
Set i = l.

step 1 If i > number of nodes, quit.
Otherwise, merge the current environment attribute list
and the identifier attribute list for node i, updating both
lists to the merged result.
Perform the expression dataflow analysis described in the
last section on node i, updating the current environment
attribute list if appropriate (that is, if any identifiers are
modified).
If node i is a branching expression, go to step 2, otherwise
let i =i + 1 and go to step l.

step 2 Order the list of potential branch targets. For each
potential branch target, update the identifier attribute list
at the target node by merging it with the current
environment.
Let j be the value of the first (that is, lowest numbered)
backward branch target which was strictly less general
than the current environment, set i = j and go to step l.
Otherwise, if no backward branch satisfies the condition,
set i =i + 1 and go to step l.

The first observation to make is that this algorithm does, in
fact, terminate. The only time i is decremented is in step 2, and
that can only occur if at least one identifier has an attribute more
general than the attribute recorded at the target node. Thus, the
number of times a node is examined in step 1 is crudely bounded

20 An APL Compiler

by the number of nodes (n) times the number of backward
branches (b) times the number of identifiers (i) times the
maximum de~th of any attribute hierarchy. Since b can be no
worse than n , this gives us a running time of O(n3i). While not
asymptotically impressive, in practice the number of backward
branches is considerably less and the running time is quite
acceptable.

The second, and more important, task is to prove that the
algorithm is correct. We first note that unless certification can be
provided by global dataflow analysis (see next section), the
attributes of all global variables and functions are checked at run
time each time they are used. Thus, the only possible source of
error is from local variables. Assume, contrary to our proposition,
that some execution sequence results in at least one local variable
possessing an attribute at some node that is not proper (that is, not
less general) for the attributes recorded for that node. Let us
consider the node at which such an event first occurs.

We observe that the attributes of all identifiers defined in an
expression are given completely by the attributes of objects
corresponding to the leaves in the syntax tree for that expression.
Furthermore, these leaves come in five varieties: constants, global
variables or functions, input-quads, or local variables. The
attributes of the first four types cannot be wrong, and thus the
only possibility is that some local variable possesses an attribute
that is incorrect.

There are then two cases. The first case is that the expression
node that we are considering is the first node executed. However
this is not possible, since any local variables in the first expression
would be undefined and the compiler would have detected the
possibility of a local variable that had not been defined being used
in an expression. The alternative is that. this is not the first
expression being considered, in which case the local variable that
caused the trouble was defined in a previous expression. The new
variable, however, would then necessarily have to differ with the
attributes of the earlier expression, which would contradict the
assumption that this is the first time an improper variable has
occurred.

Having discussed correctness, the next question is whether the
results are optimal. Unfortunately, a fundamental problem is that,
like almost all dataflow algorithms, this algorithm is based on a

2. The Inferencing Pass 21

static analysis of potential control flow paths, which may not
correspond to the set of actually realizable control flow paths. It is
rather easy to construct an example in which an identifier is used
in one way (say as an integer) in one part of a function and in a
different way (say as a character) in another. By inserting a
conditional branch from the first part to the second, even if the
branch can never be taken, the dataflow analysis algorithm is
forced to assume a more general category for the variable than is
actually necessary.

One further difficulty with this algorithm is that it cannot be
used to perform backward type inference (Miller 1979). For
example, consider the code fragment shown in Figure 2.7. By
noting that iota requires its argument to be a scalar integer, we can
infer that the result produced in the first line should be of this
type. Weare not, however, thereby assured that the result is of
this type. Therefore, conformability checking code must still be
generated. Since the only effect is to have moved conformability
checking code from the second line to the first, very little has been
gained. Examination of the code generated by the APL compiler
using the algorithms given in this chapter have revealed few
instances in which backward inference would have been useful in
generating more efficient code.

n +- some expresswn
m +-tn

Figure 2.7: An Example Backward Inference

2.4. Interprocedural DataHow Analysis
One difficulty with the algorithm presented in the last section

is that it utilizes only information contained within a single
procedure. Complicated programs will frequently consist largely of
function calls. In the absence of declared attributes, the most
abstract categories possible must be assumed for the results of a
function call. One solution to this problem is to perform dataflow
analysis on" an entire collection of functions.

An interprocedural dataflow analysis algorithm can be
constructed in a fashion similar to the intraprocedural dataflow
analysis algorithm described in the last section. In the
interprocedural case, nodes in the control flow graph correspond to

22 An APL Compiler

functions, and directed arcs correspond to potential function calls.
A function call is characterized as a pair of "branches," one
transferring control to the called function, the second returning
control to the calling function. An arbitrary linear ordering can be
imposed, or some analysis performed, to produce an ordering that
reduces the number of "backward" branches.

Once again, the two-level scoping system of the APL compiler
simplifies the task of dataflow analysis. Since local variables are
not a concern at this point, all identifiers are global and of the
same scoping level. Connected with each node an identifier
attribute list will record information on all global variables and
functions. In place of performing expression dataflow analysis in
step 1, intraprocedural dataflow analysis on an entire function is
used. With these changes the same algorithm is used as in the
intraprocedural case. Details of the arguments concerning
termination and correctness also carryover and will not be
repeated here.

One difficulty with this technique is that the inferred result
attributes of a function call are given as the most abstract
categories which include all observed results for the function.
Thus, relationships between the argument and result types of a
function may not be recognized. For example, a function may
always return a value of the same shape as its arguments. This
information could, of course, be of considerable use in code
generation. 'To gather such information, however, requires an
algorithm of considerably greater complexity.

2.5. An Example - The Spiral of Primes
Figure 2.8 shows a set of functions that, collectively, produce

Dlam's "Spiral of Primes" (Perlis and Rugaber 1979). We will use
these functions to illustrate the utility of the dataflow algorithms
that we have presented in this chapter. In response to a prompt
from the input quad (line 20), the user types a small integer, say,
for example, 10. The function spiral then computes an N by N
array of integer values, arranged so that they spiral outwards from
the center. as in:

2. The Inferencing Pass

1 GLOBAL V AR N

2 '\1 Z +- SPllAL L
3 FUN COPlES, LINEAR
4 A+-l,NX2
5 C +- 4 1 A COPlES (I -\ A)
6 G +- l 0.5 + N -;- 2
7 E +- L [; (-1 + N X N) i C + 4 X 0 = C

23

8 Z +- (2 p N) p ~ LINEAR 1 1 2 Q (2 p G) 0.+ +\ 0 , E
9 '\1

10 '\1 C +- A COPlES B
11 C +- A [+\ (l, +1 B) € -1 ! 1 + +\ 0 , B 1
12 '\1

13 '\1 X +- PRTh1ES A
14 S +- xl p A
15 X +-A € (2 = +/-0 = (l, S) 0.1 l, S) I l, S
16 '\1

17 '\1 Z +- LINEAR M
18 Z +- 1 + N :- M - 1
19 '\1

20 N +- []
21 Y +- SPllAL 2 4 P -1 0 1 0 0 1 0 -1
22 X +- PRTh1ES Y
23 [] +-' *'[1 +X]

Figure 2.8: Functions for computing Ulam's Spiral of Primes

24 An APL Compiler

82 83 84 85 86 87 88 89 90 91
81 50 51 52 53 54 55 56 57 92
80 49 26 27 28 29 30 31 58 93
79 48 25 10 11 12 13 32 59 94
78 47 24 9 2 3 14 33 60 95
77 46 23 8 1 4 15 34 61 96
76 45 22 7 6 5 16 35 62 97
75 44 21 20 19 18 17 36 63 98
74 43 42 41 40 39 38 37 64 99
73 72 71 70 69 68 67 66 65 100

This array is passed to the function primes, which replaces
each value that corresponds to a prime number with a 1, and each
non prime with a 0:

0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0 1 0
0 1 0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0

These values are then used to subscript into a constant array,
in effect replacing every 1 point with a star. The resulting pattern
exhibits unusual lines that no one has been able to explain:

* *
*
* *

* * * *
* **
* *
* * *
* *

* * *
* * *

When presented to the APL compiler, these functions generate
a total of 157 nodes in the abstract syntax tree that is the internal

2. The Inferencing Pass 25

representation for APL functions inside the compiler. Of these
157, one of the attributes type, rank or shape is manifestly
apparent for 34 nodes (Figure 2.9). This is either because the node
represents a constant, for which all the attributes type, rank, and
shape are known, or the function iota or grade-up, for which the
attributes type and rank are known, or an equality test or other
function for which the type is known.

Number of nodes in syntax tree for which
attributes are known

type is known 34
rank is known 27
shape is known 22

at least one of the attributes
type, rank or shape is known 34

22%
17%
14%

22%

Figure 2.9: Attribute Information Prior to Analysis Beginning

2.5.1. Statement Analysis
Following simple expression flow analysis of each statement in

isolation, there are several inferences that can be made. For
example, we can determine that the result of the addition and the
division in line 6 will be real, and that of the monadic function
floor in the same line will be integer.

In statement 7, although we as yet know nothing about the
variable C, we do know that the result of the comparison of 0 to C
will yield boolean values; thus, the result of the multiplication of
this value by the constant 4 will be integer.

In statement 8, although we cannot determine the type of the
argument to the function linear, we do know it has rank 2.
Similarly, we can determine that the value assigned to Z will be an
integer array of rank 2.

In the function copies we may not know the size or shape of
the argument B, but we do know that the iota function produces a
vector; thus, the index expression for the subscript must be an

26 An APL Compiler

integer vector. In contrast to our earlier remarks, this function
does illustrate one situation in which backward inference might be
useful. If we assume that the argument to iota must be an integer,
then we are logically led to conclude that B must be a vector.
Making this assumption (and without further confirmation we
would still need to insert run time checks to insure its validity), we
can then go on to conclude the type and rank of the expression to
the right of the epsilon. While this example might argue in favor
of some sort of backwards inference capability, we shall soon see
that interprocedural analysis provides, in this particular case, all
the information that we need.

Finally, it is not surprising, since it is similar to the expression
we described earlier in this chapter, that we can determine the
type and rank information for almost all the nodes in the second
statement of the function primes, even without knowing that the
variable S represents a scalar integer.

All total, we can discover information about at least one of the
attributes type, rank or shape in 49% of the nodes in the abstract
syntax trees for these functions. More comprehensive data is
presented in Figure 2.10.

Number of nodes in syntax tree for which
attributes are known

type is known 68
rank is known 68
shape is known 39

at least one of the attributes
type, rank or shape is known 78

43%
43%
25%

49%

Figure 2.10: Attribute Information Following
Expression Flow Analysis

2.5.2. Intraprocedural Analysis
Intraprocedural analysis infers that the value assigned to the

variable A in line 4 is an integer vector. Armed with this fact, we
can tell a little more about the arguments passed to the function

2. The Inferencing Pass 27

copies, but we still cannot determine any information about the
results of the function call, and hence the values assigned to the
variable C in line 5. Similarly, we know variable G is integer in line
6, but since we know nothing of E this helps only marginally in
understanding statement 8.

Number of nodes in syntax: tree for which
attributes are known

type is known 75
rank is known 75
shape is known 42

at least one of the attributes
type, rank or shape is known 83

48%
48%
27%

53%

Figure 2.11: Attribute Information Following
Intraprocedural Flow Analysis

Intraprocedural analysis helps not at all in understanding the
function copies, since it has only one line. In primes, although we
can determine the type and shape of the variable S as being a
scalar integer,we already knew everything there was to learn
about the second statement. The complete data following
intraprocedural analysis is shown in Figure 2.11.

2.5.3. Interprocedural Analysis
With the knowledge that both the arguments A and B in the

function copies are integer vectors, we can determine that the
result is integer and vector as well. Armed with this fact, plus the
knowledge that the argument L to the function spiral is an integer
array of rank 2, we can determine that E in line 7 is also an integer
array of rank 2.

We knew from intraprocedural analysis that the rank of the
argument to the function linear was rank 2. Although information
about the variable E now permits us to expand this from simply an
array into an integer array, this is still not sufficient to determine
anything about the result of this function.

28 An APL Compiler

Although we were aware from intraprocedural analysis that
the result of the function spiral, in line 2, was an integer array of
rank 2, prior to interprocedural analysis we did not propagate this
fact into the argument A to the function primes. Now, armed
with this fact, we know that not only is the result of that function
of type boolean but also that it is, in fact, a boolean array of rank
2.

The data following interprocedural analysis is shown in Figure
2.12.

Number of nodes in syntax tree for which
attributes are known

type is known 117
rank is known 116
shape is known 42

at least one of the attributes
type, rank or shape is known 121

75%
74%
27%

77%

Figure 2.12: Attribute Information Following
Interprocedural Flow Analysis

2.5.4. The Importance of Declarations
This example can also be used to illustrate how the judicious

use of declarations can dramatically improve the quality of code
that can be generated by the APL compiler. The global variable N
is assigned a value by the input quad in line 20. This being the
case, we are unable to determine the type, rank, or shape of the
value. If, however, we declare that N is a scalar integer, then a
wealth of inferences become possible. For example, we can then
determine that G in line 6 is a scalar integer. Similarly, we can
finally determine something about the function linear, namely, that
in line 18 it produces an integer vector.

Even without performing interprocedural analysis, adding this
declaration results in an improvement of the generated code
(Figure 2.13). With the addition of interprocedural analysis, some
attribute can be discovered for almost 90% of all nodes in the

2. The Inferencing Pass

Number of nodes in syntax tree for which
attributes are known

type is known 89
rank is known 94
shape is known 58

at least one of the attributes
type, rank or shape is known 98

57%
60%
40%

62%

Figure 2.13: Attribute Information Following
Intraprocedural Flow Analysis

With the Addition of a Declaration for Variable N

Number of nodes in syntax tree for which
attributes are known

type is known 133
rank is known 137
shape is known 59

at least one of the attributes
type, rank or shape is known 137

85%
87%
38%

87%

Figure 2.14: Attribute Information Following
Interprocedural Flow Analysis

With the Addition of a Declaration for Variable N

syntax tree (Figure 2.14).

2.5.5. The Size of the Generated Programs

29

It is interesting to compare the size of the C programs
generated by the APL compiler under various conditions. Figure
2.15 shows this information. The table lists both the number of
lines and the number of tokens (symbols) in the programs. As

30 An APL Compiler

more and more information becomes known, smaller and smaller
programs can be generated. The code for the final case,
interprocedural analysis with the addition of the declaration for
variable N, is presented in Appendix 3.

program lines

after expression flow analysis 683
after intraprocedural analysis 674
intraprocedural with declaration for N 641
after interprocedural analysis 617
interprocedural with declaration for N 578

tokens

2816
2776
2610
2477
2279

Figure 2.15: Size of Generated Programs

In a similar manner, as the code becomes smaller it also
becomes faster. For large values of N, the execution time in all
programs is almost completely dominated by quadratic algorithm
used by the function primes. In order to get a fairer sense of the
relative speed of the code generated under various conditions, we
therefore execute these functions repeatedly for small values of N,
rather than once for a large value. To do this, we replace the main
program with the following:

V'TIMEIT W
I+-O
L: X+-' *'[1 + primes spiral 2 4 P -10 100 10-1]
1+-1+1
-+LXd<W
V'

N+-l0
TIMEIT 10

The function timeit executes the spiral functions repeatedly a fixed
number of times, in this case 10. Execution timings for each of
these five functions are given in Figure 2.16. As you can see, the
information gained by dataflow analysis permits the generation of
code that is, in this case, more than one-third faster than the code

2. The Inferencing Pass

that can be generated without such analysis.

program

after expression flow analysis
after intraprocedural analysis
intraprocedural with declaration for N
after interprocedural analysis
interprocedural with declaration for N

time

16.3 seconds
15.8 seconds
15.3 seconds
11.4 seconds
10.1 seconds

Figure 2.16: Execution Timings for Ulam Code

31

Chapter 3

Code Generation Overview

The task of the data inferencing pass is to determine, to as
great an extent as possible, the type, rank, and shape of the results
that will be produced by each function represented in the parse
tree. Once this information has been gathered, it is the task of the
code generator to translate the parse tree into an equivalent
program in the target language (in this case, the language C) that
will, when executed, produce the desired results.

Just as there are many different programs that could be
written in APL to solve a given problem, there are many different
programs in the target language that can be claimed to represent
the same algorithm as that given by any particular APL program.
There are two objectives used to select the type of program
produced by the code generation pass; namely, the desire to make
the target program as fast as possible and the desire to make it use
as little memory as possible.

The speed objective is perhaps easiest to understand, and it is
here that the type information and, to a lesser extent, the rank
information gathered during dataflow analysis is important. Scalar
instructions that correspond to basic operations in the target

34 An APL Compiler

language, such as addition, tend to be type specific; an integer
addition is a different operation from a floating point addition, for
example. If the determination as to the type of an operation
cannot be made at compile time, then the generated code must call
upon a subroutine to perform the given operation. The subroutine,
which by run time knows the types of the operands, can select the
correct operation. The difference in execution time between a
single operation (such as an integer addition) and a call on a
runtime routine can be many orders of magnitude. Thus, the
correct determination of types and the correct utilization of this
information by the code generator can have a dramatic impact on
execution speed.

Less obvious, but just as critical, is the objective of reducing
space. Many APL expressions compute a result by first
constructing a large intermediate quantity, such as a
multidimensional array, and then compressing this value by
reduction, compression, or subscription. Thus, even in cases in
which neither the inputs nor the outputs of an expression are large,
the intermediate values can be substantial. Most APL
programmers have had the frustrating experience of writing
routines that work while they are testing them on small values, but
fail for lack of space as soon as they try them on the larger values
they are really interested in. The code generated by the APL
compiler attempts to avoid this problem by using a space efficient
demand driven evaluation algorithm.

Using this scheme, quantities are computed only as they are
needed, not before. Consider, for example, a simple expression
such as

A~B+CXD

where B, C, and D are large multidimensional arrays. The
conventional execution technique for this expression would first
place the value C X D into a temporary location, call it T, and
then compute the value of B + T, storing the result into A.
Clearly, the overhead associated with this is as large as the
maximum size of the arrays. The demand driven approach, on the
other hand, will compute each element of the result one by one;
that is, one element from B will be added to the product of one
element from C and one element from D, and stored in one
location in A. Then the next element will be computed, and so on,
until all values have been assigned. In this way, the overhead is

3. Code Generation Overview 35

reduced to that of a single scalar value.
There are problems with the demand driven approach, not the

least of which is the fact that it may alter the semantics of a
program in subtle ways. Consider, for example, the following
expression

01/66-;-02

The conventional approach would produce an error because 6 is
being divided by O. The demand driven approach, on the other
hand, produces no such error because the result is never required,
having been compressed out. Despite this, the space savings of the
demand driven approach make the technique attractive.

3.1. Demand Driven Evaluation
To better understand the demand driven evaluation technique,

consider first a system in which each node in a parse tree is
represented by a small, independent automaton. The automata
are connected by wires in a manner corresponding to the abstract
syntax tree and communicate by sending messages to each other.
However, only a small amount of information can be transmitted
with each message. Figure 3.1 shows the automata structure for
the expression

A+-+/B+C

The topmost automaton (the assignment) is told to begin. In
order to produce a result, it must first determine how large a
quantity will be produced by the right side, in order to know how
much space to allocate to hold the result. Thus the first message is
passed from the assignment automaton to the reduction node.

(message from assignment to reduction) What is the type,
rank, and shape of your result?

The reduction automaton, by itself, cannot determine this
value. Therefore, its first task is to pass the message down to the
scalar plus function, which in turn passes it to each of its
arguments. 1

1. In theory there is no reason why the two messages from the scalar plus can
not be passed in parallel. We will later address the question of ordering
operations.

36 An APL Compiler

Figure 3.1: The syntax tree for A +- +/ B + C

(message from reduction to scalar plus) What is the type,
rank, and shape of your result?
(message from scalar plus to identifier B) What is the type,
rank, and shape of your result?
(message from scalar plus to identifier C) What is the
type, rank, and shape of your result?

Reaching the leaves, we are finally able to respond to a
message without sending further requests. Assume we have the
following responses:

(reply from identifier B to scalar plus) My result is a scalar
real.
(reply from identifier C to scalar plus) My result is an
integer array of rank 2, shape 6 7.

The plus automaton, having received these responses, first
performs conformability checks to see if the arguments are legal in
both type and size. It then determines the type and size of the
result it will generate and passes this information back to the
reduction automaton.

3. Code Generation Overview 37

(reply from scalar plus to reduction) My result is a real
array of rank 2, shape 6 7.

The reduction automaton checks that the plus operation is
legal for arguments of this type and computes the type and size of
the result it will produce.

(reply from reduction to assignment) My result is a real
vector of size 6.

The assignment node finally knows how large the storage area
must be to accommodate the result. It allocates this area and then
starts to fill it in. It does this by requesting values one at a time:

(message from assignment to reduction) Give me the first
value in the ravel ordering of your result.

In order to compute this value, the reduction node must
compute the sum of the first row of the result generated by the
scalar plus. It therefore sends a sequence of messages, processing
the results as they are returned. (Note that the APL semantics
require the sum to be computed in reverse order2).

(message from reduction to scalar plus) Give me the
seventh value in the ravel ordering of your result.
(message from scalar plus to identifier B) Give me your
value.
(message from scalar plus to identifier C) Give me the
seventh value in the ravel ordering of your result.
(reply from identifier B to scalar plus) My value is 1.5.
(reply from identifier C to scalar plus) My value is 7.
(reply from scalar plus to reduction) My value is 8.5.
(message from reduction to scalar plus) Give me the sixth
value in the ravel ordering of your result.

Having passed a sequence of messages to compute the values of
the first through seventh elements in the result, and having taken
their sum, the reduction node can finally respond to the
assignment.

2. For a commutative function, such as plus, the result should be the same re
gardless of the order of evaluation. Later on, when we discuss the actual code
generated for reduction, we will make use of this fact.

38 An APL Compiler

(reply from reduction to assignment) My value is 38.4.

The assignment stores the value in the appropriate location
and then asks for the next value.

(message from assignment to reduction) Give me the
second value in the ravel ordering of your result.

This continues until all the assigned values have been
computed. Clearly, only those values are produced that are
required for the final result, and the space requirements for
intermediate results are minimized.

Note the similarity of this approach to that employed by
object oriented languages such as Smalltalk.3 Indeed, one could
construct a working APL system in such a language in just this
manner; however, the overhead of a general message passing
protocol is considerably higher than is necessary in this case. This
is because the number of messages required for the evaluation of
APL is extremely small, and they are ordered in a very structured
fashion. In this example, for instance, there were only two general
types of messages:
1. What is your result type, rank, and shape?
2. What is the ith value of your r~ult?

By utilizing this knowledge concerning the types of messages
required for the evaluation of APL, we can achieve the effect of
this demand driven approach with very little overhead. How this
is accomplished is discussed in the next section.

3.2. Boxes
As we have just noted, the variety of messages necessary for

the evaluation of APL is very limited. In fact, the two messages
described in the last section are sufficient for all but a handful of
functions.

The order in which these messages are passed is also very
structured. A shape request will always be given once and be
followed by some number of value requests.

Our interest, however, is in showing how the demand driven
evaluation scheme can be rendered in programming code. In this
light, it would be unacceptable if each of the value messages

3. For a description of the language Smalltalk see (Budd 1987).

3. Code Generation Overview 39

required a separate section of code, particularly since, at compile
time, we may not know how many times a value request will be
needed. Instead, we modify the messages we will generate so that
only one value request need be issued to generate an arbitrary
element. The new messages can be described as follows:
1. Generate a section of code that will, when executed, return the

type, rank, and shape of the values that you will produce.
Respond with the locations that these values will occupy at
run time.

2. Given a variable containing the index of a desired element in
the ravel order of your result, generate a section of code that
will, when executed, return this value. Respond with the
name of the (internal) variable where this value will be stored.

For example, the assignment function generates code that, at an
abstract level, can be described as follows:

{ code to generate type, rank, and shape of right side}
compute size of result and allocate storage
for offset =0 to (size ofright side) -1 do begin

{ code to generate element of result at index offset}
store value in appropriate location
end

release storage on old value of identifier
bind identifier name to new value

The name offset for the loop variable is indicative of the fact that
the counter is really representing an offset into the ravel ordering of
the result. Notice that the counter runs from 0 to the size minus 1;
another way to think of this is that vectors in Care 0 based. The
code sections in braces { . . . } correspond to the code generated
by passing the appropriate messages to the right subexpression.

Another way to view the code generated by each APL function
is as a template, or box, with holes in it.4 The hole is filled by
another box, corresponding to the arguments of the current
function. That box may in turn have a hole in it that requires a
third box, and so on until all the holes have been filled.

4. The term and analogy are due to Richard Lipton.

40

shape
hole

value
hole

An APL Compiler

Each function has a box corresponding to the shape request
(the code it will generate in response to the shape message) and a
box corresponding to the value request (the code it will generate in
response to values). By nesting the boxes one within each other,
code can be generated for any APL expression.

Because some functions (compression and expansion, for
example) require small intermediate buffers, which must at some
point be fre,ed, a third m~age is required to free up any
temporary storage that may have been allocated. Thus, the
sequence of messages for all APL functions, and the actions they
induce, can be described as follows:5

1. Generate code to compute the type, rank, and shape of the
result. In addition, if necessary, generate code to perform
conformabiIity checks on arguments. Also, if any temporary
buffers are required, code is generated to allocate them.
Finally, if any expressions can be computed here, rather than
during the value step, code is generated to do so. This is
because the normal expectation is that the shape code will be
executed once each time that the expression is evaluated,
whereas the value code may be executed many times.

5. The structural functions, to be considered in Chapter 6, require an addi
tional message to compute the stepper value. The details of that computation
are unimportant here.

3. Code Generation Overview 41

2. Generate code to compute an arbitrary element from the
result.

3. Generate code to free up any temporary storage that may
have been required.
We can call the actions of a function in response to these three

messages the three phases of code generation. Thus, we will often
refer to code generated during the shape phase, code generated
during the value phase, and code generated during the finish
phase.

Note that, whereas for each function the order of phases may
be very regular (first shape, then value, then finish), from a larger
perspective things are not so ordered. A reshape function, for
example, must compute the values of its left argument before it
can determine the shape of the result it will produce. Thus during
the shape phase of a reshape function, the left argument goes
through both its shape and value phases. During the value phase
of the reshape, only the value phase of the right argument is
produced, and no code is generated by the left argument.

Advocates of attribute grammar parsing will note a slight
similarity between the techniques used here and the methods used
in attribute grammars (Waite and Goos 1984). During the shape
phase, the request can be viewed as an inherited attribute being
passed down, and the location of the result as a synthesized
attribute being. passed back (with code generation being an
incidental side effect). Similarly, during value phase, the name of
the identifier that will contain the index of the desired element is
an inherited attribute, and the location of the result is a
synthesized attribute. While superficially the method is the same,
there are a number of differences on the implementation level (such
as the fact that attribute grammars do not, by themselves, impose
any order on the phases) that make it difficult to implement the
APL compiler in this manner.

3.3. When Not to Use Space Efficient Evaluation

Most of the time, the space efficient evaluation technique that
we have been describing is the preferable method for producing a
result. There are, however, exceptions. To see this, note that
some operations (such as outer product or scan) access their
argument values repeatedly in the course of producing their results.
This by itself is not a problem; however, the composition of these

42 An APL Compiler

functions may produce a situation in which the space efficient
technique is no longer preferable.

Consider the scan function, for example. A single scan
requires, in general, O(n2) evaluations of the sub expression being
scanned, where n represents the number of elements in the
subexpression. By itself this causes no problem, nor is there, in
general, a more efficient approach [although in some cases
commutative functions will permit an O(n) technique]. Consider,
however, the composition of two scan functions. In this case,
following the space efficient technique would produce an O(n4)

algorithm. Saving the values of the inner scan would yield a O(n2)

algorithm, at the expense of O(n) storage. Clearly, there is a
time/space tradeoff that can be made here. For small arrays either
technique would probably be acceptable. For large arrays either
technique presents difficulties, and the question is which difficulty
is worse.

The APL compiler resolves this question by choosing to save
time over space. Strictly speaking, this is not a problem for the
code generation pass at all. An earlier pass identifies situations in
which the composition of time inefficient functions can potentially
cause problems. If it finds such a situation, it inserts into the parse
tree new nodes· to assign the inner expressions to temporary
variables, and the higher functions read from these variables.
Thus, it is as if code for an expression such as

... +\ +\ A

were written as

temp +-+\ A
... +\ temp

Other functions causing similar problems are outer product
and the left argument to dyadic rotation.

There is another situation in which it is debatable whether one
should use the space efficient demand driven evaluation technique.
When printing an array, most APLs uses the smallest amount of
space necessary to display the results neatly. Thus, an array of 0
or 1 values might display as follows:

3. Code Generation Overview

100 1
o 1 1 0
110 1
o 0 1 0
101 1

43

If one of the values in the array is neither a 0 nor a 1 but instead
an integer value, the spacing of the entire output is adjusted
accordingly:

1 0
o 1
1 1437
o 0
1 0

o
1
o
1
1

1
o
1
o
1

To do this requires that the system save the entire array of
values to be output in a temporary location, and compute the
maximum size of any element prior to printing the first value. In
keeping with our space efficient philosophy, we have decided
instead to print values as they are computed, with no buffering.
(The algorithm for output quad is given in more detail in the next
chapter.) Since we do not know ahead of time the spacing that
will be required, we use the printing precision and printing width
system variables to determine the amount of space that will be
occupied by any' value. While this is admittedly a violation of the
usual APL practice, it is in keeping with our space efficient
philosophy.

3.4. A Note on Notation
The algorithms described in the next four chapters present the

code generated by the APL compiler in a form of high level pseudo
code. Although the actual code produced by the APL compiler is
in a high-level language, namely C, many readers find C terse to
the point of being cryptic.6 For this reason, an alternative pseudo
code is used. The appendices give examples showing the actual C
code produced by the compiler. It is useful to note that there are
four types of quantities manipulated by the generated code, which
are described as follows:

6. Of course, one would not normally expect APL programmers to complain
about a language being so terse as to be cryptic.

44 An APL Compiler

1. Scalar integer values. These are used to hold type and rank
information, as well as maintaining loop variables and the like.
These can also be used to hold boolean flags.

2. Result values. These are structures that can hold any of the
three legal scalar types (integer, real, or character). Note that
in C, as in APL, a boolean value is simply represented as
either an integer 0 or 1. In some cases, if it can be determined
at compile time what type will be produced by some
subexpression, only one of the three fields of these structures
will be referenced. If type cannot be determined at compile
time, the entire structure is referenced by the code, thus
permitting any of the three types to be used at run time.

3. Type / rank / shape values. These are structures used to
maintain type, rank, and shape information, should it be
required to be gathered in one place or maintained for a long
period of time. For example, TRS structures are passed along
with each argument in evaluating a user defined function.

4. Memory pointers. These are pointers that can point to any of
the three scalar types (integer, real, or character).

Chapter 4

Simple Space Efficient Functions

The demand driven evaluation technique described in the last
chapter works best with functions that are space efficient. In
general, space efficient functions are characterized by the fact that
individual elements of the result can be computed independently of
each other, and the actions involved in this computation depend
only upon the indices of the elements being computed, not upon
the value of those elements. Not all APL functions are space
efficient; however, the majority (and more importantly, the most
commonly used functions) do possess this property.

In this chapter we describe the algorithms used in the
generated code for some of the simpler space efficient functions.
Algorithms used by more complicated space efficient functions are
described in the following two chapters. In this chapter, we
consider the following functions:

46 An APL Compiler

assignment, including nested assignment and assignment to quad
leaves, such as identifiers and constants
monadic and dyadic primitive scalar functions
reshape, ravel, and iota
outer product
subscripting

4.1. Assignment

The assignment function is notable for being one of only four
functions that can appear at the top of a parse tree; the other three
functions are assignment to quad, the branching arrow, and
function call. l The last chapter described in broad terms the code
generated for assignment. As we noted then, there are four tasks
that the assignment function must perform:
1. Determine the type and size of the right expression.
2. Allocate storage for the values of the right side.
3. In a loop place values from the right side into the space

allocated.
4. Rebind the identifier being assigned to the new values.
Note that rebinding the name to the new values is performed last,
after all the values have been read. This is so that expressions such
as

A +-A +1

will perform as expected and not overwrite the old value before it
has been used as part of the computation.

4.1.1. Nested Assignment

The algorithm presented in the last chapter assumed that the
assignment function was the topmost function in an expression.
This need not be the case, as an assignment can be used within an
expression, for example:

A+-(1+B+-L7)

1. This is not to say that the user cannot write other expressions. However,
the parser inserts an assignment to quad on top of any expression that is not
itself an assignment, assignment to quad, branch arrow, or function call.

4. Simple Space Efficient Functions 47

There are two separate algorithms used to implement nested
assignment, depending upon whether the assignment function is
accessed in a sequential fashion or not. Sequential access implies
that all values are accessed once, in ravel order; no element is
omitted, and no element is requested more than once. As we will
see in following chapters, knowledge that an expression will be
accessed in a sequential fashion often permits significant
optimizations to be made. Note that the loop generated by
topmost assignments always retrieves values in sequential order,
and many functions will preserve this property.

If a nested assignment is accessed in a sequential manner, then
no loop is generated. Instead, the loop generated by the higher
functions is utilized.

Shape Phase

code to compute size of right side
allocate storage for result

Value Phase

compute the ith value of right side
store value in ith location of allocated area

Finish Phase

Bind identifier to new values

It can happen that the assignment function is not accessed in
sequential order. An example expression in which this occurs is

A+-<t>B+-23pt6

Here the loop generated by the assignment to A requests elements
in a sequential fashion, but the transpose function is computing a
new index value for each iteration of the loop, and these index
values do not arrive in strictly sequential order. Since, in general,
nonsequential access does not guarantee that every element of the
result will be requested (a consequence of demand driven
evaluation), it is necessary for the assignment function to generate
its own loop to gather values. In this case the assignment is
performed during the shape phase, exactly as if it were a topmost
assignment in an expression. During the value phase results are
then read out of the new identifier. Thus the effect is the same as

48 An APL Compiler

it would be were the nested assignment removed from the
expression

B+-23pL6
A+-~B

Even if sequential access can be assured, it may also be
necessary to generate a separate loop for an assignment if the value
being assigned is subsequently used in the same expression. This
occurs, for example, in the following expression:

B +- (~A) +A +- 23 p L 6

Finally, because a branching arrow may transfer control to
another part of the program before the finish phase code has been
executed, it is necessary to move assignment statements out of
branch arrows, replacing

with

-+LXL(A<B+-B+1)

B +-B +1
-+LXL(A<B)

4.1.2. Assignment to Quad
Assignment to box (quad) is similar to variable assignment,

only the ,values are printed instead of stored. The only
complicating factor concerns the proper insertion of new lines, so
that 2 3 p L 6 is printed as

instead of

123
456

1 234 5 6

This is accomplished by placing the following section of code after
the portion of the program that prints each element. The effect
will be to print a newline after each row, two new lines after each
array, three new lines after each set of two dimensional arrays, and
so on. The values si represent the shape of the result heing
printed, and n the rank of the result. The variable offset is the
index of the element being printed. The variable t is simply a
temporary.

4. Simple Space Efficient Functions

t =sn
for i =n to 1 by -1 do

if ((of fset+1) mod t = 0) then begin
print newline
t = tXsi_l
end

else break

49

Note that this algorithm differs from the one utilized in other
APL systems, since the space to be used in printing each value is
determined a priori before the first element is produced. As we
noted in the last chapter, this is, however, in keeping with our
space efficient philosophy in the APL compiler.

4.2. Leaves
Simple leaf nodes come in two varieties: identifiers and

constants. Identifiers, in turn, may either correspond to variables
in the user program or to internally generated storage locations. In
any case, leaf functions can reply to requests for their shape or
value without sending any further messages. If their type is known
(as is always the case for constants), they can generate very
efficient code.

Shape Phase

return the type, rank, and shape
of the constant or identifier

Value Phase

return the value of the constant or identifier
at position offset,
or if the constant or identifier is a scalar,
return the scalar value

4.2.1. Constants
The type, rank, and shape of a constant is aways known at

compile time. All constants that explicitly appear in an APL
function, as well as many other constants that arise during
compilation (such as rank and shape values), are gathered together
into a constant pool. During the shape phase, a response is merely
a pointer to the rank and shape information for the constant. A

50 An APL Compiler

pointer is also allocated during the shape phase and set to point to
the values associated with this particular constant in the constant
pool. Unless the constant is a scalar, during the value phase the
value of the index for the desired element is added to this pointer,
and the desired element is retrieved and returned. If the constant
is a scalar, the offset is ignored and the scalar value is returned.

In the APL compiler a technique known as lazy code
generation (Hanson HJ83) is employed in an effort to produce
smaller and faster programs. Using this scheme, the code for an
expression such as a constant is not generated, that is, printed on
the output, when the constant node is accessed in the value phase.
Instead, the value phase code for the constant returns an
expression tree, a simplified form of abstract syntax tree that can
contain only scalar quantities and completely resolved array
references. Some functions, notably the monadic and dyadic scalar
functions, iota, and outer product, will produce larger expression
trees from existing trees if the types of arguments and the type of
the result is known. Various simple heuristics are used to simplify
expression trees, for example, by adding constants together where
possible. Functions higher in the parse tree then print out entire
expression trees. In this manner relatively complex expressions can
be constructed before any actual code is output for an expression.
For example, in the code described in Appendix 2 the following C
statement appears:

res1l.i +=(0 =((i6 + 1) % (i5 + 1)));

This statement includes code produced by two iota functions, a
residue dyadic scalar function, the constant 0, a dyadic scalar test
for equality, and a reduction operator. With the exception of the
reduction, all these functions produced expression trees instead of
code. The reduction operator finally traversed the tree to pr<:>duce
the code you see. Had lazy code generation not been used, many
more lines of code would have been necessary. The examples
shown in the appendices illustrate other instances of this
optimization being employed to generate much more efficient C
code.

4.2.2. Identifiers
In the internal representation of values used by the APL

compiler identifiers consist of a structure, containing the following
four fields:

4. Simple Space Efficient Functions 51

1. The type of the identifier.
2. The rank of the identifier.
3. The shape of the identifier (a pointer to an integer vector of

values).
4. The values of the identifier (a pointer to a vector of values,

stored in ravel order).
During the shape phase it is sufficient to merely return

pointers to the appropriate type, rank, and shape information.
During the value phase the value· field is indexed by the offset
provided, and the appropriate element is returned. One
complicating factor is that, if the identifier is a scalar (a fact that
may not be known at compile time), the offset is ignored and the
the scalar value is returned in response to all requests.

As we noted in the chapter on type and shape inferencing,
early in the development of the APL compiler a simplification was
decided upon that replaced the dynamic name scoping of APL in
favor of a simple two-level name scoping. In this way, identifiers
are either local (known only to the function in which they occur) or
global (potentially known in all functions). One reason for this
decision was the ease with which the two-level scoping could be
implemented in the target language, C, since local and global
variables could be mapped directly onto C local and global
variables. This also resulted in a considerable simplification of the
dataflow algorithms, as we have already noted in a previous
chapter. In passing, we note that from the point of view of the
code generator there is no fundamental reason why the
conventional APL dynamic scoping could not have been preserved.
To accomplish this, a search would have to be made during the
shape phase for the appropriate binding of the identifier name.
This would require a small amount of run time support, but
basically all other features of the APL compiler (with the exception
of dataflow analysis) would remain the same.

4.3. Primitive Scalar Functions
The scalar functions are the workhorses of the APL world.

Not particularly flashy, nevertheless they do most of the real work
in producing results. If the types of, the arguments are known,
many of the scalar functions can be implemented directly by
operations in the target language. (Addition and subtraction are
the canonical examples.) If it is possible, lazy code generation is

52 An APL Compiler

used, and an expression tree is produced, rather than actual code.
The sample output described in Appendix 2 shows a good example
of a scalar function being combined with other functions in the
final code. If the types of arguments are not known, or the
operations are too complex, code is generated that will, at run
time, call upon a subroutine to compute the result.

For monadic scalar functions the shape phase code merely
returns the shape of the underlying argument, perhaps changing
the type information. For dyadic scalar functions the shape code is
more complicated, since one or the other of the arguments may be
a scalar, and scalar extension must be applied.

The value phase code is simple for both monadic and dyadic
scalar functions. The offset of the requested element is passed to
the arguments, and the values they produce are noted. A new
expression tree is then created that will, when executed, generate
the desired results.

Note that scalar extension is facilitated by the fact that leaf
nodes, such as constants and identifiers, will ignore the offset value
during the value phase if they return a scalar. Thus, a dyadic
scalar function node need not remember whether either of its
arguments are scalar and can merely pass the same offset value to
both.

4.4. Ravel, Reshape, and Iota
Using the demand driven space efficient technique, a few

functions are almost free, in the sense that they generate very little
code. Implementing ravel, for example, merely requires that
during the shape phase the size of the right side is computed and
returned as the extent of the vector result. Since the offset into the
ravel ordering of the result is unchanged, no additional code is
generated during the value phase.

Iota is almost as easy. During the shape phase the value of the
right side is computed and stored as the size of the vector result.
During the value phase the quantity in the index giving the
requested position (plus the index origin) is returned as the value of
the function. A compiler switch can be enabled to set the index
origin to a fixed value (0 or 1), making this computation even
faster. As we saw in the example C code cited earlier, when
combined with lazy code generation, very efficient code can be
produced.

4. Simple Space Efficient Functions 53

Reshape computes the value of the left argument during the
shape phase. It must also compute the size (number of elements)
of the right argument. During the value phase it is only necessary
to generate a single instruction. This one statement yields the
remainder when the offset of the desired element is divided by the
size of the right side, in effect causing. elements from the right side
to wrap around if there are fewer of them than requested. If we let
of fset represent the index of the desired element and offset' the
index that will be passed to the right argument, this can be
computed as

of fset' = of fset mod (size of right side)

If it can be determined at compile time that the right
argument has at least as many values as the result, even this
instruction can be eliminated.

4.5. Outer Product
The value phase code for outer product is in many ways

merely a variation on the value phase code for dyadic scalar
functions. Instead of simply passing the offset for the requested
elements down to the two argument expressions, new offsets are
computed for both the right and left arguments.

of fsetzejt = of fset div (size of right argument)
{ code to compute value of left argument}
of fsetright = of fset mod (size of right argument)
{ code to compute value of right argument}
{ code to compute scalar function result}

This code, however, has the unfortunate property that the
arguments from both subexpressions are requested once for each
value of the result. As an example of how bad this can become,
consider the sequential access of a large result. In this case, the left
index would only change after the right subexpression had cycled
through every element. If the left subexpression was the product of
a complicated expression, the repeated construction of the same
value from the left side could be quite costly. One alternative
would be to buffer the left values, constructing a new value only if
necessary. Code to accomplish this might look like the following:

54 An APL Compiler

of fsetleft = of fset div (size of right argument)
if (of fsetleft < > last left offset) then begin

last left offset = of fsetteft
{ compute left argument at position of fsetteft }
end

of fsetright = of fset mod (size of right argument)
{ compute right argument at position of fsetright }
{ code to compute scalar function result}

However much an improvement in execution time this results
in, for the case of sequential access we can do even better. On
most machines the arithmetic operations of multiplication and
division are considerably more costly, in terms of execution time,
than the operations of addition and subtraction. Sometimes the
difference may even be an order of magnitude. The optimization
technique known as reduction in strength attempts to replace
multiplications and divisions with additions and subtractions, using
knowledge of how the replaced expressions will change as the loop
in which they occur progresses.

In the case of sequential access of an outer product, we know
the left offset will increase by one every time the right offset has
cycled through all values whereupon the right offset will start over
again at the beginning of its values. Thus, by properly initializing
the value o,f fsetright in the shape phase, the following code can be
used.

Shape Phase

of fsetright = 1 + (size of right argument)
of fsetteft = 0

4. Simple Space Efficient Functions

Value Phase

if (of fsetright > (size of right argument)) then begin
{ compute left argument at position of fsetZeft }
of fsetleft = of fsetZeft +1
of fsetright = 0
end

{ compute right argument at position of fsetright }
of fsetright = of fsetright + 1
{ code to compute scalar function result}

55

This code not only buffers the left argument, producing a new
element only when required, but it also has eliminated both the
division and the modular division previously required to compute
the right and left offsets. It also continues the sequential access on
into its left argument, thus potentially permitting further
optimizations. We will see in subsequent chapters other instances
in which the technique of reduction in strength can be applied in
situations when results are generated in sequential order.

4.6. Subscripting
The operation of subscripting an expression by values

generated from a number of index expressions is rather more
complex in APL than in most other languages. Consider an
expression such as

subscripted expression [index! ; index2; ... ; indexn J

For one thing, the size and shape of the result is not determined by
the size of the subscripted expression but by the catenation of
shapes of the index expressions. In fact, about the only constraint
on the subscripted expression is that it must be of rank n, the
number of index expressions. 'This is one of the few cases in APL
in which constraints on the rank of an expression are imposed from
above in the parse tree. (The dyadic form of rotation provides
another example.)

The code generated for the subscripting operation divides
naturally into two parts. The first part is, surprisingly, very
similar to the code generated for the outer product. It is as if the
semicolons in the index portion of the subscript acted as a sequence
of outer products. In both cases an offset for the requested value is
divided into two individual offsets for the left and right children.

56 An APL Compiler

In the case of subscripting, however, the left "child" is actually the
combined set of subexpressions to the left of the current index. A
temporary variable is used to hold the value of the requested offset
as it is being manipulated by the index expressions, from right to
left.

temp = of fset

of fsetn = temp mod (size of index expression n)
temp = temp div (size of index expression n)
{ compute value of index n at position of fsetn }

of fsetn_1 = temp mod (size of index expression n-1)
temp = temp div (size of index expression n-1)
{ compute value of index n-1 at position of fsetn_1 }

of fset1 = temp
{ compute value of index 1 at position of fset1 }

The second part of the code then takes the result values
computed for each of the index expressions and puts them together
to form an index into the subscripted expression. Let sn represent
the extent of the nth dimension of the subscripted expression, and
r n the result value computed by the computation just given.

of fset' = rl-index origin
of fset' = (of fset'Xs1)+(r2-index origin)

of fset' = (of fset'Xsn_1)+(r n -index origin)
{ compute subscript expression at position offset' }

If we know at compile time that the index origin is 0 or 1, then
we can improve this code somewhat. For empty index expressions
code is generated that is identical to that which would be
generated for an iota vector of length Sn'

If desired, code can also be generated that will assure that each
index value represents a valid subscript for the position in question,
for example:

4. Simple Space Efficient Functions

if (r1 < index origin) or (r1 > s1) then
issue error message

57

As with outer product, if we know the results are going to be
accessed in sequential order, we can simplify the code for the first
part, performing a reduction in strength to replace the two
divisions (mod and div) with additions. The code generated
for the first parts are then nested, one within the other, and new
values are generated only when they are necessary.

Shape Phase

of fset1 =0
of fset2 = (size of index expression 2) + 1

of fsetn = (size of index expression n) + 1

Value Phase

if (of fsetn > (size of index expression n)) then begin
of fsetn_1=of fsetn- 1+1
{ subscripting code for index expression n-l }
offsetn =0
end

of fsetn=oj fsetn+l
{ compute value of index n at position of fsetn }

For the first (innermost) index expression the code is simply
that code necessary to compute the value of the index expression at
position of fset1•

If we were willing to compute the expansion vector (see next
chapter) for the subscripted expression, we could in theory even
replace the n-l multiplications required in the second part with a
single multiplication for each element generated. We have not
done so, however, since our observations have been that most
subscripted expressions have rank 2 or less, and thus this represents
only marginal savings.

58 An APL Compiler

4.7. Mod and Div
Few machines have an explicit mod instruction, and thus

most C compilers will translate the mod operation internally into
a division and a multiplication. As can be seen from an
examination of the algorithms presented in this chapter, we are
often interested in both the quotient and remainder of a division of
two values. In C we can compute these two results in one
expression and thereby save one division operation. While this
results in only a small savings, if it occurs inside a loop over the
course of execution the results can be significant.

The single expression to compute both values is as follows:

modresult = left - right X (divresult = left -;- right);

The examples given in Appendix 2 show this type of code
being generated.

Chapter 5

Further Space Efficient Functions

In the last chapter we presented algorithms for some of the
simple space efficient functions, such as the scalar functions and
outer product. In this chapter we consider a larger class of space
efficient functions, those for which the transformations on the
indices can become more complex than the simple division that
was required to implement outer product. In many of these
functions, reduction for example, the determination of a single
element of the result requires a loop to iterate over several
elements of the argument subexpression.

In this chapter we describe the algorithms used in
implementing the following eight functions:

reduction
compression
catenation
inner product

scan
expansion
dyadic rotation
decode

60 An APL Compiler

The next chapter considers a different set of functions that also
have a space efficient implementation, although the details of that
algorithm are quite different in nature from the algorithms
described in this chapter.

Fundamental to the algorithms presented in this chapter is the
ability to view a request for a single element as being given either
by a single number, the offset of the desired element in the ravel
order of the result, or as a vector representing the subscript indices
of the element. The tool used to transform a request from one
form to the other is the expansion vector.

5.1. Expansion Vectors
Consider an expression A of rank n. Let the vector

sl,s2' ... ,sn represent the shape of A (that is, the value of p A).
The vector el,e2' ... ,en defined by the recursive equations

(5.1)

ei = si+l ei+l

is called the expansion vector! for A. The value ei is equal to the
distance between adjacent elements along dimension i in the ravel
ordering of A. Thus, the offset corresponding to position
A[al ; a2; ... ; an 1 can be computed as

, offset = al el + a2 e2 + . .. + an en (5.2)

We will assume always that the indices are legal and zero based;
that is, 0 < ai < si. From this it follows that

an-l en-l + an en < an-l en-l + sn en

= (an-l + l)en-l

< sn-l en-l

= en-2

Furthermore, in general

aiei + ... + an en < siei = ei-l (5.3)

1. Some authors use the term power vector. There does not appear to be any
standard terminology.

5. Further Space Efficient Functions 61

from which it follows that

From the definition it is clear that ej equally divides e j for all
j < i, therefore

(aIel + ... + aiej) mod ej = 0

Observe that if x mod y = 0, then (xz) mod y = 0 and
(x+z) mod y = z mod y. Using these we derive the following
identity:

aiej + ... + anen = (ajej + ... + anen) mod ei-l

= (al el + ... + ai-l ej_l

+ ajej + ... + anen) mod ej-l

= (aIel + ... + anen) mod ei-l

= offset mod ei-l (5.4)

The converse identity, for sums of terms with indices starting
at 1, uses the integer division function div. First we note a fact
about div, namely, if x, y, and z are positive and y mod z = 0,
then (x + y) div z can be rewritten as (x div z) + (y div z).

To derive our second identity, we divide both sides of (5.2) by
ej, giving

of fset div ej = (al el + a2 e2 + ... + an en) div ei

We have already observed that

(aIel + ... + aiei) mod ei = 0

Under this condition it is safe to divide the right side into two
parts, yielding

of fset div ei = (a l el + a2e2 + ... + ajei) div ei

+ (ai+l ei+l + ... + an en) div ej

However, we know (5.3) that aj+l ei+l + ... +an en < ej, therefore
the right term must be o. What remains is

of fset div ej = (a l el + a2e2 + ... + aiej) div ej (5.5)

If we multiply both sides by the value ei' we obtain the desired
identity:

62 An APL Compiler

(of fset div ej) ei = al el + a2e2 + ... + aiej (5.6)

Returning to (5.5), we next derive an expression that permits
us to determine aj from offset. Clearly ajei mod ej = 0, so (5.5)
can be rewritten as

of fset div ej = (al e l + . .. + ai-I ej_l) div ej

+ (ajej) div ei

Which, of course, simplifies to

of fset div ej = (al el + . .. + aj-I ej-I) div ej

+ aj

Since ej divides e j for all j < i, the division results in an integer,
and it is not difficult to see that it must be a multiple of Sj (since si
is a factor in ej-I and all terms to the left). Therefore

(of fset div ej) mod Sj =

((al el + . .. + ai-I ej_l) div ej + ai) mod Sj

= ai mod Sj

However, since aj < Sj, this yields

(of fset div ej) mod Sj = aj (5.7)

As we will see often in this chapter, special cases occur at the
endpoints. In the case of aI' offset div ej < Sj, thus the formula
for al reduces to

al = offset div el

On the other hand, since en = 1, the formula for an can be
simplified to

an = offset mod sn

The remainder of this chapter will show how these
mathematical relations can be used to derive space efficient
algorithms for various APL functions.

5.2. Code Generation for Reduction
Assume that we are computing an exrression A of rank n-1,

found by taking a reduction along the it dimension of a second
expression B of rank n (that is, using + for the reduction operator,

5. Further Space Efficient Functions 63

A = +/[i 1 B). Let ek, 1 <k<n be the expansion vector for B. It
is convenient in this particular instance to index the elements of A,
as well as the expansion vector for A, by 1 ... (i-l),(i+l) ... n.
Let fk be the expansion vector for A, and let si represent the shape
of B along the dimension being reduced. It is clear that

ek = fksi' k<i

ei = Ii-I

ek = ik, k>i

Consider the problem of generating the single element
A[al;a2; ... ai-l;ai+l; ... ;anl. Let offset represent the position
of this element. By (5.4) we have that

of fset mod fi-l = ai+l fi+l + ... + an f n

Using the relationships that we have observed between e and f,
this is the same as

of fset mod ej = ai+l ei+I + ... + an en

In order to compute the element at location offset, it is
necessary to operate on an entire column of the subexpression B,
namely, the column corresponding to

B[aI;a2; ... ai-I; x ;ai+I; ... ;anl

where x ranges between 0 and si-l. According to the APL rules
for associativity, this column must be examined in reverse order.
Thus, the first element to be examined is

B[al;a2; ... ai-I; (sj-l) ;ai+I; ... ;anl

Using the expansion vector for B, the position of this element can
be determined as

of fset' = al el + ... + ai-l ei-l + (si-1)ei

+ ai+lei+l + ... + anen

Using the relation between e and f that we derived earlier, this
can be rewritten as

of fset' = al el + ... + ai-l ei-l

+ (si-1)ei + (offset mod ei)

64 An APL Compiler

We can factor si from the first part of the right side, giving

of fset' = si(al f 1 + ... +ai-l fi-l)

+ (si-1)ei + (offset mod ei)

but by (5.6) this is just

of fset' = si(of fset div fi-l) Ii-I

+ (si-1)ei + (of fset mod ei)

Substituting ej for fi-l gives

of fset' = (of fset div ei)(eisi)

+ (sj-1)ej + (of fset mod ei) (5.8)

Two special cases can be noted. When reduction occurs along
the first dimension, of fset div ei = 0, ej > of fset, and the
formula simplifies to

of fset' = (sj-1)ei + offset

Similarly, when reduction occurs along the last dimension, ei = 1,
and thus the formula simplifies to

of fset' = (1 + of fset)si-1

Thus, with these equations we can finally describe the code
generated fdr the reduction operator. During the shape phase
computations, the values of si and ei are computed, in addition to
determining the shape of the resulting expression. The values eisj
and (sj-1)ej can be computed and stored in the variables tl and t2,

respectively. During the value phase it is desired to compute the
element given by the variable offset, returning the result in the
variable result. The code is similar to the following:

Shape Phase

Sj = shape of result along ith dimension
ei =expansion vector along ith dimension
tl = ejXsj
t2 =t1- ej

5. Further Space Efficient Functions

Value Phase

result = identity for function being reduced
of fset' = (of fset div ej)xtl +t2+(of fset mod ej)
for counter = 1 to Sj do begin

{ compute value of subexpression at offset' }
result = value op result
of fset' = of fset' - ej
end

65

APL permits the user to perform a reduction using any
primitive scalar function. Some functions, such as nand (not-and)
or comparison, do not have an identity value (see Figure 1.~. For
these functions the code just described clearly will not work . An
alternative algorithm gets around this problem by means of a
boolean flag variable. The flag variable is set to true upon
entrance to the value phase code, prior to entering the loop. As
the first value is computed it is stored in the result variable and the
flag is set to false. Thereafter values are combined with the
previously computed result. If the flag variable is true following
the loop, it means a reduction was attempted along an axis of zero
length. Since the function being reduced does not have an identity,
a domain error is reported.

2. To be precise, we require a right identity. That is we need an element y
such that x op y is equal to x for all values x. Division, for example, has a
right identity, namely 1, but no left identity. Residue, on the other hand, has
a left identity, namely 0, but no right identity. Thus the algorithm presented
here will not work for residue, and the alternative using a boolean variable
must be generated.

66 An APL Compiler

flag =true
of fset' = (offset div eJxt1 +t2+(of fset mod ei)
for counter = 1 to si do begin

{ compute value of subexpression at offset' }
if flag then begin

flag =false
result = value
end

else
result = value op result

of fset' = of fset' - ei
end

if flag then
report a domain error

We note that the first alternative is preferable, when possible,
not only because it is shorter but also because the value produced
by the subexpression appears only once. As a consequence of the
lazy code generation technique we described in the last chapter,
this value can oftentimes be an entire expression, not just a simple
variable. Rather than duplicating code for this expression, we
would first store the value into a temporary variable and then use
that variable in place of the value; that is, the code would appear
as follows:

{ compute value of subexpression at offset' }
temp = value
if flag then begin

flag =false
result = temp
end

else
result = value op temp

We prefer not to generate the extra variable, the extra load
and store on that variable, the extra tests on the flag variable, and
the extra code if we do not need to.

We now present more efficient code that can be generated for
the reduce operator under certain specific conditions. In each of
these cases, modifications such as the one we have just described
must be applied when the function being reduced lacks an identity
value. We will not present these modifications since they should be

5. Further Space Efficient Functions 67

clear to the reader.
If the object being reduced is known to be a vector, we can

combine the offset computation and the loop.

result = identity for operation
for offset' = si-1 to 0 by - 1 do begin

{ compute value of subexpression at offset' }
result = value op result
end

The code for the vector case is independent of the axis of the
reduction (since, indeed, there can only be one axis). If the
function with which the reduction is being performed is
commutative, we can loop from 0 upwards, thereby making the
subexpression have sequential access. Note that the property of
being commutative implies that any identity must be both a right
and left identity.

One more special case should be noted, since it occurs
frequently enough and the improvement in execution speed is
dramatic enough to warrant the extra effort. If the function being
reduced is commutative (such as addition or multiplication), then
we can move along the column of the subexpression in the forward
direction, rather than in the backward direction. In general, this
provides no savings, except in the case in which the expression will
be accessed in a sequential fashion and the reduction is along the
last dimension. lit this case, the subexpression being reduced can
also be accessed in a sequential fashion. This being the case, we
can eliminate the computation of offset' altogether by merely
initializing it to 0 in the shape phase. The value phase code then
becomes as follows:

Shape Phase

si = shape of result along ith dimension
of fset' =0

68

Value Phase

result = identity for operation
for counter = 1 to Sj do begin

An APL Compiler

{ compute value of subexpression at offset' }
result = result op value
of fset' = of fset' + 1
end

5.3. Code Generation for Scan
For the scan operation, unlike reduce, the shape of the result is

the same as the shape of the subexpression being scanned. Since
the shapes are the same, the expansion vectors are also the same.
Assume that we are generating code for an expression A of rank n,
formed by taking the scan across the ith dimension of B, for
example, A = +\ [i] B. From the definition of the scan function it
is clear that to compute a single element of A, such as

A[a1;a2; ... ian]

it is necessary to consider a section of a column of B, namely, those
elements in the positions

B[a1; ... ;ai_1;x;aj+1 ... ian]

where x ranges between 0 and ai' Here is one case in which the
APL associativity rules, which require us to perform the operations
in reverse order, are actually beneficial. The upper endpoint of the
column is given by offset; we know each element in the column is
a distance ei from the next element, thus, it suffices to determine
the number of elements in the column. This is given to us by ail

which we know how to calculate from (5.7).
The code for the scan function can therefore be described as

follows. During the shape phase computation, the values of Sj and
ej are computed and the shape of the resulting expression is
determined. During the value phase it is desired to compute the
element given by the variable offset, returning the result in the
variable result. The code is similar to the following:

5. Further Space Efficient Functions

Shape Phase

Sj = shape of result along ith dimension
ei = expansion vector along ith dimension

Value Phase

result = identity for function being scanned
aj = (of fset div ei) mod Si
of fset' = of fset
for counter = 1 to ai do begin

{ compute value of subexpression at of fset' }
result = value op result
of fset' = of fset' - ei
end

69

As with reduction, scan can be applied using a function that
does not have an identity value. In this situation, the modification
is similar to that used for reduction.

flag =true
ai = (of fset div Ci) mod Si
of fset' = of fset
for counter = 1 to ai do begin

{ compute value of subexpression at offset' }
if flag then begin

result = value
flag =false
end

else
result = value op result

of fset' = of fset' - ej
end

Notice that, unlike the case for reduction, no value is required
if the length along the axis being scanned is O. As we did in the
presentation of reduction, we will from now on assume that we are
dealing with a function that does have an identity, with the
understanding that similar modifications are necessary if this
condition is not satisfied.

If the subexpression is known to be a vector, we can combine
the counter and the computation of offset':

70 An APL Compiler

Value Phase

result = identity for function being scanned
for offset' = of fset to 1 by -1 do begin

{ compute value of subexpression at offset' }
result = value op result
end

As was the case with reduction, commutative functions
provide the potential for a significant special case. If the function
is commutative, the access is sequential, and the scanning is along
the last dimension, then we can avoid having to build a loop at all.
By keeping a counter, we can use the previously returned value to
generate each new value, accessing the subexpression in sequential
order as well. This counter is initialized to si during the shape
phase. The generated code is then as follows:

Value Phase

{ compute the next value from the subexpression }
if counter > si then begin

result = value
counter =0
end

else
result = result op value

counter '= counter + 1

Note that each new value of the result requires only one new
element of the subexpression to be computed, so in place of an
O(n2) process we can now compute the result in O(n) steps.

If access is sequential, the function is commutative and
possesses an identity, and the right argument is a vector, then we
reach the ultimate in optimization:

Shape Phase

result = identity for function being scanned

5. Further Space Efficient Functions

Value Phase

{ compute the next value from the subexpression }
result = result op value

5.4. Compression and Expansion

71

The mathematical underpinnings for the algorithms used to
generate code for the functions compression and expansion are very
similar, and they are similar in fact to those used by the catenate
function described in the next section. In both cases, the rank and
shape of the result is the same as the rank and shape of the right
argument, with the exception of the ith dimension, which is made
smaller (in the case of compression) or larger (for expansion and
catenate). Using the same notation as in previous sections, assume
that we are computing some expression A that is formed by a
compression or expansion along the ith dimension of some
expression B. Let e j represent the expansion vector for Band f t
the expansion vector for A. Let si be the shape of A in the i h

dimension, and sli the corresponding shape in B. We therefore
have the following relations:

e·=f· J">i J J'-

e . = (f . div s·) Sf. J" < i J J Z Z'

Assume that we wish to compute a specific element from the
result,

A[al;a2; ... jan]

Let offset = al f 1 + ... + an f n" To compute this value, it is
necessary to determine a different value in the subexpression B.
The indices for this value differ only in the ith dimension, so we
can write it as

B[al; ... ; ai-I; a'i; ai+l . " . an]

We postpone for the moment the discussion concerning how ali is
computed (expansion and compression differ in this regard) and
concentrate on computing the offset for this value as a function of

I a i.
Clearly, the offset for this position is

of fset' = al el + ... + a'iei + ... anen

72 An APL Compiler

Since the expansion vectors for A and B are the same beyond i, we
can easily eliminate the later terms:

of fset' = al el + ... + a'iei + (offset mod eJ

We can factor out an s'i term from the left side. If we then
multiply the summation by Sj (at the same time dividing by si to
retain balance), the e j terms become f j.

of fset' = ((adl + ... + ai-di-l)s'i) div Si

+ a'iei + (offset mod ei)

Applying (5.6) then gives us:

of fset' = ((of fset div h-l) fi-l)s'i) div Si

+ a'iei + (offset mod ei)

However, as we observed previously, (Ji-l div si)s'i is just
ei-l; thus, this can be simplified to

of fset' = (of fset div fi-1)ei-l)

+ a'iei + (offset mod ei)

Substituting eisi for fi-l gives us

of fset' = (of fset div (eisJ)ei-d

+ a'iei + (offset mod ei)

Rewriting ei-l in terms of ei and joining terms gives us our final
form:

of fset' = ((of fset div (eisi))s'i) + a'i)ei

+ (offset mod ei)

There are the usual special cases for the first and last axis. For
the first axis the div term disappears, leaving
a'iei + offset mod ei. For the last axis ei is 1, thus simplifying
the formula to (offset div si)s'i + a'i. Finally, if at compile time
we know that the right term is a vector, no calculation at all is
needed, as of fset'=a'i.

Let us return to the question of how this can be used to
generate code for the compression function. The first observation
is that the rank and shape of a compressed expression is given by
the rank and shape of the right subexpression, with the exception

5. Further Space Efficient Functions 73

that the ith element of the shape is determined by the number of
1's in the left subexpression. Therefore, during the shape phase the
left subexpression must be scanned to determine the number of 1
values. But we can do better, for we can compute at this point the
offsets along the ith dimension that each entry will generate into
the right subexpression. An example will help clarify this idea.
Suppose we are computing the compression

A+-O 1 0 1 0 1 1 0 I[i 1 B

As we scan the left, we note that there are four 1 's; therefore, the
resulting value will have shape 4 along the ith dimension.
However, we can also build the vector 1 3 5 6, which tells us that
the first column (with index 0) will be found by looking at the
column with index 1 in B. The second column will be found by
looking at the column with index 3, and so on.

The shape phase code for compression, therefore, looks similar
to the following:

Shape Phase

{ allocate storage3 for compression index vector v }
size =0
for index =0 to (size of left) -1 do begin

get left element x
if (x. 1) then begin

size = size + 1
v[sizeJ = index
end

end

In the end, the variable size indicates the number of 1 elements in
the left subexpression and, therefore, the size along the ith
dimension of the result.

During the value phase the first step is to use (5.7) to compute
ai' the ith value of the index for the desired element. This value is
then used to index into the compression index vector constructed

3. Clearly it is only necessary to allocate enough storage to accommodate the
number of 1 elements in the left argument. However, this number is not
known at the time the storage must be allocated. An upper bound, however,
is given by the size of the left argument, which is known at this point. Thus,
the amount of storage requested is equal to the size of the argument.

74 An APL Compiler

during the shape phase, resulting in a new index a'i. This value is
then used in the formula derived earlier in this section, resulting in
a new offset', which is then passed to the right subexpression.

Value Phase

aj = (of fset div ej) mod si
a' = v[ajl
of fset' = ((of fset div (eisj))s'j)+a')ej+{ of fset mod ej)
{ compute value a~ offset' in the left argument}

The code for expansion is in many ways very similar. For
expansion the size along the ith dimension is given by the number
of elements in the left subexpression, not just the terms with value
1. In place of the compression index vector, the corresponding
vector for expansion records whether the associated value is
nonzero (say, by placing a negative 1 in the vector for 0 entries),
and if it is nonzero, the offset to be used in the right side. During
the value phase ai is computed, as for compression, and used to
index into this vector. If a negative value is found, the fill element
for the type of the right side (either 0 or blank) is returned;
otherwise, the computation is the same as for compression.

Value Phase

aj = (offset div ej) mod Sj

if v[ail' < 0 then
result is fill

else begin
a' = v[ail
of fset' = ((of fset div (ejsi))s'j) + a')ej

+ (offset mod ej)
{ compute value of the right argument at offset' }
end

If an expansion is accessed in sequential order and the axis is
the last dimension, then the argument subexpression will also be
accessed in sequential order. It is still necessary to compute ai' but
the computation of offset' can be replaced by a simple increment,
assuming it is initialized to 0 during the shape phase.

5. Further Space Efficient Functions

Value Phase

ai = (of fset div ei) mod si
if v[ail < 0 then

result is fill
else begin

{ compute value of right argument at offset' }
of fset' = offset' + 1
end

5.5. Code Generation for Catenation

75

In principle, code generation for the catenation function is
similar to, and no more difficult than, code generation for
compression and expansion. In both cases the basic idea is to
modify only one dimension of a request, forming a new request
that is then passed on to a child. In practice, however, the code
generation for catenation is complicated by a large number of
special cases. Consider, for example, the computation of ej, used
by (5.7) to obtain the index along the ,-th dimension ai' The
following situations are all possible:
• The rank and shape of both subexpressions to the catenation

are the same, except along the ith axis. In this case, ei will be
the same for both arguments, and thus either will suffice.

• The rank of'the left subexpression is less than that of the right
subexpression. (This is permitted if the left subexpression is a
scalar, or if it matches the shape of the right subexpression in
all but the ith dimension). In this case, the value ej should be
taken from the right subexpression.

• The converse of the previous case, that is the rank of the right
subexpression is less than that of the left subexpression. In this
case the value ej should be taken from the left subexpression.

Let sL be the size of the left subexpression in the ith

dimension, or 1 if the rank of the left subexpression is less than the
right subexpression. Similarly, let sR be the size of the right
subexpression, or 1 if the rank of the right subexpression is less
than the left subexpression. The size of the result along the ith
dimension will, therefore, be SL +sR • During the shape phase, code
is generated to compute ei' sL' and sR' Using these quantities,
the value phase code can be described.

76 An APL Compiler

During the value phase, the first step is to compute ai' using
(5.7). This quantity is then compared to SL. If it is less, the
desired element is found in the left subexpression, otherwise the
desired element will be found in the right subexpression. In either
case, the same formula that was used in the compression code can
be used to determine the offset into the subexpression.

Value Phase

ai = (offset div ei) mod (sL +sR)
if aj < sL then begin

of fset'L = (offset div (ei(sL +SR)))XsL)+aj)Xei
+ (of fset mod ei)

{ compute value of left subexpression at offset' L }
end

else begin
ai = aj - SL
of fset'R = (of fset div (ej(sL +SR)))XsR)+ai)Xei

+ (offset mod ej)
{ compute value of right subexpression at offset' R }
end

.Af3 with most of the functions described in this chapter, if
access to the results is sequential, then better code can be
generated. Catenation is unique, however, in that this special case
is applicable'regardless of the axis along which the catenation takes
place. All that is required is that of fset'L and of fset'R be
initialized to 0 during the shape phase.

Value Phase

ai = (of fset div ei) mod (sL +sR)
if ai < sL then begin

{ compute value of left subexpression at of fset'L }
of fset'L = offset' L + 1
end

else begin
{ compute value of right subexpression at of fset'R }
of fset'R = offset' R + 1
end

5. Further Space Efficient Functions 77

5.6. Code Generation for Dyadic Rotation

For the dyadic rotation function, rank and shape of the result
is the same as the rank and shape of the right argument. The left
argument has rank one less, and must match the shape of the right
except in the position being rotated around. Assume that we are
computing an expression A =B CD [i] C. Let ei be the expansion
vector for A (also for C) and fi the expansion vector for B.
Assume that we want to compute the element of A stored at a
particular offset, and let the element be represented as
A[al; ... ian]. The first step is to compute the element of B given
by the same indices with the ith entry removed, that is
B[a1; ... ; ai-1;ai+l; ... ;anl. Clearly, this is given by:

of fset' = al f I + ... + ai-l fi-l

+ ai+lfi+l + ... + an fn

As we have seen several times already (in reduction and scan, for
example), we can replace the right side of the summation by
of fset mod fi+ll which is offset mod ei. If we multiply the left
side of the summation by si' dividing out by the same value to
retain balance, we can replace by fi terms with ei' yielding

of fset' = (al el + ... + ai-l ei-l) div Si

+ (of fset mod ei)

Applying (5.6) gives us the desired formula:

of fset' = (of fset div (eisi))ei + offset mod ei

As always, there are special cases for the first and last axis. In
the former case, the first term disappears, leaving

of fset' = offset mod ei

In the second case, ei is 1, thereby reducing the computation to

of fset' = offset div si

This value is then used to index into the left argument,
resulting in a value r. The desired element is found in the right
argument at the position modified in the ith position by the value
r. A complicating factor is that r may be either positive or
negative, but the result value a'i must be between 0 and si. To
determine this, we first apply (5.7) to obtain ai. The new value is

78

then computed as follows:

a'·=a·+r z t

if a'· < 0 then a'· = a'· + s· z z z z
if a'· > s· then a'· = a'· - s· t - I I I t

An APL Compiler

The computation of the correct value then follows closely the
algorithm used in compression and expansion.

5.7. Inner Product and Decode
We describe the code for the general case of inner product.

The special cases (one argument scalar or vector) necessitate
variations on the general idea. In the general case, the last
dimension of the left argument must match the first dimension of
the right argument; that is, if we let LI ,L2, ••• ,Ln represent the
size of the left argument, and R I ,R2, ••• ,Rm represent the size of
the right argument, it must be true that Ln = R I • The shape of
the result is given by concatenating the shapes of the left and right
arguments, deleting these two positions; that is,
LI ,L2, ••• ,Ln- I ,R2, ••• ,Rm·

As with outer product, the first step in computing an inner
product is to convert a request for a specific element into a pair of
requests for the right and left children. In the outer product this is
accomplished by dividing the offset by the size of the right
subexpression. In this case, we want the size of the right
subexpression without the first dimension. This quantity is given
by el, the first element of the expansion vector for the right side.
Thus, if index is used to represent the position of a given element
in the column being processed by the inner product, the position of
the corresponding element in the right subexpression will be given
by

of fset'R = offset mod el + indexXel

Since the index will decrease in an orderly fashion, most of this
computation can be preprocessed before the loop begins, and a
single subtraction can be used to compute each new offset.

On the left side, dividing by el results in an offset into the .left
argument minus the first dimension. If we multiply this by Ln , the
size of the first dimension, we obtain the offset for the beginning of
the column that will be processed by the inner product. To obtain
a specific element in the column, it is only necessary to add the

5. Further Space Efficient Functions 79

index element.

of fset' L = (offset div e l)Ln + index

With these equations we can describe the code generated for
the inner product. Note that the loop invariant code for the two
computations has been moved out of the loop, and a reduction in
strength has been applied. We present the code as though it were
the matrix multiplication inner product +.X, although any scalar
functions can be treated similarly. The shape phase is complicated
by the fact that one or the other of the arguments may be a scalar.

Shape Phase

L = shape of right argument in first position
el =expansion vector of right argument in first position
if (right argument is scalar) then

L = shape of left argument in last position

Value Phase

offset'L =(offset div el) XL + (L-1)
of fset'R = of fset mod el + (L-1)Xel
result =identity for first function (+, for example)
for counter =L-1 to 0 by -1 do begin

{ compute value L of the left subexpression }
{ compute valueR of the right subexpression }
result = value L Xvalue R + result
of fset'L = of fset'L - 1
of fset'R = of fset'R - el
end

As with scan and reduction, this code is incorrect if the first
function of the inner product fails to have an identity value. In
this case, the code is modified as follows:

80

offset'L =(offset div el) XL + (L-1)
of fset'R = of fset mod el + (L-1)Xel
flag =true
for counter =L-1 to 0 by -1 do begin

An APL Compiler

{ compute value L of the left sub expression }
{ compute valueR of the right subexpression }
if flag then begin

else

result = valueLXvalueR
flag =false
end

result = value L Xvalue R + result
of fset' L = of fset'L - 1
of fset'R = of fset'R - el
end

If either the left or right arguments are vector, then the
computation of offset' L or offset' R can be eliminated, the value
being replaced by the counter.

The generated code for decode is very similar to that
generated for the matrix multiplication (+'X) inner product. In
the case of decode, however, a temporary variable is maintained
for the left side. This variable is used in the result calculation and
then multiplied by the appropriate element in the left
subexpression:

offset'L =(offset div el) XL + (L-1)
of fset'R = of fset mod el + (L-1)Xel
result = identity for addition (zero)
t =identity for multiplication (one)
for counter =L-1 to 0 by -1 do begin

{ compute valueR of the right subexpression }
result = tXvalueR + result
{ compute valueL of the left sub expression }
t =tXvalueL
of fset' L = of fset' L - 1
of fset'R = of fset'R - el
end

Chapter 6

Structural Functions

In this chapter we present algorithms that are used in
implementing the following functions:

monadic transpose
take
reversal

dyadic transpose
drop

These functions are only halfway space efficient, in the sense of
Chapter 3. While they are all space efficient with regard to their
right argument, those that use a left argument require the value of
the left argument to be known before their shape can be
determined. Thus, the entire left argument is collected and
buffered into a temporary location during their shape phase. This
temporary buffer is freed after all values have been requested.

These functions can be characterized by the fact that they
modify positions of elements but not the values of elements
themselves. Furthermore, with the exception of dyadic transpose,

82 An APL Compiler

they have the property that columns in the result correspond to
columns in the underlying subexpression.1 In the case of dyadic
transpose, columns in the result may correspond to diagonals in the
underlying subexpression. Thus, to be precise, we can say that for
any given row or column in the result the distance between
adjacent elements in the ravel ordering of the underlying
subexpressions is a constant.

Because of this property, one can also characterize any
particular instance of these functions by a vector, similar to the
expansion vector used in the last chapter; that is, the value
A[al; ... jan] will be found at an offset in the underlying
subexpression given by

of fset = a + aI'')'1 + ... + anln

for some values of a and Ii. The task of the code generator is to
find the appropriate values for these quantities.

Given this uniform representation, it is perhaps not surprising
that structural functions can be composed in a manner not possible
with other APL functions; that is, adjacent structural functions can
be combined to form a single function, and more efficient code can
be generated for the one "super-function" than for the combination
of functions separately. An analogy can be made with the
composition of transformations in linear algebra. There, each
function is represented by a matrix, and function composition
corresponds to matrix multiplication. A result produced by two
transformations, such as

F(G(x))

can be more easily computed by first forming the composition

(F 0 G)(x)

The composition FoG is computed by multiplying the two
matrices together. The application of this new matrix to x results
in the same value as the application of the two functions
independently.

1. Note that take and drop may shorten a column, but the essential property
of being a column is preserved. There is a problem with overtakes and over
drops, that is takes or drops of lengths greater than the corresponding dimen
sion, which will be discussed shortly.

6. Structural Functions 83

For the structural functions, the medium for composition is an
object called the stepper.2 Each node in the parse tree that
represents a structural function has a stepper associated with it.
The stepper is characterized by three vectors, each of size n, where
n is the rank of the result.

t· I

The dimension of the result that the ith dimension of the
current node corresponds to.
The index along the ith coordinate of the current node that
contributes to the initial element of the result in ravel order;
that is, the initial value in the ravel order of the result will be
found at location [t1;t2;··· ;tnl in the underlying
subexpression.

di The direction to move along the ith dimension in order to
arrive at the next element in the result along the qjth
coordinate. A value dj = 1 indicates a forward (positive)
move, whereas a value of -1 indicates a backward (negative)
move.
The identity stepper is created by setting qi to i, tj to 0, and

dj to 1. A top down traversal of the parse tree is performed to
merge adjacent structural functions together into a single stepper.
The stepper is initialized at the highest structural function and
modified as it is passed through the tree. For example, suppose we
are generating c.ode for the expression 1 2 2 ~ -3 4 5 t C]) ~ A,
where A is an array of rank 3 and shape 6 6 6. Figure 6.1 shows
the values of the stepper as they are modified by each node in the
parse tree, resulting in the final values as shown at the bottom of
the figure. Notice that the rank of the dyadic transpose (2) is
smaller than the rank of the arguments to this function (3). For
this reason the stepper above the transpose has 2 elements, while
the stepper below the transpose function has 3.

2. The name stepper, as well as much of the technique described in this
chapter, is derived from the work of Leo Guibas and Douglas Wyatt, as re
ported in "Compilation and Delayed Evaluation in APL," Conference record
of the 5th ACM Symposium on Principles of Programming Languages, 1978.

84 An APL Compiler

functions qi t· I d· I

identity 01 00 1 1

12 2 ~ 011 000 111

122 ~ -345 t 011 300 111

1 2 2 ~ -3 4 5 t cD 011 305 1 1 - 1

1 2 2 ~ -3 4 5 t cD ~ 110 503 - 111

Figure 6.1: Propagation of the Stepper Through a Parse Tree

6.1. Computing the Stepper

The following describes in detail the effect of each of the
structural functions on the three vectors that make up the stepper.
In each case, n represents the rank of the subexpression, and
primed quantities will be used to represent the value of the stepper
after the transformation.

6.1.1. Monadic Transpose

Monadic transpose merely reverses each of the three vectors.

q'i'~-qn--{i-l) ,O<i<n
t'i'~-tn--{i-l) ,O<i<n
d'j'+-dn--{i-l) ,O<i<n

6.1.2. Take

Take does not modify the dimensions nor the direction of the
result,3 thus, the values qi and di remain unchanged. The starting

3. According to the APL definition, the elements in the control vector (the left
argument) are permitted to be larger in absolute value than the size of the
right sub expression for both take and drop. If this is the case the resulting ar
ray is suppose to be filled out with D's. For example, 3 3 t 1 produces a 3 by 3
array with a single 1 in the upper left corner and D's everywhere else. The
code generation scheme described here does not support overtake or overdrop.

6. Structural Functions 85

location, however, can be modified. Let ci represent the value of
the left (control) argument to the take function, and Si the size of
the subexpression being taken from.

if c·<O then t'·+-t+s+c· ,O<i<n til t I

else t' ·+-t· I I

6.1.3. Drop
Like take, drop does not modify the dimensions nor the

direction of the result, only the location of the initial value. Let Cj

be the value of the left (control) argument to the drop function.

if c·>o then t'·+-t+c· ,0< i<n 1- 1 1 I

else t'·+-t· I I

6.1.4. Reversal
Assume that we are computing a reversal along the ith

coordinate. The only values to be changed will be tj (since the
initial location will move from one end of the row to the other) and
dj (since the direction of movement along the ith dimension is
reversed). Let Sj represent the size of the right argument.

t'·+-s·-t·-1 I I I

d'+--d· I I

6.1.5. Dyadic Transpose
Dyadic transpose is complicated by the fact that the result

rank and shape may be smaller than the subexpression rank and
shape. Let ci represent the value of the left (control) argument to
the function.

q'i+-qj , j = ci-1 ,O<i<n
t'i+-tj , J. = ci-1 ,0< i<n
d'i+-dj , j = ci-1 ,O<i<n

Notice that the resulting stepper may be larger than the original
stepper. This occurs in Figure 6.1, for example.

Thus, the APL compiler does not support this feature and will produce in
correct results (according to the definition) in these cases.

86 An APL Compiler

6.2. The Accessor
Having propagated the stepper values through a sequence of

adjacent structural functions, we can use the resulting information
to determine how to generate code for the operation. If we let A
represent the underlying subexpression (the expression immediately
below the structural functions), then clearly the initial value in the
ravel ordering of the result is given by:

A [tl; ... ;tn J

If we let ej represent the expansion vector for A, we know from
(5.2) that this value is found at an offset given by

a = tl el + . .. + tn en

The vector qj tells us how the dimensions of the result are
being transposed. The vector dj tells us in which direction to move
along each dimension in order to return the next element. We can
combine these with ej to form a new vector, which will act very
much like the expansion vector. Consider the values defined by
the following formula:

The offset of result element al; ... ian can be given in terms
of these quan~ities as follows:

offset=a+(al/l+ ... +an1n)

Given this equation, it is now easy to generate code for the
structural functions. As in the last chapter, let offset represent
the position of the desired value in the ravel order of the result.
The goal is to compute offset', a position in the underlying
subexpression where the desired value will be found. Let si
represent the size of the result. By repeatedly dividing by si we
obtain the ith position in the vector form of the requested offset.

of fset' =a
for i =n to 1 by -1 do begin

of fset' = of fset'+(of fset mod Sj)X/j
of fset = of fset div Sj
end

{ compute value of subexpression at offset' }

6. Structural Functions 87

6.3. Sequential Access

AB we saw in the last chapter, if it can be determined at
compile time that a result will be accessed in sequential ravel order,
it is often possible for the compiler to take advantage of this
information to produce better code. So it is with the structural
functions. To see how this can be accomplished, consider the
sequence of requests passed to an expression of size 2 by 3 by 3.
Figure 6.2 shows the sequence of requests, along with the vector
representing the subscripts of the position being requested. Notice
how these values increase in an odometer like fashion.

position subscript computation
of fset' = a

0 0 0 0
of fset' = offset' + 11

1 0 0 1
of fset' = offset' + 11

2 0 0 2
of fset' = offset' + 11 +i2-3X/l

3 0 1 0
of fset' = offset' + 11

4 0 1 1

8 0 2 2
of fset' = offset' + 11 +i2-3X/l

+i3-3X/2
{) 1 0 0

Figure 6.2: Computation of Elements in Sequential Order

The figure also shows how the computation of the next offset
for the subexpression can be computed easily in terms of prior
values. The index offset' is initialized to a in the shape phase.
Thereafter, after every computation the value of the index is
updated. To update the index, we add the value In to it; however,
if the rightmost value in the odometer has turned over, we want to
subtract off a number of values equal to In times sn' the size of the
last dimension, before adding In-I.

We can precompute the computation performed when an
odometer position turns over by introducing a new vector:

88

OJ = Ii -/i+lXSj+l ,i<n

On =In

An APL Compiler

The value ° represents the amount needed to correctly reach the
next position, at the same time correcting the previous dimension
that has "stepped off" the end of the row. Using these values, the
code for structural functions in the sequential case can be given as
follows:

Shape Phase

of fset' =O!

Value Phase

{ compute value of subexpression at offset' }
t =sn
for i =n to 1 by -1 do begin

of fset' = of fset' + OJ
if (of fset+1) mod t = 0 then

t = tXsi_l
else

break
end

Note that t is a temporary variable, not to be confused with
the array tj that forms part of the stepper. Note also that the
computation of the result of the sub expression takes place before
of fset' is updated, instead of after the computation of offset', as in
the general case. The computation of the revised value requires at
most 2n multiplications and divisions, but often less. This
contrasts with the code for the general case, which always requires
n multiplications and 2n divisions to compute the index for each
value.

6.4. A Nonobvious Optimization
We recall that the following code was proposed to compute the

value of offset' in the general case:

6. Structural Functions

of fset' =a
for i =n to 1 by -1 do begin

of fset' = of fset'+{ of fset mod si)Xli
of fset = of fset div si
end

{ compute value of sub expression at offset' }

89

As we have already noted, this code requires n multiplications and
2n divisions to compute each value of offset'. Using the values bi
given in the last section, we can reduce this cost by one-third. In
contrast to previous discussions, we will here first present the
generated code and then argue why it is correct.

The optimized code for the general case of structural functions
is as follows:

of fset' =a
for i =n to 1 by -1 do begin

of fset' = of fset' + of fsetXbi
of fset = of fset div si
end

{ compute value of subexpression at offset' }

Let /'i,i = offset div ei' where ei represents the expansion
vector for the result being computed. Observe that
/'i,i-l = /'i,i div si and kn = offset. It is not difficult to see that the
value placed into of fset' by the loop represents

n
a+ E/'i,·b. I I

i=1

Expanding this, by using the definition of b, we get
n-l

a + (E /'i,i1i - /'i,i li+l si+l) + /'i,n In
i=1

Factoring out the common values of Ii' this gives us
n

a + I'i.t 11 + E (/'i,i - /'i,i-l si) Ii
i:dl

Following our observation on /'i,i-l

n
a + l'i.t/l + E (/'i,i - (/'i,i div si) si) Ii

i:dl

90 An APL Compiler

The quantity being summed over can be simplified to
n

0: + 111./1 + IJ /\'i mod Si) Ii
i=2

We replace the /\'i terms by their definition, so as to express the
result in terms of offset:

n
0: + (offset div el) 11 + 17((of fset div ei) mod si) Ii

i=2

From (5.7), however, we know that offset div el is equal to aI'
and (offset div ei) mod si is equal to ai. Thus, the result is
observed to be

n
0: + 17 ai Ii

i=I

which is indeed the desired element. The improved code produces
the same results as the original but requires only n divisions per
element, in place of the 2n required by the original.

Chapter 7

Space Inefficient Functions

Not all APL functions can be adapted easily to the demand
driven space efficient implementation technique described in the
last few chapters .. In this chapter we consider the remaining APL
functions and show how, despite this fact, code can be generated
for them that combines smoothly with the code generated for other
functions.

The functions that remain can be divided into two groups. A
binary function is semi-space efficient if it is space efficient with
respect to only one of its two arguments. In truth, some of the
structural functions described in the last chapter, as well as the
function reshape, were only semi-space efficient. This is because the
left (control) argument had to be gathered in its entirety during the
shape phase, before any values could be produced. In these cases,
however, the left argument was typically a scalar or small vector
and could therefore be considered to be part of the function.
There are two remaining semi-space efficient functions for which
this is not the case, namely, index (dyadic iota) and membership
(dyadic epsilon).

92 An APL Compiler

We call all other remammg functions collectors, since they
collect all their values in one place before passing any of them onto
other functions. These collector functions are the following:

box (input quad)
rank and shape
deal and roll
sort (grade up and grade down)
user function calls

Lastly, in this chapter we discuss the code produced for the
branching arrow.

7.1. Semi-Space Efficient Functions
The operation of the two functions index (dyadic iota) and

membership (dyadic epsilon) are very similar but in some ways just
the opposite of each other. The first results in an object the same
size and shape as its right argument; the second, the same as its
left. They both determine whether an element of one of the
arguments occurs in the second, one returning a position and the
other a yes/no answer.

Despite the earlier claim, one could, in fact, use a space
efficient implementation technique for these functions. Take
membership, for example. The following algorithm could be used
to produce a single value for the membership function:

Value PhaSe

{ code to compute left argument at position offset}
result =0
for offset' = 1 to (size of right argument) do begin

{ code to compute right argument at position offset' }
if (left value = right value) then begin

result =1
break
end

end

The disadvantage of this code, clearly, is that in the worst case
it must search the entire right side for each value that it produces.
If the left side contains n elements, and the right side contains m
elements, this can take time proportional to their product, O(nm).
If one is willing to sacrifice a bit of memory for a considerable

7. Space Inefficient Functions 93

savings in speed, we can sort all the elements of the right argument
once during the shape phase, at a cost proportional to mlog m.
Having sorted the right side, a binary search (cost O(log m)) can
be used to determine whether each element of the left occurs in the
right side. Since there are n elements from the left side, the
resulting cost is O((n+m) log m). In one example that tested
the effectiveness of this technique, a 500 element vector being
compared to itself used 334.2 milliseconds with the original method
and 140.6 milliseconds with the alternative algorithm.

The generated code for membership (dyadic epsilon) is
therefore as follows:

Shape Phase

gather the right argument into a vector and sort it

Value Phase

compute the value of the left argument at position offset
perform a binary search on the sorted right argument to
see if the element appears, returning 1 or 0 (true or false).

The code for index (dyadic iota) is similar

Shape Phase

sort the left argument (which must be a vector)

Value Phase

compute the value of the right argument at position offset
perform a binary search of the sorted left argument to see if
the element appears, returning the value of the grade-up
vector at the position in the sorted left argument (this is
the index of the position in the original subexpression),
or the size of the left argument plus one if it does not appear.

7.2. Collectors

For the few remammg functions, the basic implementation
strategy is as follows. During the shape phase the arguments (if
any) are collected and stored in a temporary location. The
functions are then performed on the temporary values, and the
results again are placed into other temporaries. During the value

94 An APL Compiler

phase elements are read out of these locations, just as they are
from leaf nodes, such as identifiers.

7.3. Branching

Before we can describe the code generated for the branching
function, it is first necessary to step back and describe in more
general terms the structure of the code generated for an APL
function.

Within each C program generated for an APL function there
is declared a local integer variable, stmtno, which contains the
number of the statement currently being executed. As long as this
value remains in the range of valid statements, execution continues.
This is accomplished by structuring the code in the following way:

stmtno =1;
while (stmtno)

switch (stmtno) {
default:

stmtno =0;
break;

case 1:
stmtno =1;
{ code for the first statement}

case 2:
stmtno =2;
{ code for the second statement}

case n:

}

stmtno =n;
{ code for the nth statement}
stmtno =0;

By initializing the value of stmtno to 1, the first statement will
be the first one executed. Since no break statement appears
following the code for the first APL statement, control will flow
into the second statement, and so on, unless explicitly redirected.
Following the last statement, the variable stmtno will be set to
zero, causing the loop to terminate.

7. Space Inefficient Functions

Thus, to explicitly branch to a new statement it is only
nece...."5ary to modify the value of the variable stmtno and execute a
C break to get out of the switch statement. If the value of stmtno
is nonzero, the loop will continue and the case corresponding to the
new statement will be selected. If the value of the branch is out of
range, the default case will be selected and the variable stmtno will
be set to o. Thus, the code generated for a branch statement can
be described as follows:

{ code to compute the size of the label expression}
if size of label expression> 0 then begin

{ compute first value in label expression}
stmtno = result;
break
end

Notice that if the label expression contains no values execution
continues with the next statement.

Chapter 8

Compiling for a Vector Machine

Machines that can execute several arithmetic operations in
parallel have existed for many years. Nevertheless, the software
needed to make effective use of this ability has been slow in
developing. Most current high-level languages, of the Algol
Fortran-Pascal variety, are not designed for the expression of
parallelism. Thus, the attempt to use parallelism has taken two
general approaches. The first approach is to analyze source code
statically in an attempt to recognize operations (such as loops) that
could potentially be executed in parallel. As might be expected,
this task is very difficult and has met with only limited success. A
second approach is to develop new programming languages with
explicit parallel instructions. The acceptance of new languages is
slow, however, and this has the drawback of producing yet another
programming language that is available on only a limited number
of machines in a limited number of locations.

The language APL is unique in that it has enjoyed relatively
widespread use for a number of years, has existing implementations
on a number of machines, and most importantly is a language in
which the recognition of potential parallelism is relatively easy.

98 An APL Compiler

This chapter will describe how the algorithms developed in the
previous chapters could be modified to make use of vector
instructions.

8.1. Machine Model
The algorithms that we present will make use of instructions

for a hypothetical vector machine. This abstract machine is
similar to existing vector machines, such as the CRA Y, the CDC
STAR-IOO, or the IBM 3090. In addition to the usual repertoire of
scalar instructions, we assume the existence of vector-vector
instructions (such as adding two vectors together to produce a
third vector) and vector-scalar instructions (such as adding a scalar
to each element of a vector). Each vector operation takes an
argument that indicates the size of the vector being acted upon.

In addition to arithmetic vector commands, we will also make
use of one additional command. This command takes a vector of
addresses (which need not be contiguous) and produces a vector of
values from the corresponding positions in memory. The CRAY-I
has a simplified form of this command, where the addresses must
be in an arithmetic progression. As we shall see, such progressions
are oftentimes (although not always) generated by the APL
compiler. In any case, we shall assume the more general
capability.

8.2. Columns and Request Forms
We define a column to be a vector formed by fixing all but one

dimension in an array; in APL notation a column is described as
A[rl;r2; ... ;rk-l;;rk+l; ... ;rnl for some fixed constants rl through rn'
There are three important quantities that characterize a column.
The column axis (which we will denote a) is the position of the
free axis. The column start (denoted 13) is the offset position of the
element A[rl;r2; ... ;rk_l;0;rk+l; ... ;r nl in the ravel sequence of A.
Finally the column step (denoted 8) is the distance (in ravel
sequence) from one element in a column to the next. In terms of
the expansion vector, 8 is equal to ea' Thus the ravel position of
the element with index i in a column is 13 + i X 8.

A subexpression can be given a request for values in one of
three forms. An Arithmetic Progression Vector (APV) is
characterized by five quantities. Besides the column axis, start and
step (a, 13 and 6), there is a vector offset, denoted by a value (J'

8. Compiling for a Vector Machine gg

between 0 and (pA) [a] - 1, and a vector length (w). The values
being requested are column positions (Y through (Y + w - 1. Since
five scalar quantities are used to request a large number of values,
the APV is a very efficient encoding of a request and will always be
preferred to other forms. An APV can only be used, however, for
elements contiguous along some dimension in the matrix
representation, so other request forms are sometimes necessary.

A column vector (CV) consists of a column description (a, f3
and 8), a vector (v) of column offsets (values between zero and the
length of the column), and a vector length (w). The statement
v+--- (Y + (t, w) can be used to convert an arithmetic progression
vector to a column vector.

An offset vector (OV) is a vector (0) of offset positions into the
substructure being constructed (ravel order assumed). The
statement 0 +--- f3 + 0 X v converts a column vector into an offset
vector.

The particular form used to request values from a
subexpression is determined at compile time. In subsequent
discussions in this chapter we will describe how the request form is
altered by various APL functions. A few operations (assignment in
particular) generate loops to gather values. These loops always
generate an APV, it being the most efficient encoding for a request
for values. For example, assuming we are generating code for an
expression A, an assignment produces the following code.

Shape Phase

a=ppA
0=1
w= ItpA
limit =X / p A
(Y =0;

Value Phase

/* rank of A * /
/* distance between adjacent elements * /

/* distance to next column * /
/* size of A * /

for f3 =0 to limit - 1 by w do begin
{ code to compute results described by APV }
A[f3 + 0 X t, w] +--- value
end

Not all the APL functions are easily vectorizable. Functions
such as sort and membership, for example, are more easily

100 An APL Compiler

performed using scalar operations. In expressions involving both
vectorized and scalar functions, code must be produced to convert
a vector request (an APV or an offset vector) into an index. In this
case a temporary vector of length w is allocated during the shape
phase. Each iteration of the vector request requires a loop to fill
the values of the temporary one by one. The following illustrates
the code generated assuming the vector request is given by an
APV, the code for the other two request forms being similar.

of fset' =/3 + aX8
for i =0 to w do begin

{ compute scalar value at location offset' }
temp[i 1 =value
of fset' = of fset' + 8
end

At the other end of the parse tree, our machine model assumes
that simple instructions can be generated to fill an entire vector
with values from a leaf node, such as an identifier or a constant.
The only small complication here involves identifiers which may
possibly be, but are not certainly, scalar. In this case, code must
be generated to check the rank dynamically, and if the identifier is
scalar, return a vector where each position contains the same scalar
value.

8.3. Code Generation
As we have already noted, not all APL functions are amenable

to vectorization. In the following sections we will describe the
algorithms for those functions that can be so handled; all other
functions will generate the same code as described in the previous
chapters.

8.3.1. Reduction
For reduction we can use the vector instructions to compute

an entire column of the result in one loop. If the request is given
by an offset vector, we can use a vector form of equation 5.7 to
compute a sequence of new offsets (note that the difference between
adjacent elements being reduced will all be given by the value of
the expansion vector along the axis of the reduction, that is eJ
The generated code is then identical to that given in Chapter 5,
with the exception that vector instructions are used to modify the
values offset'.

8. Compiling for a Vector Machine 101

If the request for values is given by an arithmetic progression
vector or a column vector, it would be beneficial to try to preserve
the form. This can be done, if we note that the only values that
need be modified to change the request given to the reduction
function into the request given to the child function are the scalar
quantities f3 and o. The modification for the latter depends upon
whether the axis of reduction (call it i) is greater or smaller than
the axis of the request (a).

Shape Phase

if a < i then
{/ =0 XSi

else
{/ =0

Value Phase

result = vector identity for operation
{J = (f3 div ei)(eisJ+{ si-1) ei+(f3 mod ejo)
for counter = 1 to si do begin

{ compute value of child at requested positions}
result = value op result
{J ={J - ei
end

The various optimizations described in Chapter 5 for the scalar
case, such as moving the computation of (si-1)ei to the shape
phase, are also applicable to this code and will not be repeated
here.

8.3.2. Scan
It is useful to generate vector code for scan only if it can be

determined at compile time that the axis of the request (a) is
different from the axis of the scan and if the request form is an
APV or column vector. It is only under these conditions that the
loop for the scan will execute the same number of times for each
element of the result. As was the case with the code generated for
reduction, the algorithms that in Chapter 5 modified offset are
here simply changed to modify f3. Unlike the case for reduction,
for scan the value 0 used by the child is the same as that given to
the scan function.

102 An APL Compiler

Value Phase

result = identity for operation
ai = (13 div ei) mod si
{J = of fset
for counter = 1 to ai do begin

{ compute the vector value of the subexpression at {J }
result = value op result
{J ={J - ei
end

8.3.3. Compression and Expansion

As is the case with the scan function, vector forms are useful
for compression and expansion only if it can be determined at
compile time that the axis of the function is orthogonal to the axis
of the requestl . If this is the case, then all elements of the
requested column can be computed together.

The shape phase code for the functions compression and
expansion is the same as in the scalar case. For requests given by
an APV or column vector, the code is identical to the scalar case,
with 13 taking the place of offset. For example, the code for
compression is as follows:

Value Phase

ai = (13 div ei) mod si
a' = v[ail
{J = ((13 div (ei si))s'i)+a')ei+{13 mod ei)
{ compute the value at {J in the left argument}

For requests given by an offset vector, the entire vector is modified,
with () taking the place of 13 in the above.

1. This is not strictly true. The orthogonality of the function axis and the re
quest axis insures that all elements of the resulting column will be computed
in the same fashion. The case in which the axes coincide could be handled if
we were willing to add some further instructions to our machine model. Un
fortunately, the code sequences for these two cases are so different that if it
could not be determined at compile time which case to use, both sequences
would have to be generated.

8. Compiling for a Vector Machine 103

8.3.4. Catenation
In describing the code generated for the catenation function,

we will again assume that at compile time it can be determined
that the axis of catenation is orthogonal to the axis of the request2

and that the request is by APV or column vector. Given these
conditions, all elements of the requested column will lie in either
one of the subexpressions or the other. Testing f3 suffices to
determine in which half they occur, and modifications to f3 will
produce the new requests.

Value Phase

aj = (f3 div ej) mod (sL +sR)
if aj < sL then begin

f.h = (f3 div (ei(sL +sR)))XsL)+aj)Xei+(f3 mod ej)
{ compute value of left subexpression at {1 L }

end
else begin

aj = aj-sL
{1 R = (f3 div (ej(sL +sR)))XsR)+aj)Xei+(f3 mod ej)
{ compute value of right subexpression at {1 R }
end

8.3.5. Dyadic, Rotation
The code for the vector form of dyadic rotation divides into

two cases. If it can be determined at compile time that the axis of
request is equal to the axis of the function, and if the request is by
APV or column vector, then all elements of the requested column
will be rotated by a fixed amount that can be determined by
replacing offset by f3 in equation 5.9. The request is changed into
a column vector, and each element of the vector is modified by the
amount.

In all other cases the request is first changed into an offset
vector. The vector () then replaces offset in 5.9, resulting in a
vector of differences. This vector is used to modify the original
offset vector, forming the new addresses.

2. Similar comments hold for this case as for the case of compression and ex
pansion; namely, we could handle the coincidental case if we were willing to
add further instructions to our machine model.

104 An APL Compiler

8.3.6. Structural Functions

As we noted at the beginning of Chapter 6, the
characterization of the structural functions is the fact that they
carry columns into columns; thus, they should ideally be suited for
vectorization. If a request is by APV or offset vector, it suffices to
determine how the base is changed and to determine the new
distance between adjacent elements. These are given by the
functions q-l (the inverse of the qi of chapter 6) and "Ii.

Shape Phase

The code to compute the value of /3 to pass to the child is the
same as the code to compute offset' in the scalar case.

Value Phase

fJ =a
for i =n to 1 by -1 do begin

fJ =fJ+{P mod si)X"Ii
/3 =/3 div si

{ compute vector value of subexpression at fJ }
The optimizations described in chapter 6 can also be applied in

this situation, In the case in which the request is by offset vector,
the vector () replaces the scalar /3 in the above.

8.3.7. Outer Product and Subscript

If the request to an outer product is given by an APV or
column vector, then the result will always be generated by a vector
from one argument and by a scalar from the other argument,
depending upon whether a is greater or less than the rank of the
right argument. Let t represent the number of elements in the
right argument.

fJ =/3 div t
{ produce value (result1) of left argument at fJ }
fJ' =/3 mod t
{ produce value (result2) of right argument at fJ' }
res = result! op result2

8. Compiling for a Vector Machine 105

If the request is by offset vector, two new offset vectors are
generated.

() I =() div t
{ produce value (resultl) of left argument at {J }
()" =() mod t
{ produce value (result2) of right argument at {J' }
res = resultl op result2

Subscripting in APL is in many ways quite different from
subscripting in other languages. .Af3 we noted in Chapter 4, the
semicolon function used in subscripting is very similar to an outer
product. Consider a vector of requests for elements from the
expression A[B;C]. This request is first divided into separate
request vectors for B and for C, as is done for outer products. (In
the situation in which more than one semicolon is present, they can
be treated as multiple occurrences of binary functions.) These
result in offset vectors of equal size. These vectors are then
combined to produce an offset vector into the subscripted
expression (A in this example). The result of this sub expression in
response to the request is then returned as the result of the entire
subscripted expression.

Chapter 9

Epilogue

The APL compiler project can be said to have achieved its
major goal: successfully showing how optimized space efficient
algorithms can be generated by a compiler for a language with
indeterminate data objects using demand driven evaluation
techniques. Nevertheless, this is only a small part of any
production quality programming system. The larger issues of
integrating the methods presented here into the more familiar APL
workspace environment have not been addressed.

An interesting observation concerns the amount of
functionality exhibited by a single APL statement versus a single
statement in, say, Pascal. The more operations there are in an
expression, the greater is the likelihood that the demand driven
space efficient techniques described in Chapters 3 through 7 can be
applied to reduce the amount of intermediate storage necessary to
produce a result. Thus, the infamous "one-liner," considered
almost an art form among supporters of APL (Perlis H)79), and
strongly denounced by detractors of the language (Dijkstra 1972),
is shown to have a practical benefit. Of course, one could
distinguish between "physical" one-liners (programs written on one

108 An APL Compiler

line) and "conceptual" one-liners (programs written without
looping structure). In the latter case, simple dataflow techniques,
which are extensions of the methods described in Chapter 2, could
be used to determine statements that could be combined to
facilitate optimized execution.

On the negative side, as we noted in Chapter 1, it is difficult
for a true compiler (a compiler that executes as a separate process
from the running program and that may not even be present at
execution time) to provide the same type of interactive design and
debugging tools as an interpreter. Ideally, one would like to
integrate the compiler and an interpreter, thus providing the
advantages of both in a complete development environment along
the Lisp model.

If there is any glaring omission in the material presented in
this book, it is the lack of any detailed timings or comparisons to
code generated using other techniques. While I admit that such
statistics can be useful, they can also be deceptive and difficult, not
only to obtain but to understand as well. The APL compiler was
developed on a badly overloaded DEC VAX 750 computer. It is,
however, written in C and is designed to run on any UNIX system,
which represents a wide spectrum of machines. In reporting
absolute timings of the generated code, such as those given at the
end of Chapter 2, should I report the figures given by the time
command on my overloaded 750? This was the technique used
near the end of Chapter 2, where the intent was to compare
execution times of various programs all produced by the APL
compiler. Alternatively, should I have tried to obtain permission to
use a faster UNIX processor and hence obtain more impressive, but
presumably not any more truthful, statistics? Perhaps neither
figure should be taken at face value but should be divided by some
normalization factor, such as the mythical MIPS number. Even so
doing this would only provide a rough characterization of our
system; to be useful we would need a comparison to other systems.
However, there are few other APL compilers and none (to my
knowledge) running on UNIX machines; and how do we integrate in
the operating system dependent factors into the timings?

Recently, an entire book has been devoted to the technique of
timing Lisp systems and a comparison of various Lisp
implementations (Gabriel 1986). One can hope that eventually
such a study can be performed for APL systems, but until that
point the whole question of timings, both absolute and relative, is

9. Epilogue 109

fraught with danger. It is for this reason that I have ignored the
question of timings altogether and have chosen to stick to a safer
path by being concerned only with algorithms. Despite this fact, it
is my hope that some readers will have found the techniques
presented in this book interesting as algorithms for their own sake
and that this book may, in some small way, influence future
implementations of this wonderfully complex language.

Appendix 1

The Language of the APL Compiler

As we noted in Chapter 1, in pursuing this project we were
interested in developing a compiler for an APL-like language, not
necessarily in constructing a system for textbook APL. Thus, we
did not feel constrained by any requirements to conform exactly to
any existing standard for the language. In this appendix we
describe the major deviations in our system from standard APL.

Except as noted elsewhere in this appendix, the APL
statement syntax has been left unchanged. Detailed descriptions of
this syntax can be found in many textbooks, such as (Gilman 1976)
or (Polivka 1975).

Omissions
A number of standard APL functions are not implemented in

the APL compiler.
The following functions were not implemented because the

algorithms needed to accommodate them were deemed similar to
algorithms used in more common functions, and thus little
additional experience or knowledge would be gained by including
them:

112

encode
format
lamination

An APL Compiler

The following functions were not implemented because they
did not easily fit into our demand driven execution technique and
required a large run-time support system.

execute
matrix inverse and least squares
quote-quad for general expressions
files
system functions and variables
latent expression
tracing

Workspaces

The concept of the APL workspace is not supported.
Workspace commands are not recognized and result in syntax
errors if used. Built-in functions, such as [lWA or []LC, that refer
to workspace parameters are not recognized.

Scoping Rules

The APL dynamic scoping rule has been replaced by a simple
two-level static scoping. Variables are either local to the program
in which they are declared or global to all procedures. Variables
declared outside of any program are automatically given the
attribute global (see below).

System variables, such as [JIO and []PP, are true global
variables and are not automatically restored to their previous
values on procedure exit.

Order of Execution
The order of execution is not guaranteed to be strictly right to

left. Certain functions, such as reshape or compress, may evaluate
their left argument before their right argument. Thus, expressions
that depend upon a side effect may produce unpredictable results.
An example is using a variable while at the same time redefining
the variable elsewhere in the expression. The following statements
are almost certain to produce a result other than the one intended.

A.1. The Language of the APL Compiler

X+-33pdl
(X+-[,5)+X

113

This is not a violation of the standard, but is rather what the
standard calls a "consistent extension".

Commutative Functions
Many APL programmers mistakenly believe that APL requires

that all expressions be evaluated strictly right to left. This is true
even in such situations as a reduction, for example,

+/['6
where, because a commutative function is being used, the order of
evaluation presumably does not matter. In fact, the APL-standard
permits any order, once more under the name of "consistent
extensions". In these cases we have felt free to sometimes change
the order of evaluation to left to right, thereby permitting other
optimizations that may depend upon the order in which
expressions are accessed.

Demand Driven Semantics
The APL compiler uses a demand driven, or lazy evaluation

semantics. The difference between this and conventional APL
semantics is most easily seen in expressions that would produce an
error under the 'conventional interpretation but would not under
the modified semantics. An example is

01/23704

A conventional interpreter would produce a run-time error,
since 2 cannot be divided by O. The demand driven technique
would only attempt the divide instruction for values that were
needed in other parts of the computation. Since the first element
of the vector produced by the division is eliminated by the
compression function, it can never be used. Thus, no attempt
would be made to divide 2 by 0, and no error would be reported.
Again, the APL standard permits this as a consistent extension.

Heading and Declarations
The format for procedure headings has been altered

considerably. Local variables are no longer declared on the same
line as the procedure heading. Instead, a procedure heading can be

114 An APL Compiler

followed by any number of declaration statements.
The format for a heading is the symbol V, followed by an

optional assignment part, followed by an optional left argument
name, followed by the function name, followed by the right
argument name. Niladic functions are not supported (see below).

The syntax for a declaration is an attribute followed by a list
of variable names. Attributes are divided into classes (global,
function) and types (var, int, bit, char, real). An attribute
consists of a class and/or a type. Thus, the following are legal
declarations and have the indicated meanings:

var a, b, c
global int i, j
char global x
fun p

local variables, type unknown
global integer variables
global character variable
function p, type unknown

All global variables and functions used in a procedure that
have not been previously encountered must be declared; that is,
functions and globals must be declared prior to their first
encounter. Local variables need not be declared if their first
occurrence is as the left argument in an assignment, but from a
stylistic point of view some argue that it is better to declare all
variables. Variables and functions need not have declared types;
however, specifying types allows the compiler to produce better
code.

System variables, such as 010 and []PP, cannot be declared
local to a procedure.

Niladic Functions
A major problem with compilers is that they must, of

necessity, determine the type of each token in an expression long
before the expression is ever executed. It is for this reason that the
APL compiler requires users to declare in the heading of a function
both global names and functions that have not been previously
seen. There is one (admittedly uncommon) situation in which even
this amount of information is not sufficient to completely
determine the meaning of all tokens. Consider the following
fragment from a function:

A.1. The Language of the APL Compiler

FUNF, G

x +- F G expression

There are two possible interpretations:
1. F is a niladic function, G is a dyadic function, or

2. Both F and G are monadic functions.

115

Without further information the compiler cannot determine
which of these two cases is correct. FOl the APL compiler we took
the expedient solution of disallowing niladic functions. Some have
argued that this is too radical a solution and that a better
alternative would have been to introduce optional declarations for
the valence of functions, as well as for their result rank and type.
The compiler then could issue error messages in those few cases in
which it could not be determined from context what the correct
interpretation should be, and the user could insert informative
declarations.

As with the change from dynamic to static scoping, the
decision to eliminate niladic functions was merely a convenience
and is not intrinsic to the space efficient demand driven method of
execution outlined in this book.

Overtake

Standard APL uses the take function (t) both to extract a
subportion of a larger array and to extend an array with fill values;
that is, the expression 2 2 t 3 3 p t. 9 returns the array

1 2
4 5

but 4 4 t 3 3 p t. 9 yields

1 230
4 5 6 0
789 0
o 0 0 0

The Guibas and Wyatt algorithm which we use in generating
code for Take, as described in Chapter 6, does not correctly handle
overtake, so we do not support this feature.

116 An APL Compiler

Data Types and Storage

If a variable is given a specific data type, either by declaration
or inference from the program text, it retains that type throughout
execution. A simple program illustrates how this differs from most
APL systems. Consider the program

X+-2
L:X+-2 XX
~L

On conventional APL systems X would at some point cease being
represented internally as an integer and would become a floating
point value. With the APL compiler X would always remain an
integer but would at some point overflow. No code is generated to
detect this overflow; however, on some machines this would cause
a program interrupt.

Although the datatype boolean is treated as distinct from
integer by the declaration statements and by the type inference
algorithms, for the purposes of storage we treat them as the same.
While this is inefficient in terms of storage, it simplified our
generated code for assignment and identifiers. There is, however,
nothing inherent in the algorithms that we have described that
requires us to waste storage for boolean datatypes in this manner,
and with slightly more care in the generation of code for these two
situations a true binary datatype could be achieved without any
change to the other code generation algorithms.

Exceptional or Special Cases

In designing the algorithms to be used by each of the various
APL functions, we concentrated on efficiently implementing the
most common or general cases. Our code will often fail (hopefully
issuing an error message first) if conditions for these cases are not
satisfied, even in situations in which other APL systems would
continue. In some cases the correct answer fortuitously results
from the code for the general case, and we suspect that this is why
many exceptional cases were permitted by earlier APL systems.
At other times, we are not so fortunate.

For example, we require that the argument to iota be an
integer scalar. Many APL systems also permit the argument to be
a vector of size 1, although interestingly not usually an array of
size lin each dimension.

A.I. The Language of the APL Compiler 117

Functions that have special cases that we do not support
include catenation and inner product.

The program MAIN
Statements, including declarations, that are outside the range

of any procedure body are assumed to refer to the main program.
These statements can be intermixed with procedure declarations,
however, from a stylistic point of view this should be avoided. All
variables in the main program are given the attribute global.

Labelled statements are not permitted in the main program,
due to the difficulty in differentiating them from functions being
defined in direct definition form (Iverson 1980).

System Variables
The following system

assigned.
variables can be referenced but not

[JTS

[JAV

Returns an integer vector containing the current year,
month, day, hour, minute, and second.
Returns an 256 element character vector representing
the ASCII character sequence.

The following system variables can be both assigned to and
referenced.
[JIO Sets ,the index origin for indexing. Returns the current

index origin.
[JPP Sets the number of positions used in printing integer

and real variables. Returns the current printing
precision.

[]PW Sets the number of characters to be used in printing
integer and real variables. Returns the current
printing width.

[]RL Sets a seed value for the random number generator
used in roll and deal. Returns the current random
number.

Format of Output
The number of characters to be used in printing any element is

completely determined by the system variables printing precision
and printing width (above), instead of by the data being printed.

Appendix 2

A Simple Example

This appendix will analyze the code generated for an
expression when the compiler has almost perfect information; that
is, it knows the type, rank, and shape of all functions. The
expression we will consider is a variation on the classic primes
idiom given in Chapter 2, only instead of returning the list of
primes, we will merely count their number. The expression can
thus be given as

A+- +/ (2 =+f0 =(L 200) 0.1 L 200)

We will consider each function in this expression individually,
and we will show how each contributes to the generated code.
First, however, we will present the code in its entirety:

120

i9 =200;
i13 =200;
i12 =200;
i15 =(i13 -1) * i12;
i20 =200;
settrs(&trsl, !NT, 0, &Lmain[I]);
il = talloc(&trsl);
mpl.ip =trsl.value.ip;
resl5.i =0;
for (i3 = 0; i3 < i20; i3+t-) {

resll.i =0;
i4 =i15 +i3;
for (i14 =i13 -1; i14 >=0; iI4-) {

i6 =i4 - ig * (i5 =i4 / ig);

An APL Compiler

resll.i +=(0 =((i6 + 1) % (i5 + 1)));
i4 -=i12;

}
resl5.i +=(2 =resll.i);

}
(*mpl.ip =resI5.i);
assign (&a, &trsl);

We now analyze each function in this example in turn.

Assignment
The code generated for assignment consists of the following

pieces:

Shape Phase

settrs(&trsl, !NT, 0, &Lmain[I]);
il = talloc(&trsl);
mpl.ip =trsl.value.ip;

Value Phase

(*mpl.ip = resI5.i);

A.2. A Simple Example 121

Finish Phase

assign(&a, &trs1);

The identifier trs1 represents a type, rank, shape, and value
structure; an object that can contain all the information about an
identifier. The procedure settrs is used to copy values into the first
three fields of such a structure. Since the size of the result is
known at compile time, all the parameters in the call on settrs are
constants. Had the sizes not been known, code would have been
generated prior to the call on settrs that would have placed the
type, rank, and shape information into variables, and these would
be passed to the function.

The expression &Lmain[1] represents a pointer to a location in
the integer (hence, the L prefix) constant pool for this function.
Since the result is a scalar, the shape is presumably of little
importance, nevertheless, a one (1) value is stored at this location.

The function talloc allocates a block of memory, placing the
address into the value field of the trs structure passed as argument.
(A minor point, the & in front of trs1 in both this and the call on
settrs is necessary because of the call-by-value semantics of C.
Since in both cases trs1 is modified, it is necessary to pass a pointer
to the structure, rather than the value of the structure.) The value
field of a trs structure contains a memory pointer. A memory
pointer is a union (variant record) type possessing pointers of each
of the three basic data types for the APL system: real, integer, and
character. These three fields are denoted rp, ip, and cp,
respectively. Since it is known that the result will be an integer,
the ip field can be used directly in both the trs value trs1 and
memory pointer value mp1.

Since it can be determined at compile time that the result is a
scalar, no loop is generated. Instead, the single integer value is
produced and copied into the memory pointed to by the memory
pointer value mp1. This integer value is produced in the variable
named res15. i.

The last act of the code for assignment is to free the storage
used by the previous value assigned to the variable A (if there was
a previous value) and to bind the new values to the name. This is
accomplished by calling the procedure assign.

122 An APL Compiler

First Reduction
The outermost reduction function generates the following code:

Shape Phase

i20 =200;

Value Phase

res15.i =0;
for (i3 = 0; i3 < i20; i3++) {

res15.i += ...
}

During the shape phase the size of the vector being reduced
(200) is computed and placed into the counter i20. During the
value phase the offset to be passed to the subexpression is
computed in a loop running from 0 to this value. The expression
is++ is a C idiom for incrementing the value of is by 1.

The variable res15 is used to maintain the running sum of the
reduction. As with memory pointers, result variables can contain
any of the three basic datatypes: real, integer, or character. The i
field indicates that an integer value is being used in the present
case. The result variable is initialized prior to the loop to the value
0, which is the identity for the addition operator. The variable is
then incremented once during each iteration of the loop. The
operator += is once more a C idiom, resulting in the left argument
being incremented by the value on the right side.

Note that this code takes advantage of the fact that addition is
commutative. If a noncommutative function, such as subtraction,
had been used instead, it would have necessitated making two
changes to the generated code. The first would be that the loop
would have to run backwards, instead of forwards. Secondly,
instead of using the efficient C increment instruction, the code
would look something like this:

res15.i = . .. - res15.i;

The Constant 2 and the Equality Function
The constant 2 and the outermost equality function together

generate almost no code, being combined with the result of the

A.2. A Simple Example 123

inner reduction and the updating of the outer reduction. Note that
= is the C operator for equality test and produces either a 0 or 1
value. Lazy code generation results in the code for the constant 2,
the test for equality, and the updating of the running sum for the
reduction operator all being performed in a single C statement.

resl5.i +=(2 =resll.i);

The Second Reduction Function
We have already noted that. the index for the value being

requested of the reduction is contained in the counter is, and the
result is placed in the variable resl1. The rest of the code for the
reduction is as follows:

Shape Phase

i13 =200;
i12 =200;
i15 =(iI3 - 1) * i12;

Value Phase

resll.i =0;
i4 =i15 +i3;
for (i14 =i13 -1; i14 >=0; i14-) {

}

resll.i +=
i4 -=i12;

The variables ilS and i12 are. initialized during the shape
phase to the length of the row being reduced and the expansion
vector value for the axis being reduced, respectively. (In terms of
the quantities described in Chapter 5, these are the values Sj and
ei) The variable i15 is the loop invariant expression (si-1)ei, which
would otherwise be recomputed each time a new value was
requested from the reduction.

The variable i4 is the index of the position being requested
from the subexpression. It should not be confused with variable
i14, which is merely a counter insuring that the loop is executed
the required number of times. The computation to initialize i4
corresponds to

124 An APL Compiler

of f8et' = ((8i-1)ei)+of f8et

After each iteration of the loop the index i4 is updated to point to
the next value. Note the differences between the code generated
for this reduction and that generated for the previous reduction.
There are two reasons for these differences: one is the fact that the
outer reduction is accessed in sequential fashion and this one is not,
and the second is that the outer reduction is iterating over a
vector, whereas this reduction is operating on an object of higher
dimension.

The Inner Scalar Equality Function
Like the first scalar equality test, the constant 0 and the scalar

equality test are combined with code generated by other functions .

.. (0= ...)

The Outer Product
During the shape phase, the size of the right side of the outer

product is computed and placed in the variable in. This value is
then used to convert the offset for the requested element, i4, into
offsets for the left and right sides (i5 and i6, respectively). Note
that combining the computation of the divisor and remainder
together results in a small increase in efficiency, since the generated
assembly language can avoid having to reload the variable i5.

Shape Phase

i9 =200

Value Phase

i6 =i4 - i9 * (i5 =i4 / i9);
... % ...

In this particular case, the APL function residue corresponds
to the C operator mod (%) with the arguments reversed. Since the
types of the arguments are known, the code can be combined with
other expressions.

A.2. A Simple Example 125

The Iotas
The code generated for the iota functions merely take the

index of the desired element and add 1 (the index origin) to them.
If the index origin is not known at compile time, code is generated
to add the value of the global variable maintaining the index
origin, _ ixorg, into the expression. Once more, lazy code
generation permits us to combine the code for both the iotas, the
outer product, the equality test against the constant zero, and the
updating of the value for the running sum of the inner reduction.

res1l.i +=(0 =((i6 + 1) % (i5 + 1)));

With Less Information

Suppose instead of the constant 200, the upper limit for the
iota functions had been given by an identifier, as in

A..- +/ (2 =+f-O =(~ N) 0.: ~ N)

It is instructive to note that in this case all the code between
the call on settrs and the call on assign would remain unchanged,
and only the code generated for the shape phase would be altered.
As this code contributes to only a small fraction of the execution
time, the result would be only marginally slower.

Here is the new code that would be generated for the shape
phase in this cas~:

if (n.type = UKTYPE) error("undefined value used");
mp4 =n.value;
if (n.type !=INT) error("type error");
if (n.rank != 0) error("rank error");
mp2 =n.value;
outershape(&mp6, 1, mp4.ip, 1, mp2.ip);
i9 = *mp2.ip;
i13 = *mp6.ip;
i12 =esubi(O, 2, mp6.ip);
i15 =(i13 -1) * i12;
i20 =*(mp6.ip +1);
settrs(&trs1, INT, 0, &Lmain[1]);

The variables mp4 and mp2 hold the size of the vector
produced by the iota function. Observe that no attempt is made
by the APL compiler to determine common subexpressions, thus
the fact that mp4 and mp2 contain the same information, and thus

126 An APL Compiler

the variables i9 and i13 as well, is not noted nor made use of.
(Common subexpressions tend to be rather rare in both APL code
and the code generated by the compiler.) The function outershape
computes the shape of the outer product. The function esubi
computes the value el.

If N is declared to be scalar, the test for the rank disappears.
If N is declared to be integer, the test for type disappears. If N is
declared to be both scalar and integer, the code is simplified to the
following:

if (n.type = UKTYPE) error("undefined value used");
outershape(&mp6, 1, n.value.ip, 1, n.value.ip);
iQ = *n. value.ip;
i13 = *mp6.ip;
i12 =esubi{O, 2, mp6.ip);
i15 =(i13 -1) * i12;
i20 =*(mp6.ip +1);
settrs(&trs1, INT, 0, &Lmain[l]);

Compression

If we now go back and consider the original primes idiom,
which returned the prime values instead of merely computing their
number, we can see how the shape phase of one operation may
include the value phase of others. This expression can be written
as follows:

A ~ (2 =+f-O =(1- 200) 0.1 I- 200) / I- 200

Notice that the only difference between this expression and the
earlier one is the use of compression over an iota rather than a
reduction.

The code generated for this statement is as follows:

A.2. A Simple Example

i22 =0;
i9 =200;
i13 =200;
i12 =200;
i15 =(i13 - 1) * i12;
il9 =0;
i21 =200;
valloc(&mpll, i21, INT);
for (i3 =0; i3 < i21; i3++) {

res1l.i =0;

}

i4 =i15 +i3;
for (i14 =i13 -1; i14 >=0; i14-) {

i6 =i4 - i9 * (i5 =i4 / i9);

}

res1l.i +=(0 =((i6 + 1) % (i5 + 1)));
i4 -=i12;

if (((2 =res1l.i) !=O))
*(mp1l.ip +i22++) =i3;

valloc(&mp12, 1, INT);
*mp12.ip = i22;
settrs(&trs1, INT, 1, mp12.ip);
i1 =talloc(&trs1);
mpl.ip =trsl.value.ip;
for (i2 = 0; 12 < il; i2++) {

i23 =*(mp11.ip +i2);
(*mpl.ip++ =(i23 + 1));

}
assign(&A, &trs1);
memfree(&mp12.ip);
memfree(&mpll.ip);

127

Notice how the change from a reduction to a compression has
significantly changed the structure of the generated code. There are
now two different distinct loops: one produced by the compression
function during its shape phase and one produced by the
assignment function. The majority of the computation now takes
place during the shape phase code for the compression function.
This code is as follows:

128

Shape Phase

i22 =0;

valloc(&mpll, i21, INT);
for (i3 = 0; i3 < i21; i3++) {

}

if (((2 =res1l.i) !=O))
*(mp1l.ip +i22++) =i3;

valloc(&mp12, 1, INT);
*mp12.ip = i22;

An APL Compiler

The variable i22 is a counter. When the shape phase loop
generated by the compression is finished, it will contain the
number of nonzero values encountered and thus the length along
the compressed axis of the resulting expression. In order to create
space to hold the vector that will represent the positions of the
nozeron values along the compressed axis, the memory pointer
mpll is passed to the memory allocation routine valloc. The
compress function then creates a loop to gather the values of the
left argument. As each value is produced, it is compared against 0
(!= is the C not-equal comparison operator). If it is not 0, i22 is
incremented and the position of the nonzero element is stored in
the vector pointed to by mpl1.

When the loop generated by the compress function is finished,
the value i22 contains the length of the compressed axis in the
result expression, and mpll points to a vector indicating the
positions in the original ordering (the right argument) that
correspond to the nonzero positions. A shape vector for the result
is created by calling valloc once more, and the shape of the result is
placed into it. (Since the result is a scalar, this is a simple
assignment.) The assignment function then generates a loop to
gather the results of the compression: Inside this loop, the
compression function generates an index into the vector previously
stored in mpll, which yields the position in the right argument
where the result will be found. Since the result is given by an iota
function, it can be easily computed by adding 1 (the index origin)
to the requested position.

A.2. A Simple Example

Value Phase

i23 =*(mp1l.ip +i2);
(*mp1.ip++ =(i23 + 1));

129

Finally, following the rebinding of the variable value generated
by the assignment function, the compression function releases the
memory used by the two vectors, the position vector and the shape
vector.

A Critique
These examples illustrate one of the drawbacks of the APL

compiler. Namely, no matter how many optimization techniques
are applied to the generated code, they cannot make any change to
the underlying algorithm. (One cannot change a Bubble sort into a
Quick sort by any sequence of mechanical transformations.) The
language APL strongly influences a programmer towards a style of
programming that is often not as efficient as possible. For
example, while one can usually write O(n) or O(n2) algorithms
easily in APL, it is difficult to write O(n log n) algorithms. A
programmer setting about to solve a similar problem in C would
probably not use this idiom at all, as natural as it is in APL, but
would instead likely employ some variation on a sieve algorithm.
While still an O(n2) solution, in practice it can be made much
more efficient.

This observation should not be construed as being damning to
APL or indeed to the APL compiler, any more than the
observation that assembly language programmers can usually write
more efficient programs than programmers in high level languages
implies that nobody should write in high level languages. In both
cases, the advantage of the higher level language is that it
simplifies and facilitates the construction of bug free, correct code.
Oftentimes, this is the primary concern, with efficiency only a
distant second issue.

Appendix 3

A Longer Example

In this appendix we present, without commentary, the
complete C program produced for the Ulam Spiral of Primes
functions described in Chapter 2.

#include "aplc.h"
extern struct tfS-struct n;
int i_spiraJ[15] = {

,

a, 1,2,4,2, -1, 4, a, 2, 1,
1, 2, 3, 2, a}

double r_spiral[l] = {

a.5}
,
spiral(z, _no2, I)
struct trs-struct *z, * _no2, *1;
{

struct tfS-struct e;
struct trs-struct g;
struct tfS-struct c;

132 An APL Compiler

struct tI'S-struct a;
struct tI'S-struct trs1, trs2, trs3, trs4;
union mp_struct mp1, mp2, mp3, mp4, mpS, mp6, mp7, mp8, mp9,
mplO, mpl1, mp12, mp13, mp14, mp1S, mp16, mp17, mp18, mp19,
mp20, mp21, mp22, mp23, mp24, mp2S, mp26, mp27, mp28, mp29,
mp30, mp31, mp32;
union res-struct res1, res2, res3, res4, resS, res6, res7, res8, res9,
res10, resl1, res12, res13, res14, res1S, res16, res17, res18, res19,
res20, res21, res22;
int iO, iI, i2, i3, i4, is, i6, i7, i8, i9,
ilO, il1, i12, i13, i14, i1S, i16, i17, i18, i19,
i20, i21, i22, i23, i24, i2S, i26, i27, i28, i29,
i30, i31, i32, i33, i34, i3S, i36, i37, i38, i39,
i40, i41, i42, i43;

e.type = UKTYPE;
g.type = UKTYPE;
c.type = UKTYPE;
a.type = UKTYPE;

stmtno =1;
while (stmtno)

switch(stmtno) {
default:

stmtno =0;
break;

case 1:
stmtnQ =1;
trace("spiral", 1);
if (n.type = UKTYPE) error("undefined value used");
valloc(&mpS, 1, INT);
*mpS.ip = (*n.value.ip * 2);
i6 =_ixorg;
settrs(&trs1, INT, 1, mpS.ip);
i1 = talloc(&trs1);
mpl.ip =trs1.value.ip;
for (i2 =0; i2 < i1; i2++) {

(*mpl.ip++ = i6++);
}
assign(&a, &trs1);
memfree(&mpS.ip);

case 2:
stmtno =2;

(II • I" 2) trace spIra, ;
if (a.type = UKTYPE) error("undefined value used'');
mp2.ip = a.value.ip;
settrs(&trs2, INT, 1, a.shape);

A.3. A Longer Example

trs2.value.ip = mp2.ip;
i7 =1;
i8 = *a.shape;
ilO = *a.shape;
valloc(&mp6, ilO, INT);
mp7 =mp6;
for (i5 =0; i5 < ilO; i5+1-) {

res5.i =0;

}

for (i9 = i5; i9 >= 0; i9--) {
(res5.i = (*(a.value.ip +i9) - res5.i));

}
if (res5.i < 0)

res5.i =- res5.i;
(*mp6.ip+l- = res5.i);

settrs(&trs3, INT, 1, a.shape);
trs3.value.ip =mp7.ip;
copies(&trs4, &trs2, &trs3);
mp8.ip =trs4.value.ip;
settrs(&trsl, INT, 1, trs4.shape);
il = talloc(&trs1);
mp1.ip = trsl.value.ip;
for (i2 =0; i2 < il; i2+1-) {

(*mpl.ip+l- =(*mp8.ip+l- % 4));
}
assign(&c, &trsl);
memfree(&mp7.ip);

case 3:
stmtno =3;
trace("spiral", 3);
if (n.type = UKTYPE) error("undefined value used");
settrs(&trs1, INT, 0, &i_spiral[l]);
i1 = talloc(&trsl);
mp1.ip =trs1.value.ip;
{

}

(*mp1.ip = ((int) fioor((r_spiral[O] +
(((double) *n.value.ip) / ((double) 2))))));

assign(&g, &trs1);
case 4:

stmtno =4;
trace("spiral", 4);
if (1- > type = UKTYPE) error("undefined value used');
valloc(&mp3, 1, INT);
*mp3.ip = *1- >shape;
if (n.type = UKTYPE) error("undefined value used");
i17 =1;

133

134

valloc(&mpI5, i17, INT);
mplB = mpl5;
{

(*mpI5.ip = ((*n.value.ip * *n.value.ip) - 1));
}

An APL Compiler

if (c.type = UKTYPE) error("undefined value used'');
i8 =1;
valloc(&mp9, i8, INT);
for (W =i8 - 1; i9 >=0; i9--) {

(mp9.ip + i9) =iabs((mp1B.ip + i9));
}
ilO =qsdalloc(l, &mp5, &mpB, &mp7);
i9 =0;
{

if (*(mplB.ip + i9) < 0)
(mpB.ip +i9) -t=(c.shape +W) +*(mp1B.ip +i9);

}
i7 =accessor(l, mp9.ip, 1, c.shape, &mp8, mp5.ip, mp6.ip, mp7.ip);
outershape(&mp24, 1, mp3.ip, 1, mp9.ip);
i24 = *mp9.ip;
settrs(&trs1, INT, 2, mp24.ip);
il = talloc(&trsl);
mp1.ip = trs1.value.ip;
for (i2 =0; i2 < il; i2++) {

iB =i2 % i24;

}

i8 =iB;
ill =i7;
for(i9 =il0 - 1; i9 >=0; i9--) {

ill -t=i8 * *(mp8.ip +i9);
i8 /= *(mp9.ip + i9);

}
i4 =i2 / i24;

i3 =(((*(c.value.ip +ill) +((0 =*(c.value.ip +ill)) * 4))
+(i4 * *(l->shape +1))) - _ixorg);

(*mpl.ip++ =*(l->value.ip +i3));

assign(&e, &trsl);
memfree(&mp3.ip);
memfree(&mp4.ip);
memfree(&mp24.ip);

case 5:
stmtno =5;
trace("spiral", 5);
if (n.type = UKTYPE) error("undefined value used");
i8 =2;
valloc(&mpB, i8, INT);

A.3. A Longer Example

mp7 =mp6;
for (i3 = 0; i3 < i8; i3++) {

(*mp6.ip++ = *n.value.ip);
}
trs2.type = UKTYPE;
mp13.ip = &Lspiral[9j;
if (g. type = UKTYPE) error("undefined value used'');
if (e.type =UKTYPE) error("undefined value used");
mp18.ip =e.value.ip;
catshape(&mp16, 0, &Lspiral[lj, 2, e.shape);
i25 =1;
i28 =*(e.shape +1);
i27 = i25 + i28;
i34 =*(mp16.ip +1);
i35 =i34;
i36 =vsize(2, mp16.ip);
val!oc(&mp19, i36, INT);
mp20 =mp19;
for (i22 =0; i22 < i36; i22++) {

if (i35 >=i34) {

}

res12.i =0;
i35 =0;

}
i29 =i22 % i27;
if (i29 < i25) {

(res9.i =0);
}
else {

(res9.i =*mp18.ip++);
}
res12.i += res9.i;
i35+t;
(*mp19.ip++ =res12.i);

outershape(&mp25, 1, &Lspiral[13j, 2, mp16.ip);
i41 =vsize(2, mp16.ip);
dtshape(&mp12, &Lspiral[9j, 3, mp25.ip);
i16 = qsdalloc(2, &mp8, &mp9, &mplO);
dtmerge(&Lspiral[9j, 3, &mp8, &mp9, &mplO);
i13 = accessor(2, mp12.ip, 3, mp25.ip, &mpll, mp8.ip,

mp9.ip, mplO.ip);
i17 =i13;
i42 =vsize(2, mp12.ip);
valloc(&mp26, i42, INT);
mp27 =mp26;
for (i12 =0; i12 < i42; i12++) {

i21 =i17 - i41 * (i20 =i17 / i41);

135

136 An APL Compiler

}
}

}

getmp(&res13, &mp20, i21, INT);
cktype(&res13, INT, INT);
(res6.i = (*g.value.ip + res13.i));
i14 =*((i16 +mp12.ip) - 1);
for (iI5 =iI6 - 1; i15 >=0; i15--) {

i17 -t=*(mpIl.ip +iI5);

}

if (0 = ((iI2 + 1) % iI4))
iI4 *=*((iI5 +mpI2.ip) - 1);

else
break;

(*mp26.ip+t = res6.i);

settrs(&trs3, INT, 2, mpI2.ip);
trs3.value.ip =mp27.ip;
linear(&trs4, &trs2, &trs3);
mp28 =trs4.value;
if (trs4.rank != 1) error("rank error'');
aplsort(&mp31, &mp28, *trs4.shape, trs4.type, 1);
ilO = *trs4.shape;
settrs(&trsI, INT, 2, mp7.ip);
ii = talloc(&trsl);
mpl.ip = trsl.value.ip;
for (i2 =0; i2 < i1; i2+t) {

i9 =i2 % ilO;

}
(*mpl.ip+t = (*(mp3l.ip +i9) +_ixorg));

assignC z, &trsI);
memfree(&mp7.ip);
memfree(&mp27 .ip);
memfree(&mp20.ip);
memfree(&mpI6.ip);
memfree(&mp25.ip);
memfree(&mp3l.ip);
stmtno =0;

int Lcopies[5] = {
0, 1, -1, 1, O}

,
copies(c, a, b)
struct trS-struct *c, *a, *b;
{

struct trS-struct trsI;
union mp_struct mpI, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9,
mplO, mpH, mp12, mpI3, mp14, mpI5, mpI6, mp17, mpI8, mpI9,
mp20, mp2I, mp22, mp23, mp24, mp25;

A.3. A Longer Example

union res....struct resl, res2, res3, res4, res5, res6, res7, resS, res9,
resl0, resll, resl2, resl3, resl4, resl5, resl6, resl7, reslS, resl9,
res20;
int iO, il, i2, i3, i4, i5, i6, i7, is, i9,
ilO, ill, il2, il3, il4, il5, il6, il7, ilS, il9,
i20, i21, i22, i23, i24, i25, i26, i27, i2S, i29,
i30, i31, i32, i33, i34, i35, i36, i37, i3S, i39;

stmtno =1;
while (stmtno)

switch(stmtno) {
default:

stmtno =0;
break;

case 1:
stmtno =1;
trace("copies", 1);
if (~> type = UKTYPE) error("undefined value used'');
if (h->type =UKTYPE) error("undefined value used'');
mp3.ip = h- >value.ip;
i7 = *h-> shape;
res4.i =0;
for (i5 =0; i5 < i7; i5++) {

res4.i += *mp3.ip++;
}
valloc(&mp5; 1, INT);
*mp5.ip =res4.i;
ill =_ixorg;
catshape(&mpI4, 0, &Lcopies[I], 1, h->shape);
i22 =1;
i25 =*h->shape;
i24 = i22 + i25;
i29 =1;
i30 =*mpI4.ip;
il4 =1;
valloc(&mplO, il4, INT);
for (il5 =il4 - 1; il5 >=0; il5--) {

(mplO.ip +il5) =(mpI4.ip +il5) - iabs(Lcopies[(iI5 +2)]);
}
il6 =qsdalloc(l, &mp6, &mp7, &mpS);
il3 =accessor(l, mplO.ip, 1, mpI4.ip, &mp9, mp6.ip,

mp7.ip, mpS.ip);
i17 =il3;
valloc(&mpI9, 1, INT);
i34 = *mplO.ip;

137

138

*mpI9.ip =i34;
i35 = *mpI9.ip;
valloc(&mp20, i35, INT);
mp21 =mp20;
for (i12 =0; i12 < i35; i12++) {

resl2.i =0;

}

for (i31 =i17; i31 >=0; i31-) {
i26 =i31;

}

if (i26 < i22) {
(res9.i =0);

}
else {

i26 -=i22;

}
(res9.i = *(b->value.ip + i26));

resl2.i += res9.i;

(res6.i = (resI2.i + I));
i14 =*«iI6 +mplO.ip) - I);
for (i15 =i16 - I; i15 >=0; i15-) {

i17 +=*(mp9.ip +i15);

}

if (0 = «i12 + I) % i14))
i14 *=*«i15 +mplO.ip) - I);

else
break;

(*mp20.ip++ =res6.i);

aplsort(&mp22, &mp21, *mpI9.ip, INT, I);
i37 = *mp5.ip;
resl9.i =0;
settrs(&trsl, INT, I, mp5.ip);
i1 = talloc(&trsl);
mpl.ip =trs1.value.ip;
for (i2 =0; i2 < i1; i2++) {

(resI8.i =ill++);

}

resl8.i =aplsearch(mp22.ip, &mp21, &resI8,
INT, *mpI9.ip) < *mpI9.ip;

resl9.i +=resI8.i;
i3 = (resI9.i - _ixorg);
(*mpl.ip++ =*(a->value.ip +i3));

assign(c, &trsl);
memfree(&mp5.ip);
memfree(&mp2l.ip);
memfree(&mpI4.ip);
memfree(&mpI9.ip);

An APL Compiler

A.3. A Longer Example

}
}

memfree(&m p22.ip);
memfree(&mp25.ip);
stmtno =0;

int Lprimes[5] = {
0,1,2,0,2}

primes(x, _no2, a)
struct trS-struct *x, * _no2, *a;
{

struct trS-struct s;
struct trS-struct trs1;
union mp_struct mp1, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9,
mplO, mp11, mp12, mp13, mp14, mp15, mp16, mp17, mp18, mp19,
mp20, mp21, mp22;
union res-struct resl, res2, res3, res4, res5, res6, res7, res8, res9,
resl0, resll, resl2, resl3, resl4, resl5, resl6, resl7, resl8, resl9,
res20, res21, res22;
int iO, iI, i2, i3, i4, i5, i6, i7, i8, i9,
ilO, ill, i12, i13, i14, i15, i16, i17, i18, i19,
i20, i21, i22, i23, i24, i25, i26, i27;

s.type = UKTYPE;

stmtno = 1;
while (stmtno)

switch(stmtno) {
default:

stmtno =0;
break;

case 1:
stmtno =1;

(II. H) trace prImes, 1 ;
if (a->type =UKTYPE) error("undefined value used");
mp4.ip =a->shape;
i5 =2;
settrs(&trsl, INT, 0, &i_primes[I]);
il = talloc(&trsl)j
mpl.ip =trs1.value.ipj
{

}

res3.i = 1;
for (i3 =OJ i3 < i5; i3++) {

res3.i *= *mp4.ip++;
}
(*mp1.ip =res3.i);

139

140

assign(&s, &trsI);
case 2:

stmtno =2;
(II. II 2) trace prImes, ;

mp2.ip = a- >value.ip;
i23 =0;

An APL Compiler

if (s.type = UKTYI'E) error("undefined value used");
outershape(&mp7, 1, s.value.ip, 1, s.value.ip);
iIO = *s.value.ip;
iI4 =*mp7.ip;
iI3 =*(mp7.ip +1);
il6 =(il4 - 1) * il3;
i20 =0;
i22 = *(s.value.ip + i20);
valioc(&mpI3, i22, INT);
for (i4 =0; i4 < i22; i4++) {

resI2.i =0;

}

i5 =iI6 +i4;
for (iI5 =iI4 - 1; il5 >=0; il5--) {

i7 =i5 - ilO * (i6 =i5 / ilO);

}

resI2.i -+=(0 = ((i7 +_ixorg) % (i6 +_ixorg)));
i5 -=iI3;

if (((2 =resI2.i) !=O))
*(mpI3.ip +i23++) =i4;

memfree(&m p7.ip);
valioq(&mpI4, 1, INT);
*mpI4.ip =i23;
valioc(&mpI7, 1, INT);
i26 = *mp14.ip;
*mpI7.ip =i26;
i27 =*mpI7.ip;
valioc(&mpIS, i27, INT);
mpI9 =mpIS;
for (i3 =0; i3 < i27; i3++) {

}

i24 = *(mpI3.ip + i3);
(*mpIS.ip++ = (i24 +_ixorg));

aplsort(&mp20, &mpI9, *mp17.ip, INT, 1);
settrs(&trsI, BIT, 2, a- > shape);
iI = talioc(&trsI);
mpl.ip =trsl.value.ip;
for (i2 =0; i2 < iI; i2++) {

(res22.i = *mp2.ip++);
res22.i = aplsearch(mp20.ip, &mpI9, &res22,

INT, *mpI7.ip) < *mp17.ip;

A.3. A Longer Example

}
}

(*mpl.ip++ = res22.i);
}
assign(x, &trs1);
memfree(&mp19.ip);
memfree(&mp14.ip);
memfree(&mp13.ip);
memfree(&mp17 .ip);
memfree(&mp20.ip);
stmtno =0;

int Llinear[4] = {
0, 1, 1, 1}

,
linear(i, _no2, m)
struct tl'S-struct *1, * _no2, *m;
{

struct tl'S-struct trs1;
union mp_struct mp1, mp2, mp3, mp4, mp5, mp6, mp7, mpS;
union res-struct res1, res2, res3, res4, res5, res6, res7, resS, res9,
reslO, resll, res12, res13, res14;
int iO, il, i2, i3, i4, i5, i6, i7, is, i9,
ilO, ill, il2;

stmtno =1;
while (stmtno)

switch(stmtno) {
default: '

stmtno =OJ
break;

case 1:
stmtno =1j
trace('1inear", 1)j
if (n.type = UKTYPE) error("undefined value used'');
if (m->type =UKTYPE) error("undefined value used'');
innershape(&mp2, 0, &Llinear[1], 2, m->shape);
is = *m->shape;
i9 =*(m->shape +1);
is--j
ilO =i8 * i9;
settrs(&trs1, INT, 1, mp2.ip);
i1 = talloc(&trs1);
mpl.ip =trs1.value.ip;
for (i2 =OJ i2 < il; i2++) {

i5 =i2 - i9 * (i4 =i2 / i9)j
i5 +=ilO;

141

142

resll.i =0;
res2.i =1;
for (i3 =i8; i3 >=0; i3--) {

An APL Compiler

(res3.i = (res2.i * (*(m- >value.ip + i5) - 1)));
res2.i *= *n.value.ip;

}
}

resIl.i -t= res3.i;
i5 -=i9;

}
(*mpl.ip++ =(resIl.i +1));

}
assign(1, &trs1);
stmtno =0;

int Ltimeit[I8] = {

,

0, 1,0, 2, 1, 2, 4, 2, -1, 0,
1,0,0,1,0, -1,8, I}

h . 'to "*" c ar c_tlmel = ;
int Ltimeit[I] ={

2}
,
timeit(_noI, _no2, w)
struct tfS-struct * _noI, * _no2, *w;
{

struct tfS-struct x;
struct tfS-struct i;
struct tfS-struct trs1, trs2, trs3, trs4, trs5, trs6, trs7;
union mp_struct mpI, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9,
mplO, mpll, mpI2, mpI3, mpl4, mpI5;
union res....struct res1, res2, res3, res4, res5, res6, res7, res8, res9,
reslO, resll, resI2, resI3;
int iO, il, i2, i3, i4, i5, i6, i7, i8, i9,
ilO, ill, i12;

x.type = UKTYPE;
Ltype = UKTYPE;

stmtno =1;
while (stmtno)

switch{stmtno) {
default:

stmtno =0;
break;

case 1:
stmtno =1;
trace("timeit", 1);

A.3. A Longer Example

settrs(&trsl, BIT, 0, &Ltimeit[l]);
H = talloc(&trsl);
mpl.ip =trs1.value.ip;
{

(*mpl.ip =0);
}
assign(&i, &trsl);

case 2:
stmtno =2;
trace("timeit", 2);
trs5.type = UKTYPE;
trs2.type = UKTYPE;
mp6.ip = &Ltimeit[8];
settrs(&trs3, INT, 2, &Ltimeit[5]);
trs3.value.ip = &Ltimeit[8];
spiral(&trs4, &trs2, &trs3);
mp9.ip =trs4.value.ip;
settrs(&trs6, INT, 2, trs4.shape);
trs6.value.ip =mp9.ip;
primes(&trs7, &trs5, &trs6);
mp12.ip =trs7.value.ip;
settrs(&trsl, CHAR, 2, trs7.shape);
H = taIIoc(&trsl);
mp1.cp = trs1.vaiue.cp;
for (i2 =0; i2 < H; i2++) {

}

i3 = «*mp12.ip++ + 1) - _ixorg);
(*mp1.cp++ =c_timeit[i3]);

assign(&X, &trsl);
memfree(&mp15.ip);

case 3:
stmtno =3;
trace("timeit", 3);
if (i.type = UKTYPE) error("undefined value used");
settrs(&trsl, INT, 0, &Ltimeit[l]);
H = taIIoc(&trsl);
mpl.ip =trs1.value.ip;
{

(*mpl.ip = (*i.value.ip + 1));
}
assign(&i, &trsl);

case 4:
stmtno =4;
trace("timeit", 4);
if (w- > type = UKTYPE) error("undefined value used");
mpl =w->vaiue;
if (w->rank !=O) error("rank error'');

143

144 An APL Compiler

i2 =0;
getmp(&resI, &mpI, ((w->rank)? i2: 0), w->type);
(res3.i = *i.value.ip);

}
}

cIsopv(LT, &res3, &res3, INT, &resI, w->type);
vaIIoc(&mp4, 1, INT);
*mp4.ip = res3.i;
i5 =_ixorg;
is = *mp4.ip;
if (is> 0) {

}

i1 =0;
stmtno = (Ltimeit[O] * i5++-);
break;

memfree(&mp4.ip);
stmtno =0;

struct trs....struct n;
int Lmain[4] = {

O,I,lO,lO}
,
mainO {

struct trs....struct trsI, trs2, trs3;
union mp_struct mpI, mp2, mp3, mp4;
union res....struct resI, res2, res3;
int iO, iI, i2;

n.type = UKTYPE;

stmtno =1;
while (stmtno)

switch(stmtno) {
default:

stmtno =0;
break;

case 1:
stmtno =1;

(
It • It) trace mam, 1 ;

settrs(&trs1, INT, 0, &Lmain[l]);
i1 =taIIoc(&trs1);
mpl.ip =trs1.value.ip;
{

(*mpl.ip =10);
}
assign(&n, &trs1);

case 2:
stmtno =2;

A.3. A Longer Example

}
}

(" • II) trace mam, 2 ;
trsl.type = UKTYPE;
settrs(&trs2, INT, 0, &Lmain[l]);
trs2.value.ip = &i_main[3];
timeit(&trs3, &trsl, &trs2);
stmtno =0;

145

References

Abelson, Harold,. and Sussman, Gerald Jay, 1985. Structure and
Interpretation of Computer Programs. WT Press,
Cambridge, Massachusetts

Aho, Alfred V., Sethi, Ravi, and Ullman, Jeffery D., 1986.
Compilers: Principles, Techniques, and Tools. Addison
Wesley, Reading, Massachusetts.

Budd, Timothy A., 1987. A Little Smalltalk. Addison-Wesley,
Reading, Massachusetts.

Dijkstra, Edsger W.: 1972. "The Humble Programmer," in
Communications of the ACM, Vol 15(10): 859-866 (This is the
1972 ACM Turing Award Lecture.)

Gabriel, Richard P.: 1986. Performance and Evaluation of Lisp
Systems, WT Press, Cambridge, Massachusetts

148 An APL Compiler

Gilman, L., and Rose, A., 1976. APL an Interactive Approach,
Wiley, New York.

Guibas, Leo J., and Wyatt, Douglas K., 1978. Compilation and
Delayed Evaluation in APL. Conference Record of the Fifth
Annual ACM Symposium on Principles of Programming
Languages, Tucson, Arizona.

Hanson, David R., 1983. Simple Code Optimizations. Software
Practice and Experience, Vol 13: 745-763.

Iverson, Kenneth E., 1980. Notation as a Tool of Thought.
Communications of the ACM, Vol 23(8): 444-465. (This is the
1979 ACM Turing Award Lecture.)

Knuth, Donald E., 1971. An Empirical Study of FORTRAN
Programs. Software-Practice and Experience, Vol 1: 105-133.

Miller, Terrence C., 1979. Type Checking in an Imperfect World.
Conference Record of the Sixth Annual ACM Symposium on
Principles of Programming Languages, San Antonio, Texas.

Muchnick, Steven S., and Jones, Neil D. (eds), 1981. Program
Flow Analysis, Theory and Applications. Prentice Hall,
Englewood Cliffs, New Jersey.

Polivka, Raymond P., and Pakin, Sandra, 1975. APL: The
Language and Its Usage. Prentice-Hall, Englewood Cliffs,
New Jersey.

Perlis, Alan J., and Rugaber, S., 1979. Programming with Idioms
in APL. APL Quote Quad, Vol 9(4): 232-235.

Slade, Stephen, 1987. The T Programming Language. Prentice
Hall, Englewood Cliffs, New Jersey.

Waite, William M., and Goos, Gerhard, 1984. Compiler
Construction. Springer-Verlag, New York.

Wiedmann, C., 1978. Steps Toward an APL Compiler. APL
Quote Quad, Vol 9(4): 321-328.

References 149

Wilensky, Robert, 1984. LISPcraft. W. W. Norton, New York.

The following were not cited in the text, nevertheless, the reader
may be interested in consulting them.

APL Compilation

Abrams, Philip S., 1970. An APL Machine. PhD Thesis,
Stanford. SLAC Report No. 114.

Bauer, Alan M. and Saal, Harry J., 1974. Does APL Really Need
Run-Time Checking? Software-Practice and Experience,
Vol 4, 129-138.

Budd, Timothy A., 1984. The Design of an APL Compiler for a
Vector Processor, ACM Transactions on Programming
Languages and Systems, Vol 6(3): 297-312.

-, 1983. An APL Compiler for the UNIX Timesharing System.
APL Quote Quad, Vol 13(3): 205-210.

-,1985. Dataflow Analysis in APL. APL Quote Quad, Vol 15(4):
22-28.

and Treat, Joseph, 1984. Extensions to Grid Selector
Composition and Compilation in APL, Information Processing
Letters, Vol 19(3): 117-123.

Ching, Wai-Mee, 1981. A Design For Data Flow Analysis in an
APL Compiler. Research Report RC 9151 (#40005.) IBM
Thomas J. Watson Research Center, Yorktown Heights, New
York.

1986. An APL/370 Compiler and Some Performance
Comparisons with APL Interpreter and FORTRAN. APL
Quote Quad, Vol 16(4): 143-147.

Christopher, Thomas W. and Wallace, Ralph W., 1986. Compiling
Optimized Array Expressions at Run-Time. APL Quote-

150 An APL Compiler

Quad, Vol. 16(4) 136-142.

Hassit, A. and Lyon, L.E., 1972. Efficient Evaluation of Array
Subscripts of Arrays. IBM Journal of Research and
Development, January 1972, 45-57.

Johnston, Ronald L., 1979. The Dynamic Incremental Compiler of
APL\3000. Proceedings of the APL 79 Conference,
Rochester, New York, 82-87

:Miller, T. C., 1978. Tentative Compilation: A Design for an APL
Compiler, PhD Thesis, Yale University, New Haven,
Connecticut.

Naugle, Richard, 1986. APL Compilation and Interpretation by
Translating to F83VEC. APL Quote Quad, Vol 16(4): 164-
171.

Perlis, Alan J., 1974. Steps toward an APL Compiler. Computer
Science Research Report 24, Yale University.

Roeder, Robert D., 1979. Type Determination in an Optimizing
Compiler for APL, PhD Thesis, Iowa State University.
(Available from University :Microfilms International, Ann
Arbor, :Michigan.)

Saal, Harry J., 1978. Considerations in the Design of a Compiler
for APL. APL Quote-Quad, Vol 8(4) 8-14. (includes an
annotated bibliography).

-, and Weis, Z., 1975. Some Properties of APL Programs.
Proceedings of the APL 75 Conference.

Strawn, G. 0., 1977. Does APL Really Need Run-Time Parsing?
Software - Practice f:J Experience. Vol 7: 193-200.

Sybalsky, J. D., 1980. An APL Compiler for the Production
Environment. APL80. North-Holland Publishing Company.

Van Dyke, Eric J., 1977. A Dynamic Incremental Compiler for an
Interpretive Language. Hewlett-Packard Journal, Vol 28(11)

References 151

17-23.

Weiss, Zvi, and Saal, Harry J., 1981. Compile Time Syntax
Analysis of APL Programs. APL Quote Quad, Vol 12(1):
313-320.

Wiedmann, C., 1983. A Performance Comparison Between an
APL Interpreter and Compiler. APL Quote Quad, Vol 13(3):
211-217.

Implementation Techniques for Other Nontraditional
Languages

Brooks, Rodney A., Gabriel, Richard P., and Steel, Guy L., 1982.
An Optimizing Compiler for Lexically Scoped LISP. SigPlan
Notices, Vol 17(6): 261-275.

Budd, Timothy A., 1987. A Little Smalltalk, Addison Wesley,
Reading, Massachusetts.

Campbell, J.A. (ed), 1984. Implementations of Prolog, Wiley, New
York.

Ellis, John R.; 1986. Bulldog: A Compiler for VLIW
Architectures. MIT Press, Cambridge, Massachusetts

Griswold, Ralph E., and Griswold, Madge T., 1987. The
Implementation of the Icon Programming Language.
Princeton University Press, Princeton, New Jersey.

Tenenbaum, Aaron M., 1974. Type Determination for Very High
Level Languages. Courant Computer Science Report 3,
Courant Institute of Mathematical Sciences.

Index

A

Abelson, H. 2
accessor 86
Aho, A. 7,12
ambiguities in parsing 112
arithmetic progression

vector 98
array 3
assignment to quad 48
attribute grammars 41
attributes of variables 13

B
backward type inference 21
box (quad) 48,92
boxes, a metaphor for code

generation 38

branch arrow 94
Budd, T. 38

c
C, the computer language 6
catenation 75
code generation pass 8
collectors 93
column vector 99
composition of structural

functions 82
compression 71, 102
consistent extension 2
constraints on expressions 55
control flow graph 18
CRAY computer 98

154

D
dataflow analysis 6, 11
deal 92
declarations 3, 11, 28, 113
declared attributes of

variables 13
decode 78
delayed evaluation 83
demand driven evaluation 7,

34
deviations from standard

APL 2,111
Dijkstra, E. 107
direct definition form 117
disadvantages of a compiler 5
drop 85
dyadic function 3
dyadic rotation 77, 103
dyadic transpose 85

E
environment, programming 6
epsilon 92
exception cases 116
expansion 102
expansion 71
expansion vector 60
expression flow analysis 15

F
finish phase 41
Franz Lisp 3

An APL Compiler

G
Gabriel, R 108
Gilman, L. 5
Goos, G. 41
grade down 92
grade up 92
Guibas, L. 83

H
Hanson, D. 50

I
identifier attribute list 18
identifiers 50
identity 4, 65, 69
idioms 16
inferencing pass 7
inferred attributes of

variables 13
inner product 78
interprocedural dataflow

analysis 21
iota 51,92
Iverson, K. 117

J
Jones, N. 18

K
Knuth, D. 13

L
lazy code generation 50
lazy evaluation 2
leaf nodes 49

Index

Lipton, R. 39

Lisp 2
loop invariant code 79

M

message passing 38
Miller, T. 21
MIPS, a mythical number 108
monadic function 3
monadic transpose 84
Muchnick, S. 18

N
nested assignment 47

niladic function 3, 12, 114

o
object oriented languages 38
offset vector 99

one liner 107
operator 4
order of evaluation 2
order of execution 112

outer product 53, 104
overflow, arithmetic 116

overtake 115

p

Pakin, S. 5
parallelism 97

parsing pass 7
passes of the compiler 6

Perlis, A. 16, 22, 107
phases of code generation 41

155

Polivka, R. 5
primitive scalar function 3, 51
printing an array 42

problems in compiling apl 1

program development 6

programming environment 6

pseudo code 43

R
rank and shape 3, 92

ravel 51
ravel order 8
reducible graphs 18
reduction 62, 100
reduction in strength 54
reshape 2, 51
resource allocation pass 8
resources 8
reversal 85
roll 92

Rose, A. 5
Rugaber, S. 16, 22

S
scalar 3
scalar function 3

scan 68,100
Scheme 2
scoping, dynamic vs static 2,

12, 51, 112
semi-space efficient

functions 91
sequential access 47

sequential order 8

156

Sethi, R. 7, 12
shape 92
shape phase 41

size of generated programs 29
Slade, S. 2

Smalltalk 38
sort (grade up and grade

down) 92
space efficient evaluation 34
space efficient evaluation 7
space efficient functions 45
spiral of primes 22
stepper 83
subscripting 55, 104

T
T, the computer language 2
take 84
time/space tradeoff 42

timings of programs 30, 108
transpose -84

U
Ulam, S. 22

Ullman, J. 7, 12

Unix 108
user function calls 92

V
value phase 41

variable typing 1

vector 3
vector instructions 97

An APL Compiler

W
Waite, W. 41

Widemann, C. 11

Wilensky, R. 3
workspaces 112

Wyatt, D. 83

