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Preface 

It was Richard Lipton, my graduate advisor, who in H)77 first 
discussed with me the simple idea that eventually grew into the 
APL compiler. At the time, he was on leave from Yale University, 
where I was working towards my doctorate, and spending a year at 
the University of California at Berkeley. While we were at 
Berkeley a student named Brownell Charlstrom and I developed a 
system using threaded code on a PDP-ll that experimented with 
some of Dick's ideas. Unfortunately, the system was difficult to 
use, and the threaded code was not as fast as we had hoped. 
Interest waned, and the project languished. 

In H)80, having finished my dissertation work at Yale, I 
accepted a position at the University of Arizona and once more 
started to think about the problem of generating code for an APL­
like language. In time I developed another system, the first of 
many versions of the APL compiler. Although the broad outline of 
the technique that Dick had proposed remained the same, and 
indeed remained throughout the project, in detail almost 
everything changed. Instead of producing threaded code, I 
generated actual executable code. Since I didn't want to bother 
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with low-level machine details, I selected C as my target language. 
Instead of using a vector of subscript positions to represent an 
element I wanted to generate, I used an index into the raveled 
representation of an expression. By these and many other changes 
I was finally able to generate code that was considerably faster in 
execution than the threaded code system developed at Berkeley. 
However, with the change in request format from a vector of 
subscript positions to an index into the ravel ordering of the result 
a few functions, notably the transpose functions, caused problems, 
and I was eventually forced to use a system in which some requests 
were presented using vectors and some using indices (this demand 
driven, space efficient, code generation technique is described in 
more detail in Chapters 3 through 7). 

At about this time I became aware of a paper that was 
presented by Leo Guibas and Douglas Wyatt at the Fifth ACM 
Principles of Programming Languages Conference in Tucson, 
Arizona. They had a novel method for generating code for just the 
APL functions, the transpose functions, that were causing me 
trouble. I also acquired a student, Joseph Treat, who was working 
towards his masters degree at the University of Arizona. I set Joe 
to reading the Guibas/Wyatt paper, and shortly afterwards he was 
able to integrate their method into the APL compiler. Thus, we 
were finally able to eliminate totally the vector form of element 
request, and the compiler started to take on its present form. Joe 
continued looking at various implementation issues for another 
year, among other things implementing the dataflow analysis 
system described in Chapter 2. Then Joe -graduated, the grant 
funding ran out, and once more the project languished. 

In 1985 I took a leave of absence from the University of 
Arizona and spent time at the Centrum voor Wiskunde en 
Informatica in Amsterdam, The Netherlands. While there I was 
contacted by Dr. Sandor Suhai, from the Deutsches Krebs­
forschungszentrum in Heidelberg. He was interested in my work 
on APL and invited me to Heidelberg to give a talk. While I am 
almost certain that the software I gave to Dr. Suhai did not suit his 
needs (he was looking for a more commercial product, not the type 
of software, and nonexistent support, that you get in a typical 
software research project), his invitation did have the effect of 
forcing me to review the APL compiler project in its entirety. In 
so doing I concluded that the time was right (indeed, overdue) to 
describe the whole project in one place, instead of the myriad small 
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papers that we had published from time to time outlining various 
aspects of the project. This book is the result. 

I have already mentioned most of the people to whom lowe 
acknowledgements. To Dick, Joe, and Dr. Suhai I am of course 
most grateful. I wish to thank Alan Perlis for showing me, during 
my graduate school years, just exactly how intellectually 
challenging and powerful this strange language APL could be. I 
also wish to thank Lambert Meertens, my nominal supervisor for 
my year in Amsterdam, for permitting me to work on this 
manuscript despite whatever personal feelings he might have had 
towards the language APL. I thank Marion Hakanson for getting 
the troff typesetting system working for me at OSu. Finally, a few 
people have made a number of useful comments on earlier drafts of 
this manuscript: In particular, I wish to thank Ed Cherlin and Rick 
Wodtli. 

Some readers might be interested in obtaining the code for the 
APL compiler. I distribute the source, subject to the usual 
caveats found in academically developed software; namely, that it 
is distributed on an a&is basis, with no guarantee of support, nor 
any guarantee of its suitability for any use whatsoever. As our 
interests were in research in code generation and not in developing 
a commercial quality APL system, there are some features, even 
some rather basic features, that one might expect to find in an 
APL system that are missing from our system. These are 
described in more detail in Appendix 1. Because of these 
omissions, and because we cannot afford to offer any support for a 
system that is undoubtedly, despite our best efforts, still buggy, the 
APL compiler as it stands now is potentially of only limited utility 
for other purposes. If, despite these warnings, individuals are still 
interested in obtaining the system, they can write to me at the 
following address for details. 

Tim Budd 
Department of Computer Science 
Oregon State University 
Corvallis, Oregon 
97331 
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Chapter 1 

Why A Compiler ? 

The language APL presents a number of novel problems for a 
compiler writer: weak variable typing, run time changes in variable 
shape, and a host of primitive operations, among others. For this 
reason, many p~ople have over time voiced the opinion that a 
compiler for the language was inherently impossible and that only 
an interpreter provided the necessary flexibility. One result of the 
APL compiler project described here is to cast a great deal of 
doubt on this position. 

Our intention in developing a compiler for the language APL 
had less to do with an affinity for the language APL per se than 
with a desire to investigate the issues raised by the development of 
a compiler for a very high level language. The aim of the APL 
compiler project was to investigate whether nontrivial compiled 
code could be produced for an APL-like language, which we called 
APLc. The adjective APL-like is important here. Since our 
interest was in code generation and not in producing yet another 
APL system, we felt at liberty to change certain of the basic 
features of the language if doing so would result in the compiler 
being able to generate significantly better code and would not 
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destroy the essential APLness of the language. The latter is, of 
course, a very subjective opinion, and it is certainly true that there 
are some in the APL community who feel that any change in the 
basic semantics of the language produces something that is not 
APL. Nonetheless, it is the opinion of the author that the 
language APLc is still recognizably (or, some might say, 
unrecognizably) APL. 

The essential features of APL that we sought to preserve in 
developing the APL compiler were: 
1. The use of arbitrary size, homogeneous arrays as a basic 

datatype, and 
2. The set of functions that one associates with APL for 

operating on such arrays. 
Among the features of the language APL that we felt free to 

meddle with in developing APLc were the following: 
1. The elimination of dynamic scoping in favor of static scoping. 

It was our experience that few APL programmers use dynamic 
scoping, and it did complicate many of the algorithms that we 
were interested in. Since it seemed only a marginal issue in 
the larger problem of code generation, we removed it. [Lisp is 
another major computer language that utilizes dynamic 
scoping. It is interesting to note that recent dialects of Lisp, 
such as Scheme (Abelson 1985) and T (Slade 1987), have also 
replaced, this feature with static scopingj. 

2. A change in the order of evaluation rules. Although we retain 
the syntactic rule that says that the right argument of a 
function is the whole expression to its right, this does not 
imply necessarily that the right argument will be evaluated 
before the left. Some functions, for example reshape, will 
evaluate their left argument prior to examining the right. 
Although this differs from many APL implementations, it is 
actually what the APL standard calls a "consistent extension" 
of the language. 

3. The introduction of lazy evaluation semantics. Consider an 
expression such as: 

01/66-:-03 

The usual APL semantics would insist upon an error being 
reported when 6 was divided by O. The lazy evaluation 
technique that we wanted to use in the APL compiler would 
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not report this error, since the result would never be used, 
having been compressed out. Again, the APL standard 
permits this interpretation as a consistent extension. 

4. The introduction of (largely optional) declarations. It was 
necessary to introduce some declarations in order to determine 
the meaning of ambiguous tokens at compile time and thus 
insure a proper parse of a program. Conventional interpreter 
systems avoid this problem by not assigning meanings to 
certain tokens until just prior to execution, something a 
compiler cannot do. Having opened the doors this much, we 
went on to allow further optional declarations to give hints to 
the compiler concerning variable type and rank, thus 
permitting the compiler to produce better code. Again, some 
Lisp systems, such as Franz Lisp (Wilensky 1984) have pursued 
a similar policy with respect to declarations. 
A more complete description of the differences between 

conventional APL and the language accepted by the APL compiler 
is presented in the first appendix. 

1.1. APL Terminology 
One source of confusion between the APL community and the 

programming languages community at large is the fact that the 
language APL has assigned different meanings to some technical 
terms and also has introduced new terms not commonly known or 
used in descriptions of other programming languages. Thus, 
discussions of APL are often confusing to individuals who are not 
familiar with the language. 

An array is a potentially multidimensional, rectilinear 
collection of homogeneously typed values; that is, an array can be a 
matrix of numeric values, or of character values, but not both. 
The number of dimensions in any array is called the rank of the 
array. An array of rank 1 (that is, dimension one) is called a 
vector. A scalar quantity is considered to be an array of rank O. 

Functions in APL, including user defined functions, have either 
zero, one or two arguments; and are referred to as niladic, 
monadic or dyadic, respectively. For reasons we describe in 
Appendix 1, in the initial version of the APL compiler we do not 
permit the user to create niladic functions. 

The term primitive scalar function may be unfamiliar to non­
APL users. Dyadic primitive scalar functions correspond largely to 
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the type of operations commonly found in other general purpose 
programming languages, such as arithmetic functions, logical or 
relational operations. A list of the dyadic scalar functions is given 
in Figure 1.1. APL has generalized these functions to apply to 
multidimensional arrays in a pointwise fashion between 
corresponding elements. For example, 

1 2 
4 5 
7 8 

3 7 
6 + 8 
9 9 

4 
5 
6 

186 4 
2 - 12 10 8 
3 16 14 12 

There are also monadic scalar functions. In Chapter 5, the 
question of whether a dyadic primitive scalar. function has an 
identity element will be important in determining the type of code 
that we will generate. So that we can later refer to this 
information, we have included a list of identity values for each 
function in Figure 1.1. 

Whereas other programming languages may refer to the 
addition function as an operator, APL has defined this term in a 
much more restricted fashion. An operator in APL is a constructor 
used to build functions that extend the scope or purpose of a 
primitive dyadic scalar function in a special way. An example of 
an operator is reduction, which takes a primitive scalar function 
and extends it by placing it between elements of an array along 
some dimension. For example, if A is the two dimensional array, 

123 
456 
789 

the plus reduction (written as +/A ) is the vector of row-sums for 
A: 

1 + 
4 + 
7 + 

2 
5 
8 

+ 
+ 
+ 

3 
6 
9 

6 
15 
24 
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symbol function identity 

+ addition 0 
subtraction 0 

X multiplication 1 
division 1 

* exponentiation 1 
I residue 0 I 

e:> logarithm none 
0 circular (trigonometric) none 
\/ boolean or 0 
/\ boolean and 1 
\/ not-or none 
/\ not-and none 
! combinations 1 
r ceiling minimum number 
l floor maximum number 
> greater than none 
> greater than or equal none 
< less than none 
< less than or equal none 
- equal 1 
=1= not equal 0 

Figure 1.1: The APL Primitive Scalar Functions 

In addition to reduction, other operators are scan, inner 
product, and outer product. For a more detailed description of 
APL there are any number of good textbooks, for example, 
(Gilman and Rose 1976) or (Polivka and Pakin 1975). . 
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1.2. The Disadvantages of a Compiler 

It would be dishonest not to point out that in certain 
circumstances there are advantages of an interpreter that cannot 
be matched by a compiler. Most fundamentally, a compiler is just 
one of many steps between conception and execution of a program, 
a path frequently riddled with loops and false starts. The phrase 
"debug/execute cycle" is often used to describe the typical 
programming process, in which the programmer makes numerous 
changes to a program before the final product is realized. An 
interpreter can minimize the number of operations required 
between iterations in this cycle and thus can make the program 
development process faster. With a compiler the time between 
successive iterations of this cycle is typically much longer, and thus 
the program development process advances much more slowly. 

Similarly, many APL systems provide a pleasant programming 
environment, offering such features as the automatic retention of 
functions and data between computer sessions. This is difficult to 
duplicate using a pure compiler. Various combined 
compiler /interpreter systems have been constructed for both APL 
and LISP that try to minimize this problem. They retain the 
interpreter and the nice interpretative environment but permit the 
user to compile certain functions selectively into machine code for 
greater execution speed. While providing many of the advantages 
of both techniques, the major disadvantage of this method is that 
it requires the large run-time system (including the interpreter) to 
be present during execution. 

As we have already noted, we were interested first and 
foremost in the quality of code we could generate. Thus, our 
programming "environment" is a rather primitive batch-style 
system; the programmer submits an APL program to the compiler, 
which generates an equivalent C program. This C program is 
then, in turn, passed to the C compiler, which generates the final 
executable file. This is not to say that our techniques could not be 
embedded in a better programming environment, merely that we 
have not done so. 

1.3. The Compiler Passes 
One advantage of a compiler over an interpreter is that the 

user is usually not overly concerned with the size of a compiler, 
whereas an interpreter must coexist with the user's data at run 
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time and must therefore be as small as possible. This freedom 
permits one to consider somewhat costly operations, such as 
dataflow analysis, that would probably not be possible in an 
interpreter. 

The APL compiler is structured in a conventional fashion, as a 
number of different passes. The intermediate form used to 
communicate between the passes consists of a symbol table and an 
extended abstract syntax tree, with the nodes of the syntax tree 
holding such information as the type, rank, and shape of the result 
that the function associated with the node will produce at run 
time. The following sections describe the purposes of each of the 
passes. 

1.3.1. The Parsing Pass 
While the syntax for APL expressions is so regular that it can 

almost be recognized by a finite state automaton, the addition of 
declarations complicated the grammar to a sufficient extent that 
more powerful tools were required. The parser for the APL 
compiler was therefore written using a conventional LALR parser 
generator. Since this parsing step is no different from parsers for 
more conventional languages, which are adequately described in 
the literature (such as Aho et al. 1986), we will not discuss it any 
further in this book. We note only that the intermediate 
representation u,sed between the passes consists of a symbol table 
and an abstract syntax tree for each user function, and as the 
various passes operate, more fields in the syntax tree nodes are 
filled in. 

1.3.2. The Inferencing Pass 
The quality of code that can be generated by the APL 

compiler depends to a very great extent upon how much 
information can be obtained about the type, rank, and shape of the 
results that will be generated by expressions at run time. Much of 
this information is implicitly contained in a program, if only it can 
be discovered. The inferencing pass uses dataflow techniques in 
propagating information around the syntax tree. The algorithms 
used by this pass will be discussed in more detail in Chapter 2. 
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1.3.3. The Access Determination Pass 

Chapter 3 describes the space efficient demand driven 
evaluation technique used by the APL compiler. This method 
requests values from an expression one element at a time, thus 
generating only those values that contribute to a final result. As 
we will see in Chapters 4 through 7, which describe the algorithms 
generated for the various APL functions, many optimizations can 
be performed if it is known that values for a result will be accessed 
in ravel (or sequential) order. This pass of the compiler merely 
marks those nodes that will be so processed. 

1.3.4. The Resource Allocation Pass 

In a conventional compiler, resources refer to objects, such as 
registers, that are usually limited in number and must therefore be 
shared. The APL compiler, on the other hand, generates code in a 
high-level language, C. In this context, resources refer to variables 
of various types in the generated code. Since there are no limits on 
the number of variables that can be declared in a C function, the 
resource allocation strategy is to give everybody whatever resources 
they require. This pass merely determines the number of resources 
that will be required by the algorithms generated in the final pass. 

1.3.5. The Code Generation Pass 

The code generation pass is the real heart of the APL 
compiler, and the principal feature that distinguishes the compiler 
from compilers for more conventional languages. The code 
generated by the APL compiler must be efficient in execution 
speed but must still be able to operate when types, ranks, and 
shapes are not known at compile time. Chapters 3 through 7 
describe the algorithms used in the generated code produced by the 
APL compiler. 

1.4. Compiling for a Vector Machine 

APL is one of very few languages in which vectors and arrays 
appear as basic datatypes. Thus, the language would appear to be 
a natural match for those machines that have the ability to 
manipulate vectors of values in one instruction. Chapter 8 
describes how the algorithms developed in the previous chapters 
might be modified or extended to make use of vector instructions. 



1. Why A Compiler? 

anAPL 
Program 

Parser 

Type and Shape 
Inferencer 

Access 
Determination 

Resource 
Allocation 

Code 
Generation 

C 
Program 

C 
Compiler 

Executable 
Program 

9 



Chapter 2 

The Inferencing Pass 

Since conventional APL does not have declarations for 
identifier type and shape, and even in the language accepted by the 
APL compiler. such declarations are optional, information 
concerning how a variable will be used must be inferred indirectly 
from an examination of the program text. Such information can 
be extremely beneficial. Consider the simple statement: 

1+-1+1 
If the identifier 1 is known to be a scalar integer, considerably 
better code can be generated than if the program must be prepared 
to manipulate data of arbitrary type and shape (Wiedmann 1978). 
On the other hand, without such information the necessity of 
checking argument conformability prior to each primitive function 
can be one of the more time consuming tasks of an APL system. 
Thus, the ability to acquire information concerning variable usage 
is a critical factor in the success of an APL implementation. One 
of the most efficient means of obtaining this information is by 
means of dataflow analysis. 

The dataflow algorithms described in this chapter produce 
information on two attributes of interest in code generation, 
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expression type and expression shape. The latter can be further 
subdivided into rank and size. Although these attributes are 
distinct, the methods used to obtain information about them are 
similar and the gathering of information about both attributes can 
be performed in parallel. Information that could be obtained by 
other dataflow techniques and might be of interest to the compiler 
writer, such as live-dead analysis, or use-def chaining (Aho et al. 
1986) are not considered here. Although other dataflow algorithms 
have been described in the literature (see the references for pointers 
to some of the papers), the algorithms given here are shorter, 
simpler, and tailored more directly to the language accepted by the 
APL Compiler. 

For the purpose of explaining the dataflow algorithms 
described here, two differences between standard APL and the 
language accepted by the APL compiler are important. The first 
change involves the introduction of declarations. In remaining as 
close as possible to the APL spirit, the only necessary declarations 
are for global variables and for functions. This is the minimal 
amount of information necessary for the parser to distinguish the 
nature of every token at compile time. Although ambiguities 
concerning whether an identifier is a function or a variable are not 
common in APL programs, it is possible to construct examples 
where such a determination cannot be made at compile time 
without the use of declarations.1 More extensive declarations of 
variable types and/or ranks are permitted and, if provided, give 
hints to the compiler that may result in the generation of better 
code. An example of this is discussed in a later section. 

A second, and more fundamental, change to the language 
involves the elimination of dynamic scoping in favor of a two level 
static scoping. In this scheme variables are either local, in which 
case they can only be accessed or modified in the procedure in 
which they appear, or global, in which case they can be accessed or 
modified in any procedure. Dynamic scoping prevents one from, in 

1. Similarly, it is also' necessary to rule out niladic functions or to require de­
clarations of function valence. Consider F G expr, for example, where expr 
is an expression and F and G are known to be functions; Either F is niladic 
and G dyadic, or both F and G are monadic functions. As we explain in more 
detail in Appendix 1, we were faced with a choice of either requiring declara­
tions of valence as well as function names, or of disallowing niladic functions. 
In the APL compiler we chose to disallow the use of niladic functions. 
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general, establishing at compile time a definite link between a 
variable reference and a variable instance. Thus, it is much more 
difficult to discover information profitably about variable usage by 
a static examination of the code. Dataflow algorithms that work in 
a dynamically scoped environment tend to be both more complex 
and less effective than the algorithms presented here. 

On the other hand, there are important characteristics of the 
language APL that simplify the task of dataflow analysis. For 
example, APL statements are unusually rich and complex. It is 
quite sensible to discuss analysis of individual APL statements in 
isolation for the purpose of discovering type and shape information, 
independent of any further intra- or inter-procedural analysis. 
This is in contrast to many other languages in which, for example, 
the average statement may involve one or fewer operations (Knuth 
1971). Also, APL programs tend to be quite short, and thus an 
algorithm that has asymptotically poor running time, say O( n3), 
where n is the number of lines in a function, may be quite 
reasonable when the average function contains ten or fewer lines. 

2.1. A Hierarchy of Attributes 
We start by describing a hierarchy of classifications for the 

attributes of interest, namely shape and type. .As we have already 
noted, in the language accepted by th~ APL compiler the user is 
allowed to provide optional declarations of variable attributes. 
Although declarations are not part of standard APL, the intent is 
to aid the code generator in the task of producing efficient code, 
while still providing the full generality of APL. The result is that 
attributes can be of two varieties, namely declared attributes 
(attributes the user has explicitly declared to be valid) and inferred 
attributes (attributes inferred by the dataflow algorithm from 
analysis of the code). Pragmatically speaking, the only difference 
between an identifier that has been declared to possess certain 
attributes and one not declared is the initial values given to the 
identifier attributes before analysis begins. A later pass in the 
compiler insures that declared attributes are not violated, which 
may necessitate producing run time checks. 

A partial ordering of the attribute type is shown in Figure 2.1. 
The attribute undefined is given to undeclared local variables prior 
to their first assignment; thereafter, all expressions should be given 
one of the other attributes. In APL the type boolean refers to the 
integers 0 and 1, and thus the attribute integer is a generalization 
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of boolean. The attribute any is given to an expression that can 
potentially produce a result of any type. 

Number Character 

Integer Real 

/ 
Boolean 

Undefined 

Figure 2.1: Partial Ordering for Attribute Type 

Arbitrary 

/AT~ 
FIXed size 

Scalar Vector Ar 

~I/ray 
Unknown 

Figure 2.2: Partial Ordering for Attribute Shape 



2. The Inferencing Pass 15 

A similar partial ordering for the attribute shape is given in 
Figure 2.2. The attribute unknown is analogous to undefined for 
type. This is certainly not the only hierarchy that could be 
proposed. For example, one could argue that shape scalar should 
be considered to be a special case of shape vector. Experience with 
the code generator indicated, however, that whereas the special 
cases for scalar and vector were extremely important, code that 
was general enough to work for both scalars and vectors was 
seldom much smaller or faster than the code required to handle the 
general case. Thus, the given hierarchy represents a pragmatic 
description of the most important categories. Similarly, experience 
with the code generator indicates that very little is gained by exact 
knowledge of an expression rank if the rank is greater than 1 (that 
is, other than a scalar or a vector). Therefore, the decision was 
made not to permit declarations of rank other than for scalars and 
vectors. Nevertheless, information obtained during dataflow 
analysis concerning expression rank can be useful in predicting 
later scalar or vector shapes. For this reason inferred information 
concerning array ranks and shapes is preserved, when available. 

The dataflow algorithms described here can be divided into 
three parts. The first algorithm is concerned with the analysis and 
propagation of information within a single statement. On the next 
level an algorithm is presented for the analysis of attributes within 
a single function. Finally, a third algorithm is used for the analysis 
and propagation' of information between functions. These parts 
will be described separately in the following sections. 

2.2. Expression Flow Analysis 
The initial pass of the APL compiler transforms an APL 

expression into an abstract syntax tree. The dataflow analysis 
algorithms then operate on this tree representation to propagate 
type and rank information. To do this, the tree is traversed 
bottom up, inferences moving from the leaves into the interior 
nodes. For the leaf nodes, information is given by other sources: 
for example, constants have a fixed type and size; variables and 
functions may have been declared; or information may have been 
inferred from previous statements (see next section). Associated 
with each function is an algorithm for determining the resulting 
type and shape, assuming the type and shape of the arguments are 
known. For many functions this information can be codified as a 
table. For example, Figure 2.3 gives the shape transformation 
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matrix for the binary plus operation. Figure 2.4 gives a similar 
matrix for type. In both cases the column index is given by the left 
argument and the row index by the right argument. By 
maintaining the distinction between declared and inferred 
attributes, it is possible to perform some compatibility type 
checking at compile time. 

+ scalar vector array unknown 

scalar scalar vector array unknown 

vector vector vectorl error3 unknown2 

array array error3 array unknown2 

unknown unknown unknown2 unknown2 unknown2 

Notes: 
1. Can check conformability at compile time 
2. Must che~k conform ability at run time 
3. Can issue conformability error immediately 

Figure 2.3: Shape Inference Figure for Binary Plus Operation 

Figure 2.5 illustrates how shape and type information can be 
propagated through an expression tree. The tree in this instance 
represents the idiom (Perlis and Rugaber 1979) for computing the 
number of primes less than a given quantity (in this case 200). 
Appendix 2 describes the code generated for this expression. 
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+ boolean int real num char any 

boolean int int real num error any 

int int int real num error any 

real real real real num error any 

num num num num num error any 

char error error error error error error 

any any any any any error any 

Figure 2.4: Type inference table for plus operation 

function type rank and shape 

A~ integer scalar 
+/ iJlteger scalar 
2= boolean vector 200 
+/- integer vector 200 
0= boolean array 200 200 

1 0.1 integer array 200 200 
L 200 integer vector 200 
200 integer scalar 

Figure 2.5: Propagated information for the expression 
A ~ + /2 =+1-0 =(L 200) 0.1 L 200 

17 
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2.3. Intraprocedural DataHow Analysis 
The control flow graph for an APL function can be 

represented as a sequence of expressions linked by directed arcs, 
signifying possible control transfer (Figure 2.6). In standard APL, 
every statement could potentially be the target of a goto arrow, 
however, newer programming practices have tended to limit 
transfer to statements possessing a designated label. The APL 
compiler insists that all transfers are to a labelled statement. 
There is a natural linear ordering for statements given by the order 
in which they appear in the program text, and this permits us to 
refer to "forward" branches and "backward" branches. Unlike 
more structured languages, we are not in general guaranteed that a 
control flow graph for an APL function will possess any nice 
properties, such as being reducible (Muchnick and Jones 1981). 
Thus, many conventional dataflow algorithms are not generally 
applicable. The algorithm presented in this section makes no 
assumptions concerning the topology of the control flow graph. 

Figure 2.6: A Typical Control Flow Graph 

We associate with each node in the control flow graph a list, 
called an identifier attribute list. This list records, for each 
identifier used in the function, the most general attributes observed 
for that identifier at the given location. There is also one such list 
maintained for the "current environment" as the algorithm steps 
through the function. We can say that one attribute list is more 
general than a second if any identifier in the first has a more 
general attribute than the corresponding identifier in the second 
list, regardless of the relationships among the remaining identifiers. 
Similarly, we can define a merge operation that takes two lists and 
forms a new list by selecting, for each identifier, the most general 
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attributes from either list. 
Given the conventional APL dynamic scoping rule, there is, in 

general, no guarantee that a local variable possessing some 
attributes prior to a function call will still possess those attributes 
following the function return. By discarding dynamic scoping in 
favor of a two-level static scoping, we eliminate this problem and 
greatly facilitate the gathering of information about variable 
attributes. 

Having defined an identifier attribute list, the dataflow 
algorithm can be described as follows: 
step 0 Initialize all identifier attribute lists to Undefined­

Unknown. In the current environment list initialize globals 
and functions to Any-Arbitrary Array, unless other 
declarations have been provided. Initialize all other 
declared identifiers as per their declarations. 
Set i = l. 

step 1 If i > number of nodes, quit. 
Otherwise, merge the current environment attribute list 
and the identifier attribute list for node i, updating both 
lists to the merged result. 
Perform the expression dataflow analysis described in the 
last section on node i, updating the current environment 
attribute list if appropriate (that is, if any identifiers are 
modified). 
If node i is a branching expression, go to step 2, otherwise 
let i =i + 1 and go to step l. 

step 2 Order the list of potential branch targets. For each 
potential branch target, update the identifier attribute list 
at the target node by merging it with the current 
environment. 
Let j be the value of the first (that is, lowest numbered) 
backward branch target which was strictly less general 
than the current environment, set i = j and go to step l. 
Otherwise, if no backward branch satisfies the condition, 
set i =i + 1 and go to step l. 

The first observation to make is that this algorithm does, in 
fact, terminate. The only time i is decremented is in step 2, and 
that can only occur if at least one identifier has an attribute more 
general than the attribute recorded at the target node. Thus, the 
number of times a node is examined in step 1 is crudely bounded 
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by the number of nodes (n) times the number of backward 
branches (b) times the number of identifiers (i) times the 
maximum de~th of any attribute hierarchy. Since b can be no 
worse than n , this gives us a running time of O( n3i). While not 
asymptotically impressive, in practice the number of backward 
branches is considerably less and the running time is quite 
acceptable. 

The second, and more important, task is to prove that the 
algorithm is correct. We first note that unless certification can be 
provided by global dataflow analysis (see next section), the 
attributes of all global variables and functions are checked at run 
time each time they are used. Thus, the only possible source of 
error is from local variables. Assume, contrary to our proposition, 
that some execution sequence results in at least one local variable 
possessing an attribute at some node that is not proper (that is, not 
less general) for the attributes recorded for that node. Let us 
consider the node at which such an event first occurs. 

We observe that the attributes of all identifiers defined in an 
expression are given completely by the attributes of objects 
corresponding to the leaves in the syntax tree for that expression. 
Furthermore, these leaves come in five varieties: constants, global 
variables or functions, input-quads, or local variables. The 
attributes of the first four types cannot be wrong, and thus the 
only possibility is that some local variable possesses an attribute 
that is incorrect. 

There are then two cases. The first case is that the expression 
node that we are considering is the first node executed. However 
this is not possible, since any local variables in the first expression 
would be undefined and the compiler would have detected the 
possibility of a local variable that had not been defined being used 
in an expression. The alternative is that. this is not the first 
expression being considered, in which case the local variable that 
caused the trouble was defined in a previous expression. The new 
variable, however, would then necessarily have to differ with the 
attributes of the earlier expression, which would contradict the 
assumption that this is the first time an improper variable has 
occurred. 

Having discussed correctness, the next question is whether the 
results are optimal. Unfortunately, a fundamental problem is that, 
like almost all dataflow algorithms, this algorithm is based on a 
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static analysis of potential control flow paths, which may not 
correspond to the set of actually realizable control flow paths. It is 
rather easy to construct an example in which an identifier is used 
in one way (say as an integer) in one part of a function and in a 
different way (say as a character) in another. By inserting a 
conditional branch from the first part to the second, even if the 
branch can never be taken, the dataflow analysis algorithm is 
forced to assume a more general category for the variable than is 
actually necessary. 

One further difficulty with this algorithm is that it cannot be 
used to perform backward type inference (Miller 1979). For 
example, consider the code fragment shown in Figure 2.7. By 
noting that iota requires its argument to be a scalar integer, we can 
infer that the result produced in the first line should be of this 
type. Weare not, however, thereby assured that the result is of 
this type. Therefore, conformability checking code must still be 
generated. Since the only effect is to have moved conformability 
checking code from the second line to the first, very little has been 
gained. Examination of the code generated by the APL compiler 
using the algorithms given in this chapter have revealed few 
instances in which backward inference would have been useful in 
generating more efficient code. 

n +- some expresswn 
m +-tn 

Figure 2.7: An Example Backward Inference 

2.4. Interprocedural DataHow Analysis 
One difficulty with the algorithm presented in the last section 

is that it utilizes only information contained within a single 
procedure. Complicated programs will frequently consist largely of 
function calls. In the absence of declared attributes, the most 
abstract categories possible must be assumed for the results of a 
function call. One solution to this problem is to perform dataflow 
analysis on" an entire collection of functions. 

An interprocedural dataflow analysis algorithm can be 
constructed in a fashion similar to the intraprocedural dataflow 
analysis algorithm described in the last section. In the 
interprocedural case, nodes in the control flow graph correspond to 



22 An APL Compiler 

functions, and directed arcs correspond to potential function calls. 
A function call is characterized as a pair of "branches," one 
transferring control to the called function, the second returning 
control to the calling function. An arbitrary linear ordering can be 
imposed, or some analysis performed, to produce an ordering that 
reduces the number of "backward" branches. 

Once again, the two-level scoping system of the APL compiler 
simplifies the task of dataflow analysis. Since local variables are 
not a concern at this point, all identifiers are global and of the 
same scoping level. Connected with each node an identifier 
attribute list will record information on all global variables and 
functions. In place of performing expression dataflow analysis in 
step 1, intraprocedural dataflow analysis on an entire function is 
used. With these changes the same algorithm is used as in the 
intraprocedural case. Details of the arguments concerning 
termination and correctness also carryover and will not be 
repeated here. 

One difficulty with this technique is that the inferred result 
attributes of a function call are given as the most abstract 
categories which include all observed results for the function. 
Thus, relationships between the argument and result types of a 
function may not be recognized. For example, a function may 
always return a value of the same shape as its arguments. This 
information could, of course, be of considerable use in code 
generation. 'To gather such information, however, requires an 
algorithm of considerably greater complexity. 

2.5. An Example - The Spiral of Primes 
Figure 2.8 shows a set of functions that, collectively, produce 

Dlam's "Spiral of Primes" (Perlis and Rugaber 1979). We will use 
these functions to illustrate the utility of the dataflow algorithms 
that we have presented in this chapter. In response to a prompt 
from the input quad (line 20), the user types a small integer, say, 
for example, 10. The function spiral then computes an N by N 
array of integer values, arranged so that they spiral outwards from 
the center. as in: 
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1 GLOBAL V AR N 

2 '\1 Z +- SPllAL L 
3 FUN COPlES, LINEAR 
4 A+-l,NX2 
5 C +- 4 1 A COPlES (I -\ A ) 
6 G +- l 0.5 + N -;- 2 
7 E +- L [; ( -1 + N X N) i C + 4 X 0 = C 

23 

8 Z +- ( 2 p N ) p ~ LINEAR 1 1 2 Q ( 2 p G) 0.+ +\ 0 , E 
9 '\1 

10 '\1 C +- A COPlES B 
11 C +- A [ +\ ( l, +1 B) € -1 ! 1 + +\ 0 , B 1 
12 '\1 

13 '\1 X +- PRTh1ES A 
14 S +- xl p A 
15 X +-A € ( 2 = +/-0 = (l, S) 0.1 l, S) I l, S 
16 '\1 

17 '\1 Z +- LINEAR M 
18 Z +- 1 + N :- M - 1 
19 '\1 

20 N +- [] 
21 Y +- SPllAL 2 4 P -1 0 1 0 0 1 0 -1 
22 X +- PRTh1ES Y 
23 [] +-' *'[1 +X] 

Figure 2.8: Functions for computing Ulam's Spiral of Primes 
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82 83 84 85 86 87 88 89 90 91 
81 50 51 52 53 54 55 56 57 92 
80 49 26 27 28 29 30 31 58 93 
79 48 25 10 11 12 13 32 59 94 
78 47 24 9 2 3 14 33 60 95 
77 46 23 8 1 4 15 34 61 96 
76 45 22 7 6 5 16 35 62 97 
75 44 21 20 19 18 17 36 63 98 
74 43 42 41 40 39 38 37 64 99 
73 72 71 70 69 68 67 66 65 100 

This array is passed to the function primes, which replaces 
each value that corresponds to a prime number with a 1, and each 
non prime with a 0: 

0 1 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 
1 0 0 0 1 0 1 0 1 0 
0 1 0 0 1 1 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 
0 0 0 1 0 1 0 0 0 1 
0 0 0 0 1 0 1 0 0 0 
0 1 0 1 0 0 0 1 0 0 
1 0 1 0 0 0 1 0 0 0 

These values are then used to subscript into a constant array, 
in effect replacing every 1 point with a star. The resulting pattern 
exhibits unusual lines that no one has been able to explain: 

* * 
* 
* * 

* * * * 
* ** 
* * 
* * * 
* * 

* * * 
* * * 

When presented to the APL compiler, these functions generate 
a total of 157 nodes in the abstract syntax tree that is the internal 
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representation for APL functions inside the compiler. Of these 
157, one of the attributes type, rank or shape is manifestly 
apparent for 34 nodes (Figure 2.9). This is either because the node 
represents a constant, for which all the attributes type, rank, and 
shape are known, or the function iota or grade-up, for which the 
attributes type and rank are known, or an equality test or other 
function for which the type is known. 

Number of nodes in syntax tree for which 
attributes are known 

type is known 34 
rank is known 27 
shape is known 22 

at least one of the attributes 
type, rank or shape is known 34 

22% 
17% 
14% 

22% 

Figure 2.9: Attribute Information Prior to Analysis Beginning 

2.5.1. Statement Analysis 
Following simple expression flow analysis of each statement in 

isolation, there are several inferences that can be made. For 
example, we can determine that the result of the addition and the 
division in line 6 will be real, and that of the monadic function 
floor in the same line will be integer. 

In statement 7, although we as yet know nothing about the 
variable C, we do know that the result of the comparison of 0 to C 
will yield boolean values; thus, the result of the multiplication of 
this value by the constant 4 will be integer. 

In statement 8, although we cannot determine the type of the 
argument to the function linear, we do know it has rank 2. 
Similarly, we can determine that the value assigned to Z will be an 
integer array of rank 2. 

In the function copies we may not know the size or shape of 
the argument B, but we do know that the iota function produces a 
vector; thus, the index expression for the subscript must be an 
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integer vector. In contrast to our earlier remarks, this function 
does illustrate one situation in which backward inference might be 
useful. If we assume that the argument to iota must be an integer, 
then we are logically led to conclude that B must be a vector. 
Making this assumption (and without further confirmation we 
would still need to insert run time checks to insure its validity), we 
can then go on to conclude the type and rank of the expression to 
the right of the epsilon. While this example might argue in favor 
of some sort of backwards inference capability, we shall soon see 
that interprocedural analysis provides, in this particular case, all 
the information that we need. 

Finally, it is not surprising, since it is similar to the expression 
we described earlier in this chapter, that we can determine the 
type and rank information for almost all the nodes in the second 
statement of the function primes, even without knowing that the 
variable S represents a scalar integer. 

All total, we can discover information about at least one of the 
attributes type, rank or shape in 49% of the nodes in the abstract 
syntax trees for these functions. More comprehensive data is 
presented in Figure 2.10. 

Number of nodes in syntax tree for which 
attributes are known 

type is known 68 
rank is known 68 
shape is known 39 

at least one of the attributes 
type, rank or shape is known 78 

43% 
43% 
25% 

49% 

Figure 2.10: Attribute Information Following 
Expression Flow Analysis 

2.5.2. Intraprocedural Analysis 
Intraprocedural analysis infers that the value assigned to the 

variable A in line 4 is an integer vector. Armed with this fact, we 
can tell a little more about the arguments passed to the function 
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copies, but we still cannot determine any information about the 
results of the function call, and hence the values assigned to the 
variable C in line 5. Similarly, we know variable G is integer in line 
6, but since we know nothing of E this helps only marginally in 
understanding statement 8. 

Number of nodes in syntax: tree for which 
attributes are known 

type is known 75 
rank is known 75 
shape is known 42 

at least one of the attributes 
type, rank or shape is known 83 

48% 
48% 
27% 

53% 

Figure 2.11: Attribute Information Following 
Intraprocedural Flow Analysis 

Intraprocedural analysis helps not at all in understanding the 
function copies, since it has only one line. In primes, although we 
can determine the type and shape of the variable S as being a 
scalar integer,we already knew everything there was to learn 
about the second statement. The complete data following 
intraprocedural analysis is shown in Figure 2.11. 

2.5.3. Interprocedural Analysis 
With the knowledge that both the arguments A and B in the 

function copies are integer vectors, we can determine that the 
result is integer and vector as well. Armed with this fact, plus the 
knowledge that the argument L to the function spiral is an integer 
array of rank 2, we can determine that E in line 7 is also an integer 
array of rank 2. 

We knew from intraprocedural analysis that the rank of the 
argument to the function linear was rank 2. Although information 
about the variable E now permits us to expand this from simply an 
array into an integer array, this is still not sufficient to determine 
anything about the result of this function. 
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Although we were aware from intraprocedural analysis that 
the result of the function spiral, in line 2, was an integer array of 
rank 2, prior to interprocedural analysis we did not propagate this 
fact into the argument A to the function primes. Now, armed 
with this fact, we know that not only is the result of that function 
of type boolean but also that it is, in fact, a boolean array of rank 
2. 

The data following interprocedural analysis is shown in Figure 
2.12. 

Number of nodes in syntax tree for which 
attributes are known 

type is known 117 
rank is known 116 
shape is known 42 

at least one of the attributes 
type, rank or shape is known 121 

75% 
74% 
27% 

77% 

Figure 2.12: Attribute Information Following 
Interprocedural Flow Analysis 

2.5.4. The Importance of Declarations 
This example can also be used to illustrate how the judicious 

use of declarations can dramatically improve the quality of code 
that can be generated by the APL compiler. The global variable N 
is assigned a value by the input quad in line 20. This being the 
case, we are unable to determine the type, rank, or shape of the 
value. If, however, we declare that N is a scalar integer, then a 
wealth of inferences become possible. For example, we can then 
determine that G in line 6 is a scalar integer. Similarly, we can 
finally determine something about the function linear, namely, that 
in line 18 it produces an integer vector. 

Even without performing interprocedural analysis, adding this 
declaration results in an improvement of the generated code 
(Figure 2.13). With the addition of interprocedural analysis, some 
attribute can be discovered for almost 90% of all nodes in the 
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Number of nodes in syntax tree for which 
attributes are known 

type is known 89 
rank is known 94 
shape is known 58 

at least one of the attributes 
type, rank or shape is known 98 

57% 
60% 
40% 

62% 

Figure 2.13: Attribute Information Following 
Intraprocedural Flow Analysis 

With the Addition of a Declaration for Variable N 

Number of nodes in syntax tree for which 
attributes are known 

type is known 133 
rank is known 137 
shape is known 59 

at least one of the attributes 
type, rank or shape is known 137 

85% 
87% 
38% 

87% 

Figure 2.14: Attribute Information Following 
Interprocedural Flow Analysis 

With the Addition of a Declaration for Variable N 

syntax tree (Figure 2.14). 

2.5.5. The Size of the Generated Programs 

29 

It is interesting to compare the size of the C programs 
generated by the APL compiler under various conditions. Figure 
2.15 shows this information. The table lists both the number of 
lines and the number of tokens (symbols) in the programs. As 
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more and more information becomes known, smaller and smaller 
programs can be generated. The code for the final case, 
interprocedural analysis with the addition of the declaration for 
variable N, is presented in Appendix 3. 

program lines 

after expression flow analysis 683 
after intraprocedural analysis 674 
intraprocedural with declaration for N 641 
after interprocedural analysis 617 
interprocedural with declaration for N 578 

tokens 

2816 
2776 
2610 
2477 
2279 

Figure 2.15: Size of Generated Programs 

In a similar manner, as the code becomes smaller it also 
becomes faster. For large values of N, the execution time in all 
programs is almost completely dominated by quadratic algorithm 
used by the function primes. In order to get a fairer sense of the 
relative speed of the code generated under various conditions, we 
therefore execute these functions repeatedly for small values of N, 
rather than once for a large value. To do this, we replace the main 
program with the following: 

V'TIMEIT W 
I+-O 
L: X+-' *'[ 1 + primes spiral 2 4 P -10 100 10-1] 
1+-1+1 
-+LXd<W 
V' 

N+-l0 
TIMEIT 10 

The function timeit executes the spiral functions repeatedly a fixed 
number of times, in this case 10. Execution timings for each of 
these five functions are given in Figure 2.16. As you can see, the 
information gained by dataflow analysis permits the generation of 
code that is, in this case, more than one-third faster than the code 
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that can be generated without such analysis. 

program 

after expression flow analysis 
after intraprocedural analysis 
intraprocedural with declaration for N 
after interprocedural analysis 
interprocedural with declaration for N 

time 

16.3 seconds 
15.8 seconds 
15.3 seconds 
11.4 seconds 
10.1 seconds 

Figure 2.16: Execution Timings for Ulam Code 
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Chapter 3 

Code Generation Overview 

The task of the data inferencing pass is to determine, to as 
great an extent as possible, the type, rank, and shape of the results 
that will be produced by each function represented in the parse 
tree. Once this information has been gathered, it is the task of the 
code generator to translate the parse tree into an equivalent 
program in the target language (in this case, the language C) that 
will, when executed, produce the desired results. 

Just as there are many different programs that could be 
written in APL to solve a given problem, there are many different 
programs in the target language that can be claimed to represent 
the same algorithm as that given by any particular APL program. 
There are two objectives used to select the type of program 
produced by the code generation pass; namely, the desire to make 
the target program as fast as possible and the desire to make it use 
as little memory as possible. 

The speed objective is perhaps easiest to understand, and it is 
here that the type information and, to a lesser extent, the rank 
information gathered during dataflow analysis is important. Scalar 
instructions that correspond to basic operations in the target 
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language, such as addition, tend to be type specific; an integer 
addition is a different operation from a floating point addition, for 
example. If the determination as to the type of an operation 
cannot be made at compile time, then the generated code must call 
upon a subroutine to perform the given operation. The subroutine, 
which by run time knows the types of the operands, can select the 
correct operation. The difference in execution time between a 
single operation (such as an integer addition) and a call on a 
runtime routine can be many orders of magnitude. Thus, the 
correct determination of types and the correct utilization of this 
information by the code generator can have a dramatic impact on 
execution speed. 

Less obvious, but just as critical, is the objective of reducing 
space. Many APL expressions compute a result by first 
constructing a large intermediate quantity, such as a 
multidimensional array, and then compressing this value by 
reduction, compression, or subscription. Thus, even in cases in 
which neither the inputs nor the outputs of an expression are large, 
the intermediate values can be substantial. Most APL 
programmers have had the frustrating experience of writing 
routines that work while they are testing them on small values, but 
fail for lack of space as soon as they try them on the larger values 
they are really interested in. The code generated by the APL 
compiler attempts to avoid this problem by using a space efficient 
demand driven evaluation algorithm. 

Using this scheme, quantities are computed only as they are 
needed, not before. Consider, for example, a simple expression 
such as 

A~B+CXD 

where B, C, and D are large multidimensional arrays. The 
conventional execution technique for this expression would first 
place the value C X D into a temporary location, call it T, and 
then compute the value of B + T, storing the result into A. 
Clearly, the overhead associated with this is as large as the 
maximum size of the arrays. The demand driven approach, on the 
other hand, will compute each element of the result one by one; 
that is, one element from B will be added to the product of one 
element from C and one element from D, and stored in one 
location in A. Then the next element will be computed, and so on, 
until all values have been assigned. In this way, the overhead is 
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reduced to that of a single scalar value. 
There are problems with the demand driven approach, not the 

least of which is the fact that it may alter the semantics of a 
program in subtle ways. Consider, for example, the following 
expression 

01/66-;-02 

The conventional approach would produce an error because 6 is 
being divided by O. The demand driven approach, on the other 
hand, produces no such error because the result is never required, 
having been compressed out. Despite this, the space savings of the 
demand driven approach make the technique attractive. 

3.1. Demand Driven Evaluation 
To better understand the demand driven evaluation technique, 

consider first a system in which each node in a parse tree is 
represented by a small, independent automaton. The automata 
are connected by wires in a manner corresponding to the abstract 
syntax tree and communicate by sending messages to each other. 
However, only a small amount of information can be transmitted 
with each message. Figure 3.1 shows the automata structure for 
the expression 

A+-+/B+C 

The topmost automaton (the assignment) is told to begin. In 
order to produce a result, it must first determine how large a 
quantity will be produced by the right side, in order to know how 
much space to allocate to hold the result. Thus the first message is 
passed from the assignment automaton to the reduction node. 

(message from assignment to reduction) What is the type, 
rank, and shape of your result? 

The reduction automaton, by itself, cannot determine this 
value. Therefore, its first task is to pass the message down to the 
scalar plus function, which in turn passes it to each of its 
arguments. 1 

1. In theory there is no reason why the two messages from the scalar plus can­
not be passed in parallel. We will later address the question of ordering 
operations. 
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Figure 3.1: The syntax tree for A +- +/ B + C 

(message from reduction to scalar plus) What is the type, 
rank, and shape of your result? 
(message from scalar plus to identifier B) What is the type, 
rank, and shape of your result? 
(message from scalar plus to identifier C) What is the 
type, rank, and shape of your result? 

Reaching the leaves, we are finally able to respond to a 
message without sending further requests. Assume we have the 
following responses: 

(reply from identifier B to scalar plus) My result is a scalar 
real. 
(reply from identifier C to scalar plus) My result is an 
integer array of rank 2, shape 6 7. 

The plus automaton, having received these responses, first 
performs conformability checks to see if the arguments are legal in 
both type and size. It then determines the type and size of the 
result it will generate and passes this information back to the 
reduction automaton. 
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(reply from scalar plus to reduction) My result is a real 
array of rank 2, shape 6 7. 

The reduction automaton checks that the plus operation is 
legal for arguments of this type and computes the type and size of 
the result it will produce. 

(reply from reduction to assignment) My result is a real 
vector of size 6. 

The assignment node finally knows how large the storage area 
must be to accommodate the result. It allocates this area and then 
starts to fill it in. It does this by requesting values one at a time: 

(message from assignment to reduction) Give me the first 
value in the ravel ordering of your result. 

In order to compute this value, the reduction node must 
compute the sum of the first row of the result generated by the 
scalar plus. It therefore sends a sequence of messages, processing 
the results as they are returned. (Note that the APL semantics 
require the sum to be computed in reverse order2). 

(message from reduction to scalar plus) Give me the 
seventh value in the ravel ordering of your result. 
(message from scalar plus to identifier B) Give me your 
value. 
(message from scalar plus to identifier C) Give me the 
seventh value in the ravel ordering of your result. 
(reply from identifier B to scalar plus) My value is 1.5. 
(reply from identifier C to scalar plus) My value is 7. 
(reply from scalar plus to reduction) My value is 8.5. 
(message from reduction to scalar plus) Give me the sixth 
value in the ravel ordering of your result. 

Having passed a sequence of messages to compute the values of 
the first through seventh elements in the result, and having taken 
their sum, the reduction node can finally respond to the 
assignment. 

2. For a commutative function, such as plus, the result should be the same re­
gardless of the order of evaluation. Later on, when we discuss the actual code 
generated for reduction, we will make use of this fact. 
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(reply from reduction to assignment) My value is 38.4. 

The assignment stores the value in the appropriate location 
and then asks for the next value. 

(message from assignment to reduction) Give me the 
second value in the ravel ordering of your result. 

This continues until all the assigned values have been 
computed. Clearly, only those values are produced that are 
required for the final result, and the space requirements for 
intermediate results are minimized. 

Note the similarity of this approach to that employed by 
object oriented languages such as Smalltalk.3 Indeed, one could 
construct a working APL system in such a language in just this 
manner; however, the overhead of a general message passing 
protocol is considerably higher than is necessary in this case. This 
is because the number of messages required for the evaluation of 
APL is extremely small, and they are ordered in a very structured 
fashion. In this example, for instance, there were only two general 
types of messages: 
1. What is your result type, rank, and shape? 
2. What is the ith value of your r~ult? 

By utilizing this knowledge concerning the types of messages 
required for the evaluation of APL, we can achieve the effect of 
this demand driven approach with very little overhead. How this 
is accomplished is discussed in the next section. 

3.2. Boxes 
As we have just noted, the variety of messages necessary for 

the evaluation of APL is very limited. In fact, the two messages 
described in the last section are sufficient for all but a handful of 
functions. 

The order in which these messages are passed is also very 
structured. A shape request will always be given once and be 
followed by some number of value requests. 

Our interest, however, is in showing how the demand driven 
evaluation scheme can be rendered in programming code. In this 
light, it would be unacceptable if each of the value messages 

3. For a description of the language Smalltalk see (Budd 1987). 
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required a separate section of code, particularly since, at compile 
time, we may not know how many times a value request will be 
needed. Instead, we modify the messages we will generate so that 
only one value request need be issued to generate an arbitrary 
element. The new messages can be described as follows: 
1. Generate a section of code that will, when executed, return the 

type, rank, and shape of the values that you will produce. 
Respond with the locations that these values will occupy at 
run time. 

2. Given a variable containing the index of a desired element in 
the ravel order of your result, generate a section of code that 
will, when executed, return this value. Respond with the 
name of the (internal) variable where this value will be stored. 

For example, the assignment function generates code that, at an 
abstract level, can be described as follows: 

{ code to generate type, rank, and shape of right side} 
compute size of result and allocate storage 
for offset =0 to (size ofright side) -1 do begin 

{ code to generate element of result at index offset} 
store value in appropriate location 
end 

release storage on old value of identifier 
bind identifier name to new value 

The name offset for the loop variable is indicative of the fact that 
the counter is really representing an offset into the ravel ordering of 
the result. Notice that the counter runs from 0 to the size minus 1; 
another way to think of this is that vectors in Care 0 based. The 
code sections in braces { . . . } correspond to the code generated 
by passing the appropriate messages to the right subexpression. 

Another way to view the code generated by each APL function 
is as a template, or box, with holes in it.4 The hole is filled by 
another box, corresponding to the arguments of the current 
function. That box may in turn have a hole in it that requires a 
third box, and so on until all the holes have been filled. 

4. The term and analogy are due to Richard Lipton. 
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Each function has a box corresponding to the shape request 
(the code it will generate in response to the shape message) and a 
box corresponding to the value request (the code it will generate in 
response to values). By nesting the boxes one within each other, 
code can be generated for any APL expression. 

Because some functions (compression and expansion, for 
example) require small intermediate buffers, which must at some 
point be fre,ed, a third m~age is required to free up any 
temporary storage that may have been allocated. Thus, the 
sequence of messages for all APL functions, and the actions they 
induce, can be described as follows:5 

1. Generate code to compute the type, rank, and shape of the 
result. In addition, if necessary, generate code to perform 
conformabiIity checks on arguments. Also, if any temporary 
buffers are required, code is generated to allocate them. 
Finally, if any expressions can be computed here, rather than 
during the value step, code is generated to do so. This is 
because the normal expectation is that the shape code will be 
executed once each time that the expression is evaluated, 
whereas the value code may be executed many times. 

5. The structural functions, to be considered in Chapter 6, require an addi­
tional message to compute the stepper value. The details of that computation 
are unimportant here. 
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2. Generate code to compute an arbitrary element from the 
result. 

3. Generate code to free up any temporary storage that may 
have been required. 
We can call the actions of a function in response to these three 

messages the three phases of code generation. Thus, we will often 
refer to code generated during the shape phase, code generated 
during the value phase, and code generated during the finish 
phase. 

Note that, whereas for each function the order of phases may 
be very regular (first shape, then value, then finish), from a larger 
perspective things are not so ordered. A reshape function, for 
example, must compute the values of its left argument before it 
can determine the shape of the result it will produce. Thus during 
the shape phase of a reshape function, the left argument goes 
through both its shape and value phases. During the value phase 
of the reshape, only the value phase of the right argument is 
produced, and no code is generated by the left argument. 

Advocates of attribute grammar parsing will note a slight 
similarity between the techniques used here and the methods used 
in attribute grammars (Waite and Goos 1984). During the shape 
phase, the request can be viewed as an inherited attribute being 
passed down, and the location of the result as a synthesized 
attribute being. passed back (with code generation being an 
incidental side effect). Similarly, during value phase, the name of 
the identifier that will contain the index of the desired element is 
an inherited attribute, and the location of the result is a 
synthesized attribute. While superficially the method is the same, 
there are a number of differences on the implementation level (such 
as the fact that attribute grammars do not, by themselves, impose 
any order on the phases) that make it difficult to implement the 
APL compiler in this manner. 

3.3. When Not to Use Space Efficient Evaluation 

Most of the time, the space efficient evaluation technique that 
we have been describing is the preferable method for producing a 
result. There are, however, exceptions. To see this, note that 
some operations (such as outer product or scan) access their 
argument values repeatedly in the course of producing their results. 
This by itself is not a problem; however, the composition of these 
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functions may produce a situation in which the space efficient 
technique is no longer preferable. 

Consider the scan function, for example. A single scan 
requires, in general, O( n2) evaluations of the sub expression being 
scanned, where n represents the number of elements in the 
subexpression. By itself this causes no problem, nor is there, in 
general, a more efficient approach [although in some cases 
commutative functions will permit an O(n) technique]. Consider, 
however, the composition of two scan functions. In this case, 
following the space efficient technique would produce an O( n4) 

algorithm. Saving the values of the inner scan would yield a O( n2) 

algorithm, at the expense of O( n) storage. Clearly, there is a 
time/space tradeoff that can be made here. For small arrays either 
technique would probably be acceptable. For large arrays either 
technique presents difficulties, and the question is which difficulty 
is worse. 

The APL compiler resolves this question by choosing to save 
time over space. Strictly speaking, this is not a problem for the 
code generation pass at all. An earlier pass identifies situations in 
which the composition of time inefficient functions can potentially 
cause problems. If it finds such a situation, it inserts into the parse 
tree new nodes· to assign the inner expressions to temporary 
variables, and the higher functions read from these variables. 
Thus, it is as if code for an expression such as 

... +\ +\ A 

were written as 

temp +-+\ A 
... +\ temp 

Other functions causing similar problems are outer product 
and the left argument to dyadic rotation. 

There is another situation in which it is debatable whether one 
should use the space efficient demand driven evaluation technique. 
When printing an array, most APLs uses the smallest amount of 
space necessary to display the results neatly. Thus, an array of 0 
or 1 values might display as follows: 
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100 1 
o 1 1 0 
110 1 
o 0 1 0 
101 1 
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If one of the values in the array is neither a 0 nor a 1 but instead 
an integer value, the spacing of the entire output is adjusted 
accordingly: 

1 0 
o 1 
1 1437 
o 0 
1 0 

o 
1 
o 
1 
1 

1 
o 
1 
o 
1 

To do this requires that the system save the entire array of 
values to be output in a temporary location, and compute the 
maximum size of any element prior to printing the first value. In 
keeping with our space efficient philosophy, we have decided 
instead to print values as they are computed, with no buffering. 
(The algorithm for output quad is given in more detail in the next 
chapter.) Since we do not know ahead of time the spacing that 
will be required, we use the printing precision and printing width 
system variables to determine the amount of space that will be 
occupied by any' value. While this is admittedly a violation of the 
usual APL practice, it is in keeping with our space efficient 
philosophy. 

3.4. A Note on Notation 
The algorithms described in the next four chapters present the 

code generated by the APL compiler in a form of high level pseudo 
code. Although the actual code produced by the APL compiler is 
in a high-level language, namely C, many readers find C terse to 
the point of being cryptic.6 For this reason, an alternative pseudo 
code is used. The appendices give examples showing the actual C 
code produced by the compiler. It is useful to note that there are 
four types of quantities manipulated by the generated code, which 
are described as follows: 

6. Of course, one would not normally expect APL programmers to complain 
about a language being so terse as to be cryptic. 
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1. Scalar integer values. These are used to hold type and rank 
information, as well as maintaining loop variables and the like. 
These can also be used to hold boolean flags. 

2. Result values. These are structures that can hold any of the 
three legal scalar types (integer, real, or character). Note that 
in C, as in APL, a boolean value is simply represented as 
either an integer 0 or 1. In some cases, if it can be determined 
at compile time what type will be produced by some 
subexpression, only one of the three fields of these structures 
will be referenced. If type cannot be determined at compile 
time, the entire structure is referenced by the code, thus 
permitting any of the three types to be used at run time. 

3. Type / rank / shape values. These are structures used to 
maintain type, rank, and shape information, should it be 
required to be gathered in one place or maintained for a long 
period of time. For example, TRS structures are passed along 
with each argument in evaluating a user defined function. 

4. Memory pointers. These are pointers that can point to any of 
the three scalar types (integer, real, or character). 



Chapter 4 

Simple Space Efficient Functions 

The demand driven evaluation technique described in the last 
chapter works best with functions that are space efficient. In 
general, space efficient functions are characterized by the fact that 
individual elements of the result can be computed independently of 
each other, and the actions involved in this computation depend 
only upon the indices of the elements being computed, not upon 
the value of those elements. Not all APL functions are space 
efficient; however, the majority (and more importantly, the most 
commonly used functions) do possess this property. 

In this chapter we describe the algorithms used in the 
generated code for some of the simpler space efficient functions. 
Algorithms used by more complicated space efficient functions are 
described in the following two chapters. In this chapter, we 
consider the following functions: 
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assignment, including nested assignment and assignment to quad 
leaves, such as identifiers and constants 
monadic and dyadic primitive scalar functions 
reshape, ravel, and iota 
outer product 
subscripting 

4.1. Assignment 

The assignment function is notable for being one of only four 
functions that can appear at the top of a parse tree; the other three 
functions are assignment to quad, the branching arrow, and 
function call. l The last chapter described in broad terms the code 
generated for assignment. As we noted then, there are four tasks 
that the assignment function must perform: 
1. Determine the type and size of the right expression. 
2. Allocate storage for the values of the right side. 
3. In a loop place values from the right side into the space 

allocated. 
4. Rebind the identifier being assigned to the new values. 
Note that rebinding the name to the new values is performed last, 
after all the values have been read. This is so that expressions such 
as 

A +-A +1 

will perform as expected and not overwrite the old value before it 
has been used as part of the computation. 

4.1.1. Nested Assignment 

The algorithm presented in the last chapter assumed that the 
assignment function was the topmost function in an expression. 
This need not be the case, as an assignment can be used within an 
expression, for example: 

A+-(1+B+-L7) 

1. This is not to say that the user cannot write other expressions. However, 
the parser inserts an assignment to quad on top of any expression that is not 
itself an assignment, assignment to quad, branch arrow, or function call. 
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There are two separate algorithms used to implement nested 
assignment, depending upon whether the assignment function is 
accessed in a sequential fashion or not. Sequential access implies 
that all values are accessed once, in ravel order; no element is 
omitted, and no element is requested more than once. As we will 
see in following chapters, knowledge that an expression will be 
accessed in a sequential fashion often permits significant 
optimizations to be made. Note that the loop generated by 
topmost assignments always retrieves values in sequential order, 
and many functions will preserve this property. 

If a nested assignment is accessed in a sequential manner, then 
no loop is generated. Instead, the loop generated by the higher 
functions is utilized. 

Shape Phase 

code to compute size of right side 
allocate storage for result 

Value Phase 

compute the ith value of right side 
store value in ith location of allocated area 

Finish Phase 

Bind identifier to new values 

It can happen that the assignment function is not accessed in 
sequential order. An example expression in which this occurs is 

A+-<t>B+-23pt6 

Here the loop generated by the assignment to A requests elements 
in a sequential fashion, but the transpose function is computing a 
new index value for each iteration of the loop, and these index 
values do not arrive in strictly sequential order. Since, in general, 
nonsequential access does not guarantee that every element of the 
result will be requested (a consequence of demand driven 
evaluation), it is necessary for the assignment function to generate 
its own loop to gather values. In this case the assignment is 
performed during the shape phase, exactly as if it were a topmost 
assignment in an expression. During the value phase results are 
then read out of the new identifier. Thus the effect is the same as 
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it would be were the nested assignment removed from the 
expression 

B+-23pL6 
A+-~B 

Even if sequential access can be assured, it may also be 
necessary to generate a separate loop for an assignment if the value 
being assigned is subsequently used in the same expression. This 
occurs, for example, in the following expression: 

B +- (~A) +A +- 23 p L 6 

Finally, because a branching arrow may transfer control to 
another part of the program before the finish phase code has been 
executed, it is necessary to move assignment statements out of 
branch arrows, replacing 

with 

-+LXL(A<B+-B+1) 

B +-B +1 
-+LXL(A<B) 

4.1.2. Assignment to Quad 
Assignment to box (quad) is similar to variable assignment, 

only the ,values are printed instead of stored. The only 
complicating factor concerns the proper insertion of new lines, so 
that 2 3 p L 6 is printed as 

instead of 

123 
456 

1 234 5 6 

This is accomplished by placing the following section of code after 
the portion of the program that prints each element. The effect 
will be to print a newline after each row, two new lines after each 
array, three new lines after each set of two dimensional arrays, and 
so on. The values si represent the shape of the result heing 
printed, and n the rank of the result. The variable offset is the 
index of the element being printed. The variable t is simply a 
temporary. 
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t =sn 
for i =n to 1 by -1 do 

if (( of fset+1) mod t = 0) then begin 
print newline 
t = tXsi_l 
end 

else break 
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Note that this algorithm differs from the one utilized in other 
APL systems, since the space to be used in printing each value is 
determined a priori before the first element is produced. As we 
noted in the last chapter, this is, however, in keeping with our 
space efficient philosophy in the APL compiler. 

4.2. Leaves 
Simple leaf nodes come in two varieties: identifiers and 

constants. Identifiers, in turn, may either correspond to variables 
in the user program or to internally generated storage locations. In 
any case, leaf functions can reply to requests for their shape or 
value without sending any further messages. If their type is known 
(as is always the case for constants), they can generate very 
efficient code. 

Shape Phase 

return the type, rank, and shape 
of the constant or identifier 

Value Phase 

return the value of the constant or identifier 
at position offset, 
or if the constant or identifier is a scalar, 
return the scalar value 

4.2.1. Constants 
The type, rank, and shape of a constant is aways known at 

compile time. All constants that explicitly appear in an APL 
function, as well as many other constants that arise during 
compilation (such as rank and shape values), are gathered together 
into a constant pool. During the shape phase, a response is merely 
a pointer to the rank and shape information for the constant. A 
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pointer is also allocated during the shape phase and set to point to 
the values associated with this particular constant in the constant 
pool. Unless the constant is a scalar, during the value phase the 
value of the index for the desired element is added to this pointer, 
and the desired element is retrieved and returned. If the constant 
is a scalar, the offset is ignored and the scalar value is returned. 

In the APL compiler a technique known as lazy code 
generation (Hanson HJ83) is employed in an effort to produce 
smaller and faster programs. Using this scheme, the code for an 
expression such as a constant is not generated, that is, printed on 
the output, when the constant node is accessed in the value phase. 
Instead, the value phase code for the constant returns an 
expression tree, a simplified form of abstract syntax tree that can 
contain only scalar quantities and completely resolved array 
references. Some functions, notably the monadic and dyadic scalar 
functions, iota, and outer product, will produce larger expression 
trees from existing trees if the types of arguments and the type of 
the result is known. Various simple heuristics are used to simplify 
expression trees, for example, by adding constants together where 
possible. Functions higher in the parse tree then print out entire 
expression trees. In this manner relatively complex expressions can 
be constructed before any actual code is output for an expression. 
For example, in the code described in Appendix 2 the following C 
statement appears: 

res1l.i +=(0 =((i6 + 1) % (i5 + 1))); 

This statement includes code produced by two iota functions, a 
residue dyadic scalar function, the constant 0, a dyadic scalar test 
for equality, and a reduction operator. With the exception of the 
reduction, all these functions produced expression trees instead of 
code. The reduction operator finally traversed the tree to pr<:>duce 
the code you see. Had lazy code generation not been used, many 
more lines of code would have been necessary. The examples 
shown in the appendices illustrate other instances of this 
optimization being employed to generate much more efficient C 
code. 

4.2.2. Identifiers 
In the internal representation of values used by the APL 

compiler identifiers consist of a structure, containing the following 
four fields: 
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1. The type of the identifier. 
2. The rank of the identifier. 
3. The shape of the identifier (a pointer to an integer vector of 

values). 
4. The values of the identifier (a pointer to a vector of values, 

stored in ravel order). 
During the shape phase it is sufficient to merely return 

pointers to the appropriate type, rank, and shape information. 
During the value phase the value· field is indexed by the offset 
provided, and the appropriate element is returned. One 
complicating factor is that, if the identifier is a scalar (a fact that 
may not be known at compile time), the offset is ignored and the 
the scalar value is returned in response to all requests. 

As we noted in the chapter on type and shape inferencing, 
early in the development of the APL compiler a simplification was 
decided upon that replaced the dynamic name scoping of APL in 
favor of a simple two-level name scoping. In this way, identifiers 
are either local (known only to the function in which they occur) or 
global (potentially known in all functions). One reason for this 
decision was the ease with which the two-level scoping could be 
implemented in the target language, C, since local and global 
variables could be mapped directly onto C local and global 
variables. This also resulted in a considerable simplification of the 
dataflow algorithms, as we have already noted in a previous 
chapter. In passing, we note that from the point of view of the 
code generator there is no fundamental reason why the 
conventional APL dynamic scoping could not have been preserved. 
To accomplish this, a search would have to be made during the 
shape phase for the appropriate binding of the identifier name. 
This would require a small amount of run time support, but 
basically all other features of the APL compiler (with the exception 
of dataflow analysis) would remain the same. 

4.3. Primitive Scalar Functions 
The scalar functions are the workhorses of the APL world. 

Not particularly flashy, nevertheless they do most of the real work 
in producing results. If the types of, the arguments are known, 
many of the scalar functions can be implemented directly by 
operations in the target language. (Addition and subtraction are 
the canonical examples.) If it is possible, lazy code generation is 
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used, and an expression tree is produced, rather than actual code. 
The sample output described in Appendix 2 shows a good example 
of a scalar function being combined with other functions in the 
final code. If the types of arguments are not known, or the 
operations are too complex, code is generated that will, at run 
time, call upon a subroutine to compute the result. 

For monadic scalar functions the shape phase code merely 
returns the shape of the underlying argument, perhaps changing 
the type information. For dyadic scalar functions the shape code is 
more complicated, since one or the other of the arguments may be 
a scalar, and scalar extension must be applied. 

The value phase code is simple for both monadic and dyadic 
scalar functions. The offset of the requested element is passed to 
the arguments, and the values they produce are noted. A new 
expression tree is then created that will, when executed, generate 
the desired results. 

Note that scalar extension is facilitated by the fact that leaf 
nodes, such as constants and identifiers, will ignore the offset value 
during the value phase if they return a scalar. Thus, a dyadic 
scalar function node need not remember whether either of its 
arguments are scalar and can merely pass the same offset value to 
both. 

4.4. Ravel, Reshape, and Iota 
Using the demand driven space efficient technique, a few 

functions are almost free, in the sense that they generate very little 
code. Implementing ravel, for example, merely requires that 
during the shape phase the size of the right side is computed and 
returned as the extent of the vector result. Since the offset into the 
ravel ordering of the result is unchanged, no additional code is 
generated during the value phase. 

Iota is almost as easy. During the shape phase the value of the 
right side is computed and stored as the size of the vector result. 
During the value phase the quantity in the index giving the 
requested position (plus the index origin) is returned as the value of 
the function. A compiler switch can be enabled to set the index 
origin to a fixed value (0 or 1), making this computation even 
faster. As we saw in the example C code cited earlier, when 
combined with lazy code generation, very efficient code can be 
produced. 
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Reshape computes the value of the left argument during the 
shape phase. It must also compute the size (number of elements) 
of the right argument. During the value phase it is only necessary 
to generate a single instruction. This one statement yields the 
remainder when the offset of the desired element is divided by the 
size of the right side, in effect causing. elements from the right side 
to wrap around if there are fewer of them than requested. If we let 
of fset represent the index of the desired element and offset' the 
index that will be passed to the right argument, this can be 
computed as 

of fset' = of fset mod (size of right side) 

If it can be determined at compile time that the right 
argument has at least as many values as the result, even this 
instruction can be eliminated. 

4.5. Outer Product 
The value phase code for outer product is in many ways 

merely a variation on the value phase code for dyadic scalar 
functions. Instead of simply passing the offset for the requested 
elements down to the two argument expressions, new offsets are 
computed for both the right and left arguments. 

of fsetzejt = of fset div (size of right argument) 
{ code to compute value of left argument} 
of fsetright = of fset mod (size of right argument) 
{ code to compute value of right argument} 
{ code to compute scalar function result} 

This code, however, has the unfortunate property that the 
arguments from both subexpressions are requested once for each 
value of the result. As an example of how bad this can become, 
consider the sequential access of a large result. In this case, the left 
index would only change after the right subexpression had cycled 
through every element. If the left subexpression was the product of 
a complicated expression, the repeated construction of the same 
value from the left side could be quite costly. One alternative 
would be to buffer the left values, constructing a new value only if 
necessary. Code to accomplish this might look like the following: 
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of fsetleft = of fset div (size of right argument) 
if (of fsetleft < > last left offset) then begin 

last left offset = of fsetteft 
{ compute left argument at position of fsetteft } 
end 

of fsetright = of fset mod (size of right argument) 
{ compute right argument at position of fsetright } 
{ code to compute scalar function result} 

However much an improvement in execution time this results 
in, for the case of sequential access we can do even better. On 
most machines the arithmetic operations of multiplication and 
division are considerably more costly, in terms of execution time, 
than the operations of addition and subtraction. Sometimes the 
difference may even be an order of magnitude. The optimization 
technique known as reduction in strength attempts to replace 
multiplications and divisions with additions and subtractions, using 
knowledge of how the replaced expressions will change as the loop 
in which they occur progresses. 

In the case of sequential access of an outer product, we know 
the left offset will increase by one every time the right offset has 
cycled through all values whereupon the right offset will start over 
again at the beginning of its values. Thus, by properly initializing 
the value o,f fsetright in the shape phase, the following code can be 
used. 

Shape Phase 

of fsetright = 1 + (size of right argument) 
of fsetteft = 0 
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Value Phase 

if (of fsetright > (size of right argument)) then begin 
{ compute left argument at position of fsetZeft } 
of fsetleft = of fsetZeft +1 
of fsetright = 0 
end 

{ compute right argument at position of fsetright } 
of fsetright = of fsetright + 1 
{ code to compute scalar function result} 
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This code not only buffers the left argument, producing a new 
element only when required, but it also has eliminated both the 
division and the modular division previously required to compute 
the right and left offsets. It also continues the sequential access on 
into its left argument, thus potentially permitting further 
optimizations. We will see in subsequent chapters other instances 
in which the technique of reduction in strength can be applied in 
situations when results are generated in sequential order. 

4.6. Subscripting 
The operation of subscripting an expression by values 

generated from a number of index expressions is rather more 
complex in APL than in most other languages. Consider an 
expression such as 

subscripted expression [ index! ; index2; ... ; indexn J 

For one thing, the size and shape of the result is not determined by 
the size of the subscripted expression but by the catenation of 
shapes of the index expressions. In fact, about the only constraint 
on the subscripted expression is that it must be of rank n, the 
number of index expressions. 'This is one of the few cases in APL 
in which constraints on the rank of an expression are imposed from 
above in the parse tree. (The dyadic form of rotation provides 
another example.) 

The code generated for the subscripting operation divides 
naturally into two parts. The first part is, surprisingly, very 
similar to the code generated for the outer product. It is as if the 
semicolons in the index portion of the subscript acted as a sequence 
of outer products. In both cases an offset for the requested value is 
divided into two individual offsets for the left and right children. 
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In the case of subscripting, however, the left "child" is actually the 
combined set of subexpressions to the left of the current index. A 
temporary variable is used to hold the value of the requested offset 
as it is being manipulated by the index expressions, from right to 
left. 

temp = of fset 

of fsetn = temp mod (size of index expression n) 
temp = temp div (size of index expression n) 
{ compute value of index n at position of fsetn } 

of fsetn_1 = temp mod (size of index expression n-1) 
temp = temp div (size of index expression n-1) 
{ compute value of index n-1 at position of fsetn_1 } 

of fset1 = temp 
{ compute value of index 1 at position of fset1 } 

The second part of the code then takes the result values 
computed for each of the index expressions and puts them together 
to form an index into the subscripted expression. Let sn represent 
the extent of the nth dimension of the subscripted expression, and 
r n the result value computed by the computation just given. 

of fset' = rl-index origin 
of fset' = (of fset'Xs1)+( r2-index origin) 

of fset' = (of fset'Xsn_1)+( r n -index origin) 
{ compute subscript expression at position offset' } 

If we know at compile time that the index origin is 0 or 1, then 
we can improve this code somewhat. For empty index expressions 
code is generated that is identical to that which would be 
generated for an iota vector of length Sn' 

If desired, code can also be generated that will assure that each 
index value represents a valid subscript for the position in question, 
for example: 
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if ( r1 < index origin ) or ( r1 > s1 ) then 
issue error message 
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As with outer product, if we know the results are going to be 
accessed in sequential order, we can simplify the code for the first 
part, performing a reduction in strength to replace the two 
divisions (mod and div) with additions. The code generated 
for the first parts are then nested, one within the other, and new 
values are generated only when they are necessary. 

Shape Phase 

of fset1 =0 
of fset2 = (size of index expression 2) + 1 

of fsetn = (size of index expression n) + 1 

Value Phase 

if (of fsetn > (size of index expression n)) then begin 
of fsetn_1=of fsetn- 1+1 
{ subscripting code for index expression n-l } 
offsetn =0 
end 

of fsetn=oj fsetn+l 
{ compute value of index n at position of fsetn } 

For the first (innermost) index expression the code is simply 
that code necessary to compute the value of the index expression at 
position of fset1• 

If we were willing to compute the expansion vector (see next 
chapter) for the subscripted expression, we could in theory even 
replace the n-l multiplications required in the second part with a 
single multiplication for each element generated. We have not 
done so, however, since our observations have been that most 
subscripted expressions have rank 2 or less, and thus this represents 
only marginal savings. 
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4.7. Mod and Div 
Few machines have an explicit mod instruction, and thus 

most C compilers will translate the mod operation internally into 
a division and a multiplication. As can be seen from an 
examination of the algorithms presented in this chapter, we are 
often interested in both the quotient and remainder of a division of 
two values. In C we can compute these two results in one 
expression and thereby save one division operation. While this 
results in only a small savings, if it occurs inside a loop over the 
course of execution the results can be significant. 

The single expression to compute both values is as follows: 

modresult = left - right X (divresult = left -;- right); 

The examples given in Appendix 2 show this type of code 
being generated. 



Chapter 5 

Further Space Efficient Functions 

In the last chapter we presented algorithms for some of the 
simple space efficient functions, such as the scalar functions and 
outer product. In this chapter we consider a larger class of space 
efficient functions, those for which the transformations on the 
indices can become more complex than the simple division that 
was required to implement outer product. In many of these 
functions, reduction for example, the determination of a single 
element of the result requires a loop to iterate over several 
elements of the argument subexpression. 

In this chapter we describe the algorithms used in 
implementing the following eight functions: 

reduction 
compression 
catenation 
inner product 

scan 
expansion 
dyadic rotation 
decode 



60 An APL Compiler 

The next chapter considers a different set of functions that also 
have a space efficient implementation, although the details of that 
algorithm are quite different in nature from the algorithms 
described in this chapter. 

Fundamental to the algorithms presented in this chapter is the 
ability to view a request for a single element as being given either 
by a single number, the offset of the desired element in the ravel 
order of the result, or as a vector representing the subscript indices 
of the element. The tool used to transform a request from one 
form to the other is the expansion vector. 

5.1. Expansion Vectors 
Consider an expression A of rank n. Let the vector 

sl,s2' ... ,sn represent the shape of A (that is, the value of p A). 
The vector el,e2' ... ,en defined by the recursive equations 

(5.1) 

ei = si+l ei+l 

is called the expansion vector! for A. The value ei is equal to the 
distance between adjacent elements along dimension i in the ravel 
ordering of A. Thus, the offset corresponding to position 
A[ al ; a2; ... ; an 1 can be computed as 

, offset = al el + a2 e2 + . .. + an en (5.2) 

We will assume always that the indices are legal and zero based; 
that is, 0 < ai < si. From this it follows that 

an-l en-l + an en < an-l en-l + sn en 

= (an-l + l)en-l 

< sn-l en-l 

= en-2 

Furthermore, in general 

aiei + ... + an en < siei = ei-l (5.3) 

1. Some authors use the term power vector. There does not appear to be any 
standard terminology. 
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from which it follows that 

From the definition it is clear that ej equally divides e j for all 
j < i, therefore 

(aIel + ... + aiej) mod ej = 0 

Observe that if x mod y = 0, then (xz) mod y = 0 and 
(x+z) mod y = z mod y. Using these we derive the following 
identity: 

aiej + ... + anen = (ajej + ... + anen) mod ei-l 

= (al el + ... + ai-l ej_l 

+ ajej + ... + anen ) mod ej-l 

= (aIel + ... + anen) mod ei-l 

= offset mod ei-l (5.4) 

The converse identity, for sums of terms with indices starting 
at 1, uses the integer division function div. First we note a fact 
about div, namely, if x, y, and z are positive and y mod z = 0, 
then (x + y) div z can be rewritten as (x div z) + (y div z). 

To derive our second identity, we divide both sides of (5.2) by 
ej, giving 

of fset div ej = (al el + a2 e2 + ... + an en) div ei 

We have already observed that 

(aIel + ... + aiei) mod ei = 0 

Under this condition it is safe to divide the right side into two 
parts, yielding 

of fset div ei = (a l el + a2e2 + ... + ajei) div ei 

+ (ai+l ei+l + ... + an en) div ej 

However, we know (5.3) that aj+l ei+l + ... +an en < ej, therefore 
the right term must be o. What remains is 

of fset div ej = (a l el + a2e2 + ... + aiej) div ej (5.5) 

If we multiply both sides by the value ei' we obtain the desired 
identity: 
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(of fset div ej) ei = al el + a2e2 + ... + aiej (5.6) 

Returning to (5.5), we next derive an expression that permits 
us to determine aj from offset. Clearly ajei mod ej = 0, so (5.5) 
can be rewritten as 

of fset div ej = (al e l + . .. + ai-I ej_l) div ej 

+ (ajej) div ei 

Which, of course, simplifies to 

of fset div ej = (al el + . .. + aj-I ej-I) div ej 

+ aj 

Since ej divides e j for all j < i, the division results in an integer, 
and it is not difficult to see that it must be a multiple of Sj (since si 
is a factor in ej-I and all terms to the left). Therefore 

(of fset div ej) mod Sj = 

(( al el + . .. + ai-I ej_l) div ej + ai) mod Sj 

= ai mod Sj 

However, since aj < Sj, this yields 

(of fset div ej) mod Sj = aj (5.7) 

As we will see often in this chapter, special cases occur at the 
endpoints. In the case of aI' offset div ej < Sj, thus the formula 
for al reduces to 

al = offset div el 

On the other hand, since en = 1, the formula for an can be 
simplified to 

an = offset mod sn 

The remainder of this chapter will show how these 
mathematical relations can be used to derive space efficient 
algorithms for various APL functions. 

5.2. Code Generation for Reduction 
Assume that we are computing an exrression A of rank n-1, 

found by taking a reduction along the it dimension of a second 
expression B of rank n (that is, using + for the reduction operator, 
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A = +/[ i 1 B). Let ek, 1 <k<n be the expansion vector for B. It 
is convenient in this particular instance to index the elements of A, 
as well as the expansion vector for A, by 1 ... (i-l),(i+l) ... n. 
Let fk be the expansion vector for A, and let si represent the shape 
of B along the dimension being reduced. It is clear that 

ek = fksi' k<i 

ei = Ii-I 

ek = ik, k>i 

Consider the problem of generating the single element 
A[al;a2; ... ai-l;ai+l; ... ;anl. Let offset represent the position 
of this element. By (5.4) we have that 

of fset mod fi-l = ai+l fi+l + ... + an f n 

Using the relationships that we have observed between e and f, 
this is the same as 

of fset mod ej = ai+l ei+I + ... + an en 

In order to compute the element at location offset, it is 
necessary to operate on an entire column of the subexpression B, 
namely, the column corresponding to 

B[aI;a2; ... ai-I; x ;ai+I; ... ;anl 

where x ranges between 0 and si-l. According to the APL rules 
for associativity, this column must be examined in reverse order. 
Thus, the first element to be examined is 

B[al;a2; ... ai-I; (sj-l) ;ai+I; ... ;anl 

Using the expansion vector for B, the position of this element can 
be determined as 

of fset' = al el + ... + ai-l ei-l + (si-1)ei 

+ ai+lei+l + ... + anen 

Using the relation between e and f that we derived earlier, this 
can be rewritten as 

of fset' = al el + ... + ai-l ei-l 

+ (si-1)ei + (offset mod ei) 
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We can factor si from the first part of the right side, giving 

of fset' = si( al f 1 + ... +ai-l fi-l) 

+ (si-1)ei + (offset mod ei) 

but by (5.6) this is just 

of fset' = si( of fset div fi-l) Ii-I 

+ (si-1)ei + (of fset mod ei) 

Substituting ej for fi-l gives 

of fset' = (of fset div ei)( eisi) 

+ (sj-1)ej + (of fset mod ei) (5.8) 

Two special cases can be noted. When reduction occurs along 
the first dimension, of fset div ei = 0, ej > of fset, and the 
formula simplifies to 

of fset' = (sj-1)ei + offset 

Similarly, when reduction occurs along the last dimension, ei = 1, 
and thus the formula simplifies to 

of fset' = (1 + of fset)si-1 

Thus, with these equations we can finally describe the code 
generated fdr the reduction operator. During the shape phase 
computations, the values of si and ei are computed, in addition to 
determining the shape of the resulting expression. The values eisj 
and (sj-1)ej can be computed and stored in the variables tl and t2, 

respectively. During the value phase it is desired to compute the 
element given by the variable offset, returning the result in the 
variable result. The code is similar to the following: 

Shape Phase 

Sj = shape of result along ith dimension 
ei =expansion vector along ith dimension 
tl = ejXsj 
t2 =t1- ej 
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Value Phase 

result = identity for function being reduced 
of fset' = (of fset div ej)xtl +t2+( of fset mod ej) 
for counter = 1 to Sj do begin 

{ compute value of subexpression at offset' } 
result = value op result 
of fset' = of fset' - ej 
end 
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APL permits the user to perform a reduction using any 
primitive scalar function. Some functions, such as nand (not-and) 
or comparison, do not have an identity value (see Figure 1.~. For 
these functions the code just described clearly will not work . An 
alternative algorithm gets around this problem by means of a 
boolean flag variable. The flag variable is set to true upon 
entrance to the value phase code, prior to entering the loop. As 
the first value is computed it is stored in the result variable and the 
flag is set to false. Thereafter values are combined with the 
previously computed result. If the flag variable is true following 
the loop, it means a reduction was attempted along an axis of zero 
length. Since the function being reduced does not have an identity, 
a domain error is reported. 

2. To be precise, we require a right identity. That is we need an element y 
such that x op y is equal to x for all values x. Division, for example, has a 
right identity, namely 1, but no left identity. Residue, on the other hand, has 
a left identity, namely 0, but no right identity. Thus the algorithm presented 
here will not work for residue, and the alternative using a boolean variable 
must be generated. 
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flag =true 
of fset' = (offset div eJxt1 +t2+( of fset mod ei) 
for counter = 1 to si do begin 

{ compute value of subexpression at offset' } 
if flag then begin 

flag =false 
result = value 
end 

else 
result = value op result 

of fset' = of fset' - ei 
end 

if flag then 
report a domain error 

We note that the first alternative is preferable, when possible, 
not only because it is shorter but also because the value produced 
by the subexpression appears only once. As a consequence of the 
lazy code generation technique we described in the last chapter, 
this value can oftentimes be an entire expression, not just a simple 
variable. Rather than duplicating code for this expression, we 
would first store the value into a temporary variable and then use 
that variable in place of the value; that is, the code would appear 
as follows: 

{ compute value of subexpression at offset' } 
temp = value 
if flag then begin 

flag =false 
result = temp 
end 

else 
result = value op temp 

We prefer not to generate the extra variable, the extra load 
and store on that variable, the extra tests on the flag variable, and 
the extra code if we do not need to. 

We now present more efficient code that can be generated for 
the reduce operator under certain specific conditions. In each of 
these cases, modifications such as the one we have just described 
must be applied when the function being reduced lacks an identity 
value. We will not present these modifications since they should be 
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clear to the reader. 
If the object being reduced is known to be a vector, we can 

combine the offset computation and the loop. 

result = identity for operation 
for offset' = si-1 to 0 by - 1 do begin 

{ compute value of subexpression at offset' } 
result = value op result 
end 

The code for the vector case is independent of the axis of the 
reduction (since, indeed, there can only be one axis). If the 
function with which the reduction is being performed is 
commutative, we can loop from 0 upwards, thereby making the 
subexpression have sequential access. Note that the property of 
being commutative implies that any identity must be both a right 
and left identity. 

One more special case should be noted, since it occurs 
frequently enough and the improvement in execution speed is 
dramatic enough to warrant the extra effort. If the function being 
reduced is commutative (such as addition or multiplication), then 
we can move along the column of the subexpression in the forward 
direction, rather than in the backward direction. In general, this 
provides no savings, except in the case in which the expression will 
be accessed in a sequential fashion and the reduction is along the 
last dimension. lit this case, the subexpression being reduced can 
also be accessed in a sequential fashion. This being the case, we 
can eliminate the computation of offset' altogether by merely 
initializing it to 0 in the shape phase. The value phase code then 
becomes as follows: 

Shape Phase 

si = shape of result along ith dimension 
of fset' =0 
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Value Phase 

result = identity for operation 
for counter = 1 to Sj do begin 
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{ compute value of subexpression at offset' } 
result = result op value 
of fset' = of fset' + 1 
end 

5.3. Code Generation for Scan 
For the scan operation, unlike reduce, the shape of the result is 

the same as the shape of the subexpression being scanned. Since 
the shapes are the same, the expansion vectors are also the same. 
Assume that we are generating code for an expression A of rank n, 
formed by taking the scan across the ith dimension of B, for 
example, A = +\ [ i ] B. From the definition of the scan function it 
is clear that to compute a single element of A, such as 

A[a1;a2; ... ian] 

it is necessary to consider a section of a column of B, namely, those 
elements in the positions 

B[a1; ... ;ai_1;x;aj+1 ... ian] 

where x ranges between 0 and ai' Here is one case in which the 
APL associativity rules, which require us to perform the operations 
in reverse order, are actually beneficial. The upper endpoint of the 
column is given by offset; we know each element in the column is 
a distance ei from the next element, thus, it suffices to determine 
the number of elements in the column. This is given to us by ail 

which we know how to calculate from (5.7). 
The code for the scan function can therefore be described as 

follows. During the shape phase computation, the values of Sj and 
ej are computed and the shape of the resulting expression is 
determined. During the value phase it is desired to compute the 
element given by the variable offset, returning the result in the 
variable result. The code is similar to the following: 
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Shape Phase 

Sj = shape of result along ith dimension 
ei = expansion vector along ith dimension 

Value Phase 

result = identity for function being scanned 
aj = (of fset div ei) mod Si 
of fset' = of fset 
for counter = 1 to ai do begin 

{ compute value of subexpression at of fset' } 
result = value op result 
of fset' = of fset' - ei 
end 
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As with reduction, scan can be applied using a function that 
does not have an identity value. In this situation, the modification 
is similar to that used for reduction. 

flag =true 
ai = (of fset div Ci) mod Si 
of fset' = of fset 
for counter = 1 to ai do begin 

{ compute value of subexpression at offset' } 
if flag then begin 

result = value 
flag =false 
end 

else 
result = value op result 

of fset' = of fset' - ej 
end 

Notice that, unlike the case for reduction, no value is required 
if the length along the axis being scanned is O. As we did in the 
presentation of reduction, we will from now on assume that we are 
dealing with a function that does have an identity, with the 
understanding that similar modifications are necessary if this 
condition is not satisfied. 

If the subexpression is known to be a vector, we can combine 
the counter and the computation of offset': 
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Value Phase 

result = identity for function being scanned 
for offset' = of fset to 1 by -1 do begin 

{ compute value of subexpression at offset' } 
result = value op result 
end 

As was the case with reduction, commutative functions 
provide the potential for a significant special case. If the function 
is commutative, the access is sequential, and the scanning is along 
the last dimension, then we can avoid having to build a loop at all. 
By keeping a counter, we can use the previously returned value to 
generate each new value, accessing the subexpression in sequential 
order as well. This counter is initialized to si during the shape 
phase. The generated code is then as follows: 

Value Phase 

{ compute the next value from the subexpression } 
if counter > si then begin 

result = value 
counter =0 
end 

else 
result = result op value 

counter '= counter + 1 

Note that each new value of the result requires only one new 
element of the subexpression to be computed, so in place of an 
O( n2) process we can now compute the result in O( n) steps. 

If access is sequential, the function is commutative and 
possesses an identity, and the right argument is a vector, then we 
reach the ultimate in optimization: 

Shape Phase 

result = identity for function being scanned 
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Value Phase 

{ compute the next value from the subexpression } 
result = result op value 

5.4. Compression and Expansion 
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The mathematical underpinnings for the algorithms used to 
generate code for the functions compression and expansion are very 
similar, and they are similar in fact to those used by the catenate 
function described in the next section. In both cases, the rank and 
shape of the result is the same as the rank and shape of the right 
argument, with the exception of the ith dimension, which is made 
smaller (in the case of compression) or larger (for expansion and 
catenate). Using the same notation as in previous sections, assume 
that we are computing some expression A that is formed by a 
compression or expansion along the ith dimension of some 
expression B. Let e j represent the expansion vector for Band f t 
the expansion vector for A. Let si be the shape of A in the i h 

dimension, and sli the corresponding shape in B. We therefore 
have the following relations: 

e·=f· J">i J J'-

e . = (f . div s·) Sf. J" < i J J Z Z' 

Assume that we wish to compute a specific element from the 
result, 

A[al;a2; ... jan] 

Let offset = al f 1 + ... + an f n" To compute this value, it is 
necessary to determine a different value in the subexpression B. 
The indices for this value differ only in the ith dimension, so we 
can write it as 

B[al; ... ; ai-I; a'i; ai+l . " . an] 

We postpone for the moment the discussion concerning how ali is 
computed (expansion and compression differ in this regard) and 
concentrate on computing the offset for this value as a function of 

I a i. 
Clearly, the offset for this position is 

of fset' = al el + ... + a'iei + ... anen 
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Since the expansion vectors for A and B are the same beyond i, we 
can easily eliminate the later terms: 

of fset' = al el + ... + a'iei + (offset mod eJ 

We can factor out an s'i term from the left side. If we then 
multiply the summation by Sj (at the same time dividing by si to 
retain balance), the e j terms become f j. 

of fset' = ((adl + ... + ai-di-l)s'i) div Si 

+ a'iei + (offset mod ei) 

Applying (5.6) then gives us: 

of fset' = (( of fset div h-l) fi-l)s'i) div Si 

+ a'iei + (offset mod ei) 

However, as we observed previously, (Ji-l div si)s'i is just 
ei-l; thus, this can be simplified to 

of fset' = (of fset div fi-1)ei-l) 

+ a'iei + (offset mod ei) 

Substituting eisi for fi-l gives us 

of fset' = (of fset div (eisJ)ei-d 

+ a'iei + (offset mod ei) 

Rewriting ei-l in terms of ei and joining terms gives us our final 
form: 

of fset' = (( of fset div (eisi))s'i) + a'i)ei 

+ (offset mod ei) 

There are the usual special cases for the first and last axis. For 
the first axis the div term disappears, leaving 
a'iei + offset mod ei. For the last axis ei is 1, thus simplifying 
the formula to (offset div si)s'i + a'i. Finally, if at compile time 
we know that the right term is a vector, no calculation at all is 
needed, as of fset'=a'i. 

Let us return to the question of how this can be used to 
generate code for the compression function. The first observation 
is that the rank and shape of a compressed expression is given by 
the rank and shape of the right subexpression, with the exception 
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that the ith element of the shape is determined by the number of 
1's in the left subexpression. Therefore, during the shape phase the 
left subexpression must be scanned to determine the number of 1 
values. But we can do better, for we can compute at this point the 
offsets along the ith dimension that each entry will generate into 
the right subexpression. An example will help clarify this idea. 
Suppose we are computing the compression 

A+-O 1 0 1 0 1 1 0 I[ i 1 B 

As we scan the left, we note that there are four 1 's; therefore, the 
resulting value will have shape 4 along the ith dimension. 
However, we can also build the vector 1 3 5 6, which tells us that 
the first column (with index 0) will be found by looking at the 
column with index 1 in B. The second column will be found by 
looking at the column with index 3, and so on. 

The shape phase code for compression, therefore, looks similar 
to the following: 

Shape Phase 

{ allocate storage3 for compression index vector v } 
size =0 
for index =0 to (size of left) -1 do begin 

get left element x 
if (x. 1) then begin 

size = size + 1 
v[sizeJ = index 
end 

end 

In the end, the variable size indicates the number of 1 elements in 
the left subexpression and, therefore, the size along the ith 
dimension of the result. 

During the value phase the first step is to use (5.7) to compute 
ai' the ith value of the index for the desired element. This value is 
then used to index into the compression index vector constructed 

3. Clearly it is only necessary to allocate enough storage to accommodate the 
number of 1 elements in the left argument. However, this number is not 
known at the time the storage must be allocated. An upper bound, however, 
is given by the size of the left argument, which is known at this point. Thus, 
the amount of storage requested is equal to the size of the argument. 
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during the shape phase, resulting in a new index a'i. This value is 
then used in the formula derived earlier in this section, resulting in 
a new offset', which is then passed to the right subexpression. 

Value Phase 

aj = (of fset div ej) mod si 
a' = v[ajl 
of fset' = (( of fset div (eisj))s'j)+a')ej+{ of fset mod ej) 
{ compute value a~ offset' in the left argument} 

The code for expansion is in many ways very similar. For 
expansion the size along the ith dimension is given by the number 
of elements in the left subexpression, not just the terms with value 
1. In place of the compression index vector, the corresponding 
vector for expansion records whether the associated value is 
nonzero (say, by placing a negative 1 in the vector for 0 entries), 
and if it is nonzero, the offset to be used in the right side. During 
the value phase ai is computed, as for compression, and used to 
index into this vector. If a negative value is found, the fill element 
for the type of the right side (either 0 or blank) is returned; 
otherwise, the computation is the same as for compression. 

Value Phase 

aj = (offset div ej) mod Sj 

if v[ ail' < 0 then 
result is fill 

else begin 
a' = v[ail 
of fset' = (( of fset div (ejsi))s'j) + a')ej 

+ (offset mod ej) 
{ compute value of the right argument at offset' } 
end 

If an expansion is accessed in sequential order and the axis is 
the last dimension, then the argument subexpression will also be 
accessed in sequential order. It is still necessary to compute ai' but 
the computation of offset' can be replaced by a simple increment, 
assuming it is initialized to 0 during the shape phase. 
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Value Phase 

ai = (of fset div ei) mod si 
if v[ ail < 0 then 

result is fill 
else begin 

{ compute value of right argument at offset' } 
of fset' = offset' + 1 
end 

5.5. Code Generation for Catenation 
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In principle, code generation for the catenation function is 
similar to, and no more difficult than, code generation for 
compression and expansion. In both cases the basic idea is to 
modify only one dimension of a request, forming a new request 
that is then passed on to a child. In practice, however, the code 
generation for catenation is complicated by a large number of 
special cases. Consider, for example, the computation of ej, used 
by (5.7) to obtain the index along the ,-th dimension ai' The 
following situations are all possible: 
• The rank and shape of both subexpressions to the catenation 

are the same, except along the ith axis. In this case, ei will be 
the same for both arguments, and thus either will suffice. 

• The rank of'the left subexpression is less than that of the right 
subexpression. (This is permitted if the left subexpression is a 
scalar, or if it matches the shape of the right subexpression in 
all but the ith dimension). In this case, the value ej should be 
taken from the right subexpression. 

• The converse of the previous case, that is the rank of the right 
subexpression is less than that of the left subexpression. In this 
case the value ej should be taken from the left subexpression. 

Let sL be the size of the left subexpression in the ith 

dimension, or 1 if the rank of the left subexpression is less than the 
right subexpression. Similarly, let sR be the size of the right 
subexpression, or 1 if the rank of the right subexpression is less 
than the left subexpression. The size of the result along the ith 
dimension will, therefore, be SL +sR • During the shape phase, code 
is generated to compute ei' sL' and sR' Using these quantities, 
the value phase code can be described. 
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During the value phase, the first step is to compute ai' using 
(5.7). This quantity is then compared to SL. If it is less, the 
desired element is found in the left subexpression, otherwise the 
desired element will be found in the right subexpression. In either 
case, the same formula that was used in the compression code can 
be used to determine the offset into the subexpression. 

Value Phase 

ai = (offset div ei) mod (sL +sR) 
if aj < sL then begin 

of fset'L = (offset div (ei(sL +SR)))XsL)+aj)Xei 
+ (of fset mod ei) 

{ compute value of left subexpression at offset' L } 
end 

else begin 
ai = aj - SL 
of fset'R = (of fset div (ej(sL +SR)))XsR)+ai)Xei 

+ (offset mod ej) 
{ compute value of right subexpression at offset' R } 
end 

.Af3 with most of the functions described in this chapter, if 
access to the results is sequential, then better code can be 
generated. Catenation is unique, however, in that this special case 
is applicable'regardless of the axis along which the catenation takes 
place. All that is required is that of fset'L and of fset'R be 
initialized to 0 during the shape phase. 

Value Phase 

ai = (of fset div ei) mod (sL +sR) 
if ai < sL then begin 

{ compute value of left subexpression at of fset'L } 
of fset'L = offset' L + 1 
end 

else begin 
{ compute value of right subexpression at of fset'R } 
of fset'R = offset' R + 1 
end 
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5.6. Code Generation for Dyadic Rotation 

For the dyadic rotation function, rank and shape of the result 
is the same as the rank and shape of the right argument. The left 
argument has rank one less, and must match the shape of the right 
except in the position being rotated around. Assume that we are 
computing an expression A =B CD [ i ] C. Let ei be the expansion 
vector for A (also for C) and fi the expansion vector for B. 
Assume that we want to compute the element of A stored at a 
particular offset, and let the element be represented as 
A[ al; ... ian]. The first step is to compute the element of B given 
by the same indices with the ith entry removed, that is 
B[a1; ... ; ai-1;ai+l; ... ;anl. Clearly, this is given by: 

of fset' = al f I + ... + ai-l fi-l 

+ ai+lfi+l + ... + an fn 

As we have seen several times already (in reduction and scan, for 
example), we can replace the right side of the summation by 
of fset mod fi+ll which is offset mod ei. If we multiply the left 
side of the summation by si' dividing out by the same value to 
retain balance, we can replace by fi terms with ei' yielding 

of fset' = (al el + ... + ai-l ei-l) div Si 

+ (of fset mod ei) 

Applying (5.6) gives us the desired formula: 

of fset' = (of fset div (eisi))ei + offset mod ei 

As always, there are special cases for the first and last axis. In 
the former case, the first term disappears, leaving 

of fset' = offset mod ei 

In the second case, ei is 1, thereby reducing the computation to 

of fset' = offset div si 

This value is then used to index into the left argument, 
resulting in a value r. The desired element is found in the right 
argument at the position modified in the ith position by the value 
r. A complicating factor is that r may be either positive or 
negative, but the result value a'i must be between 0 and si. To 
determine this, we first apply (5.7) to obtain ai. The new value is 
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then computed as follows: 

a'·=a·+r z t 

if a'· < 0 then a'· = a'· + s· z z z z 
if a'· > s· then a'· = a'· - s· t - I I I t 
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The computation of the correct value then follows closely the 
algorithm used in compression and expansion. 

5.7. Inner Product and Decode 
We describe the code for the general case of inner product. 

The special cases (one argument scalar or vector) necessitate 
variations on the general idea. In the general case, the last 
dimension of the left argument must match the first dimension of 
the right argument; that is, if we let LI ,L2, ••• ,Ln represent the 
size of the left argument, and R I ,R2, ••• ,Rm represent the size of 
the right argument, it must be true that Ln = R I • The shape of 
the result is given by concatenating the shapes of the left and right 
arguments, deleting these two positions; that is, 
LI ,L2, ••• ,Ln- I ,R2, ••• ,Rm· 

As with outer product, the first step in computing an inner 
product is to convert a request for a specific element into a pair of 
requests for the right and left children. In the outer product this is 
accomplished by dividing the offset by the size of the right 
subexpression. In this case, we want the size of the right 
subexpression without the first dimension. This quantity is given 
by el, the first element of the expansion vector for the right side. 
Thus, if index is used to represent the position of a given element 
in the column being processed by the inner product, the position of 
the corresponding element in the right subexpression will be given 
by 

of fset'R = offset mod el + indexXel 

Since the index will decrease in an orderly fashion, most of this 
computation can be preprocessed before the loop begins, and a 
single subtraction can be used to compute each new offset. 

On the left side, dividing by el results in an offset into the .left 
argument minus the first dimension. If we multiply this by Ln , the 
size of the first dimension, we obtain the offset for the beginning of 
the column that will be processed by the inner product. To obtain 
a specific element in the column, it is only necessary to add the 



5. Further Space Efficient Functions 79 

index element. 

of fset' L = (offset div e l)Ln + index 

With these equations we can describe the code generated for 
the inner product. Note that the loop invariant code for the two 
computations has been moved out of the loop, and a reduction in 
strength has been applied. We present the code as though it were 
the matrix multiplication inner product +.X, although any scalar 
functions can be treated similarly. The shape phase is complicated 
by the fact that one or the other of the arguments may be a scalar. 

Shape Phase 

L = shape of right argument in first position 
el =expansion vector of right argument in first position 
if (right argument is scalar) then 

L = shape of left argument in last position 

Value Phase 

offset'L =(offset div el) XL + (L-1) 
of fset'R = of fset mod el + (L-1)Xel 
result =identity for first function (+, for example) 
for counter =L-1 to 0 by -1 do begin 

{ compute value L of the left subexpression } 
{ compute valueR of the right subexpression } 
result = value L Xvalue R + result 
of fset'L = of fset'L - 1 
of fset'R = of fset'R - el 
end 

As with scan and reduction, this code is incorrect if the first 
function of the inner product fails to have an identity value. In 
this case, the code is modified as follows: 
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offset'L =(offset div el) XL + (L-1) 
of fset'R = of fset mod el + (L-1)Xel 
flag =true 
for counter =L-1 to 0 by -1 do begin 
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{ compute value L of the left sub expression } 
{ compute valueR of the right subexpression } 
if flag then begin 

else 

result = valueLXvalueR 
flag =false 
end 

result = value L Xvalue R + result 
of fset' L = of fset'L - 1 
of fset'R = of fset'R - el 
end 

If either the left or right arguments are vector, then the 
computation of offset' L or offset' R can be eliminated, the value 
being replaced by the counter. 

The generated code for decode is very similar to that 
generated for the matrix multiplication (+'X ) inner product. In 
the case of decode, however, a temporary variable is maintained 
for the left side. This variable is used in the result calculation and 
then multiplied by the appropriate element in the left 
subexpression: 

offset'L =(offset div el) XL + (L-1) 
of fset'R = of fset mod el + (L-1)Xel 
result = identity for addition (zero) 
t =identity for multiplication (one) 
for counter =L-1 to 0 by -1 do begin 

{ compute valueR of the right subexpression } 
result = tXvalueR + result 
{ compute valueL of the left sub expression } 
t =tXvalueL 
of fset' L = of fset' L - 1 
of fset'R = of fset'R - el 
end 



Chapter 6 

Structural Functions 

In this chapter we present algorithms that are used in 
implementing the following functions: 

monadic transpose 
take 
reversal 

dyadic transpose 
drop 

These functions are only halfway space efficient, in the sense of 
Chapter 3. While they are all space efficient with regard to their 
right argument, those that use a left argument require the value of 
the left argument to be known before their shape can be 
determined. Thus, the entire left argument is collected and 
buffered into a temporary location during their shape phase. This 
temporary buffer is freed after all values have been requested. 

These functions can be characterized by the fact that they 
modify positions of elements but not the values of elements 
themselves. Furthermore, with the exception of dyadic transpose, 
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they have the property that columns in the result correspond to 
columns in the underlying subexpression.1 In the case of dyadic 
transpose, columns in the result may correspond to diagonals in the 
underlying subexpression. Thus, to be precise, we can say that for 
any given row or column in the result the distance between 
adjacent elements in the ravel ordering of the underlying 
subexpressions is a constant. 

Because of this property, one can also characterize any 
particular instance of these functions by a vector, similar to the 
expansion vector used in the last chapter; that is, the value 
A[al; ... jan] will be found at an offset in the underlying 
subexpression given by 

of fset = a + aI'')'1 + ... + anln 

for some values of a and Ii. The task of the code generator is to 
find the appropriate values for these quantities. 

Given this uniform representation, it is perhaps not surprising 
that structural functions can be composed in a manner not possible 
with other APL functions; that is, adjacent structural functions can 
be combined to form a single function, and more efficient code can 
be generated for the one "super-function" than for the combination 
of functions separately. An analogy can be made with the 
composition of transformations in linear algebra. There, each 
function is represented by a matrix, and function composition 
corresponds to matrix multiplication. A result produced by two 
transformations, such as 

F( G(x)) 

can be more easily computed by first forming the composition 

(F 0 G)(x) 

The composition FoG is computed by multiplying the two 
matrices together. The application of this new matrix to x results 
in the same value as the application of the two functions 
independently. 

1. Note that take and drop may shorten a column, but the essential property 
of being a column is preserved. There is a problem with overtakes and over­
drops, that is takes or drops of lengths greater than the corresponding dimen­
sion, which will be discussed shortly. 
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For the structural functions, the medium for composition is an 
object called the stepper.2 Each node in the parse tree that 
represents a structural function has a stepper associated with it. 
The stepper is characterized by three vectors, each of size n, where 
n is the rank of the result. 

t· I 

The dimension of the result that the ith dimension of the 
current node corresponds to. 
The index along the ith coordinate of the current node that 
contributes to the initial element of the result in ravel order; 
that is, the initial value in the ravel order of the result will be 
found at location [t1;t2;··· ;tnl in the underlying 
subexpression. 

di The direction to move along the ith dimension in order to 
arrive at the next element in the result along the qjth 
coordinate. A value dj = 1 indicates a forward (positive) 
move, whereas a value of -1 indicates a backward (negative) 
move. 
The identity stepper is created by setting qi to i, tj to 0, and 

dj to 1. A top down traversal of the parse tree is performed to 
merge adjacent structural functions together into a single stepper. 
The stepper is initialized at the highest structural function and 
modified as it is passed through the tree. For example, suppose we 
are generating c.ode for the expression 1 2 2 ~ -3 4 5 t C]) ~ A, 
where A is an array of rank 3 and shape 6 6 6. Figure 6.1 shows 
the values of the stepper as they are modified by each node in the 
parse tree, resulting in the final values as shown at the bottom of 
the figure. Notice that the rank of the dyadic transpose (2) is 
smaller than the rank of the arguments to this function (3). For 
this reason the stepper above the transpose has 2 elements, while 
the stepper below the transpose function has 3. 

2. The name stepper, as well as much of the technique described in this 
chapter, is derived from the work of Leo Guibas and Douglas Wyatt, as re­
ported in "Compilation and Delayed Evaluation in APL," Conference record 
of the 5th ACM Symposium on Principles of Programming Languages, 1978. 
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functions qi t· I d· I 

identity 01 00 1 1 

12 2 ~ 011 000 111 

122 ~ -345 t 011 300 111 

1 2 2 ~ -3 4 5 t cD 011 305 1 1 - 1 

1 2 2 ~ -3 4 5 t cD ~ 110 503 - 111 

Figure 6.1: Propagation of the Stepper Through a Parse Tree 

6.1. Computing the Stepper 

The following describes in detail the effect of each of the 
structural functions on the three vectors that make up the stepper. 
In each case, n represents the rank of the subexpression, and 
primed quantities will be used to represent the value of the stepper 
after the transformation. 

6.1.1. Monadic Transpose 

Monadic transpose merely reverses each of the three vectors. 

q'i'~-qn--{i-l) ,O<i<n 
t'i'~-tn--{i-l) ,O<i<n 
d'j'+-dn--{i-l) ,O<i<n 

6.1.2. Take 

Take does not modify the dimensions nor the direction of the 
result,3 thus, the values qi and di remain unchanged. The starting 

3. According to the APL definition, the elements in the control vector (the left 
argument) are permitted to be larger in absolute value than the size of the 
right sub expression for both take and drop. If this is the case the resulting ar­
ray is suppose to be filled out with D's. For example, 3 3 t 1 produces a 3 by 3 
array with a single 1 in the upper left corner and D's everywhere else. The 
code generation scheme described here does not support overtake or overdrop. 
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location, however, can be modified. Let ci represent the value of 
the left (control) argument to the take function, and Si the size of 
the subexpression being taken from. 

if c·<O then t'·+-t+s+c· ,O<i<n til t I 

else t' ·+-t· I I 

6.1.3. Drop 
Like take, drop does not modify the dimensions nor the 

direction of the result, only the location of the initial value. Let Cj 

be the value of the left (control) argument to the drop function. 

if c·>o then t'·+-t+c· ,0< i<n 1- 1 1 I 

else t'·+-t· I I 

6.1.4. Reversal 
Assume that we are computing a reversal along the ith 

coordinate. The only values to be changed will be tj (since the 
initial location will move from one end of the row to the other) and 
dj (since the direction of movement along the ith dimension is 
reversed). Let Sj represent the size of the right argument. 

t'·+-s·-t·-1 I I I 

d'+--d· I I 

6.1.5. Dyadic Transpose 
Dyadic transpose is complicated by the fact that the result 

rank and shape may be smaller than the subexpression rank and 
shape. Let ci represent the value of the left (control) argument to 
the function. 

q'i+-qj , j = ci-1 ,O<i<n 
t'i+-tj , J. = ci-1 ,0< i<n 
d'i+-dj , j = ci-1 ,O<i<n 

Notice that the resulting stepper may be larger than the original 
stepper. This occurs in Figure 6.1, for example. 

Thus, the APL compiler does not support this feature and will produce in­
correct results (according to the definition) in these cases. 
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6.2. The Accessor 
Having propagated the stepper values through a sequence of 

adjacent structural functions, we can use the resulting information 
to determine how to generate code for the operation. If we let A 
represent the underlying subexpression (the expression immediately 
below the structural functions), then clearly the initial value in the 
ravel ordering of the result is given by: 

A [ tl; ... ;tn J 

If we let ej represent the expansion vector for A, we know from 
(5.2) that this value is found at an offset given by 

a = tl el + . .. + tn en 

The vector qj tells us how the dimensions of the result are 
being transposed. The vector dj tells us in which direction to move 
along each dimension in order to return the next element. We can 
combine these with ej to form a new vector, which will act very 
much like the expansion vector. Consider the values defined by 
the following formula: 

The offset of result element al; ... ian can be given in terms 
of these quan~ities as follows: 

offset=a+(al/l+ ... +an1n ) 

Given this equation, it is now easy to generate code for the 
structural functions. As in the last chapter, let offset represent 
the position of the desired value in the ravel order of the result. 
The goal is to compute offset', a position in the underlying 
subexpression where the desired value will be found. Let si 
represent the size of the result. By repeatedly dividing by si we 
obtain the ith position in the vector form of the requested offset. 

of fset' =a 
for i =n to 1 by -1 do begin 

of fset' = of fset'+( of fset mod Sj)X/j 
of fset = of fset div Sj 
end 

{ compute value of subexpression at offset' } 
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6.3. Sequential Access 

AB we saw in the last chapter, if it can be determined at 
compile time that a result will be accessed in sequential ravel order, 
it is often possible for the compiler to take advantage of this 
information to produce better code. So it is with the structural 
functions. To see how this can be accomplished, consider the 
sequence of requests passed to an expression of size 2 by 3 by 3. 
Figure 6.2 shows the sequence of requests, along with the vector 
representing the subscripts of the position being requested. Notice 
how these values increase in an odometer like fashion. 

position subscript computation 
of fset' = a 

0 0 0 0 
of fset' = offset' + 11 

1 0 0 1 
of fset' = offset' + 11 

2 0 0 2 
of fset' = offset' + 11 +i2-3X/l 

3 0 1 0 
of fset' = offset' + 11 

4 0 1 1 

8 0 2 2 
of fset' = offset' + 11 +i2-3X/l 

+i3-3X/2 
{) 1 0 0 

Figure 6.2: Computation of Elements in Sequential Order 

The figure also shows how the computation of the next offset 
for the subexpression can be computed easily in terms of prior 
values. The index offset' is initialized to a in the shape phase. 
Thereafter, after every computation the value of the index is 
updated. To update the index, we add the value In to it; however, 
if the rightmost value in the odometer has turned over, we want to 
subtract off a number of values equal to In times sn' the size of the 
last dimension, before adding In-I. 

We can precompute the computation performed when an 
odometer position turns over by introducing a new vector: 
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OJ = Ii -/i+lXSj+l ,i<n 

On =In 
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The value ° represents the amount needed to correctly reach the 
next position, at the same time correcting the previous dimension 
that has "stepped off" the end of the row. Using these values, the 
code for structural functions in the sequential case can be given as 
follows: 

Shape Phase 

of fset' =O! 

Value Phase 

{ compute value of subexpression at offset' } 
t =sn 
for i =n to 1 by -1 do begin 

of fset' = of fset' + OJ 
if (of fset+1) mod t = 0 then 

t = tXsi_l 
else 

break 
end 

Note that t is a temporary variable, not to be confused with 
the array tj that forms part of the stepper. Note also that the 
computation of the result of the sub expression takes place before 
of fset' is updated, instead of after the computation of offset', as in 
the general case. The computation of the revised value requires at 
most 2n multiplications and divisions, but often less. This 
contrasts with the code for the general case, which always requires 
n multiplications and 2n divisions to compute the index for each 
value. 

6.4. A Nonobvious Optimization 
We recall that the following code was proposed to compute the 

value of offset' in the general case: 



6. Structural Functions 

of fset' =a 
for i =n to 1 by -1 do begin 

of fset' = of fset'+{ of fset mod si)Xli 
of fset = of fset div si 
end 

{ compute value of sub expression at offset' } 
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As we have already noted, this code requires n multiplications and 
2n divisions to compute each value of offset'. Using the values bi 
given in the last section, we can reduce this cost by one-third. In 
contrast to previous discussions, we will here first present the 
generated code and then argue why it is correct. 

The optimized code for the general case of structural functions 
is as follows: 

of fset' =a 
for i =n to 1 by -1 do begin 

of fset' = of fset' + of fsetXbi 
of fset = of fset div si 
end 

{ compute value of subexpression at offset' } 

Let /'i,i = offset div ei' where ei represents the expansion 
vector for the result being computed. Observe that 
/'i,i-l = /'i,i div si and kn = offset. It is not difficult to see that the 
value placed into of fset' by the loop represents 

n 
a+ E/'i,·b. I I 

i=1 

Expanding this, by using the definition of b, we get 
n-l 

a + ( E /'i,i1i - /'i,i li+l si+l) + /'i,n In 
i=1 

Factoring out the common values of Ii' this gives us 
n 

a + I'i.t 11 + E ( /'i,i - /'i,i-l si ) Ii 
i:dl 

Following our observation on /'i,i-l 

n 
a + l'i.t/l + E ( /'i,i - (/'i,i div si) si ) Ii 

i:dl 
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The quantity being summed over can be simplified to 
n 

0: + 111./1 + IJ /\'i mod Si) Ii 
i=2 

We replace the /\'i terms by their definition, so as to express the 
result in terms of offset: 

n 
0: + (offset div el) 11 + 17(( of fset div ei) mod si) Ii 

i=2 

From (5.7), however, we know that offset div el is equal to aI' 
and (offset div ei) mod si is equal to ai. Thus, the result is 
observed to be 

n 
0: + 17 ai Ii 

i=I 

which is indeed the desired element. The improved code produces 
the same results as the original but requires only n divisions per 
element, in place of the 2n required by the original. 



Chapter 7 

Space Inefficient Functions 

Not all APL functions can be adapted easily to the demand 
driven space efficient implementation technique described in the 
last few chapters .. In this chapter we consider the remaining APL 
functions and show how, despite this fact, code can be generated 
for them that combines smoothly with the code generated for other 
functions. 

The functions that remain can be divided into two groups. A 
binary function is semi-space efficient if it is space efficient with 
respect to only one of its two arguments. In truth, some of the 
structural functions described in the last chapter, as well as the 
function reshape, were only semi-space efficient. This is because the 
left (control) argument had to be gathered in its entirety during the 
shape phase, before any values could be produced. In these cases, 
however, the left argument was typically a scalar or small vector 
and could therefore be considered to be part of the function. 
There are two remaining semi-space efficient functions for which 
this is not the case, namely, index (dyadic iota) and membership 
(dyadic epsilon). 
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We call all other remammg functions collectors, since they 
collect all their values in one place before passing any of them onto 
other functions. These collector functions are the following: 

box (input quad) 
rank and shape 
deal and roll 
sort (grade up and grade down) 
user function calls 

Lastly, in this chapter we discuss the code produced for the 
branching arrow. 

7.1. Semi-Space Efficient Functions 
The operation of the two functions index (dyadic iota) and 

membership (dyadic epsilon) are very similar but in some ways just 
the opposite of each other. The first results in an object the same 
size and shape as its right argument; the second, the same as its 
left. They both determine whether an element of one of the 
arguments occurs in the second, one returning a position and the 
other a yes/no answer. 

Despite the earlier claim, one could, in fact, use a space 
efficient implementation technique for these functions. Take 
membership, for example. The following algorithm could be used 
to produce a single value for the membership function: 

Value PhaSe 

{ code to compute left argument at position offset} 
result =0 
for offset' = 1 to (size of right argument) do begin 

{ code to compute right argument at position offset' } 
if (left value = right value) then begin 

result =1 
break 
end 

end 

The disadvantage of this code, clearly, is that in the worst case 
it must search the entire right side for each value that it produces. 
If the left side contains n elements, and the right side contains m 
elements, this can take time proportional to their product, O( nm ). 
If one is willing to sacrifice a bit of memory for a considerable 
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savings in speed, we can sort all the elements of the right argument 
once during the shape phase, at a cost proportional to mlog m. 
Having sorted the right side, a binary search (cost O(log m) ) can 
be used to determine whether each element of the left occurs in the 
right side. Since there are n elements from the left side, the 
resulting cost is O( ( n+m ) log m). In one example that tested 
the effectiveness of this technique, a 500 element vector being 
compared to itself used 334.2 milliseconds with the original method 
and 140.6 milliseconds with the alternative algorithm. 

The generated code for membership (dyadic epsilon) is 
therefore as follows: 

Shape Phase 

gather the right argument into a vector and sort it 

Value Phase 

compute the value of the left argument at position offset 
perform a binary search on the sorted right argument to 
see if the element appears, returning 1 or 0 (true or false). 

The code for index (dyadic iota) is similar 

Shape Phase 

sort the left argument (which must be a vector) 

Value Phase 

compute the value of the right argument at position offset 
perform a binary search of the sorted left argument to see if 
the element appears, returning the value of the grade-up 
vector at the position in the sorted left argument (this is 
the index of the position in the original subexpression), 
or the size of the left argument plus one if it does not appear. 

7.2. Collectors 

For the few remammg functions, the basic implementation 
strategy is as follows. During the shape phase the arguments (if 
any) are collected and stored in a temporary location. The 
functions are then performed on the temporary values, and the 
results again are placed into other temporaries. During the value 
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phase elements are read out of these locations, just as they are 
from leaf nodes, such as identifiers. 

7.3. Branching 

Before we can describe the code generated for the branching 
function, it is first necessary to step back and describe in more 
general terms the structure of the code generated for an APL 
function. 

Within each C program generated for an APL function there 
is declared a local integer variable, stmtno, which contains the 
number of the statement currently being executed. As long as this 
value remains in the range of valid statements, execution continues. 
This is accomplished by structuring the code in the following way: 

stmtno =1; 
while (stmtno) 

switch (stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtno =1; 
{ code for the first statement} 

case 2: 
stmtno =2; 
{ code for the second statement} 

case n: 

} 

stmtno =n; 
{ code for the nth statement} 
stmtno =0; 

By initializing the value of stmtno to 1, the first statement will 
be the first one executed. Since no break statement appears 
following the code for the first APL statement, control will flow 
into the second statement, and so on, unless explicitly redirected. 
Following the last statement, the variable stmtno will be set to 
zero, causing the loop to terminate. 
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Thus, to explicitly branch to a new statement it is only 
nece...."5ary to modify the value of the variable stmtno and execute a 
C break to get out of the switch statement. If the value of stmtno 
is nonzero, the loop will continue and the case corresponding to the 
new statement will be selected. If the value of the branch is out of 
range, the default case will be selected and the variable stmtno will 
be set to o. Thus, the code generated for a branch statement can 
be described as follows: 

{ code to compute the size of the label expression} 
if size of label expression> 0 then begin 

{ compute first value in label expression} 
stmtno = result; 
break 
end 

Notice that if the label expression contains no values execution 
continues with the next statement. 



Chapter 8 

Compiling for a Vector Machine 

Machines that can execute several arithmetic operations in 
parallel have existed for many years. Nevertheless, the software 
needed to make effective use of this ability has been slow in 
developing. Most current high-level languages, of the Algol­
Fortran-Pascal variety, are not designed for the expression of 
parallelism. Thus, the attempt to use parallelism has taken two 
general approaches. The first approach is to analyze source code 
statically in an attempt to recognize operations (such as loops) that 
could potentially be executed in parallel. As might be expected, 
this task is very difficult and has met with only limited success. A 
second approach is to develop new programming languages with 
explicit parallel instructions. The acceptance of new languages is 
slow, however, and this has the drawback of producing yet another 
programming language that is available on only a limited number 
of machines in a limited number of locations. 

The language APL is unique in that it has enjoyed relatively 
widespread use for a number of years, has existing implementations 
on a number of machines, and most importantly is a language in 
which the recognition of potential parallelism is relatively easy. 
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This chapter will describe how the algorithms developed in the 
previous chapters could be modified to make use of vector 
instructions. 

8.1. Machine Model 
The algorithms that we present will make use of instructions 

for a hypothetical vector machine. This abstract machine is 
similar to existing vector machines, such as the CRA Y, the CDC 
STAR-IOO, or the IBM 3090. In addition to the usual repertoire of 
scalar instructions, we assume the existence of vector-vector 
instructions (such as adding two vectors together to produce a 
third vector) and vector-scalar instructions (such as adding a scalar 
to each element of a vector). Each vector operation takes an 
argument that indicates the size of the vector being acted upon. 

In addition to arithmetic vector commands, we will also make 
use of one additional command. This command takes a vector of 
addresses (which need not be contiguous) and produces a vector of 
values from the corresponding positions in memory. The CRAY-I 
has a simplified form of this command, where the addresses must 
be in an arithmetic progression. As we shall see, such progressions 
are oftentimes (although not always) generated by the APL 
compiler. In any case, we shall assume the more general 
capability. 

8.2. Columns and Request Forms 
We define a column to be a vector formed by fixing all but one 

dimension in an array; in APL notation a column is described as 
A[rl;r2; ... ;rk-l;;rk+l; ... ;rnl for some fixed constants rl through rn' 
There are three important quantities that characterize a column. 
The column axis (which we will denote a) is the position of the 
free axis. The column start (denoted 13) is the offset position of the 
element A[rl;r2; ... ;rk_l;0;rk+l; ... ;r nl in the ravel sequence of A. 
Finally the column step (denoted 8) is the distance (in ravel 
sequence) from one element in a column to the next. In terms of 
the expansion vector, 8 is equal to ea' Thus the ravel position of 
the element with index i in a column is 13 + i X 8. 

A subexpression can be given a request for values in one of 
three forms. An Arithmetic Progression Vector (APV) is 
characterized by five quantities. Besides the column axis, start and 
step (a, 13 and 6), there is a vector offset, denoted by a value (J' 
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between 0 and (pA) [a] - 1, and a vector length (w). The values 
being requested are column positions (Y through (Y + w - 1. Since 
five scalar quantities are used to request a large number of values, 
the APV is a very efficient encoding of a request and will always be 
preferred to other forms. An APV can only be used, however, for 
elements contiguous along some dimension in the matrix 
representation, so other request forms are sometimes necessary. 

A column vector (CV) consists of a column description (a, f3 
and 8), a vector (v) of column offsets (values between zero and the 
length of the column), and a vector length (w). The statement 
v+--- (Y + (t, w) can be used to convert an arithmetic progression 
vector to a column vector. 

An offset vector (OV) is a vector (0) of offset positions into the 
substructure being constructed (ravel order assumed). The 
statement 0 +--- f3 + 0 X v converts a column vector into an offset 
vector. 

The particular form used to request values from a 
subexpression is determined at compile time. In subsequent 
discussions in this chapter we will describe how the request form is 
altered by various APL functions. A few operations (assignment in 
particular) generate loops to gather values. These loops always 
generate an APV, it being the most efficient encoding for a request 
for values. For example, assuming we are generating code for an 
expression A, an assignment produces the following code. 

Shape Phase 

a=ppA 
0=1 
w= ItpA 
limit =X / p A 
(Y =0; 

Value Phase 

/* rank of A * / 
/* distance between adjacent elements * / 

/* distance to next column * / 
/* size of A * / 

for f3 =0 to limit - 1 by w do begin 
{ code to compute results described by APV } 
A[f3 + 0 X t, w] +--- value 
end 

Not all the APL functions are easily vectorizable. Functions 
such as sort and membership, for example, are more easily 



100 An APL Compiler 

performed using scalar operations. In expressions involving both 
vectorized and scalar functions, code must be produced to convert 
a vector request (an APV or an offset vector) into an index. In this 
case a temporary vector of length w is allocated during the shape 
phase. Each iteration of the vector request requires a loop to fill 
the values of the temporary one by one. The following illustrates 
the code generated assuming the vector request is given by an 
APV, the code for the other two request forms being similar. 

of fset' =/3 + aX8 
for i =0 to w do begin 

{ compute scalar value at location offset' } 
temp[ i 1 =value 
of fset' = of fset' + 8 
end 

At the other end of the parse tree, our machine model assumes 
that simple instructions can be generated to fill an entire vector 
with values from a leaf node, such as an identifier or a constant. 
The only small complication here involves identifiers which may 
possibly be, but are not certainly, scalar. In this case, code must 
be generated to check the rank dynamically, and if the identifier is 
scalar, return a vector where each position contains the same scalar 
value. 

8.3. Code Generation 
As we have already noted, not all APL functions are amenable 

to vectorization. In the following sections we will describe the 
algorithms for those functions that can be so handled; all other 
functions will generate the same code as described in the previous 
chapters. 

8.3.1. Reduction 
For reduction we can use the vector instructions to compute 

an entire column of the result in one loop. If the request is given 
by an offset vector, we can use a vector form of equation 5.7 to 
compute a sequence of new offsets (note that the difference between 
adjacent elements being reduced will all be given by the value of 
the expansion vector along the axis of the reduction, that is eJ 
The generated code is then identical to that given in Chapter 5, 
with the exception that vector instructions are used to modify the 
values offset'. 
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If the request for values is given by an arithmetic progression 
vector or a column vector, it would be beneficial to try to preserve 
the form. This can be done, if we note that the only values that 
need be modified to change the request given to the reduction 
function into the request given to the child function are the scalar 
quantities f3 and o. The modification for the latter depends upon 
whether the axis of reduction (call it i) is greater or smaller than 
the axis of the request (a). 

Shape Phase 

if a < i then 
{/ =0 XSi 

else 
{/ =0 

Value Phase 

result = vector identity for operation 
{J = (f3 div ei)( eisJ+{ si-1) ei+(f3 mod ejo) 
for counter = 1 to si do begin 

{ compute value of child at requested positions} 
result = value op result 
{J ={J - ei 
end 

The various optimizations described in Chapter 5 for the scalar 
case, such as moving the computation of (si-1)ei to the shape 
phase, are also applicable to this code and will not be repeated 
here. 

8.3.2. Scan 
It is useful to generate vector code for scan only if it can be 

determined at compile time that the axis of the request (a) is 
different from the axis of the scan and if the request form is an 
APV or column vector. It is only under these conditions that the 
loop for the scan will execute the same number of times for each 
element of the result. As was the case with the code generated for 
reduction, the algorithms that in Chapter 5 modified offset are 
here simply changed to modify f3. Unlike the case for reduction, 
for scan the value 0 used by the child is the same as that given to 
the scan function. 
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Value Phase 

result = identity for operation 
ai = (13 div ei) mod si 
{J = of fset 
for counter = 1 to ai do begin 

{ compute the vector value of the subexpression at {J } 
result = value op result 
{J ={J - ei 
end 

8.3.3. Compression and Expansion 

As is the case with the scan function, vector forms are useful 
for compression and expansion only if it can be determined at 
compile time that the axis of the function is orthogonal to the axis 
of the requestl . If this is the case, then all elements of the 
requested column can be computed together. 

The shape phase code for the functions compression and 
expansion is the same as in the scalar case. For requests given by 
an APV or column vector, the code is identical to the scalar case, 
with 13 taking the place of offset. For example, the code for 
compression is as follows: 

Value Phase 

ai = (13 div ei) mod si 
a' = v[ail 
{J = ((13 div (ei si))s'i)+a')ei+{13 mod ei) 
{ compute the value at {J in the left argument} 

For requests given by an offset vector, the entire vector is modified, 
with () taking the place of 13 in the above. 

1. This is not strictly true. The orthogonality of the function axis and the re­
quest axis insures that all elements of the resulting column will be computed 
in the same fashion. The case in which the axes coincide could be handled if 
we were willing to add some further instructions to our machine model. Un­
fortunately, the code sequences for these two cases are so different that if it 
could not be determined at compile time which case to use, both sequences 
would have to be generated. 
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8.3.4. Catenation 
In describing the code generated for the catenation function, 

we will again assume that at compile time it can be determined 
that the axis of catenation is orthogonal to the axis of the request2 

and that the request is by APV or column vector. Given these 
conditions, all elements of the requested column will lie in either 
one of the subexpressions or the other. Testing f3 suffices to 
determine in which half they occur, and modifications to f3 will 
produce the new requests. 

Value Phase 

aj = (f3 div ej) mod (sL +sR) 
if aj < sL then begin 

f.h = (f3 div (ei(sL +sR)))XsL)+aj)Xei+(f3 mod ej) 
{ compute value of left subexpression at {1 L } 

end 
else begin 

aj = aj-sL 
{1 R = (f3 div (ej(sL +sR)))XsR)+aj)Xei+(f3 mod ej) 
{ compute value of right subexpression at {1 R } 
end 

8.3.5. Dyadic, Rotation 
The code for the vector form of dyadic rotation divides into 

two cases. If it can be determined at compile time that the axis of 
request is equal to the axis of the function, and if the request is by 
APV or column vector, then all elements of the requested column 
will be rotated by a fixed amount that can be determined by 
replacing offset by f3 in equation 5.9. The request is changed into 
a column vector, and each element of the vector is modified by the 
amount. 

In all other cases the request is first changed into an offset 
vector. The vector () then replaces offset in 5.9, resulting in a 
vector of differences. This vector is used to modify the original 
offset vector, forming the new addresses. 

2. Similar comments hold for this case as for the case of compression and ex­
pansion; namely, we could handle the coincidental case if we were willing to 
add further instructions to our machine model. 
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8.3.6. Structural Functions 

As we noted at the beginning of Chapter 6, the 
characterization of the structural functions is the fact that they 
carry columns into columns; thus, they should ideally be suited for 
vectorization. If a request is by APV or offset vector, it suffices to 
determine how the base is changed and to determine the new 
distance between adjacent elements. These are given by the 
functions q-l (the inverse of the qi of chapter 6) and "Ii. 

Shape Phase 

The code to compute the value of /3 to pass to the child is the 
same as the code to compute offset' in the scalar case. 

Value Phase 

fJ =a 
for i =n to 1 by -1 do begin 

fJ =fJ+{P mod si)X"Ii 
/3 =/3 div si 

{ compute vector value of subexpression at fJ } 
The optimizations described in chapter 6 can also be applied in 

this situation, In the case in which the request is by offset vector, 
the vector () replaces the scalar /3 in the above. 

8.3.7. Outer Product and Subscript 

If the request to an outer product is given by an APV or 
column vector, then the result will always be generated by a vector 
from one argument and by a scalar from the other argument, 
depending upon whether a is greater or less than the rank of the 
right argument. Let t represent the number of elements in the 
right argument. 

fJ =/3 div t 
{ produce value (result1) of left argument at fJ } 
fJ' =/3 mod t 
{ produce value (result2) of right argument at fJ' } 
res = result! op result2 
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If the request is by offset vector, two new offset vectors are 
generated. 

() I =() div t 
{ produce value (resultl) of left argument at {J } 
()" =() mod t 
{ produce value (result2) of right argument at {J' } 
res = resultl op result2 

Subscripting in APL is in many ways quite different from 
subscripting in other languages. .Af3 we noted in Chapter 4, the 
semicolon function used in subscripting is very similar to an outer 
product. Consider a vector of requests for elements from the 
expression A[B;C]. This request is first divided into separate 
request vectors for B and for C, as is done for outer products. (In 
the situation in which more than one semicolon is present, they can 
be treated as multiple occurrences of binary functions.) These 
result in offset vectors of equal size. These vectors are then 
combined to produce an offset vector into the subscripted 
expression (A in this example). The result of this sub expression in 
response to the request is then returned as the result of the entire 
subscripted expression. 
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Epilogue 

The APL compiler project can be said to have achieved its 
major goal: successfully showing how optimized space efficient 
algorithms can be generated by a compiler for a language with 
indeterminate data objects using demand driven evaluation 
techniques. Nevertheless, this is only a small part of any 
production quality programming system. The larger issues of 
integrating the methods presented here into the more familiar APL 
workspace environment have not been addressed. 

An interesting observation concerns the amount of 
functionality exhibited by a single APL statement versus a single 
statement in, say, Pascal. The more operations there are in an 
expression, the greater is the likelihood that the demand driven 
space efficient techniques described in Chapters 3 through 7 can be 
applied to reduce the amount of intermediate storage necessary to 
produce a result. Thus, the infamous "one-liner," considered 
almost an art form among supporters of APL (Perlis H)79), and 
strongly denounced by detractors of the language (Dijkstra 1972), 
is shown to have a practical benefit. Of course, one could 
distinguish between "physical" one-liners (programs written on one 
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line) and "conceptual" one-liners (programs written without 
looping structure). In the latter case, simple dataflow techniques, 
which are extensions of the methods described in Chapter 2, could 
be used to determine statements that could be combined to 
facilitate optimized execution. 

On the negative side, as we noted in Chapter 1, it is difficult 
for a true compiler (a compiler that executes as a separate process 
from the running program and that may not even be present at 
execution time) to provide the same type of interactive design and 
debugging tools as an interpreter. Ideally, one would like to 
integrate the compiler and an interpreter, thus providing the 
advantages of both in a complete development environment along 
the Lisp model. 

If there is any glaring omission in the material presented in 
this book, it is the lack of any detailed timings or comparisons to 
code generated using other techniques. While I admit that such 
statistics can be useful, they can also be deceptive and difficult, not 
only to obtain but to understand as well. The APL compiler was 
developed on a badly overloaded DEC VAX 750 computer. It is, 
however, written in C and is designed to run on any UNIX system, 
which represents a wide spectrum of machines. In reporting 
absolute timings of the generated code, such as those given at the 
end of Chapter 2, should I report the figures given by the time 
command on my overloaded 750? This was the technique used 
near the end of Chapter 2, where the intent was to compare 
execution times of various programs all produced by the APL 
compiler. Alternatively, should I have tried to obtain permission to 
use a faster UNIX processor and hence obtain more impressive, but 
presumably not any more truthful, statistics? Perhaps neither 
figure should be taken at face value but should be divided by some 
normalization factor, such as the mythical MIPS number. Even so 
doing this would only provide a rough characterization of our 
system; to be useful we would need a comparison to other systems. 
However, there are few other APL compilers and none (to my 
knowledge) running on UNIX machines; and how do we integrate in 
the operating system dependent factors into the timings? 

Recently, an entire book has been devoted to the technique of 
timing Lisp systems and a comparison of various Lisp 
implementations (Gabriel 1986). One can hope that eventually 
such a study can be performed for APL systems, but until that 
point the whole question of timings, both absolute and relative, is 
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fraught with danger. It is for this reason that I have ignored the 
question of timings altogether and have chosen to stick to a safer 
path by being concerned only with algorithms. Despite this fact, it 
is my hope that some readers will have found the techniques 
presented in this book interesting as algorithms for their own sake 
and that this book may, in some small way, influence future 
implementations of this wonderfully complex language. 
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The Language of the APL Compiler 

As we noted in Chapter 1, in pursuing this project we were 
interested in developing a compiler for an APL-like language, not 
necessarily in constructing a system for textbook APL. Thus, we 
did not feel constrained by any requirements to conform exactly to 
any existing standard for the language. In this appendix we 
describe the major deviations in our system from standard APL. 

Except as noted elsewhere in this appendix, the APL 
statement syntax has been left unchanged. Detailed descriptions of 
this syntax can be found in many textbooks, such as (Gilman 1976) 
or (Polivka 1975). 

Omissions 
A number of standard APL functions are not implemented in 

the APL compiler. 
The following functions were not implemented because the 

algorithms needed to accommodate them were deemed similar to 
algorithms used in more common functions, and thus little 
additional experience or knowledge would be gained by including 
them: 
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encode 
format 
lamination 

An APL Compiler 

The following functions were not implemented because they 
did not easily fit into our demand driven execution technique and 
required a large run-time support system. 

execute 
matrix inverse and least squares 
quote-quad for general expressions 
files 
system functions and variables 
latent expression 
tracing 

Workspaces 

The concept of the APL workspace is not supported. 
Workspace commands are not recognized and result in syntax 
errors if used. Built-in functions, such as [lWA or []LC, that refer 
to workspace parameters are not recognized. 

Scoping Rules 

The APL dynamic scoping rule has been replaced by a simple 
two-level static scoping. Variables are either local to the program 
in which they are declared or global to all procedures. Variables 
declared outside of any program are automatically given the 
attribute global (see below). 

System variables, such as [JIO and []PP, are true global 
variables and are not automatically restored to their previous 
values on procedure exit. 

Order of Execution 
The order of execution is not guaranteed to be strictly right to 

left. Certain functions, such as reshape or compress, may evaluate 
their left argument before their right argument. Thus, expressions 
that depend upon a side effect may produce unpredictable results. 
An example is using a variable while at the same time redefining 
the variable elsewhere in the expression. The following statements 
are almost certain to produce a result other than the one intended. 
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X+-33pdl 
(X+-[,5)+X 
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This is not a violation of the standard, but is rather what the 
standard calls a "consistent extension". 

Commutative Functions 
Many APL programmers mistakenly believe that APL requires 

that all expressions be evaluated strictly right to left. This is true 
even in such situations as a reduction, for example, 

+/['6 
where, because a commutative function is being used, the order of 
evaluation presumably does not matter. In fact, the APL-standard 
permits any order, once more under the name of "consistent 
extensions". In these cases we have felt free to sometimes change 
the order of evaluation to left to right, thereby permitting other 
optimizations that may depend upon the order in which 
expressions are accessed. 

Demand Driven Semantics 
The APL compiler uses a demand driven, or lazy evaluation 

semantics. The difference between this and conventional APL 
semantics is most easily seen in expressions that would produce an 
error under the 'conventional interpretation but would not under 
the modified semantics. An example is 

01/23704 

A conventional interpreter would produce a run-time error, 
since 2 cannot be divided by O. The demand driven technique 
would only attempt the divide instruction for values that were 
needed in other parts of the computation. Since the first element 
of the vector produced by the division is eliminated by the 
compression function, it can never be used. Thus, no attempt 
would be made to divide 2 by 0, and no error would be reported. 
Again, the APL standard permits this as a consistent extension. 

Heading and Declarations 
The format for procedure headings has been altered 

considerably. Local variables are no longer declared on the same 
line as the procedure heading. Instead, a procedure heading can be 
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followed by any number of declaration statements. 
The format for a heading is the symbol V, followed by an 

optional assignment part, followed by an optional left argument 
name, followed by the function name, followed by the right 
argument name. Niladic functions are not supported (see below). 

The syntax for a declaration is an attribute followed by a list 
of variable names. Attributes are divided into classes (global, 
function) and types (var, int, bit, char, real). An attribute 
consists of a class and/or a type. Thus, the following are legal 
declarations and have the indicated meanings: 

var a, b, c 
global int i, j 
char global x 
fun p 

local variables, type unknown 
global integer variables 
global character variable 
function p, type unknown 

All global variables and functions used in a procedure that 
have not been previously encountered must be declared; that is, 
functions and globals must be declared prior to their first 
encounter. Local variables need not be declared if their first 
occurrence is as the left argument in an assignment, but from a 
stylistic point of view some argue that it is better to declare all 
variables. Variables and functions need not have declared types; 
however, specifying types allows the compiler to produce better 
code. 

System variables, such as 010 and []PP, cannot be declared 
local to a procedure. 

Niladic Functions 
A major problem with compilers is that they must, of 

necessity, determine the type of each token in an expression long 
before the expression is ever executed. It is for this reason that the 
APL compiler requires users to declare in the heading of a function 
both global names and functions that have not been previously 
seen. There is one (admittedly uncommon) situation in which even 
this amount of information is not sufficient to completely 
determine the meaning of all tokens. Consider the following 
fragment from a function: 



A.1. The Language of the APL Compiler 

FUNF, G 

x +- F G expression 

There are two possible interpretations: 
1. F is a niladic function, G is a dyadic function, or 

2. Both F and G are monadic functions. 
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Without further information the compiler cannot determine 
which of these two cases is correct. FOl the APL compiler we took 
the expedient solution of disallowing niladic functions. Some have 
argued that this is too radical a solution and that a better 
alternative would have been to introduce optional declarations for 
the valence of functions, as well as for their result rank and type. 
The compiler then could issue error messages in those few cases in 
which it could not be determined from context what the correct 
interpretation should be, and the user could insert informative 
declarations. 

As with the change from dynamic to static scoping, the 
decision to eliminate niladic functions was merely a convenience 
and is not intrinsic to the space efficient demand driven method of 
execution outlined in this book. 

Overtake 

Standard APL uses the take function (t) both to extract a 
subportion of a larger array and to extend an array with fill values; 
that is, the expression 2 2 t 3 3 p t. 9 returns the array 

1 2 
4 5 

but 4 4 t 3 3 p t. 9 yields 

1 230 
4 5 6 0 
789 0 
o 0 0 0 

The Guibas and Wyatt algorithm which we use in generating 
code for Take, as described in Chapter 6, does not correctly handle 
overtake, so we do not support this feature. 
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Data Types and Storage 

If a variable is given a specific data type, either by declaration 
or inference from the program text, it retains that type throughout 
execution. A simple program illustrates how this differs from most 
APL systems. Consider the program 

X+-2 
L:X+-2 XX 
~L 

On conventional APL systems X would at some point cease being 
represented internally as an integer and would become a floating 
point value. With the APL compiler X would always remain an 
integer but would at some point overflow. No code is generated to 
detect this overflow; however, on some machines this would cause 
a program interrupt. 

Although the datatype boolean is treated as distinct from 
integer by the declaration statements and by the type inference 
algorithms, for the purposes of storage we treat them as the same. 
While this is inefficient in terms of storage, it simplified our 
generated code for assignment and identifiers. There is, however, 
nothing inherent in the algorithms that we have described that 
requires us to waste storage for boolean datatypes in this manner, 
and with slightly more care in the generation of code for these two 
situations a true binary datatype could be achieved without any 
change to the other code generation algorithms. 

Exceptional or Special Cases 

In designing the algorithms to be used by each of the various 
APL functions, we concentrated on efficiently implementing the 
most common or general cases. Our code will often fail (hopefully 
issuing an error message first) if conditions for these cases are not 
satisfied, even in situations in which other APL systems would 
continue. In some cases the correct answer fortuitously results 
from the code for the general case, and we suspect that this is why 
many exceptional cases were permitted by earlier APL systems. 
At other times, we are not so fortunate. 

For example, we require that the argument to iota be an 
integer scalar. Many APL systems also permit the argument to be 
a vector of size 1, although interestingly not usually an array of 
size lin each dimension. 
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Functions that have special cases that we do not support 
include catenation and inner product. 

The program MAIN 
Statements, including declarations, that are outside the range 

of any procedure body are assumed to refer to the main program. 
These statements can be intermixed with procedure declarations, 
however, from a stylistic point of view this should be avoided. All 
variables in the main program are given the attribute global. 

Labelled statements are not permitted in the main program, 
due to the difficulty in differentiating them from functions being 
defined in direct definition form (Iverson 1980). 

System Variables 
The following system 

assigned. 
variables can be referenced but not 

[JTS 

[JAV 

Returns an integer vector containing the current year, 
month, day, hour, minute, and second. 
Returns an 256 element character vector representing 
the ASCII character sequence. 

The following system variables can be both assigned to and 
referenced. 
[JIO Sets ,the index origin for indexing. Returns the current 

index origin. 
[JPP Sets the number of positions used in printing integer 

and real variables. Returns the current printing 
precision. 

[]PW Sets the number of characters to be used in printing 
integer and real variables. Returns the current 
printing width. 

[]RL Sets a seed value for the random number generator 
used in roll and deal. Returns the current random 
number. 

Format of Output 
The number of characters to be used in printing any element is 

completely determined by the system variables printing precision 
and printing width (above), instead of by the data being printed. 
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A Simple Example 

This appendix will analyze the code generated for an 
expression when the compiler has almost perfect information; that 
is, it knows the type, rank, and shape of all functions. The 
expression we will consider is a variation on the classic primes 
idiom given in Chapter 2, only instead of returning the list of 
primes, we will merely count their number. The expression can 
thus be given as 

A+- +/ (2 =+f0 =(L 200) 0.1 L 200) 

We will consider each function in this expression individually, 
and we will show how each contributes to the generated code. 
First, however, we will present the code in its entirety: 
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i9 =200; 
i13 =200; 
i12 =200; 
i15 =(i13 -1) * i12; 
i20 =200; 
settrs(&trsl, !NT, 0, &Lmain[I]); 
il = talloc( &trsl); 
mpl.ip =trsl.value.ip; 
resl5.i =0; 
for (i3 = 0; i3 < i20; i3+t-) { 

resll.i =0; 
i4 =i15 +i3; 
for (i14 =i13 -1; i14 >=0; iI4-) { 

i6 =i4 - ig * (i5 =i4 / ig); 
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resll.i +=(0 =((i6 + 1) % (i5 + 1))); 
i4 -=i12; 

} 
resl5.i +=(2 =resll.i); 

} 
(*mpl.ip =resI5.i); 
assign ( &a, &trsl); 

We now analyze each function in this example in turn. 

Assignment 
The code generated for assignment consists of the following 

pieces: 

Shape Phase 

settrs(&trsl, !NT, 0, &Lmain[I]); 
il = talloc( &trsl); 
mpl.ip =trsl.value.ip; 

Value Phase 

(*mpl.ip = resI5.i); 
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Finish Phase 

assign( &a, &trs1); 

The identifier trs1 represents a type, rank, shape, and value 
structure; an object that can contain all the information about an 
identifier. The procedure settrs is used to copy values into the first 
three fields of such a structure. Since the size of the result is 
known at compile time, all the parameters in the call on settrs are 
constants. Had the sizes not been known, code would have been 
generated prior to the call on settrs that would have placed the 
type, rank, and shape information into variables, and these would 
be passed to the function. 

The expression &Lmain[1] represents a pointer to a location in 
the integer (hence, the L prefix) constant pool for this function. 
Since the result is a scalar, the shape is presumably of little 
importance, nevertheless, a one (1) value is stored at this location. 

The function talloc allocates a block of memory, placing the 
address into the value field of the trs structure passed as argument. 
(A minor point, the & in front of trs1 in both this and the call on 
settrs is necessary because of the call-by-value semantics of C. 
Since in both cases trs1 is modified, it is necessary to pass a pointer 
to the structure, rather than the value of the structure.) The value 
field of a trs structure contains a memory pointer. A memory 
pointer is a union (variant record) type possessing pointers of each 
of the three basic data types for the APL system: real, integer, and 
character. These three fields are denoted rp, ip, and cp, 
respectively. Since it is known that the result will be an integer, 
the ip field can be used directly in both the trs value trs1 and 
memory pointer value mp1. 

Since it can be determined at compile time that the result is a 
scalar, no loop is generated. Instead, the single integer value is 
produced and copied into the memory pointed to by the memory 
pointer value mp1. This integer value is produced in the variable 
named res15. i. 

The last act of the code for assignment is to free the storage 
used by the previous value assigned to the variable A (if there was 
a previous value) and to bind the new values to the name. This is 
accomplished by calling the procedure assign. 
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First Reduction 
The outermost reduction function generates the following code: 

Shape Phase 

i20 =200; 

Value Phase 

res15.i =0; 
for (i3 = 0; i3 < i20; i3++) { 

res15.i += ... 
} 

During the shape phase the size of the vector being reduced 
(200) is computed and placed into the counter i20. During the 
value phase the offset to be passed to the subexpression is 
computed in a loop running from 0 to this value. The expression 
is++ is a C idiom for incrementing the value of is by 1. 

The variable res15 is used to maintain the running sum of the 
reduction. As with memory pointers, result variables can contain 
any of the three basic datatypes: real, integer, or character. The i 
field indicates that an integer value is being used in the present 
case. The result variable is initialized prior to the loop to the value 
0, which is the identity for the addition operator. The variable is 
then incremented once during each iteration of the loop. The 
operator += is once more a C idiom, resulting in the left argument 
being incremented by the value on the right side. 

Note that this code takes advantage of the fact that addition is 
commutative. If a noncommutative function, such as subtraction, 
had been used instead, it would have necessitated making two 
changes to the generated code. The first would be that the loop 
would have to run backwards, instead of forwards. Secondly, 
instead of using the efficient C increment instruction, the code 
would look something like this: 

res15.i = . .. - res15.i; 

The Constant 2 and the Equality Function 
The constant 2 and the outermost equality function together 

generate almost no code, being combined with the result of the 
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inner reduction and the updating of the outer reduction. Note that 
= is the C operator for equality test and produces either a 0 or 1 
value. Lazy code generation results in the code for the constant 2, 
the test for equality, and the updating of the running sum for the 
reduction operator all being performed in a single C statement. 

resl5.i +=(2 =resll.i); 

The Second Reduction Function 
We have already noted that. the index for the value being 

requested of the reduction is contained in the counter is, and the 
result is placed in the variable resl1. The rest of the code for the 
reduction is as follows: 

Shape Phase 

i13 =200; 
i12 =200; 
i15 =(iI3 - 1) * i12; 

Value Phase 

resll.i =0; 
i4 =i15 +i3; 
for (i14 =i13 -1; i14 >=0; i14-) { 

} 

resll.i += 
i4 -=i12; 

The variables ilS and i12 are. initialized during the shape 
phase to the length of the row being reduced and the expansion 
vector value for the axis being reduced, respectively. (In terms of 
the quantities described in Chapter 5, these are the values Sj and 
ei) The variable i15 is the loop invariant expression (si-1)ei, which 
would otherwise be recomputed each time a new value was 
requested from the reduction. 

The variable i4 is the index of the position being requested 
from the subexpression. It should not be confused with variable 
i14, which is merely a counter insuring that the loop is executed 
the required number of times. The computation to initialize i4 
corresponds to 
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of f8et' = ((8i-1)ei)+of f8et 

After each iteration of the loop the index i4 is updated to point to 
the next value. Note the differences between the code generated 
for this reduction and that generated for the previous reduction. 
There are two reasons for these differences: one is the fact that the 
outer reduction is accessed in sequential fashion and this one is not, 
and the second is that the outer reduction is iterating over a 
vector, whereas this reduction is operating on an object of higher 
dimension. 

The Inner Scalar Equality Function 
Like the first scalar equality test, the constant 0 and the scalar 

equality test are combined with code generated by other functions . 

.. (0= ... ) 

The Outer Product 
During the shape phase, the size of the right side of the outer 

product is computed and placed in the variable in. This value is 
then used to convert the offset for the requested element, i4, into 
offsets for the left and right sides (i5 and i6, respectively). Note 
that combining the computation of the divisor and remainder 
together results in a small increase in efficiency, since the generated 
assembly language can avoid having to reload the variable i5. 

Shape Phase 

i9 =200 

Value Phase 

i6 =i4 - i9 * (i5 =i4 / i9); 
... % ... 

In this particular case, the APL function residue corresponds 
to the C operator mod (%) with the arguments reversed. Since the 
types of the arguments are known, the code can be combined with 
other expressions. 
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The Iotas 
The code generated for the iota functions merely take the 

index of the desired element and add 1 (the index origin) to them. 
If the index origin is not known at compile time, code is generated 
to add the value of the global variable maintaining the index 
origin, _ ixorg, into the expression. Once more, lazy code 
generation permits us to combine the code for both the iotas, the 
outer product, the equality test against the constant zero, and the 
updating of the value for the running sum of the inner reduction. 

res1l.i +=(0 =((i6 + 1) % (i5 + 1))); 

With Less Information 

Suppose instead of the constant 200, the upper limit for the 
iota functions had been given by an identifier, as in 

A..- +/ (2 =+f-O =(~ N) 0.: ~ N) 

It is instructive to note that in this case all the code between 
the call on settrs and the call on assign would remain unchanged, 
and only the code generated for the shape phase would be altered. 
As this code contributes to only a small fraction of the execution 
time, the result would be only marginally slower. 

Here is the new code that would be generated for the shape 
phase in this cas~: 

if (n.type = UKTYPE) error("undefined value used"); 
mp4 =n.value; 
if (n.type !=INT) error("type error"); 
if (n.rank != 0) error("rank error"); 
mp2 =n.value; 
outershape(&mp6, 1, mp4.ip, 1, mp2.ip); 
i9 = *mp2.ip; 
i13 = *mp6.ip; 
i12 =esubi(O, 2, mp6.ip); 
i15 =(i13 -1) * i12; 
i20 =*(mp6.ip +1); 
settrs(&trs1, INT, 0, &Lmain[1]); 

The variables mp4 and mp2 hold the size of the vector 
produced by the iota function. Observe that no attempt is made 
by the APL compiler to determine common subexpressions, thus 
the fact that mp4 and mp2 contain the same information, and thus 
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the variables i9 and i13 as well, is not noted nor made use of. 
(Common subexpressions tend to be rather rare in both APL code 
and the code generated by the compiler.) The function outershape 
computes the shape of the outer product. The function esubi 
computes the value el. 

If N is declared to be scalar, the test for the rank disappears. 
If N is declared to be integer, the test for type disappears. If N is 
declared to be both scalar and integer, the code is simplified to the 
following: 

if (n.type = UKTYPE) error("undefined value used"); 
outershape(&mp6, 1, n.value.ip, 1, n.value.ip); 
iQ = *n. value.ip; 
i13 = *mp6.ip; 
i12 =esubi{O, 2, mp6.ip); 
i15 =(i13 -1) * i12; 
i20 =*(mp6.ip +1); 
settrs(&trs1, INT, 0, &Lmain[l]); 

Compression 

If we now go back and consider the original primes idiom, 
which returned the prime values instead of merely computing their 
number, we can see how the shape phase of one operation may 
include the value phase of others. This expression can be written 
as follows: 

A ~ (2 =+f-O =(1- 200) 0.1 I- 200) / I- 200 

Notice that the only difference between this expression and the 
earlier one is the use of compression over an iota rather than a 
reduction. 

The code generated for this statement is as follows: 
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i22 =0; 
i9 =200; 
i13 =200; 
i12 =200; 
i15 =(i13 - 1) * i12; 
il9 =0; 
i21 =200; 
valloc(&mpll, i21, INT); 
for (i3 =0; i3 < i21; i3++) { 

res1l.i =0; 

} 

i4 =i15 +i3; 
for (i14 =i13 -1; i14 >=0; i14-) { 

i6 =i4 - i9 * (i5 =i4 / i9); 

} 

res1l.i +=(0 =((i6 + 1) % (i5 + 1))); 
i4 -=i12; 

if (((2 =res1l.i) !=O)) 
*(mp1l.ip +i22++) =i3; 

valloc(&mp12, 1, INT); 
*mp12.ip = i22; 
settrs(&trs1, INT, 1, mp12.ip); 
i1 =talloc(&trs1); 
mpl.ip =trsl.value.ip; 
for (i2 = 0; 12 < il; i2++) { 

i23 =*(mp11.ip +i2); 
(*mpl.ip++ =(i23 + 1)); 

} 
assign( &A, &trs1); 
memfree( &mp12.ip); 
memfree( &mpll.ip); 
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Notice how the change from a reduction to a compression has 
significantly changed the structure of the generated code. There are 
now two different distinct loops: one produced by the compression 
function during its shape phase and one produced by the 
assignment function. The majority of the computation now takes 
place during the shape phase code for the compression function. 
This code is as follows: 
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Shape Phase 

i22 =0; 

valloc(&mpll, i21, INT); 
for (i3 = 0; i3 < i21; i3++) { 

} 

if (((2 =res1l.i) !=O)) 
*(mp1l.ip +i22++) =i3; 

valloc(&mp12, 1, INT); 
*mp12.ip = i22; 

An APL Compiler 

The variable i22 is a counter. When the shape phase loop 
generated by the compression is finished, it will contain the 
number of nonzero values encountered and thus the length along 
the compressed axis of the resulting expression. In order to create 
space to hold the vector that will represent the positions of the 
nozeron values along the compressed axis, the memory pointer 
mpll is passed to the memory allocation routine valloc. The 
compress function then creates a loop to gather the values of the 
left argument. As each value is produced, it is compared against 0 
( != is the C not-equal comparison operator). If it is not 0, i22 is 
incremented and the position of the nonzero element is stored in 
the vector pointed to by mpl1. 

When the loop generated by the compress function is finished, 
the value i22 contains the length of the compressed axis in the 
result expression, and mpll points to a vector indicating the 
positions in the original ordering (the right argument) that 
correspond to the nonzero positions. A shape vector for the result 
is created by calling valloc once more, and the shape of the result is 
placed into it. (Since the result is a scalar, this is a simple 
assignment.) The assignment function then generates a loop to 
gather the results of the compression: Inside this loop, the 
compression function generates an index into the vector previously 
stored in mpll, which yields the position in the right argument 
where the result will be found. Since the result is given by an iota 
function, it can be easily computed by adding 1 (the index origin) 
to the requested position. 
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Value Phase 

i23 =*(mp1l.ip +i2); 
(*mp1.ip++ =(i23 + 1)); 
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Finally, following the rebinding of the variable value generated 
by the assignment function, the compression function releases the 
memory used by the two vectors, the position vector and the shape 
vector. 

A Critique 
These examples illustrate one of the drawbacks of the APL 

compiler. Namely, no matter how many optimization techniques 
are applied to the generated code, they cannot make any change to 
the underlying algorithm. (One cannot change a Bubble sort into a 
Quick sort by any sequence of mechanical transformations.) The 
language APL strongly influences a programmer towards a style of 
programming that is often not as efficient as possible. For 
example, while one can usually write O( n) or O( n2 ) algorithms 
easily in APL, it is difficult to write O( n log n) algorithms. A 
programmer setting about to solve a similar problem in C would 
probably not use this idiom at all, as natural as it is in APL, but 
would instead likely employ some variation on a sieve algorithm. 
While still an O( n2) solution, in practice it can be made much 
more efficient. 

This observation should not be construed as being damning to 
APL or indeed to the APL compiler, any more than the 
observation that assembly language programmers can usually write 
more efficient programs than programmers in high level languages 
implies that nobody should write in high level languages. In both 
cases, the advantage of the higher level language is that it 
simplifies and facilitates the construction of bug free, correct code. 
Oftentimes, this is the primary concern, with efficiency only a 
distant second issue. 
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A Longer Example 

In this appendix we present, without commentary, the 
complete C program produced for the Ulam Spiral of Primes 
functions described in Chapter 2. 

#include "aplc.h" 
extern struct tfS-struct n; 
int i_spiraJ[15] = { 

, 

a, 1,2,4,2, -1, 4, a, 2, 1, 
1, 2, 3, 2, a} 

double r_spiral[l] = { 

a.5} 
, 
spiral(z, _no2, I) 
struct trs-struct *z, * _no2, *1; 
{ 

struct tfS-struct e; 
struct trs-struct g; 
struct tfS-struct c; 
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struct tI'S-struct a; 
struct tI'S-struct trs1, trs2, trs3, trs4; 
union mp_struct mp1, mp2, mp3, mp4, mpS, mp6, mp7, mp8, mp9, 
mplO, mpl1, mp12, mp13, mp14, mp1S, mp16, mp17, mp18, mp19, 
mp20, mp21, mp22, mp23, mp24, mp2S, mp26, mp27, mp28, mp29, 
mp30, mp31, mp32; 
union res-struct res1, res2, res3, res4, resS, res6, res7, res8, res9, 
res10, resl1, res12, res13, res14, res1S, res16, res17, res18, res19, 
res20, res21, res22; 
int iO, iI, i2, i3, i4, is, i6, i7, i8, i9, 
ilO, il1, i12, i13, i14, i1S, i16, i17, i18, i19, 
i20, i21, i22, i23, i24, i2S, i26, i27, i28, i29, 
i30, i31, i32, i33, i34, i3S, i36, i37, i38, i39, 
i40, i41, i42, i43; 

e.type = UKTYPE; 
g.type = UKTYPE; 
c.type = UKTYPE; 
a.type = UKTYPE; 

stmtno =1; 
while (stmtno) 

switch(stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtnQ =1; 
trace("spiral", 1); 
if (n.type = UKTYPE) error("undefined value used"); 
valloc(&mpS, 1, INT); 
*mpS.ip = (*n.value.ip * 2); 
i6 =_ixorg; 
settrs(&trs1, INT, 1, mpS.ip); 
i1 = talloc( &trs1); 
mpl.ip =trs1.value.ip; 
for (i2 =0; i2 < i1; i2++) { 

(*mpl.ip++ = i6++ ); 
} 
assign( &a, &trs1); 
memfree( &mpS.ip); 

case 2: 
stmtno =2; 

( II • I" 2) trace spIra, ; 
if (a.type = UKTYPE) error("undefined value used''); 
mp2.ip = a.value.ip; 
settrs(&trs2, INT, 1, a.shape); 
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trs2.value.ip = mp2.ip; 
i7 =1; 
i8 = *a.shape; 
ilO = *a.shape; 
valloc(&mp6, ilO, INT); 
mp7 =mp6; 
for (i5 =0; i5 < ilO; i5+1-) { 

res5.i =0; 

} 

for (i9 = i5; i9 >= 0; i9--) { 
(res5.i = (*(a.value.ip +i9) - res5.i)); 

} 
if (res5.i < 0) 

res5.i =- res5.i; 
(*mp6.ip+l- = res5.i); 

settrs(&trs3, INT, 1, a.shape); 
trs3.value.ip =mp7.ip; 
copies(&trs4, &trs2, &trs3); 
mp8.ip =trs4.value.ip; 
settrs(&trsl, INT, 1, trs4.shape); 
il = talloc( &trs1); 
mp1.ip = trsl.value.ip; 
for (i2 =0; i2 < il; i2+1-) { 

(*mpl.ip+l- =(*mp8.ip+l- % 4)); 
} 
assign( &c, &trsl); 
memfree(&mp7.ip); 

case 3: 
stmtno =3; 
trace("spiral", 3); 
if (n.type = UKTYPE) error("undefined value used"); 
settrs(&trs1, INT, 0, &i_spiral[l]); 
i1 = talloc( &trsl); 
mp1.ip =trs1.value.ip; 
{ 

} 

(*mp1.ip = ((int) fioor((r_spiral[O] + 
(((double) *n.value.ip) / ((double) 2)))))); 

assign( &g, &trs1); 
case 4: 

stmtno =4; 
trace("spiral", 4); 
if (1- > type = UKTYPE) error("undefined value used'); 
valloc(&mp3, 1, INT); 
*mp3.ip = *1- >shape; 
if (n.type = UKTYPE) error("undefined value used"); 
i17 =1; 
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valloc(&mpI5, i17, INT); 
mplB = mpl5; 
{ 

(*mpI5.ip = ((*n.value.ip * *n.value.ip) - 1)); 
} 
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if (c.type = UKTYPE) error("undefined value used''); 
i8 =1; 
valloc(&mp9, i8, INT); 
for (W =i8 - 1; i9 >=0; i9--) { 

*(mp9.ip + i9) =iabs(*(mp1B.ip + i9)); 
} 
ilO =qsdalloc(l, &mp5, &mpB, &mp7); 
i9 =0; 
{ 

if (*(mplB.ip + i9) < 0) 
*(mpB.ip +i9) -t=*(c.shape +W) +*(mp1B.ip +i9); 

} 
i7 =accessor(l, mp9.ip, 1, c.shape, &mp8, mp5.ip, mp6.ip, mp7.ip); 
outershape(&mp24, 1, mp3.ip, 1, mp9.ip); 
i24 = *mp9.ip; 
settrs(&trs1, INT, 2, mp24.ip); 
il = talloc( &trsl); 
mp1.ip = trs1.value.ip; 
for (i2 =0; i2 < il; i2++) { 

iB =i2 % i24; 

} 

i8 =iB; 
ill =i7; 
for(i9 =il0 - 1; i9 >=0; i9--) { 

ill -t=i8 * *(mp8.ip +i9); 
i8 /= *(mp9.ip + i9); 

} 
i4 =i2 / i24; 

i3 =(((*(c.value.ip +ill) +((0 =*(c.value.ip +ill)) * 4)) 
+(i4 * *(l->shape +1))) - _ixorg); 

(*mpl.ip++ =*(l->value.ip +i3)); 

assign( &e, &trsl); 
memfree( &mp3.ip); 
memfree( &mp4.ip); 
memfree( &mp24.ip); 

case 5: 
stmtno =5; 
trace("spiral", 5); 
if (n.type = UKTYPE) error("undefined value used"); 
i8 =2; 
valloc(&mpB, i8, INT); 
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mp7 =mp6; 
for (i3 = 0; i3 < i8; i3++) { 

(*mp6.ip++ = *n.value.ip); 
} 
trs2.type = UKTYPE; 
mp13.ip = &Lspiral[9j; 
if (g. type = UKTYPE) error("undefined value used''); 
if (e.type =UKTYPE) error("undefined value used"); 
mp18.ip =e.value.ip; 
catshape(&mp16, 0, &Lspiral[lj, 2, e.shape); 
i25 =1; 
i28 =*(e.shape +1); 
i27 = i25 + i28; 
i34 =*(mp16.ip +1); 
i35 =i34; 
i36 =vsize(2, mp16.ip); 
val!oc(&mp19, i36, INT); 
mp20 =mp19; 
for (i22 =0; i22 < i36; i22++) { 

if (i35 >=i34) { 

} 

res12.i =0; 
i35 =0; 

} 
i29 =i22 % i27; 
if (i29 < i25) { 

(res9.i =0); 
} 
else { 

(res9.i =*mp18.ip++); 
} 
res12.i += res9.i; 
i35+t; 
(*mp19.ip++ =res12.i); 

outershape(&mp25, 1, &Lspiral[13j, 2, mp16.ip); 
i41 =vsize(2, mp16.ip); 
dtshape(&mp12, &Lspiral[9j, 3, mp25.ip); 
i16 = qsdalloc(2, &mp8, &mp9, &mplO); 
dtmerge(&Lspiral[9j, 3, &mp8, &mp9, &mplO); 
i13 = accessor(2, mp12.ip, 3, mp25.ip, &mpll, mp8.ip, 

mp9.ip, mplO.ip); 
i17 =i13; 
i42 =vsize(2, mp12.ip); 
valloc(&mp26, i42, INT); 
mp27 =mp26; 
for (i12 =0; i12 < i42; i12++) { 

i21 =i17 - i41 * (i20 =i17 / i41); 
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} 
} 

} 

getmp(&res13, &mp20, i21, INT); 
cktype(&res13, INT, INT); 
(res6.i = (*g.value.ip + res13.i)); 
i14 =*((i16 +mp12.ip) - 1); 
for (iI5 =iI6 - 1; i15 >=0; i15--) { 

i17 -t=*(mpIl.ip +iI5); 

} 

if (0 = ((iI2 + 1) % iI4)) 
iI4 *=*((iI5 +mpI2.ip) - 1); 

else 
break; 

(*mp26.ip+t = res6.i); 

settrs(&trs3, INT, 2, mpI2.ip); 
trs3.value.ip =mp27.ip; 
linear( &trs4, &trs2, &trs3); 
mp28 =trs4.value; 
if (trs4.rank != 1) error("rank error''); 
aplsort(&mp31, &mp28, *trs4.shape, trs4.type, 1); 
ilO = *trs4.shape; 
settrs(&trsI, INT, 2, mp7.ip); 
ii = talloc( &trsl); 
mpl.ip = trsl.value.ip; 
for (i2 =0; i2 < i1; i2+t) { 

i9 =i2 % ilO; 

} 
(*mpl.ip+t = (*(mp3l.ip +i9) +_ixorg)); 

assignC z, &trsI); 
memfree( &mp7.ip); 
memfree( &mp27 .ip); 
memfree( &mp20.ip); 
memfree( &mpI6.ip); 
memfree( &mp25.ip); 
memfree( &mp3l.ip); 
stmtno =0; 

int Lcopies[5] = { 
0, 1, -1, 1, O} 

, 
copies( c, a, b) 
struct trS-struct *c, *a, *b; 
{ 

struct trS-struct trsI; 
union mp_struct mpI, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9, 
mplO, mpH, mp12, mpI3, mp14, mpI5, mpI6, mp17, mpI8, mpI9, 
mp20, mp2I, mp22, mp23, mp24, mp25; 
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union res....struct resl, res2, res3, res4, res5, res6, res7, resS, res9, 
resl0, resll, resl2, resl3, resl4, resl5, resl6, resl7, reslS, resl9, 
res20; 
int iO, il, i2, i3, i4, i5, i6, i7, is, i9, 
ilO, ill, il2, il3, il4, il5, il6, il7, ilS, il9, 
i20, i21, i22, i23, i24, i25, i26, i27, i2S, i29, 
i30, i31, i32, i33, i34, i35, i36, i37, i3S, i39; 

stmtno =1; 
while (stmtno) 

switch(stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtno =1; 
trace("copies", 1); 
if (~> type = UKTYPE) error("undefined value used''); 
if (h->type =UKTYPE) error("undefined value used''); 
mp3.ip = h- >value.ip; 
i7 = *h-> shape; 
res4.i =0; 
for (i5 =0; i5 < i7; i5++) { 

res4.i += *mp3.ip++; 
} 
valloc(&mp5; 1, INT); 
*mp5.ip =res4.i; 
ill =_ixorg; 
catshape(&mpI4, 0, &Lcopies[I], 1, h->shape); 
i22 =1; 
i25 =*h->shape; 
i24 = i22 + i25; 
i29 =1; 
i30 =*mpI4.ip; 
il4 =1; 
valloc(&mplO, il4, INT); 
for (il5 =il4 - 1; il5 >=0; il5--) { 

*(mplO.ip +il5) =*(mpI4.ip +il5) - iabs(Lcopies[(iI5 +2)]); 
} 
il6 =qsdalloc(l, &mp6, &mp7, &mpS); 
il3 =accessor(l, mplO.ip, 1, mpI4.ip, &mp9, mp6.ip, 

mp7.ip, mpS.ip); 
i17 =il3; 
valloc(&mpI9, 1, INT); 
i34 = *mplO.ip; 
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*mpI9.ip =i34; 
i35 = *mpI9.ip; 
valloc(&mp20, i35, INT); 
mp21 =mp20; 
for (i12 =0; i12 < i35; i12++) { 

resl2.i =0; 

} 

for (i31 =i17; i31 >=0; i31-) { 
i26 =i31; 

} 

if (i26 < i22) { 
(res9.i =0); 

} 
else { 

i26 -=i22; 

} 
(res9.i = *(b->value.ip + i26)); 

resl2.i += res9.i; 

(res6.i = (resI2.i + I)); 
i14 =*«iI6 +mplO.ip) - I); 
for (i15 =i16 - I; i15 >=0; i15-) { 

i17 +=*(mp9.ip +i15); 

} 

if (0 = «i12 + I) % i14)) 
i14 *=*«i15 +mplO.ip) - I); 

else 
break; 

(*mp20.ip++ =res6.i); 

aplsort(&mp22, &mp21, *mpI9.ip, INT, I); 
i37 = *mp5.ip; 
resl9.i =0; 
settrs(&trsl, INT, I, mp5.ip); 
i1 = talloc( &trsl ); 
mpl.ip =trs1.value.ip; 
for (i2 =0; i2 < i1; i2++) { 

(resI8.i =ill++); 

} 

resl8.i =aplsearch(mp22.ip, &mp21, &resI8, 
INT, *mpI9.ip) < *mpI9.ip; 

resl9.i +=resI8.i; 
i3 = (resI9.i - _ixorg); 
(*mpl.ip++ =*(a->value.ip +i3)); 

assign( c, &trsl); 
memfree( &mp5.ip); 
memfree( &mp2l.ip); 
memfree(&mpI4.ip); 
memfree( &mpI9.ip); 
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} 
} 

memfree( &m p22.ip); 
memfree( &mp25.ip); 
stmtno =0; 

int Lprimes[5] = { 
0,1,2,0,2} 

primes(x, _no2, a) 
struct trS-struct *x, * _no2, *a; 
{ 

struct trS-struct s; 
struct trS-struct trs1; 
union mp_struct mp1, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9, 
mplO, mp11, mp12, mp13, mp14, mp15, mp16, mp17, mp18, mp19, 
mp20, mp21, mp22; 
union res-struct resl, res2, res3, res4, res5, res6, res7, res8, res9, 
resl0, resll, resl2, resl3, resl4, resl5, resl6, resl7, resl8, resl9, 
res20, res21, res22; 
int iO, iI, i2, i3, i4, i5, i6, i7, i8, i9, 
ilO, ill, i12, i13, i14, i15, i16, i17, i18, i19, 
i20, i21, i22, i23, i24, i25, i26, i27; 

s.type = UKTYPE; 

stmtno = 1; 
while (stmtno) 

switch(stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtno =1; 

(II. H) trace prImes, 1 ; 
if (a->type =UKTYPE) error("undefined value used"); 
mp4.ip =a->shape; 
i5 =2; 
settrs(&trsl, INT, 0, &i_primes[I]); 
il = talloc( &trsl)j 
mpl.ip =trs1.value.ipj 
{ 

} 

res3.i = 1; 
for (i3 =OJ i3 < i5; i3++) { 

res3.i *= *mp4.ip++; 
} 
(*mp1.ip =res3.i); 
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assign( &s, &trsI); 
case 2: 

stmtno =2; 
( II. II 2) trace prImes, ; 

mp2.ip = a- >value.ip; 
i23 =0; 

An APL Compiler 

if (s.type = UKTYI'E) error("undefined value used"); 
outershape(&mp7, 1, s.value.ip, 1, s.value.ip); 
iIO = *s.value.ip; 
iI4 =*mp7.ip; 
iI3 =*(mp7.ip +1); 
il6 =(il4 - 1) * il3; 
i20 =0; 
i22 = *(s.value.ip + i20); 
valioc(&mpI3, i22, INT); 
for (i4 =0; i4 < i22; i4++) { 

resI2.i =0; 

} 

i5 =iI6 +i4; 
for (iI5 =iI4 - 1; il5 >=0; il5--) { 

i7 =i5 - ilO * (i6 =i5 / ilO); 

} 

resI2.i -+=(0 = ((i7 +_ixorg) % (i6 +_ixorg))); 
i5 -=iI3; 

if (((2 =resI2.i) !=O)) 
*(mpI3.ip +i23++) =i4; 

memfree( &m p7.ip); 
valioq(&mpI4, 1, INT); 
*mpI4.ip =i23; 
valioc(&mpI7, 1, INT); 
i26 = *mp14.ip; 
*mpI7.ip =i26; 
i27 =*mpI7.ip; 
valioc(&mpIS, i27, INT); 
mpI9 =mpIS; 
for (i3 =0; i3 < i27; i3++) { 

} 

i24 = *(mpI3.ip + i3); 
(*mpIS.ip++ = (i24 +_ixorg)); 

aplsort(&mp20, &mpI9, *mp17.ip, INT, 1); 
settrs( &trsI, BIT, 2, a- > shape ); 
iI = talioc( &trsI); 
mpl.ip =trsl.value.ip; 
for (i2 =0; i2 < iI; i2++) { 

(res22.i = *mp2.ip++ ); 
res22.i = aplsearch(mp20.ip, &mpI9, &res22, 

INT, *mpI7.ip) < *mp17.ip; 
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} 
} 

(*mpl.ip++ = res22.i); 
} 
assign( x, &trs1); 
memfree(&mp19.ip ); 
memfree( &mp14.ip); 
memfree( &mp13.ip); 
memfree( &mp17 .ip); 
memfree( &mp20.ip); 
stmtno =0; 

int Llinear[4] = { 
0, 1, 1, 1} 

, 
linear(i, _no2, m) 
struct tl'S-struct *1, * _no2, *m; 
{ 

struct tl'S-struct trs1; 
union mp_struct mp1, mp2, mp3, mp4, mp5, mp6, mp7, mpS; 
union res-struct res1, res2, res3, res4, res5, res6, res7, resS, res9, 
reslO, resll, res12, res13, res14; 
int iO, il, i2, i3, i4, i5, i6, i7, is, i9, 
ilO, ill, il2; 

stmtno =1; 
while (stmtno) 

switch(stmtno) { 
default: ' 

stmtno =OJ 
break; 

case 1: 
stmtno =1j 
trace('1inear", 1)j 
if (n.type = UKTYPE) error("undefined value used''); 
if (m->type =UKTYPE) error("undefined value used''); 
innershape(&mp2, 0, &Llinear[1], 2, m->shape); 
is = *m->shape; 
i9 =*(m->shape +1); 
is--j 
ilO =i8 * i9; 
settrs(&trs1, INT, 1, mp2.ip); 
i1 = talloc( &trs1); 
mpl.ip =trs1.value.ip; 
for (i2 =OJ i2 < il; i2++) { 

i5 =i2 - i9 * (i4 =i2 / i9)j 
i5 +=ilO; 
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resll.i =0; 
res2.i =1; 
for (i3 =i8; i3 >=0; i3--) { 

An APL Compiler 

(res3.i = (res2.i * (*(m- >value.ip + i5) - 1 ))); 
res2.i *= *n.value.ip; 

} 
} 

resIl.i -t= res3.i; 
i5 -=i9; 

} 
(*mpl.ip++ =(resIl.i +1)); 

} 
assign( 1, &trs1); 
stmtno =0; 

int Ltimeit[I8] = { 

, 

0, 1,0, 2, 1, 2, 4, 2, -1, 0, 
1,0,0,1,0, -1,8, I} 

h . 'to "*" c ar c_tlmel = ; 
int Ltimeit[I] ={ 

2} 
, 
timeit(_noI, _no2, w) 
struct tfS-struct * _noI, * _no2, *w; 
{ 

struct tfS-struct x; 
struct tfS-struct i; 
struct tfS-struct trs1, trs2, trs3, trs4, trs5, trs6, trs7; 
union mp_struct mpI, mp2, mp3, mp4, mp5, mp6, mp7, mp8, mp9, 
mplO, mpll, mpI2, mpI3, mpl4, mpI5; 
union res....struct res1, res2, res3, res4, res5, res6, res7, res8, res9, 
reslO, resll, resI2, resI3; 
int iO, il, i2, i3, i4, i5, i6, i7, i8, i9, 
ilO, ill, i12; 

x.type = UKTYPE; 
Ltype = UKTYPE; 

stmtno =1; 
while (stmtno) 

switch{stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtno =1; 
trace("timeit", 1); 
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settrs(&trsl, BIT, 0, &Ltimeit[l]); 
H = talloc( &trsl ); 
mpl.ip =trs1.value.ip; 
{ 

(*mpl.ip =0); 
} 
assign( &i, &trsl); 

case 2: 
stmtno =2; 
trace("timeit", 2); 
trs5.type = UKTYPE; 
trs2.type = UKTYPE; 
mp6.ip = &Ltimeit[8]; 
settrs(&trs3, INT, 2, &Ltimeit[5]); 
trs3.value.ip = &Ltimeit[8]; 
spiral(&trs4, &trs2, &trs3); 
mp9.ip =trs4.value.ip; 
settrs(&trs6, INT, 2, trs4.shape); 
trs6.value.ip =mp9.ip; 
primes(&trs7, &trs5, &trs6); 
mp12.ip =trs7.value.ip; 
settrs(&trsl, CHAR, 2, trs7.shape); 
H = taIIoc( &trsl ); 
mp1.cp = trs1.vaiue.cp; 
for (i2 =0; i2 < H; i2++) { 

} 

i3 = «*mp12.ip++ + 1) - _ixorg); 
(*mp1.cp++ =c_timeit[i3]); 

assign( &X, &trsl); 
memfree( &mp15.ip); 

case 3: 
stmtno =3; 
trace("timeit", 3); 
if (i.type = UKTYPE) error("undefined value used"); 
settrs(&trsl, INT, 0, &Ltimeit[l]); 
H = taIIoc( &trsl ); 
mpl.ip =trs1.value.ip; 
{ 

(*mpl.ip = (*i.value.ip + 1)); 
} 
assign(&i, &trsl); 

case 4: 
stmtno =4; 
trace("timeit", 4); 
if (w- > type = UKTYPE) error("undefined value used"); 
mpl =w->vaiue; 
if (w->rank !=O) error("rank error''); 
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i2 =0; 
getmp(&resI, &mpI, ((w->rank)? i2: 0), w->type); 
(res3.i = *i.value.ip); 

} 
} 

cIsopv(LT, &res3, &res3, INT, &resI, w->type); 
vaIIoc(&mp4, 1, INT); 
*mp4.ip = res3.i; 
i5 =_ixorg; 
is = *mp4.ip; 
if (is> 0) { 

} 

i1 =0; 
stmtno = (Ltimeit[O] * i5++- ); 
break; 

memfree( &mp4.ip); 
stmtno =0; 

struct trs....struct n; 
int Lmain[4] = { 

O,I,lO,lO} 
, 
mainO { 

struct trs....struct trsI, trs2, trs3; 
union mp_struct mpI, mp2, mp3, mp4; 
union res....struct resI, res2, res3; 
int iO, iI, i2; 

n.type = UKTYPE; 

stmtno =1; 
while (stmtno) 

switch(stmtno) { 
default: 

stmtno =0; 
break; 

case 1: 
stmtno =1; 

(
It • It ) trace mam, 1 ; 

settrs(&trs1, INT, 0, &Lmain[l]); 
i1 =taIIoc(&trs1); 
mpl.ip =trs1.value.ip; 
{ 

(*mpl.ip =10); 
} 
assign( &n, &trs1); 

case 2: 
stmtno =2; 
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} 
} 

( " • II ) trace mam, 2 ; 
trsl.type = UKTYPE; 
settrs(&trs2, INT, 0, &Lmain[l]); 
trs2.value.ip = &i_main[3]; 
timeit( &trs3, &trsl, &trs2); 
stmtno =0; 
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