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Foreword

The volume“35 Years of Fuzzy Set Theory: Celebratory Volume Dedicated to
the Retirement of Etienne E. Kerre”, edited by Chris Cornelis, Glad Deschri-
jver, Mike Nachtegael, Steven Schockaert and Yun Shi, is a fitting tribute to
Professor Etienne Kerre as a scientist, educator and a member of the pro-
fession. For me, to write a preface to this volume is an opportunity to offer
a personal tribute to Professor Kerre – my long time friend. I should like to
precede my tribute with an expression of regret. First, because Etienne is
retiring from his full professorship at Ghent University and his position as
Director of the Fuzziness and Uncertainty Modelling Research Unit of Ghent
University; and second, because in the world of science and academia the
likes of Etienne are so few and far between.

My acquaintance with Etienne goes back to the seventies when Etienne
entered the academic world and shortly after he became interested in fuzzy
set theory and its applications. Since those days, Etienne has become a very
prominent figure within the fuzzy logic community. His many seminal contri-
butions have brought him both national and international recognition. Partic-
ularly worthy of note are his contributions to fuzzy topology, fuzzy algebraic
structures, fuzzy relational calculus, fuzzy reasoning and if-then rules, possi-
bility theory, reliability theory and fuzzy image processing. He has authored
or co-authored close to ten books and over 390 papers on fuzzy set theory
and its applications. It is a remarkable record. Equally impressive are Eti-
enne’s contributions as an educator. He has guided the research of over twenty
Ph.D.s and many graduate students. In addition, Etienne has played an ac-
tive role in organizing and participating in international conferences. Etienne
has a very warm personality and works very closely with his students. He is
a role model in all respects.

I should like to take this opportunity to comment on the profound changes
in the world of fuzzy logic since Etienne began his career in the academic
world. By 1980 there were 521 papers in the INSPEC database which con-
tained“fuzzy”in the title. Today, there are 68073. In addition, there are 18302
papers with “fuzzy” in the title in the MathSciNet database. Fuzzy logic is
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employed in a wide variety of products, among them cameras, appliances,
hybrid engines and transmissions, TV sets, copiers, elevators, blood pressure
meters, etc. In recent years, applications of fuzzy logic within human sci-
ences, notably sociology and political science, began to grow in visibility and
importance.

These numbers paint a rosy picture. But beyond the rosy picture one can
see some problems which call for attention. A problem which has existed
since the birth of fuzzy set theory and fuzzy logic is related to the meaning
of “fuzzy”. In English, the word “fuzzy” has a pejorative connotation. In the
United States, in particular, pejorative connotation of “fuzzy” has seriously
impeded acceptance of fuzzy logic. Despite the profusion of products which
employ fuzzy logic, what is still visible is a residue of skepticism, particularly
in the academic world.

Pejorative connotation of “fuzzy” is rooted in a deep-seated attitude in
science – an attitude of respect for precision and lack of respect for impre-
cision. What this means is that “fuzzy” is pejorative because it is related to
imprecision. This is a problem that cuts across most languages and is hard
to resolve.

A problem which is more visible in the United States than in other coun-
tries is that at many universities courses on fuzzy logic are not taught. As
a consequence, most engineering graduates are unfamiliar with fuzzy logic
and hence are not in a position to employ it even when fuzzy logic can result
in a superior solution to a problem. However, in coming years the problem
may be solved, at least in part. More specifically, what is happening is that
computational intelligence, which is just another name for soft computing, is
rapidly growing in popularity. Computational intelligence (soft computing)
is an amalgam of fuzzy logic, neurocomputing and evolutionary computing.
Thus, in coming years fuzzy logic will be taught in many universities in
courses on computational intelligence.

What we observe today is that fuzzy logic, along with many other fields
of science and technology, is developed and applied more actively in Asian
countries – China, Japan, South Korea, Taiwan and Singapore – than in
Western countries and the United States. This is a manifestation of a global
shift in power and influence from the West to the East. That is why Western
science needs so badly the likes of Etienne Kerre.

In my view, in years to come fuzzy logic – its name notwithstanding –
is certain to grow in visibility, importance and acceptance. There is a basic
reason. In essence, fuzzy logic is the logic of classes with unsharp boundaries.
In the world of human cognition, classes with unsharp boundaries are the rule
rather than exception. What this implies is that it is only a matter of time
before the essentiality of fuzzy logic becomes apparent not only in science but
in most domains of human thought and culture. In the history of fuzzy logic
and its applications, Etienne’s contributions will occupy a prominent place.

Berkeley (California), June 1, 2010 Lotfi A. Zadeh



Preface

About Etienne E. Kerre

Etienne E. Kerre: husband, father, grandfather, and ... pioneering researcher
in fuzzy set theory and fuzzy logic. This book is dedicated to the long and
exceptionally fruitful career of Etienne, and is published on the occasion of
his retirement. Let us use this preface to provide a bird’s eye view on the life
of Etienne, both as a person and as a researcher, as a way to say “thank you”
for the wonderful years that we worked together and enjoyed his guidance.

Etienne E. Kerre – ‘E’ stands for Emiel – was born in Zele, Belgium, on
May 8, 1945, the very day World War II ended in Europe. He is the oldest
son in a large family of 8 children. His father, who passed away earlier this
year, worked for the Belgian railway company. His mother, who is now 90
years old, stayed at home to take care of the children. In the social context
of the decades right after World War II, Etienne should be proud of having
succeeded in starting what would prove to be a successful academic career.
At that time, it was not obvious to complete a full cycle of secondary school.
It were Etienne’s primary school teachers who could convince his parents
to allow him to go to secondary school, given the fact that Etienne was
an excellent student. We are all very lucky that Etienne got and took this
opportunity!

Etienne is married to Andrea De Kegel and they have one daughter
Tessa. Andrea is director of the cultural department of the province Oost-
Vlaanderen (together they share a passion for culture), Tessa is a hematolo-
gist and has a Ph.D. in medical sciences, and his son-in-law Bruno is a jazz
photographer and reviewer. Whenever Etienne speaks about his family, it is
always with love. We particularly remember his happiness when his grand-
son Henri was born on October 21, 1999. On many occasions Etienne told
us entertaining anecdotes about this boy of whom he is so proud. Without
any doubt, his retirement will allow him to spend even more time with his
grandson.
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After graduating from Sint-Lodewijkscollege Secondary School (Lokeren,
Belgium) in 1963, Etienne studied mathematics at Ghent University where he
obtained a Master’s degree in 1967, and the certificate of teacher education
one year later. After an unusually short period of less than three years, in
1970 he was able to complete his Ph.D. in Mathematics concerning “Low
Energy Electron Diffraction”, a topic on which he has published five papers
in international scientific journals. It was the first year of what Etienne calls
his “3 Fat Years”: in 1970 he got his Ph.D., in 1971 he got married, and in
1972 he became a father. Etienne worked as an assistant of Ghent University
from 1969 to 1978. In 1978 he became a work leader at Ghent University,
and a lecturer in 1984. In 1991 he obtained a full professor position at Ghent
University. In 2004 he furthermore obtained honorary professorships from
Southwest Jiaotong University and Xihua University in Chengdu, China.

Etienne started his research on fuzzy set theory in 1976. In this year, he
also founded the Fuzziness and Uncertainty Modelling Research Unit, which
he guided until his retirement. Since then he has published, together with
many colleagues from around the world (DBLP lists 91 different co-authors,
ISI Web of Science more than 130), more than 390 research papers on fuzzy
set theory (both theoretical and applied) in international scientific journals
and international conference proceedings. His research interests cover Fuzzy
Topology, Fuzzy Algebraic Structures, Fuzzy Relational Calculus, Fuzzy Rea-
soning and If-Then Rules, Possibility Theory and Reliability Theory, Fuzzy
Image Processing and so on. He has also written 8 books on basic principles
of Fuzzy Set Theory and its applications, and is editor of 17 other books.
Besides these publications, Etienne has given 155 lectures at international
conferences and institutes, and acted as organizer or chairman of sessions in
82 international conferences and workshops. He has been a member of the
editorial boards of 24 international journals and has been a referee for more
than 65 international journals. He has also been a member of the program
committee of 127 international conferences and has been a referee for more
than 83 international conferences. Already 29 students from Belgium, Bul-
garia, China and Egypt obtained a Ph.D. degree under his guidance, and
Etienne has been a member of the jury for another 15 Ph.D. theses.

These are all impressive numbers, and if in any way possible they quantify
an impressive academic career. All editors of this book belong to the group
of Etienne’s 29 former Ph.D. students, and all enjoyed his guidance. We can
rightly say that Etienne has always made great efforts to attract young peo-
ple to academic research in fuzzy set theory. This seduction already started
during his classes on fuzzy set theory, which he taught with great enthu-
siasm and dynamism. Quite logically, a lot of students made their master
thesis in the field of fuzzy set theory, and this was a good recruiting area for
young researchers. Etienne has obtained several large research projects that
enabled him to employ these young people, and to train them into successful
academics.
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Etienne was also very active in teaching. He has given 7 courses about
Mathematical Analysis and 11 courses about Fuzzy Set Theory and Fuzzy
Logic to both undergraduates and postgraduate levels in Computer Science,
Mathematics and Physics from 1969 until now. In fact, thanks to Etienne,
Ghent University was one of the first universities worldwide where fuzzy set
theory was taught in the basic curriculum. Students from Ghent University
will certainly remember his white duster, which he wore whenever he was
teaching. Etienne is also known as a firm but fair professor to his students
(including his Ph.D. students): he demanded a lot of effort from his students
and insisted that they formulated everything as precisely as possible. This
was of course justified, from an academic point of view in general and from
a mathematical point of view in particular. However, especially in the first
year of an academic education many students lack the required level of formal
rigour, and on occasion Etienne would come in our offices to complain about
it. Teaching students this skill has always been one of his main missions. It
is also interesting to discover how well Etienne is known by many current
secondary school teachers in mathematics. If they took their university study
in Ghent, chances are high that they had at least one course of Etienne, as an
assistant in his beginning period and as a professor later on, and the teachers
we encountered do remember him vividly. Teaching was also done outside
of Ghent. Etienne has given 3 courses to undergraduates at the University
Nebraska (Lincoln, U.S.A.) from 1987 to 1990, and 2 courses to postgraduates
at Alcatel Bell Company (Antwerp, Belgium) in 1993 and 1994.

Beside his strong involvement in the academic world, Etienne always stayed
a family man. He would not hesitate to offer his help if someone needed it.
We often wondered how he found the time to do all these things. Etienne just
has an extraordinary amount of energy, which is prefectly illustrated by the
fact that he only needs a couple of hours of sleep every night. Chances are
high that he is reading this book in the middle of the night!

When we are writing this preface, Etienne still has three months before
his retirement. We know that he will retire with mixed feelings. On the one
hand Etienne certainly deserves the rest of a retirement, which will allow
him to spend more time with his family and to engage in other activities. On
the other hand, Etienne is filled with passion for research and is not able to
stop completely. Luckily, the university offers the possibility to stay active,
of course at a slower pace, such that Etienne will be able to get a good mix
between retirement and a continued involvement in the academic world. We
wish him all the best with his retirement and his new or more intensified
activities, and hope to keep meeting him, either in the context of research or
just as friends to have a drink on a sunny day. Good luck Etienne, and thank
you for being the wonderful person and researcher that you are!
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About This Volume

This volume contains contributions from researchers that have been close to
Etienne in one way or another: former Ph.D. students, co-authors, and friends
in general. The idea of compiling a volume dedicated to the retirement of
Etienne originated in January 2010, and was carried out by the postdoctoral
researchers in his group at that time. Several people have kindly offered their
help in assisting us with the reviewing process: Kim Bauters, Martine De
Cock, Jeroen Janssen, Bart Van Gasse, and Patricia Victor. We also thank
the authors for the time and efforts they spent in preparing their contribution,
within a tight time frame. We are grateful to Janusz Kacprzyk and the people
from Springer-Verlag for their help, and for giving us the opportunity to
publish this book in the series of Studies in Fuzziness and Soft Computing.

The chapters of this volume are divided in three parts: i) logics and con-
nectives, ii) data analysis, and iii) media applications. The first part gathers
contributions that are primarily of a theoretical nature, covering fuzzy logic,
(interval-valued and intuitionistic) fuzzy logic connectives, and aggregation
operators. The chapter by R. Mesiar and M. Komorńıková introduces and
discusses a general concept of aggregation on bounded partially ordered sets
and on bounded lattices. The weakest and strongest aggregation functions
on a poset are identified, and several construction methods are discussed.
The properties of t-norms and related operators on a poset are discussed and
several characterizations are given. The chapter ends with a discussion of
aggregation functions on the underlying lattice of Atanassov’s intuitionistic
fuzzy set theory. Next, the chapter by K.T. Atanassov contains an overview
of and new results on 23 of the 138 different intuitionistic fuzzy implications
and 5 of the different intuitionistic fuzzy negations already introduced by
the author. Some properties of these operators are discussed, and a partial
solution to a problem by Baczynski and Jayaram relating the contrapositive
property is given using intuitionistic fuzzy implications and negations. The
axioms of intuitionistic logic are checked for the intuitionistic fuzzy implica-
tions and negations. The chapter by V. Novák and I. Perfilieva deals with
the practicality of fuzzy logic, both in the narrow and in the broad sense.
In the field of mathematical fuzzy logic in the narrow sense, traditional and
evaluated syntax are reviewed, as well as fuzzy type theory. In the field of
fuzzy logic in the broader sense, the formal theories of evaluative linguis-
tic expressions, fuzzy if–then rules, perception based logical deduction and
intermediate and generalized quantifiers are treated. Finally an example in
commonsense human reasoning is given, and two theories related to fuzzy
logic are discussed, namely fuzzy approximation and the fuzzy transform.
The subsequent chapter by B. Van Gasse, C. Cornelis and G. Deschrijver
studies propositional calculi for interval-valued fuzzy logics. Starting from
the notion of the triangularization of a lattice, the authors focus on a specific
case called interval-valued residuated lattices. Then the notion of a trian-
gle algebra is introduced, and shown to be isomorphic to a particular class
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of interval-valued residuated lattices. Finally, triangle algebras are used to
define several interval-valued fuzzy logics, for which soundness and complete-
ness is analyzed. The last chapter of the first part by Y. Shi, B. Van Gasse
and D. Ruan deals with fuzzy implications. The complete dependencies and
independencies between eight commonly considered potential properties of
implications are studied. Each independency is shown by a counterexample.
Two of these counterexamples lead to a new class of implications which are
only determined by a negation, and this new class is extensively investigated.

The second part of the book pertains to applications of fuzzy set theory to
data analysis, covering classification, decision making, rough sets and formal
concept analysis. The chapter by A.M. Radzikowska deals with L–fuzzy rough
sets as a further generalization of rough sets. Rough sets were originally pro-
posed as a formal tool for analyzing and processing incomplete information
represented in data tables. Later on, fuzzy generalizations of rough sets were
introduced and investigated to be able to deal with imprecision. Anja and
Etienne cooperated on this topic for more than a decade. The next chapter
is authored by Y. Djouadi, D. Dubois and H. Prade. One of Etienne Kerre’s
favorite topics is undoubtedly fuzzy relational calculus. Formal concept anal-
ysis (FCA) is known to be a successful and elegant application of relational
calculus, revolving around a set of objects, a set of properties, and a bi-
nary relation between them. This chapter covers different graded extensions
of formal concept analysis that allow to account for gradual properties, to
handle uncertainty, and to acknowledge typicality of properties and impor-
tance of objects. The chapter offers insights in existing work on fuzzy FCA
as well as interesting new results. The chapter by X. Wang, C. Wu and X.
Wu gives a comprehensive overview of the research on fuzzy choice functions.
First, it discusses Banerjee’s framework, and then moves on to study various
preferences derived from choice functions, where the focus is on rationality
conditions and their interrelationships. At the end, Georgescu’s framework,
in which also the set of alternatives to choose from is fuzzified, is investigated.
Finally, the chapter by G. Chen, Y. Xiong and Q. Wei discusses the use of
fuzzy partitions to generate classification rules in domains with numerical at-
tributes. In particular, they develop an extension of GARC, a classifier which
is based on association rules. Experimental results show that the accuracy of
GARC is maintained, while using a fewer number of rules.

The final part of the book comprises chapters in which fuzzy sets are used
to represent or to manipulate different types of media objects, such as text
documents and images. The first chapter is a contribution of the 5 former
PhD students of Etienne that worked on fuzzy techniques in image process-
ing (M. Nachtegael, T. Mélange, S. Schulte, V. De Witte and D. Van der
Weken). In a prozaic style, the chapter gives an overview of the 12 years of
research in this field, focussing on fuzzy mathematical morphology, similarity
measures for images and noise reduction filters for both grayscale and colour
images and video sequences. Next, the chapter by H. Bustince, M. Pagola,
E. Barrenechea and J. Fernández deals with adapting a fuzzy thresholding
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algorithm to some extensions of fuzzy set theory, namely interval-valued fuzzy
sets, type-2 fuzzy sets, interval type-2 fuzzy sets and intuitionistic fuzzy sets.
The resulting fuzzy thresholding algorithms are used for image segmentation
to solve the problem of accurate elicitation of membership functions. Experi-
mental results suggest that in some cases, the adapted thresholding algorithm
indeed outperforms the existing algorithm. The chapter by S. Schockaert, N.
Makarytska, and M. De Cock provides an overview of fuzzy approaches and
related techniques in the web intelligence field. In particular, the authors ex-
plain the need for, and discuss the potential of fuzzy concepts and fuzzy set
theory for three classes of applications that are becoming increasingly impor-
tant on the web: information retrieval methods, recommender systems and
the semantic web. Finally, the chapter by S. Zadrozny, J. Kacprzyk and K.
Nowacka is centered around the problem of text categorization. The authors
propose a weighting scheme to represent text documents in which the weight
of each term is a fuzzy set. An existing classification algorithm for binary
attributes is generalized to cope with fuzzy set valued attributes, after which
some preliminary experimental results are provided.

Ghent, Chris Cornelis
July 2010 Glad Deschrijver

Mike Nachtegael
Steven Schockaert

Yun Shi
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Aggregation Functions on Bounded Posets

Radko Mesiar and Magda Komornı́ková

Abstract. A general concept of aggregation on bounded posets is introduced and

discussed. Up to general results, several particular results due to E.E. Kerre and his

research group are recalled in the light of our approach. A special attention is paid

to triangular norms on bounded posets.

1 Introduction

Two basic attributes of aggregation functions introduced and discussed in [6, 28,

33, 34] are the monotonicity and the boundary conditions. Recall that an aggrega-

tion function A : [0,1]n → [0,1] (an extended aggregation function A :
⋃

n∈N [0,1]n →
[0,1]) is supposed to be increasing, i.e., A(x)≤ A(y) whenever x ≤ y, and A(0,...,0)
= 0, A(1, ...,1) = 1. The framework of aggregation functions on [0,1] can be modi-

fied into any closed interval [a,b] ⊆ [−∞,∞], or even to any interval I ⊆ [−∞,∞]
(with modified boundary conditions). Obviously, aggregation functions can be

introduced to act on any (partially) ordered structure with bounds.

Definition 1. Let (P,≤,0,1) be a bounded poset (partially ordered set). Let n ∈N be

fixed. A mapping A : Pn →P is called an (n-ary) aggregation function on P whenever

it is increasing, i.e.,

A(x) ≤ A(y) whenever x ≤ y, (i.e., x1 ≤ y1, . . . ,xn ≤ yn) (1)

and it satisfies boundary conditions

Radko Mesiar
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A(0, ...,0) = 0, A(1, ...,1) = 1. (2)

A mapping B :
⋃

n∈N Pn → P is called an extended aggregation function on P

whenever B�Pn is an n–ary aggregation function on P for any n ∈ N.

Note that in the case n = 1, often a convention A(x) = x is used for unary aggrega-

tion function on [0,1], see [6, 28, 34]. We will not insist on this convention in our

approach.

Remark 1. i) Note that for any poset (P,≤,0,1) a dual poset (P∗,≤∗,0∗,1∗) can

be introduced, where P∗ = P, x ≤∗ y if and only if y ≤ x, and 0∗ = 1, 1∗ = 0.

Evidently, any aggregation function A : Pn → P (A :
⋃

n∈N Pn → P) on P can be

considered also as an aggregation function on P∗. Several properties of A on P

are the same as those of A on P∗ (namely, all algebraic properties not linked to

the orderings ≤ and ≤∗ ). However, properties based on the ordering should be

modified by the above *–duality (for example, conjunctivity on P is equivalent

to the disjunctivity on P∗, see Definition 2).

ii) Extended aggregation functions acting on a poset P with convention of identity

for the unary aggregation were introduced in [10], where their categorical foun-

dations were studied. Particularly, aggregation processes in probabilistic met-

ric spaces were considered. As a typical example, convolution of distribution

functions can be seen as a special aggregation function.

In this contribution, we discuss first aggregation functions which are defined on any

poset, see Section 2. In Section 3, aggregation functions on general bounded lattices

are studied. Special class of triangular norms and related aggregation functions are

covered by Section 4. Section 5 brings an overview of some aggregation functions

acting on special lattice L∗, with several results of E.E. Kerre’s group. Finally, some

concluding remarks are added.

2 Aggregation Functions on General Bounded Posets

Algebraic properties introduced for the classical aggregation functions acting on

[0,1] can be straightforwardly introduced for aggregation functions on general

bounded posets. We recall some of these properties (for more details and discus-

sion in the case P = [0,1] we recommend [28]):

• symmetry

• associativity

• neutral element

• annihilator

• strict monotonicity

• decomposability (for extended aggregation functions)

• idempotency

• internality (i.e., A(x1, . . . ,xn) ∈ {x1, . . . ,xn})

• bisymmetry.
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Several other properties, like additivity, continuity, etc., can be introduced only in

the case of particular posets equipped with additional properties, and thus we will

not consider them. Note also that we can introduce conjunctive and disjunctive ag-

gregation functions (even the concept of k–tolerantness and k–intolerantness due to

Marichal [35]), while the concept of averaging aggregation functions is restricted to

the class of lattices.

Definition 2. Let A : Pn → P be an aggregation function on P. Then A is called:

i) conjunctive whenever A(x1, . . . ,xn) ≤ xi for all i ∈ {1, . . . ,n},

ii) disjunctive whenever A(x1, . . . ,xn) ≥ xi for all i ∈ {1, . . . ,n},

iii) k–tolerant with k ∈ {1, . . . ,n} whenever card({i|A(x1, . . . ,xn)≥ xi})≥ n−k+1,

iv) k–intolerant with k ∈ {1, . . . ,n} whenever card({i|A(x1, . . . ,xn) ≤ xi})
≥ n− k + 1.

Evidently, conjunctive aggregation functions coincide with 1-intolerant, and dis-

junctive aggregation functions coincide with 1-tolerant. The concepts of toler-

ant and intolerant aggregation functions allows to introduce a stronger form of

averaging property.

Definition 3. Let A : Pn → P be an aggregation function on P. Then A is called

strongly averaging whenever A is simultaneously n-tolerant and n-intolerant, i.e.,

for each (x1, . . . ,xn) ∈ Pn, there are i, j ∈ {1, . . . ,n} so that

xi ≤ A(x1, . . . ,xn) ≤ x j.

Evidently, each internal aggregation function A on P is strongly averaging (but not

vice–versa).

Example 1. Let P = [0,1]2 be equipped with the standard partial order ≤. Observe

that then (P,≤) is a lattice. Then Min, Max : Pn → P defined by

Min((x1,y1), . . . ,(xn,yn)) = (min(x1, . . . ,xn),min(y1, . . . ,yn))

and

Max((x1,y1), . . . ,(xn,yn)) = (max(x1, . . . ,xn),max(y1, . . . ,yn))

are idempotent n-ary aggregation functions on P. Neither Min nor Max are strongly

averaging. However, Min is conjunctive and Max is disjunctive.

On the other side, projection Pri : Pn → P defined by

Pri ((x1,y1), . . . ,(xn,yn)) = (xi,yi)

are simultaneously n–tolerant and n–intolerant and thus strongly averaging (indeed,

projections are internal aggregation functions).
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We introduce some distinguished aggregation functions on P (for any arity thus

also as extended aggregation functions):

- the weakest aggregation function Aw :
⋃

n∈N Pn → P,

Aw(x1, . . . ,xn) =

{

1 if x1 = . . . = xn = 1,
0 else,

- the strongest aggregation function As :
⋃

n∈N Pn → P,

As(x1, . . . ,xn) =

{

0 if x1 = . . . = xn = 0,
1 else,

- the weakest t-norm (drastic product) TD :
⋃

n∈N Pn → P,

TD(x1, . . . ,xn) =

{

xi if x j = 1 for each j �= i,
0 else,

- the strongest t-conorm (drastic sum) SD :
⋃

n∈N Pn → P,

SD(x1, . . . ,xn) =

{

xi if x j = 0 for each j �= i,
1 else.

All these four aggregation functions are associative (i.e., their binary form is asso-

ciative, and n-ary form is the genuine extension of that binary form).

Aggregation functions Aw,TD,As,SD are symmetric. For any fixed n ∈ N, n ≥ 2,

projection functions Pri : Pn → P, Pri(x1, . . . ,xn) = xi, are non–symmetric n-ary

aggregation functions on P.

Observe that on the Boolean chain P = {0,1}, there are exactly four binary

aggregation functions, namely Aw = TD,As = SD,Pr1 and Pr2,Pr1(x,y) = x and

Pr2(x,y) = y. Each of them is associative. This fact excludes the possibility to define

a non-associative aggregation function A : P2 → P by a unique formula independent

of the underlying poset P. Obviously, in particular cases of posets P with card P > 2,

there are several non-associative aggregation functions. For example, the arithmetic

mean M : [0,1]2 → [0,1] given by M(x,y) = x+y
2

is not associative.

There are several construction methods appropriate for constructing aggrega-

tion functions on posets. First of all, for any fixed bounded poset (P,≤,0,1), the

composition of aggregation functions can be applied. It is not difficult to check

that for any fixed m ∈ N,n1, . . . ,nm ∈ N, and aggregation functions A : Pm →
P, Bi : Pni → P, i = 1, . . . ,m, the mapping D : Pn → P, n = ∑

m
i=1 ni, D(x1, . . . ,xn) =

A(B1 (x1, . . . ,xn1
) , . . . ,Bm (xn−nm+1, . . . ,xn)), is an n-ary aggregation function on P.

As a special case we can consider an n-ary aggregation function A : Pn → P

and unary aggregation functions f ,g1, . . . ,gn : P → P, yielding a transformed n-ary

aggregation function D : Pn → P given by

D(x1, . . . ,xn) = f (A(g1(x1), . . . ,gn(xn))) . (3)
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Observe that (3) generalizes the standard isomorphic transformation of A, which

corresponds to the case when g1 = . . . = gn and f ◦ g = idP, f (g(x)) = x.

Another construction method is linked to the ordinal sums of posets introduced

by Birkhoff [3].

Proposition 1. Let (K,
,0K ,1K) be a bounded chain, and let ((Pk,≤k,0k,1k))k∈K

be a family of posets such that for k1,k2 ∈ K,k1 
 k2, either Pk1

⋂

Pk2
is empty, or

1k1
= 0k2

and Pk1

⋂

Pk2
=

{

1k1

}

. For each k∈K, let Ak : Pn
k →Pk

(

Ak :
⋃

n∈N Pn
k → Pk

)

be an aggregation function on Pk. Then:

(i) (P,≤,0,1) is a poset, where P =
⋃

k∈K Pk,0 = 00K
, 1 = 11K

, and for any x,y ∈
P, x ≤ y if and only if x ∈ Pk1

,y ∈ Pk2
and k1 ≺ k2 or k1 = k2 = k and x ≤k y.

(ii) A mapping A : Pn → P(A :
⋃

n∈N Pn → P) given by A(x1, . . . ,xn) =
Ak

(

xk
1, . . . ,x

k
n

)

, where k ∈ K satisfies xi ∈ Pk for some i ∈ {1, . . . ,n} and

{x1, . . . ,xn}
⋂

(
⋃

r≺k Pr) = /0, and

xk
j =

⎧

⎨

⎩

x j if x j ∈ Pk,
1k if x j > 1k,
0k if x j < 0k,

is an aggregation function on P. A is called conjunctive ordinal sum, and Ak,k ∈
K, are called summands with the notation A = C− (〈Pk,Ak〉 | k ∈ K).

(iii) A mapping B : Pn → P(B :
⋃

n∈N Pn → P) given by B(x1, . . . ,xn) =
Ak

(

xk
1, . . . ,x

k
n

)

, where k ∈ K satisfies xi ∈ Pk for some i ∈ {1, . . . ,n} and

{x1, . . . ,xn}
⋂

(
⋃

k≺r Pr) = /0, is an aggregation function on P. B is called a dis-

junctive ordinal sum with summands Ar, with the notation B = D −
(〈Ar,Pr〉 | r ∈ K).

Proof. Item (i) is due to Birkhoff [3]. Items (ii) and (iii) can be checked directly.

⊓⊔

The next properties can be either checked directly, or they follow from Clifford’s

ordinal sum of semigroups construction [7].

Corollary 1. Let A = C − (〈Pk,Ak〉 | k ∈ K) (B = D− (〈Ak,Pk〉 | k ∈ K)) be a con-

junctive (disjunctive) ordinal sum of aggregation functions. Then

(i) A is a conjunctive aggregation function (B is a disjunctive aggregation function)

on P if and only if all summands Ak, k ∈K, are conjunctive (all summands Ak, k ∈
K, are disjunctive); .

(ii) A (B) is symmetric if and only if all Ak, k ∈ K, are symmetric;

(iii) A is associative (B is associative) if and only if all Ak, k ∈ K, are associative,

and if for k1 ≺ k2, Pk1

⋂

Pk2
�= /0, then 1k1

is a neutral element of Ak1
and 0k2

= 1k1

is the annihilator of Ak2
(1k1

is an annihilator of Ak1
and 0k2

= 1k1
is a neutral

element of Ak2
).
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3 Aggregation Functions on Bounded Lattices

Two basic binary aggregation functions on a bounded lattice (L, ≤, 0, 1) are the lat-

tice operations, i.e., the join Max(x,y) = x∨ y and the meet Min(x,y) = x∧ y. Due

to their associativity, both Max and Min can be extended to n-ary aggregation func-

tions, as well as to extended aggregation functions (keeping the original notation).

Observe that Min is the strongest conjunctive aggregation function on L, while Max

is the weakest disjunctive aggregation function on L.

For aggregation on lattices, the concept of averaging can be introduced as

follows.

Definition 4. Let (L, ≤, 0, 1) be a lattice and let A : Ln → L (A :
⋃

n∈N Ln → L) be

an aggregation function on L. A is called averaging whenever it satisfies Min ≤ A ≤
Max.

In general, each strongly averaging aggregation function on a lattice L is averaging.

Note that if L is a chain then the strong averaging and averaging properties coin-

cide. In any other case, Min and Max are averaging aggregation functions which are

not strongly averaging, compare also Example 1. Moreover, an aggregation function

A on a lattice L is averaging if and only if it is idempotent.

Lattice operations of the join
∨

and of the meet
∧

allows to introduce lattice

polynomials p : Ln → L in the following way (see [27], section I.4):

(i) For any i ∈ {1, . . . ,n} , Pri : Ln → L is a lattice polynomial.

(ii) If A, B : Ln → L are lattice polynomial functions, then also A∨B and A∧B

are lattice polynomial functions from Ln to L.

(iii) Every lattice polynomial function A : Ln → L is formed by finitely many

applications of rules (i) and (ii).

Example 2. Define A, B : L3 → L by

A(x,y,z) = (x∨ y)∧ z

and

B(x,y,z) = (x∧ z)∨ (y∧ z).

Then both A and B are lattice polynomials on L, and in general A �= B. Obviously, if

L is a distributive lattice, then A = B.

Note that each lattice polynomial A is an averaging aggregation function, which is

strongly averaging if and only if A is a projection function, A = Pri for some i, or L

is a chain.

An interesting method how to construct n–ary aggregation functions on a lattice

L is linked to sections of aggregation functions on L with higher dimensions (this

method can be applied on posets, too):

consider an aggregation function B : Lk+n → L, and choose elements a1, . . . ,ak ∈ L

so that
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B(a1, . . . ,ak,0, . . . ,0) = 0 and B(a1, . . . ,ak,1, . . . ,1) = 1

(observe that such elements need not exist, in general); then the mapping A : Ln → L

given by

A(x1, . . . ,xn) = B(a1, . . . ,ak,x1, . . . ,xn)

is an n–ary aggregation function on L.

Example 3. (i) Let Med : L3 → L be given by Med(x,y,z) = (x∧y)∨(x∧z)∨(y∧z).
Then Med is a ternary lattice polynomial on L (Med is called median, following

the standard terminology from the case when L = [−∞,∞] is the extended real

line). Obviously, for any a∈L, Meda : L2 → L given by Meda(x,y) = Med(a,x,y)
is a binary aggregation function (so called a–median, compare [23, 26]). Note

that Med0 = Min and Med1 = Max.

(ii) Define B : L4 → L by B(x1,x2,x3,x4) = (x1 ∧ x3)∨ (x2 ∧ x4)∨ (x3 ∧ x4), i. e.,

B is a quaternary lattice polynomial on L. For any fixed a,b ∈ L,A : L2 → L

given by A(x,y) = B(a,b,x,y) is a binary aggregation function on L. Evidently,

if a = b then A = Meda. Moreover, A is always associative, and if L = [0,1] then

it coincides with the binary Sugeno integral, see [40].

On any lattice L, we can introduce also the following conjunctive aggregation

function Z : L2 → L and its dual Z∗ : L2 → L given by

Z(x,y) =

{

x∧ y if x∨ y = 1,
0 else,

(4)

and

Z∗(x,y) =

{

x∨ y if x∧ y = 0,
1 else.

(5)

Observe that the duality follows from Remark 1. Indeed, the formula for Z on

(L, ≤, 0, 1) is exactly the same as the formula for Z∗ on (L∗, ≤∗, 0∗, 1∗) taking

into account that ∧∗ = ∨ and ∨∗ = ∧.

Note that Z = TD (Z∗ = SD) if and only if L has no unit multipliers, i.e., x < 1

and y < 1 imply x∨ y < 1 (L has no zero divisors, i. e., x > 0 and y > 0 imply

x∧ y > 0). Both these constraints are satisfied if L is a bounded chain. In remaining

cases, Z ≥ TD (and Z �= TD), and Z∗ ≤ SD (and Z∗ �= SD).

The functions TD,SD,Z,Z∗,Min and Max are examples of triangular norms and

related aggregation functions which we will discuss in the next section.

4 Triangular Norms and Related Aggregation Functions

E. E. Kerre with G. De Cooman [9] have introduced order norms on bounded posets,

covering triangular norms, their weaking triangular seminorms, and related dual

aggregation functions.

Definition 5. Let A : P2 → P be a binary aggregation function on a fixed bounded

poset (P, ≤, 0, 1). Then A is called:
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(i) a triangular seminorm (t–seminorm in short) whenever 1 is a neutral element

of A, i. e., A(x,1) = A(1,x) = x for all x ∈ P;

(ii) a triangular semiconorm (t–semiconorm in short) whenever 0 is a neutral

element of A.

Moreover:

(iii) a symmetric associative t–seminorm A is called a triangular norm (t–norm)

on P;

(iv) a symmetric associative t–semiconorm A is called a triangular conorm (t–

conorm) on P.

Finally, if A is a t-norm, or a t-seminorm, or a t-conorm, or a t-semiconorm on P,

then it is called an order norm on P.

Due to the associativity, triangular norms and triangular conorms can be extended

to n–ary aggregation functions as well as to extended aggregation functions on P

(for n = 1, identity on P is considered in both cases). Note that triangular norms are

conjunctive, while triangular conorms are disjunctive aggregation functions. More-

over, it is possible to introduce n–ary t–seminorms (t–semiconorms) as aggregation

functions A : Pn → P with a neutral element 1 (0), i. e., satisfying A(x1, . . . ,xn) = xi

whenever x j = 1 for all j �= i (A(x1, . . . ,xn) = x j whenever x j = 0 for all j �= i).

As already mentioned in Section 2, TD is the weakest t–norm on P. Evidently, it

is also the weakest t–seminorm on P. Similarly, SD is both the strongest t–conorm

and the strongest t–semiconorm on P. In general, the strongest t–norm either t–

seminorm need not exist. By duality, the weakest t–conorm (t–semiconorm) need

not exist.

Example 4. Define a bounded poset P by the next Hasse diagram:

1

0

a

c

b

d

Fig. 1 Hasse diagram of a poset P

and two mappings A,B : P2 → P by the next tables 1 and 2:
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Table 1 The mapping A

A 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a a a

b 0 0 b b b b

c 0 a b c a c

d 0 a b a d d

1 0 a b c d 1

Table 2 The mapping B

B 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a a a

b 0 0 b b b b

c 0 a b c b c

d 0 a b b d d

1 0 a b c d 1

Then both A and B are maximal t-seminorms on P. Moreover, both A and B are

triangular norms on P.

On the other hand, if P is a lattice, then Min is the strongest t–norm as well as the

strongest t–seminorm on P, and Max is the weakest t–conorm as well as the weakest

t–semiconorm on P.

Example 4 shows that there can be several idempotent t–norms (t–seminorms, t–

conorms, t–semiconorms) on a general bounded poset P. However, if P is a lattice,

then the requirement of idempotency leads to the uniqueness of discussed order

norms.

Proposition 2. [9] Let (L, ≤, 0, 1) be a bounded lattice and let A : L2 → L be an

idempotent (i. e., averaging) aggregation function on L. Then:

(i) A is a t–norm if and only if A is a t–seminorm if and only if A = Min;

(ii) A is a t–conorm if and only if A is a t–semiconorm if and only if A = Max.

Observe that due to the boundary conditions required for order norms, when

considering a pair A,B : P2 → P of a t–norm (t–seminorm) A and a t–conorm

(t–semiconorm) B on P, the distributivity

A(x,B(y,z)) = B(A(x,y),A(x,z))

implies the absorption

B(A(x,y),x) = x
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(see [9], Proposition 3.5), and this absorption implies the idempotency of B (see [9],

Proposition 3.6).

Similarly, the distributivity

A(B(x,y),z) = B(A(x,z),A(y,z))

implies the absorption

B(x,A(y,x)) = x

which implies the idempotency of B.

Note that the role of A and B can be reversed in the above claims.

Several other properties (and their relationships) of order norms are introduced

and discussed in [9], having in mind in particular the role of t-norms and t-conorms

as conjunctions and disjunctions in many valued logics with truth values domain P.

Order norms (in particular triangular norms) on special kinds of posets and/or

possessing some special properties were discussed in several papers. For example,

triangular norms on product lattices were studied, among others, in [8]. Evidently,

for any product poset

(P, ≤, 0, 1) = ∏
i∈I

(Pi, ≤i, 0i, 1i) ,

and any system (Ti)i∈I of t–norms Ti : P2
i → Pi, i ∈ I, the mapping T : P2 → P given

by

T ((xi)i∈I ,(yi)i∈I) = (Ti(xi,yi))i∈I

is a triangular norm on P. A similar result is valid also for the remaining types of or-

der norms, i. e., for t–seminorms, for t–conorms, and for t–semiconorms. Interesting

is the opposite claim, which is valid only under some special constraints.

Proposition 3. [8] For a fixed chain (L, ≤, 0, 1) and n > 1, let T : (Ln)2 → Ln be

a t–norm on the product lattice Ln. Then T is the product of t–norms T1, . . . ,Tn

on L, i. e., T ((x1, . . . ,xn),(y1, . . . ,yn)) = (T1(x1,y1), . . . ,Tn(xn,yn)) if and only if

T (x∨y,z) = T (x,z)∨T (y,z) for all x,y,z ∈ Ln (or T (x∧y,z) = T (x,z)∧T (y,z)
for all x,y,z ∈ Ln).

Not all t–norms are direct products of t–norms on L. For example, in [30] a

method for constructing t–norms on product lattices which are not direct products is

presented.

Many particular results on t–norms on lattices (thus by duality also on t–conorms)

can be found in the domain of integral monoids, see, for example, [29].

Problems concerning ordinal sums of t–norms on bounded lattices were investi-

gated in [36], and [38]. We recall only the next result from [38].

Proposition 4. [38] Let (L, ≤, 0, 1) be a bounded lattice, (K, ≤, a, b) its complete

bounded sublattice, and H : K2 → K a t–norm on K. Then T : L2 → L given by
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T (x,y) =

⎧

⎨

⎩

x∧ y if 1 ∈ {x,y} ,
0 if 0 ∈ {x,y} ,
H(x∗,y∗) else,

where x∗ = sup{z ∈ K ∪{0,1}|z ≤ x}, is a t–norm on L extending H, i. e.,

T |K2 = H.

For interested readers we recall some works on order norms on posets (lattices)

which may be an inspiration for a deeper study of this topic. Some particular meth-

ods to construct triangular norms on special types of posets can be found for ex-

ample in [42].
∨

-distributivity and infinitely
∨

-distributivity of triangular norms on

complete bounded lattices is studied in [31]. An interesting relation between trian-

gular norms and triangular seminorms on the standard lattice L = [0,1] (i. e., clas-

sical triangular norms are considered, as they were introduced in [39] and studied

in [1, 32]) was shown in [24] (observe that triangular seminorms on [0,1] are often

called semicopulas [25]).

Proposition 5. The class of all symmetric t–seminorms on [0,1] is the
∨

-closure

(
∧

-closure) of the class of all t–norms on [0,1].

Open problem: Let (L, ≤, 0, 1) be a complete lattice. Is it possible to rewrite

Proposition 5 for this case, i. e., is the class of all symmetric t–seminorms on

L the
∨

-closure (
∧

-closure) of the class of all t–norms on L?

5 Aggregation Functions on Lattice L∗

Consider the set L∗ =
{

(x1,x2)|(x1,x2) ∈ [0,1]2,x1 + x2 ≤ 1
}

and define a relation

≤ on L∗ by

(x1,x2) ≤ (y1,y2) whenever x1 ≤ x2 and x2 ≥ y2.

Then (L∗, ≤, 0, 1) is a bounded complete lattice, where 0 = (0,1) and 1 = (1,0).
Note that then the lattice operations on L∗ are defined as follows:

(x1,x2)∧ (y1,y2) = (x1 ∧ y1,x2 ∨ y2),

(x1,x2)∨ (y1,y2) = (x1 ∨ y1,x2 ∧ y2).

Recall that the lattice L∗ is a background of intuitionistic fuzzy set theory introduced

by [2] and it is isomorphic to the standard lattice of all closed subintervals of [0,1].
The major contribution to the theory of aggregation functions on L∗ is due to the

school of E. E. Kerre [13, 14, 15, 16, 17, 18, 19, 20, 21] and [4, 5, 22, 41]. In this

section, we recall some of results presented in these manuscripts.

Note first of all that due to [12] , a mapping N : L∗ → L∗ is decreasing invo-

lution (i. e., a negator), if and only if there is decreasing involution n : [0,1] →
[0,1] such that N ((x1,x2)) = (n(1− x2),1−n(x1)). It is not difficult to see that
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for any aggregation function A : (L∗)n → L∗ (A :
⋃

n∈N(L∗)n → L∗), also the map-

ping AN : (L∗)n → L∗
(

AN :
⋃

n∈N(L∗)n → L∗
)

given by AN ((x1,y1), . . . ,(xn,yn)) =
N (A(N(x1,y1), . . . ,N(xn,yn))) is an aggregation function on L∗ (AN is then called

N–dual of A). Recall that N–dual to a t–norm, t–seminorm, t–conorm, t–semiconorm

on L∗ is a a t–conorm, t–semiconorm, t–norm, t–seminorm on L∗, respectively. A

simple method how to construct aggregation functions on L∗ is based on aggregation

functions on [0,1].

Lemma 1. Let A : [0,1]n → [0,1] be an aggregation function on [0,1]. Then A∗ :

(L∗)n → L∗ given by

A∗ ((x1,y1), . . . ,(xn,yn)) = (A(x1, . . . ,xn),1−A(1− y1, . . . ,1− yn))

is an aggregation function on L∗.

This method can be further generalized to so called representable aggregation func-

tions on L∗ [11, 12].

Proposition 6. Let A,B : [0,1]n → [0,1] (A,B :
⋃

n∈N [0,1]n → [0,1]) be two aggre-

gation functions of [0,1] such that for all x1, . . . ,xn ∈ [0,1], the inequality

A(x1, . . . ,xn)+ B(1− x1, . . . ,1− xn) ≤ 1

holds. Then the mapping C : (L∗)n → L∗ (C :
⋃

n∈N(L∗)n → L∗) given by

C ((x1,y1), . . . ,(xn,yn)) = (A(x1, . . . ,xn),B(y1, . . . ,yn))

is an aggregation function on L∗. C is called a representable aggregation function.

For arbitrary aggregation functions A,B on [0,1] such that A ≤ Bd (Bd is the dual

aggregation function to B, based on duality w.r.t. n, n(x) = 1− x) A and B satisfy

requirements of Proposition 6. Thus Lemma 1 reflects the fact A ≤ A (observe that

(Ad)d = A). Note that not all aggregation functions on L∗ are representable.

Example 5. (i) Let T : [0,1]2 → [0,1] be a t–norm on [0,1]. Then T ∗ : (L∗)2 → L∗

given by

T ∗ ((x1,y1),(x2,y2)) = (T (x1,x2),S(y1,y2)) ,

where S : [0,1]2 → [0,1] is a t–conorm on [0,1] dual to T (based on duality w.r.t.

n, n(x) = 1− x). Obviously, T ∗ is a representable t–norm on L∗.

Also F : (L∗)2 → L∗ given by

F((x1,y1),(x2,y2)) = (x1x2,y1 ∨ y2)

is a representable t–norm on L∗ (linked to A = TP, product t–norm on [0,1], and

B = SM, maximum t–conorm on [0,1]).
(ii) For a fixed t–norm T : [0,1]2 → [0,1], define a mapping D : (L∗)2 → L∗ by

D((x1,y1),(x2,y2)) = (T (x1,x2),S(1− x1,y2)∧S(x1,1− x2)) .



Aggregation Functions on Bounded Posets 15

Evidently, D is a symmetric t–semiconorm on L∗ which is not representable.

Observe that D is associative and thus a t–norm on L∗. For more details see [12].

(iii) Define C : (L∗)3 → L∗ by

C ((x1,y1),(x2,y2),(x3,y3)) =

(

x1 + 2x2 + x3

4
,(y1y2

2y3)
1
4

)

.

Then C is an idempotent representable aggregation function on L∗ which is

bisymmetric but not symmetric (C is linked to a weighted arithmetic mean and

to a weighted geometric mean).

Several interesting details, including deep results on Archimedean t–norms and t–

norms making L∗ a residuated monoid can be found in [11, 17].

6 Concluding Remarks

We have introduced and discussed aggregation functions on bounded partially or-

dered sets and on bounded lattices, stressing among others the pioneering work of

E. E. Kerre and his research group in this domain. Our work opens new doors to

the investigation of aggregation functions. For example, the class of strongly idem-

potent aggregation functions deserves a deeper look not only in the case of gen-

eral bounded posets, but especially in the case of particular bounded lattices, such

as L∗, [0,1]n, etc. Our approach covers also the aggregation on cardinal and ordi-

nal scales, on linguistic scales, as well as on special systems such as distributive

functions.

Acknowledgement. The research summarized in this paper was supported by the Grants

APVV–0012–07 and VEGA 1/0080/10.
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On the Intuitionistic Fuzzy
Implications and Negations. Part 1

Krassimir T. Atanassov

To my friend Pro f. Etienne Kerre

Abstract. The paper conta ins review and new results related to the first
23 o f the 138 a lready introduced by the author different intuitionistic fuzzy
implications and the first 5 o f the 36 different intuitionistic fuzzy negations.
Some o f their basic properties are studied. The va lidity and non-va lidity o f
the Law of Excluded Middle and its modifications, and o f De Morgan’s Laws
and their modifications are discussed. The axioms o f Intuitionistic Log ic are
checked for the intuitionistic fuzzy implications and negations.

1 Introduction

During the last years, a discussion started rela ted to the name “ intuitionistic”
g iven to the extension o f the fuzzy set, introduced by the author in 1983 in
[1 ]. He hopes that now, a fter [1 6 ], it is clear that the concept o f “ intuitionistic
fuzzy set” introduced by Takeuti and Titani a year and a ha lf la ter in [2 8 ]
is a particula r case o f the ordinary fuzzy sets, while the author’s concept
o f an Intuitionistic Fuzzy Set (IFS) essentially extends the fuzzy sets. Also,
the author hopes that it is already clear that the construction of the IFSs
contains Brouwer’s idea for intuitionism [20]. In every way, the discussion was
very useful for IFS theory.

First, and it is possible, that the most important author’s mistake was
that more than 20 years the IFS theory used only the classical negation
(denoted below by ¬1), that generates a classical implication (denoted below
by →4). Really, another implication (denoted below by →11) that generates
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an intuitionistic fuzzy negation, was introduced in IFS theory in 1988 [2],
but for a long period of time the author had not estimated their merits as
an intuitionistic implication and negation and he had not used them because
they are more complex than the standard ones. Now, the author realizes his
mistake (better late than never) and hence the properties of the different
versions of both these operations will be discussed below.

Second, searching arguments to defend the name of IFS, the author found
a lot of new implications and negations. One part of them exhibits classical
properties, another – intuitionistic properties and a third group exhibits more
nonstandard properties. These new operations will be an object of discussion
of the present and next author’s research.

We must mention that another approach for introducing intuitionistic
fuzzy implications and negations is demonstrated by a series of papers by
Chris Cornelis, Glad Deschrijver and Etienne Kerre [21, 22, 23, 24].

2 Definitions and Properties of 23 Intuitionistic Fuzzy

Implications and 5 Intuitionistic Fuzzy Negations

2.1 Definitions of 23 Intuitionistic Fuzzy Implications

The first ten variants of intuitionistic fuzzy implications are discussed in [4],
using the book [26] by George Klir and Bo Yuan as a basis, where the con-
ventional fuzzy implications are given. Other five implications, defined by the
author and his colleagues Boyan Kolev and Trifon Trifonov, are introduced
in [2, 3, 7, 8, 15, 17]. These fifteen implications generated five negations by
the formulae

¬x = x → 0. (1)

On the other hand, these negations are the basis for new eight implications
introduced in [9] through the formulae

x → y = ¬x ∨ y (2)

and
x → y = ¬x ∨ ¬¬y . (3)

The new (eight) implications generate negations that coincide with the re-
spective negations generated by the corresponding implications, i.e., the gen-
erating process finishes. Therefore, using this scheme, we finally obtain 23
implications.

Below, we shall describe some properties of these implications and
negations.

Let us denote below each of these implications by I (x, y) and the negations
by N(x).
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In intuitionistic fuzzy logic, if x is a variable, then its truth-value is repre-
sented by the ordered pair

V (x) = 〈a, b〉,

such that a, b, a + b ∈ [0, 1], where a and b are degrees of validity and of
non-validity of x.

Assume that for the three variables x, y and z there hold the equalities:
V (x) = 〈a, b〉, V (y) = 〈c, d〉, V (z) = 〈e, f〉 (a, b, c, d, e, f, a + b, c + d, e + f ∈
[0, 1]).

For the needs of the discussion below, we define the notion of Intuitionistic
Fuzzy Tautology (IFT, see [2, 3]) by,

x is an IFT if and only if a ≥ b,

while x will be a tautology iff a = 1 and b = 0.
We define the following relation:

V (x) ≤ V (y) iff a ≤ c and b ≥ d.

In some definitions, we use functions sg and sg, defined by

sg(x) =

⎧

⎨

⎩

1 if x > 0

0 if x ≤ 0
, sg(x) =

⎧

⎨

⎩

0 if x > 0

1 if x ≤ 0

For two variables x and y operations “conjunction” (&) and “disjunction”
(∨) are defined (see [2, 3]) by:

V (x ∧ y) = 〈min(a, c), max(b, d)〉,

V (x ∨ y) = 〈max(a, c), min(b, d)〉.

In Table 1, we include the implications from [4], but also the implications,
introduced by the author in [2, 7, 8, 15, 17] with coauthors Boyan Kolev [15]
and Trifon Trifonov [17].

The correctness of the above definitions of implications is directly checked.
For example, to check the validity of the definition of →15, we check that for
every a, b, c, d ∈ [0, 1] such that a + b ≤ 1 and c + d ≤ 1 for the expression,

X ≡ 1− (1−min(b, c)).sg(sg(a− c)+ sg(d− b))−min(b, c).sg(a− c).sg(d− b)

+1− (1 −max(a, d)).sg(sg(a− c) + sg(d− b))−max(a, d).sg(a− c).sg(d − b)

we obtain,
If a ≤ c and b ≥ d, then,

X = 1 − (1 − min(b, c)).sg(0 + 0) − min(b, c).0 + 1

−(1 − max(a, d)).sg(1 + 1) − max(a, d).1

= 1 + 1 − (1 − max(a, d)) − max(a, d) = 1.
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Table 1 List of intuitionistic fuzzy implications

Notation Name Form of implication

→1 Zadeh 〈max(b, min(a, c)), min(a, d))

→2 Gaines-Rescher 〈1 − sg(a − c), d.sg(a − c)〉

→3 Gödel 〈1 − (1 − c).sg(a − c), d.sg(a − c)〉

→4 Kleene-Dienes 〈max(b, c), min(a, d)〉

→5 Lukasiewicz 〈min(1, b + c), max(0, a + d − 1)〉

→6 Reichenbach 〈b + ac, ad〉

→7 Willmott 〈min(max(b, c), max(a, b), max(c, d)),
max(min(a, d), min(a, b), min(c, d))〉

Notation Name Form of implication

→8 Wu 〈1 − (1 − min(b, c)).sg(a − c),
max(a, d).sg(a − c).sg(d − b)〉

→9 Klir and Yuan 1 〈b + a2c, ab + a2d〉

→10 Klir and Yuan 2 〈c.sg(1 − a) + sg(1 − a)
.(sg(1 − c) + b.sg(1 − c)),

d.sg(1 − a) + a.sg(1 − a).sg(1 − c)〉

→11 Atanassov 1 〈1 − (1 − c).sg(a − c),
d.sg(a − c).sg(d − b)〉

→12 Atanassov 2 〈max(b, c), 1 − max(b, c)〉

→13 Atanassov 〈b + c − b.c, a.d〉
and Kolev

→14 Atanassov 〈1 − (1 − c).sg(a − c) − d.sg(a − c).sg(d − b),
and Trifonov d.sg(d − b)〉

→15 Atanassov 3 〈1 − (1 − min(b, c)).sg(sg(a − c) + sg(d − b))
−min(b, c).sg(a − c).sg(d − b),
1 − (1 − max(a, d)).sg(sg(a − c) + sg(d − b))
−max(a, d).sg(a − c).sg(d − b)〉

→16 〈max(1 − sg(a), c), min(sg(a), d)〉

→17 〈max(b, c), min(a.b + a2, d)〉

→18 〈max(b, c), min(1 − b, d)〉

→19 〈max(1 − sg(sg(a) + sg(1 − b)), c),
min(sg(1 − b), d)〉

→20 〈max(1 − sg(a), 1 − sg(1 − sg(c))), min(sg(a),
sg(1 − sg(c)))〉

→21 〈max(b, c(c + d)), min(a(a + b),
d(c2 + d + cd))〉

→22 〈max(b, 1 − d), min(1 − b, d)〉

→23 〈1 − min(sg(1 − b), sg(1 − sg(1 − d))),
min(sg(1 − b), sg(1 − sg(1 − d)))〉
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If a ≤ c and b < d , then,

X = 1 − (1 − min(b, c)).sg(0 + 1) − min(b, c).0.1

+1 − (1 − max(a, d)).sg(1 + 0) − max(a, d).1.0

= 1 − 1 + min(b, c) + 1 − 1 + max(a, d)

= min(b, c) + max(a, d) ≤ 1.

If a > c and b ≥ d, then,

X = 1 − (1 − min(b, c)).sg(1 + 0) − min(b, c).1.0

+1 − (1 − max(a, d)).sg(0 + 1) − max(a, d).0.1

= 1 − 1 + min(b, c) + 1 − 1 + max(a, d)

= min(b, c) + max(a, d) ≤ 1.

If a > c and b < d then,

X = 1 − (1 − min(b, c)).sg(1 + 1) − min(b, c).1.1

+1 − (1 − max(a, d)).sg(0 + 0) − max(a, d).0.0

= 1 − (1 − min(b, c)).1 − min(b, c) + 1 − (1 − max(a, d)).0

= 1 − 1 + min(b, c)) − min(b, c) + 1 = 1.

Therefore, implication →15 is valid.

Theorem 1. If I is any of the 23 implications, then

I(〈0, 1〉, 〈0, 1〉) = 〈1, 0〉,

I(〈0, 1〉, 〈1, 0〉) = 〈1, 0〉,

I(〈1, 0〉, 〈1, 0〉) = 〈1, 0〉,

I(〈1, 0〉, 〈0, 1〉) = 〈0, 1〉.

Therefore, the restriction of each of these implications coincides over the
constants false and true with the implication from the ordinary propositional
calculus.

Now, we introduce an implication, inspired by G. Takeuti and S. Titani’s
paper [28] and its answer by T. Trifonov and the author [16].

In [28] G. Takeuti and S.Titani introduced the following implication for
p, q ∈ [0, 1]

p → q =
∨

{r ∈ [0, 1] | p ∧ r ≤ q} =

{

1, if p ≤ q

q, if p > q
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In [16], its intuitionistic fuzzy extension is given in the form

〈a, b〉 → 〈c, d〉 = 〈max(c, sg(a − c)), min(d, sg(a − c))〉

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈1, 0〉, if a ≤ c and b ≥ d

〈1, 0〉, if a ≤ c and b < d

〈c, d〉, if a > c and b ≥ d

〈c, d〉, if a > c and b < d

.

There, it is proved that the latter implication coincides with Gödel’s impli-
cation (→3), because if

X ≡ 1 − (1 − c).sg(a − c) − max(c, sg(a − c)),

Y ≡ d.sg(a − c) − min(d, sg(a − c)).

then we obtain the following. If a > c

X = 1 − (1 − c) − max(c, 0) = c − c = 0,

Y = d.1 − min(d, 1) = d − d = 0.

If a ≤ c

X = 1 − (1 − c).0 − max(c, 1) = 1 − 1 = 0,

Y = d.0 − min(d, 0) = 0 − 0 = 0,

i.e.

〈1 − (1 − c).sg(a − c), d.sg(a − c)〉 = 〈max(c, sg(a − c)), min(d, sg(a − c))〉.

All constructions in [28] are re-written in [16] for intuitionistic fuzzy case
with the aim to show that Takeuti and Titani’s sets are a particular case of
intuitionistic fuzzy sets in the sense of [3]. Practically, the set constructed
by them is an ordinary fuzzy set with elements, satisfying intuitionistic logic
axioms. In [16], we show that there are intuitionistic fuzzy sets with elements,
satisfying intuitionistic logic axioms.

Extending the research from [8], we shall study some properties of the 23
implications.

Let us introduce the expression

Ii = x →i y,

where 1 ≤ i ≤ 23. We say that Ii is more powerful than Ij for 1 ≤ i, j ≤ 23,
if

V (Ii) ≥ V (Ij) for all x and y.

We can construct Table 2, in which the lack of relation between two
implications is denoted by “ ∗ ”.
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Table 2 Relations between elements of set {I i|1 ≤ i ≤ 23}

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15 I 16 I 17 I 18 I 19 I 20 I 21 I 22 I 23

I 1 ∗ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗
I 2 ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 4 ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗

I 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
I 6 ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 7 ≤ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗

I 8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 10 ∗ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗
I 11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 12 ∗ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ≤ ∗

I 13 ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 14 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤
I 15 ∗ ∗ ≤ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ≤ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤

I 16 ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 18 ∗ ∗ ∗ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ≤ ∗ ∗ ∗ ∗ ≤ ∗

I 19 ∗ ∗ ≤ ≤ ≤ ∗ ∗ ∗ ∗ ∗ ≤ ∗ ≤ ≤ ∗ ≤ ≤ ≤ ∗ ∗ ∗ ≤ ≤
I 20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 21 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 22 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

I 23 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

There are many other implications, defined by Lilija Atanassova, Dimiter
Dimitrov and the author, that will be discussed in a next author’s research.

2.2 Definitions of 5 Intuitionistic Fuzzy Negations

Now, following [5] and using, as a basis the equality (1) that has the intu-
itionistic fuzzy form

¬〈a, b〉 = 〈a, b〉 → 〈0, 1〉,

we shall construct negations, corresponding to the above implications. These
negations are introduced in Table 3, but we must note that some of them
have better (more compact) forms than those published already.

The following three properties are checked in [6, 7] for the separate
negations:
Property P1: A → ¬¬A,
Property P2: ¬¬A → A,
Property P3: ¬¬¬A = ¬A.
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Each of the negations from Table 3 satisfies Property 1.

Table 3 List of the different intuitionistic fuzzy negations

Notation Form of negation

¬1 〈b, a〉

¬2 〈1 − sg(a), sg(a)〉
¬3 〈b, a.b + a2〉

¬4 〈b, 1 − b〉

¬5 〈sg(1 − b), sg(1 − b)〉

Only negation ¬1 satisfies Property 2, while the other negations do not
satisfy it.

Each of the negations from Table 3 satisfies Property 3.
As an illustration of how the checks are performed, we shall prove the

validity of the latest assertion for the case of negation ¬5.

¬¬¬〈a, b〉 = ¬¬〈sg(1 − b), sg(1 − b)〉

= ¬〈sg(1 − sg(1 − b)), sg(1 − sg(1 − b))

= 〈sg(1 − sg(1 − sg(1 − b))), sg(1 − sg(1 − sg(1 − b)))〉.

Let
X ≡ sg(1 − sg(1 − sg(1 − b))) − sg(1 − b).

If b = 1, then

X = sg(1 − sg(1)) − sg(0) = sg(0) − 1 = 0.

If b < 1, then

X = sg(1 − sg(1 − 1)) − 0 = sg(1) = 0.

Therefore Property 3 is valid for ¬5.
Following [6], we show the relations between the different negations. By direct
checks we can see the validity of these relations in Table 4.

The lack of relation between two implications is denoted in Table 4 by “ ∗ ”.

Table 4 List of the relations between the different intuitionistic fuzzy negations

¬1 ¬2 ¬3 ¬4 ¬5

¬1 = ∗ ≤ ≥ ≥

¬2 ∗ = ∗ ∗ ≥

¬3 ≥ ∗ = ≥ ≥
¬4 ≤ ∗ ≤ = ≥

¬5 ≤ ≤ ∗ ≤ =
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Therefore, we can construct the ordered graph (see Fig. 1) with vertices,
corresponding to negations ¬1, ...,¬5.
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George Klir and Bo Yuan discuss the following 9 axioms related to fuzzy
implications in their book [26].

Axiom 1: (∀x, y)(x ≤ y → (∀z)(I(x, z) ≥ I(y, z)).
Axiom 2: (∀x, y)(x ≤ y → (∀z)(I(z, x) ≤ I(z, y)).
Axiom 3: (∀y)(I(0, y) = 1).
Axiom 4: (∀y)(I(1, y) = y).
Axiom 5: (∀x)(I(x, x) = 1).
Axiom 6: (∀x, y, z)(I(x, I(y, z)) = I(y, I(x, z))).
Axiom 7: (∀x, y)(I(x, y) = 1 iff x ≤ y).
Axiom 8: (∀x, y)(I(x, y) = I(N(y), N(x))), where N is an operation for a
negation.
Axiom 9: I is a continuous function.

Following and extending [29] we shall note that Table 5 summarizes the
list of axioms of Klir and Yuan which are satisfied by the 23 implications.

If some axiom is valid as an IFT, its number in Table 5 is marked by
an asterisk (∗). We should note that Axiom 8 is checked using the classical
intuitionistic fuzzy negation (¬1); if it is valid using the respective generated
by implication I negation N(x), then the axiom is marked as 8N . We should
also note that the validity of Axiom 7 does not imply the validity of Axiom
7*. The forms of the axioms with asterisks are

Axiom 3∗: (∀y)(I(0, y) is an IFT).
Axiom 5∗: (∀x)(I(x, x) is an IFT).
Axiom 7∗: (∀x, y)(I(x, y) is an IFT iff x ≤ y).

The validity of each of these assertions can be checked directly. In [14] all
36 IF negations are given.
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Table 5 List of axioms of Klir and Yuan that are satisfied by the 23 intuitionistic
fuzzy implications

Notation Axioms

→1 2,3,4,5∗ ,9

→2 1,2,3,5

Notation Axioms

→3 1,2,3,4,5,6

→4 1,2,3,4,5∗ ,6,8,9

→5 1,2,3,4,5∗ ,6,8,9

→6 2,3,4,5∗ ,9

→7 3∗,4,5∗,8,9

→8 1,2,3,5

→9 2,3,4,5∗

→10 2,3,4

→11 1,2,3,4,5,6

→12 1,2,3,6,8,9

→13 1,2,3,4,5∗ ,6,8,9

→14 1,2,3,4,5,6,7

→15 1,2,3,5,7,7∗ ,8

→16 1,2,3,4,6

→17 2,3,4,5∗ ,6,9

→18 1,2,3,4,5∗ ,6,9

→19 1,2,3,4,6

→20 1,2,3,5,6,8N

→21 1,2,3,5∗ ,9

→22 1,2,3,5∗ ,6,8N ,9

→23 1,2,3,5,6,8N

2.3 On the Law of Excluded Middle and Its

Modifications

Following [6], we shall study the validity of the Law of Excluded Middle
(LEM) in the forms:

〈a, b〉 ∨ ¬i〈a, b〉 = 〈1, 0〉

(tautology-form) and
〈a, b〉 ∨ ¬i〈a, b〉 = 〈p, q〉

(IFT-form), where 1 ≥ p ≥ q ≥ 0 and i = 1, 2, ..., 5.
We will also study a Modified LEM in the forms:

¬i¬i〈a, b〉 ∨ ¬i〈a, b〉 = 〈1, 0〉

(tautology-form) and

¬i¬i〈a, b〉 ∨ ¬i〈a, b〉 = 〈p, q〉,
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(IFT-form), where 1 ≥ p ≥ q ≥ 0 and i = 1, 2, ..., 5.
None of our negations satisfies the LEM in the tautological form.
Negations ¬1,¬3 and ¬4 satisfy the LEM in the IFT-form.
Only ¬2 and ¬5 satisfy the Modified LEM in the tautological form.
All negations satisfy the Modified LEM in the IFT-form.
As illustration, we shall calculate

¬5¬5〈a, b〉 ∨ ¬5〈a, b〉

= 〈sg(1 − sg(1 − b)), sg(1 − sg(1 − b)) ∨ 〈sg(1 − b), sg(1 − b)〉

= 〈max(sg(1 − sg(1 − b)), sg(1 − b)), min(sg(1 − sg(1 − b)), sg(1 − b))〉.

If b = 1, then

max(sg(1 − sg(1 − b)), sg(1 − b)) = max(sg(1), 1) = max(0, 1) = 1.

and

min(sg(1 − sg(1 − b)), sg(1 − b)) = min(sg(1), 0) = min(1, 0) = 0.

If b < 1, then

max(sg(1 − sg(1 − b)), sg(1 − b)) = max(sg(0), 0) = max(1, 0) = 1.

and

min(sg(1 − sg(1 − b)), sg(1 − b)) = min(sg(0), 1) = min(0, 1) = 0.

Therefore, negation ¬5 satisfies the Modified LEM in the IFT-form. On the
other hand, in all cases the evaluation of the expression is equal to 〈1, 0〉, i.e.,
this negation satisfies the Modified LEM in the tautological form.

2.4 On De Morgan’s Laws and Their Modifications

Below, following [11], we shall discuss some forms of De Morgan’s Laws.
Usually, De Morgan’s Laws have the forms:

¬x ∧ ¬y = ¬(x ∨ y),

¬x ∨ ¬y = ¬(x ∧ y).

In [11] it is proved that for every two propositional forms x and y:

¬ix ∧ ¬iy = ¬i(x ∨ y),

¬ix ∨ ¬iy = ¬i(x ∧ y)

for i = 1, 2, 4, 5, while negation ¬3 does not satisfy these equalities.
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We shall illustrate only the fact that the De Morgan’s Laws are not valid
for i = 3. For example, if a = b = 0.5, c = 0.1, d = 0, then

V (¬3x ∧ ¬3y) = 〈0, 0.5〉,

V (¬3(x ∨ y)) = 〈0, 0.25〉.

The above mentioned change of the LEM inspired the idea to study the va-
lidity of De Morgan’s Laws, which the classical negation ¬ (here it is negation
¬1) satisfies. Really, it can be easily proved that the expressions

¬1(¬1x ∨ ¬1y) = x ∧ y

and
¬1(¬1x ∧ ¬1y) = x ∨ y

are IFTs, but the other negations do not satisfy these equalities. For them
the following assertion is proved in [11].

For every two propositional forms x and y it holds that

¬i(¬ix ∨ ¬iy) = ¬i¬ix ∧ ¬i¬iy

and
¬i(¬ix ∧ ¬iy) = ¬i¬ix ∨ ¬i¬iy

for i = 2, 4, 5, while negation ¬3 does not satisfy these equalities.
Now, we shall discuss another form of the LEM, also known as Law of

Contradiction, that in propositional calculus is equivalent with the standard
LEM, if De Morgan’s Laws were valid. It is the following:

¬(x ∧ ¬x).

Negations ¬2 and ¬5 satisfy it as tautologies, negations ¬1, ¬3 and ¬4 satisfy
it as IFTs.

2.5 On One Baczynski and Jayaram Problem and Its

Extension

In [18] Michal Baczynski and Balasubramaniam Jayaram formulated some
problems related to fuzzy implications I and negations N . Here we give a
solution to one of them:

Problem 1.7.1. Give examples of fuzzy implications I such that
(i) I satisfies only property

(CP ) I(x, y) = I(N(y), N(x))



On the Intuitionistic Fuzzy Implications and Negations 31

(ii) I satisfies only property

(L − CP ) I(N(x), y) = I(N(y), x)

(iii) I satisfies both (CP) and (L-CP), but not

(R − CP ) I(x, N(y)) = I(y, N(x))

with some fuzzy negation N , where x, y ∈ [0, 1].

We must note that in [18] no example is given.
Here we shall give examples of pairs of implications and negations that

satisfy Problem 1.7.1 (ii) and other problems. Let the pair (m, n) denote the
expression with m-th implication and n-th negation.

Following [12], first, we shall formulate the following

Theorem 2. The pairs (4, 1), (5, 1), (7, 1), (12, 1), (13, 1), (15, 1), (20, 2),
(22, 4), (23, 5), satisfy the three axioms.

We must note that no one pair for 1 ≤ m ≤ 23 and 1 ≤ n ≤ 5 satisfy
exactly two axioms and more precisely, axioms (L − CP ) and (R − CP ). In
[12], solutions are given for 1 ≤ m ≤ 138 and 1 ≤ n ≤ 34.

We had not found any pair of implication and negation that are solution
of Problem 1.7.1 (iii).

Also, we had not found any pair of implication and negation that satisfy
only the first axiom, i.e., we cannot give examples for the case of Problem
1.7.1 (i).

Another result of our search [12] is

Theorem 3. The pairs (2, 2), (3, 2), (8, 2), (11, 2), (16, 2), (12, 3), (17, 3),
(12, 4), (18, 4), (14, 5), (15, 5), (19, 5) satisfy only the axiom (R − CP ).

The most interesting is the following

Theorem 4. Only the pair (21, 3) satisfies only Axiom (L − CP ).
We must note that this assertion has 135 solutions, described in [12] in the

case when 23 < m ≤ 138 or 5 < n ≤ 34.
Now, we shall extend the Baczynski and Jayaram problem and shall give

solutions to its new form.
Using the idea for Modified LEM, we can replace the equalities (CP ),

(L − CP ) and (R − CP ) with the equalities:

I(N(N(x)), N(N(y))) = I(N(y), N(x)), (CP ′)

I(N(x), N(N(y))) = I(N(y), N(N(x))), (L − CP ′)

I(N(N(x)), N(y)) = I(N(N(y)), N(x)). (R − CP ′)
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Here, we give examples of pairs of implications and negations that satisfy
an extended form of Problem 1.7.1 (ii), where the assertions are related to
(C P ′), (L − C P ′) and (R − C P ′).

In [13], it is shown that there are 1322 pairs (m, n) satisfying the three
equalities, when 1 ≤ m ≤ 138 and 1 ≤ n ≤ 34. But, no one pair (m, n)
for 1 ≤ m ≤ 23 and 1 ≤ n ≤ 5 satisfies exactly two equalities, namely –
(L − CP ′) and (R − CP ′).

We had not found any pair of implication and negation for 1 < m ≤ 138
and 1 < n ≤ 34, that solve the extended Problem 1.7.1 (iii).

Also, we had not found any pair of implication and negation that satisfy
the first equality only, i.e., we cannot give examples for the case of Problem
1.7.1 (i).

Another result of our search is

Theorem 5. Only the pair (21, 3) satisfies only equality (R − CP ′).
The most interesting is the following

Theorem 6. The pairs (12, 3), (17, 3) satisfy only equality (L − CP ′).
We must note that this assertion has 375 solutions, described in [13] in the

case when 23 < m ≤ 138 or 5 < n ≤ 34.

2.6 On the Axioms of Propositional Intuitionistic

Logic

The next and more important question is which of the introduced implica-
tions satisfy all the axioms of Propositional Intuitionistic Logic (IL) (see for
example [27]).

The validity of the IL axioms was already checked for some implications in
[15, 25, 29]. Here, we give a full list of valid axioms for each of the 23 implica-
tions. We will again verify the validity axioms in two variants - tautological
validity (Table 6) and IFT validity (Table 7).

We use the following list of axioms for propositional intuitionistic logic:
(a) A → A,

(b) A → (B → A),
(c) A → (B → (A ∧ B)),
(d) (A → (B → C)) → (B → (A → C)),
(e) (A → (B → C)) → ((A → B) → (A → C)),
(f) A → ¬¬A,

(g) ¬(A ∧ ¬A),
(h) (¬A ∨ B) → (A → B),
(i) ¬(A ∨ B) → (¬A ∧ ¬B),
(j) (¬A ∧ ¬B) → ¬(A ∨ B),
(k) (¬A ∨ ¬B) → ¬(A ∧ B),
(l) (A → B) → (¬B → ¬A),
(m) (A → ¬B) → (B → ¬A),
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(n) ¬¬¬A → ¬A,

(o) ¬A → ¬¬¬A,

(p) ¬¬(A → B) → (A → ¬¬B),
(q) (C → A) → ((C → (A → B)) → (C → B)).

Table 6 List of axioms of the intuitionistic logic that are satisfied by intuitionistic
fuzzy implications as tautologies

a b c d e f g h i j k l m n o p q

→1 - - - - - - - - - - - - - - - - -

→2 + - - - + + + - + + + + + + + + +

→3 + + + + + + + + + + + + + + + + +

→4 - - - - - - - - - - - - - - - - -

→5 - - - - - - - - - - - - - - - - -

→6 - - - - - - - - - - - - - - - - -

→7 - - - - - - - - - - - - - - - - -

→8 + - - - - + + - + + + + + + + + -

→9 - - - - - - - - - - - - - - - - -

→10 - - - - - - - - - - - - - - - - -

→11 + + + + + + + + + + + + + + + + +

→12 - - - - - - - - - - - - - - - - -

→13 - - - - - - - - - - - - - - - - -

→14 + + + + + + + + + + + + + + + + +

→15 + - - - - + + - + + + + + + + + -

→16 - - - - - + + - + + + + + + + + -

→17 - - - - - - - - - - - - - - - - -

→18 - - - - - - - - - - - - - - - - -

→19 - - - - - + + - + + + + + + + + -

→20 + + + + + + + + + + + + + + + + +

→21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

→22 - - - - - - - - - - - - - - - - -

→23 + + + + + + + + + + + + + + + + +

The most important of the results collected in Table 6 can be formulated
as the following

Theorem 7. Implications →3, →11, →14, →20, →23 satisfy all intuitionistic
logic axioms as tautologies.

The validity of axioms for cells marked by a question mark (?) in Tables
6 and 7 is not yet clear and it is an open problem.

The most important of the results collected in Table 7 can be formulated
as follows:

Theorem 8. Implications →1, →3, →4, →5, →11, →14, →18, →20, →22, →23

satisfy all intuitionistic logic axioms as IFTs.
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Table 7 List of axioms of the intuitionistic logic that are satisfied by intuitionistic
fuzzy implications as IFTs

a b c d e f g h i j k l m n o p q

→1 + + + + + + + + + + + + + + + + +

→2 + - - - + + + - + + + + + + + + +

→3 + + + + + + + + + + + + + + + + +

→4 + + + + + + + + + + + + + + + + +

→5 + + + + + + + + + + + + + + + + +

→6 + + + ? - + + + + + + + + + + + ?

→7 + - - - - + + - + + + ? ? + + ? -

→8 + - - ? ? + + - + + + + + + + + +

→9 + + + ? ? + + ? ? ? ? ? ? + + ? ?

→10 - - - - - - + - - - - - - - - - -

→11 + + + + + + + + + + + + + + + + +

→12 - - - + + + + - + + + + + + + + +

→13 + + + ? ? + + ? + + + + + + + + ?

→14 + + + + + + + + + + + + + + + + +

→15 + - - - - + + - + + + + + + + + -

→16 - - - - - + + - + + + + + + + + -

→17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

→18 + + + + + + + + + + + + + + + + +

→19 - - - - - + + - + + + + + + + + -

→20 + + + + + + + + + + + + + + + + +

→21 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

→22 + + + + + + + + + + + + + + + + +

→23 + + + + + + + + + + + + + + + + +

3 A New Argument that the Intuitionistic Fuzzy Sets

Are ‘Intuitionistic’ in Nature

The above assertions show that all negations, except the first one, satisfy
conditions of the intuitionistic logic, but not of the classical logic. A part
of these negations were generated by implications, that were generated by
fuzzy implications. Now, let us return from the intuitionistic fuzzy negations
to ordinary fuzzy negations. The result is shown on Table 8, where b = 1− a .

Another approach to obtaining fuzzy negations from IF negations is to
use the ideas from [19], where a procedure for de-intuitionistic-fuzzification
is discussed. It will give the negations from Table 9.

Now, if we put b = 1 − a, we will again obtain the values from Table 8.
Therefore, from the intuitionistic fuzzy negations we can generate fuzzy

negations, so that two of them (¬3 and ¬4) coincide with the standard fuzzy
negation (¬1). Therefore, there are intuitionistic fuzzy negations that lose
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Table 8 List of the fuzzy negations, generated by intuitionistic fuzzy negations

Notation Form of the intuitionistic Form of the fuzzy negation
fuzzy negation

¬1 〈b, a〉 1 −a

¬2 〈1 −sg(a), sg(a)〉 1 −sg(a)

¬3 〈b, a.b + a2〉 1 −a

¬4 〈b, 1 −b〉 1 −a

¬5 〈sg(1 −b), sg(1 −b)〉 1 −sg(a)

Table 9 List of the fuzzy negations, generated by intuitionistic fuzzy negations
using the procedure for de-intuitionistic-fuzzification

Notation Form of the intuitionistic Form of the fuzzy negation
fuzzy negation

¬1 〈b, a〉 1−a+b
2

¬2 〈1 −sg(a), sg(a)〉 1 −sg(a)

¬3 〈b, a.b + a2〉 1+b−a.b−a2

2

¬4 〈b, 1 −b〉 b

¬5 〈sg(1 −b), sg(1 −b)〉 sg(1 −b)

their properties when they are restricted to ordinary fuzzy case. In other
words, the construction of the intuitionistic fuzzy estimation

〈degree of membership/validity, degree of non-membership/non-validity〉

which is specific for the intuitionistic fuzzy sets, is the reason for the intu-
itionistic behaviour of these sets. Over them we can define both intuitionistic
fuzzy, and classical negations.

In the fuzzy case, negations ¬2 and ¬5 coincide, generating a fuzzy negation
that satisfies properties P1 and P3 and does not satisfy Property P2 from
Section 2.2, i.e., it is ’intuitionistic’ in nature. In these cases, the implication
from properties P1 and P2 may be any that generates negation ¬2.

4 Etienne Kerre’s Group and Intuitionistic Fuzzy

Implications

In the beginning of the century, Prof. Etienne Kerre established in Ghent
University one of the most active research groups in the world in the area
of IFS theory. The author regrets that he does not dispose of all their pub-
lications, but among these, that he has got, there are very important ones.
Papers [21, 22, 23, 24] are some of them. Their authors are Etienne Kerre
and two of his then PhD-students – Chris Cornelis and Glad Deschijver, who
nowadays are active and prospective scientists.
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In a relation to our research, the results of Kerre’s group on intuitionistic
fuzzy implications generate some interesting problems. Below, we will men-
tion two of them:

1. By analogy with our research on axioms of Klir and Yuan that are satisfied
by the 23 intuitionistic fuzzy implications, to check which of these implica-
tions satisfy the axioms discussed in [21, 24].
2. To check the properties of the implications, discussed in [21, 22, 23, 24]
for the introduced here 23 implications and for the rest implications, that
already are defined in IFS theory.

5 Conclusion

The new operations open a very large field for future research. We hope that
soon many other properties will be clarified and new results will be obtained.
There are some possible directions that will be an object of an author’s future
research:

1. Study the relationships between the different implications and order them
as vertices of an oriented graph with respect to the ordering “≤”. Similarly
to the relationships between the different negations, discussed above.
2. Study all pairs (→i,¬j) and determine which of them have nice properties,
e.g. satisfy all axioms of intuitionistic logic.
3. Construct new sets of the existing implications and study their properties.

The most interesting problem is related to the theory of T- and S-norms.
The results, related to De Morgan Laws show that the present theory of T-
and S-norms must be revised totally, because it is based on De Morgan Laws
and therefore, on the classical negation. In future, it must be modified, based
on the different types of non-classical negations.

Acknowledgements. This paper is partially supported by grant BIn-2/09
“Design and development of intuitionistic fuzzy logic tools in information tech-
nologies” of the Bulgarian National Science Fund.

The author wishes to express his gratitude to Glad Deschrijver and Peter Vassilev
for the valuable advice and corrections.

References

1. Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session, Sofia (June 1983)
(Deposed in Central Sci. - Techn. Library of Bulg. Acad. of Sci., 1697/84) (in
Bulg.)

2. Atanassov, K.: Two variants of intuitonistc fuzzy propositional calculus.
Preprint IM-MFAIS-5-88, Sofia (1988)

3. Atanassov, K.: Intuitionistic Fuzzy Sets. Springer Physica-Verlag, Berlin (1999)



On the Intuitionistic Fuzzy Implications and Negations 37

4. Atanassov, K.: Intuitionistic fuzzy implications and Modus Ponens. Notes on
Intuitionistic Fuzzy Sets 11(1), 1–5 (2005)

5. Atanassov, K.: On some types of intuitionistic fuzzy negations. Notes on Intu-
itionistic Fuzzy Sets 11(4), 170–172 (2005)

6. Atanassov, K.: On some intuitionistic fuzzy negations. Notes on Intuitionistic
Fuzzy Sets 11(6), 13–20 (2005)

7. Atanassov, K.: A new intuitionistic fuzzy implication from a modal type. Ad-
vanced Studies in Contemporary Mathematics 12(1), 117–122 (2006)

8. Atanassov, K.: On some intuitionistic fuzzy implications. Comptes Rendus de
l’Academie bulgare des Sciences, Tome 59(1), 19–24 (2006)

9. Atanassov, K.: On eight new intuitionistic fuzzy implications. In: Proc. of 3rd
Int. IEEE Conf. ”Intelligent Systems” IS06, London, September 4-6, pp. 741–
746 (2006)

10. Atanassov, K.: On intuitionistic fuzzy negations. In: Computational Intelli-
gence, Theory and Applications, pp. 159–167. Springer, Berlin (2006)

11. Atanassov, K.: On intuitionistic fuzzy negations and De Morgan’s Laws. In:
Proc. of Eleventh International Conf. IPMU 2006, Paris, July 2-7, pp. 2399–
2404 (2006)

12. Atanassov, K., Dimitrov, D.: On one of Baczyncki-Jayaram’s problems. Cyber-
netics and Information Technologies 9(2), 14–20 (2009)

13. Atanassov, K., Dimitrov, D.: Extension of one of Baczyncki-Jayaram’s prob-
lems. Comptes Rendus de l’Academie bulgare des Sciences, Tome 62(11), 1377–
1386 (2009)

14. Atanassov, K., Dimitrov, D.: On the negations over intuitionistic fuzzy sets.
Part 1 Annual of ”Informatics” Section Union of Scientists in Bulgaria 1, 49–
58 (2008)

15. Atanassov, K., Kolev, B.: On an intuitionistic fuzzy implication from a possi-
bilistic type. Advanced Studies in Contemporary Mathematics 12(1), 111–116
(2006)

16. Atanassov, K., Trifonov, T.: Towards combining two kinds of intuitionistic fuzzy
sets. Notes on Intuitionistic Fuzzy Sets 11(2), 1–11 (2005)

17. Atanassov, K., Trifonov, T.: On a new intuitionistic fuzzy implication from
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The paper is dedicated to Prof. Etienne Kerre

Abstract. We discuss the present state of mathematical fuzzy logic in narrow sense,

its extension — fuzzy logic in broader sense (FLb) as a logic of natural human rea-

soning and also some related theories, e.g., the fuzzy transform. We argue that these

are good theories with potential to be very practical.
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1 Introduction

“There is nothing more practical than a good theory” — this sentence, which has

probably been first proclaimed by the psychologist K. Lewin in [27], characterizes

in a a very succinct form essentially important balance between basic and applied

research. We are convinced that only such balance can lead to really new innovative

solutions which can drive our society forward and bring also tangible economical

benefit. This can be especially visible in physics where only good theory brought

us to the atomic age (with all its positive and also negative impacts), but also many

other mathematical theories such as the theory of differential equations, elasticity

theory, control theory, statistics, etc.

One can ask whether also fuzzy logic is such a practical theory. We argue for the

positive: the mathematical fuzzy logic (MFL), its extension — fuzzy logic in broader
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C. Cornelis et al. (Eds.): 35 Years of Fuzzy Set Theory, STUDFUZZ 261, pp. 39–55.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

{Vilem.Novak,Irina.Perfilieva}@osu.cz


40 V. Novák and I. Perfilieva

sense (FLb) and some related theories such as fuzzy approximation of functions or

fuzzy transform are very practical.

Recall that MFL is a special mathematical theory the goal of which is to pro-

vide a working mathematical model of the vagueness phenomenon and to become

a well established sound formal system that makes its applications well justified.

The mathematization of vagueness is based on introduction of degrees of truth

taken from some scale. Many people have significantly contributed to its devel-

opment, for example P. Hájek, F. Esteva, L. Godo, S. Gottwald, F. Montagna, P.

Cintula, D. Mundici, G. Gerla, V. Novák, and others. There are several books

[3, 16, 18, 19, 46, 48] and many papers published on this topic, which are hard

to be listed. Perhaps the most comprehensive list can be found on the WEB page

www.mathfuzzlog.org/. In this paper, we will provide a brief overview of the present

state of mathematical fuzzy logic and the mentioned related topics.

2 Mathematical Fuzzy Logic

2.1 Fuzzy Logic in Narrow Sense

Let us remember that the seminal paper [67] on fuzzy set theory written by L. A.

Zadeh has been followed by the paper on fuzzy logic [17] written by J. A. Goguen.

The latter can be taken as the seminal paper on MFL because the residuated lattice

has been proposed there as a convenient structure of truth values. The paper contains

a lot of solid material accompanied by the detailed philosophical discussion but it is

not sufficiently formal. The first, mathematically highly sophisticated paper is that

of J. Pavelka [50]. Since then, MFL has been significantly developed.

Fuzzy logic with traditional syntax

This branch of MFL has been elaborated in a deep and seminal way by P. Hájek

in [19]. It is specific for it that formulas are dealt with classically, i.e. the language

of such fuzzy logic differs from that of classical logic especially by having more

connectives. On the other hand, the concepts of inference rule, theory, proof and

many other ones remain classical.

The semantics is many valued and based on the concept of a commutative, inte-

gral, bounded residuated lattice L (shortly, residuated lattice) which is an algebra of

type (2, 2, 2, 2, 0, 0)

L = 〈L,∨,∧,⊗,→,0,1〉 , (1)

where 〈L,∨,∧,0,1〉 is a lattice with the bottom element 0 and the top element 1.

The operation⊗ is called multiplication and 〈L,⊗,1〉 is a commutative monoid. The

operation → is the residuation operation tied with the multiplication by adjointness:

for all a,b,c ∈ L it holds that

a⊗b ≤ c iff a ≤ b → c . (2)
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A BL-algebra is a residuated lattice fulfilling, moreover, prelinearity ((a → b)∨
(b → a) = 1) and divisibility (a⊗ (a → b) = a∧b).

The most prominent is the standard Łukasiewicz MV-algebra (taken as the resid-

uated lattice)

LŁ = 〈[0,1],∨,∧,⊗,→,0,1〉 (3)

where

a⊗b = max(0,a + b−1), (Łukasiewicz conjunction)

a → b = min(1,1−a + b). (Łukasiewicz implication)

Quite recently, a new algebra of truth values called EQ-algebra has been introduced

in [44]. It is not identical with residuated lattice. It is specific by taking fuzzy equal-

ity ∼ as the basic operation so that the implication operation is derived:

a → b = (a∧b)∼ a.

The study of residuated lattices is closely connected with the study of t-norms (cf.

[26] and also [22, 24]) and it is important for the study of fuzzy logics (with tra-

ditional syntax). One of the first logics in which conjunction is interpreted by a t-

norm has been proposed in [6]. At present, there are many formal systems of MFL,

both propositional as well as predicate. The prominent fuzzy logic calculi are MTL,

IMTL, BL, product, or Łukasiewicz (cf. [40]). All of them are embraced in a wide

class of the, so called, core fuzzy logics [4, 20].

All core fuzzy logics enjoy completeness in the form

⊢ A iff |= A (4)

for every formula A where |= A means that A is true in the degree 1 (M (A) = 1) in

every interpretation M of the language of the given core fuzzy logic.

MFL has been studied in detail especially from the algebraic point of view. One

can hardly estimate, how far this work can still continue. It seems that MFL is in the

position of a theory promising a deeply justified technique for modeling of various

manifestations of the vagueness phenomenon and for various applications. There

are not so many results in the latter, however. One of the exceptions is the program

of formalization of fuzzy set theory — fuzzy mathematics — using fuzzy logic as

a metatheory that was announced by P. Cintula and L. Běhounek in [1, 2]. Several

papers have already been published and the program seems to be very promising be-

cause it encompasses and quite often even generalizes most (if not all) of the results

in fuzzy set theory obtained so far. Another promising program is development of

fuzzy logic in broader sense which we will discuss below.

Fuzzy type theory

It turns out that a fully-fledged treatment of vagueness cannot be made using first-

order fuzzy logic only, especially when the meaning of natural language is at play.

Thus, the need for higher-order fuzzy logic raised up. This has been developed in
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[36] and called the fuzzy type theory (FTT). It generalizes classical type theory ini-

tiated by B. Russel, A. Church and L. Henkin. Let us mention that another version

of higher-order fuzzy logic has been developed in [1] which focuses especially on

construction of special classes and which thus aims at becoming the general theory

of “fuzzy mathematics” mentioned above.

The structure of truth values of FTT is generally supposed to form one of the fol-

lowing: a complete IMTL∆-algebra (see [13]), standard Łukasiewicz algebra, ŁΠ-

algebra, or BL-algebra. The most important for applications in linguistics is the

standard Łukasiewicz algebra (3) extended by the operation

∆(a) =

{

1 if a = 1,

0 otherwise.

which raises boolean structure from the corresponding algebra.

Important concept in FTT is that of a fuzzy equality. This is a fuzzy relation
.
=: M× M −→ L which has the following properties:

(i) reflexivity [m
.
= m] = 1,

(ii) symmetry [m
.
= m′] = [m′ .

= m],
(iii) ⊗-transitivity [m

.
= m′]⊗ [m′ .

= m′′] ≤ [m
.
= m′′]

for all m,m′,m′′ ∈ M where [m
.
= m′] denotes a truth value of m

.
= m′.

A special case of fuzzy equality on the algebra of truth values is biresiduation.

Example of a fuzzy equality on M = R with respect to the standard Łukasiewicz

algebra is

[m
.
= n] = 1− (1∧|m−n|), m,n ∈ R.

Syntax of FTT is a generalization of the lambda-calculus that is constructed in a

classical way. The main difference from classical type theory is thus in definition of

additional special connectives. Note that all essential syntactical elements of FTT

are formulas (alternatively, they can be called lambda-terms as is usual in classical

type theory).

As usual, each formula A has a certain type. The basic types are o (truth values)

and ε (elements). These can be then iterated to more complex types.

Formulas of type o (truth value) can be joined by the following connectives: ≡
(equivalence), ∨∨∨ (disjunction), ∧∧∧ (conjunction), &&& (strong conjunction), ∇∇∇ (strong

disjunction),⇒⇒⇒ (implication). General (∀) and existential (∃) quantifiers are defined

as special formulas. For the details about their definition and semantics — see [36].

If A ∈ Formoα, then A represents a fuzzy set of elements. It can also be under-

stood as a first-order property of elements of the type α. Similarly, A(oα)α is a fuzzy

relation (between elements of type α).

There are over 15 logical axioms in FTT depending on the chosen structure of

truth values. FTT has two inference rules and classical concept of provability. The

rules of modus ponens and generalization are derived rules.

A theory T is a set of formulas of type o. A specific formula of type o is a formula

† representing the most indefinite truth value for which ⊢ ¬¬¬† ≡ † holds. Note that
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such a truth value, in general, needs not be present in the given algebra of truth

values. In the standard Łukasiewicz algebra is † interpreted by 0.5.

A formula ∆∆∆Ao is crisp, i.e., its interpretation is either 0 or 1. There are formulas

which are not crisp.

Quite useful are the following special crisp formulas:

ϒoo ≡ λzo ·¬¬¬∆∆∆(¬¬¬zo),

ϒ̂oo ≡ λzo ·¬¬¬∆∆∆(zo∨∨∨¬¬¬zo).

Thus, the formula ϒoozo says that zo is non-zero truth value and ϒ̂oozo says that zo is

a general truth value between 0 and 1.

Note that ∆∆∆ corresponds to D-operator of supervaluation theory (e.g., A ⊢ C im-

plies ⊢∆∆∆A⇒⇒⇒C as well as ¬¬¬C ⊢¬¬¬∆∆∆A) and ϒ̂ corresponds to I-operator indefinitely.

The semantics of FTT is defined using generalization of the concept of a frame

that is a system 〈(Mα,=α)α∈Types ,L〉 where =α is a special fuzzy equality in each

set Mα. Interpretation of each formula Aβα is a function assigning to every m ∈ Mα

an element from Mβ.

Theorem 1 (completeness, [36])

(a) A theory T of FTT is consistent iff T has a general model.

(b) T ⊢ Ao iff T |= Ao holds for every theory T and a formula Ao.

We claim that all essential properties of vague predicates are formally expressible

in FTT and so, they have a many-valued model.

Fuzzy logic with evaluated syntax (EvŁ)

This logic is specific by considering formulas that are evaluated also on syntac-

tic level. Namely, we deal with evaluated formulas of the form a
/

A where A is a

formula and a ∈ L is its syntactic evaluation. This has nice interpretation since it

allows to consider axioms which need not be fully satisfactory and so, their initial

truth value can be lower than 1.

This logic has been in propositional version established by J. Pavelka in [50] and

extended to predicate version by V. Novák in [33] and especially in the book [48].

EvŁ has been established as a generalization of classical mathematical logic with

clearly distinguished syntax and semantics. The syntax consists of precise defini-

tions of evaluated formula, evaluated proof, fuzzy theory, model, evaluated prov-

ability, etc. and the semantics is formed by the standard Łukasiewicz algebra only.

The reason for choosing the latter follows from Theorem 1.7 in [50], Part III, which

states that completeness in the sense of (7) below requires the following four equa-

tions to hold in the given algebra of truth values:

∨

i∈I

(a → bi) = a →
∨

i∈I

bi,
∧

i∈I

(a → bi) = a →
∧

i∈I

(bi) (5)

∨

i∈I

(ai → b) =
∧

i∈I

ai → b,
∧

i∈I

(ai → b) =
∨

i∈I

ai → b (6)
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These equations are in [0,1] equivalent to continuity of →, which is fulfilled only by

the Łukasiewicz implication and its isomorphs. The resulting logic is quite strong

since it is complete with respect to the generalized syntax, in which all formulas are

evaluated by elements from the underlying algebra. A fuzzy theory T is determined

by a fuzzy set of axioms. Hence, besides the concept of truth of a formula A in

a theory T , T |=a A, which is infimum of truth values of A in all models of T ,

also the provability degree of A in T is introduced: T ⊢a A, which is supremum of

values of all proofs of A in T . Then we obtain generalization of the Gödel-Henkin

completeness theorem:

T ⊢a A iff T |=a A, a ∈ L, (7)

for all all formulas A ∈ FJ(T ) and all fuzzy theories T . The system of EvŁis open to

extension by new connectives.

2.2 Fuzzy Logic in Broader Sense

The paradigm of fuzzy logic in broader sense1 was proposed by V. Novák in 1995

in [34] as a program for extension of FLn, which aims at developing a formal theory

of natural human reasoning that would include mathematical models of special ex-

pressions in natural language with regard to their vagueness. This program overlaps

with two other paradigms proposed in the literature, namely commonsense reason-

ing and precisiated natural language (PNL).

The idea of commonsense reasoning has been proposed by J. McCarthy in [31] as

a part of the program of logic-based artificial intelligence. Its paradigm is to develop

formal commonsense theories and systems using mathematical logic that exhibit

commonsense behavior. The reason is that commonsense reasoning is a central part

of human behavior and no real intelligence is possible without it.

The main drawback of the up-to-date formalizations of commonsense reason-

ing, in our opinion, is that it neglects vagueness present in the meaning of natural

language expressions (cf. [5] and the citations therein).

The concept of PNL, which has been proposed by L. A. Zadeh in [70], is based

on two main premises:

(a) Much of the world knowledge is perception based,

(b) perception based information is intrinsically fuzzy.

It is important to stress that the term precisiated natural language means “a reason-

able working formalization of semantics of natural language without pretension to

capture it in detail and fineness”. Its goal is to provide an acceptable and applicable

technical solution. It should also be noted that the term perception is not considered

here as a psychological term but rather as a result of human, intrinsically imprecise

measurement.

1 It should be noted that FLb should be distinguished from the very general concept of fuzzy

logic in wide sense announced informally by L. A. Zadeh in the nineties.
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PNL methodology requires the presence of World Knowledge Database and Mul-

tiagent, Modular Deduction Database. The former contains all the necessary infor-

mation including perception based propositions describing the knowledge acquired

by direct human experience, which can be used in the deduction process. No exact

formalization of PNL, however, has been developed until recently, and so it should

be taken mainly as a reasonable methodology.

The concept of FLb is a glue between both paradigms that should consider the

best of each. During the years, it has been slowly developed and so far, it consists of

the following theories:

(a) Formal theory of evaluative linguistic expressions, which is in detail explained

in [42].

(b) Formal theory of fuzzy IF-THEN rules which is presented in [11, 45].

(c) Formal theory of perception-based logical deduction, which is presented in [9,

37, 38, 47],

(d) Formal theory of intermediate and generalized quantifiers presented in [10, 21,

39, 43].

The most convenient formal system as the basis for further development of FLb

seems to be the fuzzy type theory. One of the reasons supporting the latter is argu-

mentation of many logicians and linguists (cf. [29, 30, 66]) that the first order logic

is not sufficient for capturing semantics of natural language.

Evaluative linguistic expressions

This theory is one of the most essential constituents of FLb. Recall that evaluative

expressions are expressions of natural language, for example, small, medium, big,

about twenty five, roughly one hundred, very short, more or less deep, not very tall,

roughly warm or medium hot, quite roughly strong, roughly medium size, and many

others. They form a small but very important part of natural language and they are

present in its everyday use any time. The reason is that people very often need to

evaluate phenomena around them. Moreover, they often make important decisions

based on them, learn how to control, and many other activities. Note that from the

linguistic point of view, they also include the, so called, gradable adjectives (cf.

[23]). We argue that the meaning of evaluative expressions is a fundamental bearer

of the vagueness phenomenon and namely, that its vagueness is a consequence of

the indiscernibility between objects.

All the details about formal theory of evaluative linguistic expressions can be

found in [42]. We distinguish intension (a property), and extension in a given context

of use (i.e., a possible world; see [14]). Mathematical representation of intension is

a function defined on a set of contexts which assigns to each context a fuzzy set of

elements. Intension is invariant with respect to change of context. Extension is a

class of elements (i.e., a fuzzy set) determined by intension when setting a specific

context. It depends on the particular context of use and changes whenever the context

is changed. For example, the expression “large town” is a name of an intension being

a property of some feature of objects, i.e. number of people in a town. Its meaning



46 V. Novák and I. Perfilieva

can be, e.g., 100 thousand people in the Czech Republic, 1 mil. people in France, or

10 mil. people in Asia.

The pure evaluative expressions are expressions of the form

〈linguistic hedge〉〈atomic evaluative expression〉

where linguistic hedges are e.g. very, more or less and atomic evaluative expressions

are gradable adjectives small, medium and big, and many others. We must also dis-

tinguish the meaning of evaluative predications that are linguistic expressions of the

form

X is 〈linguistic hedge〉〈atomic expression〉 (8)

where X is a variable for values of some specific feature of objects (e.g., tempera-

ture, pressure, height, depth, etc.).

There are good means in FTT using which notions of context, horizon, and many

other general characteristics of the meaning of evaluative expressions can be mod-

eled. The result is a formal logical theory of evaluative linguistic expressions T Ev

which is determined by 11 special axioms.

Interpretation of extensions of evaluative expressions in a model is depicted in

Fig. 1. The context is determined a by the triple 〈vL,vS,vR〉 of points (left bound,

middle point, and right bound). The LH, MH and RH are fuzzy sets interpreting

left, medium and right horizon, respectively which are determined by a special fuzzy

equality ≈w constructed for each context w from one universal one. The νa,b,c is a

function specific for each linguistic hedge ννν which represents the corresponding

horizon shift. The composition of horizon and its shift provides extension of the

evaluative predication (8) being a fuzzy set of elements. Note that there are various

mathematical models of linguistic hedges which, however, in most cases do not meet

all the necessary requirements. A nice overview of them can be found in [25].

a

b

c

νa,b,c
vL vS vR

1

Me
a

2

Me
a

2

Me
c

1

Me
c Bi

c
Sm
c Sm

a
Bi
a

LH

MH
RH

Fig. 1 Scheme of the construction of extensions of evaluative expressions

It is possible to construct a model of the theory T Ev of evaluative expression.

Hence, using the completeness theorem, we can prove the following:

Theorem 2. The theory of evaluative linguistic expressions is consistent.

This theorem is a strong theoretical support for the functionality of our theory.
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Fuzzy IF-THEN rules and intermediate quantifiers

The theory of evaluative expressions is the point of departure for more advanced

theories of FLb. The first of them is the theory of fuzzy IF-THEN rules that are

conditional expressions of natural language having the form

IF X is A THEN Y is B . (9)

The A ,B in (9) are just evaluative linguistic expressions, or more precisely, the

fuzzy IF-THEN rule consists of two (or more) evaluative linguistic predications

joined by an implication. Sets (finite) of fuzzy IF-THEN rules are called linguis-

tic descriptions and they are the fundamental tool, on the basis of which are can

describe various decision, control or other situations which can give us more infor-

mation about the reality.

The principal method for derivation of a conclusion on the basis of a linguistic

description in perception-based logical deduction (see [37, 47]). We will explain the

main idea on the following example.

Example 1. Given a linguistic description LD

R1 := IF X is small THEN Y is very big,

R2 := IF X is very big THEN Y is small.

Each rule provides us with a certain knowledge (related to the concrete application).

We are able to distinguish between the rules despite the fact that their meaning is

vague.

Let us now consider specific linguistic contexts: w ∈ W for values of X , say,

w = 〈150,330,600〉 (for example, temperature in some oven) and w′ ∈W for values

of Y , w′ = 〈0,36,90〉 (for example, a turncock position in degrees). Then “small X”

are values of X around 180–210 (and smaller) and “very big X” are values around,

at least, 550 or higher. Similarly, “small Y ” are values of Y around 8 (and smaller)

and “very big Y ” values around, at least, 80–85 (and higher).

Let the value X = 180 be given as an observation of X (this may be, e.g., a result

of some measurement). To derive a conclusion on the basis of the given linguistic

description, we must first test whether this value falls in its topic. Since the value of

180 is in the context w = 〈150,330,600〉 apparently small, we may apply knowledge

determined by LD and because of rule R1, we expect a very big value of Y (a value

around 85). Similarly, X = 560 which is very big leads to a value of Y around 8 due

to the rule R2.

More details, formal explanation and description of some applications can be found

also in [41].

An interesting formal theory elaborated in the frame of FLb is the theory of inter-

mediate quantifiers. These are expressions such as most, a lot of, many, a few, a great

deal of, large part of, small part of which have been in detail informally elaborated

in [63]. The main idea is to introduce intermediate quantifiers as special formulas of

fuzzy type theory which express that they are, in fact, classical general or existential
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quantifiers but limited to smaller (fuzzy) sets (for example, fuzzy sets with smaller

support) whose size is measured using some measure. Formulas representing inter-

mediate quantifiers are constructed in a certain extension of the formal theory T Ev

of evaluative linguistic expressions. The theory is sufficiently general to encompass

a wide class of the generalized quantifiers and provides a unique definition for all of

them.

We have proved in [32] validity of all 105 generalizations of classical Aristotlean

syllogisms presented in [63]. Their form is, for example, as follows:

APK-I:

All M are Y

Almost all X are M

Many X are Y

ATT-I:

All M are Y

Most X are M

Most X are Y

There is a great application potential of the theory presented above. One of interest-

ing possibilities is the commonsense human reasoning.

2.3 Model of Commonsense Human Reasoning

We will very briefly mention an FLb-model of a detective story inspired by one

episode of the famous TV series about Lt. Columbo. Note that detective stories are

typical examples of human reasoning where crucial role is played also by natural

language, knowledge of common things and situations, and standard logical deduc-

tion. FLb can provide a formal logical mechanism that can mimic Lt. Columbo’s

reasoning.

The plot: Mr. John Smith has been shot dead in his house. He was found by his

friend, Mr. Robert Brown. Lt. Columbo suspects Mr. Brown to be the murderer.

Mr. Brown’s testimony: I have started from my home at about 6:30, arrived

to John’s house at about 7, found John dead and went immediately to the

phone box to call police. They came immediately.

Lt. Columbo’s evidence: Mr. Smith had high quality suit, broken wristwatch

stopped at 5:45. No evidence of strong strike on his body. Lt. Columbo touched

engine of Mr. Brown’s car and found it to be more or less cold.

Lt. Columbo concluded that Mr. Brown lies because:

(i) Mr. Brown’s car engine is more or less cold, however he went long (more than

about 30 minutes). He could not arrive and continue to call the police (which

came immediately).

(ii) High quality wristwatch does not break after not too strong strike. A man

having high quality dress and a luxurious house is supposed to have also high

quality wristwatch. Wristwatch of John Smith is of low quality and so, it does

not belong to him. It does not display time of Mr. Smith’s death.

The method: combination of logical rules, world knowledge and evidence with the

help of non-monotonic reasoning realized on syntactic level in FTT.
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• Context

(a) Drive duration to heat the engine (minutes): wD = 〈0,5,30〉
(b) Temperature of engine (degrees Celsius): wT = 〈0,45,100〉
(c) Abstract degrees: quality, state, strike strength: 〈0,0.5,1〉

• Logical rules – logical theorems of FTT and theorems given by some considered

theory, for example

IF X is Sm THEN X is not Bi

IF X is Bi THEN X is not Sm

World knowledge

• Knowledge from physics

IF drive duration is Bi THEN engine temperature is Bi

IF drive duration is Sm THEN engine temperature is MLSm

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Customs of people

IF quality of xπ’s suit is Bi AND quality of xπ’s house is VeBi

THEN wealth of xπ is Bi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• etc.

(the following shorts for evaluative expressions have been used: Sm–small, Bi-big,

Ve-very, ML-more or less)

We construct a specific model M given by the evidence of the contexts of wealthy

people and perceptions of Lt. Columbo, for example:

• Touching Mr. Brown’s car engine by hand does not burn; its temperature is

MLSm,

• Quality of Mr. Smith’s house is VeBi.

Lt. Columbo’s conclusion: The two special constructed theories are contradic-

tory. Since my evidence is correct, Mr. Brown lies and had an opportunity to kill

Mr. Smith.

The vagueness is manifested in this reasoning by the fact that a slight change in

the evidence may lead to disappearance of the contradiction, despite the fact that the

basic knowledge has not changed. For example, the truth of “temperature of engine

is low” can be higher, or vice versa, the truth of “temperature of engine is more

or less big” can be nonzero, etc. so that the conclusion can be made more, or less,

convincing. Consequently, further evidence might be necessary, or vice-versa. We

conclude that vagueness plays an important role in reasoning and drawing conclu-

sions. Classical boolean logic can provide solutions only at the price of imposing,
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quite often, improper precision and thus, making the model of reasoning unrealistic.

Introduction of truth degrees may help to overcome such restrictions since we can

balance them: the higher the truth values, the more convincing the conclusion — but

the limit (i.e., full truth 1 or full falsity 0) is unnecessary.

We should see the above example of commonsense reasoning as a general

methodology which can have various kinds of applications. For example, in [12]

it has also been applied to analysis of economic texts.

3 Related Theories with Great Application Potential

One could conclude from the above discussion that fuzzy logic is indeed a good

well established theory which can be very practical. But we can go farther. Besides

the linguistic interpretation of the rules (9), they are also interpreted in the frame of

predicate fuzzy logic as fuzzy relations (cf. [19, 48]).

3.1 Fuzzy Approximation

The linguistic description is assigned certain predicate formulas in BL- or

Łukasiewicz fuzzy logic in one of two possible forms ([19, 48, 51, 52, 55]):

1. Disjunctive normal form (DNF) where each rule is interpreted by a conjunction

of the antecedent and consequent and the fuzzy relations of all rules are joined

by disjunction. This approach is largely known under the name Mamdani-

Assilian interpretation [28], although it has its roots in [68, 69]. Interpretation

of DNF provides the following fuzzy relation

RDNF(x,y) =
n

∨

i=1

(Ai(x)∗Bi(y)) ,x ∈ X ,y ∈Y. (10)

2. Conjunctive normal form (CNF) where the individual rules are interpreted as

implications and joined by conjunction (see also [8]). Interpretation of CNF

provides the following fuzzy relation

RCNF(x,y) =
n

∧

i=1

(Ai(x) → Bi(y)) ,x ∈ X ,y ∈Y. (11)

The linguistic description characterizes a specific dependence between values of

X and Y , where the values of X are the possible inputs and the values of Y are

the possible outputs of the given system described by R . The constructed fuzzy

relation RDNF or RCNF can then be used to compute an output for a given input.

This input is either a crisp value x ∈ X or a fuzzy set A ∈ F (X). The process how the

output is computed using fuzzy relations is usually called the Computational Rule of

Inference (CRI) first considered in [68]. The core of such an inference mechanism

is the computation of an image of the input fuzzy set via a given fuzzy relation. The
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result is an output fuzzy set B ∈ F (Y ). Logical justification of this process has been

provided in [19, 48].

One of the practical problems is how the fuzzy sets Ai,Bi in (10), (11) should

be specified. This problem turned out to be closely related to solvability of fuzzy

relation equations which has been initiated by E. Sanchez in [65]. The result says

that the fuzzy relations RDNF or RCNF and, consequently, CRI rule are incorrectly

defined if the corresponding system of fuzzy relation equations is not solvable (cf.

[54, 59, 60, 61]). This also implies that evaluative linguistic expressions cannot be,

in general, used with CRI (see [35]) and so, the latter is not convenient tool for

logical reasoning inside natural language (i.e., to fit the paradigm of FLb).

Relational interpretation of linguistic descriptions has thousands of various kinds

of applications. It can be considered as one of most practical theory based on fuzzy

predicate logic.

3.2 Fuzzy (F)-Transform

The fuzzy transform (F-transform for short) introduced in detail by I. Perilieva in

[56] is a special technique that can be applied to a continuous function, defined on a

fixed real interval [a,b] ⊂ R. The essential idea is to transform a given function de-

fined in one space into another, usually simpler space, and then to transform it back.

The simpler space consists of a finite vector of numbers obtained on the basis of

the well established fuzzy partition of the domain of the given function. The reverse

transform then leads to a function approximately reconstructing the original one.

Thus, the first step, sometimes called the direct F-transform, results in a vector of

averaged functional values. The second step, called the inverse transform, converts

this vector into another continuous function, which approximates the original one.

The essential idea of F-transform is defined with respect to a fuzzy partition which

is a special system of fuzzy sets defined on a set of nodes in [a,b] which fulfils

several conditions. Some examples of fuzzy partitions see Fig. 2.
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Fig. 2 Graphical presentation of several fuzzy partitions.

Let a fuzzy partition of [a,b] be given by A1, . . . ,An,n ≥ 2, and let f : [a,b]−→ R

be an arbitrary continuous function. The n-tuple of real numbers [F1, . . . ,Fn] given

by

Fi =

∫ b
a f (x)Ai(x)dx
∫ b

a Ai(x)dx
, i = 1, . . . ,n, (12)

is a direct fuzzy transform (F-transform) of f with respect to the given fuzzy parti-

tion. The numbers F1, . . . ,Fn are called the components of the F-transform of f .



52 V. Novák and I. Perfilieva

In practice, the function f is usually not given analytically, but we are at least

provided some data, obtained, for example, by some measurements. In this case,

the previous definition can be modified in such a way that the definite integrals in

Formula (12) are replaced by finite summations. It has been proven [56] that the

components of the F-transform are weighted mean values of the original function,

where the weights are determined by the basic functions.

The original function f can be approximately reconstructed from the direct F-

transform of f with respect to A1, . . . ,An ∈ F ([a,b]) using the following inversion

formula:

fF,n(x) =
n

∑
i=1

FiAi(x). (13)

The function fF,n is called the inverse F-transform of f . It is a continuous function

on [a,b].

Theorem 3. Let f be a continuous function on [a,b]. Then for any ε > 0 there exist

nε and a fuzzy partition A1, . . . ,Anε of [a,b] such that for all x ∈ [a,b]

| f (x)− fF,nε(x)| ≤ ε (14)

where fF,nε is the inverse F-transform of f with respect to the fuzzy partition

A1, . . . ,Anε .

It should be noted that this theorem holds true independently on shapes of the fuzzy

sets A1, . . . ,Anε (of course, provided that they fulfil the general required conditions).

For various properties of the F-transform and detailed proofs — see [56]. There

are numerous applications of the F-transform in image processing, data mining,

time series analysis, solution of differential equations, some numerical methods and

elsewhere (see, e.g. [7, 49, 53, 57, 58, 62, 64]). One can see that this theory is very

practical.

4 Conclusion

As can be seen from the previous brief presentation, mathematical fuzzy logic is a

well developed formal theory which gave rise to several more special theories. Its

structure is now already known quite well. For example, in the paper [4], almost 60

various fuzzy logics are analyzed together. We still do not know exactly which logic

is the most convenient to solve problems related to models of vagueness and their

applications but one can guess from the discussion above that the leading position

is played by MFL based on standard Łukasiewicz MV-algebra of truth values.

We think that there are good reasons to continue the development of FLb

and move it further towards human (i.e., commonsense) reasoning, following the

methodology of PNL and results obtained in the AI theory of commonsense reason-

ing. Another promising direction is to include also uncertainty in FLb in the sense

that has been nicely established by T. Flaminio and F. Montagna in [15]. In their

paper, fuzzy logic is joined with probability theory.
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To summarize, we have presented several theories and mentioned their applica-

tions. We are convinced that this demonstrates that MFL and the related theories are

very practical.
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Interval-Valued Algebras and Fuzzy Logics

Bart Van Gasse, Chris Cornelis, and Glad Deschrijver

Abstract. In this chapter, we present a propositional calculus for several interval-

valued fuzzy logics, i.e., logics having intervals as truth values. More precisely,

the truth values are preferably subintervals of the unit interval. The idea behind

it is that such an interval can model imprecise information. To compute the truth

values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use

operations from residuated lattices. This truth-functional approach is similar to the

methods developed for the well-studied fuzzy logics. Although the interpretation of

the intervals as truth values expressing some kind of imprecision is a bit problematic,

the purely mathematical study of the properties of interval-valued fuzzy logics and

their algebraic semantics can be done without any problem. This study is the focus

of this chapter.

1 Introduction

Classical logic is a two-valued logic: propositions in this logic are either true or

false. In the first case, the truth value 1 is attributed to the proposition, while in the

second case the attributed truth value is 0. Given the truth values of two propositions

Bart Van Gasse

Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan

281 (S9), B-9000 Gent, Belgium

e-mail: Bart.VanGasse@UGent.be

Chris Cornelis

Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan

281 (S9), B-9000 Gent, Belgium

e-mail: Chris.Cornelis@UGent.be

Glad Deschrijver

Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan

281 (S9), B-9000 Gent, Belgium

e-mail: Glad.Deschrijver@UGent.be

C. Cornelis et al. (Eds.): 35 Years of Fuzzy Set Theory, STUDFUZZ 261, pp. 57–82.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

Bart.VanGasse@UGent.be
Chris.Cornelis@UGent.be
Glad.Deschrijver@UGent.be


58 B. Van Gasse, C. Cornelis, and G. Deschrijver

p and q, it is possible to derive the truth values of the negation ‘not p’ (and ‘not q’),

the conjunction ‘p and q’, the disjunction ‘p or q’ and the implication ‘p implies

q’. These formulas are denoted as ¬p, p&q, p∨ q and p → q. The truth values are

calculated using the operations1 ¬, ∗, ⊔ and ⇒. The truth tables of these operations

are given in Table 1.

Table 1 Truth tables of the operations in classical logic

x y ¬x x∗y x⊔ y x ⇒ y

0 0 1 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 1 1 1

For more complicated formulas the truth values can be computed in the same

way. For example, if p is true and q is false, then the truth value of (p∨q) → ((p →
q) → q) is calculated as follows: the truth value of p → q is 1 ⇒ 0 = 0, so the truth

value of (p → q) → q is 0 ⇒ 0 = 1. The truth value of p∨ q is 1⊔ 0 = 1. So we

conclude that the truth value of (p∨q)→ ((p→ q)→ q) is 1⇒ 1 = 1. Interestingly,

the truth value of this formula is always 1, even if other truth values are attributed to

p and q. Such formulas are called tautologies. If a formula φ is a tautology, this is

denoted as |= φ . More generally, for a set of formulas Γ , Γ |= φ means “no matter

what truth values are attributed to the propositions, if the truth values of the formulas

in Γ are 1, then the truth value of φ is 1”.

The two values 0 and 1, together with the defined operations, form a Boolean

algebra. Therefore we say that this Boolean algebra is the semantics of classical

logic. Saying that (p∨ q) → ((p → q) → q) is a tautology in classical logic, is the

same as saying that (x ⊔ y) ⇒ ((x ⇒ y) ⇒ y) = 1 is an identity in this Boolean

algebra (meaning “whatever value of the Boolean algebra we give to x and y, the

calculation of (x⊔ y) ⇒ ((x ⇒ y) ⇒ y) yields 1”). Now, identities in this Boolean

algebra are also identities in every other Boolean algebra (we say that this Boolean

algebra generates all Boolean algebras). Therefore classical logic does not only have

the Boolean algebra with two elements as semantics, but also the whole variety of

Boolean algebras: the general semantics of classical logic consist of all Boolean

algebras.

Interestingly it is also possible to describe classical logic without using seman-

tics. This is done with axioms and deduction rules, which allow to prove a formula

from a set of formulas. When a formula φ is provable from a theory Γ , this is de-

noted as Γ ⊢ φ . Two important results in classical logic are soundness (if Γ ⊢ φ ,

then Γ |= φ ) and completeness (if Γ |= φ , then Γ ⊢ φ ). We write this shortly as

Γ ⊢ φ iff Γ |= φ .

1 Note that we use different symbols, to distinguish the logical connectives from the corre-

sponding operations. Only for the negation we employ the same symbol.
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Now, for the truth values of several propositions one might prefer more than the

two options 0 (false) and 1 (true). Indeed, for vague propositions like ‘it is raining

hard’, it would be useful if one could attribute an intermediate truth value, some-

where between ‘false’ and ‘true’. This can be done using fuzzy set theory, in which

every element of the unit interval [0,1] serves as a truth value, instead of only 0 and

1. The operations for the negation, conjunction, disjunction and implication were

generalized to this setting. Later the structure of the unit interval was generalized

to an arbitrary bounded lattice to allow for incomparabilities among elements, and

triangular norms and conorms are quite common nowadays as generalized represen-

tations of logical conjunction and disjunction, respectively. An interesting class of

these generalizations, especially from the logical point of view, are MTL-algebras

[16]. In these structures, the operations modelling (strong) conjunction and impli-

cation are connected by the residuation principle. These MTL-algebras form the

general semantics of monoidal t-norm based logic (MTL, [16]), in the same way

Boolean algebras form the general semantics of classical logic. Similarly as for

classical logic, these general semantics can be restricted. Indeed, MTL is also sound

and complete w.r.t. standard MTL-algebras, i.e., MTL-algebras on the unit interval.

Therefore MTL is called a (formal) fuzzy logic. But it is definitely not the only

fuzzy logic. Indeed, by adding more axioms and/or deduction rules to the axioms

and deduction rule of MTL, we obtain other fuzzy logics. It is even possible to

retrieve classical logic in this way. Semantically speaking, this means that Boolean

algebras are special cases of MTL-algebras. Some well-known fuzzy logics, situated

between MTL and classical logic, are Hájek’s Basic Logic (BL) [24], Łukasiewicz

Logic (Ł) [30] and Gödel Logic (GL) [14, 22]. Also Intuitionistic Logic (IL) [25]

can be seen as a fuzzy logic. These logics are sound and complete w.r.t. BL-algebras,

MV-algebras (or, equivalently, Wajsberg algebras [20]), G-algebras and Heyting al-

gebras, respectively. We refer to [17] for a comprehensive overview of these and

other logics. Other general references on fuzzy logics are [6, 23, 24].

In [43], Zadeh introduced type-2 fuzzy sets, a generalization of fuzzy sets. The

idea behind these structures is that they provide a way to express incomplete as

well as graded knowledge; as opposed to fuzzy sets, which only express graded-

ness, not incompleteness. Unfortunately, type-2 fuzzy sets are quite complicated

to work with. Therefore often interval-valued fuzzy sets are used. These special

cases of type-2 fuzzy sets are easier to handle. Indeed, truth values in this setting

are closed subintervals of the unit interval, and such an interval is determined by

just two values: its lower and upper bound. The aim of this chapter is to develop

a logic that has intervals as truth values. The intended semantics are residuated

lattices on the set of closed subintervals of the unit interval. We call this set the

triangularization of the unit interval. A particular subset of this triangularization is

its so-called diagonal, consisting of those intervals for which the lower and upper

bound coincide. These intervals are called exact intervals and represent truth values

of propositions about which the knowledge is complete. Intuitively, the truth values

of formulas constructed with these propositions should be exact intervals as well

(because in these cases, the situation is similar to working with formulas in fuzzy

logics). The semantics of so-called interval-valued fuzzy logics have already been
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examined by different authors. Especially interval-valued triangular norms, triangu-

lar conorms and implicators have received ample attention. Most of these authors

[1, 2, 15, 21, 26] only consider interval-valued operations that map the diagonal on

the diagonal, although the most general definitions of triangular norms, triangular

conorms and implicators allow other operations as well [7, 10, 11, 28]. Generally

speaking, interval-valued operations do not satisfy as many properties as operations

on the unit interval. For example, standard interval-valued residuated lattices can

never satisfy prelinearity [8]. A lot of other properties can hold though. There are

even interval-valued implicators that satisfy all the Smets-Magrez axioms [9].

The three main sections of this chapter are conceived as follows:

• In Section 2 we elaborate the theory of interval-valued residuated lattices, which

include the intended semantics of interval-valued fuzzy logics.

• In Section 3 we give the definition of triangle algebras, which are algebraic struc-

tures describing interval-valued residuated lattices.

• In Section 4 we then introduce several interval-valued fuzzy logics and examine

their properties, in particular the soundness and completeness w.r.t. the intended

and the general semantics.

Before we continue, we recall some algebraic concepts that will be used in this

chapter.

• An algebra of type (n1,n2, . . . ,nm), with n1, n2, . . . , nm non-negative integers, is

a structure (A, f1, . . . , fm) in which A is a set, f1 an n1-ary operation on A, . . . and

fm an nm-ary operation on A. If ni is 0, then fi is a constant.

• A reduct of an algebra is an algebra on the same set, but in which some of the

operations are left out. An algebra A is an expansion of an algebra B if B is a

reduct of A .

• A subalgebra of an algebra A = (A, f1, . . . , fm) is an algebra on a subset A′ of A

in which all operations of A are restricted to A′. Of course, this is only possible

if A′ is closed under all these operations, i.e., if for every operation fi of A ,

fi(a1, . . . ,an) ∈ A′ whenever the arguments a1, . . . , an are in A′ (with n the arity

of fi).

• A morphism from an algebra A = (A, f1, . . . , fm) to an algebra B = (B,g1, . . . ,
gm) of the same type, is a mapping h from A to B such that h( fi(a1, . . . ,an)) =
gi(h(a1), . . . ,h(an)) for all operations fi of A and all a1, . . . , an in A (with n the

arity of fi).

• An embedding of an algebra A = (A, f1, . . . , fm) in an algebra B = (B,g1, . . . ,
gm) of the same type, is a morphism h from A to B such that h(a1) 
= h(a2)
whenever a1 
= a2.

• An isomorphism from an algebra A = (A, f1, . . . , fm) to an algebra B = (B,
g1, . . . ,gm) of the same type, is an embedding of A in B such that for every ele-

ment b of B, b = h(a) for some a in A.
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2 Interval-Valued Structures

The most general semantics of fuzzy logics do not only contain algebraic structures

on the unit interval, it consists of all residuated lattices. For interval-valued fuzzy

logics, the situation is comparable: the most general semantics are interval-valued

residuated lattices. In this section, we propose a definition of these structures.

2.1 Triangularizations of Partially Ordered Sets

Definition 1. [39] Given any partially ordered set (shortly: poset) P = (P,≤), we

can define its triangularization T(P) = (Int(P),�) in the following way:

• Int(P) = {[p1, p2] | (p1, p2) ∈ P2 and p1 ≤ p2},

• [p1, p2] � [q1,q2] iff p1 ≤ q1 and p2 ≤ q2, for all [p1, p2] and [q1,q2] in Int(P).

The elements of Int(P) are called the intervals of P .

The first and the second projection pr1 and pr2 are the mappings from Int(P) to P,

defined by pr1([x1,x2]) = x1 and pr2([x1,x2]) = x2, for all [x1,x2] in Int(P).
The vertical and the horizontal projection prv and prh are the mappings from Int(P)
to Int(P), defined by prv([x1,x2])= [x1,x1] and prh([x1,x2]) = [x2,x2], for all [x1,x2]
in Int(P).

It is straightforward to verify that for any poset P , T(P) is also a poset. Moreover,

the original poset (P,≤) is contained in T(P) in some way: indeed, the mapping

i : P → Int(P) defined by i(p) = [p, p] for all p in P, is injective and preserves the

ordering (if p ≤ q, then i(p) = [p, p]� [q,q] = i(q)). The image i(P) consists of the

intervals [p1, p2] in Int(P) for which p1 = p2. The elements of i(P) are called exact

intervals. The subset i(P) of Int(P) is often referred to as the diagonal of T(P).
Note that prv = i◦pr1 and prh = i◦pr2, and that i(P) = prv(Int(P)) = prh(Int(P)).

Example 1. The poset that will be of central interest in this chapter is T([0,1],≤):
the closed subintervals of the unit interval. This poset is complete and its order is

not linear. Its graphical representation as a triangle is shown in Figure 1. The diag-

onal is the hypothenuse of this triangle. Note that the shape of this representation is

triangular. This holds for all triangularizations of bounded linear posets, hence the

name ‘triangularization’.

2.2 Triangular Lattices

Recall that a lattice is a poset in which the supremum and infimum of every two

elements exist; on the other hand, often the following equivalent definition is also

used.

Definition 2. A lattice is an algebra (L,⊓,⊔) of type (2,2) such that ⊓ (‘meet’) and

⊔ (‘join’) are idempotent, commutative and associative operations satisfying the

following absorption laws: for all x and y in L, x⊔ (x⊓ y) = x and x⊓ (x⊔ y) = x.

The lattice order ≤ is defined by x ≤ y iff x⊓ y = x (or, equivalently, iff x⊔ y = y),

for all x and y in L.
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[0,0]

[1,1][0,1]

x1

x2

x = [x1,x2]

x1

x2

Fig. 1 The lattice T([0,1],≤)

Because lattices can be seen as posets, we can consider their triangularizations. One

easily observes that the infimum (resp. supremum) on the triangularization of a lat-

tice is obtained by taking the infimum (resp. supremum) of the first and second

projections. More precisely: for any lattice L = (L,⊓,⊔), the infimum
�

and supre-

mum
⊔

on its triangularization T(L ) are given by

• [x1,x2]
�

[y1,y2] = [x1 ⊓ y1,x2 ⊓ y2],
• [x1,x2]

⊔

[y1,y2] = [x1 ⊔ y1,x2 ⊔ y2],

for all [x1,x2] and [y1,y2] in Int(L ). Note that we use big
�

- and
⊔

-symbols for the

intervals of the triangularization, and small ⊓- and ⊔-symbols for the elements of

the original lattice.

It can be verified that T(L ) is a lattice iff L is a lattice, that i (as defined in

Section 2.1) is a morphism from (L,⊓,⊔) to (Int(L ),
�

,
⊔

), and that the set i(L) of

exact intervals is therefore closed under
�

and
⊔

and forms a sublattice E (L ) =
(i(L),

�
,
⊔

).
On the other hand, T(L ) is bounded iff L is bounded. In this case, the smallest

(resp. greatest) element of L is usually denoted by 0 (resp. 1), and the smallest

(resp. greatest) element of T(L ) by [0,0] (resp. [1,1]). As we will see later on, the

element [0,1] will also play an important role, along with the projections prv and

prh.

For any triangularization (Int(L ),
�

,
⊔

) of a bounded lattice L = (L,⊓,⊔)
(with smallest element 0 and greatest element 1), we call (Int(L ),

�
,
⊔

,prv,prh,
[0,0], [0,1], [1,1]) the extended triangularization of L . Below, we show that ex-

tended triangularizations can be captured by a class of algebraic structures defined

only with identities: the variety of triangular lattices.

Definition 3. [36] A triangular lattice2 is an algebra (L,⊓,⊔,ν,µ ,0,u,1) of type

(2,2,1,1,0,0,0) such that (L,⊓,⊔) is a bounded lattice with smallest element 0 and

greatest element 1 such that

2 The reason we call the last two conditions (T.10) and (T.10’) instead of (T.7) and (T.7’) is

that we would like to keep the same notations as in the papers [36, 37, 38, 40, 42].
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(T.1) νx ≤ x, (T.1′) x ≤ µx,
(T.2) νx ≤ ννx, (T.2′) µµx ≤ µx,
(T.3) ν(x⊓ y) = νx⊓νy, (T.3′) µ(x⊓ y) = µx⊓µy,
(T.4) ν(x⊔ y) = νx⊔νy, (T.4′) µ(x⊔ y) = µx⊔µy,
(T.5) νu = 0, (T.5′) µu = 1,
(T.6) νµx = µx, (T.6′) µνx = νx,
(T.10) x = νx⊔ (µx⊓u), (T.10′) x = µx⊓ (νx⊔u).

The unary operators ν and µ are called the necessity and possibility operator,

respectively.

Note that from (T.10) it follows that for all x and y in L,

x = y whenever νx = νy and µx = µy. (1)

From (T.1) and (T.2), it is clear that in a triangular lattice, always ννx = νx. Sim-

ilarly, µµx = µx. Each of (T.3) and (T.4) implies that ν is an increasing operator.

In the same way, (T.3’) or (T.4’) force µ to be increasing too. Other properties that

follow easily are ν1 = 1 and µ0 = 0: ν1 = νµu = µu = 1 and µ0 = µνu = νu = 0.

Together with (T.1), (T.1’), (T.2), (T.2’), (T.3) and (T.4’), they mean that µ is a

closure operator, and ν is an interior operator. Both are also lattice morphisms.

Note that (T.1’)–(T.4’) are conditions for µ , which is similar to the modal pos-

sibility operator; they are dual to (T.1)–(T.4) for ν , which is similar to the modal

necessity operator. Only (T.4) and (T.3’) are different: in the modal setting, they are

in general not true; and one doesn’t want them to be true either (see e.g. [44]). In

general, we do not require dependency of µ on ν . The conditions (T.5) and (T.5’)

express the complete lack of knowledge about u: its necessity is 0, but its possibility

is 1. The conditions (T.6) and (T.6’) are known in modal logics as the S5-principles

[31, 32].

Proposition 1. [36] Let (L,⊓,⊔,ν,µ ,0,u,1) be a triangular lattice. Then (L,⊓,⊔,
ν,µ ,0, u,1) is isomorphic to the extended triangularization of a bounded lattice.

Conversely, every extended triangularization of a bounded lattice is a triangular

lattice.

In the remainder, we will use the set of exact elements E(L ) of a triangular lattice

L = (L,⊓,⊔,ν,µ ,0,u,1) defined by {x ∈ L | νx = x}. It is closed under all the

defined (unary and binary) operators, and therefore E (L )= (E(L ),⊓,⊔) (in which

the binary operators are restricted to E(L )) is a bounded lattice.

2.3 Interval-Valued Residuated Lattices

For most formal fuzzy logics the semantics require not only a partial order on the

set of truth values, but also some extra operations that model ‘AND’ (the strong

conjunction - the infimum being the weak conjunction) and ‘IMPLIES’ (the impli-

cation). A very commonly used structure – and also the basic structure that we will

use in this work – is that of residuated lattices.
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Definition 4. A residuated lattice3 is a structure L = (L,⊓,⊔,∗,⇒,0,1) in which

⊓, ⊔, ∗ and ⇒ are binary operators on the set L and

• (L,⊓,⊔) is a bounded lattice with 0 as smallest and 1 as greatest element,

• ∗ is commutative and associative, with 1 as neutral element, and

• x∗ y ≤ z iff x ≤ y ⇒ z for all x, y and z in L (residuation principle).

The binary operations ∗ and ⇒ are called product and implication, respectively. We

will use the notations ¬x for x ⇒ 0 (negation), x ⇔ y for (x ⇒ y)⊓ (y ⇒ x).

The following kinds of residuated lattices are used in this chapter.

Definition 5

• An MTL-algebra [16] is a prelinear residuated lattice, i.e., a residuated lattice in

which (x ⇒ y)⊔ (y ⇒ x) = 1 for all x and y in L.

• A BL-algebra [24] is a divisible MTL-algebra, i.e., an MTL-algebra in which

x⊓ y = x ∗ (x ⇒ y) for all x and y in L. The weaker property x⊓ y = (x ∗ (x ⇒
y))⊔ (y∗ (y ⇒ x)) is called weak divisibility.

• An MV-algebra [3, 4] is a BL-algebra in which the negation is an involution, i.e.,

(x ⇒ 0) ⇒ 0 = x for all x in L.

• A Boolean algebra [27] is an MV-algebra that is also a Heyting-algebra, i.e., in

which x∗ x = x for all x in L, or, equivalently, in which ∗ = ⊓.

In a residuated lattice, the operator ∗ is always a residuated t-norm, with ⇒ as its

residual implicator4. Conversely, if T is a residuated t-norm on a bounded lattice

(L,⊓,⊔), then (L,⊓,⊔,T, IT ,0,1) is a residuated lattice. Note however that not all

t-norms are residuated. In complete lattices (L,⊓,⊔), a t-norm T is residuated (and

therefore induces a residuated lattice) iff it satisfies T (x,supY ) = sup{T (x,y) | y ∈
Y}, for all x in L and Y ⊆ L [35].

Example 2. Let T be a t-norm on ([0,1],min,max). It is well-known (see, e.g., [17,

24] that

• T is residuated iff T is left-continuous,

• ([0,1],min,max,T, IT ,0,1) is an MTL-algebra5 iff T is left-continuous,

• ([0,1],min,max,T, IT ,0,1) is a BL-algebra iff T is continuous,

3 In the literature (e.g. in [26]), the name residuated lattice is sometimes used for structures

more general than what we call residuated lattices. In the most general terminology, our

structures would be called bounded integral commutative residuated lattices.
4 Recall that a triangular norm (t-norm, for short) on a poset (P,≤) with largest element

1, is a binary, increasing, commutative and associative operator T : P2 → P that satisfies

T (x,1) = 1, for all x in P. If for every pair (x,y) in P2, sup{z ∈ P | T (x,z) ≤ y} exists, then

the map IT defined by IT (x,y) = sup{z ∈ P | T (x,z) ≤ y} is called the residual implicator

of T . A t-norm T is called residuated if it has a residual implicator satisfying IT (x,y) =
max{z∈ P | T (x,z)≤ y}, in other words if for any pair (x,y) in P2 the set {z ∈ P | T (x,z)≤
y} has a maximum.

5 Because ([0,1],min,max) is linear, every residuated lattice on this lattice is automatically

an MTL-algebra.
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• ([0,1],min,max,T, IT ,0,1) is an MV-algebra iff T is conjugated to the Łukasie-

wicz t-norm TW , i.e., iff there exists a strictly increasing bijection φ : [0,1] →
[0,1] such that T (x,y) = φ−1(TW (φ(x),φ(y))), where TW (x,y) = max(0,x + y−
1).

Several t-norms can be defined on triangularizations of bounded lattices. A class that

will be of great importance later on, consists of t-norms constructed from a t-norm

on and an element of the original lattice: if T is a t-norm on a lattice L = (L,⊓,⊔)
which has a greatest element 1, and t is an element of L, then TT,t , defined by

TT,t([x1,x2], [y1,y2]) = [T (x1,y1),T (T (x2,y2),t)⊔T (x1,y2)⊔T (x2,y1)], (2)

for all [x1,x2] and [y1,y2] in Int(L ), is a t-norm on T(L ). These t-norms were

introduced by Deschrijver and Kerre in [11].

Recall that we are working towards a variety of algebraic structures suitable as se-

mantics for a logic with intervals as truth values. At this point it might seem a good

idea to choose residuated lattices on triangularizations (or, equivalently, residuated

lattices on triangular lattices). However, in these structures the set of exact intervals

is not necessarily closed under the product and implication. This counters the intu-

ition that the truth values of the propositions p&q and p → q should be exact if the

truth values of p and q are exact. Therefore, residuated lattices on triangularizations

are too general to serve as the desired semantics. This leads us to the definition of

interval-valued residuated lattices.

Definition 6. [41]

• An interval-valued residuated lattice (IVRL) is a residuated lattice (Int(L ),
�

,
⊔

,∗,⇒, [0,0], [1,1]) on the triangularization T(L ) of a bounded lattice L =
(L,⊓,⊔), in which the diagonal i(L) is closed under ∗ and ⇒, i.e., [x1,x1] ∗
[y1,y1] ∈ i(L) (with i the injection defined in Section 2.1) and [x1,x1]⇒ [y1,y1]∈
i(L) for all x1 and y1 in L.

• When we add [0,1] as a constant, and prv and prh (as defined in Section 2.1) as

unary operators, the structure (Int(L ),
�

,
⊔

,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is

called an extended IVRL.

An IVRL in which L = ([0,1],min,max) is called a standard IVRL. An extended

IVRL in which L = ([0,1],min,max) is called a standard extended IVRL.

By Proposition 1, if (Int(L ),
�

,
⊔

,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is an extended

IVRL, then it is also a triangular lattice. Now we show that the extra operations ∗
and ⇒ satisfy the following two properties, for all x and y in Int(L ):

• prv(x)∗ prv(y) ≤ prv(prv(x)∗ prv(y)),
• prv(x) ⇒ prv(y) ≤ prv(prv(x) ⇒ prv(y)).

Indeed, the first property is equivalent to prv(x)∗prv(y) = prv(prv(x)∗prv(y)), which

means that for any a and b in i(L), a∗b = prv(a∗b), in other words a∗b ∈ i(L). So
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it tells us exactly that the diagonal i(L) is closed under ∗. And similarly, the second

property means the diagonal i(L) is closed under ⇒ too.

These two properties suggest a way to describe these IVRLs, which seem suitable

as semantics for interval-valued fuzzy logic, using only identities. This leads us to

the next section, where we will introduce this variety (called triangle algebras) and

study its properties in detail.

3 Triangle Algebras

In this section, we introduce a variety of structures called triangle algebras, and show

that they are isomorphic to extended IVRLs. Then, we investigate the product and

implication of triangle algebras and show that they are determined by their action on

the exact elements and by one specific product: u ∗ u. This characterization is used

to uncover the connections between properties on triangle algebras and properties

on their subalgebras of exact elements.

3.1 Definition and Connection with IVRLs

In the definition of a triangle algebra we want to combine the structure of a residu-

ated lattice and the structure of intervals (equipped with the order in Definition 1),

plus the desired property that the subset of exact intervals is closed under all defined

operations. This leads us to the following definition.

Definition 7. [41, 36] A triangle algebra is a structure (A,⊓,⊔,∗,⇒,ν,µ ,0,u,1)
of type (2,2,2,2,1,1,0,0,0) such that (A,⊓,⊔,ν,µ ,0,u,1) is a triangular lattice,

(A,⊓,⊔,∗, ⇒,0,1) is a residuated lattice, and satisfying for all x and y in A,

(T.7′) νx∗νy ≤ ν(νx∗νy),
(T.9) νx ⇒ νy ≤ ν(νx ⇒ νy).

In other words, a structure (A,⊓,⊔,∗,⇒,ν,µ ,0,u,1) of type (2,2,2,2,1,1,0,0,0)
such that (A,⊓,⊔,∗,⇒,0,1) is a residuated lattice, and satisfying for all x and y

in A,
(T.1) νx ≤ x, (T.1′) x ≤ µx,
(T.2) νx ≤ ννx, (T.2′) µµx ≤ µx,
(T.3) ν(x⊓ y) = νx⊓νy, (T.3′) µ(x⊓ y) = µx⊓µy,
(T.4) ν(x⊔ y) = νx⊔νy, (T.4′) µ(x⊔ y) = µx⊔µy,
(T.5) νu = 0, (T.5′) µu = 1,
(T.6) νµx = µx, (T.6′) µνx = νx,
(T.7†) νx∗νy ≤ ν(νx∗νy),
(T.9) νx ⇒ νy ≤ ν(νx ⇒ νy),
(T.10) x = νx⊔ (µx⊓u), (T.10′) x = µx⊓ (νx⊔u).
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A triangle algebra (A,⊓,⊔,∗,⇒,ν,µ ,0A,uA,1A) is called a standard triangle alge-

bra iff (A,⊓,⊔) = T([0,1],min,max).

In a standard triangle algebra (A,⊓,⊔,∗,⇒,ν,µ ,0A,uA,1A) it holds that 0A = [0,0],
1A = [1,1], u = [0,1], ν[x1,x2] = [x1,x1] and µ [x1,x2] = [x2,x2] for all [x1,x2] in

Int([0,1],min,max) [41]. Because a triangle algebra is an expansion of both a tri-

angular lattice and a residuated lattice, the properties of these kinds of structures

remain valid in triangle algebras. The connections between triangle algebras and

several related algebraic structures from the literature are studied extensively in

[39, 41, 36]. In this chapter, we focus on the relationship with IVRLs.

Proposition 2. [41] Let (Int(L ),
�

,
⊔

,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) be an ex-

tended IVRL. Then (Int(L ),
�

,
⊔

,∗,⇒,prv,prh, [0,0], [0,1], [1,1]) is a triangle al-

gebra. Conversely, let A = (A,⊓,⊔,∗,⇒,ν,µ ,0,u,1) be a triangle algebra. Then

A is isomorphic to an extended IVRL.

The isomorphism χ that is used in the proof of Proposition 2 is depicted graphically

in Figure 2.

A

1

u

µx

x

νx

0

[0,0]

[0,1] [1,1]

[x1,x1] = prv([x1,x2])

[x2,x2] = prh([x1,x2])

χ(x) = [x1,x2]

χ

Triangle algebra

(A,⊓,⊔,∗,⇒,ν,µ,0,u,1)
Isomorphic extended IVRL

(A′,⊓′,⊔′,∗′,⇒′,prv,prh, [0,0], [0,1], [1,1])

Fig. 2 The isomorphism χ from a triangle algebra to an extended IVRL

3.2 Characterization of Product and Implication. Decomposition

Theorem.

The following important proposition reveals that the implication ⇒ and the product

∗ are completely determined by their action on the diagonal and the value of u ∗ u:
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Proposition 3. [40] In a triangle algebra A = (A,⊓,⊔,∗,⇒,ν,µ ,0,u,1), it holds

that

• ν(x ⇒ y) = (νx ⇒ νy)⊓ (µx ⇒ µy),
• µ(x ⇒ y) = (µx ⇒ (µ(u ∗ u)⇒ µy))⊓ (νx ⇒ µy),
• ν(x∗ y) = νx∗νy,

• µ(x∗ y) = (νx∗ µy)⊔ (µx∗νy)⊔ (µx∗ µy∗µ(u∗u))

and therefore (by (T.10) and (T.10’))

x ⇒ y

=
(((

µx ⇒ (µ(u ∗ u)⇒ µy)
)

⊓ (νx ⇒ µy)
)

⊓u
)

⊔
(

(µx ⇒ µy)⊓ (νx ⇒ νy)
)

=
(

((µx ⇒ µy)⊓ (νx ⇒ νy))⊔u
)

⊓
((

µx ⇒ (µ(u ∗ u)⇒ µy)
)

⊓ (νx ⇒ µy)
)

and

x∗ y =
((

(νx∗ µy)⊔ (µx∗νy)⊔ (µx∗ µy∗ µ(u∗u))
)

⊓u
)

⊔ (νx∗νy)

=
(

(νx∗νy)⊔u
)

⊓
(

(νx∗ µy)⊔ (µx∗νy)⊔ (µx∗ µy∗ µ(u∗u))
)

.

Because of Proposition 3, the product and implication in triangle algebras are always

of a specific form, which implies that a triangle algebra is completely determined

by its subalgebra of exact elements and the value u ∗ u (in triangle algebras, u is a

constant, playing the role of the interval [0,1] in IVRLs). Conversely, for a fixed

residuated lattice L and element α in that lattice, we can construct a triangle alge-

bra with L as subalgebra of exact elements and u ∗ u determined by µ(u ∗ u) = α .

So we can conclude that there is a one-to-one correspondence between triangle al-

gebras and couples (L ,α), in which α is an element of the residuated lattice L .

This characterization implies that every property that can be imposed on triangle

algebras, can be formulated in terms of such couples.

In particular, any property defined in Definition 5 can be weakened, by imposing

it on E(A ) (instead of A ) only. We will denote this with the prefix ‘pseudo’. For

example, a triangle algebra is said to be pseudo-linear if its set of exact elements

is linearly ordered (by the original ordering, restricted to the diagonal). Another

example: a triangle algebra is pseudo-divisible if νx⊓νy = νx∗ (νx ⇒ νy) for all x

and y in A (E(A ) consists exactly of the elements of the form νx).

It is well-known that MTL-algebras are isomorphic to subdirect products of

linear residuated lattices [16, 24]. This is a very useful result, as it implies that

identities valid in all linear residuated lattices are also valid in all MTL-algebras,

which significantly simplifies several proofs, and which is also needed for the chain-

completeness of the corresponding logic MTL (see Section 4). The ‘interval-valued

counterpart’ of this result is given below:



Interval-Valued Algebras and Fuzzy Logics 69

Theorem 1. [42] Every pseudo-prelinear triangle algebra A is isomorphic to a

subalgebra of the direct product of a system of pseudo-linear triangle algebras.

4 Interval-Valued Fuzzy Logics

In Section 2 we have given the definition of interval-valued residuated lattices

(IVRLs), and in Section 3 we have introduced triangle algebras to capture their

structure by means of identities and/or inequalities. Using this characterization, we

give the definition of several (propositional) interval-valued fuzzy logics in Sec-

tion 4.2. But first, in Section 4.1 we give an overview of the well-studied com-

mon fuzzy logics, on which our interval-valued fuzzy logics are based, and mention

their most important properties. In Section 4.3 we then investigate which of these

properties hold for interval-valued fuzzy logics as well. In particular, we prove

the soundness and completeness with respect to the algebraic semantics and the

deduction theorem.

4.1 Formal Fuzzy Logics

Because in interval-valued fuzzy logics there will be more formulae, we make a dis-

tinction between formulae for fuzzy logics (FL-formulae) and formulae for interval-

valued fuzzy logics (IVFL-formulae).

Definition 8. FL-formulae are built up from a countable set of propositional

variables (denoted by p, q, r, p1, p2, . . . ) and the constant 0. These symbols are

FL-formulae by definition. The other FL-formulae are defined recursively: if φ and

ψ are FL-formulae, then so are (φ ∧ψ), (φ ∨ψ), (φ&ψ) and (φ → ψ).
The set of FL-formulae is denoted by FFL.

In order to avoid unnecessary brackets, we agree on the following priority rules:

• among the connectives, & has the highest priority; furthermore ∧ and ∨ take

precedence over →,

• the outermost brackets are not written.

The following notations are used: 1 for 0 → 0, ¬φ for φ → 0, φ2 for φ&φ , φn (with

n ∈ {3,4,5, . . .}) for (φn−1)&φ (moreover, φ0 is 1 and φ1 is φ ), and φ ↔ ψ for

(φ → ψ)∧ (ψ → φ), for FL-formulae φ and ψ .

The FL-formulae φ&ψ , φ → ψ and ¬φ stand for what we understand intu-

itively by ‘φ and ψ’ (strong conjunction), ‘φ implies ψ’ (implication) and ‘not φ ’

(negation).

It is impossible to list all true FL-formulae of a specific fuzzy logic, because

their number is not finite. Therefore axioms and deduction rules are used. In the

logics we deal with, an FL-formula is true if it is provable from the axioms using

the deduction rules. We will explain this in more detail. This method also allows to

prove FL-formulae from a given set of FL-formulae (usually called a theory). This

means that in the proof of an FL-formula not only axioms of the logic can be used
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but also formulae of the theory. If an FL-formula φ is provable from a theory Γ in a

fuzzy logic L, this is denoted as Γ ⊢L φ . The relation ⊢ is called provability relation

or syntactic consequence.

It is often not very easy to find out if an FL-formula is true in a specific fuzzy

logic. A proof might be difficult to find and such a proof can become very long. This

is why soundness and completeness of (fuzzy) logics is so important. It provides a

way to determine if a formula is true or provable from a theory in a purely algebraic

way. Indeed, soundness and completeness of a fuzzy logic are two properties relative

to a class of algebraic structures. We call such a class a semantics of the fuzzy logic.

To explain this connection between formal logic and algebra in more detail, we need

some terminology first.

Definition 9. Let L = (L,⊓,⊔,∗,⇒,0,1) be a residuated lattice, Γ a theory (i.e., a

set of FL-formulae). An L -evaluation is a mapping e from the set of FL-formulae6

to L that satisfies, for each two formulae φ and ψ :

• e(φ ∧ψ) = e(φ)⊓ e(ψ),
• e(φ ∨ψ) = e(φ)⊔ e(ψ),
• e(φ&ψ) = e(φ)∗ e(ψ),
• e(φ → ψ) = e(φ) ⇒ e(ψ) and

• e(0) = 0.

If an L -evaluation e satisfies e(χ) = 1 for every χ in Γ , it is called an L -model7

for Γ . We write Γ |=L φ if e(φ) = 1 for all L -models e for Γ . If Γ is empty, we

simply write |=L φ instead of /0 |=L φ . FL-formulae φ for which |=L φ are called

L -tautologies. The relation |= is called semantic consequence.

Evaluations form a connection between the connectives of the logic and the alge-

braic operators in residuated lattices. Note that e(1) = e(0 → 0) = e(0) ⇒ e(0) =
0 ⇒ 0 = 1 and e(¬φ) = e(φ → 0) = e(φ) ⇒ e(0) = ¬e(φ).

Now let C be a class of residuated lattices and L a fuzzy logic.

• We say L is sound w.r.t. C if for all Γ ⊆ FFL and φ ∈ FFL, Γ ⊢L φ implies

Γ |=L φ for all L in C .

• We say L is complete8 w.r.t. C if for all φ ∈FFL, (|=L φ for all L in C ) implies

⊢L φ .

• We say L is strong complete w.r.t. C if for all Γ ⊆ FFL and φ ∈ FFL, (Γ |=L φ

for all L in C ) implies Γ ⊢L φ .

We will illustrate these definitions in the following subsections.

6 Note that an L -evaluation is completely determined by its action on the propositional

variables.
7 Note that L -models for the empty set are just L -evaluations.
8 For every logic L appearing in this chapter, completeness w.r.t. a class C of residuated

lattices (or, in the next sections, triangle algebras) implies that, for every finite theory

Γ ⊆ FFL and φ ∈ FFL, Γ ⊢L φ if Γ |=L φ for all L in C . In other words, completeness

implies ‘strong completeness for finite theories’.
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4.1.1 Monoidal Logic

Monoidal logic (ML) was introduced by Höhle in [26]. Its axioms9 are:

(ML.1) (φ → ψ) → ((ψ → χ) → (φ → χ)),
(ML.2) φ → (φ∨ψ),
(ML.3) ψ → (φ∨ψ),
(ML.4) (φ → χ) → ((ψ → χ) → ((φ∨ψ) → χ)),
(ML.5) (φ∧ψ) → φ ,
(ML.6) (φ∧ψ) → ψ ,
(ML.7) (φ&ψ) → φ ,
(ML.8) (φ&ψ) → (ψ&φ),
(ML.9) (φ → ψ) → ((φ → χ) → (φ → (ψ∧χ))),
(ML.10) (φ → (ψ → χ)) → ((φ&ψ) → χ),
(ML.11) ((φ&ψ) → χ) → (φ → (ψ → χ)),
(ML.12) 0 → φ .

This means that for all possible choices of FL-formulae for φ , ψ and χ , the above

FL-formulae are provable in ML. For example, (0 → q) → ((p&q)∨ (0 → q)) is

provable in ML, because it is an instance10 of the third axiom, with ψ = (0 → q)
and φ = p&q.

To show that other FL-formulae are provable in ML, ML has one deduction rule.

This deduction rule is called modus ponens (MP) and states that if φ and φ → ψ

are provable then so is ψ . Now we can formally define what a proof in ML of an

FL-formula φ from a theory Γ is: it is a finite sequence of FL-formulae in which

every FL-formula is either an instance of an axiom of ML, an element of Γ or the

result of an application of the modus ponens to two FL-formulae appearing earlier

in the sequence. If such a proof exists, this is denoted as Γ ⊢ML φ . If Γ is empty,

we simply write ⊢ML φ instead of /0 ⊢ML φ . An important result about ML is its

soundness and completeness w.r.t. residuated lattices.

Theorem 2. [26] Monoidal logic is sound and strong complete w.r.t. residuated lat-

tices. In other words: for all Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢ML φ iff Γ |=L φ

for all residuated lattices L .

9 In [26] there are two axioms instead of the last one. In these two axioms the negation

¬ appears (as a unary connective), but not the constant 0. In this work we have chosen

another way, namely to define the negation based on the constant 0 (instead of the other

way around).

Moreover, also (φ&(ψ&χ)) → ((φ&ψ)&χ) was listed as an axiom. But FL-formulae

of this form can be proven from the other axioms, so it can be left out.
10 An instance of an axiom of ML is any FL-formula obtained by replacing φ , ψ and χ with

FL-formulae. For example, ((p1 → (p2 ∨0))&(p2 ∧q)) → (p1 → (p2 ∨0)) is an instance

of (φ&ψ) → φ .
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Each identity or inequality that is valid in residuated lattices can easily be

transformed into a scheme11 of FL-formulae that are provable in ML. Therefore

we just need to change such an identity or inequality to an equivalent ‘equal to 1

identity’.

• An example with an identity: x ⇒ (y⊓ z) = (x ⇒ y)⊓ (x ⇒ z) holds in all resid-

uated lattices. This is equivalent with (x ⇒ (y⊓ z)) ⇔ ((x ⇒ y)⊓ (x ⇒ z)) = 1,

which can be immediately transformed into the scheme (φ → (ψ ∧χ))↔ ((φ →
ψ)∧ (φ → χ)) of FL-formulae that are provable in ML.

• An example with an inequality: x∗y≤ x⊓y holds in all residuated lattices. This is

equivalent with (x∗ y) ⇒ (x⊓ y) = 1, which can be transformed into the scheme

(φ&ψ) → (φ ∧ψ) of FL-formulae that are provable in ML.

So there is a close connection between identities (and inequalities) in residuated

lattices and (schemes of) FL-formulae that are provable in ML.

ML enjoys a so-called local deduction theorem:

Theorem 3. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are

equivalent:

• Γ ∪{φ} ⊢ML ψ ,

• there is an integer n such that Γ ⊢ML φn → ψ .

This local deduction theorem, as well as the soundness and completeness of ML, re-

main valid in axiomatic extensions of ML. An axiomatic extension of ML is a logic

having the same axioms and deduction rule as ML, plus one or more other axioms.

Axiomatic extensions of ML are sound and complete w.r.t. residuated lattices that

satisfy the identities corresponding to the extra axioms.

4.1.2 Monoidal t-Norm Based Logic

Monoidal t-norm based logic (MTL) [16] is an axiomatic extension of ML. The

extra axiom is (φ → ψ)∨ (ψ → φ). This axiom corresponds with the identity (x ⇒
y)⊔(y⇒ x)= 1 (prelinearity) in residuated lattices. Therefore we have the following

soundness and completeness theorem.

Theorem 4. [16] Monoidal t-norm based logic is sound and strong complete w.r.t.

prelinear residuated lattices (MTL-algebras). In other words: for all Γ ⊆ FFL and

φ ∈ FFL, we have Γ ⊢MT L φ iff Γ |=L φ for all MTL-algebras L .

The provability relation ⊢MT L is defined in the same way as ⊢ML, only now also

instances of the axiom (φ → ψ)∨ (ψ → φ) may appear in proofs of FL-formulae.

Because MTL-algebras are isomorphic to subdirect products of MTL-chains, the

strong completeness can be strengthened to so-called (strong) chain completeness,

i.e., (strong) completeness w.r.t. MTL-chains.

11 A scheme of FL-formulae consists of all FL-formulae of a particular form (the instances

of the scheme). Note that the axioms of ML are schemes.
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Theorem 5. [16] Monoidal t-norm based logic is sound and strong chain complete.

In other words: for all Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢MT L φ iff Γ |=L φ for

all MTL-chains L .

Chain completeness and strong chain completeness are properties that remain valid

for axiomatic extensions of MTL. Important theorems about MTL that do not neces-

sarily remain valid for axiomatic extensions, are standard completeness and strong

standard completeness. Recall that standard MTL-algebras are MTL-algebras on the

unit interval.

Theorem 6. [29] Monoidal t-norm based logic is sound and strong standard com-

plete. In other words: for all Γ ⊆FFL and φ ∈FFL, we have Γ ⊢MT L φ iff Γ |=L φ

for all standard MTL-chains L .

Because of this theorem, and because standard MTL-chains are induced by left-

continuous t-norms, we can say that MTL is ‘the logic of left-continuous t-norms’.

MTL enjoys the same local deduction theorem as ML:

Theorem 7. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are

equivalent:

• Γ ∪{φ} ⊢MT L ψ ,

• there is an integer n such that Γ ⊢MT L φn → ψ .

4.1.3 Basic Logic

Basic logic (BL) [24] is an axiomatic extension of MTL (and therefore also of ML).

The extra axiom is (φ ∧ψ) → (φ&(φ → ψ)). This axiom corresponds with the

identity (x⊓ y) ⇒ (x ∗ (x ⇒ y)) = 1 in residuated lattices, in other words x⊓ y ≤
x∗ (x ⇒ y). This is equivalent with x⊓ y = x∗ (x ⇒ y) (divisibility) because x⊓ y ≥
x ∗ (x ⇒ y) is valid in all residuated lattices. Because BL is an axiomatic extension

of MTL and because divisible MTL-algebras are BL-algebras, we immediately have

the following soundness and completeness result.

Theorem 8. [24] Basic logic is sound and strong chain complete. In other words:

for all Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢BL φ iff Γ |=L φ for all BL-chains L .

Note that BL is also (strong) complete w.r.t. all BL-algebras, which is a weaker

property than (strong) chain completeness. BL also satisfies standard complete-

ness (which is stronger than chain completeness), but not strong standard complete-

ness. This implies that the following theorem in general does not hold for infinite

theories Γ .

Theorem 9. [5] For all finite Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢BL φ iff Γ |=L φ

for all standard BL-chains L .

Because standard BL-chains are induced by continuous t-norms, we can say BL is

‘the logic of continuous t-norms’.

The local deduction theorem is also valid for BL.
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Theorem 10. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are

equivalent:

• Γ ∪{φ} ⊢BL ψ ,

• there is an integer n such that Γ ⊢BL φn → ψ .

4.1.4 Łukasiewicz Logic

Łukasiewicz logic (Ł) is an axiomatic extension of BL (and therefore also of MTL

and ML). The extra axiom is ¬¬φ → φ , in which ¬φ is a short notation for φ → 0.

This axiom corresponds with the identity ¬¬x ⇒ x = 1 in residuated lattices, in

other words ¬¬x ≤ x. This is equivalent with ¬¬x = x (involutive negation) because

x ≤ ¬¬x is valid in all residuated lattices. Because Ł is an axiomatic extension of

MTL, we immediately have the following soundness and completeness result.

Theorem 11. [24] Łukasiewicz logic is sound and strong chain complete. In other

words: for all Γ ⊆FFL and φ ∈FFL, we have Γ ⊢Ł φ iff Γ |=Ł φ for all MV-chains

L .

Note that Ł is also (strong) complete w.r.t. all MV-algebras, which is a weaker prop-

erty than (strong) chain completeness. Ł also satisfies standard completeness (which

is stronger than chain completeness), but not strong standard completeness. This im-

plies that the following theorem in general does not hold for infinite theories.

Theorem 12. [3, 24] For all finite Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢Ł φ iff

Γ |=L φ for all standard MV-chains L .

Because standard MV-chains are induced by t-norms that are conjugated to the

Łukasiewicz t-norm, we can say that Ł is ‘the logic of the Łukasiewicz t-norm’.

The local deduction theorem is also valid for Ł.

Theorem 13. [24] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are

equivalent:

• Γ ∪{φ} ⊢Ł ψ ,

• there is an integer n such that Γ ⊢Ł φn → ψ .

4.1.5 Classical Logic

Classical logic (CPC12) is an axiomatic extension of Ł (and therefore also of BL,

MTL and ML). The extra axiom is φ → (φ&φ). This axiom corresponds with the

identity x ⇒ (x∗x) = 1 in residuated lattices, in other words x ≤ x∗x. This is equiv-

alent with x = x∗ x (contraction) because x∗ x ≤ x is valid in all residuated lattices.

Because CPC is an axiomatic extension of MTL, we immediately have the following

soundness and completeness result.

Theorem 14. [34] Classical logic is sound and strong chain complete. In other

words: for all Γ ⊆ FFL and φ ∈ FFL, we have Γ ⊢CPC φ iff Γ |=L φ for all linear

Boolean algebras L .

12 The abbreviation, taken from [6], stands for ‘classical propositional calculus’.
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Note that there is only one linear Boolean algebra (apart from the trivial one with one

element), namely the Boolean algebra with two elements, 0 and 1. Therefore CPC

cannot satisfy standard completeness, in the sense that CPC is not complete w.r.t.

Boolean algebras on the unit interval (because there are no such Boolean algebras).

The local deduction theorem is also valid for CPC. But because in CPC the FL-

formulae φ and φn (with n a strictly positive integer) are equivalent (meaning ⊢CPC

φ ↔ φn holds13), the theorem can be strengthened.

Theorem 15. [34] Let Γ ∪{φ ,ψ} be a set of FL-formulae. Then the following are

equivalent:

• Γ ∪{φ} ⊢CPC ψ ,

• Γ ⊢CPC φ → ψ .

4.1.6 Other Fuzzy Logics

Apart from the examples in the previous sections, many other fuzzy logics can be

defined by adding axioms to ML, MTL,. . . Examples can be found in e.g. [6]). In

[6] it was proven that an axiomatic extension of MTL is strong standard complete

iff it has the real-chain embedding property, i.e., iff each countable MTL-chain in

its semantics is embeddable in a standard MTL-chain in its semantics.

4.2 Interval-Valued Monoidal Logic: Definition

As semantics of interval-valued fuzzy logics, we choose triangle algebras. Because

triangle algebras have more operators than residuated lattices, IVFL-formulae can

contain more connectives than FL-formulae.

Definition 10. [41] IVFL-formulae are built up from a countable set of propositional

variables (denoted by p, q, r, p1, p2, . . . ) and the constants 0 and u. These symbols

are IVFL-formulae by definition. The other IVFL-formulae are defined recursively:

if φ and ψ are IVFL-formulae, then so are (φ ∧ψ), (φ ∨ψ), (φ&ψ), (φ → ψ), �φ

and ♦φ . The set of IVFL-formulae is denoted by FIV FL. Note that FFL ⊆ FIV FL.

In order to avoid unnecessary brackets, we agree on the following priority rules:

• unary operators always take precedence over binary ones, while

• among the connectives, & has the highest priority; furthermore ∧ and ∨ take

precedence over →,

• the outermost brackets are not written.

The same notations (1 is 0 → 0, . . . ) as for FL-formulae are used. Now we are ready

to introduce interval-valued monoidal logic (IVML) [41]. Its axioms are those of

13 In the logics we are concerned with in this work, we have the following property. If a

subformula of a formula is replaced by an equivalent subformula, the resulting formula

is equivalent with the original one. This can be proven using soundness and complete-

ness. For example, in ML and its axiomatic extensions (p1&p2) → q is equivalent with

(p2&p1) → q because the subformulae p1&p2 and p2&p1 are equivalent.
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ML, i.e., (ML.1)–(ML.12), complemented with axioms corresponding to 13 prop-

erties of triangle algebras:

(IVML.1′) φ → ♦φ ,
(IVML.2) �φ → ��φ ,
(IVML.3) (�φ∧�ψ) → �(φ∧ψ), (IVML.3′) (♦φ∧♦ψ) → ♦(φ∧ψ),
(IVML.4) �(φ∨ψ) → (�φ∨�ψ), (IVML.4′) ♦(φ∨ψ) → (♦φ∨♦ψ),
(IVML.5) ¬�u, (IVML.5′) ♦u,
(IVML.6) ♦φ → �♦φ , (IVML.6′) ♦�φ → �φ ,
(IVML.7) �(φ → ψ) → (�φ → �ψ),
(IVML.9) (�φ → �ψ) → �(�φ → �ψ),
(IVML.10) φ ↔ (�φ ∨ (♦φ ∧u)).

All instances of these axioms are by definition provable in IVML. To determine

which other IVFL-formulae are provable, there are three deduction rules: modus

ponens (MP, if φ and φ → ψ are provable in IVML, then so is ψ), generalization

(G, if φ is provable in IVML, then so is �φ ) and monotonicity of ♦ (M♦, if φ →ψ is

provable, then so is ♦φ → ♦ψ). Proofs in IVML and the provability relation ⊢IV ML

are defined in the usual way, similarly as for ML (and the other fuzzy logics from

Section 4.1). If Γ is a theory, i.e., a set of IVFL-formulae, then a (formal) proof of

an IVFL-formula φ in Γ is a finite sequence of IVFL-formulae with φ at its end,

such that every IVFL-formula in the sequence is either an instance of an axiom of

IVML, an IVFL-formula of Γ , or the result of an application of a deduction rule to

previous IVFL-formulae in the sequence. If a proof for φ exists in Γ , we denote this

by Γ ⊢IVML φ .

Definition 11. [41] Let A = (A,⊓,⊔,∗,⇒,ν,µ ,0,u,1) be a triangle algebra, Γ a

theory (i.e., a set of IVFL-formulae). An A -evaluation is a mapping e from the set

of IVFL-formulae to A that satisfies, for each two IVFL-formulae φ and ψ :

• e(φ ∧ψ) = e(φ)⊓ e(ψ),
• e(φ ∨ψ) = e(φ)⊔ e(ψ),
• e(φ&ψ) = e(φ)∗ e(ψ),
• e(φ → ψ) = e(φ) ⇒ e(ψ),
• e(�φ) = νe(φ),
• e(♦φ) = µe(φ),
• e(0) = 0 and

• e(u) = u.

If an A -evaluation e satisfies e(χ) = 1 for every χ in Γ , it is called an A -model for

Γ . We write Γ |=A φ if e(φ) = 1 for all A -models e for Γ .

Soundness, completeness and strong completeness are defined similarly as for for-

mal fuzzy logics. We just have to replace ‘residuated lattice’ by ‘triangle algebra’

and ‘FL-formula’ by ‘IVFL-formula’.

Now we introduce some axiomatic extensions of IVML, by adding well-known

axioms. Note that these axioms are applied to IVFL-formulae of the form �φ
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instead of to all IVFL-formulae. As the image of a triangle algebra (A,⊓,⊔,∗,
⇒,ν,µ ,0,u,1) under ν is the set E(A ) of exact elements14, this means that the

axioms schemes do not hold for all truth values, but only for exact truth values. This

is not a drawback. On the contrary, it is precisely what we want because the exact

truth values are easier to interpret and handle. Moreover, using Proposition 3, for

all axioms equivalent axioms can be found that only involve IVFL-formulae of the

form �φ and ♦φ , and u.

Definition 12. [38]

• Interval-valued monoidal t-norm based logic (IVMTL) is IVML extended with

the axiom scheme pseudo-prelinearity

(�φ → �ψ)∨ (�ψ → �φ).

• Interval-valued basic logic (IVBL) is IVMTL extended with the axiom scheme

pseudo-divisibility

(�φ ∧�ψ) → (�φ&(�φ → �ψ)).

• Interval-valued Łukasiewicz logic (IVŁ) is IVBL extended with the axiom scheme

pseudo-involution

¬¬�φ → �φ .

• Interval-valued classical propositional calculus (IVCPC) is IVŁ extended with

the axiom scheme pseudo-contraction

�φ → (�φ&�φ).

4.3 Soundness and Completeness

It is easy to check that IVML is sound w.r.t. the variety of triangle algebras, i.e.,

that if an IVFL-formula φ can be proven from a theory Γ in IVML (Γ ⊢IV ML φ ),

then for every triangle algebra A and for every A -model e of Γ , e(φ) = 1 (in other

words: for every triangle algebra A , Γ |=A φ ). To show that IVML is also strong

complete (w.r.t. triangle algebras), i.e., that the converse of soundness also holds, a

general result from abstract algebraic logic (shortly AAL, see e.g. [19] for a survey)

can be applied. It proceeds by showing that IVML is an implicative logic (in the

sense of Rasiowa [33]). From this we can deduce (according to e.g. [18]) that IVML

is strong complete w.r.t. the variety of triangle algebras if it is sound w.r.t. it and if in

triangle algebras x = y if x ⇒ y = 1 and y ⇒ x = 1. Triangle algebras indeed satisfy

these conditions, so we can conclude that IVML is sound and strong complete w.r.t.

triangle algebras.

14 Note that the image under µ is also E(A ). All axiom schemes in Definition 12 can also

be given in an equivalent way by changing �φ to ♦φ and/or �ψ to ♦ψ .
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Theorem 16. (Soundness and strong completeness of IVML) [41] An IVFL-

formula φ can be deduced from a theory Γ in IVML iff for every triangle algebra

A and for every A -model e of Γ , e(φ) = 1.

A more basic proof for the completeness of IVML, using the Lindenbaum algebra of

IVML and inspired by a similar, commonly used procedure for formal fuzzy logics,

was given in [36].

Theorem 16 implies similar results for axiomatic extensions (e.g. the interval-

valued fuzzy logics in Definition 12), in the same way as the soundness and

completeness of ML remains valid for axiomatic extensions. This can be seen by

taking the set of all instances of the extra axioms as Γ in Theorem 16. In particular,

all extensions of IVML introduced in Section 4.2 are sound and (strong) complete

w.r.t. their corresponding subvariety of the variety of triangle algebras. For exam-

ple, IVBL is sound and complete w.r.t. the variety of triangle algebras satisfying

(νx ⇒ νy)⊔ (νy ⇒ νx) = 1 and νx⊓νy ≤ νx∗ (νx ⇒ νy).
For IVMTL and its axiomatic extensions we can prove a stronger version of com-

pleteness, namely strong pseudo-chain completeness. This is similar to axiomatic

extensions of MTL being strong chain-complete. Together with Theorem 16, Theo-

rem 1 implies the following result:

Theorem 17. [42] For each set of IVFL-formulae Γ ∪φ , the following three state-

ments are equivalent:

• φ can be deduced from a theory Γ in IVMTL (Γ ⊢IVMT L φ ),

• for every pseudo-prelinear triangle algebra A and for every A -model e of Γ ,

e(φ) = 1,

• for every pseudo-linear triangle algebra A and for every A -model e of Γ ,

e(φ) = 1.

This completeness result remains valid for axiomatic extensions of IVMTL. The

reason is that Theorem 1 also holds for subvarieties of pseudo-prelinear triangle

algebras.

Using Theorem 6 and the real-chain embedding property, also the strong standard

completeness of IVMTL can be proven.

Theorem 18. [38] (Strong standard completeness) For each set of IVFL-formulae

Γ ∪{φ}, the following four statements are equivalent:

1. φ can be deduced from Γ in IVMTL (Γ ⊢IVMT L φ ),

2. for every pseudo-prelinear triangle algebra A , Γ |=A φ (i.e., for every A -model

e of Γ , e(φ) = 1),

3. for every pseudo-linear triangle algebra A , Γ |=A φ ,

4. for every standard triangle algebra A , Γ |=A φ .

Because of Proposition 2, every standard triangle algebra is isomorphic to a standard

extended IVRL, and every standard extended IVRL is a standard triangle algebra.

This result leads to the following corollary of Theorem 18.

Corollary 1. For each set of IVFL-formulae Γ ∪{φ}, the following statements are

equivalent:
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1. φ can be deduced from Γ in IVMTL (Γ ⊢IVMT L φ ),

2. for every standard extended IVRL A , Γ |=A φ .

So we can truly state that IVMTL is an interval-valued fuzzy logic. It is the logic of

the t-norms TT,t in (2), with T a left-continuous t-norm on the unit interval.

Finally, it is also possible to prove the local deduction theorem for IVML (and its

axiomatic extensions), which gives a connection between ⊢L and →.

Theorem 19. [38] Let Γ ∪{φ ,ψ} be a set of IVFL-formulae, and L be an axiomatic

extension of IVML. Then the following are equivalent:

• Γ ∪{φ} ⊢L ψ ,

• There is an integer n such that Γ ⊢L (�φ)n → ψ .

4.4 Interpretation

Interval-valued fuzzy logics as we introduced them, are truth-functional logics: the

truth degree of a compound proposition is determined by the truth degree of its

constituent parts. This causes some counterintuitive results, if we want to interpret

the element [0,1] of an IVRL as uncertainty regarding the actual truth value of a

proposition. For example: suppose we don’t know anything about the truth value

of propositions p and q, i.e., e(p) = e(q) = [0,1]. Then yet the implication p → q

is definitely valid: e(p → q) = e(p) ⇒ e(q) = [1,1]. However, if ¬[0,1] = [0,1] 15

(which is intuitively preferable, since the negation of an uncertain proposition is still

uncertain), then we can take q =¬p, and obtain that p→¬p is true. Or, equivalently

(using the residuation principle), that p&p is false. This does not seem intuitive, as

one would rather expect p&p to be uncertain if p is uncertain.

Another consequence of [0,1] ⇒ [0,1] = [1,1] is that it is impossible to interpret

the intervals as a set in which the ‘real’ (unknown) truth value is contained, and

X ⇒ Y as the smallest closed interval containing every x ⇒ y, with x in X and y in

Y (as in [15]). Indeed: 1 ∈ [0,1] and 0 ∈ [0,1], but 1 ⇒ 0 = 0 /∈ [1,1].
On the other hand, for t-norms it is possible that X ∗Y is the smallest closed inter-

val containing every x∗y, with x in X and y in Y , but only if they are t-representable

(described by the axiom µ(x ∗ y) = µx ∗ µy). However, in this case ¬[0,1] = [0,0],
which does not seem intuitive (‘the negation of an uncertain proposition is abso-

lutely false’).

These considerations seem to suggest that IVML and its axiomatic extensions are

not suitable to reason with uncertainty. This does not mean that intervals are not a

good way for representing degrees of uncertainty, only that they are not suitable as

truth values in a truth-functional logical calculus when we interpret them as express-

ing uncertainty. It might even be impossible to model uncertainty as a truth value in

any truth-functional logic. This question is discussed in [12, 13]. However, nothing

prevents the intervals in interval-valued fuzzy logics from having more adequate

interpretations.

15 This is for example the case if ¬ is involutive.
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26. Höhle, U.: Commutative, residuated l-monoids. In: Höhle, U., Klement, E. (eds.) Non-
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Implications in Fuzzy Logic:

Properties and a New Class

Yun Shi, Bart Van Gasse, and Da Ruan

Abstract. An implication in fuzzy logic, commonly defined as a two-place opera-

tion on the unit interval, is an extension of the classical binary implication. It plays

important roles in both mathematical and applied sides of fuzzy set theory. Besides

the basic properties, there are many potential properties for implications, among

which eight are widely used in the literature. Different implications satisfying dif-

ferent subgroups of these eight properties can be found. However, certain interre-

lationships exist between these eight properties. This chapter aims to lay bare the

interrelationships between these eight properties. When searching counterexamples

to prove the independencies we discover a new class of implications determined

only by a negation. We then examine under which conditions the eight properties

are satisfied. Finally, we obtain the intersection of the new class of implications with

the S- and R- implications.

1 Introduction to Implication Operators in Fuzzy Logic

Since Lotfi A. Zadeh introduced the concept of fuzzy sets in his pioneering work

in 1965 [28], a huge amount of research work about fuzzy sets and fuzzy logic has

appeared in the literature of mathematics and computer science. Fuzzy logic is an

extension of fuzzy sets. Fuzzy logic in the narrow sense refers to a kind of many-

valued logic, i.e., logic that maintains more than two truth values. Fuzzy logic in

the broad sense refers to the theory of approximate reasoning and the theory of

linguistic logic whose truth values are linguistic terms represented by fuzzy sets

(i.e., membership functions) [18, 29].

One of the most important research areas in fuzzy logic is to extend the connec-

tive operators NOT(¬), AND(∧), OR(∨) and IMPLY(→) from binary logic to fuzzy

logic. Our research work focuses mainly on implications in fuzzy logic.

1.1 Negations, Conjunctions and Disjunctions

A negation in fuzzy logic is an extension of the negation operator ¬ in binary

logic: A [0,1] → [0,1] mapping N is a negation if it satisfies N(0) = 1, N(1) = 0,

C. Cornelis et al. (Eds.): 35 Years of Fuzzy Set Theory, STUDFUZZ 261, pp. 83–103.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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and x ≤ y ⇒ N(x) ≥ N(y), for all x,y ∈ [0,1]. Moreover, A strong negation N is a

negation that satisfies: N(N(x)) = x, for all x ∈ [0,1].
Strong negations are always continuous. But the converse is not true. One of the

famous classes of strong negations are the Sugeno negations Na: there exists an

a ∈ ]−1,+∞[ such that for all x ∈ [0,1], Na(x) = 1−x
1+ax

. Notice that if a = 0, then Na

is the standard negation N0, N0(x) = 1−x. An example of a class of non-continuous

negations is:

NA(x) =

{

1, if x ∈ A,

0, if x /∈ A
, for all x ∈ [0,1], (1)

where A = [0,α[, with α ∈ ]0,1], or A = [0,α], with α ∈ [0,1[ . Notice that NA is

the class of negations that take values only in {0,1}. Another class of negations that

will be useful later is:

NA,β (x) =

{

1, if x ∈ A,
1−x

1+β x
, if x /∈ A

, for all x ∈ [0,1], (2)

where A = [0,α[ , with α ∈ ]0,1], or A = [0,α], with α ∈ [0,1[, and β ∈ ]−1,+∞[ .

Notice that N{0},β is the class of Sugeno negations.

A conjunction in fuzzy logic is an extension of the conjunction operator ∧ in

binary logic. Widely used are triangular norms (t-norms for short). A [0,1]2 ⇀

[0,1] mapping T is a t-norm if for all x,y,z ∈ [0,1] it satisfies: T (x,1) = x, y ≤ z ⇒
T (x,y) ≤ T (x,z), T (x,y) = T (y,x) and T (x,T (y,z)) = T (T (x,y),z).

A disjunction in fuzzy logic is an extension of the disjunction operator∨ in binary

logic. Widely used are triangular conorms (t-conorms for short). A [0,1]2 ⇀[0,1]
mapping S is a t-conorm if for all x,y,z ∈ [0,1] it satisfies: S(x,0) = x, y ≤ z ⇒
S(x,y) ≤ S(x,z), S(x,y) = S(y,x) and S(x,S(y,z)) = S(S(x,y),z).

1.2 Implications

Define a statement as a sentence that can be attached with a truth value in [0,1].
In binary logic, a statement is either attached with 0, which means that it is false,

or attached with 1, which means that it is true. The implication operator in binary

logic, denoted by →, has the following truth table:

p q p → q

0 0 1

0 1 1

1 0 0

1 1 1

The implication operator → represents the meaning of ‘if...then...’ in a conditional

rule. An implication I is extended from the implication operator → in binary logic.

In order to coincide with → on the set {0,1}, it should be a [0,1]2 → [0,1] mapping

that at least satisfies: I(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0. However, there

is no standard definition for an implication as for a conjunction, a disjunction and a
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negation in fuzzy logic. As Kerre [11] states ‘One of the main difficulties I have met

during the preparation of lecture notes on some basic material concerning fuzzy set

theory, consisted of a lack of standard definitions for basic elementary notions’. By

taking into account the extensive literature about implications [3, 4, 5, 8, 10, 26], we

have proposed in our work the following definition:

An implication I is a [0,1]2 → [0,1] mapping that satisfies:

FI1. the first place antitonicity FA:

(∀(x1,x2,y) ∈ [0,1]3)(x1 < x2 ⇒ I(x1,y) ≥ I(x2,y));
FI2. the second place isotonicity SI:

(∀(x,y1,y2) ∈ [0,1]3)(y1 < y2 ⇒ I(x,y1) ≤ I(x,y2));
FI3. dominance of falsity of antecedent DF: (∀x ∈ [0,1])(I(0,x) = 1);

FI4. dominance of truth of consequent DT: (∀x ∈ [0,1])(I(x,1) = 1);

FI5. boundary condition BC: I(1,0) = 0.

There are three important ways to construct implications from the other connective

operators in fuzzy logic:

1. An strong implication (S-implication for short) IS,N :

(∀(x,y) ∈ [0,1]2)(IS,N(x,y) = S(N(x),y)).

2. An residuated implication (R-implication for short) IT :

(∀(x,y) ∈ [0,1]2)(IT (x,y) = sup{t|t ∈ [0,1]∧T(x,t) ≤ y}).

3. A quantum logic implication operator (QL-implication operator for short) IS,N,T :

(∀(x,y) ∈ [0,1]2)(IS,N,T (x,y) = S(N(x),T (x,y))).

Notice that a QL-implication operator is not always an implication because it does

not always satisfy FI1. For under which conditions does a QL-implication satisfy

FI1, i.e., it is an implication, we refer to the articles [7, 15, 23], and Section 2.6 of

book [3].

2 Dependencies and Independencies between Potential

Properties FI6-FI13 of Implications

Besides FI1-FI5, sometimes an implication is required to have some additional prop-

erties to fulfill different requirements [3, 4, 5, 9, 8, 17, 20, 27, 30], among which the

most important ones are, for all x, y and z ∈ [0,1]:

FI6. I(1,x) = x (neutrality of truth, NT for short);

FI7. I(x, I(y,z)) = I(y, I(x,z)) (exchange principle, EP for short);

FI8. I(x,y) = 1 ⇔ x ≤ y (ordering principle, OP for short);

FI9. the mapping NI defined by
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(∀x ∈ [0,1])(NI(x) = I(x,0)),

is a strong negation (strong negation principle, SN for short);

FI10. I(x,y) ≥ y (consequent boundary, CB for short);

FI11. I(x,x) = 1 (identity, ID for short);

FI12. I(x,y) = I(N(y),N(x)), where N is a strong negation (contrapositive principle,

CP for short);

FI13. I is a continuous mapping (continuity, CO for short).

Certain interrelationships exist between these eight properties. This section aims to

lay bare the interrelationships between these eight properties. The result is instru-

mental to propose a classification of implications.

2.1 Getting Neutrality of Truth (NT) from the Other Properties

Theorem 1. ([3], Lemma 1.54(v), Corollary 1.57 (iii)) an implication I satisfying

SN and CP w.r.t. a strong negation N satisfies NT iff NI = N.

In the rest of this section we consider the condition that NI �= N.

Proposition 1. ([1], Lemma 6) An implication I satisfying EP and OP satisfies NT.

Proposition 2. ([3], Lemma 1.56(ii)) an implication I satisfying EP and SN satisfies

NT.

Proposition 3. An implication I satisfying EP and CO satisfies NT.

Proof. Because I satisfies EP, we have for all x ∈ [0,1],

I(1,NI(x)) = I(1, I(x,0)) = I(x, I(1,0)) = I(x,0) = NI(x). (3)

Because I is a continuous mapping, NI is a continuous mapping. Thus expression

(3) is equivalent to I(1,a) = a, for all a ∈ [0,1]. Hence I satisfies NT. ⊓⊔

Proposition 4. There exists an implication I satisfying EP, CB, ID, CP and not NT.

Counterexample: The implication I1 stated in [6] is defined by

I1(x,y) =

{

0 if x = 1 and y = 0

1 else
, for all x,y ∈ [0,1].

I1 satisfies CB, ID and CP w.r.t. any strong negation N. However, in case that

x �= 1, I1(1,x) = 1 �= x. Therefore I1 does not satisfy NT.

Proposition 5. There exists an implication I satisfying OP, SN, CB, ID, CP, CO and

not NT.
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Counterexample: Let an implication I2 be defined by

I2(x,y) =

{

1 if x ≤ y
√

1− (x− y)2 if x > y
, for all x,y ∈ [0,1].

I2 satisfies OP, SN, CB, ID, CP w.r.t. the standard strong negation N0, and CO.

However, in case that x �= 1 and x �= 0, I2(1,x) =
√

2x− x2 �= x. Therefore I2 does

not satisfy NT.

Fig. 1 The implication I2

So we considered all the possibilities that NT can be implied from the other seven

properties. Moreover we stated for each independent case a counterexample.

2.2 Getting Exchange Principle (EP) from the Other Properties

Proposition 6. There exists an implication I satisfying NT, OP, SN, CB, ID, CP, CO

and not EP.

Counterexample: Let an implication I3 be defined by

I3(x,y) =

{

1 if x ≤ y

1− (1− y + xy)(x− y) if x > y
, for all x,y ∈ [0,1].

I3 satisfies NT, OP, SN, CB, ID, CP w.r.t. the standard strong negation N0, and

CO. However, take x0 = 0.3, y0 = 0.9 and z0 = 0.1, we obtain I(x0, I(y0,z0)) ≈
0.9214 and I(y0, I(x0,z0)) ≈ 0.9210. Therefore I3 does not satisfy EP.
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Fig. 2 The implication I3

EP is thus independent of any of the other seven properties.

2.3 Getting FI8(OP) from the Other Properties

Proposition 7. There exists an implication I satisfying NT, EP, SN, CB, ID, CP, CO

and not OP.

Counterexample: Given the strong negation N(x) =
√

1− x2, for all x ∈ [0,1]. The

S-implication I4 generated by the t-conorm SL(x,y) = min(x+y,1) and the strong

negation N is defined by

I4(x,y) = SL(N(x),y) = min(
√

1− x2 + y,1), for all x,y ∈ [0,1].

Because I4 is an S-implication generated from a continuous t-conorm and a

strong negation, it satisfies NT, EP, SN, CB, CP w.r.t. the strong negation N and

CO [8]. Moreover, for all x ∈ [0,1], I4(x,x) = 1. Therefore I4 also satisfies ID.

However, take x0 = 0.5 and y0 = 0.4, we obtain I(x0,y0) = 1 while x0 > y0.

Therefore I4 does not satisfy OP.

Therefore OP is thus independent of any of the other seven properties.
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Fig. 3 The implication I4

2.4 Getting Strong Negation Principle (SN) from the Other

Properties

Proposition 8. ([3], Lemma 1.5.4(v)) An implication I satisfying NT and CP w.r.t. a

strong negation N satisfies SN. Moreover, NI = N.

Corollary 1. An implication I satisfying EP, OP and CP w.r.t. a strong negation N

satisfies SN. Moreover, NI = N.

Proof. Straightforward from Propositions 1 and 8. ⊓⊔

Corollary 2. An implication I satisfying EP, CP w.r.t. a strong negation N and CO

satisfies SN. Moreover, NI = N.

Proof. Straightforward from Propositions 3 and 8. ⊓⊔

Proposition 9. ([1], Lemma 14)([8], Corollary 1.1) An implication I satisfying EP,

OP and CO satisfies SN.

Proposition 10. ([8], Table 1.1) There exists an implication satisfying NT, EP, OP,

CB, ID and not SN.

Proof. The Gödel implication

IGD(x,y) =

{

1, if x ≤ y

y, if x > y
, for all x,y ∈ [0,1]. (4)
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is an R-implication generated by the continuous t-norm TM(x,y) = min(x,y). There-

fore IGD satisfies NT, EP, OP, CB and ID [8]. However we have for all x ∈ [0,1]:

NIGD
(x) = IGD(x,0) =

{

1, if x = 0

0, if x > 0
.

Therefore IGD does not satisfy SN. ⊓⊔

Proposition 11. There exists an implication I satisfying NT, EP, CB, ID, CO and

not SN.

Counterexample: Given the negation N(x) = 1 − x2, for all x ∈ [0,1]. The S-

implication generated from the t-conorm SL and the negation N is defined by

I5(x,y) = min(1− x2 + y,1), for all x,y ∈ [0,1].

I5 satisfies NT, CB, ID and CO. Moreover, because I5 is an (S,N)-implication

generated from the Łukasiewicz t-conorm and the strict negation N(x) = 1−x2, it

then also satisfies EP([3], Proposition 2.4.3(i)). However, we have for all x∈ [0,1]

NI5 (x) = I5(x,0) = 1− x2

which is not a strong negation. Therefore I5 does not satisfy SN.

Fig. 4 The implication I5
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Proposition 12. There exists an implication I satisfying NT, OP, CB, ID, CO and

not SN.

Counterexample: Let an implication I6 be defined by

I6(x,y) =

{

1, if x ≤ y
y

1+
√

1−x
+
√

1− x, if x > y
, for all x,y ∈ [0,1].

I6 satisfies NT, OP, CB, ID and CO. However, we have for all x ∈ [0,1]

NI6 (x) = I6(x,0) =
√

1− x

which is not a strong negation. Therefore I6 does not satisfy SN

Fig. 5 The implication I6

Proposition 13. There exists an implication I satisfying EP, CB, ID, CP and not SN.

The implication I1 stated in the proof of Proposition 4 satisfies EP, CB, ID and CP

w.r.t. any strong negation N. However, we have

NI1 (x) = I1(x,0) =

{

1, if x < 1

0, if x = 1
, for all x ∈ [0,1],

which is not a strong negation. Therefore I1 does not satisfy SN.

Proposition 14. There exists an implication I satisfying OP, CB, ID, CP, CO and

not SN.
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Counterexample: Let an implication I7 be defined by

I7(x,y) =

{

1, if x ≤ y
√

1− (x− y), if x > y
, for all x,y ∈ [0,1].

I7 satisfies OP, CB, ID, CP w.r.t. the standard strong negation N0, and CO. How-

ever, we have for all x ∈ [0,1]

NI7(x) = I7(x,0) =
√

1− x,

which is not a strong negation. Therefore I7 does not satisfy SN.

Fig. 6 The implication I7

So we considered all the possibilities that SN can be implied from the other seven

properties. Moreover we stated for each independent case a counterexample.

2.5 Getting Consequent Boundary (CB) from the Other

Properties

Proposition 15. ([4],Lemma 1 (viii)) An implication I satisfying NT satisfies CB.

Corollary 3. An implication I satisfying EP and SN satisfies CB.

Proof. Straightforward from Propositions 2 and 15. ⊓⊔

Corollary 4. An implication I satisfying EP and CO satisfies CB.
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Fig. 7 The implication I9

Proof. Straightforward from Propositions 3 and 15. ⊓⊔
Proposition 16. ([1], Lemma 6) An implication I satisfying EP and OP satisfies CB.

Proposition 17. There exists an implication I satisfying EP, ID, CP and not CB.

Counterexample: Let an implication I8 be defined by

I8(x,y) =

{

1, if x ≤ 0.5 or y ≥ 0.5
0, else

, for all x,y ∈ [0,1].

I8 satisfies ID and CP w.r.t. the standard strong negation N0. However, take x0 = 1

and y0 = 0.1, we obtain I8(x0,y0) = 0 < y0. Therefore I8 does not satisfy CB.

Proposition 18. There exists an implication I satisfying OP, SN, ID, CP, CO and

not CB.

Counterexample: Let an implication I9 be defined by

I9(x,y) =

{

1, if x ≤ y

(1−√
x− y)2, if x > y

, for all x,y ∈ [0,1].

I9 satisfies OP, SN, ID, CP w.r.t. the standard strong negation N0, and CO. How-

ever, take x0 = 1 and y0 = 0.64, we obtain I9(x0,y0) = 0.16 < y0. Therefore I9

does not satisfy CB.

So we considered all the possibilities CB can be implied from the other seven prop-

erties. Moreover we stated for each independent case a counterexample.
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2.6 Getting Identity (ID) from the Other Properties

Proposition 19. An implication I satisfying OP satisfies ID.

Proof. Straightforward. ⊓⊔

Proposition 20. There exists an implication I satisfying NT, EP, SN, CB, CP, CO

and not ID.

Proof. The Kleene-Dienes implication IKD(x,y) = max(1 − x,y), for all (x,y) ∈
[0,1]2 is an S-implication generated from the t-conorm SM(x,y) = max(x,y) and

the standard strong negation N0. Therefore IKD satisfies NT, EP, SN, CB, CP

w.r.t. the standard strong negation N0, and CO. However, for x0 = 0.1, we obtain

IKD(x0,x0) = 0.9 �= 1. Therefore IKD does not satisfy ID. ⊓⊔

So we considered all the possibilities that ID can be implied from the other seven

properties, and stated for the independent case a counterexample.

2.7 Getting Contrapositive Principle (CP) from the Other

Properties

Proposition 21. ([4],Lemma 1(ix)) An implication I satisfying EP and SN satisfies

CP w.r.t. the strong negation NI .

Proposition 22. ([1]) An implication I satisfying EP, OP and CO satisfies CP w.r.t.

the strong negation NI .

Proposition 23. There exists an implication I satisfying NT, EP, OP, CB, ID and

not CP.

According to the proof of Proposition 10, the Gödel implication IGD satisfies NT,

EP, OP, CB and ID. However, for any strong negation N we obtain

IGD(N(y),N(x)) =

{

1, if x ≤ y

N(x), if x > y
for all x,y ∈ [0,1].

In case that x > y and N(x) �= y, IGD(N(y),N(x)) �= IGD(x,y). Therefore IGD does

not satisfy CP w.r.t. any strong negation.

Proposition 24. There exists an implication I satisfying NT, EP, CB, ID, CO and

not CP.

The implication I5 stated in the proof of Proposition 11 satisfies NT, EP, CB, ID

and CO. However, because for all x ∈ [0,1], NI5 (x) = 1− x2, which is not a strong

negation, according to Corollary 1.5.5 in [3], I5 does not satisfy CP w.r.t. any strong

negation.

Proposition 25. There exists an implication I satisfying NT, OP, SN, CB, ID, CO

and not CP.
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Counterexample: Let an implication I10 be defined by

I10(x,y) =

{

1, if x ≤ y

y+(x−y)
√

1−x2

x
, if x > y

, for all x,y ∈ [0,1].

I10 satisfies NT, OP, SN, ID and CO. If I10 satisfies CP w.r.t. a strong negation N,

then for all x ∈ [0,1], we obtain

N(x) = I10(1,N(x)) = I10(x,0) = NI10
(x) =

√

1− x2.

However, take x0 = 0.8 and y0 = 0.1, we obtain I10(x0,y0) = 0.65 and I10(N(y0),
N(x0)) ≈ 0.643. Therefore I10 does not satisfy CP w.r.t. any strong negation N.

Fig. 8 The implication I10

So we considered all the possibilities that CP can be implied from the other seven

properties. Moreover we stated for each independent case a counterexample.

2.8 Getting Continuity (CO) from the Other Properties

Proposition 26. There exists an implication I satisfying NT, EP, OP, SN, CB, ID, CP

and not CO.
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Counterexample: Let N be a strong negation. Recall the R0-implication stated in

[19] which is defined by

(Imin0
)N(x,y) =

{

1, if x ≤ y

max(N(x),y), if x > y
, for all x,y ∈ [0,1].

(Imin0
)N is the R-implication generated by the left-continuous t-norm, nilpotent

minimum [9]:

(Tmin0
)N(x,y) =

{

min(x,y), if y > N(x)
0, if y ≤ N(x)

, for all x,y ∈ [0,1].

(Imin0
)N satisfies NT, EP, OP, SN, CB, ID and CP w.r.t. N, and is right-continuous

in the second place [19] but it is not continuous.

Therefore CO is independent of any of the other seven properties.

3 A New Class of Implications

In the previous section we have studied dependencies and independencies of eight

potential properties for implications, and found different implications satisfying dif-

ferent subgroups of these eight properties, while in these implications I6 and I10

actually have the same form. Indeed they can be represented by IN where N is a

negation:

IN(x,y) =

{

1, if x ≤ y
(1−N(x))y

x
+ N(x), if x > y

, for all x,y ∈ [0,1]. (5)

If IN is always an implication, then (5) is an interesting new class of implications

because it is only determined by a negation. In this section we check that IN is

always an implication, and then study this new class of implications.

3.1 Is IN Defined by (5) Always an Implication?

We examine whether the mapping IN defined by (5) takes its values in [0,1] and it

satisfies properties FI1-FI5. First we rewrite IN as

IN(x,y) = SP(N(x), IGG(x,y)), (6)

where IGG is the Goguen implication: IGG(x,y) =

{

1, if x ≤ y

y/x, if x > y
, for all x,y ∈

[0,1], and SP is the probabilistic sum: SP(x,y) = x + y− xy, for all x,y ∈ [0,1]. It is

then straightforward that IN(x,y) ∈ [0,1], and IN satisfies F1-F5. Therefore, IN is an

implication.
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3.2 The Potential Properties of the New Class of Implications

Now we work out whether IN defined by (5) satisfies the potential properties FI6-

FI13. If not always, then under which conditions IN satisfies these properties.

(1)NT: We see immediately from (6) that IN always satisfies NT.

(2)EP: We obtain the following theorem:

Theorem 2. The implication IN defined by (5) satisfies EP iff N belongs to one of

the following two classes of negations:

(1)NA defined by (1),

(2)NA,β defined by (2).

Proof. Necessity: Suppose IN satisfies EP. We will show that if N is not of the form

NA, N must be of the form NA,β . We will do this in three steps: first we will show

that we can find a y0 such that 0 < N(y0) < y0 < 1. Second we prove that for x ≥ y0,

N(x) = 1−x
1+β x

for some fixed β . And finally we use this second step to prove that for

x < y0, N(x) = 1 or N(x) = 1−x
1+β x

.

Indeed, if IN satisfies EP, then for all x,y,z∈ [0,1], IN(x, IN(y,z))= IN(y, IN(x,z)).
Take z = 0, we obtain

(∀(x,y) ∈ [0,1]2)(IN(x,N(y)) = IN(y,N(x))). (7)

Suppose N �= NA. Then in particular N �= N[0,1[ . So there exists a y1 ∈ [0,1[ such

that N(y1) < 1. Now take y0 ∈ ]max(y1,N(y1)),1[ , then N(y0) ≤ N(y1) < y0 < 1.

We first show that N(y0) > 0. Indeed, if N(y0) = 0, then for all x ∈ [0,1], we obtain:

N(x) = IN(x,N(y0)) = IN(y0,N(x)) =

{

1, if y0 ≤ N(x)
N(x)

y0
, if y0 > N(x)

⇒ N(x) ∈ {0,1}, for all x ∈ [0,1]

⇒ N = NA, for a certain A,

which we have already excluded. Therefore N(y0) > 0. For all x ∈ [y0,1[ , x > N(y0)
and N(x) < y0. We obtain:

(7) ⇒ 1−N(x)

x
N(y0)+ N(x) =

1−N(y0)

y0

N(x)+ N(y0)

⇒ 1−N(x)− x

x
=

1−N(y0)− y0

y0N(y0)
N(x)

If N(x) = 0, then
1−N(x)−x

x
= 0⇒ x = 1, which we have already excluded. Therefore

we obtain:
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1−N(x)− x

xN(x)
=

1−N(y0)− y0

y0N(y0)

⇒ N(x) =
1− x

1 + β x
(with β =

1−N(y0)− y0

y0N(y0)
, β ∈ ]−1,+∞[).

Now we prove, for any x∈ ]0,y0[ ,that if N(x) �= 1, then N(x) = 1−x
1+β x

. In other words

that, because N is decreasing, N = NA,β defined by (2). Indeed, if N(x) �= 1, then we

can take y in ]max(N(x),y0),1[ such that N(y) ≤ x (this is possible because we have

just proved that for y ∈ [y0,1[ , N(y) = 1−y
1+β y

). We obtain:

(7) ⇒ 1−N(x)− x

xN(x)
=

1−N(y)− y

yN(y)
= β .

Thus N(x) = 1−x
1+β x

.

Sufficiency of NA: We obtain: INA(x,y)=

{

1, if x ∈ A

IGG(x,y), if x /∈ A
for all x,y ∈ [0,1].

Thus

INA(x, INA(y,z)) =

{

1, if x ∈ A or y ∈ A

IGG(x, IGG(y,z)), if x /∈ A and y /∈ A
for all x,y,z ∈ [0,1].

According to [1], IGG satisfies EP. Therefore INA satisfies EP.

Sufficiency of NA,β , A = [0,α[ , with α ∈ ]0,1], or A = [0,α], with α ∈ [0,1[ : We

obtain: INA,β (x,y) =

{

1, if x ≤ y or x ∈ A
1−x+(1+β )y

1+β x
, if x > y and x /∈ A

for all x,y ∈ [0,1]. Thus

for all x,y,z ∈ [0,1]:

INA,β (x, INA,β (y,z)) =

⎧

⎪

⎨

⎪

⎩

1, if x ∈ A or y ∈ A

or x + y + β xy ≤ 1 + z+ β z
2+β−x−y−β xy+(1+β )2z

(1+β x)(1+β y) , else

= INA,β (y, INA,β (x,z)). ⊓⊔

(3) OP: We obtain the following theorem:

Theorem 3. The implication IN defined by (5) satisfies OP iff

x > 0 ⇒ N(x) < 1.

Proof. This follows from, for all 0 ≤ y < x ≤ 1,

IN(x,y) < 1 ⇔ 1−N(x)

x
y + N(x) < 1 ⇔ 1−N(x) > 0 ⇔ N(x) < 1. ⊓⊔

(4) SN: It is straightforward that NIN (x) = IN(x,0) is a strong negation iff N is a

strong negation, because NIN = N.

(5) CB: Because IGG satisfies CB, IN satisfies CB according to (6).
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(6) ID: We see immediately through the definition that IN(x,x) = 1 for all x ∈ [0,1].
(7) CP: We obtain the following theorem:

Theorem 4. The implication IN defined by (5) satisfies CP w.r.t. a strong negation

N
′

iff N is a Sugeno negation Na, a ∈ ]−1,+∞[ , and N
′
= Na.

Proof. Necessity: Recall that IN always satisfies NT. If IN satisfies CP w.r.t. N
′
,

then according to Proposition 8, IN also satisfies SN, and for all x ∈ [0,1], N
′
(x) =

IN(x,0) = N(x). Therefore, N is strong and IN satisfies CP w.r.t. N. We obtain

IN(N(y),N(x)) = IN(x,y)

⇒(∀x ∈]0,1[)(∀y ∈]0,x[)(
1− y−N(y)

N(y)
N(x) =

1−N(x)− x

x
y)

⇒(∀x ∈]0,1[)(∀y ∈]0,x[)(
1− y−N(y)

yN(y)
=

1− x−N(x)

xN(x)
)

⇒(∃a ∈ [−1,+∞])(∀x ∈]0,1[)(
1− x−N(x)

xN(x)
= a).

If a = −1 or a = +∞, then N = NA defined in (1) with A = [0,1[ or A = {0}, which

is not a strong negation. Thus N = Na, which is a Sugeno implication.

Sufficiency: If N = Na, then for all x,y∈ [0,1]: IN(x,y)=

{

1, if x ≤ y
(1+a)y+1−x

1+ax
, if x > y

,

and

IN(N(y),N(x)) =

{

1, if x ≤ y
1−y

N(y) N(x)+ y, if x > y

=

{

1, if x ≤ y
(1+a)y+1−x

1+ax
, if x > y

.

Hence IN(x,y) = IN(N(y),N(x)). ⊓⊔

(8) CO: We obtain the following theorem:

Theorem 5. The implication IN defined by (5) satisfies CO iff N is continuous.

Proof. It is easily verified that if N is continuous, IN is continuous in each vari-

able. Therefore by Corollary 1.2.2 in [3], IN is continuous. The converse follows

immediately from IN(x,0) = N(x). ⊓⊔

Combining the four theorems in this section and ([1], Theorem 1), we obtain the

following two corollaries:

Corollary 5. For the implication IN defined in (5), the following four conditions are

equivalent:

(1) N is a Sugeno negation Na, a ∈ ]−1,+∞[ ,

(2) IN satisfies EP and N is a continuous negation,
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(3) IN satisfies CP (w.r.t. N),

(4) IN is conjugate with the Łukasiewicz implication IL:

IL(x,y) = min(1− x + y,1).

Notice that if a = 0, then N = N0. Then IN = IL.

Corollary 6. An implication IN defined by (5) satisfying EP and CO also satisfies

OP.

The converse of Corollary 6 is not true. For example, the implication IN{0} = IGG:

IGG satisfies OP but it is not continuous at the point (0,0).

3.3 Intersection of the New Class of Implications with the S- and

R- Implications

3.3.1 Intersection of the New Class of Implications and S-Implications

In this section we find the intersection of the new class of implications defined in (5)

and the class of all S-implications as well as the class of all S-implications generated

by a t-conorm and a strong negation.

Theorem 6. The implication IN defined in (5) is an S-implication S(N
′
(x),y) iff

N = N
′

and N belongs to one of the following two classes of negations:

(1) NA defined by (1) with A = [0,1[ ,

(2) NA,β defined by (2).

Proof. Necessity: Because for all x ∈ [0,1],

N(x) = IN(x,0) = S(N
′
(x),0) = N

′
(x), N = N

′
.

According to ([3], Proposition 2.4.6), any S-implication satisfies EP. Then ac-

cording to Theorem 2, if IN is an S-implication, then N = NA, A = [0,α[ , with α ∈
]0,1], or A = [0,α], with α ∈ [0,1[, or N = NA,β . Nevertheless,

INA(x,y) =

{

1, if x ≤ y or x ∈ A
y
x
, if x > y and x /∈ A

, for all x,y ∈ [0,1], (8)

while
S(NA(x),y) =

{

1, if x ∈ A

y, if x /∈ A
, for all x,y ∈ [0,1]. (9)

If A �= [0,1[ , then we can take x and y such that 0 < y < x < 1 and x /∈ A. Then

S(NA(x),y) = y �= y
x
= INA(x,y). Thus (8) �=(9) provided A �= [0,1[ . Therefore I

N[0,α[

(α < 1) and I
N[0,α] are not S-implications.

Sufficiency of N = N[0,1[: IN[0,1[(x,y) = S(N[0,1[(x),y) for any t-conorm S.

Sufficiency of N = NA,β : Take S(x,y) = min(1,x + y + β xy). We can verify that

S is a t-conorm (for the associativity, for all x,y,z ∈ [0,1]:

S(x,S(y,z)) = min(1,x + y + z+ β xy + βyz+β xz+β 2xyz) = S(S(x,y),z),)

and that
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S(NA,β (x),y) =

{

1, if x ∈ A or x ≤ y
1−x+y+β y

1+β x
, if x /∈ A and x > y

= INA,β (x,y).

Consequently, INA,β is an S-implication. ⊓⊔
Combining Corollary 5 and Theorem 6 we obtain the following corollary.

Corollary 7. For the implication IN defined by (5), the following three conditions

are equivalent:

(1) IN is an S-implication generated by a t-conorm and a strong negation,

(2) N is a Sugeno negation Na, a ∈ ]−1,+∞[,
(3) IN is conjugate with the Łukasiewicz implication IL.

3.4 Intersection of the New Class of Implications and

R-Implications

In this section we find the intersection of the new class of implications defined in

(5) and the class of the R-implications generated by left-continuous t-norms.

Theorem 7. The implication IN defined in (5) is an R-implication generated by a

left-continuous t-norm iff N belongs to one of the following two classes of negations:

(1) a Sugeno negation Na, a ∈ ]−1,+∞[,
(2) NA defined by (1) with A = {0}.

Proof. Necessity: If IN is an R-implication generated by a left-continuous t-norm,

then according to ([8], Theorem 1.14), IN satisfies EP and OP. According to Theo-

rem 2, N = NA defined by (1), or N = NA,β defined by (2). According to Theorem 3,

N(x) < 1 provided x > 0. Therefore N = Na, or N = N{0}.

Sufficiency of N = Na: According to Corollary 5, if N = Na, then IN is con-

jugate with IL(x,y) = max(x + y− 1,0). According to ([1], Theorem 1), IN is an

R-implication.

Sufficiency of N = N{0}: IN{0} = IGG, the R-implication generated by the contin-

uous t-norm TP(x,y) = xy. ⊓⊔
Notice that although I

N[0,1[ is not an R-implication generated by a left-continuous

t-norm, it is the R-implication ILR generated by the non-left-continuous t-norm

TD(x,y) =

{

min(x,y), if x = 1 or y = 1

0, otherwise
, for all x,y ∈ [0,1].

3.5 Conclusion Remarks

In this chapter we first studied the complete dependencies and independencies be-

tween the eight potential properties FI6-FI13 of implications. Two of the counterex-

amples we define to show the independencies lead us to a new class of implications

determined by a negation N, i.e.,
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IN(x,y) =

{

1, if x ≤ y
(1−N(x))y

x
+ N(x), if x > y

, for all x,y ∈ [0,1].

We first checked that IN is always an implication. For each of the properties FI6-

FI13 we found sufficient and necessary conditions in terms of N. We also obtained

the intersection of IN with any S-implications and R-implications generated by a

left-continuous t-norm. An example of IN being an R-implication generated by a

non-left-continuous t-norm was also given.

It is worth mentioning that if we take N as a Sugeno negation, then IN is an

implication that is conjugate with the Łukasiewicz implication IL.

At the end of this paper we mention a possible generalization of the new class

of implications IN . If we replace SP and IGG in (6) with any t-conorm S and any

implication I, then we obtain a class of implications defined by N, S and I:

IN,S,I(x,y) = S(N(x), I(x,y)), for all x,y ∈ [0,1].

Using the same proof for IN we obtain that IN,S,I is always an implication. This class

of implications helps us to generate new implications from existing ones, which will

be the topic of further research.
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On Lattice–Based Fuzzy Rough Sets

Anna Maria Radzikowska

Dedicated to Etienne E. Kerre

on the occasion of his retirement

Abstract. Rough sets were originally proposed by Pawlak as a formal tool for ana-

lyzing and processing incomplete information represented in data tables. Later on,

fuzzy generalizations of rough sets were introduced and investigated to be able to

deal with imprecision. In this paper we present L–fuzzy rough sets as a further gen-

eralization of rough sets. As an underlying algebraic structure we take an extended

residuated lattice, that is a residuated lattice endowed with a De Morgan negation.

The signature of these structures gives algebraic counterparts of main fuzzy logical

connectives. Properties of L–fuzzy rough sets are presented. We show that under

some conditions families of all lower (resp. upper) L–fuzzy rough sets are complete

(distributive) lattices. It is also pointed out that in some specific cases lower and

upper fuzzy rough approximation operators are L–fuzzy topological operators of

interior and closure, respectively.

1 Preface

I have enjoyed Etienne Kerre’s acquaintance since the late nineties. In June 1998

I visited Gent for a short–term scientific mission in the framework of the project

COST Action 15 “Many–Value Logics for Computer Science Applications. I was

impressed and moved by Etienne’s scientific open-mindness and his abilities to com-

bine, in a mastery way, pure mathematics with modern approaches in mathematics

of fuzziness and their wide applications in diverse areas. With great enthusiasm he
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introduced me into various aspects of fuzzy set theory. We discussed about links

between fuzzy set theory and rough set theory, which started our long–lasting re-

search cooperation on fuzzy rough sets, fuzzy modal logics, and fuzzy information

relations (see, for example, [4],[5],[22],[26]–[36]) Since then I came to Gent every

year in June for 2–3 weeks. Each visit was a very fruitful research experience and,

due to Etienne’s openness and kindness, it was also a fantastic, unforgettable stay.

I would like to take the opportunity to thank Etienne and Andrea for their great

hospitality during my stays. I fondly remember our lunches, when I enjoyed their

guidance on delicious Flemish cuisine. Thank you, Etienne, for being a reference,

for your stimulating, challenging ideas, for your real, warm friendship – in summary,

for being as you are.

2 Introduction

In real–life problems the available information is usually incomplete and/or impre-

cise. On one hand, not all relevant information is known or accessible, on the other

hand, user’s data may be imprecise or vague (e.g., when expressed by means of lin-

guistic terms like “quite good” or “rather cold”). Rough set theory was developed

by Pawlak ([24],[25]) as a formal tool for analyzing and processing information in

data tables. As a consequence, it acts on partial information. This formalism proved

to be a natural instrument to inquire into many theoretical and practical problems

related to data analysis and knowledge discovery (see, e.g., [21],[39],[40],[45],[47]).

Fuzzy set theory ([46]), on the other hand, offers a wide variety of techniques

for analyzing imprecise data. Basically, both theories address the problem of in-

formation granulation: the theory of fuzzy sets is centered upon fuzzy information

granulation, whereas rough set theory is focused on crisp information granulation.

Originally, the basic notion in rough set theory was indistinguishability (i.e., indis-

tinguishability between objects in information systems induced by different values

of attributes characterizing these objects), yet in recent extensions ([21]) the focus

moved to the notion of similarity, which is in fact a fuzzy concept. It is therefore

apparent that these two theories have become much closer to each other, so it seems

natural to combine methods developed within both theories in order to construct

hybrid structures capable to deal with both incompleteness and imprecision. Such

structures, called fuzzy rough sets and rough fuzzy sets, were proposed in the liter-

ature ([8],[9],[23], [41]). In [27] Radzikowska and Kerre investigated fuzzy rough

sets taking the unit interval [0,1] as the basic structure.

In [15] Gougen pointed out that in many situations the linearly ordered set may

be insufficient to adequately represent degrees of membership. From this reason,

L–fuzzy sets were introduced, where degrees of membership are elements of a

lattice L.

As mentioned above, the concept of rough set is recently focused on the notion of

similarity. In many situations it is hard to specify whether similarity between objects

x and y is stronger (resp. weaker) than similarity between x and z. Hence it is nat-

urally justified to consider L–fuzzy rough sets ([29],[30],[35]). In the present paper
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these structures are presented and investigated. Residuated lattices endowed with a

De Morgan negation, referred to as extended residuated lattices, are taken as the

underlying algebraic structures. These structures allow us to obtain algebraic coun-

terparts of main fuzzy logical connectives: triangular norms and triangular conorms,

R–implications and S–implications, and two types of fuzzy negations (including a

De Morgan negation). Using two classes of fuzzy implications the respective two

classes of L–fuzzy rough sets are investigated. We show that the families of lower

and upper L–fuzzy rough sets constitute a lattice structure and point out conditions

under which these lattices are distributive. Finally, we point out that under some

conditions L–fuzzy rough approximation operators are fuzzy interior and fuzzy clo-

sure topological operators.

The present paper contains some important results on fuzzy rough sets that were

obtained during my long cooperation with Etienne, but there are also some studies

that were only a topic of our discussions, but not yet been published. This tribute

book is a nice occasion to supplement our joint research results.

3 Rough Sets

Let X be a non–empty universe and let R be a non–empty binary relation on X .

The set X is viewed as a set of objects and R represents relationships between these

objects determined by their features (attributes). The question addressed in rough

set theory is: how to approximate a concept A⊆X using classes of the relation R?

The following notation will be used. Given a subset A⊆X , −A will stand for the

set complement of A, i.e., −A=X \A. By 2X we will denote the powerset of X . For

a binary relation R on X and for every x∈X , we will write xR to denote the class of

R with the representant x, that is the set xR={y∈X : (x,y)∈R}.

Let X be viewed as a set of objects (examples), and let R be a binary relation on X

representing relationships between these objects (indistinguishability or similarity).

The pair AS =(X ,R) is called an approximation space.

Given an approximation space AS =(X ,R), the following two mappings AS,AS :

2X → 2X are defined as: for every A⊆X ,

AS(A) = {x∈X : xR ⊆ A} (1)

AS(A) = {x∈X : xR∩A �= /0}. (2)

It is easily noted that the operations (1) and (2) coincide with modal operators of ne-

cessity and possibility, respectively (see, e.g., [3],[6]). For this reason, if x∈AS(A),
then we say that x certainly belongs to A, whereas if x∈AS(A), then it is said that x

possibly belongs to A.

For any A⊆X , AS(A), and AS(A) are respectively called a lower and an upper

rough approximation of A in AS. A pair (A1,A2)∈2X ×2X is a rough set in AS

iff A1 =AS(A)) and A2 =AS(A) for some A⊆X . A subset A⊆X is called exact iff

AS(A) = A = AS(A).
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Originally, rough sets were defined with respect to approximation spaces with

equivalence relations. Later generalizations of this notion lead to so–called general-

ized rough sets. In this paper we simply refer to these structures as rough sets.

Let us recall basic properties of rough sets (see, e.g., [6], [21],[24],[25],[45]).

Theorem 1. For every approximation space As=(X ,R),

(i) AS(X)=X, AS( /0)= /0

(ii) for all A,B⊆X, A⊆B implies AS(A)⊆AS(B) and AS(A)⊆AS(B)

(iii) for every A⊆X, AS(A) = −AS(−A)

(iv) for every indexed family (Ai)i∈I of subsets of X,

AS(
⋂

i∈IAi) =
⋂

i∈I AS(Ai)

AS(
⋃

i∈IAi) =
⋃

i∈I AS(Ai)

AS(
⋃

i∈IAi) ⊇
⋃

i∈I AS(Ai)

AS(
⋂

i∈IAi) ⊆
⋂

i∈I AS(Ai).

It is well–known ([6]) that modal operators, and in consequence lower and upper

rough approximation operators, are useful for characterizing properties of binary

relations. The following theorem presents these results.

Theorem 2. ([6]) For every approximation space AS =(X ,R) and for every A⊆X,

(i) R is serial iff AS(A)⊆AS(A)

(ii) R is reflexive iff AS(A)⊆A

iff A⊆AS(A)

(iii) R is symmetric iff A⊆AS(As(A))
iff AS(AS(A))⊆A

(iv) R is Euclidean iff AS(A)⊆AS(AS(A))
iff AS(AS(A))⊆AS(A)

(v) R is transitive iff AS(A)⊆AS(AS(A))
iff AS(AS(A))⊆AS(A).

Recall that a relation R⊆X ×X is called serial iff for every x∈X there is y∈X

such that (x,y)∈R; it is called Euclidean iff for all x,y,z∈X , (x,y)∈R and (x,z)∈R

imply (y,z)∈R.

4 Algebraic Foundations

Let L be a non–empty domain, let 1∈L be its distinguished element, and let ⊗ be a

binary operation in L. A structure (L,⊗,1) is called a monoid iff ⊗ is associative op-

eration satisfying 1⊗a = a⊗1=1 for every a∈L. A monoid is called commutative

iff ⊗ is commutative.
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Typical examples of monoid operations are triangular norms and triangular

conorms (see [38]). A triangular norm t (resp. a triangular conorm s) is a com-

mutative, associative and non–decreasing in both arguments [0,1]2 − [0,1] mapping

satisfying the following border condition t(1,a) = a (resp. s(a,0) = a) for every

a∈ [0,1]. Three most popular triangular norms are:

⋄ the min operation (the Zadeh’s triangular norm) tZ(a,b)= min(a,b)
⋄ the algebraic product tP(a,b)=a ·b
⋄ the Łukasiewicz triangular norm tL(a,b)= max(0,a+b−1).

A triangular norm is called left–continuous iff its partial mappings t(a, ·) and t(·,a)
are left–continuous for every a∈ [0,1].

The well–known triangular conorms are:

⋄ the max operation (the Zadeh’s triangular conorm) sZ(a,b)= max(a,b)
⋄ the bounded sum sP(a,b)=a+b−a ·b
⋄ the Łukasiewicz triangular conorm sL(a,b)= min(1,a+b).

Triangular norms and triangular conorms are the basis for constructing main classes

of fuzzy implications ([19],[20],[44]), that is mappings i : [0,1]2 → [0,1], non–

increasing in the first argument, non–decreasing in the second argument, which

satisfy the boundary conditions: i(1,1)= i(0,0)= i(0,1)=1 and i(1,0)=0. There

are two main classes of these connectives:

• R–implications, also called a residual implications based on a left–continuous

triangular norm t, or the residuum of t, defined as:

it(x,y)= sup{z∈ [0,1] : t(x,z) ≤ y}

• S–implications based on a triangular conorm s and a fuzzy negation1 n defined

by: is,n(x,y)= s(n(x),y).

The most popular R–implications, being the residua of tZ , tP and tL, respectively,

are:

⋄ the Gödel implication iZ(x,y)=1 iff x ≤ y and iZ(x,y)=y elsewhere

⋄ the Gaines implication iP(x,y)=1 iff x ≤ y and iP(x,y)= y
x

elsewhere

⋄ the Łukasiewicz implication iL(x,y)= min(1,1−x+y).

The well–known S–implications are:

⋄ the Kleene–Dienes implication isz,η = max(1−x,y) (based on sZ and η)

⋄ the Reichenbach implication isp,η(x,y)=1−x+x · y (based on sP and η)

⋄ the Łukasiewicz implication (based on sL and η)

Let (L,�) be a poset2 and let ◦ be a unary operation in L. We say that ◦ is isotone

(order–preserving) iff for all a,b∈L, a ≤ b implies ◦a ≤ ◦b; ◦ is called antitone

1 A fuzzy negation is a non–increasing mapping n : [0,1] → [0,1] such that n(1)=0 and

n(0)=1. The standard fuzzy negation η is the mapping η(x)=1−x, x∈ [0,1].
2 Recall that a poset is a structure (X ,�) such that X �= /0 and � is a partial order, that is �

is reflexive (x � x), transitive (x � y&y � z =⇒ x � z), and antisymmetric (x � y&y �

x =⇒ x=y).
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(order–reversing) iff for all a,b∈L, a ≤ b implies ◦b ≤ ◦a. We say that ◦ is involu-

tion iff ◦◦a=a for every a∈L.

The following algebra is of main importance, in particular in fuzzy logics (e.g.,

[7],[10],[11],[14],[16],[43]).

Definition 1. A residuated lattice is an algebra (L,∧,∨,⊗,→,0,1) such that

(i) (L,∧,∨,0,1) is a bounded lattice with the top element 1 and the bottom ele-

ment 0

(ii) (L,⊗,1) is a commutative monoid

(iii) → is a binary operation in L defined as:

a → b = sup{c∈L : a⊗ c ≤ b}. (3)

The operation ⊗ is called a product and → is its residuum.

Given a residuated lattice (L,∧,∨,⊗,→,0,1), the following precomplement opera-

tion is defined as: for every a∈L,

¬a = a → 0.

The precomplement operation is a generalization of the pseudo–complement in a

lattice ([37]). If ∧=⊗, then → is the relative pseudo–complement,¬ is the pseudo–

complement, and (L,∧,∨,→,¬,0,1) is a Heyting algebra.

For recent results of residuated lattices we refer, for example, to [1], [17], and

[18].

Example 1. Let ⊗ be a left–continuous t–norm and let → be the residual implication

based on t. The structure ([0,1],min,max,⊗,→,0,1) is a residuated lattice.

It is easily noted that the product operation of a residuated lattice is the algebraic

counterpart of a triangular norm,→ corresponds to the residual implication based on

⊗, and ¬ corresponds to a fuzzy negation (in general, it is not involutive). However,

residuated lattices do not give adequate counterparts of triangular conorms, fuzzy S–

implications and fuzzy involutive negations. For these reasons, so–called extended

residuated lattices were proposed ([29],[32],[35]).

Definition 2. An extended residuated lattice (ER–lattice, for short) is a system

(L,∧,∨,⊗,→,∼,0,1) such that

(i) (L,∧,∨,⊗,→,0,1) is a residuated lattice

(ii) ∼∼a=a for every a∈L

(iii) ∼(a∨b)=∼a∧∼b for all a,b∈L.

From the above definition it immediately follows that an ER–lattice is a residuated

latticed endowed with a De Morgan negation.

An ER–lattice (L,∧,∨,⊗,→,∼,0,1) is complete iff the underlying lattice

(L,∧,∨, 0,1) is complete.
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Given an ER–lattice (L,∧,∨,⊗,→,∼,0,1), let us define the following binary

operations in L: for all a,b∈L,

a⊕b = ∼(∼a⊗∼b) (4)

a⇒b = ∼a⊕b (5)

One can easily note that the operation ∼ of an ER–lattice corresponds to a fuzzy

De Morgan negation, ⊕ and ⇒ are algebraic counterparts of a triangular conorm,

and a fuzzy S–implication, respectively. Therefore, the signature of an ER–lattice

gives algebraic counterparts of main fuzzy logical connectives: a triangular norm

and a triangular conorm, an R–implication and an S–implications, and two fuzzy

negations (including a De Morgan negation). Properties of ER–lattices can be found,

for example, in [35].

Important properties of ER–lattices are listed in the following two propositions.

Proposition 1. Let (L,∧,∨,⊗,→,∼,0,1) be an ER–lattice and let ≤ be the natural

lattice ordering. Then for all a,b,c∈L, the following conditions hold:

(i) ⊗ and ⊕ are isotone in both arguments

(ii) → and ⇒ are antitone in the 1st and isotone in the 2nd argument

(iii) ∼ and ¬ are antitone

(iv) a⊗b ≤ a∧b, a∨b ≤ a⊕b

(v) a⊗b ≤ a, a ≤ a⊕b

(vi) a⊗0=0, a⊕1=1

(vii) a→a = a→1 = 0→a = 1, 1→a = a

(viii) a⇒1 = 0⇒a = 1, 1⇒a = a

(ix) a ≤ b iff a→b = 1

(x) a⊗ (a→b)≤ b

(xi) a⊗ (b→c)≤ b→(a⊗ c)
(xii) (a→b)⊗ (b→c)≤ (a→c)

(a⇒c) ≤ (a⇒b)⊕ (b⇒c)
(xiii) (a→b) ≤ (c→a)→(c→b)
(xiv) a→b ≤ (a⊗ c)→(b⊗ c)
(xv) b ≤ a→(a⊗b)

(xvi) a→(b→c) = (a⊗b)→c

a⇒(b⇒c) = (a⊗b)⇒c

(xvii) a→¬b = ¬(a⊗b)
a⇒∼b = ∼(a⊗b)

(xviii) a→b ≤ ¬b→¬a

a⇒b = ∼b⇒∼a

(xix) a⇒b = ∼(a⊗∼b)
(xx) a ≤ ¬¬a.

Proposition 2. Let (L,∧,∨,⊗,→,∼,0,1) be an ER–lattice. Then for every a∈L

and for every family (bi)i∈I of elements of L, if the respective infima and suprema

exist, then the following conditions hold:
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(i) a⊗ supi∈I bi = supi∈I(a⊗bi) a⊕ infi∈I bi = infi∈I(a⊕bi)
(ii) a→ infi∈I bi = infi∈I(a→bi) a⇒ infi∈I bi = infi∈I(a⇒bi)

(iii) (supi∈I bi)→a= infi∈I(bi→a) (supi∈I bi)⇒a = infi∈I(bi⇒a)
(iv) supi∈I bi ≤ ¬ infi∈I ¬bi supi∈I bi = ∼ infi∈I ∼bi

(v) infi∈I ¬bi = ¬supi∈I bi.

Throughout the paper we will use the same symbol L to denote the ER–lattice as

well as its underlying domain.

Let L be an ER–lattice and let X �= /0. An L–fuzzy set in X is a mapping F : X → L.

For any x∈X , F(x) is the degree to which x belongs to F . The family of all L–fuzzy

sets in X will be denoted by FL(X).
Basic operations on L–fuzzy sets in X are defined as follows: for all A,B∈FL(X)

and for every x∈X ,

(A∩L B)(x) = A(x)∧B(x)

(A⊓L B)(x) = A(x)⊗B(x)

(A∪L B)(x) = A(x)∨B(x)

(A⊔L B)(x) = A(x)⊕B(x)

(⊖LA)(x) = ⊖A(x), where ⊖ ∈{¬,∼},

Given a complete ER–lattice L and an indexed family (Ai)i∈I of L–fuzzy sets in X ,

we write
⋃

i∈I Ai and
⋂

i∈I Ai to denote L–fuzzy sets in X defined respectively as: for

every x∈X ,

(
⋃

i∈IAi)(x) = supi∈IAi(x)

(
⋂

i∈IAi)(x) = infi∈IAi(x).

For two L–fuzzy sets A and B in X , we will write A ⊆L B iff A(x) ≤ B(x) for every

x∈X .

A binary L–fuzzy relation in X is a mapping X ×X → L, i.e., an L–fuzzy set in

X ×X . The family of all binary L–fuzzy relations in X will be denoted by RL(X).
For a binary L–fuzzy relation R in X and for x∈X , we will write xR to denote the

L–fuzzy set in X defined as: (xR)(y)=R(x,y) for every y∈X .

A binary L–fuzzy relation R is called

• serial iff supy∈X R(x,y) = 1 for every x∈X

• reflexive iff R(x,x) = 1 for every x∈X

• symmetric iff R(x,y) = R(y,x) for all x,y∈X

• L–transitive iff R(x,y)⊗R(y,z) ≤ R(x,z) for all x,y,z∈X

• L–Euclidean iff R(x,y)⊗R(x,z) ≤ R(y,z) for all x,y,z∈X .

A binary L–fuzzy relation R in X is a tolerance relation iff it is reflexive and sym-

metric, it is called an L–quasi ordering iff it is reflexive and L–transitive, and it is

an L–equivalence relation iff it is reflexive, symmetric and L–transitive.
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5 L–Fuzzy Rough Sets

Let L be a complete ER–lattice, X be a non–empty universe, and let R∈RL(X). A

structure FAS =(L,X ,R) is called an L–fuzzy approximation space.

Given an L–fuzzy approximation space (L,X ,R), define the following operations:

for every A∈FL(X) and for every x∈X ,

FASR(A)(x) = infy∈X(R(x,y) → A(y)), (6)

FASS(A)(x) = infy∈X(R(x,y) ⇒ A(y)), (7)

FAS(A)(x) = supy∈X(R(x,y)⊗A(y)). (8)

The operation (6) (resp. (7)) is called a lower LR–fuzzy (resp. lower LS–fuzzy) rough

approximation of A in FAS, and the operation (8) is an upper L–fuzzy rough approxi-

mation of A in FAS. In (6) and (7) the subscripts R and S indicate that the underlying

arrow operations correspond to an R–implication and an S–implication, respectively.

Note that a lower LR–fuzzy (resp. lower LS–fuzzy) rough approximation op-

eration corresponds to a fuzzy box modal operator and an upper L–fuzzy rough

approximation operation corresponds to a fuzzy diamond modal operator (see,

e.g., [12],[13]). In consequence, they have similar intuitive interpretation. Namely,

FASR(A)(x) (resp. FASS(A)(x)) is the degree to which x certainly belongs to A,

while FAS(A)(x) is the degree to which x possibly belongs to A.

Definition 3. Let an L–fuzzy approximation space (L,X ,R) be given. We say that

F ∈FL(X) is a lower LR–fuzzy (resp. LS–fuzzy) rough set in FAS iff F =FASR(A)
(resp. F =FASS(A)) for some A∈FL(X), F is called an upper L–fuzzy rough set

in FAS iff F =FAS(A) for some A∈FL(X). By an LR–fuzzy rough set in FAS

(resp. LS–fuzzy rough set in FAS) we mean a pair (F1,F2)∈FL(X)×FL(X) such

that F1 =FASR(A) and F2 =FAS(A) (resp. F1 =FASS(A) and F2 =FAS(A)) for some

A∈FL(X).

The family of all lower LR–fuzzy (resp. LS–fuzzy) rough sets in FAS will be respec-

tively written LR(FAS) and LS(FAS) and the family of all upper L–fuzzy rough sets

in FAS will be denoted by U(FAS).
Basic properties of L–fuzzy rough sets are listed below.

Theorem 3. ([30],[34],[35]) For every L–fuzzy approximation space (L,X ,R), for

all A,B∈FL(X), and for every indexed family (Ai)i∈I of L–fuzzy sets in X, the fol-

lowing conditions hold:

(i) FASR(X)=FASS(X)=X, FAS( /0)= /0

(ii) if A ⊆L B, then

• FASR(A) ⊆L FASR(B), FASS(A) ⊆L FASS(B)
• FAS(A) ⊆L FAS(B)

(iii) FASR(A) ⊆L ¬LFAS(¬LA)

FAS(A) ⊆L ¬LFASR(¬LA)
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FASS(A) = ∼LFAS(∼LA)

FAS(A) = ∼LFASS(∼LA).

(iv) FASR(
⋂

i∈I Ai) =
⋂

i∈I FASR(Ai), FASS(
⋂

i∈I Ai) =
⋂

i∈I FASS(Ai)

FASR(
⋃

i∈I Ai) L⊇
⋃

i∈I FASR(Ai), FASR(
⋃

i∈I Ai) L⊇
⋃

i∈I FASR(Ai)

FAS(
⋂

i∈I A) ⊆L

⋂

i∈I FAS(Ai)

FAS(
⋃

i∈I Ai) =
⋃

i∈I FAS(Ai).

The property (ii) of the above theorem states the monotonicity of L–fuzzy approxi-

mation operators and (iii) states the duality (resp. weak duality) between FASS (resp.

FASR) and FAS. Observe that for LS–fuzzy rough sets all properties mentioned above

correspond to the ones in the crisp case (see Theorem 1) For LR–fuzzy rough sets,

however, we have a weaker form of duality only.

Depending on classes of L–fuzzy relations L–fuzzy rough sets have more specific

properties.

Theorem 4. Let (L,X ,R) be an L–fuzzy approximation space.

(i) R is serial iff FASR(A) ⊆L FAS(A)
iff FASS(A) ⊆L FAS(A)

(ii) R is reflexive iff FASR(A) ⊆L A

iff FASS(A) ⊆L A

iff A ⊆L FAS(A)

(iii) R is symmetric iff FAS(FASR(A)) ⊆L A

iff A ⊆L FASR(FAS(A))

(iv) R is L–transitive iff FASR(A) ⊆L FASR(FASR(A))
iff FASS(A) ⊆L FASS(FASS(A))
iff FAS(FAS(A)) ⊆L FAS(A)

(v) R is L–Euclidean iff FAS(A) ⊆L FASR(FAS(A))
iff FAS(FASR(A)) ⊆L FASR(A).

Proof. By way of example we show (ii) and (iv).

(ii) (⇒) Assume that R is reflexive. Then for every A∈FL(X) and for every x∈X ,

FASR(A)(x) = infy∈X(R(x,y) → A(y))
≤ R(x,x) → A(x) = 1 → A(x) = A(x).

Hence FASR(A) ⊆L A. Also,

FASS(A)(x) = infy∈X (R(x,y) ⇒ A(y))
≤ R(x,x) ⇒ A(x) = ∼1⊕A(x) = 0⊕A(x) = A(x),

so FASS(A) ⊆L A. Furthermore,

FAS(A)(x) = supy∈X (R(x,y)⊗A(y))
≥ R(x,x)⊗A(x) = 1⊗A(x) = A(x),

where ≥=≤−1. Therefore, A ⊆L FAS(A).
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(⇐) Assume that R is not reflexive, i.e., R(x0,x0) �=1 for some x0∈X . For A=x0R,

we have:

FASR(A)(x0) = infy∈X(R(x0,y)→A(y))
= infy∈X(R(x0,y)→R(x0,y))
= 1 by Proposition 1(vii).

However, A(x0)=R(x0,x0) < 1. Hence FASR(A) �⊆L A.

Next, let us take A={x0}. Then we have:

FASS(A)(x0) = infy∈X (R(x0,y) ⇒ A(y))
= infy∈X (∼R(x0,y)⊕A(y)) by definition (5)

= infy∈X (∼(∼∼R(x0,y)⊗∼A(y))) by definition (4)

= infy∈X (∼(R(x0,y)⊗∼A(y))
= ∼ infy∈X(R(x0,y)⊗∼A(y)) by Proposition 1(iv)

= ∼R(x0,x0)
> 0=A(x0)

so FASS(A) �⊆L A.

Finally, for A={x0}, we have:

FAS(A)(x0) = supy∈X (R(x0,y)⊗A(y))
= R(x0,x0)⊗A(x0)=R(x0,x0)⊗1=R(x0,x0)<1=A(x0),

thus A �⊆L FAS(A).

(iv) (⇒) Assume that R is L–transitive. Then for every A∈FL(X) and for every

x∈X ,

FASR(FASR(A))(x)
= infy∈X (R(x,y) → (infz∈X(R(y,z)→A(z)))
= infy∈X infz∈Z(R(x,y)→(R(y,z)→A(z))) by Proposition 2(xv)

= infy∈X infz∈X(R(x,y)⊗R(y,z)→A(z)) by Proposition 1(ii)

≥ infz∈X (R(x,z)→A(z)) by L–transitivity of R

= FASR(A)(x).

Hence FASR(A)⊆L FASR(FASR(A)).
In the similar way one can show that FASS(A)⊆L FASS(FASS(A)). Also,

FAS(FAS(A))(x)
= supy∈X (R(x,y)⊗ supz∈X(R(y,z)⊗A(z)))
= supy∈X supz∈X (R(x,y)⊗R(y,z)⊗A(z)) by Proposition 2(i)

≤ supz∈X (R(x,z)⊗A(z)) by L–transitivity of R

= FAS(A)(x),

thus FAS(FAS(A)) ⊆L FAS(A).

(⇐) Assume that R is not L–transitive, that is R(x0,y0)⊗R(y0,z0) � R(x0,z0) for

some x0,y0,z0 ∈X . By Proposition 1(ix), (R(x0,y0)⊗R(y0,z0)) → R(x0,z0) � 1 for
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some x0,y0,z0∈X . Let us take A=x0R. By Proposition 1(vii) we get FASR(A)(x0)
= infy∈X (R(x0,y)→R(x0,y))=1. Furthermore,

FASR(A)(x0)→FASR(FASR(A))(x0)
= 1→FASR(FASR(A))(x0)
= FASR(FASR(A))(x0) by Proposition 1(vii)

= infy∈X (R(x0,y)→ infz∈X (R(y,z)→R(x0,z)))
= infy∈X infz∈X(R(x0,y)→(R(y,z)→R(x0,z))) by Proposition 2(ii)

= infy∈X infz∈X(R(x0,y)⊗R(y,z)→R(x0,z)) by Proposition 1(xvi)

≤ (R(x0,y0)⊗R(y0,z0))→R(x0,z0))
� 1,

so again, by Proposition 1(ix), FASR(A)(x0)� FASR(FASR(A))(x0). Hence we have

FASR(A) �⊆L FASR(FASR(A)), as required.

Now we show that for A=X\{z0} it holds FASS(A) �⊆L FASS(FASS(A)). Note that

R(x0,y0)⊗R(y0,z0) � R(x0,z0) implies ∼R(x0,z0) �∼(R(x0,y0)⊗R(y0,z0)), since

∼ is order–reversing. Then, by Proposition 1(ix),

∼R(x0,z0)→∼(R(x0,y0)⊗R(y0,z0)) �=1. (9)

Also, for every y∈X , we have

FASS(A)(y) = infz∈X (R(y,z)⇒A(z))
= infz∈X ∼(R(y,z)⊗∼A(z)) by Proposition 1(xix)

= ∼supz∈X(R(y,z)⊗∼A(z)) by Proposition 2(iv)

= ∼R(y,z0).

Now we have:

FASS(A)(x0) → FASS(FASS(A))(x0)
= ∼R(x0,z0) → infy∈X(R(x0,y) ⇒ FASS(A)(y))
= ∼R(x0,z0) → infy∈X(R(x0,y) ⇒∼R(y,z0))
= ∼R(x0,z0) → infy∈X ∼(R(x0,y)⊗∼∼R(y,z0)) by Proposition 1(xix)

= ∼R(x0,z0) →∼supy∈X(R(x0,y)⊗R(y,z0)) by Proposition 2(vi)

≤∼R(x0,z0) →∼(R(x0,y0)⊗R(y0,z0))
�=1 by (9).

Hence, by Proposition 1(ix), FASS(A)(x0) � FASS(FASS(A))(x0), which immedi-

ately implies FASS(A) �⊆L FASS(FASS(A)), as expected.

Finally, take A={z0}. Observe that FAS(A)(y)= supz∈X(R(y,z)⊗A(z))= R(y,z0)
for every y∈X . Now,

FAS(FAS(A))(x0) → FAS(A)(x0)
= supy∈X (R(x0,y)⊗ FAS(A)(y))→FAS(A)(x0)
= supy∈X (R(x0,y)⊗R(y,z0))→R(x0,z0)
≤ (R(x0,y0)⊗R(y0,z0))→R(x0,z0) by Proposition 1(ii)

�=1,

so FAS(FAS(A))(x0) � FAS(A)(x0) by Proposition 1(ix), thus FAS(FAS(A)) �⊆L

FAS(A), as required. ✷
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It is worth emphasizing that all properties mentioned in Theorem 4 hold for lower

LR–fuzzy rough approximation operators. As stated in Theorem 2, they characterize

rough approximation operators. Then these operations are adequate generalizations

of their crisp counterparts. However, in the general case properties (iii) and (v) of

the above theorem do not hold for lower LS–fuzzy rough approximations, as the

following example shows.

Example 2. Let us take a lattice (L,min,max, tZ , itZ ,η ,0,1) with L=[0,1]. Then

⊕ is given by sZ(x,y)= max(x,y). Let X ={x1,x2,x3} and let R be defined as:

R(x1,x1)=R(x3,x3)=1 and R(x,y)= 1
2

elsewhere. Clearly, R is symmetric. Con-

sider FAS =(L,X ,R) and A={x3}. By simple calculations we get FAS(FASS(A))=
FASS(FAS(A))=(x1 : 1

2
,x2 : 1

2
,x3 : 1

2
) Obviously, neither FAS(FASS(A))⊆A nor

A⊆FASS(FAS(A)) holds. Hence, for lower LS–fuzzy rough approximation opera-

tion, the property (iii) of Theorem 4 does not hold.

Also, it is easy to verify that R is an L–Euclidean relation. Since FASS(A)=(x1 :

0,x2 : 1
2
,x3 : 1

2
) and FAS(A)=(x1 : 1

2
,x2 : 1

2
,x3 : 1), neither FAS(A)⊆FASS(FAS(A))

nor FAS(FASS)⊆FASS(A).

As mentioned in Theorem 3, lower LS–fuzzy rough approximation operators are

dual to upper L–fuzzy rough approximation operators, which in general is not the

case when lower LR–fuzzy and upper L–fuzzy rough approximations are taken. Re-

call that the Łukasiewicz implication is both an R–implication and an S–implication.

For such operators all properties mentioned in Theorem 3 and 4 are satisfied. There-

fore, lattice–based fuzzy rough sets, where such operators are taken, are straightfor-

ward generalizations of Pawlak’s rough sets.

From the above theorem the following corollary easily follows.

Corollary 1. Let (L,X ,R) be an L–fuzzy approximation space. Then for every

A∈FL(X),

(i) if R is an L–quasi ordering, then

• FASR(FASR(A))=FASR(A)
• FASS(FASS(A))=FASS(A)
• FAS(FAS(A))= FAS(A).

(ii) if R is a tolerance relation, then

• FASR(A) ⊆L FAS(FASR(A)) ⊆L A

• A ⊆L FASR(FAS(A)) ⊆L FAS(A)

(iii) if R is an L–equivalence relation, then

• FAS(FASR(A)) = FASR(A)
• FASR(FAS(A)) = FAS(A).

Therefore, in the case of a tolerance relation FASFASR and FASRFAS give a tighter

approximation of A than FASR and FAS, respectively.

We conclude this section by the following observation. In classical settings it

is well-known that box and diamond modal operators coincide with interior and
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closure topological operators, respectively, provided that the underlying relation is

a quasi–ordering. i.e., it is reflexive and transitive. The analogous result holds in the

fuzzy case.

First, let us recall (e.g., [2],[34]) the definitions of L–fuzzy topological operators

of interior and closure. Let intL,clL : FL(X)→FL(X). We say that intL is an L–fuzzy

interior operator iff

(I1) intL(X)=X

(I2) intL(A) ⊆L A for every A∈FL(X)
(I3) intL(intL(A))= intL(A) for every A∈FL(X)
(I4) intL(A∩L B)= intL(A)∩L intL(B).

We say that clL is an L–fuzzy closure operator iff

(C1) clL( /0)= /0

(C2) A ⊆L clL(A) for every A∈FL(X)
(C3) clL(clL(A))=clL(A) for every A∈FL(X)
(C4) clL(A∪L B)=clL(A)∪L clL(B).

From Theorem 3 and Corollary 1(i) we immediately get the following result.

Theorem 5. Let FAS =(L,X ,R) be an L–fuzzy approximation space such that R is

an L–quasi ordering. Then FASR and FASS(A) are L–fuzzy interior operators and

FAS is an L–fuzzy closure operator.

6 Lattices of Lower and Upper L–Fuzzy Rough Sets

Let an L–fuzzy approximation space (L,X ,R) be given. In this section we will con-

sider algebraic structures for lower LR–fuzzy rough sets, lower LS–fuzzy rough sets,

and upper L–fuzzy rough sets.

Let (Fi)i∈I be the family of lower LR–fuzzy rough sets (or lower LS–fuzzy rough

sets). By Theorem 3(iv) it follows that
⋂

i∈I Fi∈LR(FAS) and
⋂

i∈I Fi∈LS(FAS), yet

in general neither
⋃

i∈I Fi∈LR(FAS) nor
⋃

i∈I Fi∈LS(FAS), as the following exam-

ple shows.

Example 3. Let X ={x1,x2,x3} and let R be a crisp relation given by: R={(x1,x1),
(x1,x2),(x2,x1),(x2.x3),(x3,x2),(x3,x3)}. Let (L,min,max,t, it ,n,0,1) be an ex-

tended residuated lattice such that where L=[0,1], t is an arbitrary left–continuous

triangular norm, it is the residual implication based on t, and n is the standard fuzzy

negation n(x)=1−x. Let FAS =(L,X ,R). Consider two fuzzy sets A and B defined

as A=(x1 : 0.1,x2 : 0.8,x3 : 0.3) and B=(x1 : 0.9,x2 : 0.4,x3 : 0.2), respectively. By

simple calculations one can easily verify that FASR(A)= FASS(A)=(x3 : 0.1,x2 :

0.1,x3 : 0.3) and FAS(B)=(x1 : 0.4,x2 : 0.2,x3 : 0.2). Put F =FASR(A)∪L FASR(B),
or equivalently, F =FASR(A) ∪L FASR(B). Then F =(x1 : 0.4,x2 : 0.2,x3 : 0.3).
Assume that F ∈LR(FAS). Then there exists C∈FL(X) such that F =FASR(C).
However,
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(a) F(x1)=min{1→C(x1),1→C(x2),0→C(x3)}= min{C(x1),C(x2)}=0.4,

(b) F(x2)=min{1→C(x1),0→C(x2),1→C(x3)}=min{C(x1),C(x3)}=0.2,

(c) F(x3)=min{0→C(x1),1→C(x2),1→C(x3)}=min{C(x2),C(x3)}=0.3.

From (a), C(x1) ≥ 0.4, so by (b), C(x3)=0.2, which contradicts (c). Hence, for any

C∈FL(X), F �=FASR(C), which means that F �∈LR(FAS). Using similar arguments

one can easily check that for every C∈FL(X), F �∈LR(FAS).

Similarly, for an arbitrary family (Hk)k∈K of upper L–fuzzy rough sets it holds,
⋃

k∈K Hk ∈ U(FAS), but not necessarily
⋂

k∈K Hk ∈U(FAS).
Let (Fi)i ∈ I be the family of lower LR–fuzzy rough sets, let (G j) j∈J be the family

of lower LS–fuzzy rough set, and let (Hk)k∈K be the family of upper L–fuzzy rough

sets. Consider the sets

UbR(FAS,
⋃

i∈I Fi) = {F∈LR(FAS) :
⋃

i∈I Fi ⊆L F}

UbS(FAS,
⋃

j∈J GJ) = {G∈LS(FAS) :
⋃

j∈J G j ⊆L G}

Lb(FAS,
⋂

k∈K Hk) = {H∈U(FAS) : H ⊆L

⋂

k∈K Hk}.

The set UbR(FAS,
⋃

i∈I Fi) is the family of all upper bounds of
⋃

i∈I Fi in LR(FAS)
w.r.t. ⊆L, the set UbS(FAS,

⋃

j∈J G j) is the family of all upper bounds of
⋃

j∈J G j in

LS(FAS) w.r.t. ⊆L, and the set Lb(FAS,
⋂

k∈K Hk) is the family of all lower bounds

of
⋂

k∈K Hk in U(FAS) w.r.t. ⊆L. Put

F⋆(FAS,
⋃

i∈I Fi) =
⋂

UbR(FAS,
⋃

i∈I Fi)

G⋆(FAS,
⋃

j∈J G j) =
⋂

UbS(FAS,
⋃

j∈J G j)

H⋆(FAS,
⋂

k∈K Hk) =
⋃

Lb(FAS,
⋂

k∈K Hk).

By Proposition 3(iv), F⋆(FAS,
⋃

i∈I Fi)∈LR(FAS) and G⋆(FAS,
⋃

j∈J G j)∈LS(FAS).
Clearly,

⋃

i∈I Fi ⊆L F⋆(FAS,
⋃

i∈I Fi) and
⋃

j∈J G j ⊆L G⋆(FAS,
⋃

j∈J G j). Therefore,

F⋆(FAS,
⋃

i∈I Fi) ∈ UbR(FAS,
⋃

i∈I Fi) and G⋆(FAS,
⋃

j∈J G j) ∈ UbS(FAS,
⋃

j∈J G j).
Also, F⋆(FAS,

⋃

i∈I Fi) ⊆L F for any F ∈UbR(FAS,
⋃

i∈I Fi) and G⋆(FAS,
⋃

j∈J G j)
⊆L G for any G∈UbS(FAS,

⋃

j∈J G j). Hence, F⋆(FAS,
⋃

i∈I Fi) is the least up-

per bound of
⋃

i∈I Fi in LR(FAS) w.r.t. ⊆L and G⋆(FAS,
⋃

j∈J G j) is the least up-

per bound of
⋃

j∈J G j in LS(FAS) w.r.t. ⊆L. Analogously, H⋆(FAS,
⋂

k∈K Hk)∈
U(FAS), H⋆(FAS,

⋂

k∈K Hk) ⊆L

⋂

k∈K Hk, and H ⊆L H⋆(FAS,
⋂

k∈K Hk) for every

H∈Lb(FAS,
⋂

k∈K Hk). Therefore, H⋆(FAS,
⋂

k∈K Hk) is the greatest lower bound

of
⋂

k∈K Hk in U(FAS) w.r.t. ⊆L.

For all F1,F2∈LR(FAS), for all G1,G2∈LS(FAS), and for all H1,H2 ∈U(FAS),
let us denote

F1 ∧R F2 = F1 ∩L F2

F1 ∨R F2 =
⋂

UbR(FAS,{F1 ∪L F2})

G1 ∧S G2 = G1 ∩L G2

G1 ∨S G2 =
⋂

UbS(FAS,{G1 ∪L G2})

H1 ∧ H2 =
⋃

Lb(FAS,{H1 ∩L H2})

H1 ∨ H2 = H1 ∪L H2.
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From the above discussion we get the following

Theorem 6. The algebras (LR(FAS),∧R,∨R, /0,X), (LS(FAS),∧S,∨S, /0,X), and

(U(FAS), ∧,∨, /0,X) are complete lattices.

Let an L–fuzzy approximation space FAS =(L,X ,R) be such that R is an L–quasi

ordering. Assume that F1,F2∈LR(FAS). Then there are two L–fuzzy sets, say A1

and A2, such that F1 =FASR(A1) and F2 =FASR(A2). So we have:

F1 ∪L F2 = FASR(A1)∪L FASR(A2)
= FASR(FASR(A1))∪L FASR(FASR(A2)) by Corollary 1(i)

⊆L FASR(FASR(A1)∪L FASR(A2)) by Proposition 3(iv)

= FASR(F1 ∪L F2)
⊆L F1 ∪L F2 by Proposition 4(ii).

Hence FASR(F1 ∪L F2)=F1 ∪L F2. Also, F1 ∪L F2∈UbR(FAS,F1 ∪L F2). Clearly,

F1∪L F2 =
⋂

UbR(FAS,F1∪L F2), so F1 ∨R F2 = F1∪L F2. Since F1 ∧R F2 = F1∩L F2,

we get

F1 ∧R (F2 ∨R F3)=(F1 ∧R F2) ∨R (F1 ∧R F3)

F1 ∨R (F2 ∧R F3)=(F1 ∨R F2) ∧R (F1 ∨R F3)

for all F1,F2,F3∈LR(FAS). Using similar arguments it is easy to show that for all

G1,G2,G3∈LS(FAS),

G1 ∧S (G2 ∨S G3)=(G1 ∧S G2) ∨S (G1 ∧S G3)

G1 ∨S (G2 ∧S G3)=(G1 ∨S G2) ∧S (G1 ∨S G3).

Similarly, for all H1,H2,H3∈U(FAS),

H1 ∧ (H2 ∨ H3)=(H1 ∧ H2) ∨ (H1 ∧ H3)

H1 ∨ (H2 ∧ H3)=(H1 ∨ H2) ∧ (H1 ∨ H3).

Therefore, we get the following

Proposition 3. Let FAS = (L,X ,R) be an L–fuzzy approximation space such that

R is an L–quasi ordering. Then the structures (LR(FAS),⊆L), (LS(FAS),⊆L), and

(U(FAS),⊆L) are complete, distributive lattices.

We complete this section by showing some link between the lattices of LS(FAS) and

U(FAS). To this end, let us define the following notion (see [42]). We say that two

lattices (X ,�X) and (Y,�Y ) are dually isomorphic iff there is a bijection φ : X → Y

such that for all x2,x2∈X , x1 �X x2 iff φ(x2) �Y φ(x1).

Proposition 4. For every L–fuzzy approximation space FAS=(L,X ,R), the lattices

(LS(FAS),⊆L) and (U(FAS),⊆L) are dually isomorphic.
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Proof. Let F ∈LS(FAS). Put Γ (F) = {A∈LS(FAS) : FASS(A)=F} and define a

mapping φ : LS(FAS) → U(FAS) by: for every F ∈LS(FAS),

φ(F) = FAS(∼L

⋂

Γ (F)).

Note that for every F ∈LS(FAS) we have:

φ(F) = FAS(∼L

⋂

Γ (F))
= ∼L FASS(

⋂

Γ (F)) by Theorem 3(iii)

= ∼LF by Theorem 3(iv).

We show that φ is a bijection. Let F1,F1∈LS(FAS) be such that F1 �=F2. Since

∼ is an involution, ∼L F1 �= ∼L F2. Hence φ(F1) �=φ(F2). Now take an arbitrary

G∈U(FAS). Then for some A∈FL(X), G=FAS(A). Therefore, by Theorem 3(iii),

G= ∼L FASS(∼LA). Whence there is F ∈LS(FAS), namely F =FASS(∼LA), such

that G= ∼LF =φ(F).
Finally, let us take F1,F2∈LS(FAS). Then we have the following equivalences:

F1 ⊆L F2 iff ∼LF2 ⊆L∼LF1 iff φ(F2) ⊆L φ(F1), which completes the proof. ✷

7 Conclusions

In this paper we have presented an algebraic extension of fuzzy rough sets. As

an underlying algebraic structure a residuated lattice endowed with a De Morgan

negation has been taken. The signature of these structures gives algebraic counter-

parts of main fuzzy logical connectives: triangular norms and triangular conorms,

R–implication and S–implications, and two fuzzy negations, including a De Morgan

negation. Taking either of arrow operations we obtain two classes of lower L–fuzzy

rough sets, namely lower LR–fuzzy rough sets and lower LS–fuzzy rough sets. More-

over, depending on a choice of a class of binary L–fuzzy relations, we get further

respective classes of L–fuzzy rough sets. Properties of these structures have been

studied. As it turned out, for LR–fuzzy rough sets most properties of crisp rough sets

hold (except duality). Since the Łukasiewicz implication is both an R–implication

and an S–implication, for such operators all properties of L–fuzzy rough sets are

straightforward generalizations of Pawlak’s rough sets. We have proved that the

family of lower (resp. upper) L–fuzzy rough sets is a lattice w.r.t. L–fuzzy inclusion

⊆L, and, under specific conditions, they are distributive lattices. It was also shown

that the family of lower L–fuzzy (resp. LS–fuzzy) rough sets are dually isomorphic

to the family of upper L–fuzzy rough sets. Finally, it has been pointed out that un-

der some assumptions lower and upper L–fuzzy rough approximation operations are

L–fuzzy interior and L–fuzzy closure operators, respectively.

It is well–known that the family of all (crisp) rough sets defined on the basis of

an equivalence relation, constitute a regular double Stone algebra. The question is

what kind of algebraic structure L–fuzzy rough sets are. Since I deeply hope that the

research cooperation with Etienne will be going on, it may be a challenging topic

for further joint studies.
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40. Słowiński, R. (ed.): Intelligent Decision Support – Handbook of Applications and Ad-

vances of the Rough Sets Theory. Kluwer Academic Publishers, Dordrecht (1992)

41. Thiele, H.: On the definition of modal operators in fuzzy logics. In: Proceedings of Inter-

national Symposium of Multiple–Valued Logics ISMVL 1993, Sacramento, California,

pp. 62–67 (1993)

42. Thiele, H.: Generalizing the Explicit Concept of Rough Set on the Basis of Modal Logic.

In: Reusch, B., Temme, K.-H. (eds.) Computational Intelligence in Theory and Practice,

Advances in Soft Computing, pp. 93–120. Physica–Verlag, Heidelberg (2001)

43. Turunen, E.: Mathematics Behind Fuzzy Logics. Physica–Verlag, Heidelberg (1999)

44. Wang, X., Ruan, D., Kerre, E.E.: Mathematics of fuzziness – basic issues. Studies in

Fuzziness and Soft Computing, vol. 245. Springer, Heidelberg (2009)

45. Yao, Y.Y., Wang, S.K.M., Lin, T.Y.: A Review of Rough Set Models. In: Lin, T.Y., Cer-

cone, N. (eds.) Rough Sets and Data Mining: Analysis of Imprecise Data, pp. 47–75.

Kluwer Academic Publishers, Dordrecht (1997)

46. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–358 (1965)

47. Ziarko, W.P. (ed.): Rough Sets, Fuzzy Sets and Knowledge Discovery Workshop in Com-

puting. Springer, London (1994)



G r ad u ality, Uncertainty and Typicality
in Formal Concept Analysis

Yassine Djouadi, Didier Dubois, and Henri Prade

Abstract. There exist several proposals for extending formal concept analy-
sis (FCA) to fuzzy settings. They focus mainly on mathematical aspects and
assume generally a residuated algebra in order to maintain the required al-
gebraic properties for the definition of formal concepts. However, less efforts
have been devoted for discussing what are the possible reasons for introducing
degrees in the relation linking objects and properties (which defines a formal
context in the FCA sense), and thus what are the possible meanings of the
degrees and how to handle them in agreement with their intended semantics.
The paper investigates three different semantics, namely i) the graduality
of the link associating properties to objects, pointing out various interpre-
tations of a fuzzy formal context; ii) the uncertainty pervading this link (in
case of binary properties) when only imperfect information is available and
represented in the framework of possibility theory; and lastly, iii) the typi-
cality of objects and the importance of definitional properties within a class.
Remarkably enough, the uncertainty semantics has been hardly considered
in the FCA setting, and the third semantics apparently not. Moreover, we
provide an algorithm for building the whole fuzzy concept lattice based on
Gödel implication for handling gradual properties in a qualitative manner.

1 Introduction

Formal concept analysis (FCA) was independently introduced by Wille in
the 1980’s [28] but its mathematical basis had been pioneered in the setting
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of social sciences by Barbut and Monjardet [1] (see also [21]). Since then,
it has become increasingly popular among various methods of conceptual
data analysis and knowledge representation. It is formulated by means of the
notion of a formal context, which is a triple (O , P , R ), where O is a set of
objects, P is a set of properties and R specifies a binary relation between
the sets O and P (R ⊆ O × P ). In the classical setting, it is always assumed
that for any pair (o, p): i) oR pmeans that it is well-known that the object o

satisfies the property p, ii) oR pmeans that it is well-known that the object
odoes not satisfy the property p, iii) exclusively one of the two above cases
applies.

During the last years, FCA has been applied in many different areas like
psychology, sociology, anthropology, medicine, biology, linguistics, etc. In such
cases, FCA unavoidably deals with relational information structures (formal
contexts) derived from human investigation (judgement, observation, mea-
sure, etc.). However, it is widely agreed that such information is often of a
gradual nature and possibly tainted with uncertainty, while FCA has been
almost exclusively developed in a Boolean setting.

FCA constitutes a particular instance of successful application of the cal-
culus of relations, and can be formally extended to fuzzy relations. As such,
it may be paralleled with other applications of fuzzy relational calculus [22],
ranging from approximate reasoning [10, 17] to image processing [23].

Several fuzzy extensions of formal concept analysis have nevertheless been
addressed in the literature, however to different extents. A central notion in
existing approaches is the so-called fuzzy formal context whose entries become
now degrees from a totally ordered scale L (generally L=[0,1]), whereby prop-
erty satisfaction becomes a matter of degree. Since the first paper by Burusco
and Fuentes-Gonzalez [8], different fuzzy logic settings have been proposed,
especially by Bělohlávek (see [2, 3] for a survey, [18] for a fuzzy inference
perspective). In a different direction, Burmeister and Holzer [7] have made a
proposal that introduces a third value in the relational context that stands
for the case where it is not known if a property holds or not for an object.
Messai et al. [25] handle many-valued attribute domains based on a fuzzy
logic encoding.

The different fuzzy extensions of FCA that have been proposed are mainly
justified by the requirement of preserving good mathematical (algebraic)
properties (i.e. closure and opening properties), without always sufficiently
discussing what the extension is good for from a knowledge representation
point of view. In particular, one may introduce degrees in a relational con-
text, with many different intended meanings. For instance, Table 1 illustrates
different generalizations of a formal context which may naturally appear. En-
tries in the first column of Table 1 express a satisfaction degree of the gradual
property Young. Most existing approaches deal with this kind of formal con-
text [2, 3, 8, 9, 20, 24, 26]. Entries in the second column give the proficiency
level of a given student in the English course. This level may be precisely
known (e.g like for Pierre and Mike) or just approximated using an interval
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Table 1 Different formal context generalizations.

R1 Young English Proficiency Married

Pierre 1 0.9 ×

Sophie 0.7 (0,1] ?

Mike 0.6 0

Nahla 1 [0.2,0.4] (0.7; 0)

Peter 0.2 [0,1] (0; 0)

(e.g., like for Sophie, Nahla, and Peter). An interesting feature of the use of
intervals is that they provide the ability to encode partial/total ignorance
[12, 13]. For instance, Peter ’s proficiency level in English is totally unknown
whereas we just know that it is not true that Sophie doesn’t at all master
English.

The third column of Table 1 illustrates incompleteness and uncertainty. For
instance, as it is well known that Pierre is married and Mike is not. However,
nothing may be stated for Sophie, which is represented using a question mark.
In the presence of total ignorance, Burmeister and Holzer [7] have proposed
to consider the “?” symbol as third value. In the possibility theory setting,
both partial and total ignorance may be taken into account. For instance,
the pair (0.7 ; 0) indicates that the certainty of Nahla being married is 0 (no
certainty at all), and the certainty that she is not is 0.7, whereas the pair (0;
0) illustrates total ignorance about Peter and corresponds to the question
mark “?”.

In a preliminary version of this paper [11], we have distinguished different
possible situations leading to the introduction of degrees in fuzzy formal
contexts. We have also provided a preliminary discussion of a possibilistic
handling of uncertainty, and introduced the idea of taking into account the
typicality of objects and the importance of properties in the setting of formal
concept analysis. In this paper, we enlarge the discussion about these three
motivations and define different graded extensions of formal concept analysis:
accounting for gradual properties, handling uncertainty, and acknowledging
typicality. The paper is structured as follows. After a background on fuzzy
extensions of formal concept analysis in Section 2 and a discussion of suitable
operators, Section 3 both provides an introductory discussion of different
situations where graduality is encountered, and an algorithm for building the
whole fuzzy concept lattice based on Gödel implication for handling gradual
properties in a qualitative manner. Section 4 presents the possibilistic view of
uncertain formal concepts, while Section 5 illustrates the potential interest of
tolerating missing properties that are not compulsory for non-typical objects
in a formal concept.
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2 F uzzy Extensions of Formal Concept Analysis

In FCA, a formal context K = (O,P ,R) is represented by a Boolean table
where rows correspond to objects and columns to properties (or conversely),
and a table entry contains “×” or “blank mark”, depending on whether the
object has or not the corresponding property. Let R(o) = {p ∈ P | o Rp }
be the set of properties satisfied by object o . Similarly, let R − 1(p ) = {o ∈
O | o Rp } be the set of objects that satisfy the property p . We can define
powerset operators (.)↑ : 2O −→ 2P and (.)↓ : 2P −→ 2O as:

O↑ = {p ∈ P | ∀o ∈ O : (o ∈ O ⇒ oRp)} = {p ∈ P | R−1(p) ⊇ O} (1)

P ↓ = {o ∈ O | ∀p ∈ P : (p ∈ P ⇒ oRp)} = {o ∈ O | R(o) ⊇ P} (2)

The formal concept analysis problem is that of extracting formal concepts
from object/property relations. A formal concept is a pair 〈O, P 〉, such that
O = {o ∈ O | R(o) ⊇ P} and P = {p ∈ P | R−1(p) ⊇ O}. Thus, P is the set
of properties shared by all the objects in O, and O is the set of objects that
possess all the properties in P . The set O (resp. P ) is called extent (resp.
intent). It is easy to remark that both extents (resp. intents) are fixed points
w.r.t. to the composition (.)↓↑ (resp. (.)↑↓). Following Birkhoff’s result [5],
the set of all formal concepts (denoted L(K)) is a complete lattice. A formal
concept can be also equivalently defined as a maximal pair (O, P ) (in the
sense of set inclusion) that satisfies the condition O × P ⊆ R.

Fuzzy extensions of FCA deal mainly with a fuzzy relation R ∈ LO×P

which is a mapping: O×P −→ L. Whereas both operators (.)↑ : LO −→ LP

and (.)↓ : LP −→ LO become now based on a fuzzy implication I as defined
below [8]:

O↑ (p) =
∧

o ∈O

(

I
(

O (o) ,R (o, p)
)

)

P ↓ (o) =
∧

p ∈P

(

I
(

P (p) ,R (o, p)
)

)

(3)
However, the development of a fuzzy formal concept analysis theory requires
an appropriate algebra of fuzzy sets [3] in order to maintain the closure
property for the composition of the above defined derivation operators. This
property, recalled in the following, turns out to be crucial for the soundness
of the theory.

Definition 1. Given a universe U , a mapping Φ: LU −→ LU is a fuzzy
closure operator iff ∀ U, V ∈ LU it satisfies:
(CL1): U ⊆ V =⇒ Φ(U) ⊆ Φ(V ) (isotone)
(CL2): U ⊆ Φ(U) (extensive)
(CL3): Φ

(

Φ(U)
)

= Φ(U) (idempotent)

In order to satisfy the above property, the existing approaches use resid-
uated algebras. Let us recall that a residuated algebra [27], is an algebra
L = (L,∧,∨, ∗,→) s.t. the pair (∗,→) satisfies the adjointness property
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(namely, p � q → r iff p ∗ q � r). For maintaining the closure property
of the compositions (.)↑↓ and (.)↓↑ Theorem 1 proposes a sufficient condi-
tion (R1), weaker than the residuation principle. Consequently this theorem
allows us to use more general fuzzy algebras L = (L,∧,∨,→, ∗,∼), since re-
quirement (R1) does not refer to the conjunction ∗ nor the negation ∼. Let
us recall that a fuzzy implication operator (→) is decreasing (in the broad
sense) in its first component and increasing (in the broad sense) in its second
component and verifies boundaries conditions (0 → 0 = 0 → 1 = 1 → 1 = 1
and 1 → 0 = 0). Whereas, a fuzzy conjunction (∗) is a binary increasing oper-
ator (in the broad sense) which verifies identity condition (p ∗ 1 = 1 ∗ p = p)
and boundaries conditions (0 ∗ 0 = 0 ∗ 1 = 1 ∗ 0 = 0). Note that ∗ is not
necessarily a t-norm.

Theorem 1. (Djouadi and Prade [13]). Given an algebra L = (L,∧,∨,→)
with a fuzzy implication →, the composition (.)↑↓ (symmetrically (.)↓↑) is a
fuzzy closure operator if the following property is satisfi ed ∀ p, q ∈ L:

(R1) p � (p → q) → q

It is noticeable that Theorem 1 does not restrict the set of admissible impli-
cations to the set of residuated implications. The following counter-example
shows a tri-valued implication (֌) which satisfies the above condition (R1)
although it is not residuated.

Example 1. Let us consider the tri-valued implication (denoted here ֌) de-
fined in {0, a, 1} as shown in Table 2:

It is easy to check that the implication ֌ verifies the condition (R1).
However, this implication is not residuated, as now checked. Indeed, let us try
to prove one half of the residuation principle (namely, p∗q � r ⇒ p � q → r).
Since the (fuzzy) conjunction ∗ verifies the boundary condition p ∗ 1 = p, by
substituting p by 1 and q and r by a we get:

1 ∗ a � a ⇒ 1 � a ֌ a

⇐⇒ a � a ⇒ 1 � a

Thus, it is obvious that the half (⇒) of the residuation principle does not
hold. Then, the implication ֌ is not residuated.

Table 2 Left: Truth values of p ֌ q . Right: Truth values of (p ֌ q ) ֌ q

֌ 0 a 1 (p ֌ q) ֌ q 0 a 1

0 1 1 1 0 0 0 1

a a a 1 a a a 1

1 0 0 1 1 1 1 1
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Remark 1. Admissible algebras of the form L = (L,∧,∨,→, ∗,∼) are not
restricted to algebras with pairs (→, ∗) s.t. → is the residuum of ∗. For
instance, a fuzzy algebra equipped with Gödel implication (p → q = 1 if
p � q, q elsewhere) may involve any conjunction ∗ rather than the min
t−norm.

We give now an example of implication that satisfies the condition (R1), and
which as such is suitable for the definition of (.)↑↓ (symmetrically (.)↓↑).

Example 2. Let us consider a fuzzy algebra L = (L,∧,∨, �, ∗,∼) where the
implication � is defined as:

(p � q) =

{

1 if p � q
(1 − p) ∨ q elsewhere

This implication is remarkable since it can be obtained both as the ∨-based
disjunction of Gödel and its contrapositive, and as ∼ (p⊗ ∼ q), where ⊗ is
the nilpotent minimum and ∼ is an involutive negation (p⊗q = 0 if p+q � 1,
p ∧ q if p + q > 1) [19]. Note that the pair (�, ∗) is a residuated pair when
taking the conjunction ∗ = ⊗, namely the nilpotent minimum which is a non-
continous t−norm [14]. In any case, this implication is admissible according
to Theorem 1 since property p � (p → q) → q is verified.

Remark 2. Note that condition (R1) is satisfied in a residuated structure,
when ∗ is commutative as claimed in the following proposition.

Proposition 1. Condition (R1) is satisfied by any residuated algebra if the
conjunction ∗ is commutative.

Proof. We have to prove that: 〈p � q → r ⇔ p ∗ q � r , ∗ commutative 〉 ⇒
p � (p → q) → q.
Since ∗ is commutative, we have: p � q → r ⇔ p ∗ q � r ⇔ q ∗ p � r ⇔ q �

p → r.
Since the previous equivalences hold ∀ p, q, r ∈ L, assuming q = p → q and
r = q, we get condition (R1):

p � (p → q) → q ⇔ p → q � p → q ⊓⊔

The following example illustrates the case where a particular implication,
residuated w.r.t. a non commutative conjunction, does not satisfy the condi-
tion (R1).

Example 3. The Dienes implication (i.e. p →֒ q = (1− p)∨ q) is a remarkable
implication since it forms a residuated pair with the non commutative con-
junction ∗ (defined as: p ∗ q = p if p + q > 1; 0 elsewhere) as we shall prove
in the following. Let us first determine the left member of the equivalence
p � q →֒ r ⇔ p ∗ q � r:
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p � q →֒ r

⇐⇒ p � (1 − q) ∨ r

⇐⇒

{

p � r if p + q > 1

⊤ if p + q � 1
(4)

Let us now determine the right member:

p ∗ q � r

⇐⇒

{

p � r if p + q > 1

0 � r if p + q � 1
(5)

Thus, it is easy to state that Expression 4 is equivalent to Expression 5.
However, this fuzzy implication does not satisfy the condition (R1). Indeed,
taking p = 0.8 and q = 0.7, we have

(

(p →֒ q) →֒ q
)

=
(

(1 − 0.8) ∨ 0.7) →֒

0.7
)

= 0.7 � p = 0.8. However, as shown by Example 2, it can be mixed with
the requirement that p → q = 1 when p � q into a suitable implication.

Remark 3. Gödel, Goguen and Lukasiewicz implications are admissible impli-
cations since they are residuated with respect to a commutative continuous
triangular norm.

Assuming a sound algebra w.r.t. the closure property, fuzzy FCA consists then
of extracting pairs of L-sets 〈O, P 〉 from a fuzzy context K = (L,O,P ,R),
where L-sets O and P determine each other pointwisely, being s.t. O(o) =
P ↓(o), ∀o ∈ O and P (p) = O↑(p), ∀p ∈ P . The set of all formal L-concepts
is also a complete lattice.

3 Gradual Link between a Property and an Object

This section highlights first different gradual interpretations of a fuzzy formal
context. We emphasize the representation aspect and the underlying issues of
achieving a well-suited representation for many valued contexts (conceptual
scaling vs. fuzzy properties). Lastly, we take advantage of both semantical
and computational aspects of Gödel implication and provide an algorithm for
building the whole concept lattice.

3.1 Unipolar vs. Bipolar Scale Interpretation

A “fuzzy” or graded extension of binary formal contexts may convey different
semantics. In a first interpretation, the values in the table (which are scalars in
L) may be understood as providing a refinement of the cross marks. Namely,
they represent to which extent an object has a property, while in the classical
model, this relationship was not a matter of degree. It is important to remark
that in this view, we do not refine the absence of a property for an object
(the blank mark is always replaced by the bottom element 0 of L). This view
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Table 3 Many valued relation

R2 Pierre Sophie Mike Nahla

Age 22 28 30 22

Salary 1100 1300 1500 1500

Table 4 Context subsumption

R3 Pierre Sophie Mike Nahla

age ≥ 20 × × × ×

age ≥ 25 × ×

age ≥ 30 ×

salaire ≥ 1000 × × × ×

salaire ≥ 1200 × × ×

salaire ≥ 1400 × ×

will be referred to as the positive unipolar interpretation. In this interpre-
tation, R−1(p) (resp. R(o)) is considered as the support of the fuzzy set of
objects (resp. properties) satisfying the property p (resp. the object o). One
could also consider the opposite convention namely the negative unipolar in-
terpretation where degrees would represent to which extent an object does
not have a property and equivalently provide a refinement of the blank marks.

The most commonly used interpretations, through existing FCA propos-
als, are implicitly based on the positive unipolar interpretation that allows
to map a formal context with quantitative attributes into a fuzzy formal
context. In this spirit, conceptual scale theory [29] may be used to achieve
a suited (Boolean) representation by successive subsumptions. For instance,
the formal context illustrated in Table 4 is obtained from Table 3 by a concep-
tual scaling of both many-valued attributes “Age” and “Salary”. As can be
seen, we have two sets of properties with obvious subsumption relations be-
tween them. Pairs ({Peter, Sophie, Mike, Joe}, {age ≥ 20, salary ≥ 1000}),
({Sophie, Mike}, {age ≥ 20, age ≥ 25, salary ≥ 1000, salary ≥ 1200}),
or ({Mike}, {age ≥ 20, age ≥ 25, age ≥ 30, salary ≥ 1000, salary ≥
1200, salary ≥ 1400}) are formal concepts.

Knowing the ages and the salaries, the formal context R3 can be re-
encoded in a more compact way, using two fuzzy sets ‘young’ and ‘small’
with decreasing membership functions, as illustrated in Table 5.

Observe also that R4 offers a more precise representation of initial data
than Table 4. The context in Table 5, event tough more compact than Table 4
highlights the fact that Mike, and to a lesser extent Sophie are not very young
and have a salary that is not really low. It constitutes in some sense the
negative of the picture shown on Table 3. Note that the type of representation
on Table 5 can be obtained even without providing interpretable fuzzy sets
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Table 5 Context summarization

R4 Pierre Sophie Mike Nahla

age ‘young’ 1 0.7 0.6 1

salary ‘low’ 1 0.8 0.6 0.6

and thus, by normalizing in L the domain of attribute values. This approach
is used in [25].

Another interpretation of the degrees, maybe more in the standard spirit
of fuzzy logic would be to replace both the cross marks and the blank marks
by values in the scale L (L = [0, 1]). Then L possesses a mid-point acting as a
pivoting value between the situations where the object possesses the property
to some extent and the converse situation where the object possesses the
opposite property to some extent. Under this view, a fuzzy formal concept
should be learnt together with its negation. This view corresponds to a bipolar
scale interpretation.

3.2 Concept Lattice Based on Gödel Implication

From a semantic point of view, the use of Gödel implication, which is at the
basis of the expression of a graduality in fuzzy FCA, can also refine fuzzy
contexts into sub-contexts for which a gradual rule [16] is satisfied. Thus,
in the above example the pair: ({Pierre, Sophie, Mike, Nahla}, {young0. 6,
low0. 6}) is a formal concept. Note however that Nahla violates the rule “the
more the person is young the more the salary is low”, which is however
completely satisfied for Pierre, Sophie and Mike: indeed, IG (young, low) =
1 (where IG denotes Gödel implication) if the extension of this concept is
limited to Pierre, Sophie and Mike. The search for fuzzy concepts where a
gradual rule is satisfied can be a topic of interest.

Computing the whole concept lattice (i.e. the set of all L-closed elements)
remains the main objective of FCA. However, it is noticeable that the set
of all fixed points is infinite under an arbitrary implication and computing
this whole set is a non envisageable task. Some approaches [4], [30] compute
only the closure of a given L-set O ∈ LO (or P ∈ LP). Another approach
[9] assumes a finite scale L with cardinality k in order to compute the whole
(finite) set of closed elements of LO. The complexity is thus reduced to k|O|

where |O| is the cardinality of the set O.
Beyond the “gradual” semantics of the Gödel implication, an important

feature is that the set of all fixed points is finite under the use of this impli-
cation as given in the following proposition. Due to this important property,
the computation of the whole concept lattice then becomes feasible.

Proposition 2. Let K = (L,O,P ,R) a L-context where L is an arbitrary
scale (not necessarily finite). Then, the L-concept lattice L(K), is a finite set
under Gödel implication.
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Proof. It is a well known result that the sets of all intents and the set of
all extents are isomorphic complete lattices [2]. Thus, it is sufficient to prove
that one of them is a finite set, namely the set of all extents. Thus, we have:

O↑↓(o) =
∧

p∈P

I G

(

O↑(p),R(o, p)
)

=
∧

p∈P

({

1 if O↑(p) � R(o, p)

R(o, p) elsewhere

)

Thus, necessarily O↑↓(o) ∈ {R(oi, pj)} ∪ {1} where i, j are integers bounded
by the numbers of lines and columns of R. This implies that the set of all
extents is finite. ⊓⊔

It has been shown through the proof of Proposition 2 that O↑↓(o) ∈
{R(oi, pj)} ∪ {1} (symmetrically P ↓↑(p) ∈ {R(oi, pj)} ∪ {1}). This means
that each closed element is valued on the set of entries of the relation R.
Thus, in order to determine all closed elements, it is then sufficient to enu-
merate L-sets valued in {R(o, p), o ∈ O, p ∈ P} from the bottom element of
the concept lattice to the top element (or conversely). The following propo-
sition characterizes these elements. In the following, we assume that 1O and
0O (resp. 1P and 0P) stands for the extreme membership values to the cor-
responding L-set s.t. 1O(o) = 1 and 0O(o) = 0 ∀o ∈ O (resp. 1P(p) = 1
and 0P(p) = 0 ∀p ∈ P). We also denote by O∧ (resp. O∨) the particular
L-sets s.t. O∧(o) =

∧

p∈P R(o, p) (resp. O∨(o) =
∨

p∈P R(o, p)) ∀o ∈ O,
and by P∧ (resp. P∨) the particular L-sets s.t. P∧(p) =

∧

o∈O R(o, p) (resp.
P∨(p) =

∨

o∈O R(o, p) ∀p ∈ P).

Proposition 3. Under Gödel implication, the lower and upper bound of the
L-concept lattice L(K) are given by:

∧

〈O,P 〉

L(K) = 〈O∧, 1P〉 and
∨

〈O,P 〉

L(K) = 〈1O,P∧〉

Proof. (.)↑↓ is isotone, so ∀ o ∈ O : 0 � O(o) � 1 ⇒ 0↑↓O (o) � O↑↓(o) �

1↑↓O (o).

i) let us determine the L-set 0↑↓O :

0↑↓O (o) =
∧

p∈P

IG

(

∧

o∈O

IG

(

0,R(o, p)
)

,R(o, p)
)

=
∧

p∈P

IG

(

1,R(o, p)
)

since IG(0, v) = 1 ∀ v ∈ L

=
∧

p∈P

R(o, p) since IG(1, v) = v ∀ v ∈ L
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ii) let us determine the L-set 1↓↑O :

1↑↓O (o) =
∧

p∈P

I G

(

∧

o∈O

I G

(

1,R(o, p)
)

,R(o, p)
)

=
∧

p∈P

IG

(

∧

o∈O

R(o, p),R(o, p)
)

=
∧

p∈P

1 = 1

Top and bottom intents are similarly determined. ⊓⊔

The following proposition will be useful for pruning useless potential fixed
points in the algorithm.

Proposition 4. (Djouadi and Prade [13]) Let O1, O2 ∈ LO (resp. P1, P2 ∈

LP) two L-sets such that O1 ⊆ O2 (resp. P1 ⊆ P2). If O2 ⊆ O↑↓
1 (resp.

P2 ⊆ P ↓↑
1 ) then O↓↑

2 = O↓↑
1 (resp. P ↓↑

2 = P ↓↑
1 )

3.2.1 Construction Algorithm

The proposed algorithm is intended to build the lattice L(K ) of all L-formal
concepts (i.e. pairs 〈O, P 〉 of fixed points s.t. O = P ↓ and P = O↑). Since
the set of extents and the set of intents are isomorphic complete lattices,
we may just build one of them, for instance the intent-concept lattice. The
lattice construction process is organized through two procedures. The main
procedure CLOSED LATTICE computes top and bottom intent-concept and
calls the recursive procedure RECURSIVE CLOSURE which calls itself in
order to generate all potential closed elements. The following notations and
functions are used by the procedures.

m : The cardinality of the set P(m = |P|)

I N T E N T S E T : Set containing all intent concepts.
C l o sed: Corresponds to a closed L-set.
DIR SUCC(Closed, pj): Returns the direct successor of the L-set Closed w.r.t

the property pj . The result (denoted V ) is defined s.t.
V (pk) = Closed(pk) when k �= j,
V (pj) = Closed(pj) when Closed(pj) = P∨(pj),
V (pj) = β s.t. β > Closed(pj) and ∄ β′ : β > β′ >

Closed(pj), elsewhere.

Successor: This L-set contains a direct successor of the last
computed closed element.

Closure: This L-set contains the closure of Successor.

Next: Contains the direct successor of the last computed
closure w.r.t the attribute pj .

FLAG: This Boolean is used to prune already computed
closed elements.
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Algorithm. CLOSED LATTICE(K)
Input: A fuzzy context K = (L,X ,A,R).
Output: The set INTENT SET of all fuzzy intent concepts.
Begin

1: Top(pj) ← − 1P(pj) ∀pj ∈ P ;
2: Bottom(pj) ←− P∧(pj) ∀pj ∈ P ;
3: INTENT SET ←− {Top} ∪ {Bottom};
4: RECURSIV E CLOSURE(Bottom);
End

Proposition 4 is used by the procedure RECURSIVE CLOSURE for prun-
ing potential closed elements for which the closure is already computed. It
allows also to fix the next potential closed element. This avoids to have to
enumerate all potential closed elements and significantly reduces complexity,
as shown through Example 4. The Boolean FLAG prevents the procedure
RECURSIVE CLOSURE from calling itself for already computed closed el-
ements. Note that the use of a recursive procedure provides the ability to
build the whole lattice structure while computing the closed elements.

Algorithm. RECURSIVE CLOSURE(Closed)
Begin

1: j ←− 1; /* index j allows to enumerate the attributes */
2: FLAG ←− TRUE;
3: While (j � m) and FLAG Do

4: Begin

5: Next ←− DIR SUCC(Closed, pj);
6: While (Next �= P∨(aj)) and FLAG Do

7: Begin /* there exists a direct successor */
8: Successor ←− Closed;
9: Successor(pj) ←− DIR SUCC(Closed, pj);

10: Closure ←− (Successor)↓↑;
11: If ¬(Closure ∈ INTENT SET )
12: Then

13: INTENT SET ←− INTENT SET ∪ {Closure};
14: RECURSIV E CLOSURE(Closure);
15: Next ←− DIR SUCC(Closure, pj);
16: Else

17: FLAG ←− FALSE;
18: End If

19: End While

20: j + +;
21: End While

End
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Proposition 5. The procedure CLOSED LATTICE is complete i.e. it finds
all closed sets P ∈ LP s.t. P = P ↓↑.

Proof. The proof follows from Proposition 2, Proposition 4 and the structure
of the procedure RECURSIVE CLOSURE which enumerates recursively all
non useless potential closed elements. ⊓⊔

3.2.2 Illustrative Example

An example is given to illustrate the proposed algorithm. It is based on a
fuzzy formal context that expresses relationships about meteorological ob-
servations. A special notation P = pα 1

1 pα 2

2 . . . pα m
m where αj = P (pj), (resp.

O = oβ 1

1 oβ 2

2 . . . oβ n
n where βi = O(oi)) will be used to represent L-sets P ∈ LP

(resp. O ∈ LO).

Table 6 Fuzzy formal context

R Low Temperature Low Pressure High Humidity

Warm Day 0.0 0.2 0.3
Cold Day 1 0.9 0.6
Rather Dry Day 0.0 0.4 0.1
Violent Wind Day 0.7 0.9 0.5

LT LP HH0.7 0.9 0.5

LT LP HH0.7 0.2 0.1

LT LP HH0.7 0.4 0.3 LT LP HH0.7 0.2 0.5LT LP HH0.7 0.9 0.1

LT LP HH0.7 0.2 0.3
LT LP HH0.7 0.4 0.1

LT LP HH0.0 0.2 0.1

Closed Element

Useful Element

Pruned  Elements

Fig. 1 Pruning useless L -sets.
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{WD CD PRD CWD },

T LP HH

0.0 0.6 0.0 0.5

1 1 1}

{WD CD PRD CWD },0.0 1 0.0 0.5

{WD CD PRD CWD },0.0 1 0.0 1

LT LP HH }0.7 0.9 0.5

{WD CD PRD CWD },0.0 1 0.0 0.7 {WD CD PRD CWD },0.2 1 0.1 0.5

{WD CD PRD CWD },0.3 1 0.1 0.5{WD CD PRD CWD },0.2 1 0.1 1

{WD CD PRD CWD },0.3 1 0.1 1{WD CD PRD CWD },0.2 1 0.4 1

{WD CD PRD CWD1 1 0.1 1},{WD CD PRD CWD },0.2 1 1 1

{WD CD PRD CWD1 1 1 1},

{L

{LT LP HH }1 0.9 0.5

{LT LP HH }1 0.9 0.6LT LP HH }1 0.9 0.6

{LT LP HH }0.0 0.9 0.1

{ LT LP HH }0.0 0.4 0.1

{ LT LP HH }0.0 0.9 0.5 { LT LP HH }0.0 0.2 0.6

{ LT LP HH }0.0 0.9 0.6

{LT LP HH }0.0 0.2 0.5LT LP HH }0.0 0.2 0.5

{LT LP HH }0.0 0.2 0.3

{LT LP HH }0.0 0.2 0.1

{

Fig. 2 Whole lattice of fuzzy formal concepts.
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Example 4. Let us consider a fuzzy context which consists of:

• A set of properties P={Low Temperature, Low Pressure, High Humidity}
respectively abbreviated as LT, LP, HH.

• A set of objects O={Warm Day, Cold Day, Rather Dry Day, Violent Wind
Day} respectively abbreviated as WD, CD, RDD, VWD.

• A fuzzy relation R illustrated in Table 6.
• A scale L=[0,1].

The proposed algorithm proceeds as follows (the variable m is equal to 3):

Step 1 : “Top” and “Bottom” on the intent lattice are determined. Top =
LT 1LP 1HH1. Bottom = LT 0.0LP 0.2HH0.1.

Step 2 : The procedure RECURSIVE CLOSURE(LT 0.0LP 0.2HH0.1) is called.
The variable Next takes the value 0.7 that corresponds to the direct succes-
sor of the degree 0.0 w.r.t the attribute LT in the relation R. The variable
Successor is first assigned the L-set LT 0.0LP 0.2HH0.1 in line 8. Whereas in
line 9, Successor is assigned the degree Next and becomes LT 0.7LP 0.2HH0.1.
In line 10, the closure of the L-set Successor is computed and the variable
Closure is assigned the L-set LT 0.7LP 0.9HH0.5.

Step 3 : Since the intent-concept LT 0.7LP 0.9HH0.5 has not been already gen-
erated, it will be added in the set INTENT SET and the Boolean FLAG
remains true. At this level the Proposition 4 will be used to prune all useless
potential closed elements (i.e. which will not generate new closed elements).
In this precise case, Figure 1 illustrates a lattice of useless L-sets which will
be pruned.

Step 4 : The procedure RECURSIVE CLOSURE is again called with (LT 0.7

LP 0.8HH0.5) as parameter since the next L-set which may generate (or
may be) a closed element is inevitably a direct successor of the L-set
LT 0.7LP 0.8HH0.5.

Step n: The procedure ends when all potentially closed elements are
generated.

The whole lattice structure is depicted in Figure 2.

4 U ncertainty

Neither the standard FCA approach nor its fuzzy extension are equipped
for representing situations of partial or complete ignorance. To this end, in
the Boolean case, we need to introduce a proper representation of partial
uncertainty including ignorance in the relational table of the formal context.
One may think of introducing gradations of uncertainty by changing crosses
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and blanks in the table into probability degrees, or by possibility or necessity
degrees. In the probabilistic case, one number shall assess the probability
that a considered property holds for a given object (its complement to 1
corresponding to the probability it does not hold). However, this is assuming
precise knowledge on the probability values, which is not really appropriate
if we have to model the state of complete ignorance. It is why we investigate
the use of the possibilistic setting in the following.

In the possibilistic setting, crosses may be replaced by positive degrees of
necessity for expressing some certainty that an object satisfies a property. The
blanks could be refined by possibility degrees less than 1, expressing that it
is little possible that an object satisfies a property. However, this convention
using a single number in the unit interval for each entry in the context may
be misleading as according to whether the number replaces a blank or a cross
the meaning of the number is not the same.

In the possibilistic setting, possibility and necessity functions are related
by the duality relation N(A) = 1−Π(A), that holds for any event A, where
A denotes the opposite event [15]. Then, for entries (o, p) in the table, we use
a representation as a pair of necessity degrees (α, 1 − β) where α = N(oRp)
(resp. 1 − β = N(oRp)) corresponds to the necessity (certainty) that object
o has (resp. does not have) property p. Moreover, we should respect the
property min(α, 1 − β) = 0, since min(N(A), N(A)) = 0 in agreement with
complete ignorance, in which case nothing (i.e., neither A nor A) is even
somewhat certain. Pairs (1,0) and (0,1) correspond to completely informed
situations where it is known that object o has, respectively does not have,
property p. The pair (0,0) reflects total ignorance, whereas pairs (α, 1 − β)
s.t. 1 > max(α, 1 − β) > 0 correspond to partial ignorance.

An uncertain formal context is thus represented by

RU = {(α(o, p), 1 − β(o, p)) | o ∈ O, p ∈ P}

where α(o, p) ∈ [0, 1], β(o, p) ∈ [0, 1]. A relational database with fuzzily-
known attribute values is theoretically equivalent to the fuzzy set of all ordi-
nary databases corresponding to the different possible ways of completing the
information consistently with the fuzzy restrictions on the attribute values
[6]. In the same way, an uncertain formal context may be viewed as a weighted
family of all standard formal contexts obtained by changing uncertain entries
into sure ones. More precisely, one may consider all the completions of an un-
certain formal context. This is done by substituting entries (o, p) that are
uncertain, i.e., such that 1 > max(α(o, p), 1 − β(o, p)) by a pair (1,0), or a
pair (0,1). Replacing (α(o, p), 1−β(o, p)) by (1, 0) is possible at degree β(o, p),
the possibility that o has property p. Similarly, replacing (α(o, p), 1−β(o, p))
by (0, 1) is possible at degree 1−α(o, p), the possibility that o does not have
the property p. In this way, one may determine to what extent a particular
completion (a context C) is possible, by aggregating the possibility degrees
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associated with each completed entry (using min operator). Formally, one
can write

π(C ) = min(min(o,p):oCpβ(o, p), min(o,p):oCp1 − α(o, p)).

Likewise the degree of possibility that (X, Y ) is a formal context of RU is

π(X, Y ) = sup{π(C) : C such that (X, Y ) is a formal context of C}.

Useful completions are those where partial certainty becomes full certainty.
Indeed, given an uncertain formal context and a threshold pair (u, v), let us
replace all entries of the form (α, 0) such that α � u with (1, 0) and entries
of the form (0, 1− β) such that 1 − β � v with (0, 1). All such replacements
have possibility 1 according to the above formula. Remaining entries, which
are more uncertain, can be systematically substituted either by (1,0), or by
(0,1). Considering, the two extreme cases where all such entries are changed
into (1,0) and the case when where all such entries are changed into (0,1)
gives birth to upper and lower completions, respectively. In this way, two
classical (Boolean) formal contexts, denoted R∗

(u,v) and R∗(u,v) are obtained
as respective results of the two completions. They allow to determine, for
a given threshold (u, v), maximal extensions (resp. minimal intensions) and
minimal extensions (resp. maximal intensions) of uncertain formal concepts.
It is clear that R∗(u,v) ⊆ R ∗

(u,v). Let us illustrate the idea with an example.

Example 5. Table 7 exhibits a formal context where some entries are per-
vaded with uncertainty. Let us examine the situation regarding formal con-
cepts. Take u = 0.7, v = 0.5 for instance. In context R ∗(0.7,0.5), examples
of formal concepts are pairs ({6, 7, 8}, {c, d, e}), or ({5, 6, 7, 8}, {d, e}), or
({2, 3, 4}, {g, h}), although with u = 0.9, the last formal concept would reduce
to ({2, 3}, {g, h}), i.e. the extent of the concept is smaller.

Now consider R∗
(0.7,0.5), where the entries with low certainty levels (either in

favor or against the existence of the link between o and p) are turned into
positive links. Then, ({2, 3, 4}, {g, h}) remains unchanged as a formal concept,
while a larger concept now emerges, namely ({5, 6, 7, 8}, {c, d, e}). However,
one may prefer to consider the results obtained from R∗(0.7,0.5), where only
the almost certain information is changed into positive links. In the example,
if we move down u to 0.5, and use R∗(0.5,0.5) we still validate the larger
former concept ({5, 6, 7, 8}, {c, d, e}). This illustrates the fact that becoming
less and less demanding on the level of certainty, may enable the fusion of
close concepts (here ({6, 7, 8}, {c, d, e}), and ({5, 6, 7, 8}, {d, e}), providing a
more synthetic view of the formal context.

This small example is intended to illustrate several points. First of all, it
should be clear that being uncertain about the existence of a link between
an object and a property is not the same as being certain about a gradual
link. Second, under uncertainty, there are formal concepts whose boundaries
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Table 7 Uncertain formal concepts

1 2 3 4 5 6 7 8

a ×

b × ×

c (0.5,0) × × ×

d × × × ×

e × × × ×

f (0, 0.8) × (0, 0.3)

g × × (0.8, 0)

h × × (0.8, 0)

i ×

are not affected by uncertainty, while others are. Lastly, regarding certain
enough pieces of information as certain may help simplifying the analysis of
the formal context. Besides, the proposed setting may also handle inconsistent
information by relaxing the constraint min(α, 1−β) = 0. This would amount
to introducing paraconsistent links between objects and properties.

5 T ypical Objects and Less Important Properties

Beyond the formal concepts which are strongly related to the mathematical
notion of closure, one may consider that a formal context conveys an implicit
semantics related to the typicality of objects and to the importance of prop-
erties. The notions of typicality and importance are dually stated according
to the following principles:

A) an object o is all the more typical with respect to a set of properties P as
it has all the properties p ∈ P that are sufficiently important;

B) a property p is all the more important with respect to a set of objects O
as all the objects o ∈ O that are sufficiently typical possess it.

Let us illustrate these notions through an example. We consider the set of ani-
mals O = {albatross, parrot, penguin, kiwi, turtle}, and the set of properties
P = {‘laying eggs’, ‘having two legs’, ‘flying’, ‘having feathers’}. Table 8
describes these animals with respect to relevant properties. It can be easily
seen from a FCA point of view w. r. t. R5, there are a set of “regular birds”
(here ‘albatross’, ‘parrot’), a set of “more or less regular birds” (here ‘alba-
tross’, ‘parrot’, ‘penguin’), a set of “less regular birds” including ‘kiwis’ and,
a set of animals which are not at all categorized as “birds”. Thus, the idea of a
“bird” (as in Table 8) may appear as a vague concept if on the one hand one
considers that some birds (e.g. ‘albatross’, ‘parrot’) are more typical than
others (e.g. ‘penguin’, ‘kiwi’), and on the other hand that the satisfaction
of some properties (e.g. ‘laying eggs’, ‘having two legs’) is more important
than others (e.g. ‘flying’, or even ‘having feathers’). More formally, given a
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formal context K = (O,P ,R), the definitions of typicality and importance of
a concept C are given as:

Table 8 Birds example

R5 eggs 2 legs feather fly

albatross × × × ×

parrot × × × ×

penguin × × ×

kiwi × ×

turtle ×

Definition 2. Given a formal context K, the typicality τC (resp. the impor-
tance ιC) of a concept C is a mapping τC : O → L (resp. ιC : P → L).
Typicality and importance define themselves mutually as:

ιC(p) =
∧

o∈O

τC(o) → R(o, p) or τC(o) =
∧

p∈P

ιC(p) → R(o, p)

It is interesting to remark that under some conditions, the pair (τC , ιC) forms
a Galois connection. Indeed, let us assume that the typical extension of a
concept C is given by τC(albatross) = τC(parrot) = 1, τC(penguin) = α,
τC(kiwi) = β, and τC(turtle) = 0 with 1 > α > β > 0. Let us compute
the fuzzy set of important properties according to Definition 2, i.e. ιC(p) =
∧

o∈O τC(o), with the condition a → 1 = 1 and a → 0 = 1 − a. This choice
expresses the idea that a bird not having property p makes a property all the
less important in the definition of the concept bird as this bird is considered
more typical. Then, we obtain ιC(‘laying eggs’) = ιC(‘having two legs’) = 1;
ιC(‘flying’) = 1 − α; ιC(‘having feathers’) = 1 − β. Thus, ‘having feathers’
is more important than ‘flying’, since 1 − α < 1 − β.

Let us now compute the fuzzy set of typical objects w.r.t. the obtained
fuzzy concept intension ιC(p). We get τC(albatross) = τC(parrot) = 1;
τC(penguin) = α; τC(kiwi) = β; τC(turtle) = 0 (since (1 − a) → 0 = a).

We thus recover
(

∧

p∈P

(
∧

o∈O τC(o) → R(o, p)
)

→ R(o, p)
)

= τC(o) ∀o,

and we recognize a fuzzy Galois connection.
This example illustrates the idea that, viewing a formal concept as a max-

imal rectangle included in the formal context, one may tolerate some missing
object-property links in such a rectangle, provided that they pertain to non-
fully typical objects that may miss non-fully compulsory properties. This
may facilitate the emergence of larger formal concepts, with wider range of
applicability, but having exceptions.
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6 C o nclusion

We claim that the semantics of the grades that may be introduced in FCA
is crucial and influences the way these grades should be handled. Starting
with the view of a formal concept in a formal context as a maximal subset
where the relation holds everywhere, we have suggested how the ideas of
gradualness, of uncertainty, of typicality or of importance may be used for
refining formal concepts in a graded way.
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Choice Functions in Fuzzy
Environment: An Overview⋆

Xuzhu Wang, Caiping Wu, and Xia Wu

Abstract. In this chapter, we present an overview of choice functions. Firstly,
we introduce some important research topics on classic choices which serve as
a guideline for the fuzzification research of choice functions. Then we begin
with the fuzzy choice function defined by Banerjee. After a brief introduc-
tion to Banerjee’s work, various preferences derived from a choice function
are investigated. Main rationality conditions are presented and the relation-
ships between them are presented. Some necessary and sufficient conditions
for T -transitive rationality are summarized. Afterwards, we turn to a special
family of choice functions which are associated with fuzzy preferences. In this
case, the final choices can be exact or fuzzy. For the former, various charac-
terizations of the Orlovsky choice function are primary topics. For the latter,
Roubens’s work is mainly introduced. Finally, the research around Georgescu
fuzzy choice functions is surveyed. The investigation includes three parts: ra-
tionality characterization, rationality conditions and rationality indicators.
In the first part, G -rationality, G -normality, M -rationality and M -normality
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are discussed. In the second part, some important fuzzy versions of rational-
ity conditions are displayed and their interrelationships are presented. The
third part is devoted to the introduction of various rationality and rationality
condition indicators.

Keywords: Fuzzy choice function, Revealed preference, Rationality condi-
tion, Rationalization.

1 Classic Choice Functions

In the real world, we are frequently confronted with the problem of how to
choose one or more alternatives from a set S of alternatives. This problem
is called a choice problem and the set of the chosen alternatives from S is
normally called a choice set which is denoted by C(S). A choice function is a
mapping (function) that associates a non-empty choice set C(S) to any S in a
certain domain B which is a subset of the set of all alternatives. The concept of
a choice function is initiated for the research on Economics, both a consumer
[3] and a demand function [1] in Economics are choice functions in essence.
In consumer theory, the involved domain B is a class of convex polyhedra
representing “budget sets” which are obtained by taking the income and
prices into account. It is generally assumed [1] that B contains all finite
subsets of X , where X is the set of all alternatives. For a close examination
of the domain B, the reader may refer to [4]. For simplicity, we assume that
the set X of all alternatives is finite and B is the set of all non-empty subsets
of X , which will be denoted by P (X) in the sequel.

Given a choice function, there are many ways to derive preferences among
which we mention the following important ones:

(1) Revealed preference R: xRy ⇐⇒ ∃S ∈ P (X), x, y ∈ S and x ∈ C(S).
(2) Generated preference R̄: xR̄y ⇐⇒ x ∈ C({x, y}).
(3) Strict revealed preference P̃ : xP̃ y ⇐⇒ ∃S ∈ P (X), x ∈ C(S) and

y �∈ C(S).

Those preferences were introduced in different names in the literature. For
example, generated preference is called “relation generated by C” by Arrow
[1] and “base relation” by Herzberger [15]. Since each of R, R̄ and R̃ reveals
the consumer’s (or the decision-maker’s) preference from a different angle, all
of them are commonly called revealed preferences by many authors [3, 10, 11]
in different senses. We give them the current names just to distinguish them
for the sake of convenience. In the literature, other preferences derived from
a choice function can be found, e.g., the transitive closure t(R) and t(P̃ ) of
R and P̃ in [3, 4], R∗ in [10], P̂ in [17] etc.

It is easily checked that both R and R̄ are reflexive and complete
since all singletons and all the sets of two elements are included in the do-
main P (X). In addition, R is acyclic [22]. An important role of R is to
describe normality of choice functions. A choice function C is called normal
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if ∀S ∈ P (X), C(S) = {x ∈ S|∀y ∈ S, xRy}. The normality indicates that
the choice function can be generated by its revealed preference R.

In the study of choice functions, the most important issue is their rational-
ity. To deal with this issue, various rationality conditions have been presented
by a number of authors. In the following, we introduce some important ones.

(1) Condition α : ∀S, T ∈ P (X), x ∈ C(T ) and S ⊆ T imply x ∈ C(S).
Its interpretation is: If an alternative is chosen from a set, then it is
chosen from any subset of it.

(2) Condition β: If S ⊆ T and x, y ∈ C(S), then x ∈ C(T ) iff y ∈ C(T ).
Its interpretation is: If both x and y are chosen from S, a subset of T ,
then x is chosen from T iff y is chosen from T .

(3) Condition γ: If S =
⋃

i∈I

Si and x ∈ C(Si) for all i ∈ I, then x ∈ C(S).

Its interpretation is: If x is chosen from every subset Si of S and the
union of all Si is S itself, then x is chosen from S.

(4) Condition δ: For any S, T ∈ P (X) and x, y ∈ C(S), if S ⊆ T , then
C(T ) �= {x}. Its interpretation is: If both x and y are chosen from S, a
subset of T , then neither of them can be uniquely chosen from T .

Condition α was firstly proposed by Chernoff [2], Condition β, γ and δ were
due to Sen [4, 5]. These rationality conditions formulate the behavior of
a choice function when a choice set is expanded or contracted, and thus
they are frequently called expansion-contraction conditions. In [1], Arrow
also put forward some similar conditions. For example, Arrow’s C2 or C3 is
just Condition α in a different form and the condition C4 combines α and γ.
It is shown in [4] that Condition α and Condition γ together are equivalent
to the normality of the choice function.

In [6], a weakened version α2 of α, a weakened version γ2 of γ and two
strengthened versions β+ and β′ of β can be found. For other expansion-
contraction conditions, the reader may refer to [17] for WD, ND, WND, SS
and MR, [24] for W1-W5, [16] for PI etc.

Besides expansion-contraction conditions, there exist other type of ratio-
nality conditions which are related to preferences derived from a choice func-
tion. The most famous of these are the Weak Congruence Axiom (WCA),
the Weak Axiom of Revealed Preference (WARP) and their strengthened
versions: the Strong Congruence Axiom (SCA) and the Strong Axiom of Re-
vealed Preference (SARP), which are defined as follows.

(1) WCA: If y ∈ C(S), x ∈ S and xRy, then x ∈ C(S).
(2) WARP: If xP̃ y, then yRc x.
(3) SCA: If y ∈ C(S), x ∈ S and xt(R)y, then x ∈ C(S), where t(R) stands

for the transitive closure of R.
(4) SARP: If xt(P̃ )y, then yRc x, where t(P̃ ) stands for the transitive closure

of P̃ .

SCA was introduced by Richter [3] and its weakened form WCA by Sen
[4]. WARP and SARP were introduced in the classic consumer theory by
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Samuelson [8] and Houthakker [12] respectively. An amazing conclusion is
that all the four conditions are equivalent [4]. They are also equivalent to the
combination of Condition α and β.

There are a number of other revealed-preference-based conditions in the
literature in addition to the preceding conditions. The reader may refer to [1]
for C1, [10] for HARP, [17] for QRPA and [18] for Axiom 1 – Axiom 4 etc.

Given a choice function C, one main concern by researchers is whether or
not there exists a binary relation Q such that C(S) = {x|∀y ∈ S, xQy} for
all S in P (X). If such relation does exist, then C is called rational. Since
we define choice functions on the domain P (X), it is easy to show that if a
choice function is rational then Q = R, and thus rationality and normality
are equivalent in our context. If additional conditions are imposed on R,
then we have some special rationality characterizations. A choice function is
called transitive rational if the choice function is rational and R is transitive.
Considering the equivalency of some rationality conditions [4, 9], each of
the following conditions is a necessary and sufficient condition of transitive
rationality: WCA, SCA, WARP, SARP, α and β together, R = R̃, R = R∗

(R∗ = {(x, y)|x �∈ S or x ∈ C(S) or y �∈ C(S)}, the transitivity of R̄ together
with the normality of the choice function, R̄ = R̃ together with the normality
of the choice function etc.

Besides transitive rationality, the investigation of other rationalities are
also visible in the literature among which we mention mainly quasi-transitive
rationality, semi-transitive rationality, pseudo-transitive rationality and semi-
order rationality. A fuzzy choice function is called quasi-transitive rational if
the fuzzy choice function is rational and PR is transitive. where PR stands
for the strict relation of R, defined by PR = R ∩ Rd (Rd = {(x, y)|yRc x}).
Concerning quasi-transitive rationality, a main conclusion is: for a normal
choice function C, R is quasi-transitive iff Condition δ is satisfied [4]. Other
necessary and sufficient conditions can be found in [18, 19, 21, 24]. A fuzzy
choice function is called semi-transitive rational if the fuzzy choice function is
rational and R is semi-transitive, i.e., ∀a, b, c, d ∈ X , aRb and bRc imply aRd

or dRc. For the characterization of semi-transitive rationality, the reader may
refer to [19]. As for pseudo-transitive rationality and semi-order rationality,
see [18, 19, 21, 24] for details.

Among choice functions, an important special family is that whose choice
sets are based on a preference relation on X . Two famous preference-based
choice sets are the set of best elements and the set of maximal elements [5].
Given a relation R on X and S ∈ P (X), an element x in S is called a “best”
(or “greatest”) element of S w.r.t. R if ∀y ∈ S, xRy, and the set of all best
elements in S is denoted by GR (S), i.e.,

GR (S) = {x|x ∈ S and ∀y ∈ S, xRy}.

An element x is called a maximal element of S w.r.t. R if ∀y ∈ S, yP c
R x,

where PR is the strict relation of R
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and the set of all maximal elements in S is denoted by MR(S), i.e.,

MR(S) = {x|x ∈ S and ∀y ∈ S, yP cx}.

Clearly, GR(S) ⊆ MR(S) for any S ∈ P (X). Unfortunately, GR(S) or MR(S)
may be empty, and either GR or MR is not necessarily a choice function as a
result. It is shown in [5] that if R is reflexive and complete then GR(S) �= ∅
iff R is acyclic on X , i.e.,

∀x1, x2, · · · , xn ∈ X, x1Px2P · · ·Pxn implies x1Rxn.

It is pointed out in [23] that ∀S ∈ P (X), GR(S) = MR(S) if R is reflexive
and complete. As a consequence, the acyclicity of R is also a necessary and
sufficient condition for MR(S) �= ∅ provided that R is reflexive and complete.

In [5, 7], the properties of GR are investigated. It is verified that (1) GR

satisfies Condition α and γ but not necessarily Condition β; (2) Under the
assumption that GR is a choice function, GR satisfies Condition β iff R satis-
fies P ◦I ⊆ P , where I is the indifference part of R defined by xIy ⇐⇒ xRy

and yRx.

2 Banerjee Fuzzy Choice Functions

In 1995, Banerjee [44] presented the definition of a fuzzy choice function,
which is called the Banerjee fuzzy choice function [31]. Let F (X) denote the
set of all non-empty fuzzy subsets of X . A Banerjee fuzzy choice function is
a mapping C : P (X) → F (X) such that ∀S ∈ P (X), suppC(S) ⊆ S, where
supp C(S) denotes the support of the fuzzy choice set C(S). It is easily
checked that suppC(S) ⊆ S is equivalent to C(S) ⊆ S. So suppC(S) ⊆ S

can be replaced by C(S) ⊆ S which is in the same form as in the crisp case.
In this section, we assume that every choice set is normal, i.e., ∀S ∈ P (X),
∃x ∈ S such that C(S)(x) = 1.

Then, he carried out an investigation into the characterization of rational-
ity of fuzzy choice functions in a general sense. To examine the rationality
of a choice function C, Banerjee introduced some concepts related to a fuzzy
choice function C, among which the most important ones include fuzzy re-
vealed preference relation R defined by

R(x, y) =
∨

{S|x,y∈S}

C(S)(x),

and normality:

∀S ∈ P (X), ∀x ∈ S, C(S)(x) =
∧

y∈S

R(x, y).
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Clearly, (1) ∀x, y ∈ X, C(S)(x) ≤ R(x, y); (2)If every choice set is normal,
i.e., ∀S ∈ P (X), ∃x ∈ S such that C(S)(x) = 1, then R is reflexive and
complete. Afterwards, Banerjee proposed three fuzzy congruence conditions
FC1, FC2, FC3.

(1) FC1: ∀S ∈ P (X), y is dominant in S, i.e., C(S)(y) ≥ C(S)(x) for all
x ∈ S, implies C(S)(x) = R(x, y) is valid for all x ∈ S.

(2) FC2: ∀S ∈ P (X) and ∀x, y ∈ S, y is dominant in S and R(x, y) ≥ R(y, x)
imply that x is dominant in S.

(3) FC3: ∀S ∈ P (X), ∀α ∈ (0, 1] and ∀x, y ∈ S, C(S)(y) ≥ α and R(x, y) ≥ α

imply C(S)(x) ≥ α.

It is easily checked that all the three conditions are fuzzy versions of WCA
in the crisp case. Banerjee showed that FC1, FC2 and FC3 are necessary
and sufficient conditions for characterizing the rationality of a fuzzy choice
function. Meanwhile, Banerjee pointed out that the three congruence condi-
tions are independent. This is an incorrect assertion. As a matter of fact, the
following dependencies are verified in [45]:

(1) FC1 implies FC2;
(2) FC3 implies FC2.

Hence FC1 and FC3 are sufficient to characterize the rationality of a Banerjee
fuzzy choice function.

As in the crisp case, various preference relations can be derived from a
fuzzy choice function. Besides the fuzzy revealed preference relation R, some
other preferences R̄, R̃n , R∗ derived from a fuzzy choice function C are also
defined in different frameworks [34, 35, 51]. Here we assume that (T, S, n) is
a De Morgan triple.

(1) R̄(x, y) = C({x, y})(x);
(2) R̃n (x, y) = n(P̃n (y, x)), where P̃n(x, y) =

∨

{ S|x,y∈S}

T(C(S)(x), n(C(S)(y)));

(3) R∗(x, y) =
∧

{S |x ,y ∈S }

IT (C(S)(y), C(S)(x)), where T is a t-norm,

IT (a, b) = sup{c|T (a, c) ≤ b}

is the R-implication associated with T , n a negation.

In[51], under the condition that n is a strong negation, the relationships
between these preferences are investigated in detail and the main results
include:

(1) R̃n ⊆ R̄ ⊆ R;
(2) R∗ ⊆ R̄;
(3) R = R̃n iff the choice function is normal and R̄ = R̃n;
(4) R∗ = R̃n under a strong De Morgan triple;
(5) If T is a continuous t-norm, then R = R∗ iff R̄ = R∗ and the choice

function is normal.
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Remark 1. Georgescu proved in [31] that the normality of the choice function
and R̄ = R̃n imply R = R̃n in a different framework.

In the study of fuzzy choice functions, some important rationality condi-
tions are fuzzified. As in the crisp case, they can be divided into revealed-
preference-based conditions and expansion-contraction conditions. The
former includes Weak Fuzzy Congruence Axiom (WFCA), Weak Axiom of
Fuzzy Revealed Preference (WAFRP) and their strengthened versions: Strong
Fuzzy Congruence Axiom (SFCA) and Strong Axiom of Fuzzy Revealed Pref-
erence (SAFRP). Let (T, S, n) be a De Morgan triple. Then these rationality
conditions are defined as follows.

(1) WFCA: ∀S ∈ P (X), ∀x, y ∈ S, T (R(x, y), C(S)(y)) ≤ C(S)(x);
(2) WAFRP: ∀x, y ∈ X, P̃n(x, y) ≤ n(R(y, x));
(3) SFCA: ∀S ∈ P (X), ∀x, y ∈ S, T (t(R)(x, y), C(S)(y)) ≤ C(S)(x);
(4) SAFRP: ∀x, y ∈ X, t(P̃n)(x, y) ≤ n(R(y, x)).

It is easily checked that WFCA is equivalent to FC3 if T = min. WFCA and
WAFRP are not generally equivalent although their crisp counterparts WCA
and WARP are equivalent. However, the equivalency can be obtained again
by imposing the condition that (T, S, n) is a strong De Morgan triple [52].

The most important expansion-contraction conditions include Fα, Fβ,

Fγ, Fδ [48, 53].

(1) Fα : If S1 ⊆ S2 then C(S2)(x) ≤ C(S1)(x) for any x ∈ S1.

(2) Fβ : If S1 ⊆ S2 and x, y ∈ S1, then

T (C(S1)(x), C(S1)(y), C(S2)(x)) ≤ C(S2)(y).

(3) Fγ: For any x ∈ S1 ∩ S2,

T (C(S1)(x), C(S2)(x)) ≤ C(S1 ∪ S2)(x).

(4) Fδ: If S1 ⊆ S2, x, y ∈ S1 and x �= y, then

T (C(S1)(x), C(S1)(y)) ≤ n(T (C(S2)(x), T
t�=x

(n(C(S2)(t))))).

It can be checked that they are indeed fuzzy versions of the conditions
α, β, γ, δ respectively. Concerning the connections between the above men-
tioned conditions, it is shown that

(1) If n is a strong negation, then Fβ implies Fδ [53].
(2) If T = min, then Fα and Fγ are equivalent to the normality of the choice

function [48].
(3) If T = min, then Fα and Fβ are equivalent to WFCA [33].
(4) The normality of the choice function and R̄ = R̃n ⇐⇒ WAFRP ⇐⇒

SAFRP ⇐⇒ R = R̃n if the involved negation is a strong negation[51].
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(5) T -regularity(reflexivity, completeness and T -transitivity) of R and the
normality of the choice function ⇐⇒ T -regularity of R̄ and the normal-
ity of the choice function ⇐⇒ WFCA ⇐⇒ SFCA[34, 51].

In addition to these popular rationality conditions, many other crisp ratio-
nality conditions employed by Suzumura [9], Schwartz [24], Arrow [1] and
Bandyopadhyay [17] are also extended to the fuzzy case and the relation-
ships between the fuzzified conditions are investigated in [49, 54, 56].

Another important research topic is the rationalization of fuzzy choice
functions. If there exists a reflexive and complete fuzzy relation Q on X such
that ∀S ∈ P (X), ∀x ∈ S, C(S)(x) =

∧

y ∈S

Q(x, y), then we call the choice

function C rationalized by Q, or simply the choice function C rational. It is
interesting that rationality and normality are equivalent if every choice set
is normal. Firstly, it is clear that normality implies rationality. On the other
hand, if C is rationalized by Q, then for any x, y ∈ X ,

R(x, y) =
∨

{S|x,y∈S}

C(S)(x) =
∨

{S|x,y∈S}

(
∧

z∈S

Q(x, z)) ≤ Q(x, y).

Thus C(S)(x) =
∧

y∈S

Q(x, y) ≥
∧

y∈S

R(x, y). On the other hand, C(S)(x) ≤

R(x, y) for all x, y ∈ X , which means C(S)(x) ≤
∧

y∈S

R(x, y). Hence,

C(S)(x) =
∧

y∈S

R(x, y) for all x, y ∈ X , i.e., C is normal.

There are various rationality characterizations dependent on the proper-
ties of the binary relations involved, of which T -transitive rationality is the
most extensively studied one. A fuzzy choice function is called T -transitive
rational if the fuzzy choice function is rational and R is T -regular. Each of
the following statements is a necessary and sufficient condition of T -transitive
rationality provided that T is continuous [34, 51].

(1) R̄ is T -regular and the choice function is normal;
(2) The choice function satisfies WFCA;
(3) The choice function satisfies SFCA;
(4) The choice function satisfies Fα and Fβ+, where Fβ+ means that S1 ⊆

S2 and x, y ∈ S1, imply T (C(S1)(x), C(S2)(y)) ≤ C(S2)(x).
(5) R = R∗;
(6) R̄ = R∗ and the choice function is normal.

Furthermore, if (T, S, n) is a strong De Morgan triple, then the following
statements are equivalent [51] and thus every one can serve as a necessary
and sufficient condition of T -transitive rationality.

(1) R = R̃n;
(2) The choice function satisfies WAFRP ;
(3) The choice function satisfies SAFRP ;
(4) The choice function is normal and R̄ = R̃n.
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In addition, if T = min, T -transitive rationality is equivalent to Fα and
Fβ [34].

Besides T -transitive rationality, the investigation of other rationalities
are also visible in the literature among which we mention mainly T -quasi-
transitive rationality and acyclic rationality. A fuzzy choice function is called
T -quasi-transitive rational if the fuzzy choice function is rationalized by a
reflexive, complete fuzzy relation Q such that PQ is T -transitive, where PQ

stands for the strict relation of Q. It was shown in [54] if a fuzzy choice
function satisfies Fα and Fδ, then R is T -quasi-transitive rational. In [49],
two necessary conditions of T -quasi-transitive rationality are presented by
the fuzzification of the Schwartz’s crisp rationality conditions [24]. In [57],
by using fuzzy counterparts of Aizerman’s [14] and Nehring’s [13] rationality
conditions, several necessary conditions of T -quasi-transitive rationality are
also proposed. Unfortunately, these necessary conditions are not sufficient to
assure T -quasi-transitive rationality although all of them are sufficient in the
crisp case.

If a fuzzy choice function C is rational and rationalized by an acyclic re-
lation Q then C is called acyclic rational. A fuzzy relation Q on X is acyclic
if, for any x1, x2, · · · , xn ∈ X , Q(x1, x2) > Q(x2, x1), Q(x2, x3) > Q(x3, x2),
· · · , Q(xn−1, xn) > Q(xn, xn−1) imply Q(x1, xn) ≥ Q(xn, x1). As we know, a
choice function is normal if and only if it is rational. Moreover, it is shown that
if every choice set of a fuzzy choice function is normal, then the revealed pref-
erence is acyclic [49]. Hence we can draw the conclusion that every rational
fuzzy choice function is acyclic rational provided that every choice set is nor-
mal. In [56], a necessary and sufficient condition is presented to characterize
acyclic rationality by fuzzifying the Bandyopadhyay’s rationality conditions
in [17].

As far as T -pseudo-transitive rationality and T -semi-transitive rationality
are concerned, some elementary results can be found in [50].

Remark 2. It is seen that relations and their properties are extensively em-
ployed in the study of choice functions, particularly in the characterization
of choice functions. They are deeply investigated in preference modeling the-
ory [58]. In this theory, relations are employed to model pairwise comparison
results between alternatives including strict preference, indifference, incom-
parability and large preference. Some properties of relations, e.g., reflexivity,
completeness, transitivity, semi-transitivity, Ferrers property are among the
most important concepts for modeling particular preference structures such
as weak order, partial order, interval order, semi-order etc. As relations are
fuzzified, their properties are also fuzzified, and as a result fuzzy preference
structures are correspondingly investigated. For the literature on fuzzy pref-
erence structures, we recommend the references [29, 30, 55, 60, 61, 62].
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Finally, we point out that the definition of rationality is adopted from [31].
There is an alternative definition in [44].

3 Choices Based on Fuzzy Preferences

3.1 Exact Choices Based on Fuzzy Preferences

In fuzzy environment, the study of choice functions was essentially initiated
by Orlovsky when modeling fuzzy preferences in 1978 [37]. Orlovsky argued
that a decision-maker may have a vague idea of preferences between alterna-
tives, i.e. he find it difficult to state definitely that an alternative is preferred
to another. In such cases, a number in [0, 1] may be readily employed to re-
flect the degree of preference. From then on, fuzzy preference relations have
been extensively utilized in decision-making analysis including the research
of choice functions.

Let R(X) the set of some fuzzy relations on X . The following definition is
adopted from [39]. An R-preference-based choice function (PCF) is a mapping
C : P (X) ×R(X) → P (X) such that

∀S ∈ P (X), ∀R ∈ R(X), C(S, R) ⊆ S.

For any S ∈ P (X), R ∈ R(X) and x ∈ X , let

OV (x, S, R) = min
y∈S

min{1 − R(y, x) + R(x, y), 1}.

Then a PCF is defined by

COV (S, R) = {x ∈ S|∀y ∈ S, OV (x, S, R) ≥ OV (y, S, R)},

which is called the Orlovsky choice function [38].

Remark 3. Take the notation

PD(S, R) = {x ∈ S|∀y ∈ S, R(x, y) ≥ R(y, x)}.

It is shown that COV = PD provided R satisfies acyclicity. Acyclicity is
also a necessary and sufficient condition for PD(S, R) �= ∅ (or equivalently,
COV (S, R) �= ∅)[23].

Besides the Orlovsky choice function, some other crisp choice functions based
on fuzzy preferences can be found in the literature. Dutta et al. suggested
four choice functions in [25] and Barrett et al. proposed nine unambiguous
choice functions in [42]. In addition, Basu [26], Switalski [27] and Roubens [43]
also suggested some ways to choose alternatives when confronted with fuzzy
preferences. Certainly, the use of different choice function reflects the decision-
maker’s different angle of viewing alternatives and may lead to different choice
results.
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The Orlovsky choice function attracted much attention among which the
most important and fruitful research is the characterization of the Orlovsky
choice function. In 1993, Banerjee firstly presented a characterization of the
Orlovsky choice function for the so-called Banerjee transitive class of fuzzy
relations [38]. By a Banerjee transitive fuzzy relation, we mean the fuzzy
relation R on X such that ∀x, y, z ∈ X ,

R(x, y) ≥ R(y, x) and R(y, z) ≥ R(z, y) imply R(x, z) ≥ R(z, x).

This property was firstly proposed by Ponsard [59]. We adopted the name
from [39]. Bouyssou pointed out that the contraction condition α is mistak-
enly taken for granted [39], and the characterization is incorrect as a result.
Then he reformulated the characterization for the same class of fuzzy re-
lations. Meanwhile, Bouyssou proposed a characterization of the Orlovsky
choice function for the acyclic class of fuzzy relations. Afterwards, Sengupta
characterized the Orlovsky choice function for the weak transitive class of
fuzzy relations [41]. A fuzzy relation R on X is called weakly transitive if
∀x, y, z ∈ X ,

R(x, y) > R(y, x) and R(y, z) > R(z, y) imply R(x, z) > R(z, x).

In addition to characterizing the Orlovsky choice function, Bouyssou charac-
terized the “sum of differences” choice function by using Neutrality, Mono-
tonicity and Independence of circuits [40].

Another research topic is the rationality properties of crisp preference-
based choice functions. In [42], Barrett et al. proposed two classes of ratio-
nality conditions: conditions for choosing an alternative and conditions for
rejecting an alternative. The first class of conditions includes:

(1) reward for pairwise weak dominance:

∀y ∈ S, R(x, y) ≥ R(y, x) ⇒ x ∈ C(S, R);

(2)reward for pairwise strict dominance:

∀y ∈ S \ {x}, R(x, y) > R(y, x) ⇒ x ∈ C(S, R).

The second class of conditions includes:
(1) strict rejection condition:

∀x ∈ S, R(y, x) ≥ R(x, y) and ∃y ∈ S, R(y, x > R(x, y) implies x �∈ C(S, R);

(2)weak rejection condition:

∀y ∈ S \ {x}, R(y, x) > R(x, y) implies x �∈ C(S, R).
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Clearly, these conditions are all based on pairwise comparisons. In addition,
they presented faithfulness (upper faithfulness, lower faithfulness) as a prop-
erty to assess the rationality of preference-based choice functions. Afterwards,
nine choice functions are examined based on these conditions. The results
show that max−m D satisfies most rationality properties, where max−m D
is defined by

Cm D (S, R) = {x|∀y ∈ S, mD(x, S, R) ≥ mD(y, S, R)}

and for any S ∈ P (X), x ∈ S,

mD(x, S, R) = min
y∈S\{x}

(R(x, y) − R(y, x)).

3.2 Fuzzy Choices Based on Fuzzy Preferences

In 1993, Roubens defined several fuzzy choice set based on a fuzzy relation
R on X , among which the following are typical ones [43]. Let P be the strict
part of R defined by P (x, y) = T (R(x, y), 1 − R(y, x)) with T a t-norm. Let
S ∈ P (X) and y ∈ S.

(1) DR(y) =
∧

x∈S\{y}

R(y, x) is the degree to which y is preferred to any

element of S.
(2) NR(y) = 1 −

∨

x∈S\{y}

R(x, y) is the degree to which any element of S is

not preferred to y.
(3) SDR(y) =

∧

x∈S\{y}

P (y, x) is the degree to which y is strictly preferred to

any element of S.
(4) SNR(y) = 1−

∨

x∈S\{y}

P (x, y), is the degree to which any element of S is

not strictly preferred to y.

Then he proposed some rationality properties to examine the rationality of
these choice actions which include heritage property, condordance property,

independence of irrelevant alternatives and reward for strict dominance. It
can be easily checked heritage property and condordance property are just
Fα and Fγ respectively while reward for strict dominance is similar to reward
for pairwise strict dominance proposed by Barrett et al [42]. Independence
condition means that if x is better than y in a set, then the same is true
for a larger set of alternatives. Afterwards, Roubens showed the fulfilment
of these properties for the above mentioned preference-based fuzzy choices
under some conditions.

As a matter of fact, exact choices and fuzzy choices are closely related
to each other if a fuzzy preference is given. For instance, Barrett et al. [42]
proposed nine choice functions in order to make unambiguous choices. How-
ever, we can see a fuzzy choice function behind every exact choice function.
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Take their CmD as an example. In this case, CmD is the final exact choice
function. In forming this choice function, mD (x, S, R) is employed, which
may be regarded as a fuzzy choice set and thus a fuzzy choice function when
S varies in P (X). Conversely, a fuzzy choice function can be also employed
to make crisp choices. More specifically, assume that C(S, R) (S ∈ P (X))
is a fuzzy choice related to a fuzzy relation R. Then by simply letting
C✆(S, R) = {x|∀y ∈ S, C(S, R)(x) ≥ C(S, R)(y)}, we have the exact choice
function C✆. Particularly, if C(S, R) is normal for every S ∈ P (X), then we
may make exact choice C✆(S, R) = {x|C(S, R)(x) = 1} for any S, which is
called the set of non-fuzzy non-dominated alternatives in [37]. Similar prac-
tice can be found in [43] for DR, NR, SDR and SNR.

For a survey of preference-based choice functions, the reader may refer
to [63].

4 Georgescu Fuzzy Choice Functions

In the definition of Banerjee fuzzy choice function, the available set of al-
ternatives are crisp sets, i.e, we make the fuzzy choice C(S) from the crisp

set S. In other words, the domain of a Banerjee choice function is crisp al-
though its range is fuzzy. Georgescu argued that “If a fuzzy subset S of X

will represent a vague criterion and x is an alternative, then the real number
S(x) means the degree to which the alternative x verifies the criterion S.
S(x) will be called the availability degree of x” ([31], Page 87). Hence, she
presented a new definition of fuzzy choice function by extending the domain
from crisp sets to fuzzy sets. A Georgescu fuzzy choice function is a mapping
C: F (X) → F (X) such that C(S) ⊆ S is valid for any S ∈ F (X). This is the
most general definition of a fuzzy choice function in the literature. In this sec-
tion, a fuzzy choice function means a Georgescu fuzzy choice function and the
involved work is mainly done by Georgescu [31, 32, 33, 34, 35] in the frame-
work (∗,→,¬), where ∗ is a continuous t-norm, x → y = sup{z|x∗z ≤ y} and
¬x = x → 0. We assume that every choice set is normal, i.e., ∀S ∈ F (X),
∃x ∈ [0, 1], C(S)(x) = 1.

Remark 4. Fuzzy logic connectives are fundamental tools for the research on
Georgescu fuzzy choice functions. For their detailed discussion, the reader
may refer to [28, 46, 47, 65, 66, 67].

For a Georgescu fuzzy choice function C, some main fuzzy preferences derived
from R are defined as follows.

(1) R(x, y) =
∨

S∈F (X)

(C(S)(x) ∗ S(y)).

(2) R̄(x, y) = C({x, y})(x) and P̄ (x, y) = R̄(x, y) ∗ ¬R̄(y, x).
(3) R̃(x, y) = ¬P̃ (y, x), where P̃ (x, y) =

∨

S∈F (X)

(C(S)(x) ∗S(y) ∗¬C(S)(y)).
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4.1 Rationality Characterization

Let Q be a fuzzy relation on X . Define MQ and G Q by: S ∈ F (X),

MQ (x) = S(x) ∗
∧

y∈X

[(S(y) ∗ Q (y, x)) → Q(x, y)],

GQ(x) = S(x) ∗
∧

y∈X

((S(y) → Q(x, y)).

Clearly, GQ(S) ⊆ MQ(S) for any S ∈ F (X). It is verified [31] that
GQ(S) = MQ(S) if Q is reflexive and complete. A fuzzy choice function
is called G-rational (M -rational respectively) if there exists a fuzzy relation
Q on X such that C = GQ (C = MQ respectively). Particularly, G-rational is
called G-normal and M -rational is called M -normal when Q = R. Concerning
normality and rationality, there are the following conclusions [31]:

(1) M -rationality implies G-rationality;
(2) If ∗ = min, G-normality and G-rationality are equivalent;
(3) If ∗ = min, M -normality implies G-normality.

If additional conditions are imposed, then we have special rationalities. A
fuzzy choice function C is called full rational if there exists a fuzzy relation
Q on X which is reflexive, ∗-transitive and strongly total (∀x, y ∈ X, x �=
y, Q(x, y) = 1 or Q(y, x) = 1) such that C = GQ. A fuzzy choice function C

is called strongly complete rational if there exists a fuzzy relation Q on X

which is strongly complete (reflexive, strongly total) such that C = GQ. It
is verified that any M -normal fuzzy choice function C is strongly complete
rational under the t-norm min.

Compared with the rationality characterization of crisp choice functions,
the results related to the fuzzy case in the sense of Georgescu are much fewer.

4.2 Rationality Conditions

Some important rationality conditions including WCA, SCA, WARP, SARP,
etc. have been fuzzified by Georgescu. To distinguish them from the condi-
tions in the sense of Banerjee, we take the notations WFCA(G), SFCA(G),
WAFRP(G), SAFRP(G) etc.

(1) WAFRP(G): P̃ (x, y) ≤ ¬R(y, x) for all x, y ∈ X .
(2) SAFRP(G): t(P̃ )(x, y) ≤ ¬R(y, x) for all x, y ∈ X , where t(P̃ ) is the

∗-transitive closure of P̃ .
(3) WFCA(G): R(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x) for all S ∈ F (X) and

x, y ∈ X .
(4) SFCA(G): t(R)(x, y) ∗ C(S)(y) ∗ S(x) ≤ C(S)(x) for all S ∈ F (X) and

x, y ∈ X , where t(R) is the ∗-transitive closure of R.
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Generally, WFCA(G) implies WAFRP(G), and SFCA(G) implies SAFRP(G)
[31]. In addition, if we consider the following statements:

(i) R is regular and C is G-normal;
(ii) R̄ is regular and C is G-normal;
(iii) C verifies WFCA(G);
(iv) C verifies SFCA(G);
(v) C verifies WAFRP(G);
(vi) C verifies SAFRP(G);
(vii) R = R̃;
(viii) R̄ = R̃ and C is G-normal,

then the following assertions are true [31]:

(1) (i) and (ii) are equivalent.
(2) (i) implies (iii); if ∗ = min, then (iii) implies (i).
(3) (iii) and (iv) are equivalent.
(4) If ∗ is the Lukasiewicz t-norm, then (iii), (v), (vi), (vii) are equivalent.
(5) (viii) implies (vii).

These assertions extend the results obtained by Sen in [4], where all the
assertions are equivalent in the crisp case.

Another fuzzy version WAFRP0 of WARP also plays an important role
in the study of Georgescu fuzzy choice function. Let A, B ∈ F (X). Take the
notations: a ↔ b = (a → b) ∧ (b → a);
I(A, B) =

∧

x ∈X

(A(x) → B(x));

E(A, B) =
∧

x ∈X

(A(x) ↔ B(x)).

Then we have WAFRP0: For any x, y ∈ X and S1, S2 ∈ F (X),

(S1(x) ∗ C(S2)(x)) ∗ (S2(y) ∗ C(S1)(y)) ≤ E(S1 ∩ C(S2), S2 ∩ C(S1)).

WAFRP0 implies M -normality and thus G-rationality and M -rationality as
well. In addition, WAFRP0 is equivalent to WFCA(G) under the t-norm min.

For a Georgescu fuzzy choice function, some expansion-contraction condi-
tions have the following fuzzy versions:

(1) Fα(G) : ∀x ∈ X, ∀S, T ∈ F (X), I(S, T ) ∗ S(x) ∗ C(T )(x) ≤ C(S)(x).
(2) Fβ(G) : ∀x, y ∈ X, ∀S, T ∈ F (X),

I(S, T ) ∗ C(S)(x) ∗ C(S)(y) ≤ C(T )(x) ↔ C(T )(y).

(3) FAA : ∀x ∈ X,∀S, T ∈ F (X), I(S,T ) ∗ S(x) ∗ C(T )(x) ≤ E(S ∩ C(T ), C(S)).

Clearly, normality implies Fα(G). Concerning the relationships between these
conditions, it is worth mentioning that, if the involved t-norm ∗ is min, then
(1) WFCA(G) is equivalent to the combination of Fα(G) and Fβ(G); (2)
FAA is equivalent to WFCA(G) and can be employed to characterize the full
rationality of the choice function.
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4.3 Rationality Indicators

In the study of Georgescu fuzzy choice functions, a unique aspect is the
measure of the degree of rationality and the degree of the satisfaction of
rationality conditions. Instead of examining whether a fuzzy choice function
is rational or not, a rationality degree is defined to measure the rationality of
the choice function. Similarly, instead of checking whether or not a rationality
property is satisfied or not, an indicator is defined to indicate the degree
to which the property is satisfied. In order to achieve this aim, we firstly
introduce a basic notion: the similarity of two fuzzy choice functions C1 and
C2 defined by

E(C1, C2) =
∧

x∈X

∧

S∈F (X)

(C1(S)(x) ↔ C2(S)(x)).

Let R = F (X ×X) and R be the revealed preference. Firstly, we present the
rationality and normality degrees:

G-rationality degree: RatG(C) =
∨

Q∈R

E(C, GR);

M -rationality degree: RatM (C) =
∨

Q∈R

E(C, MR);

G-normality degree: NormG(C) = E(C, GR);
M -normality degree: NormM (C) = E(C, MR).

Concerning the connections between these rationality indicators, the fol-
lowing are valid:

RatM (C) ≤ RatG(C), NormM (C) ≤ NormG(C) and RatG(C)=NormG(C),

which extend the results related to the relationships between M -rationality,
M -normality, G-rationality and G-normality. Moreover, Georgescu defined
and discussed strongly complete rationality indicator.

As for rationality conditions, the following indicators are typical:

(1) WAFRP (C) =
∧

x,y∈X

(P̃ (x, y) → ¬R(y, x));

(2) SAFRP (C) =
∧

x,y∈X

(t(P̃ )(x, y) → ¬R(y, x));

(3) WFCA(C) =
∧

x,y∈X

∧

S∈F (X)

((S(x) ∗ C(S)(y) ∗ R(x, y)) → C(S)(x));

(4) SFCA(C) =
∧

x,y∈X

∧

S∈F (X)

((S(x) ∗ C(S)(y) ∗ t(R)(x, y)) → C(S)(x)).

If the involved t-norm is min, the equalities

WFCA(C) = SFCA(C) = E(C, GR) ∧ Trans(R) = E(C, GR) ∧ Trans(R̄)

can be found in [31], which extend the conclusions in [4] to degree descrip-
tions. If ∗ is the Lukasiewicz t-norm, then WFARP (C) = WFCA(C) =
E(R, R̃).
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The rationality condition W AFRP 0 indicator was also investigated. Its
definition is WAFRP 0(C) =

∧

x,y∈X

∨

S,T∈F (X)

[(S(x)∗C(T )(x)∗(T (y)∗C(S)(y))) → E(S∩C(T ), T ∩C(S))].

It is verified in [64] that

WFCA(C) = WAFRP 0(C) ≤ min{WAFRP (C), NormM (C), E(GR, MR)}

if ∗ = min.
Important expansion-contraction condition indicators include Fα(C),

Fβ(C), FAA(C), Fα2(C), Fβ2(C), etc.

(1) Fα(C) =
∧

x∈X

∧

S,T∈F (X)

[(I(S, T ) ∗ S(x) ∗ C(T )(x)) → C(S)(x)];

(2) Fβ(C) =
∧

x,y∈X

∧

S,T∈F (X)

[(I(S, T ) ∗ C(S)(x) ∗ C(S)(y)) → (C(T )(x) ↔

C(T )(y))];
(3) Fα2(C) =

∧

x∈X

∧

S∈F (X)

[(I({x, y}, S) ∗ C(S)(x)) → C({x, y})(x)];

(4) Fβ2(C) =
∧

x,y∈X

∧

S∈F (X)

[(I(S{x, y}, S) ∗ C({x, y})(x) ∗ C({x, y})(y)) →

(C(S)(x) ↔ C(S)(y))];
(5) FAA(C)=

∧

x∈X

∧

S,T∈F (X)

[(I(S, T )∗S(x)∗C(T )(x)) → E(S∩C(T ), C(S)))].

If the involved t-norm is min, then WFCA(C) = Fα(C) ∧ Fβ(C).

Remark 5. In [31], it was claimed that WFCA(C) = Fα(C)∧Fβ(C) without
the requirement ∗ = min. However, the established proof was based on this
requirement.

Meanwhile, two transitive rationality indicators TrRatG(C) and TrRatM (C)
were defined in [64].

TrRatG(C) =
∨

Q∈R

E(C, GQ) ∧ Trans(Q);

TrRatM (C) =
∨

Q∈R

E(C, MQ) ∧ Trans(Q).

Main conclusions include (∗ = min)

(1) Fα2(C) ∧ Fβ2(C) = E(C, GR) ∧ Trans(R) ≤ TrRatG(C);
(2) Fα2(C) ∧ Fβ2(C) = Fα(C) ∧ Fβ2(C) = Fα2(C) ∧ Fβ(C);
(3) FAA(C) = E(C, GR) ∧ Trans(R).

Recently, two acyclic rationality indicators AcRatG(C) and AcRatM (C) are
put forward by Georgescu in [36] and the equality RatG(C) = AcRatG(C) is
verified.
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5 Concluding Remarks

This state-of-the-art survey presents a brief introduction to various types of
choice functions in fuzzy environment. The involved topics mainly focus on
revealed preferences, rationality properties and rationalization. It should be
noted that all the results are heavily dependent on the context. In our context,
the domain of a crisp choice function is assumed to be P (X). This assumption
largely simplifies our discussion. In this case, normality and rationality are
equivalent, the revealed preference become reflexive, complete and acyclic.
Meanwhile, some notions in the literature become indifferent. For example,
rationality and acyclic rationality become identical. M -rationality and G-
rationality defined by Suzumura [10] become the same notion etc. In addition,
in the discussion of Banerjee fuzzy choice functions and Georgescu fuzzy
choice functions, different frameworks are adopted in considering the current
research state. For the former, the framework is a De Morgan triple and
it is a residuated lattice ([0, 1],∨,∧, ∗,→, 0, 1) for the latter. Hence, different
fuzzy logic connectives may be employed in formulating rationalities although
their intuitive interpretations are the same. This difference of framework may
make the difference of the research results extremely subtle although some
conclusions appear in almost the same or similar form. A Georgescu fuzzy
choice function is the most general choice function since both the domain
and range of the choice function are fuzzy. However, this generality often
makes the investigation difficult. As a consequence, it is observed that many
results related to Georgescu fuzzy choice functions are obtained with the
condition ∗ = min. In this case, as we know, the corresponding negation
should be the intuitionistic negation [29] with the definition ¬a = 1 if a = 0
and ¬a = 0 elsewhere, which makes many rationality properties associated
with the negation become special.
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A Fuzzy Extension to Compact and Accurate 
Associative Classification  

Guoqing Chen, Yixi Xiong, and Qiang Wei
1
 

Abstract. Classification has been one of the focal points in data mining research 

and applications. With an effective approach to building compact and accurate 

associative classification (namely GARC – Gain-based Association Rule Classifi-

cation (Chen, Liu, Yu, Wei, & Zhang, 2006)) in forms of association rules, this 

chapter explores a way of fuzzy extension to GARC in dealing with the problem 

caused by crisp partitions for continuous attribute domains in data. Concretely, the 

sharp boundaries of the partitioned intervals are smoothened using fuzzy sets (or 

often conveniently labeled in linguistic terms) so as to reflect a variety of fuzziness 

on the domains (parameterized in f2), giving rise to a fuzzy associative classifier 

(i.e., GARCf2). Furthermore, due to the fuzziness involved, the notions of infor-

mation gain, rule redundancy and conflicts are extended, aimed at providing the 

desirable features of GARC in the fuzzy extension context for accuracy and com-

pactness. Moreover, data experiments on benchmarking datasets as well as a 

real-world application illustrate the effectiveness of the proposed fuzzy associative 

classifier. 

Keywords: Associative Classification, Information Gain, Fuzzy Partitions, Credit 

Rating. 

In recent decades, there have been numerous research efforts as well as a wide range 

of applications in both classification and association rule mining (Fayyad & Ut-

hurusamy, 1994; Han, Kamber, & Pei, 2005; Weiss & Kulikowski, 1991). In the 

context of massive data, association rule mining is to discover associative patterns 

between data items in a manner they occur together frequently, while classification 

is to build a classifier usually based on training/testing datasets, which enables to 
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classify the newly coming data to a specific group (class). Though one may find a 

number of existing approaches that could build classifiers effectively, such as De-

cision Tree, Bayesian networks, Support Vectors Machine, Neural Network, etc. 

(Berzal, Cubero, Sanchez, & Serrano, 2004; Friedman, Geiger, & Goldszmidt, 

1997; Quinlan, 1993; Shafer, Agrawal, & Mehta, 1996; Sharpe & Glover, 1999; 

Shie & Chen, 2008), associative classification, which results from a combined 

perspective of classification and association rule mining, has attracted an increasing 

amount of attention of academia and practitioners due to its accuracy and under-

standability (Ali, Manganaris, & Srikant, 1997; Berzal et al., 2004; Chen, Liu, Yu, 

Wei, & Zhang, 2006; Chen, Zhang, & Yu, 2006; Dong, Zhang, Wong, & Li, 1999; 

Li, Han, & Pei, 2001; Liu, Hsu, & Ma, 1998; Liu, Ma, & Wong, 2000; Wang, Zhou, 

& He, 2000; Yin & Han, 2003; Zhang, Chen, & Wei, 2009). 

Concretely, an association rule is a link between data items in forms of X⇒Y, 

where X and Y are itemsets (i.e., set of items/attributes) with X∩Y = ∅, expressing 

that the event for X is associated with the event for Y. For example, a rule like 

“Milk⇒Bread” means that the customers who buy milk may also tend to buy bread 

at the same time. There are two basic measures to evaluate a rule, namely, Degree of 

Support (Dsupp) and Degree of Confidence (Dconf). Dsupp(X⇒Y) is the percent-

age of transactions containing both X and Y with respect to the whole transaction set 

(dataset), while Dconf(X⇒Y) is the percentage of transactions containing Y among 

those transactions (i.e., tuple/record) containing X. That is, for itemsets X and Y, 

Dsupp(X⇒Y) = ||X∪Y|| / |D|, and Dconf(X⇒Y) = ||X∪Y|| / ||X||, where |D| is the 

number of transactions in dataset D, and ||X|| and ||X∪Y|| are the numbers of trans-

actions that contain, respectively, X and X∪Y. Given two thresholds for degrees of 

support and confidence (i.e., minimal support α and minimal confidence β, with α, 

β ∈ [0,1]), an itemset X is called frequent, if Dsupp(X) = ||X|| / |D| ≥ α. Furthermore, 

for any rule X⇒Y, it is called a valid association rule if Dsupp(X⇒Y) ≥ α and 

Dconf(X⇒Y) ≥ β. To find such valid rules, many approaches have been proposed 

(Agrawal, Imielinski, & Swami, 1993; Agrawal & Srikant, 1994; Chen, Wei, Liu, & 

Wets, 2002; Mannila, Toivonen, & Verkamo, 1994; Srikant & Agrawal, 1996; 

Srikant, Vu & Agrawal, 1997), among which the Apriori method is usually deemed 

as a classical algorithm (Agrawal & Srikant, 1994). 

In the spirit of association rules, associative classification can be viewed as a 

special case of association rule mining, resulting in a classifier composed of a 

number of class association rules (CARs) such as CBA (Liu et al., 1998; Liu et al., 

2000). A CAR is of the form X⇒Ci, where X is a set of items and Ci is a prede-

termined class label. Let t be a transaction in dataset D, t is called to satisfy X⇒Ci if 

X ⊆ t and Ci is the predetermined class for t. Associative classification usually 

searches for all the CARs that satisfy given minimum support and minimum con-

fidence thresholds. Notably, associative classification has been considered effective 

in many cases (Berzal et al., 2004; Chen et al., 2006; Chen et al., 2006; Dong et al., 

1999; Li et al., 2001; Liu et al., 1998; Liu et al., 2000; Wang et al, 2000; Yin & Han, 

2003; Zhang et al., 2009). 
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While classifiers in forms of association rules are usually appealing for use and 

explanation by human users, one may however suffer from the fact that the number 

of discovered CARs is huge, thus hard to manage in understanding the rules as well 

as in resolving possible rule redundancy and conflicts. Therefore, the construction 

of an effective classifier to cope with the size of rules and redundant/conflict rules is 

desirable. In this regard, an approach, namely GARC (i.e., Gain-based Association 

Rule Classification) (Chen et al., 2006), has been introduced that possesses satisfied 

accuracy for classification as well as compactness in size of the resultant classifier. 

In GARC, only those “informative” rules are generated. The characteristic of this 

approach is threefold (Chen et al., 2006): First, GARC employs information gain 

measure to select the best-split attribute for 1-itemsets (i.e., the itemsets each con-

taining a single item), which is to be included in the generation of candidate 

k-itemsets (i.e., the itemsets each containing k items, k ≥ 2). Second, both frequent 

itemsets and excluded itemsets (i.e., infrequent itemsets) are used in the generation 

of candidate itemsets. Third, GARC defines rule redundancy and rule conflicts as 

follows: in a set of classification rules φ, if rule X⇒Ci exists, then (1) any rule of the 

form Z⇒Ci (Z⊃X) is called redundant, that is, Z⇒Ci would not be regarded se-

mantically necessary from the perspective of classification; and (2) for i≠j, any rule 

of the form Z⇒Cj (Z⊇X) is called conflicting if Z⇒Cj does not precedes X⇒Ci (i.e., 

(i) Dconf(X⇒Ci) > Dconf(Z⇒Cj), or (ii) Dconf(X⇒Ci) = Dconf(Z⇒Cj) while 

Dsupp(X⇒Ci) > Dsupp(Z⇒Cj)), which may lead to misclassification in the deci-

sion making process. A nonempty classification rule set is called a compact set of 

classification rules if neither rule redundancy nor rule conflicts exists. Furthermore, 

GARC applies two strategies in avoiding rule conflicts and redundancy: (1) If 

β>50%, then rules X⇒Ci and X⇒Cj will not hold simultaneously. (2) For a classi-

fication rule X⇒Ci, if 1－Dconf(X⇒Ci)<α or Dsupp(X)<2α, then any itemset like 

Z⇒Cj (Z⊇X, i≠j) is an excluded itemset. As a result, GARC constructs a more 

condensed and understandable (in terms of much fewer rules than CBA) classifier 

while the classification accuracy is satisfactory compared with other major ap-

proaches (Chen et al., 2006). 

It is worth mentioning that classical association rule mining methods and related 

associative classification methods were originally designed for binary databases in 

that the values of attributes (items) are either 1 (true) or 0 (false), reflecting whether 

or not a corresponding event takes place. In other words, for itemsets X and Y, the 

semantics of rule X⇒Y could be explained in a way as whether the events for X and 

X∪Y occur or not. However, in many real world applications, not only shall the 

occurrence of events be considered important, but also the quantity involved in the 

events. That is, we often encounter the cases where the values of attributes (such as 

Age, Income, Price, etc.) are continuous in the domains. These cases are usually 

dealt with in light of quantitative association rules (QAR) (such as “Milk[6,12] ⇒Bread[2,6]”, meaning that the customers who buy 6 to 12 bottles of milk may 

also tend to buy 2 to 6 pieces of bread at the same time) (Aumann & Lindell, 1999; 

Dougherty, Kohavi, & Sahami, 1995; Srikant & Agrawal, 1995). In doing so, 

typical approaches use sharp partitioning for the respective domains to generate 

several intervals, each then treated as a new attribute. Then, the original dataset with 

continuous attribute values could be transformed into a new dataset with binary 
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attribute values, on which the classical Apriori method can be used in finding such 

QARs. Another example of the sharp partitioning is on an Age domain (0,100) to 

form such new attributes as Age(0, 30], Age(30, 60], Age(60, 100). 

Notably, though sharp partitioning is considered effective, it may suffer from the 

“boundary problem”, leading to misclassification (Bosc & Pivert, 2001; Chen, Wei, 

& Kerre, 2006; Chen, Yan, & Kerre, 2004; Chen, Yan, & Wei, 2009). That is to say, 

the intervals with sharp boundaries may result in over-sensitive grouping of attrib-

ute values near the boundaries, which then affect the classification outcomes. For 

instance, a transaction t with age of 31 will have the values 0, 1, 0 for attributes 

Age(0, 30], Age(30, 60], Age(60, 100), respectively, meaning that the event relating 

to Age(30,60] is relevant to transaction t. On the other hand, age of 30 will be 

grouped to another attribute Age(0,30), though semantically age of 30 or 31 may not 

look like so different. In other words, the intervals resulting from sharp partitioning 

may amply (or over-emphasize) the difference between the values at boundaries.  

In this regard, fuzzy logic (Zadeh, 1965) is considered useful to smooth the 

differences with gradual grades for the values around boundaries. This will extend 

the belongings of these values to attributes from {0,1} to [0,1]. An approach that is 

considered effective is to define fuzzy sets upon the sharply partitioned intervals 

(e.g., the crisp intervals used in classical classification methods such as CBA and 

GARC). Whereas there are different ways to define the fuzzy sets (e.g., param-

eterized by f1 as the degree of fuzziness in (Xiong, 2010)), this chapter presents a 

fuzzy extension to GARC in that fuzzy sets are defined on the boundaries of the 

crisp intervals in consideration of a boundary value possessing the greatest degree 

of fuzziness. With the degree of fuzziness as parameterized by f2, the fuzzy exten-

sion is then referred to as GARCf2.  

The chapter is organized as follows. Section 1 introduces some preliminary no-

tions on fuzzy sets. Section 2 elaborates on the steps of GARCf2 in constructing 

classifiers including the respective algorithm. Section 3 shows the experimental 

results and analysis on benchmarking datasets. Finally, section 4 illustrates the 

advantages of GARCf2 through a real-world application.  

1   Preliminary Notions 

Fuzzy sets theory provides a means to deal with imprecision and uncertainty 

(Zadeh, 1965). Let U be a domain, a fuzzy set A (sometimes labeled in a linguistic 

term) on U is characterized by a membership function µA(u): U → [0,1], where, for 

any u in U, µA(u) is the grade of membership of u for A, representing the degree of 

u belonging to A. For example, Young-Age, Middle-Age, Old-Age could be defined 

on Domain(Age) with the corresponding membership functions being trapezoid as 

shown in Figure 1. 

Furthermore, fuzzy partitioning (Bezdek, 1981; Dunn, 1974) is used for trans-

forming quantitive datasets to fuzzy datasets. Generally, suppose there are n 

transactions {t1, t2, …, tm} in an original dataset D with schema R(A), where A is a 

set of m attributes, i.e., A ={A1, A2, …, Am}, each Ak (1 ≤ k ≤ m) can be associated  
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Fig. 1 Membership functions for Young-Age, Middle-Age and Old-Age 

with qk sets (i.e., intervals) defined on domain(Ak), denoted as { 1A
k

, …, A kq

k
}. 

Traditionally, for each value ti(Ak) (1 ≤ i ≤ n), i.e., value of ti for attribute Ak, it will 

totally belong to one of the sets { 1A
k

, …, A kq

k
}. The result can be described by an 

n×qk matrix Xk, where each element xij values 1 if xij∈ A j

k
 (1 ≤ j ≤ qk) or 0 otherwise. 

In other words, the matrix Xk has the following properties: (1) xij∈{0,1},  

(2) 

1

1,
kq

ij

j

x i
=

= ∀∑ , (3) 

1

0 ,
n

ij

i

x n j
=

< < ∀∑ ,then Xk is called to be a sharp partition of  

attribute Ak. If the value of xij is not constrained in Boolean value {0,1} but in [0,1], 

which means that ti(Ak) can partially belong to one of the sets { 1A
k

, …, A kq

k
}, then 

Xk is called to be a fuzzy partition of attribute Ak if (1) xij∈[0,1], (2) 

1

1,
kq

ij

j

x i
=

= ∀∑ , 

(3) 

1

0 ,
n

ij

i

x n j
=

< < ∀∑ .  

For instance, given a dataset D with continuous attributes as shown in Table 1, 

the resultant datasets based on sharp partitioning and fuzzy partitioning are shown 

as Table 2 and Table 3. 

Table 1 Original Dataset D 

D Age Income Class 

#1 33 64000 C1 

#2 25 26000 C2 

#3 46 39000 C3 

#4 62 22000 C2 

#5 36 52000 C1 
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Table 2 Sharp-Partitioned Dataset Ds 

Ds Age 

(0,35] 

Age 

(35,65] 

Age 

(65,100] 

Income 

[0,25000]

Income 

(25000,60000]

Income 

(60000,∝) 

Class 

#1 1 0 0 0 0 1 C1 

#2 1 0 0 0 1 0 C2 

#3 0 1 0 0 1 0 C3 

#4 0 0 1 1 0 0 C2 

#5 0 1 0 0 1 0 C1 

Table 3 Fuzzy-Partitioned Dataset Df 

Df Young- 

Age 

Middle- 

Age 

Old- 

Age 

Low- 

Income 

Middle- 

Income 

High- 

Income 

Class 

#1 0.7 0.3 0 0 0.3 0.7 C1 

#2 1 0 0 0.4 0.6 0 C2 

#3 0 1 0 0 1 0 C3 

#4 0 0.2 0.8 0.8 0.2 0 C2 

#5 0.4 0.6 0 0 0.9 0.1 C1 

Note that the fuzzy sets on the domain of Income for Table 3 are shown as  

defined in Figure 2.  

0

1

20000       30000              50000                  70000

Low-Income               Middle-Income                                  High-Income

Income

 

Fig. 2 Membership functions for Low-Income, Middle-Income and High-Income 

2   Gain Based Associative Classification with Fuzzy Partitioning 

This section will introduce GARCf2 (Gain based Associative Classification with 

Fuzzy Partitioning in f2) in three steps: (1) transforming the traditional datasets  

with continuous attributes to fuzzy-partitioned datasets, (2) mining a compact  

set of fuzzy class association rules, and (3) building a classifier based on the  

discovered rules. 
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2.1   Fuzzy Partitioning with Trapezoidal Membership Functions 

As mentioned in Section 2, fuzzy partitioning is to define a number of fuzzy sets, 

usually labeled by linguistic terms, upon each attribute domain. In this chapter, 

trapezoidal membership functions will be adopted, since they are not only easy to 

construct, but also convenient to illustrate the values close to the boundaries (Chen, 

1998; Klir & Yuan, 1995). In addition, though represented in linear segments, they 

are sufficient for use in reflecting a wide variety of real-world semantics. 

Concretely, a membership function concerned is of the form: trapezia(a, b, c, d) 

(denoted as π in brief), where a, b, c and d are four parameters. Furthermore, the 

membership functions are assumed to be normalized, i.e., for any µ : π(a, b, c, d), µ 

(b) = µ (c) = 1. Moreover, given an attribute A in D, suppose Domain(A) is 

fuzzy-partitioned into a series of v attributes A1, A2, …, Av in Df, where Aq (q = 1, 2, 

…, v) is a fuzzy set with a trapezoidal membership function Aq
µ : π(aq, bq, cq, dq), 

then A1, A2, …, Av could be semantically viewed as in an increasing order across 

the value range in Domain(A), e.g., denoted as Aq≺ Aq+1 (where cq ≤ bq+1 and
  

1+Aqµ ( ) = qc A 1qµ + ( )qb
+

 1= . For instance, Low-Income ≺ High-Income, and 

Young-Age≺Middle-Age. This represents a gradual smoothing around the juncture 

of two adjacent fuzzy sets (attributes/labels). To make 
1 2{A ,A ,...,A }v

 a fuzzy 

partition on Domain(A), we shall also have 1 1, ,
q q q q

a c b d− −= =  ( 2,3,..., )q v= . 

Thus, importantly, for any u in Domain(A), there exist two membership functions 

Aq
µ and

A 1q
µ +

defined on Domain(A) such that 
Aq

µ ≺
A 1q

µ +
 and 

A A 1
( ) ( ) 1

q q
u uµ µ ++ = . 

In particular, given a domain [p0, pv] with a crisp partitioning of v intervals [p0, 

p1), [p1, p2), …, [pv-1, pv], if a fuzzy partitioning with v attributes is still desired, then 

a trapezoidal membership function π(aq, bq, cq, dq) could be defined for each at-

tribute Aq (q = 1, 2, …, v) in Df with respect to interval [pq-1, pq]. Moreover, a single 

parameter f2 could be defined, as follows, to represent the degree of smoothing 

around the boundary of each crisp interval. In other words, f2 could be viewed as the 

degree of fuzziness that Aq reflects for [pq-1, pq] (See Figure 3). 

( ) ( )

( ) ( )

1 1

2

1 2 1 1 2 1

1 1 1 1

min , min ,

min , min ,

q q q q

q q q q q q q q

q q q q

q q q q q q q q

p a b p
f

p p p p p p p p

p c d p

p p p p p p p p

− −

− − − − − −

− + − +

− −
= =

− − − −

− −
= =

− − − −

 

where q = 2, 3, …, v-1. It is easy to see that (aq+bq)/2=pq-1, (cq+dq)/2=pq. 
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qa qb qc qd2qp − 1qp − qp 1qp +
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y z  

Fig. 3 Sharp and Fuzzy Partitions with f2 (f2 = 0.25) 

For example, for the fuzzy set Aq defined on the domain of A, of which trape-

zoidal membership function is showed as Aq
µ : π(aq, bq, cq, dq), x is the distance 

between aq and pq-1, while y and z are the length of intervals [pq-2, pq-1] and [pq-1, pq], 

respectively (See Figure 3). Given parameter f2 = 0.25, then we have x / min(y, z) = 

x / y = 0.25. 

It is worth mentioning that crisp intervals is a special case of trapezoidal mem-

bership functions, i.e., π(b, b, c, c) with b ≠ c. Apparently, the higher f2 is, the 

fuzzier Aq is. The range of f2 is from 0 to 0.5 expressing an increasing degree of 

fuzziness, where f2 = 0 represents a crisp interval (i.e., a = b and c = d). An ad-

vantage of using f2 is to only set a single parameter instead of setting many ones 

(e.g., 4×v)), which is practically appealing.  

2.2   Generating a Fuzzy Associative Classifier (GARCf2) 

2.2.1   Fuzzy Class Association Rules (Fuzzy CARs) 

The fuzzy partitioned dataset gives rise to fuzzy association rules. In classification, 

it results in fuzzy class association rules. For example, compared with a classical 

CAR: (Age(0,35], Income(25000, 60000]) ⇒ Class 1 (meaning that the customers 

at ages of (0, 35] and with income of (25000, 60000] will be classified into Class 1), 

a fuzzy CAR may look like (Young-Age, Middle-Income) ⇒ Class 1 (meaning  

that the customers who are young and have middle income will be classified into 

Class 1), which is more general and is of natural-language nature. 

Generally, for the original set of items/attributes I = {I1, I2, …, Im} and database 

D with schema R(I), each Ik (1 ≤ k ≤ m) can be associated with qk fuzzy sets defined 

on domain(Ik), and usually labeled as qk new attributes in Df. That is, the new da-

tabase Df is with respect to schema R(If) where If = { 1
1I , …, 1

1

q
I , …, 1

kI , …, kq

k
I , 

…, 1
mI , …, mq

m
I }. Let G={C1, C2, . . ., Cg} be a set of class labels, then a fuzzy rule 

item is of the form X⇒C, where X ⊆ If, and C ∈ G.  
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In fuzzy context, the notions of degrees of support and confidence can be ex-

tended as follows (Chen &Wei, 2002; Chen et al., 2006). For any X={x1, x2, …, xp} 

⊆ If ∪{Cj}(j = 1,2,…,g) and transaction t in Df, 

Dsuppt(X) = µX(t) = min(t(x1), t(x2), …, t(xp)), 

Dsupp(X) = 

f f

count( ( ))
|| ||

| D | | D |

X

t

t
X

µ

=
∑

, 

Dsupp(X⇒Ci) = Dsupp(XCi)
| .

f f

count( ( ))
|| ||

| D | | D |

i

X

t t class Ci

t
XC

µ
=

= =

∑
, 

Dconf(X⇒Ci) = | .

count( ( ))
|| ||

|| || count( ( ))

i

X

t t class Ci

X

t

t
XC

X t

µ

µ

=
=

∑
∑ , 

where t(xi) (i = 1, 2, …, p) is the corresponding membership degree of t for attribute 

xi, |Df| is the cardinality of Df (i.e., the number of transactions in Df), and ||X|| is the 

fuzzy cardinality of X calculated using Σcount operator. Note that t-norm minimum 

is used in the definition of Dsuppt(X) due to its semantics. Other t-norms may also 

be considered under specific application contexts. 

Take Table 3 for example, Dsupp#1(Young-Age, Middle-Income) = min(0.7, 0.3) 

= 0.3. Moreover, Dsupp(Young-Age, Middle-Income) = (min(0.7, 0.3) + min(1, 0.6) 

+ min(0, 1) + min(0, 0.2) + min(0.4, 0.9))/5 = 1.3/5 = 0.26, Dsupp((Young-Age, 

Middle-Income)⇒C1) = (min(0.7, 0.3) + min(0.4, 0.9))/5 = 0.7/5 = 0.14, then 

Dconf((Young-Age, Middle-Income)⇒C1) = 0.14/0.26 = 0.54. 

Then, given minimal support α and minimal confidence β, with α, β∈[0, 1], a 

fuzzy rule item X⇒Ci is called frequent if Dsupp(X⇒Ci) ≥ α. Importantly, if fuzzy 

rule item X⇒Ci is not frequent, then any fuzzy rule item of the form Z⇒Ci (Z⊃X) is 

also infrequent, this is because µZ(t) ≤ µX(t) for each t, and consequently we have: 

Dsupp(Z⇒Ci) 
| . | .

f f

count( ( )) count( ( ))

| D | | D |

i i

Z X

t t class C t t class C

t tµ µ
= =

= ≤

∑ ∑
 =Dsupp(X⇒Ci) 

A fuzzy rule item X⇒Ci is called a valid fuzzy class association rule (fuzzy CAR) if 

Dsupp(X⇒Ci) ≥ α and Dconf(X⇒Ci) ≥ β. It is worthwhile to indicate that, since 

crisp intervals are special cases of fuzzy sets (e.g., an interval [a, b] can be repre-

sented by a fuzzy set 1.0 /
a u b

u
≤ ≤∫ ), quantitative association rules are special cases 

of fuzzy association rules (with fuzzy partitioning), and therefore, CARs are special 

cases of fuzzy CARs. 
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2.2.2   Fuzzy Information Gain 

Information gain is one of the measures used in decision tree classification methods 

for selecting best split attributes (Breiman, 1984; Weiss & Kulikowski, 1991). It is 

also used as a measure to reduce the number of itemsets in some associative clas-

sification (e.g. GARC). 

In GARC, information gain measure is used to reduce the search space in gen-

erating candidate itemsets as well as rules. That is to say, only those candidate 

itemsets containing the so-called best split attribute value will be generated. This 

will significantly help improve the rule set without loss of accuracy (Chen et al., 

2006). In the fuzzy context with f2, we extend the fuzzy information entropy of a 

fuzzy sub-dataset S in fD  with class labels as follows (De Luca & Termini, 1972): 

info(S) = 

1

count( , ) count( , )
log

| | | |

g
p p

p

C S C S

S S=

⎛ ⎞
× ⎜ ⎟⎜ ⎟⎝ ⎠

∑ ∑∑  

where Σcount(Cp, S) represents the fuzzy cardinality of transactions in S with class 

label Cp. In addition, given an attribute A in D, without loss of generality, suppose 

Domain(A) is partitioned into v attributes each being a fuzzy set on Domain(A), 

e.g., A1, A2, …, Av, and fD qA
represents the fuzzy sub-dataset in Df in which each 

transaction t has ( )qA tµ > 0, for q = 1, 2, .., v, then the fuzzy information entropy of 

A could be calculated below: 

infoA(Df ) = ( )f
f

1 f

| D |
info D

| D |

q

q

Av
A

q=

×∑  

                

f f

1 1f f f

|| || count( ,D ) count( , D )
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| D | || D || || D ||

q q

q q

A Agv
q p p

A A
q p

A C C

= =

⎛ ⎞⎛ ⎞⎜ ⎟= − × × ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑∑ ∑  

                

( )
1 1

Dsupp( ) Dconf( ) log Dconf( )
gv

q q p q p

q k

A A C A C
= =

⎛ ⎞
= − × ⇒ × ⇒⎜ ⎟⎝ ⎠∑ ∑     

Hence, the fuzzy information gain for attribute A is obtained as follows: 

gain(A) = info(Df ) – infoA(Df) 

2.2.3   Pruning Strategies 

As indicated previously, building an associative classifier needs to deal with the 

situation where there exist redundant and conflicting rules. This is also the case in 

generating fuzzy CARs. For example, suppose we already have High_Income ⇒ 

C2, then (Young_Age, High_Income) ⇒ C2 might be redundant; and High_Income ⇒ C3 might be conflicting. Rather than filtering these redundant and conflicting  
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rules after generating all fuzzy CARs, a more effective and desirable way is to 

incorporate some pruning strategies in the process of generating itemsets as well as 

CARs, resulting in fewer itemsets (therefore rules) to be generated.  

First of all, as in GARC, the strategy could be applied that if X⇒Ci holds, then 

any candidate itemsets containing XCi need not to be generated and tested. In this 

way, the number of candidate itemsets to be generated is reduced. Moreover, the 

following strategies would be helpful in pruning candidate rule items. 

Strategy 1. Given a rule item X⇒Ci in Df, if the condition  

( )( )Dsupp( ) 1 Dconf iX X C α× − ⇒ <  

is satisfied, then rule items of the form Z⇒Cj (Z⊇X, j≠i) will not hold (i.e., not 

valid) in Df. 

Proof. Since Dsupp(Z⇒Cj)≤Dsupp(X⇒Cj), we only need to prove that X⇒Cj (j≠i) 

is infrequent. 

As each t in Df will be assigned with a unique class label Ci, i = 1,2,…,g, we have 

| . | .

|| || count( ( )) count( ( )) count( ( )),
i i

X X X

t t t class C t t class C

X t t t iµ µ µ
= ≠

= = + ∀∑ ∑ ∑ , which means: 
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g g
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≠ ≠

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ ∑ ∑ . 

Further, from ∑
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, we have: 

1

Dconf( ) 1 Dconf( )
g

j i

j
j i

X C X C
=
≠

⇒ = − ⇒∑ .  

Thus, Dconf( ) 1 Dconf( ),
j i

X C X C j i⇒ ≤ − ⇒ ∀ ≠ .  

Since ( ) ( ) ( )Dsupp Dsupp Dconf
j j

j j

f f

XC XCX
X C X X C

XD D
⇒ = = × = × ⇒ , 

we have ( ) ( ) ( )( )Dsupp Dsupp 1 D conf
j i

X C X X C α⇒ ≤ × − ⇒ < , which 

means X⇒Cj is infrequent, and therefore will not hold in Df.                                   ฀ 

 

Strategy 2. Suppose rule X⇒Ci holds in Df, if the condition  

( )
1

Dsupp max ,2
1

X α
β

⎛ ⎞
< ×⎜ ⎟

−⎝ ⎠  

is satisfied, then rule items of the form Z⇒Cj (Z⊇X, j≠i) will not hold in Df. 
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Proof. Similarly, we only need to prove that X⇒Cj (j≠i) is infrequent. The following 

proof consists of two situations: 

(1) If 0.5β ≤ , then 
1

2
1 β

≤
−

. In this situation, the condition is equivalent to 

( )Dsupp 2X α< . 

Since ( )
| . 1 | . 1

|| || count( ( )) count( ( ))
i j

g g

X X i j

t t class C j t t class C j
j i j i

X t t XC XCµ µ
= = = =

≠ ≠

⎛ ⎞
= + = +⎜ ⎟⎜ ⎟⎝ ⎠∑ ∑ ∑ ∑ , then 

∑
≠
=

+=
g

ji
j

ji

X

XC

X

XC

X

X

1 ||||

||||

||||

||||

||||

||||
.  

Thus, we have 

1

Dsupp( ) Dsupp( ) Dsupp( )
g

j i

j
j i

X C X X C
=
≠

⇒ = − ⇒∑ .  

Since X⇒Ci holds in Df, then ( )Dsupp
i

X C α⇒ ≥ . Further, we have 

( ) ( ) ( )Dsupp Dsupp Dsupp 2 ,
j i

X C X X C j iα α α⇒ ≤ − ⇒ < − = ∀ ≠ . So X⇒Cj 

is infrequent, thus will not hold in Df. 

(2) If 0.5β > , then 
1

2
1 β

≤
−

. In this situation, the condition is equivalent to 

( ) ( )1 Dsupp Xβ α− < .  

Since X⇒Ci holds in Df, then ( )Dconf
i

X C β⇒ ≥ . Consequently, we have 

( ) ( )( ) ( ) ( )Dsupp 1 Dconf 1 Dsupp
i

X X C Xβ α× − ⇒ ≤ − < , which means the 

condition in Strategy 1 is satisfied. Therefore, X⇒Cj is infrequent, and will not  

hold in Df.                                                                                                                      ฀ 

 

Importantly, these strategies will be incorporated into the mining process as pruning 

strategies (rather than post-process filtering strategies) to reduce the number of 

candidate itemsets (rule items) generated. 

Finally, with the built classifier, a newly coming transaction t could be 

classified using a particular fuzzy CAR: X⇒Ci, chosen in the classifier. That 

requires a match between t and X, which can be determined with a measure 

called weighted confidence, denoted as Wconft(X⇒Ci) (Chen & Chen, 2008): 

( )Wconf ( ) Dsupp Dconf( )t i t iX C X X C⇒ = × ⇒ . For each fuzzy CAR, there is a 

Wconf value for t, then the fuzzy CAR with the highest Wconf value will be 

used to classify t.  

2.3   The GARCf2 Algorithm 

The algorithmic detail of the fuzzy extension to GARC with f2 (i.e., GARCf2) is 

provided in its general form as shown in Figure 4. 
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1. Df = Trapezia_Fuzzy(D);                            // Fuzzy partitioning with f2 

2. fCAR1 = { r | r is an 1-itemset, Dsupp(r) ≥ α and Dconf(r) ≥ β};  

// Initial 1-itemset rule set 

3. prfCAR1 = prunRules(fCAR1);        // Deleting redundant rules and conflicting rules 

4. F1 = {p | p is an 1-itemset, Dsupp(p) ≥ α and p is not in prfCAR1 set}     // Strategy 1 

5. bestattr = gain();     // function gain() returns best attribute with maximal gain 

6. for k from 2 to m do 

7.   Ck = CandidateGen(Fk-1, bestattr);                              // Strategy 2 

8.   fCARk = {r | r ∈ Ck, Dsupp(r) ≥ α, Dconf(r) ≥ β}; 

9.   prfCARk = prunRules(fCARk);     // Deleting redundant rules and conflicting rules 

10.  Fk = {p | p is a k-itemset, Dsupp(p) ≥ α and p is not in prfCARk set}    // Strategy 1 

11. end for; 

12. CompactfCARs = ∪k(prfCARk);        // Generating a Compact Set of Fuzzy CARs 

13. Sort(CompactfCARs); 

Fig. 4 The GARCf2 algorithm 

In Figure 4, line 1 performs the fuzzy partitioning operation based on a given 

parameter f2, so that the original dataset D is then transformed to the 

fuzzy-partitioned dataset Df. Lines 2-5 scan the dataset to measure all 1-itemsets 

rule items and then to get the best split attribute by fuzzy information gain calcu-

lation. Rule items that satisfy the minimum support and minimum confidence cri-

terions are written into the set of fuzzy CARs (line 2). The generated 1-itemset rule 

set (called fCAR1) is subject to a pruning operation (line 3), which deletes the re-

dundant rules and conflicting rules. The pruning operation is also done in each 

subsequent pass of fCARk (line 9). Lines 6-11 consecutively run operations of 

generation, scan and filtering to discover fuzzy CARs without rule redundancy and 

conflicts. For each subsequent pass, say pass k, frequent (k-1)-itemsets that are not 

in the pruned rule set Fk-1 (line 4 and line 10) are used to generate candidate rule 

items in the next loop, according to Strategy 1, to avoid generating redundant rules. 

The CandidateGen function generates candidate rule items that include the best 

split attribute (line 7). Strategy 2 is applied here for avoid conflicting rules so as to 

reduce the number of candidate rules. The generated fuzzy CARs of each pass,  

with rule redundancy and rule conflicts eliminated, construct the compact set of 

fuzzy CARs (line 12). Finally, all the rules in the compact set will be sorted  

with precedence (line 13). In addition, the algorithm will terminate when  

Fk-1 = ∅ or otherwise, in at most m passes, which should be less than the number of 

attributes in D.  
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3   Data Experiments 

This section shows the experimental results for the proposed GARCf2 algorithm, 

along with some comparisons with GARC. Briefly, the results show that GARCf2 is 

at the same level of accuracy as GARC statistically, while the number of rules is 

significantly fewer than that of GARC. 

The experimental environment is with Window XP, Intel Core Duo 3GHz, 2G 

RAM and MatLab 2009a. A commonly used benchmarking database in this field, 

namely the UCI Machine Learning Repository (Merz & Murphy, 1996) is used, 

including the 20 datasets that GARC selected with continuous attributes. Table 4 

provides the basic information about the datasets, each containing two parts: a 

training data part and a testing data part. The former was used for generating the 

classifiers while the latter was used for testing purposes. 

Table 4 Basic Information of the UCI Datasets 

 Dataset Attributes Number 

of  

attributes

Null 

Value 

(Y/N) 

Number 

of  

Classes 

Number of 

training 

data 

Number of 

testing  

data 

1.  Anneal Discrete, continuous 38 Y 6 598 300 

2.  Australian Discrete, continuous 14 N 2 460 230 

3.  Balance Continuous 4 N 3 416 209 

4.  Breast Continuous 10 Y 2 466 233 

5.  Cleve Discrete, continuous 13 Y 2 202 101 

6.  Crx Discrete, continuous 15 Y 2 460 230 

7.  Diabetes Continuous 8 N 2 512 256 

8.  Glass Continuous 9 N 7 142 72 

9.  Heart Discrete, continuous 13 N 2 180 90 

10.  Hepatitis Discrete, continuous 19 Y 2 103 52 

11.  Hypothyroid Discrete, continuous 25 Y 2 2108 1055 

12.  Ionosphere Continuous 34 Y 2 234 117 

13.  Iris Continuous 4 N 3 100 50 

14.  Labor Discrete, continuous 16 Y 2 38 19 

15.  Pima Continuous 8 N 2 512 256 

16.  Sick Discrete, continuous 29 Y 2 2515 1257 

17.  Sonar Continuous 60 N 2 138 70 

18.  Vehicle Continuous 18 N 4 564 282 

19.  Waveform Continuous 40 N 3 3333 1667 

20.  Wine Continuous 13 N 3 118 60 

3.1   Accuracy 

Accuracy, as one of the basic and important measures for classifiers, is the ratio of 

the number of cases truly predicted by the classifier over the total number of cases 
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in the test dataset. In this experiment, GARCf2 with different f2 values is compared 

to GARC (at α = 0.01 and β = 0.7 as in GARC (Chen et al., 2006)). The results are 

tabulated in Table 5. 

Table 5 Accuracies of GARC and GARCf2 (f2 = 0.1, 0.2, 0.3, 0.4, 0.5) 

 Dataset GARC 
GARCf2 

(f2=0.1) 

GARCf2 

(f2=0.2) 

GARCf2 

(f2=0.3) 

GARCf2 

(f2=0.4) 

GARCf2 

(f2=0.5) 

1.  Anneal 87.00 88.33 87.33 87.33 87.33 87.33 

2.  Australian 87.39 87.39 87.39 87.39 87.39 87.39 

3.  Balance 71.29 71.29 71.29 71.29 71.29 71.29 

4.  Breast 94.42 94.42 94.42 93.99 94.42 94.42 

5.  Cleve 66.34 69.31 69.31 69.31 69.31 69.31 

6.  Crx 85.65 85.65 85.65 85.22 85.22 85.22 

7.  Diabetes 67.97 68.36 68.75 67.58 63.67 64.06 

8.  Glass 62.50 62.50 62.50 61.11 51.39 55.56 

9.  Heart 78.89 77.78 77.78 77.78 77.78 77.78 

10.  Hepatitis 86.54 86.54 86.54 86.54 86.54 86.54 

11.  Hypothyroid 94.79 94.79 94.79 94.79 94.79 94.79 

12.  Ionosphere 91.45 93.16 93.16 92.31 92.31 90.60 

13.  Iris 94.00 94.00 94.00 94.00 94.00 94.00 

14.  Labor 84.21 84.21 84.21 84.21 84.21 84.21 

15.  Pima 76.17 75.39 75.39 74.22 74.61 75.39 

16.  Sick 93.79 93.79 93.79 93.79 93.79 93.79 

17.  Sonar 74.29 70.00 71.43 71.43 71.43 74.29 

18.  Vehicle 60.99 61.35 61.70 58.87 57.80 58.87 

19.  Waveform 73.73 73.67 71.51 71.51 71.63 71.57 

20.  Wine 83.33 91.67 93.33 93.33 90.00 91.67 

 Mean 80.74 81.18 81.21 80.80 79.95 80.40 

 Std. Deviation 11.01 11.37 11.39 11.80 12.99 12.29 

For illustrative purposes, Figure 5 depicts the mean accuracy with respect to 

different f2 values. It is worth noticing that, at f2 = 0, GARCf2 degenerates to GARC. 

Furthermore, Table 6 lists the results of significance tests on pairwise mean 

difference for GARC and GARCf2 (f2 = 0.1, 0.2, 0.3, 0.4, 0.5) with t-test, which 

indicates that on average the accuracy of GARCf2 (though varying with f2) is not 

significantly different from that of GARC. 
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Fig. 5 Mean Accuracy of GARC, GARCf2 (f2 = 0.1, 0.2 ,0.3, 0.4, 0.5) 

Table 6 Significance Tests on Pairwise Mean Difference for Accuracy of Classifiers 

 T test 

 95% 90% 

GARCf2 (f2 = 0.1) – GARC No No 

GARCf2 (f2 = 0.2) – GARC No No 

GARCf2 (f2 = 0.3) – GARC No No 

GARCf2 (f2 = 0.4) – GARC No No 

GARCf2 (f2 = 0.5) – GARC No No 

3.2   Number of Rules 

As stated in previous discussions, the number of rules reflects the understandability/ 

compactness of a classifier. Briefly, the smaller the number of rules is, the  

better understandability a classifier obtains (e.g., at the same accuracy level). The 

introduction of fuzzy partitioning could express appropriate semantics of data, 

which may lead to a decrease in the number of rules and therefore an increase in the 

understandability. The experiments on the number of rules as listed in Table 7 

confirmed this statement. 
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Table 7 Number of Rules of GARC and GARCf2 (f2 = 0.1, 0.2, 0.3, 0.4, 0.5) 

 Dataset GARC 
GARCf2 

(f2=0.1) 

GARCf2 

(f2=0.2) 

GARCf2 

(f2=0.3) 

GARCf2 

(f2=0.4) 

GARCf2 

(f2=0.5) 

1.  Anneal 51 48 47 47 48 48 

2.  Australian 17 17 17 17 17 17 

3.  Balance 4 5 5 5 5 5 

4.  Breast 22 21 21 21 21 21 

5.  Cleve 15 14 14 14 14 13 

6.  Crx 16 16 16 16 16 16 

7.  Diabetes 10 10 10 9 8 8 

8.  Glass 21 21 17 14 9 9 

9.  Heart 12 12 11 11 11 11 

10.  Hepatitis 22 22 22 22 22 22 

11.  Hypothyroid 43 44 44 44 44 44 

12.  Ionosphere 67 67 65 65 65 65 

13.  Iris 7 7 7 7 7 7 

14.  Labor 17 17 17 17 17 16 

15.  Pima 5 5 5 5 5 5 

16.  Sick 51 51 51 51 51 51 

17.  Sonar 16 15 13 11 11 16 

18.  Vehicle 122 102 86 82 68 78 

19.  Waveform 33 33 27 27 25 20 

20.  Wine 16 16 14 14 14 12 

 Mean 28.35 27.15 25.45 24.95 23.90 24.20 

 Std. Deviation 27.86 24.39 21.85 21.45 19.90 21.15 

Similarly, Figure 6 represents the mean number of rules with respect to different 

f2 values. Again, at f2 = 0, GARCf2 degenerates to GARC.  

Next, statistical tests had been performed to examine the significance on the 

difference of number of rules of GARC and GARCf2 (f2 = 0.1, 0.2, 0.3, 0.4, 0.5) 

using the non-parametric Friedman test (Conover, 1999; Vapnik, 1998), with the  

results shown in Table 8, revealing the advantage of GARCf2 over GARC in number 

of rules. That is, in general, the number of rules in the GARCf2 classifier was fewer 

than that of GARC, which appeared to be significant in the case of f2 > 0.1 (while 

insignificant at f2 = 0.1). 
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Fig. 6 Mean Number of Rules of GARC, GARCf (f = 0.1, 0.2, 0.3, 0.4, 0.5) 

Table 8 Significance Test on Pairwise Difference of Number of Rules of GARC and GARCf2 

 Friedman Test 

 95% 90% 

GARCf2 (f2 = 0.1) – GARC No No 

GARCf2 (f2 = 0.2) – GARC Yes (-)* Yes (-) 

GARCf2 (f2 = 0.3) – GARC Yes (-) Yes (-) 

GARCf2 (f2 = 0.4) – GARC Yes (-) Yes (-) 

GARCf2 (f2 = 0.5) – GARC Yes (-) Yes (-) 

*Note. Yes (-) for A – B represents that number of rules of A is significantly smaller 

than that of B. 

To summarize, from the data experiments, in a statistically significant sense, the 

accuracy performance of GARCf2 is as good as that of GARC, and the compactness/ 

understandability performance of GARC f2 is generally better than that of GARC. 

Overall, these are deemed desirable. 

4   A Case Study: Bank Credit Ratings 

This section examines the effectiveness of GARCf2 in a real-world classification 

application, namely, bank credit rating.  
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The data were collected from a rating institution in China, composed of two sets: 

one is 140 credit rating records of bank G in years 2000-2002 as the training sample, 

the other is 104 credit rating records of banks Z, J, X and R in years 1999-2002 as 

the testing sample. The ratings consist of three categories with a total of nine levels, 

i.e., AAA, AA, A, BBB, BB, B, CCC, CC, C. Further, in usual practice, they were 

grouped into two classes: Investment Grade (for the ratings of BBB or higher) and 

Speculative Grade (for the ratings of BB or lower). Tables 9 and 10 show the data 

and their attributes. 
 

Table 9 Class distribution in the credit rating dataset 

Class 
No. of records in 

Training Dataset 

No. of records in 

Testing Dataset 

Investment Grade 88 72 

Speculative Grade 52 32 

Total 140 104 

Table 10 Attributes of the credit rating dataset 

 Attribute Crisp Boundaries* Fuzzy Partitions 

A1: Net asset to loan for the period ending at 

Dec 31 

65.985 Low, High 

A2: Asset to liability ratio 69.72 Low, High 

A3: Capital expenditure to equity ratio 130.275, 203.85 Low, Medium, High 

A4: Current ratio 95.965, 139.385 Low, Medium, High 

A5: Acid ratio 62.845, 106.96 Low, Medium, High 

A6: Net non-financing cash inflow to 

liquidity liability ratio 

-12.755, 9.785 Low, Medium, High 

A7: Operating cash inflow to liquidity 

liability ratio 

-11.97, 7.305 Low, Medium, High 

A8: Account receivable turnover ratio 5.03 Low, High 

A9: Inventory turnover ratio 1.34, 3.555 Low, Medium, High 

A10: Fixed asset turnover ratio 2.025 Low, High 

A11: Gross profit margin 23.035 Low, High 

A12: Operating income margin 0.305 Low, High 

A13: ROE 0.745 Low, High 

A14: Return on total assets 3.975 Low, High 

*Note. Crisp boundaries are the results of the discretization of continuous attributes, done by 

the Entropy method in (Fayyad & Irani, 1993), which is used in CBA/GARC. Crisp 
boundaries for each attribute correspond to a group of crisp partitions. For example, the crisp 
boundaries of attribute A4 correspond to crisp partitions: A4<95.965, 95.965< A4<139.385, 

A4>139.385. 
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In Table 10, fuzzy partitions were defined upon the intervals with crisp 

boundaries determined in CBA/GARC, resulting in respective fuzzy sets such as 

high, medium or low using the trapezoidal membership functions discussed in 

previous sections. Subsequently, GARC and GARCf2 were applied to the data with 

the settings of α and β in order to get a classifier at the highest level of accuracy then 

smallest number of rules for each dataset (see Figure 7).  

 

Fig. 7 Highest Accuracy of GARC and GARCf2 on the credit rating dataset 

It can be seen from Figure 6 that at the best cases GARCf2 was advantageous 

over GARC in accuracy.  Furthermore, looking at the case with f2 = 0.5, we could 

reach a situation where GARCf2 performed better than GARC in accuracy and the 

number of rules (Table 11).  

Table 11 Performances of GARC and GARCf2 

 Highest accuracy No. of rules Parameter Settings 

   α β 

GARC 85.58% 15 0.06 0.95 

GARCf2 (f2 = 0.5) 95.19% 14 0.01 0.90 

Finally, for illustrative purposes, the fuzzy CARs generated by CARCf2 in this 

application are exemplified in Table 12 (with f2=0.5).  
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Table 12 Rules in the classifier built by GARCf2 (f2 = 0.5) 

Rule 1:  (Capital expenditure to equity ratio is low)∧(Account receivable turnover 

ratio is high) ⇒ Investment Grade 

Rule 2:  (Current ratio is high) ⇒ Investment Grade 

Rule 4:  (Acid ratio is high) ⇒ Investment Grade 

Rule 6:  (Inventory turnover ratio is low) ⇒ Speculative Grade 

5   Conclusion 

This chapter has presented a fuzzy extension to a compact and accurate associative 

classifier (namely GARC) by introducing fuzzy sets on the attribute domains in 

order to smooth the belongings of the data values around the boundaries of crisp 

intervals. This has been done via fuzzy partitioning using trapezoidal membership 

functions, designed with a single parameter f2 in reflecting the degree of fuzziness 

around the boundaries, giving rise to the GARCf2 approach. Moreover, the notions 

of support, confidence, information gain, rule redundancy and conflicts have also 

been extended in the fuzzy context, including the incorporation of pruning strate-

gies in the rule generation process. This incorporation as well as the extended in-

formation gain have been proven to be important for compactness (i.e., with a re-

duced number of fuzzy CARs). Benchmarking datasets showed that on average 

GARCf2 had accuracy similar to that of GARC, and was significantly advantageous 

over GARC in compactness. Finally, a real application on bank credit ratings also 

demonstrated the effectiveness of the extended approach. 
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Fuzzy Techniques in Image Processing at Ghent

University: Summary of a 12-Year Journey

Mike Nachtegael⋆, Tom Mélange, Stefan Schulte, Valérie De Witte,

and Dietrich Van der Weken

Dedicated to our promotor Etienne E. Kerre,

the captain during each of our journeys!

Abstract. Fuzzy set theory and fuzzy logic provide a mathematical model for ap-

proximate reasoning, which mimics human reasoning and can therefore be very

powerful. Also in the field of image processing many applications can be found.

It was in the late nineties that Etienne’s research group started to work on image

processing, and took off on a journey that lasts until today. This chapter is a “crew

member’s log” of this journey, with Etienne as our captain, and provides an overview

of our work.

1 Getting Ready to Sail Off

The first papers on fuzzy techniques in image processing, originating from our re-

search group at Ghent University, were published in the period 1995-1997. They

were co-authored by Bernard De Baets, Etienne Kerre, and foreign colleagues, and

dealt with the construction of fuzzy mathematical morphology [1, 2, 3, 4, 5]. In-

spired by the potential that fuzzy set theory had to offer in this field, Etienne sub-

mitted and obtained a large university research project. This marked the beginning

of a 12-year period, starting in 1998 until today, in which fuzzy set theory and fuzzy

logic were used for and applied in image processing problems.

Looking back at these years, one can distinguish 3 different research “axes”:

fuzzy mathematical morphology (which is mainly developed from a theoretical

point of view), filters for noise reduction in images (which is very practical
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oriented), and similarity measures for image comparison (which holds the balance

between theory and practical applicability). It is remarkable to see how each of these

fields has evolved in this 12-year period.

We invite the reader to embark on the summary of this 12-year journey. It is

our tribute to Etienne Kerre (who was promotor of our PhD’s, which all dealt with

image processing), and our way to say “thank you” for the wonderful years we had

in his research group. As such, this chapter is intended to serve as a kind of overview

chapter, in which we focus on the work w.r.t. image processing that has been done

in Etienne’s research group.

2 Crew Member’s Logs of a 12-Year Journey

2.1 Journey 1: Fuzzy Mathematical Morphology

In the nineties several models for mathematical morphology based on fuzzy set

theory were developed. In general, three types of models could be distinguished:

models based on a fuzzification of the underlying logical operators (e.g., the model

of Bloch & Maı̂tre and the model of De Baets), models based on a fuzzification of

the concept of inclusion (e.g., the models of Zadeh, Sinha & Dougherty, Kitainik,

Bandler & Kohout), and other models (e.g., the model based on the Minkowski

addition, the model based on fuzzy integrals, and the model based on the erosions

of Di Gesu). This wide variety of new models illustrated the fact that fuzzy set

theory indeed had potential in this field, but on the other hand this diversity also

made it difficult to keep the general overview and raised the question on how to

choose which model is best fitted for a specific problem.

One of our first contributions to fuzzy mathematical morphology was an exten-

sive study of all the different existing models. This was a very interesting work, as

it turned out that several connections between the different models could be estab-

lished [6, 7, 8]. The model developed by De Baets, based on morphological dilations

and erosions that are defined using general conjunctors and implicators, is the most

general one and includes every of the other mentioned models. The results of our

study made it possible to gain insight in the variety of fuzzy morphological mod-

els, and also implied that future research on fuzzy mathematical morphology should

focus on the most general model, since properties of other models could easily be

derived from the properties of the general model.

Just as an example to familiarize the reader with some typical expressions, we

recall the definition of the two basic binary morphological operations, namely the

dilation and erosion:

D(A,B) = {y ∈ X |Ty(B)∩A �= /0},

E(A,B) = {y ∈ X |Ty(B) ⊆ A},

where A,B are crisp subsets of a universe X (A represents the binary image and B is

the so-called structuring element which can be chosen by the user), and Ty(B) is the
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translation of B over the vector y. In the most general fuzzy morphological model,

these definitions can be fuzzified as follows:

DC(A,B)(y) = sup
x∈Ty(dB)∩dA

C(B(x− y),A(x)),

EI(A,B)(y) = inf
x∈Ty(dB)

I(B(x− y),A(x)),

where A,B are fuzzy sets in a universe X (A represents a grayscale image and B a

grayscale structuring element), C is a conjunctor on [0,1] (to model the intersection)

and I is an implicator on [0,1] (to model the concept of subsetness). Conjunctors and

implicators are fuzzifications of the Boolean conjunction and the binary implication,

respectively, and are defined as follows: a binary operator C on [0,1] is a conjunctor

if it is an increasing mapping (i.e. it has increasing partial mappings) that satisfies

C(0,0)=C(0,1) =C(1,0)= 0 and C(1,1) = 1, and a binary operator I on [0,1] is an

implicator on [0,1] if it is a hybrid monotonous mapping (i.e. it has decreasing first

and increasing second partial mappings) that satisfies I(0,0) = I(0,1) = I(1,1) = 1

and I(1,0) = 0. dA and dB in the above formulas represents the support of the fuzzy

sets A and B, respectively, e.g. dA = {x ∈ X |A(x) > 0}.

Regarding the investigation of properties, we explicitly paid attention to the so-

called decomposition and construction properties [9, 10]. Decomposition properties

reveal the relation between fuzzy morphological operations and their α-cuts, while

construction properties show which fuzzy morphological operations can be con-

structed from their binary counterparts. For a brief period we also looked into the

fuzzification of the concept of adjunction, which plays a crucial role in the lattice

based approach to mathematical morphology [11]. We vividly remember our nice

cooperation with Henk Heijmans (which included a short stay of Mike at Henk’s in-

stitution), one of the most well-known researchers in this field. Unfortunately, Henk

got very ill and until today is no longer able to perform academic work. Several

years later, we published a second paper on fuzzy adjunctions, inspired by the work

of our colleagues Yun Shi and Da Ruan on fuzzy implications [12].

In the same period that we were working on fuzzy mathematical morphology, our

colleague Martine De Cock was working on linguistic modifiers and our Polish col-

league Anna Radzikowska was working on fuzzy rough set theory. Looking at each

other’s work we noticed that there was a common ground: the operators that con-

stitute the basis of each of the three different theories (mathematical morphology,

linguistic modifiers, fuzzy rough sets) showed a lot of similarity. A deeper inves-

tigation of this similarity led to the conclusion that the three theories are actually

special cases of a more general theoretical framework based on images under fuzzy

relations. This theoretical generality was further investigated, which lead to several

publications [13, 14, 15, 16, 17]. The practical result was that we could investigate

the general framework, and translate the properties of this general framework to

each specific application area.

A few years later a completely different contribution to the field of mathemati-

cal morphology was realized by constructing morphological models for colour im-

ages. Indeed, it must be noted that all of the above was developed in the context of
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grayscale images. The extension to colour images, whether this extension is realized

for morphological operators such as in this case or for noise reduction filters (see

further in this chapter), certainly is not straightforward. From an abstract point of

view a colour image can be regarded as a triplet of grayscale images (e.g., the well-

known RGB colour model), but it is not sufficient to treat these three components

separately to obtain a good extension. On the contrary, such a simplistic approach

does not take into account any correlations between the different components and

will most likely introduce artefacts. Therefore, we looked at several alternative ex-

tensions to colour morphology [18, 19]. We also applied the developed colour mor-

phology in the context of image magnification [20].

More recently, we shifted our attention to a third track in the world of (fuzzy)

mathematical morphology. Until now, we only used fuzzy set theory and fuzzy

logic as a tool. The application of fuzzy set theory in mathematical morphology

was inspired by the fact that a grayscale image and a fuzzy set are mathematically

modelled in exactly the same way, namely as mappings from some universe to the

unit interval [0,1]. The interpretation of course might be completely different, but

techniques from one field could easily be applied to the other field. In this case, this

is best illustrated by the fact that fuzzy logical operators were tools to construct al-

ternative morphological operators. The reader familiar with the field will know that

this has nothing to do with modeling uncertainty or imprecision. However, since

2008 we established a very nice and fruitful cooperation with our colleague Peter

Sussner. The shift in the work is quite clear: we do not only apply fuzzy techniques

as a tool, but we also apply concepts related to fuzzy set theory to actually model

uncertainty that comes along with image capture [21, 22, 23, 24]. In that way the

picture gets more complete: fuzzy set theory not only serves as a tool, but also as a

model in mathematical morphology.

The basic idea is to model grayscale images no longer as mappings from a uni-

verse to the unit interval [0,1], where the value between 0 and 1 represents the mea-

sured gray value, but as mappings from a universe to the set of closed subintervals

of the unit interval. This means that a pixel is no longer mapped onto a single value,

but to a closed interval of likely values. This actually corresponds to the real-life

situation, in which one is not always sure of the measured gray value: such values

are not only rounded up or down (for computational storage and processing), but

might also slighty shift in value depending on the recording circumstances (e.g., a

take of a scene with a sunny sky versus the take of the same scene with a cloudy

sky). The uncertainty that comes along with this image capture can be modelled by

closed intervals, and in a natural way coincides with the already developed frame-

work of interval-valued fuzzy sets. An illustration of this interval-valued approach

is shown in Figures 1 and 2. We can also make the link with intuitionistic fuzzy

set theory (since interval-valued fuzzy set theory and intuitionistic fuzzy set theory

are equivalent), and even attach a related interpretation to the corresponding image

model [25, 26].

Once the new image model was established, the construction and deeper investi-

gation of the corresponding morphological model was the next challenge. We con-

structed a general interval-valued framework [27], but also looked at very specific
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Fig. 1 Different captures of the cameraman image: top = take with cloudy sky, middle =

take with sunny sky, bottom = take with distortion. This example illustrates that the capture

circumstances can cause uncertainty regarding the real pixel values. Also, all recorded values

and positions are approximations of the real situation due to technical limitations.
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Fig. 2 Representation of the interval width, resulting from the interval-valued representation

of the cloudy/sunny/distorted take of the cameraman image. The more bright a pixel is, the

more uncertain we are regarding its actual gray value.

models (such as in [28, 29]) or at further generalizations based on L-fuzzy set theory

[30], where L is a complete lattice. Just as we did for the “classical” fuzzy morpho-

logical operators, we also investigated decomposition and construction properties

for interval-valued morphological operators [31, 32, 33].

The above overview of our activities in the field of mathematical morphology

clearly illustrates the different “waves” that we experienced: starting from inves-

tigating the wide variety of fuzzy-inspired morphological models, we moved for-

ward to colour extensions, and are currently on the track of interval-valued fuzzy

morphology to also take into account the uncertainty that is involved with image

capturing and modeling. Our future work will focus on theoretical items on the one

hand (e.g., what is the relation between interval-valued morphological operators fol-

lowed by defuzzification and defuzzification of the interval-valued image followed

by classical morphological operators?), and on practical issues on the other hand

(e.g., how can the interval-valued approach contribute to real-world edge detection

applications?). One thing is sure: this journey is far from over . . .

2.2 Journey 2: Similarity Measures

There is a big need for objective similarity measures in image processing. Two dif-

ferent categories of applications demonstrate this. First, similarity measures are cru-

cial in image retrieval applications: given a source image, similarity measures are

required to retrieve those images from a database that are most similar to the source

image. This also can have internet-based applications, where you feed a source im-

age and try to retrieve similar images from the internet in order to obtain information

regarding the content of the soure image. Second, similarity measures are also im-

portant for more theoretical purposes. For example, if one develops a filter for noise

reduction (such as our research group did in the same period as we were looking at
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similarity measures) it is very important that this filter is compared to other exist-

ing filters; otherwise one cannot demonstrate the usefulness and/or added value of

that new filter. Popular similarity measures in that regard include the MSE (Mean

Square Error) and the related PSNR (Peak-Signal-to-Noise-Ratio). However, expe-

rience learns that the numerical results of these measures do not always correspond

to the visual evaluation of the images by humans. In other words: two images that

have the lowest MSE (or highest PSNR) are not necessarily the two most similar

images from a visual point of view. Of course, this observation is quite important

when reading publications in which algorithms are compared to each other only

using such measures. Either a visual evaluation should be included, or either new

similarity measures that are more closely related to human evaluation have to be

constructed.

It is the latter which inspired our research group to start working on similarity

measures. We were familiar with similarity measures in the context of fuzzy set

theory, which were developed to quantify the ressemblance between different fuzzy

sets. Since fuzzy sets and grayscale images are modelled in the same way (namely as

mappings from a universe to the unit interval [0,1]) the first step in our investigation

was quite straightforward: to what extent can we apply existing similarity measures

for fuzzy sets in image processing applications? For that purpose, more than 40

different measures were evaluated w.r.t. relevant image processing properties such

as reflexivity (an image should be similar to itself to the degree 1), symmetry (the

order in which the images are processed may not influence the result of the similarity

measure), reaction to noise (a noisy image should have a large similarity w.r.t. the

original image), reaction to enlightening or darkening (an enlightened or darkened

image should have a large similarity w.r.t. the original image) and reaction to binary

images (we expect similarity values between 0 and 1, and not only 0 or 1). From this

investigation it followed that just a handful of the existing measures are appropriate

for comparison of images [34, 35]. One of these measures is the following, which

we refer to as M6:

M6(A,B) =
|A∩B|

|A∪B|
=

∑
(i, j)∈X

min(A(i, j),B(i, j))

∑
(i, j)∈X

max(A(i, j),B(i, j))
,

where A and B are grayscale images (fuzzy sets in X) and A(i, j) and B(i, j) represent

the gray value of the pixel at position (i, j) in the respective images.

Because the perceptual behaviour of the remaining similarity measures was not

always convincing (mainly due to the fact that the measures are pixel-based, and do

not take into account any other relevant information), we constructed new similarity

measures ourselves. First of all, we applied the similarity measures to partitioned

images in order to construct neighbourhood-based similarity measures, with a more

robust behaviour. However, simply applying the similarity measures to correspond-

ing image parts did not yield satisfactory results either, so we needed to look further

to other techniques in order to improve the behaviour of the similarity measures.

In that way, we constructed neighbourhood-based similarity measures which also
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incorporate some characteristics of the human visual system, such as contrast sen-

sitivity, by taking into account the homogenity in the considered neighbourhoods

[36, 37, 38, 39, 40]. The results were much better compared to the results of the

pixel-based similarity measures.

In a next step we investigated whether similarity measures from fuzzy set theory

could be applied in a meaningful way to the histograms of images [41, 42, 43, 44].

It is indeed meaningful to compare two histograms in the framework of fuzzy set

theory, because the histogram of an image can be transformed to a fuzzy set in the

universe of gray levels by dividing the values of the histogram in every gray level

by the maximum amount of pixels with the same gray value (resulting in so-called

normalized histograms). In this way the most typical gray value gets membership

degree 1 in the fuzzy set associated with the histogram and every other less typical

gray value gets a smaller membership degree. Consequently, a normalized histogram

is in accordance with the intuitive idea behind a fuzzy set: the most typical element

in the universe gets membership degree 1 and all other less typical elements belong

to the fuzzy set to a less extent. We found 15 similarity measures to be useful for

direct application to (normalized) histograms. Furthermore, 22 similarity measures

turned out to be appropriate for application to (normalized) ordered histograms; or-

dered histograms are obtained by placing the least occurring gray value in the first

position of the histogram and by ordering the remaining frequencies in increasing

order. Also in this approach, experimental results showed a better perceptual perfor-

mance than the pixel-based similarity measures and the classical MSE or PSNR.

In order to confirm the applicability of neighbourhood-based and histogram-

based similarity measures, a large psycho-visual experiment was conducted using a

Multi-Dimensional Scaling approach (MDS) towards analyzing and modeling im-

age quality variations [45]. This work was done in close cooperation with our col-

leagues from the Telecommunications and Information Department of the Faculty

of Engineering Sciences. In total, 35 individuals evaluated a whole range of im-

ages (original images and slightly distorted ones) and these psycho-visual results

were confronted with the output of our best neighbourhood- and histogram-based

similarity measures. The conclusion of this large experiment was that the fuzzy

similarity measures outperform the classical MSE and PSNR, i.e., they are better

in accordance with the human visual evaluation. Another conclusion was that the

neighborhood-based similarity measures perform better than the histogram-based

similarity measures, which is probably due to the fact that histogram similarity mea-

sures do not incorporate the spatial properties of the different gray values, but only

consider the frequency of occurence.

Since both neighbourhood-based and histogram-based similarity measures take

into account different additional information from the images, we also constructed

similarity measures which combine both approaches. This resulted in a new series

of similarity measures with a strong global perceptual performance [46, 47].

Next, our research shifted to the construction of similarity measures for colour

images. In a first approach, good similarity measures for grayscale images were

applied to the different colour components of colour images (either in the RGB,

HSV or Lab colour space) and then the results for each pixel were averaged. The
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results were promising, but we anticipated that a better approach would be to treat

the colours as vectors, instead of just applying grayscale measures to each colour

component. To achieve this, we introduced a new vector ordening in the RGB colour

space which allowed us to extend the similarity measures that were constructed

for grayscale images to similarity measures for colour images (such an ordering is

required to be able to select minima and maxima). Experiments confirmed that the

results were better than in the component-based approach [48, 49, 50, 51, 52].

Finally, we also constructed a colour image retrieval application. Colour image

retrieval is becoming more and more important (also in the context of video), and

so is the quest for automated and reliable retrieval systems. The novelty of our ap-

proach was the use of a fuzzy partition of the HSI colour space and the use of one

of our similarity measures for histogram comparison (namely the one based on the

above mentioned similarity measure M6). The resulting retrieval system has the ad-

vantage that the images do not have to be characterized in advance using several

features, and it is quite flexible since the database images are not required to have

the same dimensions [53, 54]. We also situated our approach to image retrieval in a

more larger framework in [55]. An example can be found in Figure 3, which shows

an input image and the 9 most similar retrieved results from a large database of over

500 natural images of animals, flowers, buildings, cars, texture images, and so on.

The results are quite good: the three most similar retrieved images are flowers in the

same colour as the one in the query image; the other retrieved images do not contain

flowers but have a very similar layout.

2.3 Journey 3: Fuzzy Filters for Noise Removal

Noise reduction filters are without doubt the most practical results from our research

in image processing. During the past 12 years, a nice trajectory can be detected:

starting with filters for grayscale images, the next step was filters for colour images,

and finally filters for video sequences (both grayscale and colour). We focussed on

two very common noise types: impulse noise (where a fraction of the pixel val-

ues is replaced by either fixed noise values or random noise values) and gaussian

noise (addititive noise). Table 1 presents a bird’s eye view on the filters that were

developed in our group.

It all started with the so-called GOA-filter, named after the university project that

enabled us to do this research and which resulted from a very nice cooperation with

our colleagues from the Faculty of Engineering Sciences, in particular Dimitri Van

De Ville, Wilfried Philips and Ignace Lemahieu [56, 57]. The filter is designed for

the removal of gaussian noise in grayscale images, and uses fuzzy rules to detect the

degree to which the gradient in a certain direction is small (the idea is that a small

gradient is caused by noise, while a large gradient is caused by image structure).

Fuzzy rules are also applied to calculate the correction term that is used for the

denoising; the contribution of neighbouring pixels depends on their gradient values.

The results of this filter were very good, and confirmed the usefulness of fuzzy logic

for the construction of noise reduction filters. The main advantage of fuzzy filters is
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Query Image

0.6319 0.63162 0.62331

0.50014 0.49588 0.49582

0.4865 0.48566 0.4762

Fig. 3 Results of our colour image retrieval system. The source image is on top, and below are

the most similar retrieved images. The value of the used similarity measure is shown below

every retrieved image.

that they allow us to work and to reason with linguistic information, just as experts

do (approximate reasoning); see the scheme in Figure 4. In order to confirm these

good results, we carried out extensive comparative studies of existing classical and

fuzzy filters, both for impulse noise and gaussian noise [58, 59, 60, 61, 62, 63].

A second filter for the reduction of gaussian noise from grayscale images was

presented a few years later [64]. This FuzzyShrink-filter can be seen as a fuzzy vari-

ant of an existing probabilistic shrinkage method, and was developed in the wavelet

domain. The filter outperformed fuzzy non-wavelet methods and was comparable

with other recent but more complex wavelet methods.

After the succesfull GOA-filter for gaussian noise, we developed a filter for the

removal of fixed impulse noise in grayscale images. This filter was called the Fuzzy

Impulse noise Detection and Reduction Method, or FIDRM for short [65]. The filter
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Table 1 A summary of the different fuzzy filters for noise reduction that were developed in

our research group.

Still gray Still colour Video gray Video colour

fixed impulse FIDRM FIDRMC

HFMRC

HFC

OWA

random impulse FRINR HFC FRINV-G FRINV-C

gaussian GOA FCG FMDAF FMDAF-RGB

FuzzyShrink OWA FMDAF-CR

FMDAF-YUV

Fig. 4 Fuzzy filters not only use numerical to filter out the noise in images, but can also work

with linguistic information. Furthermore, fuzzy logic allows us to reason with this linguistic

information and enables us to better approximate human reasoning.

followed a similar approach as the GOA filter, as it used gradient values to detect

and remove the noise. Again, extensive experiments confirmed the state-of-the-art

results of the filter [66, 67]. The filter could easily be extended to colour images

by applying the filter on each of the corrupted colour bands separately. The results

for colour images were relatively good [68], but the disadvantage of this approach

is of course that correlations between colour band were neglected and small colour

artefacts were introduced.

The latter observation inspired us to construct other filters, specifically to remove

impulse noise from colour images, and led to the FIDRMC and HFMRC filters. The

FIDRMC filter consists of two separated steps: the detection phase and the filtering

phase. The detection phase is applied separately to each colour component, where

fuzzy rules are used to determine whether a pixel pigment is corrupted with impulse

noise or not. After the detection phase the filter only focuses on those pixel pig-

ments which have a non-zero membership degree in the fuzzy set “impulse noise”.

In the filtering phase we also take into account the colour information of a certain

neighbourhood around a given central pixel [69, 70]. The HFMRC filter follows a

different approach and uses the histograms of the colour component differences to

detect and filter the fixed impulse noise [71]. The HFMRC filter was later upgraded

to the more complex HFC filter [72] that could also tackle randomly valued impulse

noise in colour images. Previously, our FRINR filter already achieved the goal of re-

moving randomly valued impulse noise in grayscale images [73, 74]. The detection
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phase of the FRINR filter consits out of two units that are both used to define cor-

rupted impulse noise pixels. The first unit investigates the neighbourhood around

a pixel to conclude whether the pixel can be considered as impulse noise or not,

while the second unit uses fuzzy gradient values to determine the degree to which

a pixel can be considered as impulse noise and the degree to which a pixel can be

considered as noise free.

Regarding the removal of gaussian noise from colour images, we developed the

FCG filter [75]. In contrast to most of the other existing methods, the first subfil-

ter of the FCG filter distinguishes between local variations due to noise and local

variations due to image structures (such as edges) by using the colour component

distances instead of component differences. The second subfilter is used as a com-

plementary filter which especially preserves differences between the colour compo-

nents. A few years later, resulting from an idea of and our cooperation with Arya

Basu, the OWA filter was developed for noise reduction in colour images corrupted

by either impulse noise or a combination of salt & pepper noise and gaussian noise

[76]. This OWA filter is an improvement of classical bilateral filtering, achieved by

using Ordered Weighted Averaging operators.

With all of the above, we delivered fuzzy filters for fixed impulse noise, random

impulse noise and gaussian noise, both for grayscale and colour images. The next

step was the design of noise reduction filters for video. It is quite clear that video

makes things much more complicated: the introduction of a temporal component

implies that good filtering can only be achieved if the temporal aspect is taken well

into account, i.e., if motion information is incorporated in the filter design. Filters

for colour video are even more complex, because the temporal information has to

be combined with the colour information. Nevertheless, a nice series of video filters

were constructed.

The first achievement was the FMDAF or Fuzzy Motion and Detail Adaptive

Filter, which was constructed in close cooperation with our colleagues from the

Faculty of Engineering Sciences. We also developed a recursive version of the fil-

ter (RFMDAF), and a non-recursive and recursive version in the wavelet domain

(WFDMAF and WRFMDAF). The method can be seen as a fuzzy variant of a

multiple class video denoising method that automatically adapts to detail and mo-

tion. Experimental results show that the FMDAF filter efficiently removes gaussian

noise from grayscale image sequences and outperforms other state-of-the-art filters

of comparable complexity [77, 78].

Afterwards we extended this filter to colour video sequences in three different

ways. First the FMDAF-RGB filter was an extension of the FMDAF filter in such

a way that colours in the RGB colour space were treated as vectors; no separate

filtering of colour bands occured [79]. Next we developed the FMDAF-CR fil-

ter [80]. Although the filtering here is performed in each colour band separately

in the RGB colour space, the fuzzy rules also require information from the other

colour bands such that correlations between colour bands are taken into account.

We also constructed a third extension, called the FMDAF-YUV filter [80], in which

the WFMDAF filter (in the wavelet domain) is applied to the Y-component in the

YUV colour space and where the chrominance components U and V are averaged
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Fig. 5 20-th frame of the “Deadline” video sequence: top = original frame, middle = noisy

frame (25% random impulse noise), bottom = result of our FRINV-G filter.

over a small window. All these filters have a very competitive numerical and visual

performance.

It is quite remarkable that most video filters that can be found in literature are de-

signed for sequences corrupted by gaussian noise, and much less video filters exist

for the removal of impulse noise. Existing 2D filters for impulse noise can of course

be extended to video by applying the 2D filter to each frame of the video sequence,

but temporal inconsistencies will arise when motion is neglected in the filtering
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process. Existing 3D filters on the other hand often suffer from detail loss because

too many pixels are filtered or, vice versa, too many pixels are left unfiltered in or-

der to preserve the image details. Quite recently, this observation encouraged us to

develop a fuzzy filter for the removal of random impulse noise in both grayscale

and colour video. The grayscale version of our filter (which we here refer to as

the FRINV-G filter [81]) consists out of three different successive filtering steps

and a fourth refinement step. In each filtering step, only the pixels that are detected

as being noisy (a detection that is achieved by fuzzy rules) are filtered and to ex-

ploit the temporal information detected pixels are filtered in a motion compensated

way. Experimental results clearly demonstrate that the FRINV-G filter outperforms

other state-of-the-art filters, both numerically and visually. An illustrative example

is shown in Figure 5. Finally, also a vector-based colour extension was constructed;

here we refer to this colour video filter as the FRINV-C filter [82].

3 The Ship Has Sailed

Mathematical morphology, similarity measures, noise reduction filters: these were

the three main tracks of the research on image processing in Etienne Kerre’s re-

search group. The short overviews above, together with the extensive literature list,

show that each of these tracks was a very intensive and interesting journey. During

all of these journeys we also had the opportunity to put some effort in the inter-

national promotion of soft computing in image processing in general. In 2002 we

established the so-called “SCIP Working Group”, where SCIP is an acronym for

Soft Computing in Image Processing. The goal of this informal working group, of

which the organisation is mainly internet-based, was and is to promote communi-

cation and cooperation between colleagues that are active in this exciting field. We

firmly believe that it is very important that all efforts are undertaken to intensify

this communication and cooperation: it leads to a cross-fertilization of ideas and

new cooperations, and avoids that several groups are working on the same prob-

lems without knowing this from each other. The SCIP Working Group, which has

around 160 members from over 40 countries, mainly tries to achieve these goals

by regularly organizing special sessions on soft computing in image processing at

international conferences. If the opportunity is there, we will also take the initiative

to edit a book or journal issue that brings together interesting contributions from

colleagues from all over the world. In that regard we certainly mention the three

books in the series “Studies in Fuzziness and Soft Computing” [83, 84, 85] and the

special issue of the international journal “Soft Computing - A Fusion of Founda-

tions, Methodologies and Applications” [86] and of the “International Journal of

Approximate Reasoning” [87].

Although each of the five authors of this chapter – which all five obtained their

PhD under Etienne’s guidance – were involved in one or more of the three discussed

research tracks and in the SCIP Working Group, there always was one unifying

factor: our promotor Etienne was there to support and guide us! Despite the fact

that most of the authors have left the academic world, the work is still not done.
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Currently, we are involved in a European Marie-Curie project on soft computing

techniques in medical image processing. Our goal in this project is to use our ex-

pertise on similarity measures and noise reduction filters in order to apply these

techniques on medical images. Two new Phd students are already working on the

project! Etienne will not be around full-time, but we are all convinced that he will

be part of this new journey . . .
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The Need to Use Fuzzy Extensions in Fuzzy

Thresholding Algorithms

Humberto Bustince, Miguel Pagola, Edurne Barrenechea, and Javier Fernández

Abstract. In this chapter we present some recent applications of fuzzy extensions in

image segmentation. First we review some basic concepts of Interval-valued fuzzy

sets, which is the extension that is mainly used. Next we present the fuzzy thresh-

olding algorithm and we discuss its main problem that leads to use the extensions

of fuzzy sets. In section 3 we review some methods recently published that use ex-

tensions of fuzzy sets in image thresholding. Finally we show some experimental

results comparing the classical fuzzy thresholding algorithm against the algorithms

based on extensions of fuzzy sets.

1 Introduction to Extensions of Fuzzy Sets: Interval Valued

Fuzzy Sets

From the beginning it was clear that fuzzy set theory [29] was an extraordinary tool

for representing human knowledge. Nevertheless, Zadeh himself established (see

[30]) that sometimes, in decision-making processes, knowledge is better represented

by means of some generalizations of fuzzy sets. A key problem of representing the

knowledge by means of fuzzy sets is to choose the membership function which best

represents such knowledge.

Sometimes, it is appropriate to represent the membership degree of each element

to the fuzzy set by means of an interval. From these considerations arises the exten-

sion of fuzzy sets called theory of interval-valued fuzzy sets (IVFSs), that is, fuzzy

sets such that the membership degree of each element of the fuzzy set is given by

a closed subinterval of the interval [0,1]. Hence, not only vagueness (lack of sharp

class boundaries), but also a feature of uncertainty (lack of information) can be ad-

dressed intuitively.

These sets were first introduced in the 1970s. In May 1975 Sambuc (see [24])

presented in his doctoral thesis the concept of an interval-valued fuzzy set named
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a Φ-fuzzy set. That same year, Zadeh [30] discussed the representation of type 2

fuzzy sets and its potential in approximate reasoning.

The concept of a type 2 fuzzy set was introduced by Zadeh [30] as a generalization

of an ordinary fuzzy set. Type 2 fuzzy sets are characterized by a fuzzy membership

function, that is, the membership value for each element of the set is itself a fuzzy

set in [0,1].

Formally, given the referential set U , a type 2 fuzzy set is defined as an object A

which has the following form:

A = {(u,x,µu(x))|u ∈U,x ∈ [0,1]},

where x ∈ [0,1] is the primary membership degree of u and µu(x) is the secondary

membership level, specific to a given pair (u,x).
One year later, Grattan-Guinness [17] established a definition of an interval-

valued membership function. In that decade interval-valued fuzzy sets appeared in

the literature in various guises and it was not until the 1980s, that the importance of

these sets, as well as their name, was definitely established.

A particular case of a type 2 fuzzy set is an interval type 2 fuzzy set (see [20]–

[21]). An interval type 2 fuzzy set A in U is defined by

A = {(u,A(u),µu(x))|u ∈U,A(u) ∈ L([0,1])},

Fig. 1 Fuzzy membership

function.
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where A(u) is a closed subinterval of [0,1], and the function µu(x) represents the

fuzzy set associated with the element u ∈ U obtained when x covers the interval

[0,1]; µu(x) is given in the following way:

µu(x) =

{

a if A(u) ≤ x ≤ A(u)
0 otherwise

,

where 0 ≤ a ≤ 1. It turns out that an interval type 2 fuzzy set is the same as an IVFS

if we take a = 1.

Another important extension of fuzzy set theory is the theory of Atanassov’s in-

tuitionistic fuzzy sets ([1], [2]). Atanassov’s intuitionistic fuzzy sets (A-IFSs) assign

to each element of the universe not only a membership degree, but also a nonmem-

bership degree, which is less than or equal to 1 minus the membership degree.

An Atanassov’s intuitionistic fuzzy set (A-IFS) on U is a set

Â = {(u,µÂ(u),νÂ(u))|u ∈U},

where µÂ(u)∈ [0,1] denotes the membership degree and νÂ(u)∈ [0,1] the nonmem-

bership degree of u in Â and where, for all u ∈U , µÂ(u)+νÂ(u) ≤ 1.

In [1] Atanassov established that every Atanassov intuitionistic fuzzy set Â on U

can be represented by an interval-valued fuzzy set A given by

A : U → L([0,1])
u → [µÂ(u),1−νÂ(u)], for all u ∈U.

Using this representation, Atanassov proposed in 1983 that Atanassov’s intuitionis-

tic fuzzy set theory was equivalent to the theory of interval-valued fuzzy sets. This

equivalence was proven in 2003 by Deschrijver and Kerre [12]. Therefore, from a

mathematical point of view, the results that we obtain for IVFSs are easily adaptable

to A-IFSs and vice versa. Nevertheless, we need to point out that, conceptually, the

two types of sets are totally different. This is made clear when applications of these

sets are constructed (see [28]).

In 1993, Gau and Buehrer introduced the concept of vague sets [16]. Later, in

1996, it was proven that vague sets are in fact A-IFSs [5].

A compilation of the sets that are equivalent (from a mathematical point of view)

to interval-valued fuzzy sets can be found in [13]. Two conclusions are drawn from

this study:

1.- Interval-valued fuzzy sets are equivalent to A-IFSs (and therefore vague sets), to

grey sets (see [11]) and to L-fuzzy set in Goguen’s sense with respect to a special

lattice L([0,1]).
2.- IVFSs are a particular case of probabilistic sets (see [14]), of soft sets (see

[3]), of Atanassov’s interval-valued intuitionistic fuzzy sets and evidently of Type 2

fuzzy sets.
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2 Interval Valued Fuzzy Sets and Image Segmentation

Image segmentation is the first step in image analysis and pattern recognition. It

is a critical and essential component of image analysis and/or pattern recognition

system and is one of the most difficult tasks in image processing, that can determine

the quality of the final result of the system.

The goal of image segmentation is the partition of an image in different areas or

regions.

Definition 1. Segmentation is grouping pixels into regions such that

1. ∪k
i=1Pi = Entire image ({Pi} is an exhaustive partitioning).

2. Pi ∩Pj = 0, i �= j ({Pi} is an exclusive partitioning).

3. Each region Pi satisfies a predicate; that is, all points of the partition have some

common property.

4. Pixels belonging to adjacent regions, when taken jointly, do not satisfy the pred-

icate.

There exist three different approaches using fuzzy methods:

• Histogram thresholding.

• Feature space clustering.

• Rule based systems.

2.1 Thresholding

One of the earlier papers of fuzzy thresholding is [23] in 1983. The idea behind the

fuzzy thresholding is to first transfer the selected image feature into a fuzzy subset

by means of a proper membership function and then select and optimize a global or

local fuzzy measure to attain the goal of image segmentation.

In [23] the authors used the S-function to fuzzify the image. They minimize the

entropy in such a way that the final segmented image is the one which has less

doubtful pixels.

Said membership function represents the brightness set within the image. The

basic idea of using this membership function is that, if we take the value of a param-

eter as the threshold value, the dark pixels should have low membership degrees, and

on the contrary, brighter pixels should have high membership degrees. The pixels

with membership function near 0.5 should be the ones that are not clearly classi-

fied. Therefore the set with less entropy is the set with less amount of pixels with

uncertain membership (around 0.5).

Since the first works that used S-functions up to now the problem is: finding the

membership function that will accurately represent the membership degree of each

pixel to each region of the image (in the case of two regions: the background and

the object).

If the expert knows the exact membership degree of each pixel to each region of

the image, the problem is solved. This does not normally happen, that is, there are
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pixels which the expert does not know whether they belong to the background or to

the object.

Depending on the type of image we are working with, it is necessary to use one

membership function or another. That is, in order to obtain a good segmentation the

user or expert must choose the membership function that will best represent that

image.

Therefore, in any segmentation algorithm there is always a degree of ignorance

in the choice of the membership function made by the user. It is established (see

[15, 18]) that the membership function must always try to represent:

• The similarity of the pixels within the regions.

• The connectivity of the pixels within the regions.

• The difference between the pixels of different regions.

We do not know how to correctly express these three properties in the membership

function. For this reason there is always an uncertainty associated with thresholding

algorithms. According to Klir and Wierman [19] “Uncertainty has a pivotal role in

any efforts to maximize the usefulness of systems models ... uncertainty becomes

very valuable when considered in connection to the other characteristics of systems

models: a slight increase in uncertainty may often significantly reduce the complex-

ity and, at the same time, increase the credibility of the model. Uncertainty is thus an

important commodity in the modeling business, a commodity which can be traded

for gains in the other essential characteristics of models”.

In this sense Zadeh [30], Mendel [21], and other authors establish that the main

characteristic of the extensions of fuzzy sets is their capacity to model uncertainty

in the membership function selection.

In this work we are going to present some recent methods to add uncertainty

by means of extensions of fuzzy sets into the thresholding process. All of these

techniques are based on the classical fuzzy thresholding algorithm.

3 Fuzzy Algorithm of Image Thresholding and Its Extensions

The basic structure of the algorithms for the calculation of the threshold of an image

that use fuzzy techniques (see [7, 15, 18, 22]) is composed of the following steps:

(a) Assign L fuzzy sets Q̃t to each image Q. Each one associated to a level

of intensity t, (t = 0,1, · · · ,L−1), of the grayscale L used.

(b) Calculate the entropy of each one of the L fuzzy sets Q̃t associated to Q.

(c) Take as best threshold t the level of gray associated to the fuzzy set with

lowest entropy.

Alg. Fuzzy

Membership functions are normally defined by the expert on the basis of his/her

knowledge. The membership functions used in [15, 18] represent how similar the
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intensity of each pixel is to the mean of the intensities of the object or to the mean

of the intensities of the background. This type of membership functions are the ones

that provide the best results (see [22, 25]). By defining the membership functions

in this way, the set with lowest entropy is the set that contains the greatest number

of pixels around the mean of the intensities of the background and the mean of the

intensities of the object.

In these conditions given an image Q and an intensity threshold t set, we have

proposed a general method [7] of constructing the membership function of each

intensity to the set Q̃t in the following way:

µQ̃t
(q) =

{

F(REF(q,mb(t))) i f q ≤ t

F(REF(q,mo(t))) i f q > t
(1)

Where mb(t) and mo(t) are given by the following expressions:

mb(t) =
∑t

q=0 qh(q)

∑t
q=0 h(q)

(2)

mo(t) =
∑L−1

q=t+1 qh(q)

∑L−1
q=t+1 h(q)

. (3)

h(q) being the number of pixels of the image with intensity q.

Depending on the functions F and REF chosen we can construct most of the

expressions of membership functions used in the fuzzy thresholding in the literature

[18, 25].

Once the manner of constructing the membership function has been chosen, we

calculate the L fuzzy sets associated with each t = 0,1, · · · ,255. In the following

step of the algorithm we calculate the entropy of each one of those sets, which is

why we now present the definition of entropy and some expressions.

3.1 Examples of the Fuzzy Algorithm Using Different

Membership Functions

Step (c) of the fuzzy algorithm establishes that once the entropy is calculated for all

the fuzzy sets, we must take as threshold the value of t associated with the fuzzy

set Q̃t with lowest entropy. Taking into account that we have constructed the mem-

bership function using REFs, then the membership value equal to 1 indicates that

the value of the pixel is very close to the value of the mean of the intensities of the

background or to the value of the mean of the intensities of the object. As a result

the expert is sure of the membership, either to the background or to the object, of

most pixels.

In the following example we prove experimentally that the solution to the algo-

rithm depends on the membership function selected.
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Table 1 Different membership functions

1)
F(x) = 0.5(1+x)
REF(x,y) = 1−|x−y| 2)

F(x) = 0.5(1+x)

REF(x,y) = (1−|x−y|)2

3)
F(x) = 0.5(1+x)

REF(x,y) = 1−|x−y|2 4)
F(x) = 0.5(1+x)

REF(x,y) = (1−|x−y|)0.5

5)
F(x) = 1/(2−x)
REF(x,y) = 1−|x−y| 6)

F(x) = 1/(2−x)
REF(x,y) = (1−|x−y|)2

7)
F(x) = 1/(2−x)
REF(x,y) = 1−|x−y|2 8)

F(x) = 1/(2−x)

REF(x,y) = (1−|x−y|)0.5

Example 1. The membership functions are constructed from the eq. (1). On Table 1

we show the different functions F and REF taken. To calculate the entropy of fuzzy

sets we use the eq. (4) with

E(Ã) = ∑
x∈X

1−|1−2µÃ(x)|2 (4)

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 3 Different solutions to the fuzzy algorithm with different membership functions
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In figure 3 we show the binary images obtained. From the visual analysis of these

images we deduce that the results of the fuzzy algorithm depend on the member-

ship function chosen (in this case functions (5) and (6) would be the most suitable

solutions).

3.2 Generalization of the Fuzzy Algorithm Using IVFS

In 2005 Tizhoosh [26] presented a paper that uses Interval-valued fuzzy sets in im-

age thresholding (we must point out that he tries to use type 2 fuzzy sets, however

in the paper he only uses Interval-valued fuzzy sets [9]). His study is based on the

modification of the classical fuzzy algorithm of Huang and Wang [18], so that he

applies an α factor as interval generator to the membership function. Starting from a

membership function, Tizhoosh obtains an interval valued fuzzy set that “contains”

different membership functions and is useful for finding the threshold of an image.

In this manner we can handle the inaccuracy of the selection of the membership

function and obtain good results even though the best selection has not been made.

That is why to each pixel we are going to assign two values:

• We will obtain the first one by changing the membership function chosen (con-

structed from the restricted equivalence functions), which we interpret as a pes-

simistic measure of the membership degree of said pixel to the set that represents

the image.

• The second value, also obtained from the membership function chosen, we in-

terpret as a optimistic measure of the membership degree of said pixel to the set

that represents the image.

The structure of the algorithm is the following:

(a) Assign L fuzzy sets Q̃t to each image Q. Each one associated to a level

of intensity t, (t = 0,1, · · · ,L−1), of the grayscale L used.

(b) Construct an Interval valued fuzzy set Qt with the parameters α and β
from each one of the L fuzzy sets Q̃t associated to Q. It must reflect the

uncertainty in the choice of membership function..

(c) Calculate the Interval valued entropy of each one of the L interval

valued fuzzy sets Qt associated to Q.

(d) Take as best threshold t the level of gray associated to the fuzzy set with

lowest IV entropy.

Alg. IVFS

So in this version the main fact is to construct the IVFSs in such a way that it

represents the original shape of the membership function given by the expert and
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also brings the uncertainty of the election. The other different aspect is that we

choose as threshold the t associated with the set with minimum IV-entropy.

A generalization of the Tizhoosh algorithm can be made using two different pa-

rameters to estimate the uncertainty of the membership function, so we can construct

an interval-valued fuzzy set in the following way:

Aα ,β = {(x, [µα
Ã
(x) µ

1
β

Ã
(x)]|x ∈ X} ∈ IVFSs(X). (5)

The verification that Aα ,β ∈ IVFSs(X) is evident: 0 ≤ µα
Ã
(x) ≤ µ

1
β

Ã
(x) ≤ 1. The

parameters α and β must be related with the ignorance of the expert in the member-

ship function selection. Tizhoosh used only one parameter α , so that the IVFS set

he constructed is:

Aα = {(x, [µα
Ã
(x) µ

1
α

Ã
(x))]|x ∈ X} ∈ IVFSs(X). (6)

In [4] Bustince presents the general way of constructing EF . From all of the expres-

sions presented we are going to use the simplest, Sambuc’s indetermination index

[24]. That is, for the set constructed in the eq. (5) the entropy is given by:

EF(Qt) =
1

N ×M

L−1

∑
q=0

h(q)(µ
1/β

Q̃t
(q)− µα

Q̃t
(q)). (7)

The justification for choosing the set with lowest EF is the following:

if EF is close to zero, then we can consider that generally, for all q this holds:

µ
1/β

Q̃t
(q) ≈ µα

Q̃t
(q).

By the way of constructing the membership functions we know that:

0.5 ≤ µQ̃t
(q) ≤ 1for each q ∈ {0, · · · ,L−1};

therefore µ
1/β

Q̃t
(q) ≈ 1, (as long as we take α �= 1 and β �= 1). In these conditions,

by the construction of Q̃t we have

µQ̃t
(q) =

{

F(REF(q,mb(t))) if q ≤ t

F(REF(q,mo(t))) if q > t
≈ 1

By the condition: F(x) = 1 if and only if x = 1, we have that µQ̃t
(q) is close to one

if REF(q,mb(t)) when q≤ t (or REF(q,mo(t)) when q > t) is close to one; Bearing

in mind the definition of function of REF we have that this happens when q is very

close to mb(t) or to mo(t) depending on the case. Furthermore we know that (see

[15, 18]) that if q is very close to mb(t) or to mo(t), then we are in the best situation

for taking the threshold. Therefore if we take the set with lowest value of EF , by the

reasoning above, then that IVFS is the one that best represents the image and the

one with the minimum in that representation [9].
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3.3 Modification of the Fuzzy Algorithm by Means of A-IFSs

Vlachos and Sergiaidis [28] also propose a modification of Tizhoosh’s algorithm,

using Atanassov’s intuitionistic fuzzy sets (see [1]). Their basis are membership

functions similar to Huang’s but, instead of minimizing the entropy, the algorithm

minimizes the divergence with set 1̂ (see [10]). The structure of the intuitionistic

algorithm is the same as Tizhoosh’s. The construction of the intuitionistic fuzzy sets

is done in the following way:

µÂ(g,t) = λ µA(g,t) (8)

νÂ(g,t) = (1̂−λ µA(g,t))λ

With λ ∈ [0,1], being Â an intuitionistic fuzzy set, and the divergence:

DIFS(Â, 1̂,t) =
L−1

∑
g=0

hA(g)

(

µÂ(g,t)ln
2µÂ(g,t)

1 + µÂ(g,t)
+ νÂ(g,t)ln2 + ln

2

1 + µÂ(g, t)

)

(9)

In this case the uncertainty is represented by the hesitation index:

πÂ(g,t) = 1− µÂ(g, t)−νÂ(g,t)

3.4 Construction of the IVFSs Using Ignorance Functions

In this case the classical fuzzy thresholding algorithm is modified due to the user

should pick two functions, one to represent the background and another one to rep-

resent the object. We have chosen this representation since, in this way, the expert

is able to get a better representation of the pixels for which he is not sure of their

membership to the object or the background. In figure 4 we show two membership

functions, one to represent the background and the other to represent the object.

As we have already said in the previous paragraph, we are going to represent

the images by means of two different fuzzy sets. For this reason, in our proposed

algorithm we introduce the concept of ignorance function Gu. Such functions are a

way to represent the user’s ignorance for choosing the two membership functions

Fig. 4 Two different mem-

bership functions to repre-

sent the background and the
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used to represent the image (object and background). Therefore, in our algorithm

we will associate to each pixel three numerical values:

• A value for representing its membership to the background, which we will inter-

pret as the expert’s knowledge of the membership of the pixel to the background.

• A value for representing its belongingness to the object, which we will interpret

as the expert’s knowledge of the membership of the pixel to the object.

• A value for representing the expert’s ignorance of the membership of the pix-

els to the background or to the object. This ignorance hinders the expert from

making an exact construction of the membership functions described in the first

two items and therefore it also hinders the proper construction of step (a) of the

fuzzy algorithm. The lower the value of ignorance is, the better the membership

function chosen to represent the membership of that pixel to the background and

the one chosen to represent the membership to the object will be. Evidently, there

will be pixels of the image for which the expert will know exactly their member-

ship to the background or to the object but there will also be pixels for which the

expert is not able to determine if they belong to the background or to the object.

Under these conditions, if the value of the function of ignorance (Gu) for a certain

pixel is zero, it means that the expert is positively sure about the belongingness of

the pixel to the background or to the object. However, if the expert does not know

at all whether the pixel belongs to the background or to the object he must represent

its membership to both with the value 0.5, and under these conditions we can say

that the expert has total ignorance regarding the membership of the pixel to the

background and the membership of the same pixel to the object.

In [8] a methodology is proposed to construct ignorance functions. In the follow-

ing example we show an ignorance function that can be constructed by means of the

t-norm minimum.

Example 2. Using the t-norm T = TM

Gu(x,y) =

{

2 ·min(1− x,1− y) if min(1− x,1− y)≤ 0.5
1

2·min(1−x,1−y)
otherwise

is a continuous ignorance function.

Also Ignorance functions can be constructed from functions like the geometric mean

that are not t-norms (please see [8]).

Example 3. If we take ϕ(x) =
√

x for all x ∈ [0,1] we recover the following igno-

rance function:

Gu(x,y) =

{

2
√

(1− x) · (1− y) if (1− x) · (1− y)≤ 0.25
1

2
√

(1−x)·(1−y)
otherwise

In the following proposition we can see how we can construct IVFS by means of

the ignorance function.
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Proposition 1. Let Q̃B and Q̃O be the fuzzy sets associated to the background and

the object of the image built by an expert. Let Gu be the ignorance function associ-

ated to the construction of the said fuzzy sets. Under these conditions, if we define

Φ : FS s(U)×FS s(U) −→ I V FS s(U) given by

Φ(Q̃B,Q̃O) = {(u, [ML(u),MU(u)])|u ∈U} such that

[ML(u),MU(u)] = [Gu(0.5,0.5)−Gu(µQ̃B
(u),µQ̃O

(u)),Gu(0.5,0.5)],

then for each membership [ML(u),MU(u)] defined by Φ the following equation

holds:

W ([ML(u),MU(u)]) = Gu(µQ̃B
(u),µQ̃O

(u))

If the IV entropy EF(Q) that represents the total influence of the ignorance in the

construction of fuzzy sets QBt and QOt is such that it verifies:

EF → 0

then bearing in mind the properties required to M we have

Gu(µQBt
(q),µQOt

(q)) → 0 for all q ∈ {0, · · · ,L−1}.

By the property ”Gu(x,y) = 0 if and only if x = 1 or y = 1” that is required to the

functions Gu, we have µQBt
(q) → 1 or µQOt

(q) → 1, therefore q is very close to

mB(t) (mO(t)), that is, we are certain that the pixels with intensity q belong to the

background (object). This is due to the following reasoning:

1. If µQBt
(q) → 1, then REF( q

L−1
, mB(t)

L−1
) → 1, therefore q ≈ mB(t). In this case the

pixels with intensity q are such that their intensity is very close to the average in-

tensity of the pixels that represent the background. This fact enables us to assure

that the pixel in question belongs to the background.

2. If µQOt
(q)→ 1, then REF( q

L−1
, mO(t)

L−1
) → 1, therefore q ≈ mO(t). In this case the

pixels with intensity q are such that their intensity is very close to the average

intensity of the pixels that represent the object. This fact enables us to assure that

the pixel in question belongs to the object.

4 Examples and Experimental Results

In this section we are going to present some results obtained for the different algo-

rithms presented before. Recalling the objective of these algorithms is that he IVFS

algorithm produces solutions comparable in quality to those of the fuzzy algorithm

when an adequate membership function has been used and surpasses the fuzzy algo-

rithm when the membership function chosen does not represent the image properly.

In this last case we deduce that there exists great uncertainty in the election of the

membership function. In the first experiment we calculate the threshold using the

fuzzy algorithm using 8 different membership functions (table 1) and then we cal-

culate the threshold with the IVFS algorithm with α = 2 and β = 2 for the set
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Fig. 5 Natural images set.

of natural images depicted in figure 5. On Table 2 we present the percentage of

wrongly classified pixels in each case. We observe again that for a single image the

fuzzy algorithm returns different solutions depending on the membership function

we select. The lower the number of wrongly classified pixels, the better the solu-

tion and therefore the better is the membership function for that image. In the last

row the mean of the values of the ten images is shown, this way we can choose the

best membership function for this set of images. In this case the best membership

function is µ7.

On the next table, Table 3 we show the values obtained with the IVFS algorithm

using in every case the same 8 membership functions and the parameters α = 2 and

β = 2 in order to construct IVFSs.

The values in which the mean of error of the IVFS algorithm is less than the

fuzzy case are highlighted in bold type. We observe in this experiment that the IVFS

algorithm, with the exception of a membership function µ7 (which is the best), is

Table 2 Results of the Fuzzy algorithm

Image µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

0 2.5763 2.8441 5.7520 2.6247 2.8441 3.3262 3.9639 2.5916

1 7.2416 7.2135 7.7773 7.2569 7.2365 7.5502 7.7543 7.2238

2 1.6334 1.6234 1.9852 1.6611 1.6334 1.7314 2.0028 1.6234

3 4.2722 4.4088 4.1717 4.2722 4.4088 4.2722 4.1717 4.4088

4 4.2776 4.8056 4.1526 4.0379 4.8056 6.3004 4.1960 4.3388

5 3.4359 3.1119 4.3592 3.5915 3.1119 2.9538 4.3592 3.3211

6 3.2792 3.1740 3.9868 3.2792 3.1740 3.0458 3.8842 3.2792

7 10.4274 10.4274 10.9065 10.4274 10.4274 10.4274 10.9065 10.4274

8 39.8728 42.2905 30.8456 38.6832 42.2905 44.4647 30.8456 41.0650

9 26.5357 28.1151 20.3671 25.9384 28.9945 29.9303 20.7492 27.3382

mean 10.3552 10.8014 9.4304 10.1772 10.8927 11.4002 9.2833 10.5617
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Table 3 Results of the IVFS algorithm (a)

Image µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

0 2.5661 2.7217 5.7520 2.6247 2.7625 3.1961 3.9639 2.5763

1 7.2391 7.2340 7.7773 7.2620 7.1906 7.3666 7.7543 7.2416

2 1.6284 1.6108 1.9852 1.6962 1.6058 1.6636 2.0028 1.6334

3 4.2722 4.4088 4.1717 4.2722 4.4088 4.4088 4.1717 4.2722

4 4.2343 4.7521 4.1526 3.9894 4.7521 6.1830 4.1960 4.2776

5 3.4359 3.2165 4.3592 3.5915 3.1119 2.9767 4.3592 3.4359

6 3.2792 3.2176 3.9868 3.2792 3.1971 3.0817 3.9868 3.2792

7 10.4274 10.4274 10.9065 10.4274 10.4274 10.4274 10.9065 10.4274

8 39.8728 42.2905 29.9969 38.6832 42.2905 43.4468 30.8456 39.8728

9 26.5357 27.3382 20.3671 25.9384 28.1151 29.9303 20.7492 26.5357

mean 10.3491 10.7217 9.3455 10.1764 10.7862 11.2681 9.2936 10.3552

better than the fuzzy case. That is, if we choose a wrong membership function the

IVFS algorithm provides a better result.

Similar results can be obtained for the A-IFS algorithm. Please see [28] for other

results in pattern recognition.

Case of IVFS constructed by ignorance functions

Finally we evaluate the performance of the algorithm that uses ignorance functions

in prostate ultrasound images. For each image the expert has provided a point at

the center of the prostate making object detection/extraction easier. The image is

then filtered via median filter in 5× 5 neighborhoods. Further, selective contrast

enhancement as described in [27] has been applied to increase the image quality.

We must take into account that, since ultrasound images depend on the particular

settings of the machine is very important that our algorithm gives good solutions

even if some membership functions that do not represent accurately the background

and the prostate are chosen.

In this experiment we take 8 different membership functions. µ(q) = 1 −
|q−mz(t)|λ with λ = 0.1,0.3,0.8,1,1.3,2,6,15, where z could denote the object

or the background. For all the images of each set, we execute the Generalized fuzzy

Fig. 6 Set of Ultrasound prostate images with their ideal segmentation made by an expert

radiologist.
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algorithm with two membership functions using the classical fuzzy algorithm with

all the possible combinations of the membership functions; i.e., 82 = 64. Then we

execute the ignorance based algorithm using the geometric mean based ignorance

function for all the cases, so we’ll obtain 64 different solutions.

To interpret the results of this experiment we study the graphic in Fig. 7. This

graphic is obtained in the following way:

1. We arrange all the cases from the smallest to the biggest percentage of badly

classified pixels (error) in the solution of the fuzzy algorithm.

2. For each pair of membership functions, we calculate the error obtained with the

ignorance based algorithm.

The crosses represents the error we get with the ignorance based algorithm, and the

dotted line, the error we get with the fuzzy algorithm. (If the dots are under the

cross, it means that for that pair of membership functions the error of the ignorance

based algorithm is smaller than the error of the fuzzy algorithm). Observe that:

1. For the pairs of membership functions such that the fuzzy algorithm solution is

good (small error), the ignorance based algorithm does not provide better results.

2. If the error we get with the fuzzy algorithm begins to be high (i.e., if we have

used bad-chosen membership functions), then the result of the ignorance based

algorithm improves the other algorithm’s result.

We observe that in the fuzzy algorithm case there are around 40% of the cases on

which the membership functions do not represent correctly areas of the image and

a very high error is obtained. However, the IVFS algorithm gets a good solution for

almost all the cases.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

Fig. 7 Percentage of error in all cases of first prostate ultrasound image in Fig. 7 with igno-

rance function using the geometric mean.

If we analyze the table 4 of mean errors for all the cases, we see that in the case

of real ultrasound images ignorance based algorithm has a total mean error less than

the fuzzy algorithm.
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Table 4 Average mean of the error of all cases in any image of the set of ultrasound images

Image Fuzzy Geometric mean

1 36,3 13,9

2 70,1 84,4

3 75,6 62,2

4 29,3 22,8

5 74,2 61,0

6 41,2 44,7

7 42,9 43,3

8 52,6 46,3

9 33,1 12,4

10 37,4 12,0

Mean 49.3 40.3

5 Conclusions and Future Research

A key problem of the fuzzy thresholding algorithm is the accurate election of the

membership function. In this chapter we have presented methods which use exten-

sions fuzzy sets as a tool to represent the uncertainty presented in the election of

the correct membership function. The experimental results shown in section 4 allow

us to conclude that algorithms that adds the uncertainty presented in the problem

by means of extensions of fuzzy sets provides similar or better results that the ones

obtained by fuzzy classical techniques.

As a future research, form the extensions point of view, must focus on the use of

general type 2 fuzzy sets, but the computation time of general type usually is not

tractable. Also, finding applications or image representations in which membership

and non-membership can be generated independently in order to use all of the power

of A-IFSs, should be researched.
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Fuzzy Methods on the Web: A Critical

Discussion

Steven Schockaert, Nataliya Makarytska, and Martine De Cock

Abstract. Gradual concepts abound in many web-related domains, ranging from

the notion of relevance in information retrieval, to the strength of connection in

online social networks. As a result, fuzzy set theory is often a natural choice in

implementing web systems. In this chapter, we give an overview of applications

of fuzzy set theory in this area, focusing in particular on information retrieval, the

semantic web, and recommender systems. In each case, we contrast fuzzy methods

with other approaches, analyzing why and how the ideas of fuzzy set theory may be

beneficial.

1 Introduction

The world wide web has often been promoted as a key application domain for fuzzy

set theory [23, 86, 113]. Indeed, it is clear that to cope with the overwhelming

amount of information on the web, intelligent techniques are needed to appropri-

ately filter and preprocess the content of web pages. In traditional search engines,

users convey their information need using a textual query, which is used to rank

documents according to relevance. This ranked list is then presented to the user us-

ing well-chosen snippets from each of the documents. Modern information retrieval

research attempts to replace the traditional keyword-based queries by more informa-

tive information requests, such as natural language questions, and to develop more

advanced ways to present search results, typically by inducing some kind of struc-

ture from the set of relevant documents using clustering techniques. It appears that

fuzzy methods have a natural role to play in this process. After all, the relevance of a
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text document to a topic clearly is a matter of degree, as is the interest of the user in

a given topic. Already in the 1980s, before the advent of the web, the importance of

flexibility in querying information systems was understood, leading to a variety of

information retrieval methods based on fuzzy set theory [46]. Similarly, it has long

been recognized that fuzzy clustering techniques, in which the membership of an

object to a cluster centre is graded, are often more appropriate than their classical

counterparts [43, 84], and clustering documents is no exception to this [48, 114]. In

addition to structuring document collections or lists of search results, fuzzy cluster-

ing methods have also been used to build user profiles, based on past behavior or

explicit user input [3, 57]. Such user profiles are useful to help the system personal-

ize its output according to the desires and interests of each user.

Information retrieval is not the only domain in which fuzzy methods have been

proposed. The semantic web [11] — a vision of a web of interlinked machine-

readable information sources — has attracted considerable attention in the last

decade. At the core of the semantic web vision is the notion of ontologies, which

are shared formalizations of the concepts that appear in a certain domain. Ontolo-

gies are usually encoded in a standardized language, such as OWL, which can be

modeled using a particular description logic. Dedicated description logic reasoners

are then used to draw conclusions. Given appropriate ontologies, the content of a

web resource or a web service can be described in a machine-readable way. This

makes it possible to use formal reasoning to prove that some resource is relevant

to a user (semantic search), or to automatically derive what behavior results from

combining certain web services. In addition to description logics, also rule-based

formalisms play a central role on the semantic web. The interest in fuzzy methods

for the semantic web has mainly manifested itself at the foundational level; it has

led to the development of fuzzy description logics [37, 98, 100], has further stim-

ulated the development of fuzzy logic programming [44, 104], and its integration

with (extensions of) description logics [52, 55].

A third area of the web where fuzzy methods are studied are recommender sys-

tems. Recommender systems provide users with recommendations (e.g. products

the user may want to buy, movies that she wants to see, reviews that she wants

to read, etc.) based on information about the users’ preferences and about the items

(the products, the movies, the reviews, etc.). Good and accurate recommender appli-

cations that guide users through the vast amounts of online information are gaining

tremendous importance, as the wealth of information makes it increasingly difficult

to find exactly what you want or need; all the more because every person has her

own preferences. Content-based systems generate recommendations based on item

similarity and, as such, tend to have their recommendation scope limited to the im-

mediate neighbourhood of a user’s past purchase or rating record. The performance

of these systems can be improved significantly by (additionally) using collabora-

tive filtering, which typically identifies users whose tastes are similar to yours and

recommends items that these so-called neighbor users have liked. A more recent

addition to the family of recommendation paradigms are the social recommender

systems; these systems make suggestions based on likes and dislikes of users in

your online social network. As similarity between items and users, and strength of
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connections in social networks, are graded concepts, it does not come as a surprise

that a variety of interesting ideas has been proposed for the use of fuzzy set theory in

content-based systems [110], colloborative filtering recommender systems [69, 79],

as well as social recommenders [106].

However, despite the wide enthusiasm by the fuzzy set community, it is not clear

what the real impact is of fuzzy methods on the web. Often, fuzzy methods are pro-

posed to address problems that have not previously been considered. The lack of

standardized benchmark data and strong baseline techniques then makes it difficult

to provide a credible evaluation, and assessing the usefulness of the proposed solu-

tions. In more classical domains, such as document retrieval, experimental results

have been mixed. Due to the lack of clear experimental evidence for the success of

fuzzy methods on the web, their impact outside the fuzzy set community remains

limited. On the other hand, many popular approaches that do not refer to the term

“fuzzy” are strongly related to the ideas of fuzzy set theory. Tag clouds [94], for

instance, are little more than a fuzzy set of keywords. Conversely, techniques such

as fuzzy clustering have little in common with the core ideas of fuzzy set theory and

approximate reasoning, despite their reference to the term “fuzzy”. In this sense, the

question of whether or not fuzzy methods currently play an important role in web

research is inherently vague, and is therefore best answered in linguistic terms: to

some extent.

In this chapter, we provide a personal view on the benefits of fuzzy methods in

web-related applications, as well as on the challenges that arise. It is not intended as

a complete survey, but rather focuses on the three key domains that were sketched

above: information retrieval, semantic web, and recommendation.

The chapter is structured as follows. In the next section, we provide a general

introduction to fuzzy set theory, possibility theory and multi-valued logics, focusing

especially on the different intuitions underlying these frameworks. Next, we discuss

the use of fuzzy methods in each of the three aforementioned application domains:

information retrieval in Section 3, the semantic web in Section 4 and recommender

systems in Section 5. We end the chapter with a general conclusion on the role of

fuzzy methods on the web.

2 Background

This section provides a non-technical introduction to fuzzy set theory and two re-

lated frameworks: possibility theory and multi-valued (or graded) logics. With the

aim of clarifying the motivation of using fuzzy methods on the web in the following

sections, our focus in this section is on the different intuitions that are behind these

theories.

2.1 Fuzzy Sets

Fuzzy sets were introduced by Zadeh [111] with the aim of modeling human con-

cepts. It is well-known that such concepts tend to be vague, in the sense that for
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some objects it is not clear whether or not they belong to the concept [62]: is archi-

tecture a science? Is food poisoning a disease? Are bookends furniture? Zadeh noted

that there usually exists a continuous transition between those objects that clearly

belong to some concept, and those that clearly do not. Taking this observation into

account, the fuzzy set representation of a concept associates to each object a degree

of membership, chosen from the unit interval [0,1]. Formally, a fuzzy set A in a uni-

verse X is any mapping from X to [0,1], where A(x) = 1 means that x fully belongs

to the concept and A(x) = 0 means that x does not at all belong to the concept. In

addition to modeling vague concepts, fuzzy sets are also used to model the inten-

sity to which different objects satisfy some (well-defined) property. We may define,

for instance, a fuzzy set of patients with fever, such that somebody with 37.5◦ C

receives a membership degree of, say, 0.8, even though we may consider that fever

by itself is a well-defined property. The concept of fuzziness, which is related to

graded membership, should thus be distinguished from vagueness, which is related

to the lack of precise meaning. A fuzzy relation from a universe X to a universe Y

is a fuzzy set in the cartesian product X ×Y . A fuzzy relation from X to X is simply

called a fuzzy relation in X . Fuzzy relations are typically used to model the strength

of a certain relationship between objects of X and objects of Y .

Set operations are generalized to fuzzy sets in an indirect way, by generaliz-

ing logical conjunction and disjunction to graded truth values, and relying on the

intuition that e.g. an element belongs to the intersection A∩ B if it belongs to A

and it belongs to B. Conjunction is usually generalized using t-norms, which are

mappings T from [0,1]2 to [0,1] that are symmetric, associative, increasing, and

satisfy the boundary condition T (1,a) = 1 for all a ∈ [0,1]. Given a t-norm T ,

the intersection of two fuzzy sets A and B in the same universe X is defined as

(A∩B)(x) = T (A(x),B(x)) for all x ∈ X . Similarly as for intersection, union is de-

fined by generalizing disjunction. Typically, disjunction is generalized using a t-

conorm S, which is a symmetric, associative, increasing [0,1]2 − [0,1] mapping that

satisfies the boundary condition S(0,a) = a for all a ∈ [0,1]. Given a t-conorm S, it

is natural to define a generalized notion of implication, by I(a,b) = S(1− a,b) for

all a,b ∈ [0,1]2, thus taking advantage of the classical equivalence p → q iff ¬p∨q.

Such generalized implications are called S-implicators. Another way to define gen-

eralized implications starts from a left-continuous t-norm T :

I(a,b) = sup{λ |λ ∈ [0,1] and T (a,λ ) ≤ b}

Such operators I are called residual implicators. While their definition is less intu-

itive than that of S-implicators, they often turn out to be particularly useful, as they

tend to preserve more properties from classical logic.

The membership degrees of a fuzzy set can essentially be interpreted in three

different ways, which relate to measurement of cost, distance, and frequency [31].

When fuzzy sets are used to add flexibility to a query (e.g. give me a list of cheap ho-

tels in Ghent), membership degrees are used to encode preference, in the sense that

objects which satisfy the query to a larger extent are more preferred. Membership

degrees are then related to utility or cost. When fuzzy sets are used to provide an
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interface between the numerical domain and linguistic terms, the membership de-

grees reflect the similarity of an object to prototypes of the concept being modeled.

The fact that architecture is a science to degree 0.3 then intuitively means that there

is an object which is a clear example of the concept ‘science’ (e.g. physics) and

which is similar to degree 0.3 with ‘architecture’. In this case, membership degrees

are related to distance measures. Finally, membership degrees can be used to express

uncertainty. When being told about some user that she is young, we may consider

some ages to be more plausible than others. The membership degree of a certain age

in a fuzzy set modeling the concept ‘young’ is then interpreted as a degree of plau-

sibility. In this case, membership degrees are related to probability theory, although

different interpretations may be given to the exact relationship. Among others, the

membership degree of an age λ in the fuzzy set young may be interpreted as the

probability that somebody would assign the label young to the age λ . Fuzzy sets

then correspond to likelihood functions [41]. Another way membership degrees can

be related to probability is by interpreting fuzzy sets either as special cases or as

approximations of random sets [30].

Regardless of the specific meaning that is given to membership degrees, it is im-

portant to note that taking the intersection of two fuzzy sets, for instance, is only

meaningful if their membership degrees are commensurable. Let us take the exam-

ple of querying a hotel reservation system. When we are interested in cheap hotels,

interpreting the predicate ‘cheap’ is easy, as it can be done in a purely qualitative

way (the cheaper the price, the more a hotel is cheap). However, when we rather ask

for hotels that are at the same time ‘cheap’ and ‘close to the city centre’, the fuzzy

sets modeling ‘cheap’ and ‘close’ should be such that the utility of being close to de-

gree 0.7, for instance, is the same as the utility of being cheap to degree 0.7. Clearly,

this puts strong constraints on how membership degrees should be obtained, which

forms one of the most important practical difficulties in applying fuzzy set theory.

2.2 Possibility Theory and Approximate Reasoning

Possibility theory [29, 112] is an uncertainty calculus which is tightly related to

fuzzy set theory. At its basis is the notion of a possibility distribution π , which is

a mapping from a universe X to the unit interval [0,1], i.e. from a formal point of

view, possibility distributions are fuzzy sets. A possibility distribution encodes for

each x ∈ X the degree of possibility that x is the actual value of some variable. Each

possibility distribution π induces two uncertainty measures, called the possibility

measure Π and the necessity measure N; for a subset A ⊆ X , they are defined as

Π(A) = sup
x∈X

π(x) N(A) = 1−Π(coA)

where coA = X \A denotes set complement. Note that, from these definitions it fol-

lows that Π(A∪B) = max(Π(A),Π(B)), which is why possibility theory is called a

non-additive uncertainty theory. Although possibility theory has mainly been devel-

oped as an uncertainty calculus related to fuzzy set theory, its ideas go back to the
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work of Shackle [93], who advocated the need for a non-additive uncertainty theory

based on degrees of surprise. In this view, the possibility degree π(x) is interpreted

as the degree to which one would be surprised to learn that x is the actual value of

the underlying variable. Note that possibility theory is not fully compositional. For

instance, the value of π(A∩B) cannot be determined solely from the values of π(A)
and π(B). This should come as no surprise as it is well-known that no uncertainty

calculus can be completely compositional.

Possibility theory has played a central role in the theory of approximate reason-

ing. The basic idea is to interpret an assertion of the form “V is A” by the inequality

πV ≤ A (i.e. πV (x) ≤ A(x) for all x ∈ X), where A is a fuzzy set, V a variable, and πV

a possibility distribution encoding knowledge about which values of V are possible.

Such a constraint is called a flexible restriction on V . Given a number of flexible

restrictions πV ≤ A1,...,πV ≤ An, our state of knowledge regarding the possible val-

ues of variable V is encoded by the least specific solution to the constraints, i.e.

πV (x) = min(A1(x), ...,An(x)).
A central issue in approximate reasoning is how we can derive a flexible restric-

tion on the value of a variable W , given a possibility distribution which encodes the

possible values of variable V and an if–then rule of the form “if V is A then W is B”.

If–then rules are useful to encode common-sense knowledge such as “if the weather

is nice then driving time to the coast will be long”. Zadeh’s compositional rule of

inference suggests to derive the following possibility distribution πW on W from the

possibility distribution πV on V and an if–then rule R:

πW (y) = sup
x∈X

T (πV (x),R(x,y))

where T is a t-norm and the if–then rule R is interpreted as a fuzzy relation. The intu-

ition is clear: a value y for W is possible to the extent that there is a value x which is

possible for V and such that the combination (x,y) does not violate the given if-then

rule R. What remains to be decided is how to implement the if–then rule R itself. The

most natural choice is to take R(x,y) = I(A(x),B(y)) for some implicator I, although

sometimes a t-norm T ′ is used instead of an implicator. By extending this idea to

multiple input variables, and multiple if–then rules, a powerful inference-scheme is

obtained. Although it is computationally expensive in general, efficient methods can

be obtained by assuming that the values of the input variables are precisely known

and by taking fuzzy sets with membership functions that are easily processed (e.g.

piecewise linear functions). Starting from the work by Mamdani [56], fuzzy rea-

soning with if–then rules has been widely used in industrial applications, as diverse

as optimizing the program of washing machines and implementing auto-focusing

techniques in digital cameras. It can be considered to be by far the most success-

ful application of fuzzy set theory. In practice, if-then rules can be provided by an

expert, or they can be derived automatically using appropriate training data. In do-

mains where only limited training data is available, also a hybrid approach can be

used: the expert provides a first version of the rules, which is subsequently refined

using whatever training data that is available.
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2.3 Multi-valued Logic

The term fuzzy logic is used in two different senses in the literature. The first sense,

often called the broad sense, mainly refers to the idea of approximate reasoning with

if–then rules, as described above. The second sense, called the narrow sense, refers

to formal logics in which the notion of truth is graded. This idea of graded truth is

not exclusively tied to the framework of fuzzy set theory. Indeed, the notion of truth

degree is already present in the three-valued logics that were developed in the first

half of the 20th century, by Łukasiewicz, Gödel, Post, and Kleene, among others

[28]. In the case of infinite-valued logics, truth degrees are values from [0,1] and

logical connectives are interpreted as suitable [0,1]2 − [0,1] (conjunction, disjunc-

tion, implication) and [0,1]− [0,1] (negation) functions. Usually, (propositional)

multi-valued logics use the same syntax as classical (propositional) logic, although

truth constants other than 0 are sometimes allowed in the language (e.g. in ratio-

nal Pavelka logic [76]). Sound and complete proof theories for propositional fuzzy

logics have been established, based on modus ponens and particular subsets of the

axioms of classical logic [36]. For instance, infinite-valued Gödel logic is charac-

terized by the axioms of intuitionistic logic together with the axiom of prelinearity:

(x→ y)∨(y→ x). The semantics of Gödel logic is obtained by interpreting conjunc-

tion and disjunction by the minimum and maximum operators, and implication as

the residual implicator induced by the minimum. Negation is defined as ¬a = a→ 0.

The most popular fuzzy logics are Gödel logic, product logic and Łukasiewicz logic.

In each case, conjunction and implication are interpreted in terms of some contin-

uous t-norm and its residual implicator. For a more complete introduction to fuzzy

logic, both in the narrow and the broad sense, we refer to the chapter by V. Novák

and I. Perfilieva in this volume.

Note that despite the use of fuzzy logic connectives, infinite-valued logics are

based on a completely different intuition than approximate reasoning. In particular,

formulas from an infinite-valued logic encode a precise relationship between vari-

ables of some continuous domain. As such, propositional fuzzy logics do not deal

with uncertainty or vagueness.

3 Information Retrieval

3.1 Relevance Models

An abundance of techniques that are based on fuzzy set theory or possibility theory

have been proposed to improve the effectiveness and flexibility of search engines.

Although modern web search engines are considerably more sophisticated than tra-

ditional information retrieval (IR) systems (e.g. exploiting hyperlinks to obtain more

accurate relevance estimates as well as indications of authoritativeness), they are still

essentially based on the same ingredients: a boolean keyword-based formulation of

queries, and a bag-of-words representation of documents. In particular, documents
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are represented as weighted collections of terms, thus ignoring the ordering of the

terms in the document, as well as any structure the document may have. Because

of this simplification, a document can formally be modeled as a vector in a multi-

dimensional space, with one dimension for each term occurring in the document

collection under consideration. The weight of a component of a document vector

is calculated based on the number of times the corresponding term occurs in the

document (term frequency), and on the number of documents of the collection in

which this term appears (inverse document frequency). The intuition is that a given

term should receive a high weight when it occurs a lot in the document, while be-

ing rare in the collection as a whole. The query of the user, which is provided as

a list of keywords, can also be represented as a vector, by treating it as a (short)

document. A common approach to estimate the relevance of a document to a query

then consists of calculating the cosine of the angle between the corresponding vec-

tors. This vector-space model of information retrieval [85] has traditionally been

the most popular approach to information retrieval, and is still considered state-of-

the-art. However, state-of-the art performance in the vector-space model is obtained

for variants of the aforementioned cosine-similarity which are difficult to interpret

intuitively and rely on careful tweaking of the parameters involved [116].

More recently, probabilistic language models, which were first developed in

the area of speech recognition, have been successfully applied to the information

retrieval problem [80], combining state-of-the-art performance with intuitively ap-

pealing probabilistic models. Documents are then formally represented as proba-

bility distributions, which are used to calculate the probability that a document is

relevant to the user. Retrieval models in which documents are represented as fuzzy

sets have also been proposed [14, 46]. Conceptually, fuzzy IR models are similar in

spirit to the vector-space model, using the same formulas to weigh the importance of

a term in a document. The key difference is in the way queries are formulated and

evaluated. Rather than representing the query as a small document, the relevance

of a document is calculated using fuzzy logic connectives, measuring the degree

to which a document ‘implies’ a query term, and subsequently combining these de-

grees using flexible alternatives for the operations of boolean conjunction or disjunc-

tion. Fuzzy IR models typically allow the user to specify for each keyword to what

extent it is important for the query in linguistic terms (e.g. very important, rather

important, etc.), and how the keywords should be combined using linguistic quan-

tifiers (e.g. most of the keywords should be present). The main advantage of fuzzy

IR models is in the flexibility they give users to specify their queries. Recently, also

possibilistic approaches have been proposed [17]. Similar to probabilistic models,

possibilistic models attempt to estimate the likelihood that a document is relevant

to a query. In contrast to probabilistic models, however, this leads to two scores: the

necessity that a document is relevant and the possibility that it is relevant. Docu-

ments are then ranked primarily based on the necessity scores, using the possibility

scores to break ties, and in particular to provide meaningful results in cases where

the necessity of relevance is 0 for all documents.
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3.2 Domain-Specific Retrieval

The traditional information retrieval models are very general. Due to the fact

that they treat words as abstract entities, for instance, most models are language-

independent (although effectiveness of IR models is often dependent on language-

specific issues [38, 72]). By restricting attention to a narrower domain, however,

additional resources may be available that can help the retrieval process. One exam-

ple are thesauri, which encode semantic relationships between terms, indicating for

example that two terms are related in meaning (e.g. synonyms), or that one term is

a specialization of another term (e.g. ‘mathematician’ is a specialization of ‘scien-

tist’). It is natural to consider that relations such as ‘related term’ are graded, as e.g.

football and FIFA are more strongly related than football and player, even though

football and player are still somewhat related. Accordingly, approaches to informa-

tion retrieval have been proposed which use fuzzy thesauri [66, 83]. While utilizing

a thesaurus seems very natural, as it allows to retrieve documents that are rele-

vant to a query without actually sharing any terms with it, experimental validations

of thesaurus-based IR models have failed to show a consistent improvement over

systems without thesauri [45]. Practical problems with the use of thesauri include

the fact that many words have different senses, which may lead semantically unre-

lated documents to be considered relevant, and the difficulties and costs involved

in manually building high-quality thesauri. Automatically generated thesauri, typi-

cally based on detecting co-occurrence of terms, may provide a solution to the latter

problem, but such thesauri are of varying quality, and moreover, highly dependent

on the collection from which they have been obtained. Going from classical thesauri

to fuzzy thesauri makes some of the problems even worse: how should reliable and

meaningful grades be obtained? A recent example of the use of fuzzy thesauri can

be found in [96].

It is interesting to note that the idea of fuzzy thesauri is also considered in the

probabilistic language modeling approach to IR, although the term ‘fuzzy thesauri’

is not used in this context. In particular, a document is represented as a probability

distribution, which is initially obtained using maximum likelihood estimation, i.e.

the probability P(t|d) that a term t is generated by the language model underlying

document d is estimated as nt

∑t′ nt′
, where nt is the number of occurrences of term t

in document d. As this leads to the undesired effect that terms which do not occur in

the document receive a zero probability, different forms of smoothing are applied.

One form of smoothing is to interpolate this initial document model with a corpus

model (which models the probability that a given term appears in the collection as

a whole), which has a similar effect as considering inverse document frequency in

the vector-space model. Recently, however, an additional form of smoothing, called

semantic smoothing has gained importance [115]. Essentially, semantic smoothing

corresponds to using a fuzzy thesaurus to increase the probability of terms that do

not occur in the document, but are related to terms that do occur.

Somewhat related to the use of thesauri is concept-based information retrieval,

where documents are linked to concepts from an ontology. By abstracting away

from the actual terms that appear in a document, it may be expected that documents
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and queries may be compared in a way which is semantically more meaningful. In

[33], for instance, document are modeled as vectors of Wikipedia concepts, and ex-

perimental evidence is provided that the similarity between documents can thus be

measured in a substantially more accurate way. Somewhat related, [7] proposes to

represent documents and queries as subtrees of ontology concepts, and uses fuzzy

logic connectives to compute relevance scores. Again, convincing experimental ev-

idence is provided to demonstrate the usefulness of the approach. In [6] a variant

based on possibilistic logic is proposed. The possibilistic view naturally allows to

associate three different degrees with each pair of terms (t1,t2): the possibility that

t1 and t2 refer to the same thing, the necessity that t1 is a specialization of t2 and the

necessity that t2 is a specialization of t1. An important advantage of this approach is

that the degrees that are involved have a clear meaning.

In addition to retrieval of text documents, there is an increasing interest in retriev-

ing other types of objects from the web [73], such as images1, scientific papers2,

information about people3, events4, products5, etc. Due to the fact that object-based

retrieval is only applied in narrow domains, focusing on one particular type of ob-

jects, semantically richer, domain-dependent techniques may be applied, which are

often of a very different nature than traditional text-based retrieval. For example,

image retrieval systems often use a combination of textual evidence (e.g. the text

surrounding the image on a web page) and visual features, and sometimes even fo-

cus exclusively on visual features [50, 95]. Fuzzy set-based approaches have been

successfully applied to measure the similarity of visual features [12, 19, 49, 68].

Due to the use of richer semantics in object-based retrieval, often new types of op-

portunities arise for the application of fuzzy set theory. In [92], for instance, an

approach is presented for retrieving events that satisfy given temporal restrictions,

using a form of fuzzy temporal reasoning [89]. Here, the use of fuzzy set theory is

directly motivated by the fact that many real-world events are of an inherently grad-

ual nature, lacking a precise beginning and/or ending date. Similar considerations

apply in the spatial domain, where the importance of vernacular geographic regions

with imprecise boundaries is widely acknowledged [2, 67, 109], making approaches

based on fuzzy set theory a natural choice [88, 91]. Finally, fuzzy methods have also

been advocated in the area of music retrieval [15, 16].

3.3 Manipulation of Search Results

Fuzzy set based methods have been proposed for a variety of problems that in

one way or another manipulate the results obtained from some standard informa-

tion retrieval model. In [78], for instance, a fuzzy rule based system is presented

to exploit the structure of HTML documents. While several retrieval models have

1 http://www.flickr.com
2 http://scholar.google.com
3 http://pipl.com
4 http://upcoming.yahoo.com
5 http://www.google.com/products

http://www.flickr.com
http://scholar.google.com
http://pipl.com
http://upcoming.yahoo.com
http://www.google.com/products
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already been proposed that can take advantage of the fact that e.g. terms in the ti-

tle of an HTML document should be considered more important than terms in the

body, most existing approaches are based on an assumption of statistical indepen-

dence. The approach presented in [78] does not rely on such an assumption, as the

overall importance of a term for an HTML document is determined by rules of the

form

if ‘Title’ is High & ‘Emphasis’ is Low & ‘Others’ is Low then ‘Result’ is Medium

where ‘Title’ is the weight of the term in the title (i.e. treating the title as a small doc-

ument), ‘Emphasis’ is the weight of the term when considering those occurrences

that are otherwise emphasized in the document, and ‘Others’ is the weight of the

remaining occurrences; High, Low and Medium refer to fuzzy sets with appropri-

ately defined membership functions. The intuition of the rule above is that words

which occur in the title, but not often in the remainder of the document may very

well be irrelevant, e.g. because the title is metaphorical. Clearly, this intuition is very

different from other approaches to retrieval of structured documents, which would

boost the importance of terms that appear in the title, regardless of whether the term

also appears elsewhere in the document. A total number of 9 such rules have been

manually specified, and the resulting system is experimentally shown to outperform

state-of-the-art methods such as BM25 and BM25F.

The motivation for using fuzzy set theory in this way is clearly not related to un-

certainty or to the modeling of vagueness. Moreover, the same intuition can be im-

plemented using other techniques, which after careful training and tweaking, might

very well outperform such fuzzy rule based approaches. What fuzzy rules offer in

this context, however, is the ability to easily implement an intuitive idea, using rules

that are easy to understand. If the system does not perform as expected, it is straight-

forward to adapt the rules until the desired behavior is obtained, while many other

methods crucially depend on the availability of good training data to arrive at ‘black-

box’ models. Moreover, if such training data is actually available, the rules that have

manually been constructed can be refined in an automated way [70]. A similar use

of fuzzy rules is made in [90] with the aim of clustering web search results. There,

fuzzy rules are used to implement the behavior of artificial agents, called ants, that

move documents in a virtual environment and put them on heaps. Again, the use

of if–then rules leads to a description which is easy to understand and to adapt to

different intuitions about how documents should be clustered.

Other applications where fuzzy methods have been proposed to manipulate

search results are: relevance feedback [21, 59, 108], meta-search [60], and query ex-

pansion [47, 58]. The techniques that are applied to this end are as diverse as fuzzy

clustering [47], fuzzy association rules [58] and again fuzzy if-then rules [108]. This

further illustrates the fact that fuzzy set theory can often provide a flexible vehicle

for implementing advanced systems. In many cases, however, the authors provide

very little experimental evidence to demonstrate the effectiveness of the proposed

techniques over sufficiently strong baseline systems.
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4 Semantic Web

The semantic web [11] is a vision of interlinked machine-readable resources that

exist on top of the web of human-readable documents that we know today. The

widespread availability of such machine-readable resources would allow for the de-

velopment of a variety of intelligent systems, such as semantic search systems that

can prove the relevance of an object to some query based on a semantic represen-

tation of both the resource and the query. Central in this view is the notion of an

ontology, which, in this context, is essentially a formalization of a given domain,

describing properties of the relevant concepts and relations. The realization of a se-

mantic web requires that two important challenges are overcome. The first challenge

is acquiring the machine-readable resources that constitute the semantic web, which

could be achieved by human experts who manually build ontologies, by automated

techniques based on natural language processing, or by a combination of both. The

second challenge is to exploit available information in a scalable, robust and useful

way. It is in addressing this second challenge that possibilistic and fuzzy methods

have a key role to play.

Taken as a whole, the information that is asserted on the semantic web will in-

evitably be inconsistent. Uncertainty about the correctness of individual pieces of

information is therefore a key issue, which could be tackled by either probabilis-

tic or possibilistic methods. Fuzzy methods, on the other hand, serve a different,

but arguably equally important purpose. In particular, when moving from classical

retrieval to semantic search, we lose the idea of a ranking. Indeed, when both re-

sources and queries are expressed using classical logic, then we cannot acquire a

more refined conclusion than that a resource is relevant, or that it is not relevant. In

practice, this is problematic, because it is important to discriminate between objects

that best satisfy the user’s information need and those that only satisfy it marginally.

Moreover, when no resource completely satisfies a given query, it may still be of

interest to identify resources that ‘almost’ satisfy it. Thus, concepts such as prefer-

ence and similarity, which are at the heart of fuzzy set theory, are therefore of crucial

importance.

4.1 Description Logics

Ontologies for the semantic web are usually modeled in description logics [4]. In

such logics, knowledge is encoded in two separate knowledge bases, called the T-

box and the A-box. The core idea is to describe properties of concepts and relations

in the T-box and to describe in the A-box which objects are instances of which

concepts, and which pairs of objects belong to which relations; usually relations are

called roles in this context. Typically, atomic concepts are denoted by upper case

letters A, B, etc. From such atomic concepts, complex concepts can be formed such

as A⊓B, A⊔B, and ¬A, where e.g. A⊓B is the concept whose instances are those

objects that both belong to A and to B. The formal semantics is defined in terms

of interpretations Ithat map concepts to sets of objects from a given domain ∆I,

e.g. (A⊓B)I= AI∩BI. Similarly, the interpretation of roles is as relations in
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∆I × ∆I . In addition to the basic constructs, ⊓, ⊔, and ¬, also the concepts ∃ R .A
and ∀ R .A are commonly used, where A is a concept and R a role; their semantics is

as follows:

(∃ R .A)I = {x ∈ ∆I |∃y ∈ ∆I .(x,y) ∈ RI ∧ y ∈ AI }

(∀R .A)I = {x ∈ ∆I |∀y ∈ ∆I .(x,y) ∈ RI → y ∈ AI }

Thus, intuitively, ∃R .A is the concept which contains all objects that are related

(w.r.t. R) with some object in A, whereas ∀R .A contains the objects that are only

related to objects in A. Various variants of description logics can be defined, based

on which type of constructs are allowed.

The T-box of a description logic theory encodes how different concepts relate to

each other, using assertions of the form A ⊑ B, where A and B are (not necessarily

atomic) concepts, e.g.

Professor ⊑ FacultyMember ∃authorOf .ResearchPaper ⊑ Researcher (1)

encoding that professors are faculty members, and that all individuals who have

authored at least one research paper are researchers. The A-box of a description

logic theory contains assertions about individual objects of the form x : A, where x

is an object and A is a concept, as well as assertions of the form (x1,x2) : r, where

x1 and x2 are objects and r is a role; e.g.

etienne : Professor p1 : ResearchPaper (etienne, p1) : authorOf

Together (1) and (2) entail e.g. that etienne : FacultyMember⊓Researcher.

4.2 Fuzzy Description Logics

The main idea of fuzzy description logics [100] is to interpret concepts as fuzzy sets,

acknowledging that many of the concepts that appear in real-world ontologies are

vague. The most popular approach, initially proposed by Straccia [100], is based

on a direct generalization of the semantics of classical description logics, e.g. the

semantics of the concept ∃R .A becomes for x ∈ ∆I

(∃R .A)(x) = sup
y∈∆I

T (RI (x,y),AI (y))

where T is a t-norm, AI is a fuzzy set in ∆I and R is a fuzzy relation in ∆I . Thus,

each object x belongs to a concept such as ∃R .A to some degree in [0,1]. The T-box

now contains assertions of the form 〈A ⊑ B ≥ λ 〉, for A and B concepts or roles, and

λ ∈ [0,1]. In the case where A and B are concepts, for instance, the semantics of this

assertion is as follows:

I |= 〈A ⊑ B ≥ λ 〉 iff inf
x∈∆I

I(A(x),B(y)) ≥ λ (2)



250 S. Schockaert, N. Makarytska, and M. De Cock

where I is an implicator. Similarly, the A-box contains assertions of the form

〈 x : A ≥ λ 〉 , which, semantically, correspond to the condition that AI (x) ≥ λ . Sound

and complete reasoning procedures were introduced in [100] for a basic fuzzy de-

scription logic and a particular choice for the fuzzy logic connectives. More recently,

among others, more expressive description logics have been considered [97, 99],

larger classes of fuzzy logic connectives [37], and more complex reasoning tasks

[54]. Of particular interest are fuzzy description logics with concrete domains [101],

which allow to explicitly define fuzzy predicates which can then be used in the defi-

nition of concepts. For instance, in such logics, we could define a prolific researcher

as a researcher who has published many papers as follows:

Researcher⊓∃numberOfPapers .Many ⊑ ProlificResearcher

together with an appropriate fuzzy set in N that encodes the predicate ‘many’, e.g.

Many(n) =

{

n−1
n

if n > 0

0 otherwise
(3)

As we have already indicated, adding fuzziness to description logics serves two

rather distinct purposes. First, the fact that concepts are fuzzy sets naturally

leads to flexibility in the querying process. For instance, when a user indicates

that he is interested in a list of prolific researchers, it suffices to rank all in-

stances of the concept Researcher according to the degree to which they belong

to ∃numberOfPapers.Many. The definition of Many which was chosen in (3) then

essentially means that the ordering of researchers according to their membership

degree in ProlificResearcher is identical to the ordering based on their number of

publications. Thus, the use of fuzzy sets allows for flexibility, as it eliminates the

need for a crisp threshold on the required number of publications, and it naturally

allows the system to rank the objects that (partially) satisfy the query. Second, when

specifying a knowledge base, the fuzziness naturally allows to encode the inten-

sity by which certain properties are satisfied. For instance, rather than specifying

that Etienne is a prolific researcher, we can specify to what extent he is a prolific

researcher, e.g. by asserting

〈etienne : ProlificResearcher ≥
389

390
〉 (4)

It is important to note, however, that fuzzy description logics are not suitable for

modeling vague knowledge, despite a wide number of claims to the contrary in the

literature. Indeed, asserting (4) is exactly the same as asserting that Etienne has

published at least 390 papers, which is clearly not vague at all. Modeling vague

knowledge, such as “Etienne has published many papers” requires a mechanism for

dealing with uncertainty, which is not present in standard fuzzy description logics.

In other words, fuzzy description logics are suitable to deal with information which

is naturally graded, but which is precisely known.

Most work on fuzzy description logics has been theoretical, developing more

expressive formalisms, or more scalable reasoning mechanisms [13, 75]. One
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notable application of fuzzy description logics is in multimedia retrieval [65], where

fuzzy description logic are used to encode both semantic annotations of multimedia

documents and the result of e.g. image processing analyses. When it comes to the

semantic web, it is not clear which is the role to be played by fuzzy description

logics. A core requirement on the semantic web is the ability to link two ontologies

that have been developed independently from each other. This, however, introduces

a problem of commensurability. How should we compare what is called a prolific

researcher to degree 0.4 in one fuzzy description logic base to what is called a young

researcher to degree 0.7 in another fuzzy description logic base? Which guarantees

do we have that it actually makes sense to combine these two degrees, to answer the

query YoungResearcher⊓ProlificResearcher? In such a case, it seems more reason-

able to explicitly encode the number of publications and the age of the researcher

(or the constraints on these values that are known), rather than to encode degrees

of membership. Thus, in contexts where interoperability plays a role, it seems that

the use of fuzzy description logics may be problematic. Along the same lines, what

may be problematic for certain types of applications is that different users may have

a different view on concepts such as ‘young’ or ‘prolific’. In traditional approaches

to flexible querying, it is indeed the user who (implicitly or explicitly) determines

how such concepts should be understood and how the degrees to which somebody is

‘young’ or ‘prolific’ should influence the ranking of the results. In fuzzy description

logics, such concepts have a fixed meaning, which is independent of the preferences

of an individual user. To some extent, it seems that the need for flexible approaches

to querying ontologies and web information systems has been confused with a need

for fuzziness at the knowledge representation level.

4.3 Possibilistic Description Logics

Possibilistic description logics [42, 27, 82] keep the crisp representation of concepts

from classical description logics, adding a mechanism for handling uncertainty in-

stead. Essentially, a T-box axiom then takes the form (A ⊑ B,λ ), meaning that it

is certain to degree λ that the concept inclusion A ⊑ B holds. Similarly, an A-box

axiom takes the form (x : A,λ ), meaning that it is certain to degree λ that x is

an instance of A. Semantically, possibilistic description logics generalize classical

description logics, in a similar way as possibilistic logic generalizes propositional

logic. Specifically, let Wbe the set of all description logic interpretations I . An

interpretation of a possibilistic description logic theory then is a possibility distri-

bution π on W . For each classical interpretation I , π(I ) expresses how plausible

it is that I corresponds to the real world. Note that the notion of plausibility that

is considered here is purely qualitative. Writing �α� ⊆ W for the set of models of

a description logic formula α (i.e. either a concept inclusion axiom in the T-box or

an A-box assertion), the possibilistic description logic formula (α,λ ) is interpreted

as N(α) ≥ λ , i.e. the possibilistic description logic models of (α,λ ) are those pos-

sibility distributions π whose induced necessity measure N is such that N(α) ≥ λ .

In a possibilistic description logic, we may write, for instance, that
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(etienne : Professor,0.9) (etienne : AboveFourty,0.6)

which means that we are quite certain that Etienne is a professor, and rather certain

that his age is above 40. Note that by combining the ideas of fuzzy and possibilistic

description logics, vague knowledge may be encoded, e.g. writing assertions as

(〈etienne : ProlificResearcher ≥ 0.7〉,0.9)

(〈etienne : ProlificResearcher ≥ 0.8〉,0.6)

(〈etienne : ProlificResearcher ≥ 0.9〉,0.3)

When it comes to semantic web applications, possibilistic description logics

share with their fuzzy counterparts the problem of commensurability. The certainty

weights that appear in possibilistic description logic bases that have been devel-

oped independently cannot be compared. One solution would be to resort to pos-

sibilistic logic variants that can deal with partially ordered certainty weights [9].

Another avenue for applications is the combination of several classical description

logic bases. Possibilistic certainty weights could then be added to the assertions

that are made by each source, based on their reliability. In this way, when differ-

ent sources are combined, the ones that are considered least reliable are discarded.

Although this idea has not yet been considered for possibilistic description logics,

similar ideas have been extensively studied for merging conflicting propositional

knowledge bases [8, 10]. Especially when utilizing variants which do not suffer

from the so-called ‘drowning effect’, such as the approach presented in [82], this

seems to be a promising direction.

4.4 Logic Programming

Logic programming deals with inferring knowledge from rules of the form

c ← a1, ...,an,not b1, ...,not bm (5)

which encode the intuition that unless one of the terms b1, ...,bm can be derived, it

holds that a1 ∧ ...∧an implies c. In its simplest form, terms are restricted to atomic

propositions and the semantics of logic programs may be given in a purely declar-

ative way using the notion of stable models [34]; this approach is often referred to

as answer set programming. The idea of logic programming in general, and answer

set programming in particular, has been generalized to deal with graded proper-

ties. The intuition of (5) is then that the truth degree of c is at least as high as the

truth degree of a1 ∧ ....∧ an, unless one of the atoms b1, ...,bm can be derived to

a high degree. Note however, that there exist several ways to implement this intu-

ition, leading to different semantics of fuzzy logic programming [44, 64, 102, 107].

In parallel, some possibilistic extensions to logic programming have been consid-

ered [5, 20, 26, 71, 74], in which it is possible to encode that a given rule or fact is

more or less certain (or important, preferred, etc.). Although the idea of uncertainty

or preference is clearly different from the idea of graded truth, at the formal level,
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extensions of answer set programming that deal with uncertainty are closely related

to extensions dealing with graded truth [5, 24].

An interesting application of fuzzy logic programming for the semantic web is

discussed in [63], where grades are used to encode similarity between terms. Among

others, this is useful to deal with the fact that different resources may use a different

terminology to refer to the same or similar concepts, for instance to tackle problems

related to interoperability on the semantic web. In the proposed approach, a given

set of logic programming rules is augmented with additional rules that encode which

terms can be considered similar and to what degree. What is not entirely clear, from

an application point of view, however, is whether these degrees relate to the certainty

that two terms describe the same property/concept/object, or to the strength of the

similarity between the two terms. Although the formal treatment may be analogous

in both cases, in order to obtain meaningful results, a clear operational semantics

of the grades is needed in applications, which may put constraints, for instance, on

which fuzzy logic connectives can be used to combine the grades.

Motivated by the needs of semantic web applications, logic programming rules

have also been combined with description logics, leading to description logic pro-

grams [32]. Accordingly, fuzzy description logic programs have been developed,

which combine fuzzy description logics with fuzzy answer set programming [53,

103]. In [40], as an application of such fuzzy description logic programs, the prob-

lem of ranking web services according to the preferences of a given user is consid-

ered. Again, there is no clear distinction between uncertainty and graded truth, in

the sense that the motivation of the paper is given in terms of graded truth, while the

application example that is presented essentially deals with uncertainty.

5 Recommendation and Personalization

The wealth of information available on the web has made it increasingly difficult to

find what one is really looking for. This is particularly true for exploratory queries

where one is searching for opinions and views, not because it is difficult to look up

this kind of information, but because there is simply so much of it that one does not

know where to start consuming it. Hence, it comes at no surprise that personalization

systems that guide the search process are gaining importance. On the popular con-

sumer review site Epinions6 for instance, the order in which reviews are presented

to the user is personalized and depends on the user’s previous ratings of other re-

views (in terms of helpfulness) and the user’s social network information. Another

example is Google News7, a computer-generated news site that aggregates head-

lines from news sources worldwide, groups similar stories together and displays

them according to each reader’s personalized interests. From an e-commerce per-

spective too, the value of a good recommender system cannot be underestimated:

Cinematch, the recommender of the American online movie rental system Netflix8,

6 www.epinions.com
7 news.google.com
8 www.netflix.com

www.epinions.com
news.google.com
www.netflix.com
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delivers two thirds of Netflix’s rented movies, and Amazon.com claims that 35%

of their sales result from recommendations [51]. In essence, the recommendation

problem consists of predicting the extent to which a particular user, the so-called

target user, will like a particular item, called the target item, which can be a review,

a news article, a movie, a book, a song, a research paper, etc. The predicted degree

is usually taken from a linear scale (for instance from 1 to 5 stars) which can, with-

out loss of generality, be mapped to [0,1]. Hence the predicted degree is a fuzzy

membership degree that encodes preference. This preference degree is however an

outcome of (and not an input to) the recommendation process, and can be arrived

at through various methods discussed below. Before we go on, note that a solution

to the canonical recommendation problem also implies a solution to the problem of

presenting the target user with a personalized list of items, as these can be ranked in

order of preference degree.

5.1 Content-Based Recommendations

The content-based approach to recommendation has its roots in information retrieval

and employs many of the same techniques [77]. All content-based recommender

systems take the content of items into account, which are usually described by vec-

tors of attributes. In a movie recommender system, for example, a movie is typi-

cally represented by a vector that contains the title, the genre, the director, the lead

actors, etc., while a personalized news website can use a term frequency–inverse

document frequency (TF-IDF) representation of every news article. Furthermore,

content-based recommenders rely on a profile of the target user, which can be either

manually entered by the user or derived from past behavior, such as previous rat-

ings or purchases. Some content-based recommender systems provide an interface

that allows users to construct a representation of their own interests. In this case,

the recommendation process, which compares the available items with the user pro-

file, very much resembles information retrieval as discussed in Section 3, with the

user profile playing the role of a query. This is especially so when the items contain

textual information, such as news articles or research papers, and the user profile

consists of keywords or topics that the target user is interested in. In addition, in the

fuzzy research community, systems have been proposed in which users state their

information need with linguistic labels, asserting for instance that weight is a very

important consideration in a new laptop they want to buy, or which research topics

are more or less compatible with their interests [18, 81, 110]. These linguistic labels

are then mapped to fuzzy sets which are compared to a similar fuzzy set representa-

tion of the available items (consumer products, research funding opportunities,. . . ).

This approach’s achilles heel for large scale deployment seems to be the need for

domain experts to evaluate the features of every item and to establish item descrip-

tions as vectors of linguistic labels (fuzzy sets).

Other content-based recommender systems learn the user profile automatically

from past behavior and recommend items that are similar to items purchased or

rated highly by the target user in the past. Implementing this requires a technique
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to compute the similarity between items, which varies with the domain. A common

approach is to use the cosine similarity between the attribute vectors that describe

the items, especially for textual items represented by TF-IDF vectors in term space.

To this end, items are sometimes also represented as vectors in user space, with the

p-th entry of the vector for an item containing the rating that the p-th user gave

to the item, or, alternatively, a 1 if the p-th user purchased the item and a 0 other-

wise. In this case, items are considered similar to the extent to which they have a

common customer or fan base. Regardless of which of these techniques is used to

compute it, let us denote the similarity of items i and j as Sim(i, j), which, without

loss of generality, can be thought of as a fuzzy relation in the set of items I . The

predicted rating P̂CB(u, i) for target user u and target item i can then be computed as

the weighted mean [87]

P̂CB(u, i) =
1

∑
j∈Iu

Sim(i, j) ∑
j∈Iu

(Sim(i, j) ·P(u, j)) (6)

in which Iu is the set of items previously rated by u, and P(u, j) denotes the rating

that user u previously gave to item j. In the fuzzy set community, proposals have

been made to generalize the product in (6) to an arbitrary t-norm, and to replace the

weighted mean by the supremum as the aggregation operation, resulting in predic-

tion formulas such as [79, 110]

P̂CB(u, i) = sup
j∈Iu

T (Sim(i, j),P(u, j)) (7)

To the best of our knowledge, no experimental studies exist on which t-norm/aggre-

gation combination performs best on benchmark datasets.

In content-based recommender systems, items for which no description is avail-

able can not be recommended, and the accuracy of the recommendations heavily

relies on the quality of the representations. Furthermore, the technique to compute

the similarities is domain dependent. For instance, a content-based system devel-

oped for recommendation of reviews or news articles in English requires adaption

before it can be used for other languages as well. Another drawback of content-

based systems is that they tend not to explore interests of the user besides those

expressed in his rating record. In this sense, they can be improved significantly by

(additionally) using collaborative methods, which do not require item descriptions.

5.2 Collaborative Filtering

While content-based methods depend on the computation of similarity between

items, collaborative filtering relies on similarity between users. The main idea is

to recommend items that have been rated highly by users similar to the target user.

Similarity between users is typically assessed based on rating behavior, i.e. users

are considered similar if they (dis)like the same items, and can be computed in the
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same way across different domains. The similarity between users u and v is com-

monly measured with Pearson’s correlation coefficient (PCC) [39]

Sim(u,v) =

∑
j∈Iu∩Iv

(P(u, j)−P(u)) · (P(v, j)−P(v))

√√√√
(

∑
j∈Iu∩Iv

(P(u, j)−P(u))2

)
·

(

∑
j∈Iu∩Iv

(P(v, j)−P(v))2

) (8)

where the summations range over all items j previously rated by both u and v, and

P(u) and P(v) are the average ratings given by u and v so far. The PCC ranges be-

tween −1 and 1. A positive PCC means that both users have similar taste in the

sense that, when one of them rates an item above/below average, the other one does

so too. The more negative the coefficient, the more the rating behaviors are oppo-

sites, and a correlation coefficient of 0 means that there is no relationship between

the two sets of ratings. In practice, most often only users with a positive correlation

with target user u and who have rated target item i are considered in the recommen-

dation process. We denote this set by Ui. The predicted rating P̂CF(u, i) for target

user u and target item i can then be computed as the weighted mean [1]

P̂CF(u, i) =
1

∑
v∈Ui

Sim(u,v) ∑
v∈Ui

(Sim(u,v) ·P(v, i)) (9)

Formula (9) does not take into account the fact that not every user exhibits the same

rating behavior, in the sense that some users might be easy to please and regularly

give high ratings, while others have a more pronounced taste and tend to give lower

ratings more often. The classic collaborative filtering formula accounts for this [1]

P̂CF(u, i) = P(u)+
1

∑
v∈Ui

Sim(u,v) ∑
v∈Ui

(Sim(u,v) · (P(v, i)−P(v))) (10)

Note, however, that such an adaption still has its limitations. For instance, as there is

no correction based on the standard deviation of the scores, users whose scores are

almost always around 3 will influence recommendations to a lesser extent than users

who make use of the entire range from 1 to 5 on a regular basis. More fundamentally,

the theoretical justification of formulas such as (10) is very loose. In principle, user

ratings can only be interpreted in an ordinal way, and imposing any kind of met-

ric on these scores is always to some extent arbitrary. Approaches which are based

on difference in ratings, average ratings, etc., should therefore be seen as heuristics

rather than well-founded methods. One might imagine alternative, more principled

techniques which are more in the spirit of qualitative decision making [25], e.g.

ranking an item i1 higher than an item i2 iff the set of users who have rated i1 higher

than i2 is more similar to the target user than the set of users who have rated i2 higher

than i1. Such methods, however, would probably suffer from other issues, such as
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scalability. As in the domain of information retrieval, it thus seems that there is a

trade-off between looking for techniques that make sense from a theoretical point

of view, and exclusively relying on experimental studies to arrive at techniques that

are efficient and effective in practice.

Similarly as with content-based recommendation, in the fuzzy set community

proposals have been made to replace the product in (9) by an arbitrary t-norm and

to use the supremum to aggregate over the users in the neighborhood of u, resulting

in formulas such as [22, 69, 79]

P̂CF(u, i) = sup
v∈Ui

T (Sim(u,v),P(v, i)) (11)

Formulas (7) and (11) are very similar in structure. In (7) the supremum ranges over

all items j previously rated by target user u, and their similarity with target item i

is taken into account. In (11) on the other hand, the supremum ranges over all users

v who are already familiar with the target item i; in this case the similarity between

users u and v is an important factor.

In [69], Formula (11) is used for a web page recommender system that dynami-

cally appends a set of links to the contents of a web document returned in response

to the most recent query of an ongoing user session. Recommendations are made

based on access data instead of rating behavior. User sessions are represented as

attribute vectors with the p-th attribute equal to 1 if the p-th url was accessed during

the session, and 0 otherwise. To limit the number of user sessions over which (11)

ranges, the set of user sessions from the access log files is replaced by a smaller set

of prototypical user sessions, which represent clusters found in the original set. The

attribute vector describing such a prototypical user session or cluster has values be-

tween 0 and 1; the p-th attribute indicates the relative frequency with which the p-th

url was visited in all user sessions belonging to the clusters. Sim(u,v) is computed

as the cosine similarity of the vectors for u and v instead of the PCC, and min is

used as the t-norm in (11). The authors compare their approach with the results of a

nearest profile based recommendation approach (recommend the urls visited in the

prototypical user session that is most similar to the ongoing user session) and with a

k-nearest neighbor approach followed by top-n recommendations (recommend the

n most frequently visited urls from the k most similar prototypical user sessions).

They report a small drop in precision which is more than compensated for by an in-

crease in recall. The question whether perhaps even better results could be obtained

with Formula (9) remains open.

5.3 Social Recommenders

When a web application with a built-in recommender offers a social networking

component which enables its users to form a trust network, it can generate more

personalized recommendations by combining data from the user profiles (ratings)

with information from the social network. These are the so-called trust-enhanced or
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social recommendation systems. Ratings are predicted in a style similar to collabora-

tive filtering, with the similarity score Sim(u,v) replaced by a trust score Trust(u,v)
corresponding to the degree to which user u trusts user v. The trust-based versions

of (9) and (10) are at the heart of the trust-enhanced recommendation algorithms

of Golbeck et al. [35] and Massa et al. [61] respectively. If no direct trust score is

available (because u does not know v), then it can often still be derived through trust

propagation and aggregation in the online network, inspired by the way in which

humans often seek recommendations in real life. For instance, the trust score of u

in v can be estimated as a weighted mean of the trust scores of other users in v,

weighted by the trust of v in those other users [35, 61]

T̂rust(u,v) =
1

∑
w∈U

Trust(u,w) ∑
w∈U

(Trust(u,w) ·Trust(w,v)) (12)

Formula (12) only considers one step propagation, i.e., where u and v are directly

connected through a third party w; extensions that take into account longer prop-

agation paths are possible as well. Propagation is modeled in (12) by the prod-

uct. A proposal has been made to generalize this to an arbitrary t-norm and to use

ordered weighting averaging operators that can deal with gradual trust as well as

distrust [106, 105]. Even though some of the initial experimental results are promis-

ing, a proper evaluation of the effect of different t-norms on the performance of a

trust-enhanced recommender system is currently hampered by the lack of a pub-

licly available benchmark dataset that contains both item ratings as well as a social

network with gradual trust relations.

Moreover, one may wonder what the precise meaning of a trust degree is, why a

formula such as (12) is compatible with this meaning, and how such degrees can be

acquired in practice. The basic intuition seems to be that friends are more likely to

have similar interests than random users, which would suggest to use trust mainly

to adapt the Pearson correlation in the collaborative filtering model, such that the

degree of similarity between friends is boosted. The notion of trust then takes a role

which is similar in spirit to that of a prior probability in Bayesian decision theory.

6 Conclusions

In this chapter, we have looked at the use of fuzzy set theory in three research ar-

eas that are related to the world wide web: information retrieval, the semantic web,

and recommender systems. While the motivation for using fuzzy techniques is very

natural in each of these domains, the most commonly used techniques are nonethe-

less still based on other approaches. This can partly be explained by the fact that

more experimental evidence is needed to demonstrate whether fuzzy methods are

really able to outperform state-of-the-art approaches. In addition, the assessment

of the impact of fuzzy methods on the web is obscured by the fact that sometimes

methods are used which are based on its ideas, without making use of its vocabulary.



Fuzzy Methods on the Web: A Critical Discussion 259

To stimulate the future impact of fuzzy approaches to web intelligence, we believe

that more efforts are needed to lay bare what fuzzy set theory really has to offer

in this domain, beyond the (important) fact that it allows to develop elegant and

intuitively appealing methods.

Information retrieval research is dominated by algebraic (vector space model)

and probabilistic (language models) approaches. Fuzzy set theory has mainly been

applied to implement more flexible ways of formulating queries, and to develop

semantically informed retrieval models for particular narrow domains. In addition,

fuzzy rule based methods have sometimes proven useful for translating human in-

tuitions on how search results should be manipulated, in domains where sufficient

training data is missing.

In the last decade, Tim Berners-Lee’s vision of a semantic web has drawn many

researchers to work on fuzzy versions of its main components. In particular, re-

search on fuzzy description logics has substantially progressed, both at the theo-

retical (more expressive formalisms) and at the practical level (more efficient rea-

soners). More recently, there has also been a renewed interest in fuzzy logic pro-

gramming, in relation to the semantic web. There exists some confusion, however,

between the need for flexible querying, the presence of vague concepts, the presence

of uncertainty, and the need for fuzziness at the representation level. While convinc-

ing applications of fuzzy description logics have already been developed, we are not

aware of any applications that are in the spirit of the semantic web, e.g. dealing with

problems that result from linking different fuzzy description logics that have been

developed independently. More work is needed to clarify the advantages of fuzzy

description logics over extensions of traditional web information systems that are

endowed with flexible querying capabilities.

Recommender systems aim to solve a problem that is familiar to the fuzzy set

community, namely predicting the degree to which a target user might like a tar-

get item. Most solutions proposed in the fuzzy set community are very similar in

structure to those proposed outside. One potential advantage that fuzzy set theory

has to offer is its wider variety of operators, compared with traditional approaches

that tend to limit themselves to the use of the product for conjunction and the use

of the mean for aggregation. The proof of the pudding is in the eating though, in

this case, whether some of these other operators can lead to more and better rec-

ommendations in practice. Since the first proposals for fuzzy logic recommendation

techniques were made, a variety of benchmark datasets have become available. Even

though the nature of these datasets does not allow yet to empirically evaluate the use

of fuzzy methods for trust-enhanced recommender systems, an evaluation of fuzzy

methods for content-based and collaborative filtering seems a feasible and logical

next step.
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Using Fuzzy and Interval-Valued Fuzzy
Sets in Automatic Text Categorization
Based on a Fuzzy Information
Retrieval Model

S�lawomir Zadro żny, Janusz Kacprzyk, and Katarzyna Nowacka

Abstract. We consider the problem of categorization of the textual docu-
ments which is relevant and challenging both from the point o f view of theory
and applications. We assume a perspective (cf. Zadrożny and Nowacka [28])
that the problem is seen as a sort of the basic information retrieval task, that
is, of finding documents relevant to a given query. Specifically, we employ
here some extension of a fuzzy logic based information retrieval model due
to Nowacka, Kacprzyk and Zadrożny [21] in which the representation of doc-
uments and queries is based on Zadeh’s linguistic statements of the type X
IS A and their matching is computed by pairs of the necessity and possibil-
ity measures. We show the use of interval valued fuzzy sets to implement the
new method proposed. Moreover, these new concepts are proposed as tools to
adapt an inductive learning method of Koriche and Quinqueton [15] for the
purposes of text categorization in the case of imprecise (fuzzy) information.

Keywords: text categorization, information retrieval, information retrieval
fuzzy model, fuzzy set, interval valued fuzzy set, version space, inductive
learning.

1 Introduction

An overwhelming majority of information that exists in the present world
is contained in textual documents. More and more of them are available in
electronic form, notably via the Internet. An effective and efficient use of
such vast information resources boils down to being able to quickly retrieve
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documents meeting the users’ information needs, preferences and intentions.
This is a problem traditionally studied in the area of information retrieval.
The basic issues concern first a proper representation of documents and of
(human) information needs (queries), and then proper ways of matching them
against each other. Various approaches have been developed to solve these
problems and they are usually referred to as information retrieval models. It
is easy to see that, first, textual documents are usually strongly related to
natural language, and – second – natural language is the only fully natural
means of articulation and communication of the human beings. Since natural
language is inherently imprecise, fuzzy fuzzy logic has been find useful in this
area quite early. However there still does not seem to exist a comprehensive
model dealing with the main tasks of information retrieval using the core
of fuzzy logic meant in the wide sense, i.e., linguistic statements introduced
by Zadeh [26, 25]. Recently we have made an attempt to close this gap and
proposed such a model [28] the advantage of which has been shown as the
possibility to simultaneously grasp the imprecision and uncertainty within
the same theoretical framework.

Another important problem concerning the collections of documents is
their proper organization. One of the key tasks is here a proper grouping
of documents so that they form coherent subcollections. Due to the growing
size of document collections, the often employed human grouping may be
impossible due to financial and/or time constraints, and automatic methods
may only be feasible. Usually, some classification techniques are employed
to solve this problem. A set of documents correctly assigned to particular
groups (categories) is presented to the system and it learns the rules of a
proper classification of a new document without known assignment. This
problem is usually, also in this paper, referred to as text categorization. It
is easy to notice that some tasks are common for the text categorization
and the basic information retrieval task of finding documents relevant with
respect to a query. For example, categories may be treated as documents and
the new documents can be classified as queries. Then, provided that some
representation is assumed for the categories and documents, the assignment
of a document to a given category may be equated with whether a document
is relevant to a query.

In this paper we follow this line of reasoning and discuss similarities be-
tween the retrieval of relevant documents and the text categorization using
our fuzzy information retrieval model. The construction of the categorization
algorithm and its connection with the fuzzy information retrieval model are
presented, together with results of some computational experiments.

In Section 2 we recall some basic concepts and properties concerning fuzzy
logic, including the concept of the interval-valued fuzzy set. Section 3 briefly
presents the essence of our fuzzy information retrieval model. Section 4 pro-
vides a brief introduction to text categorization. In Section 5 the idea of the
inductive learning algorithm proposed in [15] is presented with its fuzzy ex-
tension. Section 6 presents our algorithm for text categorization, based on
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the inductive learning algorithm proposed in [15], as well as results of the
computational experiments. The appendix contains a list of stopwords used
in the computational experiments.

2 B asic Concepts of Fuzzy Logic

In this section we remind the basic concepts of the broadly meant fuzzy logic
which will be later needed to describe our fuzzy information retrieval model
and text categorization algorithm.

A fuzzy set F in X = {x}, will be characterized and equated with its
membership function µ F : X −→ [0, 1] such that µF (x) ∈ [0, 1] is the grade
of membership of x ∈ X in F , from full membership to full non-membership,
through all intermediate values. For a finite X = {x1, . . . , xn} we write A =
µA(x1)/x1 + · · · + µA(xn)/xn. Moreover, we denote a ∧ b = min(a, b) and
a ∨ b = max(a, b). Other, more specific notation will be given when needed.

The counting of elements is crucial for our discussion, and we will use the
basic, classic concept of a scalar cardinality of a fuzzy set, so-called Σ-Count
defined as follows:

card(F ) = Σ-Count(F ) =
∑

i

µF (xi) (1)

The term fuzzy logic is not uniquely meant and there are basic meanings
adopted: fuzzy logic in the narrow sense, which is some sort of multiple
valued logic with some operations and definitions that have some specific
interpretations, and fuzzy logic in the broad sense meant as a foundation of
imprecise reasoninh/ In this work will be follow the second view, which is the
original Zadeh’s one, and – to be more specific – we will consider fuzzy logic
in terms of Zadeh’s calculus of linguistic statements.

The atomic formula in that calculus of linguistic statements takes the form:

X IS F (2)

where X denotes a (linguistic) variable [25] and F ∈ F(U) a fuzzy set in the
universe of discourse U .

The truth of (2) is considered under a valuation (knowledge) of the variable
X expressed by another expression of type (2), say X IS E, E ∈ F(U).

It is assumed that X IS E generates a possibility distribution πE : U →
[0, 1] in the space of possible values of X , and (cf. Zadeh [26])

πE(x) = µE(x) (3)

The truth of X IS F under the valuation (knowledge) X IS E may be eval-
uated by a pair of values of possibility and necessity measures, ΠE and NE ,
related to the possibility distribution πE (3):
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Π E (F ) = sup
x∈U

min(π E(x), µF (x)) (4)

NE(F ) = inf
x∈U

max(1 − πE(x), µF (x)) (5)

More generally, we can assume a fuzzy truth value but this case will not be
considered here.

The linguistic statements (2) may be combined using logical connectives.
For example the conjunction X1 IS E1∧ . . .Xn IS En, Ei ∈ F(Ui), with each
Xi IS Ei generating πEi

by (3), generates a joint possibility distribution π on
U = U1 × . . . × Un such that:

π(x) = min(πE1
(x1), . . . , πEn

(xn)), x = (x1, . . . , xn) ∈ U (6)

assuming the non-interactiveness [26] of the particular variables Xi. Then
the truth of the conjunction of n linguistic statements Xi IS Fi, i = 1, . . . , n,
Fi ∈ F(Ui), may be assessed by the pair of measures:

ΠE1×...×En
(F1 × . . . × Fn) = min(ΠE1

(F1), . . . , ΠEn
(Fn)) (7)

NE1×...×En
(F1 × . . . × Fn) = min(NE1

(F1), . . . ,NEn
(Fn)) (8)

Zadeh introduced also the extended forms of statements (2) [26, 7], i.e., qual-

ified statements, which involve some qualifiers exemplified by importances
or hedges. These qualified statements are relevant for our fuzzy information
retrieval model but will not be dealt with here due to lack of space.

Among many extensions of the basic concept of a fuzzy set, exemplified
by an l-fuzzy set, type 2 (n, in general) fuzzy set, flou set, intuitionistic fuzzy
set, etc, of a particular importance and usefulness for our purposes is an
interval-valued fuzzy set H in the universe X is defined by two membership
functions, lower µ

H
and upper µH :

µ
H

, µH : X −→ [0, 1] (9)

∀x ∈ X 0 ≤ µ
H

(x) ≤ µH(x) ≤ 1 (10)

Equivalently an interval-valued fuzzy set may be interpreted as having mem-
bership function, values of which are intervals [µ(x), µ(x)] instead of single
numbers. The basic operations of the complement, intersection and union on
the interval-valued fuzzy sets are given as the operations on interval-valued

truth values as:

[µ(x), µ(x)] = [1 − µ(x), 1 − µ(x)] (11)

[µ(x), µ(x)] ∧ [µ(y), µ(y)] = [min(µ(x), µ(y)), min(µ(x), µ(y)] (12)

[µ(x), µ(x)] ∨ [µ(y), µ(y)] = [max(µ(x), µ(y)), max(µ(x), µ(y)] (13)

The cardinality of an interval-valued fuzzy set H may be defined using the
Σ-Count concept (1):
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card(H ) =

[

∑

i

µ
H

(xi),
∑

i

µH (xi)

]

(14)

We will not deal with more definitions and properties of interval-valued fuzzy
sets, and for more information the reader is referred to, for instance, Cornelis,
Deschrijver and Kerre [4], Deschrijver [5] or Deschrijver and Kerre [6].

3 A Fu z z y Information Retrieval Model

In our previous work [21] we proposed a fuzzy logic based information re-
trieval model which seemed to be a very general and comprehensive approach
to information retrieval using fuzzy logic. We also refer the reader to our pre-
vious papers [29, 2, 13, 30] showing the steps leading to the model presented
in [21]. It has been further developed in our next paper [28]. Our starting
point is the classic Boolean model (cf., e.g., [1]) and its fuzzy logic based
extension, notably due to Bordogna and Pasi [3].

To represent documents and queries, linguistic statements X IS A (2) are
used, where X is a linguistic variable [25] and A its linguistic value modelled
by a fuzzy set which will also be denoted as A. For each keyword ti a linguistic
variable Xi is defined which represents importance of this keyword in the
representation of a query/document.

The statement Xi IS A is a generic form of the expressions exemplified by:

“Keyword ti is fairly important for the representation of the content of the
document (query)”

so that we can model imprecision concerning the actual importance of the
keywords.

It is quite obvious that besides imprecision also uncertainty is usually re-
lated to the representation of both queries and documents. Thus the certainty

qualified statements [26, 7] are employed that make it possible to take uncer-
tainty into account. During the actual retrieval the certainty qualified state-
ments are transformed to qualifier-free forms of (2) using rules discussed, e.g.,
by Dubois and Prade [7]. More details on the representation of uncertainty
within our model may be found in our other works [21, 14, 28].

In the model considered a document is represented as a compound lin-
guistic statement built of expressions (2). The most typical form of such a
statement is the conjunction:

(X1 IS A1) ∧ (X2 IS A2) ∧ . . . ∧ (Xn IS An) (15)

where Xi is a linguistic variable expressing the importance of keyword ti
and Ai is its linguistic value such as “very important”, “important to a de-
gree around 0.8”, etc.; n is the number of all keywords used to index the
documents.
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The linguistic values Ai are modelled by fuzzy sets defined in the interval
[0, 1] which is assumed as the range of importance degrees. Thus each such a
statement generates a possibility distribution πA j

on the space of importance
degrees of a given keyword, according to (3). The whole document represented
by (15) generates a multidimensional possibility distribution as in (6):

πD (x1, . . . , xn) = min(µA1
(x1), . . . , µAn

(xn)) (16)

assuming the non-interactiveness of variables corresponding to the impor-
tances of particular keywords.

A query is also represented as a compound linguistic statement built of
the statements X IS A (2). A query is treated as a fuzzy set Q in a multidi-
mensional space [0, 1]n. In case a query Q is a conjunction such as (15), we
have:

µQ(x1, . . . , xn) = min(µA1
(x1), . . . , µAn

(xn)) (17)

The relevance of a document against a query is identified with the truth
degree of the statement Q representing the query under the assumption that
the statement D representing the document is true.

We use the pair of necessity and possibility values (4)–(5), and obtain:

(ND(Q), ΠD(Q)) (18)

The documents obtained as a response to a query are lexicographically or-
dered on these pairs of values. Thus, in our model the matching degree ex-
presses the possibility and necessity of matching between a document and a
query.

This presentation of the theoretical foundations of our model is very brief,
just containing the concept needed. For more information on other elements
of the model as well as many pragmatic aspects of its use we refer the reader
to our works [21, 28]. The most important is the question how the shapes
of the fuzzy sets Ai in (15) are to be determined. Here we are particularly
interested in an automatic indexing of the documents with linguistic values
Ai. In [21, 28] we proposed to use the term weighting schemes of the vector
space model as the starting point. In what follows we present one of the
variants of this approach which will be used in our categorization algorithm
in Section 4.

The weights of keywords in the documents may be determined in many
different ways. Numerous schemes were proposed in the framework of the
vector space model in particular. A concise summarization of most of them is
given in the paper by Salton and Buckley [23]. They distinguish 3 components
of a compound keyword weight accounting respectively for:

• frequency of the keyword in the document,
• proportion of the documents in the collection in which the keyword appears

at least once, and
• normalization.
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Each of these components may be expressed in a different way and, in par-
ticular, may be omitted in an overall weighting scheme.

Tables 1-3 show some typical forms of the particular components. In order
to obtain the overall weight the representations (values) of selected compo-
nents should be multiplied. Different weighting schemes obtained in this way
are denoted with a 3-letter code where each letter comes from the “Code”
column of subsequent table. For example tfx denotes the popular tf × IDF
scheme (without normalization).

All the weights obtained by a combination of the three components listed
in Tables 1–3 are normalized by max, i.e., the weight of a keyword is divided
by the maximum weight of all other keywords in the same document.

Table 1 Variants of the first component of the compound term weighting scheme

Code Value Description

b 0/1 binary weight: =1 if a keyword appears in
a document or query and = 0 otherwise

t tf frequency of a keyword in a docu-
ment/query, i.e. the number of times it ap-
pears

n 0.5 + 0.5
(

tf

maxi tfi

)

normalized frequency of a keyword

Table 2 Variants of the second component of the compound term weighting scheme

Code Value Description

x 1 this component is omitted

f log N
n

inverse document frequency (IDF), N - number
of all documents in the collection, n- number of
documents containing the keyword

p log N−n
n

modified version of IDF having a sound proba-
bilistic justification

Table 3 Variants of the third component of the compound term weighting scheme

Code Value Description

x 1 no normalization

c 1
√

∑

i w2

i

normalization by the Euclidean norm of the vec-
tor; wi is the weight of an i-th keyword
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In [21] we proposed the following automatic indexing procedure leading
to the representation of documents in the form of (15). For each keyword ti
its weight Di is computed using the selected scheme, i.e., a standard repre-
sentation of the vector space model is derived. Then the particular weights
(vectors coordinates) are “fuzzified” using one of the proposed approaches.
Here we present just one such an approach – more approaches, including also
those concerning the query representation, are discussed in [21, 28].

In the indexing approach adopted also in our categorization algorithm the
triangular membership functions are assumed for the linguistic values Ai in
(15). More specifically, we use the following membership functions:

µ Ai
(x) = 1 − λ | x − Di | (19)

where Di denotes the weight of the keyword computed using a selected
weighting scheme.

The linguistic term modelled by such a fuzzy set (its equivalent member-
ship function) may be interpreted as “important to a degree around Di”.
There is a parameter λ which determines how “narrow” or “wide” the mem-
bership function is around Di.

There are many practical aspects of the proposed model which may be ad-
dressed depending on the retrieval context. Besides the indexing procedure,
as mentioned above, another important question is the use of a proper aggre-
gation scheme. In the basic form of the model the theoretical considerations
justify the use of the minimum operator to aggregate the matching degrees
corresponding to particular keywords (cf. (7)–(8)). This works well also in
case of the categorization algorithm proposed in this paper since the repre-
sentation of documents is obtained using a very small set of carefully selected
keywords. However, in a typical retrieval scenario there are no such strong
hints as to the choice of the keywords for representation. Thus much larger
sets of keywords are used and the simultaneous use of the minimum operator
in (7)-(8) often leads to poor results. These and other pragmatic aspects of
the model will be discussed in our forthcoming papers (cf. e.g. [21, 14]).

4 B asic Aspects of Text Categorization

Basically the task of text categorization task may be briefly stated as follows.
There is a fixed set of categories and the set of documents. The problem con-
sists in assigning the documents to the categories or, equivalently, assigning
the categories to the documents. Some versions of this general task may be
distinguished depending on the total number of categories and the number of
categories that may be assigned to a given document. The former distinction
leads to the single-class versus multi-class categorization and the latter to
the single-label versus multi-label categorization.

The practical significance of this task is best exemplified with the Internet
services such as Yahoo! Directory (http://dir.yahoo.com/) or Open Directory
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Project (ODP, http://www.dmoz.org) which try to categorize all documents
available on the Web. However many apparently unrelated tasks may be
cast in the form fitting the general text categorization scenario (see, e.g.,
[24]). Categorization may be carried out manually by some hired experts.
However it is often impractical a solution (cf. the ODP project as a kind of
an exception) and some automatic means are desirable and looked for. In
the knowledge engineering framework experts are still involved but instead
of directly assigning categories to documents they are constructing a set of
categorization rules (an expert system) to be automatically executed against
the documents in question. This is still an expensive solution and recently
the broadly meant machine learning based approaches are gaining a wider
acceptance as a preferable approach.

Basically, the essence of this class of approaches boils down to the treating
of the categorization task as an example of the general classification problem
(supervised learning). Thus a training set of documents with known categories
is assumed. It is used to determine for each category a criterion making it
possible later to decide if a new document of an unknown category should be
classified under this category.

In order to apply one of the possible classifier construction methods a
representation of documents has to be established. Usually, directly or indi-
rectly, each document is represented by a vector of keywords weights. Then,
any of numerous classifier construction algorithms may be applied, including
rule-based systems, decision trees, artificial neural networks, support vector
machines etc.

In our computational experiments, cf. Section 6, we use the Reuters-21578
corpus [18] that is widely accepted as a testbed for text categorization algo-
rithms. This is a collection of news that are usually classified to a number
of categories. Thus, this calls for methods dealing with a multi-class and
multi-label case. The multi-label categorization requires the solution of an
additional problem while building a classifier. Namely, a classifier such as the
one considered here produces for a document a list of categories to which it
possibly belongs. These categories are ordered non-increasingly according to
their matching with the document. Then, a decision has to be made which of
them, or more precisely, how many of those from the top of the list are to be
assigned to a document under consideration. This is referred to as a thresh-

olding strategy. We will not deal here with the details related to thresholding
strategies; see [27] for an approach proposed by us to apply here elements of
fuzzy logic.

5 D escription of Learning Categories

A distinguishing feature of our approach to text categorization is its use of
concepts that have been introduced in our fuzzy information retrieval model,
presented in Section 3. Moreover, our approach belong to to the class of
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typical machine learning approaches (cf. a comprehensive state of the art
exposition in Koronacki et al. [16, 17]).

More specifically, our approach is inspired by the work of Koriche and
Quinqueton [15] whose approach fits the general version space paradigm of
inductive learning – cf. Mitchell [19]. Namely, a set of positive and negative
examples E as well as a space of the the concepts under consideration C
are assumed. The version space of a positive (negative) example is a set of
concepts that are consistent (inconsistent) with this example. The concepts
inferred from the set of examples E are those belonging to the intersection of
the version spaces of all examples. These concepts may be then treated as a
description of the class of positive examples. The problem with the basic form
of this paradigm is that the intersection of the atomic spaces of all examples
may be empty. This happens when the data (set of examples) is noisy, not
fully consistent which is rather a rule than exception in real life. Thus in
[15] it is proposed to replace the intersection operation with a more general
merging operator based on the notion of a distance between the concepts.
Some theoretical results and an inductive learning algorithm for a specific
class of concepts are provided.

Let us briefly recall the essence of Koriche and Quinqueton’s [15] approach
which is originally meant for the classical binary logic setting. We will use a
modified terminology that will better suit our purpose and contaxt.

A finite set V = {v 1, . . . , vn} of Boolean variables is considered. An atom

li is either a variable v or its negation ¬v. A disjunctive normal form (DNF)
formula φ is a disjunction φ = c1 ∨ c2 ∨ . . . ∨ cm of several conjunctions of
atoms ci = l1∧ l2∧ . . .∧ lk (these conjunctions will be hereafter referred to as
conjuncts). Thus a space of concepts under consideration is the space of the
DNF formulas defined for a given alphabet V . In fact, due to the computa-
tional complexity of the resulting algorithms the space has to be constrained.
A positive integer k is assumed and only k-conjuncts, i.e., conjuncts that con-
tain at most k literals, are considered as components of the DNF formulas.
Thus, eventually the concept space is here the space of k-DNF formulas, i.e.,
the DNF formulas composed of k-terms. We assume here and later on that
k is fixed.

In this approach to inductive learning it is assumed that there are two
classes (categories): positive and negative. The examples are assumed to be
binary vectors in the space {0, 1}n+1, where the last coordinate corresponds
to the class of the example: “1” and “0” denote a positive and negative
example, respectively.

The examples are represented within the above mentioned logical frame-
work of the k-DNF formulas in the following way. An instance is a map
I from V to {0, 1}. Then, an example e ∈ E is represented by a pair (Ie, ve)
where Ie is an instance and ve is the value of a variable corresponding to the
class assigned to the example. An example e is called positive if ve = 1 and
negative if ve = 0. An example e and a formula φ are said to be consistent if
Ie is a logical model of φ. Otherwise, e is said to be inconsistent with φ.
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For a positive (negative) example e, the atomic version space V S(e), is
set of all k-DNF formulas (concepts) that are consistent (inconsistent) with
e. The version space V S(E) of a set of examples E is the set of all k-DNF
formulas that are consistent with every positive example in E and that are
inconsistent with every negative example in E. It may be easily shown that:

V S(E) =
⋂

e ∈E

V S(e) (20)

Often for a real life set of examples its version space is empty. The following
approach is proposed in [15] as a remedy to this problem. A distance d(φ, ψ)
between two k-DNF formulas φ and ψ is defined in terms of the number of
conjuncts they differ at:

d(φ, ψ) =| (φ ∪ ψ) − (φ ∩ ψ) |

where the formulas are treated as sets of their conjuncts and | · | denotes the
cardinality of the set.

Next, the distance d(φ, e) between a k-DNF formula φ and an example e
is defined as

d(φ, e) = min
ψ∈V S(e)

d(φ, ψ)

and finally the distance d(φ, E) between a k-DNF formula and a set of ex-
amples E is defined as

d(φ, E) =
∑

e∈E

d(φ, e)

We use here the same symbol d to denote all these distances even if they are
defined in different spaces. However a proper interpretation is obvious due to
the arguments consistently denoted with different symbols standing for the
formulas (φ, ψ), examples (e), and sets of examples (E).

Now, instead of using the version space V S(E) (see (20)) as a result of the
inductive learning, the following set of the k-DNF formulas φ is used:

∆(E) = {φ : φ = arg min
ψ

d(ψ, E)}

The set ∆(E) is guaranteed to be non-empty and reduces to V S(E) if that
is non-empty.

In order to devise an algorithm for determining the elements of the set
∆(E) some additional definitions are needed. Basically, the algorithm aims
at characterizing the quality of conjuncts so as then the best of them could
be selected to construct the formulas φ belonging to the set ∆(E). For a
given k-conjunct c its extension E(c) in the set of examples E is a subset of
E comprising examples that are consistent with c:

E(c) = {(Ie, ve) ∈ E : Ie is a model of c} (21)
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A weight w(c, E) of c in E is the cardinality of the set E(c):

w(c, E) =| E(c) | (22)

Finally, a cover of E is a list of k-conjuncts ρ = (c1, . . . , cr ) such that every
positive example in E is consistent with at least one conjunct ci from ρ.

In Koriche and Quinqueton [15] it is shown how these notions are related
to the distance d(φ, E) between the k-DNF formulas and sets of examples
and further to construct an approximate algorithm to construct the formulas
belonging to the set ∆(E). We will omit here the details, and will show how
the idea of the above approach may be adapted to the fuzzy case, notably for
the purposes of text categorization in the framework of our fuzzy informa-
tion retrieval model. We will then present a version of the earlier mentioned
algorithm adapted to our modified setting.

Our reinterpretation of this approach in terms of fuzzy logic, which is the
base for our fuzzy information retrieval model briefly presented in section 3,
is as follows.

The atoms take now the form of expressions:

Xi IS Aj (23)

where Xi is a linguistic variable concerning the importance of a keyword ti,
i = 1, . . . , n, and Aj is its label represented by a fuzzy set in the interval
[0,1]. The set of the linguistic variables Xi will be denoted as V .

A k-conjunct c is the conjunction of k atoms:

c = (X1 IS A1) ∧ (X2 IS A2) ∧ . . . ∧ (Xk IS Ak ) (24)

where each Xi refers to a different keyword.
A vector (x1, x2, . . . , xn) ∈ [0, 1]n is compatible with the conjunct c =

X1 IS A1 ∧ X2 IS A2 ∧ . . . ∧ Xk IS Ak to the degree:

µc(x1, . . . , xn) = min(µA1
(x1), µA2

(x2), . . . , µAk
(xk)) (25)

A k-DNF formula φ is the disjunction of k-conjuncts. These formulas com-
prise the concept space.

A vector (x1, x2, . . . , xn) ∈ [0, 1]n is compatible with a DNF formula:

φ = c1 ∨ c2 ∨ . . . ∨ cm (26)

to the degree:

µφ(x1, . . . , xn) = max(µc1
(x1, . . . , xm), . . . , µcm

(x1, . . . , xm)) (27)

A DNF formula φ will later be identified with a fuzzy set Ωφ in the universe
U = [0, 1]n with the membership function determined by using equation (27),
i.e.:
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Ω φ ∈ F([0, 1]n) (28)

µΩφ
(x1, . . . , xn) = µφ(x1, . . . , xn) (29)

where F(U) denotes the family of fuzzy sets defined in an universe U .
An instance I is the conjunct:

c = X1 IS A1 ∧ X2 IS A2 ∧ . . . ∧ Xn IS An (30)

where the number of atoms n is equal to the number of keywords used to
index the documents in given collection.

Such a conjunct generates a possibility distribution πI on U = [0, 1]n

defined as follows. Each atom (23) generates a possibility distribution:

πi(x) = πXi IS Aj
(x) = µAj

(x) (31)

Then overall possibility distribution πI is given by:

πI(x1, x2, . . . , xn) = min(π1(x1), π2(x2), . . . , πn(xn)) (32)

assuming non-interactivity of particular variables. An instance I may be iden-
tified with the possibility distribution πI defined by (32).

An instance I is said to be consistent with a formula φ to the degree

expressed by a pair
(NI(φ), ΠI(φ)) (33)

where

NI(φ) = NI(Ωφ) (34)

ΠI(φ) = ΠI(Ωφ) (35)

and Ωφ is defined by (28)–(29) while ΠI and NI are, respectively, the possi-
bility and necessity measures related to the possibility distribution πI defined
by (32).

An instance I is said to be inconsistent with a formula φ to the degree

expressed by a pair
(NI(φ), ΠI(φ)) (36)

where

NI(φ) = NI(Ωφ) (37)

ΠI(φ) = ΠI(Ωφ) (38)

and A denotes a complement of a fuzzy set A.
It may be noticed that if (33) is treated as the membership degree to

an interval-valued fuzzy set then (36) is its counterpart obtained using the
complement operation (11) of interval-valued fuzzy sets.
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For given category g ∈ G, an example e is a pair (Ie, ve), where Ie is an
instance and ve is a valuation of a binary variable such that ve = 1 if Ie is
assigned the category g and ve = 0 otherwise. For ve = 1 and ve = 0 the
example is called positive and negative, respectively. An example e = (Ie, ve)
is consistent with a formula φ to the degree to which the instance Ie is
consistent with φ.

Notice that it may be useful to define the extension of a conjunct c, simi-
larly to (21), as an interval-valued fuzzy set E(c):

E(c) = {(e, µ
E(c)

, µE(c))} (39)

e = (Ie, ve) (40)

µ
E(c)

(e) = NIe
(c) (41)

µE(c)(e) = ΠIe
(c) (42)

where the right hand sides of formulas (41)–(42) are special cases of (34)–(35)
for φ composed of just one conjunct c.

Similarly to (22) we define the weight w(c, E) of a conjunct c in a set
of examples E as the cardinality of the set E(c) using the cardinality of
interval-valued fuzzy sets defined by (14):

w(c, E) =

[

∑

i

µ
E(c)

(xi),
∑

i

µE(c)(xi)

]

(43)

Given a positive integer k and a positive example e+, the fuzzy atomic version

space of e+ with respect to k, denoted V S(e+), may be defined as an interval
valued fuzzy set of k-DNF formulas φ with which e+ is consistent to some
degree, i.e., such that:

µV S(e+ )(φ) = (NI
e+ (φ), ΠI

e+ (φ)) (44)

Similarly, for a negative example e− its fuzzy atomic version space with re-
spect to k is an interval valued fuzzy set of k-DNF formulas φ with which e−

is inconsistent to some degree, i.e., such that:

µV S(e−)(φ) = (NI
e−

(φ), ΠI
e−

(φ)) (45)

Given a set of examples E, the fuzzy version space of E with respect to
k, denoted V S(E), is the interval-valued fuzzy set of the k-DNF formulas
φ with the membership function determined by the degree to which every
positive example in E is consistent with φ and every negative example in E
is inconsistent with φ. The set V S(E) may be expressed as

V S(E) =
⋂

e∈E

V S(e) (46)
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where
⋂

is an obvious generalization of the interval-valued fuzzy sets inter-
section (conjunction) (12).

A set of examples (a training set) E is called consistent with respect to the
set of the k-DNF formulas if there exists φ with a high enough membership
degree to ∈ V S(E), and inconsistent otherwise. The threshold value related
to the notion of “high enough” is to be a parameter of the proposed methods.
When E is consistent then a concept φ with a maximum membership degree
should be reasonably assumed as describing E.

6 T h e Algorithm

In our proposed approach to the text categorization we proceed as follows.
In the learning phase, for each category g ∈ G a k-DNF formula describing
this category is constructed. The set of documents to which a given cate-
gory is assigned in the training set forms the set of positive examples. The
remaining documents form the set of negative examples and the algorithm
described below is applied to induce a k-DNF formula. The same is repeated
for each category g ∈ G. During the classification phase a new document with
unknown category is treated as an instance and its consistency with all k-
DNF formulas representing particular categories is checked. This consistency
is expressed by an interval defined by (33). Then the categories are ordered
in such a way that most consistent of them are at the top of the list. The
details of all steps are given below.

6.1 Learning Phase

In order to construct a k-DNF formula we adopt the basic idea of the greedy
algorithm proposed in Koriche and Quinqueton [15]. Namely, the best con-
juncts are iteratively selected to form a k-DNF formula where the quality of
a conjunct is defined by how they are consistent with the positive examples
and inconsistent with the negative.

The particular steps of the algorithm, repeated for each category g ∈ G in
turn, may be described as follows:

Input: the training set of documents of known membership to particular
categories g ∈ G; parameters k, L and S
Output: k-DNF formulas describing each category

1. create representations of all documents using selected weighting scheme
[23]

2. create a set of positive Ep and negative En examples
3. select a subset of keywords to describe the documents
4. generate all k-conjuncts to be used to construct a k-DNF formula
5. while Ep is non-empty do the following
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a. find a best conjunct and add it to the resulting k-DNF formula φ

b. remove from E p all positive examples consistent enough with the se-
lected conjunct

c. remove the selected conjunct from the list of all considered conjuncts

6. return φ – the disjunction of all selected conjuncts

This is a very general description of the algorithm. Now we will present details
of the particular steps, taking into account specificity of the data set that was
used for the computational experiments, namely the Reuters corpus [18].

Step 1

In order to construct a classifier, first the representation of documents in a
training data set have to be established. Here we use the representation pro-
posed in our fuzzy information retrieval model, cf. section 3. Thus documents
are represented using statements (15) that are interpreted for the purposes of
the inductive learning as instances (30). As suggested in Section 3, practically
the linguistic values in (15) (and thus also in (30)) in the representation of a
document may be determined using one of the weighting schemes presented
in Tables 1–3 (in our computational experiment we have chosen one of them;
see Subsection 6.3).

Step 2

Basically, all documents in the training data set belonging to a given category
form the set of positive examples and all remaining documents form the set
of negative examples. For some algorithms, including the one proposed in
[15], and some data sets it may be impractical due to large differences in the
resulting sets of positive and negative examples. For example in case of the
Reuters-21578 collection [18] the cardinality of the categories ranges from 1
to a couple of thousands. Thus for small categories it may be reasonable to
reduce the size of the sets of negative examples.

It is also worth noticing that in the case of multi-label categorization the
same document may be a positive example for many categories.

Step 3

Usually the number of different words appearing in document collections are
huge even after stopword elimination and stemming. This requires an aggres-
sive dimensionality reduction to be applied. In our approach a full search
of the space of k -conjuncts (24) is done so that their number be relatively
small. It may be obtained by assuming a small k and a very small number
of keywords to be used to form the conjuncts, for each category. Thus, in
our algorithm besides k there are two other parameters: L determining the
number of keywords used to describe a category (i.e., to build a k-DNF for-
mula for it) and S which will be discussed in the description of Step 4.
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Thus, for each category L keywords are selected in the following way. For
each keyword t ∈ Tg that appeared at least once in the documents of given
category g the following weight tf × ICF is computed (Tg denotes the set of
all documents assigned in the training set to the category g):

tf s ICF(t, g) =
cfreq(t, g)

maxu ∈Tg
cfreq(u, g)

∗ log(
| G |

| G(t) |
) (47)

where cfreq(t, g) denotes the number of times the keyword t appeared in all
documents Tg belonging to the category g, G is the set of all categories, G(t)
is the set of categories in documents of which the keyword t appeared at least
once (i.e., at least once in at least one document from Tg) and | · | denotes
the cardinality.

The rationale for the tf × ICF weight is similar as in case of the popular
tf × IDF weighting scheme: the weight for a keyword t and category g is
the higher the more frequently t appears in documents of category g and the
lower the more there are categories in which documents it appears at least
once. The keywords t having higher tf × ICF(t, g) weight are more specific
for the category g. Thus for the purposes of our algorithm the L keywords
with highest value of tf x ICF are selected for each category.

Step 4

Obviously there is an infinite number of conjuncts in the form given by (24).
Thus in the algorithm a limited number of the linguistic values Ai has to be
assumed and the particular conjuncts are built out of them. Basically, various
shapes of the membership functions of fuzzy sets representing the Ai’s may be
assumed as mentioned in Ssection 3. In our experiments (cf. Section 6.3) we
assumed the triangular membership functions with one parameter x0 ∈ [0, 1]
and then considered their instances for a number of values of this parameter
determined by an algorithm – cf Section 6.3.

Step 5

Concerning this step the main point to be clarified is how the best conjunct
is defined and selected. In the algorithm proposed in [15] the conjunct c
minimizing the following quality index QI is selected:

QI(c, Ep, En) =
min(w(c, En), w(c, Ep))

w(c, Ep)
(48)

where w(·, ·) is defined in (22). Thus the best are the conjuncts:

“Consistent with lowest possible number of negative examples
and highest possible number of positive examples”

(49)
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A semantically similar, though formally different, inductive learning problem
formulation was proposed in our works (cf. Kacprzyk and Iwański [10], and
Kacprzyk and Szkatu�la [11, 12].

In our setting a direct adoption of (48) is rather cumbersome requiring the
use of interval arithmetic as the weights w(c, ·) are intervals instead of single
numbers. Thus, we propose to use another conjunct quality index preserving
the spirit of (48). Namely, we employ a direct logical interpretation of the
linguistic formulation of the conjunct quality index defining truth value of
(49) as follows:

QI(c, Ep, En) = w′(c, Ep) ∧ w′(c, En) = (50)

= [min(
∑

ei∈Ep

µ
Ep(c)

(ei)

| Ep |
, 1 −

∑

ej∈En

µEn(c)(ej)

| En |
),

min(
∑

ei∈Ep

µEp(c)(ei)

| Ep |
, 1 −

∑

ej∈En

µ
En(c)

(ej))

| En |
)] =

= [min(
∑

ei∈Ep

NIei
(c)

| Ep |
, 1 −

∑

ej∈En

ΠIej
(c)

| En |
),

min(
∑

ei∈Ep

ΠIei
(c)

| Ep |
, 1 −

∑

ej∈En

NIej
(c)

| En |
)]

where w′(c, E) is a normalized version of the formula (43) for the conjunct
weight, i.e., w′(c, E) = w(c, E)/ | E |. Thanks to this normalization the sets
of positive and negative examples may be of significantly different size what
may be convenient in case of certain data sets.

Thus we can assess the quality of each conjunct generated in Step 4 using
the formula (50). It should be noticed that in a naive basic approach QI
has to be computed for all remaining conjuncts in each iteration of the loop
appearing in Step 5. This is due to the changes in the size of the set of positive
examples Ep in each iteration.

The quality index QI takes intervals as its value so that we need to impose
a certain ordering on the intervals so as to be in a position to choose (define)
the best conjunct. The standard order on intervals is defined as follows:

[x1, x2] ≺1 [y1, y2] ⇐⇒ (x1 < y1) ∧ (x2 < y2) (51)

Unfortunately, (51) defines only a partial order. Thus we supplement it with
another one [8]:

[x1, x2] ≺2 [y1, y2] ⇐⇒ (x1 + x2 < y1 + y2) ∧ (x2 − x1 > y2 − y1) (52)
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However, even the combination of both these order definitions does not ensure
the comparability of any two intervals. Therefore, to finally compare two
conjuncts c1 and c2 we use the following sequence of comparisons:

1. use order ≺1 to compare QI(c1, Ep, En) and QI(c2, Ep, En); if it does not
work

2. use order ≺2 to compare QI(c1, Ep, En) and QI(c2, Ep, En); if it does not
work

3. choose a conjunct c for which
∑

ei∈Ep

µ
Ep ( c)

(ei)

|Ep|
is higher; if it is equal for

c1 and c2

4. choose a conjunct c for which
∑

ei∈Ep

ΠIei
(c)

|Ep|
is higher; if it is equal for c1

and c2

5. choose c1

Thus first we try to compare the values of the quality index QI for the
conjuncts using orders ≺1 and ≺2. If the conjuncts are incomparable then
the lower and upper bounds on the number of positive examples consistent
(cf. eq. (33)) with the conjuncts are taken into account – the conjunct with
a higher bound is selected. If both bounds are equal, then the first conjunct
is selected.

Finally in Substep b) of Step 5 we check the consistency of each positive
example remaining in the set Ep with the best conjunct selected in the above
mentioned procedure. The formula (33) is used to compute the consistency
degree in the form of an interval. Then in our experiments we use a simple
criterion to decide if the conjunct and the example are consistent. Namely
only the possibility measure related component, i.e., the upper bound of
the interval is used, and it is checked if it is greater than a prespecified
threshold value. If it is the case the example is taken as consistent, i.e.,
well enough described by the conjunct, and is removed from the set Ep. It
may happen then there is no example consistent with the selected conjunct
to a sufficiently high degree determined by the threshold value. Then the
example(s) consistent to a highest degree are removed.

6.2 Categorization Phase

First of all the representation of a tested document to be categorized is de-
termined. This is done in exactly the same way as for the training documents
in Step 1 of the learning phase. Then the consistency between each category
g, represented by a k-DNF formula φg and the tested document is checked
using the formula (33). A straightforward interpretation is to treat the tested
document as an example and use the formula (33) exactly in the same way
as in the learning phase. However, in some experiments we obtained bet-
ter results when the roles were reversed, i.e., the k-DNF formula is treated
as inducing a possibility distribution (with an obvious interpretation of
disjunction via the maximum operator) and the tested document is treated
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as a formula, namely a conjunction such as given by (15) or equivalently
by (30).

A final result of our algorithm for a tested document is the ordered list
of categories starting with the categories with the highest consistency degree
with the document. The ordering is obtained using the same procedure which
is used in Step 5 of the learning phase, described in Subsection 6.1. In the
single-label variant of categorization it is reasonable to assign the first cate-
gory to the document. In the multi-label categorization case some additional
techniques have to be used, cf. Section 4.

6.3 A Computational Experiment

In the computational experiments we used the Reuters-21578 corpus [18]. In
particular we used the Modified Apte (”ModApte”) Split of the data, i.e., for
the training phase a subset of news characterized by the attributes LEWISS-
PLIT=”TRAIN” and TOPICS=”YES” and for testing phase a subset char-
acterized by LEWISSPLIT=”TEST”; TOPICS=”YES”. We only used news
containing topics and body of the text or at least the title. This gives rise to
7728 training, 3005 test documents and 114 categories. The title of the news
and its body are concatenated to produce the document. The documents are
preprocessed by removing stop words and numbers. Stemming is done using
the standard Porters algorithm [22]. No additional dimensionality reduction
is done during the preprocessing concerning the keywords as an aggressive
local (i.e., for each category separately) reduction is a part of the algorithm
(cf. Step 3, Section 6).

We have taken into account all categories – even those which are repre-
sented in the training data set by just one document. Around half of them
do not even appear in the test dataset thus they just make the categoriza-
tion more difficult. We obtained just a few misclassifications to these “one-
document” categories while in case of one, COTTON-OIL, we obtained two
correct classification for two documents with this category appearing in the
test data set (i.e., 100% recall) and two misclassification (i.e., in total the
50% precision for this extremely small category).

The sets of positive and negative examples in the learning phase have been
constructed as follows. We basically took all documents assigned to given
category as the positive examples and the same number of documents from
outside of this category as the negative examples. However we set a lower
bound on the size of the set of negative examples to 10, thus for categories
underrepresented in the training data set (with less than 10 documents) ex-
actly 10 documents belonging to other categories have been selected. We have
tested a few strategies for the selection of the negative examples. The results
reported later in this section have been obtained for the simplest strategy:
first, m documents not belonging to a given category have been selected
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(m is the required number of negative examples and the order of training
documents is such as in the original collection).

Our fuzzy information retrieval model (cf. Section 3) assumes a generic
form of the document representation given by (15). In the experiments we
have used its various specific forms. The results obtained are reported below
for the document representation given by (19) with the parameter λ = 1 and
the bfx weighting scheme (cf. Tables 1–3) to produce the Dj ’s. The same
representation is assumed for the training and testing documents.

Moreover, in the results reported below, we have assumed the following
values for other parameters mentioned in previous subsections:

• k = 3, i.e., only the conjuncts built of maximum 3 atoms (cf., (23)) are
used to construct k-DNF formulas (cf. (26)) for categories

• L = 5, i.e., only the 5 best (in the sense of (47)) keywords are used to
characterize a category by a k-DNF formula

• S = 0.1, i.e., for each keyword the atoms (23) with Ai defined using (19)
for Dj = 0, 0.1, 0.2, . . .1.0 are considered.

Summarizing the above values of parameters L and S: in Step 4 of the learning
phase all conjuncts which are then generated are built out of 11 atoms (as
11 distinct values for Dj are assumed) for each of 5 (L) selected keywords.

In Substep b) of the learning phase in Step 5 we use the threshold value
of 0.75 to decide if a conjunct and the positive example are consistent. In
the experiment the results of which are reported below the k-DNF formulas
representing the particular categories are treated as inducing a possibility
distribution and the tested document is treated as a formula (a conjunction
such as given by (15)).

The final assignment of categories to a given test document in the multi-
label case, such as the case of the Reuters dataset considered, requires the
use of a specific thresholding strategy (cf. Section 4). Then the evaluation
of the results in terms of (exact) precision and recall is possible. Precision is
the proportion of correctly assigned categories among all assigned categories,
while recall is the proportion of correctly assigned categories among all known
correct categories for a given document.

Here we use the effectiveness measures that evaluate the whole ordering
of the categories with respect to a given test document. Basically, the closer
the correct (known in advance) categories to the beginning of the ordering
the better.

We use the following measures of this type in our experiments:

• RPrecision: proportion of correctly assigned categories among all assigned
categories assuming that θ categories first in the ordering produced by the
algorithm are assigned, where θ is the number of known correct categories
for the document,

• Average Precision At Seen Relevant: the precision measure is computed at
the positions where in the ordering produced by the algorithm known
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correct categories appear and then so computed precision values are
averaged

• AVP-11: the places in the ordering where the recall measure is interpolated
to reach the values 0, 0.1, 0.2,. . ., 0.9, 1.0 are identified and the precision
measure is computed at each of them; the average of the values of the
precision measure obtained in this way is taken

• precision-recall breakeven point: a place in ordering is found where (inter-
polated) values of precision and recall measure are equal and one of them
is taken as the effectiveness measure

The last of these measures is most widely used in the categorization experi-
ments for the Reuters dataset. In one of our experiments we have obtained
the following results: RPrecision = 0.5047, Average Precision At Seen Rele-
vant = 0.6238, AVP-11 = 0.6266, breakeven point = 0.6453. As reported by
Joachims [9] the values of the breakeven point for various methods are in the
range of 0.72 (Bayes) to 0.86 (SVM). Thus they are definitely higher than
those we obtained. However we have not yet tested the whole spectrum of pos-
sible configurations of our algorithm. In particular we are carrying out tests
concerning the underlying fuzzy information retrieval model. Many different
keyword weighting schemes may be applied as a starting point for deriving
the representation of documents given by (15). Moreover, various shapes of
the membership functions may be adopted – we have quite thoroughly tested
the triangular membership functions and are in the process of doing the same
for the trapezoidal ones. Different aggregation operators may be applied (cf.
3) and in the standard information retrieval scenario the best results have
been obtained for the averaging operators. Finally there are still many pa-
rameters of the categorization algorithm itself to be tested, including k, L
and S. Thus we hope to obtain better results and establish a procedure for
the proper selection of all these parameters.

On the other hand, one of the advantages of the proposed categorization
approach is related to the flexibility of the underlying fuzzy information re-
trieval model. Namely, it makes it possible to grasp both imprecision and
uncertainty while determining the representation of documents and queries.
In the scenario of the regular information retrieval it is especially attractive
with respect to the “manual” procedure. A user supported by a properly con-
structed interface may express his or her information needs in a more natural
way. In case of the documents the manual indexing is much less attractive
as usually there are huge collections of documents. However, manual descrip-
tions of the categories using k-DNF formulas become an option and may be
of interest in some scenarios.

The presented categorization algorithm has been implemented in Perl with-
out much focus on efficiency. The computational complexity is determined by
exhaustive search of the space of possible conjuncts. Small values of parame-
ters k and L make it manageable. The experiments have been carried out on
a PC computer with Intel Dual Core 2.13 GHz processor and 2 GB RAM.
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The training and categorization phase took 250 and 1 minute, respectively
(with document preprocessed in advance).

7 C oncluding Remarks

We have presented a concept of a novel text categorization algorithm inspired
by the inductive learning algorithm by Koriche and Quinqueton [15] and em-
ploying our fuzzy information retrieval model as given in Nowacka, Zadrożny
and Kacprzyk [21], and Zadrożny and Nowacka [28]. Its essence consists in
constructing for each category a fuzzy linguistic statement in the disjunc-
tive normal form describing, in terms of the keyword weights, the documents
belonging to this category. Both during the training and classification the
matching between documents and linguistic statements is computed as in
our fuzzy information retrieval model.

The advantage of the proposed algorithms is related to its close links with
our model which offers a flexible environment for representing and compar-
ing documents and queries. The results of the computational experiments
we have carried out so far show no advantage over the known state of the
art approaches. On the other hand, within the framework of the underlying
retrieval model it is possible to grasp both imprecision and uncertainty, and
this may be a subject of the future research in the text categorization al-
gorithm discussed. Fine tuning of the parameters of the model proposed, as
well as increasing its numerical efficiency, is another relevant future subject
of investigation.
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