
Copyright© 1998 by Charles Petzold

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright (c) 1998 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data

Petzold, Charles, 1953-

 Programming Windows / Charles Petzold. -- 5th ed.

 p. cm.

 Rev. ed. of: Programming Windows 95.

 Includes index.

 ISBN 1-57231-995-X

 1. Microsoft Windows (Computer file) 2. Operating systems

 (Computers) I. Petzold, Charles, 1953-. Programming Windows 95.

 II. Title.

 QA76.76.O63P533 1998

 005.265--dc21 98-42529

 CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International
directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

Macintosh, QuickTime, and TrueType fonts are registered trademarks of Apple Computer, Inc. Intel is a registered
trademark of Intel Corporation. Developer Studio, DirectX, IntelliMouse, Microsoft, Microsoft Press, Microsoft
QuickBasic, MS-DOS, MSDN, Natural, Visual Basic, Visual C++, Visual Studio, Windows, and Windows NT are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
Other product and company names mentioned herein may be the trademarks of their respective owners.

The names of example companies, products, people, characters, and/or data mentioned herein are fictitious and
are in no way intended to represent any real individual, company, product, or event, unless otherwise noted.

Acquisitions Editor: Ben Ryan

Project Editor: Devon Musgrave

Technical Editor: Dail Magee, Jr.

Author's Note

Visit my web site www.cpetzold.com for updated information regarding this book, including possible bug reports
and new code listings. You can address mail regarding problems in this book to charles@cpetzold.com. Although
I'll also try to answer any easy questions you may have, I can't make any promises. I'm usually pretty busy, and
my cat refuses to learn the Windows API.

I'd like to thank everyone at Microsoft Press for another great job in putting together this book. I think this "10th

Anniversary Edition" of Programming Windows is the best edition yet. Many other people at Microsoft (including
some of the early developers of Microsoft Windows) also helped out when I was writing the earlier editions, and
these fine people are listed in those editions.

Thanks also to my family and friends, and in particular those more recent friends (you know who you are!) whose
support has made this book possible. To you this book is dedicated.

Charles Petzold

October 5, 1998

Chapter 1

Getting Started

This book shows you how to write programs that run under Microsoft Windows 98, Microsoft Windows NT 4.0, and
Windows NT 5.0. These programs are written in the C programming language and use the native Windows
application programming interfaces (APIs). As I'll discuss later in this chapter, this is not the only way to write
programs that run under Windows. However, it is important to understand the Windows APIs regardless of what
you eventually use to write your code.

As you probably know, Windows 98 is the latest incarnation of the graphical operating system that has become the
de facto standard for IBM-compatible personal computers built around 32-bit Intel microprocessors such as the
486 and Pentium. Windows NT is the industrial-strength version of Windows that runs on PC compatibles as well
as some RISC (reduced instruction set computing) workstations.

There are three prerequisites for using this book. First, you should be familiar with Windows 98 from a user's
perspective. You cannot hope to write applications for Windows without understanding its user interface. For this
reason, I suggest that you do your program development (as well as other work) on a Windows-based machine
using Windows applications.

Second, you should know C. If you don't know C, Windows programming is probably not a good place to start. I
recommend that you learn C in a character-mode environment such as that offered under the Windows 98 MS-
DOS Command Prompt window. Windows programming sometimes involves aspects of C that don't show up much
in character-mode programming; in those cases, I'll devote some discussion to them. But for the most part, you
should have a good working familiarity with the language, particularly with C structures and pointers. Some
knowledge of the standard C run-time library is helpful but not required.

Third, you should have installed on your machine a 32-bit C compiler and development environment suitable for
doing Windows programming. In this book, I'll be assuming that you're using Microsoft Visual C++ 6.0, which can
be purchased separately or as a part of the Visual Studio 6.0 package.

That's it. I'm not going to assume that you have any experience at all programming for a graphical user interface
such as Windows.

The Windows Environment

Windows hardly needs an introduction. Yet it's easy to forget the sea change that Windows brought to office and
home desktop computing. Windows had a bumpy ride in its early years and was hardly destined to conquer the
desktop market.

A History of Windows

Soon after the introduction of the IBM PC in the fall of 1981, it became evident that the predominant operating
system for the PC (and compatibles) would be MS-DOS, which originally stood for Microsoft Disk Operating
System. MS-DOS was a minimal operating system. For the user, MS-DOS provided a command-line interface to
commands such as DIR and TYPE and loaded application programs into memory for execution. For the application
programmer, MS-DOS offered little more than a set of function calls for doing file input/output (I/O). For other
tasks—in particular, writing text and sometimes graphics to the video display—applications accessed the hardware
of the PC directly.

Due to memory and hardware constraints, sophisticated graphical environments were slow in coming to small
computers. Apple Computer offered an alternative to character-mode environments when it released its ill-fated
Lisa in January 1983, and then set a standard for graphical environments with the Macintosh in January 1984.
Despite the Mac's declining market share, it is still considered the standard against which other graphical
environments are measured. All graphical environments, including the Macintosh and Windows, are indebted to
the pioneering work done at the Xerox Palo Alto Research Center (PARC) beginning in the mid-1970s.

Windows was announced by Microsoft Corporation in November 1983 (post-Lisa but pre-Macintosh) and was
released two years later in November 1985. Over the next two years, Microsoft Windows 1.0 was followed by
several updates to support the international market and to provide drivers for additional video displays and
printers.

Windows 2.0 was released in November 1987. This version incorporated several changes to the user interface. The
most significant of these changes involved the use of overlapping windows rather than the "tiled" windows found
in Windows 1.0. Windows 2.0 also included enhancements to the keyboard and mouse interface, particularly for
menus and dialog boxes.

Up until this time, Windows required only an Intel 8086 or 8088 microprocessor running in "real mode" to access 1
megabyte (MB) of memory. Windows/386 (released shortly after Windows 2.0) used the "virtual 86" mode of the
Intel 386 microprocessor to window and multitask many DOS programs that directly accessed hardware. For
symmetry, Windows 2.1 was renamed Windows/286.

Windows 3.0 was introduced on May 22, 1990. The earlier Windows/286 and Windows/386 versions were merged
into one product with this release. The big change in Windows 3.0 was the support of the 16-bit protected-mode
operation of Intel's 286, 386, and 486 microprocessors. This gave Windows and Windows applications access to up
to 16 megabytes of memory. The Windows "shell" programs for running programs and maintaining files were
completely revamped. Windows 3.0 was the first version of Windows to gain a foothold in the home and the office.

Any history of Windows must also include a mention of OS/2, an alternative to DOS and Windows that was
originally developed by Microsoft in collaboration with IBM. OS/2 1.0 (character-mode only) ran on the Intel 286
(or later) microprocessors and was released in late 1987. The graphical Presentation Manager (PM) came about
with OS/2 1.1 in October 1988. PM was originally supposed to be a protected-mode version of Windows, but the
graphical API was changed to such a degree that it proved difficult for software manufacturers to support both
platforms.

By September 1990, conflicts between IBM and Microsoft reached a peak and required that the two companies go
their separate ways. IBM took over OS/2 and Microsoft made it clear that Windows was the center of their strategy
for operating systems. While OS/2 still has some fervent admirers, it has not nearly approached the popularity of
Windows.

Microsoft Windows version 3.1 was released in April 1992. Several significant features included the TrueType font
technology (which brought scaleable outline fonts to Windows), multimedia (sound and music), Object Linking and
Embedding (OLE), and standardized common dialog boxes. Windows 3.1 ran only in protected mode and required
a 286 or 386 processor with at least 1 MB of memory.

Windows NT, introduced in July 1993, was the first version of Windows to support the 32-bit mode of the Intel
386, 486, and Pentium microprocessors. Programs that run under Windows NT have access to a 32-bit flat address
space and use a 32-bit instruction set. (I'll have more to say about address spaces a little later in this chapter.)

Windows NT was also designed to be portable to non-Intel processors, and it runs on several RISC-based
workstations.

Windows 95 was introduced in August 1995. Like Windows NT, Windows 95 also supported the 32-bit
programming mode of the Intel 386 and later microprocessors. Although it lacked some of the features of
Windows NT, such as high security and portability to RISC machines, Windows 95 had the advantage of requiring
fewer hardware resources.

Windows 98 was released in June 1998 and has a number of enhancements, including performance
improvements, better hardware support, and a closer integration with the Internet and the World Wide Web.

Aspects of Windows

Both Windows 98 and Windows NT are 32-bit preemptive multitasking and multithreading graphical operating
systems. Windows possesses a graphical user interface (GUI), sometimes also called a "visual interface" or
"graphical windowing environment." The concepts behind the GUI date from the mid-1970s with the work done at
the Xerox PARC for machines such as the Alto and the Star and for environments such as SmallTalk. This work
was later brought into the mainstream and popularized by Apple Computer and Microsoft. Although somewhat
controversial for a while, it is now quite obvious that the GUI is (in the words of Microsoft's Charles Simonyi) the
single most important "grand consensus" of the personal-computer industry.

All GUIs make use of graphics on a bitmapped video display. Graphics provides better utilization of screen real
estate, a visually rich environment for conveying information, and the possibility of a WYSIWYG (what you see is
what you get) video display of graphics and formatted text prepared for a printed document.

In earlier days, the video display was used solely to echo text that the user typed using the keyboard. In a
graphical user interface, the video display itself becomes a source of user input. The video display shows various
graphical objects in the form of icons and input devices such as buttons and scroll bars. Using the keyboard (or,
more directly, a pointing device such as a mouse), the user can directly manipulate these objects on the screen.
Graphics objects can be dragged, buttons can be pushed, and scroll bars can be scrolled.

The interaction between the user and a program thus becomes more intimate. Rather than the one-way cycle of
information from the keyboard to the program to the video display, the user directly interacts with the objects on
the display.

Users no longer expect to spend long periods of time learning how to use the computer or mastering a new
program. Windows helps because all applications have the same fundamental look and feel. The program occupies
a window—usually a rectangular area on the screen. Each window is identified by a caption bar. Most program
functions are initiated through the program's menus. A user can view the display of information too large to fit on
a single screen by using scroll bars. Some menu items invoke dialog boxes, into which the user enters additional
information. One dialog box in particular, that used to open a file, can be found in almost every large Windows
program. This dialog box looks the same (or nearly the same) in all of these Windows programs, and it is almost
always invoked from the same menu option.

Once you know how to use one Windows program, you're in a good position to easily learn another. The menus
and dialog boxes allow a user to experiment with a new program and explore its features. Most Windows programs
have both a keyboard interface and a mouse interface. Although most functions of Windows programs can be
controlled through the keyboard, using the mouse is often easier for many chores.

From the programmer's perspective, the consistent user interface results from using the routines built into
Windows for constructing menus and dialog boxes. All menus have the same keyboard and mouse interface
because Windows—rather than the application program—handles this job.

To facilitate the use of multiple programs, and the exchange of information among them, Windows supports
multitasking. Several Windows programs can be displayed and running at the same time. Each program occupies a
window on the screen. The user can move the windows around on the screen, change their sizes, switch between
different programs, and transfer data from one program to another. Because these windows look something like
papers on a desktop (in the days before the desk became dominated by the computer itself, of course), Windows
is sometimes said to use a "desktop metaphor" for the display of multiple programs.

Earlier versions of Windows used a system of multitasking called "nonpreemptive." This meant that Windows did
not use the system timer to slice processing time between the various programs running under the system. The
programs themselves had to voluntarily give up control so that other programs could run. Under Windows NT and
Windows 98, multitasking is preemptive and programs themselves can split into multiple threads of execution that
seem to run concurrently.

An operating system cannot implement multitasking without doing something about memory management. As

new programs are started up and old ones terminate, memory can become fragmented. The system must be able
to consolidate free memory space. This requires the system to move blocks of code and data in memory.

Even Windows 1.0, running on an 8088 microprocessor, was able to perform this type of memory management.
Under real-mode restrictions, this ability can only be regarded as an astonishing feat of software engineering. In
Windows 1.0, the 640-kilobyte (KB) memory limit of the PC's architecture was effectively stretched without
requiring any additional memory. But Microsoft didn't stop there: Windows 2.0 gave the Windows applications
access to expanded memory (EMS), and Windows 3.0 ran in protected mode to give Windows applications access
to up to 16 MB of extended memory. Windows NT and Windows 98 blow away these old limits by being full-
fledged 32-bit operating systems with flat memory space.

Programs running in Windows can share routines that are located in other files called "dynamic-link libraries."
Windows includes a mechanism to link the program with the routines in the dynamic-link libraries at run time.
Windows itself is basically a set of dynamic-link libraries.

Windows is a graphical interface, and Windows programs can make full use of graphics and formatted text on both
the video display and the printer. A graphical interface not only is more attractive in appearance but also can
impart a high level of information to the user.

Programs written for Windows do not directly access the hardware of graphics display devices such as the screen
and printer. Instead, Windows includes a graphics programming language (called the Graphics Device Interface, or
GDI) that allows the easy display of graphics and formatted text. Windows virtualizes display hardware. A program
written for Windows will run with any video board or any printer for which a Windows device driver is available.
The program does not need to determine what type of device is attached to the system.

Putting a device-independent graphics interface on the IBM PC was not an easy job for the developers of Windows.
The PC design was based on the principle of open architecture. Third-party hardware manufacturers were
encouraged to develop peripherals for the PC and have done so in great number. Although several standards have
emerged, conventional MS-DOS programs for the PC had to individually support many different hardware
configurations. It was fairly common for an MS-DOS word-processing program to be sold with one or two disks of
small files, each one supporting a particular printer. Windows programs do not require these drivers because the
support is part of Windows.

Dynamic Linking

Central to the workings of Windows is a concept known as "dynamic linking." Windows provides a wealth of
function calls that an application can take advantage of, mostly to implement its user interface and display text
and graphics on the video display. These functions are implemented in dynamic-link libraries, or DLLs. These are
files with the extension .DLL or sometimes .EXE, and they are mostly located in the \WINDOWS\SYSTEM
subdirectory under Windows 98 and the \WINNT\SYSTEM and \WINNT\SYSTEM32 subdirectories under Windows
NT.

In the early days, the great bulk of Windows was implemented in just three dynamic-link libraries. These
represented the three main subsystems of Windows, which were referred to as Kernel, User, and GDI. While the
number of subsystems has proliferated in recent versions of Windows, most function calls that a typical Windows
program makes will still fall in one of these three modules. Kernel (which is currently implemented by the 16-bit
KRNL386.EXE and the 32-bit KERNEL32.DLL) handles all the stuff that an operating system kernel traditionally
handles—memory management, file I/O, and tasking. User (implemented in the 16-bit USER.EXE and the 32-bit
USER32.DLL) refers to the user interface, and implements all the windowing logic. GDI (implemented in the 16-bit
GDI.EXE and the 32-bit GDI32.DLL) is the Graphics Device Interface, which allows a program to display text and
graphics on the screen and printer.

Windows 98 supports several thousand function calls that applications can use. Each function has a descriptive
name, such as CreateWindow. This function (as you might guess) creates a window for your program. All the
Windows functions that an application may use are declared in header files.

In your Windows program, you use the Windows function calls in generally the same way you use C library
functions such as strlen. The primary difference is that the machine code for C library functions is linked into your
program code, whereas the code for Windows functions is located outside of your program in the DLLs.

When you run a Windows program, it interfaces to Windows through a process called "dynamic linking." A
Windows .EXE file contains references to the various dynamic-link libraries it uses and the functions therein. When
a Windows program is loaded into memory, the calls in the program are resolved to point to the entries of the DLL
functions, which are also loaded into memory if not already there.

When you link a Windows program to produce an executable file, you must link with special "import libraries"
provided with your programming environment. These import libraries contain the dynamic-link library names and

reference information for all the Windows function calls. The linker uses this information to construct the table in
the .EXE file that Windows uses to resolve calls to Windows functions when loading the program.

Windows Programming Options

To illustrate the various techniques of Windows programming, this book has lots of sample programs. These
programs are written in C and use the native Windows APIs. I think of this approach as "classical" Windows
programming. It is how we wrote programs for Windows 1.0 in 1985, and it remains a valid way of programming
for Windows today.

APIs and Memory Models

To a programmer, an operating system is defined by its API. An API encompasses all the function calls that an
application program can make of an operating system, as well as definitions of associated data types and
structures. In Windows, the API also implies a particular program architecture that we'll explore in the chapters
ahead.

Generally, the Windows API has remained quite consistent since Windows 1.0. A Windows programmer with
experience in Windows 98 would find the source code for a Windows 1.0 program very familiar. One way the API
has changed has been in enhancements. Windows 1.0 supported fewer than 450 function calls; today there are
thousands.

The biggest change in the Windows API and its syntax came about during the switch from a 16-bit architecture to
a 32-bit architecture. Versions 1.0 through 3.1 of Windows used the so-called segmented memory mode of the
16-bit Intel 8086, 8088, and 286 microprocessors, a mode that was also supported for compatibility purposes in
the 32-bit Intel microprocessors beginning with the 386. The microprocessor register size in this mode was 16
bits, and hence the C int data type was also 16 bits wide. In the segmented memory model, memory addresses
were formed from two components—a 16-bit segment pointer and a 16-bit offset pointer. From the programmer's
perspective, this was quite messy and involved differentiating between long, or far, pointers (which involved both
a segment address and an offset address) and short, or near, pointers (which involved an offset address with an
assumed segment address).

Beginning in Windows NT and Windows 95, Windows supported a 32-bit flat memory model using the 32-bit
modes of the Intel 386, 486, and Pentium processors. The C int data type was promoted to a 32-bit value.
Programs written for 32-bit versions of Windows use simple 32-bit pointer values that address a flat linear address
space.

The API for the 16-bit versions of Windows (Windows 1.0 through Windows 3.1) is now known as Win16. The API
for the 32-bit versions of Windows (Windows 95, Windows 98, and all versions of Windows NT) is now known as
Win32. Many function calls remained the same in the transition from Win16 to Win32, but some needed to be
enhanced. For example, graphics coordinate points changed from 16-bit values in Win16 to 32-bit values in
Win32. Also, some Win16 function calls returned a two-dimensional coordinate point packed in a 32-bit integer.
This was not possible in Win32, so new function calls were added that worked in a different way.

All 32-bit versions of Windows support both the Win16 API to ensure compatibility with old applications and the
Win32 API to run new applications. Interestingly enough, this works differently in Windows NT than in Windows 95
and Windows 98. In Windows NT, Win16 function calls go through a translation layer and are converted to Win32
function calls that are then processed by the operating system. In Windows 95 and Windows 98, the process is
opposite that: Win32 function calls go through a translation layer and are converted to Win16 function calls to be
processed by the operating system.

At one time, there were two other Windows API sets (at least in name). Win32s ("s" for "subset") was an API that
allowed programmers to write 32-bit applications that ran under Windows 3.1. This API supported only 32-bit
versions of functions already supported by Win16. Also, the Windows 95 API was once called Win32c ("c" for
"compatibility"), but this term has been abandoned.

At this time, Windows NT and Windows 98 are both considered to support the Win32 API. However, each
operating system supports some features not supported by the other. Still, because the overlap is considerable,
it's possible to write programs that run under both systems. Also, it's widely assumed that the two products will be
merged at some time in the future.

Language Options

Using C and the native APIs is not the only way to write programs for Windows 98. However, this approach offers
you the best performance, the most power, and the greatest versatility in exploiting the features of Windows.
Executables are relatively small and don't require external libraries to run (except for the Windows DLLs

Windows Programming Options

To illustrate the various techniques of Windows programming, this book has lots of sample programs. These
programs are written in C and use the native Windows APIs. I think of this approach as "classical" Windows
programming. It is how we wrote programs for Windows 1.0 in 1985, and it remains a valid way of programming
for Windows today.

APIs and Memory Models

To a programmer, an operating system is defined by its API. An API encompasses all the function calls that an
application program can make of an operating system, as well as definitions of associated data types and
structures. In Windows, the API also implies a particular program architecture that we'll explore in the chapters
ahead.

Generally, the Windows API has remained quite consistent since Windows 1.0. A Windows programmer with
experience in Windows 98 would find the source code for a Windows 1.0 program very familiar. One way the API
has changed has been in enhancements. Windows 1.0 supported fewer than 450 function calls; today there are
thousands.

The biggest change in the Windows API and its syntax came about during the switch from a 16-bit architecture to
a 32-bit architecture. Versions 1.0 through 3.1 of Windows used the so-called segmented memory mode of the
16-bit Intel 8086, 8088, and 286 microprocessors, a mode that was also supported for compatibility purposes in
the 32-bit Intel microprocessors beginning with the 386. The microprocessor register size in this mode was 16
bits, and hence the C int data type was also 16 bits wide. In the segmented memory model, memory addresses
were formed from two components—a 16-bit segment pointer and a 16-bit offset pointer. From the programmer's
perspective, this was quite messy and involved differentiating between long, or far, pointers (which involved both
a segment address and an offset address) and short, or near, pointers (which involved an offset address with an
assumed segment address).

Beginning in Windows NT and Windows 95, Windows supported a 32-bit flat memory model using the 32-bit
modes of the Intel 386, 486, and Pentium processors. The C int data type was promoted to a 32-bit value.
Programs written for 32-bit versions of Windows use simple 32-bit pointer values that address a flat linear address
space.

The API for the 16-bit versions of Windows (Windows 1.0 through Windows 3.1) is now known as Win16. The API
for the 32-bit versions of Windows (Windows 95, Windows 98, and all versions of Windows NT) is now known as
Win32. Many function calls remained the same in the transition from Win16 to Win32, but some needed to be
enhanced. For example, graphics coordinate points changed from 16-bit values in Win16 to 32-bit values in
Win32. Also, some Win16 function calls returned a two-dimensional coordinate point packed in a 32-bit integer.
This was not possible in Win32, so new function calls were added that worked in a different way.

All 32-bit versions of Windows support both the Win16 API to ensure compatibility with old applications and the
Win32 API to run new applications. Interestingly enough, this works differently in Windows NT than in Windows 95
and Windows 98. In Windows NT, Win16 function calls go through a translation layer and are converted to Win32
function calls that are then processed by the operating system. In Windows 95 and Windows 98, the process is
opposite that: Win32 function calls go through a translation layer and are converted to Win16 function calls to be
processed by the operating system.

At one time, there were two other Windows API sets (at least in name). Win32s ("s" for "subset") was an API that
allowed programmers to write 32-bit applications that ran under Windows 3.1. This API supported only 32-bit
versions of functions already supported by Win16. Also, the Windows 95 API was once called Win32c ("c" for
"compatibility"), but this term has been abandoned.

At this time, Windows NT and Windows 98 are both considered to support the Win32 API. However, each
operating system supports some features not supported by the other. Still, because the overlap is considerable,
it's possible to write programs that run under both systems. Also, it's widely assumed that the two products will be
merged at some time in the future.

Language Options

Using C and the native APIs is not the only way to write programs for Windows 98. However, this approach offers
you the best performance, the most power, and the greatest versatility in exploiting the features of Windows.
Executables are relatively small and don't require external libraries to run (except for the Windows DLLs

themselves, of course). Most importantly, becoming familiar with the API provides you with a deeper
understanding of Windows internals, regardless of how you eventually write applications for Windows.

Although I think that learning classical Windows programming is important for any Windows programmer, I don't
necessarily recommend using C and the API for every Windows application. Many programmers—particularly those
doing in-house corporate programming or those who do recreational programming at home—enjoy the ease of
development environments such as Microsoft Visual Basic or Borland Delphi (which incorporates an object-oriented
dialect of Pascal). These environments allow a programmer to focus on the user interface of an application and
associate code with user interface objects. To learn Visual Basic, you might want to consult some other Microsoft
Press books, such as Learn Visual Basic Now (1996), by Michael Halvorson.

Among professional programmers—particularly those who write commercial applications—Microsoft Visual C++
with the Microsoft Foundation Class Library (MFC) has been a popular alternative in recent years. MFC
encapsulates many of the messier aspects of Windows programming in a collection of C++ classes. Jeff Prosise's
Programming Windows with MFC, Second Edition (Microsoft Press, 1999) provides tutorials on MFC.

Most recently, the popularity of the Internet and the World Wide Web has given a big boost to Sun Microsystems'
Java, the processor-independent language inspired by C++ and incorporating a toolkit for writing graphical
applications that will run on several operating system platforms. A good Microsoft Press book on Microsoft J++,
Microsoft's Java development tool, is Programming Visual J++ 6.0 (1998), by Stephen R. Davis.

Obviously, there's hardly any one right way to write applications for Windows. More than anything else, the nature
of the application itself should probably dictate the tools. But learning the Windows API gives you vital insights
into the workings of Windows that are essential regardless of what you end up using to actually do the coding.
Windows is a complex system; putting a programming layer on top of the API doesn't eliminate the complexity—it
merely hides it. Sooner or later that complexity is going to jump out and bite you in the leg. Knowing the API
gives you a better chance at recovery.

Any software layer on top of the native Windows API necessarily restricts you to a subset of full functionality. You
might find, for example, that Visual Basic is ideal for your application except that it doesn't allow you to do one or
two essential chores. In that case, you'll have to use native API calls. The API defines the universe in which we as
Windows programmers exist. No approach can be more powerful or versatile than using this API directly.

MFC is particularly problematic. While it simplifies some jobs immensely (such as OLE), I often find myself
wrestling with other features (such as the Document/View architecture) to get them to work as I want. MFC has
not been the Windows programming panacea that many hoped for, and few people would characterize it as a
model of good object-oriented design. MFC programmers benefit greatly from understanding what's going on in
class definitions they use, and find themselves frequently consulting MFC source code. Understanding that source
code is one of the benefits of learning the Windows API.

The Programming Environment

In this book, I'll be assuming that you're running Microsoft Visual C++ 6.0, which comes in Standard, Professional,
and Enterprise editions. The less-expensive Standard edition is fine for doing the programs in this book. Visual
C++ is also part of Visual Studio 6.0.

The Microsoft Visual C++ package includes more than the C compiler and other files and tools necessary to
compile and link Windows programs. It also includes the Visual C++ Developer Studio, an environment in which
you can edit your source code; interactively create resources such as icons and dialog boxes; and edit, compile,
run, and debug your programs.

If you're running Visual C++ 5.0, you might need to get updated header files and import libraries for Windows 98
and Windows NT 5.0. These are available at Microsoft's web site. Go to http://www.microsoft.com/msdn/, and
choose Downloads and then Platform SDK ("software development kit"). You'll be able to download and install the
updated files in directories of your choice. To direct the Microsoft Developer Studio to look in these directories,
choose Options from the Tools menu and then pick the Directories tab.

The msdn portion of the Microsoft URL above stands for Microsoft Developer Network. This is a program that
provides developers with frequently updated CD-ROMs containing much of what they need to be on the cutting
edge of Windows development. You'll probably want to investigate subscribing to MSDN and avoid frequent
downloading from Microsoft's web site.

API Documentation

This book is not a substitute for the official formal documentation of the Windows API. That documentation is no
longer published in printed form; it is available only via CD-ROM or the Internet.

http://www.microsoft.com/msdn/

When you install Visual C++ 6.0, you'll get an online help system that includes API documentation. You can get
updates to that documentation by subscribing to MSDN or by using Microsoft's Web-based online help system.
Start by linking to http://www.microsoft.com/msdn/, and select MSDN Library Online.

In Visual C++ 6.0, select the Contents item from the Help menu to invoke the MSDN window. The API
documentation is organized in a tree-structured hierarchy. Find the section labeled Platform SDK. All the
documentation I'll be citing in this book is from this section. I'll show the location of documentation using the
nested levels starting with Platform SDK separated by slashes. (I know the Platform SDK looks like a small
obscure part of the total wealth of MSDN knowledge, but I assure you that it's the essential core of Windows
programming.) For example, for documentation on how to use the mouse in your Windows programs, you can
consult /Platform SDK/User Interface Services/User Input/Mouse Input.

I mentioned before that much of Windows is divided into the Kernel, User, and GDI subsystems. The kernel
interfaces are in /Platform SDK/Windows Base Services, the user interface functions are in /Platform SDK/User
Interface Services, and GDI is documented in /Platform SDK/Graphics and Multimedia Services/GDI.

http://www.microsoft.com/msdn/

Your First Windows Program

Now it's time to do some coding. Let's begin by looking at a very short Windows program and, for comparison, a
short character-mode program. These will help us get oriented in using the development environment and going
through the mechanics of creating and compiling a program.

A Character-Mode Model

A favorite book among programmers is The C Programming Language (Prentice Hall, 1978 and 1988) by Brian W.
Kernighan and Dennis M. Ritchie, affectionately referred to as K&R. Chapter 1 of this book begins with a C
program that displays the words "hello, world."

Here's the program as it appeared on page 6 of the first edition of The C Programming Language :

main ()

{
 printf ("hello, world\n") ;
}

Yes, once upon a time C programmers used C run-time library functions such as printf without declaring them
first. But this is the '90s, and we like to give our compilers a fighting chance to flag errors in our code. Here's the
revised code from the second edition of K&R:

#include <stdio.h>

main ()
{
 printf ("hello, world\n") ;
}

This program still isn't really as small as it seems. It will certainly compile and run just fine, but many
programmers these days would prefer to explicitly indicate the return value of the main function, in which case
ANSI C dictates that the function actually returns a value:

#include <stdio.h>

int main ()
{
 printf ("hello, world\n") ;

 return 0 ;
}

We could make this even longer by including the arguments to main , but let's leave it at that—with an include
statement, the program entry point, a call to a run-time library function, and a return statement.

The Windows Equivalent

The Windows equivalent to the "hello, world" program has exactly the same components as the character-mode
version. It has an include statement, a program entry point, a function call, and a return statement. Here's the
program:

/*--
 HelloMsg.c -- Displays "Hello, Windows 98!" in a message box
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 MessageBox (NULL, TEXT ("Hello, Windows 98!"), TEXT ("HelloMsg"), 0) ;

 return 0 ;
}

Before I begin dissecting this program, let's go through the mechanics of creating a program in the Visual C++
Developer Studio.

To begin, select New from the File menu. In the New dialog box, pick the Projects tab. Select Win32 Application.
In the Location field, select a subdirectory. In the Project Name field, type the name of the project, which in this
case is HelloMsg. This will be a subdirectory of the directory indicated in the Location field. The Create New
Workspace button should be checked. The Platforms section should indicate Win32. Choose OK.

A dialog box labeled Win32 Application - Step 1 Of 1 will appear. Indicate that you want to create an Empty
Project, and press the Finish button.

Select New from the File menu again. In the New dialog box, pick the Files tab. Select C++ Source File. The Add
To Project box should be checked, and HelloMsg should be indicated. Type HelloMsg.c in the File Name field.
Choose OK.

Now you can type in the HELLOMSG.C file shown above. Or you can select the Insert menu and the File As Text
option to copy the contents of HELLOMSG.C from the file on this book's companion CD-ROM.

Structurally, HELLOMSG.C is identical to the K&R "hello, world" program. The header file STDIO.H has been
replaced with WINDOWS.H, the entry point main has been replaced with WinMain , and the C run-time library
function printf has been replaced with the Windows API function MessageBox . However, there is much in the
program that is new, including several strange-looking uppercase identifiers.

Let's start at the top.

The Header Files

HELLOMSG.C begins with a preprocessor directive that you'll find at the top of virtually every Windows program
written in C:

#include <windows.h>

WINDOWS.H is a master include file that includes other Windows header files, some of which also include other

header files. The most important and most basic of these header files are:

WINDEF.H Basic type definitions.

WINNT.H Type definitions for Unicode support.

WINBASE.H Kernel functions.

WINUSER.H User interface functions.

WINGDI.H Graphics device interface functions.

These header files define all the Windows data types, function calls, data structures, and constant identifiers. They
are an important part of Windows documentation. You might find it convenient to use the Find In Files option from
the Edit menu in the Visual C++ Developer Studio to search through these header files. You can also open the
header files in the Developer Studio and examine them directly.

Program Entry Point

Just as the entry point to a C program is the function main , the entry point to a Windows program is WinMain ,
which always appears like this:

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

This entry point is documented in /Platform SDK/User Interface Services/Windowing/Windows/Window
Reference/Window Functions . It is declared in WINBASE.H like so (line breaks and all):

int
WINAPI
WinMain(
 HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nShowCmd
);

You'll notice I've made a couple of minor changes in HELLOMSG.C. The third parameter is defined as an LPSTR in
WINBASE.H, and I've made it a PSTR. These two data types are both defined in WINNT.H as pointers to character
strings. The LP prefix stands for "long pointer" and is an artifact of 16-bit Windows.

I've also changed two of the parameter names from the WinMain declaration; many Windows programs use a
system called "Hungarian notation" for naming variables. This system involves prefacing the variable name with a
short prefix that indicates the variable's data type. I'll discuss this concept more in Chapter 3 . For now, just keep
in mind that the prefix i stands for int and sz stands for "string terminated with a zero."

The WinMain function is declared as returning an int . The WINAPI identifier is defined in WINDEF.H with the
statement:

#define WINAPI __stdcall

This statement specifies a calling convention that involves how machine code is generated to place function call
arguments on the stack. Most Windows function calls are declared as WINAPI.

The first parameter to WinMain is something called an "instance handle." In Windows programming, a handle is
simply a number that an application uses to identify something. In this case, the handle uniquely identifies the
program. It is required as an argument to some other Windows function calls. In early versions of Windows, when
you ran the same program concurrently more than once, you created multiple instances of that program. All
instances of the same application shared code and read-only memory (usually resources such as menu and dialog
box templates). A program could determine if other instances of itself were running by checking the hPrevInstance
parameter. It could then skip certain chores and move some data from the previous instance into its own data
area.

In the 32-bit versions of Windows, this concept has been abandoned. The second parameter to WinMain is always
NULL (defined as 0).

The third parameter to WinMain is the command line used to run the program. Some Windows applications use
this to load a file into memory when the program is started. The fourth parameter to WinMain indicates how the
program should be initially displayed—either normally or maximized to fill the window, or minimized to be
displayed in the task list bar. We'll see how this parameter is used in Chapter 3 .

The MessageBox Function

The MessageBox function is designed to display short messages. The little window that MessageBox displays is
actually considered to be a dialog box, although not one with a lot of versatility.

The first argument to MessageBox is normally a window handle. We'll see what this means in Chapter 3 . The
second argument is the text string that appears in the body of the message box, and the third argument is the
text string that appears in the caption bar of the message box. In HELLMSG.C, each of these text strings is
enclosed in a TEXT macro. You don't normally have to enclose all character strings in the TEXT macro, but it's a
good idea if you want to be ready to convert your programs to the Unicode character set. I'll discuss this in much
more detail in Chapter 2 .

The fourth argument to MessageBox can be a combination of constants beginning with the prefix MB_ that are
defined in WINUSER.H. You can pick one constant from the first set to indicate what buttons you wish to appear in
the dialog box:

#define MB_OK 0x00000000L
#define MB_OKCANCEL 0x00000001L
#define MB_ABORTRETRYIGNORE 0x00000002L
#define MB_YESNOCANCEL 0x00000003L
#define MB_YESNO 0x00000004L
#define MB_RETRYCANCEL 0x00000005L

When you set the fourth argument to 0 in HELLOMSG, only the OK button appears. You can use the C OR (|)
operator to combine one of the constants shown above with a constant that indicates which of the buttons is the
default:

#define MB_DEFBUTTON1 0x00000000L
#define MB_DEFBUTTON2 0x00000100L
#define MB_DEFBUTTON3 0x00000200L
#define MB_DEFBUTTON4 0x00000300L

You can also use a constant that indicates the appearance of an icon in the message box:

#define MB_ICONHAND 0x00000010L
#define MB_ICONQUESTION 0x00000020L
#define MB_ICONEXCLAMATION 0x00000030L
#define MB_ICONASTERISK 0x00000040L

Some of these icons have alternate names:

#define MB_ICONWARNING MB_ICONEXCLAMATION
#define MB_ICONERROR MB_ICONHAND
#define MB_ICONINFORMATION MB_ICONASTERISK
#define MB_ICONSTOP MB_ICONHAND

There are a few other MB_ constants, but you can consult the header file yourself or the documentation in
/Platform SDK/User Interface Services/Windowing/Dialog Boxes/Dialog Box Reference/Dialog Box Functions .

In this program, the MessageBox function returns the value 1, but it's more proper to say that it returns IDOK,
which is defined in WINUSER.H as equaling 1. Depending on the other buttons present in the message box, the
MessageBox function can also return IDYES, IDNO, IDCANCEL, IDABORT, IDRETRY, or IDIGNORE.

Is this little Windows program really the equivalent of the K&R "hello, world" program? Well, you might think not
because the MessageBox function doesn't really have all the potential formatting power of the printf function in
"hello, world." But we'll see in the next chapter how to write a version of MessageBox that does printf -like
formatting.

Compile, Link, and Run

When you're ready to compile HELLOMSG, you can select Build Hellomsg.exe from the Build menu, or press F7, or
select the Build icon from the Build toolbar. (The appearance of this icon is shown in the Build menu. If the Build
toolbar is not currently displayed, you can choose Customize from the Tools menu and select the Toolbars tab.
Pick Build or Build MiniBar.)

Alternatively, you can select Execute Hellomsg.exe from the Build menu, or press Ctrl+F5, or click the Execute
Program icon (which looks like a red exclamation point) from the Build toolbar. You'll get a message box asking
you if you want to build the program.

As normal, during the compile stage, the compiler generates an .OBJ (object) file from the C source code file.
During the link stage, the linker combines the .OBJ file with .LIB (library) files to create the .EXE (executable) file.
You can see a list of these library files by selecting Settings from the Project tab and clicking the Link tab. In
particular, you'll notice KERNEL32.LIB, USER32.LIB, and GDI32.LIB. These are "import libraries" for the three
major Windows subsystems. They contain the dynamic-link library names and reference information that is bound
into the .EXE file. Windows uses this information to resolve calls from the program to functions in the
KERNEL32.DLL, USER32.DLL, and GDI32.DLL dynamic-link libraries.

In the Visual C++ Developer Studio, you can compile and link the program in different configurations. By default,
these are called Debug and Release. The executable files are stored in subdirectories of these names. In the
Debug configuration, information is added to the .EXE file that assists in debugging the program and in tracing
through the program source code.

If you prefer working on the command line, the companion CD-ROM contains .MAK (make) files for all the sample
programs. (You can tell the Developer Studio to generate make files by choosing Options from the Tools menu and
selecting the Build tab. There's a check box to check.) You'll need to run VCVARS32.BAT located in the BIN
subdirectory of the Developer Studio to set environment variables. To execute the make file from the command
line, change to the HELLOMSG directory and execute:

NMAKE /f HelloMsg.mak CFG="HelloMsg _ Win32 Debug"

or

NMAKE /f HelloMsg.mak CFG="HelloMsg _ Win32 Release"

You can then run the .EXE file from the command line by typing:

DEBUG\HELLOMSG

or

RELEASE\HELLOMSG

I have made one change to the default Debug configuration in the project files on the companion CD-ROM for this
book. In the Project Settings dialog box, after selecting the C/C++ tab, in the Preprocessor Definitions field I have
defined the identifier UNICODE. I'll have much more to say about this in the next chapter.

Chapter 2

An Introduction to Unicode

In the first chapter, I promised to elaborate on any aspects of C that you might not have encountered in
conventional character-mode programming but that play a part in Microsoft Windows. The subject of wide-
character sets and Unicode almost certainly qualifies in that respect.

Very simply, Unicode is an extension of ASCII character encoding. Rather than the 7 bits used to represent each
character in strict ASCII, or the 8 bits per character that have become common on computers, Unicode uses a full
16 bits for character encoding. This allows Unicode to represent all the letters, ideographs, and other symbols
used in all the written languages of the world that are likely to be used in computer communication. Unicode is
intended initially to supplement ASCII and, with any luck, eventually replace it. Considering that ASCII is one of
the most dominant standards in computing, this is certainly a tall order.

Unicode impacts every part of the computer industry, but perhaps most profoundly operating systems and
programming languages. In this respect, we are almost halfway there. Windows NT supports Unicode from the
ground up. (Unfortunately, Windows 98 includes only a small amount of Unicode support.) The C programming
language as formalized by ANSI inherently supports Unicode through its support of wide characters, which I'll
discuss in detail below.

Of course, as usual, we as programmers are confronted with much of the dirty work. I've tried to ease the load by
making all of the programs in this book "Unicode-ready." What this means exactly will become more apparent as I
discuss Unicode in this chapter.

A Brief History of Character Sets

It is uncertain when human beings began speaking, but writing seems to be about six thousand years old. Early
writing was pictographic in nature. Alphabets—in which individual letters correspond to spoken sounds—came
about just three thousand years ago. Although the various written languages of the world served fine for some
time, several nineteenth-century inventors saw a need for something more. When Samuel F. B. Morse developed
the telegraph between 1838 and 1854, he also devised a code to use with it. Each letter in the alphabet
corresponded to a series of short and long pulses (dots and dashes). There was no distinction between uppercase
and lowercase letters, but numbers and punctuation marks had their own codes.

Morse code was not the first instance of written language being represented by something other than drawn or
printed glyphs. Between 1821 and 1824, the young Louis Braille was inspired by a military system for writing and
reading messages at night to develop a code for embossing raised dots into paper for reading by the blind. Braille
is essentially a 6-bit code that encodes letters, common letter combinations, common words, and punctuation. A
special escape code indicates that the following letter code is to be interpreted as uppercase. A special shift code
allows subsequent letter codes to be interpreted as numbers.

Telex codes, including Baudot (named after a French engineer who died in 1903) and a code known as CCITT #2
(standardized in 1931), were 5-bit codes that included letter shifts and figure shifts.

American Standards

Early computer character codes evolved from the coding used on Hollerith ("do not fold, spindle, or mutilate")
cards, invented by Herman Hollerith and first used in the 1890 United States census. A 6-bit character code known
as BCDIC ("Binary-Coded Decimal Interchange Code") based on Hollerith coding was progressively extended to
the 8-bit EBCDIC in the 1960s and remains the standard on IBM mainframes but nowhere else.

The American Standard Code for Information Interchange (ASCII) had its origins in the late 1950s and was
finalized in 1967. During the development of ASCII, there was considerable debate over whether the code should
be 6, 7, or 8 bits wide. Reliability considerations seemed to mandate that no shift character be used, so ASCII
couldn't be a 6-bit code. Cost ruled out the 8-bit version. (Bits were very expensive back then.) The final code had
26 lowercase letters, 26 uppercase letters, 10 digits, 32 symbols, 33 control codes, and a space, for a total of 128
codes. ASCII is currently documented in ANSI X3.4-1986, "Coded Character Sets—7-Bit American National
Standard Code for Information Interchange (7-Bit ASCII)," published by the American National Standards
Institute. Figure 2-1 shows ASCII (for the zillionth time), very similar to how it appears in the ANSI document.

 0- 1- 2- 3- 4- 5- 6- 7-
-0 NUL DLE SP 0 @ P ` p
-1 SOH DC1 ! 1 A Q a q
-2 STX DC2 " 2 B R b r
-3 ETX DC3 # 3 C S c s
-4 EOT DC4 $ 4 D T d t
-5 ENQ NAK % 5 E U e u
-6 ACK SYN & 6 F V f v
-7 BEL ETB ' 7 G W g w
-8 BS CAN (8 H X h x
-9 HT EM) 9 I Y I y
-A LF SUB * : J Z j z
-B VT ESC + ; K [k {
-C FF FS , < L \ l |
-D CR GS - = M] m }
-E SO RS . > N ^ n ~
-F SI US / ? O _ o DEL

Figure 2-1. The ASCII character set.

There are a lot of good things you can say about ASCII. The 26 letter codes are contiguous, for example. (This is
not the case with EBCDIC.) Uppercase letters can be converted to lowercase and back by flipping one bit. The
codes for the 10 digits are easily derived from the value of the digits. (In BCDIC, the code for the character "0"
followed the code for the character "9"!)

Best of all, ASCII is a very dependable standard. No other standard is as prevalent or as ingrained in our
keyboards, video displays, system hardware, printers, font files, operating systems, and the Internet.

The World Beyond

The big problem with ASCII is indicated by the first word of the acronym. ASCII is truly an American standard, and
it isn't even good enough for other countries where English is spoken. Where is the British pound symbol (£), for
instance?

English uses the Latin (or Roman) alphabet. Among written languages that use the Latin alphabet, English is
unusual in that very few words require letters with accent marks (or "diacritics"). Even for those English words
where diacritics are traditionally proper, such as coöperate or résumé, the spellings without diacritics are perfectly
acceptable.

But north and south of the United States and across the Atlantic are many countries and languages where
diacritics are much more common. These accent marks originally aided in adopting the Latin alphabet to the
differences in spoken sounds among these languages. Journey farther east or south of Western Europe, and you'll
encounter languages that don't use the Latin alphabet at all, such as Greek, Hebrew, Arabic, and Russian (which
uses the Cyrillic alphabet). And if you travel even farther east, you'll discover the ideographic Han characters of
Chinese, which were also adopted in Japan and Korea.

The history of ASCII since 1967 is mostly a history of attempts to overcome its limitations and make it more
applicable to languages other than American English. In 1967, for example, the International Standards
Organization (ISO) recommended a variant of ASCII with codes 0x40, 0x5B, 0x5C, 0x5D, 0x7B, 0x7C, and 0x7D
"reserved for national use" and codes 0x5E, 0x60, and 0x7E labeled as "may be used for other graphical symbols
when it is necessary to have 8, 9, or 10 positions for national use." This is obviously not the best solution to
internationalization because there's no guarantee of consistency. But it indicates how desperate people were to
successfully code symbols necessary to various languages.

Extending ASCII

By the time the early small computers were being developed, the 8-bit byte had been firmly established. Thus, if a
byte were used to store characters, 128 additional characters could be invented to supplement ASCII. When the
original IBM PC was introduced in 1981, the video adapters included a ROM-based character set of 256 characters,
which in itself was to become an important part of the IBM standard.

The original IBM extended character set included some accented characters and a lowercase Greek alphabet
(useful for mathematics notation), as well as some block-drawing and line-drawing characters. Additional
characters were also assigned to the code positions of the ASCII control characters, because the bulk of these
control characters were not required.

This IBM extended character set was burned into countless ROMs on video boards and in printers, and it was used
by numerous applications to decorate their character-mode displays. However, this character set did not include
enough accented letters for all Western European languages that used the Latin alphabet, and it was not quite
appropriate for Windows. Windows didn't need line-drawing characters because it had an entire graphics system.

In Windows 1.0 (released in November 1985), Microsoft didn't entirely abandon the IBM extended character set,
but it was relegated to secondary importance. The native Windows character set was called the "ANSI character
set" because it was based on a draft ANSI and ISO standard, which eventually became ANSI/ISO 885911987,
"American National Standard for Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1:
Latin Alphabet No 1." This is also known more simply as "Latin 1."

The original version of the ANSI character set as printed in the Windows 1.0 Programmer's Reference is shown in
Figure 2-2.

0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
-0 * * 0 @ P ` p * * ° À Ð à ð

-1 * * ! 1 A Q a q * * ¡ ± Á Ñ á ñ
-2 * * " 2 B R b r * * ¢ ² Â ò â ò
-3 * * # 3 C S c s * * £ ³ Ã ó ã ó
-4 * * $ 4 D T d t * * ¤ ´ Ä ô ä ô
-5 * * % 5 E U e u * * ¥ µ Å õ å õ
-6 * * & 6 F V f v * * ¦ ¶ Æ ö æ ö
-7 * * ' 7 G W g w * * § · Ç * ç *
-8 * * (8 H * h * * * ¨ ¸ È ø è ø
-9 * *) 9 I Y I y * * © ¹ É Ù é ù
-A * * * : J Z j z * * ª º Ê Ú ê ú
-B * * + ; K [k { * * « » Ë Û ë û
-C * * , < L \ l | * * ¬ ¼ Ì Ü ì ü
-D * * - = M] m } * * ½ Í Ý í ý
-E * * . > N ^ n ~ * * ® ¾ Î Þ î þ
-F * * / ? * _ o DEL * * ¯ ¿ Ï ß ï ÿ

* - not applicable

Figure 2-2. The Windows ANSI character set (based on ANSI/ISO 8859-1).

The hollow rectangles indicate codes for which characters are not defined. This is close to how ANSI/ISO 8859-1
was ultimately defined. ANSI/ISO 8859-1 shows only graphic characters, not control characters, so it does not
define the DEL. In addition, code 0xA0 is defined as a nonbreaking space (which means that it's a space that
shouldn't be used to break a line when formatting), and code 0xAD is a soft hyphen (which means that it shouldn't
be displayed unless it's used to break a word at the end of a line). Also, ANSI/ISO 8859-1 defines codes 0xD7 as a
multiplication sign (×) and 0xF7 as a division sign (÷). Some fonts in Windows also define some of the characters
from 0x80 through 0x9F, but these are not part of the ANSI/ISO 8859-1 standard.

MS-DOS 3.3 (released in April 1987) introduced the concept of code pages to IBM PC users, a concept that was
also carried over to Windows. A code page defines a mapping of character codes to characters. The original IBM
character set became known as code page 437, or "MS-DOS Latin US." Code page 850 is "MS-DOS Latin 1," which
replaces some of the line-drawing characters with additional accented letters (but which is not the Latin 1
ISO/ANSI standard shown in Figure 2-2 above). Other code pages were defined for other languages. The lower
128 codes are always the same; the higher 128 codes depend on the language for which the code page is defined.

Under MS-DOS, if a user sets the PC's keyboard, video display, and printer to a specific code page and then
creates, edits, and prints documents on the PC, all will be well. Everything's consistent. However, if the user
attempts to exchange documents with another user using a different code page or to change the code page on the
machine, problems will result. Character codes are associated with the wrong characters. Applications can save
code page information with documents in an attempt to reduce problems, but this strategy involves some work in
converting between code pages.

Although code pages originally provided only additional characters of the Latin alphabet beyond the unaccented
characters, eventually code pages were devised where the higher 128 characters contained complete non-Latin
alphabets, such as Hebrew, Greek, and Cyrillic. Such variety makes code page mix-ups potentially worse, of
course; it's one thing if a few accented letters appear incorrect and quite another if an entire text is an
incomprehensible jumble.

Code pages proliferated beyond all reason. Just to keep everyone on their toes, the MS-DOS code page 855 for
Cyrillic is not the same as either the Windows code page 1251 for Cyrillic or the Macintosh code page 10007 for
Cyrillic. Code pages in each environment are modifications of the standard character set for the environment. IBM
OS/2 also supports a variety of EBCDIC code pages.

But wait. It gets worse.

Double-Byte Character Sets

So far we've been looking at character sets of 256 characters. But the ideographic symbols of Chinese, Japanese,
and Korean number about 21,000. How can these languages be accommodated while still maintaining some kind
of compatibility with ASCII?

The solution (if that's the right word for it) is the double-byte character set (DBCS). A DBCS starts off with 256

codes, just like ASCII. Like any well-behaved code page, the first 128 of these codes are ASCII. However, some of
the codes in the higher 128 are always followed by a second byte. The two bytes together (called a lead byte and
a trail byte) define a single character, usually a complex ideograph.

Although Chinese, Japanese, and Korean share many of the same ideographs, obviously the languages are
different and often the same ideograph in the three different languages will represent three different things.
Windows supports four different double-byte character sets: code page 932 (Japanese), 936 (Simplified Chinese),
949 (Korean), and 950 (Traditional Chinese). DBCS is supported in only the versions of Windows that are
manufactured for these countries.

The problem with a double-byte character set is not that characters are represented by 2 bytes. The problem is
that some characters (in particular, the ASCII characters) are represented by 1 byte. This creates odd
programming problems. For example, the number of characters in a character string cannot be determined by the
byte size of the string. The string has to be parsed to determine its length, and each byte has to be examined to
see if it's the lead byte of a 2-byte character. If you have a pointer to a character somewhere in the middle of a
DBCS string, what is the address of the previous character in the string? The customary solution is to parse the
string starting at the beginning up to the pointer!

Unicode to the Rescue

The basic problem we have here is that the world's written languages simply cannot be represented by 256 8-bit
codes. The previous solutions involving code pages and DBCS have proven insufficient and awkward. What's the
real solution?

As programmers, we have experience with problems of this sort. If there are too many things to be represented by
8-bit values, we try wider values, perhaps 16-bit values. (Duh.) And that's the ridiculously simple concept behind
Unicode. Rather than the confusion of multiple 256-character code mappings or double-byte character sets that
have some 1-byte codes and some 2-byte codes, Unicode is a uniform 16-bit system, thus allowing the
representation of 65,536 characters. This is sufficient for all the characters and ideographs in all the written
languages of the world, including a bunch of math, symbol, and dingbat collections.

Understanding the difference between Unicode and DBCS is essential. Unicode is said to use (particularly in the
context of the C programming language) "wide characters." Each character in Unicode is 16 bits wide rather than
8 bits wide. Eight-bit values have no meaning in Unicode. In contrast, in a double-byte character set we're still
dealing with 8bit values. Some bytes define characters by themselves, and some bytes indicate that another byte
is necessary to completely define a character.

Whereas working with DBCS strings is quite messy, working with Unicode text is much like working with regular
text. You'll probably be pleased to learn that the first 128 Unicode characters (16-bit codes 0x0000 through
0x007F) are ASCII, while the second 128 Unicode characters (codex 0x0080 through 0x00FF) are the ISO 8859-1
extensions to ASCII. Various blocks of characters within Unicode are similarly based on existing standards. This is
to ease conversion. The Greek alphabet uses codes 0x0370 through 0x03FF, Cyrillic uses codes 0x0400 through
0x04FF, Armenian uses codes 0x0530 through 0x058F, and Hebrew uses codes 0x0590 through 0x05FF. The
ideographs of Chinese, Japanese, and Korean (referred to collectively as CJK) occupy codes 0x3000 through
0x9FFF.

The best thing about Unicode is that there's only one character set. There's simply no ambiguity. Unicode came
about through the cooperation of virtually every important company in the personal computer industry and is
code-for-code identical with the ISO 10646-1 standard. The essential reference for Unicode is The Unicode
Standard, Version 2.0 (Addison-Wesley, 1996), an extraordinary book that reveals the richness and diversity of
the world's written languages in a way that few other documents have. In addition, the book provides the
rationale and details behind the development of Unicode.

Are there any drawbacks to Unicode? Sure. Unicode character strings occupy twice as much memory as ASCII
strings. (File compression helps a lot to reduce the disk space differential, however.) But perhaps the worst
drawback is that Unicode remains relatively unused just yet. As programmers, we have our work cut out for us.

Wide Characters and C

To a C programmer, the whole idea of 16-bit characters can certainly provoke uneasy chills. That a char is the
same width as a byte is one of the very few certainties of this life. Few programmers are aware that ANSI/ISO
9899-1990, the "American National Standard for Programming Languages—C" (also known as "ANSI C") supports
character sets that require more than one byte per character through a concept called "wide characters." These
wide characters coexist nicely with normal and familiar characters.

ANSI C also supports multibyte character sets, such as those supported by the Chinese, Japanese, and Korean
versions of Windows. However, these multibyte character sets are treated as strings of single-byte values in which
some characters alter the meaning of successive characters. Multibyte character sets mostly impact the C run-time
library functions. In contrast, wide characters are uniformly wider than normal characters and involve some
compiler issues.

Wide characters aren't necessarily Unicode. Unicode is one possible wide-character encoding. However, because
the focus in this book is Windows rather than an abstract implementation of C, I will tend to speak of wide
characters and Unicode synonymously.

The char Data Type

Presumably, we are all quite familiar with defining and storing characters and character strings in our C programs
by using the char data type. But to facilitate an understanding of how C handles wide characters, let's first review
normal character definition as it might appear in a Win32 program.

The following statement defines and initializes a variable containing a single character:

char c = `A' ;

The variable c requires 1 byte of storage and will be initialized with the hexadecimal value 0x41, which is the
ASCII code for the letter A.

You can define a pointer to a character string like so:

char * p ;

Because Windows is a 32-bit operating system, the pointer variable p requires 4 bytes of storage. You can also
initialize a pointer to a character string:

char * p = "Hello!" ;

The variable p still requires 4 bytes of storage as before. The character string is stored in static memory and uses
7 bytes of storage—the 6 bytes of the string in addition to a terminating 0.

You can also define an array of characters, like this:

char a[10] ;

In this case, the compiler reserves 10 bytes of storage for the array. The expression sizeof (a) will return 10. If
the array is global (that is, defined outside any function), you can initialize an array of characters by using a

statement like so:

char a[] = "Hello!" ;

If you define this array as a local variable to a function, it must be defined as a static variable, as follows:

static char a[] = "Hello!" ;

In either case, the string is stored in static program memory with a 0 appended at the end, thus requiring 7 bytes
of storage.

Wider Characters

Nothing about Unicode or wide characters alters the meaning of the char data type in C. The char continues to
indicate 1 byte of storage, and sizeof (char) continues to return 1. In theory, a byte in C can be greater than 8
bits, but for most of us, a byte (and hence a char) is 8 bits wide.

Wide characters in C are based on the wchar_t data type, which is defined in several header files, including
WCHAR.H, like so:

typedef unsigned short wchar_t ;

Thus, the wchar_t data type is the same as an unsigned short integer: 16 bits wide.

To define a variable containing a single wide character, use the following statement:

wchar_t c = `A' ;

The variable c is the two-byte value 0x0041, which is the Unicode representation of the letter A. (However,
because Intel microprocessors store multibyte values with the least-significant bytes first, the bytes are actually
stored in memory in the sequence 0x41, 0x00. Keep this in mind if you examine memory storage of Unicode text.)

You can also define an initialized pointer to a wide-character string:

wchar_t * p = L"Hello!" ;

Notice the capital L (for long) immediately preceding the first quotation mark. This indicates to the compiler that
the string is to be stored with wide characters—that is, with every character occupying 2 bytes. The pointer
variable p requires 4 bytes of storage, as usual, but the character string requires 14 bytes—2 bytes for each
character with 2 bytes of zeros at the end.

Similarly, you can define an array of wide characters this way:

static wchar_t a[] = L"Hello!" ;

The string again requires 14 bytes of storage, and sizeof (a) will return 14. You can index the a array to get at the
individual characters. The value a[1] is the wide character `e', or 0x0065.

Although it looks more like a typo than anything else, that L preceding the first quotation mark is very important,
and there must not be space between the two symbols. Only with that L will the compiler know you want the
string to be stored with 2 bytes per character. Later on, when we look at wide-character strings in places other
than variable definitions, you'll encounter the L preceding the first quotation mark again. Fortunately, the C
compiler will often give you a warning or error message if you forget to include the L.

You can also use the L prefix in front of single character literals, as shown here, to indicate that they should be
interpreted as wide characters.

wchar_t c = L'A' ;

But it's usually not necessary. The C compiler will zero-extend the character anyway.

Wide-Character Library Functions

We all know how to find the length of a string. For example, if we have defined a pointer to a character string like
so:

char * pc = "Hello!" ;

we can call

iLength = strlen (pc) ;

The variable iLength will be set equal to 6, the number of characters in the string.

Excellent! Now let's try defining a pointer to a string of wide characters:

wchar_t * pw = L"Hello!" ;

And now we call strlen again:

iLength = strlen (pw) ;

Now the troubles begin. First, the C compiler gives you a warning message, probably something along the lines of

`function' : incompatible types - from `unsigned short *' to `const char *'

It's telling you that the strlen function is declared as accepting a pointer to a char , and it's getting a pointer to an
unsigned short . You can still compile and run the program, but you'll find that iLength is set to 1. What
happened?

The 6 characters of the character string "Hello!" have the 16-bit values:

0x0048 0x0065 0x006C 0x006C 0x006F 0x0021

which are stored in memory by Intel processors like so:

48 00 65 00 6C 00 6C 00 6F 00 21 00

The strlen function, assuming that it's attempting to find the length of a string of characters, counts the first byte
as a character but then assumes that the second byte is a zero byte denoting the end of the string.

This little exercise clearly illustrates the differences between the C language itself and the run-time library
functions. The compiler interprets the string L"Hello!" as a collection of 16-bit short integers and stores them in
the wchar_t array. The compiler also handles any array indexing and the sizeof operator, so these work properly.
But run-time library functions such as strlen are added during link time. These functions expect strings that
comprise single-byte characters. When they are confronted with wide-character strings, they don't perform as
we'd like.

Oh, great, you say. Now every C library function has to be rewritten to accept wide characters. Well, not every C
library function. Only the ones that have string arguments. And you don't have to rewrite them. It's already been
done.

The wide-character version of the strlen function is called wcslen ("wide-character string length"), and it's declared
both in STRING.H (where the declaration for strlen resides) and WCHAR.H. The strlen function is declared like this:

size_t __cdecl strlen (const char *) ;

and the wcslen function looks like this:

size_t __cdecl wcslen (const wchar_t *) ;

So now we know that when we need to find out the length of a wide-character string we can call

iLength = wcslen (pw) ;

The function returns 6, the number of characters in the string. Keep in mind that the character length of a string
does not change when you move to wide characters—only the byte length changes.

All your favorite C run-time library functions that take string arguments have wide-character versions. For
example, wprintf is the wide-character version of printf . These functions are declared both in WCHAR.H and in the
header file where the normal function is declared.

Maintaining a Single Source

There are, of course, certain disadvantages to using Unicode. First and foremost is that every string in your
program will occupy twice as much space. In addition, you'll observe that the functions in the wide-character run-
time library are larger than the usual functions. For this reason, you might want to create two versions of your
program—one with ASCII strings and the other with Unicode strings. The best solution would be to maintain a
single source code file that you could compile for either ASCII or Unicode.

That's a bit of a problem, though, because the run-time library functions have different names, you're defining
characters differently, and then there's that nuisance of preceding the string literals with an L.

One answer is to use the TCHAR.H header file included with Microsoft Visual C++. This header file is not part of
the ANSI C standard, so every function and macro definition defined therein is preceded by an underscore.
TCHAR.H provides a set of alternative names for the normal run-time library functions requiring string parameters
(for example, _tprintf and _tcslen). These are sometimes referred to as "generic" function names because they
can refer to either the Unicode or non-Unicode versions of the functions.

If an identifier named _UNICODE is defined and the TCHAR.H header file is included in your program, _tcslen is
defined to be wcslen :

#define _tcslen wcslen

If UNICODE isn't defined, _tcslen is defined to be strlen :

#define _tcslen strlen

And so on. TCHAR.H also solves the problem of the two character data types with a new data type named TCHAR.
If the _UNICODE identifier is defined, TCHAR is wchar_t :

typedef wchar_t TCHAR ;

Otherwise, TCHAR is simply a char :

typedef char TCHAR ;

Now it's time to address that sticky L problem with the string literals. If the _UNICODE identifier is defined, a
macro called __T is defined like this:

#define __T(x) L##x

This is fairly obscure syntax, but it's in the ANSI C standard for the C preprocessor. That pair of number signs is
called a "token paste," and it causes the letter L to be appended to the macro parameter. Thus, if the macro
parameter is "Hello!", then L##x is L"Hello!".

If the _UNICODE identifier is not defined, the __T macro is simply defined in the following way:

#define __T(x) x

Regardless, two other macros are defined to be the same as __T:

#define _T(x) __T(x)
#define _TEXT(x) __T(x)

Which one you use for your Win32 console programs depends on how concise or verbose you'd like to be.
Basically, you must define your string literals inside the _T or _TEXT macro in the following way:

_TEXT ("Hello!")

Doing so causes the string to be interpreted as composed of wide characters if the _UNICODE identifier is defined
and as 8-bit characters if not.

Wide Characters and Windows

Windows NT supports Unicode from the ground up. What this means is that Windows NT internally uses character
strings composed of 16-bit characters. Since much of the rest of the world doesn't use 16-bit character strings
yet, Windows NT must often convert character strings on the way into the operating system or on the way out.
Windows NT can run programs written for ASCII, for Unicode, or for a mix of ASCII and Unicode. That is, Windows
NT supports different API function calls that accept 8-bit or 16-bit character strings. (We'll see how this works
shortly.)

Windows 98 has much less support of Unicode than Windows NT does. Only a few Windows 98 function calls
support wide-character strings. (These functions are listed in Microsoft Knowledge Base article Q125671; they
include MessageBox .) If you're going to distribute only one .EXE file that must run under both Windows NT and
Windows 98, it shouldn't use Unicode or else it won't run under Windows 98; in particular, the program shouldn't
call the Unicode versions of the Windows function calls. However, so that you can be in a better position to
distribute a Unicode version of your program sometime in the future, you should probably attempt to have a single
source that can be compiled for either ASCII or Unicode. That's how all the programs in the book are written.

Windows Header File Types

As you saw in the first chapter, a Windows program includes the header file WINDOWS.H. This file includes a
number of other header files, including WINDEF.H, which has many of the basic type definitions used in Windows
and which itself includes WINNT.H. WINNT.H handles the basic Unicode support.

WINNT.H begins by including the C header file CTYPE.H, which is one of many C header files that have a definition
of wchar_t . WINNT.H defines new data types named CHAR and WCHAR:

typedef char CHAR ;
typedef wchar_t WCHAR ; // wc

CHAR and WCHAR are the data types recommended for your use in a Windows program when you need to define
an 8-bit character or a 16-bit character. That comment following the WCHAR definition is a suggestion for
Hungarian notation: a variable based on the WCHAR data type can be preceded with the letters wc to indicate a
wide character.

The WINNT.H header file goes on to define six data types you can use as pointers to 8-bit character strings and
four data types you can use as pointers to const 8-bit character strings. I've condensed the actual header file
statements a bit to show the data types here:

typedef CHAR * PCHAR, * LPCH, * PCH, * NPSTR, * LPSTR, * PSTR ;
typedef CONST CHAR * LPCCH, * PCCH, * LPCSTR, * PCSTR ;

The N and L prefixes stand for "near" and "long" and refer to the two different sizes of pointers in 16-bit Windows.
There is no differentiation between near and long pointers in Win32.

Similarly, WINNT.H defines six data types you can use as pointers to 16-bit character strings and four data types
you can use as pointers to const 16-bit character strings:

typedef WCHAR * PWCHAR, * LPWCH, * PWCH, * NWPSTR, * LPWSTR, * PWSTR ;
typedef CONST WCHAR * LPCWCH, * PCWCH, * LPCWSTR, * PCWSTR ;

So far, we have the data types CHAR (which is an 8-bit char) and WCHAR (which is a 16-bit wchar_t) and
pointers to CHAR and WCHAR. As in TCHAR.H, WINNT.H defines TCHAR to be the generic character type. If the

identifier UNICODE (without the underscore) is defined, TCHAR and pointers to TCHAR are defined based on
WCHAR and pointers to WCHAR; if the identifier UNICODE is not defined, TCHAR and pointers to TCHAR are
defined based on char and pointers to char :

#ifdef UNICODE
typedef WCHAR TCHAR, * PTCHAR ;
typedef LPWSTR LPTCH, PTCH, PTSTR, LPTSTR ;
typedef LPCWSTR LPCTSTR ;
#else
typedef char TCHAR, * PTCHAR ;
typedef LPSTR LPTCH, PTCH, PTSTR, LPTSTR ;
typedef LPCSTR LPCTSTR ;
#endif

Both the WINNT.H and WCHAR.H header files are protected against redefinition of the TCHAR data type if it's
already been defined by one or the other of these header files. However, whenever you're using other header files
in your program, you should include WINDOWS.H before all others.

The WINNT.H header file also defines a macro that appends the L to the first quotation mark of a character string.
If the UNICODE identifier is defined, a macro called __TEXT is defined as follows:

#define __TEXT(quote) L##quote

If the identifier UNICODE is not defined, the __TEXT macro is defined like so:

#define __TEXT(quote) quote

Regardless, the TEXT macro is defined like this:

#define TEXT(quote) __TEXT(quote)

This is very similar to the way the _TEXT macro is defined in TCHAR.H, except that you need not bother with the
underscore. I'll be using the TEXT version of this macro throughout this book.

These definitions let you mix ASCII and Unicode characters strings in the same program or write a single program
that can be compiled for either ASCII or Unicode. If you want to explicitly define 8-bit character variables and
strings, use CHAR, PCHAR (or one of the others), and strings with quotation marks. For explicit 16-bit character
variables and strings, use WCHAR, PWCHAR, and append an L before quotation marks. For variables and
characters strings that will be 8 bit or 16 bit depending on the definition of the UNICODE identifier, use TCHAR,
PTCHAR, and the TEXT macro.

The Windows Function Calls

In the 16-bit versions of Windows beginning with Windows 1.0 and ending with Windows 3.1, the MessageBox
function was located in the dynamic-link library USER.EXE. In the WINDOWS.H header files included in the
Windows 3.1 Software Development Kit, the MessageBox function was defined like so:

int WINAPI MessageBox (HWND, LPCSTR, LPCSTR, UINT) ;

Notice that the second and third arguments to the function are pointers to constant character strings. When a
Win16 program was compiled and linked, Windows left the call to MessageBox unresolved. A table in the
program's .EXE file allowed Windows to dynamically link the call from the program to the MessageBox function
located in the USER library.

The 32-bit versions of Windows (that is, all versions of Windows NT, as well as Windows 95 and Windows 98)
include USER.EXE for 16-bit compatibility but also have a dynamic-link library named USER32.DLL that contains
entry points for the 32-bit versions of the user interface functions, including the 32-bit version of MessageBox .

But here's the key to Windows support of Unicode: In USER32.DLL, there is no entry point for a 32-bit function
named MessageBox . Instead, there are two entry points, one named MessageBoxA (the ASCII version) and the
other named MessageBoxW (the wide-character version). Every Win32 function that requires a character string
argument has two entry points in the operating system! Fortunately, you usually don't have to worry about this.
You can simply use MessageBox in your programs. As in the TCHAR header file, the various Windows header files
perform the necessary tricks.

Here's how MessageBoxA is defined in WINUSER.H. This is quite similar to the earlier definition of MessageBox :

WINUSERAPI int WINAPI MessageBoxA (HWND hWnd, LPCSTR lpText,
 LPCSTR lpCaption, UINT uType) ;

And here's MessageBoxW :

WINUSERAPI int WINAPI MessageBoxW (HWND hWnd, LPCWSTR lpText,
 LPCWSTR lpCaption, UINT uType) ;

Notice that the second and third parameters to the MessageBoxW function are pointers to wide-character strings.

You can use the MessageBoxA and MessageBoxW functions explicitly in your Windows programs if you need to mix
and match ASCII and wide-character function calls. But most programmers will continue to use MessageBox ,
which will be the same as MessageBoxA or MessageBoxW depending on whether UNICODE is defined. Here's the
rather trivial code in WINUSER.H that does the trick:

#ifdef UNICODE
#define MessageBox MessageBoxW
#else
#define MessageBox MessageBoxA
#endif

Thus, all the MessageBox function calls that appear in your program will actually be MessageBoxW functions if the
UNICODE identifier is defined and MessageBoxA functions if it's not defined.

When you run the program, Windows links the various function calls in your program to the entry points in the
various Windows dynamic-link libraries. With just a few exceptions, however, the Unicode versions of the Windows
functions are not implemented in Windows 98. The functions have entry points, but they usually return an error
code. It is up to an application to take note of this error return and do something reasonable.

Windows' String Functions

As I noted earlier, Microsoft C includes wide-character and generic versions of all C run-time library functions that
require character string arguments. However, Windows duplicates some of these. For example, here is a collection
of string functions defined in Windows that calculate string lengths, copy strings, concatenate strings, and
compare strings:

ILength = lstrlen (pString) ;
pString = lstrcpy (pString1, pString2) ;
pString = lstrcpyn (pString1, pString2, iCount) ;
pString = lstrcat (pString1, pString2) ;
iComp = lstrcmp (pString1, pString2) ;
iComp = lstrcmpi (pString1, pString2) ;

These work much the same as their C library equivalents. They accept wide-character strings if the UNICODE
identifier is defined and regular strings if not. The wide-character version of the lstrlenW function is implemented
in Windows 98.

Using printf in Windows

Programmers who have a background in character-mode, command-line C programming are often excessively
fond of the printf function. It's no surprise that printf shows up in the Kernighan and Ritchie "hello, world"
program even though a simpler alternative (such as puts) could have been used. Everyone knows that
enhancements to "hello, world" will need the formatted text output of printf eventually, so we might as well start
using it at the outset.

The bad news is that you can't use printf in a Windows program. Although you can use most of the C run-time
library in Windows programs—indeed, many programmers prefer to use the C memory management and file I/O
functions over the Windows equivalents—Windows has no concept of standard input and standard output. You can
use fprintf in a Windows program, but not printf .

The good news is that you can still display text by using sprintf and other functions in the sprintf family. These
functions work just like printf , except that they write the formatted output to a character string buffer that you
provide as the function's first argument. You can then do what you want with this character string (such as pass it
to MessageBox).

If you've never had occasion to use sprintf (as I didn't when I first began programming for Windows), here's a
brief rundown. Recall that the printf function is declared like so:

int printf (const char * szFormat, ...) ;

The first argument is a formatting string that is followed by a variable number of arguments of various types
corresponding to the codes in the formatting string.

The sprintf function is defined like this:

int sprintf (char * szBuffer, const char * szFormat, ...) ;

The first argument is a character buffer; this is followed by the formatting string. Rather than writing the
formatted result in standard output, sprintf stores it in szBuffer . The function returns the length of the string. In
character-mode programming,

printf ("The sum of %i and %i is %i", 5, 3, 5+3) ;

is functionally equivalent to

char szBuffer [100] ;
sprintf (szBuffer, "The sum of %i and %i is %i", 5, 3, 5+3) ;
puts (szBuffer) ;

In Windows, you can use MessageBox rather than puts to display the results.

Almost everyone has experience with printf going awry and possibly crashing a program when the formatting
string is not properly in sync with the variables to be formatted. With sprintf , you still have to worry about that
and you also have a new worry: the character buffer you define must be large enough for the result. A Microsoft-
specific function named _snprintf solves this problem by introducing another argument that indicates the size of
the buffer in characters.

A variation of sprintf is vsprintf , which has only three arguments. The vsprintf function is used to implement a
function of your own that must perform printf -like formatting of a variable number of arguments. The first two
arguments to vsprintf are the same as sprintf : the character buffer for storing the result and the formatting
string. The third argument is a pointer to an array of arguments to be formatted. In practice, this pointer actually
references variables that have been stored on the stack in preparation for a function call. The va_list , va_start ,
and va_end macros (defined in STDARG.H) help in working with this stack pointer. The SCRNSIZE program at the
end of this chapter demonstrates how to use these macros. The sprintf function can be written in terms of vsprintf
like so:

int sprintf (char * szBuffer, const char * szFormat, ...)
{
 int iReturn ;
 va_list pArgs ;

 va_start (pArgs, szFormat) ;
 iReturn = vsprintf (szBuffer, szFormat, pArgs) ;
 va_end (pArgs) ;

 return iReturn ;
}

The va_start macro sets pArg to point to the variable on the stack right above the szFormat argument on the
stack.

So many early Windows programs used sprintf and vsprintf that Microsoft eventually added two similar functions
to the Windows API. The Windows wsprintf and wvsprintf functions are functionally equivalent to sprintf and
vsprintf , except that they don't handle floating-point formatting.

Of course, with the introduction of wide characters, the sprintf functions blossomed in number, creating a
thoroughly confusing jumble of function names. Here's a chart that shows all the sprintf functions supported by
Microsoft's C run-time library and by Windows.

ASCII
Wide-Character
Generic
Variable Number
of Arguments
Standard Version
sprintf
swprintf
_stprintf

Max-Length Version
_snprintf
_snwprintf
_sntprintf
Windows Version
wsprintfA
wsprintfW
wsprintf
Pointer to Array
of Arguments
Standard Version
vsprintf
vswprintf
_vstprintf
Max-Length Version
_vsnprintf
_vsnwprintf
_vsntprintf
Windows Version
wvsprintfA
wvsprintfW
wvsprintf

In the wide-character versions of the sprintf functions, the string buffer is defined as a wide-character string. In
the wide-character versions of all these functions, the formatting string must be a wide-character string. However,
it's up to you to make sure that any other strings you pass to these functions are also composed of wide
characters.

A Formatting Message Box

The SCRNSIZE program shown in Figure 2-3 shows how to implement a MessageBoxPrintf function that takes a
variable number of arguments and formats them like printf .

Figure 2-3. The SCRNSIZE program.

SCRNSIZE.C

/*---
 SCRNSIZE.C -- Displays screen size in a message box
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include <tchar.h>
#include <stdio.h>

int CDECL MessageBoxPrintf (TCHAR * szCaption, TCHAR * szFormat, ...)
{
 TCHAR szBuffer [1024] ;
 va_list pArgList ;

 // The va_start macro (defined in STDARG.H) is usually equivalent to:
 // pArgList = (char *) &szFormat + sizeof (szFormat) ;

 va_start (pArgList, szFormat) ;

 // The last argument to wvsprintf points to the arguments

 _vsntprintf (szBuffer, sizeof (szBuffer) / sizeof (TCHAR),
 szFormat, pArgList) ;

 // The va_end macro just zeroes out pArgList for no good reason

 va_end (pArgList) ;

 return MessageBox (NULL, szBuffer, szCaption, 0) ;
}

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 int cxScreen, cyScreen ;

 cxScreen = GetSystemMetrics (SM_CXSCREEN) ;
 cyScreen = GetSystemMetrics (SM_CYSCREEN) ;
 MessageBoxPrintf (TEXT ("ScrnSize"),
 TEXT ("The screen is %i pixels wide by %i pixels high."),
 cxScreen, cyScreen) ;
 return 0 ;
}

The program displays the width and height of the video display in pixels by using information obtained from the
GetSystemMetrics function. GetSystemMetrics is a useful function for obtaining information about the sizes of
various objects in Windows. Indeed, in Chapter 4 I'll use the GetSystemMetrics function to show you how to
display and scroll multiple lines of text in a Windows window.

Internationalization and This Book

Preparing your Windows programs for an international market involves more than using Unicode.
Internationalization is beyond the scope of this book but is covered extensively in Developing International
Software for Windows 95 and Windows NT by Nadine Kano (Microsoft Press, 1995).

This book will restrict itself to showing programs that can be compiled either with or without the UNICODE
identifier defined. This involves using TCHAR for all character and string definitions, using the TEXT macro for
string literals, and taking care not to confuse bytes and characters. For example, notice the _vsntprintf call in
SCRNSIZE. The second argument is the size of the buffer in characters. Typically, you'd use sizeof (szBuffer) . But
if the buffer has wide characters, that's not the size of the buffer in characters but the size of the buffer in bytes.
You must divide it by sizeof (TCHAR) .

Normally in the Visual C++ Developer Studio, you can compile a program in two different configurations: Debug
and Release. For convenience, for the sample programs in this book, I have modified the Debug configuration so
that the UNICODE identifier is defined. In those programs that use C run-time functions that require string
arguments, the _UNICODE identifier is also defined in the Debug configuration. (To see where this is done, choose
Settings from the Project menu and click the C/C++ tab.) In this way, the programs can be easily recompiled and
linked for testing.

All of the programs in this book—whether compiled for Unicode or not—run under Windows NT. With a few
exceptions, the Unicode-compiled programs in this book will not run under Windows 98 but the non-Unicode
versions will. The programs in this chapter and the first chapter are two of the few exceptions. MessageBoxW is
one of the few wide-character Windows functions supported under Windows 98. If you replace _vsntprintf in
SCRNSIZE.C with the Windows function wprintf (you'll also have to eliminate the second argument to the
function), the Unicode version of SCRNSIZE.C will not run under Windows 98 because Windows 98 does not
implement wprintfW .

As we'll see later in this book (particularly in Chapter 6 , which covers using the keyboard), it is not easy writing a
Windows program that can handle the double-byte character sets of the Far Eastern versions of Windows. This
book does not show you how, and for that reason some of the non-Unicode versions of the programs in this book
do not run properly under the Far Eastern versions of Windows. This is one reason why Unicode is so important to
the future of programming. Unicode allows programs to more easily cross national borders.

Chapter 3

Windows and Messages

In the first two chapters, the sample programs used the MessageBox function to deliver text output to the user.
The MessageBox function creates a "window." In Windows, the word "window" has a precise meaning. A window is
a rectangular area on the screen that receives user input and displays output in the form of text and graphics.

The MessageBox function creates a window, but it is a special-purpose window of limited flexibility. The message
box window has a title bar with a close button, an optional icon, one or more lines of text, and up to four buttons.
However, the icons and buttons must be chosen from a small collection that Windows provides for you.

The MessageBox function is certainly useful, but we're not going to get very far with it. We can't display graphics
in a message box, and we can't add a menu to a message box. For that we need to create our own windows, and
now is the time.

A Window of One's Own

Creating a window is as easy as calling the CreateWindow function.

Well, not really. Although the function to create a window is indeed named CreateWindow and you can find
documentation for this function at /Platform SDK/User Interface Services/Windowing/Windows/Window
Reference/Window Functions , you'll discover that the first argument to CreateWindow is something called a
"window class name" and that a window class is connected to something called a "window procedure." Perhaps
before we try calling CreateWindow , a little background information might prove helpful.

An Architectural Overview

When programming for Windows, you're really engaged in a type of object-oriented programming. This is most
evident in the object you'll be working with most in Windows, the object that gives Windows its name, the object
that will soon seem to take on anthropomorphic characteristics, the object that might even show up in your
dreams: the object known as the "window."

The most obvious windows adorning your desktop are application windows. These windows contain a title bar that
shows the program's name, a menu, and perhaps a toolbar and a scroll bar. Another type of window is the dialog
box, which may or may not have a title bar.

Less obvious are the various push buttons, radio buttons, check boxes, list boxes, scroll bars, and text-entry fields
that adorn the surfaces of dialog boxes. Each of these little visual objects is a window. More specifically, these are
called "child windows" or "control windows" or "child window controls."

The user sees these windows as objects on the screen and interacts directly with them using the keyboard or the
mouse. Interestingly enough, the programmer's perspective is analogous to the user's perspective. The window
receives the user input in the form of "messages" to the window. A window also uses messages to communicate
with other windows. Getting a good feel for messages is an important part of learning how to write programs for
Windows.

Here's an example of Windows messages: As you know, most Windows programs have sizeable application
windows. That is, you can grab the window's border with the mouse and change the window's size. Often the
program will respond to this change in size by altering the contents of its window. You might guess (and you
would be correct) that Windows itself rather than the application is handling all the messy code involved with
letting the user resize the window. Yet the application "knows" that the window has been resized because it can
change the format of what it displays.

How does the application know that the user has changed the window's size? For programmers accustomed to
only conventional character-mode programming, there is no mechanism for the operating system to convey
information of this sort to the user. It turns out that the answer to this question is central to understanding the
architecture of Windows. When a user resizes a window, Windows sends a message to the program indicating the
new window size. The program can then adjust the contents of its window to reflect the new size.

"Windows sends a message to the program." I hope you didn't read that statement without blinking. What on
earth could it mean? We're talking about program code here, not a telegraph system. How can an operating
system send a message to a program?

When I say that "Windows sends a message to the program" I mean that Windows calls a function within the
program—a function that you write and which is an essential part of your program's code. The parameters to this
function describe the particular message that is being sent by Windows and received by your program. This
function in your program is known as the "window procedure."

You are undoubtedly accustomed to the idea of a program making calls to the operating system. This is how a
program opens a disk file, for example. What you may not be accustomed to is the idea of an operating system
making calls to a program. Yet this is fundamental to Windows' architecture.

Every window that a program creates has an associated window procedure. This window procedure is a function
that could be either in the program itself or in a dynamic-link library. Windows sends a message to a window by
calling the window procedure. The window procedure does some processing based on the message and then
returns control to Windows.

More precisely, a window is always created based on a "window class." The window class identifies the window
procedure that processes messages to the window. The use of a window class allows multiple windows to be based
on the same window class and hence use the same window procedure. For example, all buttons in all Windows

programs are based on the same window class. This window class is associated with a window procedure located
in a Windows dynamic-link library that processes messages to all the button windows.

In object-oriented programming, an object is a combination of code and data. A window is an object. The code is
the window procedure. The data is information retained by the window procedure and information retained by
Windows for each window and window class that exists in the system.

A window procedure processes messages to the window. Very often these messages inform a window of user input
from the keyboard or the mouse. For example, this is how a push-button window knows that it's being "clicked."
Other messages tell a window when it is being resized or when the surface of the window needs to be redrawn.

When a Windows program begins execution, Windows creates a "message queue" for the program. This message
queue stores messages to all the windows a program might create. A Windows application includes a short chunk
of code called the "message loop" to retrieve these messages from the queue and dispatch them to the
appropriate window procedure. Other messages are sent directly to the window procedure without being placed in
the message queue.

If your eyes are beginning to glaze over with this excessively abstract description of the Windows architecture,
maybe it will help to see how the window, the window class, the window procedure, the message queue, the
message loop, and the window messages all fit together in the context of a real program.

The HELLOWIN Program

Creating a window first requires registering a window class, and that requires a window procedure to process
messages to the window. This involves a bit of overhead that appears in almost every Windows program. The
HELLOWIN program, shown in Figure 3-1, is a simple program showing mostly that overhead.

Figure 3-1. The HELLOWIN program.

HELLOWIN.C

/*--
 HELLOWIN.C -- Displays "Hello, Windows 98!" in client area
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("HelloWin") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }
 hwnd = CreateWindow (szAppName, // window class name
 TEXT ("The Hello Program"), // window caption
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x position
 CW_USEDEFAULT, // initial y position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window handle
 NULL, // window menu handle
 hInstance, // program instance handle
 NULL) ; // creation parameters

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 PlaySound (TEXT ("hellowin.wav"), NULL, SND_FILENAME | SND_ASYNC) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 DrawText (hdc, TEXT ("Hello, Windows 98!"), -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;
 EndPaint (hwnd, &ps) ;

 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program creates a normal application window, as shown in Figure 3-2, and displays, "Hello, Windows 98!" in
the center of that window. If you have a sound board installed, you will also hear me saying the same thing.

Figure 3-2. The HELLOWIN window.

A couple of warnings: If you use Microsoft Visual C++ to create a new project for this program, you need to make
an addition to the object libraries the linker uses. Select the Settings option from the Project menu, and pick the
Link tab. Select General from the Category list box, and add WINMM.LIB ("Windows multimedia") to the
Object/Library Modules text box. You need to do this because HELLOWIN makes use of a multimedia function call,
and the multimedia object library isn't included in a default project. Otherwise you'll get an error message from
the linker indicating that the PlaySound function is unresolved.

HELLOWIN accesses a file named HELLOWIN.WAV, which is on the companion CD-ROM in the HELLOWIN
directory. When you execute HELLOWIN.EXE, the default directory must be HELLOWIN. This is the case when you
execute the program within Visual C++, even though the executable will be in the RELEASE or DEBUG
subdirectory of HELLOWIN.

Thinking Globally

Most of HELLOWIN.C is overhead found in virtually every Windows program. Nobody really memorizes all the
syntax to write this overhead; generally, Windows programmers begin a new program by copying an existing
program and making appropriate changes to it. You're free to use the programs on the companion CD-ROM in this
manner.

I mentioned above that HELLOWIN displays the text string in the center of its window. That's not precisely true.
The text is actually displayed in the center of the program's "client area," which in Figure 3-2 is the large white
area within the title bar and the sizing border. This distinction will be important to us; the client area is that area
of the window in which a program is free to draw and deliver visual output to the user.

When you think about it, this program has an amazing amount of functionality in its 80-odd lines of code. You can

grab the title bar with the mouse and move the window around the screen. You can grab the sizing borders and
resize the window. When the window changes size, the program automatically repositions the text string in the
center of its client area. You can click the maximize button and zoom HELLOWIN to fill the screen. You can click
the minimize button and clear it from the screen. You can invoke all these options from the system menu (the
small icon at the far left of the title bar). You can also close the window to terminate the program by selecting the
Close option from the system menu, by clicking the close button at the far right of the title bar, or by double-
clicking the system menu icon.

We'll be examining this program in detail for much of the remainder of the chapter. First, however, let's take a
more global look.

HELLOWIN.C has a WinMain function like the sample programs in the first two chapters, but it also has a second
function named WndProc . This is the window procedure. (In conversation among Windows programmers, it's
called the "win prock.") Notice that there's no code in HELLOWIN.C that calls WndProc . However, there is a
reference to WndProc in WinMain , which is why the function is declared near the top of the program.

The Windows Function Calls

HELLOWIN makes calls to no fewer than 18 Windows functions. In the order they occur, these functions (with a
brief description) are:

LoadIcon Loads an icon for use by a program.

LoadCursor Loads a mouse cursor for use by a program.

GetStockObject Obtains a graphic object, in this case a brush used for painting the window's background.

RegisterClass Registers a window class for the program's window.

MessageBox Displays a message box.

CreateWindow Creates a window based on a window class.

ShowWindow Shows the window on the screen.

UpdateWindow Directs the window to paint itself.

GetMessage Obtains a message from the message queue.

TranslateMessage Translates some keyboard messages.

DispatchMessage Sends a message to a window procedure.

PlaySound Plays a sound file.

BeginPaint Initiates the beginning of window painting.

GetClientRect Obtains the dimensions of the window's client area.

DrawText Displays a text string.

EndPaint Ends window painting.

PostQuitMessage Inserts a "quit" message into the message queue.

DefWindowProc Performs default processing of messages.

These functions are described in the Platform SDK documentation, and they are declared in various header files,
mostly in WINUSER.H.

Uppercase Identifiers

You'll notice the use of quite a few uppercase identifiers in HELLOWIN.C. These identifiers are defined in the

Windows header files. Several of these identifiers contain a two-letter or three-letter prefix followed by an
underscore:

CS_HREDRAW
DT_VCENTER
SND_FILENAME
CS_VREDRAW
IDC_ARROW
WM_CREATE
CW_USEDEFAULT
IDI_APPLICATION
WM_DESTROY
DT_CENTER
MB_ICONERROR
WM_PAINT
DT_SINGLELINE
SND_ASYNC
WS_OVERLAPPEDWINDOW

These are simply numeric constants. The prefix indicates a general category to which the constant belongs, as
indicated in this table:

Prefix
Constant
CS
Class style option
CW
Create window option
DT
Draw text option
IDI
ID number for an icon
IDC
ID number for a cursor
MB
Message box options
SND
Sound option
WM
Window message
WS
Window style

You almost never need to remember numeric constants when programming for Windows. Virtually every numeric
constant has an identifier defined in the header files.

New Data Types

Some other identifiers used in HELLOWIN.C are new data types, also defined in the Windows header files using
either typedef or #define statements. This was originally done to ease the transition of Windows programs from
the original 16-bit system to future operating systems that would be based on 32-bit technology. This didn't quite
work as smoothly and transparently as everyone thought at the time, but the concept was fundamentally sound.

Sometimes these new data types are just convenient abbreviations. For example, the UINT data type used for the
second parameter to WndProc is simply an unsigned int , which in Windows 98 is a 32-bit value. The PSTR data
type used for the third parameter to WinMain is a pointer to a nonwide character string, that is, a char * .

Others are less obvious. For example, the third and fourth parameters to WndProc are defined as WPARAM and
LPARAM, respectively. The origin of these names requires a bit of history. When Windows was a 16-bit system, the
third parameter to WndProc was defined as a WORD, which was a 16-bit unsigned short integer, and the fourth
parameter was defined as a LONG, which was a 32-bit signed long integer. That's the reason for the "W" and "L"
prefixes on the word "PARAM." In the 32-bit versions of Windows, however, WPARAM is defined as a UINT and
LPARAM is defined as a LONG (which is still the C long data type), so both parameters to the window procedure
are 32-bit values. This may be a little confusing because the WORD data type is still defined as a 16-bit unsigned
short integer in Windows 98, so the "W" prefix to "PARAM" creates somewhat of a misnomer.

The WndProc function returns a value of type LRESULT. That's simply defined as a LONG. The WinMain function is
given a type of WINAPI (as is every Windows function call defined in the header files), and the WndProc function is
given a type of CALLBACK. Both these identifiers are defined as __stdcall , which refers to a special calling
sequence for function calls that occur between Windows itself and your application.

HELLOWIN also uses four data structures (which I'll discuss later in this chapter) defined in the Windows header
files. These data structures are shown in the table below.

Structure
Meaning
MSG
Message structure
WNDCLASS
Window class structure
PAINTSTRUCT
Paint structure
RECT
Rectangle structure

The first two data structures are used in WinMain to define two structures named msg and wndclass . The second
two are used in WndProc to define two structures named ps and rect .

Getting a Handle on Handles

Finally, there are three uppercase identifiers for various types of "handles":

Identifier
Meaning
HINSTANCE
Handle to an "instance"—the program itself
HWND
Handle to a window
HDC
Handle to a device context

Handles are used quite frequently in Windows. Before the chapter is over, you will also encounter HICON (a handle
to an icon), HCURSOR (a handle to a mouse cursor), and HBRUSH (a handle to a graphics brush).

A handle is simply a number (usually 32 bits in size) that refers to an object. The handles in Windows are similar
to file handles used in conventional C or MS-DOS programming. A program almost always obtains a handle by
calling a Windows function. The program uses the handle in other Windows functions to refer to the object. The
actual value of the handle is unimportant to your program, but the Windows module that gives your program the
handle knows how to use it to reference the object.

Hungarian Notation

You might also notice that some of the variables in HELLOWIN.C have peculiar-looking names. One example is
szCmdLine , passed as a parameter to WinMain .

Many Windows programmers use a variable-naming convention known as "Hungarian Notation," in honor of the
legendary Microsoft programmer Charles Simonyi. Very simply, the variable name begins with a lowercase letter
or letters that denote the data type of the variable. For example, the sz prefix in szCmdLine stands for "string
terminated by zero." The h prefix in hInstance and hPrevInstance stands for "handle;" the i prefix in iCmdShow
stands for "integer." The last two parameters to WndProc also use Hungarian notation, although, as I explained
before, wParam should more properly be named uiParam (ui for "unsigned integer"). But because these two
parameters are defined using the data types WPARAM and LPARAM, I've chosen to retain their traditional names.

When naming structure variables, you can use the structure name (or an abbreviation of the structure name) in
lowercase either as a prefix to the variable name or as the entire variable name. For example, in the WinMain
function in HELLOWIN.C, the msg variable is a structure of the MSG type; wndclass is a structure of the
WNDCLASS type. In the WndProc function, ps is a PAINTSTRUCT structure and rect is a RECT structure.

Hungarian notation helps you avoid errors in your code before they turn into bugs. Because the name of a variable
describes both the use of a variable and its data type, you are much less likely to make coding errors involving

mismatched data types.

The variable name prefixes I'll generally be using in this book are shown in the following table.

Prefix
Data Type
c
char or WCHAR or TCHAR
by
BYTE (unsigned char)
n
short
i
int
x , y
int used as x-coordinate or y-coordinate
cx , cy
int used as x or y length; c stands for "count"
b or f
BOOL (int); f stands for "flag"
w
WORD (unsigned short)
l
LONG (long)
dw
DWORD (unsigned long)
fn
function
s
string
sz
string terminated by 0 character
h
handle
p
pointer

Registering the Window Class

A window is always created based on a window class. The window class identifies the window procedure that
processes messages to the window.

More than one window can be created based on a single window class. For example, all button windows—including
push buttons, check boxes, and radio buttons—are created based on the same window class. The window class
defines the window procedure and some other characteristics of the windows that are created based on that class.
When you create a window, you define additional characteristics of the window that are unique to that window.

Before you create an application window, you must register a window class by calling RegisterClass . This function
requires a single parameter, which is a pointer to a structure of type WNDCLASS. This structure includes two fields
that are pointers to character strings, so the structure is defined two different ways in the WINUSER.H header file.
First, there's the ASCII version, WNDCLASSA:

typedef struct tagWNDCLASSA
{
 UINT style ;
 WNDPROC lpfnWndProc ;
 int cbClsExtra ;
 int cbWndExtra ;
 HINSTANCE hInstance ;
 HICON hIcon ;

 HCURSOR hCursor ;
 HBRUSH hbrBackground ;
 LPCSTR lpszMenuName ;
 LPCSTR lpszClassName ;
}
WNDCLASSA, * PWNDCLASSA, NEAR * NPWNDCLASSA, FAR * LPWNDCLASSA ;

Notice some uses of Hungarian notation here: The lpfn prefix means "long pointer to a function." (Recall that in
the Win32 API there is no distinction between long pointers and near pointers. This is a remnant of 16-bit
Windows.) The cb prefix stands for "count of bytes" and is often used for a variable that denotes a byte size. The h
prefix is a handle, and the hbr prefix means "handle to a brush." The lpsz prefix is a "long pointer to a string
terminated with a zero."

The Unicode version of the structure is defined like so:

typedef struct tagWNDCLASSW
{
 UINT style ;
 WNDPROC lpfnWndProc ;
 int cbClsExtra ;
 int cbWndExtra ;
 HINSTANCE hInstance ;
 HICON hIcon ;
 HCURSOR hCursor ;
 HBRUSH hbrBackground ;
 LPCWSTR lpszMenuName ;
 LPCWSTR lpszClassName ;
}
WNDCLASSW, * PWNDCLASSW, NEAR * NPWNDCLASSW, FAR * LPWNDCLASSW ;

The only difference is that the last two fields are defined as pointers to constant wide-character strings rather than
pointers to constant ASCII character strings.

After WINUSER.H defines the WNDCLASSA and WNDCLASSW structures (and pointers to the structures), the
header file defines WNDCLASS and pointers to WNDCLASS (some included for backward compatibility) based on
the definition of the UNICODE identifier:

#ifdef UNICODE
typedef WNDCLASSW WNDCLASS ;
typedef PWNDCLASSW PWNDCLASS ;
typedef NPWNDCLASSW NPWNDCLASS ;
typedef LPWNDCLASSW LPWNDCLASS ;
#else
typedef WNDCLASSA WNDCLASS ;
typedef PWNDCLASSA PWNDCLASS ;
typedef NPWNDCLASSA NPWNDCLASS ;
typedef LPWNDCLASSA LPWNDCLASS ;
#endif

When I show subsequent structures in this book, I'll just show the functionally equivalent definition of the

structure, which for WNDCLASS is this:

typedef struct
{
 UINT style ;
 WNDPROC lpfnWndProc ;
 int cbClsExtra ;
 int cbWndExtra ;
 HINSTANCE hInstance ;
 HICON hIcon ;
 HCURSOR hCursor ;
 HBRUSH hbrBackground ;
 LPCTSTR lpszMenuName ;
 LPCTSTR lpszClassName ;
}
WNDCLASS, * PWNDCLASS ;

I'll also go easy on the various pointer definitions. There's no reason for you to clutter up your code with variable
types beginning with LP and NP.

In WinMain , you define a structure of type WNDCLASS, generally like this:

WNDCLASS wndclass ;

You then initialize the 10 fields of the structure and call RegisterClass .

The two most important fields in the WNDCLASS structure are the second and the last. The second field
(lpfnWndProc) is the address of a window procedure used for all windows based on this class. In HELLOWIN.C,
this window procedure is WndProc . The last field is the text name of the window class. This can be whatever you
want. In programs that create only one window, the window class name is commonly set to the name of the
program.

The other fields describe some characteristics of the window class, as described below. Let's take a look at each
field of the WNDCLASS structure in order.

The statement

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

combines two 32-bit "class style" identifiers with a C bitwise OR operator. The WINUSER.H header files defines a
whole collection of identifiers with the CS prefix:

#define CS_VREDRAW 0x0001
#define CS_HREDRAW 0x0002
#define CS_KEYCVTWINDOW 0x0004
#define CS_DBLCLKS 0x0008
#define CS_OWNDC 0x0020
#define CS_CLASSDC 0x0040

#define CS_PARENTDC 0x0080
#define CS_NOKEYCVT 0x0100
#define CS_NOCLOSE 0x0200
#define CS_SAVEBITS 0x0800
#define CS_BYTEALIGNCLIENT 0x1000
#define CS_BYTEALIGNWINDOW 0x2000
#define CS_GLOBALCLASS 0x4000
#define CS_IME 0x00010000

Identifiers defined in this way are often called "bit flags" because each identifier sets a single bit in a composite
value. Only a few of these class styles are commonly used. The two identifiers used in HELLOWIN indicate that all
windows created based on this class are to be completely repainted whenever the horizontal window size
(CS_HREDRAW) or the vertical window size (CS_VREDRAW) changes. If you resize HELLOWIN's window, you'll see
that the text string is redrawn to be in the new center of the window. These two identifiers ensure that this
happens. We'll see shortly how the window procedure is notified of this change in window size.

The second field of the WNDCLASS structure is initialized by the statement:

wndclass.lpfnWndProc = WndProc ;

This sets the window procedure for this window class to WndProc , which is the second function in HELLOWIN.C.
This window procedure will process all messages to all windows created based on this window class. In C, when
you use a function name in a statement like this, you're really referring to a pointer to a function.

The next two fields are used to reserve some extra space in the class structure and the window structure that
Windows maintains internally:

wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;

A program can use this extra space for its own purposes. HELLOWIN does not use this feature, so 0 is specified.
Otherwise, as the Hungarian notation indicates, the field would be set to a "count of bytes." (I'll use the
cbWndExtra field in the CHECKER3 program shown in Chapter 7 .)

The next field is simply the instance handle of the program (which is one of the parameters to WinMain):

wndclass.hInstance = hInstance ;

The statement

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

sets an icon for all windows created based on this window class. The icon is a small bitmap picture that represents
the program to the user. When the program is running, the icon appears in the Windows taskbar and at the left
side of the program window's title bar. Later in this book, you'll learn how to create customized icons for your
Windows programs. Right now, we'll take an easy approach and use a predefined icon.

To obtain a handle to a predefined icon, you call LoadIcon with the first argument set to NULL. When you're
loading your own customized icons that are stored in your program's .EXE file on disk, this argument would be set
to hInstance , the instance handle of the program. The second argument identifies the icon. For the predefined
icons, this argument is an identifier beginning with the prefix IDI ("ID for an icon") defined in WINUSER.H. The
IDI_APPLICATION icon is simply a little picture of a window. The LoadIcon function returns a handle to this icon.
We don't really care about the actual value of the handle. It's simply used to set the value of the hIcon field. This
field is defined in the WNDCLASS structure to be of type HICON, which stands for "handle to an icon."

The statement

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

is similar to the previous statement. The LoadCursor function loads a predefined mouse cursor known as
IDC_ARROW and returns a handle to the cursor. This handle is assigned to the bCursor field of the WNDCLASS
structure. When the mouse cursor appears over the client area of a window that is created based on this class, the
cursor becomes a small arrow.

The next field specifies the background color of the client area of windows created based on this class. The hbr
prefix of the hbrBackground field name stands for "handle to a brush." A brush is a graphics term that refers to a
colored pattern of pixels used to fill an area. Windows has several standard, or "stock," brushes. The
GetStockObject call shown here returns a handle to a white brush:

wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;

This means that the background of the client area of the window will be solid white, which is a common choice.

The next field specifies the window class menu. HELLOWIN has no application menu, so the field is set to NULL:

wndclass.lpszMenuName = NULL ;

Finally the class must be given a name. For a small program, this can be simply the name of the program, which is
the "HelloWin" string stored in the szAppName variable.

wndclass.lpszClassName = szAppName ;

This string is composed of either ASCII characters or Unicode characters depending on whether the UNICODE
identifier has been defined.

When all 10 fields of the structure have been initialized, HELLOWIN registers the window class by calling
RegisterClass . The only argument to the function is a pointer to the WNDCLASS structure. Actually, there's a
RegisterClassA function that takes a pointer to the WNDCLASSA structure, and a RegisterClassW function that
takes a pointer to the WNDCLASSW structure. Which function the program uses to register the window class
determines whether messages sent to the window will contain ASCII text or Unicode text.

Now here's a problem: If you have compiled the program with the UNICODE identifier defined, your program will
call RegisterClassW . That's fine if you're running the program on Microsoft Windows NT. But if you're running the
program on Windows 98, the RegisterClassW function is not really implemented. There's an entry point for the
function, but it just returns a zero from the function call, indicating an error. This is a good opportunity for a
Unicode program running under Windows 98 to inform the user of the problem and terminate. Here's the way
most of the programs in this book will handle the RegisterClass function call:

if (!RegisterClass (&wndclass))
{
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
}

The MessageBoxW function works properly because it is one of the few Unicode functions implemented in Windows
98.

This code fragment assumes, of course, that RegisterClass is not failing for some other reason, such as a NULL
lpfnWndProc field of the WNDCLASS structure. The GetLastError function helps you determine the cause of the
error in cases like this. GetLastError is a general-purpose function in Windows to get extended error information
when a function call fails. The documentation of the various functions will indicate whether you can use
GetLastError to obtain this information. In the case of calling RegisterClassW in Windows 98, GetLastError returns
120. You can look in WINERROR.H to see that the value 120 corresponds to the identifier
ERROR_CALL_NOT_IMPLEMENTED. You can also look up the error in /Platform SDK/Windows Base
Services/Debugging and Error Handling/Error Codes/System Errors - Numerical Order .

Some Windows programmers like to check the return value of every function call for errors. This certainly makes
some sense, and here's why: I'm sure you're familiar with the rule that you always, always check for an error
when you're allocating memory. Well, many Windows functions need to allocate some memory. For example,
RegisterClass needs to allocate memory to store information about the window class. So you should be checking
the function regardless. On the other hand, if RegisterClass fails because it can't allocate the memory it needs,
Windows has probably already ground to a halt.

I do a minimum of error checking in the sample programs in this book. This is not because I don't think error
checking is a good idea, but because it would distract from what the programs are supposed to illustrate.

Finally, a historical note: In some sample Windows programs, you might see the following code in WinMain :

if (!hPrevInstance)
{
 wndclass.cbStyle = CS_HREDRAW | CS_VREDRAW ;

 [other wndclass initialization]

 RegisterClass (&wndclass) ;
}

This comes under the category of "old habits die hard." In 16-bit versions of Windows, if you started up a new
instance of a program that was already running, the hPrevInstance parameter to WinMain would be the instance
handle of the previous instance. To save memory, two or more instances were allowed to share the same window
class. Thus, the window class was registered only if hPrevInstance was NULL, indicating that no other instances of
the program were running.

In 32-bit versions of Windows, hPrevInstance is always NULL. This code will still work properly, but it's not
necessary to check hPrevInstance .

Creating the Window

The window class defines general characteristics of a window, thus allowing the same window class to be used for
creating many different windows. When you go ahead and create a window by calling CreateWindow , you specify
more detailed information about the window.

Programmers new to Windows are sometimes confused about the distinction between the window class and the
window and why all the characteristics of a window can't be specified in one shot. Actually, dividing the

information in this way is quite convenient. For example, all push-button windows are created based on the same
window class. The window procedure associated with this window class is located inside Windows itself, and it is
responsible for processing keyboard and mouse input to the push button and defining the button's visual
appearance on the screen. All push buttons work the same way in this respect. But not all push buttons are the
same. They almost certainly have different sizes, different locations on the screen, and different text strings.
These latter characteristics are part of the window definition rather than the window class definition.

While the information passed to the RegisterClass function is specified in a data structure, the information passed
to the CreateWindow function is specified as separate arguments to the function. Here's the CreateWindow call in
HELLOWIN.C, complete with comments identifying the fields:

hwnd = CreateWindow (szAppName, // window class name
 TEXT ("The Hello Program"), // window caption
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x position
 CW_USEDEFAULT, // initial y position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window handle
 NULL, // window menu handle
 hInstance, // program instance handle
 NULL) ; // creation parameters

At this point I won't bother to mention that there are actually a CreateWindowA function and a CreateWindowW
function, which treat the first two parameters to the function as ASCII or Unicode, respectively.

The argument marked "window class name" is szAppName , which contains the string "HelloWin"—the name of the
window class the program just registered. This is how the window we're creating is associated with a window
class.

The window created by this program is a normal overlapped window. It will have a title bar; a system menu button
to the left of the title bar; a thick window-sizing border; and minimize, maximize, and close buttons to the right of
the title bar. That's a standard style for windows, and it has the name WS_OVERLAPPEDWINDOW, which appears
as the "window style" parameter in CreateWindow . If you look in WINUSER.H, you'll find that this style is a
combination of several bit flags:

#define WS_OVERLAPPEDWINDOW (WS_OVERLAPPED | \
 WS_CAPTION | \
 WS_SYSMENU | \
 WS_THICKFRAME | \
 WS_MINIMIZEBOX | \
 WS_MAXIMIZEBOX)

The "window caption" is the text that will appear in the title bar of the window.

The arguments marked "initial x position" and "initial y position" specify the initial position of the upper left corner
of the window relative to the upper left corner of the screen. By using the identifier CW_USEDEFAULT for these
parameters, we are indicating that we want Windows to use the default position for an overlapped window.
(CW_USEDEFAULT is defined as 0x80000000.) By default, Windows positions successive newly created windows at
stepped horizontal and vertical offsets from the upper left corner of the display. Similarly, the "initial x size" and
"initial y size" arguments specify the initial width and height of the window. The CW_USEDEFAULT identifier again
indicates that we want Windows to use a default size for the window.

The argument marked "parent window handle" is set to NULL when creating a "top-level" window, such as an
application window. Normally, when a parent-child relationship exists between two windows, the child window
always appears on the surface of its parent. An application window appears on the surface of the desktop window,

but you don't need to find out the desktop window's handle to call CreateWindow .

The "window menu handle" is also set to NULL because the window has no menu. The "program instance handle"
is set to the instance handle passed to the program as a parameter of WinMain . Finally, a "creation parameters"
pointer is set to NULL. You could use this parameter to point to some data that you might later want to reference
in your program.

The CreateWindow call returns a handle to the created window. This handle is saved in the variable hwnd , which
is defined to be of type HWND ("handle to a window"). Every window in Windows has a handle. Your program uses
the handle to refer to the window. Many Windows functions require hwnd as an argument so that Windows knows
which window the function applies to. If a program creates many windows, each has a different handle. The
handle to a window is one of the most important handles that a Windows program (pardon the expression)
handles.

Displaying the Window

After the CreateWindow call returns, the window has been created internally in Windows. What this means
basically is that Windows has allocated a block of memory to hold all the information about the window that you
specified in the CreateWindow call, plus some other information, all of which Windows can find later based on the
window handle.

However, the window does not yet appear on the video display. Two more calls are needed. The first is

ShowWindow (hwnd, iCmdShow) ;

The first argument is the handle to the window just created by CreateWindow . The second argument is the
iCmdShow value passed as a parameter to WinMain . This determines how the window is to be initially displayed
on the screen, whether it's normal, minimized, or maximized. The user probably selected a preference when
adding the program to the Start menu. The value you receive from WinMain and pass to ShowWindow is
SW_SHOWNORMAL if the window is displayed normally, SW_SHOWMAXIMIZED if the window is to be maximized,
and SW_SHOWMINNOACTIVE if the window is just to be displayed in the taskbar.

The ShowWindow function puts the window on the display. If the second argument to ShowWindow is
SW_SHOWNORMAL, the client area of the window is erased with the background brush specified in the window
class. The function call

UpdateWindow (hwnd) ;

then causes the client area to be painted. It accomplishes this by sending the window procedure (that is, the
WndProc function in HELLOWIN.C) a WM_PAINT message. We'll soon examine how WndProc deals with this
message.

The Message Loop

After the UpdateWindow call, the window is fully visible on the video display. The program must now make itself
ready to read keyboard and mouse input from the user. Windows maintains a "message queue" for each Windows
program currently running under Windows. When an input event occurs, Windows translates the event into a
"message" that it places in the program's message queue.

A program retrieves these messages from the message queue by executing a block of code known as the
"message loop":

while (GetMessage (&msg, NULL, 0, 0))
{
 TranslateMessage (&msg) ;

 DispatchMessage (&msg) ;
}

The msg variable is a structure of type MSG, which is defined in the WINUSER.H header file like this:

typedef struct tagMSG
{
 HWND hwnd ;
 UINT message ;
 WPARAM wParam ;
 LPARAM lParam ;
 DWORD time ;
 POINT pt ;
}
MSG, * PMSG ;

The POINT data type is yet another structure, defined in the WINDEF.H header file like this:

typedef struct tagPOINT
{
 LONG x ;
 LONG y ;
}
POINT, * PPOINT;

The GetMessage call that begins the message loop retrieves a message from the message queue:

GetMessage (&msg, NULL, 0, 0)

This call passes to Windows a pointer to a MSG structure named msg . The second, third, and fourth arguments
are set to NULL or 0 to indicate that the program wants all messages for all windows created by the program.
Windows fills in the fields of the message structure with the next message from the message queue. The fields of
this structure are:

hwnd The handle to the window which the message is directed to. In the HELLOWIN program, this is the
same as the hwnd value returned from CreateWindow , because that's the only window the program has.

message The message identifier. This is a number that identifies the message. For each message, there is a
corresponding identifier defined in the Windows header files (most of them in WINUSER.H) that begins with
the identifier WM ("window message"). For example, if you position the mouse pointer over HELLOWIN's
client area and press the left mouse button, Windows will put a message in the message queue with a
message field equal to WM_LBUTTONDOWN, which is the value 0x0201.

wParam A 32-bit "message parameter," the meaning and value of which depend on the particular message.

lParam Another 32-bit message parameter dependent on the message.

time The time the message was placed in the message queue.

pt The mouse coordinates at the time the message was placed in the message queue.

If the message field of the message retrieved from the message queue is anything except WM_QUIT (which equals
0x0012), GetMessage returns a nonzero value. A WM_QUIT message causes GetMessage to return 0.

The statement:

TranslateMessage (&msg) ;

passes the msg structure back to Windows for some keyboard translation. (I'll discuss this more in Chapter 6 .)
The statement

DispatchMessage (&msg) ;

again passes the msg structure back to Windows. Windows then sends the message to the appropriate window
procedure for processing. What this means is that Windows calls the window procedure. In HELLOWIN, the window
procedure is WndProc . After WndProc processes the message, it returns control to Windows, which is still
servicing the DispatchMessage call. When Windows returns to HELLOWIN following the DispatchMessage call, the
message loop continues with the next GetMessage call.

The Window Procedure

All that I've described so far is really just overhead. The window class has been registered, the window has been
created, the window has been displayed on the screen, and the program has entered a message loop to retrieve
messages from the message queue.

The real action occurs in the window procedure. The window procedure determines what the window displays in its
client area and how the window responds to user input.

In HELLOWIN, the window procedure is the function named WndProc . A window procedure can have any name
(as long as it doesn't conflict with some other name, of course). A Windows program can contain more than one
window procedure. A window procedure is always associated with a particular window class that you register by
calling RegisterClass . The CreateWindow function creates a window based on a particular window class. More than
one window can be created based on the same window class.

A window procedure is always defined like this:

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)

The four parameters to the window procedure are identical to the first four fields of the MSG structure. The first
parameter is hwnd , the handle to the window receiving the message. This is the same handle returned from the
CreateWindow function. For a program like HELLOWIN, which creates only one window, this is the only window
handle the program knows about. If a program creates multiple windows based on the same window class (and
hence the same window procedure), hwnd identifies the particular window receiving the message.

The second parameter is the same as the message field in the MSG structure. It's a number that identifies the
message. The last two parameters are 32-bit message parameters that provide more information about the
message. What these parameters contain is specific to each type of message. Sometimes a message parameter is
two 16-bit values stuck together, and sometimes a message parameter is a pointer to a text string or to a data
structure.

Programs generally don't call window procedures directly. The window procedure is almost always called from
Windows itself. A program can indirectly call its own window procedure by calling a function named SendMessage ,
which we'll examine in later chapters.

Processing the Messages

Every message that a window procedure receives is identified by a number, which is the message parameter to
the window procedure. The Windows header file WINUSER.H defines identifiers beginning with the prefix WM
("window message") for each type of message.

Generally, Windows programmers use a switch and case construction to determine what message the window
procedure is receiving and how to process it accordingly. When a window procedure processes a message, it
should return 0 from the window procedure. All messages that a window procedure chooses not to process must
be passed to a Windows function named DefWindowProc . The value returned from DefWindowProc must be
returned from the window procedure.

In HELLOWIN, WndProc chooses to process only three messages: WM_CREATE, WM_PAINT, and WM_DESTROY.
The window procedure is structured like this:

switch (iMsg)
{
case WM_CREATE :
 [process WM_CREATE message]
 return 0 ;

case WM_PAINT :
 [process WM_PAINT message]
 return 0 ;

case WM_DESTROY :
 [process WM_DESTROY message]
 return 0 ;
}
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

It is important to call DefWindowProc for default processing of all messages that your window procedure does not
process. Otherwise behavior regarded as normal, such as being able to terminate the program, will not work.

Playing a Sound File

The very first message that a window procedure receives—and the first that HELLOWIN's WndProc chooses to
process—is WM_CREATE. WndProc receives this message while Windows is processing the CreateWindow function
in WinMain . That is, when HELLOWIN calls CreateWindow , Windows does what it has to do and, in the process,
Windows calls WndProc with the first argument set to the window handle and the second argument set to
WM_CREATE (the value 1). WndProc processes the WM_CREATE message and returns controls back to Windows.
Windows can then return to HELLOWIN from the CreateWindow call to continue further progress in WinMain .

Often a window procedure performs one-time window initialization during WM_CREATE processing. HELLOWIN
chooses to process this message by playing a waveform sound file named HELLOWIN.WAV. It does this using the
simple PlaySound function, which is described in /Platform SDK/Graphics and Multimedia Services/Multimedia
Audio/Waveform Audio and documented in /Platform SDK/Graphics and Multimedia Services/Multimedia
Reference/Multimedia Functions .

The first argument to PlaySound is the name of a waveform file. (It could also be a sound alias name defined in
the Sounds section of the Control Panel or a program resource.) The second argument is used only if the sound
file is a resource. The third argument specifies a couple of options. In this case, I've indicated that the first
argument is a filename and that the sound is to be played asynchronously—that is, the PlaySound function call is
to return as soon as the sound file starts playing without waiting for it to complete. That way the program can
continue with its initialization.

WndProc concludes WM_CREATE processing by returning 0 from the window procedure.

The WM_PAINT Message

The second message that WndProc processes is WM_PAINT. This message is extremely important in Windows
programming. It informs a program when part or all of the window's client area is "invalid" and must be
"updated," which means that it must be redrawn or "painted."

How does a client area become invalid? When the window is first created, the entire client area is invalid because
the program has not yet drawn anything on the window. The first WM_PAINT message (which normally occurs
when the program calls UpdateWindow in WinMain) directs the window procedure to draw something on the client
area.

When you resize HELLOWIN's window, the client area becomes invalid. You'll recall that the style field of
HELLOWIN's wndclass structure was set to the flags CS_HREDRAW and CS_VREDRAW. This directs Windows to
invalidate the whole window when the size changes. The window procedure then receives a WM_PAINT message.

When you minimize HELLOWIN and then restore the window again to its previous size, Windows does not save the
contents of the client area. Under a graphical environment, this would be too much data to retain. Instead,
Windows invalidates the window. The window procedure receives a WM_PAINT message and itself restores the
contents of its window.

When you move windows around the screen so that they overlap, Windows does not save the area of a window
covered by another window. When that area of the window is later uncovered, it is flagged as invalid. The window
procedure receives a WM_PAINT message to repaint the contents of the window.

WM_PAINT processing almost always begins with a call to BeginPaint :

hdc = BeginPaint (hwnd, &ps) ;

and ends with a call to EndPaint :

EndPaint (hwnd, &ps) ;

In both cases, the first argument is a handle to the program's window, and the second argument is a pointer to a
structure of type PAINTSTRUCT. The PAINTSTRUCT structure contains some information that a window procedure
can use for painting the client area. I'll discuss the fields of this structure in the next chapter; for now, we'll just
use it in the BeginPaint and EndPaint functions.

During the BeginPaint call, Windows erases the background of the client area if it hasn't been erased already. It
erases the background using the brush specified in the hbrBackground field of the WNDCLASS structure used to
register the window class. In the case of HELLOWIN, this is a stock white brush, which means that Windows erases
the background of the window by coloring it white. The BeginPaint call validates the entire client area and returns
a "handle to a device context." A device context refers to a physical output device (such as a video display) and its
device driver. You need the device context handle to display text and graphics in the client area of a window.
Using the device context handle returned from BeginPaint , you cannot draw outside the client area, even if you
try. EndPaint releases the device context handle so that it is no longer valid.

If a window procedure does not process WM_PAINT messages (which is very rare), they must be passed on to
DefWindowProc . DefWindowProc simply calls BeginPaint and EndPaint in succession so that the client area is
validated.

After WndProc calls BeginPaint , it calls GetClientRect :

GetClientRect (hwnd, &rect) ;

The first argument is the handle to the program's window. The second argument is a pointer to a rectangle
structure of type RECT. This structure has four LONG fields named left , top , right , and bottom . The
GetClientRect function sets these four fields to the dimensions of the client area of the window. The left and top
fields are always set to 0. Thus, the right and bottom fields represent the width and height of the client area in
pixels.

WndProc doesn't do anything with this RECT structure except pass a pointer to it as the fourth argument to
DrawText :

DrawText (hdc, TEXT ("Hello, Windows 98!"), -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

DrawText , as the name implies, draws text. Because this function draws something, the first argument is a handle
to the device context returned from BeginPaint . The second argument is the text to draw, and the third argument
is set to -1 to indicate that the text string is terminated with a zero character.

The last argument to DrawText is a series of bit flags defined in WINUSER.H. (Although DrawText seems to be a
GDI function call because it displays output, it's actually considered part of the User module because it's a fairly
high-level drawing function. The function is documented in /Platform SDK/Graphics and Multimedia
Services/GDI/Fonts and Text .) The flags indicate that the text should be displayed as a single line centered
horizontally and vertically within the rectangle specified by the fourth argument. This function call thus causes the
string "Hello, Windows 98!" to be displayed centered in the client area.

Whenever the client area becomes invalid (as it does when you change the size of the window), WndProc receives
a new WM_PAINT message. WndProc obtains the updated window size by calling GetClientRect and again displays
the text in the next center of the window.

The WM_DESTROY Message

The WM_DESTROY message is another important message. This message indicates that Windows is in the process
of destroying a window based on a command from the user. The message is a result of the user clicking on the
Close button or selecting Close from the program's system menu. (Later in this chapter, I'll discuss in more detail
how the WM_DESTROY message gets generated.)

HELLOWIN responds to the WM_DESTROY message in a standard way by calling

PostQuitMessage (0) ;

This function inserts a WM_QUIT message in the program's message queue. I mentioned earlier that GetMessage
returns nonzero for any message other than WM_QUIT that it retrieves from the message queue. When
GetMessage retrieves a WM_QUIT message, GetMessage returns 0. This causes WinMain to drop out of the
message loop. The program then executes the following statement:

return msg.wParam ;

The wParam field of the structure is the value passed to the PostQuitMessage function (generally 0). The return
statement exits from WinMain and terminates the program.

The Windows Programming Hurdles

Even with my explanation of HELLOWIN, the structure and workings of the program are probably still quite
mysterious. In a short C program written for a character-mode environment, the entire program might be
contained in the main function. In HELLOWIN, WinMain contains only program overhead necessary to register the
window class, create the window, and retrieve and dispatch messages from the message queue.

All the real action of the program occurs in the window procedure. In HELLOWIN, this action is not
much—WndProc simply plays a sound file and displays a text string in its window. But in later chapters, you'll find
that almost everything a Windows program does is in response to a message to a window procedure. This is one
of the major conceptual hurdles you must leap to begin writing Windows programs.

Don't Call Me, I'll Call You

Programmers are well acquainted with the idea of calling on the operating system to do something. For example,
C programmers use the fopen function to open a file. The fopen function is implemented with a call to the
operating system to open a file. No problem.

But Windows is different. Although Windows has a couple thousand function calls, Windows also makes calls to
your program, specifically to the window procedure we have called WndProc. The window procedure is associated
with a window class that the program registers by calling RegisterClass. A window that is created based on this
window class uses this window procedure for processing all messages to the window. Windows sends a message to
the window by calling the window procedure.

Windows calls WndProc when a window is first created. Windows calls WndProc when the window is eventually
destroyed. Windows calls WndProc when the window has been resized or moved or minimized. Windows calls
WndProc when a user clicks on the window with the mouse. Windows calls WndProc when characters are typed
from the keyboard. Windows calls WndProc when an item has been selected from a menu. Windows calls WndProc
when a scroll bar is manipulated or clicked with the mouse. Windows calls WndProc to tell it when it must repaint
its client area.

All these calls to WndProc are in the form of messages. In most Windows programs, the bulk of the program is
dedicated to handling these messages. The messages that Windows can send to a program are generally identified
with names that begin with the letters WM and are defined in the WINUSER.H header file.

Actually, the idea of a routine within a program that is called from outside the program is not unheard of in
character-mode programming. The signal function in C can trap a Ctrl-C break or other interrupts from the
operating system. Old programs written for MS-DOS often trapped hardware interrupts.

But in Windows this concept is extended to cover everything. Everything that happens to a window is relayed to
the window procedure in the form of a message. The window procedure then responds to this message in some
way or passes the message to DefWindowProc for default processing.

The wParam and lParam parameters to the window procedure are not used in HELLOWIN except as parameters to
DefWindowProc. These parameters give the window procedure additional information about the message. The
meaning of the parameters is message-dependent.

Let's look at an example. Whenever the client area of a window changes in size, Windows calls that window's
window procedure. The hwnd parameter to the window procedure is the handle of the window changing in size.
(Remember that one window procedure could be handling messages for multiple windows that were created based
on the same window class. The hwnd parameter lets the window procedure know which window is receiving the
message.) The message parameter is WM_SIZE. The wParam parameter for a WM_SIZE message is the value
SIZE_RESTORED, SIZE_MINIMIZED, SIZE_MAXIMIZED, SIZE_MAXSHOW, or SIZE_MAXHIDE (defined in the
WINUSER.H header file as the numbers 0 through 4). That is, the wParam parameter indicates whether the
window is being changed to a nonminimized or nonmaximized size, being minimized, being maximized, or being
hidden.

The lParam parameter contains the new size of the window. The new width (a 16-bit value) and the new height (a
16-bit value) are stuck together in the 32-bit lParam. The WINDEF.H header file defines some handy macros that
help you extract these two values from lParam. We'll do this in the next chapter.

Sometimes messages generate other messages as a result of DefWindowProc processing. For example, suppose
you run HELLOWIN and you eventually click the Close button, or suppose you select Close from the system menu
using either the keyboard or the mouse. DefWindowProc processes this keyboard or mouse input. When it detects

that you have selected the Close option, it sends a WM_SYSCOMMAND message to the window procedure.
WndProc passes this message to DefWindowProc. DefWindowProc responds by sending a WM_CLOSE message to
the window procedure. WndProc again passes this message to DefWindowProc. DefWindowProc responds to the
WM_CLOSE message by calling DestroyWindow. DestroyWindow causes Windows to send a WM_DESTROY
message to the window procedure. WndProc finally responds to this message by calling PostQuitMessage to put a
WM_QUIT message in the message queue. This message causes the message loop in WinMain to terminate and
the program to end.

Queued and Nonqueued Messages

I've talked about Windows sending messages to a window, which means that Windows calls the window
procedure. But a Windows program also has a message loop that retrieves messages from a message queue by
calling GetMessage and dispatches these messages to the window procedure by calling DispatchMessage.

So, does a Windows program poll for messages (much like a character-mode program polling for keyboard input)
and then route these messages to some location? Or does it receive messages directly from outside the program?
Well, both.

Messages can be either "queued" or "nonqueued." The queued messages are those that are placed in a program's
message queue by Windows. In the program's message loop, the messages are retrieved and dispatched to the
window procedure. The nonqueued messages are the results of calls by Windows directly to the window
procedure. It is said that queued messages are "posted" to a message queue and that nonqueued messages are
"sent" to the window procedure. In any case, the window procedure gets all the messages—both queued and
nonqueued—for the window. The window procedure is "message central" for the window.

The queued messages are primarily those that result from user input in the form of keystrokes (such as the
WM_KEYDOWN and WM_KEYUP messages), characters that result from keystrokes (WM_CHAR), mouse movement
(WM_MOUSEMOVE), and mouse-button clicks (WM_LBUTTONDOWN). Queued messages also include the timer
message (WM_TIMER), the repaint message (WM_PAINT), and the quit message (WM_QUIT).

The nonqueued messages are everything else. Nonqueued messages often result from calling certain Windows
functions. For example, when WinMain calls CreateWindow, Windows creates the window and in the process sends
the window procedure a WM_CREATE message. When WinMain calls ShowWindow, Windows sends the window
procedure WM_SIZE and WM_SHOWWINDOW messages. When WinMain calls UpdateWindow, Windows sends the
window procedure a WM_PAINT message. Queued messages signaling keyboard or mouse input can also result in
nonqueued messages. For example, when you select a menu item with the keyboard or mouse, the keyboard or
mouse message is queued but the eventual WM_COMMAND message indicating that a menu item has been
selected is nonqueued.

This process is obviously complex, but fortunately most of the complexity is Windows' problem rather than our
program's. From the perspective of the window procedure, these messages come through in an orderly and
synchronized manner. The window procedure can do something with these messages or ignore them.

When I say that messages come through in an orderly and synchronized manner, I mean first that messages are
not like hardware interrupts. While processing one message in a window procedure, the program will not be
suddenly interrupted by another message.

Although Windows programs can have multiple threads of execution, each thread's message queue handles
messages for only the windows whose window procedures are executed in that thread. In other words, the
message loop and the window procedure do not run concurrently. When a message loop retrieves a message from
its message queue and calls DispatchMessage to send the message off to the window procedure, DispatchMessage
does not return until the window procedure has returned control back to Windows.

However, the window procedure could call a function that sends the window procedure another message, in which
case the window procedure must finish processing the second message before the function call returns, at which
time the window procedure proceeds with the original message. For example, when a window procedure calls
UpdateWindow, Windows calls the window procedure with a WM_PAINT message. When the window procedure
finishes processing the WM_PAINT message, the UpdateWindow call will return controls back to the window
procedure.

This means that window procedures must be reentrant. In most cases, this doesn't cause problems, but you
should be aware of it. For example, suppose you set a static variable in the window procedure while processing a
message and then you call a Windows function. Upon return from that function, can you be assured that the
variable is still the same? Not necessarily—not if the particular Windows function you call generated another
message and the window procedure changes the variable while processing that second message. This is one of the
reasons why certain forms of compiler optimization must be turned off when compiling Windows programs.

In many cases, the window procedure must retain information it obtains in one message and use it while
processing another message. This information must be saved in variables defined as static in the window
procedure, or saved in global variables.

Of course, you'll get a much better feel for all of this in later chapters as the window procedures are expanded to
process more messages.

Get In and Out Fast

Windows 98 and Windows NT are preemptive multitasking environments. This means that as one program is doing
a lengthy job, Windows can allow the user to switch control to another program. This is a good thing, and it is one
advantage of the current versions of Windows over the older 16-bit versions.

However, because of the way that Windows is structured, this preemptive multitasking does not always work the
way you might like. For example, suppose your program spends a minute or two processing a particular message.
Yes, the user can switch to another program. But the user cannot do anything with your program. The user cannot
move your program's window, resize it, minimize it, close it, nothing. That's because your window procedure is
busy doing a lengthy job. Oh, it may not seem like the window procedure performs its own moving and sizing
operations, but it does. That's part of the job of DefWindowProc, which must be considered as part of your window
procedure.

If your program needs to perform lengthy jobs while processing particular messages, there are ways to do so
politely that I'll describe in Chapter 20. Even with preemptive multitasking, it's not a good idea to leave your
window sitting inert on the screen. It annoys users. It annoys users just as much as bugs, nonstandard behavior,
and incomplete help files. Give the user a break, and return quickly from all messages.

Chapter 4

An Exercise in Text Output

In the previous chapter, we explored the workings of a simple Windows 98 program that displayed a single line of
text in the center of its window or, more precisely, the center of its client area. As we learned, the client area is
that part of the total application window that is not taken up by the title bar, the window-sizing border, and,
optionally, the menu bar, tool bars, status bar, and scroll bars. In short, the client area is the part of the window
on which a program is free to draw and deliver visual information to the user.

You can do almost anything you want with your program's client area—anything, that is, except assume that it will
be a particular size or that the size will remain constant while your program is running. If you are not accustomed
to writing programs for a graphical windowing environment, these stipulations may come as a bit of a shock. You
can't think in terms of a fixed number of 80-character lines. Your program must share the video display with other
Windows programs. The Windows user controls how the programs' windows are arranged on the screen. Although
it is possible for a programmer to create a window of a fixed size (which might be appropriate for calculators or
similar utilities), users are usually able to size application windows. Your program must accept the size it's given
and do something reasonable with it.

This works both ways. Just as your program may find itself with a client area barely large enough in which to say
"Hello," it may also someday be run on a big-screen, high-resolution video system and discover a client area large
enough for two entire pages of text and plenty of closet space besides. Dealing intelligently with both eventualities
is an important part of Windows programming.

In this chapter, we will learn how a program displays something on the surface of its client area with more
sophistication than that illustrated in the last chapter. When a program displays text or graphics in its client area,
it is often said to be "painting" its client area. This chapter is about learning to paint.

Although Windows has extensive Graphics Device Interface (GDI) functions for displaying graphics, in this chapter
I'll stick to displaying simple lines of text. I'll also ignore the various font faces and font sizes that Windows makes
available and use only Windows' default "system font." This may seem limiting, but it really isn't. The problems we
will encounter and solve in this chapter apply to all Windows programming. When you display a combination of
text and graphics, the character dimensions of Windows' default font often determine the dimensions of the
graphics.

Although this chapter is ostensibly about learning how to paint, it's really about learning the basics of device-
independent programming. Windows programs can assume little about the size of their client areas or even the
size of text characters. Instead, they must use the facilities that Windows provides to obtain information about the
environment in which the program runs.

Painting and Repainting

In character-mode environments, programs can generally write to any part of the video display. What the program
puts on the display will stay there and not mysteriously disappear. The program can then discard the information
needed to re-create the screen display.

In Windows, you can draw text and graphics only in the client area of your window, and you cannot be assured
that what you put will remain there until your program specifically writes over it. For instance, the user may move
another program's window on the screen so that it partially covers your application's window. Windows will not
attempt to save the area of your window that the other program covers. When the program is moved away,
Windows will request that your program repaint this portion of your client area.

Windows is a message-driven system. Windows informs applications of various events by posting messages in the
application's message queue or sending messages to the appropriate window procedure. Windows informs a
window procedure that part of the window's client area needs painting by posting a WM_PAINT message.

The WM_PAINT Message

Most Windows programs call the function UpdateWindow during initialization in WinMain shortly before entering
the message loop. Windows takes this opportunity to send the window procedure its first WM_PAINT message.
This message informs the window procedure that the client area must be painted. Thereafter, that window
procedure should be ready at almost any time to process additional WM_PAINT messages and even to repaint the
entire client area of the window if necessary. A window procedure receives a WM_PAINT message whenever one of
the following events occurs:

A previously hidden area of the window is brought into view when a user moves a window or uncovers a
window.

The user resizes the window (if the window class style has the CS_HREDRAW and CW_VREDRAW bits set).

The program uses the ScrollWindow or ScrollDC function to scroll part of its client area.

The program uses the InvalidateRect or InvalidateRgn function to explicitly generate a WM_PAINT message.

In some cases when part of the client area is temporarily written over, Windows attempts to save an area of the
display and restore it later. This is not always successful. Windows may sometimes post a WM_PAINT message
when:

Windows removes a dialog box or message box that was overlaying part of the window.

A menu is pulled down and then released.

A tool tip is displayed.

In a few cases, Windows always saves the area of the display it overwrites and then restores it. This is the case
whenever:

The mouse cursor is moved across the client area.

An icon is dragged across the client area.

Dealing with WM_PAINT message requires that you alter the way you think about how you write to the video
display. Your program should be structured so that it accumulates all the information necessary to paint the client
area but paints only "on demand"—when Windows sends the window procedure a WM_PAINT message. If your
program needs to update its client area at some other time, it can force Windows to generate this WM_PAINT
message. This may seem a roundabout method of displaying something on the screen, but the structure of your
program will benefit from it.

Valid and Invalid Rectangles

Although a window procedure should be prepared to update the entire client area whenever it receives a
WM_PAINT message, it often needs to update only a smaller area, most often a rectangular area within the client
area. This is most obvious when a dialog box overlies part of the client area. Repainting is required only for the
rectangular area uncovered when the dialog box is removed.

That area is known as an "invalid region" or "update region." The presence of an invalid region in a client area is
what prompts Windows to place a WM_PAINT message in the application's message queue. Your window
procedure receives a WM_PAINT message only if part of your client area is invalid.

Windows internally maintains a "paint information structure" for each window. This structure contains, among
other information, the coordinates of the smallest rectangle that encompasses the invalid region. This is known as
the "invalid rectangle." If another region of the client area becomes invalid before the window procedure processes
a pending WM_PAINT message, Windows calculates a new invalid region (and a new invalid rectangle) that
encompasses both areas and stores this updated information in the paint information structure. Windows does not
place multiple WM_PAINT messages in the message queue.

A window procedure can invalidate a rectangle in its own client area by calling InvalidateRect. If the message
queue already contains a WM_PAINT message, Windows calculates a new invalid rectangle. Otherwise, it places a
WM_PAINT message in the message queue. A window procedure can obtain the coordinates of the invalid
rectangle when it receives a WM_PAINT message (as we'll see later in this chapter). It can also obtain these
coordinates at any other time by calling GetUpdateRect.

After the window procedure calls BeginPaint during the WM_PAINT message, the entire client area is validated. A
program can also validate any rectangular area within the client area by calling the ValidateRect function. If this
call has the effect of validating the entire invalid area, then any WM_PAINT message currently in the queue is
removed.

An Introduction to GDI

To paint the client area of your window, you use Windows' Graphics Device Interface (GDI) functions. Windows
provides several GDI functions for writing text strings to the client area of the window. We've already encountered
the DrawText function in the last chapter, but the most commonly used text output function is undoubtedly
TextOut . This function has the following format:

TextOut (hdc, x, y, psText, iLength) ;

TextOut writes a character string to the client area of the window. The psText argument is a pointer to the
character string, and iLength is the length of the string in characters. The x and y arguments define the starting
position of the character string in the client area. (More details soon on how these work.) The hdc argument is a
"handle to a device context," and it is an important part of GDI. Virtually every GDI function requires this handle
as the first argument to the function.

The Device Context

A handle, you'll recall, is simply a number that Windows uses for internal reference to an object. You obtain the
handle from Windows and then use the handle in other functions. The device context handle is your window's
passport to the GDI functions. With that device context handle you are free to paint your client area and make it
as beautiful or as ugly as you like.

The device context (also called simply the "DC") is really just a data structure maintained internally by GDI. A
device context is associated with a particular display device, such as a video display or a printer. For a video
display, a device context is usually associated with a particular window on the display.

Some of the values in the device context are graphics "attributes." These attributes define some particulars of how
GDI drawing functions work. With TextOut , for instance, the attributes of the device context determine the color
of the text, the color of the text background, how the x-coordinate and y-coordinate in the TextOut function are
mapped to the client area of the window, and what font Windows uses when displaying the text.

When a program needs to paint, it must first obtain a handle to a device context. When you obtain this handle,
Windows fills the internal device context structure with default attribute values. As you'll see in later chapters, you
can change these defaults by calling various GDI functions. Other GDI functions let you obtain the current values
of these attributes. Then, of course, there are still other GDI functions that let you actually paint the client area of
the window.

After a program has finished painting its client area, it should release the device context handle. When a program
releases the handle, the handle is no longer valid and must not be used. The program should obtain the handle
and release the handle during the processing of a single message. Except for a device context created with a call
to CreateDC (a function I won't discuss in this chapter), you should not keep a device context handle around from
one message to another.

Windows applications generally use two methods for getting a device context handle in preparation for painting
the screen.

Getting a Device Context Handle: Method One

You use this method when you process WM_PAINT messages. Two functions are involved: BeginPaint and
EndPaint . These two functions require the handle to the window, which is passed to the window procedure as an
argument, and the address of a structure variable of type PAINTSTRUCT, which is defined in the WINUSER.H
header file. Windows programmers usually name this structure variable ps and define it within the window
procedure like so:

PAINTSTRUCT ps ;

While processing a WM_PAINT message, the window procedure first calls BeginPaint . The BeginPaint function
generally causes the background of the invalid region to be erased in preparation for painting. The function also
fills in the fields of the ps structure. The value returned from BeginPaint is the device context handle. This is
commonly saved in a variable named hdc . You define this variable in your window procedure like so:

HDC hdc ;

The HDC data type is defined as a 32-bit unsigned integer. The program may then use GDI functions, such as
TextOut , that require the handle to the device context. A call to EndPaint releases the device context handle.

Typically, processing of the WM_PAINT message looks like this:

case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 [use GDI functions]
 EndPaint (hwnd, &ps) ;
 return 0 ;

The window procedure must call BeginPaint and EndPaint as a pair while processing the WM_PAINT message. If a
window procedure does not process WM_PAINT messages, it must pass the WM_PAINT message to
DefWindowProc , which is the default window procedure located in Windows. DefWindowProc processes WM_PAINT
messages with the following code:

case WM_PAINT:
 BeginPaint (hwnd, &ps) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

The sequence of BeginPaint and EndPaint calls with nothing in between validates the previously invalid region.

But don't do this:

case WM_PAINT:
 return 0 ; // WRONG !!!

Windows places a WM_PAINT message in the message queue because part of the client area is invalid. Unless you
call BeginPaint and EndPaint (or ValidateRect), Windows will not validate that area. Instead, Windows will send
you another WM_PAINT message, and another, and another, and another….

The Paint Information Structure

Earlier I mentioned a "paint information structure" that Windows maintains for each window. That's what
PAINTSTRUCT is. The structure is defined as follows:

typedef struct tagPAINTSTRUCT
{

 HDC hdc ;
 BOOL fErase ;
 RECT rcPaint ;
 BOOL fRestore ;
 BOOL fIncUpdate ;
 BYTE rgbReserved[32] ;
} PAINTSTRUCT ;

Windows fills in the fields of this structure when your program calls BeginPaint . Your program can use only the
first three fields. The others are used internally by Windows. The hdc field is the handle to the device context. In a
redundancy typical of Windows, the value returned from BeginPaint is also this device context handle. In most
cases, fErase will be flagged FALSE (0), meaning that Windows has already erased the background of the invalid
rectangle. This happens earlier in the BeginPaint function. (If you want to do some customized background erasing
in your window procedure, you can process the WM_ERASEBKGND message.) Windows erases the background
using the brush specified in the hbrBackground field of the WNDCLASS structure that you use when registering the
window class during WinMain initialization. Many Windows programs specify a white brush for the window
background. This is indicated when the program sets up the fields of the window class structure with a statement
like this:

wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;

However, if your program invalidates a rectangle of the client area by calling InvalidateRect , the last argument of
the function specifies whether you want the background erased. If this argument is FALSE (that is, 0), Windows
will not erase the background and the fErase field of the PAINTSTRUCT structure will be TRUE (nonzero) after you
call BeginPaint .

The rcPaint field of the PAINTSTRUCT structure is a structure of type RECT. As you learned in Chapter 3 , the RECT
structure defines a rectangle with four fields named left , top , right , and bottom . The rcPaint field in the
PAINTSTRUCT structure defines the boundaries of the invalid rectangle, as shown in Figure 4-1. The values are in
units of pixels relative to the upper left corner of the client area. The invalid rectangle is the area that you should
repaint.

Figure 4-1. The boundaries of the invalid rectangle.

The rcPaint rectangle in PAINTSTRUCT is not only the invalid rectangle; it is also a "clipping" rectangle. This
means that Windows restricts painting to within the clipping rectangle. More precisely, if the invalid region is not
rectangular, Windows restricts painting to within that region.

To paint outside the update rectangle while processing WM_PAINT messages, you can make this call:

InvalidateRect (hwnd, NULL, TRUE) ;

before calling BeginPaint . This invalidates the entire client area and causes BeginPaint to erase the background. A
FALSE value in the last argument will not erase the background. Whatever was there will stay.

It is usually most convenient for a Windows program to simply repaint the entire client area whenever it receives a
WM_PAINT message, regardless of the rcPaint structure. For example, if part of the display output in the client
area includes a circle but only part of the circle falls within the invalid rectangle, it makes little sense to draw only
the invalid part of the circle. Draw the whole circle. When you use the device context handle returned from
BeginPaint , Windows will not paint outside the rcPaint rectangle anyway.

In the HELLOWIN program in Chapter 2 , we didn't care about invalid rectangles when processing the WM_PAINT
message. If the area where the text was displayed happened to be within the invalid rectangle, DrawText restored
it. If not, then at some point during processing of the DrawText call Windows determined it didn't need to write
anything on the display. But this determination takes time. A programmer concerned about performance and
speed (and that includes all of us, I hope) will want to use the invalid rectangle during processing of the
WM_PAINT message to avoid unnecessary GDI calls. This is particularly important if painting requires accessing
disk files such as bitmaps.

Getting a Device Context Handle: Method Two

Although it is best to structure your program so that you can update the entire client area during the WM_PAINT
message, you may also find it useful to paint part of the client area while processing messages other than
WM_PAINT. Or you may need a device context handle for other purposes, such as obtaining information about the
device context.

To get a handle to the device context of the client area of the window, you call GetDC to obtain the handle and
ReleaseDC after you're done with it:

hdc = GetDC (hwnd) ;
[use GDI functions]
ReleaseDC (hwnd, hdc) ;

Like BeginPaint and EndPaint , the GetDC and ReleaseDC functions should be called in pairs. When you call GetDC
while processing a message, you should call ReleaseDC before you exit the window procedure. Do not call GetDC
in one message and ReleaseDC in another.

Unlike the device context handle returned from BeginPaint , the device context handle returned from GetDC has a
clipping rectangle equal to the entire client area. You can paint on any part of the client area, not merely on the
invalid rectangle (if indeed there is an invalid rectangle). Unlike BeginPaint , GetDC does not validate any invalid
regions. If you need to validate the entire client area, you can call

ValidateRect (hwnd, NULL) ;

Generally, you'll use the GetDC and ReleaseDC calls in response to keyboard messages (such as in a word
processing program) or mouse messages (such as in a drawing program). This allows the program to draw on the
client area in prompt reaction to the user's keyboard or mouse input without deliberately invalidating part of the
client area to generate WM_PAINT messages. However, even if you paint during messages other than WM_PAINT,
your program must still accumulate enough information to be able to update the display whenever you do receive
a WM_PAINT message.

A function similar to GetDC is GetWindowDC . While GetDC returns a device context handle for writing on the

client area of the window, GetWindowDC returns a device context handle that lets you write on the entire window.
For example, your program can use the device context handle returned from GetWindowDC to write on the
window's title bar. However, your program would also have to process WM_NCPAINT ("nonclient paint") messages
as well.

TextOut : The Details

TextOut is the most common GDI function for displaying text. Its syntax is

TextOut (hdc, x, y, psText, iLength) ;

Let's examine this function in more detail.

The first argument is the handle to the device context—either the hdc value returned from GetDC or the hdc value
returned from BeginPaint during processing of a WM_PAINT message.

The attributes of the device context control the characteristics of this displayed text. For instance, one attribute of
the device context specifies the text color. The default color (we discover with some degree of comfort) is black.
The default device context also defines a text background color, and this is white. When a program writes text to
the display, Windows uses this background color to fill in the rectangular space surrounding each character, called
the "character box."

The text background color is not the same background you set when defining the window class. The background in
the window class is a brush—which is a pattern that may or may not be a pure color—that Windows uses to erase
the client area. It is not part of the device context structure. When defining the window class structure, most
Windows applications use WHITE_BRUSH so that the default text background color in the default device context is
the same color as the brush Windows uses to erase the background of the client area.

The psText argument is a pointer to a character string, and iLength is the number of characters in the string. If
psText points to a Unicode character string, then the number of bytes in the string is double the iLength value.
The string should not contain any ASCII control characters such as carriage returns, linefeeds, tabs, or
backspaces. Windows displays these control characters as boxes or solid blocks. TextOut does not recognize a zero
byte (or for Unicode, a zero short integer) as denoting the end of a string. The function uses the iLength argument
to determine the string's length.

The x and y arguments to TextOut define the starting point of the character string within the client area. The x
value is the horizontal position; the y value is the vertical position. The upper left corner of the first character is
positioned at the coordinate point (x , y). In the default device context, the origin (that is, the point where x and
y both equal 0) is the upper left corner of the client area. If you use zero values for x and y in TextOut , the
character string starts flush against the upper left corner of the client area.

When you read the documentation of a GDI drawing function such as TextOut , you'll find that the coordinates
passed to the function are usually documented as "logical coordinates." What this means exactly we'll examine in
more detail in Chapter 5 . For now, be aware that Windows has a variety of "mapping modes" that govern how the
logical coordinates specified in GDI drawing functions are translated to the physical pixel coordinates of the
display. The mapping mode is defined in the device context. The default mapping mode is called MM_TEXT (using
the identifier defined in the WINGDI.H header file). Under the MM_TEXT mapping mode, logical units are the same
as physical units, which are pixels, relative to the upper left corner of the client area. Values of x increase as you
move to the right in the client area, and values of y increase as you move down in the client area. (See Figure 4-
2.) The MM_TEXT coordinate system is identical to the coordinate system that Windows uses to define the invalid
rectangle in the PAINTSTRUCT structure. (Things are not quite as convenient with the other mapping modes,
however.)

Figure 4-2. The x-coordinate and y-coordinate in the MM_TEXT mapping mode.

The device context also defines a clipping region. As you've seen, the default clipping region is the entire client
area for a device context handle obtained from GetDC and the invalid region for the device context handle
obtained from BeginPaint . When you call TextOut , Windows will not display any part of the character string that
lies outside the clipping region. If a character is partly within the clipping region, Windows displays only the
portion of the character inside the region. Writing outside the client area of your window isn't easy to do, so don't
worry about doing it inadvertently.

The System Font

The device context also defines the font that Windows uses when you call TextOut to display text. The default is a
font called the "system font" or (using the identifier in the WINGDI.H header file) SYSTEM_FONT. The system font
is the font that Windows uses by default for text strings in title bars, menus, and dialog boxes.

In the early days of Windows, the system font was a fixed-pitch font, which means that all the characters had the
same width, much like a typewriter. However, beginning with Windows 3.0, the system font became a variable-
pitch font, which means that different characters have different widths. A "W" is wider than an "i", for example. It
has been well established by studies in reading that text printed with variable-pitch fonts is more readable than
fixed-pitch font texts. It seems to have something to do with the letters being closer together, allowing the eyes
and mind to more clearly see entire words rather than individual letters. As you might imagine, the change from
fixed-pitch fonts to variable-pitch fonts broke a lot of early Windows code and required that programmers learn
some new techniques for working with text.

The system font is a "raster font," which means that the characters are defined as blocks of pixels. (In Chapter 17
, we'll work with TrueType fonts, which are defined by scaleable outlines.) To a certain extent, the size of the
characters in the system font is based on the size of the video display. The system font is designed to allow at
least 25 lines of 80-character text to fit on the screen.

The Size of a Character

To display multiple lines of text by using the TextOut function, you need to know the dimensions of characters in
the font. You can space successive lines of text based on the height of the characters, and you can space columns
of text across the client area based on the average width of the characters.

What is the height and average width of characters in the system font? Well, I'm not going to tell you. Or rather, I
can't tell you. Or rather, I could tell you, but I might be wrong. The problem is that it all depends on the pixel size
of the video display. Windows requires a minimum display size of 640 by 480, but many users prefer 800 by 600
or 1024 by 768. In addition, for these larger display sizes, Windows allows the user to select different sized
system fonts.

Just as a program can determine information about the sizes (or "metrics") of user interface items by calling the

GetSystemMetrics function, a program can determine font sizes by calling GetTextMetrics . GetTextMetrics
requires a handle to a device context because it returns information about the font currently selected in the device
context. Windows copies the various values of text metrics into a structure of type TEXTMETRIC defined in
WINGDI.H. The TEXTMETRIC structure has 20 fields, but we're interested in only the first seven:

typedef struct tagTEXTMETRIC
{
 LONG tmHeight ;
 LONG tmAscent ;
 LONG tmDescent ;
 LONG tmInternalLeading ;
 LONG tmExternalLeading ;
 LONG tmAveCharWidth ;
 LONG tmMaxCharWidth ;
 [other structure fields]
}
TEXTMETRIC, * PTEXTMETRIC ;

The values of these fields are in units that depend on the mapping mode currently selected for the device context.
In the default device context, this mapping mode is MM_TEXT, so the dimensions are in units of pixels.

To use the GetTextMetrics function, you first need to define a structure variable, commonly called tm :

TEXTMETRIC tm ;

When you need to determine the text metrics, you get a handle to a device context and call GetTextMetrics :

hdc = GetDC (hwnd) ;
GetTextMetrics (hdc, &tm) ;
ReleaseDC (hwnd, hdc) ;

You can then examine the values in the text metric structure and probably save a few of them for future use.

Text Metrics: The Details

The TEXTMETRIC structure provides various types of information about the font currently selected in the device
context. However, the vertical size of a font is defined by only five fields of the structure, four of which are shown
in Figure 4-3.

Figure 4-3. Four values defining vertical character sizes in a font.

The most important value is tmHeight , which is the sum of tmAscent and tmDescent . These two values represent
the maximum vertical extents of characters in the font above and below the baseline. The term "leading" refers to
space that a printer inserts between lines of text. In the TEXTMETRIC structure, internal leading is included in
tmAscent (and thus in tmHeight) and is often the space in which accent marks appear. The tmInternalLeading
field could be set to 0, in which case accented letters are made a little shorter so that the accent marks fit within
the ascent of the character.

The TEXTMETRIC structure also includes a field named tmExternalLeading , which is not included in the tmHeight
value. This is an amount of space that the designer of the font suggests be added between successive rows of
displayed text. You can accept or reject the font designer's suggestion for including external leading when spacing
lines of text. In the system fonts that I've encountered recently, tmExternalLeading has been zero, which is why I
didn't include it in Figure 4-3. (Despite my vow not to tell you the dimensions of a system font, Figure 4-3 is
accurate for the system font that Windows uses by default for a 640 by 480 display.)

The TEXTMETRIC structure contains two fields that describe character widths: the tmAveCharWidth field is a
weighted average of lowercase characters, and tmMaxCharWidth is the width of the widest character in the font.
For a fixed-pitch font, these values are the same. (For the font illustrated in Figure 4-3, these values are 7 and 14,
respectively.)

The sample programs in this chapter will require another character width—the average width of uppercase letters.
You can calculate this fairly accurately as 150% of tmAveCharWidth .

It's important to realize that the dimensions of a system font are dependent on the pixel size of the video display
on which Windows runs and, in some cases, on the system font size the user has selected. Windows provides a
device-independent graphics interface, but you have to help. Don't write your Windows programs so that they
guess at character dimensions. Don't hard-code any values. Use the GetTextMetrics function to obtain this
information.

Formatting Text

Because the dimensions of the system font do not change during a Windows session, you need to call
GetTextMetrics only once when your program executes. A good place to make this call is while processing the
WM_CREATE message in the window procedure. The WM_CREATE message is the first message the window
procedure receives. Windows calls your window procedure with a WM_CREATE message when you call
CreateWindow in WinMain .

Suppose you're writing a Windows program that displays several lines of text running down the client area. You'll
want to obtain values for the character width and height. Within the window procedure you can define two
variables to save the average character width (cxChar) and the total character height (cyChar):

static int cxChar, cyChar ;

The prefix c added to the variables names stands for "count," and in this case means a count of (or number of)
pixels. In combination with x or y , the prefix refers to a width or height. These variables are defined as static
because they must be valid when the window procedure processes other messages, such as WM_PAINT. Or you
can define the variables globally outside of any function.

Here's the WM_CREATE code to obtain the width and height of characters in the system font:

case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

Notice that I've included the tmExternalLeading field in the calculation of cyChar . Even though this field is 0 in the
system fonts I've seen lately, it should be included if it's ever nonzero because it makes for more readable line
spacing. Each successive line of text is displayed cyChar pixels further down the window.

You'll often find it necessary to display formatted numbers as well as simple character strings. As I discussed in
Chapter 2 , you can't use the traditional tool for this job (the beloved printf function), but you can use sprintf and
the Windows version of sprintf , wsprintf . These functions work just like printf except that they put the formatted
string into a character string. You can then use TextOut to write the string to the display. Very conveniently, the
value returned from sprintf and wsprintf is the length of the string. You can pass that value to TextOut as the
iLength argument. This code shows a typical wsprintf and TextOut combination:

int iLength ;
TCHAR szBuffer [40] ;
[other program lines]
iLength = wsprintf (szBuffer, TEXT ("The sum of %i and %i is %i"),
 iA, iB, iA + iB) ;
TextOut (hdc, x, y, szBuffer, iLength) ;

For something as simple as this, you could dispense with the iLength definition and combine the two statements
into one:

TextOut (hdc, x, y, szBuffer,
 wsprintf (szBuffer, TEXT ("The sum of %i and %i is %i"),
 iA, iB, iA + iB)) ;

It ain't pretty, but it works.

Putting It All Together

Now we seem to have everything we need to write a simple program that displays multiple lines of text on the
screen. We know how to get a handle to a device context during the WM_PAINT message, how to use the TextOut
function, and how to space text based on the size of a single character. The only thing left for us to do is to display
something interesting.

In the previous chapter, we took a little peek at the interesting information available from the Windows
GetSystemMetrics function. The function returns information about the size of various graphical items in Windows,
such as icons, cursors, title bars, and scroll bars. These sizes vary with the display adapter and driver.
GetSystemMetrics is an important function for achieving device-independent graphical output in your program.

The function requires a single argument called an "index." The index is one of 75 integer identifiers defined in the
Windows header files. (The number of identifiers has increased with each release of Windows; the programmer's
documentation in Windows 1.0 listed only 26 of them.) GetSystemMetrics returns an integer, usually the size of
the item specified in the argument.

Let's write a program that displays some of the information available from the GetSystemMetrics calls in a simple
one-line-per-item format. Working with this information is easier if we create a header file that defines an array of
structures containing both the Windows header-file identifiers for the GetSystemMetrics index and the text we
want to display for each value returned from the call. This header file is called SYSMETS.H and is shown in Figure
4-4.

Figure 4-4. The SYSMETS.H file.

SYSMETS.H

/*---
 SYSMETS.H -- System metrics display structure
 ---*/

#define NUMLINES ((int) (sizeof sysmetrics / sizeof sysmetrics [0]))

struct
{
 int iIndex ;
 TCHAR * szLabel ;
 TCHAR * szDesc ;
}
sysmetrics [] =
{
 SM_CXSCREEN, TEXT ("SM_CXSCREEN"),
 TEXT ("Screen width in pixels"),
 SM_CYSCREEN, TEXT ("SM_CYSCREEN"),
 TEXT ("Screen height in pixels"),
 SM_CXVSCROLL, TEXT ("SM_CXVSCROLL"),
 TEXT ("Vertical scroll width"),
 SM_CYHSCROLL, TEXT ("SM_CYHSCROLL"),
 TEXT ("Horizontal scroll height"),
 SM_CYCAPTION, TEXT ("SM_CYCAPTION"),
 TEXT ("Caption bar height"),
 SM_CXBORDER, TEXT ("SM_CXBORDER"),
 TEXT ("Window border width"),
 SM_CYBORDER, TEXT ("SM_CYBORDER"),
 TEXT ("Window border height"),
 SM_CXFIXEDFRAME, TEXT ("SM_CXFIXEDFRAME"),
 TEXT ("Dialog window frame width"),
 SM_CYFIXEDFRAME, TEXT ("SM_CYFIXEDFRAME"),
 TEXT ("Dialog window frame height"),
 SM_CYVTHUMB, TEXT ("SM_CYVTHUMB"),

 TEXT ("Vertical scroll thumb height"),
 SM_CXHTHUMB, TEXT ("SM_CXHTHUMB"),
 TEXT ("Horizontal scroll thumb width"),
 SM_CXICON, TEXT ("SM_CXICON"),
 TEXT ("Icon width"),
 SM_CYICON, TEXT ("SM_CYICON"),
 TEXT ("Icon height"),
 SM_CXCURSOR, TEXT ("SM_CXCURSOR"),
 TEXT ("Cursor width"),
 SM_CYCURSOR, TEXT ("SM_CYCURSOR"),
 TEXT ("Cursor height"),
 SM_CYMENU, TEXT ("SM_CYMENU"),
 TEXT ("Menu bar height"),
 SM_CXFULLSCREEN, TEXT ("SM_CXFULLSCREEN"),
 TEXT ("Full screen client area width"),
 SM_CYFULLSCREEN, TEXT ("SM_CYFULLSCREEN"),
 TEXT ("Full screen client area height"),
 SM_CYKANJIWINDOW, TEXT ("SM_CYKANJIWINDOW"),
 TEXT ("Kanji window height"),
 SM_MOUSEPRESENT, TEXT ("SM_MOUSEPRESENT"),
 TEXT ("Mouse present flag"),
 SM_CYVSCROLL, TEXT ("SM_CYVSCROLL"),
 TEXT ("Vertical scroll arrow height"),
 SM_CXHSCROLL, TEXT ("SM_CXHSCROLL"),
 TEXT ("Horizontal scroll arrow width"),
 SM_DEBUG, TEXT ("SM_DEBUG"),
 TEXT ("Debug version flag"),
 SM_SWAPBUTTON, TEXT ("SM_SWAPBUTTON"),
 TEXT ("Mouse buttons swapped flag"),
 SM_CXMIN, TEXT ("SM_CXMIN"),
 TEXT ("Minimum window width"),
 SM_CYMIN, TEXT ("SM_CYMIN"),
 TEXT ("Minimum window height"),
 SM_CXSIZE, TEXT ("SM_CXSIZE"),
 TEXT ("Min/Max/Close button width"),
 SM_CYSIZE, TEXT ("SM_CYSIZE"),
 TEXT ("Min/Max/Close button height"),
 SM_CXSIZEFRAME, TEXT ("SM_CXSIZEFRAME"),
 TEXT ("Window sizing frame width"),
 SM_CYSIZEFRAME, TEXT ("SM_CYSIZEFRAME"),
 TEXT ("Window sizing frame height"),
 SM_CXMINTRACK, TEXT ("SM_CXMINTRACK"),
 TEXT ("Minimum window tracking width"),
 SM_CYMINTRACK, TEXT ("SM_CYMINTRACK"),
 TEXT ("Minimum window tracking height"),
 SM_CXDOUBLECLK, TEXT ("SM_CXDOUBLECLK"),
 TEXT ("Double click x tolerance"),
 SM_CYDOUBLECLK, TEXT ("SM_CYDOUBLECLK"),
 TEXT ("Double click y tolerance"),
 SM_CXICONSPACING, TEXT ("SM_CXICONSPACING"),
 TEXT ("Horizontal icon spacing"),
 SM_CYICONSPACING, TEXT ("SM_CYICONSPACING"),
 TEXT ("Vertical icon spacing"),

 SM_MENUDROPALIGNMENT, TEXT ("SM_MENUDROPALIGNMENT"),
 TEXT ("Left or right menu drop"),
 SM_PENWINDOWS, TEXT ("SM_PENWINDOWS"),
 TEXT ("Pen extensions installed"),
 SM_DBCSENABLED, TEXT ("SM_DBCSENABLED"),
 TEXT ("Double-Byte Char Set enabled"),
 SM_CMOUSEBUTTONS, TEXT ("SM_CMOUSEBUTTONS"),
 TEXT ("Number of mouse buttons"),
 SM_SECURE, TEXT ("SM_SECURE"),
 TEXT ("Security present flag"),
 SM_CXEDGE, TEXT ("SM_CXEDGE"),
 TEXT ("3-D border width"),
 SM_CYEDGE, TEXT ("SM_CYEDGE"),
 TEXT ("3-D border height"),
 SM_CXMINSPACING, TEXT ("SM_CXMINSPACING"),
 TEXT ("Minimized window spacing width"),
 SM_CYMINSPACING, TEXT ("SM_CYMINSPACING"),
 TEXT ("Minimized window spacing height"),
 SM_CXSMICON, TEXT ("SM_CXSMICON"),
 TEXT ("Small icon width"),
 SM_CYSMICON, TEXT ("SM_CYSMICON"),
 TEXT ("Small icon height"),
 SM_CYSMCAPTION, TEXT ("SM_CYSMCAPTION"),
 TEXT ("Small caption height"),
 SM_CXSMSIZE, TEXT ("SM_CXSMSIZE"),
 TEXT ("Small caption button width"),
 SM_CYSMSIZE, TEXT ("SM_CYSMSIZE"),
 TEXT ("Small caption button height"),
 SM_CXMENUSIZE, TEXT ("SM_CXMENUSIZE"),
 TEXT ("Menu bar button width"),
 SM_CYMENUSIZE, TEXT ("SM_CYMENUSIZE"),
 TEXT ("Menu bar button height"),
 SM_ARRANGE, TEXT ("SM_ARRANGE"),
 TEXT ("How minimized windows arranged"),
 SM_CXMINIMIZED, TEXT ("SM_CXMINIMIZED"),
 TEXT ("Minimized window width"),
 SM_CYMINIMIZED, TEXT ("SM_CYMINIMIZED"),
 TEXT ("Minimized window height"),
 SM_CXMAXTRACK, TEXT ("SM_CXMAXTRACK"),
 TEXT ("Maximum draggable width"),
 SM_CYMAXTRACK, TEXT ("SM_CYMAXTRACK"),
 TEXT ("Maximum draggable height"),
 SM_CXMAXIMIZED, TEXT ("SM_CXMAXIMIZED"),
 TEXT ("Width of maximized window"),
 SM_CYMAXIMIZED, TEXT ("SM_CYMAXIMIZED"),
 TEXT ("Height of maximized window"),
 SM_NETWORK, TEXT ("SM_NETWORK"),
 TEXT ("Network present flag"),
 SM_CLEANBOOT, TEXT ("SM_CLEANBOOT"),
 TEXT ("How system was booted"),
 SM_CXDRAG, TEXT ("SM_CXDRAG"),
 TEXT ("Avoid drag x tolerance"),
 SM_CYDRAG, TEXT ("SM_CYDRAG"),

 TEXT ("Avoid drag y tolerance"),
 SM_SHOWSOUNDS, TEXT ("SM_SHOWSOUNDS"),
 TEXT ("Present sounds visually"),
 SM_CXMENUCHECK, TEXT ("SM_CXMENUCHECK"),
 TEXT ("Menu check-mark width"),
 SM_CYMENUCHECK, TEXT ("SM_CYMENUCHECK"),
 TEXT ("Menu check-mark height"),
 SM_SLOWMACHINE, TEXT ("SM_SLOWMACHINE"),
 TEXT ("Slow processor flag"),
 SM_MIDEASTENABLED, TEXT ("SM_MIDEASTENABLED"),
 TEXT ("Hebrew and Arabic enabled flag"),
 SM_MOUSEWHEELPRESENT, TEXT ("SM_MOUSEWHEELPRESENT"),
 TEXT ("Mouse wheel present flag"),
 SM_XVIRTUALSCREEN, TEXT ("SM_XVIRTUALSCREEN"),
 TEXT ("Virtual screen x origin"),
 SM_YVIRTUALSCREEN, TEXT ("SM_YVIRTUALSCREEN"),
 TEXT ("Virtual screen y origin"),
 SM_CXVIRTUALSCREEN, TEXT ("SM_CXVIRTUALSCREEN"),
 TEXT ("Virtual screen width"),
 SM_CYVIRTUALSCREEN, TEXT ("SM_CYVIRTUALSCREEN"),
 TEXT ("Virtual screen height"),
 SM_CMONITORS, TEXT ("SM_CMONITORS"),
 TEXT ("Number of monitors"),
 SM_SAMEDISPLAYFORMAT, TEXT ("SM_SAMEDISPLAYFORMAT"),
 TEXT ("Same color format flag")
} ;

The program that displays this information is called SYSMETS1. The SYSMETS1.C source code file is shown in
Figure 4-5. Most of the code should look familiar by now. The code in WinMain is virtually identical to that in
HELLOWIN, and much of the code in WndProc has already been discussed.

Figure 4-5. SYSMETS1.C.

SYSMETS1.C

/*--
 SYSMETS1.C -- System Metrics Display Program No. 1
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "sysmets.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SysMets1") ;
 HWND hwnd ;

 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Get System Metrics No. 1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
 }

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer [10] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;

 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 for (i = 0 ; i < NUMLINES ; i++)
 {
 TextOut (hdc, 0, cyChar * i,
 sysmetrics[i].szLabel,
 lstrlen (sysmetrics[i].szLabel)) ;

 TextOut (hdc, 22 * cxCaps, cyChar * i,
 sysmetrics[i].szDesc,
 lstrlen (sysmetrics[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;

 TextOut (hdc, 22 * cxCaps + 40 * cxChar, cyChar * i, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetSystemMetrics (sysmetrics[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;
 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Figure 4-6 shows SYSMETS1 running on a standard VGA. As you can see from the first two lines in the program's
client area, the screen width is 640 pixels and the screen height is 480 pixels. These two values, as well as many
of the other values shown by the program, may be different for different types of video displays.

Figure 4-6. The SYSMETS1 display.

The SYSMETS1.C Window Procedure

The WndProc window procedure in the SYSMETS1.C program processes three messages: WM_CREATE,
WM_PAINT, and WM_DESTROY. The WM_DESTROY message is processed in the same way as the HELLOWIN
program in Chapter 3 .

The WM_CREATE message is the first message the window procedure receives. Windows generates the message
when the CreateWindow function creates the window. During the WM_CREATE message, SYSMETS1 obtains a
device context for the window by calling GetDC and gets the text metrics for the default system font by calling
GetTextMetrics . SYSMETS1 saves the average character width in cxChar and the total height of the characters
(including external leading) in cyChar .

SYSMETS1 also saves an average width of uppercase letters in the static variable cxCaps . For a fixed-pitch font,
cxCaps would equal cxChar . For a variable-width font, cxCaps is set to 150 percent of cxChar . The low bit of the
tmPitchAndFamily field in the TEXTMETRIC structure is 1 for a variable-width font and 0 for a fixed-pitch font.
SYSMETS1 uses this bit to calculate cxCaps from cxChar :

cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;

SYSMETS1 does all window painting during the WM_PAINT message. As normal, the window procedure first
obtains a handle to the device context by calling BeginPaint . A for statement loops through all the lines of the
sysmetrics structure defined in SYSMETS.H. The three columns of text are displayed with three TextOut function
calls. In each case, the third argument to TextOut (that is, the y starting position) is set to

cyChar * i

This argument indicates the pixel position of the top of the character string relative to the top of the client area.

The first TextOut statement displays the uppercase identifiers in the first of the three columns. The second
argument to TextOut is 0 to begin the text at the left edge of the client area. The text is obtained from the szLabel
field of the sysmetrics structure. I use the Windows function lstrlen to calculate the length of the string, which is
required as the last argument to TextOut .

The second TextOut statement displays the description of the system metrics value. These descriptions are stored
in the szDesc field of the sysmetrics structure. In this case, the second argument to TextOut is set to

22 * cxCaps

The longest uppercase identifier displayed in the first column is 20 characters, so the second column must begin
at least 20 × cxCaps to the right of the beginning of the first column of text. I use 22 to add a little extra space
between the columns.

The third TextOut statement displays the numeric values obtained from the GetSystemMetrics function. The
variable-width font makes formatting a column of right-justified numbers a little tricky. Fortunately, in all variable-
width fonts used today, the digits from 0 through 9 all have the same width. Otherwise, displaying columns of
numbers would be monstrous. However, the width of the digits is greater than the width of a space. Numbers can
be one or more digits wide, so different numbers can begin at different horizontal positions.

Wouldn't it be easier if we could display a column of right-justified numbers by specifying the horizontal pixel
position where the number ends rather than begins? This is what the SetTextAlign function lets us do (among
other things). After SYSMETS1 calls

SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;

Windows will interpret the coordinates passed to subsequent TextOut functions as specifying the top-right corner
of the text string rather than the top-left corner.

The TextOut function to display the column of numbers has its second argument set to

22 * cxCaps + 40 * cxChar

The 40 × cxChar value accommodates the width of the second column and the width of the third column.
Following the TextOut function, another call to SetTextAlign sets things back to normal for the next time through
the loop.

Not Enough Room

One nasty little problem exists with the SYSMETS1 program: Unless you have a gigantic, big-screen, high-
resolution video adapter, you can't see many of the lines in the system metrics lists. If you make the window
narrower, you can't even see the values.

SYSMETS1 is not aware of this problem. Otherwise we might have included a message box that said, "Sorry!" It's
not aware of the problem because the program doesn't even know how large its client area is. It begins displaying
the text at the top of the window and relies on Windows to clip everything that drifts beyond the bottom of the
client area.

Clearly, this is not desirable. Our first job in solving this problem is to determine how much of the program's
output can actually fit within the client area.

The Size of the Client Area

If you experiment with existing Windows applications, you'll find that window sizes can vary widely. If a window is
maximized, the client area occupies nearly the entire video display. The dimensions of a maximized client area
are, in fact, available from the GetSystemMetrics call by using arguments of SM_CXFULLSCREEN and
SM_CYFULLSCREEN (assuming that the window has only a title bar and no menu). The minimum size of a window
can be quite small—sometimes almost nonexistent—virtually eliminating the client area.

In the last chapter, we used the GetClientRect function for determining the dimensions of the client area. There's
nothing really wrong with this function, but it's a bit inefficient to call it every time you need to use this
information. A much better method for determining the size of a window's client is to process the WM_SIZE
message within your window procedure. Windows sends a WM_SIZE message to a window procedure whenever
the size of the window changes. The lParam variable passed to the window procedure contains the width of the
client area in the low word and the height in the high word. To save these dimensions, you'll want to define two
static variables in your window procedure:

static int cxClient, cyClient ;

Like cxChar and cyChar , these variables are defined as static because they are set while processing one message
and used while processing another message. You handle the WM_SIZE method like so:

case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

You'll see code like this in virtually every Windows program. LOWORD and HIWORD are macros that are defined in
the Windows header file WINDEF.H. If you're curious, the definitions of these macros look like this:

#define LOWORD(l) ((WORD)(l))
#define HIWORD(l) ((WORD)(((DWORD)(l) >> 16) & 0xFFFF))

The two macros return WORD values—that is, 16-bit unsigned short integers that range from 0 through 0xFFFF.
Typically you'll store these values in 32-bit signed integers. That doesn't involve any conversion problems and
makes the values easier to use in any calculations you may later need.

In many Windows programs, a WM_SIZE message will eventually be followed by a WM_PAINT message. How do
we know this? Because when we define the window class we specify the class style as

CS_HREDRAW | CS_VREDRAW

This class style tells Windows to force a repaint if either the horizontal or vertical size changes.

You can calculate the number of full lines of text displayable within the client area with the formula:

cyClient / cyChar

This can be 0 if the height of the client area is too small to display a full character. Similarly, the approximate
number of lowercase characters you can display horizontally within the client area is equal to

cxClient / cxChar

If you determine cxChar and cyChar during the WM_CREATE message, don't worry about dividing by 0 in these
calculations. Your window procedure receives a WM_CREATE message when WinMain calls CreateWindow . The
first WM_SIZE message comes a little later, when WinMain calls ShowWindow , at which point cxChar and cyChar
have already been assigned positive nonzero values.

Knowing the size of the window's client area is the first step in providing a way for the user to move the text
within the client area if the client area is not large enough to hold everything. If you're familiar with other
Windows-based applications that have similar requirements, you probably know what we need: this is a job for
those wonderful inventions known as scroll bars.

Scroll Bars

Scroll bars are one of the best features of a graphical user interface. They are easy to use and provide excellent
visual feedback. You can use scroll bars whenever you need to display anything—text, graphics, a spreadsheet,
database records, pictures, Web pages—that requires more space than is available in the window's client area.

Scroll bars are positioned either vertically (for up and down movement) or horizontally (for left and right
movement). You can click with the mouse the arrows at each end of a scroll bar or the area between the arrows. A
"scroll box" (or "thumb") travels the length of the scroll bar to indicate the approximate location of the material
shown on the display in relation to the entire document. You can also drag the thumb with the mouse to move to
a particular location. Figure 4-7 shows the recommended use of a vertical scroll bar for text.

Figure 4-7. The vertical scroll bar.

Programmers sometimes have problems with scrolling terminology because their perspective is different from the
user's. A user who scrolls down wants to bring a lower part of the document into view; however, the program
actually moves the document up in relation to the display window. The Window documentation and the header file
identifiers are based on the user's perspective: scroll up means moving toward the beginning of the document;
scroll down means moving toward the end.

It is easy to include a horizontal or vertical scroll bar in your application window. All you need do is include the
window style (WS) identifier WS_VSCROLL (vertical scroll) or WS_HSCROLL (horizontal scroll) or both in the third
argument to CreateWindow . The scroll bars specified in the CreateWindow function are always placed against the
right side or bottom of the window and extend the full length or width of the client area. The client area does not
include the space occupied by the scroll bar. The width of the vertical scroll bar and the height of the horizontal
scroll bar are constant for a particular video driver and display resolution. If you need these values, you can obtain
them (as you may have observed) from the GetSystemMetrics calls.

Windows takes care of processing all mouse messages to the scroll bars. However, scroll bars do not have an
automatic keyboard interface. If you want the cursor keys to duplicate some of the functionality of the scroll bars,
you must explicitly provide logic for that (as we'll do when we make another version of the SYSMETS program in
the next chapter).

Scroll Bar Range and Position

Every scroll bar has an associated "range" and "position." The scroll bar range is a pair of integers representing a
minimum and maximum value associated with the scroll bar. The position is the location of the thumb within the
range. When the thumb is at the top (or left) of the scroll bar, the position of the thumb is the minimum value of
the range. At the bottom (or right) of the scroll bar, the thumb position is the maximum value of the range.

By default, the range of a scroll bar is 0 (top or left) through 100 (bottom or right), but it's easy to change the
range to something that is more convenient for the program:

SetScrollRange (hwnd, iBar, iMin, iMax, bRedraw) ;

The iBar argument is either SB_VERT or SB_HORZ, iMin and iMax are the new minimum and maximum positions of
the range, and you set bRedraw to TRUE if you want Windows to redraw the scroll bar based on the new range. (If
you will be calling other functions that affect the appearance of the scroll bar after you call SetScrollRange , you'll
probably want to set bRedraw to FALSE to avoid excessive redrawing.)

The thumb position is always a discrete integral value. For instance, a scroll bar with a range of 0 through 4 has
five thumb positions, as shown in Figure 4-8.

Figure 4-8. Scroll bars with five thumb positions.

You can use SetScrollPos to set a new thumb position within the scroll bar range:

SetScrollPos (hwnd, iBar, iPos, bRedraw) ;

The iPos argument is the new position and must be within the range of iMin and iMax . Windows provides similar
functions (GetScrollRange and GetScrollPos) to obtain the current range and position of a scroll bar.

When you use scroll bars within your program, you share responsibility with Windows for maintaining the scroll
bars and updating the position of the scroll bar thumb. These are Windows' responsibilities for scroll bars:

Handle all processing of mouse messages to the scroll bar.

Provide a reverse-video "flash" when the user clicks the scroll bar.

Move the thumb as the user drags the thumb within the scroll bar.

Send scroll bar messages to the window procedure of the window containing the scroll bar.

These are the responsibilities of your program:

Initialize the range and position of the scroll bar.

Process the scroll bar messages to the window procedure.

Update the position of the scroll bar thumb.

Change the contents of the client area in response to a change in the scroll bar.

Like almost everything in life, this will make a lot more sense when we start looking at some code.

Scroll Bar Messages

Windows sends the window procedure WM_VSCROLL (vertical scroll) and WM_HSCROLL (horizontal scroll)
messages when the scroll bar is clicked with the mouse or the thumb is dragged. Each mouse action on the scroll
bar generates at least two messages, one when the mouse button is pressed and another when it is released.

Like all messages, WM_VSCROLL and WM_HSCROLL are accompanied by the wParam and lParam message
parameters. For messages from scroll bars created as part of your window, you can ignore lParam ; that's used
only for scroll bars created as child windows, usually within dialog boxes.

The wParam message parameter is divided into a low word and a high word. The low word of wParam is a number
that indicates what the mouse is doing to the scroll bar. This number is referred to as a "notification code."
Notification codes have values defined by identifiers that begin with SB, which stands for "scroll bar." Here's how
the notification codes are defined in WINUSER.H:

#define SB_LINEUP 0
#define SB_LINELEFT 0
#define SB_LINEDOWN 1
#define SB_LINERIGHT 1
#define SB_PAGEUP 2
#define SB_PAGELEFT 2
#define SB_PAGEDOWN 3
#define SB_PAGERIGHT 3
#define SB_THUMBPOSITION 4
#define SB_THUMBTRACK 5
#define SB_TOP 6
#define SB_LEFT 6
#define SB_BOTTOM 7
#define SB_RIGHT 7
#define SB_ENDSCROLL 8

You use the identifiers containing the words LEFT and RIGHT for horizontal scroll bars, and the identifiers with UP,
DOWN, TOP, and BOTTOM with vertical scroll bars. The notification codes associated with clicking the mouse on
various areas of the scroll bar are shown in Figure 4-9.

Figure 4-9. Identifiers for the wParam values of scroll bar messages.

If you hold down the mouse button on the various parts of the scroll bar, your program can receive multiple scroll
bar messages. When the mouse button is released, you'll get a message with a notification code of
SB_ENDSCROLL. You can generally ignore messages with the SB_ENDSCROLL notification code. Windows will not
change the position of the scroll bar thumb. Your application does that by calling SetScrollPos .

When you position the mouse cursor over the scroll bar thumb and press the mouse button, you can move the
thumb. This generates scroll bar messages with notification codes of SB_THUMBTRACK and SB_THUMBPOSITION.
When the low word of wParam is SB_THUMBTRACK, the high word of wParam is the current position of the scroll
bar thumb as the user is dragging it. This position is within the minimum and maximum values of the scroll bar
range. When the low word of wParam is SB_THUMBPOSITION, the high word of wParam is the final position of the
scroll bar thumb when the user released the mouse button. For other scroll bar actions, the high word of wParam
should be ignored.

To provide feedback to the user, Windows will move the scroll bar thumb when you drag it with the mouse as your
program is receiving SB_THUMBTRACK messages. However, unless you process SB_THUMBTRACK or
SB_THUMBPOSITION messages by calling SetScrollPos , the thumb will snap back to its original position when the
user releases the mouse button.

A program can process either the SB_THUMBTRACK or SB_THUMBPOSITION messages, but doesn't usually
process both. If you process SB_THUMBTRACK messages, you'll move the contents of your client area as the user
is dragging the thumb. If instead you process SB_THUMBPOSITION messages, you'll move the contents of the
client area only when the user stops dragging the thumb. It's preferable (but more difficult) to process
SB_THUMBTRACK messages; for some types of data your program may have a hard time keeping up with the
messages.

As you'll note, the WINUSER.H header files includes notification codes of SB_TOP, SB_BOTTOM, SB_LEFT, and
SB_RIGHT, indicating that the scroll bar has been moved to its minimum or maximum position. However, you will
never receive these notification codes for a scroll bar created as part of your application window.

Although it's not common, using 32-bit values for the scroll bar range is perfectly valid. However, the high word of
wParam , which is only a 16-bit value, cannot properly indicate the position for SB_THUMBTRACK and
SB_THUMBPOSITION actions. In this case, you need to use the function GetScrollInfo (described later in this
chapter) to get this information.

Scrolling SYSMETS

Enough explanation. It's time to put this stuff into practice. Let's start simply. We'll begin with vertical scrolling
because that's what we desperately need. The horizontal scrolling can wait. SYSMET2 is shown in Figure 4-10. This
program is probably the simplest implementation of a scroll bar you'll want in an application.

Figure 4-10. The SYSMETS2 program.

SYSMETS2.C

/*--
 SYSMETS2.C -- System Metrics Display Program No. 2
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "sysmets.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SysMets2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Get System Metrics No. 2"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {

 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar, cyClient, iVscrollPos ;
 HDC hdc ;
 int i, y ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer[10] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;

 SetScrollRange (hwnd, SB_VERT, 0, NUMLINES - 1, FALSE) ;
 SetScrollPos (hwnd, SB_VERT, iVscrollPos, TRUE) ;
 return 0 ;

 case WM_SIZE:
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_VSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_LINEUP:
 iVscrollPos -= 1 ;
 break ;

 case SB_LINEDOWN:
 iVscrollPos += 1 ;
 break ;

 case SB_PAGEUP:
 iVscrollPos -= cyClient / cyChar ;
 break ;

 case SB_PAGEDOWN:
 iVscrollPos += cyClient / cyChar ;
 break ;

 case SB_THUMBPOSITION:
 iVscrollPos = HIWORD (wParam) ;
 break ;

 default :
 break ;
 }

 iVscrollPos = max (0, min (iVscrollPos, NUMLINES - 1)) ;

 if (iVscrollPos != GetScrollPos (hwnd, SB_VERT))
 {
 SetScrollPos (hwnd, SB_VERT, iVscrollPos, TRUE) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 for (i = 0 ; i < NUMLINES ; i++)
 {
 y = cyChar * (i - iVscrollPos) ;

 TextOut (hdc, 0, y,
 sysmetrics[i].szLabel,
 lstrlen (sysmetrics[i].szLabel)) ;

 TextOut (hdc, 22 * cxCaps, y,
 sysmetrics[i].szDesc,
 lstrlen (sysmetrics[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;
 TextOut (hdc, 22 * cxCaps + 40 * cxChar, y, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetSystemMetrics (sysmetrics[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The new CreateWindow call adds a vertical scroll bar to the window by including the WS_VSCROLL window style in
the third argument:

WS_OVERLAPPEDWINDOW | WS_VSCROLL

WM_CREATE message processing in the WndProc window procedure has two additional lines to set the range and
initial position of the vertical scroll bar:

SetScrollRange (hwnd, SB_VERT, 0, NUMLINES - 1, FALSE) ;
SetScrollPos (hwnd, SB_VERT, iVscrollPos, TRUE) ;

The sysmetrics structure array has NUMLINES lines of text, so the scroll bar range is set to 0 through NUMLINES -
1. Each position of the scroll bar corresponds to a line of text displayed at the top of the client area. If the scroll
bar thumb is at position 0, the first line will be positioned at the top of the client area. For positions greater than
zero, other lines appear at the top. When the position is NUMLINES - 1, the last line of text appears at the top of
the client area.

To help with processing of the WM_VSCROLL messages, a static variable named iVscrollPos is defined within the
window procedure. This variable is the current position of the scroll bar thumb. For SB_LINEUP and
SB_LINEDOWN, all we need to do is adjust the scroll position by 1. For SB_PAGEUP and SB_PAGEDOWN, we want
to move the text by the context of one screen, or cyClient divided by cyChar . For SB_THUMBPOSITION, the new
thumb position is the high word of wParam . The SB_ENDSCROLL and SB_THUMBTRACK messages are ignored.

After the program calculates a new value of iVscrollPos based on the type of WM_VSCROLL message it receives, it
makes sure that it is still between the minimum and maximum range value of the scroll bar by using the min and
max macros. The program then compares the value of iVscrollPos with the previous position, which is obtained by
calling GetScrollPos . If the scroll position has changed, it is updated by calling SetScrollPos , and the entire
window is invalidated by a call to InvalidateRect .

The InvalidateRect function generates a WM_PAINT message. When the original SYSMETS1 program processed
WM_PAINT messages, the y -coordinate of each line was calculated as

cyChar * i

In SYSMETS2, the formula is

cyChar * (i - iVscrollPos)

The loop still displays NUMLINES lines of text, but for nonzero values of iVscrollPos this value is negative. The
program is actually displaying the early lines of text above and outside the client area. Windows, of course,
doesn't allow these lines to appear on the screen, so everything looks all nice and neat.

I told you we'd start simply. This is rather wasteful and inefficient code. We'll fix it shortly, but first consider how
we update the client area after a WM_VSCROLL message.

Structuring Your Program for Painting

The window procedure in SYSMETS2 does not directly repaint the client area after processing a scroll bar message.
Instead, it calls InvalidateRect to invalidate the client area. This causes Windows to place a WM_PAINT message in
the message queue.

It is best to structure your Windows programs so that you do all your client-area painting in response to a
WM_PAINT message. Because your program should be able to repaint the entire client area of the window at any

time on receipt of a WM_PAINT message, painting in response to other messages will probably involve code that
duplicates the functionality of your WM_PAINT logic.

At first, you may rebel at this dictum because it seems such a roundabout way of doing things. In the early days
of Windows, programmers found this concept difficult to master because it was so different from character-mode
PC programming. And, as I mentioned earlier, there are frequently times when your program will respond to some
keyboard or mouse logic by drawing something immediately. This is done for both convenience and efficiency. But
in many cases it's simply unnecessary. After you master the discipline of accumulating all the information you
need to paint in response to a WM_PAINT message, you'll be pleased with the results.

As SYSMETS2 demonstrates, a program will often determine that it must repaint a particular area of the display
while processing a message other than WM_PAINT. This is where InvalidateRect comes in handy. You can use it to
invalidate specific rectangles of the client area or the entire client area.

Simply marking areas of the window as invalid to generate WM_PAINT messages might not be entirely satisfactory
in some applications. After you make an InvalidateRect call, Windows places a WM_PAINT message in the
message queue and the window procedure eventually processes it. However, Windows treats WM_PAINT
messages as low priority, so if a lot of other activity is occurring in the system, it may be awhile before your
window procedure receives the WM_PAINT message. Everyone has seen blank, white "holes" in Windows after a
dialog box is removed and the program is still waiting to refresh its window.

If you prefer to update the invalid area immediately, you can call UpdateWindow after you call InvalidateRect :

UpdateWindow (hwnd) ;

UpdateWindow causes the window procedure to be called immediately with a WM_PAINT message if any part of
the client area is invalid. (UpdateWindow will not call the window procedure if the entire client area is valid.) In
this case, the WM_PAINT message bypasses the message queue. The window procedure is called directly from
Windows. When the window procedure has finished repainting, it exits and the UpdateWindow function returns
control to the code that called it.

You'll note that UpdateWindow is the same function used in WinMain to generate the first WM_PAINT message.
When a window is first created, the entire client area is invalid. UpdateWindow directs the window procedure to
paint it.

Building a Better Scroll

SYSMETS2 works well, but it's too inefficient a model to be imitated in other programs. Soon I'll present a new
version that corrects its deficiencies. Most interesting, perhaps, is that this new version will not use any of the four
scroll bar functions discussed so far. Instead, it will use new functions unique to the Win32 API.

The Scroll Bar Information Functions

The scroll bar documentation (in /Platform SDK/User Interface Services/Controls/Scroll Bars) indicates that the
SetScrollRange , SetScrollPos , GetScrollRange , and GetScrollPos functions are "obsolete." This is not entirely
accurate. While these functions have been around since Windows 1.0, they were upgraded to handle 32-bit
arguments in the Win32 API. They are still perfectly functional and are likely to remain functional. Moreover, they
are simple enough not to overwhelm a newcomer to Windows programming at the outset, which is why I continue
to use them in this book.

The two scroll bar functions introduced in the Win32 API are called SetScrollInfo and GetScrollInfo . These
functions do everything the earlier functions do and add two new important features.

The first feature involves the size of the scroll bar thumb. As you may have noticed, the size of the thumb was
constant in the SYSMETS2 program. However, in some Windows applications you may have used, the size of the
thumb is proportional to the amount of the document displayed in the window. This displayed amount is known as
the "page size." In arithmetic terms,
Thumb size
Page size
Amount of document displayed

=

=

Scroll length
Range
Total size of document

You can use SetScrollInfo to set the page size (and hence the size of the thumb), as we'll see in the SYSMETS3
program coming up shortly.

The GetScrollInfo function adds a second important feature, or rather it corrects a deficiency in the current API.
Suppose you want to use a range that is 65,536 or more units. Back in the days of 16-bit Windows, this was not
possible. In Win32, of course, the functions are defined as accepting 32-bit arguments, and indeed they do. (Keep
in mind that if you do use a range this large, the number of actual physical positions of the thumb is still limited
by the pixel size of the scroll bar.) However, when you get a WM_VSCROLL or WM_HSCROLL message with a
notification code of SB_THUMBTRACK or SB_THUMBPOSITION, only 16 bits are provided to indicate the current
position of the thumb. The GetScrollInfo function lets you obtain the actual 32-bit value.

The syntax of the SetScrollInfo and GetScrollInfo functions is

SetScrollInfo (hwnd, iBar, &si, bRedraw) ;
GetScrollInfo (hwnd, iBar, &si) ;

The iBar argument is either SB_VERT or SB_HORZ, as in the other scroll bar functions. As with those functions
also, it can be SB_CTL for a scroll bar control. The last argument for SetScrollInfo can be TRUE or FALSE to
indicate if you want Windows to redraw the scroll bar taking into account the new information.

The third argument to both functions is a SCROLLINFO structure, which is defined like so:

typedef struct tagSCROLLINFO
{
 UINT cbSize ; // set to sizeof (SCROLLINFO)
 UINT fMask ; // values to set or get
 int nMin ; // minimum range value
 int nMax ; // maximum range value
 UINT nPage ; // page size
 int nPos ; // current position
 int nTrackPos ; // current tracking position
}
SCROLLINFO, * PSCROLLINFO ;

In your program, you can define a structure of type SCROLLINFO like this:

SCROLLINFO si ;

Before calling SetScrollInfo or GetScrollInfo , you must set the cbSize field to the size of the structure:

si.cbSize = sizeof (si) ;

or

si.cbSize = sizeof (SCROLLINFO) ;

As you get acquainted with Windows, you'll find several other structures that have a first field like this one to
indicate the size of the structure. This field allows for a future version of Windows to expand the structure and add
new features while still being compatible with previously compiled programs.

You set the fMask field to one or more flags beginning with the SIF prefix. You can combine these flags with the C
bitwise OR function (|).

When you use the SIF_RANGE flag with the SetScrollInfo function, you must set the nMin and nMax fields to the
desired scroll bar range. When you use the SIF_RANGE flag with the GetScrollInfo function, the nMin and nMax
fields will be set to the current range on return from the function.

The SIF_POS flag is similar. When used with the SetScrollInfo function, you must set the nPos field of the
structure to the desired position. You use the SIF_POS flag with GetScrollInfo to obtain the current position.

The SIF_PAGE flag lets you set and obtain the page size. You set nPage to the desired page size with the
SetScrollInfo function. GetScrollInfo with the SIF_PAGE flag lets you obtain the current page size. Don't use this
flag if you don't want a proportional scroll bar thumb.

You use the SIF_TRACKPOS flag only with GetScrollInfo while processing a WM_VSCROLL or WM_HSCROLL
message with a notification code of SB_THUMBTRACK or SB_THUMBPOSITION. On return from the function, the
nTrackPos field of the SCROLLINFO structure will indicate the current 32-bit thumb position.

You use the SIF_DISABLENOSCROLL flag only with the SetScrollInfo function. If this flag is specified and the new
scroll bar arguments would normally render the scroll bar invisible, this scroll renders the scroll bar disabled
instead. (I'll explain this more shortly.)

The SIF_ALL flag is a combination of SIF_RANGE, SIF_POS, SIF_PAGE, and SIF_TRACKPOS. This is handy when

setting the scroll bar arguments during a WM_SIZE message. (The SIF_TRACKPOS flag is ignored when specified
in a SetScrollInfo function.) It's also handy when processing a scroll bar message.

How Low Can You Scroll?

In SYSMETS2, the scrolling range is set to a minimum of 0 and a maximum of NUMLINES - 1. When the scroll bar
position is 0, the first line of information is at the top of the client area; when the scroll bar position is NUMLINES -
1, the last line is at the top of the client area and no other lines are visible.

You could say that SYSMETS2 scrolls too far. It really only needs to scroll far enough so that the last line of
information appears at the bottom of the client area rather than at the top. We could make some changes to
SYSMETS2 to accomplish this. Rather than set the scroll bar range when we process the WM_CREATE message,
we could wait until we receive the WM_SIZE message:

iVscrollMax = max (0, NUMLINES - cyClient / cyChar) ;
SetScrollRange (hwnd, SB_VERT, 0, iVscrollMax, TRUE) ;

Suppose NUMLINES equals 75, and suppose for a particular window size that cyClient divided by cyChar equals
50. In other words, we have 75 lines of information but only 50 can fit in the client area at any time. Using the
two lines of code shown above, the range is set to a minimum of 0 and a maximum of 25. When the scroll bar
position equals 0, the program displays lines 0 through 49. When the scroll bar position equals 1, the program
displays lines 1 through 50; and when the scroll bar position equals 25 (the maximum), the program displays lines
25 through 74. Obviously we'd have to make changes to other parts of the program, but this is entirely doable.

One nice feature of the new scroll bar functions is that when you use a scroll bar page size, much of this logic is
done for you. Using the SCROLLINFO structure and SetScrollInfo , you'd have code that looked something like
this:

si.cbSize = sizeof (SCROLLINFO) ;
si.cbMask = SIF_RANGE | SIF_PAGE ;
si.nMin = 0 ;
si.nMax = NUMLINES - 1 ;
si.nPage = cyClient / cyChar ;
SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;

When you do this, Windows limits the maximum scroll bar position not to si.nMax but to si.nMax - si.nPage + 1.
Let's make the same assumptions as earlier: NUMLINES equals 75 (so si.nMax equals 74), and si.nPage equals
50. This means that the maximum scroll bar position is limited to 74 - 50 + 1, or 25. This is exactly what we want.

What happens when the page size is as large as the scroll bar range? That is, in this example, what if nPage is 75
or above? Windows conveniently hides the scroll bar because it's no longer needed. If you don't want the scroll bar
to be hidden, use SIF_DISABLENOSCROLL when calling SetScrollInfo and Windows will merely disable the scroll
bar rather than hide it.

The New SYSMETS

SYSMETS3—our final version of the SYSMETS program in this chapter—is shown in Figure 4-11. This version uses
the SetScrollInfo and GetScrollInfo functions, adds a horizontal scroll bar for left and right scrolling, and repaints
the client area more efficiently.

Figure 4-11. The SYSMETS3 program.

SYSMETS3.C

/*--
 SYSMETS3.C -- System Metrics Display Program No. 3
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "sysmets.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SysMets3") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Get System Metrics No. 3"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL | WS_HSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar, cxClient, cyClient, iMaxWidth ;
 HDC hdc ;
 int i, x, y, iVertPos, iHorzPos, iPaintBeg, iPaintEnd ;
 PAINTSTRUCT ps ;
 SCROLLINFO si ;
 TCHAR szBuffer[10] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;

 // Save the width of the three columns

 iMaxWidth = 40 * cxChar + 22 * cxCaps ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 // Set vertical scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = NUMLINES - 1 ;
 si.nPage = cyClient / cyChar ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;

 // Set horizontal scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = 2 + iMaxWidth / cxChar ;
 si.nPage = cxClient / cxChar ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 return 0 ;

 case WM_VSCROLL:

 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // Save the position for comparison later on

 iVertPos = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_TOP:
 si.nPos = si.nMin ;
 break ;

 case SB_BOTTOM:
 si.nPos = si.nMax ;
 break ;

 case SB_LINEUP:
 si.nPos -= 1 ;
 break ;

 case SB_LINEDOWN:
 si.nPos += 1 ;
 break ;

 case SB_PAGEUP:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGEDOWN:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBTRACK:
 si.nPos = si.nTrackPos ;
 break ;

 default:
 break ;
 }
 // Set the position and then retrieve it. Due to adjustments
 // by Windows it may not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // If the position has changed, scroll the window and update it

 if (si.nPos != iVertPos)

 {
 ScrollWindow (hwnd, 0, cyChar * (iVertPos - si.nPos),
 NULL, NULL) ;
 UpdateWindow (hwnd) ;
 }
 return 0 ;

 case WM_HSCROLL:
 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;

 // Save the position for comparison later on

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_LINELEFT:
 si.nPos -= 1 ;
 break ;

 case SB_LINERIGHT:
 si.nPos += 1 ;
 break ;

 case SB_PAGELEFT:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGERIGHT:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBPOSITION:
 si.nPos = si.nTrackPos ;
 break ;

 default :
 break ;
 }
 // Set the position and then retrieve it. Due to adjustments
 // by Windows it may not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 // If the position has changed, scroll the window

 if (si.nPos != iHorzPos)

 {
 ScrollWindow (hwnd, cxChar * (iHorzPos - si.nPos), 0,
 NULL, NULL) ;
 }
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 // Get vertical scroll bar position

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_POS ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;
 iVertPos = si.nPos ;

 // Get horizontal scroll bar position
 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 // Find painting limits

 iPaintBeg = max (0, iVertPos + ps.rcPaint.top / cyChar) ;
 iPaintEnd = min (NUMLINES - 1,
 iVertPos + ps.rcPaint.bottom / cyChar) ;

 for (i = iPaintBeg ; i <= iPaintEnd ; i++)
 {
 x = cxChar * (1 - iHorzPos) ;
 y = cyChar * (i - iVertPos) ;

 TextOut (hdc, x, y,
 sysmetrics[i].szLabel,
 lstrlen (sysmetrics[i].szLabel)) ;

 TextOut (hdc, x + 22 * cxCaps, y,
 sysmetrics[i].szDesc,
 lstrlen (sysmetrics[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;

 TextOut (hdc, x + 22 * cxCaps + 40 * cxChar, y, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetSystemMetrics (sysmetrics[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;

 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This version of the program relies on Windows to maintain the scroll bar information and do a lot of the bounds
checking. At the beginning of WM_VSCROLL and WM_HSCROLL processing, it obtains all the scroll bar information,
adjusts the position based on the notification code, and then sets the position by calling SetScrollInfo . The
program then calls GetScrollInfo . If the position was out of range in the SetScrollInfo call, the position is
corrected by Windows and the correct value is returned in the GetScrollInfo call.

SYSMETS3 uses the ScrollWindow function to scroll information in the window's client area rather than repaint it.
Although the function is rather complex (and has been superseded in recent versions of Windows by the even
more complex ScrollWindowEx), SYSMETS3 uses it in a fairly simple way. The second argument to the function
gives an amount to scroll the client area horizontally in pixels, and the third argument is an amount to scroll the
client area vertically.

The last two arguments to ScrollWindow are set to NULL. This indicates that the entire client area is to be scrolled.
Windows automatically invalidates the rectangle in the client area "uncovered" by the scrolling operation. This
generates a WM_PAINT message. InvalidateRect is no longer needed. Note that ScrollWindow is not a GDI
function because it does not require a handle to a device context. It is one of the few non-GDI Windows functions
that changes the appearance of the client area of a window. Rather peculiarly but conveniently, it is documented
along with the scroll bar functions.

The WM_HSCROLL processing traps the SB_THUMBPOSITION notification code and ignores SB_THUMBTRACK.
Thus, if the user drags the thumb on the horizontal scroll bar, the program will not scroll the contents of the
window horizontally until the user releases the mouse button.

The WM_VSCROLL strategy is different: here, the program traps SB_THUMBTRACK messages and ignores
SB_THUMBPOSITION. Thus, the program scrolls its contents vertically in direct response to the user dragging the
thumb on the vertical scroll bar. This is considered preferable, but watch out: It is well known that when users find
out a program scrolls in direct response to dragging the scroll bar thumb, they will frenetically jerk the thumb back
and forth trying to bring the program to its knees. Fortunately, today's fast PCs are much more likely to survive
this torture test. But try your code out on a slow machine, and perhaps think about using the SB_SLOWMACHINE
argument to GetSystemMetrics for alternative processing for slow machines.

One way to speed up WM_PAINT processing is illustrated by SYSMETS3: The WM_PAINT code determines which
lines are within the invalid rectangle and rewrites only those lines. The code is more complex, of course, but it is
faster.

But I Don't Like to Use the Mouse

In the early days of Windows, a significant number of users didn't care for using the mouse, and indeed, Windows
itself (and many Windows programs) did not require a mouse. Although mouseless PCs have now generally gone
the way of monochrome displays and dot-matrix printers, it is still recommended that you write programs that
duplicate mouse operations with the keyboard. This is particularly true for something as fundamental as scroll
bars, because our keyboards have a whole array of cursor movement keys that should offer alternatives to the
mouse.

In the next chapter, you'll learn how to use the keyboard and how to add a keyboard interface to this program.
You'll notice that SYSMETS3 seems to process WM_VSCROLL messages when the notification code equals SB_TOP
and SB_BOTTOM. I mentioned earlier that a window procedure doesn't receive these messages for scroll bars, so
right now this is superfluous code. When we come back to this program in the next chapter, you'll see the reason
for including those operations.

Chapter 5

Basic Drawing

The subsystem of Microsoft Windows responsible for displaying graphics on video displays and printers is known as
the Graphics Device Interface (GDI). As you might imagine, GDI is an extremely important part of Windows. Not
only do the applications you write for Windows use GDI for the display of visual information, but Windows itself
uses GDI for the visual display of user interface items such as menus, scroll bars, icons, and mouse cursors.

Unfortunately, a comprehensive discussion of GDI would require an entire book, and this is not that book. Instead,
in this chapter I want to provide you with the basics of drawing lines and filled areas. This is enough GDI to get
you through the next few chapters. In later chapters, we'll look at GDI support of bitmaps, metafiles, and
formatted text.

The Structure of GDI

From the programmer's perspective, GDI consists of several hundred function calls and some associated data
types, macros, and structures. But before we begin looking at some of these functions in detail, let's step back and
get a feel for the overall structure of GDI.

The GDI Philosophy

Graphics in Windows 98 and Microsoft Windows NT is handled primarily by functions exported from the dynamic-
link library GDI32.DLL. In Windows 98, this GDI32.DLL makes use of the 16-bit GDI.EXE dynamic-link library for
the actual implementation of many of the functions. In Windows NT, GDI.EXE is used only for 16-bit programs.

These dynamic-link libraries call routines in device drivers for the video display and any printers you may have set
up. The video driver accesses the hardware of the video display, and the printer driver converts GDI commands
into codes or commands that the various printers understand. Obviously, different video display adapters and
printers require different device drivers.

A wide variety of display devices can be attached to PC compatibles. One of the primary goals of GDI is to support
device-independent graphics. Windows programs should be able to run without problems on any graphics output
device that Windows supports. GDI accomplishes this goal by providing facilities to insulate your programs from
the particular characteristics of different output devices.

The world of graphics output devices is divided into two broad groups: raster devices and vector devices. Most PC
output devices are raster devices, which means that they represent images as a rectangular pattern of dots. This
category includes video display adapters, dot-matrix printers, and laser printers. Vector devices, which draw
images using lines, are generally limited these days to plotters.

Much of traditional computer graphics programming (the type you'll find in older books) is based solely on vectors.
This means that a program using a vector graphics system is a level of abstraction away from the hardware. The
output device uses pixels for a graphics representation, but the program doesn't talk to the interface in terms of
pixels. While you can certainly use the Windows GDI as a high-level vector drawing system, you can also use it for
relatively low-level pixel manipulation.

In this respect, Windows GDI is to traditional graphics interface languages what C is to other programming
languages. C is well known for its high degree of portability among different operating systems and environments.
Yet C is also well known for allowing a programmer to perform low-level system functions that are often
impossible in other high-level languages. Just as C is sometimes thought of as a "high-level assembly language,"
you can think of GDI as a high-level interface to the hardware of the graphics device.

As you've seen, by default Windows uses a coordinate system based on pixels. Most traditional graphics languages
use a "virtual" coordinate system with horizontal and vertical axes that range (for instance) from 0 to 32,767.
Although some graphics languages don't let you use pixel coordinates, Windows GDI lets you use either system
(as well as additional coordinate systems based on physical measurements). You can use a virtual coordinate
system and keep your program distanced from the hardware, or you can use the device coordinate system and
snuggle right up to the hardware.

Some programmers think that when you're working in terms of pixels, you've abandoned device independence.
We've already seen in the last chapter that this is not necessarily the case. The trick is to use the pixels in a
device-independent manner. This requires that the graphics interface language provide facilities for a program to
determine the hardware characteristics of the device and make appropriate adjustments. For example, in the
SYSMETS programs we used the pixel size of a standard system font character to space text on the screen. This
approach allowed the programs to adjust to different display adapters with different resolutions, text sizes, and
aspect ratios. You'll see other methods in this chapter for determining display sizes.

In the early days, many users ran Windows with a monochrome display. Even in more recent years, laptop users
were restricted to gray shades. For this reason, GDI was constructed so that you can write a program without
worrying much about color—that is, Windows can convert colors to gray shades. Even today, video displays used
with Windows 98 have different color capabilities (16 color, 256 color, "high color," and "true color"). Although
ink-jet printers have brought low-cost hard-copy color to the masses, many users still prefer their black-only laser
printers for high-quality output. It is possible to use these devices blindly, but your program can also determine
how many colors are available on the particular display device and take best advantage of the hardware.

Of course, just as you can write C programs that have subtle portability problems when they run on other
computers, you can also inadvertently let device dependencies creep into your Windows programs. That's part of

the price of not being fully insulated from the hardware. You should also be aware of the limitations of Windows
GDI. Although you can certainly move graphics objects around the display, GDI is generally a static display system
with only limited animation support. If you need to write sophisticated animations for games, you should explore
Microsoft DirectX, which provides the support you'll need.

The GDI Function Calls

The several hundred function calls that comprise GDI can be classified in several broad groups:

Functions that get (or create) and release (or destroy) a device context As we saw in earlier chapters, you
need a handle to a device context in order to draw. The BeginPaint and EndPaint functions (although
technically a part of the USER module rather than the GDI module) let you do this during the WM_PAINT
message, and GetDC and ReleaseDC functions let you do this during other messages. We'll examine some
other functions regarding device contexts shortly.

Functions that obtain information about the device context In the SYSMETS programs in Chapter 4, we used
the GetTextMetrics function to obtain information about the dimensions of the font currently selected in the
device context. Later in this chapter, we'll look at the DEVCAPS1 program, which obtains other, more
general, device context information.

Functions that draw something Obviously, once all the preliminaries are out of the way, this is the really
important stuff. In the last chapter, we used the TextOut function to display some text in the client area of
the window. As we'll see, other GDI functions let us draw lines and filled areas. In Chapters 14 and 15, we'll
also see how to draw bit-mapped images.

Functions that set and get attributes of the device context An "attribute" of the device context determines
various details regarding how the drawing functions work. For example, you can use SetTextColor to specify
the color of any text you draw using TextOut or other text output functions. In the SYSMETS programs in
Chapter 4, we used SetTextAlign to tell GDI that the starting position of the text string in the TextOut
function should be the right side of the string rather than the left, which is the default. All attributes of the
device context have default values that are set when the device context is obtained. For all Set functions,
there are Get functions that let you obtain the current device context attributes.

Functions that work with GDI "objects" Here's where GDI gets a bit messy. First an example: By default,
any lines you draw using GDI are solid and of a standard width. You may wish to draw thicker lines or use
lines composed of a series of dots or dashes. The line width and this line style are not attributes of the
device context. Instead, they are characteristics of a "logical pen." You can think of a pen as a collection of
bundled attributes. You create a logical pen by specifying these characteristics in the CreatePen,
CreatePenIndirect, or ExtCreatePen function. Although these functions are considered to be part of GDI,
unlike most GDI functions they do not require a handle to a device context. The functions return a handle to
a logical pen. To use this pen, you "select" the pen handle into the device context. The current pen selected
in the device context is considered an attribute of the device context. From then on, whatever lines you
draw use this pen. Later on, you deselect the pen object from the device context and destroy the object.
Destroying the pen is necessary because the pen definition occupies allocated memory space. Besides pens,
you also use GDI objects for creating brushes that fill enclosed areas, for fonts, for bitmaps, and for other
aspects of GDI.

The GDI Primitives

The types of graphics you display on the screen or the printer can themselves be divided into several categories,
which are called "primitives." These are:

Lines and curves Lines are the foundation of any vector graphics drawing system. GDI supports straight
lines, rectangles, ellipses (including that subset of ellipses known as circles), "arcs" that are partial curves
on the circumference of an ellipse, and Bezier splines, all of which I'll discuss in this chapter. If you need to
draw a different type of curve, you can draw it as a polyline, which is a series of very short lines that define
a curve. GDI draws lines using the current pen selected in the device context.

Filled areas Whenever a series of lines or curves encloses an area, you can cause that area to be filled with
the current GDI brush object. This brush can be a solid color, a pattern (which can be a series of horizontal,
vertical, or diagonal hatch marks), or a bitmapped image that is repeated vertically or horizontally within

the area.

Bitmaps A bitmap is a rectangular array of bits that correspond to the pixels of a display device. The bitmap
is the fundamental tool of raster graphics. Bitmaps are generally used for displaying complex (often real-
world) images on the video display or printer. Bitmaps are also used for displaying small images that must
be drawn very quickly, such as icons, mouse cursors, and buttons that appear in application toolbars. GDI
supports two types of bitmaps—the old (although still quite useful) "device-dependent" bitmap, which is a
GDI object, and the newer (as of Windows 3.0) "device-independent" bitmap (or DIB), which can be stored
in disk files. I'll discuss bitmaps in Chapters 14 and 15.

Text Text is not quite as mathematical as other aspects of computer graphics; instead it is bound to
hundreds of years of traditional typography, which many typographers and other observers appreciate as an
art. For this reason, text is often the most complex part of any computer graphics system, but it is also
(assuming literacy remains the norm) the most important. Data structures used for defining GDI font
objects and for obtaining font information are among the largest in Windows. Beginning with Windows 3.1,
GDI began supporting TrueType fonts, which are based on filled outlines that can be manipulated with other
GDI functions. Windows 98 continues to support the older bitmap-based fonts for compatibility and small
memory requirements. I'll discuss fonts in Chapter 17.

Other Stuff

Other aspects of GDI are not so easily classifiable. These are:

Mapping modes and transforms Although by default you draw in units of pixels, you are not limited to doing
that. The GDI mapping modes allow you to draw in units of inches (or rather, fractions of inches),
millimeters, or anything you want. In addition, Windows NT supports a traditional "world transform"
expressed as a 3-by-3 matrix. This allows for skewing and rotation of graphics objects. The world transform
is not supported under Windows 98.

Metafiles A metafile is a collection of GDI commands stored in a binary form. Metafiles are used primarily to
transfer representations of vector graphic drawings through the clipboard. I'll discuss metafiles in Chapter
18.

Regions A region is a complex area of any shape and is generally defined as a Boolean combination of
simpler regions. More complex regions can be stored internally in GDI as a series of scan lines derived from
the original definition of the region. You can use regions for outlining, filling, and clipping.

Paths A path is a collection of straight lines and curves stored internally in GDI. Paths can be used for
drawing, filling, and clipping. Paths can also be converted to regions.

Clipping Drawing can be restricted to a particular section of the client area. This is known as clipping. The
clipping area can be rectangular or nonrectangular, generally specified as a region or a path.

Palettes The use of a customized palette is generally restricted to displays that show 256 colors. Windows
reserves only 20 of these colors for use by the system. You can alter the other 236 colors to accurately
display the colors of real-world images stored in bitmaps. I'll discuss palettes in Chapter 16.

Printing Although this chapter is restricted to the video display, almost everything you learn here can be
applied to printing. I discuss printing in Chapter 13.

The Device Context

Before we begin drawing, let's examine the device context with more rigor than we did in Chapter 4 .

When you want to draw on a graphics output device such as the screen or printer, you must first obtain a handle
to a device context (or DC). In giving your program this handle, Windows is giving you permission to use the
device. You then include the handle as an argument to the GDI functions to identify to Windows the device on
which you wish to draw.

The device context contains many "attributes" that determine how the GDI functions work on the device. These
attributes allow GDI functions to have just a few arguments, such as starting coordinates. The GDI functions do
not need arguments for everything else that Windows needs to display the object on the device. For example,
when you call TextOut , you need specify in the function only the device context handle, the starting coordinates,
the text, and the length of the text. You don't need to specify the font, the color of the text, the color of the
background behind the text, or the intercharacter spacing. These are all attributes that are part of the device
context. When you want to change one of these attributes, you call a function that does so. Subsequent TextOut
calls to that device context use the new attribute.

Getting a Device Context Handle

Windows provides several methods for obtaining a device context handle. If you obtain a video display device
context handle while processing a message, you should release it before exiting the window procedure. After you
release the handle, it is no longer valid. For a printer device context handle, the rules are not as strict. Again, we'll
look at printing in Chapter 13 .

The most common method for obtaining a device context handle and then releasing it involves using the
BeginPaint and EndPaint calls when processing the WM_PAINT message:

hdc = BeginPaint (hwnd, &ps) ;
[other program lines]
EndPaint (hwnd, &ps) ;

The variable ps is a structure of type PAINTSTRUCT. The hdc field of this structure is the same handle to the
device context that BeginPaint returns. The PAINSTRUCT structure also contains a RECT (rectangle) structure
named rcPaint that defines a rectangle encompassing the invalid region of the window's client area. With the
device context handle obtained from BeginPaint you can draw only within this region. The BeginPaint call also
validates this region.

Windows programs can also obtain a handle to a device context while processing messages other than WM_PAINT:

hdc = GetDC (hwnd) ;
[other program lines]
ReleaseDC (hwnd, hdc) ;

This device context applies to the client area of the window whose handle is hwnd . The primary difference
between the use of these calls and the use of the BeginPaint and EndPaint combination is that you can draw on
your entire client area with the handle returned from GetDC . However, GetDC and ReleaseDC don't validate any
possibly invalid regions of the client area.

A Windows program can also obtain a handle to a device context that applies to the entire window and not only to
the window's client area:

hdc = GetWindowDC (hwnd) ;

[other program lines]
ReleaseDC (hwnd, hdc) ;

This device context includes the window title bar, menu, scroll bars, and frame in addition to the client area.
Applications programs rarely use the GetWindowDC function. If you want to experiment with it, you should also
trap the WM_NCPAINT ("nonclient paint") message, which is the message Windows uses to draw on the nonclient
areas of the window.

The BeginPaint , GetDC , and GetWindowDC calls obtain a device context associated with a particular window on
the video display. A much more general function for obtaining a handle to a device context is CreateDC :

hdc = CreateDC (pszDriver, pszDevice, pszOutput, pData) ;
[other program lines]
DeleteDC (hdc) ;

For example, you can obtain a device context handle for the entire display by calling

hdc = CreateDC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;

Writing outside your window is generally impolite, but it's convenient for some unusual applications. (Although this
fact is not documented, you can also retrieve a device context for the entire screen by calling GetDC with a NULL
argument.) In Chapter 13 , we'll use the CreateDC function to obtain a handle to a printer device context.

Sometimes you need only to obtain some information about a device context and not do any drawing. In these
cases, you can obtain a handle to an "information context" by using CreateIC . The arguments are the same as for
the CreateDC function. For example,

hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;

You can't write to the device by using this information context handle.

When working with bitmaps, it can sometimes be useful to obtain a "memory device context":

hdcMem = CreateCompatibleDC (hdc) ;
[other program lines]
DeleteDC (hdcMem) ;

You can select a bitmap into the memory device context and use GDI functions to draw on the bitmap. I'll discuss
these techniques in Chapter 14 .

I mentioned earlier that a metafile is a collection of GDI function calls encoded in binary form. You can create a
metafile by obtaining a metafile device context:

hdcMeta = CreateMetaFile (pszFilename) ;
[other program lines]
hmf = CloseMetaFile (hdcMeta) ;

During the time the metafile device context is valid, any GDI calls you make using hdcMeta are not displayed but
become part of the metafile. When you call CloseMetaFile , the device context handle becomes invalid. The
function returns a handle to the metafile (hmf). I'll discuss metafiles in Chapter 18 .

Getting Device Context Information

A device context usually refers to a physical display device such as a video display or a printer. Often, you need to
obtain information about this device, including the size of the display, in terms of both pixels and physical
dimensions, and its color capabilities. You can get this information by calling the GetDeviceCap ("get device
capabilities") function:

iValue = GetDeviceCaps (hdc, iIndex) ;

The iIndex argument is one of 29 identifiers defined in the WINGDI.H header file. For example, the iIndex value of
HORZRES causes GetDeviceCaps to return the width of the device in pixels; a VERTRES argument returns the
height of the device in pixels. If hdc is a handle to a screen device context, that's the same information you can
get from GetSystemMetrics . If hdc is a handle to a printer device context, GetDeviceCaps returns the height and
width of the printer display area in pixels.

You can also use GetDeviceCaps to determine the device's capabilities of processing various types of graphics.
This is usually not important for dealing with the video display, but it becomes more important with working with
printers. For example, most pen plotters can't draw bitmapped images and GetDeviceCaps can tell you that.

The DEVCAPS1 Program

The DEVCAPS1 program, shown in Figure 5-1, displays some (but not all) of the information available from the
GetDeviceCaps function using a device context for the video display. In Chapter 13 , I'll present a second,
expanded version of this program, called DEVCAPS2, that gets information for the printer.

Figure 5-1. The DEVCAPS1 program.

DEVCAPS1.C

/*---
 DEVCAPS1.C -- Device Capabilities Display Program No. 1
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define NUMLINES ((int) (sizeof devcaps / sizeof devcaps [0]))

struct
{
 int iIndex ;
 TCHAR * szLabel ;
 TCHAR * szDesc ;
}
devcaps [] =
{
 HORZSIZE, TEXT ("HORZSIZE"), TEXT ("Width in millimeters:"),

 VERTSIZE, TEXT ("VERTSIZE"), TEXT ("Height in millimeters:"),
 HORZRES, TEXT ("HORZRES"), TEXT ("Width in pixels:"),
 VERTRES, TEXT ("VERTRES"), TEXT ("Height in raster lines:"),
 BITSPIXEL, TEXT ("BITSPIXEL"), TEXT ("Color bits per pixel:"),
 PLANES, TEXT ("PLANES"), TEXT ("Number of color planes:"),
 NUMBRUSHES, TEXT ("NUMBRUSHES"), TEXT ("Number of device brushes:"),
 NUMPENS, TEXT ("NUMPENS"), TEXT ("Number of device pens:"),
 NUMMARKERS, TEXT ("NUMMARKERS"), TEXT ("Number of device markers:"),
 NUMFONTS, TEXT ("NUMFONTS"), TEXT ("Number of device fonts:"),
 NUMCOLORS, TEXT ("NUMCOLORS"), TEXT ("Number of device colors:"),
 PDEVICESIZE, TEXT ("PDEVICESIZE"), TEXT ("Size of device structure:"),
 ASPECTX, TEXT ("ASPECTX"), TEXT ("Relative width of pixel:"),
 ASPECTY, TEXT ("ASPECTY"), TEXT ("Relative height of pixel:"),
 ASPECTXY, TEXT ("ASPECTXY"), TEXT ("Relative diagonal of pixel:"),
 LOGPIXELSX, TEXT ("LOGPIXELSX"), TEXT ("Horizontal dots per inch:"),
 LOGPIXELSY, TEXT ("LOGPIXELSY"), TEXT ("Vertical dots per inch:"),
 SIZEPALETTE, TEXT ("SIZEPALETTE"), TEXT ("Number of palette entries:"),
 NUMRESERVED, TEXT ("NUMRESERVED"), TEXT ("Reserved palette entries:"),
 COLORRES, TEXT ("COLORRES"), TEXT ("Actual color resolution:")
} ;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("DevCaps1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Device Capabilities"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar ;
 TCHAR szBuffer[10] ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 for (i = 0 ; i < NUMLINES ; i++)
 {
 TextOut (hdc, 0, cyChar * i,
 devcaps[i].szLabel,
 lstrlen (devcaps[i].szLabel)) ;

 TextOut (hdc, 14 * cxCaps, cyChar * i,
 devcaps[i].szDesc,
 lstrlen (devcaps[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;
 TextOut (hdc, 14 * cxCaps + 35 * cxChar, cyChar * i, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetDeviceCaps (hdc, devcaps[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

As you can see, this program is quite similar to the SYSMETS1 program shown in Chapter 4 . To keep the code
short, I didn't include scroll bars because I knew the information would fit on one screen. The results for a 256-
color, 640-by-480 VGA are shown in Figure 5-2.

Figure 5-2. The DEVCAPS1 display for a 256-color, 640-by-480 VGA.

The Size of the Device

Suppose you want to draw a square with sides that are 1 inch in length. To do this, either you (the programmer)
or Windows (the operating system) would need to know how many pixels corresponded to 1 inch on the video
display. The GetDeviceCaps function helps you obtain information regarding the physical size of the output device,
be it the video display or printer.

Video displays and printers are two very different devices. But perhaps the least obvious difference is how the
word "resolution" is used in connection with the device. With printers, we often indicate a resolution in dots per
inch. For example, most laser printers have a resolution of 300 or 600 dots per inch. However, the resolution of a
video display is given as the total number of pixels horizontally and vertically, for example, 1024 by 768. Most
people couldn't tell you the total number of pixels their printers display horizontally and vertically on a sheet of
paper or the number of pixels per inch on their video displays.

In this book I'm going to use the word "resolution" in the strict sense of a number of pixels per metrical unit,
generally an inch. I'll use the phrase "pixel size" or "pixel dimension" to indicate the total number of pixels that
the device displays horizontally or vertically. The "metrical size" or "metrical dimension" is the size of the display
area of the device in inches or millimeters. (For a printer page, this is not the whole size of the paper but only the
printable area.) Dividing the pixel size by the metrical size gives you a resolution.

Most video displays used with Windows these days have screens that are 33 percent wider than they are high.
This represents an aspect ratio of 1.33:1 or (as it's more commonly written) 4:3. Historically, this aspect ratio
goes way back to when Thomas Edison was making movies. It remained the standard aspect ratio for motion
pictures until various types of widescreen projection started to be used beginning in 1953. Television sets also
have an aspect ratio of 4:3.

However, your Windows applications should not assume that the video display has a 4:3 aspect ratio. People who
do mostly word processing sometimes prefer a video display that resembles the height and width of a sheet of
paper. The most common alternative to a 4:3 display is a 3:4 display—essentially a standard display turned on its
side.

If the horizontal resolution of a device equals the vertical resolution, the device is said to have "square pixels."
Nowadays all video displays in common use with Windows have square pixels, but this was not always the case.
(Nor should your applications assume that the video display always has square pixels.) When Windows was first
introduced, the standard video adapter boards were the IBM Color Graphics Adapter (CGA), which had a pixel
dimension area of 640 by 200 pixels; the Enhanced Graphics Adapter (EGA), which had a pixel dimension of 640
by 350 pixels; and the Hercules Graphics Card, which had a pixel dimension of 720 by 348 pixels. All these video
boards used a display that had a 4:3 aspect ratio, but the number of pixels horizontally and vertically was not in
the ratio 4:3.

It's quite easy for a user running Windows to determine the pixel dimensions of a video display. Run the Display
applet in Control Panel, and select the Settings tab. In the area labeled Screen Area, you'll probably see one of
these pixel dimensions:

640 by 480 pixels

800 by 600 pixels

1024 by 768 pixels

1280 by 1024 pixels

1600 by 1200 pixels

All of these are in the ratio 4:3. (Well, all except the 1280 by 1024 pixel size. This should probably be considered
an annoying anomaly rather than anything more significant. As we'll see, all these pixel dimensions when
combined with a 4:3 monitor are considered to yield square pixels.)

A Windows application can obtain the pixel dimensions of the display from GetSystemMetrics with the
SM_CXSCREEN and SM_CYSCREEN arguments. As you'll note from the DEVCAPS1 program, a program can obtain
the same values from GetDeviceCaps with the HORZRES ("horizontal resolution") and VERTRES arguments. This is
a use of the word "resolution" that means the pixel size rather than the pixels per metrical unit.

That's the simple part of the device size. Now the confusion begins.

The first two device capabilities, HORZSIZE and VERTSIZE, are documented as "Width, in millimeters, of the
physical screen" and "Height, in millimeters, of the physical screen" (in /Platform SDK/Graphics and Multimedia
Services/GDI/Device Contexts/Device Context Reference/Device Context Functions/GetDeviceCaps). These seem
like straightforward definitions until one begins to think through their implications. For example, given the nature
of the interface between video display adapters and monitors, how can Windows really know the monitor size? And
what if you have a laptop (in which the video driver conceivably could know the exact physical dimensions of the
screen) and you attach an external monitor to it? And what if you attach a video projector to your PC?

In the 16-bit versions of Windows (and in Windows NT), Windows uses a "standard" display size for the HORZSIZE
and VERTSIZE values. Beginning with Windows 95, however, the HORZSIZE and VERTSIZE values are derived
from the HORZRES, VERTRES, LOGPIXELSX, and LOGPIXELSY values. Here's how it works.

When you use the Display applet of the Control Panel to select a pixel size of the display, you can also select a size
of your system font. The reason for this option is that the font used for the 640 by 480 display may be too small
to read when you go up to 1024 by 768 or beyond. Instead, you'll want a larger system font. These system font
sizes are referred to on the Settings tab of the Display applet as Small Fonts and Large Fonts.

In traditional typography, the size of the characters in a font is indicated by a "point size." A point is
approximately 1/72 inch and in computer typography is often assumed to be exactly 1/72 inch.

In theory, the point size of a font is the distance from the top of the tallest character in the font to the bottom of

descenders in characters such as j, p, q, and y, excluding accent marks. For example, in a 10-point font this
distance would be 10/72 inch. In terms of the TEXTMETRIC structure, the point size of the font is equivalent to the
tmHeight field minus the tmInternalLeading field, as shown in Figure 5-3. (This figure is the same as Figure 4-3 in
the last chapter.)

Figure 5-3. The small font and the TEXTMETRIC fields.

In real-life typography, the point size of a font is not so precisely related to the actual size of the font characters.
The designer of the font might make the actual characters a bit larger or smaller than the point size would
indicate. After all, font design is an art rather than a science.

The tmHeight field of the TEXTMETRIC structure indicates how successive lines of text should be spaced on the
screen or printer. This can also be measured in points. For example, a 12-point line spacing indicates the baselines
of successive lines of text should be 12/72 (or 1/6) inch apart. You don't want to use 10-point line spacing for a
10-point font because the successive lines of text could actually touch each other.

This book is printed with a 10-point font and 13-point line spacing. A 10-point font is considered comfortable for
reading. Anything much smaller than 10 points would be difficult to read for long periods of time.

The Windows system font—regardless of whether it is the "small font" or the "large font" and regardless of what
video pixel dimension you've selected—is assumed to be a 10-point font with a 12-point line spacing. I know this
sounds odd. Why call the system fonts "small font" and "large font" if they're both 10-point fonts?

Here's the key: When you select the small font or the large font in the Display applet of the Control Panel, you are
actually selecting an assumed video display resolution in dots per inch. When you select the small font, you are
saying that you want Windows to assume that the video display resolution is 96 dots per inch. When you select
the large font, you want Windows to assume that the video display resolution is 120 dots per inch.

Look at Figure 5-3 again. That's the small font, which is based on a display resolution of 96 dots per inch. I said
it's a 10-point font. Ten points is 10/72 inch, which if you multiply by 96 dots per inch yields a result of
(approximately) 13 pixels. That's tmHeight minus tmInternalLeading . The line spacing is 12 points, or 12/72 inch,
which multiplied by 96 dots per inch yields 16 pixels. That's tmHeight .

Figure 5-4 shows the large font. This is based on a resolution of 120 dots per inch. Again, it's a 10-point font, and
10/72 times 120 dots per inch equals 16 pixels (if you round down), which is tmHeight minus tmInternalLeading .
The 12-point line spacing is equivalent to 20 pixels, which is tmHeight . (As in Chapter 4 , let me emphasize again
that I'm showing you actual metrics so that you can understand how this works. Do not code these numbers in
your programs.)

Figure 5-4. The large font and the FONTMETRIC fields.

Within a Windows program you can use the GetDeviceCaps function to obtain the assumed resolution in dots per
inch that the user selected in the Display applet of the Control Panel. To get these values—which in theory could
be different if the video display doesn't have square pixels—you use the indices LOGPIXELSX and LOGPIXELSY.
The name LOGPIXELS stands for "logical pixels," which basically means "not the actual resolution in pixels per
inch."

The device capabilities that you obtain from GetDeviceCaps with the HORZSIZE and VERTSIZE indices are
documented (as I indicated earlier) as "Width, in millimeters, of the physical screen" and "Height, in millimeters,
of the physical screen." These should be documented as a "logical width" and a "logical height," because the
values are derived from the HORZRES, VERTRES, LOGPIXELSX, and LOGPIXELSY values. The formulas are

Horizontal Size (mm) = 25.4 × Horizontal Resolution (pixels)/ Logical Pixels X (dots per inch)

Vertical Size (mm) = 25.4 × Vertical Resolution (pixels)/ Logical Pixels Y (dots per inch)

The 25.4 constant is necessary to convert from inches to millimeters.

This may seem backward and illogical. After all, your video display has a size in millimeters that you can actually
measure with a ruler (at least approximately). But Windows 98 doesn't care about that size. Instead it calculates a
display size in millimeters based on the pixel size of the display the user selects and also the resolution the user
selects for sizing the system font. Change the pixel size of your display and according to GetDeviceCaps the
metrical size changes. How much sense does that make?

It makes more sense than you might suspect. Let's suppose you have a 17-inch monitor. The actual display size
will probably be about 12 inches by 9 inches. Suppose you were running Windows with the minimum required
pixel dimensions of 640 by 480. This means that the actual resolution is 53 dots per inch. A 10-point
font—perfectly readable on paper—on the screen would be only 7 pixels in height from the top of the A to the
bottom of the q. Such a font would be ugly and just about unreadable. (Ask people who ran Windows on the old
Color Graphics Adapter.)

Now hook up a video projector to your PC. Let's say the projected video display is a 4 feet wide and 3 feet high.
That same 640 by 480 pixel dimension now implies a resolution of about 13 dots per inch. It would be ridiculous
to try displaying a 10-point font under such conditions.

A 10-point font should be readable on the video display because it is surely readable when printed. The 10-point
font thus becomes an important frame of reference. When a Windows application is guaranteed that a 10-point
screen font is of average size, it can then display smaller (but still readable) text using an 8-point font and larger
text using fonts of point sizes greater than 10. Thus, it makes sense that the video resolution (in dots per inch) be
implied by the pixel size of that 10-point font.

In Windows NT, however, an older approach is used in defining the HORZSIZE and VERTSIZE values. This
approach is consistent with 16-bit versions of Windows. The HORZRES and VERTRES values still indicate the
number of pixels horizontally and vertically (of course), and LOGPIXELSX and LOGPIXELSY are still related to the

font that you choose when setting the video resolution in the Display applet of the Control Panel. As with Windows
98, typical values of LOGPIXELSX and LOGPIXELSY are 96 and 120 dots per inch, depending on whether you
select a small font or large font.

The difference in Windows NT is that the HORZSIZE and VERTSIZE values are fixed to indicate a standard monitor
size. For common adapters, the values of HORZSIZE and VERTSIZE you'll obtain are 320 and 240 millimeters,
respectively. These values are the same regardless of what pixel dimension you choose. Therefore, these values
are inconsistent with the values you obtain from GetDeviceCaps with the HORZRES, VERTRES, LOGPIXELSX, and
LOGPIXELSY indices. However, you can always calculate HORZSIZE and VERTSIZE values like those you'd obtain
under Windows 98 by using the formulas shown earlier.

What if your program needs the actual physical dimensions of the video display? Probably the best solution is to
actually request them of the user with a dialog box.

Finally, three other values from GetDeviceCaps are related to the video dimensions. The ASPECTX, ASPECTY, and
ASPECTXY values are the relative width, height, and diagonal size of each pixel, rounded to the nearest integer.
For square pixels, the ASPECTX and ASPECTY values will be the same. Regardless, the ASPECTXY value equals the
square root of the sum of the squares of the ASPECTX and ASPECTY values, as you'll recall from Pythagoras.

Finding Out About Color

A video display capable of displaying only black pixels and white pixels requires only one bit of memory per pixel.
Color displays require multiple bits per pixels. The more bits, the more colors; or more specifically, the number of
unique simultaneous colors is equal to 2 to the number of bits per pixel.

A "full color" video display resolution has 24 bits per pixel—8 bits for red, 8 bits for green, and 8 bits for blue. Red,
green, and blue are known as the "additive primaries." Mixes of these three primary colors can create many other
colors, as you can verify by peering at your color video display through a magnifying glass.

A "high color" display resolution has 16 bits per pixel, generally 5 bits for red, 6 bits for green, and 5 bits for blue.
More bits are used for the green primary because the human eye is more sensitive to variations in green than to
the other two primaries.

A video adapter that displays 256 colors requires 8 bits per pixel. However, these 8-bit values are generally
indices into a palette table that defines the actual colors. I'll discuss this more in Chapter 16 .

Finally, a video board that displays 16 colors requires 4 bits per pixel. These 16 colors are generally fixed as dark
and light versions of red, green, blue, cyan, magenta, yellow, two shades of gray, black, and white. These 16
colors date back to the old IBM CGA.

Only in some odd programming jobs is it necessary to know how memory is organized on the video adapter board,
but GetDeviceCaps will help you determine that. Video memory can be organized either with consecutive color bits
for each pixel or with each color bit in a separate plane of memory. This call returns the number of color planes:

iPlanes = GetDeviceCaps (hdc, PLANES) ;

and this call returns the number of color bits per pixel:

iBitsPixel = GetDeviceCaps (hdc, BITSPIXEL) ;

One of these calls will return a value of 1. The number of colors that can be simultaneously rendered on the video
adapter can be calculated by the formula

iColors = 1 << (iPlanes * iBitsPixel) ;

This value may or may not be the same as the number of colors obtainable with the NUMCOLORS argument:

iColors = GetDeviceCaps (hdc, NUMCOLORS) ;

I mentioned that 256-color video adapters use color palettes. In that case, GetDeviceCaps with the NUMCOLORS
index returns the number of colors reserved by Windows, which will be 20. The remaining 236 colors can be set by
a Windows program using the palette manager. For high-color and full-color display resolutions, GetDeviceCaps
with the NUMCOLORS index often returns -1, making it a generally unreliable function for determining this
information. Instead, use the iColors formula shown earlier that uses the PLANES and BITSPIXEL values.

In most GDI function calls, you use a COLORREF value (which is simply a 32-bit unsigned long integer) to refer to
a particular color. The COLORREF value specifies a color in terms of red, green, and blue intensities and is often
called an "RGB color." The 32 bits of the COLORREF value are set as shown in Figure 5-5.

Figure 5-5. The 32-bit COLORREF value.

Notice that the most-significant 8 bits are zero, and that each primary is specified as an 8-bit value. In theory, a
COLORREF value can refer to 224 or about 16 million colors.

The Windows header file WINGDI.H provides several macros for working with RGB color values. The RGB macro
takes three arguments representing red, green, and blue values and combines them into an unsigned long:

#define RGB(r,g,b) ((COLORREF)(((BYTE)(r) | \
 ((WORD)((BYTE)(g)) << 8)) | \
 (((DWORD)(BYTE)(b)) << 16)))

Notice that the order of the three arguments is red, green, and blue. Thus, the value

RGB (255, 255, 0)

is 0x0000FFFF or yellow—the combination of red and green. When all three arguments are set to 0, the color is
black; when all the arguments are set to 255, the color is white. The GetRValue , GetGValue , and GetBValue
macros extract the primary color values from a COLORREF value. These macros are sometimes handy when you're
using a Windows function that returns RGB color values to your program.

On 16-color or 256-color video adapters, Windows can use "dithering" to simulate more colors than the device can
display. Dithering involves a small pattern that combines pixels of different colors. You can determine the closest
pure nondithered color of a particular color value by calling GetNearestColor :

crPureColor = GetNearestColor (hdc, crColor) ;

The Device Context Attributes

As I noted above, Windows uses the device context to store "attributes" that govern how the GDI functions
operate on the display. For instance, when you display some text using the TextOut function, you don't have to
specify the color of the text or the font. Windows uses the device context to obtain this information.

When a program obtains a handle to a device context, Windows sets all the attributes to default values. (However,
see the next section for how to override this behavior.) The following table shows many of the device context
attributes supported under Windows 98, along with the default values and the functions to change or obtain their
values.

Device Context Attribute
Default
Function(s) to Change
Function to Obtain
Mapping Mode
MM_TEXT
SetMapMode
GetMapMode
Window Origin
(0, 0)
SetWindowOrgEx

OffsetWindowOrgEx

GetWindowOrgEx
Viewport Origin
(0, 0)
SetViewportOrgEx

OffsetViewportOrgEx

GetViewportOrgEx
Window Extents
(1, 1)

SetWindowExtEx

SetMapMode

ScaleWindowExtEx

GetWindowExtEx
Viewport Extents
(1, 1)
SetViewportExtEx SetMapMode ScaleViewportExtEx
GetViewportExtEx
Pen
BLACK_PEN
SelectObject
SelectObject
Brush
WHITE_BRUSH
SelectObject
SelectObject
Font
SYSTEM_FONT
SelectObject
SelectObject
Bitmap
None
SelectObject
SelectObject
Current Position
(0, 0)
MoveToEx

LineTo

PolylineTo

PolyBezierTo

GetCurrentPositionEx

Background Mode
OPAQUE
SetBkMode
GetBkMode
Background Color
White
SetBkColor
GetBkColor
Text Color
Black
SetTextColor
GetTextColor
Drawing Mode
R2_COPYPEN
SetROP2
GetROP2
Stretching Mode
BLACKONWHITE
SetStretchBltMode
GetStretchBltMode
Polygon Fill Mode
ALTERNATE
SetPolyFillMode
GetPolyFillMode
Intercharacter Spacing
0
SetTextCharacterExtra
GetTextCharacterExtra
Brush Origin
(0, 0)
SetBrushOrgEx
GetBrushOrgEx
Clipping Region
None

SelectObject

SelectClipRgn

IntersectClipRgn

OffsetClipRgn

ExcludeClipRect

SelectClipPath

GetClipBox

Saving Device Contexts

Normally when you call GetDC or BeginPaint , Windows gives you a device context with default values for all the
attributes. Any changes you make to the attributes are lost when the device context is released with the
ReleaseDC or EndPaint call. If your program needs to use nondefault device context attributes, you'll have to
initialize the device context every time you obtain a new device context handle:

case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 [initialize device context attributes]
 [paint client area of window]

 EndPaint (hwnd, &ps) ;
 return 0 ;

Although this approach is generally satisfactory, you might prefer that changes you make to the attributes be
saved when you release the device context so that they will be in effect the next time you call GetDC or
BeginPaint . You can accomplish this by including the CS_OWNDC flag as part of the window class style when you
register the window class:

wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC ;

Now each window that you create based on this window class will have its own private device context that
continues to exist when the window is destroyed. When you use the CS_OWNDC style, you need to initialize the
device context attributes only once, perhaps while processing the WM_CREATE message:

case WM_CREATE:
 hdc = GetDC (hwnd) ;
 [initialize device context attributes]
 ReleaseDC (hwnd, hdc) ;

The attributes continue to be valid until you change them.

The CS_OWNDC style affects only the device contexts retrieved from GetDC and BeginPaint and not device
contexts obtained from the other functions (such as GetWindowDC). Employing CS_OWNDC was once
discouraged because it required some memory overhead; nowadays it can improve performance in some graphics-
intensive Windows NT applications. Even if you use CS_OWNDC, you should still release the device context handle
before exiting the window procedure.

In some cases you might want to change certain device context attributes, do some painting using the changed
attributes, and then revert to the original device context. To simplify this process, you save the state of a device
context by calling

idSaved = SaveDC (hdc) ;

Now you can change some attributes. When you want to return to the device context as it existed before the
SaveDC call, you use

RestoreDC (hdc, idSaved) ;

You can call SaveDC any number of times before you call RestoreDC .

Most programmers use SaveDC and RestoreDC in a different manner, however, much like PUSH and POP
instructions in assembly language. When you call SaveDC , you don't need to save the return value:

SaveDC (hdc) ;

You can then change some attributes and call SaveDC again. To restore the device context to a saved state, call

RestoreDC (hdc, -1) ;

This restores the device context to the state saved by the most recent SaveDC function.

Drawing Dots and Lines

In the first chapter, I discussed how the Windows Graphics Device Interface makes use of device drivers for the
graphics output devices attached to your computer. In theory, all that a graphics device driver needs for drawing
is a SetPixel function and a GetPixel function. Everything else could be handled with higher-level routines
implemented in the GDI module. Drawing a line, for instance, simply requires that GDI call the SetPixel routine
numerous times, adjusting the x- and y-coordinates appropriately.

In reality, you can indeed do almost any drawing you need with only SetPixel and GetPixel functions. You can also
design a neat and well-structured graphics programming system on top of these functions. The only problem is
performance. A function that is several calls away from each SetPixel function will be painfully slow. It is much
more efficient for a graphics system to do line drawing and other complex graphics operations at the level of the
device driver, which can have its own optimized code to perform the operations. Moreover, some video adapter
boards contain graphics coprocessors that allow the video hardware itself to draw the figures.

Setting Pixels

Even though the Windows GPI includes SetPixel and GetPixel functions, they are not commonly used. In this book,
the only use of the SetPixel function is in the CONNECT program in Chapter 7 , and the only use of GetPixel is in
the WHATCLR program in Chapter 8 . Still, they provide a convenient place to begin examining graphics.

The SetPixel function sets the pixel at a specified x- and y-coordinate to a particular color:

SetPixel (hdc, x, y, crColor) ;

As in any drawing function, the first argument is a handle to a device context. The second and third arguments
indicate the coordinate position. Mostly you'll obtain a device context for the client area of your window, and x and
y will be relative to the upper left corner of that client area. The final argument is of type COLORREF to specify the
color. If the color you specify in the function cannot be realized on the video display, the function sets the pixel to
the nearest pure nondithered color and returns that value from the function.

The GetPixel function returns the color of the pixel at the specified coordinate position:

crColor = GetPixel (hdc, x, y) ;

Straight Lines

Windows can draw straight lines, elliptical lines (curved lines on the circumference of an ellipse), and Bezier
splines. Windows 98 supports seven functions that draw lines:

LineTo Draws a straight line.

Polyline and PolylineTo Draw a series of connected straight lines.

PolyPolyline Draws multiple polylines.

Arc Draws elliptical lines.

PolyBezier and PolyBezierTo Draw Bezier splines.

In addition, Windows NT supports three more line-drawing functions:

ArcTo and AngleArc Draw elliptical lines.

PolyDraw Draws a series of connected straight lines and Bezier splines.

These three functions are not supported under Windows 98.

Later in this chapter I'll also be discussing some functions that draw lines but that also fill the enclosed area within
the figure they draw. These functions are

Rectangle Draws a rectangle.

Ellipse Draws an ellipse.

RoundRect Draws a rectangle with rounded corners.

Pie Draws a part of an ellipse that looks like a pie slice.

Chord Draws part of an ellipse formed by a chord.

Five attributes of the device context affect the appearance of lines that you draw using these functions: current
pen position (for LineTo , PolylineTo , PolyBezierTo , and ArcTo only), pen, background mode, background color,
and drawing mode.

To draw a straight line, you must call two functions. The first function specifies the point at which the line begins,
and the second function specifies the end point of the line:

MoveToEx (hdc, xBeg, yBeg, NULL) ;
LineTo (hdc, xEnd, yEnd) ;

MoveToEx doesn't actually draw anything; instead, it sets the attribute of the device context known as the
"current position." The LineTo function then draws a straight line from the current position to the point specified in
the LineTo function. The current position is simply a starting point for several other GDI functions. In the default
device context, the current position is initially set to the point (0, 0). If you call LineTo without first setting the
current position, it draws a line starting at the upper left corner of the client area.

A brief historical note: In the 16-bit versions of Windows, the function to set the current position was MoveTo .
This function had just three arguments—the device context handle and x- and y-coordinates. The function
returned the previous current position packed as two 16-bit values in a 32-bit unsigned long. However, in the 32-
bit versions of Windows, coordinates are 32-bit values. Because the 32-bit versions of C do not define a 64-bit
integral data type, this change meant that MoveTo could no longer indicate the previous current position in its
return value. Although the return value from MoveTo was almost never used in real-life programming, a new
function was required, and this was MoveToEx .

The last argument to MoveToEx is a pointer to a POINT structure. On return from the function, the x and y fields
of the POINT structure will indicate the previous current position. If you don't need this information (which is
almost always the case), you can simply set the last argument to NULL as in the example shown above.

And now the caveat: Although coordinate values in Windows 98 appear to be 32-bit values, only the lower 16 bits
are used. Coordinate values are effectively restricted to -32,768 to 32,767. In Windows NT, the full 32-bit values
are used.

If you ever need the current position, you can obtain it by calling

GetCurrentPositionEx (hdc, &pt) ;

where pt is a POINT structure.

The following code draws a grid in the client area of a window, spacing the lines 100 pixels apart starting from the
upper left corner. The variable hwnd is assumed to be a handle to the window, hdc is a handle to the device
context, and x and y are integers:

GetClientRect (hwnd, &rect) ;
for (x = 0 ; x < rect.right ; x+= 100)
{
 MoveToEx (hdc, x, 0, NULL) ;
 LineTo (hdc, x, rect.bottom) ;
}
for (y = 0 ; y < rect.bottom ; y += 100)
{
 MoveToEx (hdc, 0, y, NULL) ;
 LineTo (hdc, rect.right, y) ;
}

Although it seems like a nuisance to be forced to use two functions to draw a single line, the current position
comes in handy when you want to draw a series of connected lines. For instance, you might want to define an
array of 5 points (10 values) that define the outline of a rectangle:

POINT apt[5] = { 100, 100, 200, 100, 200, 200, 100, 200, 100, 100 } ;

Notice that the last point is the same as the first. Now you need only use MoveToEx for the first point and LineTo
for the successive points:

MoveToEx (hdc, apt[0].x, apt[0].y, NULL) ;

for (i = 1 ; i < 5 ; i++)
 LineTo (hdc, apt[i].x, apt[i].y) ;

Because LineTo draws from the current position up to (but not including) the point in the LineTo function, no
coordinate gets written twice by this code. While overwriting points is not a problem with a video display, it might
not look good on a plotter or with some drawing modes that I'll discuss later in this chapter.

When you have an array of points that you want connected with lines, you can draw the lines more easily using
the Polyline function. This statement draws the same rectangle as in the code shown above:

Polyline (hdc, apt, 5) ;

The last argument is the number of points. We could also have represented this value by sizeof (apt) / sizeof
(POINT) . Polyline has the same effect on drawing as an initial MoveToEx followed by multiple LineTo functions.
However, Polyline doesn't use or change the current position. PolylineTo is a little different. This function uses the
current position for the starting point and sets the current position to the end of the last line drawn. The code
below draws the same rectangle as that last shown above:

MoveToEx (hdc, apt[0].x, apt[0].y, NULL) ;

PolylineTo (hdc, apt + 1, 4) ;

Although you can use Polyline and PolylineTo to draw just a few lines, the functions are most useful when you
need to draw a complex curve. You do this by using hundreds or even thousands of very short lines. If they're
short enough and there are enough of them, together they'll look like a curve. For example, suppose you need to
draw a sine wave. The SINEWAVE program in Figure 5-6 shows how to do it.

Figure 5-6. The SINEWAVE program.

SINEWAVE.C

/*---
 SINEWAVE.C -- Sine Wave Using Polyline
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include <math.h>

#define NUM 1000
#define TWOPI (2 * 3.14159)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SineWave") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Sine Wave Using Polyline"),

 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 POINT apt [NUM] ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 MoveToEx (hdc, 0, cyClient / 2, NULL) ;
 LineTo (hdc, cxClient, cyClient / 2) ;

 for (i = 0 ; i < NUM ; i++)
 {
 apt[i].x = i * cxClient / NUM ;
 apt[i].y = (int) (cyClient / 2 * (1 - sin (TWOPI * i / NUM))) ;
 }

 Polyline (hdc, apt, NUM) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The program has an array of 1000 POINT structures. As the for loop is incremented from 0 through 999, the x
fields of the POINT structure are set to incrementally increasing values from 0 to cxClient . The program sets the y
fields of the POINT structure to sine curve values for one cycle and enlarged to fill the client area. The whole curve
is drawn using a single Polyline call. Because the Polyline function is implemented at the device driver level, it is
faster than calling LineTo 1000 times. The results are shown in Figure 5-7.

Figure 5-7. The SINEWAVE display.

The Bounding Box Functions

I next want to discuss the Arc function, which draws an elliptical curve. However, the Arc function does not make
much sense without first discussing the Ellipse function, and the Ellipse function doesn't make much sense without
first discussing the Rectangle function, and if I discuss Ellipse and Rectangle , I might as well discuss RoundRect ,
Chord , and Pie .

The problem is that the Rectangle , Ellipse , RoundRect , Chord , and Pie functions are not strictly line-drawing
functions. Yes, the functions draw lines, but they also fill an enclosed area with the current area-filling brush. This
brush is solid white by default, so it may not be obvious that these functions do more than draw lines when you
first begin experimenting with them. The functions really belong in the later section "Drawing Filled Areas ", but I'll
discuss them here regardless.

The functions I've listed above are all similar in that they are built up from a rectangular "bounding box." You
define the coordinates of a box that encloses the object—the bounding box—and Windows draws the object within
this box.

The simplest of these functions draws a rectangle:

Rectangle (hdc, xLeft, yTop, xRight, yBottom) ;

The point (xLeft , yTop) is the upper left corner of the rectangle, and (xRight , yBottom) is the lower right corner.
A figure drawn using the Rectangle function is shown in Figure 5-8. The sides of the rectangle are always parallel
to the horizontal and vertical sides of the display.

Figure 5-8. A figure drawn using the Rectangle function.

Programmers who have experience with graphics programming are often familiar with "off-by-one" errors. Some
graphics programming systems draw a figure to encompass the right and bottom coordinates, and some draw
figures up to (but not including) the right and bottom coordinates. Windows uses the latter approach, but there's
an easier way to think about it.

Consider the function call

Rectangle (hdc, 1, 1, 5, 4) ;

I mentioned above that Windows draws the figure within a "bounding box." You can think of the display as a grid
where each pixel is within a grid cell. The imaginary bounding box is drawn on the grid, and the rectangle is then
drawn within this bounding box. Here's how the figure would be drawn:

The area separating the rectangle from the top and left of the client area is 1 pixel wide.

As I mentioned earlier, Rectangle is not strictly just a line-drawing function. GDI also fills the enclosed area.
However, because by default the area is filled with white, it might not be immediately obvious that GDI is filling
the area.

Once you know how to draw a rectangle, you also know how to draw an ellipse, because it uses the same
arguments:

Ellipse (hdc, xLeft, yTop, xRight, yBottom) ;

A figure drawn using the Ellipse function is shown (with the imaginary bounding box) in Figure 5-9.

Figure 5-9. A figure drawn using the Ellipse function.

The function to draw rectangles with rounded corners uses the same bounding box as the Rectangle and Ellipse
functions but includes two more arguments:

RoundRect (hdc, xLeft, yTop, xRight, yBottom,
 xCornerEllipse, yCornerEllipse) ;

A figure drawn using this function is shown in Figure 5-10.

Figure 5-10. A figure drawn using the RoundRect function.

Windows uses a small ellipse to draw the rounded corners. The width of this ellipse is xCornerEllipse , and the
height is yCornerEllipse . Imagine Windows splitting this small ellipse into four quadrants and using one quadrant
for each of the four corners. The rounding of the corners is more pronounced for larger values of xCornerEllipse
and yCornerEllipse . If xCornerEllipse is equal to the difference between xLeft and xRight , and yCornerEllipse is
equal to the difference between yTop and yBottom , then the RoundRect function will draw an ellipse.

The rounded rectangle in Figure 5-10 was drawn using corner ellipse dimensions calculated with the formulas
below.

xCornerEllipse = (xRight - xLeft) / 4 ;
yCornerEllipse = (yBottom- yTop) / 4 ;

This is an easy approach, but the results admittedly don't look quite right because the rounding of the corners is
more pronounced along the larger rectangle dimension. To correct this problem, you'll probably want to make
xCornerEllipse equal to yCornerEllipse in real dimensions.

The Arc , Chord , and Pie functions all take identical arguments:

Arc (hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;
Chord (hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;
Pie (hdc, xLeft, yTop, xRight, yBottom, xStart, yStart, xEnd, yEnd) ;

A line drawn using the Arc function is shown in Figure 5-11; figures drawn using the Chord and Pie functions are
shown in Figures 5-12 and 5-13. Windows uses an imaginary line to connect (xStart , yStart) with the center of
the ellipse. At the point at which that line intersects the ellipse, Windows begins drawing an arc in a
counterclockwise direction around the circumference of the ellipse. Windows also uses an imaginary line to
connect (xEnd , yEnd) with the center of the ellipse. At the point at which that line intersects the ellipse, Windows
stops drawing the arc.

Figure 5-11. A line drawn using the Arc function.

Figure 5-12. A figure drawn using the Chord function.

Figure 5-13. A figure drawn using the Pie function.

For the Arc function, Windows is now finished, because the arc is an elliptical line rather than a filled area. For the
Chord function, Windows connects the endpoints of the arc. For the Pie function, Windows connects each endpoint
of the arc with the center of the ellipse. The interiors of the chord and pie-wedge figures are filled with the current
brush.

You may wonder about this use of starting and ending positions in the Arc , Chord , and Pie functions. Why not
simply specify starting and ending points on the circumference of the ellipse? Well, you can, but you would have
to figure out what those points are. Windows' method gets the job done without requiring such precision.

The LINEDEMO program shown in Figure 5-14 draws a rectangle, an ellipse, a rectangle with rounded corners, and
two lines, but not in that order. The program demonstrates that these functions that define closed areas do indeed
fill them, because the lines are hidden behind the ellipse. The results are shown in Figure 5-15.

Figure 5-14. The LINEDEMO program.

LINEDEMO.C

/*--
 LINEDEMO.C -- Line-Drawing Demonstration Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("LineDemo") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Line Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 Rectangle (hdc, cxClient / 8, cyClient / 8,
 7 * cxClient / 8, 7 * cyClient / 8) ;

 MoveToEx (hdc, 0, 0, NULL) ;
 LineTo (hdc, cxClient, cyClient) ;

 MoveToEx (hdc, 0, cyClient, NULL) ;
 LineTo (hdc, cxClient, 0) ;

 Ellipse (hdc, cxClient / 8, cyClient / 8,
 7 * cxClient / 8, 7 * cyClient / 8) ;

 RoundRect (hdc, cxClient / 4, cyClient / 4,
 3 * cxClient / 4, 3 * cyClient / 4,
 cxClient / 4, cyClient / 4) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Figure 5-15. The LINEDEMO display.

Bezier Splines

The word "spline" once referred to a piece of flexible wood, rubber, or metal used to draw curves on a piece of
paper. For example, if you had some disparate graph points, and you wanted to draw a curve between them
(either for interpolation or extrapolation), you'd first mark the points on a piece of graph paper. You'd then anchor
a spline to the points and use a pencil to draw the curve along the spline as it bent around the points.

Nowadays, of course, splines are mathematical formulas. They come in many different flavors, but the Bezier
spline has become the most popular for computer graphics programming. It is a fairly recent addition to the
arsenal of graphics tools available on the operating system level, and it comes from an unlikely source: In the
1960s, the Renault automobile company was switching over from a manual design of car bodies (which involved
clay) to a computer-based design. Mathematical tools were required, and Pierre Bezier came up with a set of
formulas that proved to be useful for this job.

Since then, the two-dimensional form of the Bezier spline has shown itself to be the most useful curve (after the
straight line and ellipse) for computer graphics. In PostScript, the Bezier spline is used for all curves—even
elliptical lines are approximated from Beziers. Bezier curves are also used to define the character outlines of
PostScript fonts. (TrueType uses a simpler and faster form of spline.)

A single two-dimensional Bezier spline is defined by four points—two end points and two control points. The ends
of the curve are anchored at the two end points. The control points act as "magnets" to pull the curve away from
the straight line between the two end points. This is best illustrated by an interactive program, called BEZIER,
which is shown in Figure 5-16.

Figure 5-16. The BEZIER program.

BEZIER.C

/*---------------------------------------
 BEZIER.C -- Bezier Splines Demo
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Bezier") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Bezier Splines"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void DrawBezier (HDC hdc, POINT apt[])
{
 PolyBezier (hdc, apt, 4) ;

 MoveToEx (hdc, apt[0].x, apt[0].y, NULL) ;
 LineTo (hdc, apt[1].x, apt[1].y) ;

 MoveToEx (hdc, apt[2].x, apt[2].y, NULL) ;
 LineTo (hdc, apt[3].x, apt[3].y) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static POINT apt[4] ;
 HDC hdc ;
 int cxClient, cyClient ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 apt[0].x = cxClient / 4 ;
 apt[0].y = cyClient / 2 ;

 apt[1].x = cxClient / 2 ;
 apt[1].y = cyClient / 4 ;

 apt[2].x = cxClient / 2 ;
 apt[2].y = 3 * cyClient / 4 ;

 apt[3].x = 3 * cxClient / 4 ;
 apt[3].y = cyClient / 2 ;

 return 0 ;

 case WM_LBUTTONDOWN:
 case WM_RBUTTONDOWN:
 case WM_MOUSEMOVE:
 if (wParam & MK_LBUTTON || wParam & MK_RBUTTON)
 {
 hdc = GetDC (hwnd) ;

 SelectObject (hdc, GetStockObject (WHITE_PEN)) ;
 DrawBezier (hdc, apt) ;

 if (wParam & MK_LBUTTON)
 {
 apt[1].x = LOWORD (lParam) ;
 apt[1].y = HIWORD (lParam) ;
 }

 if (wParam & MK_RBUTTON)
 {
 apt[2].x = LOWORD (lParam) ;
 apt[2].y = HIWORD (lParam) ;
 }

 SelectObject (hdc, GetStockObject (BLACK_PEN)) ;
 DrawBezier (hdc, apt) ;
 ReleaseDC (hwnd, hdc) ;
 }
 return 0 ;

 case WM_PAINT:
 InvalidateRect (hwnd, NULL, TRUE) ;

 hdc = BeginPaint (hwnd, &ps) ;

 DrawBezier (hdc, apt) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Because this program uses some mouse processing logic that we won't learn about until Chapter 7 , I won't
discuss its inner workings (which might be obvious nonetheless). Instead, you can use the program to experiment
with manipulating Bezier splines. In this program, the two end points are set to be halfway down the client area,
and ¼ and ¾ of the way across the client area. The two control points are manipulable, the first by pressing the
left mouse button and moving the mouse, the second by pressing the right mouse button and moving the mouse.
Figure 5-17 shows a typical display.

Aside from the Bezier spline itself, the program also draws a straight line from the first control point to the first
end point (also called the begin point) at the left, and from the second control point to the end point at the right.

Bezier splines are considered to be useful for computer-assisted design work because of several characteristics.
First, with a little practice, you can usually manipulate the curve into something close to a desired shape.

Figure 5-17. The BEZIER display.

Second, the Bezier spline is very well controlled. In some splines, the curve does not pass through any of the
points that define the curve. The Bezier spline is always anchored at the two end points. (This is one of the
assumptions that is used to derive the Bezier formulas.) Also, some forms of splines have singularities where the
curve veers off into infinity. In computer-based design work, this is rarely desired. The Bezier curve never does
this; indeed, it is always bounded by a four-sided polygon (called a "convex hull") that is formed by connecting
the end points and control points.

Third, another characteristic of the Bezier spline involves the relationship between the end points and the control
points. The curve is always tangential to and in the same direction as a straight line draw from the begin point to
the first control point. (This is visually illustrated by the Bezier program.) Also, the curve is always tangential to
and in the same direction as a straight line drawn from the second control point to the end point. These are two
other assumptions used to derive the Bezier formulas.

Fourth, the Bezier spline is often aesthetically pleasing. I know this is a subjective criterion, but I'm not the only
person who thinks so.

Prior to the 32-bit versions of Windows, you'd have to create your own Bezier splines using the Polyline function.
You would also need knowledge of the following parametric equations for the Bezier spline. The begin point is (x0 ,
y0), and the end point is (x3 , y3). The two control points are (x1 , y1) and (x2 , y2). The curve is drawn for
values of t ranging from 0 to 1:

x(t) = (1 - t)3 x0 + 3t (1 - t)2 x1 + 3t2 (1 - t) x2 + t3 x3

y(t) = (1 - t)3 y0 + 3t (1 - t)2 y1 + 3t2 (1 - t) y2 + t3 y3

You don't need to know these formulas in Windows 98. To draw one or more connected Bezier splines, you simply
call

PolyBezier (hdc, apt, iCount) ;

or

PolyBezierTo (hdc, apt, iCount) ;

In both cases, apt is an array of POINT structures. With PolyBezier , the first four points indicate (in this order) the

begin point, first control point, second control point, and end point of the first Bezier curve. Each subsequent
Bezier requires only three more points because the begin point of the second Bezier curve is the same as the end
point of the first Bezier curve, and so on. The iCount argument is always one plus three times the number of
connected curves you're drawing.

The PolyBezierTo function uses the current position for the first begin point. The first and each subsequent Bezier
spline requires only three points. When the function returns, the current position is set to the last end point.

One note: when you draw a series of connected Bezier splines, the point of connection will be smooth only if the
second control point of the first Bezier, the end point of the first Bezier (which is also the begin point of the second
Bezier), and the first control point of the second Bezier are colinear; that is, they lie on the same straight line.

Using Stock Pens

When you call any of the line-drawing functions that I've discussed in this section, Windows uses the "pen"
currently selected in the device context to draw the line. The pen determines the line's color, its width, and its
style, which can be solid, dotted, or dashed. The pen in the default device context is called BLACK_PEN. This pen
draws a solid black line with a width of one pixel. BLACK_PEN is one of three "stock pens" that Windows provides.
The other two are WHITE_PEN and NULL_PEN. NULL_PEN is a pen that doesn't draw. You can also create your
own customized pens.

In your Windows programs, you refer to pens by using a handle. The Windows header file WINDEF.H defines the
type HPEN, a handle to a pen. You can define a variable (for instance, hPen) using this type definition:

HPEN hPen ;

You obtain the handle to one of the stock pens by a call to GetStockObject . For instance, suppose you want to use
the stock pen called WHITE_PEN. You get the pen handle like this:

hPen = GetStockObject (WHITE_PEN) ;

Now you must "select" that pen into the device context:

SelectObject (hdc, hPen) ;

Now the white pen is the current pen. After this call, any lines you draw will use WHITE_PEN until you select
another pen into the device context or release the device context handle.

Rather than explicitly defining an hPen variable, you can instead combine the GetStockObject and SelectObject
calls in one statement:

SelectObject (hdc, GetStockObject (WHITE_PEN)) ;

If you then want to return to using BLACK_PEN, you can get the handle to that stock object and select it into the
device context in one statement:

SelectObject (hdc, GetStockObject (BLACK_PEN)) ;

SelectObject returns the handle to the pen that had been previously selected into the device context. If you start
off with a fresh device context and call

hPen = SelectObject (hdc, GetStockobject (WHITE_PEN)) ;

the current pen in the device context will be WHITE_PEN and the variable hPen will be the handle to BLACK_PEN.
You can then select BLACK_PEN into the device context by calling

SelectObject (hdc, hPen) ;

Creating, Selecting, and Deleting Pens

Although the pens defined as stock objects are certainly convenient, you are limited to only a solid black pen, a
solid white pen, or no pen at all. If you want to get fancier than that, you must create your own pens.

Here's the general procedure: You create a "logical pen," which is merely a description of a pen, using the function
CreatePen or CreatePenIndirect . These functions return a handle to the logical pen. You select the pen into the
device context by calling SelectObject . You can then draw lines with this new pen. Only one pen can be selected
into the device context at any time. After you release the device context (or after you select another pen into the
device context) you can delete the logical pen you've created by calling DeleteObject . When you do so, the
handle to the pen is no longer valid.

A logical pen is a "GDI object," one of six GDI objects a program can create. The other five are brushes, bitmaps,
regions, fonts, and palettes. Except for palettes, all of these objects are selected into the device context using
SelectObject .

Three rules govern the use of GDI objects such as pens:

You should eventually delete all GDI objects that you create.

Don't delete GDI objects while they are selected in a valid device context.

Don't delete stock objects.

These are not unreasonable rules, but they can be a little tricky sometimes. We'll run through some examples to
get the hang of how the rules work.

The general syntax for the CreatePen function looks like this:

hPen = CreatePen (iPenStyle, iWidth, crColor) ;

The iPenStyle argument determines whether the pen draws a solid line or a line made up of dots or dashes. The
argument can be one of the following identifiers defined in WINGDI.H. Figure 5-18 shows the kind of line that each
style produces.

Figure 5-18. The seven pen styles.

For the PS_SOLID, PS_NULL, and PS_INSIDEFRAME styles, the iWidth argument is the width of the pen. An iWidth
value of 0 directs Windows to use one pixel for the pen width. The stock pens are 1 pixel wide. If you specify a
dotted or dashed pen style with a physical width greater than 1, Windows will use a solid pen instead.

The crColor argument to CreatePen is a COLORREF value specifying the color of the pen. For all the pen styles
except PS_INSIDEFRAME, when you select the pen into the device context, Windows converts the color to the
nearest pure color that the device can render. The PS_INSIDEFRAME is the only pen style that can use a dithered
color, and then only when the width is greater than 1.

The PS_INSIDEFRAME style has another peculiarity when used with functions that define a filled area. For all pen
styles except PS_INSIDEFRAME, if the pen used to draw the outline is greater than 1 pixel wide, then the pen is
centered on the border so that part of the line can be outside the bounding box. For the PS_INSIDEFRAME pen
style, the entire line is drawn inside the bounding box.

You can also create a pen by setting up a structure of type LOGPEN ("logical pen") and calling CreatePenIndirect .
If your program uses a lot of different pens that you initialize in your source code, this method is probably more
efficient.

To use CreatePenIndirect , first you define a structure of type LOGPEN:

LOGPEN logpen ;

This structure has three members: lopnStyle (an unsigned integer or UINT) is the pen style, lopnWidth (a POINT
structure) is the pen width in logical units, and lopnColor (COLORREF) is the pen color. Windows uses only the x
field of the lopnWidth structure to set the pen width; it ignores the y field.

You create the pen by passing the address of the structure to CreatePenIndirect :

hPen = CreatePenIndirect (&logpen) ;

Note that the CreatePen and CreatePenIndirect functions do not require a handle to a device context. These
functions create logical pens that have no connection with a device context until you call SelectObject . You can
use the same logical pen for several different devices, such as the screen and a printer.

Here's one method for creating, selecting, and deleting pens. Suppose your program uses three pens—a black pen
of width 1, a red pen of width 3, and a black dotted pen. You can first define static variables for storing the
handles to these pens:

static HPEN hPen1, hPen2, hPen3 ;

During processing of WM_CREATE, you can create the three pens:

hPen1 = CreatePen (PS_SOLID, 1, 0) ;
hPen2 = CreatePen (PS_SOLID, 3, RGB (255, 0, 0)) ;
hPen3 = CreatePen (PS_DOT, 0, 0) ;

During processing of WM_PAINT (or any other time you have a valid handle to a device context), you can select
one of these pens into the device context and draw with it:

SelectObject (hdc, hPen2) ;
[line-drawing functions]
SelectObject (hdc, hPen1) ;
[line-drawing functions]

During processing of WM_DESTROY, you can delete the three pens you created:

DeleteObject (hPen1) ;
DeleteObject (hPen2) ;
DeleteObject (hPen3) ;

This is the most straightforward method of creating selecting, and deleting pens, but obviously your program must
know what pens will be needed. You might instead want to create the pens during each WM_PAINT message and
delete them after you call EndPaint . (You can delete them before calling EndPaint , but you have to be careful not
to delete the pen currently selected in the device context.)

You might want to create pens on the fly and combine the CreatePen and SelectObject calls in the same
statement:

SelectObject (hdc, CreatePen (PS_DASH, 0, RGB (255, 0, 0))) ;

Now when you draw lines, you'll be using a red dashed pen. When you're finished drawing the red dashed lines,
you can delete the pen. Whoops! How can you delete the pen when you haven't saved the pen handle? Recall that
SelectObject returns the handle to the pen previously selected in the device context. This means that you can
delete the pen by selecting the stock BLACK_PEN into the device context and deleting the value returned from
SelectObject :

DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;

Here's another method. When you select a pen into a newly created device context, save the handle to the pen
that SelectObject returns:

hPen = SelectObject (hdc, CreatePen (PS_DASH, 0, RGB (255, 0, 0))) ;

What is hPen ? If this is the first SelectObject call you've made since obtaining the device context, hPen is a
handle to the BLACK_PEN stock object. You can now select that pen into the device context and delete the pen
you create (the handle returned from this second SelectObject call) in one statement:

DeleteObject (SelectObject (hdc, hPen)) ;

If you have a handle to a pen, you can obtain the values of the LOGPEN structure fields by calling GetObject :

GetObject (hPen, sizeof (LOGPEN), (LPVOID) &logpen) ;

If you need the pen handle currently selected in the device context, call

hPen = GetCurrentObject (hdc, OBJ_PEN) ;

I'll discuss another pen creation function, ExtCreatePen , in Chapter 17 .

Filling in the Gaps

The use of dotted and dashed pens raises the question: what happens to the gaps between the dots and dashes?
Well, what do you want to happen?

The coloring of the gaps depends on two attributes of the device context—the background mode and the
background color. The default background mode is OPAQUE, which means that Windows fills in the gaps with the
background color, which by default is white. This is consistent with the WHITE_BRUSH that many programs use in
the window class for erasing the background of the window.

You can change the background color that Windows uses to fill in the gaps by calling

SetBkColor (hdc, crColor) ;

As with the crColor argument used for the pen color, Windows converts this background color to a pure color. You
can obtain the current background color defined in the device context by calling GetBkColor .

You can also prevent Windows from filling in the gaps by changing the background mode to TRANSPARENT:

SetBkMode (hdc, TRANSPARENT) ;

Windows will then ignore the background color and not fill in the gaps. You can obtain the current background
mode (either TRANSPARENT or OPAQUE) by calling GetBkMode .

Drawing Modes

The appearance of lines drawn on the display is also affected by the drawing mode defined in the device context.
Imagine drawing a line that has a color based not only on the color of the pen but also on the color of the display

area where the line is drawn. Imagine a way in which you could use the same pen to draw a black line on a white
surface and a white line on a black surface without knowing what color the surface is. Could such a facility be
useful to you? It's made possible by the drawing mode.

When Windows uses a pen to draw a line, it actually performs a bitwise Boolean operation between the pixels of
the pen and the pixels of the destination display surface, where the pixels determine the color of the pen and
display surface. Performing a bitwise Boolean operation with pixels is called a "raster operation," or "ROP."
Because drawing a line involves only two pixel patterns (the pen and the destination), the Boolean operation is
called a "binary raster operation," or "ROP2." Windows defines 16 ROP2 codes that indicate how Windows
combines the pen pixels and the destination pixels. In the default device context, the drawing mode is defined as
R2_COPYPEN, meaning that Windows simply copies the pixels of the pen to the destination, which is how we
normally think about pens. There are 15 other ROP2 codes.

Where do these 16 different ROP2 codes come from? For illustrative purposes, let's assume a monochrome system
that uses 1 bit per pixel. The destination color (the color of the window's client area) can be either black (which
we'll represent by a 0 pixel) or white (represented by a 1 pixel). The pen also can be either black or white. There
are four combinations of using a black or white pen to draw on a black or white destination: a white pen on a
white destination, a white pen on a black destination, a black pen on a white destination, and a black pen on a
black destination.

What is the color of the destination after you draw with the pen? One possibility is that the line is always drawn as
black regardless of the pen color or the destination color. This drawing mode is indicated by the ROP2 code
R2_BLACK. Another possibility is that the line is drawn as black except when both the pen and destination are
black, in which case the line is drawn as white. Although this might be a little strange, Windows has a name for it.
The drawing mode is called R2_NOTMERGEPEN. Windows performs a bitwise OR operation on the destination
pixels and the pen pixels and then inverts the result.

The table below shows all 16 ROP2 drawing modes. The table indicates how the pen (P) and destination (D) colors
are combined for the result. The column labeled "Boolean Operation" uses C notation to show how the destination
pixels and pen pixels are combined.

Pen (P):

Destination (D):

1 1 0 0

1 0 1 0

Boolean Operation
Drawing Mode
Results:
0 0 0 0
0
R2_BLACK
0 0 0 1
~(P ¦ D)
R2_NOTMERGEPEN
0 0 1 0
~P & D
R2_MASKNOTPEN
0 0 1 1
~P
R2_NOTCOPYPEN
0 1 0 0
P & ~D
R2_MASKPENNOT
0 1 0 1
~D
R2_NOT
0 1 1 0
P ^ D
R2_XORPEN
0 1 1 1
~(P & D)
R2_NOTMASKPEN
1 0 0 0
P & D

R2_MASKPEN
1 0 0 1
~(P ^ D)
R2_NOTXORPEN
1 0 1 0
D
R2_NOP
1 0 1 1
~P ¦ D
R2_MERGENOTPEN
1 1 0 0
P
R2_COPYPEN (default)
1 1 0 1
P ¦ ~D
R2_MERGEPENNOT
1 1 1 0
P ¦ D
R2_MERGEPEN
1 1 1 1
1
R2_WHITE

You can set a new drawing mode for the device context by calling

SetROP2 (hdc, iDrawMode) ;

The iDrawMode argument is one of the values listed in the "Drawing Mode" column of the table. You can obtain the
current drawing mode by using the function:

iDrawMode = GetROP2 (hdc) ;

The device context default is R2_COPYPEN, which simply transfers the pen color to the destination. The
R2_NOTCOPYPEN mode draws white if the pen color is black and black if the pen color is white. The R2_BLACK
mode always draws black, regardless of the color of the pen or the background. Likewise, the R2_WHITE mode
always draws white. The R2_NOP mode is a "no operation." It leaves the destination unchanged.

We've been examining the drawing mode in the context of a monochrome system. Most systems are color,
however. On color systems Windows performs the bitwise operation of the drawing mode for each color bit of the
pen and destination pixels and again uses the 16 ROP2 codes described in the previous table. The R2_NOT
drawing mode always inverts the destination color to determine the color of the line, regardless of the color of the
pen. For example, a line drawn on a cyan destination will appear as magenta. The R2_NOT mode always results in
a visible pen except if the pen is drawn on a medium gray background. I'll demonstrate the use of the R2_NOT
drawing mode in the BLOKOUT programs in Chapter 7 .

Drawing Filled Areas

The next step up from drawing lines is filling enclosed areas. Windows' seven functions for drawing filled areas
with borders are listed in the table below.

Function
Figure
Rectangle
Rectangle with square corners
Ellipse
Ellipse
RoundRect
Rectangle with rounded corners
Chord
Arc on the circumference of an ellipse with endpoints connected by a chord
Pie
Pie wedge defined by the circumference of an ellipse
Polygon
Multisided figure
PolyPolygon
Multiple multisided figures

Windows draws the outline of the figure with the current pen selected in the device context. The current
background mode, background color, and drawing mode are all used for this outline, just as if Windows were
drawing a line. Everything we learned about lines also applies to the borders around these figures.

The figure is filled with the current brush selected in the device context. By default, this is the stock object called
WHITE_BRUSH, which means that the interior will be drawn as white. Windows defines six stock brushes:
WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and NULL_BRUSH (or
HOLLOW_BRUSH). You can select one of the stock brushes into the device context the same way you select a
stock pen. Windows defines HBRUSH to be a handle to a brush, so you can first define a variable for the brush
handle:

HBRUSH hBrush ;

You can get the handle to the GRAY_BRUSH by calling GetStockObject :

hBrush = GetStockObject (GRAY_BRUSH) ;

You can select it into the device context by calling SelectObject :

SelectObject (hdc, hBrush) ;

Now when you draw one of the figures listed above, the interior will be gray.

To draw a figure without a border, select the NULL_PEN into the device context:

SelectObject (hdc, GetStockObject (NULL_PEN)) ;

If you want to draw the outline of the figure without filling in the interior, select the NULL_BRUSH into the device
context:

SelectObject (hdc, GetStockobject (NULL_BRUSH) ;

You can also create customized brushes just as you can create customized pens. We'll cover that topic shortly.

The Polygon Function and the Polygon-Filling Mode

I've already discussed the first five area-filling functions. Polygon is the sixth function for drawing a bordered and
filled figure. The function call is similar to the Polyline function:

Polygon (hdc, apt, iCount) ;

The apt argument is an array of POINT structures, and iCount is the number of points. If the last point in this
array is different from the first point, Windows adds another line that connects the last point with the first point.
(This does not happen with the Polyline function.) The PolyPolygon function looks like this:

PolyPolygon (hdc, apt, aiCounts, iPolyCount) ;

The function draws multiple polygons. The number of polygons it draws is given as the last argument. For each
polygon, the aiCounts array gives the number of points in the polygon. The apt array has all the points for all the
polygons. Aside from the return value, PolyPolygon is functionally equivalent to the following code:

for (i = 0, iAccum = 0 ; i < iPolyCount ; i++)
{
 Polygon (hdc, apt + iAccum, aiCounts[i]) ;
 iAccum += aiCounts[i] ;
}

For both Polygon and PolyPolygon , Windows fills the bounded area with the current brush defined in the device
context. How the interior is filled depends on the polygon-filling mode, which you can set using the
SetPolyFillMode function:

SetPolyFillMode (hdc, iMode) ;

By default, the polygon-filling mode is ALTERNATE, but you can set it to WINDING. The difference between the
two modes is shown in Figure 5-19.

Figure 5-19. Figures drawn with the two polygon-filling modes: ALTERNATE (left) and WINDING (right).

At first, the difference between alternate and winding modes seems rather simple. For alternate mode, you can
imagine a line drawn from a point in an enclosed area to infinity. The enclosed area is filled only if that imaginary
line crosses an odd number of boundary lines. This is why the points of the star are filled but the center is not.

The example of the five-pointed star makes winding mode seem simpler than it actually is. When you're drawing a
single polygon, in most cases winding mode will cause all enclosed areas to be filled. But there are exceptions.

To determine whether an enclosed area is filled in winding mode, you again imagine a line drawn from a point in
that area to infinity. If the imaginary line crosses an odd number of boundary lines, the area is filled, just as in
alternate mode. If the imaginary line crosses an even number of boundary lines, the area can either be filled or
not filled. The area is filled if the number of boundary lines going in one direction (relative to the imaginary line) is
not equal to the number of boundary lines going in the other direction.

For example, consider the object shown in Figure 5-20. The arrows on the lines indicate the direction in which the
lines are drawn. Both winding mode and alternate mode will fill the three enclosed L-shaped areas numbered 1
through 3. The two smaller interior areas, numbered 4 and 5, will not be filled in alternate mode. But in winding
mode, area number 5 is filled because you must cross two lines going in the same direction to get from the inside
of that area to the outside of the figure. Area number 4 is not filled. You must again cross two lines, but the two
lines go in opposite directions.

If you doubt that Windows is clever enough to do this, the ALTWIND program in Figure 5-21 demonstrates that it
is.

Figure 5-20. A figure in which winding mode does not fill all interior areas.

Figure 5-21. The ALTWIND program.

ALTWIND.C

/*---
 ALTWIND.C -- Alternate and Winding Fill Modes
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("AltWind") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Alternate and Winding Fill Modes"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static POINT aptFigure [10] = { 10,70, 50,70, 50,10, 90,10, 90,50,
 30,50, 30,90, 70,90, 70,30, 10,30 };
 static int cxClient, cyClient ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 POINT apt[10] ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, GetStockObject (GRAY_BRUSH)) ;

 for (i = 0 ; i < 10 ; i++)
 {
 apt[i].x = cxClient * aptFigure[i].x / 200 ;
 apt[i].y = cyClient * aptFigure[i].y / 100 ;
 }

 SetPolyFillMode (hdc, ALTERNATE) ;
 Polygon (hdc, apt, 10) ;

 for (i = 0 ; i < 10 ; i++)
 {
 apt[i].x += cxClient / 2 ;
 }

 SetPolyFillMode (hdc, WINDING) ;
 Polygon (hdc, apt, 10) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The coordinates of the figure—scaled to an arbitrary 100-unit-by-100-unit area—are stored in the aptFigure array.

These coordinates are scaled based on the width and height of the client area. The program displays the figure
twice, once using the ALTERNATE filling mode and then using WINDING. The results are shown in Figure 5-22.

Figure 5-22. The ALTWIND display.

Brushing the Interior

The interiors of the Rectangle , RoundRect , Ellipse , Chord , Pie , Polygon , and PolyPolygon figures are filled with
the current brush (sometimes also called a "pattern") selected in the device context. A brush is a small 8-pixel-by-
8-pixel bitmap that is repeated horizontally and vertically to fill the area.

When Windows uses dithering to display more colors than are normally available on a display, it actually uses a
brush for the color. On a monochrome system, Windows can use dithering of black and white pixels to create 64
different shades of gray. More precisely, Windows can create 64 different monochrome brushes. For pure black, all
bits in the 8-by-8 bitmap are 0. One bit out of the 64 is made 1 (that is, white) for the first gray shade, two bits
are white for the second gray shade, and so on, until all bits in the 8-by-8 bitmap are 1 for pure white. With a 16-
color or 256-color video system, dithered colors are also brushes and Windows can display a much wider range of
color than would normally be available.

Windows has five functions that let you create logical brushes. You select the brush into the device context with
SelectObject . Like logical pens, logical brushes are GDI objects. Any brush that you create must be deleted, but it
must not be deleted while it is selected in a device context.

Here's the first function to create a logical brush:

hBrush = CreateSolidBrush (crColor) ;

The word Solid in this function doesn't really mean that the brush is a pure color. When you select the brush into
the device context, Windows may create a dithered bitmap and use that for the brush.

You can also create a brush with "hatch marks" made up of horizontal, vertical, or diagonal lines. Brushes of this
style are most commonly used for coloring the interiors of bar graphs and when drawing to plotters. The function
for creating a hatch brush is

hBrush = CreateHatchBrush (iHatchStyle, crColor) ;

The iHatchStyle argument describes the appearance of the hatch marks. Figure 5-23 shows the six available hatch
style constants and what they look like.

Figure 5-23. The six hatch brush styles.

The crColor argument to CreateHatchBrush specifies the color of the hatch lines. When you select the brush into a
device context, Windows converts this color to the nearest pure color available on the display. The area between
the hatch lines is colored based on the current background mode and the background color. If the background
mode is OPAQUE, the background color (which is also converted to a pure color) is used to fill in the spaces
between the lines. If the background mode is TRANSPARENT, Windows draws the hatch lines without filling in the
area between them.

You can also create your own brushes based on bitmaps using CreatePatternBrush and CreateDIBPatternBrushPt .

The fifth function for creating a logical brush encompasses the other four functions:

hBrush = CreateBrushIndirect (&logbrush) ;

The logbrush variable is a structure of type LOGBRUSH ("logical brush"). The three fields of this structure are
shown below. The value of the lbStyle field determines how Windows interprets the other two fields:

lbStyle (UINT)
lbColor (COLORREF)
lbHatch (LONG)
BS_SOLID
Color of brush
Ignored
BS_HOLLOW
Ignored
Ignored
BS_HATCHED
Color of hatches
Hatch brush style
BS_PATTERN
Ignored
Handle to bitmap
BS_DIBPATTERNPT
Ignored
Pointer to DIB

Earlier we used SelectObject to select a logical pen into a device context, DeleteObject to delete a logical pen, and
GetObject to get information about a logical pen. You can use these same three functions with brushes. Once you
have a handle to a brush, you can select the brush into a device context using SelectObject :

SelectObject (hdc, hBrush) ;

You can later delete a created brush with the DeleteObject function:

DeleteObject (hBrush) ;

Do not delete a brush that is currently selected in a device context.

If you need to obtain information about a brush, you can call GetObject ,

GetObject (hBrush, sizeof (LOGBRUSH), (LPVOID) &logbrush) ;

where logbrush is a structure of type LOGBRUSH.

The GDI Mapping Mode

Up until now, all the sample programs have been drawing in units of pixels relative to the upper left corner of the
client area. This is the default, but it's not your only choice. One device context attribute that affects virtually all
the drawing you do on the client area is the "mapping mode." Four other device context attributes—the window
origin, the viewport origin, the window extents, and the viewport extents—are closely related to the mapping
mode attribute.

Most of the GDI drawing functions require coordinate values or sizes. For instance, this is the TextOut function:

TextOut (hdc, x, y, psText, iLength) ;

The x and y arguments indicate the starting position of the text. The x argument is the position on the horizontal
axis, and the y argument is the position on the vertical axis. Often the notation (x,y) is used to indicate this point.

In TextOut , as in virtually all GDI functions, these coordinate values are "logical units." Windows must translate
the logical units into "device units," or pixels. This translation is governed by the mapping mode, the window and
viewport origins, and the window and viewport extents. The mapping mode also implies an orientation of the x -
axis and the y -axis; that is, it determines whether values of x increase as you move toward the left or right side
of the display and whether values of y increase as you move up or down the display.

Windows defines eight mapping modes. These are listed in the following table using the identifiers defined in
WINGDI.H.

Increasing Value
Mapping Mode
Logical Unit
x-axis
y-axis
MM_TEXT
Pixel
Right
Down
MM_LOMETRIC
0.1 mm
Right
Up
MM_HIMETRIC
0.01 mm
Right
Up
MM_LOENGLISH
0.01 in.
Right
Up
MM_HIENGLISH
0.001 in.
Right
Up
MM_TWIPS
1/1440 in.
Right
Up
MM_ISOTROPIC
Arbitrary (x = y)
Selectable
Selectable
MM_ANISOTROPIC
Arbitrary (x !=y)
Selectable
Selectable

The words METRIC and ENGLISH refer to popular systems of measurement; LO and HI are "low" and "high" and
refer to precision. "Twip" is a fabricated word meaning "twentieth of a point." I mentioned earlier that a point is a
unit of measurement in typography that is approximately 1/72 inch but that is often assumed in graphics
programming to be exactly 1/72 inch. A "twip" is 1/20 point and hence 1/1440 inch. "Isotropic" and "anisotropic"
are actually real words, meaning "identical in all directions" and "not isotropic," respectively.

You can set the mapping mode by using

SetMapMode (hdc, iMapMode) ;

where iMapMode is one of the eight mapping mode identifiers. You can obtain the current mapping mode by
calling

iMapMode = GetMapMode (hdc) ;

The default mapping mode is MM_TEXT. In this mapping mode, logical units are the same as physical units, which
allows us (or, depending on your perspective, forces us) to work directly in units of pixels. In a TextOut call that
looks like this:

TextOut (hdc, 8, 16, TEXT ("Hello"), 5) ;

the text begins 8 pixels from the left of the client area and 16 pixels from the top.

If the mapping mode is set to MM_LOENGLISH like so,

SetMapMode (hdc, MM_LOENGLISH) ;

logical units are in terms of hundredths of an inch. Now the TextOut call might look like this:

TextOut (hdc, 50, -100, TEXT ("Hello"), 5) ;

The text begins 0.5 inch from the left and 1 inch from the top of the client area. (The reason for the negative sign
in front of the y-coordinate will soon become clear when I discuss the mapping modes in more detail.) Other
mapping modes allow programs to specify coordinates in terms of millimeters, a point size, or an arbitrarily scaled
axis.

If you feel comfortable working in units of pixels, you don't need to use any mapping modes except the default
MM_TEXT mode. If you need to display an image in inch or millimeter dimensions, you can obtain the information
you need from GetDeviceCaps and do your own scaling. The other mapping modes are simply a convenient way to
avoid doing your own scaling.

Although the coordinates you specify in GDI functions are 32-bit values, only Windows NT can handle all 32 bits.
In Windows 98, coordinates are limited to 16 bits and thus may range only from -32,768 to 32,767. Some
Windows functions that use coordinates for the starting point and ending point of a rectangle also require that the
width and height of the rectangle be 32,767 or less.

Device Coordinates and Logical Coordinates

You may ask: if I use the MM_LOENGLISH mapping mode, will I start getting WM_SIZE messages in terms of
hundredths of an inch? Absolutely not. Windows continues to use device coordinates for all messages (such as
WM_MOVE, WM_SIZE, and WM_MOUSEMOVE), for all non-GDI functions, and even for some GDI functions. Think
of it this way: the mapping mode is an attribute of the device context, so the only time the mapping mode comes
into play is when you use GDI functions that require a handle to the device context as one of the arguments.
GetSystemMetrics is not a GDI function, so it will continue to return sizes in device units, which are pixels. And
although GetDeviceCaps is a GDI function that requires a handle to a device context, Windows continues to return
device units for the HORZRES and VERTRES indexes, because one of the purposes of this function is to provide a
program with the size of the device in pixels.

However, the values in the TEXTMETRIC structure that you obtain from the GetTextMetrics call are in terms of
logical units. If the mapping mode is MM_LOENGLISH at the time the call is made, GetTextMetrics provides
character widths and heights in terms of hundredths of an inch. To make things easy on yourself, when you call
GetTextMetrics for information about the height and width of characters, the mapping mode should be set to the
same mapping mode that you'll be using when you draw text based on these sizes.

The Device Coordinate Systems

Windows maps logical coordinates that are specified in GDI functions to device coordinates. Before we discuss the
logical coordinate system used with the various mapping modes, let's examine the different device coordinate
systems that Windows defines for the video display. Although we have been working mostly within the client area
of our window, Windows uses two other device coordinate systems at various times. In all device coordinate
systems, units are expressed in terms of pixels. Values on the horizontal x -axis increase from left to right, and
values on the vertical y -axis increase from top to bottom.

When we use the entire screen, we are working in terms of "screen coordinates." The upper left corner of the
screen is the point (0, 0). Screen coordinates are used in the WM_MOVE message (for nonchild windows) and in
the following Windows functions: CreateWindow and MoveWindow (for nonchild windows), GetMessagePos ,
GetCursorPos , SetCursorPos , GetWindowRect , and WindowFromPoint . (This is not a complete list.) These are
generally either functions that don't have a window associated with them (such as the two cursor functions) or
functions that must move or find a window based on a screen point. If you use CreateDC with a "DISPLAY"
argument to obtain a device context for the entire screen, logical coordinates in GDI calls will be mapped to screen
coordinates by default.

"Whole-window coordinates" refer to a program's entire application window, including the title bar, menu, scroll
bars, and border. For a common application window, the point (0, 0) is the upper left corner of the sizing border.
Whole-window coordinates are rare in Windows, but if you obtain a device context from GetWindowDC , logical
coordinates in GDI functions will be mapped to whole-window coordinates by default.

The third device coordinate system—the one we've been working with the most—uses "client area coordinates."
The point (0, 0) is the upper left corner of the client area. When you obtain a device context using GetDC or
BeginPaint , logical coordinates in GDI functions will be translated to client-area coordinates by default.

You can convert client-area coordinates to screen coordinates and vice versa using the functions ClientToScreen
and ScreenToClient . You can also obtain the position and size of the whole window in terms of screen coordinates
using the GetWindowRect functions. These three functions provide enough information to translate from any one
device coordinate system to the other.

The Viewport and the Window

The mapping mode defines how Windows maps logical coordinates that are specified in GDI functions to device
coordinates, where the particular device coordinate system depends on the function you use to obtain the device
context. To continue this discussion of the mapping mode, we need some additional terminology. The mapping
mode is said to define the mapping of the "window" (logical coordinates) to the "viewport" (device coordinates).

The use of these two terms is unfortunate. In other graphics interface systems, the viewport often implies a
clipping region. And in Windows, the term "window" has a very specific meaning to describe the area that a
program occupies on the screen. We'll have to put aside our preconceptions of these terms during this discussion.

The viewport is specified in terms of device coordinates (pixels). Most often the viewport is the same as the client
area, but it can also refer to whole-window coordinates or screen coordinates if you've obtained a device context
from GetWindowDC or CreateDC . The point (0, 0) is the upper left corner of the client area (or the whole window
or the screen). Values of x increase to the right, and values of y increase going down.

The window is specified in terms of logical coordinates, which might be pixels, millimeters, inches, or any other
unit you want. You specify logical window coordinates in the GDI drawing functions.

But in a very real sense, the viewport and the window are just mathematical constructs. For all mapping modes,
Windows translates window (logical) coordinates to viewport (device) coordinates by the use of two formulas,

 xViewExt
xViewport = (xWindow - xWinOrg) × ________ + xViewOrg
 xWinExt

 yViewExt
yViewport = (yWindow - yWinOrg) × ________ + yViewOrg
 yWinExt

where (xWindow , yWindow) is a logical point to be translated and (xViewport , yViewport) is the translated point
in device coordinates, most likely client-area coordinates.

These formulas use two points that specify an "origin" of the window and the viewport. The point (xWinOrg ,
yWinOrg) is the window origin in logical coordinates; the point (xViewOrg , yViewOrg) is the viewport origin in
device coordinates. By default, these two points are set to (0, 0), but you can change them. The formulas imply
that the logical point (xWinOrg , yWinOrg) is always mapped to the device point (xViewOrg , yViewOrg). If the
window and viewport origins are left at their default (0, 0) values, the formulas simplify to

 xViewExt
xViewport = xWindow × ________
 xWinExt

 yViewExt
yViewport = yWindow × ________
 yWinExt

The formulas also include two points that specify "extents": the point (xWinExt , yWinExt) is the window extent in
logical coordinates; (xViewExt , yViewExt) is the viewport extent in device coordinates. In most mapping modes,
the extents are implied by the mapping mode and cannot be changed. Each extent means nothing by itself, but
the ratio of the viewport extent to the window extent is a scaling factor for converting logical units to device units.

For example, when you set the MM_LOENGLISH mapping mode, Windows sets xViewExt to be a certain number of
pixels and xWinExt to be the length in hundredths of an inch occupied by xViewExt pixels. The ratio gives you
pixels per hundredths of an inch. The scaling factors are expressed as ratios of integers rather than floating point
values for performance reasons.

The extents can be negative. This implies that values on the logical x -axis don't necessarily have to increase to
the right and that values on the logical y -axis don't necessarily have to increase going down.

Windows can also translate from viewport (device) coordinates to window (logical) coordinates:

 xWinExt
xWindow = (xViewport - xViewOrg) × ________ + xWinOrg
 xViewExt

 yWinExt

yWindow = (yViewport - yViewOrg) × ________ + yWinOrg
 yViewExt

Windows provides two functions that let you convert between device points to logical points in a program. The
following function converts device points to logical points:

DPtoLP (hdc, pPoints, iNumber) ;

The variable pPoints is a pointer to an array of POINT structures, and iNumber is the number of points to be
converted. For example, you'll find this function useful for converting the size of the client area obtained from
GetClientRect (which is always in terms of device units) to logical coordinates:

GetClientRect (hwnd, &rect) ;
DPtoLP (hdc, (PPOINT) &rect, 2) ;

This function converts logical points to device points:

LPtoDP (hdc, pPoints, iNumber) ;

Working with MM_TEXT

For the MM_TEXT mapping mode, the default origins and extents are shown below.
Window origin:
(0, 0)
Can be changed
Viewport origin:
(0, 0)
Can be changed
Window extent:
(1, 1)
Cannot be changed
Viewport extent:
(1, 1)
Cannot be changed

The ratio of the viewport extent to the window extent is 1, so no scaling is performed between logical coordinates
and device coordinates. The formulas to convert from window coordinates to viewport coordinates shown earlier
reduce to these:

xViewport = xWindow - xWinOrg + xViewOrg
yViewport = yWindow - yWinOrg + yViewOrg

This is a "text" mapping mode not because it is most suitable for text but because of the orientation of the axes.
In most languages, text is read from left to right and top to bottom, and MM_TEXT defines values on the axes to
increase the same way:

Windows provides the functions SetViewportOrgEx and SetWindowOrgEx for changing the viewport and window
origins. These functions have the effect of shifting the axes so that the logical point (0, 0) no longer refers to the
upper left corner. Generally, you'll use either SetViewportOrgEx or SetWindowOrgEx but not both.

Here's how the functions work: If you change the viewport origin to (xViewOrg , yViewOrg), the logical point (0,
0) will be mapped to the device point (xViewOrg , yViewOrg). If you change the window origin to (xWinOrg ,
yWinOrg), the logical point (xWinOrg , yWinOrg) will be mapped to the device point (0, 0), which is the upper
left corner. Regardless of any changes you make to the window and viewport origins, the device point (0, 0) is
always the upper left corner of the client area.

For instance, suppose your client area is cxClient pixels wide and cyClient pixels high. If you want to define the
logical point (0, 0) to be the center of the client area, you can do so by calling

SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

The arguments to SetViewportOrgEx are always in terms of device units. The logical point (0, 0) will now be
mapped to the device point (cxClient / 2 , cyClient / 2). Now you can use your client area as if it had the
coordinate system shown below.

The logical x -axis ranges from -cxClient/2 to +cxClient/2 , and the logical y -axis ranges from -cyClient/2 to
+cyClient/2 . The lower right corner of the client area is the logical point (cxClient/2 , cyClient/2). If you want to
display text starting at the upper left corner of the client area, which is the device point (0, 0), you need to use
negative coordinates:

TextOut (hdc, -cxClient / 2, -cyClient / 2, "Hello", 5) ;

You can achieve the same result with SetWindowOrgEx as you did when you used SetViewportOrgEx :

SetWindowOrgEx (hdc, -cxClient / 2, -cyClient / 2, NULL) ;

The arguments to SetWindowOrgEx are always in terms of logical units. After this call, the logical point (-cxClient /
2 , -cyClient / 2) is mapped to the device point (0, 0), the upper left corner of the client area.

What you probably don't want to do (unless you know what's going to happen) is to use both function calls
together:

SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;
SetWindowOrgEx (hdc, -cxClient / 2, -cyClient / 2, NULL) ;

This means that the logical point (-cxClient/2 , -cyClient/2) is mapped to the device point (cxClient/2 , cyClient/2
), giving you a coordinate system that looks like this:

You can obtain the current viewport and window origins from these functions:

GetViewportOrgEx (hdc, &pt) ;
GetWindowOrgEx (hdc, &pt) ;

where pt is a POINT structure. The values returned from GetViewportOrgEx are in device coordinates; the values
returned from GetWindowOrgEx are in logical coordinates.

You might want to change the viewport or window origin to shift display output within the client area of your
window—for instance, in response to scroll bar input from the user. For example, in the SYSMETS2 program in
Chapter 4 , we used the iVscrollPos value (the current position of the vertical scroll bar) to adjust the y-
coordinates of the display output:

case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 for (i = 0 ; i < NUMLINES ; i++)
 {
 y = cyChar * (i - iVscrollPos) ;
 [display text]
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

We can achieve the same result using SetWindowOrgEx :

case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetWindowOrgEx (hdc, 0, cyChar * iVscrollPos) ;

 for (i = 0 ; i < NUMLINES ; i++)
 {
 y = cyChar * i ;
 [display text]
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

Now the calculation of the y-coordinate for the TextOut functions doesn't require the iVscrollPos value. This means
that you can put the text output calls in a separate function and not have to pass the iVscrollPos value to the
function, because the display is adjusted by changing the window origin.

If you have some experience working with rectangular (or Cartesian) coordinate systems, moving the logical point
(0, 0) to the center of the client area as we did earlier may have seemed a reasonable action. However, there's a
slight problem with the MM_TEXT mapping mode. Usually a Cartesian coordinate system defines values on the y -
axis as increasing as you move up the axis, whereas MM_TEXT defines the values to increase as you move down
the axis. In this sense, MM_TEXT is an oddity, and the next five mapping modes do it correctly.

The Metric Mapping Modes

Windows includes five mapping modes that express logical coordinates in physical measurements. Because logical
coordinates on the x -axis and y -axis are mapped to identical physical units, these mapping modes help you to
draw round circles and square squares, even on a device that does not feature square pixels.

The five metric mapping modes are arranged below in order of lowest precision to highest precision. The two
columns at the right show the size of the logical units in terms of inches (in.) and millimeters (mm.) for
comparison.

Mapping Mode
Logical Unit
Inch
Millimeter
MM_LOENGLISH
0.01 in.
0.01
0.254
MM_LOMETRIC
0.1 mm.
0.00394
0.1
MM_HIENGLISH
0.001 in.
0.001
0.0254
MM_TWIPS
1/1400 in.
0.000694
0.0176
MM_HIMETRIC
0.01 mm.
0.000394
0.01

The default window and viewport origins and extents are

Window origin:
(0, 0)
Can be changed
Viewport origin:
(0, 0)
Can be changed
Window extent:

(?, ?)
Cannot be changed
Viewport extent:
(?, ?)
Cannot be changed

The question marks indicate that the window and viewport extents depend on the mapping mode and the
resolution of the device. As I mentioned earlier, the extents aren't important by themselves but take on meaning
when expressed as ratios. Here are the translation formulas again:

 xViewExt
xViewport = (xWindow - xWinOrg) × ________ + xViewOrg
 xWinExt

 yViewExt
yViewport = (yWindow - yWinOrg) × ________ + yViewOrg
 yWinExt

For MM_LOENGLISH, for example, Windows calculates the extents to be the following:

xViewExt/xWinExt = number of horizontal pixels in 0.01 in.

-yViewExt/yWinExt = negative number of vertical pixels in 0.01 in.

Windows uses information available from GetDeviceCaps to set these extents. This is somewhat different in
Windows 98 and Windows NT.

First, here's how it works in Windows 98: Suppose you have used the Display applet of the Control Panel to select
a 96 dpi system font. GetDeviceCaps will return a value of 96 for both the LOGPIXELSX and LOGPIXELSY indexes.
Windows uses these values for the viewport extents and sets the viewport and window extents as shown in the
following table.

Mapping Mode
Viewport Extents (x, y)
Window Extents (x, y)
MM_LOMETRIC
(96, 96)
(254, - 254)
MM_HIMETRIC
(96, 96)
(2540, - 2540)
MM_LOENGLISH
(96, 96)
(100, - 100)
MM_HIENGLISH
(96, 96)
(1000, - 1000)
MM_TWIPS
(96, 96)
(1440, - 1440)

Thus, for MM_LOENGLISH, the ratio 96 divided by 100 is the number of pixels in 0.01 inches. For MM_LOMETRIC,
the ratio 96 divided by 254 is the number of pixels in 0.1 millimeters.

Windows NT uses a different approach to set the viewport and window extents (an approach actually consistent
with earlier 16-bit versions of Windows). The viewport extents are based on the pixel dimensions of the screen.
This is information obtained from GetDeviceCaps using the HORZRES and VERTRES indexes. The window extents
are based on the assumed size of the display, which GetDeviceCaps returns when you use the HORZSIZE and
VERTSIZE indexes. As I mentioned earlier, these values are commonly 320 and 240 millimeters. If you've set the
pixel dimensions of your display to 1024 by 768, here are the values of the viewport and window extents that
Windows NT reports.

Mapping Mode
Viewport Extents (x, y)
Window Extents (x, y)
MM_LOMETRIC
(1024, - 768)
(3200, 2400)
MM_HIMETRIC
(1024, - 768)
(32000, 24000)
MM_LOENGLISH
(1024, - 768)
(1260, 945)
MM_HIENGLISH
(1024, - 768)
(12598, 9449)
MM_TWIPS
(1024, - 768)
(18142, 13606)

These window extents represent the number of logical units encompassing the full width and height of the display.
A 320-millimeters wide screen is also 1260 MM_LOENGLISH units or 12.6 inches (320 divided by 25.4 millimeters
per inch).

Those negative signs in front of the y extents change the orientation of the axis. For these five mapping modes, y
values increase as you move up the device. However, notice that the default window and viewport origins are both
(0, 0). This has an interesting implication. When you first change to one of these five mapping modes, the
coordinate system looks like the graph below.

The only way you can display anything in the client area is to use negative values of y . For instance, this code,

SetMapMode (hdc, MM_LOENGLISH) ;
TextOut (hdc, 100, -100, "Hello", 5) ;

displays the text one inch from the top and left edges of the client area.

To preserve your sanity, you'll probably want to avoid this. One solution is to set the logical (0, 0) point to the
lower left corner of the client area. Assuming that cyClient is the height of the client area in pixels, you can do this
by calling SetViewportOrgEx :

SetViewportOrgEx (hdc, 0, cyClient, NULL) ;

Now the coordinate system looks like this:

This is the upper right quadrant of a rectangular coordinate system.

Alternatively, you can set the logical (0, 0) point to the center of the client area:

SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

The coordinate system looks like this:

Now we have a real four-quadrant Cartesian coordinate system with equal logical units on the x -axis and y -axis
in terms of inches, millimeters, or twips.

You can also use the SetWindowOrgEx function to change the logical (0, 0) point, but the task is a little more
difficult because the arguments to SetWindowOrgEx have to be in logical coordinates. You would first need to
convert (cxClient , cyClient) to a logical coordinate using the DPtoLP function. Assuming that the variable pt is a
structure of type POINT, this code changes the logical (0, 0) point to the center of the client area:

pt.x = cxClient ;
pt.y = cyClient ;
DptoLP (hdc, &pt, 1) ;
SetWindowOrgEx (hdc, -pt.x / 2, -pt.y / 2, NULL) ;

The "Roll Your Own" Mapping Modes

The two remaining mapping modes are named MM_ISOTROPIC and MM_ANISOTROPIC. These are the only two
mapping modes for which Windows lets you change the viewport and window extents, which means that you can
change the scaling factor that Windows uses to translate logical and device coordinates. The word isotropic means
"equal in all directions"; anisotropic is the opposite—"not equal." Like the metric mapping modes shown earlier,
MM_ISOTROPIC uses equally scaled axes. Logical units on the x -axis have the same physical dimensions as
logical units on the y -axis. This helps when you need to create images that retain the correct aspect ratio
regardless of the aspect ratio of the display device.

The difference between MM_ISOTROPIC and the metric mapping modes is that with MM_ISOTROPIC you can
control the physical size of the logical unit. If you want, you can adjust the size of the logical unit based on the
client area. This lets you draw images that are always contained within the client area, shrinking and expanding

appropriately. The two clock programs in Chapter 8 have isotropic images. As you size the window, the clocks are
resized appropriately.

A Windows program can handle the resizing of an image entirely through adjusting the window and viewport
extents. The program can then use the same logical units in the drawing functions regardless of the size of the
window.

Sometimes MM_TEXT and the metric mapping modes are called "fully constrained" mapping modes. This means
that you cannot change the window and viewport extents and the way Windows scales logical coordinates to
device coordinates. MM_ISOTROPIC is a "partly constrained" mapping mode. Windows allows you to change the
window and viewport extents, but it adjusts them so that x and y logical units represent the same physical
dimensions. The MM_ANISOTROPIC mapping mode is "unconstrained." You can change the window and viewport
extents, and Windows doesn't adjust the values.

The MM_ISOTROPIC Mapping Mode

The MM_ISOTROPIC mapping mode is ideal for using arbitrarily scaled axes while preserving equal logical units on
the two axes. Rectangles with equal logical widths and heights are displayed as squares, and ellipses with equal
logical widths and heights are displayed as circles.

When you first set the mapping mode to MM_ISOTROPIC, Windows uses the same window and viewport extents
that it uses with MM_LOMETRIC. (Don't rely on this fact, however.) The difference is that you can now change the
extents to suit your preferences by calling SetWindowExtEx and SetViewportExtEx . Windows will then adjust the
extents so that the logical units on both axes represent equal physical distances.

Generally, you'll use arguments to SetWindowExtEx with the desired logical size of the logical windows, and
arguments to SetViewportExtEx with the actual height and width of the client area. When Windows adjusts these
extents, it has to fit the logical window within the physical viewport, which can result in a section of the client area
falling outside the logical window. You should call SetWindowExtEx before you call SetViewportExtEx to make the
most efficient use of space in the client area.

For example, suppose you want a traditional one-quadrant virtual coordinate system where (0, 0) is at the lower
left corner of the client area and the logical width and height ranges from 0 to 32,767. You want the x and y units
to have the same physical dimensions. Here's what you need to do:

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExtEx (hdc, 32767, 32767, NULL) ;
SetViewportExtEx (hdc, cxClient, -cyClient, NULL) ;
SetViewportOrgEx (hdc, 0, cyClient, NULL) ;

If you then obtain the window and viewport extents using GetWindowExtEx and GetViewportExtEx , you'll find that
they are not the values you specified. Windows has adjusted the extents based on the aspect ratio of the display
device so that logical units on the two axes represent the same physical dimensions.

If the client area is wider than it is high (in physical dimensions), Windows adjusts the x extents so that the logical
window is narrower than the client-area viewport. The logical window will be positioned at the left of the client
area:

Windows 98 will actually not allow you to display anything in the right side of the client area because it is limited
to 16-bit signed coordinates. Windows NT uses a full 32-bits for coordinates, and you would be able to display
something over in the right side.

If the client area is higher than it is wide (in physical dimensions), Windows adjust the y extents. The logical
window will be positioned at the bottom of the client area:

Windows 98 will not allow you to display anything at the top of the client area.

If you prefer that the logical window always be positioned at the left and top of the client area, you can change the
code to the following:

SetMapMode (MM_ISOTROPIC) ;
SetWindowExtEx (hdc, 32767, 32767, NULL) ;
SetViewportExtEx (hdc, cxClient, -cyClient, NULL) ;
SetWindowOrgEx (hdc, 0, 32767, NULL) ;

In the SetWindowOrgEx call, we're saying that we want the logical point (0, 32767) to be mapped to the device
point (0, 0). Now, if the client area is higher than it is wide, the coordinates are arranged like this:

For a clock program, you might want to use a four-quadrant Cartesian coordinate system with arbitrarily scaled
axes in four directions in which the logical point (0, 0) is in the center of the client area. If you want each axis to
range from 0 to 1000 (for instance), you use this code:

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExtEx (hdc, 1000, 1000, NULL) ;
SetViewportExtEx (hdc, cxClient / 2, -cyClient / 2, NULL) ;

SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

The logical coordinates look like this if the client area is wider than it is high:

The logical coordinates are also centered if the client area is higher than it is wide, as shown below.

Keep in mind that no clipping is implied in window or viewport extents. When calling GDI functions, you are still
free to use logical x and y values less than - 1000 and greater than +1000. Depending on the shape of the client
area, these points might or might not be visible.

With the MM_ISOTROPIC mapping mode, you can make logical units larger than pixels. For instance, suppose you
want a mapping mode with the point (0, 0) at the upper left corner of the display and values of y increasing as
you move down (like MM_TEXT) but with logical coordinates in sixteenths of an inch. Here's one way to do it:

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExtEx (hdc, 16, 16, NULL) ;
SetViewportExtEx (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;

The arguments to the SetWindowExtEx function indicate the number of logical units in one inch. The arguments to
the SetViewportExtEx function indicate the number of physical units (pixels) in one inch.

However, this approach would not be consistent with the metric mapping modes in Windows NT. These mapping
modes use the pixel size and metric size of the display. To be consistent with the metric mapping modes, you can
use this code:

SetMapMode (hdc, MM_ISOTROPIC) ;
SetWindowExtEx (hdc, 160 * GetDeviceCaps (hdc, HORZSIZE) / 254,

 160 * GetDeviceCaps (hdc, VERTSIZE) / 254, NULL) ;
SetViewportExtEx (hdc, GetDeviceCaps (hdc, HORZRES),
 GetDeviceCaps (hdc, VERTRES), NULL) ;

In this code, the viewport extents are set to the pixel dimensions of the entire screen. The window extents are set
to the assumed dimension of the screen in units of sixteenths of an inch. GetDeviceCaps with the HORZRES and
VERTRES indexes return the dimensions of the device in millimeters. If we were working with floating-point
numbers, we would convert the millimeters to inches by dividing by 25.4 and then convert inches to sixteenths of
an inch by multiplying by 16. However, because we're working with integers, we must multiply by 160 and divide
by 254.

Of course, such a coordinate system makes logical units much larger than physical units. Everything you draw on
the device will have coordinate values that map to an increment of 1/16 inch. You cannot draw two horizontal lines
that are 1/32 inch apart because that would require a fractional logical coordinate.

MM_ANISOTROPIC: Stretching the Image to Fit

When you set the viewport and window extents in the MM_ISOTROPIC mapping mode, Windows adjusts the
values so that logical units on the two axes have the same physical dimensions. In the MM_ANISOTROPIC
mapping mode, Windows makes no adjustments to the values you set. This means that MM_ANISOTROPIC does
not necessarily maintain the correct aspect ratio.

One way you can use MM_ANISOTROPIC is to have arbitrary coordinates for the client area, as we did with
MM_ISOTROPIC. This code sets the point (0, 0) at the lower left corner of the client area with the x and y axes
ranging from 0 to 32,767:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExtEx (hdc, 32767, 32767, NULL) ;
SetViewportExtEx (hdc, cxClient, -cyClient, NULL) ;
SetViewportOrgEx (hdc, 0, cyClient, NULL) ;

With MM_ISOTROPIC, similar code caused part of the client area to be beyond the range of the axes. With
MM_ANISOTROPIC, the upper right corner of the client area is always the point (32767, 32767), regardless of its
dimensions. If the client area is not square, logical x and y units will have different physical dimensions.

In the previous section on the MM_ISOTROPIC mapping mode, I discussed how you might draw a round clock in
the client area where the x and y axes ranged from -1000 to 1000. You can do something similar with
MM_ANISOTROPIC:

SetMapMode (hdc, MM_ANISOTROPIC) ;
SetWindowExtEx (hdc, 1000, 1000, NULL) ;
SetViewportExtEx (hdc, cxClient / 2, -cyClient / 2, NULL) ;
SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

The difference with MM_ANISOTROPIC is that in general the clock would be drawn as an ellipse rather than a
circle.

Another way to use MM_ANISOTROPIC is to set x and y units to fixed but unequal values. For instance, if you
have a program that displays only text, you may want to set coarse coordinates based on the height and width of
a single character:

SetMapMode (hdc, MM_ANISOTROPIC) ;

SetWindowExtEx (hdc, 1, 1, NULL) ;
SetViewportExtEx (hdc, cxChar, cyChar, NULL) ;

Of course, I've assumed that cxChar and cyChar are the width and height of characters in that font. Now you can
specify coordinates in terms of character rows and columns. For instance, the following statement displays text
three characters from the left and two character rows from the top of the client area:

TextOut (hdc, 3, 2, TEXT ("Hello"), 5) ;

This might be more appropriate if you're using a fixed-point font, as in the upcoming WHATSIZE program.

When you first set the MM_ANISOTROPIC mapping mode, it always inherits the extents of the previously set
mapping mode. This can be very convenient. One way of thinking about MM_ANISTROPIC is that it "unlocks" the
extents; that is, it allows you to change the extents of an otherwise fully-constrained mapping mode. For instance,
suppose you want to use the MM_LOENGLISH mapping mode because you want logical units to be 0.01 inch. But
you don't want the values along the y -axis to increase as you move up the screen—you prefer the MM_TEXT
orientation, where y values increase moving down. Here's the code:

SIZE size ;
[other program lines]
SetMapMode (hdc, MM_LOENGLISH) ;
SetMapMode (hdc, MM_ANISOTROPIC) ;
GetViewportExtEx (hdc, &size) ;
SetViewportExtEx (hdc, size.cx, -size.cy, NULL) ;

We first set the mapping mode to MM_LOENGLISH. Then we liberate the extents by setting the mapping mode to
MM_ANISOTROPIC. The GetViewportExtEx function obtains the viewport extents in a SIZE structure. Then we call
SetViewportExtEx with the extents, except that the y extent is made negative.

The WHATSIZE Program

A little Windows history: The first how-to-program-for-Windows article appeared in the December 1986 issue of
Microsoft Systems Journal . The sample program in that article was called WSZ ("what size"), and it displayed the
size of a client area in pixels, inches, and millimeters. A simplified version of that program is WHATSIZE, shown in
Figure 5-24. The program shows the dimensions of the window's client area in terms of the five metric mapping
modes.

Figure 5-24. The WHATSIZE program.

WHATSIZE.C

/*---
 WHATSIZE.C -- What Size is the Window?
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("WhatSize") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("What Size is the Window?"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}
void Show (HWND hwnd, HDC hdc, int xText, int yText, int iMapMode,
 TCHAR * szMapMode)
{
 TCHAR szBuffer [60] ;
 RECT rect ;

 SaveDC (hdc) ;

 SetMapMode (hdc, iMapMode) ;
 GetClientRect (hwnd, &rect) ;
 DPtoLP (hdc, (PPOINT) &rect, 2) ;

 RestoreDC (hdc, -1) ;

 TextOut (hdc, xText, yText, szBuffer,
 wsprintf (szBuffer, TEXT ("%-20s %7d %7d %7d %7d"), szMapMode,
 rect.left, rect.right, rect.top, rect.bottom)) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static TCHAR szHeading [] =
 TEXT ("Mapping Mode Left Right Top Bottom") ;
 static TCHAR szUndLine [] =
 TEXT ("------------ ---- ----- --- ------") ;
 static int cxChar, cyChar ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1, 1, NULL) ;
 SetViewportExtEx (hdc, cxChar, cyChar, NULL) ;

 TextOut (hdc, 1, 1, szHeading, lstrlen (szHeading)) ;
 TextOut (hdc, 1, 2, szUndLine, lstrlen (szUndLine)) ;

 Show (hwnd, hdc, 1, 3, MM_TEXT, TEXT ("TEXT (pixels)")) ;
 Show (hwnd, hdc, 1, 4, MM_LOMETRIC, TEXT ("LOMETRIC (.1 mm)")) ;
 Show (hwnd, hdc, 1, 5, MM_HIMETRIC, TEXT ("HIMETRIC (.01 mm)")) ;
 Show (hwnd, hdc, 1, 6, MM_LOENGLISH, TEXT ("LOENGLISH (.01 in)")) ;
 Show (hwnd, hdc, 1, 7, MM_HIENGLISH, TEXT ("HIENGLISH (.001 in)")) ;
 Show (hwnd, hdc, 1, 8, MM_TWIPS, TEXT ("TWIPS (1/1440 in)")) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

For ease in displaying the information using the TextOut function, WHATSIZE uses a fixed-pitch font. Switching to
a fixed-pitch font (which was the default prior to Windows 3.0) involves this simple statement:

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

These are the same two functions used for selecting stock pens and brushes. WHATSIZE also uses the
MM_ANISTROPIC mapping mode with logical units set to character dimensions, as shown earlier.

When WHATSIZE needs to obtain the size of the client area for one of the six mapping modes, it saves the current
device context, sets a new mapping mode, obtains the client-area coordinates, converts them to logical
coordinates, and then restores the original mapping mode before displaying the information. This code is in
WHATSIZE's Show function:

SaveDC (hdc) ;
SetMapMode (hdc, iMapMode) ;
GetClientRect (hwnd, &rect) ;
DptoLP (hdc, (PPOINT) &rect, 2) ;
RestoreDC (hdc, -1) ;

Figure 5-25 shows a typical display from WHATSIZE.

Figure 5-25. A typical WHATSIZE display.

Rectangles, Regions, and Clipping

Windows includes several additional drawing functions that work with RECT (rectangle) structures and regions. A
region is an area of the screen that is a combination of rectangles, polygons, and ellipses.

Working with Rectangles

These three drawing functions require a pointer to a rectangle structure:

FillRect (hdc, &rect, hBrush) ;
FrameRect (hdc, &rect, hBrush) ;
InvertRect (hdc, &rect) ;

In these functions, the rect parameter is a structure of type RECT with four fields: left , top , right , and bottom .
The coordinates in this structure are treated as logical coordinates.

FillRect fills the rectangle (up to but not including the right and bottom coordinates) with the specified brush. This
function doesn't require that you first select the brush into the device context.

FrameRect uses the brush to draw a rectangular frame, but it does not fill in the rectangle. Using a brush to draw
a frame may seem a little strange, because with the functions that you've seen so far (such as Rectangle) the
border is drawn with the current pen. FrameRect allows you to draw a rectangular frame that isn't necessarily a
pure color. This frame is one logical unit wide. If logical units are larger than device units, the frame will be 2 or
more pixels wide.

InvertRect inverts all the pixels in the rectangle, turning ones to zeros and zeros to ones. This function turns a
white area to black, a black area to white, and a green area to magenta.

Windows also includes nine functions that allow you to manipulate RECT structures easily and cleanly. For
instance, to set the four fields of a RECT structure to particular values, you would conventionally use code that
looks like this:

rect.left = xLeft ;
rect.top = xTop ;
rect.right = xRight ;
rect.bottom = xBottom ;

By calling the SetRect function, however, you can achieve the same result with a single line:

SetRect (&rect, xLeft, yTop, xRight, yBottom) ;

The other eight functions can also come in handy when you want to do one of the following:

Move a rectangle a number of units along the x and y axes:

OffsetRect (&rect, x, y) ;

Increase or decrease the size of a rectangle:

InflateRect (&rect, x, y) ;

Set the fields of a rectangle equal to 0:

SetRectEmpty (&rect) ;

Copy one rectangle to another:

CopyRect (&DestRect, &SrcRect) ;

Obtain the intersection of two rectangles:

IntersectRect (&DestRect, &SrcRect1, &SrcRect2) ;

Obtain the union of two rectangles:

UnionRect (&DestRect, &SrcRect1, &SrcRect2) ;

Determine whether a rectangle is empty:

bEmpty = IsRectEmpty (&rect) ;

Determine whether a point is in a rectangle:

bInRect = PtInRect (&rect, point) ;

In most cases, the equivalent code for these functions is simple. For example, you can duplicate the CopyRect
function call with a field-by-field structure copy, accomplished by the statement

DestRect = SrcRect ;

Random Rectangles

A fun program in any graphics system is one that runs "forever," simply drawing a hypnotic series of images with
random sizes and colors— for example, rectangles of a random size and color. You can create such a program in
Windows, but it's not quite as easy as it first seems. I hope you realize that you can't simply put a while(TRUE)
loop in the WM_PAINT message. Sure, it will work, but the program will effectively prevent itself from processing
other messages. The program cannot be exited or minimized.

One acceptable alternative is setting a Windows timer to send WM_TIMER messages to your window function. (I'll
discuss the timer in Chapter 8 .) For each WM_TIMER message, you obtain a device context with GetDC , draw a
random rectangle, and then release the device context with ReleaseDC . But that takes some of the fun out of the
program, because the program can't draw the random rectangles as quickly as possible. It must wait for each
WM_TIMER message, and that's based on the resolution of the system clock.

There must be plenty of "dead time" in Windows—time during which all the message queues are empty and
Windows is just sitting around waiting for keyboard or mouse input. Couldn't we somehow get control during that
dead time and draw the rectangles, relinquishing control only when a message is added to a program's message
queue? That's one of the purposes of the PeekMessage function. Here's one example of a PeekMessage call:

PeekMessage (&msg, NULL, 0, 0, PM_REMOVE) ;

The first four parameters (a pointer to a MSG structure, a window handle, and two values indicating a message
range) are identical to those of GetMessage . Setting the second, third, and fourth parameters to NULL or 0
indicates that we want PeekMessage to return all messages for all windows in the program. The last parameter to
PeekMessage is set to PM_REMOVE if the message is to be removed from the message queue. You can set it

to PM_NOREMOVE if the message isn't to be removed. This is why PeekMessage is a "peek" rather than a "get"—it
allows a program to check the next message in the program's queue without actually removing it.

GetMessage doesn't return control to a program unless it retrieves a message from the program's message queue.
But PeekMessage always returns right away regardless whether a message is present or not. When there's a
message in the program's message queue, the return value of PeekMessage is TRUE (nonzero) and the message
can be processed as normal. When there is no message in the queue, PeekMessage returns FALSE (0).

This allows us to replace the normal message loop, which looks like this:

while (GetMessage (&msg, NULL, 0, 0))
{
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
}
return msg.wParam ;
with an alternative message loop like this:
while (TRUE)
{
 if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 break ;

 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 else
 {
 [other program lines to do some work]
 }
}
return msg.wParam ;

Notice that the WM_QUIT message is explicitly checked. You don't have to do this in a normal message loop,
because the return value of GetMessage is FALSE (0) when it retrieves a WM_QUIT message. But PeekMessage
uses its return value to indicate whether a message was retrieved, so the check of WM_QUIT is required.

If the return value of PeekMessage is TRUE, the message is processed normally. If the value is FALSE, the
program can do some work (such as displaying yet another random rectangle) before returning control to
Windows.

(Although the Windows documentation notes that you can't use PeekMessage to remove WM_PAINT messages
from the message queue, this isn't really a problem. After all, GetMessage doesn't remove WM_PAINT messages
from the queue either. The only way to remove a WM_PAINT message from the queue is to validate the invalid
regions of the window's client area, which you can do with ValidateRect , ValidateRgn , or a BeginPaint and
EndPaint pair. If you process a WM_PAINT message normally after retrieving it from the queue with PeekMessage
, you'll have no problems. What you can't do is use code like this to empty your message queue of all messages:

while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE)) ;

This statement removes and discards all messages from your message queue except WM_PAINT. If a WM_PAINT
message is in the queue, you'll be stuck inside the while loop forever.)

PeekMessage was much more important in earlier versions of Windows than it is in Windows 98. This is because
the 16-bit versions of Windows employed nonpreemptive multitasking (which I'll discuss in Chapter 20). The
Windows Terminal program used a PeekMessage loop to check for incoming data from a communications port. The
Print Manager program used this technique for printing, and Windows applications that printed also generally used
a PeekMessage loop. With the preemptive multitasking of Windows 98, programs can create multiple threads of
execution, as we'll see in Chapter 20 .

Armed only with the PeekMessage function, however, we can write a program that relentlessly displays random
rectangles. The program, called RANDRECT, is shown in Figure 5-26.

Figure 5-26. The RANDRECT program.

RANDRECT.C

/*--
 RANDRECT.C -- Displays Random Rectangles
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <stdlib.h> // for the rand function

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
void DrawRectangle (HWND) ;

int cxClient, cyClient ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("RandRect") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Random Rectangles"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (TRUE)
 {
 if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (msg.message == WM_QUIT)
 break ;
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 else
 DrawRectangle (hwnd) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 switch (iMsg)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

void DrawRectangle (HWND hwnd)
{
 HBRUSH hBrush ;
 HDC hdc ;
 RECT rect ;

 if (cxClient == 0 || cyClient == 0)
 return ;

 SetRect (&rect, rand () % cxClient, rand () % cyClient,
 rand () % cxClient, rand () % cyClient) ;

 hBrush = CreateSolidBrush (
 RGB (rand () % 256, rand () % 256, rand () % 256)) ;
 hdc = GetDC (hwnd) ;

 FillRect (hdc, &rect, hBrush) ;
 ReleaseDC (hwnd, hdc) ;
 DeleteObject (hBrush) ;
}

This program actually runs so fast on today's speedy machines that it no longer looks like a series of random
rectangles! The program uses the SetRect and FillRect function I discussed above, basing rectangle coordinates
and solid brush colors on random values obtained from the C rand function. I'll show another version of this
program using multiple threads of execution in Chapter 20 .

Creating and Painting Regions

A region is a description of an area of the display that is a combination of rectangles, polygons, and ellipses. You
can use regions for drawing or for clipping. You use a region for clipping (that is, restricting drawing to a specific
part of your client area) by selecting the region into the device context. Like pens and brushes, regions are GDI
objects. You should delete any regions that you create by calling DeleteObject .

When you create a region, Windows returns a handle to the region of type HRGN. The simplest type of region
describes a rectangle. You can create a rectangular region in one of two ways:

hRgn = CreateRectRgn (xLeft, yTop, xRight, yBottom) ;

or

hRgn = CreateRectRgnIndirect (&rect) ;

You can also create elliptical regions using

hRgn = CreateEllipticRgn (xLeft, yTop, xRight, yBottom) ;

or

hRgn = CreateEllipticRgnIndirect (&rect) ;

The CreateRoundRectRgn creates a rectangular region with rounded corners.

Creating a polygonal region is similar to using the Polygon function:

hRgn = CreatePolygonRgn (&point, iCount, iPolyFillMode) ;

The point parameter is an array of structures of type POINT, iCount is the number of points, and iPolyFillMode is
either ALTERNATE or WINDING. You can also create multiple polygonal regions using CreatePolyPolygonRgn .

So what, you say? What makes these regions so special? Here's the function that unleashes the power of regions:

iRgnType = CombineRgn (hDestRgn, hSrcRgn1, hSrcRgn2, iCombine) ;

This function combines two source regions (hSrcRgn1 and hSrcRgn2) and causes the destination region handle
(hDestRgn) to refer to that combined region. All three region handles must be valid, but the region previously
described by hDestRgn is destroyed. (When you use this function, you might want to make hDestRgn refer initially
to a small rectangular region.)

The iCombine parameter describes how the hSrcRgn1 and hSrcRgn2 regions are to be combined:
iCombine Value
New Region
RGN_AND
Overlapping area of the two source regions
RGN_OR
All of the two source regions
RGN_XOR
All of the two source regions, excluding the overlapping area
RGN_DIFF
All of hSrcRgn1 not in hSrcRgn2
RGN_COPY
All of hSrcRgn1 (ignores hSrcRgn2)

The iRgnType value returned from CombineRgn is one of the following: NULLREGION, indicating an empty region;
SIMPLEREGION, indicating a simple rectangle, ellipse, or polygon; COMPLEXREGION, indicating a combination of
rectangles, ellipses, or polygons; and ERROR, meaning that an error has occurred.

Once you have a handle to a region, you can use it with four drawing functions:

FillRgn (hdc, hRgn, hBrush) ;

FrameRgn (hdc, hRgn, hBrush, xFrame, yFrame) ;

InvertRgn (hdc, hRgn) ;

PaintRgn (hdc, hRgn) ;

The FillRgn , FrameRgn , and InvertRgn functions are similar to the FillRect , FrameRect , and InvertRect functions.
The xFrame and yFrame parameters to FrameRgn are the logical width and height of the frame to be painted
around the region. The PaintRgn function fills in the region with the brush currently selected in the device context.
All these functions assume the region is defined in logical coordinates.

When you're finished with a region, you can delete it using the same function that deletes other GDI objects:

DeleteObject (hRgn) ;

Clipping with Rectangles and Regions

Regions can also play a role in clipping. The InvalidateRect function invalidates a rectangular area of the display
and generates a WM_PAINT message. For example, you can use the InvalidateRect function to erase the client
area and generate a WM_PAINT message:

InvalidateRect (hwnd, NULL, TRUE) ;

You can obtain the coordinates of the invalid rectangle by calling GetUpdateRect , and you can validate a rectangle
of the client area using the ValidateRect function. When you receive a WM_PAINT message, the coordinates of the
invalid rectangle are available from the PAINTSTRUCT structure that is filled in by the BeginPaint function. This
invalid rectangle also defines a "clipping region." You cannot paint outside the clipping region.

Windows has two functions similar to InvalidateRect and ValidateRect that work with regions rather than
rectangles:

InvalidateRgn (hwnd, hRgn, bErase) ;

and

ValidateRgn (hwnd, hRgn) ;

When you receive a WM_PAINT message as a result of an invalid region, the clipping region will not necessarily be
rectangular in shape.

You can create a clipping region of your own by selecting a region into the device context using either

SelectObject (hdc, hRgn) ;

or

SelectClipRgn (hdc, hRgn) ;

A clipping region is assumed to be measured in device coordinates.

GDI makes a copy of the clipping region, so you can delete the region object after you select it in the device
context. Windows also includes several functions to manipulate this clipping region, such as ExcludeClipRect to
exclude a rectangle from the clipping region, IntersectClipRect to create a new clipping region that is the
intersection of the previous clipping region and a rectangle, and OffsetClipRgn to move a clipping region to another
part of the client area.

The CLOVER Program

The CLOVER program forms a region out of four ellipses, selects this region into the device context, and then
draws a series of lines emanating from the center of the window's client area. The lines appear only in the area
defined by the region. The resulting display is shown in Figure 5-28.

To draw this graphic by conventional methods, you would have to calculate the end point of each line based on
formulas involving the circumference of an ellipse. By using a complex clipping region, you can draw the lines and
let Windows determine the end points. The CLOVER program is shown in Figure 5-27.

Figure 5-27. The CLOVER program.

CLOVER.C

/*--

 CLOVER.C -- Clover Drawing Program Using Regions
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <math.h>

#define TWO_PI (2.0 * 3.14159)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Clover") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Draw a Clover"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 static HRGN hRgnClip ;
 static int cxClient, cyClient ;
 double fAngle, fRadius ;
 HCURSOR hCursor ;
 HDC hdc ;
 HRGN hRgnTemp[6] ;
 int i ;
 PAINTSTRUCT ps ;

 switch (iMsg)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 hCursor = SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 if (hRgnClip)
 DeleteObject (hRgnClip) ;

 hRgnTemp[0] = CreateEllipticRgn (0, cyClient / 3,
 cxClient / 2, 2 * cyClient / 3) ;
 hRgnTemp[1] = CreateEllipticRgn (cxClient / 2, cyClient / 3,
 cxClient, 2 * cyClient / 3) ;
 hRgnTemp[2] = CreateEllipticRgn (cxClient / 3, 0,
 2 * cxClient / 3, cyClient / 2) ;
 hRgnTemp[3] = CreateEllipticRgn (cxClient / 3, cyClient / 2,
 2 * cxClient / 3, cyClient) ;
 hRgnTemp[4] = CreateRectRgn (0, 0, 1, 1) ;
 hRgnTemp[5] = CreateRectRgn (0, 0, 1, 1) ;
 hRgnClip = CreateRectRgn (0, 0, 1, 1) ;

 CombineRgn (hRgnTemp[4], hRgnTemp[0], hRgnTemp[1], RGN_OR) ;
 CombineRgn (hRgnTemp[5], hRgnTemp[2], hRgnTemp[3], RGN_OR) ;
 CombineRgn (hRgnClip, hRgnTemp[4], hRgnTemp[5], RGN_XOR) ;

 for (i = 0 ; i < 6 ; i++)
 DeleteObject (hRgnTemp[i]) ;

 SetCursor (hCursor) ;
 ShowCursor (FALSE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;
 SelectClipRgn (hdc, hRgnClip) ;

 fRadius = _hypot (cxClient / 2.0, cyClient / 2.0) ;

 for (fAngle = 0.0 ; fAngle < TWO_PI ; fAngle += TWO_PI / 360)
 {
 MoveToEx (hdc, 0, 0, NULL) ;
 LineTo (hdc, (int) (fRadius * cos (fAngle) + 0.5),
 (int) (-fRadius * sin (fAngle) + 0.5)) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteObject (hRgnClip) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

Figure 5-28. The CLOVER display, drawn using a complex clipping region.

Because regions always use device coordinates, the CLOVER program has to recreate the region every time it
receives a WM_SIZE message. Years ago, the machines that ran Windows took several seconds to redraw this
figure. Today's fast machines draw it nearly instantaneously.

CLOVER begins by creating four elliptical regions that are stored as the first four elements of the hRgnTemp array.
Then the program creates three "dummy" regions:

hRgnTemp [4] = CreateRectRgn (0, 0, 1, 1) ;
hRgnTemp [5] = CreateRectRgn (0, 0, 1, 1) ;
hRgnClip = CreateRectRgn (0, 0, 1, 1) ;

The two elliptical regions at the left and right of the client area are combined:

CombineRgn (hRgnTemp [4], hRgnTemp [0], hRgnTemp [1], RGN_OR) ;

Similarly, the two elliptical regions at the top and bottom of the client area are combined:

CombineRgn (hRgnTemp [5], hRgnTemp [2], hRgnTemp [3], RGN_OR) ;

Finally these two combined regions are in turn combined into hRgnClip :

CombineRgn (hRgnClip, hRgnTemp [4], hRgnTemp [5], RGN_XOR) ;

The RGN_XOR identifier is used to exclude overlapping areas from the resultant region. Finally the six temporary
regions are deleted:

for (i = 0 ; i < 6 ; i++)
 DeleteObject (hRgnTemp [i]) ;

The WM_PAINT processing is simple, considering the results. The viewport origin is set to the center of the client
area (to make the line drawing easier), and the region created during the WM_SIZE message is selected as the
device context's clipping region:

SetViewportOrg (hdc, xClient / 2, yClient / 2) ;
SelectClipRgn (hdc, hRgnClip) ;

Now all that's left is drawing the lines—360 of them, spaced 1 degree apart. The length of each line is the variable
fRadius , which is the distance from the center to the corner of the client area:

fRadius = hypot (xClient / 2.0, yClient / 2.0) ;

for (fAngle = 0.0 ; fAngle < TWO_PI ; fAngle += TWO_PI / 360)
{
 MoveToEx (hdc, 0, 0, NULL) ;
 LineTo (hdc, (int) (fRadius * cos (fAngle) + 0.5),
 (int) (-fRadius * sin (fAngle) + 0.5)) ;
}

During processing of WM_DESTROY, the region is deleted:

DeleteObject (hRgnClip) ;

This is not the end of graphics programming in this book. Chapter 13 looks at printing, Chapters 14 and 15 at
bitmaps, Chapter 17 at text and fonts, and Chapter 18 at metafiles.

Chapter 6

The Keyboard

The keyboard and the mouse are the two standard sources of user input in Microsoft Windows 98, often
complementing each other with some overlap. The mouse is, of course, much more utilized in today's applications
than those of a decade ago. We are even accustomed to using the mouse almost exclusively in some applications,
such as games, drawing programs, music programs, and Web browsers. Yet while we could probably make do
without the mouse, removing the keyboard from the average PC would be disastrous.

Compared with the other components of the personal computer, the keyboard has a positively ancient ancestry
beginning with the first Remington typewriter in 1874. Early computer programmers used keyboards to punch
holes in Hollerith cards and later used keyboards on dumb terminals to communicate directly with large mainframe
computers. The PC has been expanded somewhat to include function keys, cursor positioning keys, and (usually)
a separate numeric keypad, but the principles of typing are basically the same.

Keyboard Basics

You've probably already surmised how a Windows program gets keyboard input: Keyboard input is delivered to
your program's window procedures in the form of messages. Indeed, when first learning about messages, the
keyboard is an obvious example of the type of information that messages might deliver to applications.

There are eight different messages that Windows uses to indicate various keyboard events. This may seem like a
lot, but (as we'll see) your program can safely ignore at least half of them. Also, in most cases, the keyboard
information encoded in these messages is probably more than your program needs. Part of the job of handling the
keyboard is knowing which messages are important and which are not.

Ignoring the Keyboard

Although the keyboard is often the primary source of user input in Windows programs, your program does not
need to act on every keyboard message it receives. Windows handles many keyboard functions itself.

For instance, you can usually ignore keystrokes that pertain to system functions. These keystrokes generally
involve the Alt key. You do not need to monitor these actual keystrokes because Windows notifies a program of
the effect of the keystrokes. (A program can monitor the keystrokes itself if it wants to, however.) The keystrokes
that invoke a program's menu come through a window's window procedure, but they are usually passed on to
DefWindowProc for default processing. Eventually, the window procedure gets a message indicating that a menu
item has been selected. This is generally all the window procedure needs to know. (Menus are covered in Chapter
10.)

Many Windows programs use keyboard accelerators to invoke common menu items. The accelerators usually
involve the Ctrl key in combination with a function key or a letter key (for example, Ctrl-S to save a file). These
keyboard accelerators are defined in a program's resource script along with a program's menu, as we'll see in
Chapter 10. Windows translates these keyboard accelerators into menu command messages. You don't have to do
the translation yourself.

Dialog boxes also have a keyboard interface, but programs usually do not need to monitor the keyboard when a
dialog box is active. The keyboard interface is handled by Windows, and Windows sends messages to your
program about the effects of the keystrokes. Dialog boxes can contain edit controls for text input. These are
generally small boxes in which the user types a character string. Windows handles all the edit control logic and
gives your program the final contents of the edit control when the user is done. See Chapter 11 for more on dialog
boxes.

Edit controls don't have to be limited to a single line, and they don't have to be located only in dialog boxes. A
multiline edit control in your program's main window can function as a rudimentary text editor. (This is shown in
the POPPAD programs in Chapters 9, 10, 11, and 13.) And Windows even has a fancier rich-text edit control that
lets you edit and display formatted text. (See /Platform SDK/User Interface Services/Controls/Rich Edit Controls.)

You'll also find that when structuring your Windows programs, you can use child window controls to process
keyboard and mouse input to deliver a higher level of information back to the parent window. Accumulate enough
of these controls and you'll never have to be bothered with processing keyboard messages at all.

Who's Got the Focus?

Like all personal computer hardware, the keyboard must be shared by all applications running under Windows.
Some applications might have more than one window, and the keyboard must be shared by all the windows within
the application.

As you'll recall, the MSG structure that a program uses to retrieve messages from the message queue includes a
hwnd field. This field indicates the handle of the window that is to receive the message. The DispatchMessage
function in the message loop sends that message to the window procedure associated with the window for which
the message is intended. When a key on the keyboard is pressed, only one window procedure receives a keyboard
message, and this message includes a handle to the window that is to receive the message.

The window that receives a particular keyboard event is the window that has the input focus. The concept of input
focus is closely related to the concept of the active window. The window with the input focus is either the active
window or a descendant window of the active window—that is, a child of the active window, or a child of a child of
the active window, and so forth.

The active window is usually easy to identify. It is always a top-level window—that is, its parent window handle is
NULL. If the active window has a title bar, Windows highlights the title bar. If the active window has a dialog frame
(a form most commonly seen in dialog boxes) instead of a title bar, Windows highlights the frame. If the active
window is currently minimized, Windows highlights its entry in the task bar by showing it as a depressed button.

If the active window has child windows, the window with the input focus can be either the active window or one of
its descendants. The most common child windows are controls such as push buttons, radio buttons, check boxes,
scroll bars, edit boxes, and list boxes that appear in dialog boxes. Child windows are never themselves active
windows. A child window can have the input focus only if it is a descendent of the active window. Child window
controls indicate that they have the input focus generally by displaying a flashing caret or a dotted line.

Sometimes no window has the input focus. This is the case if all your programs have been minimized. Windows
continues to send keyboard messages to the active window, but these messages are in a different form from
keyboard messages sent to active windows that are not minimized.

A window procedure can determine when its window has the input focus by trapping WM_SETFOCUS and
WM_KILLFOCUS messages. WM_SETFOCUS indicates that the window is receiving the input focus, and
WM_KILLFOCUS signals that the window is losing the input focus. I'll have more to say about these messages later
in this chapter.

Queues and Synchronization

As the user presses and releases keys on the keyboard, Windows and the keyboard device driver translate the
hardware scan codes into formatted messages. However, these messages are not placed in an application's
message queue right away. Instead, Windows stores these messages in something called the system message
queue. The system message queue is a single message queue maintained by Windows specifically for the
preliminary storage of user input from the keyboard and the mouse. Windows will take the next message from the
system message queue and place it in an application's message queue only when a Windows application has
finished processing a previous user input message.

The reasons for this two-step process—storing messages first in the system message queue and then passing
them to the application message queue—involves synchronization. As we just learned, the window that is
supposed to receive keyboard input is the window with the input focus. A user can be typing faster than an
application can handle the keystrokes, and a particular keystroke might have the effect of switching focus from
one window to another. Subsequent keystrokes should then go to another window. But they won't if the
subsequent keystrokes have already been addressed with a destination window and placed in an application
message queue.

Keystrokes and Characters

The messages that an application receives from Windows about keyboard events distinguish between keystrokes
and characters. This is in accordance with the two ways you can view the keyboard.

First, you can think of the keyboard as a collection of keys. The keyboard has only one key labeled "A." Pressing
that key is a keystroke. Releasing that key is also considered a keystroke. But the keyboard is also an input device
that generates displayable characters or control characters. The "A" key can generate several different characters
depending on the status of the Ctrl, Shift, and Caps Lock keys. Normally, the character is a lowercase "a." If the
Shift key is down or Caps Lock is toggled on, the character is an uppercase "A." If Ctrl is down, the character is a
Ctrl-A (which has meaning in ASCII but in Windows is probably a keyboard accelerator if anything). On some
keyboards, the "A" keystroke might be preceded by a dead-character key or by Shift, Ctrl, or Alt in various
combinations. The combinations could generate a lowercase or uppercase letter with an accent mark, such as à, á,
â, ã, Ä, or Å.

For keystroke combinations that result in displayable characters, Windows sends a program both keystroke
messages and character messages. Some keys do not generate characters. These include the shift keys, the
function keys, the cursor movement keys, and special keys such as Insert and Delete. For these keys, Windows
generates only keystroke messages.

Keystroke Messages

When you press a key, Windows places either a WM_KEYDOWN or WM_SYSKEYDOWN message in the message
queue of the window with the input focus. When you release a key, Windows places either a WM_KEYUP or
WM_SYSKEYUP message in the message queue.
Key Pressed
Key Released
Nonsystem Keystroke:
WM_KEYDOWN
WM_KEYUP
System Keystroke:
WM_SYSKEYDOWN
WM_SYSKEYUP

Usually the up and down messages occur in pairs. However, if you hold down a key so that the typematic
(autorepeat) action takes over, Windows sends the window procedure a series of WM_KEYDOWN (or
WM_SYSKEYDOWN) messages and a single WM_KEYUP (or WM_SYSKEYUP) message when the key is finally
released. Like all queued messages, keystroke messages are time-stamped. You can retrieve the relative time a
key was pressed or released by calling GetMessageTime .

System and Nonsystem Keystrokes

The "SYS" in WM_SYSKEYDOWN and WM_SYSKEYUP stands for "system" and refers to keystrokes that are more
important to Windows than to Windows applications. The WM_SYSKEYDOWN and WM_SYSKEYUP messages are
usually generated for keys typed in combination with the Alt key. These keystrokes invoke options on the
program's menu or system menu, or they are used for system functions such as switching the active window (Alt-
Tab or Alt-Esc) or for system menu accelerators (Alt in combination with a function key such as Alt-F4 to close an
application). Programs usually ignore the WM_SYSKEYUP and WM_SYSKEYDOWN messages and pass them to
DefWindowProc . Because Windows takes care of all the Alt-key logic, you really have no need to trap these
messages. Your window procedure will eventually receive other messages concerning the result of these
keystrokes (such as a menu selection). If you want to include code in your window procedure to trap the system
keystroke messages (as we will do in the KEYVIEW1 and KEYVIEW2 programs shown later in this chapter), pass
the messages to DefWindowProc after you process them so that Windows can still use them for their intended
purposes.

But think about this for a moment. Almost everything that affects your program's window passes through your
window procedure first. Windows does something with the message only if you pass the message to
DefWindowProc . For instance, if you add the lines

case WM_SYSKEYDOWN:
case WM_SYSKEYUP:
case WM_SYSCHAR:
 return 0 ;

to a window procedure, you effectively disable all Alt-key operations when your program's main window has the
input focus. (I'll discuss the WM_SYSCHAR message later in this chapter.) This includes Alt-Tab, Alt-Esc, and
menu operations. Although I doubt you would want to do this, I trust you sense the power inherent in the window
procedure.

The WM_KEYDOWN and WM_KEYUP messages are usually generated for keys that are pressed and released
without the Alt key. Your program can use or discard these keystroke messages. Windows doesn't care about
them.

For all four keystroke messages, wParam is a virtual key code that identifies the key being pressed or released
and lParam contains other data pertaining to the keystroke.

Virtual Key Codes

The virtual key code is stored in the wParam parameter of the WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN,
and WM_SYSKEYUP messages. This code identifies the key being pressed or released.

Ah, that ubiquitous word "virtual." Don't you love it? It's supposed to refer to something that exists in the mind
rather than in the real world, but only veteran programmers of DOS assembly language applications might figure
out why the key codes so essential to Windows keyboard processing are considered virtual rather than real.

To old-time programmers, the real keyboard codes are generated by the hardware of the physical keyboard. These
are referred to in the Windows documentation as scan codes . On IBM compatibles, a scan code of 16 is the Q key,
17 is the W key, 18 is E, 19 is R, 20 is T, 21 is Y, and so on. You get the idea—the scan codes are based on the
physical layout of the keyboard. The developers of Windows considered these scan codes too device-dependent.
They thus attempted to treat the keyboard in a device-independent manner by defining the so-called virtual key
codes. Some of these virtual key codes cannot be generated on IBM compatibles but may be found on other
manufacturer's keyboards, or perhaps on keyboards of the future.

The virtual key codes you use most often have names beginning with VK_ defined in the WINUSER.H header file.
The tables below show these names along with the numeric values (in both decimal and hexadecimal) and the
IBM-compatible keyboard key that corresponds to the virtual key. The tables also indicate whether these keys are
required for Windows to run properly. The tables show the virtual key codes in numeric order.

Three of the first four virtual key codes refer to mouse buttons:
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
1
01
VK_LBUTTON
Mouse Left Button
2
02
VK_RBUTTON
Mouse Right Button
3
03
VK_CANCEL
X
Ctrl-Break
4
04
VK_MBUTTON
Mouse Middle Button

You will never get these mouse button codes in the keyboard messages. They are found in mouse messages, as
we'll see in the next chapter. The VK_CANCEL code is the only virtual key code that involves pressing two keys at
once (Ctrl-Break). Windows applications generally do not use this key.

Several of the following keys—Backspace, Tab, Enter, Escape, and Spacebar—are commonly used by Windows
programs. However, Windows programs generally use character messages (rather than keystroke messages) to
process these keys.
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
8
08
VK_BACK
X
Backspace
9
09
VK_TAB
X
Tab
12
0C

VK_CLEAR
Numeric keyboard 5 with Num Lock OFF
13
0D
VK_RETURN
X
Enter (either one)
16
10
VK_SHIFT
X
Shift (either one)
17
11
VK_CONTROL
X
Ctrl (either one)
18
12
VK_MENU
X
Alt (either one)
19
13
VK_PAUSE
Pause
20
14
VK_CAPITAL
X
Caps Lock
27
1B
VK_ESCAPE
X
Esc
32
20
VK_SPACE
X
Spacebar

Also, Windows programs usually do not need to monitor the status of the Shift, Ctrl, or Alt keys.

The first eight codes listed in the following table are perhaps the most commonly used virtual key codes along with
VK_INSERT and VK_DELETE:
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
33
21
VK_PRIOR
X
Page Up
34
22
VK_NEXT
X
Page Down
35
23
VK_END
X
End
36

24
VK_HOME
X
Home
37
25
VK_LEFT
X
Left Arrow
38
26
VK_UP
X
Up Arrow
39
27
VK_RIGHT
X
Right Arrow
40
28
VK_DOWN
X
Down Arrow
41
29
VK_SELECT
42
2A
VK_PRINT
43
2B
VK_EXECUTE
44
2C
VK_SNAPSHOT
Print Screen
45
2D
VK_INSERT
X
Insert
46
2E
VK_DELETE
X
Delete
47
2F
VK_HELP

Notice that many of the names (such as VK_PRIOR and VK_NEXT) are unfortunately quite different from the labels
on the keys and also not consistent with the identifiers used in scroll bars. The Print Screen key is largely ignored
by Windows applications. Windows itself responds to the key by storing a bitmap copy of the video display into the
clipboard. VK_SELECT, VK_PRINT, VK_EXECUTE, and VK_HELP might be found on a hypothetical keyboard that
few of us have ever seen.

Windows also includes virtual key codes for the letter keys and number keys on the main keyboard. (The number
pad is handled separately.)
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
48_57
30_39

None
X
0 through 9 on main keyboard
65_90
41_5A
None
X
A through Z

Notice that the virtual key codes are the ASCII codes for the numbers and letters. Windows programs almost
never use these virtual key codes; instead, the programs rely on character messages for ASCII characters.

The following keys are generated from the Microsoft Natural Keyboard and compatibles:
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
91
5B
VK_LWIN
Left Windows key
92
5C
VK_RWIN
Right Windows key
93
5D
VK_APPS
Applications key

The VK_LWIN and VK_RWIN keys are handled by Windows to open the Start menu or (in older versions) to launch
the Task Manager. Together, they can log on or off Windows (in Microsoft Windows NT only), or log on or off a
network (in Windows for Workgroups). Applications can process the application key by displaying help information
or shortcuts.

The following codes are for the keys on the numeric keypad (if present):
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
96-105
60-69
VK_NUMPAD0 through VK_NUMPAD9
Numeric keypad 0 through 9 with Num Lock ON
106
6A
VK_MULTIPLY
Numeric keypad *
107
6B
VK_ADD
Numeric keypad +
108
6C
VK_SEPARATOR
109
6D
VK_SUBTRACT
Numeric keypad-
110
6E
VK_DECIMAL
Numeric keypad .
111
6F

VK_DIVIDE
Numeric keypad /

Finally, although most keyboards have 12 function keys, Windows requires only 10 but has numeric identifiers for
24. Again, programs generally use the function keys as keyboard accelerators so they usually don't process the
keystrokes in this table:
Decimal
Hex
WINUSER.H Identifier
Required?
IBM-Compatible Keyboard
112-121
70-79
VK_F1 through VK_F10
X
Function keys F1 through F10
122-135
7A-87
VK_F11 through VK_F24
Function keys F11 through F24
144
90
VK_NUMLOCK
Num Lock
145
91
VK_SCROLL
Scroll Lock

Some other virtual key codes are defined, but they are reserved for keys specific to nonstandard keyboards or for
keys most commonly found on mainframe terminals. Check /Platform SDK/User Interface Services/User
Input/Virtual-Key Codes for a complete list.

The lParam Information

In the four keystroke messages (WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN, and WM_SYSKEYUP), the
wParam message parameter contains the virtual key code as described above, and the lParam message parameter
contains other information useful in understanding the keystroke. The 32 bits of lParam are divided into six fields
as shown in Figure 6-1.

Figure 6-1. The six keystroke-message fields of the lParam variable.

Repeat Count

The repeat count is the number of keystrokes represented by the message. In most cases, this will be set to 1.
However, if a key is held down and your window procedure is not fast enough to process key-down messages at
the typematic rate (which you can set in the Keyboard applet in the Control Panel), Windows combines several
WM_KEYDOWN or WM_SYSKEYDOWN messages into a single message and increases the Repeat Count field
accordingly. The Repeat Count is always 1 for a WM_KEYUP or WM_SYSKEYUP message.

Because a Repeat Count greater than 1 indicates that typematic keystrokes are occurring faster than your
program can process them, you may want to ignore the Repeat Count when processing the keyboard messages.
Almost everyone has had the experience of "overscrolling" a word-processing document or spreadsheet because
extra keystrokes have accumulated. If your program ignores the Repeat Count in cases where your program
spends some time processing each keystroke, you can eliminate this problem. However, in other cases you will
want to use the Repeat Count. You may want to try using the programs both ways and see which feels the most
natural.

OEM Scan Code

The OEM Scan Code is the code generated by the hardware of the keyboard. This is familiar to middle-aged
assembly language programmers as the value obtained from the ROM BIOS services of PC compatibles. (OEM
refers to the Original Equipment Manufacturer of the PC and in this context is synonymous with "IBM Standard.")
We don't need this stuff anymore. Windows programs can almost always ignore the OEM Scan Code except when
dependent on the physical layout of the keyboard, such as the KBMIDI program in Chapter 22 .

Extended Key Flag

The Extended Key Flag is 1 if the keystroke results from one of the additional keys on the IBM enhanced
keyboard. (The enhanced keyboard has 101 or 102 keys. Function keys are across the top. Cursor movement keys
are separate from the numeric keypad, but the numeric keypad also duplicates the cursor movement keys.) This
flag is set to 1 for the Alt and Ctrl keys at the right of the keyboard, the cursor movement keys (including Insert
and Delete) that are not part of the numeric keypad, the slash (/) and Enter keys on the numeric keypad, and the
Num Lock key. Windows programs generally ignore the Extended Key Flag.

Context Code

The Context Code is 1 if the Alt key is depressed during the keystroke. This bit will always be 1 for the
WM_SYSKEYUP and WM_SYSKEYDOWN messages and 0 for the WM_KEYUP and WM_KEYDOWN messages, with
two exceptions:

If the active window is minimized, it does not have the input focus. All keystrokes generate WM_SYSKEYUP
and WM_SYSKEYDOWN messages. If the Alt key is not pressed, the Context Code field is set to 0. Windows
uses WM_SYSKEYUP and WM_SYSKEYDOWN messages so that a minimized active window doesn't process
these keystrokes.

On some foreign-language keyboards, certain characters are generated by combining Shift, Ctrl, or Alt with
another key. In these cases, the Context Code is set to 1 but the messages are not system keystroke
messages.

Previous Key State

The Previous Key State is 0 if the key was previously up and 1 if the key was previously down. It is always set to 1
for a WM_KEYUP or WM_SYSKEYUP message, but it can be 0 or 1 for a WM_KEYDOWN or WM_SYSKEYDOWN
message. A 1 indicates second and subsequent messages that are the result of typematic repeats.

Transition State

The Transition State is 0 if the key is being pressed and 1 if the key is being released. The field is set to 0 for a
WM_KEYDOWN or WM_SYSKEYDOWN message and to 1 for a WM_KEYUP or WM_SYSKEYUP message.

Shift States

When you process a keystroke message, you may need to know whether any of the shift keys (Shift, Ctrl, and Alt)
or toggle keys (Caps Lock, Num Lock, and Scroll Lock) are pressed. You can obtain this information by calling the
GetKeyState function. For instance:

iState = GetKeyState (VK_SHIFT) ;

The iState variable will be negative (that is, the high bit is set) if the Shift key is down. The value returned from

iState = GetKeyState (VK_CAPITAL) ;

has the low bit set if the Caps Lock key is toggled on. This bit will agree with the little light on the keyboard.

Generally, you'll use GetKeyState with the virtual key codes VK_SHIFT, VK_CONTROL, and VK_MENU (which you'll
recall indicates the Alt key). You can also use the following identifiers with GetKeyState to determine if the left or
right Shift, Ctrl, or Alt keys are pressed: VK_LSHIFT, VK_RSHIFT, VK_LCONTROL, VK_RCONTROL, VK_LMENU,
VK_RMENU. These identifiers are used only with GetKeyState and GetAsyncKeyState (described below).

You can also obtain the state of the mouse buttons using the virtual key codes VK_LBUTTON, VK_RBUTTON, and
VK_MBUTTON. However, most Windows programs that need to monitor a combination of mouse buttons and
keystrokes usually do it the other way around—by checking keystrokes when they receive a mouse message. In
fact, shift-state information is conveniently included in the mouse messages, as we'll see in the next chapter.

Be careful with GetKeyState . It is not a real-time keyboard status check. Rather, it reflects the keyboard status
up to and including the current message being processed. For the most part, this is exactly what you want. If you
need to determine if the user typed Shift-Tab, you can call GetKeyState with the VK_SHIFT parameter while
processing the WM_KEYDOWN message for the Tab key. If the return value of GetKeyState is negative, you know
that the Shift key was pressed before the Tab key. And it doesn't matter if the Shift key has already been released
by the time you get around to processing the Tab key. You know that the Shift key was down when Tab was
pressed.

GetKeyState does not let you retrieve keyboard information independent of normal keyboard messages. For
instance, you may feel a need to hold up processing in your window procedure until the user presses the F1
function key:

while (GetKeyState (VK_F1) >= 0) ; // WRONG !!!

Don't do it! This is guaranteed to hang your program (unless, of course, the WM_KEYDOWN message for F1 was
retrieved from the message queue before you executed the statement). If you really need to know the current
real-time state of a key, you can use GetAsyncKeyState .

Using Keystroke Messages

A Windows program gets information about each and every keystroke that occurs while the program is running.
This is certainly helpful. However, most Windows programs ignore all but a few keystroke messages. The
WM_SYSKEYDOWN and WM_SYSKEYUP messages are for Windows system functions, and you don't need to look
at them. If you process WM_KEYDOWN messages, you can usually also ignore WM_KEYUP messages.

Windows programs generally use WM_KEYDOWN messages for keystrokes that do not generate characters.
Although you may think that it's possible to use keystroke messages in combination with shift-state information to
translate keystroke messages into characters, don't do it. You'll have problems with non-English keyboards. For
example, if you get a WM_KEYDOWN message with wParam equal to 0x33, you know the user pressed the 3 key.
So far, so good. If you use GetKeyState and find out that the Shift key is down, you might assume that the user is
typing a pound sign (#). Not necessarily. A British user is typing another type of pound sign, the one that looks
like this: £.

The WM_KEYDOWN messages are most useful for the cursor movement keys, the function keys, Insert, and
Delete. However, Insert, Delete, and the function keys often appear as menu accelerators. Because Windows
translates menu accelerators into menu command messages, you don't have to process the keystrokes
themselves.

It was common for pre-Windows applications for MS-DOS to use the function keys extensively in combination with
the Shift, Ctrl, and Alt keys. You can do something similar in your Windows programs (indeed, Microsoft Word
uses the function keys extensively as command short cuts), but it's not really recommended. If you want to use
the function keys, they should duplicate menu commands. One objective in Windows is to provide a user interface

that doesn't require memorization or consultation of complex command charts.

So, it comes down to this: Most of the time, you will process WM_KEYDOWN messages only for cursor movement
keys, and sometimes for Insert and Delete. When you use these keys, you can check the Shift-key and Ctrl-key
states through GetKeyState . Windows programs often use the Shift key in combination with the cursor keys to
extend a selection in (for instance) a word-processing document. The Ctrl key is often used to alter the meaning of
the cursor key. For example, Ctrl in combination with the Right Arrow key might mean to move the cursor one
word to the right.

One of the best ways to determine how to use the keyboard in your application is to examine how the keyboard is
used in existing popular Windows programs. If you don't like those definitions, you are free to do something
different. But keep in mind that doing so might be detrimental to a user's ability to learn your program quickly.

Enhancing SYSMETS for the Keyboard

The three versions of the SYSMETS program in Chapter 4 were written without any knowledge of the keyboard.
We were able to scroll the text only by using the mouse on the scroll bars. Now that we know how to process
keystroke messages, let's add a keyboard interface to the program. This is obviously a job for cursor movement
keys. We'll use most of these keys (Home, End, Page Up, Page Down, Up Arrow, and Down Arrow) for vertical
scrolling. The Left Arrow and Right Arrow keys can take care of the less important horizontal scrolling.

One obvious way to create a keyboard interface is to add some WM_KEYDOWN logic to the window procedure that
parallels and essentially duplicates all the WM_VSCROLL and WM_HSCROLL logic. However, this is unwise,
because if we ever wanted to change the scroll bar logic we'd have to make the same changes in WM_KEYDOWN.

Wouldn't it be better to simply translate each of these WM_KEYDOWN messages into an equivalent WM_VSCROLL
or WM_HSCROLL message? Then we could perhaps fool WndProc into thinking that it's getting a scroll bar
message, perhaps by sending a phony message to the window procedure.

Windows lets you do this. The function is named SendMessage , and it takes the same parameters as those passed
to the window procedure:

SendMessage (hwnd, message, wParam, lParam) ;

When you call SendMessage , Windows calls the window procedure whose window handle is hwnd , passing to it
these four function arguments. When the window procedure has completed processing the message, Windows
returns control to the next statement following the SendMessage call. The window procedure you send the
message to could be the same window procedure, another window procedure in the same program, or even a
window procedure in another application.

Here's how we might use SendMessage for processing WM_KEYDOWN codes in the SYSMETS program:

case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_HOME:
 SendMessage (hwnd, WM_VSCROLL, SB_TOP, 0) ;
 break ;

 case VK_END:
 SendMessage (hwnd, WM_VSCROLL, SB_BOTTOM, 0) ;
 break ;

 case VK_PRIOR:
 SendMessage (hwnd, WM_VSCROLL, SB_PAGEUP, 0) ;
 break ;

And so forth. You get the general idea. Our goal was to add a keyboard interface to the scroll bars, and that's
exactly what we've done. We've made the cursor movement keys duplicate scroll bar logic by actually sending the
window procedure a scroll bar message. Now you can see why I included SB_TOP and SB_BOTTOM processing for
WM_VSCROLL messages in the SYSMETS3 program. It wasn't used then, but it's used now for processing the
Home and End keys. The SYSMETS4 program, shown in Figure 6-2, incorporates these changes. You'll also need
the SYSMETS.H file from Chapter 4 to compile this program.

Figure 6-2. The SYSMETS4 program.

SYSMETS4.C

/*--
 SYSMETS4.C -- System Metrics Display Program No. 4
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "sysmets.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SysMets4") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Get System Metrics No. 4"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL | WS_HSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}
LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar, cxClient, cyClient, iMaxWidth ;
 HDC hdc ;
 int i, x, y, iVertPos, iHorzPos, iPaintBeg, iPaintEnd ;
 PAINTSTRUCT ps ;
 SCROLLINFO si ;
 TCHAR szBuffer[10] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;

 // Save the width of the three columns

 iMaxWidth = 40 * cxChar + 22 * cxCaps ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 // Set vertical scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = NUMLINES - 1 ;
 si.nPage = cyClient / cyChar ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;

 // Set horizontal scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = 2 + iMaxWidth / cxChar ;
 si.nPage = cxClient / cxChar ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 return 0 ;

 case WM_VSCROLL:
 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // Save the position for comparison later on

 iVertPos = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_TOP:
 si.nPos = si.nMin ;
 break ;

 case SB_BOTTOM:
 si.nPos = si.nMax ;
 break ;

 case SB_LINEUP:
 si.nPos -= 1 ;
 break ;

 case SB_LINEDOWN:
 si.nPos += 1 ;
 break ;

 case SB_PAGEUP:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGEDOWN:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBTRACK:
 si.nPos = si.nTrackPos ;
 break ;

 default:
 break ;
 }

 // Set the position and then retrieve it. Due to adjustments
 // by Windows it might not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // If the position has changed, scroll the window and update it

 if (si.nPos != iVertPos)
 {
 ScrollWindow (hwnd, 0, cyChar * (iVertPos - si.nPos),
 NULL, NULL) ;
 UpdateWindow (hwnd) ;
 }
 return 0 ;

 case WM_HSCROLL:
 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;

 // Save the position for comparison later on

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_LINELEFT:
 si.nPos -= 1 ;
 break ;

 case SB_LINERIGHT:
 si.nPos += 1 ;
 break ;

 case SB_PAGELEFT:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGERIGHT:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBPOSITION:
 si.nPos = si.nTrackPos ;
 break ;

 default:
 break ;

 }
 // Set the position and then retrieve it. Due to adjustments
 // by Windows it might not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 // If the position has changed, scroll the window

 if (si.nPos != iHorzPos)
 {
 ScrollWindow (hwnd, cxChar * (iHorzPos - si.nPos), 0,
 NULL, NULL) ;
 }
 return 0 ;

 case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_HOME:
 SendMessage (hwnd, WM_VSCROLL, SB_TOP, 0) ;
 break ;

 case VK_END:
 SendMessage (hwnd, WM_VSCROLL, SB_BOTTOM, 0) ;
 break ;

 case VK_PRIOR:
 SendMessage (hwnd, WM_VSCROLL, SB_PAGEUP, 0) ;
 break ;

 case VK_NEXT:
 SendMessage (hwnd, WM_VSCROLL, SB_PAGEDOWN, 0) ;
 break ;

 case VK_UP:
 SendMessage (hwnd, WM_VSCROLL, SB_LINEUP, 0) ;
 break ;

 case VK_DOWN:
 SendMessage (hwnd, WM_VSCROLL, SB_LINEDOWN, 0) ;
 break ;

 case VK_LEFT:
 SendMessage (hwnd, WM_HSCROLL, SB_PAGEUP, 0) ;
 break ;

 case VK_RIGHT:
 SendMessage (hwnd, WM_HSCROLL, SB_PAGEDOWN, 0) ;
 break ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Get vertical scroll bar position

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_POS ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;
 iVertPos = si.nPos ;

 // Get horizontal scroll bar position

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 // Find painting limits

 iPaintBeg = max (0, iVertPos + ps.rcPaint.top / cyChar) ;
 iPaintEnd = min (NUMLINES - 1,
 iVertPos + ps.rcPaint.bottom / cyChar) ;

 for (i = iPaintBeg ; i <= iPaintEnd ; i++)
 {
 x = cxChar * (1 - iHorzPos) ;
 y = cyChar * (i - iVertPos) ;

 TextOut (hdc, x, y,
 sysmetrics[i].szLabel,
 lstrlen (sysmetrics[i].szLabel)) ;

 TextOut (hdc, x + 22 * cxCaps, y,
 sysmetrics[i].szDesc,
 lstrlen (sysmetrics[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;

 TextOut (hdc, x + 22 * cxCaps + 40 * cxChar, y, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetSystemMetrics (sysmetrics[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Character Messages

Earlier in this chapter, I discussed the idea of translating keystroke messages into character messages by taking
shift-state information into account. I warned you that shift-state information is not enough: you also need to
know about country-dependent keyboard configurations. For this reason, you should not attempt to translate
keystroke messages into character codes yourself. Instead, Windows does it for you. You've seen this code before:

while (GetMessage (&msg, NULL, 0, 0))
{
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
}

This is a typical message loop that appears in WinMain. The GetMessage function fills in the msg structure fields
with the next message from the queue. DispatchMessage calls the appropriate window procedure with this
message.

Between these two functions is TranslateMessage, which takes on the responsibility of translating keystroke
messages to character messages. If the keystroke message is WM_KEYDOWN or WM_SYSKEYDOWN, and if the
keystroke in combination with the shift state produces a character, TranslateMessage places a character message
in the message queue. This character message will be the next message that GetMessage retrieves from the
queue after the keystroke message.

The Four Character Messages

There are four character messages:

Characters Dead Characters

Nonsystem Characters: WM_CHAR WM_DEADCHAR

System Characters: WM_SYSCHAR WM_SYSDEADCHAR

The WM_CHAR and WM_DEADCHAR messages are derived from WM_KEYDOWN messages. The WM_SYSCHAR and
WM_SYSDEADCHAR messages are derived from WM_SYSKEYDOWN messages. (I'll discuss what a dead character
is shortly.)

Here's the good news: In most cases, your Windows program can process the WM_CHAR message while ignoring
the other three character messages. The lParam parameter that accompanies the four character messages is the
same as the lParam parameter for the keystroke message that generated the character code message. However,
the wParam parameter is not a virtual key code. Instead, it is an ANSI or Unicode character code.

These character messages are the first messages we've encountered that deliver text to the window procedure.
They're not the only ones. Other messages are accompanied by entire zero-terminated text strings. How does the
window procedure know whether this character data is 8-bit ANSI or 16-bit Unicode? It's simple: Any window
procedure associated with a window class that you register with RegisterClassA (the ANSI version of
RegisterClass) gets messages that contain ANSI character codes. Messages to window procedures that were
registered with RegisterClassW (the wide-character version of RegisterClass) come with Unicode character codes.
If your program registers its window class using RegisterClass, that's really RegisterClassW if the UNICODE
identifier was defined and RegisterClassA otherwise.

Unless you're explicitly doing mixed coding of ANSI and Unicode functions and window procedures, the character
code delivered with the WM_CHAR message (and the three other character messages) is

(TCHAR) wParam

The same window procedure might be used with two window classes, one registered with RegisterClassA and the
other registered with RegisterClassW. This means that the window procedure might get some messages with ANSI
character codes and some messages with Unicode character codes. If your window procedure needs help to sort
things out, it can call

fUnicode = IsWindowUnicode (hwnd) ;

The fUnicode variable will be TRUE if the window procedure for hwnd gets Unicode messages, which means the
window is based on a window class that was registered with RegisterClassW.

Message Ordering

Because the character messages are generated by the TranslateMessage function from WM_KEYDOWN and
WM_SYSKEYDOWN messages, the character messages are delivered to your window procedure sandwiched
between keystroke messages. For instance, if Caps Lock is not toggled on and you press and release the A key,
the window procedure receives the following three messages:

Message Key or Code

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `a' (0x61)

WM_KEYUP Virtual key code for `A' (0x41)

If you type an uppercase A by pressing the Shift key, pressing the A key, releasing the A key, and then releasing
the Shift key, the window procedure receives five messages:

Message Key or Code

WM_KEYDOWN Virtual key code VK_SHIFT (0x10)

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `A' (0x41)

WM_KEYUP Virtual key code for `A' (0x41)

WM_KEYUP Virtual key code VK_SHIFT (0x10)

The Shift key by itself does not generate a character message.

If you hold down the A key so that the typematic action generates keystrokes, you'll get a character message for
each WM_KEYDOWN message:

Message Key or Code

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `a' (0x61)

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `a' (0x61)

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `a' (0x61)

WM_KEYDOWN Virtual key code for `A' (0x41)

WM_CHAR Character code for `a' (0x61)

WM_KEYUP Virtual key code for `A' (0x41)

If some of the WM_KEYDOWN messages have a Repeat Count greater than 1, the corresponding WM_CHAR
message will have the same Repeat Count.

The Ctrl Key in combination with a letter key generates ASCII control characters from 0x01 (Ctrl-A) through 0x1A
(Ctrl-Z). Several of these control codes are also generated by the keys shown in the following table:

Key Character Code Duplicated by ANSI C Escape

Backspace 0x08 Ctrl-H \b

Tab 0x09 Ctrl-I \t

Ctrl-Enter 0x0A Ctrl-J \n

Enter 0x0D Ctrl-M \r

Esc 0x1B Ctrl-[

The rightmost column shows the escape code defined in ANSI C to represent the character codes for these keys.

Windows programs sometimes use the Ctrl key in combination with letter keys for menu accelerators (which I'll
discuss in Chapter 10). In this case, the letter keys are not translated into character messages.

Control Character Processing

The basic rule for processing keystroke and character messages is this: If you need to read keyboard character
input in your window, you process the WM_CHAR message. If you need to read the cursor keys, function keys,
Delete, Insert, Shift, Ctrl, and Alt, you process the WM_KEYDOWN message.

But what about the Tab key? Or Enter or Backspace or Escape? Traditionally, these keys generate ASCII control
characters, as shown in the preceding table. But in Windows they also generate virtual key codes. Should these
keys be processed during WM_CHAR processing or WM_KEYDOWN processing?

After a decade of considering this issue (and looking back over Windows code I've written over the years), I seem
to prefer treating the Tab, Enter, Backspace, and Escape keys as control characters rather than as virtual keys. My
WM_CHAR processing often looks something like this:

case WM_CHAR:
 [other program lines]
 switch (wParam)
 {
 case `\b': // backspace
 [other program line
 break ;
 case `\t': // tab
 [other program lines]
 break ;

 case `\n': // linefeed
 [other program lines]
 break ;

 case `\r': // carriage return
 [other program lines]
 break ;

 default: // character codes
 [other program lines]

 break ;
 }
 return 0 ;

Dead-Character Messages

Windows programs can usually ignore WM_DEADCHAR and WM_SYSDEADCHAR messages, but you should
definitely know what dead characters are and how they work.

On some non-U.S. English keyboards, certain keys are defined to add a diacritic to a letter. These are called "dead
keys" because they don't generate characters by themselves. For instance, when a German keyboard is installed,
the key that is in the same position as the +/= key on a U.S. keyboard is a dead key for the grave accent (`)
when shifted and the acute accent (´) when unshifted.

When a user presses this dead key, your window procedure receives a WM_DEADCHAR message with wParam
equal to ASCII or Unicode code for the diacritic by itself. When the user then presses a letter key that can be
written with this diacritic (for instance, the A key), the window procedure receives a WM_CHAR message where
wParam is the ANSI code for the letter `a' with the diacritic.

Thus, your program does not have to process the WM_DEADCHAR message because the WM_CHAR message gives
the program all the information it needs. The Windows logic even has built-in error handling: If the dead key is
followed by a letter that can't take a diacritic (such as `s'), the window procedure receives two WM_CHAR
messages in a row—the first with wParam equal to the ASCII code for the diacritic by itself (the same wParam
value delivered with the WM_DEADCHAR message) and the second with wParam equal to the ASCII code for the
letter `s'.

Of course, the best way to get a feel for this is to see it in action. You need to load a foreign keyboard that uses
dead keys, such as the German keyboard that I described earlier. You do this in the Control Panel by selecting
Keyboard and then the Language tab. Then you need an application that shows you the details of every keyboard
message a program can receive. That's the KEYVIEW1 program coming up next.

Keyboard Messages and Character Sets

The remaining sample programs in this chapter have flaws. They will not always run correctly under all versions of
Windows. Their flaws are not something I deliberately introduced into the code; indeed, you might never notice
them. These problems—I hesitate to call them "bugs"—reveal themselves only when switching among certain
different keyboard languages and layouts, and when running the programs under Far Eastern versions of Windows
that use multibyte character sets.

However, the programs will work much better when compiled for Unicode and run under Windows NT. This is the
promise I made in Chapter 2 , and it demonstrates why Unicode is so important in simplifying the work involved in
internationalization.

The KEYVIEW1 Program

The first step in understanding keyboard internationalization issues is to examine the contents of the keyboard
and character messages that Windows delivers to your window procedure. The KEYVIEW1 program shown in
Figure 6-3 will help. This program displays in its client area all the information that Windows sends the window
procedure for the eight different keyboard messages.

Figure 6-3. The KEYVIEW1 program.

KEYVIEW1.C

/*--
 KEYVIEW1.C -- Displays Keyboard and Character Messages
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("KeyView1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),

 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Keyboard Message Viewer #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClientMax, cyClientMax, cxClient, cyClient, cxChar, cyChar ;
 static int cLinesMax, cLines ;
 static PMSG pmsg ;
 static RECT rectScroll ;
 static TCHAR szTop[] = TEXT ("Message Key Char ")
 TEXT ("Repeat Scan Ext ALT Prev Tran") ;
 static TCHAR szUnd[] = TEXT ("_______ ___ ____ ")
 TEXT ("______ ____ ___ ___ ____ ____") ;

 static TCHAR * szFormat[2] = {

 TEXT ("%-13s %3d %-15s%c%6u %4d %3s %3s %4s %4s"),
 TEXT ("%-13s 0x%04X%1s%c %6u %4d %3s %3s %4s %4s") } ;
 static TCHAR * szYes = TEXT ("Yes") ;
 static TCHAR * szNo = TEXT ("No") ;
 static TCHAR * szDown = TEXT ("Down") ;
 static TCHAR * szUp = TEXT ("Up") ;

 static TCHAR * szMessage [] = {
 TEXT ("WM_KEYDOWN"), TEXT ("WM_KEYUP"),
 TEXT ("WM_CHAR"), TEXT ("WM_DEADCHAR"),
 TEXT ("WM_SYSKEYDOWN"), TEXT ("WM_SYSKEYUP"),
 TEXT ("WM_SYSCHAR"), TEXT ("WM_SYSDEADCHAR") } ;
 HDC hdc ;
 int i, iType ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer[128], szKeyName [32] ;
 TEXTMETRIC tm ;

 switch (message)

 {
 case WM_CREATE:
 case WM_DISPLAYCHANGE:

 // Get maximum size of client area

 cxClientMax = GetSystemMetrics (SM_CXMAXIMIZED) ;
 cyClientMax = GetSystemMetrics (SM_CYMAXIMIZED) ;

 // Get character size for fixed-pitch font

 hdc = GetDC (hwnd) ;

 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight ;

 ReleaseDC (hwnd, hdc) ;

 // Allocate memory for display lines

 if (pmsg)
 free (pmsg) ;

 cLinesMax = cyClientMax / cyChar ;
 pmsg = malloc (cLinesMax * sizeof (MSG)) ;
 cLines = 0 ;
 // fall through
 case WM_SIZE:
 if (message == WM_SIZE)
 {
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 }
 // Calculate scrolling rectangle

 rectScroll.left = 0 ;
 rectScroll.right = cxClient ;
 rectScroll.top = cyChar ;
 rectScroll.bottom = cyChar * (cyClient / cyChar) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_KEYDOWN:
 case WM_KEYUP:
 case WM_CHAR:
 case WM_DEADCHAR:
 case WM_SYSKEYDOWN:
 case WM_SYSKEYUP:
 case WM_SYSCHAR:
 case WM_SYSDEADCHAR:

 // Rearrange storage array

 for (i = cLinesMax - 1 ; i > 0 ; i--)
 {
 pmsg[i] = pmsg[i - 1] ;
 }
 // Store new message

 pmsg[0].hwnd = hwnd ;
 pmsg[0].message = message ;
 pmsg[0].wParam = wParam ;
 pmsg[0].lParam = lParam ;

 cLines = min (cLines + 1, cLinesMax) ;

 // Scroll up the display

 ScrollWindow (hwnd, 0, -cyChar, &rectScroll, &rectScroll) ;

 break ; // i.e., call DefWindowProc so Sys messages work

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 SetBkMode (hdc, TRANSPARENT) ;
 TextOut (hdc, 0, 0, szTop, lstrlen (szTop)) ;
 TextOut (hdc, 0, 0, szUnd, lstrlen (szUnd)) ;

 for (i = 0 ; i < min (cLines, cyClient / cyChar - 1) ; i++)
 {
 iType = pmsg[i].message == WM_CHAR ||
 pmsg[i].message == WM_SYSCHAR ||
 pmsg[i].message == WM_DEADCHAR ||
 pmsg[i].message == WM_SYSDEADCHAR ;

 GetKeyNameText (pmsg[i].lParam, szKeyName,
 sizeof (szKeyName) / sizeof (TCHAR)) ;

 TextOut (hdc, 0, (cyClient / cyChar - 1 - i) * cyChar, szBuffer,
 wsprintf (szBuffer, szFormat [iType],
 szMessage [pmsg[i].message - WM_KEYFIRST],
 pmsg[i].wParam,
 (PTSTR) (iType ? TEXT (" ") : szKeyName),
 (TCHAR) (iType ? pmsg[i].wParam : ` `),
 LOWORD (pmsg[i].lParam),
 HIWORD (pmsg[i].lParam) & 0xFF,
 0x01000000 & pmsg[i].lParam ? szYes : szNo,
 0x20000000 & pmsg[i].lParam ? szYes : szNo,
 0x40000000 & pmsg[i].lParam ? szDown : szUp,
 0x80000000 & pmsg[i].lParam ? szUp : szDown)) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

KEYVIEW1 displays the contents of each keystroke and character message that it receives in its window
procedure. It saves the messages in an array of MSG structures. The size of the array is based on the size of the
maximized window size and the fixed-pitch system font. If the user resizes the video display while the program is
running (in which case KEYVIEW1 gets a WM_DISPLAYCHANGE message), the array is reallocated. KEYVIEW1
uses the standard C malloc function to allocate memory for this array.

Figure 6-4 shows the KEYVIEW1 display after the word "Windows" has been typed. The first column shows the
keyboard message. The second column shows the virtual key code for keystroke messages followed by the name
of the key. This is obtained by using the GetKeyNameText function. The third column (labeled "Char") shows the
hexadecimal character code for character messages followed by the character itself. The remaining six columns
display the status of the six fields in the lParam message parameter.

Figure 6-4. The KEYVIEW1 display.

To ease the columnar display of this information, KEYVIEW1 uses a fixed-pitch font. As discussed in the last
chapter, this requires calls to GetStockObject and SelectObject :

SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

KEYVIEW1 draws a header at the top of the client area identifying the nine columns. The text in this column is
underlined. Although it's possible to create an underlined font, I took a different approach here. I defined two
character string variables named szTop (which has the text) and szUnd (which has the underlining) and displayed
both of them at the same position at the top of the window during the WM_PAINT message. Normally, Windows
displays text in an "opaque" mode, meaning that Windows erases the character background area while displaying

a character. This would cause the second character string (szUnd) to erase the first (szTop). To prevent this,
switch the device context into the "transparent" mode:

SetBkMode (hdc, TRANSPARENT) ;

This method of underlining is possible only when using a fixed-pitch font. Otherwise, the underline character
wouldn't necessarily be the same width as the character the underline is to appear under.

The Foreign-Language Keyboard Problem

If you're running the American English version of Windows, you can install different keyboard layouts and pretend
that you're typing in a foreign language. You install foreign language keyboard layouts in the Keyboard applet in
the Control Panel. Select the Language tab, and click Add. To see how dead keys work, you might want to install
the German keyboard. I'll also be discussing the Russian and Greek keyboard layouts, so you might want to install
those as well. If the Russian and Greek keyboard layouts are not available in the list that the Keyboard applet
displays, you might need to install multilanguage support. Select the Add/Remove Programs applet from the
Control Panel, and choose the Windows Setup tab. Make sure the Multilanguage Support box is checked. In any
case, you'll need to have your original Windows CD-ROM handy for these changes.

After you install other keyboard layouts, you'll see a blue box with a two-letter code in the tray at the right side of
the task bar. It'll be "EN" if the default is English. When you click on this icon, you get a list of all the installed
keyboard layouts. You can change the keyboard for the currently active program by clicking on the one you want.
This change affects only the currently active program.

Now we're ready to experiment. Compile the KEYVIEW1 program without the UNICODE identifier defined. (On this
book's companion disc, the non-Unicode version of KEYVIEW1 is located in the RELEASE subdirectory.) Run the
program under the American English version of Windows, and type the letters "abcde." The WM_CHAR messages
are exactly what you expect: the ASCII character codes 0x61, 0x62, 0x63, 0x64, and 0x65 and the characters a,
b, c, d, and e.

Now, while still running KEYVIEW1, select the German keyboard layout. Press the = key and then a vowel (a, e, i,
o, or u). The = key generates a WM_DEADCHAR message, and the vowel generates a WM_CHAR message with
(respectively) the character codes 0xE1, 0xE9, 0xED, 0xF3, 0xFA, and the characters á, é, í, ó, and ú. This is how
dead keys work.

Now select the Greek keyboard layout. Type "abcde" and what do you get? You get WM_CHAR messages with the
character codes 0xE1, 0xE2, 0xF8, 0xE4, 0xE5, and the characters á, â, ø, ä, and å. Something doesn't seem to
be right here. Shouldn't you be getting letters in the Greek alphabet?

Now switch to the Russian keyboard and again type "abcde." Now you get WM_CHAR messages with the character
codes 0xF4, 0xE8, 0xF1, 0xE2, and 0xF3, and the characters ô, è, ñ, â, and ó. Again, something is wrong. You
should be getting letters in the Cyrillic alphabet.

The problem is this: you have switched the keyboard to generate different character codes, but you haven't
informed GDI of this switch so that GDI can interpret these character codes by displaying the proper symbols.

If you're very brave, and you have a spare PC to play with, and if you have a Professional or Universal
Subscription to Microsoft Developer Network (MSDN), you might want to install (for example) the Greek version of
Windows. You can also install the same four keyboard layouts (English, Greek, German, and Russian). Now run
KEYLOOK1. Switch to the English keyboard layout, and type "abcde". You get the ASCII character codes 0x61,
0x62, 0x63, 0x64, and 0x65 and the characters a, b, c, d, and e. (And you can breathe a sigh of relief that ASCII
still works, even in Greece.)

Under this Greek version of Windows, switch to the Greek keyboard layout and type "abcde." You get WM_CHAR
messages with the character codes 0xE1, 0xE2, 0xF8, 0xE4, and 0xE5. These are the same character codes you
got under the English version of Windows with the Greek keyboard layout installed. But now the displayed
characters are a, b, y, d, and e. These are indeed the lowercase Greek letters alpha, beta, psi, delta, and epsilon.
(What happened to gamma? Well, if you were using the Greek version of Windows for real, you'd probably be
using a keyboard with Greek letters on the keycaps. The key corresponding to the English c happens to be a psi.
The gamma is generated by the key corresponding to the English g. You can see the complete Greek keyboard
layout on page 587 of Nadine Kano's Developing International Software for Windows 95 and Windows NT .

Still running KEYVIEW1 under the Greek version of Windows, switch to the German keyboard layout. Type the =

key followed by a, then e, then i, then o, and then u. You get WM_CHAR messages with the character codes 0xE1,
0xE9, 0xED, 0xF3, and 0xFA. These are the same character codes as under the English version of Windows with
the German keyboard installed. However, the displayed characters are a, i, n, s, and i, not the correct á, é, í, ó,
and ú.

Now switch to the Russian keyboard and type "abcde." You get the character codes 0xF4, 0xE8, 0xF1, 0xE2, and
0xF3, which are the same as under the English version of Windows with the Russian keyboard installed. However,
the displayed characters are t, q, r, b, and s, not letters in the Cyrillic alphabet.

You can also install the Russian version of Windows. As you may have guessed by now, the English and Russian
keyboard layouts will work, but not the German or Greek.

Now, if you're really, really brave, you can install the Japanese version of Windows and run KEYVIEW1. If you type
at your American keyboard, you can enter English text and everything will seem to work fine. However, if you
switch to the German, Greek, or Russian keyboard layouts and try any of the exercises described above, you'll see
the characters displayed as dots. If you type capital letters—either accented German letters, Greek letters, or
Russian letters—you'll see the characters rendered as katakana, which is the Japanese alphabet generally used to
spell words from other languages. You may have fun typing katakana, but it's not German, Greek, or Russian.

The Far East versions of Windows include a utility called the Input Method Editor (IME) that appears as a floating
toolbar. This utility lets you use the normal keyboard for entering ideographs, which are the complex characters
used in Chinese, Japanese, and Korean. Basically, you type combinations of letters and the composed symbols
appear in another floating window. You then press Enter and the resultant character codes are sent to the active
window (that is, KEYVIEW1). KEYVIEW1 responds with almost total nonsense—the WM_CHAR messages have
character codes above 128, but the characters are meaningless. (Nadine Kano's book has much more information
on using the IME.)

So, we've seen a couple examples of KEYLOOK1 displaying incorrect characters—when running the English version
of Windows with the Russian or Greek keyboard layouts installed, when running the Greek version of Windows
with the Russian or German keyboard layouts installed, and when running the Russian version of Windows with
the German, Russian, or Greek keyboards installed. We've also seen errors when entering characters from the
Input Method Editor in the Japanese version of Windows.

Character Sets and Fonts

The problem with KEYLOOK1 is a font problem. The font that it's using to display characters on the screen is
inconsistent with the character codes it's receiving from the keyboard. So, let's take a look at some fonts.

As I'll discuss in more detail in Chapter 17 , Windows supports three types of fonts—bitmap fonts, vector fonts,
and (beginning in Windows 3.1) TrueType fonts.

The vector fonts are virtually obsolete. The characters in these fonts were composed of simple lines, but these
lines did not define filled areas. The vector fonts had the benefit of being scaleable to any size, but the characters
often looked anemic.

TrueType fonts are outline fonts with characters defined by filled areas. TrueType fonts are scaleable; indeed the
character definitions contain "hints" for avoiding rounding problems that could result in unsightly or unreadable
text. It is with TrueType that Windows achieves a true WYSIWYG ("what you see is what you get") display of text
on the video display that accurately matches printer output.

In bitmap fonts, each character is defined by an array of bits that correspond to the pixels of the video display.
Bitmaps fonts can be scaleable to larger sizes, but they look jagged as a result. Bitmap fonts are often tweaked by
their designers to be more easily readable on the video display. Thus, Windows uses bitmap fonts for the text that
appears in title bars, menus, buttons, and dialog boxes.

The bitmap font that you get in a default device context is known as the system font. You can obtain a handle to
this font by calling the GetStockObject function with the identifier SYSTEM_FONT. The KEYVIEW1 program elects
to use a fixed-pitch version of the system font, denoted by SYSTEM_FIXED_FONT. Another alternative in the
GetStockObject function is OEM_FIXED_FONT.

These three fonts have typeface names of (respectively) System, FixedSys, and Terminal. A program can use the
typeface name to refer to the font in a CreateFont or CreateFontIndirect function call. These three fonts are stored
in two sets of three files in the FONTS subdirectory of the Windows directory. The particular set of files that
Windows uses depends on whether you've elected to display "Small Fonts" or "Large Fonts" in the Display applet
of the Control Panel (that is, whether you want Windows to assume that the video display has a 96 dpi resolution
or a 120 dpi resolution). This is all summarized in the following table:
GetStockObject Identifier

Typeface Name
Small Font File
Large Font File
SYSTEM_FONT
System
VGASYS.FON
8514SYS.FON
SYSTEM_FIXED_FONT
FixedSys
VGAFIX.FON
8514FIX.FON
OEM_FIXED_FONT
Terminal
VGAOEM.FON
8514OEM.FON

In the file names, "VGA" refers to the Video Graphics Array, the video adapter that IBM introduced in 1987. It was
IBM's first PC video adapter to have a pixel display size of 640 by 480. If you select Small Fonts from the Display
applet in the Control Panel (meaning that you want Windows to assume that the video display has a resolution of
96 dpi), Windows uses the filenames beginning with "VGA" for these three fonts. If you select Large Fonts
(meaning that you want a resolution of 120 dpi), Windows uses the filenames beginning with "8514." The 8514
was another video adapter that IBM introduced in 1987, and it had a maximum display size of 1024 by 768.

Windows does not want you to see these files. The files have the system and hidden file attributes set, and if you
use the Windows Explorer to view the contents of your FONTS subdirectory, you won't see them at all, even if
you've elected to view system and hidden files. Use the Find option from the Tools menu to search for files with a
specification of *.FON. From there, you can double-click the filename to see what the font characters look like.

For many standard controls and user interface items, Windows doesn't use the System font. Instead, it uses a font
with the typeface name MS Sans Serif. (MS stands for Microsoft.) This is also a bitmap font. The file (named
SSERIFE.FON) contains fonts based on a 96-dpi video display, with point sizes of 8, 10, 12, 14, 18, and 24. You
can get this font by using the DEFAULT_GUI_FONT identifier in GetStockObject . The point size Windows uses will
be based on the display resolution you've selected in the Display applet of the Control Panel.

So far, I've mentioned four of the identifiers you can use with GetStockObject to obtain a font for use in a device
context. There are three others: ANSI_FIXED_FONT, ANSI_VAR_FONT, and DEVICE_DEFAULT_FONT. To begin
approaching the problem of the keyboard and character displays, let's take a look at all the stock fonts in
Windows. The program that displays the fonts is named STOKFONT and is shown in Figure 6-5.

Figure 6-5. The STOKFONT program.

STOKFONT.C

/*---
 STOKFONT.C -- Stock Font Objects
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("StokFont") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Stock Fonts"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static struct
 {
 int idStockFont ;
 TCHAR * szStockFont ;
 }
 stockfont [] = { OEM_FIXED_FONT, "OEM_FIXED_FONT",
 ANSI_FIXED_FONT, "ANSI_FIXED_FONT",
 ANSI_VAR_FONT, "ANSI_VAR_FONT",
 SYSTEM_FONT, "SYSTEM_FONT",
 DEVICE_DEFAULT_FONT, "DEVICE_DEFAULT_FONT",
 SYSTEM_FIXED_FONT, "SYSTEM_FIXED_FONT",
 DEFAULT_GUI_FONT, "DEFAULT_GUI_FONT" } ;

 static int iFont, cFonts = sizeof stockfont / sizeof stockfont[0] ;
 HDC hdc ;

 int i, x, y, cxGrid, cyGrid ;
 PAINTSTRUCT ps ;
 TCHAR szFaceName [LF_FACESIZE], szBuffer [LF_FACESIZE + 64] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 SetScrollRange (hwnd, SB_VERT, 0, cFonts - 1, TRUE) ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_VSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_TOP: iFont = 0 ; break ;
 case SB_BOTTOM: iFont = cFonts - 1 ; break ;
 case SB_LINEUP:
 case SB_PAGEUP: iFont -= 1 ; break ;
 case SB_LINEDOWN:
 case SB_PAGEDOWN: iFont += 1 ; break ;
 case SB_THUMBPOSITION: iFont = HIWORD (wParam) ; break ;
 }
 iFont = max (0, min (cFonts - 1, iFont)) ;
 SetScrollPos (hwnd, SB_VERT, iFont, TRUE) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_HOME: SendMessage (hwnd, WM_VSCROLL, SB_TOP, 0) ; break ;
 case VK_END: SendMessage (hwnd, WM_VSCROLL, SB_BOTTOM, 0) ; break ;
 case VK_PRIOR:
 case VK_LEFT:
 case VK_UP: SendMessage (hwnd, WM_VSCROLL, SB_LINEUP, 0) ; break ;
 case VK_NEXT:
 case VK_RIGHT:
 case VK_DOWN: SendMessage (hwnd, WM_VSCROLL, SB_PAGEDOWN, 0) ; break ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, GetStockObject (stockfont[iFont].idStockFont)) ;
 GetTextFace (hdc, LF_FACESIZE, szFaceName) ;
 GetTextMetrics (hdc, &tm) ;
 cxGrid = max (3 * tm.tmAveCharWidth, 2 * tm.tmMaxCharWidth) ;
 cyGrid = tm.tmHeight + 3 ;

 TextOut (hdc, 0, 0, szBuffer,
 wsprintf (szBuffer, TEXT (" %s: Face Name = %s, CharSet = %i"),
 stockfont[iFont].szStockFont,
 szFaceName, tm.tmCharSet)) ;

 SetTextAlign (hdc, TA_TOP | TA_CENTER) ;

 // vertical and horizontal lines

 for (i = 0 ; i < 17 ; i++)
 {
 MoveToEx (hdc, (i + 2) * cxGrid, 2 * cyGrid, NULL) ;
 LineTo (hdc, (i + 2) * cxGrid, 19 * cyGrid) ;

 MoveToEx (hdc, cxGrid, (i + 3) * cyGrid, NULL) ;
 LineTo (hdc, 18 * cxGrid, (i + 3) * cyGrid) ;
 }
 // vertical and horizontal headings

 for (i = 0 ; i < 16 ; i++)
 {
 TextOut (hdc, (2 * i + 5) * cxGrid / 2, 2 * cyGrid + 2, szBuffer,
 wsprintf (szBuffer, TEXT ("%X-"), i)) ;

 TextOut (hdc, 3 * cxGrid / 2, (i + 3) * cyGrid + 2, szBuffer,
 wsprintf (szBuffer, TEXT ("-%X"), i)) ;
 }
 // characters

 for (y = 0 ; y < 16 ; y++)
 for (x = 0 ; x < 16 ; x++)
 {
 TextOut (hdc, (2 * x + 5) * cxGrid / 2,
 (y + 3) * cyGrid + 2, szBuffer,
 wsprintf (szBuffer, TEXT ("%c"), 16 * x + y)) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program is fairly simple. It uses the scroll bar and cursor movement keys to let you select one of the seven
stock fonts to display. The program displays the 256 characters of the font in a grid. The headings at the top and
left of the grid show the hexadecimal values of the character codes.

At the top of the client area, STOKFONT shows the identifier it uses to select the font using the GetStockObject
function. It also displays the typeface name of the font obtained from the GetTextFace function and the tmCharSet

field of the TEXTMETRIC structure. This "character set identifier" turns out to be crucial in understanding how
Windows deals with foreign-language versions of Windows.

If you run STOKFONT under the American English version of Windows, the first screen you'll see shows you the
font obtained by using the OEM_FIXED_FONT identifier with the GetStockObject function. This is shown in Figure
6-6.

Figure 6-6. The OEM_FIXED_FONT in the U.S. version of Windows.

In this character set (as in all the others in this chapter), you'll see some ASCII. But remember that ASCII is a 7-
bit code that defines displayable characters for codes 0x20 through 0x7E. By the time IBM developed the original
IBM PC the 8-bit byte had been firmly established, so a full 8 bits could be used for character codes. IBM decided
to extend the ASCII character set with a bunch of line- and block-drawing characters, accented letters, Greek
letters, math symbols, and some miscellany. Many character-mode MS-DOS programs used the line-drawing
characters in their on-screen displays, and many MS-DOS programs used some of the extended characters in their
files.

This particular character set posed a problem for the original developers of Windows. On the one hand, the line-
and block-drawing characters are not needed in Windows because Windows has a complete graphics programming
language. The 48 codes used for these characters could better be used for additional accented letters required by
many Western European languages. On the other hand, the IBM character set was definitely a standard that
couldn't be ignored completely.

So, the original developers of Windows decided to support the IBM character set but to relegate it to secondary
importance—mostly for old MS-DOS applications that ran in a window and for Windows programs that needed to
use files created by MS-DOS applications. Windows applications do not use the IBM character set, and over the
years it has faded in importance. Still, however, if you need it you can use it. In this context, "OEM" means "IBM."

(Be aware that foreign-language versions of Windows do not necessarily support the same OEM character set as
the American English version does. Other countries had their own MS-DOS character sets. That's a whole subject
in itself, but not one for this book.)

Because the IBM character set was deemed inappropriate for Windows, a different extended character set was
selected. This is called the "ANSI character set," referring to the American National Standards Institute, but it's
actually an ISO (International Standards Organization) standard, namely standard 8859. It's also known as Latin
1, Western European, or code page 1252. Figure 6-7 shows one version of the ANSI character set—the system
font in the American English version of Windows.

Figure 6-7. The SYSTEM_FONT in the U.S. version of Windows.

The thick vertical bars indicate codes for which characters are not defined. Notice that codes 0x20 through 0x7E
are once again ASCII. Also, the ASCII control characters (0x00 through 0x1F, and 0x7F) are not associated with
displayable characters. This is as it should be.

The codes 0xC0 through 0xFF make the ANSI character set important to foreign-language versions of Windows.
These codes provide 64 characters commonly found in Western European languages. The character 0xA0, which
looks like a space, is actually defined as a nonbreaking space, such as the space in "WW II."

I say this is "one version" of the ANSI character set because of the presence of the characters for codes 0x80
through 0x9F. The fixed-pitch system font includes only two of these characters, as shown in Figure 6-8.

Figure 6-8. The SYSTEM_FIXED_FONT in the U.S. version of Windows.

In Unicode, codes 0x0000 through 0x007F are the same as ASCII, codes 0x0080 through 0x009F duplicate control
characters 0x0000 through 0x001F, and codes 0x00A0 through 0x00FF are the same as the ANSI character set
used in Windows.

If you run the German version of Windows, you'll get the same ANSI character sets when you call GetStockObject
with the SYSTEM_FONT or SYSTEM_FIXED_FONT identifiers. This is true of other Western European versions of
Windows as well. The ANSI character set was designed to have all the characters that are required in these
languages.

However, when you run the Greek version of Windows, the default character set is not the same. Instead, the
SYSTEM_FONT is that shown in Figure 6-9.

Figure 6-9. The SYSTEM_FONT in the Greek version of Windows.

The SYSTEM_FIXED_FONT has the same characters. Notice the codes from 0xC0 through 0xFF. These codes
contain uppercase and lowercase letters from the Greek alphabet. When you're running the Russian version of
Windows, the default character set is shown in Figure 6-10.

Figure 6-10. The SYSTEM_FONT in the Russian version of Windows.

Again, notice that uppercase and lowercase letters of the Cyrillic alphabet occupy codes 0xC0 and 0xFF.

Figure 6-11 shows the SYSTEM_FONT from the Japanese version of Windows. The characters from 0xA5 through
0xDF are all part of the katakana alphabet.

Figure 6-11. The SYSTEM_FONT in the Japanese version of Windows.

The Japanese system font shown in Figure 6-11 is different from those shown previously because it is actually a
double-byte character set (DBCS) called Shift-JIS. (JIS stands for Japanese Industrial Standard.) Most of the
character codes from 0x81 through 0x9F and from 0xE0 through 0xFF are really just the first byte of a 2-byte
code. The second byte is usually in the range 0x40 through 0xFC. (See Appendix G in Nadine Kano's book for a
complete table of these codes.)

So now we can see where the problem is in KEYVIEW1: If you have the Greek keyboard layout installed and you
type "abcde," regardless of the version of Windows you're running, Windows generates WM_CHAR messages with
the character codes 0xE1, 0xE2, 0xF8, 0xE4, and 0xE5. But these character codes will correspond to the
characters a, b, y, d, and e only if you're running the Greek version of Windows with the Greek system font.

If you have the Russian keyboard layout installed and you type "abcde," regardless of the version of Windows
you're running, Windows generates WM_CHAR messages with the character codes 0xF4, 0xE8, 0xF1, 0xE2, and
0xF3. But these character codes will correspond to the characters ô, è, ñ, â, and ó only if you're running the
Russian version of Windows or another language that uses the Cyrillic alphabet, and you're using the Cyrillic
system font.

If you have the German keyboard layout installed and you type the = key (or the key in that same position)
followed by the a, e, i, o, or u key, regardless of the version of Windows you're running, Windows generates
WM_CHAR messages with the character codes 0xE1, 0xE9, 0xED, 0xF3, and 0xFA. Only if you're running a
Western European or American version of Windows, which means that you have the Western European system
font, will these character codes correspond to the characters á, é, í, ó, or ú.

If you have the American English keyboard layout installed, you can type anything on your keyboard and Windows
will generate WM_CHAR messages with character codes that correctly match to the proper characters.

What About Unicode?

I claimed in Chapter 2 that Unicode support in Windows NT helps out in writing programs for an international
market. Let's try compiling KEYVIEW1 with the UNICODE identifier defined and running it under various versions
of Windows NT. (On this book's companion disc, the Unicode version of KEYVIEW1 is located in the DEBUG
directory.)

If the UNICODE identifier is defined when the program is compiled, the "KeyView1" window class is registered with
the RegisterClassW rather than the RegisterClassA function. This means that any message delivered to WndProc
that has character or text data will use 16-bit characters rather than 8-bit characters. In particular, the WM_CHAR
message will deliver a 16-bit character code rather than an 8-bit character code.

Run the Unicode version of KEYVIEW1 under the American English version of Windows NT. I'll assume you've
installed at least the other three keyboard layouts we've been experimenting with—that is, German, Greek, and
Russian.

With the American English version of Windows NT and either the English or German keyboard layout installed, the
Unicode version of KEYVIEW1 will appear to work the same as the non-Unicode version. It will receive the same
character codes (all of which will be 0xFF or lower in value) and display the same correct characters. This is
because the first 256 characters of Unicode are the same as the ANSI character set used in Windows.

Now switch to the Greek keyboard layout, and type "abcde." The WM_CHAR messages will have the Unicode
character codes 0x03B1, 0x03B2, 0x03C8, 0x03B4, and 0x03B5. Note that for the first time we're seeing
character codes with values higher than 0xFF. These Unicode character codes correspond to the Greek letters a, b,
y, d, and e. However, all five characters are displayed as solid blocks! This is because the SYSTEM_FIXED_FONT
only has 256 characters.

Now switch to the Russian keyboard layout, and type "abcde." KEYVIEW1 displays WM_CHAR messages with the
Unicode character codes 0x0444, 0x0438, 0x0441, 0x0432, and 0x0443, corresponding to the Cyrillic characters
ô, è, ñ, â, and ó. Once again, however, all five characters are displayed as solid blocks.

In short, where the non-Unicode version of KEYVIEW1 displayed incorrect characters, the Unicode version of
KEYVIEW1 displays solid blocks, indicating that the current font does not have that particular character. I hesitate
to say that the Unicode version of KEYVIEW1 represents an "improvement" over the non-Unicode version, but it
does. The non-Unicode version displays characters that are not correct. The Unicode version does not.

The differences between the Unicode and non-Unicode versions of KEYVIEW1 are mostly in two areas.

First, the WM_CHAR message is accompanied by a 16-bit character code rather than an 8-bit character code. The
8-bit character code in the non-Unicode version of KEYVIEW1 could have different meanings depending what
keyboard layout is active. A code of 0xE1 could mean á if it came from the German keyboard, a if it came from the
Greek keyboard, and á if it came from the Russian keyboard. In the Unicode version of the program, the 16-bit
character code is totally unambiguous. The á character is 0x00E1, the a character is 0x03B1, and the á character
is 0x0431.

Second, the Unicode TextOutW function displays characters based on 16-bit character codes rather than on the 8-
bit character codes of the non-Unicode TextOutA function. Because these 16-bit character codes are totally
unambiguous, GDI can determine whether the font currently selected in the device context is capable of displaying
each character.

Running the Unicode version of KEYVIEW1 under the American version of Windows NT is somewhat deceptive,
because it appears as if GDI is simply displaying character codes in the range 0x0000 through 0x00FF and not
those above 0x00FF. That is, it appears as if there's a simple one-to-one mapping between the character codes
and the 256 characters of the system font.

However, if you install the Greek or Russian versions of Windows NT, you'll discover that this is not the case. For
example, if you install the Greek version of Windows NT, the American English, German, Greek, and Russian
keyboards will generate the same Unicode character codes as the American version of Windows NT. However, the
Greek version of Windows NT will not display German-accented characters or Russian characters because these
characters are not in the Greek system font. Similarly, the Russian version of Windows NT will not display the
German-accented characters or Greek characters because these characters are not in the Russian system font.

Where the Unicode version of KEYVIEW1 makes the most dramatic difference is under the Japanese version of
Windows NT. You enter Japanese characters from the IME and they display correctly. The only problem is
formatting: because the Japanese characters are often visually complex, they are displayed twice as wide as other
characters.

TrueType and Big Fonts

The bitmap fonts that we've been using (with the exception of the fonts in the Japanese version of Windows)
contain a maximum of 256 characters. This is to be expected, because the format of the bitmap font file goes back
to the early days of Windows when character codes were assumed to be mere 8-bit values. That's why when we
use the SYSTEM_FONT or the SYSTEM_FIXED_FONT, there are always some characters from some languages that
we can't display properly. (The Japanese system font is a bit different because it's a double-byte character set;
most of the characters are actually stored in TrueType Collection files with a filename extension of .TCC.)

TrueType fonts can contain more than 256 characters. Not all TrueType fonts have more than 256 characters, but
the ones shipped with Windows 98 and Windows NT do. Or rather, they do if you've installed multilanguage
support. In the Add/Remove Programs applet of the Control Panel, click the Windows Setup tab and make sure
Multilanguage Support is checked. This multilanguage support involves five character sets: Baltic, Central
European, Cyrillic, Greek, and Turkish. The Baltic character set is used for Estonian, Latvian, and Lithuanian. The
Central European character set is used for Albanian, Czech, Croatian, Hungarian, Polish, Romanian, Slovak, and
Slovenian. The Cyrillic character set is used for Bulgarian, Belarusian, Russian, Serbian, and Ukrainian.

The TrueType fonts shipped with Windows 98 support those five character sets, plus the Western European (ANSI)
character set that is used for virtually all other languages except those in the Far East (Chinese, Japanese, and
Korean). TrueType fonts that support multiple character sets are sometimes referred to as "big fonts." The word
"big" in this context does not refer to the size of the characters, but to their quantity.

You can take advantage of big fonts even in a non-Unicode program, which means that you can use big fonts to
display characters in several different alphabets. However, you need to go beyond the GetStockObject function in
obtaining a font to select into a device context.

The functions CreateFont and CreateFontIndirect create a logical font, similar to the way CreatePen creates a
logical pen and CreateBrush creates a logical brush. CreateFont has 14 arguments that describe the font you want
to create. CreateFontIndirect has one argument, but that argument is a pointer to a LOGFONT structure, which
has 14 fields that correspond to the arguments of the CreateFont function. I'll discuss these functions in more
detail in Chapter 17 . For now, we'll look at the CreateFont function, but we'll focus on only a couple arguments.
All the other arguments can be set to zero.

If you need a fixed-pitch font (as we've been using for the KEYVIEW1 program), set the thirteenth argument to
CreateFont to FIXED_PITCH. If you need a font of a nondefault character set (as we will be needing), set the ninth
argument to CreateFont to something called the "character set ID." This character set ID will be one of the
following values defined in WINGDI.H. I've added comments that indicate the code pages associated with these
character sets:

#define ANSI_CHARSET 0 // 1252 Latin 1 (ANSI)
#define DEFAULT_CHARSET 1
#define SYMBOL_CHARSET 2
#define MAC_CHARSET 77
#define SHIFTJIS_CHARSET 128 // 932 (DBCS, Japanese)
#define HANGEUL_CHARSET 129 // 949 (DBCS, Korean)
#define HANGUL_CHARSET 129 // " "
#define JOHAB_CHARSET 130 // 1361 (DBCS, Korean)
#define GB2312_CHARSET 134 // 936 (DBCS, Simplified Chinese)
#define CHINESEBIG5_CHARSET 136 // 950 (DBCS, Traditional Chinese)
#define GREEK_CHARSET 161 // 1253 Greek
#define TURKISH_CHARSET 162 // 1254 Latin 5 (Turkish)
#define VIETNAMESE_CHARSET 163 // 1258 Vietnamese
#define HEBREW_CHARSET 177 // 1255 Hebrew
#define ARABIC_CHARSET 178 // 1256 Arabic
#define BALTIC_CHARSET 186 // 1257 Baltic Rim
#define RUSSIAN_CHARSET 204 // 1251 Cyrillic (Slavic)
#define THAI_CHARSET 222 // 874 Thai
#define EASTEUROPE_CHARSET 238 // 1250 Latin 2 (Central Europe)
#define OEM_CHARSET 255 // Depends on country

Why does Windows have two different numbers—a character set ID and a code page ID—to refer to the same
character sets? It's just one of the confusing quirks in Windows. Notice that the character set ID requires only 1
byte of storage, which is the size of the character set field in the LOGFONT structure. (Back in the Windows 1.0
days, memory and storage space were limited and every byte counted.) Notice that many different MS-DOS code
pages are used in other countries, but only one character set ID—OEM_CHARSET—is used to refer to the MS-DOS
character set.

You'll also notice that these character set values agree with the "CharSet" value shown on the top line of the
STOKFONT program. In the American English version of Windows, we saw stock fonts that had character set IDs
of 0 (ANSI_CHARSET) and 255 (OEM_CHARSET). We saw 161 (GREEK_CHARSET) in the Greek version of
Windows, 204 (RUSSIAN_CHARSET) in the Russian version, and 128 (SHIFTJIS_CHARSET) in the Japanese
version.

In the code above, DBCS stands for double-byte character set, which is used in the Far East versions of Windows.
Other versions of Windows do not support DBCS fonts, so you can't use those character set IDs.

CreateFont returns an HFONT value—a handle to a logical font. You can select this font into a device context using
SelectObject . You must eventually delete every logical font you create by calling DeleteObject .

The other part of the big font solution is the WM_INPUTLANGCHANGE message. Whenever you change the
keyboard layout using the popup menu in the desktop tray, Windows sends your window procedure the
WM_INPUTLANGCHANGE message. The wParam message parameter is the character set ID of the new keyboard
layout.

The KEYVIEW2 program shown in Figure 6-12 implements logic to change the font whenever the keyboard layout
changes.

Figure 6-12. The KEYVIEW2 program.

KEYVIEW2.C

/*--
 KEYVIEW2.C -- Displays Keyboard and Character Messages
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("KeyView2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Keyboard Message Viewer #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)

{
 static DWORD dwCharSet = DEFAULT_CHARSET ;
 static int cxClientMax, cyClientMax, cxClient, cyClient, cxChar, cyChar ;
 static int cLinesMax, cLines ;
 static PMSG pmsg ;
 static RECT rectScroll ;
 static TCHAR szTop[] = TEXT ("Message Key Char ")
 TEXT ("Repeat Scan Ext ALT Prev Tran") ;
 static TCHAR szUnd[] = TEXT ("_______ ___ ____ ")
 TEXT ("______ ____ ___ ___ ____ ____") ;

 static TCHAR * szFormat[2] = {

 TEXT ("%-13s %3d %-15s%c%6u %4d %3s %3s %4s %4s"),
 TEXT ("%-13s 0x%04X%1s%c %6u %4d %3s %3s %4s %4s") } ;

 static TCHAR * szYes = TEXT ("Yes") ;
 static TCHAR * szNo = TEXT ("No") ;
 static TCHAR * szDown = TEXT ("Down") ;
 static TCHAR * szUp = TEXT ("Up") ;

 static TCHAR * szMessage [] = {
 TEXT ("WM_KEYDOWN"), TEXT ("WM_KEYUP"),
 TEXT ("WM_CHAR"), TEXT ("WM_DEADCHAR"),
 TEXT ("WM_SYSKEYDOWN"), TEXT ("WM_SYSKEYUP"),
 TEXT ("WM_SYSCHAR"), TEXT ("WM_SYSDEADCHAR") } ;
 HDC hdc ;
 int i, iType ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer[128], szKeyName [32] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_INPUTLANGCHANGE:
 dwCharSet = wParam ;
 // fall through
 case WM_CREATE:

 case WM_DISPLAYCHANGE:

 // Get maximum size of client area

 cxClientMax = GetSystemMetrics (SM_CXMAXIMIZED) ;
 cyClientMax = GetSystemMetrics (SM_CYMAXIMIZED) ;

 // Get character size for fixed-pitch font

 hdc = GetDC (hwnd) ;

 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 ReleaseDC (hwnd, hdc) ;

 // Allocate memory for display lines
 if (pmsg)
 free (pmsg) ;

 cLinesMax = cyClientMax / cyChar ;
 pmsg = malloc (cLinesMax * sizeof (MSG)) ;
 cLines = 0 ;
 // fall through
 case WM_SIZE:
 if (message == WM_SIZE)
 {
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 }
 // Calculate scrolling rectangle

 rectScroll.left = 0 ;
 rectScroll.right = cxClient ;
 rectScroll.top = cyChar ;
 rectScroll.bottom = cyChar * (cyClient / cyChar) ;

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (message == WM_INPUTLANGCHANGE)
 return TRUE ;

 return 0 ;

 case WM_KEYDOWN:
 case WM_KEYUP:
 case WM_CHAR:
 case WM_DEADCHAR:

 case WM_SYSKEYDOWN:
 case WM_SYSKEYUP:
 case WM_SYSCHAR:
 case WM_SYSDEADCHAR:

 // Rearrange storage array

 for (i = cLinesMax - 1 ; i > 0 ; i--)
 {
 pmsg[i] = pmsg[i - 1] ;
 }
 // Store new message
 pmsg[0].hwnd = hwnd ;
 pmsg[0].message = message ;
 pmsg[0].wParam = wParam ;
 pmsg[0].lParam = lParam ;

 cLines = min (cLines + 1, cLinesMax) ;

 // Scroll up the display

 ScrollWindow (hwnd, 0, -cyChar, &rectScroll, &rectScroll) ;

 break ; // ie, call DefWindowProc so Sys messages work

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 SetBkMode (hdc, TRANSPARENT) ;
 TextOut (hdc, 0, 0, szTop, lstrlen (szTop)) ;
 TextOut (hdc, 0, 0, szUnd, lstrlen (szUnd)) ;

 for (i = 0 ; i < min (cLines, cyClient / cyChar - 1) ; i++)
 {
 iType = pmsg[i].message == WM_CHAR ||
 pmsg[i].message == WM_SYSCHAR ||
 pmsg[i].message == WM_DEADCHAR ||
 pmsg[i].message == WM_SYSDEADCHAR ;

 GetKeyNameText (pmsg[i].lParam, szKeyName,
 sizeof (szKeyName) / sizeof (TCHAR)) ;

 TextOut (hdc, 0, (cyClient / cyChar - 1 - i) * cyChar, szBuffer,
 wsprintf (szBuffer, szFormat [iType],
 szMessage [pmsg[i].message
- WM_KEYFIRST],
 pmsg[i].wParam,
 (PTSTR) (iType ? TEXT (" ") : szKeyName),
 (TCHAR) (iType ? pmsg[i].wParam : ` `),
 LOWORD (pmsg[i].lParam),

 HIWORD (pmsg[i].lParam) & 0xFF,
 0x01000000 & pmsg[i].lParam ? szYes : szNo,
 0x20000000 & pmsg[i].lParam ? szYes : szNo,
 0x40000000 & pmsg[i].lParam ? szDown : szUp,
 0x80000000 & pmsg[i].lParam ? szUp : szDown)) ;
 }
 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Notice that KEYVIEW2 clears the screen and reallocates its storage space whenever the keyboard input language
changes. There are two reasons for this: First, because KEYVIEW2 isn't being specific about the font it wants, the
size of the font characters can change when the input language changes. The program needs to recalculate some
variables based on the new character size. Second, KEYVIEW2 doesn't retain the character set ID in effect at the
time it receives each character message. Thus, if the keyboard input language changed and KEYVIEW2 needed to
redraw its client area, all the characters would be displayed with the new font.

I'll discuss fonts and character sets more in Chapter 17 . If you'd like to research internationalization issues more,
you can find documentation at /Platform SDK/Windows Base Services/International Features , but much essential
information is also located in /Platform SDK/Windows Base Services/General Library/String Manipulation .

The Caret (Not the Cursor)

When you type text into a program, generally a little underline, vertical bar, or box shows you where the next
character you type will appear on the screen. You may know this as a "cursor," but you'll have to get out of that
habit when programming for Windows. In Windows, it's called the "caret." The word "cursor" is reserved for the
little bitmap image that represents the mouse position.

The Caret Functions

There are five essential caret functions:

CreateCaret Creates a caret associated with a window.

SetCaretPos Sets the position of the caret within the window.

ShowCaret Shows the caret.

HideCaret Hides the caret.

DestroyCaret Destroys the caret.

There are also functions to get the current caret position (GetCaretPos) and to get and set the caret blink time
(GetCaretBlinkTime and SetCaretBlinkTime).

In Windows, the caret is customarily a horizontal line or box that is the size of a character, or a vertical line that is
the height of a character. The vertical line caret is recommended when you use a proportional font such as the
Windows default system font. Because the characters in a proportional font are not of a fixed size, the horizontal
line or box can't be set to the size of a character.

If you need a caret in your program, you should not simply create it during the WM_CREATE message of your
window procedure and destroy it during the WM_DESTROY message. The reason this is not advised is that a
message queue can support only one caret. Thus, if your program has more than one window, the windows must
effectively share the same caret.

This is not as restrictive as it sounds. When you think about it, the display of a caret in a window makes sense
only when the window has the input focus. Indeed, the existence of a blinking caret is one of the visual cues that
allows a user to recognize that he or she may type text into a program. Since only one window has the input focus
at any time, it doesn't make sense for multiple windows to have carets blinking all at the same time.

A program can determine if it has the input focus by processing the WM_SETFOCUS and WM_KILLFOCUS
messages. As the names imply, a window procedure receives a WM_SETFOCUS message when it receives the
input focus and a WM_KILLFOCUS message when it loses the input focus. These messages occur in pairs: A
window procedure will always receive a WM_SETFOCUS message before it receives a WM_KILLFOCUS message,
and it always receives an equal number of WM_SETFOCUS and WM_KILLFOCUS messages over the course of the
window's lifetime.

The main rule for using the caret is simple: a window procedure calls CreateCaret during the WM_SETFOCUS
message and DestroyWindow during the WM_KILLFOCUS message.

There are a few other rules: The caret is created hidden. After calling CreateCaret , the window procedure must
call ShowCaret for the caret to be visible. In addition, the window procedure must hide the caret by calling
HideCaret whenever it draws something on its window during a message other than WM_PAINT. After it finishes
drawing on the window, the program calls ShowCaret to display the caret again. The effect of HideCaret is
additive: if you call HideCaret several times without calling ShowCaret , you must call ShowCaret the same
number of times before the caret becomes visible again.

The TYPER Program

The TYPER program shown in Figure 6-13 brings together much of what we've learned in this chapter. You can
think of TYPER as an extremely rudimentary text editor. You can type in the window, move the cursor (I mean
caret) around with the cursor movement keys (or are they caret movement keys?), and erase the contents of the
window by pressing Escape. The contents of the window are also erased when you resize the window or change

the keyboard input language. There's no scrolling, no search and replace, no way to save files, no spelling
checker, and no anthropomorphous paper clip, but it's a start.

Figure 6-13. The TYPER program.

TYPER.C

 /*--------------------------------------
 TYPER.C -- Typing Program
 (c) Charles Petzold, 1998
 --------------------------------------*/

#include <windows.h>

#define BUFFER(x,y) *(pBuffer + y * cxBuffer + x)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Typer") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Typing Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static DWORD dwCharSet = DEFAULT_CHARSET ;
 static int cxChar, cyChar, cxClient, cyClient, cxBuffer, cyBuffer,
 xCaret, yCaret ;
 static TCHAR * pBuffer = NULL ;
 HDC hdc ;
 int x, y, i ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_INPUTLANGCHANGE:
 dwCharSet = wParam ;
 // fall through
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 ReleaseDC (hwnd, hdc) ;
 // fall through
 case WM_SIZE:
 // obtain window size in pixels

 if (message == WM_SIZE)
 {
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 }
 // calculate window size in characters

 cxBuffer = max (1, cxClient / cxChar) ;
 cyBuffer = max (1, cyClient / cyChar) ;

 // allocate memory for buffer and clear it

 if (pBuffer != NULL)
 free (pBuffer) ;

 pBuffer = (TCHAR *) malloc (cxBuffer * cyBuffer * sizeof (TCHAR)) ;

 for (y = 0 ; y < cyBuffer ; y++)
 for (x = 0 ; x < cxBuffer ; x++)
 BUFFER(x,y) = ` ` ;

 // set caret to upper left corner

 xCaret = 0 ;
 yCaret = 0 ;

 if (hwnd == GetFocus ())
 SetCaretPos (xCaret * cxChar, yCaret * cyChar) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_SETFOCUS:
 // create and show the caret

 CreateCaret (hwnd, NULL, cxChar, cyChar) ;
 SetCaretPos (xCaret * cxChar, yCaret * cyChar) ;
 ShowCaret (hwnd) ;
 return 0 ;

 case WM_KILLFOCUS:
 // hide and destroy the caret

 HideCaret (hwnd) ;
 DestroyCaret () ;
 return 0 ;

 case WM_KEYDOWN:
 switch (wParam)
 {
 case VK_HOME:
 xCaret = 0 ;
 break ;

 case VK_END:
 xCaret = cxBuffer - 1 ;
 break ;

 case VK_PRIOR:
 yCaret = 0 ;
 break ;

 case VK_NEXT:
 yCaret = cyBuffer - 1 ;
 break ;

 case VK_LEFT:

 xCaret = max (xCaret - 1, 0) ;
 break ;

 case VK_RIGHT:
 xCaret = min (xCaret + 1, cxBuffer - 1) ;
 break ;

 case VK_UP:
 yCaret = max (yCaret - 1, 0) ;
 break ;

 case VK_DOWN:
 yCaret = min (yCaret + 1, cyBuffer - 1) ;
 break ;

 case VK_DELETE:
 for (x = xCaret ; x < cxBuffer - 1 ; x++)
 BUFFER (x, yCaret) = BUFFER (x + 1, yCaret) ;

 BUFFER (cxBuffer - 1, yCaret) = ` ` ;

 HideCaret (hwnd) ;
 hdc = GetDC (hwnd) ;

 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 TextOut (hdc, xCaret * cxChar, yCaret * cyChar,
 & BUFFER (xCaret, yCaret),
 cxBuffer - xCaret) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 ReleaseDC (hwnd, hdc) ;
 ShowCaret (hwnd) ;
 break ;
 }
 SetCaretPos (xCaret * cxChar, yCaret * cyChar) ;
 return 0 ;

 case WM_CHAR:
 for (i = 0 ; i < (int) LOWORD (lParam) ; i++)
 {
 switch (wParam)
 {
 case `\b': // backspace
 if (xCaret > 0)
 {
 xCaret-- ;
 SendMessage (hwnd, WM_KEYDOWN, VK_DELETE, 1) ;
 }
 break ;

 case `\t': // tab

 do
 {
 SendMessage (hwnd, WM_CHAR, ` `, 1) ;
 }
 while (xCaret % 8 != 0) ;
 break ;

 case `\n': // line feed
 if (++yCaret == cyBuffer)
 yCaret = 0 ;
 break ;

 case `\r': // carriage return
 xCaret = 0 ;

 if (++yCaret == cyBuffer)
 yCaret = 0 ;
 break ;

 case `\x1B': // escape
 for (y = 0 ; y < cyBuffer ; y++)
 for (x = 0 ; x < cxBuffer ; x++)
 BUFFER (x, y) = ` ` ;

 xCaret = 0 ;
 yCaret = 0 ;

 InvalidateRect (hwnd, NULL, FALSE) ;
 break ;

 default: // character codes
 BUFFER (xCaret, yCaret) = (TCHAR) wParam ;

 HideCaret (hwnd) ;
 hdc = GetDC (hwnd) ;

 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 TextOut (hdc, xCaret * cxChar, yCaret * cyChar,
 & BUFFER (xCaret, yCaret), 1) ;

 DeleteObject (
 SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 ReleaseDC (hwnd, hdc) ;
 ShowCaret (hwnd) ;

 if (++xCaret == cxBuffer)
 {
 xCaret = 0 ;

 if (++yCaret == cyBuffer)
 yCaret = 0 ;

 }
 break ;
 }
 }

 SetCaretPos (xCaret * cxChar, yCaret * cyChar) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, CreateFont (0, 0, 0, 0, 0, 0, 0, 0,
 dwCharSet, 0, 0, 0, FIXED_PITCH, NULL)) ;

 for (y = 0 ; y < cyBuffer ; y++)
 TextOut (hdc, 0, y * cyChar, & BUFFER(0,y), cxBuffer) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

To keep things reasonably simple, TYPER uses a fixed-pitch font. Writing a text editor for a proportional font is, as
you might imagine, much more difficult. The program obtains a device context in several places: during the
WM_CREATE message, the WM_KEYDOWN message, the WM_CHAR message, and the WM_PAINT message. Each
time, calls to GetStockObject and SelectObject select a fixed-pitch font with the current character set.

During the WM_SIZE message, TYPER calculates the character width and height of the window and saves these
values in the variables cxBuffer and cyBuffer . It then uses malloc to allocate a buffer to hold all the characters
that can be typed in the window. Notice that the size of this buffer in bytes is the product of cxBuffer , cyBuffer ,
and sizeof (TCHAR) , which can be 1 or 2 depending on whether the program is compiled for 8-bit character
processing or Unicode.

The xCaret and yCaret variables store the character position of the caret. During the WM_SETFOCUS message,
TYPER calls CreateCaret to create a caret that is the width and height of a character. It then calls SetCaretPos to
set the caret position and ShowCaret to make the caret visible. During the WM_KILLFOCUS message, TYPER calls
HideCaret and DestroyCaret .

The WM_KEYDOWN processing mostly involves the cursor movement keys. Home and End send the caret to the
beginning and end of a line, and Page Up and Page Down send the caret to the top and bottom of the window. The
arrow keys work as you would expect. For the Delete key, TYPER must move everything remaining in the buffer
from the next caret position to the end of the line and then display a blank space at the end of the line.

The WM_CHAR processing handles the Backspace, Tab, Linefeed (Ctrl-Enter), Enter, Escape, and character keys.
Notice that I've used Repeat Count in lParam when processing the WM_CHAR message (under the assumption that
every character the user types is important) but not during the WM_KEYDOWN message (to prevent inadvertent
overscrolling). The Backspace and Tab processing is simplified somewhat by the use of the SendMessage function.
Backspace is emulated by the Delete logic, and Tab is emulated by a series of spaces.

As I mentioned earlier, a program should hide the caret when drawing on the window during messages other than
WM_PAINT. TYPER does this when processing the WM_KEYDOWN message for the Delete key and the WM_CHAR
message for character keys. In both these cases, TYPER alters the contents of the buffer and then draws the new
character or characters on the window.

Although TYPER uses the same logic as KEYVIEW2 to switch between character sets as the user switches keyboard
layouts, it does not work quite right for Far Eastern versions of Windows. TYPER does not make any allowance for
the double-width characters. This raises issues that are better covered in Chapter 17 , which explores fonts and
text output in more detail.

Chapter 7

The Mouse

The mouse is a pointing device with one or more buttons. Despite much experimentation with other alternative
input devices such as touch screens and light pens, the mouse reigns supreme. Together with variations such as
trackballs, which are common on laptop computers, the mouse is the only alternative input device to achieve a
massive—virtually universal—penetration in the PC market.

This was not always the case. Indeed, the early developers of Microsoft Windows felt that they shouldn't require
users to buy a mouse in order to use the product. So they made the mouse an optional accessory and provided a
keyboard interface to all operations in Windows and the "applets" distributed with Windows. (For example, check
out the help information for the Windows Calculator to see how each button is obsessively assigned a keyboard
equivalent.) Third-party software developers were also encouraged to duplicate mouse functions with a keyboard
interface in their applications. The early editions of this book attempted to further disseminate this philosophy.

In theory, Windows now requires a mouse. At least that's what the box says. However, you can unplug your
mouse and Windows will boot up fine (aside from a message box informing you that a mouse is not attached).
Trying to use Windows without the mouse is akin to playing the piano with your toes (at least initially), but you
can definitely do it. For that reason, I still like the idea of providing keyboard equivalents for mouse actions. Touch
typists in particular prefer keeping their hands on the keyboard, and I suppose everyone has had the experience
of "losing" a mouse on a cluttered desk or having a mouse too clogged up with mouse gunk to work well. The
keyboard equivalents usually don't cost much in terms of thought or effort, and they can deliver more functionality
to users who prefer them.

Just as the keyboard is usually identified with entering and manipulating text data, the mouse is identified with
drawing and manipulating graphical objects. Indeed, most of the sample programs in this chapter draw some
graphics, putting to use what we learned in Chapter 5.

Mouse Basics

Windows 98 can support a one-button, two-button, or three-button mouse, or it can use a joystick or light pen to
mimic a mouse. In the early days, Windows applications avoided the use of the second or third buttons in
deference to users who had a one-button mouse. However, the two-button mouse has become the de facto
standard, so the traditional reticence to use the second button is no longer justified. Indeed, the second button is
now the standard for invoking a "context menu," which is a menu that appears in a window outside the normal
menu bar, or for special dragging operations. (Dragging will be explained shortly.) However, programs should not
rely upon the presence of a two-button mouse.

In theory, you can determine if a mouse is present by using our old friend the GetSystemMetrics function:

fMouse = GetSystemMetrics (SM_MOUSEPRESENT) ;

The value of fMouse will be TRUE (nonzero) if a mouse is installed and 0 if a mouse is not installed. However, in
Windows 98 this function always returns TRUE whether a mouse is attached or not. In Microsoft Windows NT, it
works correctly.

To determine the number of buttons on the installed mouse, use

cButtons = GetSystemMetrics (SM_CMOUSEBUTTONS) ;

This function should also return 0 if a mouse is not installed. However, under Windows 98 the function returns 2 if
a mouse is not installed.

Left-handed users can switch the mouse buttons using the Windows Control Panel. Although an application can
determine whether this has been done by calling GetSystemMetrics with the SM_SWAPBUTTON parameter, this is
not usually necessary. The button triggered by the index finger is considered to be the left button, even if it's
physically on the right side of the mouse. However, in a training program, you might want to draw a mouse on the
screen, and in that case, you might want to know if the mouse buttons have been swapped.

You can set other mouse parameters in the Control Panel, such as the double-click speed. From a Windows
application you can set or obtain this information using the SystemParametersInfo function.

Some Quick Definitions

When the Windows user moves the mouse, Windows moves a small bitmapped picture on the display. This is
called the "mouse cursor." The mouse cursor has a single-pixel "hot spot" that points to a precise location on the
display. When I refer to the position of the mouse cursor on the screen, I really mean the position of the hot spot.

Windows supports several predefined mouse cursors that programs can use. The most common is the slanted
arrow named IDC_ARROW (using the identifier defined in WINUSER.H). The hot spot is the tip of the arrow. The
IDC_CROSS cursor (used in the BLOKOUT programs shown later in this chapter) has a hot spot in the center of a
crosshair pattern. The IDC_WAIT cursor is an hourglass generally used by programs to indicate they are busy.
Programmers can also design their own cursors. You'll learn how in Chapter 10. The default cursor for a particular
window is specified when defining the window class structure, for instance:

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

The following terms describe the actions you take with mouse buttons:

Clicking Pressing and releasing a mouse button.

Double-clicking Pressing and releasing a mouse button twice in quick succession.

Dragging Moving the mouse while holding down a button.

On a three-button mouse, the buttons are called the left button, the middle button, and the right button. Mouse-
related identifiers defined in the Windows header files use the abbreviations LBUTTON, MBUTTON, and RBUTTON.
A two-button mouse has only a left button and a right button. The single button on a one-button mouse is a left
button.

The Plural of Mouse Is…

And now, to demonstrate my bravery, I will confront one of the most perplexing issues in the field of alternative
input devices: what is the plural of "mouse"?

Although everyone knows that multiple rodents are called mice, no one seems to have a definitive answer for what
we call multiple input devices. Neither "mice" nor "mouses" sounds quite right. My customary reference—the third
edition of the American Heritage Dictionary of the English Language—says that either is acceptable (with "mice"
preferred), while the third edition of the Microsoft Press Computer Dictionary avoids the issue entirely.

The book Wired Style: Principles of English Usage in the Digital Age (HardWired, 1996) by the editors of Wired
magazine indicates that "mouses" is preferred to avoid confusion with rodents. Doug Engelbart, who invented the
mouse in 1964, is of no help at all in resolving this issue. I once asked him about the plural of mouse and so did
the editors of Wired. He says he doesn't know.

Finally, with an air of high authority, the Microsoft Manual of Style for Technical Publications instructs us to "Avoid
using the plural mice; if you need to refer to more than one mouse, use mouse devices." This may sound like a
cop-out, but it's really quite sensible advice when neither plural sounds right. Indeed, most sentences that might
require a plural for "mouse" can be recast to avoid it. For example, rather than saying "People use mice almost as
much as keyboards," try "People use the mouse almost as much as the keyboard."

Client-Area Mouse Messages

In the previous chapter, you saw how Windows sends keyboard messages only to the window that has the input
focus. Mouse messages are different: a window procedure receives mouse messages whenever the mouse passes
over the window or is clicked within the window, even if the window is not active or does not have the input focus.
Windows defines 21 messages for the mouse. However, 11 of these messages do not relate to the client area.
These are called "nonclient-area messages," and Windows applications usually ignore them.

When the mouse is moved over the client area of a window, the window procedure receives the message
WM_MOUSEMOVE. When a mouse button is pressed or released within the client area of a window, the window
procedure receives the messages in this table:
Button
Pressed
Released
Pressed (Second Click)
Left
WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDBLCLK
Middle
WM_MBUTTONDOWN
WM_MBUTTONUP
WM_MBUTTONDBLCLK
Right
WM_RBUTTONDOWN
WM_RBUTTONUP
WM_RBUTTONDBLCLK

Your window procedure receives MBUTTON messages only for a three-button mouse and RBUTTON messages only
for a two-button mouse. The window procedure receives DBLCLK (double-click) messages only if the window class
has been defined to receive them (as described in the section titled "Mouse Double-Clicks ").

For all these messages, the value of lParam contains the position of the mouse. The low word is the x -coordinate,
and the high word is the y -coordinate relative to the upper left corner of the client area of the window. You can
extract these values using the LOWORD and HIWORD macros:

x = LOWORD (lParam) ;
y = HIWORD (lParam) ;

The value of wParam indicates the state of the mouse buttons and the Shift and Ctrl keys. You can test wParam
using these bit masks defined in the WINUSER.H header file. The MK prefix stands for "mouse key."

MK_LBUTTON Left button is down
MK_MBUTTON Middle button is down
MK_RBUTTON Right button is down
MK_SHIFT Shift key is down
MK_CONTROL Ctrl key is down

For example, if you receive a WM_LBUTTONDOWN message, and if the value

wparam & MK_SHIFT

is TRUE (nonzero), you know that the Shift key was down when the left button was pressed.

As you move the mouse over the client area of a window, Windows does not generate a WM_MOUSEMOVE
message for every possible pixel position of the mouse. The number of WM_MOUSEMOVE messages your program
receives depends on the mouse hardware and on the speed at which your window procedure can process the
mouse movement messages. In other words, Windows does not fill up a message queue with unprocessed
WM_MOUSEMOVE messages. You'll get a good idea of the rate of WM_MOUSEMOVE messages when you
experiment with the CONNECT program described below.

If you click the left mouse button in the client area of an inactive window, Windows changes the active window to
the window that is being clicked and then passes the WM_LBUTTONDOWN message to the window procedure.
When your window procedure gets a WM_LBUTTONDOWN message, your program can safely assume the window
is active. However, your window procedure can receive a WM_LBUTTONUP message without first receiving a
WM_LBUTTONDOWN message. This can happen if the mouse button is pressed in one window, moved to your
window, and released. Similarly, the window procedure can receive a WM_LBUTTONDOWN without a
corresponding WM_LBUTTONUP message if the mouse button is released while positioned over another window.

There are two exceptions to these rules:

A window procedure can "capture the mouse" and continue to receive mouse messages even when the
mouse is outside the window's client area. You'll learn how to capture the mouse later in this chapter.

If a system modal message box or a system modal dialog box is on the display, no other program can
receive mouse messages. System modal message boxes and dialog boxes prohibit switching to another
window while the box is active. An example of a system modal message box is the one that appears when
you shut down your Windows session.

Simple Mouse Processing: An Example

The CONNECT program, shown in Figure 7-1, does some simple mouse processing to let you get a good feel for
how Windows sends mouse messages to your program.

Figure 7-1. The CONNECT program.

CONNECT.C

/*--
 CONNECT.C -- Connect-the-Dots Mouse Demo Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define MAXPOINTS 1000

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Connect") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Connect-the-Points Mouse Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static POINT pt[MAXPOINTS] ;
 static int iCount ;
 HDC hdc ;
 int i, j ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_LBUTTONDOWN:
 iCount = 0 ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_MOUSEMOVE:
 if (wParam & MK_LBUTTON && iCount < 1000)

 {
 pt[iCount].x = LOWORD (lParam) ;
 pt[iCount++].y = HIWORD (lParam) ;

 hdc = GetDC (hwnd) ;
 SetPixel (hdc, LOWORD (lParam), HIWORD (lParam), 0) ;
 ReleaseDC (hwnd, hdc) ;
 }
 return 0 ;

 case WM_LBUTTONUP:
 InvalidateRect (hwnd, NULL, FALSE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 for (i = 0 ; i < iCount - 1 ; i++)
 for (j = i + 1 ; j < iCount ; j++)
 {
 MoveToEx (hdc, pt[i].x, pt[i].y, NULL) ;
 LineTo (hdc, pt[j].x, pt[j].y) ;
 }

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

CONNECT processes three mouse messages:

WM_LBUTTONDOWN CONNECT clears the client area.

WM_MOUSEMOVE If the left button is down, CONNECT draws a black dot on the client area at the mouse
position and saves the coordinates.

WM_LBUTTONUP CONNECT connects every dot shown in the client area to every other dot. Sometimes this
results in a pretty design, sometimes in a dense blob. (See Figure 7-2.)

Figure 7-2. The CONNECT display.

To use CONNECT, bring the mouse cursor into the client area, press the left button, move the mouse around a
little, and then release the left button. CONNECT works best for a curved pattern of a few dots, which you can
draw by moving the mouse quickly while the left button is depressed.

CONNECT uses three GDI function calls that I discussed in Chapter 5 : SetPixel draws a black pixel for each
WM_MOUSEMOVE message when the left mouse button is depressed. (On high-resolution displays, these pixels
might be nearly invisible.) Drawing the lines requires MoveToEx and LineTo .

If you move the mouse cursor out of the client area before releasing the button, CONNECT does not connect the
dots because it doesn't receive the WM_LBUTTONUP message. If you move the mouse back into the client area
and press the left button again, CONNECT clears the client area. If you want to continue a design after releasing
the button outside the client area, press the left button again while the mouse is outside the client area and then
move the mouse back inside.

CONNECT stores a maximum of 1000 points. If the number of points is P, the number of lines CONNECT draws is
equal to P × (P - 1) / 2. With 1000 points, this involves almost 500,000 lines, which might take a minute or so to
draw, depending on your hardware. Because Windows 98 is a preemptive multitasking environment, you can
switch to other programs at this time. However, you can't do anything else with the CONNECT program (such as
move it or change the size) while the program is busy. In Chapter 20 , we'll examine methods for dealing with
problems such as this.

Because CONNECT might take some time to draw the lines, it switches to an hourglass cursor and then back again
while processing the WM_PAINT message. This requires two calls to the SetCursor function using two stock
cursors. CONNECT also calls ShowCursor twice, once with a TRUE parameter and the second time with a FALSE
parameter. I'll discuss these calls in more detail later in this chapter, in the section "Emulating the Mouse with the
Keyboard ".

Sometimes the word "tracking" is used to refer to the way that programs process mouse movement. Tracking
does not mean, however, that your program sits in a loop in its window procedure while attempting to follow the
mouse's movements on the display. The window procedure instead processes each mouse message as it comes
and then quickly returns control to Windows.

Processing Shift Keys

When CONNECT receives a WM_MOUSEMOVE message, it performs a bitwise AND operation on the value of
wParam and MK_LBUTTON to determine if the left button is depressed. You can also use wParam to determine the
state of the Shift keys. For instance, if processing must be dependent on the status of the Shift and Ctrl keys, you
might use logic that looks like this:

if (wParam & MK_SHIFT)

{
 if (wParam & MK_CONTROL)
 {
 [Shift and Ctrl keys are down]
 }
 else
 {
 [Shift key is down]
 }
{
else
{
 if (wParam & MK_CONTROL]
 {
 [Ctrl key is down]
 }
 else
 {
 [neither Shift nor Ctrl key is down]
 }
}

If you want to use both the left and right mouse buttons in your program, and if you also want to accommodate
those users with a one-button mouse, you can write your code so that Shift in combination with the left button is
equivalent to the right button. In that case, your mouse button-click processing might look something like this:

case WM_LBUTTONDOWN:
 if (!(wParam & MK_SHIFT))
 {
 [left button logic]
 return 0 ;
 }
 // Fall through
case WM_RBUTTONDOWN:
 [right button logic]
 return 0 ;

The Window function GetKeyState (described in Chapter 6) can also return the status of the mouse buttons or
shift keys using the virtual key codes VK_LBUTTON, VK_RBUTTON, VK_MBUTTON, VK_SHIFT, and VK_CONTROL.
The button or key is down if the value returned from GetKeyState is negative. Because GetKeyState returns
mouse or key states as of the message currently being processed, the status information is properly synchronized
with the messages. Just as you cannot use GetKeyState for a key that has yet to be pressed, you cannot use it for
a mouse button that has yet to be pressed. Don't do this:

while (GetKeyState (VK_LBUTTON) >= 0) ; // WRONG !!!

The GetKeyState function will report that the left button is depressed only if the button is already depressed when
you process the message during which you call GetKeyState .

Mouse Double-Clicks

A mouse double-click is two clicks in quick succession. To qualify as a double-click, the two clicks must occur in
close physical proximity of one another (by default, about an area as wide as an average system font character
and half as high) and within a specific interval of time called the "double-click speed." You can change that time
interval in the Control Panel.

If you want your window procedure to receive double-click mouse messages, you must include the identifier
CS_DBLCLKS when initializing the style field in the window class structure before calling RegisterClass :

wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS ;

If you do not include CS_DBLCLKS in the window style and the user clicks the left mouse button twice in quick
succession, your window procedure receives these messages:

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDOWN
WM_LBUTTONUP

The window procedure might also receive other messages between these button messages. If you want to
implement your own double-click logic, you can use the Windows function GetMessageTime to obtain the relative
times of the WM_LBUTTONDOWN messages. This function is discussed in more detail in Chapter 8 .

If you include CS_DBLCLKS in your window class style, the window procedure receives these messages for a
double-click:

WM_LBUTTONDOWN

WM_LBUTTONUP
WM_LBUTTONDBLCLK
WM_LBUTTONUP

The WM_LBUTTONDBLCLK message simply replaces the second WM_LBUTTONDOWN message.

Double-click messages are much easier to process if the first click of a double-click performs the same action as a
single click. The second click (the WM_LBUTTONDBLCLK message) then does something in addition to the first
click. For example, look at how the mouse works with the file lists in Windows Explorer. A single click selects the
file. Windows Explorer highlights the file with a reverse-video bar. A double-click performs two actions: the first
click selects the file, just as a single click does; the second click directs Windows Explorer to open the file. That's
fairly easy logic. Mouse-handling logic could get more complex if the first click of a double-click did not perform
the same action as a single click.

Nonclient-Area Mouse Messages

The 10 mouse messages discussed so far occur when the mouse is moved or clicked within the client area of a
window. If the mouse is outside a window's client area but within the window, Windows sends the window
procedure a "nonclient-area" mouse message. The nonclient area of a window includes the title bar, the menu,
and the window scroll bars.

You do not usually need to process nonclient-area mouse messages. Instead, you simply pass them on to
DefWindowProc so that Windows can perform system functions. In this respect, the nonclient-area mouse
messages are similar to the system keyboard messages WM_SYSKEYDOWN, WM_SYSKEYUP, and WM_SYSCHAR.

The nonclient-area mouse messages parallel almost exactly the client-area mouse messages. The message
identifiers include the letters "NC" to indicate "nonclient." If the mouse is moved within a nonclient area of a
window, the window procedure receives the message WM_NCMOUSEMOVE. The mouse buttons generate these
messages:

Button Pressed Released Pressed (Second Click)

Left WM_NCLBUTTONDOWN WM_NCLBUTTONUP WM_NCLBUTTONDBLCLK

Middle WM_NCMBUTTONDOWN WM_NCMBUTTONUP WM_NCMBUTTONDBLCLK

Right WM_NCRBUTTONDOWN WM_NCRBUTTONUP WM_NCRBUTTONDBLCLK

The wParam and lParam parameters for nonclient-area mouse messages are somewhat different from those for
client-area mouse messages. The wParam parameter indicates the nonclient area where the mouse was moved or
clicked. It is set to one of the identifiers beginning with HT (standing for "hit-test") that are defined in the
WINUSER.H.

The lParam parameter contains an x-coordinate in the low word and a y-coordinate in the high word. However,
these are screen coordinates, not client-area coordinates as they are for client-area mouse messages. For screen
coordinates, the upper-left corner of the display area has x and y values of 0. Values of x increase as you move to
the right, and values of y increase as you move down the screen. (See Figure 7-3.)

You can convert screen coordinates to client-area coordinates and vice versa with these two Windows functions:

ScreenToClient (hwnd, &pt) ;
ClientToScreen (hwnd, &pt) ;

where pt is a POINT structure. These two functions convert the values stored in the structure without preserving
the old values. Note that if a screen-coordinate point is above or to the left of the window's client area, the x or y
value of the client-area coordinate could be negative.

Figure 7-3. Screen coordinates and client-area coordinates.

The Hit-Test Message

If you've been keeping count, you know that so far we've covered 20 of the 21 mouse messages. The last
message is WM_NCHITTEST, which stands for "nonclient hit test." This message precedes all other client-area and
nonclient-area mouse messages. The lParam parameter contains the x and y screen coordinates of the mouse
position. The wParam parameter is not used.

Windows applications generally pass this message to DefWindowProc. Windows then uses the WM_NCHITTEST
message to generate all other mouse messages based on the position of the mouse. For nonclient-area mouse
messages, the value returned from DefWindowProc when processing WM_NCHITTEST becomes the wParam
parameter in the mouse message. This value can be any of the wParam values that accompany the nonclient-area
mouse messages plus the following:

HTCLIENT Client area
HTNOWHERE Not on any window
HTTRANSPARENT A window covered by another window
HTERROR Causes DefWindowProc to produce a beep

If DefWindowProc returns HTCLIENT after it processes a WM_NCHITTEST message, Windows converts the screen
coordinates to client-area coordinates and generates a client-area mouse message.

If you remember how we disabled all system keyboard functions by trapping the WM_SYSKEYDOWN message, you
may wonder if you can do something similar by trapping mouse messages. Sure! If you include the lines

case WM_NCHITTEST:
 return (LRESULT) HTNOWHERE ;

in your window procedure, you will effectively disable all client-area and nonclient-area mouse messages to your
window. The mouse buttons will simply not work while the mouse is anywhere within your window, including the
system menu icon, the sizing buttons, and the close button.

Messages Beget Messages

Windows uses the WM_NCHITTEST message to generate all other mouse messages. The idea of messages giving
birth to other messages is common in Windows. Let's take an example. As you may know, if you double-click the
system menu icon of a Windows program, the window will be terminated. The double-click generates a series of
WM_NCHITTEST messages. Because the mouse is positioned over the system menu icon, DefWindowProc returns
a value of HTSYSMENU and Windows puts a WM_NCLBUTTONDBLCLK message in the message queue with
wParam equal to HTSYSMENU.

The window procedure usually passes that mouse message to DefWindowProc. When DefWindowProc receives the
WM_NCLBUTTONDBLCLK message with wParam equal to HTSYSMENU, it puts a WM_SYSCOMMAND message with
wParam equal to SC_CLOSE in the message queue. (This WM_SYSCOMMAND message is also generated when a
user selects Close from the system menu.) Again the window procedure usually passes that message to
DefWindowProc. DefWindowProc processes the message by sending a WM_CLOSE message to the window
procedure.

If the program wants to require confirmation from a user before terminating, the window procedure can trap
WM_CLOSE. Otherwise, DefWindowProc processes WM_CLOSE by calling the DestroyWindow function. Among
other chores, DestroyWindow sends a WM_DESTROY message to the window procedure. Normally, a window
procedure processes WM_DESTROY with the code

case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;

The PostQuitMessage causes Windows to place a WM_QUIT message in the message queue. This message never
reaches the window procedure because it causes GetMessage to return 0, which terminates the message loop and
the program.

Hit-Testing in Your Programs

Earlier I discussed how Windows Explorer responds to mouse clicks and double-clicks. Obviously, the program (or
more precisely the list view control that Windows Explorer uses) must first determine exactly which file or
directory the user is pointing at with the mouse.

This is called "hit-testing." Just as DefWindowProc must do some hit-testing when processing WM_NCHITTEST
messages, a window procedure often must do hit-testing of its own within the client area. In general, hit-testing
involves calculations using the x and y coordinates passed to your window procedure in the lParam parameter of
the mouse message.

A Hypothetical Example

Here's an example. Suppose your program needs to display several columns of alphabetically sorted files.
Normally, you would use the list view control because it does all the hit-testing work for you. But let's suppose you
can't use it for some reason. You need to do it yourself. Let's assume that the filenames are stored in a sorted
array of pointers to character strings named szFileNames .

Let's also assume that the file list starts at the top of the client area, which is cxClient pixels wide and cyClient
pixels high. The columns are cxColWidth pixels wide; the characters are cyChar pixels high. The number of files
you can fit in each column is

iNumInCol = cyClient / cyChar ;

When your program receives a mouse click message, you can obtain the cxMouse and cyMouse coordinates from
lParam . You then calculate which column of filenames the user is pointing at by using this formula:

iColumn = cxMouse / cxColWidth ;

The position of the filename in relation to the top of the column is

iFromTop = cyMouse / cyChar ;

Now you can calculate an index to the szFileNames array.

iIndex = iColumn * iNumInCol + iFromTop ;

If iIndex exceeds the number of files in the array, the user is clicking on a blank area of the display.

In many cases, hit-testing is more complex than this example suggests. When you display a graphical image
containing many parts, you must determine the coordinates for each item you display. In hit-testing calculations,
you must go backward from the coordinates to the object. This can become quite messy in a word-processing
program that uses variable font sizes, because you must work backward to find the character position with the
string.

A Sample Program

The CHECKER1 program, shown in Figure 7-4, demonstrates some simple hit-testing. The program divides the
client area into a 5-by-5 array of 25 rectangles. If you click the mouse on one of the rectangles, the rectangle is
filled with an X. If you click there again, the X is removed.

Figure 7-4. The CHECKER1 program.

CHECKER1.C

/*---
 CHECKER1.C -- Mouse Hit-Test Demo Program No. 1
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define DIVISIONS 5

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Checker1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Checker1 Mouse Hit-Test Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAMlParam)
{
 static BOOL fState[DIVISIONS][DIVISIONS] ;
 static int cxBlock, cyBlock ;
 HDC hdc ;
 int x, y ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_SIZE :
 cxBlock = LOWORD (lParam) / DIVISIONS ;
 cyBlock = HIWORD (lParam) / DIVISIONS ;
 return 0 ;

 case WM_LBUTTONDOWN :
 x = LOWORD (lParam) / cxBlock ;
 y = HIWORD (lParam) / cyBlock ;

 if (x < DIVISIONS && y < DIVISIONS)
 {
 fState [x][y] ^= 1 ;

 rect.left = x * cxBlock ;
 rect.top = y * cyBlock ;
 rect.right = (x + 1) * cxBlock ;
 rect.bottom = (y + 1) * cyBlock ;

 InvalidateRect (hwnd, &rect, FALSE) ;
 }
 else
 MessageBeep (0) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 {
 Rectangle (hdc, x * cxBlock, y * cyBlock,

 (x + 1) * cxBlock, (y + 1) * cyBlock) ;

 if (fState [x][y])
 {
 MoveToEx (hdc, x * cxBlock, y * cyBlock, NULL) ;
 LineTo (hdc, (x+1) * cxBlock, (y+1) * cyBlock) ;
 MoveToEx (hdc, x * cxBlock, (y+1) * cyBlock, NULL) ;
 LineTo (hdc, (x+1) * cxBlock, y * cyBlock) ;
 }
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Figure 7-5 shows the CHECKER1 display. All 25 rectangles drawn by the program have the same width and the
same height. These width and height values are stored in cxBlock and cyBlock , which are recalculated whenever
the size of the client area changes. The WM_LBUTTONDOWN logic uses the mouse coordinates to determine which
rectangle has been clicked. It flags the current state of the rectangle in the array fState and invalidates the
rectangle to generate a WM_PAINT message.

Figure 7-5. The CHECKER1 display.

If the width or height of the client area is not evenly divisible by five, a small strip of client area at the left or
bottom will not be covered by a rectangle. For error processing, CHECKER1 responds to a mouse click in this area
by calling MessageBeep .

When CHECKER1 receives a WM_PAINT message, it repaints the entire client area by drawing rectangles using the
GDI Rectangle function. If the fState value is set, CHECKER1 draws two lines using the MoveToEx and LineTo
functions. During WM_PAINT processing, CHECKER1 does not check whether each rectangular area lies within the
invalid rectangle, but it could. One method for checking validity involves building a RECT structure for each
rectangular block within the loop (using the same formulas as in the WM_LBUTTONDOWN logic) and checking
whether that rectangle intersects the invalid rectangle (available as ps.rcPaint) by using the function

IntersectRect .

Emulating the Mouse with the Keyboard

To use CHECKER1, you need to use the mouse. We'll be adding a keyboard interface to the program shortly, as we
did for the SYSMETS program in Chapter 6 . However, adding a keyboard interface to a program that uses the
mouse cursor for pointing purposes requires that we also must worry about displaying and moving the mouse
cursor.

Even if a mouse device is not installed, Windows can still display a mouse cursor. Windows maintains something
called a "display count" for this cursor. If a mouse is installed, the display count is initially 0; if not, the display
count is initially -1. The mouse cursor is displayed only if the display count is non-negative. You can increment the
display count by calling

ShowCursor (TRUE) ;

and decrement it by calling

ShowCursor (FALSE) ;

You do not need to determine if a mouse is installed before using ShowCursor . If you want to display the mouse
cursor regardless of the presence of the mouse, simply increment the display count by calling ShowCursor . After
you increment the display count once, decrementing it will hide the cursor if no mouse is installed but leave it
displayed if a mouse is present.

Windows maintains a current mouse cursor position even if a mouse is not installed. If a mouse is not installed
and you display the mouse cursor, it might appear in any part of the display and will remain in that position until
you explicitly move it. You can obtain the cursor position by calling

GetCursorPos (&pt) ;

where pt is a POINT structure. The function fills in the POINT fields with the x and y coordinates of the mouse. You
can set the cursor position by using

SetCursorPos (x, y) ;

In both cases, the x and y values are screen coordinates, not client-area coordinates. (This should be evident
because the functions do not require a hwnd parameter.) As noted earlier, you can convert screen coordinates to
client-area coordinates and vice versa by calling ScreenToClient and ClientToScreen .

If you call GetCursorPos while processing a mouse message and you convert to client-area coordinates, these
coordinates might be slightly different from those encoded in the lParam parameter of the mouse message. The
coordinates returned from GetCursorPos indicate the current position of the mouse. The coordinates in lParam are
the coordinates of the mouse at the time the message was generated.

You'll probably want to write keyboard logic that moves the mouse cursor with the keyboard arrow keys and that
simulates the mouse button with the Spacebar or Enter key. What you don't want to do is move the mouse cursor
one pixel per keystroke. That forces a user to hold down an arrow key for too long a time to move it.

If you need to implement a keyboard interface to the mouse cursor but still maintain the ability to position the

cursor at precise pixel locations, you can process keystroke messages in such as way that when you hold down an
arrow key the mouse cursor starts moving slowly but then speeds up. You'll recall that the lParam parameter in
WM_KEYDOWN messages indicates whether the keystroke messages are the result of typematic action. This is an
excellent application of that information.

Add a Keyboard Interface to CHECKER

The CHECKER2 program, shown in Figure 7-6, is the same as CHECKER1, except that it includes a keyboard
interface. You can use the Left, Right, Up, and Down arrow keys to move the cursor among the 25 rectangles. The
Home key sends the cursor to the upper left rectangle; the End key drops it down to the lower right rectangle.
Both the Spacebar and Enter keys toggle the X mark.

Figure 7-6. The CHECKER2 program.

CHECKER2.C

/*---
 CHECKER2.C -- Mouse Hit-Test Demo Program No. 2
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define DIVISIONS 5

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Checker2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Checker2 Mouse Hit-Test Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fState[DIVISIONS][DIVISIONS] ;
 static int cxBlock, cyBlock ;
 HDC hdc ;
 int x, y ;
 PAINTSTRUCT ps ;
 POINT point ;
 RECT rect ;

 switch (message)
 {
 case WM_SIZE :
 cxBlock = LOWORD (lParam) / DIVISIONS ;
 cyBlock = HIWORD (lParam) / DIVISIONS ;
 return 0 ;

 case WM_SETFOCUS :
 ShowCursor (TRUE) ;
 return 0 ;

 case WM_KILLFOCUS :
 ShowCursor (FALSE) ;
 return 0 ;

 case WM_KEYDOWN :
 GetCursorPos (&point) ;
 ScreenToClient (hwnd, &point) ;
 x = max (0, min (DIVISIONS - 1, point.x / cxBlock)) ;
 y = max (0, min (DIVISIONS - 1, point.y / cyBlock)) ;

 switch (wParam)
 {
 case VK_UP :
 y-- ;
 break ;

 case VK_DOWN :
 y++ ;
 break ;

 case VK_LEFT :
 x-- ;
 break ;

 case VK_RIGHT :
 x++ ;
 break ;

 case VK_HOME :
 x = y = 0 ;
 break ;

 case VK_END :
 x = y = DIVISIONS - 1 ;
 break ;

 case VK_RETURN :
 case VK_SPACE :
 SendMessage (hwnd, WM_LBUTTONDOWN, MK_LBUTTON,
 MAKELONG (x * cxBlock, y * cyBlock)) ;
 break ;
 }
 x = (x + DIVISIONS) % DIVISIONS ;
 y = (y + DIVISIONS) % DIVISIONS ;

 point.x = x * cxBlock + cxBlock / 2 ;
 point.y = y * cyBlock + cyBlock / 2 ;

 ClientToScreen (hwnd, &point) ;
 SetCursorPos (point.x, point.y) ;
 return 0 ;

 case WM_LBUTTONDOWN :
 x = LOWORD (lParam) / cxBlock ;
 y = HIWORD (lParam) / cyBlock ;

 if (x < DIVISIONS && y < DIVISIONS)
 {
 fState[x][y] ^= 1 ;

 rect.left = x * cxBlock ;
 rect.top = y * cyBlock ;
 rect.right = (x + 1) * cxBlock ;
 rect.bottom = (y + 1) * cyBlock ;

 InvalidateRect (hwnd, &rect, FALSE) ;
 }
 else

 MessageBeep (0) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 {
 Rectangle (hdc, x * cxBlock, y * cyBlock,
 (x + 1) * cxBlock, (y + 1) * cyBlock) ;

 if (fState [x][y])
 {
 MoveToEx (hdc, x *cxBlock, y *cyBlock, NULL) ;
 LineTo (hdc, (x+1)*cxBlock, (y+1)*cyBlock) ;
 MoveToEx (hdc, x *cxBlock, (y+1)*cyBlock, NULL) ;
 LineTo (hdc, (x+1)*cxBlock, y *cyBlock) ;
 }
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The WM_KEYDOWN logic in CHECKER2 determines the position of the cursor using GetCursorPos , converts the
screen coordinates to client-area coordinates using ScreenToClient , and divides the coordinates by the width and
height of the rectangular block. This produces x and y values that indicate the position of the rectangle in the 5-
by-5 array. The mouse cursor might or might not be in the client area when a key is pressed, so x and y must be
passed through the min and max macros to ensure that they range from 0 through 4.

For arrow keys, CHECKER2 increments or decrements x and y appropriately. If the key is the Enter key or the
Spacebar, CHECKER2 uses SendMessage to send a WM_LBUTTONDOWN message to itself. This technique is
similar to the method used in the SYSMETS program in Chapter 6 to add a keyboard interface to the window scroll
bar. The WM_KEYDOWN logic finishes by calculating client-area coordinates that point to the center of the
rectangle, converting to screen coordinates using ClientToScreen , and setting the cursor position using
SetCursorPos .

Using Child Windows for Hit-Testing

Some programs (for example, the Windows Paint program) divide the client area into several smaller logical areas.
The Paint program has an area at the left for its icon-based tool menu and an area at the bottom for the color
menu. When Paint hit-tests these two areas, it must take into account the location of the smaller area within the
entire client area before determining the actual item being selected by the user.

Or maybe not. In reality, Paint simplifies both the drawing and hit-testing of these smaller areas through the use
of "child windows." The child windows divide the entire client area into several smaller rectangular regions. Each
child window has its own window handle, window procedure, and client area. Each child window procedure
receives mouse messages that apply only to its own window. The lParam parameter in the mouse message
contains coordinates relative to the upper left corner of the client area of the child window, not relative to the
client area of the "parent" window (which is Paint's main application window).

Child windows used in this way can help you structure and modularize your programs. If the child windows use
different window classes, each child window can have its own window procedure. The different window classes can
also define different background colors and different default cursors. In Chapter 9 , we'll look at "child window
controls," which are predefined windows that take the form of scroll bars, buttons, and edit boxes. Right now, let's
see how we can use child windows in the CHECKER program.

Child Windows in CHECKER

Figure 7-7 shows CHECKER3. This version of the program creates 25 child windows to process mouse clicks. It
does not have a keyboard interface, but one could be added as I'll demonstrate in CHECKER4 later in this chapter.

Figure 7-7. The CHECKER3 program.

CHECKER3.C

/*---
 CHECKER3.C -- Mouse Hit-Test Demo Program No. 3
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define DIVISIONS 5

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK ChildWndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szChildClass[] = TEXT ("Checker3_Child") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Checker3") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;

 return 0 ;
 }

 wndclass.lpfnWndProc = ChildWndProc ;
 wndclass.cbWndExtra = sizeof (long) ;
 wndclass.hIcon = NULL ;
 wndclass.lpszClassName = szChildClass ;

 RegisterClass (&wndclass) ;

 hwnd = CreateWindow (szAppName, TEXT ("Checker3 Mouse Hit-Test Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndChild[DIVISIONS][DIVISIONS] ;
 int cxBlock, cyBlock, x, y ;

 switch (message)
 {
 case WM_CREATE :
 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 hwndChild[x][y] = CreateWindow (szChildClass, NULL,
 WS_CHILDWINDOW | WS_VISIBLE,
 0, 0, 0, 0,
 hwnd, (HMENU) (y << 8 | x),
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),
 NULL) ;
 return 0 ;

 case WM_SIZE :
 cxBlock = LOWORD (lParam) / DIVISIONS ;
 cyBlock = HIWORD (lParam) / DIVISIONS ;
 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 MoveWindow (hwndChild[x][y],
 x * cxBlock, y * cyBlock,
 cxBlock, cyBlock, TRUE) ;

 return 0 ;

 case WM_LBUTTONDOWN :
 MessageBeep (0) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

LRESULT CALLBACK ChildWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE :
 SetWindowLong (hwnd, 0, 0) ; // on/off flag
 return 0 ;

 case WM_LBUTTONDOWN :
 SetWindowLong (hwnd, 0, 1 ^ GetWindowLong (hwnd, 0)) ;
 InvalidateRect (hwnd, NULL, FALSE) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 Rectangle (hdc, 0, 0, rect.right, rect.bottom) ;

 if (GetWindowLong (hwnd, 0))
 {
 MoveToEx (hdc, 0, 0, NULL) ;
 LineTo (hdc, rect.right, rect.bottom) ;
 MoveToEx (hdc, 0, rect.bottom, NULL) ;
 LineTo (hdc, rect.right, 0) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

CHECKER3 has two window procedures named WndProc and ChildWndProc . WndProc is still the window procedure

for the main (or parent) window. ChildWndProc is the window procedure for the 25 child windows. Both window
procedures must be defined as CALLBACK functions.

Because a window procedure is associated with a particular window class structure that you register with Windows
by calling the RegisterClass function, CHECKER3 requires two window classes. The first window class is for the
main window and has the name "Checker3". The second window class is given the name "Checker3_Child". You
don't have to choose quite so reasonable names as these, though.

CHECKER3 registers both window classes in the WinMain function. After registering the normal window class,
CHECKER3 simply reuses most of the fields in the wndclass structure for registering the Checker3_Child class.
Four fields, however, are set to different values for the child window class:

The lpfnWndProc field is set to ChildWndProc , the window procedure for the child window class.

The cbWndExtra field is set to 4 bytes or, more precisely, sizeof (long) . This field tells Windows to reserve 4
bytes of extra space in an internal structure that Windows maintains for each window based on this window
class. You can use this space to store information that might be different for each window.

The hIcon field is set to NULL because child windows such as the ones in CHECKER3 do not require icons.

The pszClassName field is set to "Checker3_Child", the name of the class.

The CreateWindow call in WinMain creates the main window based on the Checker3 class. This is normal.
However, when WndProc receives a WM_CREATE message, it calls CreateWindow 25 times to create 25 child
windows based on the Checker3_Child class. The table below provides a comparison of the arguments to the
CreateWindow call in WinMain and the CreateWindow call in WndProc that creates the 25 child windows.

Argument
Main Window
Child Window
window class
"Checker3"
"Checker3_Child"
window caption
"Checker3…"
NULL
window style
WS_OVERLAPPEDWINDOW
WS_CHILDWINDOW |WS_VISIBLE
horizontal position
CW_USEDEFAULT
0
vertical position
CW_USEDEFAULT
0
width
CW_USEDEFAULT
0
height
CW_USEDEFAULT
0
parent window handle
NULL
hwnd
menu handle/child ID
NULL
(HMENU) (y << 8 | x)
instance handle
hInstance
(HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE)
extra parameters
NULL
NULL

Normally, the position and size parameters are required for child window, but in CHECKER3 the child windows are
positioned and sized later in WndProc . The parent window handle is NULL for the main window because it is the
parent. The parent window handle is required when using the CreateWindow call to create a child window.

The main window doesn't have a menu, so that parameter is NULL. For child windows, the same parameter is
called a "child ID" or a "child windows ID." This is a number that uniquely identifies the child window. The child ID
becomes much more important when working with child window controls in dialog boxes, as we'll see in Chapter
11 . For CHECKER3, I've simply set the child ID to a number that is a composite of the x and y positions that each
child window occupies in the 5-by-5 array within the main window.

The CreateWindow function requires an instance handle. Within WinMain , the instance handle is easily available
because it is a parameter to WinMain . When the child window is created, CHECKER3 must use GetWindowLong to
extract the hInstance value from the structure that Windows maintains for the window. (Rather than use
GetWindowLong , I could have saved the value of hInstance in a global variable and used it directly.)

Each child window has a different window handle that is stored in the hwndChild array. When WndProc receives a
WM_SIZE message, it calls MoveWindow for each of the 25 child windows. The parameters to MoveWindow
indicate the upper left corner of the child window relative to the parent window client-area coordinates, the width
and height of the child window, and whether the child window needs repainting.

Now let's take a look at ChildWndProc . This window procedure processes messages for all 25 child windows. The
hwnd parameter to ChildWndProc is the handle to the child window receiving the message. When ChildWndProc
processes a WM_CREATE message (which will happen 25 times because there are 25 child windows), it uses
SetWindowWord to store a 0 in the extra area reserved within the window structure. (Recall that we reserved this
space by using the cbWndExtra field when defining the window class.) ChildWndProc uses this value to store the
current state (X or no X) of the rectangle. When the child window is clicked, the WM_LBUTTONDOWN logic simply
flips the value of this integer (from 0 to 1 or from 1 to 0) and invalidates the entire child window. This area is the
rectangle being clicked. The WM_PAINT processing is trivial because the size of the rectangle it draws is the same
size as its client area.

Because the C source code file and the .EXE file of CHECKER3 are larger than those for CHECKER1 (to say nothing
of my explanation of the programs), I will not try to convince you that CHECKER3 is "simpler" than CHECKER1.
But note that we no longer have to do any mouse hit-testing! If a child window in CHECKER3 gets a
WM_LBUTTONDOWN message the window has been hit, and that's all it needs to know.

Child Windows and the Keyboard

Adding a keyboard interface to CHECKER3 seems the logical last step in the CHECKER series. But in doing this, a
different approach might be appropriate. In CHECKER2, the position of the mouse cursor indicated which square
would get a check mark when the Spacebar was pressed. When we're dealing with child windows, we can take a
cue from the functioning of dialog boxes. In dialog boxes, a child window indicates that it has the input focus (and
hence will be toggled by the keyboard) with a flashing caret or a dotted rectangle.

We're not going to reproduce all the dialog box logic that exists internally in Windows; we're just going to get a
rough idea of how you can emulate dialog boxes in an application. When exploring how to do this, one thing you'll
discover is that the parent window and the child windows should probably share processing of keyboard messages.
The child window should toggle the check mark when the Spacebar or Enter key is pressed. The parent window
should move the input focus among the child windows when the cursor keys are pressed. The logic is complicated
somewhat by the fact that when you click on a child window, the parent window rather than the child window gets
the input focus.

CHECKER4.C is shown in Figure 7-8.

Figure 7-8. The CHECKER4 program.

CHECKER4.C

/*---
 CHECKER4.C -- Mouse Hit-Test Demo Program No. 4
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>
#define DIVISIONS 5

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK ChildWndProc (HWND, UINT, WPARAM, LPARAM) ;

int idFocus = 0 ;
TCHAR szChildClass[] = TEXT ("Checker4_Child") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Checker4") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 wndclass.lpfnWndProc = ChildWndProc ;
 wndclass.cbWndExtra = sizeof (long) ;
 wndclass.hIcon = NULL ;
 wndclass.lpszClassName = szChildClass ;

 RegisterClass (&wndclass) ;

 hwnd = CreateWindow (szAppName, TEXT ("Checker4 Mouse Hit-Test Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndChild[DIVISIONS][DIVISIONS] ;
 int cxBlock, cyBlock, x, y ;

 switch (message)
 {
 case WM_CREATE :
 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 hwndChild[x][y] = CreateWindow (szChildClass, NULL,
 WS_CHILDWINDOW | WS_VISIBLE,
 0, 0, 0, 0,
 hwnd, (HMENU) (y << 8 | x),
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),
 NULL) ;
 return 0 ;

 case WM_SIZE :
 cxBlock = LOWORD (lParam) / DIVISIONS ;
 cyBlock = HIWORD (lParam) / DIVISIONS ;

 for (x = 0 ; x < DIVISIONS ; x++)
 for (y = 0 ; y < DIVISIONS ; y++)
 MoveWindow (hwndChild[x][y],
 x * cxBlock, y * cyBlock,
 cxBlock, cyBlock, TRUE) ;
 return 0 ;

 case WM_LBUTTONDOWN :
 MessageBeep (0) ;
 return 0 ;

 // On set-focus message, set focus to child window

 case WM_SETFOCUS:
 SetFocus (GetDlgItem (hwnd, idFocus)) ;
 return 0 ;

 // On key-down message, possibly change the focus window

 case WM_KEYDOWN:
 x = idFocus & 0xFF ;
 y = idFocus >> 8 ;

 switch (wParam)
 {
 case VK_UP: y-- ; break ;
 case VK_DOWN: y++ ; break ;
 case VK_LEFT: x-- ; break ;
 case VK_RIGHT: x++ ; break ;
 case VK_HOME: x = y = 0 ; break ;
 case VK_END: x = y = DIVISIONS - 1 ; break ;
 default: return 0 ;
 }

 x = (x + DIVISIONS) % DIVISIONS ;
 y = (y + DIVISIONS) % DIVISIONS ;

 idFocus = y << 8 | x ;

 SetFocus (GetDlgItem (hwnd, idFocus)) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

LRESULT CALLBACK ChildWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE :
 SetWindowLong (hwnd, 0, 0) ; // on/off flag
 return 0 ;

 case WM_KEYDOWN:
 // Send most key presses to the parent window

 if (wParam != VK_RETURN && wParam != VK_SPACE)
 {
 SendMessage (GetParent (hwnd), message, wParam, lParam) ;
 return 0 ;
 }
 // For Return and Space, fall through to toggle the square

 case WM_LBUTTONDOWN :
 SetWindowLong (hwnd, 0, 1 ^ GetWindowLong (hwnd, 0)) ;
 SetFocus (hwnd) ;
 InvalidateRect (hwnd, NULL, FALSE) ;

 return 0 ;

 // For focus messages, invalidate the window for repaint

 case WM_SETFOCUS:
 idFocus = GetWindowLong (hwnd, GWL_ID) ;

 // Fall through

 case WM_KILLFOCUS:
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 Rectangle (hdc, 0, 0, rect.right, rect.bottom) ;

 // Draw the "x" mark

 if (GetWindowLong (hwnd, 0))
 {
 MoveToEx (hdc, 0, 0, NULL) ;
 LineTo (hdc, rect.right, rect.bottom) ;
 MoveToEx (hdc, 0, rect.bottom, NULL) ;
 LineTo (hdc, rect.right, 0) ;
 }

 // Draw the "focus" rectangle

 if (hwnd == GetFocus ())
 {
 rect.left += rect.right / 10 ;
 rect.right -= rect.left ;
 rect.top += rect.bottom / 10 ;
 rect.bottom -= rect.top ;

 SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;
 SelectObject (hdc, CreatePen (PS_DASH, 0, 0)) ;
 Rectangle (hdc, rect.left, rect.top, rect.right, rect.bottom) ;
 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

You'll recall that each child window has a unique "child window ID" number defined when the window is created by
the CreateWindow call. In CHECKER3, this ID number is a combination of the x and y positions of the rectangle. A

program can obtain a child window ID for a particular child window by calling:

idChild = GetWindowLong (hwndChild, GWL_ID) ;

This function does the same:

idChild = GetDlgCtrlID (hwndChild) ;

As the function name suggests, it's primarily used with dialog boxes and control windows. It's also possible to
obtain the handle of a child window if you know the handle of the parent window and the child window ID:

hwndChild = GetDlgItem (hwndParent, idChild) ;

In CHECKER4, the global variable idFocus is used to save the child ID number of the window that currently has the
input focus. I mentioned earlier that child windows don't automatically get the input focus when you click on them
with the mouse. Thus, the parent window in CHECKER4 processes the WM_SETFOCUS message by calling

SetFocus (GetDlgItem (hwnd, idFocus)) ;

thus setting the input focus to one of the child windows.

ChildWndProc processes both WM_SETFOCUS and WM_KILLFOCUS messages. For WM_SETFOCUS, it saves the
child window ID receiving the input focus in the global variable idFocus . For both messages, the window is
invalidated, generating a WM_PAINT message. If the WM_PAINT message is drawing the child window with the
input focus, it draws a rectangle with a PS_DASH pen style to indicate that the window has the input focus.

ChildWndProc also processes WM_KEYDOWN messages. For anything but the Spacebar and Return keys, the
WM_KEYDOWN message is sent to the parent window. Otherwise, the window procedure does the same thing as a
WM_LBUTTONDOWN message.

Processing the cursor movement keys is delegated to the parent window. In a manner similar to CHECKER2, this
program obtains the x and y coordinates of the child window with the input focus and changes them based on the
particular cursor key being pressed. The input focus is then set to the new child window with a call to SetFocus .

Capturing the Mouse

A window procedure normally receives mouse messages only when the mouse cursor is positioned over the client
or nonclient area of the window. A program might need to receive mouse messages when the mouse is outside the
window. If so, the program can "capture" the mouse. Don't worry: it won't bite.

Blocking Out a Rectangle

To examine why capturing the mouse might be necessary, let's look at the BLOKOUT1 program shown in Figure 7-
9. This program may seem functional, but it has a nasty flaw.

Figure 7-9. The BLOKOUT1 program.

BLOKOUT1.C

/*---
 BLOKOUT1.C -- Mouse Button Demo Program
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("BlokOut1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Mouse Button Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void DrawBoxOutline (HWND hwnd, POINT ptBeg, POINT ptEnd)
{
 HDC hdc ;

 hdc = GetDC (hwnd) ;

 SetROP2 (hdc, R2_NOT) ;
 SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;
 Rectangle (hdc, ptBeg.x, ptBeg.y, ptEnd.x, ptEnd.y) ;

 ReleaseDC (hwnd, hdc) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fBlocking, fValidBox ;
 static POINT ptBeg, ptEnd, ptBoxBeg, ptBoxEnd ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_LBUTTONDOWN :
 ptBeg.x = ptEnd.x = LOWORD (lParam) ;
 ptBeg.y = ptEnd.y = HIWORD (lParam) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 SetCursor (LoadCursor (NULL, IDC_CROSS)) ;

 fBlocking = TRUE ;
 return 0 ;

 case WM_MOUSEMOVE :
 if (fBlocking)

 {
 SetCursor (LoadCursor (NULL, IDC_CROSS)) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 ptEnd.x = LOWORD (lParam) ;
 ptEnd.y = HIWORD (lParam) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;
 }
 return 0 ;

 case WM_LBUTTONUP :
 if (fBlocking)
 {
 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 ptBoxBeg = ptBeg ;
 ptBoxEnd.x = LOWORD (lParam) ;
 ptBoxEnd.y = HIWORD (lParam) ;

 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 fBlocking = FALSE ;
 fValidBox = TRUE ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_CHAR :
 if (fBlocking & wParam == '\x1B') // i.e., Escape
 {
 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 fBlocking = FALSE ;
 }
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 if (fValidBox)
 {
 SelectObject (hdc, GetStockObject (BLACK_BRUSH)) ;
 Rectangle (hdc, ptBoxBeg.x, ptBoxBeg.y,
 ptBoxEnd.x, ptBoxEnd.y) ;
 }

 if (fBlocking)
 {

 SetROP2 (hdc, R2_NOT) ;
 SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;
 Rectangle (hdc, ptBeg.x, ptBeg.y, ptEnd.x, ptEnd.y) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program demonstrates a little something that might be implemented in a Windows drawing program. You
begin by depressing the left mouse button to indicate one corner of a rectangle. You then drag the mouse. The
program draws an outlined rectangle with the opposite corner at the current mouse position. When you release
the mouse, the program fills in the rectangle. Figure 7-10 shows one rectangle already drawn and another in
progress.

Figure 7-10. The BLOKOUT1 display.

So, what's the problem?

Try this: Press the left mouse button within BLOKOUT1's client area and then move the cursor outside the window.
The program stops receiving WM_MOUSEMOVE messages. Now release the button. BLOKOUT1 doesn't get that
WM_BUTTONUP message because the cursor is outside the client area. Move the cursor back within BLOKOUT1's
client area. The window procedure still thinks the button is pressed.

This is not good. The program doesn't know what's going on.

The Capture Solution

BLOKOUT1 shows some common program functionality, but the code is obviously flawed. This is the type of
problem for which mouse capturing was invented. If the user is dragging the mouse, it should be no big deal if the
cursor drifts out of the window for a moment. The program should still be in control of the mouse.

Capturing the mouse is easier than baiting a mousetrap. You need only call

SetCapture (hwnd) ;

After this function call Windows sends all mouse messages to the window procedure for the window whose handle
is hwnd . The mouse messages always come through as client-area messages, even when the mouse is in a
nonclient area of the window. The lParam parameter still indicates the position of the mouse in client-area
coordinates. These x and y coordinates, however, can be negative if the mouse is to the left of or above the client
area. When you want to release the mouse, call

ReleaseCapture () ;

which will returns things to normal.

In the 32-bit versions of Windows, mouse capturing is a bit more restrictive than it was in earlier versions of
Windows. Specifically, if the mouse has been captured, and if a mouse button is not currently down, and if the
mouse cursor passes over another window, the window underneath the cursor will receive the mouse messages
rather than the window that captured the mouse. This is necessary to prevent one program from messing up the
whole system by capturing the mouse and not releasing it.

To avoid problems, your program should capture the mouse only when the button is depressed in your client area.
You should release the capture when the button is released.

The BLOKOUT2 Program

The BLOKOUT2 program that demonstrates mouse capturing is shown in Figure 7-11.

Figure 7-11. The BLOKOUT2 program.

BLOKOUT2.C

/*---
 BLOKOUT2.C -- Mouse Button & Capture Demo Program

 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("BlokOut2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Mouse Button & Capture Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void DrawBoxOutline (HWND hwnd, POINT ptBeg, POINT ptEnd)
{
 HDC hdc ;

 hdc = GetDC (hwnd) ;

 SetROP2 (hdc, R2_NOT) ;
 SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;
 Rectangle (hdc, ptBeg.x, ptBeg.y, ptEnd.x, ptEnd.y) ;

 ReleaseDC (hwnd, hdc) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fBlocking, fValidBox ;
 static POINT ptBeg, ptEnd, ptBoxBeg, ptBoxEnd ;
 HDC hdc ;

 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_LBUTTONDOWN :
 ptBeg.x = ptEnd.x = LOWORD (lParam) ;
 ptBeg.y = ptEnd.y = HIWORD (lParam) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 SetCapture (hwnd) ;
 SetCursor (LoadCursor (NULL, IDC_CROSS)) ;

 fBlocking = TRUE ;
 return 0 ;

 case WM_MOUSEMOVE :
 if (fBlocking)
 {
 SetCursor (LoadCursor (NULL, IDC_CROSS)) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 ptEnd.x = LOWORD (lParam) ;
 ptEnd.y = HIWORD (lParam) ;

 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;
 }
 return 0 ;

 case WM_LBUTTONUP :
 if (fBlocking)
 {
 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 ptBoxBeg = ptBeg ;
 ptBoxEnd.x = LOWORD (lParam) ;
 ptBoxEnd.y = HIWORD (lParam) ;

 ReleaseCapture () ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 fBlocking = FALSE ;
 fValidBox = TRUE ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_CHAR :
 if (fBlocking & wParam == '\x1B') // i.e., Escape
 {
 DrawBoxOutline (hwnd, ptBeg, ptEnd) ;

 ReleaseCapture () ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 fBlocking = FALSE ;
 }
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 if (fValidBox)
 {
 SelectObject (hdc, GetStockObject (BLACK_BRUSH)) ;
 Rectangle (hdc, ptBoxBeg.x, ptBoxBeg.y,
 ptBoxEnd.x, ptBoxEnd.y) ;
 }

 if (fBlocking)
 {
 SetROP2 (hdc, R2_NOT) ;
 SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;
 Rectangle (hdc, ptBeg.x, ptBeg.y, ptEnd.x, ptEnd.y) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BLOKOUT2 is the same as BLOKOUT1, except with three new lines of code: a call to SetCapture during the
WM_LBUTTONDOWN message and calls to ReleaseCapture during the WM_LBUTTONDOWN and WM_CHAR
messages. And check this out: Make the window smaller than the screen size, begin blocking out a rectangle
within the client area, and then move the mouse cursor outside the client and to the right or bottom, and finally
release the mouse button. The program will have the coordinates of the entire rectangle. Just enlarge the window
to see it.

Capturing the mouse isn't something suited only for oddball applications. You should do it anytime you need to
track WM_MOUSEMOVE messages after a mouse button has been depressed in your client area until the mouse
button is released. Your program will be simpler, and the user's expectations will have been met.

The Mouse Wheel

"Build a better mousetrap and the world will beat a path to your door," my mother told me, unknowingly
paraphrasing Emerson. Of course, nowadays it might make more sense to build a better mouse .

The Microsoft IntelliMouse features an enhancement to the traditional mouse in the form of a little wheel between
the two buttons. You can press down on this wheel, in which case it functions as a middle mouse button, or you
can turn it with your index finger. This generates a special message named WM_MOUSEWHEEL. Programs that use
the mouse wheel respond to this message by scrolling or zooming a document. It sounds like an unnecessary
gimmick at first, but I must confess I got accustomed very quickly to using the mouse wheel for scrolling through
Microsoft Word and Microsoft Internet Explorer. I won't attempt to discuss all the ways the mouse wheel can be
used. Instead, I'll show how you can add mouse wheel logic to an existing program that scrolls data within its
client area, a program such as SYSMETS4. The final SYSMETS program is shown in Figure 7-12.

Figure 7-12. The SYSMETS program.

SYSMETS.C

/*---
 SYSMETS.C -- Final System Metrics Display Program
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>
#include "sysmets.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("SysMets") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;

 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Get System Metrics"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL | WS_HSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxChar, cxCaps, cyChar, cxClient, cyClient, iMaxWidth ;
 static int iDeltaPerLine, iAccumDelta ; // for mouse wheel logic
 HDC hdc ;
 int i, x, y, iVertPos, iHorzPos, iPaintBeg, iPaintEnd ;
 PAINTSTRUCT ps ;
 SCROLLINFO si ;
 TCHAR szBuffer[10] ;
 TEXTMETRIC tm ;
 ULONG ulScrollLines ; // for mouse wheel logic

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2 ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 ReleaseDC (hwnd, hdc) ;

 // Save the width of the three columns

 iMaxWidth = 40 * cxChar + 22 * cxCaps ;

 // Fall through for mouse wheel information

 case WM_SETTINGCHANGE:
 SystemParametersInfo (SPI_GETWHEELSCROLLLINES, 0, &ulScrollLines, 0) ;

 // ulScrollLines usually equals 3 or 0 (for no scrolling)
 // WHEEL_DELTA equals 120, so iDeltaPerLine will be 40
 if (ulScrollLines)
 iDeltaPerLine = WHEEL_DELTA / ulScrollLines ;
 else
 iDeltaPerLine = 0 ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 // Set vertical scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = NUMLINES - 1 ;
 si.nPage = cyClient / cyChar ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;

 // Set horizontal scroll bar range and page size

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = 2 + iMaxWidth / cxChar ;
 si.nPage = cxClient / cxChar ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 return 0 ;

 case WM_VSCROLL:
 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // Save the position for comparison later on

 iVertPos = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_TOP:
 si.nPos = si.nMin ;
 break ;

 case SB_BOTTOM:
 si.nPos = si.nMax ;
 break ;

 case SB_LINEUP:
 si.nPos -= 1 ;
 break ;

 case SB_LINEDOWN:
 si.nPos += 1 ;
 break ;

 case SB_PAGEUP:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGEDOWN:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBTRACK:
 si.nPos = si.nTrackPos ;
 break ;

 default:
 break ;
 }
 // Set the position and then retrieve it. Due to adjustments
 // by Windows it may not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 // If the position has changed, scroll the window and update it

 if (si.nPos != iVertPos)
 {
 ScrollWindow (hwnd, 0, cyChar * (iVertPos - si.nPos),
 NULL, NULL) ;
 UpdateWindow (hwnd) ;
 }
 return 0 ;

 case WM_HSCROLL:
 // Get all the vertical scroll bar information

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_ALL ;

 // Save the position for comparison later on

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 switch (LOWORD (wParam))
 {

 case SB_LINELEFT:
 si.nPos -= 1 ;
 break ;

 case SB_LINERIGHT:
 si.nPos += 1 ;
 break ;

 case SB_PAGELEFT:
 si.nPos -= si.nPage ;
 break ;

 case SB_PAGERIGHT:
 si.nPos += si.nPage ;
 break ;

 case SB_THUMBPOSITION:
 si.nPos = si.nTrackPos ;
 break ;

 default:
 break ;
 }
 // Set the position and then retrieve it. Due to adjustments
 // by Windows it may not be the same as the value set.

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 // If the position has changed, scroll the window

 if (si.nPos != iHorzPos)
 {
 ScrollWindow (hwnd, cxChar * (iHorzPos - si.nPos), 0,
 NULL, NULL) ;
 }
 return 0 ;

 case WM_KEYDOWN :
 switch (wParam)
 {
 case VK_HOME :
 SendMessage (hwnd, WM_VSCROLL, SB_TOP, 0) ;
 break ;

 case VK_END :
 SendMessage (hwnd, WM_VSCROLL, SB_BOTTOM, 0) ;
 break ;

 case VK_PRIOR :
 SendMessage (hwnd, WM_VSCROLL, SB_PAGEUP, 0) ;
 break ;

 case VK_NEXT :
 SendMessage (hwnd, WM_VSCROLL, SB_PAGEDOWN, 0) ;
 break ;

 case VK_UP :
 SendMessage (hwnd, WM_VSCROLL, SB_LINEUP, 0) ;
 break ;

 case VK_DOWN :
 SendMessage (hwnd, WM_VSCROLL, SB_LINEDOWN, 0) ;
 break ;

 case VK_LEFT :
 SendMessage (hwnd, WM_HSCROLL, SB_PAGEUP, 0) ;
 break ;

 case VK_RIGHT :
 SendMessage (hwnd, WM_HSCROLL, SB_PAGEDOWN, 0) ;
 break ;
 }
 return 0 ;

 case WM_MOUSEWHEEL:
 if (iDeltaPerLine == 0)
 break ;

 iAccumDelta += (short) HIWORD (wParam) ; // 120 or -120
 while (iAccumDelta >= iDeltaPerLine)
 {
 SendMessage (hwnd, WM_VSCROLL, SB_LINEUP, 0) ;
 iAccumDelta -= iDeltaPerLine ;
 }

 while (iAccumDelta <= -iDeltaPerLine)
 {
 SendMessage (hwnd, WM_VSCROLL, SB_LINEDOWN, 0) ;
 iAccumDelta += iDeltaPerLine ;
 }

 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 // Get vertical scroll bar position

 si.cbSize = sizeof (si) ;
 si.fMask = SIF_POS ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;
 iVertPos = si.nPos ;

 // Get horizontal scroll bar position

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 iHorzPos = si.nPos ;

 // Find painting limits

 iPaintBeg = max (0, iVertPos + ps.rcPaint.top / cyChar) ;
 iPaintEnd = min (NUMLINES - 1,
 iVertPos + ps.rcPaint.bottom / cyChar) ;

 for (i = iPaintBeg ; i <= iPaintEnd ; i++)
 {
 x = cxChar * (1 - iHorzPos) ;
 y = cyChar * (i - iVertPos) ;

 TextOut (hdc, x, y,
 sysmetrics[i].szLabel,
 lstrlen (sysmetrics[i].szLabel)) ;

 TextOut (hdc, x + 22 * cxCaps, y,
 sysmetrics[i].szDesc,
 lstrlen (sysmetrics[i].szDesc)) ;

 SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;

 TextOut (hdc, x + 22 * cxCaps + 40 * cxChar, y, szBuffer,
 wsprintf (szBuffer, TEXT ("%5d"),
 GetSystemMetrics (sysmetrics[i].iIndex))) ;

 SetTextAlign (hdc, TA_LEFT | TA_TOP) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Rotating the wheel causes Windows to generate WM_MOUSEWHEEL messages to the window with the input focus
(not the window underneath the mouse cursor). As usual, lParam contains the position of the mouse; however,
the coordinates are relative to the upper left corner of the screen rather than the client area. Also as usual, the
low word of wParam contains a series of flags indicating the state of the mouse buttons and the Shift and Ctrl
keys.

The new information is in the high word of wParam . This is a "delta" value that is currently likely to be either 120
or -120, depending on whether the wheel is rotated forward (that is, toward the front of the mouse, the end with
the buttons and cable) or backward. The values of 120 or -120 indicate that the document is to be scrolled three
lines up or down, respectively. The idea here is that future versions of the mouse wheel can have a finer gradation
than the current mouse and would generate WM_MOUSEWHEEL messages with delta values of (for example) 40
and -40. These values would cause the document to be scrolled just one line up or down.

To keep the program generalized, SYSMETS calls SystemParametersInfo with the SPI_GETWHEELSCROLLLINES
during the WM_CREATE and WM_SETTINGCHANGE messages. This value indicates how many lines to scroll for a
delta value of WHEEL_DELTA, which is defined in WINUSER.H. WHEEL_DELTA equals 120 and by default
SystemParametersInfo returns 3, so the delta value associated with scrolling one line is 40. SYSMETS stores this
value in iDeltaPerLine .\

During the WM_MOUSEWHEEL messages, SYSMETS adds the delta value to the static variable iAccumDelta . Then,
if iAccumDelta is greater than or equal to iDeltaPerLine (or less than or equal to -iDeltaPerLine), SYSMETS
generates WM_VSCROLL messages using SB_LINEUP or SB_LINEDOWN values. For each WM_VSCROLL message,
iAccumDelta is decreased (or increased) by iDeltaPerLine . This code allows for delta values that are greater than,
less than, or equal to the delta value required to scroll one line.

Still to Come

The only other outstanding mouse issue is the creation of customized mouse cursors. I'll cover this subject in
Chapter 10 along with an introduction to other Windows resources.

Chapter 8

The Timer

The Microsoft Windows timer is an input device that periodically notifies an application when a specified interval of
time has elapsed. Your program tells Windows the interval, in effect saying, for example, "Give me a nudge every
10 seconds." Windows then sends your program recurrent WM_TIMER messages to signal the intervals.

At first, the Windows timer might seem a less important input device than the keyboard and mouse, and certainly
it is for many applications. But the timer is more useful than you may think, and not only for programs that
display time, such as the Windows clock that appears in the taskbar and the two clock programs in this chapter.
Here are some other uses for the Windows timer, some perhaps not so obvious:

Multitasking Although Windows 98 is a preemptive multitasking environment, sometimes it is more efficient
for a program to return control to Windows as quickly as possible after processing a message. If a program
must do a large amount of processing, it can divide the job into smaller pieces and process each piece upon
receipt of a WM_TIMER message. (I'll have more to say on this subject in Chapter 20.)

Maintaining an updated status report A program can use the timer to display "real-time" updates of
continuously changing information, such as a display of system resources or the progress of a certain task.

Implementing an "autosave" feature The timer can prompt a Windows program to save a user's work to disk
whenever a specified period of time has elapsed.

Terminating "demo" versions of programs Some demonstration versions of programs are designed to
terminate, say, 30 minutes after they begin. The timer can signal such applications when the time is up.

Pacing movement Graphical objects in a game or successive displays in a computer-assisted instruction
program might need to proceed at a set rate. Using the timer eliminates the inconsistencies that might
result from variations in microprocessor speed.

Multimedia Programs that play CD audio, sound, or music often let the audio data play in the background. A
program can use the timer to periodically determine how much of the audio has played and to coordinate
on-screen visual information.

Another way to think of the timer is as a guarantee that a program can regain control sometime in the future after
exiting the window procedure. Usually a program can't know when the next message is coming.

Timer Basics

You can allocate a timer for your Windows program by calling the SetTimer function. SetTimer includes an
unsigned integer argument specifying a time-out interval that can range (in theory) from 1 msec (millisecond) to
4,294,967,295 msec, which is nearly 50 days. The value indicates the rate at which Windows sends your program
WM_TIMER messages. For instance, an interval of 1000 msec causes Windows to send your program a WM_TIMER
message every second.

When your program is done using the timer, it calls the KillTimer function to stop the timer messages. You can
program a "one-shot" timer by calling KillTimer during the processing of the WM_TIMER message. The KillTimer
call purges the message queue of any pending WM_TIMER messages. Your program will never receive a stray
WM_TIMER message following a KillTimer call.

The System and the Timer

The Windows timer is a relatively simple extension of the timer logic built into the PC's hardware and the ROM
BIOS. Back in the pre-Windows days of MS-DOS programming, an application could implement a clock or a timer
by trapping a BIOS interrupt called the "timer tick." This interrupt occurred every 54.925 msec, or about 18.2
times per second. This is the original 4.772720 MHz microprocessor clock of the original IBM PC divided by 218.

Windows applications do not trap BIOS interrupts. Instead, Windows itself handles the hardware interrupts so that
applications don't have to. For every timer that is currently set, Windows maintains a counter value that it
decrements on every hardware timer tick. When this counter reaches 0, Windows places a WM_TIMER message in
the appropriate application's message queue and resets the counter to its original value.

Because a Windows application receives WM_TIMER messages through the normal message queue, you never
have to worry about your program being "interrupted" by a sudden WM_TIMER message while doing other
processing. In this way, the timer is similar to the keyboard and mouse: the driver handles the asynchronous
hardware interrupt events, and Windows translates these events into orderly, structured, serialized messages.

In Windows 98, the timer has the same 55-msec resolution as the underlying PC timer. In Microsoft Windows NT,
the resolution of the timer is about 10 msec.

A Windows application cannot receive WM_TIMER messages at a rate faster than this resolution—about 18.2 times
per second under Windows 98 and about 100 times per second under Windows NT. Windows rounds down the
time-out interval you specify in the SetTimer call to an integral multiple of clock ticks. For instance, a 1000-msec
interval divided by 54.925 msec is 18.207 clock ticks, which is rounded down to 18 clock ticks, which is really a
989-msec interval. For intervals shorter than 55 msec, each clock tick generates a single WM_TIMER message.

Timer Messages Are Not Asynchronous

Because the timer is based on a hardware timer interrupt, programmers sometimes get led astray in thinking that
their programs might get interrupted asynchronously to process WM_TIMER messages.

However, the WM_TIMER messages are not asynchronous. The WM_TIMER messages are placed in the normal
message queue and ordered with all the other messages. Therefore, if you specify 1000 msec in the SetTimer call,
your program is not guaranteed to receive a WM_TIMER message every second or even (as I mentioned earlier)
every 989 msec. If your application is busy for more than a second, it will not get any WM_TIMER messages
during that time. You can demonstrate this to yourself using the programs shown in this chapter. In fact, Windows
handles WM_TIMER messages much like WM_PAINT messages. Both these messages are low priority, and the
program will receive them only if the message queue has no other messages.

The WM_TIMER messages are similar to WM_PAINT messages in another respect. Windows does not keep loading
up the message queue with multiple WM_TIMER messages. Instead, Windows combines multiple WM_TIMER
messages in the message queue into a single message. Therefore, the application won't get a bunch of them at
once, although it might get two WM_TIMER messages in quick succession. An application cannot determine the
number of "missing" WM_TIMER messages that result from this process.

Thus, a clock program cannot keep time by counting the WM_TIMER messages it receives. The WM_TIMER
messages can only inform the application that the time is due to be updated. Later in this chapter, we'll write two
clock applications that update themselves every second, and we'll see precisely how this is accomplished.

For convenience, I'll be talking about the timer in terms of "getting a WM_TIMER message every second." But

keep in mind that these messages are not precise clock tick interrupts.

Using the Timer: Three Methods

If you need a timer for the entire duration of your program, you'll probably call SetTimer from the WinMain
function or while processing the WM_CREATE message, and KillTimer on exiting WinMain or in response to a
WM_DESTROY message. You can use a timer in one of three ways, depending on the arguments to the SetTimer
call.

Method One

This method, the easiest, causes Windows to send WM_TIMER messages to the normal window procedure of the
application. The SetTimer call looks like this:

SetTimer (hwnd, 1, uiMsecInterval, NULL) ;

The first argument is a handle to the window whose window procedure will receive the WM_TIMER messages. The
second argument is the timer ID, which should be a nonzero number. I have arbitrarily set it to 1 in this example.
The third argument is a 32-bit unsigned integer that specifies an interval in milliseconds. A value of 60,000 will
deliver a WM_TIMER message once a minute.

You can stop the WM_TIMER messages at any time (even while processing a WM_TIMER message) by calling

KillTimer (hwnd, 1) ;

The second argument is the same timer ID used in the SetTimer call. It's considered good form to kill any active
timers in response to a WM_DESTROY message before your program terminates.

When your window procedure receives a WM_TIMER message, wParam is equal to the timer ID (which in the
above case is simply 1) and lParam is 0. If you need to set more than one timer, use a different timer ID for each.
The value of wParam will differentiate the WM_TIMER message passed to your window procedure. To make your
program more readable, you may want to use #define statements for the different timer IDs:

#define TIMER_SEC 1
#define TIMER_MIN 2

You can then set the two timers with two SetTimer calls:

SetTimer (hwnd, TIMER_SEC, 1000, NULL) ;
SetTimer (hwnd, TIMER_MIN, 60000, NULL) ;

The WM_TIMER logic might look something like this:

case WM_TIMER:
 switch (wParam)
 {

 case TIMER_SEC:
 [once-per-second processing]
 break ;
 case TIMER_MIN:
 [once-per-minute processing]
 break ;
 }
return 0 ;

If you want to set an existing timer to a different elapsed time, you can simply call SetTimer again with a different
time value. You may want to do this in a clock program if it has an option to show or not show seconds. You'd
simply change the timer interval to between 1000 msec and 60,000 msec.

Figure 8-1 shows a simple program that uses the timer. This program, named BEEPER1, sets a timer for 1-second
intervals. When it receives a WM_TIMER message, it alternates coloring the client area blue and red and it beeps
by calling the function MessageBeep . (Although MessageBeep is often used as a companion to MessageBox , it's
really an all-purpose beep function. In PCs equipped with sound boards, you can use the various MB_ICON
parameters normally used with MessageBox as parameters to MessageBeep to make different sounds as selected
by the user in the Control Panel Sounds applet.)

BEEPER1 sets the timer while processing the WM_CREATE message in the window procedure. During the
WM_TIMER message, BEEPER1 calls MessageBeep , inverts the value of bFlipFlop , and invalidates the window to
generate a WM_PAINT message. During the WM_PAINT message, BEEPER1 obtains a RECT structure for the size
of the window by calling GetClientRect and colors the window by calling FillRect .

Figure 8-1. The BEEPER1 program.

BEEPER1.C

/*---
 BEEPER1.C -- Timer Demo Program No. 1
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>

#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Beeper1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;

 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Beeper1 Timer Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fFlipFlop = FALSE ;
 HBRUSH hBrush ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rc ;

 switch (message)
 {
 case WM_CREATE:
 SetTimer (hwnd, ID_TIMER, 1000, NULL) ;
 return 0 ;

 case WM_TIMER :
 MessageBeep (-1) ;
 fFlipFlop = !fFlipFlop ;
 InvalidateRect (hwnd, NULL, FALSE) ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rc) ;
 hBrush = CreateSolidBrush (fFlipFlop ? RGB(255,0,0) : RGB(0,0,255)) ;
 FillRect (hdc, &rc, hBrush) ;

 EndPaint (hwnd, &ps) ;
 DeleteObject (hBrush) ;
 return 0 ;

 case WM_DESTROY :
 KillTimer (hwnd, ID_TIMER) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Because BEEPER1 audibly indicates every WM_TIMER message it receives, you can get a good idea of the erratic
nature of WM_TIMER messages by loading BEEPER1 and performing some other actions within Windows.

Here's a revealing experiment: First invoke the Display applet from the Control Panel, and select the Effects tab.
Make sure the "Show window contents while dragging" button is unchecked . Now try moving or resizing the
BEEPER1 window. This causes the program to enter a "modal message loop." Windows prevents anything from
interfering with the move or resize operation by trapping all messages through a message loop inside Windows
rather than the message loop in your program. Most messages to a program's window that come through this loop
are simply discarded, which is why BEEPER1 stops beeping. When you complete the move or resize, you'll notice
that BEEPER1 doesn't get all the WM_TIMER messages it has missed, although the first two messages might be
less than a second apart.

When the "Show window contents while dragging" button is checked, the modal message loop within Windows
attempts to pass on to your window procedure some of the messages it would otherwise have missed. This
sometimes works nicely, and sometimes it doesn't.

Method Two

The first method for setting the timer causes WM_TIMER messages to be sent to the normal window procedure.
With this second method, you can direct Windows to send the timer messages to another function within your
program.

The function that receives these timer messages is termed a "call-back" function. This is a function in your
program that is called from Windows. You tell Windows the address of this function, and Windows later calls the
function. This should sound familiar, because a program's window procedure is really just a type of call-back
function. You tell Windows the address of the window procedure when registering the window class, and then
Windows calls the function when sending messages to the program.

SetTimer is not the only Windows function that uses a call-back. The CreateDialog and DialogBox functions
(discussed in Chapter 11) use call-back functions to process messages in a dialog box; several Windows functions
(EnumChildWindow , EnumFonts , EnumObjects , EnumProps , and EnumWindow) pass enumerated information
to call-back functions; and several less commonly used functions (GrayString , LineDDA , and SetWindowHookEx)
also require call-back functions.

Like a window procedure, a call-back function must be defined as CALLBACK because it is called by Windows from
outside the code space of the program. The parameters to the call-back function and the value returned from the
call-back function depend on the purpose of the function. In the case of the call-back function associated with the
timer, the parameters are actually the same as the parameters to a window procedure although they are defined
differently. However, the timer call-back function does not return a value to Windows.

Let's name the call-back function TimerProc . (You can choose any name that doesn't conflict with something
else.) This function will process only WM_TIMER messages:

VOID CALLBACK TimerProc (HWND hwnd, UINT message, UINT iTimerID, DWORD dwTime)
{
 [process WM_TIMER messages]
}

The hwnd parameter to TimerProc is the handle to the window specified when you call SetTimer . Windows will
send only WM_TIMER messages to TimerProc , so the message parameter will always equal WM_TIMER. The
iTimerID value is the timer ID, and dwTimer is a value compatible with the return value from the GetTickCount
function. This is the number of milliseconds that has elapsed since Windows was started.

As we saw in BEEPER1, the first method for setting a timer requires a SetTimer call that looks like this:

SetTimer (hwnd, iTimerID, iMsecInterval, NULL) ;

When you use a call-back function to process WM_TIMER messages, the fourth argument to SetTimer is instead
the address of the call-back function, like so:

SetTimer (hwnd, iTimerID, iMsecInterval, TimerProc) ;

Let's look at some sample code so that you can see how this stuff fits together. The BEEPER2 program, shown in
Figure 8-2, is functionally the same as BEEPER1, except that Windows sends the timer messages to TimerProc
rather than to WndProc . Notice that TimerProc is declared at the top of the program along with WndProc .

Figure 8-2. The BEEPER2 program.

BEEPER2.C

/*--
 BEEPER2.C -- Timer Demo Program No. 2

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
VOID CALLBACK TimerProc (HWND, UINT, UINT, DWORD) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static char szAppName[] = "Beeper2" ;
 HWND hwnd ;
 MSG msg ;

 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, "Beeper2 Timer Demo",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_CREATE:
 SetTimer (hwnd, ID_TIMER, 1000, TimerProc) ;
 return 0 ;

 case WM_DESTROY:
 KillTimer (hwnd, ID_TIMER) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

VOID CALLBACK TimerProc (HWND hwnd, UINT message, UINT iTimerID, DWORD dwTime)
{
 static BOOL fFlipFlop = FALSE ;
 HBRUSH hBrush ;
 HDC hdc ;
 RECT rc ;

 MessageBeep (-1) ;
 fFlipFlop = !fFlipFlop ;

 GetClientRect (hwnd, &rc) ;

 hdc = GetDC (hwnd) ;
 hBrush = CreateSolidBrush (fFlipFlop ? RGB(255,0,0) : RGB(0,0,255)) ;

 FillRect (hdc, &rc, hBrush) ;
 ReleaseDC (hwnd, hdc) ;
 DeleteObject (hBrush) ;
}

Method Three

The third method of setting the timer is similar to the second method, except that the hwnd parameter to
SetTimer is set to NULL and the second parameter (normally the timer ID) is ignored. Instead, the function returns
a timer ID:

iTimerID = SetTimer (NULL, 0, wMsecInterval, TimerProc) ;

The iTimerID returned from SetTimer will be 0 in the rare event that no timer is available.

The first parameter to KillTimer (usually the window handle) must also be NULL. The timer ID must be the value
returned from SetTimer :

KillTimer (NULL, iTimerID) ;

The hwnd parameter passed to the TimerProc timer function will also be NULL. This method for setting a timer is
rarely used. It might come in handy if you do a lot of SetTimer calls at different times in your program and don't
want to keep track of which timer IDs you've already used.

Now that you know how to use the Windows timer, you're ready for a couple of useful timer applications.

Using the Timer for a Clock

A clock is the most obvious application for the timer, so let's look at two of them, one digital and one analog.

Building a Digital Clock

The DIGCLOCK program, shown in Figure 8-3, displays the current time using a simulated LED-like 7-segment
display.

Figure 8-3. The DIGCLOCK program.

DIGCLOCK.C

/*---
 DIGCLOCK.C -- Digital Clock
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>

#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("DigClock") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {

 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;

 }

 hwnd = CreateWindow (szAppName, TEXT ("Digital Clock"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
 }

void DisplayDigit (HDC hdc, int iNumber)
{
 static BOOL fSevenSegment [10][7] = {
 1, 1, 1, 0, 1, 1, 1, // 0
 0, 0, 1, 0, 0, 1, 0, // 1
 1, 0, 1, 1, 1, 0, 1, // 2
 1, 0, 1, 1, 0, 1, 1, // 3
 0, 1, 1, 1, 0, 1, 0, // 4
 1, 1, 0, 1, 0, 1, 1, // 5
 1, 1, 0, 1, 1, 1, 1, // 6
 1, 0, 1, 0, 0, 1, 0, // 7
 1, 1, 1, 1, 1, 1, 1, // 8
 1, 1, 1, 1, 0, 1, 1 } ; // 9
 static POINT ptSegment [7][6] = {
 7, 6, 11, 2, 31, 2, 35, 6, 31, 10, 11, 10,
 6, 7, 10, 11, 10, 31, 6, 35, 2, 31, 2, 11,
 36, 7, 40, 11, 40, 31, 36, 35, 32, 31, 32, 11,
 7, 36, 11, 32, 31, 32, 35, 36, 31, 40, 11, 40,
 6, 37, 10, 41, 10, 61, 6, 65, 2, 61, 2, 41,
 36, 37, 40, 41, 40, 61, 36, 65, 32, 61, 32, 41,
 7, 66, 11, 62, 31, 62, 35, 66, 31, 70, 11, 70 } ;
 int iSeg ;

 for (iSeg = 0 ; iSeg < 7 ; iSeg++)
 if (fSevenSegment [iNumber][iSeg])
 Polygon (hdc, ptSegment [iSeg], 6) ;
}

void DisplayTwoDigits (HDC hdc, int iNumber, BOOL fSuppress)
{
 if (!fSuppress || (iNumber / 10 != 0))
 DisplayDigit (hdc, iNumber / 10) ;
 OffsetWindowOrgEx (hdc, -42, 0, NULL) ;
 DisplayDigit (hdc, iNumber % 10) ;

 OffsetWindowOrgEx (hdc, -42, 0, NULL) ;
}

void DisplayColon (HDC hdc)
{
 POINT ptColon [2][4] = { 2, 21, 6, 17, 10, 21, 6, 25,
 2, 51, 6, 47, 10, 51, 6, 55 } ;

 Polygon (hdc, ptColon [0], 4) ;
 Polygon (hdc, ptColon [1], 4) ;

 OffsetWindowOrgEx (hdc, -12, 0, NULL) ;
}

void DisplayTime (HDC hdc, BOOL f24Hour, BOOL fSuppress)
{
 SYSTEMTIME st ;

 GetLocalTime (&st) ;

 if (f24Hour)
 DisplayTwoDigits (hdc, st.wHour, fSuppress) ;
 else
 DisplayTwoDigits (hdc, (st.wHour %= 12) ? st.wHour : 12, fSuppress) ;

 DisplayColon (hdc) ;
 DisplayTwoDigits (hdc, st.wMinute, FALSE) ;
 DisplayColon (hdc) ;
 DisplayTwoDigits (hdc, st.wSecond, FALSE) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL f24Hour, fSuppress ;
 static HBRUSH hBrushRed ;
 static int cxClient, cyClient ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer [2] ;

 switch (message)
 {
 case WM_CREATE:
 hBrushRed = CreateSolidBrush (RGB (255, 0, 0)) ;
 SetTimer (hwnd, ID_TIMER, 1000, NULL) ;

 // fall through

 case WM_SETTINGCHANGE:
 GetLocaleInfo (LOCALE_USER_DEFAULT, LOCALE_ITIME, szBuffer, 2) ;
 f24Hour = (szBuffer[0] == `1') ;

 GetLocaleInfo (LOCALE_USER_DEFAULT, LOCALE_ITLZERO, szBuffer, 2) ;

 fSuppress = (szBuffer[0] == `0') ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_TIMER:
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetMapMode (hdc, MM_ISOTROPIC) ;
 SetWindowExtEx (hdc, 276, 72, NULL) ;
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;

 SetWindowOrgEx (hdc, 138, 36, NULL) ;
 SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;
 SelectObject (hdc, GetStockObject (NULL_PEN)) ;
 SelectObject (hdc, hBrushRed) ;

 DisplayTime (hdc, f24Hour, fSuppress) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hBrushRed) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The DIGCLOCK window is shown in Figure 8-4.

Figure 8-4. The DIGCLOCK display.

Although you can't see it in Figure 8-4, the clock numbers are red. DIGCLOCK's window procedure creates a red
brush during the WM_CREATE message and destroys it during the WM_DESTROY message. The WM_CREATE
message also provides DIGCLOCK with an opportunity to set a 1-second timer, which is stopped during the
WM_DESTROY message. (I'll discuss the calls to GetLocaleInfo shortly.)

Upon receipt of a WM_TIMER message, DIGCLOCK's window procedure simply invalidates the entire window with a
call to InvalidateRect . Aesthetically, this is not the best approach because it means that the entire window will be
erased and redrawn every second, sometimes causing flickering in the display. A better solution is to invalidate
only those parts of the window that need updating based on the current time. The logic to do this is rather messy,
however.

Invalidating the window during the WM_TIMER message forces all the program's real activity into WM_PAINT.
DIGCLOCK begins the WM_PAINT message by setting the mapping mode to MM_ISOTROPIC. Thus, DIGCLOCK will
use arbitrarily scaled axes that are equal in the horizontal and vertical directions. These axes (set by a call to
SetWindowExtEx) are 276 units horizontally by 72 units vertically. Of course, these axes seem quite arbitrary, but
they are based on the size and spacing of the clock numbers.

DIGCLOCK sets the window origin to the point (138, 36), which is the center of the window extents, and the
viewport origin to (cxClient / 2 , cyClient / 2). This means that the clock display will be centered in DIGCLOCK's
client area but that DIGCLOCK can use axes with an origin of (0, 0) at the upper-left corner of the display.

The WM_PAINT processing then sets the current brush to the red brush created earlier and the current pen to the
NULL_PEN and calls the function in DIGCLOCK named DisplayTime .

Getting the Current Time

The DisplayTime function begins by calling the Windows function GetLocalTime , which takes as a single argument
the SYSTEMTIME structure, defined in WINBASE.H like so:

typedef struct _SYSTEMTIME
{
 WORD wYear ;
 WORD wMonth ;
 WORD wDayOfWeek ;
 WORD wDay ;
 WORD wHour ;
 WORD wMinute ;

 WORD wSecond ;
 WORD wMilliseconds ;
}
SYSTEMTIME, * PSYSTEMTIME ;

As is obvious, the SYSTEMTIME structure encodes the date as well as the time. The month is 1-based (that is,
January is 1), and the day of the week is 0-based (Sunday is 0). The wDay field is the current day of the month,
which is also 1-based.

The SYSTEMTIME structure is used primarily with the GetLocalTime and GetSystemTime functions. The
GetSystemTime function reports the current Coordinated Universal Time (UTC), which is roughly the same as
Greenwich mean time—the date and time at Greenwich, England. The GetLocalTime function reports the local
time, based on the time zone of the location of the computer. The accuracy of these values is entirely dependent
on the diligence of the user in keeping the time accurate and in indicating the correct time zone. You can check
the time zone set on your machine by double-clicking the time display in the task bar. A program to set your PC's
clock from an accurate, exact time source on the Internet is shown in Chapter 23 .

Windows also has SetLocalTime and SetSystemTime functions, as well as some other useful time-related functions
that are discussed in /Platform SDK/Windows Base Services/General Library/Time .

Displaying Digits and Colons

DIGCLOCK might be somewhat simplified if it used a font that simulated a 7-segment display. Instead, it has to do
all the work itself using the Polygon function.

The DisplayDigit function in DIGCLOCK defines two arrays. The fSevenSegment array has 7 BOOL values for each
of the 10 decimal digits from 0 through 9. These values indicate which of the segments are illuminated (a 1 value)
and which are not (a 0 value). In this array, the 7 segments are ordered from top to bottom and from left to right.
Each of the 7 segments is a 6-sided polygon. The ptSegment array is an array of POINT structures indicating the
graphical coordinates of each point in each of the 7 segments. Each digit is then drawn by this code:

for (iSeg = 0 ; iSeg < 7 ; iSeg++)
 if (fSevenSegment [iNumber][iSeg])
 Polygon (hdc, ptSegment [iSeg], 6) ;

Similarly (but more simply), the DisplayColon function draws the colons that separate the hour and minutes, and
the minutes and seconds. The digits are 42 units wide and the colons are 12 units wide, so with 6 digits and 2
colons, the total width is 276 units, which is the size used in the SetWindowExtEx call.

Upon entry to the DisplayTime function, the origin is at the upper left corner of the position of the leftmost digit.
DisplayTime calls DisplayTwoDigits , which calls DisplayDigit twice, and after each time calls OffsetWindowOrgEx
to move the window origin 42 units to the right. Similarly, the DisplayColon function moves the window origin 12
units to the right after drawing the colon. In this way, the functions can use the same coordinates for the digits
and colons, regardless of where the object is to appear within the window.

The only other tricky aspects of this code involve displaying the time in a 12-hour or 24-hour format and
suppressing the leftmost hours digit if it's 0.

Going International

Although displaying the time as DIGCLOCK does is fairly foolproof, for any more complex displays of the date or
time you should rely upon Windows' international support. The easiest way to format a date or time is to use the
GetDateFormat and GetTimeFormat functions. These functions are documented in /Platform SDK/Windows Base
Services/General Library/String Manipulation/String Manipulation Reference/String Manipulation Functions , but
they are discussed in /Platform SDK/Windows Base Services/International Features/National Language Support .
These functions accept SYSTEMTIME structures and format the date and time based on options the user has
chosen in the Regional Settings applet of the Control Panel.

DIGCLOCK can't use the GetDateFormat function because it knows how to display only digits and colons. However,

DIGCLOCK should respect the user's preferences for displaying the time in a 12-hour or 24-hour format, and for
suppressing (or not suppressing) the leading hours digit. You can obtain this information from the GetLocaleInfo
function. Although GetLocaleInfo is documented in /Platform SDK/Windows Base Services/General Library/String
Manipulation/String Manipulation Reference/String Manipulation Functions , the identifiers you use with this
function are documented in /Platform SDK/Windows Base Services/International Features/National Language
Support/National Language Support Constants .

DIGCLOCK initially calls GetLocaleInfo twice while processing the WM_CREATE message—the first time with the
LOCALE_ITIME identifier (to determine whether the 12-hour or 24-hour format is to be used) and then with the
LOCALE_ITLZERO identifier (to suppress a leading zero on the hour display). The GetLocaleInfo function returns all
information in strings, but in most cases it's fairly easy to convert this to integer data if necessary. DIGCLOCK
stores the settings in two static variables and passes them to the DisplayTime function.

If the user changes any system setting, the WM_SETTINGCHANGE message is broadcast to all applications.
DIGCLOCK processes this message by calling GetLocaleInfo again. In this way, you can experiment with different
settings by using the Regional Settings applet of the Control Panel.

In theory, DIGCLOCK should probably also call GetLocaleInfo with the LOCALE_

STIME identifier. This returns the character that the user has selected for separating the hours, minutes, and
seconds parts of the time. Because DIGCLOCK is set up to display only colons, this is what the user will get even if
something else is preferred. To indicate whether the time is A.M. or P.M., an application can use GetLocaleInfo
with the LOCALE_S1159 and LOCALE_S2359 identifiers. These identifiers let the program obtain strings that are
appropriate for the user's country and language.

We could also have DIGCLOCK process WM_TIMECHANGE messages, which notifies applications of changes to the
system date or time. Because DIGCLOCK is updated every second by WM_TIMER messages, this is unnecessary.
Processing WM_TIMECHANGE messages would make more sense for a clock that was updated every minute.

Building an Analog Clock

An analog clock program needn't concern itself with internationalization, but the complexity of the graphics more
than make up for that simplification. To get it right, you'll need to know some trigonometry. The CLOCK program
is shown in Figure 8-5.

Figure 8-5. The CLOCK program.

CLOCK.C

/*--------------------------------------
 CLOCK.C -- Analog Clock Program

 (c) Charles Petzold, 1998
 --------------------------------------*/

#include <windows.h>
#include <math.h>

#define ID_TIMER 1
#define TWOPI (2 * 3.14159)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Clock") ;

 HWND hwnd;
 MSG msg;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = NULL ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("Program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Analog Clock"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void SetIsotropic (HDC hdc, int cxClient, int cyClient)
{
 SetMapMode (hdc, MM_ISOTROPIC) ;
 SetWindowExtEx (hdc, 1000, 1000, NULL) ;
 SetViewportExtEx (hdc, cxClient / 2, -cyClient / 2, NULL) ;
 SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;
}

void RotatePoint (POINT pt[], int iNum, int iAngle)
{
 int i ;
 POINT ptTemp ;

 for (i = 0 ; i < iNum ; i++)

 {
 ptTemp.x = (int) (pt[i].x * cos (TWOPI * iAngle / 360) +
 pt[i].y * sin (TWOPI * iAngle / 360)) ;

 ptTemp.y = (int) (pt[i].y * cos (TWOPI * iAngle / 360) -
 pt[i].x * sin (TWOPI * iAngle / 360)) ;

 pt[i] = ptTemp ;
 }
}

void DrawClock (HDC hdc)
{
 int iAngle ;
 POINT pt[3] ;

 for (iAngle = 0 ; iAngle < 360 ; iAngle += 6)
 {
 pt[0].x = 0 ;
 pt[0].y = 900 ;

 RotatePoint (pt, 1, iAngle) ;

 pt[2].x = pt[2].y = iAngle % 5 ? 33 : 100 ;

 pt[0].x -= pt[2].x / 2 ;
 pt[0].y -= pt[2].y / 2 ;

 pt[1].x = pt[0].x + pt[2].x ;
 pt[1].y = pt[0].y + pt[2].y ;

 SelectObject (hdc, GetStockObject (BLACK_BRUSH)) ;

 Ellipse (hdc, pt[0].x, pt[0].y, pt[1].x, pt[1].y) ;
 }
}

void DrawHands (HDC hdc, SYSTEMTIME * pst, BOOL fChange)
{
 static POINT pt[3][5] = { 0, -150, 100, 0, 0, 600, -100, 0, 0, -150,
 0, -200, 50, 0, 0, 800, -50, 0, 0, -200,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 800 } ;
 int i, iAngle[3] ;
 POINT ptTemp[3][5] ;

 iAngle[0] = (pst->wHour * 30) % 360 + pst->wMinute / 2 ;
 iAngle[1] = pst->wMinute * 6 ;
 iAngle[2] = pst->wSecond * 6 ;

 memcpy (ptTemp, pt, sizeof (pt)) ;

 for (i = fChange ? 0 : 2 ; i < 3 ; i++)
 {

 RotatePoint (ptTemp[i], 5, iAngle[i]) ;

 Polyline (hdc, ptTemp[i], 5) ;
 }
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 static SYSTEMTIME stPrevious ;
 BOOL fChange ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 SYSTEMTIME st ;

 switch (message)
 {
 case WM_CREATE :
 SetTimer (hwnd, ID_TIMER, 1000, NULL) ;
 GetLocalTime (&st) ;
 stPrevious = st ;
 return 0 ;

 case WM_SIZE :
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_TIMER :
 GetLocalTime (&st) ;

 fChange = st.wHour != stPrevious.wHour ||
 st.wMinute != stPrevious.wMinute ;

 hdc = GetDC (hwnd) ;

 SetIsotropic (hdc, cxClient, cyClient) ;

 SelectObject (hdc, GetStockObject (WHITE_PEN)) ;
 DrawHands (hdc, &stPrevious, fChange) ;

 SelectObject (hdc, GetStockObject (BLACK_PEN)) ;
 DrawHands (hdc, &st, TRUE) ;

 ReleaseDC (hwnd, hdc) ;

 stPrevious = st ;
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 SetIsotropic (hdc, cxClient, cyClient) ;

 DrawClock (hdc) ;
 DrawHands (hdc, &stPrevious, TRUE) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 KillTimer (hwnd, ID_TIMER) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The CLOCK screen display is shown in Figure 8-6.

Figure 8-6. The CLOCK display.

The isotropic mapping mode is once again ideal for such an application, and setting it is the responsibility of the
SetIsotropic function in CLOCK.C. After calling SetMapMode , the function sets the window extents to 1000 and
the viewport extents to half the width of the client area and the negative of half the height of the client area. The
viewport origin is set to the center of the client area. As I discussed in Chapter 5 , this creates a Cartesian
coordinate system with the point (0,0) in the center of the client area and extending 1000 units in all directions.

The RotatePoint function is where the trigonometry comes into play. The three parameters to the function are an
array of one or more points, the number of points in that array, and the angle of rotation in degrees. The function
rotates the points clockwise (as is appropriate for a clock) around the origin. For example, if the point passed to
the function is (0,100)—that is, the position of 12:00—and the angle is 90 degrees, the point is converted to
(100,0)—which is 3:00. It does this using these formulas:

x' = x * cos (a) + y * sin (a)

y' = y * cos (a) - x * sin (a)

The RotatePoint function is useful for drawing both the dots of the clock face and the clock hands, as we'll see
shortly.

The DrawClock function draws the 60 clock face dots starting with the one at the top (12:00 high). Each of them is
900 units from the origin, so the first is located at the point (0, 900) and each subsequent one is 6 additional

clockwise degrees from the vertical. Twelve of the dots are 100 units in diameter; the rest are 33 units. The dots
are drawn using the Ellipse function.

The DrawHands function draws the hour, minute, and second hands of the clock. The coordinates defining the
outlines of the hands (as they appear when pointing straight up) are stored in an array of POINT structures.
Depending upon the time, these coordinates are rotated using the RotatePoint function and are displayed with the
Windows Polyline function. Notice that the hour and minute hands are displayed only if the bChange parameter to
DrawHands is TRUE. When the program updates the clock hands, in most cases the hour and minute hands will
not need to be redrawn.

Now let's turn our attention to the window procedure. During the WM_CREATE message, the window procedure
obtains the current time and also stores it in the variable named dtPrevious . This variable will later be used to
determine whether the hour or minute has changed from the previous update.

The first time the clock is drawn is during the first WM_PAINT message. That's just a matter of calling the
SetIsotropic , DrawClock , and DrawHands functions, the latter with the bChange parameter set to TRUE.

During the WM_TIMER message, WndProc first obtains the new time and determines if the hour and minute hands
need to be redrawn. If so, all the hands are drawn with a white pen using the previous time, effectively erasing
them. Otherwise, only the second hand is erased using the white pen. Then, all the hands are drawn with a black
pen.

Using the Timer for a Status Report

The final program in this chapter is something I alluded to in Chapter 5 . It's the only good use I've found for the
GetPixel function.

WHATCLR (shown in Figure 8-7) displays the RGB color of the pixel currently under the hot point of the mouse
cursor.

Figure 8-7. The WHATCLR program.

WHATCLR.C

/*--
 WHATCLR.C -- Displays Color Under Cursor

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define ID_TIMER 1

void FindWindowSize (int *, int *) ;
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("WhatClr") ;
 HWND hwnd ;
 int cxWindow, cyWindow ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;

 }

 FindWindowSize (&cxWindow, &cyWindow) ;

 hwnd = CreateWindow (szAppName, TEXT ("What Color"),
 WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_BORDER,
 CW_USEDEFAULT, CW_USEDEFAULT,
 cxWindow, cyWindow,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void FindWindowSize (int * pcxWindow, int * pcyWindow)
{
 HDC hdcScreen ;
 TEXTMETRIC tm ;

 hdcScreen = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
 GetTextMetrics (hdcScreen, &tm) ;
 DeleteDC (hdcScreen) ;

 * pcxWindow = 2 * GetSystemMetrics (SM_CXBORDER) +
 12 * tm.tmAveCharWidth ;

 * pcyWindow = 2 * GetSystemMetrics (SM_CYBORDER) +
 GetSystemMetrics (SM_CYCAPTION) +
 2 * tm.tmHeight ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static COLORREF cr, crLast ;
 static HDC hdcScreen ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 POINT pt ;
 RECT rc ;
 TCHAR szBuffer [16] ;

 switch (message)
 {
 case WM_CREATE:
 hdcScreen = CreateDC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;

 SetTimer (hwnd, ID_TIMER, 100, NULL) ;
 return 0 ;

 case WM_TIMER:
 GetCursorPos (&pt) ;
 cr = GetPixel (hdcScreen, pt.x, pt.y) ;

 SetPixel (hdcScreen, pt.x, pt.y, 0) ;

 if (cr != crLast)
 {
 crLast = cr ;
 InvalidateRect (hwnd, NULL, FALSE) ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rc) ;

 wsprintf (szBuffer, TEXT (" %02X %02X %02X "),
 GetRValue (cr), GetGValue (cr), GetBValue (cr)) ;

 DrawText (hdc, szBuffer, -1, &rc,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteDC (hdcScreen) ;
 KillTimer (hwnd, ID_TIMER) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

WHATCLR does a little something different while still in WinMain . Because WHATCLR's window need only be large
enough to display a hexadecimal RGB value, it creates a nonsizeable window using the WS_BORDER window style
in the CreateWindow function. To calculate the size of the window, WHATCLR obtains an information device
context for the video display by calling CreateIC and then calls GetSystemMetrics . The calculated width and
height values of the window are passed to CreateWindow .

WHATCLR's window procedure creates a device context for the whole video display by calling CreateDC during the
WM_CREATE message. This device context is maintained for the lifetime of the program. During the WM_TIMER
message, the program obtains the pixel color at the current mouse cursor position. The RGB color is displayed
during WM_PAINT.

You may be wondering whether that device context handle obtained from the CreateDC function will let you
display something on any part of the screen rather than just obtain a pixel color. The answer is Yes. It's generally
considered impolite for one application to draw on another, but it could come in useful in some odd circumstances.

Chapter 9

Child Window Controls

Recall from Chapter 7 the programs in the CHECKER series. These programs display a grid of rectangles. When
you click the mouse in a rectangle, the program draws an X. When you click again, the X disappears. Although the
CHECKER1 and CHECKER2 versions of this program use only one main window, the CHECKER3 version uses a
child window for each rectangle. The rectangles are maintained by a separate window procedure named ChildProc.

If we wanted to, we could add a facility to ChildProc to send a message to its parent window procedure (WndProc)
whenever a rectangle is checked or unchecked. Here's how: The child window procedure can determine the
window handle of its parent by calling GetParent,

hwndParent = GetParent (hwnd) ;

where hwnd is the window handle of the child window. It can then send a message to the parent window
procedure:

SendMessage (hwndParent, message, wParam, lParam) ;

What would message be set to? Well, anything you want, really, as long as the numeric value is set to WM_USER
or above. These numbers represent a range of messages that do not conflict with the predefined WM_ messages.
Perhaps for this message the child window could set wParam to its child window ID. The lParam could then be set
to a 1 if the child window were being checked and a 0 if it were being unchecked. That's one possibility.

This in effect creates a "child window control." The child window processes mouse and keyboard messages and
notifies the parent window when the child window's state has changed. In this way, the child window becomes a
high-level input device for the parent window. It encapsulates a specific functionality with regard to its graphical
appearance on the screen, its response to user input, and its method of notifying another window when an
important input event has occurred.

Although you can create your own child window controls, you can also take advantage of several predefined
window classes (and window procedures) that your program can use to create standard child window controls that
you've undoubtedly seen in other Windows programs. These controls take the form of buttons, check boxes, edit
boxes, list boxes, combo boxes, text strings, and scroll bars. For instance, if you want to put a button labeled
"Recalculate" in a corner of your spreadsheet program, you can create it with a single CreateWindow call. You
don't have to worry about the mouse logic or button painting logic or making the button flash when it's clicked.
That's all done in Windows. All you have to do is trap WM_COMMAND messages—that's how the button informs
your window procedure when it has been triggered. Is it really that simple? Well, almost.

Child window controls are used most often in dialog boxes. As you'll see in Chapter 11, the position and size of the
child window controls are defined in a dialog box template contained in the program's resource script. However,
you can also use predefined child window controls on the surface of a normal window's client area. You create
each child window with a CreateWindow call and adjust the position and size of the child windows with calls to
MoveWindow. The parent window procedure sends messages to the child window controls, and the child window
controls send messages back to the parent window procedure.

As we've been doing since Chapter 3, to create your normal application window you first define a window class
and register it with Windows using RegisterClass. You then create the window based on that class using
CreateWindow. When you use one of the predefined controls, however, you do not register a window class for the
child window. The class already exists within Windows and has a predefined name. You simply use the name as
the window class parameter in CreateWindow. The window style parameter to CreateWindow defines more
precisely the appearance and functionality of the child window control. Windows contains the window procedures
that process messages to the child windows based on these classes.

Using child window controls directly on the surface of your window involves tasks of a lower level than are
required for using child window controls in dialog boxes, where the dialog box manager adds a layer of insulation
between your program and the controls themselves. In particular, you'll discover that the child window controls
you create on the surface of your window have no built-in facility to move the input focus from one control to
another using the Tab or cursor movement keys. A child window control can obtain the input focus, but once it
does it won't freely relinquish the input focus back to the parent window. This is a problem we'll struggle with
throughout this chapter.

The Windows programming documentation discusses child window controls in two places: First, the simple
standard controls that you've seen in countless dialog boxes are described in /Platform SDK/User Interface
Services/Controls. These are buttons (including check boxes and radio buttons), static controls (such as text
labels), edit boxes (which let you enter and edit lines or multiple lines of text), scroll bars, list boxes, and combo
boxes. With the exception of the combo box, these controls have been around since Windows 1.0. This section of
the Windows documentation also includes the rich edit control, which is similar to the edit box but allows editing
formatted text with different fonts and such, and application desktop toolbars.

There is also a collection of more esoteric and specialized controls that are perversely referred to as "common
controls." These are described in /Platform SDK/User Interface Services/Shell and Common Controls/Common
Controls. I won't be discussing the common controls in this chapter, but they'll appear in various programs
throughout the rest of the book. This section of the Windows documentation is a good place to look if you see
something in a Windows application that could be useful to your own application.

The Button Class

We'll begin our exploration of the button window class with a program named BTNLOOK ("button look"), which is
shown in Figure 9-1. BTNLOOK creates 10 child window button controls, one for each of the 10 standard styles of
buttons.

Figure 9-1. The BTNLOOK program.

BTNLOOK.C

/*--
 BTNLOOK.C -- Button Look Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

struct
{
 int iStyle ;
 TCHAR * szText ;
}
button[] =
{
 BS_PUSHBUTTON, TEXT ("PUSHBUTTON"),
 BS_DEFPUSHBUTTON, TEXT ("DEFPUSHBUTTON"),
 BS_CHECKBOX, TEXT ("CHECKBOX"),
 BS_AUTOCHECKBOX, TEXT ("AUTOCHECKBOX"),
 BS_RADIOBUTTON, TEXT ("RADIOBUTTON"),
 BS_3STATE, TEXT ("3STATE"),
 BS_AUTO3STATE, TEXT ("AUTO3STATE"),
 BS_GROUPBOX, TEXT ("GROUPBOX"),
 BS_AUTORADIOBUTTON, TEXT ("AUTORADIO"),
 BS_OWNERDRAW, TEXT ("OWNERDRAW")
} ;

#define NUM (sizeof button / sizeof button[0])

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("BtnLook") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Button Look"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndButton[NUM] ;
 static RECT rect ;
 static TCHAR szTop[] = TEXT ("message wParam lParam"),
 szUnd[] = TEXT ("_______ ______ ______"),
 szFormat[] = TEXT ("%-16s%04X-%04X %04X-%04X"),
 szBuffer[50] ;
 static int cxChar, cyChar ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 int i ;

 switch (message)
 {
 case WM_CREATE :
 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 for (i = 0 ; i < NUM ; i++)
 hwndButton[i] = CreateWindow (TEXT("button"),

 button[i].szText,
 WS_CHILD | WS_VISIBLE | button[i].iStyle,
 cxChar, cyChar * (1 + 2 * i),
 20 * cxChar, 7 * cyChar / 4,
 hwnd, (HMENU) i,
 ((LPCREATESTRUCT) lParam)->hInstance, NULL) ;
 return 0 ;

 case WM_SIZE :
 rect.left = 24 * cxChar ;
 rect.top = 2 * cyChar ;
 rect.right = LOWORD (lParam) ;
 rect.bottom = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT :
 InvalidateRect (hwnd, &rect, TRUE) ;

 hdc = BeginPaint (hwnd, &ps) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 SetBkMode (hdc, TRANSPARENT) ;

 TextOut (hdc, 24 * cxChar, cyChar, szTop, lstrlen (szTop)) ;
 TextOut (hdc, 24 * cxChar, cyChar, szUnd, lstrlen (szUnd)) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DRAWITEM :
 case WM_COMMAND :
 ScrollWindow (hwnd, 0, -cyChar, &rect, &rect) ;

 hdc = GetDC (hwnd) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 TextOut (hdc, 24 * cxChar, cyChar * (rect.bottom / cyChar - 1),
 szBuffer,
 wsprintf (szBuffer, szFormat,
 message == WM_DRAWITEM ? TEXT ("WM_DRAWITEM") :
 TEXT ("WM_COMMAND"),
 HIWORD (wParam), LOWORD (wParam),
 HIWORD (lParam), LOWORD (lParam))) ;

 ReleaseDC (hwnd, hdc) ;
 ValidateRect (hwnd, &rect) ;
 break ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

As you click on each button, the button sends a WM_COMMAND message to the parent window procedure, which
is the familiar WndProc . BTNLOOK's WndProc displays the wParam and lParam parameters of this message in the
right half of the client area, as shown in Figure 9-2.

The button with the style BS_OWNERDRAW is displayed on this window only with a background shading because
this is a style of button that the program is responsible for drawing. The button indicates it needs drawing by
WM_DRAWITEM messages containing an lParam message parameter that is a pointer to a structure of type
DRAWITEMSTRUCT. These messages are also displayed in BTNLOOK. I'll discuss owner-draw buttons in more
detail later in this chapter.

Figure 9-2. The BTNLOOK display.

Creating the Child Windows

BTNLOOK defines a structure called button that contains button window styles and descriptive text strings for each
of the 10 types of buttons. The button window styles all begin with the letters BS, which stand for "button style."
The 10 button child windows are created in a for loop during WM_CREATE message processing in WndProc . The
CreateWindow call uses the following parameters:

Class name

TEXT ("button")
Window text

button[i].szText
Window style

WS_CHILD ¦ WS_VISIBLE ¦ button[i].iStyle
x position

cxChar
y position

cyChar * (1 + 2 * i)
Width

20 * xChar
Height

7 * yChar / 4
Parent window

hwnd
Child window ID

(HMENU) i
Instance handle

((LPCREATESTRUCT) lParam) -> hInstance
Extra parameters

NULL

The class name parameter is the predefined name. The window style uses WS_CHILD, WS_VISIBLE, and one of
the 10 button styles (BS_PUSHBUTTON, BS_DEFPUSHBUTTON, and so forth) that are defined in the button
structure. The window text parameter (which for a normal window is the text that appears in the caption bar) is
text that will be displayed with each button. I've simply used text that identifies the button style.

The x position and y position parameters indicate the placement of the upper left corner of the child window
relative to the upper left corner of the parent window's client area. The width and height parameters specify the
width and height of each child window. Notice that I'm using a function named GetDialogBaseUnits to obtain the
width and height of the characters in the default font. This is the function that dialog boxes use to obtain text
dimensions. The function returns a 32-bit value comprising a width in the low word and a height in the high word.
While GetDialogBaseUnits returns roughly the same values as can be obtained from the GetTextMetrics function,
it's somewhat easier to use and will ensure more consistency with controls in dialog boxes.

The child window ID parameter should be unique for each child window. This ID helps your window procedure
identify the child window when processing WM_COMMAND messages from it. Notice that the child window ID is
passed in the CreateWindow parameter normally used to specify the program's menu, so it must be cast to an
HMENU.

The instance handle parameter of the CreateWindow call looks a little strange, but we're taking advantage of the
fact that during a WM_CREATE message lParam is actually a pointer to a structure of type CREATESTRUCT
("creation structure") that has a member hInstance . So we cast lParam into a pointer to a CREATESTRUCT
structure and get hInstance out.

(Some Windows programs use a global variable named hInst to give window procedures access to the instance
handle available in WinMain . In WinMain , you need to simply set

hInst = hInstance ;

before creating the main window. In the CHECKER3 program in Chapter 7 , we used GetWindowLong to obtain this
instance handle:

GetWindowLong (hwnd, GWL_HINSTANCE)

Any of these methods is fine.)

After the CreateWindow call, we needn't do anything more with these child windows. The button window
procedure within Windows maintains the buttons for us and handles all repainting jobs. (The exception is the
button with the BS_OWNERDRAW style; as I'll discuss later, this button style requires the program to draw the
button.) At the program's termination, Windows destroys these child windows when the parent window is
destroyed.

The Child Talks to Its Parent

When you run BTNLOOK, you see the different button types displayed on the left side of the client area. As I
mentioned earlier, when you click a button with the mouse, the child window control sends a WM_COMMAND
message to its parent window. BTNLOOK traps the WM_COMMAND message and displays the values of wParam
and lParam . Here's what they mean:

LOWORD (wParam)
Child window ID
HIWORD (wParam)
Notification code

lParam
Child window handle

If you're converting programs written for the 16-bit versions of Windows, be aware that these message
parameters have been altered to accommodate 32-bit handles.

The child window ID is the value passed to CreateWindow when the child window is created. In BTNLOOK, these
IDs are 0 through 9 for the 10 buttons displayed in the client area. The child window handle is the value that
Windows returns from the CreateWindow call.

The notification code indicates in more detail what the message means. The possible values of button notification
codes are defined in the Windows header files:

Button Notification Code Identifier
Value
BN_CLICKED
0
BN_PAINT
1
BN_HILITE or BN_PUSHED
2
BN_UNHILITE or BN_UNPUSHED
3
BN_DISABLE
4
BN_DOUBLECLICKED or BN_DBLCLK
5
BN_SETFOCUS
6
BN_KILLFOCUS
7

In reality, you'll never see most of these button values. The notification codes 1 through 4 are for an obsolete
button style called BS_USERBUTTON. (It's been replaced with BS_OWNERDRAW and a different notification
mechanism.) The notification codes 6 and 7 are sent only if the button style includes the flag BS_NOTIFY. The
notification code 5 is sent only for BS_RADIOBUTTON, BS_AUTORADIOBUTTON, and BS_OWNERDRAW buttons, or
for other buttons if the button style includes BS_NOTIFY.

You'll notice that when you click a button with the mouse, a dashed line surrounds the text of the button. This
indicates that the button has the input focus. All keyboard input now goes to the child window button control
rather than to the main window. However, when the button control has the input focus, it ignores all keystrokes
except the Spacebar, which now has the same effect as a mouse click.

The Parent Talks to Its Child

Although BTNLOOK does not demonstrate this fact, a window procedure can also send messages to the child
window control. These messages include many of the window messages beginning with the prefix WM. In addition,
eight button-specific messages are defined in WINUSER.H; each begins with the letters BM, which stand for
"button message." These button messages are shown in the following table:

Button Message
Value
BM_GETCHECK
0x00F0
BM_SETCHECK
0x00F1
BM_GETSTATE
0x00F2
BM_SETSTATE
0x00F3
BM_SETSTYLE
0x00F4
BM_CLICK
0x00F5
BM_GETIMAGE

0x00F6
BM_SETIMAGE
0x00F7

The BM_GETCHECK and BM_SETCHECK messages are sent by a parent window to a child window control to get
and set the check mark of check boxes and radio buttons. The BM_GETSTATE and BM_SETSTATE messages refer
to the normal, or pushed, state of a window when you click it with the mouse or press it with the Spacebar. We'll
see how these messages work when we look at each type of button. The BM_SETSTYLE message lets you change
the button style after the button is created.

Each child window has a window handle and an ID that is unique among its siblings. Knowing one of these items
allows you to get the other. If you know the window handle of the child, you can obtain the ID using

id = GetWindowLong (hwndChild, GWL_ID) ;

This function (along with SetWindowLong) was used in the CHECKER3 program in Chapter 7 to maintain data in a
special area reserved when the window class was registered. The area accessed with the GWL_ID identifier is
reserved by Windows when the child window is created. You can also use

id = GetDlgCtrlID (hwndChild) ;

Even though the "Dlg" part of the function name refers to a dialog box, this is really a general-purpose function.

Knowing the ID and the parent window handle, you can get the child window handle:

hwndChild = GetDlgItem (hwndParent, id) ;

Push Buttons

The first two buttons shown in BTNLOOK are "push" buttons. A push button is a rectangle enclosing text specified
in the window text parameter of the CreateWindow call. The rectangle takes up the full height and width of the
dimensions given in the CreateWindow or MoveWindow call. The text is centered within the rectangle.

Push-button controls are used mostly to trigger an immediate action without retaining any type of on/off
indication. The two types of push-button controls have window styles called BS_PUSHBUTTON and
BS_DEFPUSHBUTTON. The "DEF" in BS_DEFPUSHBUTTON stands for "default." When used to design dialog boxes,
BS_PUSHBUTTON controls and BS_DEFPUSHBUTTON controls function differently from one another. When used as
child window controls, however, the two types of push buttons function the same way, although
BS_DEFPUSHBUTTON has a heavier outline.

A push button looks best when its height is 7/4 times the height of a text character, which is what BTNLOOK uses.
The push button's width must accommodate at least the width of the text, plus two additional characters.

When the mouse cursor is inside the push button, pressing the mouse button causes the button to repaint itself
using 3D-style shading to appear as if it's been depressed. Releasing the mouse button restores the original
appearance and sends a WM_COMMAND message to the parent window with the notification code BN_CLICKED. As
with the other button types, when a push button has the input focus, a dashed line surrounds the text and
pressing and releasing the Spacebar has the same effect as pressing and releasing the mouse button.

You can simulate a push-button flash by sending the window a BM_SETSTATE message. This causes the button to
be depressed:

SendMessage (hwndButton, BM_SETSTATE, 1, 0) ;

This call causes the button to return to normal:

SendMessage (hwndButton, BM_SETSTATE, 0, 0) ;

The hwndButton window handle is the value returned from the CreateWindow call.

You can also send a BM_GETSTATE message to a push button. The child window control returns the current state
of the button: TRUE if the button is depressed and FALSE if it isn't depressed. Most applications do not require this
information, however. And because push buttons do not retain any on/off information, the BM_SETCHECK and
BM_GETCHECK messages are not used.

Check Boxes

A check box is a square box with text; the text usually appears to the right of the check box. (If you include the
BS_LEFTTEXT style when creating the button, the text appears to the left; you'll probably want to combine this
style with BS_RIGHT to right-justify the text.) Check boxes are usually incorporated in an application to allow a
user to select options. The check box commonly functions as a toggle switch: clicking the box once causes a check
mark to appear; clicking again toggles the check mark off.

The two most common styles for a check box are BS_CHECKBOX and BS_AUTOCHECKBOX. When you use the
BS_CHECKBOX style, you must set the check mark yourself by sending the control a BM_SETCHECK message. The
wParam parameter is set to 1 to create a check mark and to 0 to remove it. You can obtain the current check state
of the box by sending the control a BM_GETCHECK message. You might use code like this to toggle the X mark
when processing a WM_COMMAND message from the control:

SendMessage ((HWND) lParam, BM_SETCHECK, (WPARAM)
 !SendMessage ((HWND) lParam, BM_GETCHECK, 0, 0), 0) ;

Notice the ! operator in front of the second SendMessage call. The lParam value is the child window handle that is
passed to your window procedure in the WM_COMMAND message. When you later need to know the state of the
button, send it another BM_GETCHECK message. Or you can retain the current check state in a static variable in
your window procedure. You can also initialize a BS_CHECKBOX check box with a check mark by sending it a
BM_SETCHECK message:

SendMessage (hwndButton, BM_SETCHECK, 1, 0) ;

For the BS_AUTOCHECKBOX style, the button control itself toggles the check mark on and off. Your window
procedure can ignore WM_COMMAND messages. When you need the current state of the button, send the control
a BM_GETCHECK message:

iCheck = (int) SendMessage (hwndButton, BM_GETCHECK, 0, 0) ;

The value of iCheck is TRUE or nonzero if the button is checked and FALSE or 0 if not.

The other two check box styles are BS_3STATE and BS_AUTO3STATE. As their names indicate, these styles can
display a third state as well—a gray color within the check box—which occurs when you send the control a

WM_SETCHECK message with wParam equal to 2. The gray color indicates to the user that the selection is
indeterminate or irrelevant.

The check box is aligned with the rectangle's left edge and is centered within the top and bottom dimensions of
the rectangle that were specified during the CreateWindow call. Clicking anywhere within the rectangle causes a
WM_COMMAND message to be sent to the parent. The minimum height for a check box is one character height.
The minimum width is the number of characters in the text, plus two.

Radio Buttons

A radio button is named after the row of buttons that were once quite common on car radios. Each button on a car
radio is set for a different radio station, and only one button can be pressed at a time. In dialog boxes, groups of
radio buttons are conventionally used to indicate mutually exclusive options. Unlike check boxes, radio buttons do
not work as toggles—that is, when you click a radio button a second time, its state remains unchanged.

The radio button looks very much like a check box except that it contains a little circle rather than a box. A heavy
dot within the circle indicates that the radio button has been checked. The radio button has the window style
BS_RADIOBUTTON or BS_AUTORADIOBUTTON, but the latter is used only in dialog boxes.

When you receive a WM_COMMAND message from a radio button, you should display its check by sending it a
BM_SETCHECK message with wParam equal to 1:

SendMessage (hwndButton, BM_SETCHECK, 1, 0) ;

For all other radio buttons in the same group, you can turn off the checks by sending them BM_SETCHECK
messages with wParam equal to 0:

SendMessage (hwndButton, BM_SETCHECK, 0, 0) ;

Group Boxes

The group box, which has the BS_GROUPBOX style, is an oddity in the button class. It neither processes mouse or
keyboard input nor sends WM_COMMAND messages to its parent. The group box is a rectangular outline with its
window text at the top. Group boxes are often used to enclose other button controls.

Changing the Button Text

You can change the text in a button (or in any other window) by calling SetWindowText :

SetWindowText (hwnd, pszString) ;

where hwnd is a handle to the window whose text is being changed and pszString is a pointer to a null-terminated
string. For a normal window, this text is the text of the caption bar. For a button control, it's the text displayed
with the button.

You can also obtain the current text of a window:

iLength = GetWindowText (hwnd, pszBuffer, iMaxLength) ;

The iMaxLength parameter specifies the maximum number of characters to copy into the buffer pointed to by
pszBuffer . The function returns the string length copied. You can prepare your program for a particular text length
by first calling

iLength = GetWindowTextLength (hwnd) ;

Visible and Enabled Buttons

To receive mouse and keyboard input, a child window must be both visible (displayed) and enabled. When a child
window is visible but not enabled, Windows displays the text in gray rather than black.

If you don't include WS_VISIBLE in the window class when creating the child window, the child window will not be
displayed until you make a call to ShowWindow :

ShowWindow (hwndChild, SW_SHOWNORMAL) ;

But if you include WS_VISIBLE in the window class, you don't need to call ShowWindow . However, you can hide
the child window by this call to ShowWindow :

ShowWindow (hwndChild, SW_HIDE) ;

You can determine if a child window is visible by a call to

IsWindowVisible (hwndChild) ;

You can also enable and disable a child window. By default, a window is enabled. You can disable it by calling

EnableWindow (hwndChild, FALSE) ;

For button controls, this call has the effect of graying the button text string. The button no longer responds to
mouse or keyboard input. This is the best method for indicating that a button option is currently unavailable.

You can reenable a child window by calling

EnableWindow (hwndChild, TRUE) ;

You can determine whether a child window is enabled by calling

IsWindowEnabled (hwndChild) ;

Buttons and Input Focus

As I noted earlier in this chapter, push buttons, check boxes, radio buttons, and owner-draw buttons receive the
input focus when they are clicked with the mouse. The control indicates it has the input focus with a dashed line
that surrounds the text. When the child window control gets the input focus, the parent window loses it; all
keyboard input then goes to the control rather than to the parent window. However, the child window control
responds only to the Spacebar, which now functions like the mouse. This situation presents an obvious problem:
your program has lost control of keyboard processing. Let's see what we can do about it.

As I discussed in Chapter 6 , when Windows switches the input focus from one window (such as a parent) to
another (such as a child window control), it first sends a WM_KILLFOCUS message to the window losing the input
focus. The wParam parameter is the handle of the window that is to receive the input focus. Windows then sends a
WM_SETFOCUS message to the window receiving the input focus, with wParam specifying the handle of the
window losing the input focus. (In both cases, wParam might be NULL, which indicates that no window has or is
receiving the input focus.)

A parent window can prevent a child window control from getting the input focus by processing WM_KILLFOCUS
messages. Assume that the array hwndChild contains the window handles of all child windows. (These were saved
in the array during the CreateWindow calls that created the windows.) NUM is the number of child windows.

case WM_KILLFOCUS :

 for (i = 0 ; i < NUM ; i++)
 if (hwndChild [i] == (HWND) wParam)
 {
 SetFocus (hwnd) ;
 break ;
 }
 return 0 ;

In this code, when the parent window detects that it's losing the input focus to one of its child window controls, it
calls SetFocus to restore the input focus to itself.

Here's a simpler (but less obvious) way of doing it:

case WM_KILLFOCUS :
 if (hwnd == GetParent ((HWND) wParam))
 SetFocus (hwnd) ;
 return 0 ;

Both these methods have a shortcoming, however: they prevent the button from responding to the Spacebar,
because the button never gets the input focus. A better approach would be to let the button get the input focus
but also to include the facility for the user to move from button to button using the Tab key. At first this sounds
impossible, but I'll show you how to accomplish it with a technique called "window subclassing" in the COLORS1
program shown later in this chapter.

Controls and Colors

As you can see in Figure 9-2, the display of many of the buttons doesn't look quite right. The push buttons are
fine, but the others are drawn with a rectangular gray background that simply shouldn't be there. This is because
the buttons are designed to be displayed in dialog boxes, and in Windows 98 dialog boxes have a gray surface.
Our window has a white surface because that's how we defined it in the WNDCLASS structure:

wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;

We've been doing this because we often display text to the client area, and GDI uses the text color and
background color defined in the default device context. These are always black and white. To make these buttons
look a little better, we must either change the color of the client area to agree with the background color of the
buttons or somehow change the button background color to be white.

The first step to solving this problem is understanding Windows' use of "system colors."

System Colors

Windows maintains 29 system colors for painting various parts of the display. You can obtain and set these colors
using GetSysColor and SetSysColors . Identifiers defined in the windows header files specify the system color.
Setting a system color with SetSysColors changes it only for the current Windows session.

You can change some (but not all) system colors using the Display section of the Windows Control Panel. The
selected colors are stored in the Registry in Microsoft Windows NT and in the WIN.INI file in Microsoft Windows 98.
The Registry and WIN.INI file use keywords for the 29 system colors (different from the GetSysColor and
SetSysColors identifiers), followed by red, green, and blue values that can range from 0 to 255. The following
table shows how the 29 system colors are identified applying the constants used for GetSysColor and SetSysColors
and also the WIN.INI keywords. The table is arranged sequentially by the values of the COLOR_ constants,
beginning with 0 and ending with 28.

GetSysColor and SetSysColors
Registry Key or WIN.INI Identifer
Default RGB Value
COLOR_SCROLLBAR
Scrollbar
C0-C0-C0
COLOR_BACKGROUND
Background
00-80-80
COLOR_ACTIVECAPTION
ActiveTitle
00-00-80
COLOR_INACTIVECAPTION
InactiveTitle
80-80-80
COLOR_MENU
Menu
C0-C0-C0
COLOR_WINDOW
Window
FF-FF-FF
COLOR_WINDOWFRAME
WindowFrame
00-00-00
COLOR_MENUTEXT
MenuText
C0-C0-C0
COLOR_WINDOWTEXT
WindowText
00-00-00
COLOR_CAPTIONTEXT

TitleText
FF-FF-FF
COLOR_ACTIVEBORDER
ActiveBorder
C0-C0-C0
COLOR_INACTIVEBORDER
InactiveBorder
C0-C0-C0
COLOR_APPWORKSPACE
AppWorkspace
80-80-80
COLOR_HIGHLIGHT
Highlight
00-00-80
COLOR_HIGHLIGHTTEXT
HighlightText
FF-FF-FF
COLOR_BTNFACE
ButtonFace
C0-C0-C0
COLOR_BTNSHADOW
ButtonShadow
80-80-80
COLOR_GRAYTEXT
GrayText
80-80-80
COLOR_BTNTEXT
ButtonText
00-00-00
COLOR_INACTIVECAPTIONTEXT
InactiveTitleText
C0-C0-C0
COLOR_BTNHIGHLIGHT
ButtonHighlight
FF-FF-FF
COLOR_3DDKSHADOW
ButtonDkShadow
00-00-00
COLOR_3DLIGHT
ButtonLight
C0-C0-C0
COLOR_INFOTEXT
InfoText
00-00-00
COLOR_INFOBK
InfoWindow
FF-FF-FF
[no identifier; use value 25]
ButtonAlternateFace
B8-B4-B8
COLOR_HOTLIGHT
HotTrackingColor
00-00-FF
COLOR_GRADIENTACTIVECAPTION
GradientActiveTitle
00-00-80
COLOR_GRADIENTINACTIVECAPTION
GradientInactiveTitle
80-80-80

Default values for these 29 colors are provided by the display driver, and they might be a little different on
different machines.

Now for the bad news: Although many of these colors seem self-explanatory (for example, COLOR_BACKGROUND

is the color of the desktop area behind all the windows), the use of system colors in recent versions of Windows
has become quite chaotic. Back in the old days, Windows was visually much simpler than it is today. Indeed, prior
to Windows 3.0, only the first 13 system colors shown above were defined. With the increased use of more
visually complex controls using three-dimensional appearances, more system colors were needed.

The Button Colors

This problem is particularly evident for buttons, each of which requires multiple colors. COLOR_BTNFACE is used
for the main surface color of the push buttons and the background color of the others. (This is also the system
color used for dialog boxes and message boxes.) COLOR_BTNSHADOW is used for suggesting a shadow at the
right and bottom sides of the push buttons and the insides of the checkbox squares and radio button circles. For
push buttons, COLOR_BTNTEXT is used for the text color; for the others it's COLOR_WINDOWTEXT. Several other
system colors are also used for various parts of the button designs.

So if we want to display buttons on the surface of our client area, one way to avoid the color clash is to yield to
these system colors. To begin, you use COLOR_BTNFACE for the background of your client area when defining the
window class:

wndclass.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1) ;

You can try this in the BTNLOOK program. Windows understands that when the value of hbrBackground in the
WNDCLASS structure is this low in value, it actually refers to a system color rather than an actual handle.
Windows requires that you add 1 when you use these identifiers and are specifying them in the hbrBackground
field of the WNDCLASS structure, but doing so has no profound purpose other than to prevent the value from
being NULL. If the system color happens to be changed while your program is running, the surface of your client
area will be invalidated and Windows will use the new COLOR_BTNFACE value. But now we've caused another
problem. When you display text using TextOut , Windows uses values defined in the device context for the text
background color (which erases the background behind the text) and the text color. The default values are white
(background) and black (text), regardless of either the system colors or the hbrBackground field of the window
class structure. So you need to use SetTextColor and SetBkColor to change your text and text background colors
to the system colors. You do this after you obtain the handle to a device context:

SetBkColor (hdc, GetSysColor (COLOR_BTNFACE)) ;
SetTextColor (hdc, GetSysColor (COLOR_WINDOWTEXT)) ;

Now the client-area background, text background, and text color are all consistent with the button colors.
However, if the user changes the system colors while your program is running, you'll want to change the text
background color and text color. You can do this using the following code:

case WM_SYSCOLORCHANGE:
 InvalidateRect (hwnd, NULL, TRUE) ;
 break ;

The WM_CTLCOLORBTN Message

We've seen how we can adjust our client area color and text color to the background colors of the buttons. Can we
adjust the colors of the buttons to the colors we prefer in our program? Well, in theory, yes, but in practice, no.
What you probably don't want to do is use SetSysColors to change the appearance of the buttons. This will affect
all programs currently running under Windows; it's something users would not appreciate very much.

A better approach (again, in theory) is to process the WM_CTLCOLORBTN message. This is a message that button
controls send to the parent window procedure when the child window is about to paint its client area. The parent
window can use this opportunity to alter the colors that the child window procedure will use for painting. (In 16-bit

versions of Windows, a message named WM_CTLCOLOR was used for all controls. This has been replaced with
separate messages for each type of standard control.)

When the parent window procedure receives a WM_CTLCOLORBTN message, the wParam message parameter is
the handle to the button's device context and lParam is the button's window handle. When the parent window
procedure gets this message, the button control has already obtained its device context. When processing a
WM_CTLCOLORBTN message in your window procedure, you:

Optionally set a text color using SetTextColor

Optionally set a text background color using SetBkColor

Return a brush handle to the child window

In theory, the child window uses the brush for coloring a background. It is your responsibility to destroy the brush
when it is no longer needed.

Here's the problem with WM_CTLCOLORBTN: Only the push buttons and owner-draw buttons send
WM_CTLCOLORBTN to their parent windows, and only owner-draw buttons respond to the parent window
processing of the message using the brush for coloring the background. This is fairly useless because the parent
window is responsible for drawing owner-draw buttons anyway.

Later on in this chapter, we'll examine cases in which messages similar to WM_CTLCOLORBTN but applying to
other types of controls are more useful.

Owner-Draw Buttons

If you want to have total control over the visual appearance of a button but don't want to bother with keyboard
and mouse logic, you can create a button with the BS_OWNERDRAW style. This is demonstrated in the OWNDRAW
program shown in Figure 9-3.

Figure 9-3. The OWNDRAW program.

OWNDRAW.C

/*--
 OWNDRAW.C -- Owner-Draw Button Demo Program
 (c) Charles Petzold, 1996
 --*/

#include <windows.h>

#define ID_SMALLER 1
#define ID_LARGER 2
#define BTN_WIDTH (8 * cxChar)
#define BTN_HEIGHT (4 * cyChar)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ;
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("OwnDraw") ;
 MSG msg ;
 HWND hwnd ;

 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Owner-Draw Button Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void Triangle (HDC hdc, POINT pt[])
{
 SelectObject (hdc, GetStockObject (BLACK_BRUSH)) ;
 Polygon (hdc, pt, 3) ;
 SelectObject (hdc, GetStockObject (WHITE_BRUSH)) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndSmaller, hwndLarger ;
 static int cxClient, cyClient, cxChar, cyChar ;
 int cx, cy ;
 LPDRAWITEMSTRUCT pdis ;
 POINT pt[3] ;

 RECT rc ;

 switch (message)
 {
 case WM_CREATE :
 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 // Create the owner-draw pushbuttons

 hwndSmaller = CreateWindow (TEXT ("button"), TEXT (""),
 WS_CHILD | WS_VISIBLE | BS_OWNERDRAW,
 0, 0, BTN_WIDTH, BTN_HEIGHT,
 hwnd, (HMENU) ID_SMALLER, hInst, NULL) ;

 hwndLarger = CreateWindow (TEXT ("button"), TEXT (""),
 WS_CHILD | WS_VISIBLE | BS_OWNERDRAW,
 0, 0, BTN_WIDTH, BTN_HEIGHT,
 hwnd, (HMENU) ID_LARGER, hInst, NULL) ;
 return 0 ;

 case WM_SIZE :
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 // Move the buttons to the new center

 MoveWindow (hwndSmaller, cxClient / 2 - 3 * BTN_WIDTH / 2,
 cyClient / 2 - BTN_HEIGHT / 2,
 BTN_WIDTH, BTN_HEIGHT, TRUE) ;
 MoveWindow (hwndLarger, cxClient / 2 + BTN_WIDTH / 2,
 cyClient / 2 - BTN_HEIGHT / 2,
 BTN_WIDTH, BTN_HEIGHT, TRUE) ;
 return 0 ;

 case WM_COMMAND :
 GetWindowRect (hwnd, &rc) ;

 // Make the window 10% smaller or larger

 switch (wParam)
 {
 case ID_SMALLER :
 rc.left += cxClient / 20 ;
 rc.right -= cxClient / 20 ;
 rc.top += cyClient / 20 ;
 rc.bottom -= cyClient / 20 ;
 break ;

 case ID_LARGER :
 rc.left -= cxClient / 20 ;
 rc.right += cxClient / 20 ;
 rc.top -= cyClient / 20 ;

 rc.bottom += cyClient / 20 ;
 break ;
 }

 MoveWindow (hwnd, rc.left, rc.top, rc.right - rc.left,
 rc.bottom - rc.top, TRUE) ;
 return 0 ;

 case WM_DRAWITEM :
 pdis = (LPDRAWITEMSTRUCT) lParam ;

 // Fill area with white and frame it black

 FillRect (pdis->hDC, &pdis->rcItem,
 (HBRUSH) GetStockObject (WHITE_BRUSH)) ;

 FrameRect (pdis->hDC, &pdis->rcItem,
 (HBRUSH) GetStockObject (BLACK_BRUSH)) ;

 // Draw inward and outward black triangles
 cx = pdis->rcItem.right - pdis->rcItem.left ;
 cy = pdis->rcItem.bottom - pdis->rcItem.top ;

 switch (pdis->CtlID)
 {
 case ID_SMALLER :
 pt[0].x = 3 * cx / 8 ; pt[0].y = 1 * cy / 8 ;
 pt[1].x = 5 * cx / 8 ; pt[1].y = 1 * cy / 8 ;
 pt[2].x = 4 * cx / 8 ; pt[2].y = 3 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;

 pt[0].x = 7 * cx / 8 ; pt[0].y = 3 * cy / 8 ;
 pt[1].x = 7 * cx / 8 ; pt[1].y = 5 * cy / 8 ;
 pt[2].x = 5 * cx / 8 ; pt[2].y = 4 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;

 pt[0].x = 5 * cx / 8 ; pt[0].y = 7 * cy / 8 ;
 pt[1].x = 3 * cx / 8 ; pt[1].y = 7 * cy / 8 ;
 pt[2].x = 4 * cx / 8 ; pt[2].y = 5 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;

 pt[0].x = 1 * cx / 8 ; pt[0].y = 5 * cy / 8 ;
 pt[1].x = 1 * cx / 8 ; pt[1].y = 3 * cy / 8 ;
 pt[2].x = 3 * cx / 8 ; pt[2].y = 4 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;
 break ;

 case ID_LARGER :
 pt[0].x = 5 * cx / 8 ; pt[0].y = 3 * cy / 8 ;

 pt[1].x = 3 * cx / 8 ; pt[1].y = 3 * cy / 8 ;
 pt[2].x = 4 * cx / 8 ; pt[2].y = 1 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;

 pt[0].x = 5 * cx / 8 ; pt[0].y = 5 * cy / 8 ;
 pt[1].x = 5 * cx / 8 ; pt[1].y = 3 * cy / 8 ;
 pt[2].x = 7 * cx / 8 ; pt[2].y = 4 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;
 pt[0].x = 3 * cx / 8 ; pt[0].y = 5 * cy / 8 ;
 pt[1].x = 5 * cx / 8 ; pt[1].y = 5 * cy / 8 ;
 pt[2].x = 4 * cx / 8 ; pt[2].y = 7 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;
 pt[0].x = 3 * cx / 8 ; pt[0].y = 3 * cy / 8 ;
 pt[1].x = 3 * cx / 8 ; pt[1].y = 5 * cy / 8 ;
 pt[2].x = 1 * cx / 8 ; pt[2].y = 4 * cy / 8 ;

 Triangle (pdis->hDC, pt) ;
 break ;
 }

 // Invert the rectangle if the button is selected

 if (pdis->itemState & ODS_SELECTED)
 InvertRect (pdis->hDC, &pdis->rcItem) ;

 // Draw a focus rectangle if the button has the focus

 if (pdis->itemState & ODS_FOCUS)
 {
 pdis->rcItem.left += cx / 16 ;
 pdis->rcItem.top += cy / 16 ;
 pdis->rcItem.right -= cx / 16 ;
 pdis->rcItem.bottom -= cy / 16 ;

 DrawFocusRect (pdis->hDC, &pdis->rcItem) ;
 }
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program contains two buttons in the center of its client area, as shown in Figure 9-4. The button on the left
has four triangles pointing to the center of the button. Clicking the button decreases the size of the window by 10
percent. The button on the right has four triangles pointing outward, and clicking this button increases the window
size by 10 percent.

If you need to display only an icon or a bitmap in the button, you can use the BS_ICON or BS_BITMAP style and
set the bitmap using the BM_SETIMAGE message. The BS_OWNERDRAW button style, however, allows complete
freedom in drawing the button.

Figure 9-4. The OWNDRAW display.

During the WM_CREATE message, OWNDRAW creates two buttons with the BS_OWNERDRAW style; the buttons
are given a width of eight times the system font and four times the system font height. (When using predefined
bitmaps to draw buttons, it's useful to know that these dimensions create buttons that are 64 by 64 pixels on a
VGA.) The buttons are not yet positioned. During the WM_SIZE message, OWNDRAW positions the buttons in the
center of the client area by calling MoveWindow .

Clicking on the buttons causes them to generate WM_COMMAND messages. To process the WM_COMMAND
message, OWNDRAW calls GetWindowRect to store the position and size of the entire window (not only the client
area) in a RECT (rectangle) structure. This position is relative to the screen. OWNDRAW then adjusts the fields of
this rectangle structure depending on whether the left or right button was clicked. Then the program repositions
and resizes the window by calling MoveWindow . This generates another WM_SIZE message, and the buttons are
repositioned in the center of the client area.

If this were all the program did, it would be entirely functional but the buttons would not be visible. A button
created with the BS_OWNERDRAW style sends its parent window a WM_DRAWITEM message whenever the button
needs to be repainted. This occurs when the button is first created, when it is pressed or released, when it gains
or loses the input focus, and whenever else it needs repainting.

During the WM_DRAWITEM message, the lParam message parameter is a pointer to a structure of type
DRAWITEMSTRUCT. The OWNDRAW program stores this pointer in a variable named pdis . This structure contains
the information necessary for a program to draw the button. (The same structure is also used for owner-draw list
boxes and menu items.) The structure fields important for working with buttons are hDC (the device context for
the button), rcItem (a RECT structure providing the size of the button), CtlID (the control window ID), and
itemState (which indicates whether the button is pushed or has the input focus).

OWNDRAW begins WM_DRAWITEM processing by calling FillRect to erase the surface of the button with a white
brush and FrameRect to draw a black frame around the button. Then OWNDRAW draws four black-filled triangles
on the button by calling Polygon . That's the normal case.

If the button is currently being pressed, a bit of the itemState field of the DRAWITEMSTRUCT will be set. You can
test this bit using the ODS_SELECTED constant. If the bit is set, OWNDRAW inverts the colors of the button by
calling InvertRect . If the button has the input focus, the ODS_FOCUS bit of the itemState field will be set. In this
case, OWNDRAW draws a dotted rectangle just inside the periphery of the button by calling DrawFocusRect .

A word of warning when using owner-draw buttons: Windows obtains a device context for you and includes it as a
field of the DRAWITEMSTRUCT structure. Leave the device context in the same state you found it. Any GDI objects
selected into the device context must be unselected. Also, be careful not to draw outside the rectangle defining
the boundaries of the button.

The Static Class

You create static child window controls by using "static" as the window class in the CreateWindow function. These
are fairly benign child windows. They do not accept mouse or keyboard input, and they do not send
WM_COMMAND messages back to the parent window.

When you move or click the mouse over a static child window, the child window traps the WM_NCHITTEST
message and returns a value of HTTRANSPARENT to Windows. This causes Windows to send the same
WM_NCHITTEST message to the underlying window, which is usually the parent. The parent usually passes the
message to DefWindowProc, where it is converted to a client-area mouse message.

The first six static window styles simply draw a rectangle or a frame in the client area of the child window. The
"RECT" static styles (left column below) are filled-in rectangles; the three "FRAME" styles (right column) are
rectangular outlines that are not filled in.

SS_BLACKRECT SS_BLACKFRAME

SS_GRAYRECT SS_GRAYFRAME

SS_WHITERECT SS_WHITEFRAME

"BLACK," "GRAY," and "WHITE" do not mean the colors are black, gray, and white. Rather, the colors are based on
system colors, as shown here:

Static Control System Color

BLACK COLOR_3DDKSHADOW

GRAY COLOR_BTNSHADOW

WHITE COLOR_BTNHIGHLIGHT

The window text field of the CreateWindow call is ignored for these styles. The upper left corner of the rectangle
begins at the x position and y position coordinates relative to the parent window. You can also use the
SS_ETCHEDHORZ, SS_ETCHEDVERT, or SS_ETCHEDFRAME styles to create a shadowed-looking frame with the
white and gray colors.

The static class also includes three text styles: SS_LEFT, SS_RIGHT, and SS_CENTER. These create left-justified,
right-justified, and centered text. The text is given in the window text parameter of the CreateWindow call, and it
can be changed later using SetWindowText. When the window procedure for static controls displays this text, it
uses the DrawText function with DT_WORDBREAK, DT_NOCLIP, and DT_EXPANDTABS parameters. The text is
wordwrapped within the rectangle of the child window.

The background of these three text-style child windows is normally COLOR_BTNFACE, and the text itself is
COLOR_WINDOWTEXT. You can intercept WM_CTLCOLORSTATIC messages to change the text color by calling
SetTextColor and the background color by calling SetBkColor and by returning the handle to the background
brush. This will be demonstrated in the COLORS1 program shortly.

Finally, the static class also includes the window styles SS_ICON and SS_USERITEM. However, these styles have
no meaning when they are used as child window controls. We'll look at them again when we discuss dialog boxes.

The Scroll Bar Class

When the subject of scroll bars first came up in Chapter 4 , I discussed some of the differences between "window
scroll bars" and "scroll bar controls." The SYSMETS programs use window scroll bars, which appear at the right
and bottom of the window. You add window scroll bars to a window by including the identifier WS_VSCROLL or
WS_HSCROLL or both in the window style when creating the window. Now we're ready to make some scroll bar
controls, which are child windows that can appear anywhere in the client area of the parent window. You create
child window scroll bar controls by using the predefined window class "scrollbar" and one of the two scroll bar
styles SBS_VERT and SBS_HORZ.

Unlike the button controls (and the edit and list box controls to be discussed later), scroll bar controls do not send
WM_COMMAND messages to the parent window. Instead, they send WM_VSCROLL and WM_HSCROLL messages,
just like window scroll bars. When processing the scroll bar messages, you can differentiate between window scroll
bars and scroll bar controls by the lParam parameter. It will be 0 for window scroll bars and the scroll bar window
handle for scroll bar controls. The high and low words of the wParam parameter have the same meaning for
window scroll bars and scroll bar controls.

Although window scroll bars have a fixed width, Windows uses the full rectangle dimensions given in the
CreateWindow call (or later in the MoveWindow call) to size the scroll bar controls. You can make long, thin scroll
bar controls or short, pudgy scroll bar controls.

If you want to create scroll bar controls that have the same dimensions as window scroll bars, you can use
GetSystemMetrics to obtain the height of a horizontal scroll bar:

GetSystemMetrics (SM_CYHSCROLL) ;

or the width of a vertical scroll bar:

GetSystemMetrics (SM_CXVSCROLL) ;

The scroll bar window style identifiers SBS_LEFTALIGN, SBS_RIGHTALIGN, SBS_TOP ALIGN, and
SBS_BOTTOMALIGN are documented to give standard dimensions to scroll bars. However, these styles work only
for scroll bars in dialog boxes.

You can set the range and position of a scroll bar control with the same calls used for window scroll bars:

SetScrollRange (hwndScroll, SB_CTL, iMin, iMax, bRedraw) ;
SetScrollPos (hwndScroll, SB_CTL, iPos, bRedraw) ;
SetScrollInfo (hwndScroll, SB_CTL, &si, bRedraw) ;

The difference is that window scroll bars use a handle to the main window as the first parameter and SB_VERT or
SB_HORZ as the second parameter.

Amazingly enough, the system color named COLOR_SCROLLBAR is no longer used for scroll bars. The end buttons
and thumb are based on COLOR_BTNFACE, COLOR_BTNHILIGHT, COLOR_BTNSHADOW, COLOR_BTNTEXT (for the
little arrows), COLOR_DKSHADOW, and COLOR_BTNLIGHT. The large area between the two end buttons is based
on a combination of COLOR_BTNFACE and COLOR_BTNHIGHLIGHT.

If you trap WM_CTLCOLORSCROLLBAR messages, you can return a brush from the message to override the color
used for this area. Let's do it.

The COLORS1 Program

To see some uses of scroll bars and static child windows—and also to explore color in more depth—we'll use the
COLORS1 program, shown in Figure 9-5. COLORS1 displays three scroll bars in the left half of the client area
labeled "Red," "Green," and "Blue." As you scroll the scroll bars, the right half of the client area changes to the
composite color indicated by the mix of the three primary colors. The numeric values of the three primary colors
are displayed under the three scroll bars.

Figure 9-5. The COLORS1 program.

COLORS1.C

/*--
 COLORS1.C -- Colors Using Scroll Bars
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK ScrollProc (HWND, UINT, WPARAM, LPARAM) ;

int idFocus ;
WNDPROC OldScroll[3] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Colors1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = CreateSolidBrush (0) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Color Scroll"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static COLORREF crPrim[3] = { RGB (255, 0, 0), RGB (0, 255, 0),
 RGB (0, 0, 255) } ;
 static HBRUSH hBrush[3], hBrushStatic ;
 static HWND hwndScroll[3], hwndLabel[3], hwndValue[3], hwndRect ;
 static int color[3], cyChar ;
 static RECT rcColor ;
 static TCHAR * szColorLabel[] = { TEXT ("Red"), TEXT ("Green"),
 TEXT ("Blue") } ;
 HINSTANCE hInstance ;
 int i, cxClient, cyClient ;
 TCHAR szBuffer[10] ;

 switch (message)
 {
 case WM_CREATE :
 hInstance = (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE) ;

 // Create the white-rectangle window against which the
 // scroll bars will be positioned. The child window ID is 9.

 hwndRect = CreateWindow (TEXT ("static"), NULL,
 WS_CHILD | WS_VISIBLE | SS_WHITERECT,
 0, 0, 0, 0,
 hwnd, (HMENU) 9, hInstance, NULL) ;

 for (i = 0 ; i < 3 ; i++)
 {
 // The three scroll bars have IDs 0, 1, and 2, with
 // scroll bar ranges from 0 through 255.

 hwndScroll[i] = CreateWindow (TEXT ("scrollbar"), NULL,
 WS_CHILD | WS_VISIBLE |
 WS_TABSTOP | SBS_VERT,
 0, 0, 0, 0,
 hwnd, (HMENU) i, hInstance, NULL) ;

 SetScrollRange (hwndScroll[i], SB_CTL, 0, 255, FALSE) ;

 SetScrollPos (hwndScroll[i], SB_CTL, 0, FALSE) ;

 // The three color-name labels have IDs 3, 4, and 5,
 // and text strings "Red", "Green", and "Blue".

 hwndLabel [i] = CreateWindow (TEXT ("static"), szColorLabel[i],
 WS_CHILD | WS_VISIBLE | SS_CENTER,
 0, 0, 0, 0,
 hwnd, (HMENU) (i + 3),
 hInstance, NULL) ;

 // The three color-value text fields have IDs 6, 7,
 // and 8, and initial text strings of "0".

 hwndValue [i] = CreateWindow (TEXT ("static"), TEXT ("0"),
 WS_CHILD | WS_VISIBLE | SS_CENTER,
 0, 0, 0, 0,
 hwnd, (HMENU) (i + 6),
 hInstance, NULL) ;

 OldScroll[i] = (WNDPROC) SetWindowLong (hwndScroll[i],
 GWL_WNDPROC, (LONG) ScrollProc) ;

 hBrush[i] = CreateSolidBrush (crPrim[i]) ;
 }

 hBrushStatic = CreateSolidBrush (
 GetSysColor (COLOR_BTNHIGHLIGHT)) ;

 cyChar = HIWORD (GetDialogBaseUnits ()) ;
 return 0 ;

 case WM_SIZE :
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 SetRect (&rcColor, cxClient / 2, 0, cxClient, cyClient) ;

 MoveWindow (hwndRect, 0, 0, cxClient / 2, cyClient, TRUE) ;

 for (i = 0 ; i < 3 ; i++)
 {
 MoveWindow (hwndScroll[i],
 (2 * i + 1) * cxClient / 14, 2 * cyChar,
 cxClient / 14, cyClient - 4 * cyChar, TRUE) ;

 MoveWindow (hwndLabel[i],
 (4 * i + 1) * cxClient / 28, cyChar / 2,
 cxClient / 7, cyChar, TRUE) ;

 MoveWindow (hwndValue[i],
 (4 * i + 1) * cxClient / 28,
 cyClient - 3 * cyChar / 2,

 cxClient / 7, cyChar, TRUE) ;
 }
 SetFocus (hwnd) ;
 return 0 ;

 case WM_SETFOCUS :
 SetFocus (hwndScroll[idFocus]) ;
 return 0 ;

 case WM_VSCROLL :
 i = GetWindowLong ((HWND) lParam, GWL_ID) ;

 switch (LOWORD (wParam))
 {
 case SB_PAGEDOWN :
 color[i] += 15 ;
 // fall through
 case SB_LINEDOWN :
 color[i] = min (255, color[i] + 1) ;
 break ;

 case SB_PAGEUP :
 color[i] -= 15 ;
 // fall through
 case SB_LINEUP :
 color[i] = max (0, color[i] - 1) ;
 break ;

 case SB_TOP :
 color[i] = 0 ;
 break ;

 case SB_BOTTOM :
 color[i] = 255 ;
 break ;

 case SB_THUMBPOSITION :
 case SB_THUMBTRACK :
 color[i] = HIWORD (wParam) ;
 break ;

 default :
 break ;
 }
 SetScrollPos (hwndScroll[i], SB_CTL, color[i], TRUE) ;
 wsprintf (szBuffer, TEXT ("%i"), color[i]) ;
 SetWindowText (hwndValue[i], szBuffer) ;

 DeleteObject ((HBRUSH)
 SetClassLong (hwnd, GCL_HBRBACKGROUND, (LONG)
 CreateSolidBrush (RGB (color[0], color[1], color[2])))) ;

 InvalidateRect (hwnd, &rcColor, TRUE) ;

 return 0 ;

 case WM_CTLCOLORSCROLLBAR :
 i = GetWindowLong ((HWND) lParam, GWL_ID) ;
 return (LRESULT) hBrush[i] ;

 case WM_CTLCOLORSTATIC :
 i = GetWindowLong ((HWND) lParam, GWL_ID) ;

 if (i >= 3 && i <= 8) // static text controls
 {
 SetTextColor ((HDC) wParam, crPrim[i % 3]) ;
 SetBkColor ((HDC) wParam, GetSysColor (COLOR_BTNHIGHLIGHT));
 return (LRESULT) hBrushStatic ;
 }
 break ;

 case WM_SYSCOLORCHANGE :
 DeleteObject (hBrushStatic) ;
 hBrushStatic = CreateSolidBrush (GetSysColor (COLOR_BTNHIGHLIGHT)) ;
 return 0 ;

 case WM_DESTROY :
 DeleteObject ((HBRUSH)
 SetClassLong (hwnd, GCL_HBRBACKGROUND, (LONG)
 GetStockObject (WHITE_BRUSH))) ;

 for (i = 0 ; i < 3 ; i++)
 DeleteObject (hBrush[i]) ;

 DeleteObject (hBrushStatic) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

LRESULT CALLBACK ScrollProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 int id = GetWindowLong (hwnd, GWL_ID) ;

 switch (message)
 {
 case WM_KEYDOWN :
 if (wParam == VK_TAB)
 SetFocus (GetDlgItem (GetParent (hwnd),
 (id + (GetKeyState (VK_SHIFT) < 0 ? 2 : 1)) % 3)) ;
 break ;

 case WM_SETFOCUS :
 idFocus = id ;
 break ;

 }
 return CallWindowProc (OldScroll[id], hwnd, message, wParam, lParam) ;
}

COLORS1 puts its children to work. The program uses 10 child window controls: 3 scroll bars, 6 windows of static
text, and 1 static rectangle. COLORS1 traps WM_CTLCOLORSCROLLBAR messages to color the interior sections of
the three scroll bars red, green, and blue and traps WM_CTLCOLORSTATIC messages to color the static text.

You can scroll the scroll bars using either the mouse or the keyboard. You can use COLORS1 as a development
tool in experimenting with color and choosing attractive (or, if you prefer, ugly) colors for your own Windows
programs. The COLORS1 display is shown in Figure 9-6, unfortunately reduced to gray shades for the printed
page.

Figure 9-6. The COLORS1 display.

COLORS1 doesn't process WM_PAINT messages. Virtually all of the work in COLORS1 is done by the child
windows.

The color shown in the right half of the client area is actually the window's background color. A static child window
with style SS_WHITERECT blocks out the left half of the client area. The three scroll bars are child window controls
with the style SBS_VERT. These scroll bars are positioned on top of the SS_WHITERECT child. Six more static child
windows of style SS_CENTER (centered text) provide the labels and the color values. COLORS1 creates its normal
overlapped window and the 10 child windows within the WinMain function using CreateWindow . The
SS_WHITERECT and SS_CENTER static windows use the window class "static"; the three scroll bars use the
window class "scrollbar."

The x position, y position, width, and height parameters of the CreateWindow calls are initially set to 0 because
the position and sizing depend on the size of the client area, which is not yet known. COLORS1's window
procedure resizes all 10 child windows using MoveWindow when it receives a WM_SIZE message. So whenever
you resize the COLORS1 window, the size of the scroll bars changes proportionally.

When the WndProc window procedure receives a WM_VSCROLL message, the high word of the lParam parameter
is the handle to the child window. We can use GetWindowWord to get the window ID number:

i = GetWindowLong ((HWND) lParam, GWL_ID) ;

For the three scroll bars, we have conveniently set the ID numbers to 0, 1, and 2, so WndProc can tell which scroll
bar is generating the message.

Because the handles to the child windows were saved in arrays when the windows were created, WndProc can
process the scroll bar message and set the new value of the appropriate scroll bar using the SetScrollPos call:

SetScrollPos (hwndScroll[i], SB_CTL, color[i], TRUE) ;

WndProc also changes the text of the child window at the bottom of the scroll bar:

wsprintf (szBuffer, TEXT ("%i"), color[I]) ;
SetWindowText (hwndValue[i], szBuffer) ;

The Automatic Keyboard Interface

Scroll bar controls can also process keystrokes, but only if they have the input focus. The following table shows
how keyboard cursor keys translate into scroll bar messages:

Cursor Key
Scroll Bar Message wParam Value
Home
SB_TOP
End
SB_BOTTOM
Page Up
SB_PAGEUP
Page Down
SB_PAGEDOWN
Left or Up
SB_LINEUP
Right or Down
SB_LINEDOWN

In fact, the SB_TOP and SB_BOTTOM scroll bar messages can be generated only by using the keyboard. If you
want a scroll bar control to obtain the input focus when the scroll bar is clicked with the mouse, you must include
the WS_TABSTOP identifier in the window class parameter of the CreateWindow call. When a scroll bar has the
input focus, a blinking gray block is displayed on the scroll bar thumb.

To provide a full keyboard interface to the scroll bars, however, more work is necessary. First the WndProc window
procedure must specifically give a scroll bar the input focus. It does this by processing the WM_SETFOCUS
message, which the parent window receives when it obtains the input focus. WndProc simply sets the input focus
to one of the scroll bars:

SetFocus (hwndScroll[idFocus]) ;

where idFocus is a global variable.

But you also need some way to get from one scroll bar to another by using the keyboard, preferably by using the
Tab key. This is more difficult, because once a scroll bar has the input focus it processes all keystrokes. But the
scroll bar cares only about the cursor keys; it ignores the Tab key. The way out of this dilemma lies in a technique
called "window subclassing." We'll use it to add a facility to COLORS1 to jump from one scroll bar to another using
the Tab key.

Window Subclassing

The window procedure for the scroll bar controls is somewhere inside Windows. However, you can obtain the
address of this window procedure by a call to GetWindowLong using the GWL_WNDPROC identifier as a parameter.
Moreover, you can set a new window procedure for the scroll bars by calling SetWindowLong . This technique,
which is called "window subclassing," is very powerful. It lets you hook into existing window procedures, process
some messages within your own program, and pass all other messages to the old window procedure.

The window procedure that does preliminary scroll bar message processing in COLORS1 is named ScrollProc ; it is
toward the end of the COLORS1.C listing. Because ScrollProc is a function within COLORS1 that is called by
Windows, it must be defined as a CALLBACK.

For each of the three scroll bars, COLORS1 uses SetWindowLong to set the address of the new scroll bar window
procedure and also obtain the address of the existing scroll bar window procedure:

OldScroll[i] = (WNDPROC) SetWindowLong (hwndScroll[i], GWL_WNDPROC,
 (LONG) ScrollProc)) ;

Now the function ScrollProc gets all messages that Windows sends to the scroll bar window procedure for the three
scroll bars in COLORS1 (but not, of course, for scroll bars in other programs). The ScrollProc window procedure
simply changes the input focus to the next (or previous) scroll bar when it receives a Tab or Shift-Tab keystroke.
It calls the old scroll bar window procedure using CallWindowProc .

Coloring the Background

When COLORS1 defines its window class, it gives the background of its client area a solid black brush:

wndclass.hbrBackground = CreateSolidBrush (0) ;

When you change the settings of COLORS1's scroll bars, the program must create a new brush and put the new
brush handle in the window class structure. Just as we were able to get and set the scroll bar window procedure
using GetWindowLong and SetWindowLong , we can get and set the handle to this brush using GetClassWord and
SetClassWord .

You can create the new brush and insert the handle in the window class structure and then delete the old brush:

DeleteObject ((HBRUSH)
 SetClassLong (hwnd, GCL_HBRBACKGROUND, (LONG)
 CreateSolidBrush (RGB (color[0], color[1], color[2])))) ;

The next time Windows recolors the background of the window, Windows will use this new brush. To force
Windows to erase the background, we invalidate the right half of the client area:

InvalidateRect (hwnd, &rcColor, TRUE) ;

The TRUE (nonzero) value as the third parameter indicates that we want the background erased before repainting.

InvalidateRect causes Windows to put a WM_PAINT message in the message queue of the window procedure.
Because WM_PAINT messages are low priority, this message will not be processed immediately if you are still
moving the scroll bar with the mouse or the cursor keys. Alternatively, if you want the window to be updated
immediately after the color is changed, you can add the statement

UpdateWindow (hwnd) ;

after the InvalidateRect call. But this might slow down keyboard and mouse processing.

COLORS1's WndProc function doesn't process the WM_PAINT message but passes it to DefWindowProc . Windows'
default processing of WM_PAINT messages simply involves calling BeginPaint and EndPaint to validate the window.
Because we specified in the InvalidateRect call that the background should be erased, the BeginPaint call causes
Windows to generate a WM_ERASEBKGND (erase background) message. WndProc ignores this message also.
Windows processes it by erasing the background of the client area using the brush specified in the window class.

It's always a good idea to clean up before termination, so during processing of the WM_DESTROY message,
DeleteObject is called once more:

DeleteObject ((HBRUSH)
 SetClassLong (hwnd, GCL_HBRBACKGROUND,
 (LONG) GetStockObject (WHITE_BRUSH))) ;

Coloring the Scroll Bars and Static Text

In COLORS1, the interiors of the three scroll bars and the text in the six text fields are colored red, green, and
blue. The coloring of the scroll bars is accomplished by processing WM_CTLCOLORSCROLLBAR messages.

In WndProc we define a static array of three handles to brushes:

static HBRUSH hBrush [3] ;

During processing of WM_CREATE, we create the three brushes:

for (I = 0 ; I < 3 ; I++)
 hBrush[0] = CreateSolidBrush (crPrim [I]) ;

where the crPrim array contains the RGB values of the three primary colors. During the
WM_CTLCOLORSCROLLBAR processing, the window procedure returns one of these three brushes:

case WM_CTLCOLORSCROLLBAR:
 i = GetWindowLong ((HWND) lParam, GWL_ID) ;
 return (LRESULT) hBrush [i] ;

These brushes must be destroyed during processing of the WM_DESTROY message:

for (i = 0 ; i < 3 ; i++)
 DeleteObject (hBrush [i])) ;

The text in the static text fields is colored similarly by processing the WM_CTLCOLORSTATIC message and calling
SetTextColor . The text background is set using SetBkColor with the system color COLOR_BTNHIGHLIGHT. This
causes the text background to be the same color as the static rectangle control behind the scrollbars and text
displays. For static text controls, this text background color applies only to the rectangle behind each character in
the string and not to the entire width of the control window. To accomplish this, the window procedure must also
return a handle to a brush of the COLOR_BTNHIGHLIGHT color. This brush is named hBrushStatic ; it is created
during the WM_CREATE message and destroyed during the WM_DESTROY message.

By creating a brush based on the COLOR_BTNHIGHLIGHT color during the WM_CREATE message and using it
through the duration of the program, we've exposed ourselves to a little problem. If the COLOR_BTNHIGHLIGHT
color is changed while the program is running, the color of the static rectangle will change and the text
background color will change but the whole background of the text window controls will remain the old
COLOR_BTNHIGHLIGHT color.

To fix this problem, COLORS1 also processes the WM_SYSCOLORCHANGE message by simply recreating
hBrushStatic using the new color.

The Edit Class

The edit class is in some ways the simplest predefined window class and in other ways the most complex. When
you create a child window using the class name "edit," you define a rectangle based on the x position, y position,
width, and height parameters of the CreateWindow call. This rectangle contains editable text. When the child
window control has the input focus, you can type text, move the cursor, select portions of text using either the
mouse or the Shift key and a cursor key, delete selected text to the clipboard by pressing Ctrl-X, copy text by
pressing Ctrl-C, and insert text from the clipboard by pressing Ctrl-V.

One of the simplest uses of edit controls is for single-line entry fields. But edit controls are not limited to single
lines, as I'll demonstrate in the POPPAD1 program shown in Figure 9-7. As we encounter various other topics in
this book, the POPPAD program will be enhanced to use menus, dialog boxes (to load and save files), and printing.
The final version will be a simple but complete text editor with surprisingly little overhead required in our code.

Figure 9-7. The POPPAD1 program.

POPPAD1.C

/*--
 POPPAD1.C -- Popup Editor using child window edit box
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define ID_EDIT 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

TCHAR szAppName[] = TEXT ("PopPad1") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),

 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szAppName,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndEdit ;

 switch (message)
 {
 case WM_CREATE :
 hwndEdit = CreateWindow (TEXT ("edit"), NULL,
 WS_CHILD | WS_VISIBLE | WS_HSCROLL | WS_VSCROLL |
 WS_BORDER | ES_LEFT | ES_MULTILINE |
 ES_AUTOHSCROLL | ES_AUTOVSCROLL,
 0, 0, 0, 0, hwnd, (HMENU) ID_EDIT,
 ((LPCREATESTRUCT) lParam) -> hInstance, NULL) ;
 return 0 ;

 case WM_SETFOCUS :
 SetFocus (hwndEdit) ;
 return 0 ;

 case WM_SIZE :
 MoveWindow (hwndEdit, 0, 0, LOWORD (lParam), HIWORD (lParam), TRUE) ;
 return 0 ;

 case WM_COMMAND :
 if (LOWORD (wParam) == ID_EDIT)
 if (HIWORD (wParam) == EN_ERRSPACE ||
 HIWORD (wParam) == EN_MAXTEXT)
 MessageBox (hwnd, TEXT ("Edit control out of space."),
 szAppName, MB_OK | MB_ICONSTOP) ;
 return 0 ;

 case WM_DESTROY :

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

POPPAD1 is a multiline editor (without any file I/O just yet) in less than 100 lines of C. (One drawback, however,
is that the predefined multiline edit control is limited to 30,000 characters of text.) As you can see, POPPAD1 itself
doesn't do very much. The predefined edit control is doing quite a lot. In this form, the program lets you explore
what edit controls can do without any help from a program.

The Edit Class Styles

As noted earlier, you create an edit control using "edit" as the window class in the CreateWindow call. The window
style is WS_CHILD, plus several options. As in static child window controls, the text in edit controls can be left-
justified, right-justified, or centered. You specify this formatting with the window styles ES_LEFT, ES_RIGHT, and
ES_CENTER.

By default, an edit control has a single line. You can create a multiline edit control with the window style
ES_MULTILINE. For a single-line edit control, you can normally enter text only to the end of the edit control
rectangle. To create an edit control that automatically scrolls horizontally, you use the style ES_AUTOHSCROLL.
For a multiline edit control, text wordwraps unless you use the ES_AUTOHSCROLL style, in which case you must
press the Enter key to start a new line. You can also include vertical scrolling in a multiline edit control by using
the style ES_AUTOVSCROLL.

When you include these scrolling styles in multiline edit controls, you might also want to add scroll bars to the edit
control. You do so by using the same window style identifiers as for nonchild windows: WS_HSCROLL and
WS_VSCROLL. By default, an edit control does not have a border. You can add one by using the style
WS_BORDER.

When you select text in an edit control, Windows displays it in reverse video. When the edit control loses the input
focus, however, the selected text is no longer highlighted. If you want the selection to be highlighted even when
the edit control does not have the input focus, you can use the style ES_NOHIDESEL.

When POPPAD1 creates its edit control, the style is given in the CreateWindow call:

WS_CHILD ¦ WS_VISIBLE ¦ WS_HSCROLL ¦ WS_VSCROLL ¦
 WS_BORDER ¦ ES_LEFT ¦ ES_MULTILINE ¦
 ES_AUTOHSCROLL ¦ ES_AUTOVSCROLL

In POPPAD1, the dimensions of the edit control are later defined by a call to MoveWindow when WndProc receives
a WM_SIZE message. The size of the edit control is simply set to the size of the main window:

MoveWindow (hwndEdit, 0, 0, LOWORD (lParam),
 HIWORD (lParam), TRUE) ;

For a single-line edit control, the height of the control must accommodate the height of a character. If the edit
control has a border (as most do), use 1.5 times the height of a character (including external leading).

Edit Control Notification

Edit controls send WM_COMMAND messages to the parent window procedure. The meanings of the wParam and
lParam variables are the same as for button controls:

LOWORD (wParam)
Child window ID
HIWORD (wParam)
Notification code
lParam
Child window handle

The notification codes are shown below:

EN_SETFOCUS
Edit control has gained the input focus.
EN_KILLFOCUS
Edit control has lost the input focus.
EN_CHANGE
Edit control's contents will change.
EN_UPDATE
Edit control's contents have changed.
EN_ERRSPACE
Edit control has run out of space.
EN_MAXTEXT
Edit control has run out of space on insertion.
EN_HSCROLL
Edit control's horizontal scroll bar has been clicked.
EN_VSCROLL
Edit control's vertical scroll bar has been clicked.

POPPAD1 traps only EN_ERRSPACE and EN_MAXTEXT notification codes and displays a message box in response.

Using the Edit Controls

If you use several single-line edit controls on the surface of your main window, you'll need to use window
subclassing to move the input focus from one control to another. You can accomplish this much as COLORS1 does,
by intercepting Tab and Shift-Tab keystrokes. (Another example of window subclassing is shown later in this
chapter in the HEAD program.) How you handle the Enter key is up to you. You can use it the same way as the
Tab key or as a signal to your program that all the edit fields are ready.

If you want to insert text into an edit field, you can do so by using SetWindowText . Getting text out of an edit
control involves GetWindowTextLength and GetWindowText . We'll see examples of these facilities in our later
revisions to the POPPAD program.

Messages to an Edit Control

I won't cover all the messages you can send to an edit control using SendMessage because there are quite a few
of them, and several will be used in the later POPPAD revisions. Here's a broad overview.

These messages let you cut, copy, or clear the current selection. A user selects the text to be acted upon by using
the mouse or the Shift key and a cursor key, thereby highlighting the selected text in the edit control:

SendMessage (hwndEdit, WM_CUT, 0, 0) ;
SendMessage (hwndEdit, WM_COPY, 0, 0) ;
SendMessage (hwndEdit, WM_CLEAR, 0, 0) ;

WM_CUT removes the current selection from the edit control and sends it to the clipboard. WM_COPY copies the
selection to the clipboard but leaves it intact in the edit control. WM_CLEAR deletes the selection from the edit
control without passing it to the clipboard.

You can also insert clipboard text into the edit control at the cursor position:

SendMessage (hwndEdit, WM_PASTE, 0, 0) ;

You can obtain the starting and ending positions of the current selection:

SendMessage (hwndEdit, EM_GETSEL, (WPARAM) &iStart,
 (LPARAM) &iEnd) ;

The ending position is actually the position of the last selected character plus 1.

You can select text:

SendMessage (hwndEdit, EM_SETSEL, iStart, iEnd) ;

You can also replace a current selection with other text:

SendMessage (hwndEdit, EM_REPLACESEL, 0, (LPARAM) szString) ;

For multiline edit controls, you can obtain the number of lines:

iCount = SendMessage (hwndEdit, EM_GETLINECOUNT, 0, 0) ;

For any particular line, you can obtain an offset from the beginning of the edit buffer text:

iOffset = SendMessage (hwndEdit, EM_LINEINDEX, iLine, 0) ;

Lines are numbered starting at 0. An iLine value of -1 returns the offset of the line containing the cursor. You
obtain the length of the line from

iLength = SendMessage (hwndEdit, EM_LINELENGTH, iLine, 0) ;

and copy the line itself into a buffer using

iLength = SendMessage (hwndEdit, EM_GETLINE, iLine, (LPARAM) szBuffer) ;

The Listbox Class

The final predefined child window control I'll discuss in this chapter is the list box. A list box is a collection of text
strings displayed as a scrollable columnar list within a rectangle. A program can add or remove strings in the list
by sending messages to the list box window procedure. The list box control sends WM_COMMAND messages to its
parent window when an item in the list is selected. The parent window can then determine which item has been
selected.

A list box can be either single selection or multiple selection. The latter allows the user to select more than one
item from the list box. When a list box has the input focus, it displays a dashed line surrounding an item in the list
box. This cursor does not indicate the selected item in the list box. The selected item is indicated by highlighting,
which displays the item in reverse video.

In a single-selection list box, the user can select the item that the cursor is positioned on by pressing the
Spacebar. The arrow keys move both the cursor and the current selection and can scroll the contents of the list
box. The Page Up and Page Down keys also scroll the list box by moving the cursor but not the selection. Pressing
a letter key moves the cursor and the selection to the first (or next) item that begins with that letter. An item can
also be selected by clicking or double-clicking the mouse on the item.

In a multiple-selection list box, the Spacebar toggles the selection state of the item where the cursor is positioned.
(If the item is already selected, it is deselected.) The arrow keys deselect all previously selected items and move
the cursor and selection, just as in single-selection list boxes. However, the Ctrl key and the arrow keys can move
the cursor without moving the selection. The Shift key and arrow keys can extend a selection.

Clicking or double-clicking an item in a multiple-selection list box deselects all previously selected items and
selects the clicked item. However, clicking an item while pressing the Shift key toggles the selection state of the
item without changing the selection state of any other item.

List Box Styles

You create a list box child window control with CreateWindow using "listbox" as the window class and WS_CHILD
as the window style. However, this default list box style does not send WM_COMMAND messages to its parent,
meaning that a program would have to interrogate the list box (via messages to the list box controls) regarding
the selection of items within the list box. Therefore, list box controls almost always include the list box style
identifier LBS_NOTIFY, which allows the parent window to receive WM_COMMAND messages from the list box. If
you want the list box control to sort the items in the list box, you can also use LBS_SORT, another common style.

By default, list boxes are single selection. Multiple-selection list boxes are relatively rare. If you want to create
one, you use the style LBS_MULTIPLESEL. Normally, a list box updates itself when a new item is added to the
scroll box list. You can prevent this by including the style LBS_NOREDRAW. You will probably not want to use this
style, however. Instead, you can temporarily prevent the repainting of a list box control by using the
WM_SETREDRAW message that I'll describe a little later.

By default, the list box window procedure displays only the list of items without any border around it. You can add
a border with the window style identifier WS_BORDER. And to add a vertical scroll bar for scrolling through the list
with the mouse, you use the window style identifier WS_VSCROLL.

The Windows header files define a list box style called LBS_STANDARD that includes the most commonly used
styles. It is defined as

(LBS_NOTIFY ¦ LBS_SORT ¦ WS_VSCROLL ¦ WS_BORDER)

You can also use the WS_SIZEBOX and WS_CAPTION identifiers, but these will allow the user to resize the list box
and to move it around its parent's client area.

The width of a list box should accommodate the width of the longest string plus the width of the scroll bar. You
can get the width of the vertical scroll bar using

GetSystemMetrics (SM_CXVSCROLL) ;

You can calculate the height of the list box by multiplying the height of a character by the number of items you
want to appear in view.

Putting Strings in the List Box

After you've created the list box, the next step is to put text strings in it. You do this by sending messages to the
list box window procedure using the SendMessage call. The text strings are generally referenced by an index
number that starts at 0 for the topmost item. In the examples that follow, hwndList is the handle to the child
window list box control, and iIndex is the index value. In cases where you pass a text string in the SendMessage
call, the lParam parameter is a pointer to a null-terminated string.

In most of these examples, the SendMessage call can return LB_ERRSPACE (defined as -2) if the window
procedure runs out of available memory space to store the contents of the list box. SendMessage returns LB_ERR
(-1) if an error occurs for other reasons and LB_OKAY (0) if the operation is successful. You can test SendMessage
for a nonzero value to detect either of the two errors.

If you use the LBS_SORT style (or if you are placing strings in the list box in the order that you want them to
appear), the easiest way to fill up a list box is with the LB_ADDSTRING message:

SendMessage (hwndList, LB_ADDSTRING, 0, (LPARAM) szString) ;

If you do not use LBS_SORT, you can insert strings into your list box by specifying an index value with
LB_INSERTSTRING:

SendMessage (hwndList, LB_INSERTSTRING, iIndex, (LPARAM) szString) ;

For instance, if iIndex is equal to 4, szString becomes the new string with an index value of 4—the fifth string from
the top because counting starts at 0. Any strings below this point are pushed down. An iIndex value of -1 adds the
string to the bottom. You can use LB_INSERTSTRING with list boxes that have the LBS_SORT style, but the list
box contents will not be re-sorted. (You can also insert strings into a list box using the LB_DIR message, a topic I
discuss in detail toward the end of this chapter.)

You can delete a string from the list box by specifying the index value with the LB_DELETESTRING message:

SendMessage (hwndList, LB_DELETESTRING, iIndex, 0) ;

You can clear out the list box by using LB_RESETCONTENT:

SendMessage (hwndList, LB_RESETCONTENT, 0, 0) ;

The list box window procedure updates the display when an item is added to or deleted from the list box. If you
have a number of strings to add or delete, you may want to temporarily inhibit this action by turning off the
control's redraw flag:

SendMessage (hwndList, WM_SETREDRAW, FALSE, 0) ;

After you've finished, you can turn the redraw flag back on:

SendMessage (hwndList, WM_SETREDRAW, TRUE, 0) ;

A list box created with the LBS_NOREDRAW style begins with the redraw flag turned off.

Selecting and Extracting Entries

The SendMessage calls that carry out the tasks shown below usually return a value. If an error occurs, this value is
set to LB_ERR (defined as -1).

After you've put some items into a list box, you can find out how many items are in the list box:

iCount = SendMessage (hwndList, LB_GETCOUNT, 0, 0) ;

Some of the other calls are different for single-selection and multiple-selection list boxes. Let's first look at single-
selection list boxes.

Normally, you'll let a user select from a list box. But if you want to highlight a default selection, you can use

SendMessage (hwndList, LB_SETCURSEL, iIndex, 0) ;

Setting iParam to -1 in this call deselects all items.

You can also select an item based on its initial characters:

iIndex = SendMessage (hwndList, LB_SELECTSTRING, iIndex,
 (LPARAM) szSearchString) ;

The iIndex given as the iParam parameter to the SendMessage call is the index following which the search begins
for an item with initial characters that match szSearchString . An iIndex value of -1 starts the search from the top.
SendMessage returns the index of the selected item, or LB_ERR if no initial characters match szSearchString .

When you get a WM_COMMAND message from the list box (or at any other time), you can determine the index of
the current selection using LB_GETCURSEL:

iIndex = SendMessage (hwndList, LB_GETCURSEL, 0, 0) ;

The iIndex value returned from the call is LB_ERR if no item is selected.

You can determine the length of any string in the list box:

iLength = SendMessage (hwndList, LB_GETTEXTLEN, iIndex, 0) ;

and copy the item into the text buffer:

iLength = SendMessage (hwndList, LB_GETTEXT, iIndex,
 (LPARAM) szBuffer) ;

In both cases, the iLength value returned from the call is the length of the string. The szBuffer array must be large
enough for the length of the string and a terminating NULL. You may want to use LB_GETTEXTLEN to first allocate
some memory to hold the string.

For a multiple-selection list box, you cannot use LB_SETCURSEL, LB_GETCURSEL, or LB_SELECTSTRING. Instead,
you use LB_SETSEL to set the selection state of a particular item without affecting other items that might also be
selected:

SendMessage (hwndList, LB_SETSEL, wParam, iIndex) ;

The wParam parameter is nonzero to select and highlight the item and 0 to deselect it. If the lParam parameter is
-1, all items are either selected or deselected. You can also determine the selection state of a particular item using

iSelect = SendMessage (hwndList, LB_GETSEL, iIndex, 0) ;

where iSelect is set to nonzero if the item indexed by iIndex is selected and 0 if it is not.

Receiving Messages from List Boxes

When a user clicks on a list box with the mouse, the list box receives the input focus. A parent window can give
the input focus to a list box control by using

SetFocus (hwndList) ;

When a list box has the input focus, the cursor movement keys, letter keys, and Spacebar can also be used to
select items from the list box.

A list box control sends WM_COMMAND messages to its parent. The meanings of the wParam and lParam variables
are the same as for the button and edit controls:

LOWORD (wParam)
Child window ID
HIWORD (wParam)
Notification code
lParam
Child window handle

The notification codes and their values are as follows:

LBN_ERRSPACE
-2

LBN_SELCHANGE
1
LBN_DBLCLK
2
LBN_SELCANCEL
3
LBN_SETFOCUS
4
LBN_KILLFOCUS
5

The list box control sends the parent window LBN_SELCHANGE and LBN_DBLCLK codes only if the list box window
style includes LBS_NOTIFY.

The LBN_ERRSPACE code indicates that the list box control has run out of space. The LBN_SELCHANGE code
indicates that the current selection has changed; these messages occur as the user moves the highlight through
the list box, toggles the selection state with the Spacebar, or clicks an item with the mouse. The LBN_DBLCLK
code indicates that a list box item has been double-clicked with the mouse. (The notification code values for
LBN_SELCHANGE and LBN_DBLCLK refer to the number of mouse clicks.)

Depending on your application, you may want to use either LBN_SELCHANGE or LBN_DBLCLK messages or both.
Your program will get many LBN_SELCHANGE messages, but LBN_DBLCLK messages occur only when the user
double-clicks with the mouse. If your program uses double-clicks, you'll need to provide a keyboard interface that
duplicates LBN_DBLCLK.

A Simple List Box Application

Now that you know how to create a list box, fill it with text items, receive messages from the list box, and extract
strings, it's time to program an application. The ENVIRON program, shown in Figure 9-8, uses a list box in its
client area to display the name of your current operating system environment variables (such as PATH and
WINDIR). As you select an environment variable, the environment string is displayed across the top of the client
area.

Figure 9-8. The ENVIRON program.

ENVIRON.C

/*--
 ENVIRON.C -- Environment List Box
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define ID_LIST 1
#define ID_TEXT 2

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Environ") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Environment List Box"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void FillListBox (HWND hwndList)
{
 int iLength ;
 TCHAR * pVarBlock, * pVarBeg, * pVarEnd, * pVarName ;

 pVarBlock = GetEnvironmentStrings () ; // Get pointer to environment block

 while (*pVarBlock)
 {
 if (*pVarBlock != `=`) // Skip variable names beginning with `=`
 {
 pVarBeg = pVarBlock ; // Beginning of variable name
 while (*pVarBlock++ != `=`) ; // Scan until `=`
 pVarEnd = pVarBlock - 1 ; // Points to `=` sign
 iLength = pVarEnd - pVarBeg ; // Length of variable name

 // Allocate memory for the variable name and terminating
 // zero. Copy the variable name and append a zero.

 pVarName = calloc (iLength + 1, sizeof (TCHAR)) ;
 CopyMemory (pVarName, pVarBeg, iLength * sizeof (TCHAR)) ;
 pVarName[iLength] = `\0' ;

 // Put the variable name in the list box and free memory.
 SendMessage (hwndList, LB_ADDSTRING, 0, (LPARAM) pVarName) ;
 free (pVarName) ;
 }
 while (*pVarBlock++ != `\0') ; // Scan until terminating zero
 }
 FreeEnvironmentStrings (pVarBlock) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndList, hwndText ;
 int iIndex, iLength, cxChar, cyChar ;
 TCHAR * pVarName, * pVarValue ;

 switch (message)
 {
 case WM_CREATE :
 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 // Create listbox and static text windows.

 hwndList = CreateWindow (TEXT ("listbox"), NULL,
 WS_CHILD | WS_VISIBLE | LBS_STANDARD,
 cxChar, cyChar * 3,
 cxChar * 16 + GetSystemMetrics (SM_CXVSCROLL),
 cyChar * 5,
 hwnd, (HMENU) ID_LIST,
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),
 NULL) ;

 hwndText = CreateWindow (TEXT ("static"), NULL,
 WS_CHILD | WS_VISIBLE | SS_LEFT,
 cxChar, cyChar,
 GetSystemMetrics (SM_CXSCREEN), cyChar,
 hwnd, (HMENU) ID_TEXT,
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),
 NULL) ;

 FillListBox (hwndList) ;
 return 0 ;

 case WM_SETFOCUS :
 SetFocus (hwndList) ;
 return 0 ;
 case WM_COMMAND :
 if (LOWORD (wParam) == ID_LIST && HIWORD (wParam) == LBN_SELCHANGE)

 {
 // Get current selection.

 iIndex = SendMessage (hwndList, LB_GETCURSEL, 0, 0) ;
 iLength = SendMessage (hwndList, LB_GETTEXTLEN, iIndex, 0) + 1 ;
 pVarName = calloc (iLength, sizeof (TCHAR)) ;
 SendMessage (hwndList, LB_GETTEXT, iIndex, (LPARAM) pVarName) ;

 // Get environment string.

 iLength = GetEnvironmentVariable (pVarName, NULL, 0) ;
 pVarValue = calloc (iLength, sizeof (TCHAR)) ;
 GetEnvironmentVariable (pVarName, pVarValue, iLength) ;

 // Show it in window.

 SetWindowText (hwndText, pVarValue) ;
 free (pVarName) ;
 free (pVarValue) ;
 }
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

ENVIRON creates two child windows: a list box with the style LBS_STANDARD and a static window with the style
SS_LEFT (left-justified text). ENVIRON uses the GetEnvironmentStrings function to obtain a pointer to a memory
block containing all the environment variable names and values. ENVIRON parses through this block in its
FillListBox function, using the message LB_ADDSTRING to direct the list box window procedure to place each
string in the list box.

When you run ENVIRON, you can select an environment variable using the mouse or the keyboard. Each time you
change the selection, the list box sends a WM_COMMAND message to the parent window, which is WndProc .
When WndProc receives a WM_COMMAND message, it checks to see whether the low word of wParam is ID_LIST
(the child ID of the list box) and whether the high word of wParam (the notification code) is equal to
LBN_SELCHANGE. If so, it obtains the index of the selection using the LB_GETCURSEL message and the text
itself—the environment variable name—using LB_GETTEXT. The ENVIRON program uses the C function
GetEnvironmentVariable to obtain the environment string corresponding to that variable and SetWindowText to
pass this string to the static child window control, which displays the text.

Listing Files

I've been saving the best for last: LB_DIR, the most powerful list box message. This function call fills the list box
with a file directory list, optionally including subdirectories and valid disk drives:

SendMessage (hwndList, LB_DIR, iAttr, (LPARAM) szFileSpec) ;

Using file attribute codes

The iAttr parameter is a file attribute code. The least significant byte is a file attribute code that can be a
combination of the values in the following table.

iAttr
Value
Attribute
DDL_READWRITE
0x0000
Normal file
DDL_READONLY
0x0001
Read-only file
DDL_HIDDEN
0x0002
Hidden file
DDL_SYSTEM
0x0004
System file
DDL_DIRECTORY
0x0010
Subdirectory
DDL_ARCHIVE
0x0020
File with archive bit set

The next highest byte provides some additional control over the items desired:

iAttr
Value
Option
DDL_DRIVES
0x4000
Include drive letters
DDL_EXCLUSIVE
0x8000
Exclusive search only

The DDL prefix stands for "dialog directory list."

When the iAttr value of the LB_DIR message is DDL_READWRITE, the list box lists normal files, read-only files,
and files with the archive bit set. When the value is DDL_DIRECTORY, the list includes child subdirectories in
addition to these files with the directory names in square brackets. A value of DDL_DRIVES | DDL_DIRECTORY
expands the list to include all valid drives where the drive letters are shown between dashes.

Setting the topmost bit of iAttr lists the files with the indicated flag while excluding normal files. For a Windows file
backup program, for instance, you might want to list only files that have been modified since the last backup.
Such files have their archive bits set, so you would use DDL_EXCLUSIVE | DDL_ARCHIVE.

Ordering file lists

The lParam parameter is a pointer to a file specification string such as "*.*". This file specification does not affect
the subdirectories that the list box includes.

You'll want to use the LBS_SORT message for list boxes with file lists. The list box will first list files satisfying the
file specification and then (optionally) list subdirectory names. The first subdirectory listing will take this form:

[..]

This "double-dot" subdirectory entry lets the user back up one level toward the root directory. (The entry will not
appear if you're listing files in the root directory.) Finally, the specific subdirectory names are listed in this form:

[SUBDIR]

These are followed (also optionally) by a list of valid disk drives in the form

[-A-]

A head for Windows

A well-known UNIX utility named head displays the beginning lines of a file. Let's use a list box to write a similar
program for Windows. HEAD, shown in Figure 9-9, lists all files and child subdirectories in the list box. It allows
you to choose a file to display by double-clicking on the filename with the mouse or by pressing the Enter key
when the filename is selected. You can also change the subdirectory using either of these methods. The program
displays up to 8 KB of the beginning of the file in the right side of the client area of HEAD's window.

Figure 9-9. The HEAD program.

HEAD.C

/*--
 HEAD.C -- Displays beginning (head) of file
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define ID_LIST 1
#define ID_TEXT 2

#define MAXREAD 8192
#define DIRATTR (DDL_READWRITE | DDL_READONLY | DDL_HIDDEN | DDL_SYSTEM | \
 DDL_DIRECTORY | DDL_ARCHIVE | DDL_DRIVES)
#define DTFLAGS (DT_WORDBREAK | DT_EXPANDTABS | DT_NOCLIP | DT_NOPREFIX)
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK ListProc (HWND, UINT, WPARAM, LPARAM) ;

WNDPROC OldList ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("head") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("head"),
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bValidFile ;
 static BYTE buffer[MAXREAD] ;
 static HWND hwndList, hwndText ;
 static RECT rect ;
 static TCHAR szFile[MAX_PATH + 1] ;
 HANDLE hFile ;
 HDC hdc ;
 int i, cxChar, cyChar ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer[MAX_PATH + 1] ;

 switch (message)
 {
 case WM_CREATE :
 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 rect.left = 20 * cxChar ;
 rect.top = 3 * cyChar ;

 hwndList = CreateWindow (TEXT ("listbox"), NULL,
 WS_CHILDWINDOW | WS_VISIBLE | LBS_STANDARD,
 cxChar, cyChar * 3,
 cxChar * 13 + GetSystemMetrics (SM_CXVSCROLL),
 cyChar * 10,
 hwnd, (HMENU) ID_LIST,
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),

 NULL) ;

 GetCurrentDirectory (MAX_PATH + 1, szBuffer) ;

 hwndText = CreateWindow (TEXT ("static"), szBuffer,
 WS_CHILDWINDOW | WS_VISIBLE | SS_LEFT,
 cxChar, cyChar, cxChar * MAX_PATH, cyChar,
 hwnd, (HMENU) ID_TEXT,
 (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE),
 NULL) ;

 OldList = (WNDPROC) SetWindowLong (hwndList, GWL_WNDPROC,
 (LPARAM) ListProc) ;

 SendMessage (hwndList, LB_DIR, DIRATTR, (LPARAM) TEXT ("*.*")) ;
 return 0 ;

 case WM_SIZE :
 rect.right = LOWORD (lParam) ;
 rect.bottom = HIWORD (lParam) ;
 return 0 ;

 case WM_SETFOCUS :
 SetFocus (hwndList) ;
 return 0 ;

 case WM_COMMAND :
 if (LOWORD (wParam) == ID_LIST && HIWORD (wParam) == LBN_DBLCLK)
 {

 if (LB_ERR == (i = SendMessage (hwndList, LB_GETCURSEL, 0, 0)))
 break ;

 SendMessage (hwndList, LB_GETTEXT, i, (LPARAM) szBuffer) ;

 if (INVALID_HANDLE_VALUE != (hFile = CreateFile (szBuffer,
 GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, 0, NULL)))

 {
 CloseHandle (hFile) ;
 bValidFile = TRUE ;
 lstrcpy (szFile, szBuffer) ;
 GetCurrentDirectory (MAX_PATH + 1, szBuffer) ;

 if (szBuffer [lstrlen (szBuffer) - 1] != `\\')
 lstrcat (szBuffer, TEXT ("\\")) ;
 SetWindowText (hwndText, lstrcat (szBuffer, szFile)) ;
 }
 else
 {
 bValidFile = FALSE ;
 szBuffer [lstrlen (szBuffer) - 1] = `\0' ;

 // If setting the directory doesn't work, maybe it's
 // a drive change, so try that.

 if (!SetCurrentDirectory (szBuffer + 1))
 {
 szBuffer [3] = `:' ;
 szBuffer [4] = `\0' ;
 SetCurrentDirectory (szBuffer + 2) ;
 }

 // Get the new directory name and fill the list box.

 GetCurrentDirectory (MAX_PATH + 1, szBuffer) ;
 SetWindowText (hwndText, szBuffer) ;
 SendMessage (hwndList, LB_RESETCONTENT, 0, 0) ;
 SendMessage (hwndList, LB_DIR, DIRATTR,
 (LPARAM) TEXT ("*.*")) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_PAINT :
 if (!bValidFile)
 break ;

 if (INVALID_HANDLE_VALUE == (hFile = CreateFile (szFile,
 GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL)))
 {
 bValidFile = FALSE ;
 break ;
 }

 ReadFile (hFile, buffer, MAXREAD, &i, NULL) ;
 CloseHandle (hFile) ;

 // i now equals the number of bytes in buffer.
 // Commence getting a device context for displaying text.

 hdc = BeginPaint (hwnd, &ps) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 SetTextColor (hdc, GetSysColor (COLOR_BTNTEXT)) ;
 SetBkColor (hdc, GetSysColor (COLOR_BTNFACE)) ;

 // Assume the file is ASCII

 DrawTextA (hdc, buffer, i, &rect, DTFLAGS) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

LRESULT CALLBACK ListProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 if (message == WM_KEYDOWN && wParam == VK_RETURN)
 SendMessage (GetParent (hwnd), WM_COMMAND,
 MAKELONG (1, LBN_DBLCLK), (LPARAM) hwnd) ;

 return CallWindowProc (OldList, hwnd, message, wParam, lParam) ;
}

In ENVIRON, when we selected an environment variable—either with a mouse click or with the keyboard—the
program displayed an environment string. If we used this select-display approach in HEAD, however, the program
would be too slow because it would continually need to open and close files as you moved the selection through
the list box. Instead, HEAD requires that the file or subdirectory be double-clicked. This presents a bit of a
problem because list box controls have no automatic keyboard interface that corresponds to a mouse double-click.
As we know, we should provide keyboard interfaces when possible.

The solution? Window subclassing, of course. The list box subclass function in HEAD is named ListProc . It simply
looks for a WM_KEYDOWN message with wParam equal to VK_RETURN and sends a WM_COMMAND message with
an LBN_DBLCLK notification code back to the parent. The WM_COMMAND processing in WndProc uses the
Windows function CreateFile to check for the selection from the list. If CreateFile returns an error, the selection is
not a file, so it's probably a subdirectory. HEAD then uses SetCurrentDirectory to change the subdirectory. If
SetCurrentDirectory doesn't work, the program assumes the user has selected a drive letter. Changing drives also
requires a call to SetCurrentDirectory , except the preliminary dash needs to be avoided and a colon needs to be
added. It sends an LB_RESETCONTENT message to the list box to clear out the contents and an LB_DIR message
to fill the list box with files from the new subdirectory.

The WM_PAINT message processing in WndProc opens the file using the Windows CreateFile function. This returns
a handle to the file that can be passed to the Windows functions ReadFile and CloseHandle .

And now, for the first time in this chapter, we encounter an issue involving Unicode. In a perfect world, perhaps,
text files would be recognized by the operating system so that ReadFile could convert an ASCII file into Unicode
text, or a Unicode file into ASCII text. But this is not the case. ReadFile just reads the bytes of the file without any
conversion. This means that DrawTextA (in an executable compiled without the UNICODE identifier defined) would
interpret the text as ASCII and DrawTextW (in the Unicode version) would assume the text is Unicode.

So what the program should really be doing is trying to figure out whether the file has ASCII text or Unicode text
and then calling DrawTextA or DrawTextW appropriately. Instead, HEAD takes a much simpler approach and uses
DrawTextA regardless.

Chapter 10

Menus and Other Resources

Most Microsoft Windows programs include a customized icon that Windows displays in the upper left corner of the
title bar of the application window. Windows also displays the program's icon when the program is listed in the
Start menu, shown in the taskbar at the bottom of the screen, listed in the Windows Explorer, or shown as a
shortcut on the desktop. Some programs—most notably graphical drawing tools such as Windows Paint—use
customized mouse cursors to represent different operations of the program. Many Windows programs use menus
and dialog boxes. Along with scroll bars, menus and dialog boxes are the bread and butter of the Windows user
interface.

Icons, cursors, menus, and dialog boxes are all related. They are all types of Windows "resources." Resources are
data and they are often stored in a program's .EXE file, but they do not reside in the executable program's data
area. In other words, the resources are not immediately addressable by variables in the program's code. Instead,
Windows provides functions that explicitly or implicitly load a program's resources into memory so that they can
be used. We've already encountered two of these functions. They are LoadIcon and LoadCursor, and they have
appeared in the sample programs in the assignment statements that define a program's window class structure.
So far, these functions have loaded a binary icon or cursor image from within Windows and returned a handle to
that icon or cursor. In this chapter, we'll begin by creating our own customized icons that are loaded from the
program's own .EXE file.

This book covers these resources:

Icons

Cursors

Character strings

Custom resources

Menus

Keyboard accelerators

Dialog boxes

Bitmaps

The first six resources in the list are discussed in this chapter. Dialog boxes are covered in Chapter 11 and bitmaps
in Chapter 14.

Icons, Cursors, Strings, and Custom Resources

One of the benefits of using resources is that many components of a program can be bound into the program's
.EXE file. Without the concept of resources, a binary file such as an icon image would probably have to reside in a
separate file that the .EXE would read into memory to use. Or the icon would have to be defined in the program as
an array of bytes (which might make it tough to visualize the actual icon image). As a resource, the icon is stored
in a separate editable file on the developer's computer but is bound into the .EXE file during the build process.

Adding an Icon to a Program

Adding resources to a program involves using some additional features of Visual C++ Developer Studio. In the
case of icons, you use the Image Editor (also called the Graphics Editor) to draw a picture of your icon. This image
is stored in an icon file with an extension .ICO. Developer Studio also generates a resource script (that is, a file
with the extension .RC, sometimes also called a resource definition file) that lists all the program's resources and a
header file (RESOURCE.H) that lets your program reference the resources.

So that you can see how these new files fit together, let's begin by creating a new project, called ICONDEMO. As
usual, in Developer Studio you pick New from the File menu, select the Projects tab, and choose Win32
Application. In the Project Name field, type ICONDEMO and click OK. At this point, Developer Studio creates five
files that it uses to maintain the workspace and the project. These include the text files ICONDEMO.DSW,
ICONDEMO.DSP, and ICONDEMO.MAK (assuming you've selected "Export makefile when saving project file" from
the Build tab of the Options dialog box displayed when you select Options from the Tools menu).

Now let's create a C source code file as usual. Select New from the File menu, select the Files tab, and click C++
Source File. In the File Name field, type ICONDEMO.C and click OK. At this point, Developer Studio has created an
empty ICONDEMO.C file. Type in the program shown in Figure 10-1, or pick the Insert menu and then the File As
Text option to copy in the source code from this book's companion CD-ROM.

Figure 10-1. The ICONDEMO program.

ICONDEMO.C

/*--
 ICONDEMO.C -- Icon Demonstration Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 TCHAR szAppName[] = TEXT ("IconDemo") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ICON)) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Icon Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HICON hIcon ;
 static int cxIcon, cyIcon, cxClient, cyClient ;
 HDC hdc ;
 HINSTANCE hInstance ;
 PAINTSTRUCT ps ;
 int x, y ;

 switch (message)
 {
 case WM_CREATE :
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
 hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ICON)) ;
 cxIcon = GetSystemMetrics (SM_CXICON) ;
 cyIcon = GetSystemMetrics (SM_CYICON) ;
 return 0 ;

 case WM_SIZE :
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT :

 hdc = BeginPaint (hwnd, &ps) ;

 for (y = 0 ; y < cyClient ; y += cyIcon)
 for (x = 0 ; x < cxClient ; x += cxIcon)
 DrawIcon (hdc, x, y, hIcon) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

If you try compiling this program, you'll get an error because the RESOURCE.H file referenced at the top of the
program does not yet exist. However, you do not create this RESOURCE.H file directly. Instead, you let Developer
Studio create it for you.

You do this by adding a resource script to the project. Select New from the File menu, select the Files tab, click
Resource Script, and type ICONDEMO in the File Name field. Click OK. At this time, Developer Studio creates two
new text files: ICONDEMO.RC, the resource script, and RESOURCE.H, a header file that will allow the C source
code file and the resource script to refer to the same defined identifiers. Don't try to edit these two files directly;
let Developer Studio maintain them for you. If you want to take a look at the resource script and RESOURCE.H
without any interference from Developer Studio, try loading them into Notepad. Don't change them there unless
you really know what you're doing. Also, keep in mind that Developer Studio will save new versions of these files
only when you explicitly direct it to or when it rebuilds the project.

The resource script is a text file. It contains text representations of those resources that can be expressed in text,
such as menus and dialog boxes. The resource script also contains references to binary files that contain nontext
resources, such as icons and customized mouse cursors.

Now that RESOURCE.H exists, you can try compiling ICONDEMO again. Now you get an error message indicating
that IDI_ICON is not defined. This identifier occurs first in the statement

wndclass.hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ICON)) ;

That statement in ICONDEMO has replaced this statement found in previous programs in this book:

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

It makes sense that we're changing this statement because we've been using a standard icon for our applications
and our goal here is to use a customized icon.

So let's create an icon. In the File View window of Developer Studio, you'll see two files listed now—ICONDEMO.C
and ICONDEMO.RC. When you click ICONDEMO.C, you can edit the source code. When you click ICONDEMO.RC,
you can add resources to that file or edit an existing resource. To add an icon, select Resource from the Insert
menu. Click the resource you want to add, which is Icon, and then click the New button.

You are now presented with a blank 32-pixel-by-32-pixel icon that is ready to be colored. You'll see a floating
toolbar with a collection of painting tools and a bunch of available colors. Be aware that the color toolbar includes
two options that are not exactly colors. These are sometimes referred to as "screen" and "inverse screen." When a
pixel is colored with "screen," it is actually transparent. Whatever surface the icon is displayed against will show

through. This allows you to create icons that appear to be nonrectangular.

Before you get too far, double-click the area surrounding the icon. You'll get an Icon Properties dialog box that
allows you to change the ID of the icon and its filename. Developer Studio will probably have set the ID to
IDI_ICON1. Change that to IDI_ICON since that's how ICONDEMO refers to the icon. (The IDI prefix stands for "id
for an icon.") Also, change the filename to ICONDEMO.ICO.

For now, I want you to select a distinctive color (such as red) and draw a large B (standing for "big") on this icon.
It doesn't have to be as neat as Figure 10-2.

Figure 10-2. The standard (32×32) ICONDEMO file as displayed in Developer Studio.

The program should now compile and run fine. Developer Studio has put a line in the ICONDEMO.RC resource
script that equates the icon file (ICONDEMO.ICO) with an identifier (IDI_ICON). The RESOURCE.H header file
contains a definition of the IDI_ICON identifier. (We'll take a look at this in more detail shortly.)

Developer Studio compiles resources by using the resource compiler RC.EXE. The text resource script is converted
into a binary form, which is a file with the extension .RES. This compiled resource file is then specified along with
.OBJ and .LIB files in the LINK step. This is how the resources are added to the final .EXE file.

When you run ICONDEMO, the program's icon is displayed in the upper left corner of the title bar and in the
taskbar. If you add the program to the Start Menu, or if you add a shortcut on your desktop, you'll see the icon
there as well.

ICONDEMO also displays the icon in its client area, repeated horizontally and vertically. Using the statement

hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ICON)) ;

the program obtains a handle to the icon. Using the statements

cxIcon = GetSystemMetrics (SM_CXICON) ;
cyIcon = GetSystemMetrics (SM_CYICON) ;

it obtains the size of the icon. The program can then display the icon with multiple calls to

DrawIcon (hdc, x, y, hIcon) ;

where x and y are the coordinates of where the upper left corner of the displayed icon is positioned.

With most video display adapters in current use, GetSystemMetrics with the SM_ CXICON and SM_CYICON indices
will report that the size of an icon is 32 by 32 pixels. This is the size of the icon that we created in the Developer
Studio. It is also the size of the icon as it appears on the desktop and the size of the icon displayed in the client
area of the ICONDEMO program. It is not , however, the size of the icon displayed in the program's title bar or in
the taskbar. That smaller icon size can be obtained from GetSystemMetrics with the SM_CXSMSIZE and
SM_CYSMSIZE indices. (The first "SM" means "system metrics"; the embedded "SM" means "small.") For most
display adapters in current use, the small icon size is 16 by 16 pixels.

This can be a problem. When Windows reduces a 32-by-32 icon to a 16-by-16 size, it must eliminate every other
row and column of pixels. For some complex icon images, this might cause distortions. For this reason, you should
probably create special 16-by-16 icons for images where shrinkage is undesirable. Above the icon image in
Developer Studio is a combo box labeled Device. To the right of that is a button. Pushing the button invokes a
New Icon Image dialog box. Select Small (16x16). Now you can draw another icon. For now, use an S (for "small")
as shown in Figure 10-3.

Figure 10-3. The small (16×16) ICONDEMO file as displayed in Developer Studio.

There's nothing else you need to do in the program. The second icon image is stored in the same ICONDEMO.ICO
file and referenced with the same INI_ICON identifier. Windows will now automatically use the smaller icon when
it's more appropriate, such as in the title bar and the taskbar. Windows uses the large image when displaying a
shortcut on the desktop and when the program calls DrawIcon to adorn its client area.

Now that we've mastered the practical stuff, let's take a closer look at what's going on under the hood.

Getting a Handle on Icons

If you take a look ICONDEMO.RC and RESOURCE.H, you'll see a bunch of stuff that Developer Studio generates to
help it maintain the files. However, when the resource script is compiled, only a few lines are important. These
critical excerpts from the ICONDEMO.RC and RESOURCE.H files are shown in Figure 10-4.

ICONDEMO.RC (excerpts)
//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Icon

IDI_ICON ICON DISCARDABLE "icondemo.ico"

RESOURCE.H (excerpts)
// Microsoft Developer Studio generated include file.
// Used by IconDemo.rc

#define IDI_ICON 101

Figure 10-4. Excerpts from the ICONDEMO.RC and RESOURCE.H files.

Figure 10-4 shows ICONDEMO.RC and RESOURCE.H files that look much like they would look if you were creating
them manually in a normal text editor, just as Windows programmers did in the old days way back in the 1980s.
The only real difference is the presence of AFXRES.H, which is a header file that includes many common identifiers
used by Developer Studio when creating machine-generated MFC projects. I will not make use of AFXRES.H in this
book.

This line in ICONDEMO.RC,

IDI_ICON ICON DISCARDABLE "icondemo.ico"

is a resource script ICON statement. The icon has a numeric identifier of IDI_ICON, which equals 101. The
DISCARDABLE keyword that Developer Studio adds indicates that Windows can discard the icon from memory, if
necessary, to obtain some additional space. The icon can always be reloaded later by Windows without any special
action by the program. The DISCARDABLE attribute is the default and doesn't need to be specified. Developer
Studio puts the filename in quotes just in case the name or a directory path contains spaces.

When the resource compiler stores the compiled resource in ICONDEMO.RES and the linker adds the resource to
ICONDEMO.EXE, the resource is identified by just a resource type, which is RT_ICON, and an identifier, which is
IDI_ICON or 101. A program can obtain a handle to this icon by calling the LoadIcon function:

hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ICON)) ;

Notice that ICONDEMO calls this function in two places—once when defining the window class and again in the
window procedure to obtain a handle to the icon for drawing. LoadIcon returns a value of type HICON, a handle to
an icon.

The first argument to LoadIcon is the instance handle that indicates what file the resource comes from. Using
hInstance means it comes from the program's own .EXE file. The second argument to LoadIcon is actually defined
as a pointer to a character string. As we'll see shortly, you can identify resources by character strings instead of
numeric identifiers. The macro MAKEINTRESOURCE ("make an integer into a resource string") makes a pointer out
of the number like so:

#define MAKEINTRESOURCE(i) (LPTSTR) ((DWORD) ((WORD) (i)))

The LoadIcon function knows that if the high word of the second argument is 0, then the low word is a numeric
identifier for the icon. The icon identifier must be a 16-bit value.

Sample programs presented earlier in this book use predefined icons:

LoadIcon (NULL, IDI_APPLICATION) ;

Windows knows that this is a predefined icon because the hInstance parameter is set to NULL. And
IDI_APPLICATION happens also to be defined in WINUSER.H in terms of MAKEINTRESOURCE:

#define IDI_APPLICATION MAKEINTRESOURCE(32512)

The second argument to LoadIcon raises an intriguing question: can the icon identifier be a character string? Yes,
and here's how: In the Developer Studio list of files for the ICONDEMO project, select IDONDEMO.RC. You'll see a

tree structure beginning at the top with IconDemo Resources, then the resource type Icon, and then the icon
IDI_ICON. If you right-click the icon identifier and select Properties from the menu, you can change the ID. In
fact, you can change it to a string by enclosing a name in quotation marks. This is the method I prefer for
specifying the names of resources and that I will use in general for the rest of this book.

I prefer using text names for icons (and some other resources) because the name can be the name of the
program. For example, suppose the program is named MYPROG. If you use the Icon Properties dialog box to
specify the ID of the icon as "MyProg" (with quotation marks), the resource script would contain the following
statement:

MYPROG ICON DISCARDABLE myprog.ico

However, there will be no #define statement in RESOURCE.H that will indicate MYPROG as a numeric identifier.
The resource script will instead assume that MYPROG is a string identifier.

In your C program, you use the LoadIcon function to obtain a handle to the icon. Recall that you already probably
have a string variable indicating the name of the program:

static TCHAR szAppName [] = TEXT ("MyProg") ;

This means that the program can load the icon using the statement

hIcon = LoadIcon (hInstance, szAppName) ;

which looks a whole lot cleaner than the MAKEINTRESOURCE macro.

But if you really prefer numbers to names, you can use them instead of identifiers or strings. In the Icon
Properties dialog, enter a number in the ID field. The resource script will have an ICON statement that looks
something like this:

125 ICON DISCARDABLE myprog.ico

You can reference the icon using one of two methods. The obvious one is this:

hIcon = LoadIcon (hInstance, MAKEINTRESOURCE (125)) ;

The obscure method is this:

hIcon = LoadIcon (hInstance, TEXT ("#125")) ;

Windows recognizes the initial # character as prefacing a number in ASCII form.

Using Icons in Your Program

Although Windows uses icons in several ways to denote a program, many Windows programs specify an icon only
when defining the window class with the WNDCLASS structure and RegisterClass . As we've seen, this works well,
particularly when the icon file contains both standard and small image sizes. Windows will choose the best image
size in the icon file whenever it needs to display the icon image.

There is an enhanced version of RegisterClass named RegisterClassEx that uses a structure named WNDCLASSEX.
WNDCLASSEX has two additional fields: cbSize and hIconSm . The cbSize field indicates the size of the
WNDCLASSEX structure, and hIconSm is supposed to be set to the icon handle of the small icon. Thus, in the
WNDCLASSEX structure you set two icon handles associated with two icon files—one for a standard icon and one
for the small icon.

Is this necessary? Well, no. As we've seen, Windows already extracts the correctly sized icon images from a single
icon file. And RegisterClassEx seems to have lost the intelligence of RegisterClass . If the hIconSm field references
an icon file that contains multiple images, only the first image will be used. This might be a standard size icon that
is then reduced in size. RegisterClassEx seems to have been designed for using multiple icon images, each of
which contains only one icon size. Because we can now include multiple icon sizes in the same file, my advice is to
use WNDCLASS and RegisterClass .

If you later want to dynamically change the program's icon while the program is running, you can do so using
SetClassLong . For example, if you have a second icon file associated with the identifier IDI_ALTICON, you can
switch to that icon using the statement

SetClassLong (hwnd, GCL_HICON,
 LoadIcon (hInstance, MAKEINTRESOURCE (IDI_ALTICON))) ;

If you don't want to save the handle to your program's icon but instead use the DrawIcon function to display it
someplace, you can obtain the handle by using GetClassLong . For example:

DrawIcon (hdc, x, y, GetClassLong (hwnd, GCL_HICON)) ;

At some places in the Windows documentation, LoadIcon is said to be "obsolete" and LoadImage is recommended
instead. (LoadIcon is documented in /Platform SDK/User Interface Services/Resources/Icons , and LoadImage in
/Platform SDK/User Interface Services/Resources/Resources .) LoadImage is certainly more flexible, but it hasn't
replaced the simplicity of LoadIcon just yet. You'll notice that LoadIcon is called twice in ICONDEMO for the same
icon. This presents no problem and doesn't involve extra memory being used. LoadIcon is one of the few functions
that obtain a handle but do not require the handle to be destroyed. There actually is a DestroyIcon function, but it
is used in conjunction with the CreateIcon , CreateIconIndirect , and CreateIconFromResource functions. These
functions allow your program to dynamically create an icon image algorithmically.

Using Customized Cursors

Using customized mouse cursors in your program is similar to using customized icons, except that most
programmers seem to find the cursors that Windows supplies to be quite adequate. Customized cursors are
generally monochrome with a dimension of 32 by 32 pixels. You create a cursor in the Developer Studio in the
same way as an icon (that is, select Resource from the Insert menu, and pick Cursor), but don't forget to define
the hotspot.

You can set a customized cursor in your class definition with a statement such as

wndclass.hCursor = LoadCursor (hInstance, MAKEINTRESOURCE (IDC_CURSOR)) ;

or, if the cursor is defined with a text name,

wndclass.hCursor = LoadCursor (hInstance, szCursor) ;

Whenever the mouse is positioned over a window created based on this class, the customized cursor associated
with IDC_CURSOR or szCursor will be displayed.

If you use child windows, you may want the cursor to appear differently, depending on the child window below the
cursor. If your program defines the window class for these child windows, you can use different cursors for each
class by appropriately setting the hCursor field in each window class. And if you use predefined child window
controls, you can alter the hCursor field of the window class by using

SetClassLong (hwndChild, GCL_HCURSOR,
 LoadCursor (hInstance, TEXT ("childcursor")) ;

If you separate your client area into smaller logical areas without using child windows, you can use SetCursor to
change the mouse cursor:

SetCursor (hCursor) ;

You should call SetCursor during processing of the WM_MOUSEMOVE message. Otherwise, Windows uses the
cursor specified in the window class to redraw the cursor when it is moved. The documentation indicates that
SetCursor is fast if the cursor doesn't have to be changed.

Character String Resources

Having a resource for character strings may seem odd at first. Certainly we haven't had any problems using
regular old character strings defined as variables right in our source code.

Character string resources are primarily for easing the translation of your program to other languages. As you'll
discover later in this chapter and in the next chapter, menus and dialog boxes are also part of the resource script.
If you use character string resources rather than putting strings directly into your source code, all the text that
your program uses will be in one file—the resource script. If the text in this resource script is translated into
another language, all you need to do to create a foreign-language version of your program is relink the program.
This method is much safer than messing around with your source code. (However, aside from the next sample
program, I will not be using string tables for any other programs in this book. The reason is that string tables tend
to make code look more obscure and complicated rather than clarifying it.)

You create a string table by selecting Resource from the Insert menu and then selecting String Table. The strings
will be shown in a list at the right of the screen. Select a string by double-clicking it. For each string, you specify
an identifier and the string itself.

In the resource script, the strings show up in a multiline statement that looks something like this:

STRINGTABLE DISCARDABLE
BEGIN
 IDS_STRING1, "character string 1"
 IDS_STRING2, "character string 2"
 [other string definitions]
END

If you were programming for Windows back in the old days and creating this string table manually in a text editor

(which you might correctly guess was easier than creating the string table in Developer Studio), you could
substitute left and right curly brackets for the BEGIN and END statements.

The resource script can have multiple string tables, but each ID must uniquely identify only a single string. Each
string can be only one line long with a maximum of 4097 characters. Use \t and \n for tabs and ends of lines.
These control characters are recognized by the DrawText and MessageBox functions.

Your program can use the LoadString call to copy a string resource into a buffer in the program's data segment:

LoadString (hInstance, id, szBuffer, iMaxLength) ;

The id argument refers to the ID number that precedes each string in the resource script; szBuffer is a pointer to a
character array that receives the character string; and iMaxLength is the maximum number of characters to
transfer into the szBuffer . The function returns the number of characters in the string.

The string ID numbers that precede each string are generally macro identifiers defined in a header file. Many
Windows programmers use the prefix IDS_ to denote an ID number for a string. Sometimes a filename or other
information must be embedded in the string when the string is displayed. In this case, you can put C formatting
characters in the string and use it as a formatting string in wsprintf .

All resource text—including the text in the string table—is stored in the .RES compiled resource file and in the final
.EXE file in Unicode format. The LoadStringW function loads the Unicode text directly. The LoadStringA function
(the only function available under Windows 98) performs a conversion of the text from Unicode to the local code
page.

Let's look at an example of a function that uses three character strings to display three error messages in a
message box. As you can see below, the RESOURCE.H header file contains three identifiers for these messages.

#define IDS_FILENOTFOUND 1
#define IDS_FILETOOBIG 2
#define IDS_FILEREADONLY 3

The resource script has this string table:

STRINGTABLE
BEGIN
 IDS_FILENOTFOUND, "File %s not found."
 IDS_FILETOOBIG, "File %s too large to edit."
 IDS_FILEREADONLY, "File %s is read-only."
END

The C source code file also includes this header file and defines a function to display a message box. (I'll also
assume that szAppName is a global variable that contains the program name.)

OkMessage (HWND hwnd, int iErrorNumber, TCHAR *szFileName)
{
 TCHAR szFormat [40] ;
 TCHAR szBuffer [60] ;

 LoadString (hInst, iErrorNumber, szFormat, 40) ;

 wsprintf (szBuffer, szFormat, szFilename) ;

 return MessageBox (hwnd, szBuffer, szAppName,
 MB_OK ¦ MB_ICONEXCLAMATION) ;
}

To display a message box containing the "file not found" message, the program calls

OkMessage (hwnd, IDS_FILENOTFOUND, szFileName) ;

Custom Resources

Windows also defines a "custom resource," also called the "user-defined resource" (where the user is you , the
programmer, rather than the lucky person who gets to use your program). The custom resource is convenient for
attaching miscellaneous data to your .EXE file and obtaining access to that data within the program. The data can
be in absolutely any format you want. The Windows functions that a program uses to access the custom resource
cause Windows to load the data into memory and return a pointer to it. You can do whatever you want with that
data. You'll probably find this to be a more convenient way to store and access miscellaneous private data than
storing it in external files and accessing it with file input functions.

For instance, suppose you have a file called BINDATA.BIN that contains a bunch of data that your program needs
for display purposes. This file can be in any format you choose. If you have a MYPROG.RC resource script in your
MYPROG project, you can create a custom resource in Developer Studio by selecting Resource from the Insert
menu and pressing the Custom button. Type in a type name by which the resource is to be known: for example,
BINTYPE. Developer Studio will then make up a resource name (in this case, IDR_BINTYPE1) and display a window
that lets you enter binary data. But you don't need to do that. Click the IDR_BINTYPE1 name with the right mouse
button, and select Properties. Then you can enter a filename: for example, BINDATA.BIN.

The resource script will then contain a statement like this:

IDR_BINTYPE1 BINTYPE BINDATA.BIN

This statement looks just like the ICON statement in ICONDEMO, except that the resource type BINTYPE is
something we've just made up. As with icons, you can use text names rather than numeric identifiers for the
resource name.

When you compile and link the program, the entire BINDATA.BIN file will be bound into the MYPROG.EXE file.

During program initialization (for example, while processing the WM_CREATE message), you can obtain a handle
to this resource:

hResource = LoadResource (hInstance,
 FindResource (hInstance, TEXT ("BINTYPE"),
 MAKEINTRESOURCE (IDR_BINTYPE1))) ;

The variable hResource is defined with type HGLOBAL, which is a handle to a memory block. Despite its name,
LoadResource does not actually load the resource into memory. The LoadResource and FindResource functions
used together like this are essentially equivalent to the LoadIcon and LoadCursor functions. In fact, LoadIcon and
LoadCursor use the LoadResource and FindResource functions.

When you need access to the text, call LockResource :

pData = LockResource (hResource) ;

LockResource loads the resource into memory (if it has not already been loaded) and returns a pointer to it. When
you're finished with the resource, you can free it from memory:

FreeResource (hResource) ;

The resource will also be freed when your program terminates, even if you don't call FreeResource .

Let's look at a sample program that uses three resources—an icon, a string table, and a custom resource. The
POEPOEM program, shown in Figure 10-5 beginning below, displays the text of Edgar Allan Poe's "Annabel Lee" in
its client area. The custom resource is the file POEPOEM.TXT, which contains the text of the poem. The text file is
terminated with a backslash (\).

Figure 10-5. The POEPOEM program, including an icon and a user-defined resource.

POEPOEM.C

/*---
 POEPOEM.C -- Demonstrates Custom Resource
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 TCHAR szAppName [16], szCaption [64], szErrMsg [64] ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 LoadString (hInstance, IDS_APPNAME, szAppName,
 sizeof (szAppName) / sizeof (TCHAR)) ;

 LoadString (hInstance, IDS_CAPTION, szCaption,
 sizeof (szCaption) / sizeof (TCHAR)) ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;

 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 LoadStringA (hInstance, IDS_APPNAME, (char *) szAppName,
 sizeof (szAppName)) ;

 LoadStringA (hInstance, IDS_ERRMSG, (char *) szErrMsg,
 sizeof (szErrMsg)) ;

 MessageBoxA (NULL, (char *) szErrMsg,
 (char *) szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szCaption,
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static char * pText ;
 static HGLOBAL hResource ;
 static HWND hScroll ;
 static int iPosition, cxChar, cyChar, cyClient, iNumLines, xScroll ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE :
 hdc = GetDC (hwnd) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 ReleaseDC (hwnd, hdc) ;

 xScroll = GetSystemMetrics (SM_CXVSCROLL) ;

 hScroll = CreateWindow (TEXT ("scrollbar"), NULL,
 WS_CHILD | WS_VISIBLE | SBS_VERT,
 0, 0, 0, 0,
 hwnd, (HMENU) 1, hInst, NULL) ;

 hResource = LoadResource (hInst,
 FindResource (hInst, TEXT ("AnnabelLee"),
 TEXT ("TEXT"))) ;

 pText = (char *) LockResource (hResource) ;
 iNumLines = 0 ;

 while (*pText != `\\' && *pText != `\0')
 {
 if (*pText == `\n')
 iNumLines ++ ;
 pText = AnsiNext (pText) ;
 }
 *pText = `\0' ;

 SetScrollRange (hScroll, SB_CTL, 0, iNumLines, FALSE) ;
 SetScrollPos (hScroll, SB_CTL, 0, FALSE) ;
 return 0 ;

 case WM_SIZE :
 MoveWindow (hScroll, LOWORD (lParam) - xScroll, 0,
 xScroll, cyClient = HIWORD (lParam), TRUE) ;
 SetFocus (hwnd) ;
 return 0 ;

 case WM_SETFOCUS :
 SetFocus (hScroll) ;
 return 0 ;

 case WM_VSCROLL :
 switch (wParam)
 {
 case SB_TOP :
 iPosition = 0 ;
 break ;
 case SB_BOTTOM :
 iPosition = iNumLines ;
 break ;
 case SB_LINEUP :
 iPosition -= 1 ;
 break ;

 case SB_LINEDOWN :
 iPosition += 1 ;
 break ;
 case SB_PAGEUP :
 iPosition -= cyClient / cyChar ;
 break ;
 case SB_PAGEDOWN :
 iPosition += cyClient / cyChar ;
 break ;
 case SB_THUMBPOSITION :
 iPosition = LOWORD (lParam) ;
 break ;
 }
 iPosition = max (0, min (iPosition, iNumLines)) ;

 if (iPosition != GetScrollPos (hScroll, SB_CTL))
 {
 SetScrollPos (hScroll, SB_CTL, iPosition, TRUE) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 pText = (char *) LockResource (hResource) ;

 GetClientRect (hwnd, &rect) ;
 rect.left += cxChar ;
 rect.top += cyChar * (1 - iPosition) ;
 DrawTextA (hdc, pText, -1, &rect, DT_EXTERNALLEADING) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 FreeResource (hResource) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

POEPOEM.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// TEXT

ANNABELLEE TEXT DISCARDABLE "poepoem.txt"

///
// Icon

POEPOEM ICON DISCARDABLE "poepoem.ico"

///
// String Table

STRINGTABLE DISCARDABLE
BEGIN
 IDS_APPNAME "PoePoem"
 IDS_CAPTION """Annabel Lee"" by Edgar Allan Poe"
 IDS_ERRMSG "This program requires Windows NT!"
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by PoePoem.rc

#define IDS_APPNAME 1
#define IDS_CAPTION 2
#define IDS_ERRMSG 3

POEPOEM.TXT

It was many and many a year ago,
 In a kingdom by the sea,
That a maiden there lived whom you may know
 By the name of Annabel Lee;
And this maiden she lived with no other thought
 Than to love and be loved by me.

I was a child and she was a child
 In this kingdom by the sea,
But we loved with a love that was more than love --
 I and my Annabel Lee --
With a love that the winged seraphs of Heaven
 Coveted her and me.

And this was the reason that, long ago,
 In this kingdom by the sea,
A wind blew out of a cloud, chilling
 My beautiful Annabel Lee;
So that her highborn kinsmen came
 And bore her away from me,
To shut her up in a sepulchre
 In this kingdom by the sea.

The angels, not half so happy in Heaven,
 Went envying her and me --
Yes! that was the reason (as all men know,
 In this kingdom by the sea)
That the wind came out of the cloud by night,
 Chilling and killing my Annabel Lee.

But our love it was stronger by far than the love
 Of those who were older than we --
 Of many far wiser than we --
And neither the angels in Heaven above
 Nor the demons down under the sea
Can ever dissever my soul from the soul
 Of the beautiful Annabel Lee:

For the moon never beams, without bringing me dreams
 Of the beautiful Annabel Lee;
And the stars never rise, but I feel the bright eyes
 Of the beautiful Annabel Lee:
And so, all the night-tide, I lie down by the side
Of my darling -- my darling -- my life and my bride,
 In her sepulchre there by the sea --
 In her tomb by the sounding sea.

 [May, 1849]
\

POEPOEM.ICO

In the POEPOEM.RC resource script, the user-defined resource is given the type TEXT and the text name
"AnnabelLee":

ANNABELLEE TEXT POEPOEM.TXT

During WM_CREATE processing in WndProc , a handle to the resource is obtained using FindResource and
LoadResource . The resource is locked using LockResource , and a small routine replaces the backslash (\) at the
end of the file with a 0. This is for the benefit of the DrawText function used later during the WM_PAINT message.

Note the use of a child window scroll bar control rather than a window scroll bar. The child window scroll bar
control has an automatic keyboard interface, so no WM_KEYDOWN processing is required in POEPOEM.

POEPOEM also uses three character strings, the IDs of which are defined in the RESOURCE.H header file. At the
outset of the program, the IDS_APPNAME and IDS_ CAPTION strings are loaded into memory using LoadString :

LoadString (hInstance, IDS_APPNAME, szAppName, sizeof (szAppName) /
 sizeof (TCHAR)) ;

LoadString (hInstance, IDS_CAPTION, szCaption, sizeof (szCaption) /
 sizeof (TCHAR)) ;

Notice that these two calls precede RegisterClass . If you run the Unicode version of POEPOEM under Windows 98,
these two function calls will fail. Despite the fact that LoadStringA is more complex than LoadStringW (because
LoadStringA must convert the resource string from Unicode to ANSI, while LoadStringW just loads it directly),
LoadStringW is not one of the few string functions that is supported under Windows 98. This means that when the
RegisterClassW function fails under Windows 98, the MessageBoxW function (which is supported in Windows 98)
cannot use strings loaded into the program using LoadStringW . For this reason, the program loads the
IDS_APPNAME and IDS_ERRMSG strings using LoadStringA and then displays the customary message box using
MessageBoxA :

if (!RegisterClass (&wndclass))
{
 LoadStringA (hInstance, IDS_APPNAME, (char *) szAppName,
 sizeof (szAppName)) ;

 LoadStringA (hInstance, IDS_ERRMSG, (char *) szErrMsg,
 sizeof (szErrMsg)) ;

 MessageBoxA (NULL, (char *) szErrMsg,
 (char *) szAppName, MB_ICONERROR) ;
 return 0 ;
}

Notice the casting of the TCHAR string variables into char pointers. With all character strings used in POEPOEM
defined as resources, the program is now easier for translators to convert to a foreign-language version. Of
course, they'd also have to translate the text of "Annabel Lee"—which would be, I suspect, a more difficult task.

Menus

Do you remember the Monty Python skit about the cheese shop? Here's how it goes: A guy comes into a cheese
shop and wants a particular type of cheese. The shop doesn't have it. So he asks for another type of cheese, and
another, and another, and another (eventually totaling about 40 types, most of which are quite obscure), and still
the answer is "No, no, no, no, no." Ultimately, there's a shooting involved.

This whole unfortunate incident could have been avoided through the use of menus. A menu is a list of available
options. A menu tells a hungry patron what the kitchen can serve up and—for a Windows program—tells the user
what operations an application is capable of performing.

A menu is probably the most important part of the consistent user interface that Windows programs offer, and
adding a menu to your program is a relatively easy part of Windows programming. You define the menu in
Developer Studio. Each selectable menu item is given a unique ID number. You specify the name of the menu in
the window class structure. When the user chooses a menu item, Windows sends your program a WM_COMMAND
message containing that ID.

After discussing menus, I'll conclude this chapter with a section on keyboard accelerators, which are key
combinations that are used primarily to duplicate menu functions.

Menu Concepts

A window's menu bar is displayed immediately below the caption bar. This menu bar is sometimes called a
program's "main menu" or the "top-level menu." Items listed in the top-level menu usually invoke drop-down
menus, which are also called "popup menus" or "submenus." You can also define multiple nestings of popups: that
is, an item on a popup menu can invoke another popup menu. Sometimes items in popup menus invoke a dialog
box for more information. (Dialog boxes are covered in the next chapter.) Most parent windows have, to the far
left of the caption bar, a display of the program's small icon. This icon invokes the system menu, which is really
another popup menu.

Menu items in popups can be "checked," which means that Windows draws a small check mark to the left of the
menu text. The use of check marks lets the user choose different program options from the menu. These options
can be mutually exclusive, but they don't have to be. Top-level menu items cannot be checked.

Menu items in the top-level menu or in popup menus can be "enabled," "disabled," or "grayed." The words
"active" and "inactive" are sometimes used synonymously with "enabled" and "disabled." Menu items flagged as
enabled or disabled look the same to the user, but a grayed menu item is displayed in gray text.

From the perspective of the user, enabled, disabled, and grayed menu items can all be "selected" (highlighted).
That is, the user can click the mouse on a disabled menu item, or move the reverse-video cursor bar to a disabled
menu item, or trigger the menu item by using the item's key letter. However, from the perspective of your
program, enabled, disabled, and grayed menu items function differently. Windows sends your program a
WM_COMMAND message only for enabled menu items. You use disabled and grayed menu items for options that
are not currently valid. If you want to let the user know the option is not valid, make it grayed.

Menu Structure

When you create or change menus in a program, it's useful to think of the top-level menu and each popup menu
as being separate menus. The top-level menu has a menu handle, each popup menu within a top-level menu has
its own menu handle, and the system menu (which is also a popup) has a menu handle.

Each item in a menu is defined by three characteristics. The first characteristic is what appears in the menu. This
is either a text string or a bitmap. The second characteristic is either an ID number that Windows sends to your
program in a WM_COMMAND message or the handle to a popup menu that Windows displays when the user
chooses that menu item. The third characteristic describes the attribute of the menu item, including whether the
item is disabled, grayed, or checked.

Defining the Menu

To use Developer Studio to add a menu to your program's resource script, select Resource from the Insert menu
and pick Menu. (But you probably figured that out already.) You can then interactively define your menu. Each
item in the menu has an associated Menu Item Properties dialog box that indicates the item's text string. If the
Pop-up box is checked, the item invokes a popup menu and no ID is associated with the item. If the Pop-up box is

not checked, the item generates a WM_COMMAND message with a specified ID. These two types of menu items
will appear in the resource script as POPUP and MENUITEM statements, respectively.

When you type the text for an item in a menu, you can type an ampersand (&) to indicate that the following
character is to be underlined when Windows displays the menu. Such an underlined character is the character
Windows searches for when you select a menu item using the Alt key. If you don't include an ampersand in the
text, no underline will appear, and Windows will instead use the first letter of the menu item's text for Alt-key
searches.

If you select the Grayed option in the Menu Items Properties dialog box, the menu item is inactive, its text is
grayed, and the item does not generate a WM_COMMAND message. If you select the Inactive option, the menu
item is inactive and does not generate a WM_COMMAND message but its text is displayed normally. The Checked
option places a check mark next to a menu item. The Separator option causes a horizontal separator bar to be
drawn on popup menus.

For items in popup menus, you can use the columnar tab character \t in the character string. Text following the \t
is placed in a new column spaced far enough to the right to accommodate the longest text string in the first
column of the popup. We'll see how this works when we look at keyboard accelerators toward the end of this
chapter. A \a in the character string right-justifies the text that follows it.

The ID values you specify are the numbers that Windows sends to the window procedure in menu messages. The
ID values should be unique within a menu. By convention, I use identifiers beginning with the letters IDM ("ID for
a Menu").

Referencing the Menu in Your Program

Most Windows applications have only one menu in the resource script. You can give the menu a text name that is
the same as the name of the program. Programmers often use the name of the program as the name of the menu
so that the same character string can be used for the window class, the name of the program's icon, and the name
of the menu. The program then makes reference to this menu in the definition of the window class:

wndclass.lpszMenuName = szAppName ;

Although specifying the menu in the window class is the most common way to reference a menu resource, that's
not the only way to do it. A Windows application can load a menu resource into memory with the LoadMenu
function, which is similar to the LoadIcon and LoadCursor functions described earlier. LoadMenu returns a handle
to the menu. If you use a name for the menu in the resource script, the statement looks like this:

hMenu = LoadMenu (hInstance, TEXT ("MyMenu")) ;

If you use a number, the LoadMenu call takes this form:

hMenu = LoadMenu (hInstance, MAKEINTRESOURCE (ID_MENU)) ;

You can then specify this menu handle as the ninth parameter to CreateWindow :

hwnd = CreateWindow (TEXT ("MyClass"), TEXT ("Window Caption"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, hMenu, hInstance, NULL) ;

In this case, the menu specified in the CreateWindow call overrides any menu specified in the window class. You
can think of the menu in the window class as being a default menu for the windows based on the window class if
the ninth parameter to CreateWindow is NULL. Therefore, you can use different menus for several windows based
on the same window class. You can also have a NULL menu name in the window class and a NULL menu handle in
the CreateWindow call and assign a menu to a window after the window has been created:

SetMenu (hwnd, hMenu) ;

This form lets you dynamically change a window's menu. We'll see an example of this in the NOPOPUPS program,
shown later in this chapter. Any menu that is attached to a window is destroyed when the window is destroyed.
Any menus not attached to a window should be explicitly destroyed by calls to DestroyMenu before the program
terminates.

Menus and Messages

Windows usually sends a window procedure several different messages when the user selects a menu item. In
most cases, your program can ignore many of these messages and simply pass them to DefWindowProc . One
such message is WM_INITMENU with the following parameters:
wParam :
Handle to main menu
lParam :
0

The value of wParam is the handle to your main menu even if the user is selecting an item from the system menu.
Windows programs generally ignore the WM_INITMENU message. Although the message exists to give you the
opportunity to change the menu before an item is chosen, I suspect any changes to the top-level menu at this
time would be disconcerting to the user.

Your program also receives WM_MENUSELECT messages. A program can receive many WM_MENUSELECT
messages as the user moves the cursor or mouse among the menu items. This is helpful for implementing a
status bar that contains a full text description of the menu option. The parameters that accompany
WM_MENUSELECT are as follows:
LOWORD (wParam):
Selected item: Menu ID or popup menu index
HIWORD (wParam):
Selection flags
lParam :
Handle to menu containing selected item

WM_MENUSELECT is a menu-tracking message. The value of wParam tells you what item of the menu is currently
selected (highlighted). The "selection flags" in the high word of wParam can be a combination of the following:
MF_GRAYED, MF_DISABLED, MF_

CHECKED, MF_BITMAP, MF_POPUP, MF_HELP, MF_SYSMENU, and MF_MOUSESELECT. You may want to use
WM_MENUSELECT if you need to change something in the client area of your window based on the movement of
the highlight among the menu items. Most programs pass this message to DefWindowProc .

When Windows is ready to display a popup menu, it sends the window procedure a WM_INITMENUPOPUP message
with the following parameters:
wParam :
Popup menu handle
LOWORD (lParam):
Popup index

HIWORD (lParam):

1 for system menu, 0 otherwise

This message is important if you need to enable or disable items in a popup menu before it is displayed. For
instance, suppose your program can copy text from the clipboard using the Paste command on a popup menu.
When you receive a WM_INITMENUPOPUP message for that popup, you should determine whether the clipboard

has text in it. If it doesn't, you should gray the Paste menu item. We'll see an example of this in the revised
POPPAD program shown toward the end of this chapter.

The most important menu message is WM_COMMAND. This message indicates that the user has chosen an
enabled menu item from your window's menu. You'll recall from Chapter 8 that WM_COMMAND messages also
result from child window controls. If you happen to use the same ID codes for menus and child window controls,
you can differentiate between them by examining the value of lParam , which will be 0 for a menu item.
Menus
Controls
LOWORD (wParam):
Menu ID
Control ID
HIWORD (wParam):
0
Notification code
lParam :
0
Child window handle

The WM_SYSCOMMAND message is similar to the WM_COMMAND message except that WM_SYSCOMMAND signals
that the user has chosen an enabled menu item from the system menu:
wParam :
Menu ID
lParam :
0

However, if the WM_SYSCOMMAND message is the result of a mouse click, LOWORD (lParam) and HIWORD
(lParam) will contain the x and y screen coordinates of the mouse cursor's location.

For WM_SYSCOMMAND, the menu ID indicates which item on the system menu has been chosen. For the
predefined system menu items, the bottom four bits should be masked out by ANDing with 0xFFF0. The resultant
value will be one of the following: SC_SIZE, SC_MOVE, SC_MINIMIZE, SC_MAXIMIZE, SC_NEXTWINDOW,
SC_PREVWINDOW, SC_CLOSE, SC_VSCROLL, SC_HSCROLL, SC_ARRANGE, SC_RESTORE, and SC_TASKLIST. In
addition, wParam can be SC_MOUSEMENU or SC_KEYMENU.

If you add menu items to the system menu, the low word of wParam will be the menu ID that you define. To avoid
conflicts with the predefined menu IDs, use values below 0xF000. It is important that you pass normal
WM_SYSCOMMAND messages to DefWindowProc . If you do not, you'll effectively disable the normal system menu
commands. The final message we'll look at is WM_MENUCHAR, which isn't really a menu message at all. Windows
sends this message to your window procedure in one of two circumstances: if the user presses Alt and a character
key that does not correspond to a menu item, or, when a popup is displayed, if the user presses a character key
that does not correspond to an item in the popup. The parameters that accompany the WM_MENUCHAR message
are as follows:
LOWORD (wParam):
Character code (ASCII or Unicode)
HIWORD (wParam):
Selection code
lParam :
Handle to menu

The selection code is:

0 No popup is displayed.

MF_POPUP Popup is displayed.

MF_SYSMENU System menu popup is displayed.

Windows programs usually pass this message to DefWindowProc , which normally returns a 0 to Windows, which
causes Windows to beep. We'll see a use for the WM_MENUCHAR message in the GRAFMENU program shown in
Chapter 14 .

A Sample Program

Let's look at a simple example. The MENUDEMO program, shown in Figure 10-6, has five items in the main
menu—File, Edit, Background, Timer, and Help. Each of these items has a popup. MENUDEMO does the simplest
and most common type of menu processing, which involves trapping WM_COMMAND messages and checking the
low word of wParam .

Figure 10-6. The MENUDEMO program.

MENUDEMO.C

/*---
 MENUDEMO.C -- Menu Demonstration
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("MenuDemo") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Menu Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int idColor [5] = { WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH,
 DKGRAY_BRUSH, BLACK_BRUSH } ;
 static int iSelection = IDM_BKGND_WHITE ;
 HMENU hMenu ;

 switch (message)
 {
 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_NEW:
 case IDM_FILE_OPEN:
 case IDM_FILE_SAVE:
 case IDM_FILE_SAVE_AS:
 MessageBeep (0) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 case IDM_EDIT_UNDO:
 case IDM_EDIT_CUT:
 case IDM_EDIT_COPY:
 case IDM_EDIT_PASTE:
 case IDM_EDIT_CLEAR:
 MessageBeep (0) ;
 return 0 ;

 case IDM_BKGND_WHITE: // Note: Logic below
 case IDM_BKGND_LTGRAY: // assumes that IDM_WHITE
 case IDM_BKGND_GRAY: // through IDM_BLACK are
 case IDM_BKGND_DKGRAY: // consecutive numbers in
 case IDM_BKGND_BLACK: // the order shown here.

 CheckMenuItem (hMenu, iSelection, MF_UNCHECKED) ;

 iSelection = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iSelection, MF_CHECKED) ;

 SetClassLong (hwnd, GCL_HBRBACKGROUND, (LONG)
 GetStockObject
 (idColor [LOWORD (wParam) - IDM_BKGND_WHITE])) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_TIMER_START:
 if (SetTimer (hwnd, ID_TIMER, 1000, NULL))
 {
 EnableMenuItem (hMenu, IDM_TIMER_START, MF_GRAYED) ;
 EnableMenuItem (hMenu, IDM_TIMER_STOP, MF_ENABLED) ;
 }
 return 0 ;

 case IDM_TIMER_STOP:
 KillTimer (hwnd, ID_TIMER) ;
 EnableMenuItem (hMenu, IDM_TIMER_START, MF_ENABLED) ;
 EnableMenuItem (hMenu, IDM_TIMER_STOP, MF_GRAYED) ;
 return 0 ;

 case IDM_APP_HELP:
 MessageBox (hwnd, TEXT ("Help not yet implemented!"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_APP_ABOUT:
 MessageBox (hwnd, TEXT ("Menu Demonstration Program\n")
 TEXT ("(c) Charles Petzold, 1998"),
 szAppName, MB_ICONINFORMATION | MB_OK) ;
 return 0 ;
 }
 break ;

 case WM_TIMER:
 MessageBeep (0) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

MENUDEMO.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

MENUDEMO MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "C&ut", IDM_EDIT_CUT
 MENUITEM "&Copy", IDM_EDIT_COPY
 MENUITEM "&Paste", IDM_EDIT_PASTE
 MENUITEM "De&lete", IDM_EDIT_CLEAR
 END
 POPUP "&Background"
 BEGIN
 MENUITEM "&White", IDM_BKGND_WHITE, CHECKED
 MENUITEM "&Light Gray", IDM_BKGND_LTGRAY
 MENUITEM "&Gray", IDM_BKGND_GRAY
 MENUITEM "&Dark Gray", IDM_BKGND_DKGRAY
 MENUITEM "&Black", IDM_BKGND_BLACK
 END
 POPUP "&Timer"
 BEGIN
 MENUITEM "&Start", IDM_TIMER_START
 MENUITEM "S&top", IDM_TIMER_STOP, GRAYED
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help...", IDM_APP_HELP
 MENUITEM "&About MenuDemo...", IDM_APP_ABOUT
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by MenuDemo.rc

#define IDM_FILE_NEW 40001
#define IDM_FILE_OPEN 40002
#define IDM_FILE_SAVE 40003
#define IDM_FILE_SAVE_AS 40004
#define IDM_APP_EXIT 40005
#define IDM_EDIT_UNDO 40006
#define IDM_EDIT_CUT 40007
#define IDM_EDIT_COPY 40008
#define IDM_EDIT_PASTE 40009
#define IDM_EDIT_CLEAR 40010
#define IDM_BKGND_WHITE 40011
#define IDM_BKGND_LTGRAY 40012
#define IDM_BKGND_GRAY 40013
#define IDM_BKGND_DKGRAY 40014
#define IDM_BKGND_BLACK 40015
#define IDM_TIMER_START 40016
#define IDM_TIMER_STOP 40017
#define IDM_APP_HELP 40018
#define IDM_APP_ABOUT 40019

The MENUDEMO.RC resource script should give you hints on defining the menu. The menu has a text name of
"MenuDemo." Most items have underlined letters, which means you must type an ampersand (&) before the letter.
The MENUITEM SEPARATOR statement results from checking the Separator box in the Menu Item Properties dialog
box. Notice that one item in the menu has the Checked option and another has the Grayed option. Also, the five
items in the Background popup menu should be entered in the order shown to ensure that the identifiers are in
numeric order; the program relies on this.

All the menu item identifiers are defined in RESOURCE.H. The MENUDEMO program simply beeps when it receives
a WM_COMMAND message for most items in the File and Edit popups. The Background popup lists five stock
brushes that MENUDEMO can use to color the background. In the MENUDEMO.RC resource script, the White menu
item (with a menu ID of IDM_BKGND_WHITE) is flagged as CHECKED, which places a check mark next to the
item. In MENUDEMO.C, the value of iSelection is initially set to IDM_BKGND_WHITE.

The five brushes on the Background popup menu are mutually exclusive. When MENUDEMO.C receives a
WM_COMMAND message where wParam is one of these five items on the Background popup, it must remove the
check mark from the previously chosen background color and add a check mark to the new background color. To
do this, it first gets a handle to its menu:

hMenu = GetMenu (hwnd) ;

The CheckMenuItem function is used to uncheck the currently checked item:

CheckMenuItem (hMenu, iSelection, MF_UNCHECKED) ;

The iSelection value is set to the value of wParam , and the new background color is checked:

iSelection = wParam ;
CheckMenuItem (hMenu, iSelection, MF_CHECKED) ;

The background color in the window class is then replaced with the new background color, and the window client
area is invalidated. Windows erases the window, using the new background color.

The Timer popup lists two options—Start and Stop. Initially, the Stop option is grayed (as indicated in the menu
definition for the resource script). When you choose the Start option, MENUDEMO tries to start a timer and, if
successful, grays the Start option and makes the Stop option active:

EnableMenuItem (hMenu, IDM_TIMER_START, MF_GRAYED) ;
EnableMenuItem (hMenu, IDM_TIMER_STOP, MF_ENABLED) ;

On receipt of a WM_COMMAND message with wParam equal to IDM_TIMER_STOP, MENUDEMO kills the timer,
activates the Start option, and grays the Stop option:

EnableMenuItem (hMenu, IDM_TIMER_START, MF_ENABLED) ;
EnableMenuItem (hMenu, IDM_TIMER_STOP, MF_GRAYED) ;

Notice that it's impossible for MENUDEMO to receive a WM_COMMAND message with wParam equal to
IDM_TIMER_START while the timer is going. Similarly, it's impossible to receive a WM_COMMAND with wParam
equal to IDM_TIMER_STOP while the timer is not going. When MENUDEMO receives a WM_COMMAND message
with the wParam parameter equal to IDM_APP_ABOUT or IDM_APP_HELP, it displays a message box. (In the next
chapter, we'll change this to a dialog box.)

When MENUDEMO receives a WM_COMMAND message with wParam equal to IDM_APP_EXIT, it sends itself a
WM_CLOSE message. This is the same message that DefWindowProc sends the window procedure when it receives
a WM_SYSCOMMAND message with wParam equal to SC_CLOSE. We'll examine this more in the POPPAD2
program shown near the end of this chapter.

Menu Etiquette

The format of the File and Edit popups in MENUDEMO is quite similar to those in other Windows programs. One of
the objectives of Windows is to provide a user with a recognizable interface that does not require relearning basic
concepts for each program. It certainly helps if the File and Edit menus look the same in every Windows program
and use the same letters for selection in combination with the Alt key.

Beyond the File and Edit popups, the menus of most Windows programs will probably be different. When designing
a menu, you should look at existing Windows programs and aim for some consistency. Of course, if you think
these other programs are wrong and you know the right way to do it, nobody's going to stop you. Also keep in
mind that revising a menu usually requires revising only the resource script and not your program code. You can
move menu items around at a later time without many problems.

Although your program menu can have MENUITEM statements on the top level, these are not typical because they
can be too easily chosen by mistake. If you do this, use an exclamation point after the text string to indicate that
the menu item does not invoke a popup.

Defining a Menu the Hard Way

Defining a menu in a program's resource script is usually the easiest way to add a menu in your window, but it's
not the only way. You can dispense with the resource script and create a menu entirely within your program by
using two functions called CreateMenu and AppendMenu . After you finish defining the menu, you can pass the
menu handle to CreateWindow or use SetMenu to set the window's menu.

Here's how it's done. CreateMenu simply returns a handle to a new menu:

hMenu = CreateMenu () ;

The menu is initially empty. AppendMenu inserts items into the menu. You must obtain a different menu handle
for the top-level menu item and for each popup. The popups are constructed separately; the popup menu handles
are then inserted into the top-level menu. The code shown in Figure 10-7 creates a menu in this fashion; in fact, it
is the same menu that I used in the MENUDEMO program. For illustrative simplicity, the code uses ASCII character
strings.

Figure 10-7. C code that creates the same menu as used in the MENUDEMO program but without requiring a
resource script file.

hMenu = CreateMenu () ;

hMenuPopup = CreateMenu () ;

AppendMenu (hMenuPopup, MF_STRING, IDM_FILE_NEW, "&New") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_FILE_OPEN, "&Open...") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_FILE_SAVE, "&Save") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_FILE_SAVE_AS, "Save &As...") ;
AppendMenu (hMenuPopup, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hMenuPopup, MF_STRING, IDM_APP_EXIT, "E&xit") ;

AppendMenu (hMenu, MF_POPUP, hMenuPopup, "&File") ;

hMenuPopup = CreateMenu () ;

AppendMenu (hMenuPopup, MF_STRING, IDM_EDIT_UNDO, "&Undo") ;
AppendMenu (hMenuPopup, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hMenuPopup, MF_STRING, IDM_EDIT_CUT, "Cu&t") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_EDIT_COPY, "&Copy") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_EDIT_PASTE, "&Paste") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_EDIT_CLEAR, "De&lete") ;
AppendMenu (hMenu, MF_POPUP, hMenuPopup, "&Edit") ;

hMenuPopup = CreateMenu () ;

AppendMenu (hMenuPopup, MF_STRING¦ MF_CHECKED, IDM_BKGND_WHITE, "&White") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_BKGND_LTGRAY, "&Light Gray");
AppendMenu (hMenuPopup, MF_STRING, IDM_BKGND_GRAY, "&Gray") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_BKGND_DKGRAY, "&Dark Gray");
AppendMenu (hMenuPopup, MF_STRING, IDM_BKGND_BLACK, "&Black") ;

AppendMenu (hMenu, MF_POPUP, hMenuPopup, "&Background") ;

hMenuPopup = CreateMenu () ;

AppendMenu (hMenuPopup, MF_STRING, IDM_TIMER_START, "&Start") ;
AppendMenu (hMenuPopup, MF_STRING ¦ MF_GRAYED, IDM_TIMER_STOP, "S&top") ;

AppendMenu (hMenu, MF_POPUP, hMenuPopup, "&Timer") ;

hMenuPopup = CreateMenu () ;

AppendMenu (hMenuPopup, MF_STRING, IDM_HELP_HELP, "&Help") ;
AppendMenu (hMenuPopup, MF_STRING, IDM_APP_ABOUT, "&About MenuDemo...") ;

AppendMenu (hMenu, MF_POPUP, hMenuPopup, "&Help") ;

I think you'll agree that the resource script menu template is easier and clearer. I'm not recommending that you
define a menu in this way, only showing that it can be done. Certainly you could cut down on the code size
substantially by using some arrays of structures containing all the menu item character strings, IDs, and flags. But
if you do that, you might as well take advantage of the third method Windows provides for defining a menu. The
LoadMenuIndirect function accepts a pointer to a structure of type MENUITEMTEMPLATE and returns a handle to a
menu. This function is used within Windows to construct a menu after loading the normal menu template from a
resource script. If you're brave, you can try using it yourself.

Floating Popup Menus

You can also make use of menus without having a top-level menu bar. You can instead cause a popup menu to
appear on top of any part of the screen. One approach is to invoke this popup menu in response to a click of the
right mouse button. The POPMENU program in Figure 10-8 shows how this is done.

Figure 10-8. The POPMENU program.

POPMENU.C

/*--
 POPMENU.C -- Popup Menu Demonstration
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ;
TCHAR szAppName[] = TEXT ("PopMenu") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon (NULL, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hInst = hInstance ;

 hwnd = CreateWindow (szAppName, TEXT ("Popup Menu Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HMENU hMenu ;
 static int idColor [5] = { WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH,
 DKGRAY_BRUSH, BLACK_BRUSH } ;
 static int iSelection = IDM_BKGND_WHITE ;
 POINT point ;

 switch (message)
 {
 case WM_CREATE:
 hMenu = LoadMenu (hInst, szAppName) ;
 hMenu = GetSubMenu (hMenu, 0) ;
 return 0 ;

 case WM_RBUTTONUP:
 point.x = LOWORD (lParam) ;
 point.y = HIWORD (lParam) ;
 ClientToScreen (hwnd, &point) ;

 TrackPopupMenu (hMenu, TPM_RIGHTBUTTON, point.x, point.y,

 0, hwnd, NULL) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_NEW:
 case IDM_FILE_OPEN:
 case IDM_FILE_SAVE:
 case IDM_FILE_SAVE_AS:
 case IDM_EDIT_UNDO:
 case IDM_EDIT_CUT:
 case IDM_EDIT_COPY:
 case IDM_EDIT_PASTE:
 case IDM_EDIT_CLEAR:
 MessageBeep (0) ;
 return 0 ;

 case IDM_BKGND_WHITE: // Note: Logic below
 case IDM_BKGND_LTGRAY: // assumes that IDM_WHITE
 case IDM_BKGND_GRAY: // through IDM_BLACK are
 case IDM_BKGND_DKGRAY: // consecutive numbers in
 case IDM_BKGND_BLACK: // the order shown here.

 CheckMenuItem (hMenu, iSelection, MF_UNCHECKED) ;
 iSelection = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iSelection, MF_CHECKED) ;

 SetClassLong (hwnd, GCL_HBRBACKGROUND, (LONG)
 GetStockObject
 (idColor [LOWORD (wParam) - IDM_BKGND_WHITE])) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_APP_ABOUT:
 MessageBox (hwnd, TEXT ("Popup Menu Demonstration Program\n")
 TEXT ("(c) Charles Petzold, 1998"),
 szAppName, MB_ICONINFORMATION | MB_OK) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 case IDM_APP_HELP:
 MessageBox (hwnd, TEXT ("Help not yet implemented!"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 break ;

 case WM_DESTROY:

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

POPMENU.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

POPMENU MENU DISCARDABLE
BEGIN
 POPUP "MyMenu"
 BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t", IDM_EDIT_CUT
 MENUITEM "&Copy", IDM_EDIT_COPY
 MENUITEM "&Paste", IDM_EDIT_PASTE
 MENUITEM "De&lete", IDM_EDIT_CLEAR
 END
 POPUP "&Background"
 BEGIN
 MENUITEM "&White", IDM_BKGND_WHITE, CHECKED
 MENUITEM "&Light Gray", IDM_BKGND_LTGRAY
 MENUITEM "&Gray", IDM_BKGND_GRAY
 MENUITEM "&Dark Gray", IDM_BKGND_DKGRAY
 MENUITEM "&Black", IDM_BKGND_BLACK
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help...", IDM_APP_HELP

 MENUITEM "&About PopMenu...", IDM_APP_ABOUT
 END
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by PopMenu.rc

#define IDM_FILE_NEW 40001
#define IDM_FILE_OPEN 40002
#define IDM_FILE_SAVE 40003
#define IDM_FILE_SAVE_AS 40004
#define IDM_APP_EXIT 40005
#define IDM_EDIT_UNDO 40006
#define IDM_EDIT_CUT 40007
#define IDM_EDIT_COPY 40008
#define IDM_EDIT_PASTE 40009
#define IDM_EDIT_CLEAR 40010
#define IDM_BKGND_WHITE 40011
#define IDM_BKGND_LTGRAY 40012
#define IDM_BKGND_GRAY 40013
#define IDM_BKGND_DKGRAY 40014
#define IDM_BKGND_BLACK 40015
#define IDM_APP_HELP 40016
#define IDM_APP_ABOUT 40017

The POPMENU.RC resource script defines a menu similar to the one in MENUDEMO.RC. The difference is that the
top-level menu contains only one item—a popup named "MyMenu" that invokes the File, Edit, Background, and
Help options. These four options will be arranged on the popup menu in a vertical list rather than on the main
menu in a horizontal list.

During the WM_CREATE message in WndProc , POPMENU obtains a handle to the first popup menu—that is, the
popup with the text "MyMenu":

hMenu = LoadMenu (hInst, szAppName) ;
hMenu = GetSubMenu (hMenu, 0) ;

During the WM_RBUTTONUP message, POPMENU obtains the position of the mouse pointer, converts the position
to screen coordinates, and passes the coordinates to TrackPopupMenu :

point.x = LOWORD (lParam) ;
point.y = HIWORD (lParam) ;
ClientToScreen (hwnd, &point) ;

TrackPopupMenu (hMenu, TPM_RIGHTBUTTON, point.x, point.y,
 0, hwnd, NULL) ;

Windows then displays the popup menu with the items File, Edit, Background, and Help. Selecting any of these
options causes the nested popup menus to appear to the right. The menu functions the same as a normal menu.

If you want to use the same menu for the program's main menu and with the TrackPopupMenu , you'll have a bit
of a problem because the function requires a popup menu handle. A workaround is provided in the Microsoft
Knowledge Base article ID Q99806.

Using the System Menu

Parent windows created with a style that includes WS_SYSMENU have a system menu box at the left of the
caption bar. If you like, you can modify this menu by adding your own menu commands. In the early days of
Windows, programs commonly put the "About" menu item on the system menu. While modifying the system
menu is not nearly as common these days, it remains a quick-and-dirty way to add a menu to a short program
without defining it in the resource script. The only restriction is this: the ID numbers you use to add commands to
the system menu must be lower than 0xF000. Otherwise, they will conflict with the IDs that Windows uses for the
normal system menu commands. And keep in mind that when you process WM_SYSCOMMAND messages in your
window procedure for these new menu items, you must pass the other WM_SYSCOMMAND messages to
DefWindowProc . If you don't, you'll effectively disable all normal options on the system menu.

The program POORMENU ("Poor Person's Menu"), shown in Figure 10-9, adds a separator bar and three
commands to the system menu. The last of these commands removes the additions.

Figure 10-9. The POORMENU program.

POORMENU.C

/*---
 POORMENU.C -- The Poor Person's Menu
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define IDM_SYS_ABOUT 1
#define IDM_SYS_HELP 2
#define IDM_SYS_REMOVE 3

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

static TCHAR szAppName[] = TEXT ("PoorMenu") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HMENU hMenu ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("The Poor-Person's Menu"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 hMenu = GetSystemMenu (hwnd, FALSE) ;

 AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
 AppendMenu (hMenu, MF_STRING, IDM_SYS_ABOUT, TEXT ("About...")) ;
 AppendMenu (hMenu, MF_STRING, IDM_SYS_HELP, TEXT ("Help...")) ;
 AppendMenu (hMenu, MF_STRING, IDM_SYS_REMOVE, TEXT ("Remove Additions")) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_SYSCOMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_SYS_ABOUT:
 MessageBox (hwnd, TEXT ("A Poor-Person's Menu Program\n")
 TEXT ("(c) Charles Petzold, 1998"),
 szAppName, MB_OK | MB_ICONINFORMATION) ;
 return 0 ;

 case IDM_SYS_HELP:
 MessageBox (hwnd, TEXT ("Help not yet implemented!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;

 case IDM_SYS_REMOVE:
 GetSystemMenu (hwnd, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The three menu IDs are defined near the top of POORMENU.C:

#define IDM_ABOUT 1
#define IDM_HELP 2
#define IDM_REMOVE 3

After the program's window has been created, POORMENU obtains a handle to the system menu:

hMenu = GetSystemMenu (hwnd, FALSE) ;

When you first call GetSystemMenu , you should set the second parameter to FALSE in preparation for modifying
the menu.

The menu is altered with four AppendMenu calls:

AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hMenu, MF_STRING, IDM_SYS_ABOUT, TEXT ("About...")) ;
AppendMenu (hMenu, MF_STRING, IDM_SYS_HELP, TEXT ("Help...")) ;
AppendMenu (hMenu, MF_STRING, IDM_SYS_REMOVE, TEXT ("Remove Additions"));

The first AppendMenu call adds the separator bar. Choosing the Remove Additions menu item causes POORMENU
to remove these additions, which it accomplishes simply by calling GetSystemMenu again with the second
parameter set to TRUE:

GetSystemMenu (hwnd, TRUE) ;

The standard system menu has the options Restore, Move, Size, Minimize, Maximize, and Close. These generate
WM_SYSCOMMAND messages with wParam equal to SC_RESTORE, SC_MOVE, SC_SIZE, SC_MINIMUM,
SC_MAXIMUM, and SC_CLOSE. Although Windows programs do not normally do so, you can process these
messages yourself rather than pass them on to DefWindowProc . You can also disable or remove some of these
standard options from the system menu using methods described below. The Windows documentation also
includes some standard additions to the system menu. These use the identifiers SC_NEXTWINDOW,
SC_PREVWINDOW, SC_VSCROLL, SC_HSCROLL, and SC_ARRANGE. You might find it appropriate to add these
commands to the system menu in some applications.

Changing the Menu

We've already seen how the AppendMenu function can be used to define a menu entirely within a program and to
add menu items to the system menu. Prior to Windows 3.0, you would have been forced to use the ChangeMenu
function for this job. ChangeMenu was so versatile that it was one of the most complex functions in all of Windows
(at least at that time). Times have changed. Many other current functions are now more complex than
ChangeMenu ever was, and ChangeMenu has been replaced with five newer functions:

AppendMenu Adds a new item to the end of a menu.

DeleteMenu Deletes an existing item from a menu and destroys the item.

InsertMenu Inserts a new item into a menu.

ModifyMenu Changes an existing menu item.

RemoveMenu Removes an existing item from a menu.

The difference between DeleteMenu and RemoveMenu is important if the item is a popup menu. DeleteMenu
destroys the popup menu—but RemoveMenu does not.

Other Menu Commands

In this section, you'll find some more functions useful for working with menus.

When you change a top-level menu item, the change is not shown until Windows redraws the menu bar. You can
force this redrawing by calling

DrawMenuBar (hwnd) ;

Notice that the argument to DrawMenuBar is a handle to the window rather than a handle to the menu.

You can obtain the handle to a popup menu using

hMenuPopup = GetSubMenu (hMenu, iPosition) ;

where iPosition is the index (starting at 0) of the popup within the top-level menu indicated by hMenu . You can
then use the popup menu handle with other functions (such as AppendMenu).

You can obtain the current number of items in a top-level or popup menu by using

iCount = GetMenuItemCount (hMenu) ;

You can obtain the menu ID for an item in a popup menu from

id = GetMenuItemID (hMenuPopup, iPosition) ;

where iPosition is the position (starting at 0) of the item within the popup.

In MENUDEMO, you saw how to check or uncheck an item in a popup menu using

CheckMenuItem (hMenu, id, iCheck) ;

In MENUDEMO, hMenu was the handle to the top-level menu, id was the menu ID, and the value of iCheck was
either MF_CHECKED or MF_UNCHECKED. If hMenu is a handle to a popup menu, the id parameter can be a
positional index rather than a menu ID. If an index is more convenient, you include MF_BYPOSITION in the third
argument:

CheckMenuItem (hMenu, iPosition, MF_CHECKED ¦ MF_BYPOSITION) ;

The EnableMenuItem function works similarly to CheckMenuItem , except that the third argument is MF_ENABLED,
MF_DISABLED, or MF_GRAYED. If you use EnableMenuItem on a top-level menu item that has a popup, you must
also use the MF_BYPOSITION identifier in the third parameter because the menu item has no menu ID. We'll see
an example of EnableMenuItem in the POPPAD2 program shown later in this chapter. HiliteMenuItem is similar to
CheckMenuItem and EnableMenuItem but uses MF_HILITE and MF_UNHILITE. This highlighting is the reverse
video that Windows uses when you move among menu items. You do not normally need to use HiliteMenuItem .

What else do you need to do with your menu? Have you forgotten what character string you used in a menu? You
can refresh your memory by calling

iCharCount = GetMenuString (hMenu, id, pString, iMaxCount, iFlag) ;

The iFlag is either MF_BYCOMMAND (where id is a menu ID) or MF_BYPOSITION (where id is a positional index).
The function copies up to iMaxCount characters into pString and returns the number of characters copied.

Or perhaps you'd like to know what the current flags of a menu item are:

iFlags = GetMenuState (hMenu, id, iFlag) ;

Again, iFlag is either MF_BYCOMMAND or MF_BYPOSITION. The iFlags parameter is a combination of all the
current flags. You can determine the current flags by testing against the MF_DISABLED, MF_GRAYED,
MF_CHECKED, MF_MENUBREAK, MF_MENUBARBREAK, and MF_SEPARATOR identifiers.

Or maybe by this time you're a little fed up with menus. In that case, you'll be pleased to know that if you no
longer need a menu in your program, you can destroy it:

DestroyMenu (hMenu) ;

This function invalidates the menu handle.

An Unorthodox Approach to Menus

Now let's step a little off the beaten path. Instead of having drop-down menus in your program, how about
creating multiple top-level menus without any popups and switching between the top-level menus using the
SetMenu call? Such a menu might remind old-timers of that character-mode classic, Lotus 1-2-3. The NOPOPUPS
program, shown in Figure 10-10, demonstrates how to do it. This program includes File and Edit items similar to
those that MENUDEMO uses but displays them as alternate top-level menus.

Figure 10-10. The NOPOPUPS program.

NOPOPUPS.C

/*---
 NOPOPUPS.C -- Demonstrates No-Popup Nested Menu
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

{
 static TCHAR szAppName[] = TEXT ("NoPopUps") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName,
 TEXT ("No-Popup Nested Menu Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HMENU hMenuMain, hMenuEdit, hMenuFile ;
 HINSTANCE hInstance ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE) ;

 hMenuMain = LoadMenu (hInstance, TEXT ("MenuMain")) ;
 hMenuFile = LoadMenu (hInstance, TEXT ("MenuFile")) ;
 hMenuEdit = LoadMenu (hInstance, TEXT ("MenuEdit")) ;

 SetMenu (hwnd, hMenuMain) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_MAIN:
 SetMenu (hwnd, hMenuMain) ;
 return 0 ;

 case IDM_FILE:
 SetMenu (hwnd, hMenuFile) ;
 return 0 ;

 case IDM_EDIT:
 SetMenu (hwnd, hMenuEdit) ;
 return 0 ;

 case IDM_FILE_NEW:
 case IDM_FILE_OPEN:
 case IDM_FILE_SAVE:

 case IDM_FILE_SAVE_AS:
 case IDM_EDIT_UNDO:
 case IDM_EDIT_CUT:
 case IDM_EDIT_COPY:
 case IDM_EDIT_PASTE:
 case IDM_EDIT_CLEAR:
 MessageBeep (0) ;
 return 0 ;
 }
 break ;

 case WM_DESTROY:
 SetMenu (hwnd, hMenuMain) ;
 DestroyMenu (hMenuFile) ;
 DestroyMenu (hMenuEdit) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

NOPOPUPS.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Menu

MENUMAIN MENU DISCARDABLE
BEGIN
 MENUITEM "MAIN:", 0, INACTIVE
 MENUITEM "&File...", IDM_FILE
 MENUITEM "&Edit...", IDM_EDIT
END

MENUFILE MENU DISCARDABLE
BEGIN
 MENUITEM "FILE:", 0, INACTIVE
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open...", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As", IDM_FILE_SAVE_AS
 MENUITEM "(&Main)", IDM_MAIN
END

MENUEDIT MENU DISCARDABLE
BEGIN

 MENUITEM "EDIT:", 0, INACTIVE
 MENUITEM "&Undo", IDM_EDIT_UNDO
 MENUITEM "Cu&t", IDM_EDIT_CUT
 MENUITEM "&Copy", IDM_EDIT_COPY
 MENUITEM "&Paste", IDM_EDIT_PASTE
 MENUITEM "De&lete", IDM_EDIT_CLEAR
 MENUITEM "(&Main)", IDM_MAIN
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by NoPopups.rc
#define IDM_FILE 40001
#define IDM_EDIT 40002
#define IDM_FILE_NEW 40003
#define IDM_FILE_OPEN 40004
#define IDM_FILE_SAVE 40005
#define IDM_FILE_SAVE_AS 40006
#define IDM_MAIN 40007
#define IDM_EDIT_UNDO 40008
#define IDM_EDIT_CUT 40009
#define IDM_EDIT_COPY 40010
#define IDM_EDIT_PASTE 40011
#define IDM_EDIT_CLEAR 40012

In Microsoft Developer Studio, you create three menus rather than one. You'll be selecting Resource from the
Insert menu three times. Each menu has a different text name. When the window procedure processes the
WM_CREATE message, Windows loads each menu resource into memory:

hMenuMain = LoadMenu (hInstance, TEXT ("MenuMain")) ;
hMenuFile = LoadMenu (hInstance, TEXT ("MenuFile")) ;
hMenuEdit = LoadMenu (hInstance, TEXT ("MenuEdit")) ;

Initially, the program displays the main menu:

SetMenu (hwnd, hMenuMain) ;

The main menu lists the three options using the character strings "MAIN:", "File...", and "Edit..." However,
"MAIN:" is disabled, so it doesn't cause WM_COMMAND messages to be sent to the window procedure. The File
and Edit menus begin "FILE:" and "EDIT:" to identify these as submenus. The last item in each menu is the
character string "(Main)"; this option indicates a return to the main menu. Switching among these three menus is
simple:

case WM_COMMAND :
 switch (wParam)
 {
 case IDM_MAIN :
 SetMenu (hwnd, hMenuMain) ;
 return 0 ;

 case IDM_FILE :
 SetMenu (hwnd, hMenuFile) ;
 return 0 ;

 case IDM_EDIT :
 SetMenu (hwnd, hMenuEdit) ;
 return 0 ;

[other program lines]
 }
 break ;

During the WM_DESTROY message, NOPOPUPS sets the program's menu to the Main menu and destroys the File
and Edit menus with calls to DestroyMenu . The Main menu is destroyed automatically when the window is
destroyed.

Keyboard Accelerators

Keyboard accelerators are key combinations that generate WM_COMMAND (or, in some cases,
WM_SYSCOMMAND) messages. Most often, programs use keyboard accelerators to duplicate the action of
common menu options, but they can also perform nonmenu functions. For instance, some Windows programs
have an Edit menu that includes a Delete or Clear option; these programs conventionally assign the Del key as a
keyboard accelerator for this option. The user can choose the Delete option from the menu by pressing an Alt-key
combination or can use the keyboard accelerator simply by pressing the Del key. When the window procedure
receives a WM_COMMAND message, it does not have to determine whether the menu or the keyboard accelerator
was used.

Why You Should Use Keyboard Accelerators

You might ask: Why should I use keyboard accelerators? Why can't I simply trap WM_ KEYDOWN or WM_CHAR
messages and duplicate the menu functions myself? What's the advantage? For a single-window application, you
can certainly trap keyboard messages, but one simple advantage of using keyboard accelerators is that you don't
need to duplicate the menu and keyboard accelerator logic.

For applications with multiple windows and multiple window procedures, keyboard accelerators become very
important. As we've seen, Windows sends keyboard messages to the window procedure for the window that
currently has the input focus. For keyboard accelerators, however, Windows sends the WM_COMMAND message to
the window procedure whose handle is specified in the Windows function TranslateAccelerator . Generally, this will
be your main window, the same window that has the menu, which means that the logic for acting upon keyboard
accelerators does not have to be duplicated in every window procedure.

This advantage becomes particularly important if you use modeless dialog boxes (discussed in the next chapter) or
child windows on your main window's client area. If a particular keyboard accelerator is defined to move among
windows, only one window procedure has to include this logic. The child windows do not receive WM_COMMAND
messages from the keyboard accelerators.

Some Rules on Assigning Accelerators

In theory, you can define a keyboard accelerator for almost any virtual key or character key in combination with
the Shift key, Ctrl key, or Alt key. However, you should try to achieve some consistency with other applications
and avoid interfering with Windows' use of the keyboard. You should avoid using Tab, Enter, Esc, and the
Spacebar in keyboard accelerators because these are often used for system functions.

The most common use of keyboard accelerators is for items on the program's Edit menu. The recommended
keyboard accelerators for these items changed between Windows 3.0 and Windows 3.1, so it's become common to
support both the old and the new accelerators, as shown in the following table:
Function
Old Accelerator
New Accelerator
Undo
Alt+Backspace
Ctrl+Z
Cut
Shift+Del
Ctrl+X
Copy
Ctrl+Ins
Ctrl+C
Paste
Shift+Ins
Ctrl+V
Delete or Clear
Del
Del

Another common accelerator is the F1 function key to invoke help. Avoid use of the F4, F5, and F6 keys because
these are often used for special functions in Multiple Document Interface (MDI) programs, which are discussed in
Chapter 19 .

The Accelerator Table

You can define an accelerator table in Developer Studio. For ease in loading the accelerator table in your program,
give it the same text name as your program (and your menu and your icon).

Each accelerator has an ID and a keystroke combination that you define in the Accel Properties dialog box. If
you've already defined your menu, the menu IDs will be available in the combo box, so you don't have to retype
them.

Accelerators can be either virtual key codes or ASCII characters in combination with the Shift, Ctrl, or Alt keys.
You can specify that an ASCII character is to be typed with the Ctrl key by typing a ^ before the letter. You can
also pick virtual key codes from a combo box.

When you define keyboard accelerators for a menu item, you should include the key combination in the menu item
text. The tab (\t) character separates the text from the accelerator so that the accelerators align in a second
column. To notate accelerator keys in a menu, use the text Ctrl, Shift, or Alt followed by a plus sign and the key
(for example, Shift+F6 or Ctrl+F6).

Loading the Accelerator Table

Within your program, you use the LoadAccelerators function to load the accelerator table into memory and obtain
a handle to it. The LoadAccelerators statement is similar to the LoadIcon , LoadCursor , and LoadMenu
statements.

First define a handle to an accelerator table as type HANDLE:

HANDLE hAccel ;

Then load the accelerator table:

hAccel = LoadAccelerators (hInstance, TEXT ("MyAccelerators")) ;

As with icons, cursors, and menus, you can use a number for the accelerator table name and then use that
number in the LoadAccelerators statement with the MAKEINTRESOURCE macro or enclosed in quotation marks and
preceded by a # character.

Translating the Keystrokes

We will now tamper with three lines of code that are common to all the Windows programs we've created so far in
this book. The code is the standard message loop:

while (GetMessage (&msg, NULL, 0, 0))
{
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
}

Here's how we change it to use the keyboard accelerator table:

while (GetMessage (&msg, NULL, 0, 0))
{
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
}

The TranslateAccelerator function determines whether the message stored in the msg message structure is a
keyboard message. If it is, the function searches for a match in the accelerator table whose handle is hAccel . If it
finds a match, it calls the window procedure for the window whose handle is hwnd . If the keyboard accelerator ID
corresponds to a menu item in the system menu, the message is WM_SYSCOMMAND. Otherwise, the message is
WM_COMMAND.

When TranslateAccelerator returns, the return value is nonzero if the message has been translated (and already
sent to the window procedure) and 0 if not. If TranslateAccelerator returns a nonzero value, you should not call
TranslateMessage and DispatchMessage but rather should loop back to the GetMessage call.

The hwnd parameter in TranslateMessage looks a little out of place because it's not required in the other three
functions in the message loop. Moreover, the message structure itself (the structure variable msg) has a member
named hwnd , which is also a handle to a window.

Here's why the function is a little different: The fields of the msg structure are filled in by the GetMessage call.
When the second parameter of GetMessage is NULL, the function retrieves messages for all windows belonging to
the application. When GetMessage returns, the hwnd member of the msg structure is the window handle of the
window that will get the message. However, when TranslateAccelerator translates a keyboard message into a
WM_COMMAND or WM_SYSCOMMAND message, it replaces the msg.hwnd window handle with the hwnd window
handle specified as the first parameter to the function. That is how Windows sends all keyboard accelerator
messages to the same window procedure even if another window in the application currently has the input focus.
TranslateAccelerator does not translate keyboard messages when a modal dialog box or message box has the
input focus, because messages for these windows do not come through the program's message loop.

In some cases in which another window in your program (such as a modeless dialog box) has the input focus, you
may not want keyboard accelerators to be translated. You'll see how to handle this situation in the next chapter.

Receiving the Accelerator Messages

When a keyboard accelerator corresponds to a menu item in the system menu, TranslateAccelerator sends the
window procedure a WM_SYSCOMMAND message. Otherwise, TranslateAccelerator sends the window procedure a
WM_COMMAND message. The following table shows the types of WM_COMMAND messages you can receive for
keyboard accelerators, menu commands, and child window controls:
Accelerator
Menu
Control
LOWORD (wParam)
Accelerator ID
Menu ID
Control ID
HIWORD (wParam)
1
0
Notification code
lParam
0
0
Child window handle

If the keyboard accelerator corresponds to a menu item, the window procedure also receives WM_INITMENU,
WM_INITMENUPOPUP, and WM_MENUSELECT messages, just as if the menu option had been chosen. Programs
usually enable and disable items in a popup menu when processing WM_INITMENUPOPUP, so you still have that
facility when using keyboard accelerators. If the keyboard accelerator corresponds to a disabled or grayed menu
item, TranslateAccelerator does not send the window procedure a WM_COMMAND or WM_SYSCOMMAND message.

If the active window is minimized, TranslateAccelerator sends the window procedure WM_SYSCOMMAND
messages—but not WM_COMMAND messages—for keyboard accelerators that correspond to enabled system menu
items. TranslateAccelerator also sends that window procedure WM_COMMAND messages for accelerators that do
not correspond to any menu items.

POPPAD with a Menu and Accelerators

In Chapter 9 , we created a program called POPPAD1 that uses a child window edit control to implement a
rudimentary notepad. In this chapter, we'll add File and Edit menus and call it POPPAD2. The Edit items will all be
functional; we'll finish the File functions in Chapter 11 and the Print function in Chapter 13 . POPPAD2 is shown in
Figure 10-11.

Figure 10-11. The POPPAD2 program.

POPPAD2.C

/*---
 POPPAD2.C -- Popup Editor Version 2 (includes menu)

 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

#define ID_EDIT 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

TCHAR szAppName[] = TEXT ("PopPad2") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {

 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szAppName,
 WS_OVERLAPPEDWINDOW,
 GetSystemMetrics (SM_CXSCREEN) / 4,
 GetSystemMetrics (SM_CYSCREEN) / 4,
 GetSystemMetrics (SM_CXSCREEN) / 2,
 GetSystemMetrics (SM_CYSCREEN) / 2,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

AskConfirmation (HWND hwnd)
{
 return MessageBox (hwnd, TEXT ("Really want to close PopPad2?"),
 szAppName, MB_YESNO | MB_ICONQUESTION) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndEdit ;
 int iSelect, iEnable ;

 switch (message)
 {
 case WM_CREATE:
 hwndEdit = CreateWindow (TEXT ("edit"), NULL,
 WS_CHILD | WS_VISIBLE | WS_HSCROLL | WS_VSCROLL |
 WS_BORDER | ES_LEFT | ES_MULTILINE |
 ES_AUTOHSCROLL | ES_AUTOVSCROLL,
 0, 0, 0, 0, hwnd, (HMENU) ID_EDIT,
 ((LPCREATESTRUCT) lParam)->hInstance, NULL) ;
 return 0 ;

 case WM_SETFOCUS:
 SetFocus (hwndEdit) ;

 return 0 ;

 case WM_SIZE:
 MoveWindow (hwndEdit, 0, 0, LOWORD (lParam), HIWORD (lParam), TRUE) ;
 return 0 ;

 case WM_INITMENUPOPUP:
 if (lParam == 1)
 {
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_UNDO,
 SendMessage (hwndEdit, EM_CANUNDO, 0, 0) ?
 MF_ENABLED : MF_GRAYED) ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_PASTE,
 IsClipboardFormatAvailable (CF_TEXT) ?
 MF_ENABLED : MF_GRAYED) ;

 iSelect = SendMessage (hwndEdit, EM_GETSEL, 0, 0) ;

 if (HIWORD (iSelect) == LOWORD (iSelect))
 iEnable = MF_GRAYED ;
 else
 iEnable = MF_ENABLED ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CLEAR, iEnable) ;
 return 0 ;
 }
 break ;
 case WM_COMMAND:
 if (lParam)
 {
 if (LOWORD (lParam) == ID_EDIT &&
 (HIWORD (wParam) == EN_ERRSPACE ||
 HIWORD (wParam) == EN_MAXTEXT))
 MessageBox (hwnd, TEXT ("Edit control out of space."),
 szAppName, MB_OK | MB_ICONSTOP) ;
 return 0 ;
 }
 else switch (LOWORD (wParam))
 {
 case IDM_FILE_NEW:
 case IDM_FILE_OPEN:
 case IDM_FILE_SAVE:
 case IDM_FILE_SAVE_AS:
 case IDM_FILE_PRINT:
 MessageBeep (0) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 case IDM_EDIT_UNDO:
 SendMessage (hwndEdit, WM_UNDO, 0, 0) ;
 return 0 ;

 case IDM_EDIT_CUT:
 SendMessage (hwndEdit, WM_CUT, 0, 0) ;
 return 0 ;

 case IDM_EDIT_COPY:
 SendMessage (hwndEdit, WM_COPY, 0, 0) ;
 return 0 ;

 case IDM_EDIT_PASTE:
 SendMessage (hwndEdit, WM_PASTE, 0, 0) ;
 return 0 ;

 case IDM_EDIT_CLEAR:
 SendMessage (hwndEdit, WM_CLEAR, 0, 0) ;
 return 0 ;

 case IDM_EDIT_SELECT_ALL:
 SendMessage (hwndEdit, EM_SETSEL, 0, -1) ;
 return 0 ;

 case IDM_HELP_HELP:
 MessageBox (hwnd, TEXT ("Help not yet implemented!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;

 case IDM_APP_ABOUT:
 MessageBox (hwnd, TEXT ("POPPAD2 (c) Charles Petzold, 1998"),
 szAppName, MB_OK | MB_ICONINFORMATION) ;
 return 0 ;
 }
 break ;

 case WM_CLOSE:
 if (IDYES == AskConfirmation (hwnd))
 DestroyWindow (hwnd) ;
 return 0 ;

 case WM_QUERYENDSESSION:
 if (IDYES == AskConfirmation (hwnd))
 return 1 ;
 else
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;

}

POPPAD2.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Icon

POPPAD2 ICON DISCARDABLE "poppad2.ico"

///
// Menu
POPPAD2 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open...", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "&Print", IDM_FILE_PRINT
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "De&lete\tDel", IDM_EDIT_CLEAR
 MENUITEM SEPARATOR
 MENUITEM "&Select All", IDM_EDIT_SELECT_ALL
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help...", IDM_HELP_HELP
 MENUITEM "&About PopPad2...", IDM_APP_ABOUT
 END
END

///
// Accelerator

POPPAD2 ACCELERATORS DISCARDABLE
BEGIN
 VK_BACK, IDM_EDIT_UNDO, VIRTKEY, ALT, NOINVERT
 VK_DELETE, IDM_EDIT_CLEAR, VIRTKEY, NOINVERT
 VK_DELETE, IDM_EDIT_CUT, VIRTKEY, SHIFT, NOINVERT
 VK_F1, IDM_HELP_HELP, VIRTKEY, NOINVERT
 VK_INSERT, IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 VK_INSERT, IDM_EDIT_PASTE, VIRTKEY, SHIFT, NOINVERT
 "^C", IDM_EDIT_COPY, ASCII, NOINVERT
 "^V", IDM_EDIT_PASTE, ASCII, NOINVERT
 "^X", IDM_EDIT_CUT, ASCII, NOINVERT
 "^Z", IDM_EDIT_UNDO, ASCII, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by POPPAD2.RC

#define IDM_FILE_NEW 40001
#define IDM_FILE_OPEN 40002
#define IDM_FILE_SAVE 40003
#define IDM_FILE_SAVE_AS 40004
#define IDM_FILE_PRINT 40005
#define IDM_APP_EXIT 40006
#define IDM_EDIT_UNDO 40007
#define IDM_EDIT_CUT 40008
#define IDM_EDIT_COPY 40009
#define IDM_EDIT_PASTE 40010
#define IDM_EDIT_CLEAR 40011
#define IDM_EDIT_SELECT_ALL 40012
#define IDM_HELP_HELP 40013
#define IDM_APP_ABOUT 40014

POPPAD2.ICO

The POPPAD2.RC resource script file contains the menu and the accelerator table. You'll notice that the
accelerators are all indicated within the character strings of the Edit popup menu following the tab (\t) character.

Enabling Menu Items

The major job in the window procedure now involves enabling and graying the options in the Edit menu, which is
done when processing the WM_INITMENUPOPUP message. First the program checks to see if the Edit popup is
about to be displayed. Because the position index of Edit in the menu (starting with File at 0) is 1, lParam equals 1
if the Edit popup is about to be displayed.

To determine whether the Undo option can be enabled, POPPAD2 sends an EM_CANUNDO message to the edit
control. The SendMessage call returns nonzero if the edit control can perform an Undo action, in which case the
option is enabled; otherwise, the option is grayed:

EnableMenuItem (wParam, IDM_UNDO,
 SendMessage (hwndEdit, EM_CANUNDO, 0, 0) ?
 MF_ENABLED : MF_GRAYED) ;

The Paste option should be enabled only if the clipboard currently contains text. We can determine this through
the IsClipboardFormatAvailable call with the CF_TEXT identifier:

EnableMenuItem (wParam, IDM_PASTE,
 IsClipboardFormatAvailable (CF_TEXT) ? MF_ENABLED : MF_GRAYED) ;

The Cut, Copy, and Delete options should be enabled only if text in the edit control has been selected. Sending the
edit control an EM_GETSEL message returns an integer containing this information:

iSelect = SendMessage (hwndEdit, EM_GETSEL, 0, 0) ;

The low word of iSelect is the position of the first selected character; the high word of iSelect is the position of the
character following the selection. If these two words are equal, no text has been selected:

if (HIWORD (iSelect) == LOWORD (iSelect))
 iEnable = MF_GRAYED ;
else
 iEnable = MF_ENABLED ;

The value of iEnable is then used for the Cut, Copy, and Delete options:

EnableMenuItem (wParam, IDM_CUT, iEnable) ;
EnableMenuItem (wParam, IDM_COPY, iEnable) ;
EnableMenuItem (wParam, IDM_DEL, iEnable) ;

Processing the Menu Options

Of course, if we were not using a child window edit control for POPPAD2, we would now be faced with the
problems involved with actually implementing the Undo, Cut, Copy, Paste, Clear, and Select All options from the
Edit menu. But the edit control makes this process easy, because we merely send the edit control a message for
each of these options:

case IDM_UNDO :
 SendMessage (hwndEdit, WM_UNDO, 0, 0) ;
 return 0 ;

case IDM_CUT :
 SendMessage (hwndEdit, WM_CUT, 0, 0) ;
 return 0 ;

case IDM_COPY :
 SendMessage (hwndEdit, WM_COPY, 0, 0) ;
 return 0 ;

case IDM_PASTE :
 SendMessage (hwndEdit, WM_PASTE, 0, 0) ;
 return 0 ;

case IDM_DEL :
 SendMessage (hwndEdit, WM_DEL, 0, 0) ;
 return 0 ;

case IDM_SELALL :
 SendMessage (hwndEdit, EM_SETSEL, 0, -1) ;
 return 0 ;

Notice that we could have simplified this even further by making the values of IDM_UNDO, IDM_CUT, and so forth
equal to the values of the corresponding window messages WM_UNDO, WM_CUT, and so forth.

The About option on the File popup invokes a simple message box:

case IDM_ABOUT :
 MessageBox (hwnd, TEXT ("POPPAD2 (c) Charles Petzold, 1998"),
 szAppName, MB_OK ¦ MB_ICONINFORMATION) ;
 return 0 ;

In the next chapter, we'll make this a dialog box. A message box is also invoked when you select the Help option
from this menu or when you press the F1 accelerator key.

The Exit option sends the window procedure a WM_CLOSE message:

case IDM_EXIT :
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

That is precisely what DefWindowProc does when it receives a WM_SYSCOMMAND message with wParam equal to
SC_CLOSE.

In previous programs, we have not processed the WM_CLOSE messages in our window procedure but have simply
passed them to DefWindowProc . DefWindowProc does something simple with WM_CLOSE: it calls the
DestroyWindow function. Rather than send WM_CLOSE messages to DefWindowProc , however, POPPAD2
processes them. (This fact is not so important now, but it will become very important in Chapter 11 when POPPAD
can actually edit files.)

case WM_CLOSE :
 if (IDYES == AskConfirmation (hwnd))

 DestroyWindow (hwnd) ;
 return 0 ;

AskConfirmation is a function in POPPAD2 that displays a message box asking for confirmation to close the
program:

AskConfirmation (HWND hwnd)
{
 return MessageBox (hwnd, TEXT ("Really want to close Poppad2?"),
 szAppName, MB_YESNO ¦ MB_ICONQUESTION) ;
}

The message box (as well as the AskConfirmation function) returns IDYES if the Yes button is selected. Only then
does POPPAD2 call DestroyWindow . Otherwise, the program is not terminated.

If you want confirmation before terminating a program, you must also process WM_ QUERYENDSESSION
messages. Windows begins sending every window procedure a WM_QUERYENDSESSION message when the user

chooses to shut down Windows. If any window procedure returns 0 from this message, the Windows session is not
terminated. Here's how we handle WM_QUERYENDSESSION:

case WM_QUERYENDSESSION :
 if (IDYES == AskConfirmation (hwnd))
 return 1 ;
 else
 return 0 ;

The WM_CLOSE and WM_QUERYENDSESSION messages are the only two messages you have to process if you
want to ask for user confirmation before ending a program. That's why we made the Exit menu option in POPPAD2
send the window procedure a WM_CLOSE message—by doing so, we avoided asking for confirmation at yet a third
point.

If you process WM_QUERYENDSESSION messages, you may also be interested in the WM_ENDSESSION message.
Windows sends this message to every window procedure that has previously received a WM_QUERYENDSESSION
message. The wParam parameter is 0 if the session fails to terminate because another program has returned 0
from WM_QUERYENDSESSION. The WM_ENDSESSION message essentially answers the question: I told Windows
it was OK to terminate me, but did I really get terminated?

Although I've included the normal New, Open, Save, and Save As options in POPPAD2's File menu, they are
currently nonfunctional. To process these commands, we need to use dialog boxes. And you're now ready to learn
about them.

Chapter 11

Dialog Boxes

Dialog boxes are most often used for obtaining additional input from the user beyond what can be easily managed
through a menu. The programmer indicates that a menu item invokes a dialog box by adding an ellipsis (...) to the
menu item.

A dialog box generally takes the form of a popup window containing various child window controls. The size and
placement of these controls are specified in a "dialog box template" in the program's resource script file. Although
a programmer can define a dialog box template "manually," these days dialog boxes are usually interactively
designed in the Visual C++ Developer Studio. Developer Studio then generates the dialog template.

When a program invokes a dialog box based on a template, Microsoft Windows 98 is responsible for creating the
dialog box popup window and the child window controls, and for providing a window procedure to process dialog
box messages, including all keyboard and mouse input. The code within Windows that does all this is sometimes
referred to as the "dialog box manager."

Many of the messages that are processed by that dialog box window procedure located within Windows are also
passed to a function within your own program, called a "dialog box procedure" or "dialog procedure." The dialog
procedure is similar to a normal window procedure, but with some important differences. Generally, you will not
be doing much within the dialog procedure beyond initializing the child window controls when the dialog box is
created, processing messages from the child window controls, and ending the dialog box. Dialog procedures
generally do not process WM_PAINT messages, nor do they directly process keyboard and mouse input.

The subject of dialog boxes would normally be a big one because it involves the use of child window controls.
However, we have already explored child window controls in Chapter 9. When you use child window controls in
dialog boxes, the Windows dialog box manager picks up many of the responsibilities that we assumed in Chapter
9. In particular, the problems we encountered with passing the input focus among the scroll bars in the COLORS1
program disappear when working with dialog boxes. Windows handles all the logic necessary to shift input focus
among controls in a dialog box.

However, adding a dialog box to a program is a bit more involved than adding an icon or a menu. We'll begin with
a simple dialog box to give you a feel for the interconnections between these various pieces.

Modal Dialog Boxes

Dialog boxes are either "modal" or "modeless." The modal dialog box is the most common. When your program
displays a modal dialog box, the user cannot switch between the dialog box and another window in your program.
The user must explicitly end the dialog box, usually by clicking a push button marked either OK or Cancel. The
user can, however, switch to another program while the dialog box is still displayed. Some dialog boxes (called
"system modal") do not allow even this. System modal dialog boxes must be ended before the user can do
anything else in Windows.

Creating an "About" Dialog Box

Even if a Windows program requires no user input, it will often have a dialog box that is invoked by an About
option on the menu. This dialog box displays the name and icon of the program, a copyright notice, a push button
labeled OK, and perhaps some other information. (Perhaps a telephone number for technical support?) The first
program we'll look at does nothing except display an About dialog box. The ABOUT1 program is shown in Figure
11-1.

Figure 11-1. The ABOUT1 program.

ABOUT1.C

/*--
 ABOUT1.C -- About Box Demo Program No. 1
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

 {
 static TCHAR szAppName[] = TEXT ("About1") ;
 MSG msg ;
 HWND hwnd ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("About Box Demo Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HINSTANCE hInstance ;

 switch (message)
 {
 case WM_CREATE :
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
 return 0 ;

 case WM_COMMAND :
 switch (LOWORD (wParam))
 {
 case IDM_APP_ABOUT :
 DialogBox (hInstance, TEXT ("AboutBox"), hwnd, AboutDlgProc) ;
 break ;
 }
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{

 switch (message)
 {
 case WM_INITDIALOG :
 return TRUE ;

 case WM_COMMAND :
 switch (LOWORD (wParam))
 {
 case IDOK :
 case IDCANCEL :
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

ABOUT1.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ABOUTBOX DIALOG DISCARDABLE 32, 32, 180, 100
STYLE DS_MODALFRAME | WS_POPUP
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,66,80,50,14
 ICON "ABOUT1",IDC_STATIC,7,7,21,20
 CTEXT "About1",IDC_STATIC,40,12,100,8
 CTEXT "About Box Demo Program",IDC_STATIC,7,40,166,8
 CTEXT "(c) Charles Petzold, 1998",IDC_STATIC,7,52,166,8
END

///
// Menu

ABOUT1 MENU DISCARDABLE
BEGIN
 POPUP "&Help"
 BEGIN
 MENUITEM "&About About1...", IDM_APP_ABOUT
 END
END

///
// Icon

ABOUT1 ICON DISCARDABLE "About1.ico"

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by About1.rc

#define IDM_APP_ABOUT 40001
#define IDC_STATIC -1

ABOUT1.ICO

You create the icon and the menu in this program the same way as described in the last chapter. Both the icon
and the menu have text ID names of "About1." The menu has one option, which generates a WM_COMMAND
message with an ID of IDM_APP_ABOUT. This causes the program to display the dialog box shown in Figure 11-2.

Figure 11-2. The ABOUT1 program's dialog box.

The Dialog Box and Its Template

To add a dialog box to an application in the Visual C++ Developer Studio, you begin by selecting Resource from
the Insert menu and choosing Dialog Box. You are then presented with a dialog box with a title bar and caption
("Dialog") and OK and Cancel buttons. A Controls toolbar allows you to insert various controls in the dialog box.

Developer Studio gives the dialog box a standard ID of IDD_DIALOG1. You can right-click this name (or the dialog
box itself) and select Properties from the menu. For this program, change the ID to "AboutBox" (with quotation
marks). To be consistent with the dialog box I created, change the X Pos and Y Pos fields to 32. This is to indicate
where the dialog box is displayed relative to the upper left corner of the client area of the program's window. (I'll
discuss dialog box coordinates in more detail shortly.)

Now, still in the Properties dialog, select the Styles tab. Unclick the Title Bar check box because this dialog box
does not have a title bar. Click the close button on the Properties dialog.

Now it's time to actually design the dialog box. We won't be needing the Cancel button, so click that button and
press the Delete key on your keyboard. Click the OK button, and move it to the bottom of the dialog. At the
bottom of the Developer Studio window will be a small bitmap on a toolbar that lets you center the control
horizontally in the window. Press that button.

We want the program's icon to appear in the dialog box. To do so, press the Pictures button on the floating
Controls toolbar. Move the mouse to the surface of the dialog box, press the left button, and drag a square. This is
where the icon will appear. Press the right mouse button on this square, and select Properties from the menu.
Leave the ID as IDC_STATIC. This identifier will be defined in RESOURCE.H as -1, which is used for all IDs that the
C program does not refer to. Change the Type to Icon. You should be able to type the name of the program's icon
in the Image field, or, if you've already created the icon, you can select the name ("About1") from the combo box.

For the three static text strings in the dialog box, select Static Text from the Controls toolbar and position the text
in the dialog window. Right-click the control, and select Properties from the menu. You'll type the text you want to
appear in the Caption field of the Properties box. Select the Styles tab to select Center from the Align Text field.

As you add these text strings, you may want to make the dialog box larger. Select it and drag the outline. You can
also select and size controls. It's often easier to use the keyboard cursor movement keys for this. The arrow keys
by themselves move the controls; the arrow keys with Shift depressed let you change the controls' sizes. The
coordinates and sizes of the selected control are shown in the lower right corner of the Developer Studio window.

If you build the application and later look at the ABOUT1.RC resource script file, you'll see the dialog box template
that Developer Studio generated. The dialog box that I designed has a template that looks like this:

ABOUTBOX DIALOG DISCARDABLE 32, 32, 180, 100
STYLE DS_MODALFRAME | WS_POPUP
FONT 8, "MS Sans Serif"

BEGIN
 DEFPUSHBUTTON "OK",IDOK,66,80,50,14
 ICON "ABOUT1",IDC_STATIC,7,7,21,20
 CTEXT "About1",IDC_STATIC,40,12,100,8
 CTEXT "About Box Demo Program",IDC_STATIC,7,40,166,8
 CTEXT "(c) Charles Petzold, 1998",IDC_STATIC,7,52,166,8
END

The first line gives the dialog box a name (in this case, ABOUTBOX). As is the case for other resources, you can
use a number instead. The name is followed by the keywords DIALOG and DISCARDABLE, and four numbers. The
first two numbers are the x and y coordinates of the upper left corner of the dialog box, relative to the client area
of its parent when the dialog box is invoked by the program. The second two numbers are the width and height of
the dialog box.

These coordinates and sizes are not in units of pixels. They are instead based on a special coordinate system used
only for dialog box templates. The numbers are based on the size of the font used for the dialog box (in this case,

an 8-point MS Sans Serif font): x -coordinates and width are expressed in units of 1/4 of an average character
width; y -coordinates and height are expressed in units of 1/8 of the character height. Thus, for this particular
dialog box, the upper left corner of the dialog box is 5 characters from the left edge of the main window's client
area and 2-1/2 characters from the top edge. The dialog itself is 40 characters wide and 10 characters high.

This coordinate system allows you to use coordinates and sizes that will retain the general dimensions and look of
the dialog box regardless of the resolution of the video display and the font you've selected. Because font
characters are often approximately twice as high as they are wide, the dimensions on both the x -axis and the y -
axis are nearly the same.

The STYLE statement in the template is similar to the style field of a CreateWindow call. WS_POPUP and
DS_MODALFRAME are normally used for modal dialog boxes, but we'll explore some alternatives later on.

Within the BEGIN and END statements (or left and right brackets, if you'd prefer, when designing dialog box
templates by hand), you define the child window controls that will appear in the dialog box. This dialog box uses
three types of child window controls: DEFPUSHBUTTON (a default push button), ICON (an icon), and CTEXT
(centered text). The format of these statements is

control-type "text" id, xPos, yPos, xWidth, yHeight, iStyle

The iStyle value at the end is optional; it specifies additional window styles using identifiers defined in the
Windows header files.

These DEFPUSHBUTTON, ICON, and CTEXT identifiers are used in dialog boxes only. They are shorthand for a
particular window class and window style. For example, CTEXT indicates that the class of the child window control
is "static" and that the style is

WS_CHILD ¦ SS_CENTER ¦ WS_VISIBLE ¦ WS_GROUP

Although this is the first time we've encountered the WS_GROUP identifier, we used the WS_CHILD, SS_CENTER,
and WS_VISIBLE window styles when creating static child window text controls in the COLORS1 program in
Chapter 9 .

For the icon, the text field is the name of the program's icon resource, which is also defined in the ABOUT1
resource script. For the push button, the text field is the text that appears inside the push button. This text is
equivalent to the text specified as the second argument in a CreateWindow call when you create a child window
control in a program.

The id field is a value that the child window uses to identify itself when sending messages (usually
WM_COMMMAND messages) to its parent. The parent window of these child window controls is the dialog box
window itself, which sends these messages to a window procedure in Windows. However, this window procedure
also sends these messages to the dialog box procedure that you'll include in your program. The ID values are
equivalent to the child window IDs used in the CreateWindow function when we created child windows in Chapter
9 . Because the text and icon controls do not send messages back to the parent window, these values are set to
IDC_STATIC, which is defined in RESOURCE.H as -1. The ID value for the push button is IDOK, which is defined in
WINUSER.H as 1.

The next four numbers set the position of the child window control (relative to the upper left corner of the dialog
box's client area) and the size. The position and size are expressed in units of 1/4 of the average width and 1/8 of
the height of a font character. The width and height values are ignored for the ICON statement.

The DEFPUSHBUTTON statement in the dialog box template includes the window style WS_GROUP in addition to
the window style implied by the DEFPUSHBUTTON keyword. I'll have more to say about WS_GROUP (and the
related WS_TABSTOP style) when discussing the second version of this program, ABOUT2, a bit later.

The Dialog Box Procedure

The dialog box procedure within your program handles messages to the dialog box. Although it looks very much
like a window procedure, it is not a true window procedure. The window procedure for the dialog box is within

Windows. That window procedure calls your dialog box procedure with many of the messages that it receives.
Here's the dialog box procedure for ABOUT1:

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG :
 return TRUE ;

 case WM_COMMAND :
 switch (LOWORD (wParam))
 {
 case IDOK :
 case IDCANCEL :
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

The parameters to this function are the same as those for a normal window procedure; as with a window
procedure, the dialog box procedure must be defined as a CALLBACK function. Although I've used hDlg for the
handle to the dialog box window, you can use hwnd instead if you like. Let's note first the differences between this
function and a window procedure:

A window procedure returns an LRESULT; a dialog box procedure returns a BOOL, which is defined in the
Windows header files as an int .

A window procedure calls DefWindowProc if it does not process a particular message; a dialog box procedure
returns TRUE (nonzero) if it processes a message and FALSE (0) if it does not.

A dialog box procedure does not need to process WM_PAINT or WM_DESTROY messages. A dialog box
procedure will not receive a WM_CREATE message; instead, the dialog box procedure performs initialization
during the special WM_INITDIALOG message.

The WM_INITDIALOG message is the first message the dialog box procedure receives. This message is sent only
to dialog box procedures. If the dialog box procedure returns TRUE, Windows sets the input focus to the first child
window control in the dialog box that has a WS_TABSTOP style (which I'll explain in the discussion of ABOUT2). In
this dialog box, the first child window control that has a WS_TABSTOP style is the push button. Alternatively,
during the processing of WM_INITDIALOG, the dialog box procedure can use SetFocus to set the focus to one of
the child window controls in the dialog box and then return FALSE.

The only other message this dialog box processes is WM_COMMAND. This is the message the push-button control
sends to its parent window either when the button is clicked with the mouse or when the Spacebar is pressed
while the button has the input focus. The ID of the control (which we set to IDOK in the dialog box template) is in
the low word of wParam . For this message, the dialog box procedure calls EndDialog , which tells Windows to
destroy the dialog box. For all other messages, the dialog box procedure returns FALSE to tell the dialog box
window procedure within Windows that our dialog box procedure did not process the message.

The messages for a modal dialog box don't go through your program's message queue, so you needn't worry
about the effect of keyboard accelerators within the dialog box.

Invoking the Dialog Box

During the processing of WM_CREATE in WndProc , ABOUT1 obtains the program's instance handle and stores it in
a static variable:

hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;

ABOUT1 checks for WM_COMMAND messages where the low word of wParam is equal to IDM_APP_ABOUT. When
it gets one, the program calls DialogBox :

DialogBox (hInstance, TEXT ("AboutBox"), hwnd, AboutDlgProc) ;

This function requires the instance handle (saved during WM_CREATE), the name of the dialog box (as defined in
the resource script), the parent of the dialog box (which is the program's main window), and the address of the
dialog procedure. If you use a numeric identifier rather than a name for the dialog box template, you can convert
it to a string using the MAKEINTRESOURCE macro.

Selecting About About1 from the menu displays the dialog box, as shown in Figure 11-2. You can end this dialog
box by clicking the OK button with the mouse, by pressing the Spacebar, or by pressing Enter. For any dialog box
that contains a default push button, Windows sends a WM_COMMAND message to the dialog box, with the low
word of wParam equal to the ID of the default push button when Enter or the Spacebar is pressed. That ID is
IDOK. You can also end the dialog box by pressing Escape. In that case Windows sends a WM_COMMAND message
with an ID equal to IDCANCEL.

The DialogBox function you call to display the dialog box will not return control to WndProc until the dialog box is
ended. The value returned from DialogBox is the second parameter to the EndDialog function called within the
dialog box procedure. (This value is not used in ABOUT1 but is used in ABOUT2.) WndProc can then return control
to Windows.

Even when the dialog box is displayed, however, WndProc can continue to receive messages. In fact, you can
send messages to WndProc from within the dialog box procedure. ABOUT1's main window is the parent of the
dialog box popup window, so the SendMessage call in AboutDlgProc would start off like this:

SendMessage (GetParent (hDlg), . . .) ;

Variations on a Theme

Although the dialog editor and other resource editors in the Visual C++ Developer Studio seemingly make it
unnecessary to even look at resource scripts, it is still helpful to learn resource script syntax. Particularly for dialog
templates, knowing the syntax allows you to have a better feel for the scope and limitations of dialog boxes. You
may even want to create a dialog box template manually if there's something you need to do that can't be done
otherwise (such as in the HEXCALC program later in this chapter). The resource compiler and resource script
syntax is documented in /Platform SDK/Windows Programming Guidelines/Platform SDK Tools/Compiling/Using
the Resource Compiler .

The window style of the dialog box is specified in the Properties dialog in the Developer Studio, which is translated
into the STYLE line of the dialog box template. For ABOUT1, we used a style that is most common for modal dialog
boxes:

STYLE WS_POPUP ¦ DS_MODALFRAME

However, you can also experiment with other styles. Some dialog boxes have a caption bar that identifies the

dialog's purpose and lets the user move the dialog box around the display using the mouse. This is the style
WS_CAPTION. When you use WS_CAPTION, the x and y coordinates specified in the DIALOG statement are the
coordinates of the dialog box's client area, relative to the upper left corner of the parent window's client area. The
caption bar will be shown above the y -coordinate.

If you have a caption bar, you can put text in it using the CAPTION statement, following the STYLE statement, in
the dialog box template:

CAPTION "Dialog Box Caption"

Or while processing the WM_INITDIALOG message in the dialog procedure, you can use

SetWindowText (hDlg, TEXT ("Dialog Box Caption")) ;

If you use the WS_CAPTION style, you can also add a system menu box with the WS_SYSMENU style. This style
allows the user to select Move or Close from the system menu.

Selecting Resizing from the Border list box of the Properties dialog (equivalent to the style WS_THICKFRAME)
allows the user to resize the dialog box, although this is unusual. If you don't mind being even more unusual, you
can also try adding a maximize box to the dialog box style.

You can even add a menu to a dialog box. The dialog box template will include the statement

MENU menu-name

The argument is either the name or the number of a menu in the resource script. Menus are highly uncommon for
modal dialog boxes. If you use one, be sure that all the ID numbers in the menu and the dialog box controls are
unique, or if they're not, that they duplicate the same commands.

The FONT statement lets you set something other than the system font for use with dialog box text. This was once
uncommon in dialog boxes but is now quite normal. Indeed, Developer Studio selects the 8-point MS Sans Serif
font by default in any dialog box you create. A Windows program can achieve a unique look by shipping a special
font with a program that is used solely by the program for dialog boxes and other text output.

Although the dialog box window procedure is normally within Windows, you can use one of your own window
procedures to process dialog box messages. To do so, specify a window class name in the dialog box template:

CLASS "class-name"

There are some other considerations involved, but I'll demonstrate this approach in the HEXCALC program shown
later in this chapter.

When you call DialogBox , specifying the name of a dialog box template, Windows has almost everything it needs
to create a popup window by calling the normal CreateWindow function. Windows obtains the coordinates and size
of the window, the window style, the caption, and the menu from the dialog box template. Windows gets the
instance handle and the parent window handle from the arguments to DialogBox . The only other piece of
information it needs is a window class (assuming the dialog box template does not specify one). Windows registers
a special window class for dialog boxes. The window procedure for this window class has access to the address of
your dialog box procedure (which you provide in the DialogBox call), so it can keep your program informed of
messages that this popup window receives. Of course, you can create and maintain your own dialog box by
creating the popup window yourself. Using DialogBox is simply an easier approach.

You may want the benefit of using the Windows dialog manager, but you may not want to (or be able to) define
the dialog template in a resource script. Perhaps you want the program to create a dialog box dynamically as it's
running. The function to look at is DialogBoxIndirect , which uses data structures to define the template.

In the dialog box template in ABOUT1.RC, the shorthand notation CTEXT, ICON, and DEFPUSHBUTTON is used to
define the three types of child window controls we want in the dialog box. There are several others that you can
use. Each type implies a particular predefined window class and a window style. The following table shows the
equivalent window class and window style for some common control types:
Control Type
Window Class
Window Style
PUSHBUTTON
button
BS_PUSHBUTTON ¦ WS_TABSTOP
DEFPUSHBUTTON
button
BS_DEFPUSHBUTTON ¦ WS_TABSTOP
CHECKBOX
button
BS_CHECKBOX ¦ WS_TABSTOP
RADIOBUTTON
button
BS_RADIOBUTTON ¦ WS_TABSTOP
GROUPBOX
button
BS_GROUPBOX ¦ WS_TABSTOP
LTEXT
static
SS_LEFT ¦ WS_GROUP
CTEXT
static
SS_CENTER ¦ WS_GROUP
RTEXT
static
SS_RIGHT ¦ WS_GROUP
ICON
static
SS_ICON
EDITTEXT
edit
ES_LEFT ¦ WS_BORDER ¦ WS_TABSTOP
SCROLLBAR
scrollbar
SBS_HORZ
LISTBOX
listbox
LBS_NOTIFY ¦ WS_BORDER ¦ WS_VSCROLL
COMBOBOX
combobox
CBS_SIMPLE ¦ WS_TABSTOP

The resource compiler is the only program that understands this shorthand notation. In addition to the window
styles shown above, each of these controls has the style

WS_CHILD ¦ WS_VISIBLE

For all these control types except EDITTEXT, SCROLLBAR, LISTBOX, and COMBOBOX, the format of the control
statement is

control-type "text", id, xPos, yPos, xWidth, yHeight, iStyle

For EDITTEXT, SCROLLBAR, LISTBOX, and COMBOBOX, the format is

control-type id, xPos, yPos, xWidth, yHeight, iStyle

which excludes the text field. In both statements, the iStyle parameter is optional.

In Chapter 9 , I discussed rules for determining the width and height of predefined child window controls. You
might want to refer back to that chapter for these rules, keeping in mind that sizes specified in dialog box
templates are always in terms of 1/4 of the average character width and 1/8 of the character height.

The "style" field of the control statements is optional. It allows you to include other window style identifiers. For
instance, if you wanted to create a check box consisting of text to the left of a square box, you could use

CHECKBOX "text", id, xPos, yPos, xWidth, yHeight, BS_LEFTTEXT

Notice that the control type EDITTEXT automatically has a border. If you want to create a child window edit control
without a border, you can use

EDITTEXT id, xPos, yPos, xWidth, yHeight, NOT WS_BORDER

The resource compiler also recognizes a generalized control statement that looks like

CONTROL "text", id, "class", iStyle, xPos, yPos, xWidth, yHeight

This statement allows you to create any type of child window control by specifying the window class and the
complete window style. For example, instead of using

PUSHBUTTON "OK", IDOK, 10, 20, 32, 14

you can use

CONTROL "OK", IDOK, "button", WS_CHILD ¦ WS_VISIBLE ¦
 BS_PUSHBUTTON ¦ WS_TABSTOP, 10, 20, 32, 14

When the resource script is compiled, these two statements are encoded identically in the .RES file and the .EXE
file. In Developer Studio, you create a statement like this using the Custom Control option from the Controls
toolbar. In the ABOUT3 program, shown in Figure 11-5, I show how you can use this to create a control whose
window class is defined in your program.

When you use CONTROL statements in a dialog box template, you don't need to include the WS_CHILD and
WS_VISIBLE styles. Windows includes these in the window style when creating the child windows. The format of

the CONTROL statement also clarifies what the Windows dialog manager does when it creates a dialog box. First,
as I described earlier, it creates a popup window whose parent is the window handle that was provided in the
DialogBox function. Then, for each control in the dialog template, the dialog box manager creates a child window.
The parent of each of these controls is the popup dialog box. The CONTROL statement shown above is translated
into a CreateWindow call that looks like

hCtrl = CreateWindow (TEXT ("button"), TEXT ("OK"),
 WS_CHILD ¦ WS_VISIBLE ¦ WS_TABSTOP ¦ BS_PUSHBUTTON,
 10 * cxChar / 4, 20 * cyChar / 8,
 32 * cxChar / 4, 14 * cyChar / 8,
 hDlg, IDOK, hInstance, NULL) ;

where cxChar and cyChar are the width and height of the dialog box font character in pixels. The hDlg parameter
is returned from the CreateWindow call that creates the dialog box window. The hInstance parameter is obtained
from the original DialogBox call.

A More Complex Dialog Box

The simple dialog box in ABOUT1 demonstrates the basics of getting a dialog box up and running; now let's try
something a little more complex. The ABOUT2 program, shown in Figure 11-3, demonstrates how to manage
controls (in this case, radio buttons) within a dialog box procedure and also how to paint on the client area of the
dialog box.

Figure 11-3. The ABOUT2 program.

ABOUT2.C

/*--
 ABOUT2.C -- About Box Demo Program No. 2
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM) ;

int iCurrentColor = IDC_BLACK,
 iCurrentFigure = IDC_RECT ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("About2") ;
 MSG msg ;
 HWND hwnd ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("About Box Demo Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void PaintWindow (HWND hwnd, int iColor, int iFigure)
{
 static COLORREF crColor[8] = { RGB (0, 0, 0), RGB (0, 0, 255),
 RGB (0, 255, 0), RGB (0, 255, 255),
 RGB (255, 0, 0), RGB (255, 0, 255),
 RGB (255, 255, 0), RGB (255, 255, 255) } ;

 HBRUSH hBrush ;
 HDC hdc ;
 RECT rect ;

 hdc = GetDC (hwnd) ;
 GetClientRect (hwnd, &rect) ;
 hBrush = CreateSolidBrush (crColor[iColor - IDC_BLACK]) ;
 hBrush = (HBRUSH) SelectObject (hdc, hBrush) ;

 if (iFigure == IDC_RECT)
 Rectangle (hdc, rect.left, rect.top, rect.right, rect.bottom) ;
 else
 Ellipse (hdc, rect.left, rect.top, rect.right, rect.bottom) ;

 DeleteObject (SelectObject (hdc, hBrush)) ;
 ReleaseDC (hwnd, hdc) ;
}

void PaintTheBlock (HWND hCtrl, int iColor, int iFigure)
{
 InvalidateRect (hCtrl, NULL, TRUE) ;
 UpdateWindow (hCtrl) ;
 PaintWindow (hCtrl, iColor, iFigure) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HINSTANCE hInstance ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_APP_ABOUT:
 if (DialogBox (hInstance, TEXT ("AboutBox"), hwnd, AboutDlgProc))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 BeginPaint (hwnd, &ps) ;
 EndPaint (hwnd, &ps) ;

 PaintWindow (hwnd, iCurrentColor, iCurrentFigure) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 static HWND hCtrlBlock ;
 static int iColor, iFigure ;

 switch (message)

 {
 case WM_INITDIALOG:
 iColor = iCurrentColor ;
 iFigure = iCurrentFigure ;

 CheckRadioButton (hDlg, IDC_BLACK, IDC_WHITE, iColor) ;
 CheckRadioButton (hDlg, IDC_RECT, IDC_ELLIPSE, iFigure) ;

 hCtrlBlock = GetDlgItem (hDlg, IDC_PAINT) ;

 SetFocus (GetDlgItem (hDlg, iColor)) ;
 return FALSE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDOK:
 iCurrentColor = iColor ;
 iCurrentFigure = iFigure ;
 EndDialog (hDlg, TRUE) ;
 return TRUE ;

 case IDCANCEL:
 EndDialog (hDlg, FALSE) ;
 return TRUE ;

 case IDC_BLACK:
 case IDC_RED:
 case IDC_GREEN:
 case IDC_YELLOW:
 case IDC_BLUE:
 case IDC_MAGENTA:
 case IDC_CYAN:
 case IDC_WHITE:
 iColor = LOWORD (wParam) ;
 CheckRadioButton (hDlg, IDC_BLACK, IDC_WHITE, LOWORD (wParam)) ;
 PaintTheBlock (hCtrlBlock, iColor, iFigure) ;
 return TRUE ;

 case IDC_RECT:
 case IDC_ELLIPSE:
 iFigure = LOWORD (wParam) ;
 CheckRadioButton (hDlg, IDC_RECT, IDC_ELLIPSE, LOWORD (wParam)) ;
 PaintTheBlock (hCtrlBlock, iColor, iFigure) ;
 return TRUE ;
 }

 break ;

 case WM_PAINT:
 PaintTheBlock (hCtrlBlock, iColor, iFigure) ;
 break ;
 }

 return FALSE ;
}

ABOUT2.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ABOUTBOX DIALOG DISCARDABLE 32, 32, 200, 234
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION
FONT 8, "MS Sans Serif"
BEGIN
 ICON "ABOUT2",IDC_STATIC,7,7,20,20
 CTEXT "About2",IDC_STATIC,57,12,86,8
 CTEXT "About Box Demo Program",IDC_STATIC,7,40,186,8
 LTEXT "",IDC_PAINT,114,67,74,72
 GROUPBOX "&Color",IDC_STATIC,7,60,84,143
 RADIOBUTTON "&Black",IDC_BLACK,16,76,64,8,WS_GROUP | WS_TABSTOP
 RADIOBUTTON "B&lue",IDC_BLUE,16,92,64,8
 RADIOBUTTON "&Green",IDC_GREEN,16,108,64,8
 RADIOBUTTON "Cya&n",IDC_CYAN,16,124,64,8
 RADIOBUTTON "&Red",IDC_RED,16,140,64,8
 RADIOBUTTON "&Magenta",IDC_MAGENTA,16,156,64,8
 RADIOBUTTON "&Yellow",IDC_YELLOW,16,172,64,8
 RADIOBUTTON "&White",IDC_WHITE,16,188,64,8
 GROUPBOX "&Figure",IDC_STATIC,109,156,84,46,WS_GROUP
 RADIOBUTTON "Rec&tangle",IDC_RECT,116,172,65,8,WS_GROUP | WS_TABSTOP
 RADIOBUTTON "&Ellipse",IDC_ELLIPSE,116,188,64,8
 DEFPUSHBUTTON "OK",IDOK,35,212,50,14,WS_GROUP
 PUSHBUTTON "Cancel",IDCANCEL,113,212,50,14,WS_GROUP
END

///
// Icon
ABOUT2 ICON DISCARDABLE "About2.ico"

///
// Menu

ABOUT2 MENU DISCARDABLE
BEGIN
 POPUP "&Help"
 BEGIN
 MENUITEM "&About", IDM_APP_ABOUT
 END

END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by About2.rc

#define IDC_BLACK 1000
#define IDC_BLUE 1001
#define IDC_GREEN 1002
#define IDC_CYAN 1003
#define IDC_RED 1004
#define IDC_MAGENTA 1005
#define IDC_YELLOW 1006
#define IDC_WHITE 1007
#define IDC_RECT 1008
#define IDC_ELLIPSE 1009
#define IDC_PAINT 1010
#define IDM_APP_ABOUT 40001
#define IDC_STATIC -1
ABOUT2.ICO

The About box in ABOUT2 has two groups of radio buttons. One group is used to select a color, and the other
group is used to select either a rectangle or an ellipse. The rectangle or ellipse is shown in the dialog box with the
interior colored with the current color selection. If you press the OK button, the dialog box is ended, and the
program's window procedure draws the selected figure in its own client area. If you press Cancel, the client area of
the main window remains the same. The dialog box is shown in Figure 11-4. Although the ABOUT2 dialog box uses
the predefined identifiers IDOK and IDCANCEL for the two push buttons, each of the radio buttons has its own
identifier beginning with the letters IDC ("ID for a control"). These identifiers are defined in RESOURCE.H.

Figure 11-4. The ABOUT2 program's dialog box.

When you create the radio buttons in the ABOUT2 dialog box, create them in the order shown. This ensures that
Developer Studio defines sequentially valued identifiers, which is assumed by the program. Also, uncheck the Auto
option for each radio button. The Auto Radio Button requires less code but is initially more mysterious. Give them
the identifiers shown above in ABOUT2.RC.

Check the Group option in the Properties dialog for the OK and Cancel buttons, and for the Figure group box, and
for the first radio buttons (Black and Rectangle) in each group. Check the Tab Stop check box for these two radio
buttons.

When you have all the controls in the dialog box approximately positioned and sized, choose the Tab Order option
from the Layout menu. Click each control in the order shown in the ABOUT2.RC resource script.

Working with Dialog Box Controls

In Chapter 9 , you discovered that most child window controls send WM_COMMAND messages to the parent
window. (The exception is scroll bar controls.) You also saw that the parent window can alter child window controls
(for instance, checking or unchecking radio buttons or check boxes) by sending messages to the controls. You can
similarly alter controls in a dialog box procedure. If you have a series of radio buttons, for example, you can check
and uncheck the buttons by sending them messages. However, Windows also provides several shortcuts when
working with controls in dialog boxes. Let's look at the way in which the dialog box procedure and the child
window controls communicate.

The dialog box template for ABOUT2 is shown in the ABOUT2.RC resource script in Figure 11-3. The GROUPBOX
control is simply a frame with a title (either Color or Figure) that surrounds each of the two groups of radio
buttons. The eight radio buttons in the first group are mutually exclusive, as are the two radio buttons in the
second group.

When one of the radio buttons is clicked with the mouse (or when the Spacebar is pressed while the radio button
has the input focus), the child window sends its parent a WM_COMMAND message with the low word of wParam
set to the ID of the control. The high word of wParam is a notification code, and lParam is the window handle of
the control. For a radio button, this notification code is always BN_CLICKED, which equals 0. The dialog box
window procedure in Windows then passes this WM_COMMAND message to the dialog box procedure within
ABOUT2.C. When the dialog box procedure receives a WM_COMMAND message for one of the radio buttons, it
turns on the check mark for that button and turns off the check marks for all the other buttons in the group.

You might recall from Chapter 9 that checking and unchecking a button requires that you send the child window
control a BM_CHECK message. To turn on a button check mark, you use

SendMessage (hwndCtrl, BM_SETCHECK, 1, 0) ;

To turn off the check mark, you use

SendMessage (hwndCtrl, BM_SETCHECK, 0, 0) ;

The hwndCtrl parameter is the window handle of the child window button control.

But this method presents a little problem in the dialog box procedure, because you don't know the window handles
of all the radio buttons. You know only the one from which you're getting the message. Fortunately, Windows
provides you with a function to obtain the window handle of a dialog box control using the dialog box window
handle and the control ID:

hwndCtrl = GetDlgItem (hDlg, id) ;

(You can also obtain the ID value of a control from the window handle by using

id = GetWindowLong (hwndCtrl, GWL_ID) ;

but this is rarely necessary.)

You'll notice in the ABOUT2.H header file shown in Figure 11-3 that the ID values for the eight colors are
sequential from IDC_BLACK to IDC_WHITE. This arrangement helps in processing the WM_COMMAND messages
from the radio buttons. For a first attempt at checking and unchecking the radio buttons, you might try something
like the following in the dialog box procedure:

static int iColor ;
[other program lines]
case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 [other program lines]
 case IDC_BLACK:
 case IDC_RED:
 case IDC_GREEN:
 case IDC_YELLOW:
 case IDC_BLUE:
 case IDC_MAGENTA:
 case IDC_CYAN:
 case IDC_WHITE:
 iColor = LOWORD (wParam) ;

 for (i = IDC_BLACK, i <= IDC_WHITE, i++)
 SendMessage (GetDlgItem (hDlg, i),
 BM_SETCHECK, i == LOWORD (wParam), 0) ;
 return TRUE ;
 [other program lines]

This approach works satisfactorily. You've saved the new color value in iColor , and you've also set up a loop that
cycles through all the ID values for the eight colors. You obtain the window handle of each of these eight radio
button controls and use SendMessage to send each handle a BM_SETCHECK message. The wParam value of this
message is set to 1 only for the button that sent the WM_COMMAND message to the dialog box window
procedure.

The first shortcut is the special dialog box procedure SendDlgItemMessage :

SendDlgItemMessage (hDlg, id, iMsg, wParam, lParam) ;

It is equivalent to

SendMessage (GetDlgItem (hDlg, id), id, wParam, lParam) ;

Now the loop would look like this:

for (i = IDC_BLACK, i <= IDC_WHITE, i++)
 SendDlgItemMessage (hDlg, i, BM_SETCHECK, i == LWORD (wParam), 0) ;

That's a little better. But the real breakthrough comes when you discover the CheckRadioButton function:

CheckRadioButton (hDlg, idFirst, idLast, idCheck) ;

This function turns off the check marks for all radio button controls with IDs from idFirst to idLast except for the
radio button with an ID of idCheck , which is checked. The IDs must be sequential. Now we can get rid of the loop
entirely and use:

CheckRadioButton (hDlg, IDC_BLACK, IDC_WHITE, LOWORD (wParam)) ;

That's how it's done in the dialog box procedure in ABOUT2.

A similar shortcut function is provided for working with check boxes. If you create a CHECKBOX dialog window
control, you can turn the check mark on and off using the function

CheckDlgButton (hDlg, idCheckbox, iCheck) ;

If iCheck is set to 1, the button is checked; if it's set to 0, the button is unchecked. You can obtain the status of a
check box in a dialog box by using

iCheck = IsDlgButtonChecked (hDlg, idCheckbox) ;

You can either retain the current status of the check mark as a static variable within the dialog box procedure or
do something like this to toggle the button on a WM_COMMAND message:

CheckDlgButton (hDlg, idCheckbox,
 !IsDlgButtonChecked (hDlg, idCheckbox)) ;

If you define a BS_AUTOCHECKBOX control, you don't need to process the WM_COMMAND message at all. You
can simply obtain the current status of the button by using IsDlgButtonChecked before terminating the dialog box.
However, if you use the BS_AUTORADIOBUTTON style, IsDlgButtonChecked is not quite satisfactory because
you'd need to call it for each radio button until the function returned TRUE. Instead, you'd still trap
WM_COMMAND messages to keep track of which button gets pressed.

The OK and Cancel Buttons

ABOUT2 has two push buttons, labeled OK and Cancel. In the dialog box template in ABOUT2.RC, the OK button
has an ID of IDOK (defined in WINUSER.H as 1) and the Cancel button has an ID of IDCANCEL (defined as 2). The
OK button is the default:

 DEFPUSHBUTTON "OK",IDOK,35,212,50,14
 PUSHBUTTON "Cancel",IDCANCEL,113,212,50,14

This arrangement is normal for OK and Cancel buttons in dialog boxes; having the OK button as the default helps
out with the keyboard interface. Here's how: Normally, you would end the dialog box by clicking one of these
buttons with the mouse or pressing the Spacebar when the desired button has the input focus. However, the
dialog box window procedure also generates a WM_COMMAND message when the user presses Enter, regardless
of which control has the input focus. The LOWORD of wParam is set to the ID value of the default push button in
the dialog box unless another push button has the input focus. In that case, the LOWORD of wParam is set to the
ID of the push button with the input focus. If no push button in the dialog box is the default push button, Windows
sends the dialog box procedure a WM_COMMAND message with the LOWORD of wParam equal to IDOK. If the
user presses the Esc key or Ctrl-Break, Windows sends the dialog box procedure a WM_COMMAND message with
the LOWORD of wParam equal to IDCANCEL. So you don't have to add separate keyboard logic to the dialog box
procedure, because the keystrokes that normally terminate a dialog box are translated by Windows into
WM_COMMAND messages for these two push buttons.

The AboutDlgProc function handles these two WM_COMMAND messages by calling EndDialog :

switch (LWORD (wParam))
{
case IDOK:
 iCurrentColor = iColor ;
 iCurrentFigure = iFigure ;
 EndDialog (hDlg, TRUE) ;
 return TRUE ;

case IDCANCEL :
 EndDialog (hDlg, FALSE) ;
 return TRUE ;

ABOUT2's window procedure uses the global variables iCurrentColor and iCurrentFigure when drawing the
rectangle or ellipse in the program's client area. AboutDlgProc uses the static local variables iColor and iFigure
when drawing the figure within the dialog box.

Notice the different value in the second parameter of EndDialog . This is the value that is passed back as the
return value from the original DialogBox function in WndProc :

case IDM_ABOUT:
 if (DialogBox (hInstance, TEXT ("AboutBox"), hwnd, AboutDlgProc))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

If DialogBox returns TRUE (nonzero), meaning that the OK button was pressed, then the WndProc client area
needs to be updated with the new figure and color. These were saved in the global variables iCurrentColor and
iCurrentFigure by AboutDlgProc when it received a WM_COMMAND message with the low word of wParam equal to
IDOK. If DialogBox returns FALSE, the main window continues to use the original settings of iCurrentColor and
iCurrentFigure .

TRUE and FALSE are commonly used in EndDialog calls to signal to the main window procedure whether the user
ended the dialog box with OK or Cancel. However, the argument to EndDialog is actually an int , and DialogBox
returns an int , so it's possible to return more information in this way than simply TRUE or FALSE.

Avoiding Global Variables

The use of global variables in ABOUT2 may or may not be disturbing to you. Some programmers (myself included)
prefer to keep the use of global variables to a bare minimum. The iCurrentColor and iCurrentFigure variables in
ABOUT2 certainly seem to qualify as legitimate candidates for global definitions because they must be used in
both the window procedure and the dialog procedure. However, a program that has many dialog boxes, each of
which can alter the values of several variables, could easily have a confusing proliferation of global variables.

You might prefer to conceive of each dialog box within a program as being associated with a data structure
containing all the variables that can be altered by the dialog box. You would define these structures in typedef
statements. For example, in ABOUT2 you might define a structure associated with the About box like so:

typedef struct
{
 int iColor, iFigure ;
}
ABOUTBOX_DATA ;

In WndProc , you define and initialize a static variable based on this structure:

static ABOUTBOX_DATA ad = { IDC_BLACK, IDC_RECT } ;

Also in WndProc , replace all occurrences of iCurrentColor and iCurrentFigure with ad.iColor and ad.iFigure . When
you invoke the dialog box, use DialogBoxParam rather than DialogBox . This function has a fifth argument that can

be any 32-bit value you'd like. Generally, it is set to a pointer to a structure, in this case the ABOUTBOX_DATA
structure in WndProc :

case IDM_ABOUT:
 if (DialogBoxParam (hInstance, TEXT ("AboutBox"),
 hwnd, AboutDlgProc, &ad))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

Here's the key: the last argument to DialogBoxParam is passed to the dialog procedure as lParam in the
WM_INITDIALOG message.

The dialog procedure would have two static variables (a structure and a pointer to a structure) based on the
ABOUTBOX_DATA structure:

static ABOUTBOX_DATA ad, * pad ;

In AboutDlgProc this definition replaces the definitions of iColor and iFigure . At the outset of the WM_INITDIALOG
message, the dialog procedure sets the values of these two variables from lParam :

pad = (ABOUTBOX_DATA *) lParam ;
ad = * pad ;

In the first statement, pad is set to the lParam pointer. That is, pad actually points to the ABOUTBOX_DATA
structure defined in WndProc . The second statement performs a field-by-field structure copy from the structure in
WndProc to the local structure in DlgProc .

Now, throughout AboutDlgProc , replace iFigure and iColor with ad.iColor and ad.iFigure except in the code for
when the user presses the OK button. In that case, copy the contents of the local structure back to the structure
in WndProc :

case IDOK:
 * pad = ad ;
 EndDialog (hDlg, TRUE) ;
 return TRUE ;

Tab Stops and Groups

In Chapter 9 , we used window subclassing to add a facility to COLORS1 that let us move from one scroll bar to
another by pressing the Tab key. In a dialog box, window subclassing is unnecessary: Windows does all the logic
for moving the input focus from one control to another. However, you have to help out by using the WS_TABSTOP
and WS_GROUP window styles in the dialog box template. For all controls that you want to access using the Tab
key, specify WS_TABSTOP in the window style.

If you refer back to the table, you'll notice that many of the controls include WS_TABSTOP as a default, while
others do not. Generally the controls that do not include the WS_TABSTOP style (particularly the static controls)
should not get the input focus because they can't do anything with it. Unless you set the input focus to a specific
control in a dialog box during processing of the WM_INITDIALOG message and return FALSE from the message,
Windows sets the input focus to the first control in the dialog box that has the WS_TABSTOP style.

The second keyboard interface that Windows adds to a dialog box involves the cursor movement keys. This
interface is of particular importance with radio buttons. After you use the Tab key to move to the currently
checked radio button within a group, you need to use the cursor movement keys to change the input focus from
that radio button to other radio buttons within the group. You accomplish this by using the WS_GROUP window
style. For a particular series of controls in the dialog box template, Windows will use the cursor movement keys to
shift the input focus from the first control that has the WS_GROUP style up to, but not including, the next control
that has the WS_GROUP style. Windows will cycle from the last control in a dialog box to the first control, if
necessary, to find the end of the group.

By default, the controls LTEXT, CTEXT, RTEXT, and ICON include the WS_GROUP style, which conveniently marks
the end of a group. You often have to add WS_GROUP styles to other types of controls.

Look at the dialog box template in ABOUT2.RC. The four controls that have the WS_TABSTOP style are the first
radio buttons of each group (explicitly included) and the two push buttons (by default). When you first invoke the
dialog box, these are the four controls you can move among using the Tab key.

Within each group of radio buttons, you use the cursor movement keys to change the input focus and the check
mark. For example, the first radio button (Black) in the Color group box and the Figure group box have the
WS_GROUP style. This means that you can use the cursor movement keys to move the focus from the Black radio
button up to, but not including, the Figure group box. Similarly, the first radio button (Rectangle) in the Figure
group box and DEFPUSHBUTTON have the WS_GROUP style, so you can use the cursor movement keys to move
between the two radio buttons in this group: Rectangle and Ellipse. Both push buttons get the WS_GROUP style to
prevent the cursor movement keys from doing anything when the push buttons have the input focus.

When using ABOUT2, the dialog box manager in Windows performs some magic in the two groups of radio
buttons. As expected, the cursor movement keys within a group of radio buttons shift the input focus and send a
WM_COMMAND message to the dialog box procedure. But when you change the checked radio button within the
group, Windows also assigns the newly checked radio button the WS_TABSTOP style. The next time you tab to
that group, Windows will set the input focus to the checked radio button.

An ampersand (&) in the text field causes the letter that follows to be underlined and adds another keyboard
interface. You can move the input focus to any of the radio buttons by pressing the underlined letter. By pressing
C (for the Color group box) or F (for the Figure group box), you can move the input focus to the currently checked
radio button in that group.

Although programmers normally let the dialog box manager take care of all this, Windows includes two functions
that let you search for the next or previous tab stop or group item. These functions are

hwndCtrl = GetNextDlgTabItem (hDlg, hwndCtrl, bPrevious) ;

and

hwndCtrl = GetNextDlgGroupItem (hDlg, hwndCtrl, bPrevious) ;

If bPrevious is TRUE, the functions return the previous tab stop or group item; if FALSE, they return the next tab
stop or group item.

Painting on the Dialog Box

ABOUT2 also does something relatively unusual: it paints on the dialog box. Let's see how this works. Within the
dialog box template in ABOUT2.RC, a blank text control is defined with a position and size for the area we want to
paint:

LTEXT "" IDC_PAINT, 114, 67, 72, 72

This area is 18 characters wide and 9 characters high. Because this control has no text, all that the window
procedure for the "static" class does is erase the background when the child window control has to be repainted.

When the current color or figure selection changes or when the dialog box itself gets a WM_PAINT message, the
dialog box procedure calls PaintTheBlock , which is a function in ABOUT2.C:

PaintTheBlock (hCtrlBlock, iColor, iFigure) ;

In AboutDlgProc , the window handle hCtrlBlock had been set during the processing of the WM_INITDIALOG
message:

hCtrlBlock = GetDlgItem (hDlg, IDD_PAINT) ;

Here's the PaintTheBlock function:

void PaintTheBlock (HWND hCtrl, int iColor, int iFigure)
{
 InvalidateRect (hCtrl, NULL, TRUE) ;
 UpdateWindow (hCtrl) ;
 PaintWindow (hCtrl, iColor, iFigure) ;
}

This invalidates the child window control, generates a WM_PAINT message to the control window procedure, and
then calls another function in ABOUT2 called PaintWindow .

The PaintWindow function obtains a device context handle for hCtrl and draws the selected figure, filling it with a
colored brush based on the selected color. The size of the child window control is obtained from GetClientRect .
Although the dialog box template defines the size of the control in terms of characters, GetClientRect obtains the
dimensions in pixels. You can also use the function MapDialogRect to convert the character coordinates in the
dialog box to pixel coordinates in the client area.

We're not really painting the dialog box's client area—we're actually painting the client area of the child window
control. Whenever the dialog box gets a WM_PAINT message, the child window control is invalidated and then
updated to make it believe that its client area is now valid. We then paint on top of it.

Using Other Functions with Dialog Boxes

Most functions that you can use with child windows you can also use with controls in a dialog box. For instance, if
you're feeling devious, you can use MoveWindow to move the controls around the dialog box and force the user to
chase them around with the mouse.

Sometimes you need to dynamically enable or disable certain controls in a dialog box, depending on the settings
of other controls. This call,

EnableWindow (hwndCtrl, bEnable) ;

enables the control when bEnable is TRUE (nonzero) and disables it when bEnable is FALSE (0). When a control is
disabled, it receives no keyboard or mouse input. Don't disable a control that has the input focus.

Defining Your Own Controls

Although Windows assumes much of the responsibility for maintaining the dialog box and child window controls,
various methods let you slip some of your own code into this process. We've already seen a method that allows
you to paint on the surface of a dialog box. You can also use window subclassing (discussed in Chapter 9) to alter
the operation of child window controls.

You can also define your own child window controls and use them in a dialog box. For example, suppose you don't
particularly care for the normal rectangular push buttons and would prefer to create elliptical push buttons. You
can do this by registering a window class and using your own window procedure to process messages for your
customized child window. You then specify this window class in Developer Studio in the Properties dialog box
associated with a custom control. This translates into a CONTROL statement in the dialog box template. The
ABOUT3 program, shown in Figure 11-5, does exactly that.

Figure 11-5. The ABOUT3 program.

ABOUT3.C

/*--
 ABOUT3.C -- About Box Demo Program No. 3
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK EllipPushWndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("About3") ;
 MSG msg ;
 HWND hwnd ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;

 return 0 ;
 }

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = EllipPushWndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = NULL ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = TEXT ("EllipPush") ;

 RegisterClass (&wndclass) ;

 hwnd = CreateWindow (szAppName, TEXT ("About Box Demo Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HINSTANCE hInstance ;

 switch (message)
 {
 case WM_CREATE :
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;
 return 0 ;

 case WM_COMMAND :
 switch (LOWORD (wParam))
 {
 case IDM_APP_ABOUT :
 DialogBox (hInstance, TEXT ("AboutBox"), hwnd, AboutDlgProc) ;
 return 0 ;
 }
 break ;

 case WM_DESTROY :

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)

{
 switch (message)
 {
 case WM_INITDIALOG :
 return TRUE ;

 case WM_COMMAND :
 switch (LOWORD (wParam))
 {
 case IDOK :
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

LRESULT CALLBACK EllipPushWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 TCHAR szText[40] ;
 HBRUSH hBrush ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_PAINT :
 GetClientRect (hwnd, &rect) ;
 GetWindowText (hwnd, szText, sizeof (szText)) ;

 hdc = BeginPaint (hwnd, &ps) ;

 hBrush = CreateSolidBrush (GetSysColor (COLOR_WINDOW)) ;
 hBrush = (HBRUSH) SelectObject (hdc, hBrush) ;
 SetBkColor (hdc, GetSysColor (COLOR_WINDOW)) ;
 SetTextColor (hdc, GetSysColor (COLOR_WINDOWTEXT)) ;

 Ellipse (hdc, rect.left, rect.top, rect.right, rect.bottom) ;
 DrawText (hdc, szText, -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 DeleteObject (SelectObject (hdc, hBrush)) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_KEYUP :
 if (wParam != VK_SPACE)
 break ;
 // fall through
 case WM_LBUTTONUP :
 SendMessage (GetParent (hwnd), WM_COMMAND,
 GetWindowLong (hwnd, GWL_ID), (LPARAM) hwnd) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

ABOUT3.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ABOUTBOX DIALOG DISCARDABLE 32, 32, 180, 100
STYLE DS_MODALFRAME | WS_POPUP
FONT 8, "MS Sans Serif"
BEGIN
 CONTROL "OK",IDOK,"EllipPush",WS_GROUP | WS_TABSTOP,73,79,32,14
 ICON "ABOUT3",IDC_STATIC,7,7,20,20
 CTEXT "About3",IDC_STATIC,40,12,100,8
 CTEXT "About Box Demo Program",IDC_STATIC,7,40,166,8
 CTEXT "(c) Charles Petzold, 1998",IDC_STATIC,7,52,166,8
END

///
// Menu

ABOUT3 MENU DISCARDABLE
BEGIN
 POPUP "&Help"
 BEGIN
 MENUITEM "&About About3...", IDM_APP_ABOUT
 END
END

///
// Icon

ABOUT3 ICON DISCARDABLE "icon1.ico"

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by About3.rc

#define IDM_APP_ABOUT 40001
#define IDC_STATIC -1

ABOUT3.ICO

The window class we'll be registering is called EllipPush ("elliptical push button"). In the dialog editor in Developer
Studio, delete both the Cancel and OK buttons. To add a control based on this window class, select Custom
Control from the Controls toolbar. In the Properties dialog for this control, type EllipPush in the Class field. Rather
than a DEFPUSHBUTTON statement appearing in the dialog box template, you'll see a CONTROL statement that
specifies this window class:

CONTROL "OK" IDOK, "EllipPush", TABGRP, 64, 60, 32, 14

The dialog box manager uses this window class in a CreateWindow call when creating the child window control in
the dialog box.

The ABOUT3.C program registers the EllipPush window class in WinMain :

wndclass.style = CS_HREDRAW ¦ CS_VREDRAW ;
wndclass.lpfnWndProc = EllipPushWndProc ;
wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = NULL ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = TEXT ("EllipPush") ;

RegisterClass (&wndclass) ;

The window class specifies that the window procedure is EllipPushWndProc , which is also in ABOUT3.C.

The EllipPushWndProc window procedure processes only three messages: WM_PAINT, WM_KEYUP, and
WM_LBUTTONUP. During the WM_PAINT message, it obtains the size of its window from GetClientRect and obtains
the text that appears in the push button from GetWindowText . It uses the Windows functions Ellipse and
DrawText to draw the ellipse and the text.

The processing of the WM_KEYUP and WM_LBUTTONUP messages is simple:

case WM_KEYUP :
 if (wParam != VK_SPACE)
 break ;
 // fall through
case WM_LBUTTONUP :
 SendMessage (GetParent (hwnd), WM_COMMAND,
 GetWindowLong (hwnd, GWL_ID), (LPARAM) hwnd) ;
 return 0 ;

The window procedure obtains the handle of its parent window (the dialog box) using GetParent and sends a
WM_COMMAND message with wParam equal to the control's ID. The ID is obtained using GetWindowLong . The
dialog box window procedure then passes this message on to the dialog box procedure within ABOUT3. The result
is a customized push button, as shown in Figure 11-6. You can use this same method to create other customized
controls for dialog boxes.

Figure 11-6. A customized push button created by ABOUT3.

Is that all there is to it? Well, not really. EllipPushWndProc is a bare-bones version of the logic generally involved
in maintaining a child window control. For instance, the button doesn't flash like normal push buttons. To invert
the colors on the interior of the push button, the window procedure would have to process WM_KEYDOWN (from
the Spacebar) and WM_LBUTTONDOWN messages. The window procedure should also capture the mouse on a
WM_LBUTTONDOWN message and release the mouse (and return the button's interior color to normal) if the
mouse is moved outside the child window's client area while the button is still depressed. Only if the button is
released while the mouse is captured should the child window send a WM_COMMAND message back to its parent.

EllipPushWndProc also does not process WM_ENABLE messages. As mentioned above, a dialog box procedure can
disable a window by using the EnableWindow function. The child window would then display gray rather than black
text to indicate that it has been disabled and cannot receive messages.

If the window procedure for a child window control needs to store data that are different for each created window,
it can do so by using a positive value of cbWndExtra in the window class structure. This reserves space in the
internal window structure that can be accessed by using SetWindowLong and GetWindowLong .

Modeless Dialog Boxes

At the beginning of this chapter, I explained that dialog boxes can be either "modal" or "modeless." So far we've
been looking at modal dialog boxes, the more common of the two types. Modal dialog boxes (except system
modal dialog boxes) allow the user to switch between the dialog box and other programs. However, the user
cannot switch to another window in the program that initiated the dialog box until the modal dialog box is
destroyed. Modeless dialog boxes allow the user to switch between the dialog box and the window that created it
as well as between the dialog box and other programs. The modeless dialog box is thus more akin to the regular
popup windows that your program might create.

Modeless dialog boxes are preferred when the user would find it convenient to keep the dialog box displayed for a
while. For instance, word processors often use modeless dialog boxes for the text Find and Change dialogs. If the
Find dialog box were modal, the user would have to choose Find from the menu, enter the string to be found, end
the dialog box to return to the document, and then repeat the entire process to search for another occurrence of
the same string. Allowing the user to switch between the document and the dialog box is much more convenient.

As you've seen, modal dialog boxes are created using DialogBox . The function returns a value only after the
dialog box is destroyed. It returns the value specified in the second parameter of the EndDialog call that was used
within the dialog box procedure to terminate the dialog box. Modeless dialog boxes are created using CreateDialog
. This function takes the same parameters as DialogBox :

hDlgModeless = CreateDialog (hInstance, szTemplate,
 hwndParent, DialogProc) ;

The difference is that the CreateDialog function returns immediately with the window handle of the dialog box.
Normally, you store this window handle in a global variable.

Although the use of the names DialogBox with modal dialog boxes and CreateDialog with modeless dialog boxes
may seem arbitrary, you can remember which is which by keeping in mind that modeless dialog boxes are similar
to normal windows. CreateDialog should remind you of the CreateWindow function, which creates normal
windows.

Differences Between Modal and Modeless Dialog Boxes

Working with modeless dialog boxes is similar to working with modal dialog boxes, but there are several important
differences.

First, modeless dialog boxes usually include a caption bar and a system menu box. These are actually the default
options when you create a dialog box in Developer Studio. The STYLE statement in the dialog box template for a
modeless dialog box will look something like this:

 STYLE WS_POPUP ¦ WS_CAPTION ¦ WS_SYSMENU ¦ WS_VISIBLE

The caption bar and system menu allow the user to move the modeless dialog box to another area of the display
using either the mouse or the keyboard. You don't normally provide a caption bar and system menu with a modal
dialog box, because the user can't do anything in the underlying window anyway.

The second big difference: Notice that the WS_VISIBLE style is included in our sample STYLE statement. In
Developer Studio, select this option from the More Styles tab of the Dialog Properties dialog. If you omit
WS_VISIBLE, you must call ShowWindow after the CreateDialog call:

 hDlgModeless = CreateDialog (. . .) ;
 ShowWindow (hDlgModeless, SW_SHOW) ;

If you neither include WS_VISIBLE nor call ShowWindow , the modeless dialog box will not be displayed.
Programmers who have mastered modal dialog boxes often overlook this peculiarity and thus experience
difficulties when first trying to create a modeless dialog box.

The third difference: Unlike messages to modal dialog boxes and message boxes, messages to modeless dialog
boxes come through your program's message queue. The message queue must be altered to pass these messages
to the dialog box window procedure. Here's how you do it: When you use CreateDialog to create a modeless dialog
box, you should save the dialog box handle returned from the call in a global variable (for instance, hDlgModeless
). Change your message loop to look like

while (GetMessage (&msg, NULL, 0, 0))
{
 if (hDlgModeless == 0 ¦¦ !IsDialogMessage (hDlgModeless, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
}

If the message is intended for the modeless dialog box, then IsDialogMessage sends it to the dialog box window
procedure and returns TRUE (nonzero); otherwise, it returns FALSE (0). The TranslateMessage and
DispatchMessage functions should be called only if hDlgModeless is 0 or if the message is not for the dialog box. If
you use keyboard accelerators for your program's window, the message loop looks like this:

while (GetMessage (&msg, NULL, 0, 0))
{
 if (hDlgModeless == 0 ¦¦ !IsDialogMessage (hDlgModeless, &msg))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
}

Because global variables are initialized to 0, hDlgModeless will be 0 until the dialog box is created, thus ensuring
that IsDialogMessage is not called with an invalid window handle. You must take the same precaution when you
destroy the modeless dialog box, as explained below.

The hDlgModeless variable can also be used by other parts of the program as a test of the existence of the
modeless dialog box. For example, other windows in the program can send messages to the dialog box while
hDlgModeless is not equal to 0.

The final big difference: Use DestroyWindow rather than EndDialog to end a modeless dialog box. When you call
DestroyWindow , set the hDlgModeless global variable to NULL.

The user customarily terminates a modeless dialog box by choosing Close from the system menu. Although the
Close option is enabled, the dialog box window procedure within Windows does not process the WM_CLOSE
message. You must do this yourself in the dialog box procedure:

case WM_CLOSE :
 DestroyWindow (hDlg) ;
 hDlgModeless = NULL ;
 break ;

Note the difference between these two window handles: the hDlg parameter to DestroyWindow is the parameter
passed to the dialog box procedure; hDlgModeless is the global variable returned from CreateDialog that you test
within the message loop.

You can also allow a user to close a modeless dialog box using push buttons. Use the same logic as for the
WM_CLOSE message. Any information that the dialog box must "return" to the window that created it can be
stored in global variables. If you'd prefer not using global variables, you can create the modeless dialog box by
using CreateDialogParam and pass to it a structure pointer, as described earlier.

The New COLORS Program

The COLORS1 program described in Chapter 9 created nine child windows to display three scroll bars and six text
items. At that time, the program was one of the more complex we had developed. Converting COLORS1 to use a
modeless dialog box makes the program—and particularly its WndProc function—almost ridiculously simple. The
revised COLORS2 program is shown in Figure 11-7.

Figure 11-7. The COLORS2 program.

COLORS2.C

/*--
 COLORS2.C -- Version using Modeless Dialog Box
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK ColorScrDlg (HWND, UINT, WPARAM, LPARAM) ;

HWND hDlgModeless ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Colors2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

 wndclass.hbrBackground = CreateSolidBrush (0L) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Color Scroll"),
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hDlgModeless = CreateDialog (hInstance, TEXT ("ColorScrDlg"),
 hwnd, ColorScrDlg) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (hDlgModeless == 0 || !IsDialogMessage (hDlgModeless, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 DeleteObject ((HGDIOBJ) SetClassLong (hwnd, GCL_HBRBACKGROUND,
 (LONG) GetStockObject (WHITE_BRUSH))) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK ColorScrDlg (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 static int iColor[3] ;
 HWND hwndParent, hCtrl ;
 int iCtrlID, iIndex ;

 switch (message)
 {
 case WM_INITDIALOG :
 for (iCtrlID = 10 ; iCtrlID < 13 ; iCtrlID++)
 {
 hCtrl = GetDlgItem (hDlg, iCtrlID) ;
 SetScrollRange (hCtrl, SB_CTL, 0, 255, FALSE) ;
 SetScrollPos (hCtrl, SB_CTL, 0, FALSE) ;
 }
 return TRUE ;

 case WM_VSCROLL :
 hCtrl = (HWND) lParam ;
 iCtrlID = GetWindowLong (hCtrl, GWL_ID) ;
 iIndex = iCtrlID - 10 ;
 hwndParent = GetParent (hDlg) ;

 switch (LOWORD (wParam))
 {
 case SB_PAGEDOWN :
 iColor[iIndex] += 15 ; // fall through
 case SB_LINEDOWN :
 iColor[iIndex] = min (255, iColor[iIndex] + 1) ;
 break ;
 case SB_PAGEUP :
 iColor[iIndex] -= 15 ; // fall through
 case SB_LINEUP :
 iColor[iIndex] = max (0, iColor[iIndex] - 1) ;
 break ;
 case SB_TOP :
 iColor[iIndex] = 0 ;
 break ;
 case SB_BOTTOM :
 iColor[iIndex] = 255 ;
 break ;
 case SB_THUMBPOSITION :
 case SB_THUMBTRACK :
 iColor[iIndex] = HIWORD (wParam) ;
 break ;
 default :
 return FALSE ;
 }
 SetScrollPos (hCtrl, SB_CTL, iColor[iIndex], TRUE) ;
 SetDlgItemInt (hDlg, iCtrlID + 3, iColor[iIndex], FALSE) ;

 DeleteObject ((HGDIOBJ) SetClassLong (hwndParent, GCL_HBRBACKGROUND,
 (LONG) CreateSolidBrush (
 RGB (iColor[0], iColor[1], iColor[2])))) ;

 InvalidateRect (hwndParent, NULL, TRUE) ;
 return TRUE ;
 }
 return FALSE ;

}

COLORS2.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

COLORSCRDLG DIALOG DISCARDABLE 16, 16, 120, 141
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION "Color Scroll Scrollbars"
FONT 8, "MS Sans Serif"
BEGIN
 CTEXT "&Red",IDC_STATIC,8,8,24,8,NOT WS_GROUP
 SCROLLBAR 10,8,20,24,100,SBS_VERT | WS_TABSTOP
 CTEXT "0",13,8,124,24,8,NOT WS_GROUP
 CTEXT "&Green",IDC_STATIC,48,8,24,8,NOT WS_GROUP
 SCROLLBAR 11,48,20,24,100,SBS_VERT | WS_TABSTOP
 CTEXT "0",14,48,124,24,8,NOT WS_GROUP
 CTEXT "&Blue",IDC_STATIC,89,8,24,8,NOT WS_GROUP
 SCROLLBAR 12,89,20,24,100,SBS_VERT | WS_TABSTOP
 CTEXT "0",15,89,124,24,8,NOT WS_GROUP
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Colors2.rc

#define IDC_STATIC -1

Although the original COLORS1 program displayed scroll bars that were based on the size of the window, the new
version keeps them at a constant size within the modeless dialog box, as shown in Figure 11-8.

When you create the dialog box template, use explicit ID numbers of 10, 11, and 12 for the three scroll bars, and
13, 14, and 15 for the three static text fields displaying the current values of the scroll bars. Give each scroll bar a
Tab Stop style, but remove the Group style from all six static text fields.

Figure 11-8. The COLORS2 display.

The modeless dialog box is created in COLORS2's WinMain function following the ShowWindow call for the
program's main window. Note that the window style for the main window includes WS_CLIPCHILDREN, which
allows the program to repaint the main window without erasing the dialog box.

The dialog box window handle returned from CreateDialog is stored in the global variable hDlgModeless and tested
during the message loop, as described above. In this program, however, it isn't necessary to store the handle in a
global variable or to test the value before calling IsDialogMessage . The message loop could have been written like
this:

while (GetMessage (&msg, NULL, 0, 0))
{
 if (!IsDialogMessage (hDlgModeless, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
}

Because the dialog box is created before the program enters the message loop and is not destroyed until the
program terminates, the value of hDlgModeless will always be valid. I included the logic in case you want to add
some code to the dialog box window procedure to destroy the dialog box:

case WM_CLOSE :
 DestroyWindow (hDlg) ;
 hDlgModeless = NULL ;
 break ;

In the original COLORS1 program, SetWindowText set the values of the three numeric labels after converting the
integers to text with wsprintf . The code looked like this:

wsprintf (szBuffer, TEXT ("%i"), color[i]) ;

SetWindowText (hwndValue[i], szBuffer) ;

The value of i was the ID number of the current scroll bar being processed, and hwndValue was an array
containing the window handles of the three static text child windows for the numeric values of the colors.

The new version uses SetDlgItemInt to set each text field of each child window to a number:

SetDlgItemInt (hDlg, iCtrlID + 3, color [iCtrlID], FALSE) ;

Although SetDlgItemInt and its companion, GetDlgItemInt , are most often used with edit controls, they can also
be used to set the text field of other controls, such as static text controls. The iCtrlID variable is the ID number of
the scroll bar; adding 3 to the number converts it to the ID for the corresponding numeric label. The third
argument is the color value. The fourth argument indicates whether the value in the third argument is to be
treated as signed (if the fourth argument is TRUE) or unsigned (if the fourth argument is FALSE). For this
program, however, the values range from 0 to 255, so the fourth argument has no effect.

In the process of converting COLORS1 to COLORS2, we passed more and more of the work to Windows. The
earlier version called CreateWindow 10 times; the new version calls CreateWindow once and CreateDialog once.
But if you think that we've reduced our CreateWindow calls to a minimum, get a load of this next program.

HEXCALC: Window or Dialog Box?

Perhaps the epitome of lazy programming is the HEXCALC program, shown in Figure 11-9. This program doesn't
call CreateWindow at all, never processes WM_PAINT messages, never obtains a device context, and never
processes mouse messages. Yet it manages to incorporate a 10-function hexadecimal calculator with a full
keyboard and mouse interface in fewer than 150 lines of source code. The calculator is shown in Figure 11-10.

Figure 11-9. The HEXCALC program.

HEXCALC.C

/*--
 HEXCALC.C -- Hexadecimal Calculator
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("HexCalc") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = DLGWINDOWEXTRA ; // Note!

 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) (COLOR_BTNFACE + 1) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateDialog (hInstance, szAppName, 0, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void ShowNumber (HWND hwnd, UINT iNumber)
{
 TCHAR szBuffer[20] ;

 wsprintf (szBuffer, TEXT ("%X"), iNumber) ;
 SetDlgItemText (hwnd, VK_ESCAPE, szBuffer) ;
}

DWORD CalcIt (UINT iFirstNum, int iOperation, UINT iNum)
{
 switch (iOperation)
 {
 case `=`: return iNum ;
 case `+': return iFirstNum + iNum ;
 case `-': return iFirstNum - iNum ;
 case `*': return iFirstNum * iNum ;
 case `&': return iFirstNum & iNum ;
 case `|': return iFirstNum | iNum ;
 case `^': return iFirstNum ^ iNum ;
 case `<`: return iFirstNum << iNum ;
 case `>`: return iFirstNum >> iNum ;
 case `/': return iNum ? iFirstNum / iNum: MAXDWORD ;
 case `%': return iNum ? iFirstNum % iNum: MAXDWORD ;
 default : return 0 ;
 }
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bNewNumber = TRUE ;
 static int iOperation = `=` ;
 static UINT iNumber, iFirstNum ;
 HWND hButton ;

 switch (message)
 {
 case WM_KEYDOWN: // left arrow --> backspace
 if (wParam != VK_LEFT)
 break ;
 wParam = VK_BACK ;
 // fall through
 case WM_CHAR:
 if ((wParam = (WPARAM) CharUpper ((TCHAR *) wParam)) == VK_RETURN)
 wParam = `=` ;

 if (hButton = GetDlgItem (hwnd, wParam))
 {
 SendMessage (hButton, BM_SETSTATE, 1, 0) ;
 Sleep (100) ;
 SendMessage (hButton, BM_SETSTATE, 0, 0) ;
 }
 else
 {
 MessageBeep (0) ;
 break ;
 }
 // fall through
 case WM_COMMAND:
 SetFocus (hwnd) ;

 if (LOWORD (wParam) == VK_BACK) // backspace
 ShowNumber (hwnd, iNumber /= 16) ;

 else if (LOWORD (wParam) == VK_ESCAPE) // escape
 ShowNumber (hwnd, iNumber = 0) ;

 else if (isxdigit (LOWORD (wParam))) // hex digit
 {
 if (bNewNumber)
 {
 iFirstNum = iNumber ;
 iNumber = 0 ;
 }
 bNewNumber = FALSE ;

 if (iNumber <= MAXDWORD >> 4)
 ShowNumber (hwnd, iNumber = 16 * iNumber + wParam -
 (isdigit (wParam) ? `0': `A' - 10)) ;
 else
 MessageBeep (0) ;

 }
 else // operation
 {
 if (!bNewNumber)
 ShowNumber (hwnd, iNumber =
 CalcIt (iFirstNum, iOperation, iNumber)) ;
 bNewNumber = TRUE ;
 iOperation = LOWORD (wParam) ;
 }
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

HEXCALC.RC (excerpts)

//Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Icon

HEXCALC ICON DISCARDABLE "HexCalc.ico"

///

#include "hexcalc.dlg"

HEXCALC.DLG

/*---------------------------
 HEXCALC.DLG dialog script
 ---------------------------*/

HexCalc DIALOG -1, -1, 102, 122
STYLE WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX
CLASS "HexCalc"
CAPTION "Hex Calculator"
{
 PUSHBUTTON "D", 68, 8, 24, 14, 14
 PUSHBUTTON "A", 65, 8, 40, 14, 14

 PUSHBUTTON "7", 55, 8, 56, 14, 14
 PUSHBUTTON "4", 52, 8, 72, 14, 14
 PUSHBUTTON "1", 49, 8, 88, 14, 14
 PUSHBUTTON "0", 48, 8, 104, 14, 14
 PUSHBUTTON "0", 27, 26, 4, 50, 14
 PUSHBUTTON "E", 69, 26, 24, 14, 14
 PUSHBUTTON "B", 66, 26, 40, 14, 14
 PUSHBUTTON "8", 56, 26, 56, 14, 14
 PUSHBUTTON "5", 53, 26, 72, 14, 14
 PUSHBUTTON "2", 50, 26, 88, 14, 14
 PUSHBUTTON "Back", 8, 26, 104, 32, 14
 PUSHBUTTON "C", 67, 44, 40, 14, 14
 PUSHBUTTON "F", 70, 44, 24, 14, 14
 PUSHBUTTON "9", 57, 44, 56, 14, 14
 PUSHBUTTON "6", 54, 44, 72, 14, 14
 PUSHBUTTON "3", 51, 44, 88, 14, 14
 PUSHBUTTON "+", 43, 62, 24, 14, 14
 PUSHBUTTON "-", 45, 62, 40, 14, 14
 PUSHBUTTON "*", 42, 62, 56, 14, 14
 PUSHBUTTON "/", 47, 62, 72, 14, 14
 PUSHBUTTON "%", 37, 62, 88, 14, 14
 PUSHBUTTON "Equals", 61, 62, 104, 32, 14
 PUSHBUTTON "&&", 38, 80, 24, 14, 14
 PUSHBUTTON "|", 124, 80, 40, 14, 14
 PUSHBUTTON "^", 94, 80, 56, 14, 14
 PUSHBUTTON "<", 60, 80, 72, 14, 14
 PUSHBUTTON ">", 62, 80, 88, 14, 14
}

HEXCALC.ICO

Figure 11-10. The HEXCALC display.

HEXCALC is a normal infix notation calculator that uses C notation for the operations. It works with unsigned 32-
bit integers and does addition, subtraction, multiplication, division, and remainders; bitwise AND, OR, and
exclusive OR operations; and left and right bit shifts. Division by 0 causes the result to be set to FFFFFFFF.

You can use either the mouse or keyboard with HEXCALC. You begin by "clicking in" or typing the first number (up
to eight hexadecimal digits), then the operation, and then the second number. You can then show the result by
clicking the Equals button or by pressing either the Equals key or the Enter key. To correct your entries, use the
Back button or the Backspace or Left Arrow key. Click the "display" box or press the Esc key to clear the current
entry.

What's so strange about HEXCALC is that the window displayed on the screen seems to be a hybrid of a normal
overlapped window and a modeless dialog box. On the one hand, all the messages to HEXCALC are processed in a
function called WndProc that appears to be a normal window procedure. The function returns a long, it processes
the WM_DESTROY message, and it calls DefWindowProc just like a normal window procedure. On the other hand,
the window is created in WinMain with a call to CreateDialog that uses a dialog box template defined in
HEXCALC.DLG. So is HEXCALC a normal overlapped window or a modeless dialog box?

The simple answer is that a dialog box is a window. Normally, Windows uses its own internal window procedure to
process messages to a dialog box window. Windows then passes these messages to a dialog box procedure within
the program that creates the dialog box. In HEXCALC we are forcing Windows to use the dialog box template to
create a window, but we're processing messages to that window ourselves.

Unfortunately, there's something that the dialog box template needs that you can't add in the Dialog Editor in
Developer Studio. For this reason, the dialog box template is contained in the HEXCALC.DLG file, which you might
guess (correctly) was typed in manually. You can add a text file to any project by picking New from the File menu,
picking the Files tab, and selecting Text File from the list of file types. A file such as this, containing additional
resource definitions, needs to be included in the resource script. From the View menu, select Resource Includes.
This displays a dialog box. In the Compile-time Directives edit field, type

#include "hexcalc.dlg"

This line will then be inserted into the HEXCALC.RC resource script, as shown above.

A close look at the dialog box template in the HEXCALC.DLG file will reveal how HEXCALC uses its own window
procedure for the dialog box. The top of the dialog box template looks like

HexCalc DIALOG -1, -1, 102, 122
STYLE WS_OVERLAPPED ¦ WS_CAPTION ¦ WS_SYSMENU ¦ WS_MINIMIZEBOX

CLASS "HexCalc"
CAPTION "Hex Calculator"

Notice the identifiers, such as WS_OVERLAPPED and WS_MINIMIZEBOX, which we might use to create a normal
window by using a CreateWindow call. The CLASS statement is the crucial difference between this dialog box and
the others we've created so far (and it is what the Dialog Editor in Developer Studio doesn't allow us to specify).
When we omitted this statement in previous dialog box templates, Windows registered a window class for the
dialog box and used its own window procedure to process the dialog box messages. The inclusion of a CLASS
statement here tells Windows to send the messages elsewhere—specifically, to the window procedure specified in
the HexCalc window class.

The HexCalc window class is registered in the WinMain function of HEXCALC, just like a window class for a normal
window. However, note this very important difference: the cbWndExtra field of the WNDCLASS structure is set to
DLGWINDOWEXTRA. This is essential for dialog procedures that you register yourself.

After registering the window class, WinMain calls CreateDialog :

hwnd = CreateDialog (hInstance, szAppName, 0, NULL) ;

The second argument (the string "HexCalc") is the name of the dialog box template. The third argument, which is
normally the window handle of the parent window, is set to 0 because the window has no parent. The last
argument, which is normally the address of the dialog procedure, isn't required because Windows won't be
processing the messages and therefore can't send them to a dialog procedure.

This CreateDialog call, in conjunction with the dialog box template, is effectively translated by Windows into a
CreateWindow call that does the equivalent of

hwnd = CreateWindow (TEXT ("HexCalc"), TEXT ("Hex Calculator"),
 WS_OVERLAPPED ¦ WS_CAPTION ¦ WS_SYSMENU ¦ WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 102 * 4 / cxChar, 122 * 8 / cyChar,
 NULL, NULL, hInstance, NULL) ;

where the cxChar and cyChar variables are the width and height of the dialog font character.

We reap an enormous benefit from letting Windows make this CreateWindow call: Windows will not stop at
creating the one popup window but will also call CreateWindow for all 29 child window push-button controls
defined in the dialog box template. All these controls send WM_COMMAND messages to the window procedure of
the parent window, which is none other than WndProc . This is an excellent technique for creating a window that
must contain a collection of child windows.

Here's another way HEXCALC's code size is kept down to a minimum: You'll notice that HEXCALC contains no
header file normally required to define the identifiers for all the child window controls in the dialog box template.
We can dispense with this file because the ID number for each of the push-button controls is set to the ASCII code
of the text that appears in the control. This means that WndProc can treat WM_COMMAND messages and
WM_CHAR messages in much the same way. In each case, the low word of wParam is the ASCII code of the
button.

Of course, a little massaging of the keyboard messages is necessary. WndProc traps WM_KEYDOWN messages to
translate the Left Arrow key to a Backspace key. During processing of WM_CHAR messages, WndProc converts the
character code to uppercase and the Enter key to the ASCII code for the Equals key.

Calling GetDlgItem checks the validity of a WM_CHAR message. If the GetDlgItem function returns 0, the
keyboard character is not one of the ID numbers defined in the dialog box template. If the character is one of the
IDs, however, the appropriate button is flashed by sending it a couple of BM_SETSTATE messages:

if (hButton = GetDlgItem (hwnd, wParam))
{
 SendMessage (hButton, BM_SETSTATE, 1, 0) ;
 Sleep (100) ;
 SendMessage (hButton, BM_SETSTATE, 0, 0) ;
}

This adds a nice touch to HEXCALC's keyboard interface, and with a minimum of effort. The Sleep function
suspends the program for 100 milliseconds. This prevents the buttons from being "clicked" so quickly that they
aren't noticeable.

When WndProc processes WM_COMMAND messages, it always sets the input focus to the parent window:

case WM_COMMAND :
 SetFocus (hwnd) ;

Otherwise, the input focus would be shifted to one of the buttons whenever it was clicked with the mouse.

The Common Dialog Boxes

One of the primary goals of Windows when it was initially released was to promote a standardized user interface.
For many common menu items, this happened fairly quickly. Almost every software manufacturer adopted the Alt-
File-Open selection to open a file. However, the actual file-open dialog boxes were often quite dissimilar.

Beginning with Windows 3.1, a solution to this problem became available. This is an enhancement called the
"common dialog box library." This library consists of several functions that invoke standard dialog boxes for
opening and saving files, searching and replacing, choosing colors, choosing fonts (all of which I'll demonstrate in
this chapter), and printing (which I'll demonstrate in Chapter 13).

To use these functions, you basically initialize the fields of a structure and pass a pointer to the structure to a
function in the common dialog box library. The function creates and displays the dialog box. When the user makes
the dialog box go away, the function you called returns control to your program and you obtain information from
the structure you passed to it.

You'll need to include the COMMDLG.H header file in any C source code file that uses the common dialog box
library. The common dialog boxes are documented in /Platform SDK/User Interface Services/User Input/Common
Dialog Box Library.

POPPAD Revisited

When we added a menu to POPPAD in Chapter 10 , several standard menu options were left unimplemented. We
are now ready to add logic to POPPAD to open files, read them in, and save the edited files on disk. In the process,
we'll also add font selection and search-and-replace logic to POPPAD.

The files that contribute to the POPPAD3 program are shown in Figure 11-11.

Figure 11-11. The POPPAD3 program.

POPPAD.C

/*---------------------------------------
 POPPAD.C -- Popup Editor
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <commdlg.h>
#include "resource.h"

#define EDITID 1
#define UNTITLED TEXT ("(untitled)")

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutDlgProc (HWND, UINT, WPARAM, LPARAM) ;

 // Functions in POPFILE.C

void PopFileInitialize (HWND) ;
BOOL PopFileOpenDlg (HWND, PTSTR, PTSTR) ;
BOOL PopFileSaveDlg (HWND, PTSTR, PTSTR) ;
BOOL PopFileRead (HWND, PTSTR) ;
BOOL PopFileWrite (HWND, PTSTR) ;

 // Functions in POPFIND.C

HWND PopFindFindDlg (HWND) ;
HWND PopFindReplaceDlg (HWND) ;
BOOL PopFindFindText (HWND, int *, LPFINDREPLACE) ;
BOOL PopFindReplaceText (HWND, int *, LPFINDREPLACE) ;
BOOL PopFindNextText (HWND, int *) ;
BOOL PopFindValidFind (void) ;

 // Functions in POPFONT.C

void PopFontInitialize (HWND) ;
BOOL PopFontChooseFont (HWND) ;
void PopFontSetFont (HWND) ;
void PopFontDeinitialize (void) ;

 // Functions in POPPRNT.C

BOOL PopPrntPrintFile (HINSTANCE, HWND, HWND, PTSTR) ;

 // Global variables

static HWND hDlgModeless ;
static TCHAR szAppName[] = TEXT ("PopPad") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 MSG msg ;
 HWND hwnd ;
 HACCEL hAccel ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, NULL,

 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, szCmdLine) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (hDlgModeless == NULL || !IsDialogMessage (hDlgModeless, &msg))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 }
 return msg.wParam ;
}

void DoCaption (HWND hwnd, TCHAR * szTitleName)
{
 TCHAR szCaption[64 + MAX_PATH] ;

 wsprintf (szCaption, TEXT ("%s - %s"), szAppName,
 szTitleName[0] ? szTitleName : UNTITLED) ;

 SetWindowText (hwnd, szCaption) ;
}

void OkMessage (HWND hwnd, TCHAR * szMessage, TCHAR * szTitleName)
{
 TCHAR szBuffer[64 + MAX_PATH] ;

 wsprintf (szBuffer, szMessage, szTitleName[0] ? szTitleName : UNTITLED) ;

 MessageBox (hwnd, szBuffer, szAppName, MB_OK | MB_ICONEXCLAMATION) ;
}

short AskAboutSave (HWND hwnd, TCHAR * szTitleName)
{
 TCHAR szBuffer[64 + MAX_PATH] ;
 int iReturn ;

 wsprintf (szBuffer, TEXT ("Save current changes in %s?"),
 szTitleName[0] ? szTitleName : UNTITLED) ;

 iReturn = MessageBox (hwnd, szBuffer, szAppName,
 MB_YESNOCANCEL | MB_ICONQUESTION) ;

 if (iReturn == IDYES)
 if (!SendMessage (hwnd, WM_COMMAND, IDM_FILE_SAVE, 0))
 iReturn = IDCANCEL ;

 return iReturn ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bNeedSave = FALSE ;
 static HINSTANCE hInst ;
 static HWND hwndEdit ;
 static int iOffset ;
 static TCHAR szFileName[MAX_PATH], szTitleName[MAX_PATH] ;
 static UINT messageFindReplace ;
 int iSelBeg, iSelEnd, iEnable ;
 LPFINDREPLACE pfr ;

 switch (message)
 {
 case WM_CREATE:
 hInst = ((LPCREATESTRUCT) lParam) -> hInstance ;

 // Create the edit control child window

 hwndEdit = CreateWindow (TEXT ("edit"), NULL,
 WS_CHILD | WS_VISIBLE | WS_HSCROLL | WS_VSCROLL |
 WS_BORDER | ES_LEFT | ES_MULTILINE |
 ES_NOHIDESEL | ES_AUTOHSCROLL | ES_AUTOVSCROLL,
 0, 0, 0, 0,
 hwnd, (HMENU) EDITID, hInst, NULL) ;

 SendMessage (hwndEdit, EM_LIMITTEXT, 32000, 0L) ;

 // Initialize common dialog box stuff

 PopFileInitialize (hwnd) ;
 PopFontInitialize (hwndEdit) ;

 messageFindReplace = RegisterWindowMessage (FINDMSGSTRING) ;

 DoCaption (hwnd, szTitleName) ;
 return 0 ;
 case WM_SETFOCUS:
 SetFocus (hwndEdit) ;
 return 0 ;

 case WM_SIZE:
 MoveWindow (hwndEdit, 0, 0, LOWORD (lParam), HIWORD (lParam), TRUE) ;
 return 0 ;

 case WM_INITMENUPOPUP:
 switch (lParam)

 {
 case 1: // Edit menu

 // Enable Undo if edit control can do it

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_UNDO,
 SendMessage (hwndEdit, EM_CANUNDO, 0, 0L) ?
 MF_ENABLED : MF_GRAYED) ;

 // Enable Paste if text is in the clipboard

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_PASTE,
 IsClipboardFormatAvailable (CF_TEXT) ?
 MF_ENABLED : MF_GRAYED) ;

 // Enable Cut, Copy, and Del if text is selected

 SendMessage (hwndEdit, EM_GETSEL, (WPARAM) &iSelBeg,
 (LPARAM) &iSelEnd) ;

 iEnable = iSelBeg != iSelEnd ? MF_ENABLED : MF_GRAYED ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CLEAR, iEnable) ;
 break ;

 case 2: // Search menu

 // Enable Find, Next, and Replace if modeless
 // dialogs are not already active

 iEnable = hDlgModeless == NULL ?
 MF_ENABLED : MF_GRAYED ;

 EnableMenuItem ((HMENU) wParam, IDM_SEARCH_FIND, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_SEARCH_NEXT, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_SEARCH_REPLACE, iEnable) ;
 break ;
 }
 return 0 ;

 case WM_COMMAND:
 // Messages from edit control

 if (lParam && LOWORD (wParam) == EDITID)
 {
 switch (HIWORD (wParam))
 {
 case EN_UPDATE :
 bNeedSave = TRUE ;
 return 0 ;

 case EN_ERRSPACE :
 case EN_MAXTEXT :
 MessageBox (hwnd, TEXT ("Edit control out of space."),
 szAppName, MB_OK | MB_ICONSTOP) ;
 return 0 ;
 }
 break ;
 }

 switch (LOWORD (wParam))
 {
 // Messages from File menu

 case IDM_FILE_NEW:
 if (bNeedSave && IDCANCEL == AskAboutSave (hwnd, szTitleName))
 return 0 ;

 SetWindowText (hwndEdit, TEXT ("\0")) ;
 szFileName[0] = `\0' ;
 szTitleName[0] = `\0' ;
 DoCaption (hwnd, szTitleName) ;
 bNeedSave = FALSE ;
 return 0 ;

 case IDM_FILE_OPEN:
 if (bNeedSave && IDCANCEL == AskAboutSave (hwnd, szTitleName))
 return 0 ;
 if (PopFileOpenDlg (hwnd, szFileName, szTitleName))
 {
 if (!PopFileRead (hwndEdit, szFileName))
 {
 OkMessage (hwnd, TEXT ("Could not read file %s!"),
 szTitleName) ;
 szFileName[0] = `\0' ;
 szTitleName[0] = `\0' ;
 }
 }

 DoCaption (hwnd, szTitleName) ;
 bNeedSave = FALSE ;
 return 0 ;

 case IDM_FILE_SAVE:
 if (szFileName[0])
 {
 if (PopFileWrite (hwndEdit, szFileName))
 {
 bNeedSave = FALSE ;
 return 1 ;
 }
 else
 {
 OkMessage (hwnd, TEXT ("Could not write file %s"),

 szTitleName) ;
 return 0 ;
 }
 }
 // fall through
 case IDM_FILE_SAVE_AS:
 if (PopFileSaveDlg (hwnd, szFileName, szTitleName))
 {
 DoCaption (hwnd, szTitleName) ;

 if (PopFileWrite (hwndEdit, szFileName))
 {
 bNeedSave = FALSE ;
 return 1 ;
 }
 else
 {
 OkMessage (hwnd, TEXT ("Could not write file %s"),
 szTitleName) ;

 return 0 ;
 }
 }
 return 0 ;

 case IDM_FILE_PRINT:
 if (!PopPrntPrintFile (hInst, hwnd, hwndEdit, szTitleName))
 OkMessage (hwnd, TEXT ("Could not print file %s"),
 szTitleName) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 // Messages from Edit menu

 case IDM_EDIT_UNDO:
 SendMessage (hwndEdit, WM_UNDO, 0, 0) ;
 return 0 ;

 case IDM_EDIT_CUT:
 SendMessage (hwndEdit, WM_CUT, 0, 0) ;
 return 0 ;

 case IDM_EDIT_COPY:
 SendMessage (hwndEdit, WM_COPY, 0, 0) ;
 return 0 ;

 case IDM_EDIT_PASTE:
 SendMessage (hwndEdit, WM_PASTE, 0, 0) ;
 return 0 ;

 case IDM_EDIT_CLEAR:
 SendMessage (hwndEdit, WM_CLEAR, 0, 0) ;
 return 0 ;

 case IDM_EDIT_SELECT_ALL:
 SendMessage (hwndEdit, EM_SETSEL, 0, -1) ;
 return 0 ;

 // Messages from Search menu
 case IDM_SEARCH_FIND:
 SendMessage (hwndEdit, EM_GETSEL, 0, (LPARAM) &iOffset) ;
 hDlgModeless = PopFindFindDlg (hwnd) ;
 return 0 ;

 case IDM_SEARCH_NEXT:
 SendMessage (hwndEdit, EM_GETSEL, 0, (LPARAM) &iOffset) ;

 if (PopFindValidFind ())
 PopFindNextText (hwndEdit, &iOffset) ;
 else
 hDlgModeless = PopFindFindDlg (hwnd) ;

 return 0 ;

 case IDM_SEARCH_REPLACE:
 SendMessage (hwndEdit, EM_GETSEL, 0, (LPARAM) &iOffset) ;
 hDlgModeless = PopFindReplaceDlg (hwnd) ;
 return 0 ;

 case IDM_FORMAT_FONT:
 if (PopFontChooseFont (hwnd))
 PopFontSetFont (hwndEdit) ;

 return 0 ;

 // Messages from Help menu

 case IDM_HELP:
 OkMessage (hwnd, TEXT ("Help not yet implemented!"),
 TEXT ("\0")) ;
 return 0 ;

 case IDM_APP_ABOUT:
 DialogBox (hInst, TEXT ("AboutBox"), hwnd, AboutDlgProc) ;
 return 0 ;
 }
 break ;

 case WM_CLOSE:
 if (!bNeedSave || IDCANCEL != AskAboutSave (hwnd, szTitleName))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_QUERYENDSESSION :
 if (!bNeedSave || IDCANCEL != AskAboutSave (hwnd, szTitleName))
 return 1 ;

 return 0 ;

 case WM_DESTROY:
 PopFontDeinitialize () ;
 PostQuitMessage (0) ;
 return 0 ;

 default:
 // Process "Find-Replace" messages

 if (message == messageFindReplace)
 {
 pfr = (LPFINDREPLACE) lParam ;

 if (pfr->Flags & FR_DIALOGTERM)
 hDlgModeless = NULL ;

 if (pfr->Flags & FR_FINDNEXT)
 if (!PopFindFindText (hwndEdit, &iOffset, pfr))
 OkMessage (hwnd, TEXT ("Text not found!"),
 TEXT ("\0")) ;

 if (pfr->Flags & FR_REPLACE || pfr->Flags & FR_REPLACEALL)
 if (!PopFindReplaceText (hwndEdit, &iOffset, pfr))
 OkMessage (hwnd, TEXT ("Text not found!"),
 TEXT ("\0")) ;

 if (pfr->Flags & FR_REPLACEALL)
 while (PopFindReplaceText (hwndEdit, &iOffset, pfr)) ;

 return 0 ;
 }
 break ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {

 case IDOK:
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

POPFILE.C

/*--
 POPFILE.C -- Popup Editor File Functions
 --*/

#include <windows.h>
#include <commdlg.h>

static OPENFILENAME ofn ;

void PopFileInitialize (HWND hwnd)
{
 static TCHAR szFilter[] = TEXT ("Text Files (*.TXT)\0*.txt\0") \
 TEXT ("ASCII Files (*.ASC)\0*.asc\0") \
 TEXT ("All Files (*.*)\0*.*\0\0") ;

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = NULL ; // Set in Open and Close functions
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = NULL ; // Set in Open and Close functions
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ; // Set in Open and Close functions
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("txt") ;
 ofn.lCustData = 0L ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
}

BOOL PopFileOpenDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName)

{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFile = pstrFileName ;
 ofn.lpstrFileTitle = pstrTitleName ;
 ofn.Flags = OFN_HIDEREADONLY | OFN_CREATEPROMPT ;

 return GetOpenFileName (&ofn) ;
}

BOOL PopFileSaveDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName)
{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFile = pstrFileName ;
 ofn.lpstrFileTitle = pstrTitleName ;
 ofn.Flags = OFN_OVERWRITEPROMPT ;

 return GetSaveFileName (&ofn) ;
}

BOOL PopFileRead (HWND hwndEdit, PTSTR pstrFileName)
{
 BYTE bySwap ;
 DWORD dwBytesRead ;
 HANDLE hFile ;
 int i, iFileLength, iUniTest ;
 PBYTE pBuffer, pText, pConv ;

 // Open the file.
 if (INVALID_HANDLE_VALUE ==
 (hFile = CreateFile (pstrFileName, GENERIC_READ, FILE_SHARE_READ,
 NULL, OPEN_EXISTING, 0, NULL)))
 return FALSE ;

 // Get file size in bytes and allocate memory for read.
 // Add an extra two bytes for zero termination.

 iFileLength = GetFileSize (hFile, NULL) ;
 pBuffer = malloc (iFileLength + 2) ;

 // Read file and put terminating zeros at end.

 ReadFile (hFile, pBuffer, iFileLength, &dwBytesRead, NULL) ;
 CloseHandle (hFile) ;
 pBuffer[iFileLength] = `\0' ;
 pBuffer[iFileLength + 1] = `\0' ;

 // Test to see if the text is Unicode

 iUniTest = IS_TEXT_UNICODE_SIGNATURE | IS_TEXT_UNICODE_REVERSE_SIGNATURE ;

 if (IsTextUnicode (pBuffer, iFileLength, &iUniTest))
 {
 pText = pBuffer + 2 ;

 iFileLength -= 2 ;

 if (iUniTest & IS_TEXT_UNICODE_REVERSE_SIGNATURE)
 {
 for (i = 0 ; i < iFileLength / 2 ; i++)
 {
 bySwap = ((BYTE *) pText) [2 * i] ;
 ((BYTE *) pText) [2 * i] = ((BYTE *) pText) [2 * i + 1] ;
 ((BYTE *) pText) [2 * i + 1] = bySwap ;
 }
 }

 // Allocate memory for possibly converted string

 pConv = malloc (iFileLength + 2) ;

 // If the edit control is not Unicode, convert Unicode text to
 // non-Unicode (i.e., in general, wide character).

#ifndef UNICODE
 WideCharToMultiByte (CP_ACP, 0, (PWSTR) pText, -1, pConv,
 iFileLength + 2, NULL, NULL) ;

 // If the edit control is Unicode, just copy the string
#else
 lstrcpy ((PTSTR) pConv, (PTSTR) pText) ;
#endif

 }
 else // the file is not Unicode
 {
 pText = pBuffer ;

 // Allocate memory for possibly converted string.

 pConv = malloc (2 * iFileLength + 2) ;

 // If the edit control is Unicode, convert ASCII text.

#ifdef UNICODE
 MultiByteToWideChar (CP_ACP, 0, pText, -1, (PTSTR) pConv,
 iFileLength + 1) ;

 // If not, just copy buffer
#else
 lstrcpy ((PTSTR) pConv, (PTSTR) pText) ;
#endif
 }

 SetWindowText (hwndEdit, (PTSTR) pConv) ;
 free (pBuffer) ;
 free (pConv) ;

 return TRUE ;
}

BOOL PopFileWrite (HWND hwndEdit, PTSTR pstrFileName)
{
 DWORD dwBytesWritten ;
 HANDLE hFile ;
 int iLength ;
 PTSTR pstrBuffer ;
 WORD wByteOrderMark = 0xFEFF ;
 // Open the file, creating it if necessary

 if (INVALID_HANDLE_VALUE ==
 (hFile = CreateFile (pstrFileName, GENERIC_WRITE, 0,
 NULL, CREATE_ALWAYS, 0, NULL)))
 return FALSE ;

 // Get the number of characters in the edit control and allocate
 // memory for them.

 iLength = GetWindowTextLength (hwndEdit) ;
 pstrBuffer = (PTSTR) malloc ((iLength + 1) * sizeof (TCHAR)) ;

 if (!pstrBuffer)
 {
 CloseHandle (hFile) ;
 return FALSE ;
 }

 // If the edit control will return Unicode text, write the
 // byte order mark to the file.

#ifdef UNICODE
 WriteFile (hFile, &wByteOrderMark, 2, &dwBytesWritten, NULL) ;
#endif

 // Get the edit buffer and write that out to the file.

 GetWindowText (hwndEdit, pstrBuffer, iLength + 1) ;
 WriteFile (hFile, pstrBuffer, iLength * sizeof (TCHAR),
 &dwBytesWritten, NULL) ;

 if ((iLength * sizeof (TCHAR)) != (int) dwBytesWritten)
 {
 CloseHandle (hFile) ;
 free (pstrBuffer) ;
 return FALSE ;
 }

 CloseHandle (hFile) ;
 free (pstrBuffer) ;

 return TRUE ;

}

POPFIND.C

/*--
 POPFIND.C -- Popup Editor Search and Replace Functions
 --*/

#include <windows.h>
#include <commdlg.h>
#include <tchar.h> // for _tcsstr (strstr for Unicode & non-Unicode)

#define MAX_STRING_LEN 256

static TCHAR szFindText [MAX_STRING_LEN] ;
static TCHAR szReplText [MAX_STRING_LEN] ;

HWND PopFindFindDlg (HWND hwnd)
{
 static FINDREPLACE fr ; // must be static for modeless dialog!!!

 fr.lStructSize = sizeof (FINDREPLACE) ;
 fr.hwndOwner = hwnd ;
 fr.hInstance = NULL ;
 fr.Flags = FR_HIDEUPDOWN | FR_HIDEMATCHCASE | FR_HIDEWHOLEWORD ;
 fr.lpstrFindWhat = szFindText ;
 fr.lpstrReplaceWith = NULL ;
 fr.wFindWhatLen = MAX_STRING_LEN ;
 fr.wReplaceWithLen = 0 ;
 fr.lCustData = 0 ;
 fr.lpfnHook = NULL ;
 fr.lpTemplateName = NULL ;

 return FindText (&fr) ;
}

HWND PopFindReplaceDlg (HWND hwnd)
{
 static FINDREPLACE fr ; // must be static for modeless dialog!!!

 fr.lStructSize = sizeof (FINDREPLACE) ;
 fr.hwndOwner = hwnd ;
 fr.hInstance = NULL ;
 fr.Flags = FR_HIDEUPDOWN | FR_HIDEMATCHCASE | FR_HIDEWHOLEWORD ;
 fr.lpstrFindWhat = szFindText ;
 fr.lpstrReplaceWith = szReplText ;
 fr.wFindWhatLen = MAX_STRING_LEN ;
 fr.wReplaceWithLen = MAX_STRING_LEN ;
 fr.lCustData = 0 ;

 fr.lpfnHook = NULL ;
 fr.lpTemplateName = NULL ;

 return ReplaceText (&fr) ;
}

BOOL PopFindFindText (HWND hwndEdit, int * piSearchOffset, LPFINDREPLACE pfr)
{
 int iLength, iPos ;
 PTSTR pstrDoc, pstrPos ;

 // Read in the edit document

 iLength = GetWindowTextLength (hwndEdit) ;

 if (NULL == (pstrDoc = (PTSTR) malloc ((iLength + 1) * sizeof (TCHAR))))
 return FALSE ;

 GetWindowText (hwndEdit, pstrDoc, iLength + 1) ;

 // Search the document for the find string

 pstrPos = _tcsstr (pstrDoc + * piSearchOffset, pfr->lpstrFindWhat) ;
 free (pstrDoc) ;

 // Return an error code if the string cannot be found

 if (pstrPos == NULL)
 return FALSE ;

 // Find the position in the document and the new start offset

 iPos = pstrPos - pstrDoc ;
 * piSearchOffset = iPos + lstrlen (pfr->lpstrFindWhat) ;

 // Select the found text

 SendMessage (hwndEdit, EM_SETSEL, iPos, * piSearchOffset) ;
 SendMessage (hwndEdit, EM_SCROLLCARET, 0, 0) ;

 return TRUE ;
}

BOOL PopFindNextText (HWND hwndEdit, int * piSearchOffset)
{
 FINDREPLACE fr ;

 fr.lpstrFindWhat = szFindText ;

 return PopFindFindText (hwndEdit, piSearchOffset, &fr) ;
}

BOOL PopFindReplaceText (HWND hwndEdit, int * piSearchOffset, LPFINDREPLACE pfr)

{
 // Find the text

 if (!PopFindFindText (hwndEdit, piSearchOffset, pfr))
 return FALSE ;

 // Replace it

 SendMessage (hwndEdit, EM_REPLACESEL, 0, (LPARAM) pfr->lpstrReplaceWith) ;

 return TRUE ;
}

BOOL PopFindValidFind (void)
{
 return * szFindText != `\0' ;
}

POPFONT.C

/*--
 POPFONT.C -- Popup Editor Font Functions
 --*/

#include <windows.h>
#include <commdlg.h>

static LOGFONT logfont ;
static HFONT hFont ;

BOOL PopFontChooseFont (HWND hwnd)
{
 CHOOSEFONT cf ;
 cf.lStructSize = sizeof (CHOOSEFONT) ;
 cf.hwndOwner = hwnd ;
 cf.hDC = NULL ;
 cf.lpLogFont = &logfont ;
 cf.iPointSize = 0 ;
 cf.Flags = CF_INITTOLOGFONTSTRUCT | CF_SCREENFONTS | CF_EFFECTS ;
 cf.rgbColors = 0 ;
 cf.lCustData = 0 ;
 cf.lpfnHook = NULL ;
 cf.lpTemplateName = NULL ;
 cf.hInstance = NULL ;
 cf.lpszStyle = NULL ;
 cf.nFontType = 0 ; // Returned from ChooseFont
 cf.nSizeMin = 0 ;
 cf.nSizeMax = 0 ;

 return ChooseFont (&cf) ;

}

void PopFontInitialize (HWND hwndEdit)
{
 GetObject (GetStockObject (SYSTEM_FONT), sizeof (LOGFONT),
 (PTSTR) &logfont) ;

 hFont = CreateFontIndirect (&logfont) ;
 SendMessage (hwndEdit, WM_SETFONT, (WPARAM) hFont, 0) ;
}

void PopFontSetFont (HWND hwndEdit)
{
 HFONT hFontNew ;
 RECT rect ;

 hFontNew = CreateFontIndirect (&logfont) ;
 SendMessage (hwndEdit, WM_SETFONT, (WPARAM) hFontNew, 0) ;
 DeleteObject (hFont) ;
 hFont = hFontNew ;
 GetClientRect (hwndEdit, &rect) ;
 InvalidateRect (hwndEdit, &rect, TRUE) ;
}

void PopFontDeinitialize (void)
{
 DeleteObject (hFont) ;
}

POPPRNT0.C

/*---
 POPPRNT0.C -- Popup Editor Printing Functions (dummy version)
 ---*/

#include <windows.h>

BOOL PopPrntPrintFile (HINSTANCE hInst, HWND hwnd, HWND hwndEdit,
 PTSTR pstrTitleName)
{
 return FALSE ;
}

POPPAD.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ABOUTBOX DIALOG DISCARDABLE 32, 32, 180, 100
STYLE DS_MODALFRAME | WS_POPUP
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,66,80,50,14
 ICON "POPPAD",IDC_STATIC,7,7,20,20
 CTEXT "PopPad",IDC_STATIC,40,12,100,8
 CTEXT "Popup Editor for Windows",IDC_STATIC,7,40,166,8
 CTEXT "(c) Charles Petzold, 1998",IDC_STATIC,7,52,166,8
END

PRINTDLGBOX DIALOG DISCARDABLE 32, 32, 186, 95
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "PopPad"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "Cancel",IDCANCEL,67,74,50,14
 CTEXT "Sending",IDC_STATIC,8,8,172,8
 CTEXT "",IDC_FILENAME,8,28,172,8
 CTEXT "to print spooler.",IDC_STATIC,8,48,172,8
END

///
// Menu

POPPAD MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New\tCtrl+N", IDM_FILE_NEW
 MENUITEM "&Open...\tCtrl+O", IDM_FILE_OPEN
 MENUITEM "&Save\tCtrl+S", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "&Print\tCtrl+P", IDM_FILE_PRINT
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE

 MENUITEM "De&lete\tDel", IDM_EDIT_CLEAR
 MENUITEM SEPARATOR
 MENUITEM "&Select All", IDM_EDIT_SELECT_ALL
 END
 POPUP "&Search"
 BEGIN
 MENUITEM "&Find...\tCtrl+F", IDM_SEARCH_FIND
 MENUITEM "Find &Next\tF3", IDM_SEARCH_NEXT
 MENUITEM "&Replace...\tCtrl+R", IDM_SEARCH_REPLACE
 END
 POPUP "F&ormat"
 BEGIN
 MENUITEM "&Font...", IDM_FORMAT_FONT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help", IDM_HELP
 MENUITEM "&About PopPad...", IDM_APP_ABOUT
 END
END

///
// Accelerator

POPPAD ACCELERATORS DISCARDABLE
BEGIN
 VK_BACK, IDM_EDIT_UNDO, VIRTKEY, ALT, NOINVERT
 VK_DELETE, IDM_EDIT_CLEAR, VIRTKEY, NOINVERT
 VK_DELETE, IDM_EDIT_CUT, VIRTKEY, SHIFT, NOINVERT
 VK_F1, IDM_HELP, VIRTKEY, NOINVERT
 VK_F3, IDM_SEARCH_NEXT, VIRTKEY, NOINVERT
 VK_INSERT, IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 VK_INSERT, IDM_EDIT_PASTE, VIRTKEY, SHIFT, NOINVERT
 "^C", IDM_EDIT_COPY, ASCII, NOINVERT
 "^F", IDM_SEARCH_FIND, ASCII, NOINVERT
 "^N", IDM_FILE_NEW, ASCII, NOINVERT
 "^O", IDM_FILE_OPEN, ASCII, NOINVERT
 "^P", IDM_FILE_PRINT, ASCII, NOINVERT
 "^R", IDM_SEARCH_REPLACE, ASCII, NOINVERT
 "^S", IDM_FILE_SAVE, ASCII, NOINVERT
 "^V", IDM_EDIT_PASTE, ASCII, NOINVERT
 "^X", IDM_EDIT_CUT, ASCII, NOINVERT
 "^Z", IDM_EDIT_UNDO, ASCII, NOINVERT
END

///
// Icon

POPPAD ICON DISCARDABLE "poppad.ico"

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by poppad.rc

#define IDC_FILENAME 1000
#define IDM_FILE_NEW 40001
#define IDM_FILE_OPEN 40002
#define IDM_FILE_SAVE 40003
#define IDM_FILE_SAVE_AS 40004
#define IDM_FILE_PRINT 40005
#define IDM_APP_EXIT 40006
#define IDM_EDIT_UNDO 40007
#define IDM_EDIT_CUT 40008
#define IDM_EDIT_COPY 40009
#define IDM_EDIT_PASTE 40010
#define IDM_EDIT_CLEAR 40011
#define IDM_EDIT_SELECT_ALL 40012
#define IDM_SEARCH_FIND 40013
#define IDM_SEARCH_NEXT 40014
#define IDM_SEARCH_REPLACE 40015
#define IDM_FORMAT_FONT 40016
#define IDM_HELP 40017
#define IDM_APP_ABOUT 40018

POPPAD.ICO

To avoid duplicating source code in Chapter 13 , I've added printing to the menu in POPPAD.RC along with some
other support.

POPPAD.C contains all the basic source code for the program. POPFILE.C has the code to invoke the File Open and
File Save dialog boxes, and it also contains the file I/O routines. POPFIND.C contains the search-and-replace logic.
POPFONT.C has the font selection logic. POPPRNT0.C doesn't do much: POPPRNT0.C will be replaced with
POPPRNT.C in Chapter 13 to create the final POPPAD program.

Let's look at POPPAD.C first. POPPAD.C maintains two filename strings: The first, stored in WndProc using the
name szFileName , is the fully qualified drive, path, and filename. The second, stored as szTitleName , is the
filename by itself. This is used in the DoCaption function in POPPAD3 to display the filename in the title bar of the
window and is used in the OKMessage and AskAboutSave functions to display message boxes to the user.

POPFILE.C contains several functions to display the File Open and File Save dialog boxes and to perform the actual
file I/O. The dialog boxes are displayed using the functions GetOpenFileName and GetSaveFileName . Both of
these functions use a structure of type OPENFILENAME, defined in COMMDLG.H. In POPFILE.C, a global variable
named ofn is used for this structure. Most of the fields of ofn are initialized in the PopFileInitialize function, which
POPPAD.C calls when processing the WM_CREATE message in WndProc .

It's convenient to make ofn a static global structure because GetOpenFileName and GetSaveFileName return some
information to the structure that should be used in subsequent calls to these functions.

Although common dialog boxes have a lot of options—including setting your own dialog box template and hooking
into the dialog box procedure—my use of the File Open and File Save dialog boxes in POPFILE.C is quite basic. The
only fields of the OPENFILENAME structure that are set are lStructSize (the size of the structure), hwndOwner (the
dialog box's owner), lpstrFilter (which I'll discuss shortly), lpstrFile and nMaxFile (a pointer to a buffer to receive
the fully qualified filename and the size of that buffer), lpstrFileTitle and nMaxFileTitle (a buffer and its size for the
filename by itself), Flags (which sets options for the dialog box), and lpstrDefExt (which is set to a text string
containing the default filename extension if the user does not specify one when typing a filename in the dialog
box).

When the user selects Open from the File menu, POPPAD3 calls POPFILE's PopFileOpenDlg function, passing to it
the window handle, a pointer to the filename buffer, and a pointer to the file title buffer. PopFileOpenDlg sets the
hwndOwner , lpstrFile , and lpstrFileTitle fields of the OPENFILENAME structure appropriately, sets Flags to OFN_
CREATEPROMPT, and then calls GetOpenFileName , which displays the familiar dialog box shown in Figure 11-12.

Figure 11-12. The File Open dialog box.

When the user ends this dialog box, the GetOpenFileName function returns. The OFN_CREATEPROMPT flag
instructs GetOpenFileName to display a message box asking the user whether the file should be created if the
selected file does not exist.

The combo box in the lower left corner lists the types of files that will be displayed in the file list. This is known as
a "filter." The user can change the filter by selecting another file type from the combo box list. In the
PopFileInitialize function in POPFILE.C, I define a filter in the variable szFilter (an array of character strings) for
three types of files: text files with the extension .TXT, ASCII files with the extension .ASC, and all files. A pointer
to the first string in this array is set to the lpstrFilter field of the OPENFILENAME structure.

If the user changes the filter when the dialog box is active, the nFilterIndex field of OPENFILENAME reflects the
user's choice. Because the structure is stored as a static variable, the next time the dialog box is invoked the filter
will be set to the selected file type.

The PopFileSaveDlg function in POPFILE.C is similar. It sets the Flags parameter to OFN_OVERWRITEPROMPT and
calls GetSaveFileName to invoke the File Save dialog box. The OFN_OVERWRITEPROMPT flag causes a message
box to be displayed asking the user whether a file should be overwritten if the selected file already exists.

Unicode File I/O

In many of the programs in this book, you may never notice a difference between the Unicode and non-Unicode
versions. In the Unicode version of POPPAD3, for example, the edit control maintains Unicode text and all the
common dialog boxes use Unicode text strings. When the program needs to do a search-and-replace, for example,
the entire operation is done with Unicode strings with no conversion necessary.

However, POPPAD3 does file I/O, and that means that the program is not entirely self-enclosed. If the Unicode
version of POPPAD3 obtains the contents of the edit buffer and writes it out to the disk, that file will be in Unicode.
If the non-Unicode version of POPPAD3 reads that file and puts it into its edit buffer, the result will be garbage.
The same goes for files saved by the non-Unicode version and read by the Unicode version.

The solution involves identification and conversion. First, in the PopFileWrite function in POPFILE.C, you'll see that
the Unicode version of the program writes out the word 0xFEFF at the beginning of the file. This is defined as a
byte order mark, indicating that the text file actually contains Unicode text.

Secondly, in the PopFileRead function, the program uses the IsTextUnicode functions to determine whether the file
contains the byte order mark. The function even checks to see if the byte order mark is reversed, which means
that a Unicode text file was created on a Macintosh or other machine that used the opposite byte order from Intel
processors. In this case, every pair of bytes is reversed. If the file is Unicode but it's being read by the non-
Unicode version of POPPAD3, then the text is converted by WideCharToMultiChar , which is really a wide-char-to-
ANSI function (unless you're running a Far East version of Windows). Only then can the text be put into the edit
buffer.

Similarly, if the file is a non-Unicode text file but the Unicode version of the program is running, the text must be
converted using MultiCharToWideChar .

Changing the Font

We'll be looking at fonts in more detail in Chapter 17 , but nothing quite beats the common dialog box functions
for choosing fonts.

During the WM_CREATE message, POPPAD calls PopFontInitialize in POPFONT.C. This function obtains a LOGFONT
structure based on the system font, creates a font from it, and sends a WM_SETFONT message to the edit control
to set a new font. (Although the default edit control font is the system font, the PopFontInitialize function creates
a new font for the edit control because eventually the font will be deleted and it wouldn't be wise to delete the
stock system font.)

When POPPAD receives a WM_COMMAND message for the program's font option, it calls PopFontChooseFont . This
function initializes a CHOOSEFONT structure and then calls ChooseFont to display the font selection dialog box. If
the user presses the OK button, ChooseFont will return TRUE. POPPAD then calls PopFontSetFont to set the new
font in the edit control. The old font is deleted.

Finally, during the WM_DESTROY message, POPPAD calls PopFontDeinitialize to delete the last font that
PopFontSetFont created.

Search and Replace

The common dialog box library also includes two dialog boxes for the text search and replace functions. These two
functions (FindText and ReplaceText) use a structure of type FINDREPLACE. The POPFIND.C file, shown in Figure
10-11, has two routines (PopFindFindDlg and PopFindReplaceDlg) to call these functions, and it also has a couple
of functions to search through the text in the edit control and to replace text.

There are a few considerations with using the search and replace functions. First, the dialog boxes they invoke are
modeless dialog boxes, which means you should alter your message loop to call IsDialogMessage when the dialog
boxes are active. Second, the FINDREPLACE structure you pass to FindText and ReplaceText must be a static
variable; because the dialog box is modal, the functions return after the dialog box is displayed rather than after

it's destroyed. Nevertheless, the dialog box procedure must be able to continue to access the structure.

Third, while the FindText and ReplaceText dialogs are displayed, they communicate with the owner window
through a special message. The message number can be obtained by calling the RegisterWindowMessage function
with the FINDMSGSTRING parameter. This is done while processing the WM_CREATE message in WndProc , and
the message number is stored in a static variable.

While processing the default message case, WndProc compares the message variable with the value returned from
RegisterWindowMessage . The lParam message parameter is a pointer to the FINDREPLACE structure, and the
Flags field indicates whether the user has used the dialog box to find text or replace text or whether the dialog box
is terminating. POPPAD3 calls the PopFindFindText and PopFindReplaceText functions in POPFIND.C to perform the
search and replace functions.

The One-Function-Call Windows Program

So far I've shown two programs that let you view selected colors: COLORS1 in Chapter 9 and COLORS2 in this
chapter. Now it's time for COLORS3, a program that makes only one Windows function call. The COLORS3 source
code is shown in Figure 11-13.

The one Windows function that COLORS3 calls is ChooseColor , another function in the common dialog box library.
It displays the dialog box shown in Figure 11-14. Color selection is similar to that in COLORS1 and COLORS2, but
it's somewhat more interactive.

Figure 11-13. The COLORS3 program.

COLORS3.C

/*--
 COLORS3.C -- Version using Common Dialog Box
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <commdlg.h>

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static CHOOSECOLOR cc ;
 static COLORREF crCustColors[16] ;

 cc.lStructSize = sizeof (CHOOSECOLOR) ;
 cc.hwndOwner = NULL ;
 cc.hInstance = NULL ;
 cc.rgbResult = RGB (0x80, 0x80, 0x80) ;
 cc.lpCustColors = crCustColors ;
 cc.Flags = CC_RGBINIT | CC_FULLOPEN ;
 cc.lCustData = 0 ;
 cc.lpfnHook = NULL ;
 cc.lpTemplateName = NULL ;

 return ChooseColor (&cc) ;
}

Figure 11-14. The COLORS3 display.

The ChooseColor function uses a structure of type CHOOSECOLOR and an array of 16 DWORDs to store custom
colors that the user selects from the dialog box. The rgbResult field can be initialized to a color value that will be
displayed if the CC_RGBINIT flag is set in the Flags field. When using the function normally, the rgbResult field will
be set to the color that the user selects.

Notice that the hwndOwner field of the Color dialog box is set to NULL. When the ChooseColor function calls
DialogBox to display the dialog box, the third parameter to DialogBox is also set to NULL. This is perfectly
legitimate. It means that the dialog box is not owned by another window. The caption in the dialog box will appear
in the Task List, and the dialog box will seem to function much like a normal window.

You can also use this technique with your own dialog boxes in your own programs. It's possible to make a
Windows program that creates only a dialog box and does all processing within the dialog box procedure.

Chapter 12

The Clipboard

The Microsoft Windows clipboard allows data to be transferred from one program to another. It is a relatively
simple mechanism that doesn't require much overhead in either the program that places data in the clipboard or
the program that later gets access to it. Windows 98 and Microsoft Windows NT come with Clipboard Viewer
programs that show the current contents of the clipboard.

Many programs that deal with documents or other data include an Edit menu with the options Cut, Copy, and
Paste. When a user selects Cut or Copy, the program transfers data from the program to the clipboard. This data
is in a particular format, usually text, a bitmap (a rectangular array of bits that correspond to the pixels of a
display surface), or a metafile (a binary collection of drawing commands). When a user selects Paste from the
menu, the program determines if the clipboard contains data in a format that the program can use and, if so,
transfers data from the clipboard to the program.

Programs should not transfer data into or out of the clipboard without an explicit instruction from the user. For
example, a user who performs a Cut or a Copy (or a Ctrl-X or Ctrl-C) operation in one program should be able to
assume that the data will remain in the clipboard until the next Cut or Copy operation.

You may recall that an Edit menu was implemented in the later versions of the POPPAD programs shown in
Chapters 10 and 11. However, that simply involved sending messages to the edit control. In most cases you don't
have that convenience; you must instead call the clipboard transfer functions yourself.

This chapter will focus on transferring text to and from the clipboard. In later chapters, I'll show you how to use
the clipboard with bitmaps (Chapters 14, 15, and 16) and metafiles (Chapter 18).

Simple Use of the Clipboard

We'll begin by looking at the code involved for transferring data to the clipboard (Cut and Copy) and getting
access to clipboard data (Paste).

The Standard Clipboard Data Formats

Windows supports various predefined clipboard formats that have identifiers beginning with the prefix CF defined
in WINUSER.H.

First, there are three types of text data that can be stored in the clipboard, and another related clipboard format:

CF_TEXT A NULL-terminated ANSI character-set character string containing a carriage return and a linefeed
character at the end of each line. This is the simplest form of clipboard data. The data to be transferred to
the clipboard is stored in a memory block and is transferred using the handle to the block. (I'll discuss this
concept shortly.) The memory block becomes the property of the clipboard, and the program that creates
the block should not continue to use it.

CF_OEMTEXT A memory block containing text data (similar to CF_TEXT) but using the OEM character set.
Windows programs usually don't need to worry about this; it comes into play when using the clipboard in
conjunction with MSDOS programs running in a window.

CF_UNICODETEXT A memory block containing Unicode text. Like CF_TEXT, each line is terminated with a
carriage return and linefeed character, and a NULL character (two zero bytes) indicates the end of the data.
CF_UNICODETEXT is supported under Windows NT only.

CF_LOCALE A handle to a locale identifier indicating the locale associated with clipboard text.

There are two additional clipboard formats that are conceptually similar to the CF_TEXT format (that is, they are
text-based), but they are not necessarily NULL-terminated, because the formats define the end of the data. These
formats are rarely used these days:

CF_SYLK A memory block containing data in the Microsoft "Symbolic Link" format. This format is used for
exchanging data between Microsoft's Multiplan, Chart, and Excel programs. It is an ASCII format with each
line terminated with a carriage return and a linefeed.

CF_DIF A memory block containing data in the Data Interchange Format (DIF). This is a format devised by
Software Arts for use in transferring data to the VisiCalc spreadsheet program. This is also an ASCII format
with lines terminated with carriage returns and linefeeds.

There are three clipboard formats used in conjunction with bitmaps, which are rectangular arrays of bits that
correspond to the pixels of an output device. Bitmaps and these bitmap clipboard formats are discussed in more
detail in Chapters 14 and 15 :

CF_BITMAP A device-dependent bitmap. The bitmap is transferred to the clipboard using the bitmap handle.
Again, a program should not continue to use this bitmap after giving it to the clipboard.

CF_DIB A memory block defining a device-independent bitmap, as described in Chapter 15 . The memory
block begins with a bitmap information structure followed by a possible color table and the bitmap bits.

CF_PALETTE A handle to a color palette. This is generally used in conjunction with CF_DIB for defining a
color palette used by a device-dependent bitmap.

It is also possible to store bitmap data in the clipboard in the industry-standard TIFF format:

CF_TIFF A memory block containing data in the Tag Image File Format (TIFF). This is a format devised by
Microsoft, Aldus Corporation, and Hewlett-Packard Company in conjunction with some hardware
manufacturers. The format is available from the Hewlett-Packard Web site.

There are two metafile formats that I'll describe in more detail in Chapter 18 . A metafile is a collection of drawing

commands stored in a binary form:

CF_METAFILEPICT A "metafile picture" based on the old metafile support of Windows.

CF_ENHMETAFILE A handle to an enhanced metafile supported under the 32-bit versions of Windows.

And finally there are also a few other miscellaneous clipboard formats:

CF_PENDATA Used in conjunction with the pen extensions to Windows.

CF_WAVE A sound (waveform) file.

CF_RIFF Multimedia data in the Resource Interchange File Format.

CF_HDROP A list of files used in conjunction with drag-and-drop services.

Memory Allocation

When your program transfers something to the clipboard, it must allocate a memory block and essentially hand it
over to the clipboard. When we've needed to allocate memory in earlier programs in this book, we've simply used
the malloc function that is supported by the standard C run-time library. However, because the memory blocks
stored by the clipboard must be shared among applications running under Windows, the malloc function is
inadequate for this task.

Instead, we must dredge up memory allocation functions that were designed back in the dark ages of Windows, in
the days when the operating system ran in a 16-bit real-mode memory architecture. These functions are still
supported and you can still use them, but they are not often needed.

To allocate a memory block using the Windows API, you can call

hGlobal = GlobalAlloc (uiFlags, dwSize) ;

The function takes two parameters: a possible series of flags and a size in bytes of the allocated block. The
function returns a handle of type HGLOBAL, called a "handle to a global memory block" or a "global handle." A
NULL return value indicates that sufficient memory was not available for the allocation.

Although the two parameters to GlobalAlloc are defined a bit differently, they are both 32-bit unsigned integers. If
you set the first parameter to zero, you effectively use the flag GMEM_FIXED. In this case, the global handle that
GlobalAlloc returns is actually a pointer to the allocated memory block.

You can also use the flag GMEM_ZEROINIT if you'd like every byte in the memory block to be initially set to zero.
The succinct GPTR flag combines the GMEM_FIXED and GMEM_ZEROINIT flags as defined in the Windows header
files:

 #define GPTR (GMEM_FIXED | GMEM_ZEROINIT)

There is also a reallocation function:

hGlobal = GlobalReAlloc (hGlobal, dwSize, uiFlags) ;

You can use the GMEM_ZEROINIT flag to zero out the new bytes if the memory block is being enlarged.

Here's the function to obtain the size of the memory block:

dwSize = GlobalSize (hGlobal) ;

and the function to free it:

GlobalFree (hGlobal) ;

In the early 16-bit versions of Windows, the GMEM_FIXED flag was strongly discouraged because Windows could
not move the block in physical memory. In the 32-bit versions of Windows, the GMEM_FIXED flag is normal
because it returns a virtual address and the operating system can move the block in physical memory by altering
the page table. When programming for the 16-bit versions of Windows, using the flag GMEM_MOVEABLE in
GlobalAlloc was instead recommended. (Note that most dictionaries prefer the spelling "movable" over
"moveable," so that's how I'll spell the word otherwise.) There's also a shorthand identifier identified in the
Windows header files to additionally zero out the movable memory:

#define GHND (GMEM_MOVEABLE | GMEM_ZEROINIT)

The GMEM_MOVEABLE flag allows Windows to move a memory block in virtual memory. This doesn't necessarily
mean that the memory block will be moved in physical memory, but the address that the application uses to read
and write to the block can change.

Although GMEM_MOVEABLE was the rule in 16-bit versions of Windows, it is generally less useful now. However, if
your application frequently allocates, reallocates, and frees memory blocks of various sizes, the virtual address
space of your application can become fragmented. Conceivably, you could run out of virtual memory addresses. If
this is a potential problem, then you'll want to use movable memory, and here's how to do it.

First define a pointer (for example, to an int type) and a variable of type GLOBALHANDLE:

 int * p ;
 GLOBALHANDLE hGlobal ;

Then allocate the memory. For example:

 hGlobal = GlobalAlloc (GHND, 1024) ;

As with any Windows handle, don't worry too much about what the number really means. Just store it. When you
need to access that memory block, call

 p = (int *) GlobalLock (hGlobal) ;

This translates the handle into a pointer. During the time that the block is locked, Windows will fix the address in
virtual memory. It will not move. When you are finished accessing the block, call

 GlobalUnlock (hGlobal) ;

This gives Windows the freedom to move the block in virtual memory. To be really compulsively correct about this
process (and to experience the torments of early Windows programmers), you should lock and unlock the memory
block in the course of a single message.

When you want to free the memory, call GlobalFree with the handle rather than the pointer. If you don't currently
have access to the handle, use the function

 hGlobal = GlobalHandle (p) ;

You can lock a memory block multiple times before unlocking it. Windows maintains a lock count, and each lock
requires a corresponding unlock before the block is free to be moved. When Windows moves a block in virtual
memory, it doesn't need to copy the bytes from one location to another—it needs only manipulate the page tables.
In general, in the 32-bit versions of Windows the only real reason for allocating a movable block for your own
program's use is to prevent fragmentation of virtual memory. When using the clipboard, you should also use
movable memory.

When allocating memory for the clipboard, you should use the GlobalAlloc function with both the
GMEM_MOVEABLE and the GMEM_SHARE flags. The GMEM_SHARE flag makes the block available to other
Windows applications.

Transferring Text to the Clipboard

Let's assume that you want to transfer an ANSI character string to the clipboard. You have a pointer (called
pString) to this string, and you want to transfer iLength characters that might or might not be NULL-terminated.

You must first use GlobalAlloc to allocate a memory block of sufficient size to hold the character string. Include
room for a terminating NULL:

hGlobal = GlobalAlloc (GHND | GMEM_SHARE, iLength + 1) ;

The value of hGlobal will be NULL if the block could not be allocated. If the allocation is successful, lock the block
to get a pointer to it:

pGlobal = GlobalLock (hGlobal) ;

Copy the character string into the global memory block:

for (i = 0 ; i < wLength ; i++)
 *pGlobal++ = *pString++ ;

You don't need to add the terminating NULL because the GHND flag for GlobalAlloc zeroes out the entire memory
block during allocation. Unlock the block:

GlobalUnlock (hGlobal) ;

Now you have a global memory handle that references a memory block containing the NULL-terminated text. To
get this into the clipboard, open the clipboard and empty it:

OpenClipboard (hwnd) ;
EmptyClipboard () ;

Give the clipboard the memory handle by using the CF_TEXT identifier, and close the clipboard:

SetClipboardData (CF_TEXT, hGlobal) ;
CloseClipboard () ;

You're done.

Here are some rules concerning this process:

Call OpenClipboard and CloseClipboard while processing a single message. Don't leave the clipboard open
any longer than necessary.

Don't give the clipboard a locked memory handle.

After you call SetClipboardData , don't continue to use the memory block. It no longer belongs to your
program, and you should treat the handle as invalid. If you need to continue to access the data, make
another copy of it or read it from the clipboard (as described in the next section). You can also continue to
reference the block between the SetClipboardData call and the CloseClipboard call, but don't use the global
handle you passed to the SetClipboardData function. This function also returns a global handle that you can
use instead. Lock this handle to access the memory. Unlock the handle before you call CloseClipboard .

Getting Text from the Clipboard

Getting text from the clipboard is only a little more complex than transferring text to the clipboard. You must first
determine whether the clipboard does in fact contain data in the CF_TEXT format. One of the easiest methods is to
use the call

bAvailable = IsClipboardFormatAvailable (CF_TEXT) ;

This function returns TRUE (nonzero) if the clipboard contains CF_TEXT data. We used this function in the
POPPAD2 program in Chapter 10 to determine whether the Paste item on the Edit menu should be enabled or
grayed. IsClipboardFormatAvailable is one of the few clipboard functions that you can use without first opening the
clipboard. However, if you later open the clipboard to get this text, you should also check again (using the same
function or one of the other methods) to determine whether the CF_TEXT data is still in the clipboard.

To transfer the text out, first open the clipboard:

OpenClipboard (hwnd) ;

Obtain the handle to the global memory block referencing the text:

hGlobal = GetClipboardData (CF_TEXT) ;

This handle will be NULL if the clipboard doesn't contain data in the CF_TEXT format. This is another way to
determine whether the clipboard contains text. If GetClipboardData returns NULL, close the clipboard without
doing anything else.

The handle you receive from GetClipboardData doesn't belong to your program—it belongs to the clipboard. The
handle is valid only between the GetClipboardData and CloseClipboard calls. You can't free that handle or alter the
data it references. If you need to have continued access to the data, you should make a copy of the memory
block.

Here's one method for copying the data into your program. Just allocate a pointer to a block of the same size as
the clipboard data block:

pText = (char *) malloc (GlobalSize (hGlobal)) ;

Recall that hGlobal was the global handle obtained from the GetClipboardData call. Now lock the handle to get a
pointer to the clipboard block:

pGlobal = GlobalLock (hGlobal) ;

Now just copy the data:

strcpy (pText, pGlobal) ;

Or you can use some simple C code:

while (*pText++ = *pGlobal++) ;

Unlock the block before closing the clipboard:

GlobalUnlock (hGlobal) ;
CloseClipboard () ;

Now you have a pointer called pText that references the program's own copy of the text.

Opening and Closing the Clipboard

Only one program can have the clipboard open at any time. The purpose of the OpenClipboard call is to prevent
the clipboard contents from changing while a program is using the clipboard. OpenClipboard returns a BOOL value
indicating whether the clipboard was successfully opened. It will not be opened if another application failed to
close it. If every program politely opens and then closes the clipboard as quickly as possible responding to a user
command, you'll probably never run into the problem of being unable to open the clipboard.

In the world of impolite programs and preemptive multitasking, some problems could arise. Even if your program
hasn't lost input focus between the time it put something into the clipboard and the time the user invokes a Paste
option, don't assume that what you've put in there is still there. A background process could have accessed the
clipboard during that time.

Watch out for a more subtle problem involving message boxes: If you can't allocate enough memory to copy
something to the clipboard, then you might want to display a message box. If this message box isn't system
modal, however, the user can switch to another application while the message box is displayed. You should either
make the message box system modal or close the clipboard before you display the message box.

You can also run into problems if you leave the clipboard open while you display a dialog box. Edit fields in a
dialog box use the clipboard for cutting and pasting text.

The Clipboard and Unicode

So far I've been discussing using the clipboard solely with ANSI (one byte per character) text. This is the format
when you use the CF_TEXT identifier. You may be wondering about CF_OEMTEXT and CF_UNICODETEXT.

I have some good news: you only need to call SetClipboardData and GetClipboardData with your preferred text
format and Windows will handle all text conversions in the clipboard. For example, under Windows NT if a program
uses SetClipboardData with a CF_TEXT clipboard data type, programs can also call GetClipboardData using
CF_OEMTEXT. Similarly, the clipboard can convert CF_OEMTEXT data to CF_TEXT.

Under Windows NT, conversions occur between CF_UNICODETEXT, CF_TEXT, and CF_OEMTEXT. A program should
call SetClipboardData using whatever text format is most convenient for the program. Similarly, a program should
call GetClipboardData using whatever text form is desired by the program. As you know, the programs shown in
this book are written so that they can be compiled with and without the UNICODE identifier. If your programs are
like that, you'll probably implement code that calls SetClipboardData and GetClipboardData using
CF_UNICODETEXT if the UNICODE identifier is defined and CF_TEXT if it is not.

The CLIPTEXT program shown in Figure 12-1 demonstrates one way this can be done.

Figure 12-1. The CLIPTEXT program.

CLIPTEXT.C

/*---
 CLIPTEXT.C -- The Clipboard and Text
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

#ifdef UNICODE

#define CF_TCHAR CF_UNICODETEXT
TCHAR szDefaultText[] = TEXT ("Default Text - Unicode Version") ;
TCHAR szCaption[] = TEXT ("Clipboard Text Transfers - Unicode Version") ;

#else

#define CF_TCHAR CF_TEXT
TCHAR szDefaultText[] = TEXT ("Default Text - ANSI Version") ;
TCHAR szCaption[] = TEXT ("Clipboard Text Transfers - ANSI Version") ;

#endif

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("ClipText") ;
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szCaption,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PTSTR pText ;
 BOOL bEnable ;
 HGLOBAL hGlobal ;
 HDC hdc ;
 PTSTR pGlobal ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 SendMessage (hwnd, WM_COMMAND, IDM_EDIT_RESET, 0) ;
 return 0 ;

 case WM_INITMENUPOPUP:
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_PASTE,
 IsClipboardFormatAvailable (CF_TCHAR) ? MF_ENABLED : MF_GRAYED) ;

 bEnable = pText ? MF_ENABLED : MF_GRAYED ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CUT, bEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_COPY, bEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CLEAR, bEnable) ;
 break ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_EDIT_PASTE:
 OpenClipboard (hwnd) ;

 if (hGlobal = GetClipboardData (CF_TCHAR))
 {
 pGlobal = GlobalLock (hGlobal) ;
 if (pText)
 {
 free (pText) ;
 pText = NULL ;
 }
 pText = malloc (GlobalSize (hGlobal)) ;
 lstrcpy (pText, pGlobal) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 CloseClipboard () ;
 return 0 ;

 case IDM_EDIT_CUT:

 case IDM_EDIT_COPY:
 if (!pText)
 return 0 ;

 hGlobal = GlobalAlloc (GHND | GMEM_SHARE,
 (lstrlen (pText) + 1) * sizeof (TCHAR)) ;
 pGlobal = GlobalLock (hGlobal) ;
 lstrcpy (pGlobal, pText) ;
 GlobalUnlock (hGlobal) ;

 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 SetClipboardData (CF_TCHAR, hGlobal) ;
 CloseClipboard () ;

 if (LOWORD (wParam) == IDM_EDIT_COPY)
 return 0 ;
 // fall through for IDM_EDIT_CUT
 case IDM_EDIT_CLEAR:
 if (pText)
 {
 free (pText) ;
 pText = NULL ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_EDIT_RESET:
 if (pText)
 {
 free (pText) ;
 pText = NULL ;
 }
 pText = malloc ((lstrlen (szDefaultText) + 1) * sizeof (TCHAR)) ;
 lstrcpy (pText, szDefaultText) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 if (pText != NULL)
 DrawText (hdc, pText, -1, &rect, DT_EXPANDTABS | DT_WORDBREAK) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (pText)

 free (pText) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

CLIPTEXT.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

CLIPTEXT MENU DISCARDABLE
BEGIN
 POPUP "&Edit"
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "De&lete\tDel", IDM_EDIT_CLEAR
 MENUITEM SEPARATOR
 MENUITEM "&Reset", IDM_EDIT_RESET
 END
END

///
// Accelerator

CLIPTEXT ACCELERATORS DISCARDABLE
BEGIN
 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "V", IDM_EDIT_PASTE, VIRTKEY, CONTROL, NOINVERT
 VK_DELETE, IDM_EDIT_CLEAR, VIRTKEY, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ClipText.rc

#define IDM_EDIT_CUT 40001
#define IDM_EDIT_COPY 40002
#define IDM_EDIT_PASTE 40003
#define IDM_EDIT_CLEAR 40004
#define IDM_EDIT_RESET 40005

The idea here is that you can run both the Unicode and ANSI versions of this program under Windows NT and see
how the clipboard translates between the two character sets. Notice the #ifdef statement at the top of
CLIPTEXT.C. If the UNICODE identifier is defined, then CF_TCHAR (a generic text clipboard format name I made
up) is equal to CF_UNICODETEXT; if not, it's equal to CF_TEXT. The IsClipboardFormatAvailable ,
GetClipboardData , and SetClipboardData function calls later in the program all use this CF_TCHAR name to
specify the data type.

At the outset of the program (and whenever you select the Reset option from the Edit menu), the static variable
pText contains a pointer to the Unicode string "Default Text - Unicode version" in the Unicode version of the
program and "Default Text - ANSI version" in the non-Unicode version. You can use the Cut or Copy command to
transfer this text string to the clipboard, and you can use the Cut or Delete command to delete the string from the
program. The Paste command copies any text contents of the clipboard to pText . The pText string is displayed on
the program's client area during the WM_PAINT message.

If you first select the Copy command from the Unicode version of CLIPTEXT and then the Paste command from the
non-Unicode version, you can see that the text has been converted from Unicode to ANSI. Similarly, if you do the
opposite commands, the text is converted from ANSI to Unicode.

Beyond Simple Clipboard Use

We've seen that transferring text from the clipboard requires four calls after the data has been prepared:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (iFormat, hGlobal) ;
CloseClipboard () ;

Getting access to this data requires three calls:

OpenClipboard (hwnd) ;
hGlobal = GetClipboardData (iFormat) ;
[other program lines]
CloseClipboard () ;

You can make a copy of the clipboard data or use it in some other manner between the GetClipboardData and
CloseClipboard calls. That approach may be all you'll need for most purposes, but you can also use the clipboard in
more sophisticated ways.

Using Multiple Data Items

When you open the clipboard to put data into it, you must call EmptyClipboard to signal Windows to free or delete
the contents of the clipboard. You can't add something to the existing contents of the clipboard. So, in this sense,
the clipboard holds only one item at a time.

However, between the EmptyClipboard and the CloseClipboard calls, you can call SetClipboardData several times,
each time using a different clipboard format. For instance, if you want to store a short string of text in the
clipboard, you can write that text to a metafile and to a bitmap. In this way, you make that character string
available not only to programs that can read text from the clipboard but also to programs that read bitmaps and
metafiles from the clipboard. Of course, these programs won't be able to easily recognize that the metafile or
bitmap actually contains a character string.

If you want to write several handles to the clipboard, you call SetClipboardData for each of them:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (CF_TEXT, hGlobalText) ;
SetClipboardData (CF_BITMAP, hBitmap) ;
SetClipboardData (CF_METAFILEPICT, hGlobalMFP) ;
CloseClipboard () ;

While these three formats of data are in the clipboard, an IsClipboardFormatAvailable call with the CF_TEXT,
CF_BITMAP, or CF_METAFILEPICT argument will return TRUE. A program can get access to these handles by
calling

hGlobalText = GetClipboardData (CF_TEXT) ;

or

hBitmap = GetClipboardData (CF_BITMAP) ;

or

hGlobalMFP = GetClipboardData (CF_METAFILEPICT) ;

The next time a program calls EmptyClipboard, Windows will free or delete all three of the handles retained by the
clipboard.

Don't use this technique to add different text formats, different bitmap formats, or different metafile formats to
the clipboard. Use only one text format, one bitmap format, and one metafile format. As I mentioned, Windows
will convert among CF_TEXT, CF_ OEMTEXT, and CF_UNICODETEXT. It will also convert between CF_BITMAP and
CF_DIB, and between CF_METAFILEPICT and CF_ENHMETAFILE.

A program can determine all the formats stored by the clipboard by first opening the clipboard and then calling
EnumClipboardFormats. Start off by setting a variable iFormat to 0:

iFormat = 0 ;
OpenClipboard (hwnd) ;

Now make successive EnumClipboardFormats calls starting with the 0 value. The function will return a positive
iFormat value for each format currently in the clipboard. When the function returns 0, you're done:

while (iFormat = EnumClipboardFormats (iFormat))
{
 [logic for each iFormat value]
}
CloseClipboard () ;

You can obtain the number of different formats currently in the clipboard by calling

iCount = CountClipboardFormats () ;

Delayed Rendering

When you put data into the clipboard, you generally make a copy of the data and give the clipboard a handle to a
global memory block that contains the copy. For very large data items, this approach can waste memory. If the
user never pastes that data into another program, it will continue to occupy memory space until it is replaced by
something else.

You can avoid this problem by using a technique called "delayed rendering," in which your program doesn't
actually supply the data until another program needs it. Rather than give Windows a handle to the data, you
simply use a NULL in the SetClipboardData call:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (iFormat, NULL) ;
CloseClipboard () ;

You can have multiple SetClipboardData calls using different values of iFormat. You can use NULL parameters with
some of them and real handles with others.

That's simple enough, but now the process gets a little more complex. When another program calls
GetClipboardData, Windows will check to see if the handle for that format is NULL. If it is, Windows will send a
message to the "clipboard owner" (your program) asking for a real handle to the data. Your program must then
supply this handle.

More specifically, the "clipboard owner" is the last window that put data into the clipboard. When a program calls
OpenClipboard, Windows stores the window handle required by this function. This handle identifies the window
that has the clipboard open. On receipt of an EmptyClipboard call, Windows establishes this window as the new
clipboard owner.

A program that uses delayed rendering must process three messages in its window procedure:
WM_RENDERFORMAT, WM_RENDERALLFORMATS, and WM_DESTROYCLIPBOARD. Windows sends your window
procedure a WM_RENDERFORMAT message when another program calls GetClipboardData. The value of wParam is
the format requested. When you process the WM_RENDERFORMAT message, don't open and empty the clipboard.
Simply create a global memory block for the format given by wParam, transfer the data to it, and call
SetClipboardData with the correct format and the global handle. Obviously, you'll need to retain information in
your program to construct this data properly when processing WM_RENDERFORMAT. When another program calls
EmptyClipboard, Windows sends your program a WM_DESTROYCLIPBOARD message. This tells you that the
information to construct the clipboard data is no longer needed. You are no longer the clipboard owner.

If your program terminates while it is still the clipboard owner, and the clipboard still contains NULL data handles
that your program set with SetClipboardData, you'll receive a WM_RENDERALLFORMATS message. You should
open the clipboard, empty it, put the data in global memory blocks, and call SetClipboardData for each format.
Then close the clipboard. The WM_RENDERALLFORMATS message is one of the last messages your window
procedure receives. It is followed by a WM_DESTROYCLIPBOARD message—because you've rendered all the
data—and then the normal WM_DESTROY.

If your program can transfer only one format of data to the clipboard (text, for instance), you can combine the
WM_RENDERALLFORMATS and WM_RENDERFORMAT processing. The code will look something like this:

case WM_RENDERALLFORMATS :
 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 // fall through
case WM_RENDERFORMAT :
 [put text into global memory block]
 SetClipboardData (CF_TEXT, hGlobal) ;

 if (message == WM_RENDERALLFORMATS)
 CloseClipboard () ;
 return 0 ;

If your program uses several clipboard formats, you'll want to process the WM_ RENDERFORMAT message only for
the format requested by wParam. You don't need to process the WM_DESTROYCLIPBOARD message unless it is
burdensome for your program to retain the information necessary to construct the data.

Private Data Formats

So far we've dealt with only the standard clipboard formats defined by Windows. However, you may want to use
the clipboard to store a "private data format." Many word processors use this technique to store text that contains
font and formatting information.

At first, this concept may seem nonsensical. If the purpose of the clipboard is to transfer data between
applications, why should the clipboard contain data that only one application understands? The answer is simple:
The clipboard also exists to allow the transfer of data to and from itself (or perhaps between different instances of
the same program), and these instances obviously understand the same private formats.

There are several ways to use private data formats. The easiest involves data that is ostensibly in one of the
standard clipboard formats (that is, text, bitmap, or metafile) but that has meaning only to your program. In this
case, you use one of the following wFormat values in your SetClipboardData and GetClipboardData calls:
CF_DSPTEXT, CF_DSPBITMAP, CF_DSPMETAFILEPICT, or CF_DSPENHMETAFILE. (The letters DSP stand for
"display.") These formats allow the Windows clipboard viewer to display the data as text, a bitmap, or a metafile.
However, another program that calls GetClipboardData using the normal CF_TEXT, CF_BITMAP, CF_DIB,
CF_METAFILEPICT, or CF_ENHMETAFILE format won't obtain this data.

If you use one of these formats to put data in the clipboard, you must also use the same format to get the data
out. But how do you know if the data is from another instance of your program or from another program using one
of these formats? Here's one way: You can first obtain the clipboard owner by calling

hwndClipOwner = GetClipboardOwner () ;

You can then get the name of the window class of this window handle:

TCHAR szClassName [32] ;
[other program lines]
GetClassName (hwndClipOwner, szClassName, 32) ;

If the class name is the same as your program's, then the data was put in the clipboard by another instance of
your program.

The second way to use private formats involves the CF_OWNERDISPLAY flag. The global memory handle to
SetClipboardData is NULL:

SetClipboardData (CF_OWNERDISPLAY, NULL) ;

This is the method that some word processors use to show formatted text in the client area of the clipboard viewer
included with Windows. Obviously, the clipboard viewer doesn't know how to display this formatted text. When a
word processor specifies the CF_OWNERDISPLAY format, it is also taking responsibility for painting the clipboard
viewer's client area.

Because the global memory handle is NULL, a program that calls SetClipboardData with the CF_OWNERDISPLAY
format (the clipboard owner) must process the delayed rendering messages sent to the clipboard owner by
Windows, as well as five additional messages. The following five messages are sent by the clipboard viewer to the
clipboard owner:

WM_ASKCBFORMATNAME The clipboard viewer sends this message to the clipboard owner to get a name for
the format of the data. The lParam parameter is a pointer to a buffer, and wParam is the maximum number
of characters for this buffer. The clipboard owner must copy the name of the clipboard format into this
buffer.

WM_SIZECLIPBOARD This message tells the clipboard owner that the size of the clipboard viewer's client
area has changed. The wParam parameter is a handle to the clipboard viewer, and lParam is a pointer to a
RECT structure containing the new size. If the RECT structure contains all zeros, the clipboard viewer is
being destroyed or minimized. And, although the Windows clipboard viewer allows only one instance of itself
to be running, other clipboard viewers can also send this message to the clipboard owner. Handling these
multiple clipboard viewers isn't impossible for the clipboard owner (given that wParam identifies the
particular viewer), but it isn't easy, either.

WM_PAINTCLIPBOARD This message tells the clipboard owner to update the clipboard viewer's client area.
Again, wParam is a handle to the clipboard viewer's window. The lParam parameter is a global handle to a
PAINTSTRUCT structure. The clipboard owner can lock the handle and obtain a handle to the clipboard
viewer's device context from the hdc field of this structure.

WM_HSCROLLCLIPBOARD and WM_VSCROLLCLIPBOARDThese messages inform the clipboard owner that a
user has scrolled the clipboard viewer's scroll bars. The wParam parameter is a handle to the clipboard
viewer's window, the low word of lParam is the scrolling request, and the high word of lParam is the thumb
position if the low word is SB_THUMBPOSITION.

Handling these messages may look like more trouble than it's worth. However, the process does provide a benefit
to the user: when copying text from a word processsor to the clipboard, the user will find it comforting to see the
text still formatted in the clipboard viewer's client area.

The third way to use private clipboard data formats is to register your own clipboard format name. You supply a
name for this format to Windows, and Windows gives your program a number to use as the format parameter in
SetClipboardData and GetClipboardData. Programs that use this method generally also copy data to the clipboard
in one of the standard formats. This approach allows the clipboard viewer to display data in its client area (without
the hassles involved with CF_OWNERDISPLAY) and permits other programs to copy data from the clipboard.

As an example, let's assume we've written a vector-drawing program that copies data to the clipboard in a bitmap
format, a metafile format, and its own registered clipboard format. The clipboard viewer will display the metafile or
bitmap. Other programs that can read bitmaps or metafiles from the clipboard will obtain those formats. However,
when the vector-drawing program itself needs to read data from the clipboard, it will copy the data in its own
registered format because that format probably contains more information than the bitmap or metafile.

A program registers a new clipboard format by calling

iFormat = RegisterClipboardFormat (szFormatName) ;

The iFormat value is between 0xC000 and 0xFFFF. A clipboard viewer (or a program that obtains all the current
clipboard formats by calling EnumClipboardFormats) can obtain the ASCII name of this format by calling

GetClipboardFormatName (iFormat, psBuffer, iMaxCount) ;

Windows copies up to iMaxCount characters into psBuffer.

Programmers who use this method for copying data to the clipboard might want to publicize the format name and
the actual format of the data. If the program becomes popular, other programs can then copy data in this format
from the clipboard.

Becoming a Clipboard Viewer

A program that is notified of changes in the clipboard contents is called a "clipboard viewer." You get a clipboard
viewer with Windows, but you can also write your own clipboard viewer program. Clipboard viewers are notified of
changes to the clipboard through messages to the viewer's window procedure.

The Clipboard Viewer Chain

Any number of clipboard viewer applications can be running in Windows at the same time, and they can all be
notified of changes to the clipboard. From Windows' perspective, however, there is only one clipboard viewer,
which I'll call the "current clipboard viewer." Windows maintains only one window handle to identify the current
clipboard viewer, and it sends messages only to that window when the contents of the clipboard change.

Clipboard viewer applications have the responsibility of participating in the "clipboard viewer chain" so that all
running clipboard viewer programs receive the messages that Windows sends to the current clipboard viewer.
When a program registers itself as a clipboard viewer, that program becomes the current clipboard viewer.
Windows gives that program the window handle of the previous current clipboard viewer, and the program saves
this handle. When the program receives a clipboard viewer message, it sends that message to the window
procedure of the next program in the clipboard chain.

Clipboard Viewer Functions and Messages

A program can become part of the clipboard viewer chain by calling the SetClipboardViewer function. If the
primary purpose of the program is to serve as a clipboard viewer, the program can call this function during
processing of the WM_CREATE message. The function returns the window handle of the previous current clipboard
viewer. The program should save that handle in a static variable:

static HWND hwndNextViewer ;
[other program lines]
case WM_CREATE :
 [other program lines]
 hwndNextViewer = SetClipboardViewer (hwnd) ;

If your program is the first program to become a clipboard viewer during the Windows session, then
hwndNextViewer will be NULL.

Windows sends a WM_DRAWCLIPBOARD message to the current clipboard viewer (the most recent window to
register itself as a clipboard viewer) whenever the contents of the clipboard change. Each program in the clipboard
viewer chain should use SendMessage to pass this message to the next clipboard viewer. The last program in the
clipboard viewer chain (the first window to register itself as a clipboard viewer) will have stored a NULL
hwndNextViewer value. If hwndNextViewer is NULL, the program simply returns without sending the message to
another program. (Don't confuse the WM_DRAWCLIPBOARD and WM_PAINTCLIPBOARD messages. The
WM_PAINTCLIPBOARD message is sent by a clipboard viewer to programs that use the CF_OWNERDISPLAY
clipboard format. The WM_ DRAWCLIPBOARD message is sent by Windows to the current clipboard viewer.)

The easiest way to process the WM_DRAWCLIPBOARD message is to send the message to the next clipboard
viewer (unless hwndNextViewer is NULL) and invalidate the client area of your window:

case WM_DRAWCLIPBOARD :
 if (hwndNextViewer)
 SendMessage (hwndNextViewer, message, wParam, lParam) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

During processing of the WM_PAINT message, you can read the contents of the clipboard by using the normal
OpenClipboard , GetClipboardData , and CloseClipboard calls.

When a program wants to remove itself from the clipboard viewer chain, it must call ChangeClipboardChain . This
function requires the window handle of the program leaving the viewer chain and the window handle of the next
clipboard viewer:

ChangeClipboardChain (hwnd, hwndNextViewer) ;

When a program calls ChangeClipboardChain , Windows sends a WM_CHANGECBCHAIN message to the current
clipboard viewer. The wParam parameter is the handle of the window removing itself from the chain (that is, the
first parameter to ChangeClipboardChain), and lParam is the window handle of the next clipboard viewer after the
one removing itself from the chain (the second argument to ChangeClipboardChain).

When your program receives a WM_CHANGECBCHAIN message, you must therefore check to see if wParam is
equal to the value of hwndNextViewer that you've saved. If it is, your program must set hwndNextViewer to
lParam . This action ensures that any future WM_DRAWCLIPBOARD messages you get won't be sent to the window
removing itself from the clipboard viewer chain. If wParam isn't equal to hwndNextViewer and hwndNextViewer
isn't NULL, send the message to the next clipboard viewer:

case WM_CHANGECBCHAIN :
 if ((HWND) wParam == hwndNextViewer)
 hwndNextViewer = (HWND) lParam ;

 else if (hwndNextViewer)
 SendMessage (hwndNextViewer, message, wParam, lParam) ;
 return 0 ;

You shouldn't really need to include the else if statement, which checks hwndNextViewer for a non-NULL value. A
NULL hwndNextViewer value would indicate that the program executing this code is the last viewer on the chain,
in which case the message should never have gotten this far.

If your program is still in the clipboard viewer chain when it is about to terminate, you must remove it from the
chain. You can do this during processing of the WM_DESTROY message by calling ChangeClipboardChain :

case WM_DESTROY :
 ChangeClipboardChain (hwnd, hwndNextViewer) ;
 PostQuitMessage (0) ;
 return 0 ;

Windows also has a function that allows a program to obtain the window handle of the first clipboard viewer:

hwndViewer = GetClipboardViewer () ;

This function isn't normally needed. The return value can be NULL if there is no current clipboard viewer.

Here's an example to illustrate how the clipboard viewer chain works. When Windows first starts up, the current
clipboard viewer is NULL:

Current clipboard viewer:
NULL

A program with a window handle of hwnd1 calls SetClipboardViewer . The function returns NULL, which becomes
the hwndNextViewer value in this program:

Current clipboard viewer:
hwnd1
hwnd1's next viewer:
NULL

A second program, with a window handle of hwnd2 , now calls SetClipboardViewer and gets back hwnd1 :

Current clipboard viewer:
hwnd2
hwnd2's next viewer:
hwnd1
hwnd1's next viewer:
NULL

A third program (hwnd3) and then a fourth (hwnd4) also call SetClipboardViewer and get back hwnd2 and hwnd3
:

Current clipboard viewer:
hwnd4
hwnd4's next viewer:
hwnd3
hwnd3's next viewer:
hwnd2
hwnd2's next viewer:
hwnd1
hwnd1's next viewer:
NULL

When the contents of the clipboard change, Windows sends a WM_DRAWCLIPBOARD message to hwnd4 , hwnd4
sends the message to hwnd3 , hwnd3 sends it to hwnd2 , hwnd2 sends it to hwnd1 , and hwnd1 returns.

Now hwnd2 decides to remove itself from the chain by calling

ChangeClipboardChain (hwnd2, hwnd1) ;

Windows sends hwnd4 a WM_CHANGECBCHAIN message with wParam equal to hwnd2 and lParam equal to hwnd1
. Because hwnd4 's next viewer is hwnd3 , hwnd4 sends this message to hwnd3 . Now hwnd3 notes that wParam
is equal to its next viewer (hwnd2), so it sets its next viewer equal to lParam (hwnd1) and returns. The mission
is accomplished. The clipboard viewer chain now looks like this:

Current clipboard viewer:
hwnd4
hwnd4's next viewer:
hwnd3
hwnd3's next viewer:
hwnd1
hwnd1's next viewer:
NULL

A Simple Clipboard Viewer

Clipboard viewers don't have to be as sophisticated as the one supplied with Windows. A clipboard viewer can, for
instance, display a single clipboard format. The CLIPVIEW program, shown in Figure 12-2, is a clipboard viewer
that displays only the CF_TEXT format.

Figure 12-2. The CLIPVIEW program.

CLIPVIEW.C

/*---
 CLIPVIEW.C -- Simple Clipboard Viewer
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("ClipView") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName,
 TEXT ("Simple Clipboard Viewer (Text Only)"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndNextViewer ;
 HGLOBAL hGlobal ;
 HDC hdc ;

 PTSTR pGlobal ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {

 case WM_CREATE:
 hwndNextViewer = SetClipboardViewer (hwnd) ;
 return 0 ;

 case WM_CHANGECBCHAIN:
 if ((HWND) wParam == hwndNextViewer)
 hwndNextViewer = (HWND) lParam ;

 else if (hwndNextViewer)
 SendMessage (hwndNextViewer, message, wParam, lParam) ;

 return 0 ;

 case WM_DRAWCLIPBOARD:
 if (hwndNextViewer)
 SendMessage (hwndNextViewer, message, wParam, lParam) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 GetClientRect (hwnd, &rect) ;
 OpenClipboard (hwnd) ;

#ifdef UNICODE
 hGlobal = GetClipboardData (CF_UNICODETEXT) ;
#else
 hGlobal = GetClipboardData (CF_TEXT) ;
#endif

 if (hGlobal != NULL)
 {
 pGlobal = (PTSTR) GlobalLock (hGlobal) ;
 DrawText (hdc, pGlobal, -1, &rect, DT_EXPANDTABS) ;
 GlobalUnlock (hGlobal) ;
 }

 CloseClipboard () ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 ChangeClipboardChain (hwnd, hwndNextViewer) ;
 PostQuitMessage (0) ;
 return 0 ;

 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

CLIPVIEW processes WM_CREATE, WM_CHANGECBCHAIN, WM_DRAWCLIPBOARD, and WM_DESTROY messages
as discussed above. The WM_PAINT message simply opens the clipboard and uses GetClipboardData with a format
of CF_TEXT. If the function returns a global memory handle, CLIPVIEW locks it and uses DrawText to display the
text in its client area.

A clipboard viewer that handles data formats beyond the standard formats (as the one supplied with Windows
does) has additional work to do, such as displaying the names of all the formats currently in the clipboard. You can
do this by calling EnumClipboardFormats and obtaining the names of the nonstandard formats from
GetClipboardFormatName . A clipboard viewer that uses the CF_OWNERDISPLAY format must send the following
four messages to the clipboard owner to display the data:

WM_PAINTCLIPBOARD
WM_VSCROLLCLIPBOARD
WM_SIZECLIPBOARD
WM_HSCROLLCLIPBOARD

If you want to write such a clipboard viewer, you have to obtain the window handle of the clipboard owner using
GetClipboardOwner and send that window these messages when you need to update the clipboard viewer's client
area.

Chapter 13

Using the Printer

The concept of device independence may have seemed all well and good when we were using the video display for
text and graphics. But how well does the concept hold up for printers?

In general, the news is good. From a Microsoft Windows program, you can print text and graphics on paper using
the same GDI functions that we've been using for the video display. Many of the issues of device independence
that we've explored earlier in this book—mostly related to the size and resolution of the display surface and its
color capabilities—can be approached and resolved in the same way. Yet a printer is not simply a display that uses
paper rather than a cathode-ray tube. There are some significant differences. For example, we have never had to
consider the problem of a video display not being connected to the display adapter or the problem of the display
"running out of screen," but it is common for a printer to be off line or to run out of paper.

Nor have we worried about the video display adapter being incapable of performing certain graphics operations.
Either the display adapter can handle graphics or it can't. And if it can't, then it can't be used with Windows at all.
But some printers can't print graphics (although they can still be used with Windows), and plotters can do vector
graphics but have a real problem with bitmaps.

Here are some other issues to consider:

Printers are slower than video displays. Although we have on occasion tried to tune our programs for best
performance, we haven't worried much about the time required for the video display to be refreshed. But
nobody wants to wait for a slow printer to finish printing before getting back to work.

Programs reuse the surface of the video display as they overwrite previous display output with new output.
This can't be done on a printer. Instead, a printer must eject a completed page and go on to the next page.

On the video display, different applications are windowed. On a printer, output from different applications
must be separated into distinct documents or print jobs.

To add printer support to the rest of GDI, Windows provides several functions that apply only to printers. These
printer-specific functions—StartDoc, EndDoc, StartPage, and EndPage—are responsible for organizing the printer
output into pages. A program continues to call the normal GDI function calls to display text and graphics on a
page in the same way as they display on the screen.

Chapters 15, 17, and 18 have additional information on printing bitmaps, formatted text, and metafiles.

Printing Fundamentals

When you use a printer in Windows, you're initiating a complex interaction involving the GDI32 library module, the
printer device driver library module (which has a .DRV extension), and the Windows print spooler, as well as some
other modules that get into the act. Before we start programming for the printer, let's examine how this process
works.

Printing and Spooling

When an application program wants to begin using a printer, it first obtains a handle to the printer device context
using CreateDC or PrintDlg . This causes the printer device driver library module to be loaded into memory (if it's
not present already) and to initialize itself. The program then calls the StartDoc function, which signals the
beginning of a new document. The StartDoc function is handled by the GDI module. The GDI module calls the
Control function in the printer device driver, telling the device driver to prepare for printing.

The call to StartDoc begins the process of printing a document; the process ends when the program calls EndDoc .
These two calls act as bookends for the normal GDI functions that display text or graphics to the document pages.
Each page is itself delimited by a call to StartPage to begin a page and EndPage to end the page.

For example, if a program wants to draw an ellipse on the page, it first calls StartDoc to begin the print job, then
StartPage to signal a new page. It then calls Ellipse , just as it does when drawing an ellipse on the screen. The
GDI module generally stores any GDI call the program makes to the printer device context in a disk-based
metafile, which has a filename that begins with the characters ~EMF ("enhanced metafile") and has a .TMP
extension. However, as I'll discuss shortly, it's possible for the printer driver to skip this step.

When the application program is finished with the GDI calls that define the first page, the program calls EndPage .
Now the real work begins. The printer driver must translate the various drawing commands stored in the metafile
into output for the printer. The printer output required to define a page of graphics can be very large, particularly
if the printer has no high-level page-composition language. For example, a 600-dots-per-inch laser printer using
8½-by-11-inch paper might require more than 4 megabytes of data to define just one page of graphics.

For this reason, printer drivers often implement a technique called "banding," which divides the page into
rectangular bands. The GDI module obtains the dimensions of each band from the printer driver. It then sets a
clipping region equal to this band and calls the printer device driver Output function for each of the drawing
functions contained in the metafile. This process is called "playing the metafile into the device driver." The GDI
module must play the entire metafile into the device driver for each band that the device driver defines on the
page. After the process is completed, the metafile can be deleted.

For each band, the device driver translates these drawing functions into the output necessary to realize them on
the printer. The format of this output will be specific to the printer. For dot-matrix printers, it will be a collection of
control sequences, including graphics sequences. (For some assistance with constructing this output, the printer
driver can call various "helper" routines also located in the GDI module.) For laser printers with a high-level page-
composition language (such as PostScript), the printer output will be in that language.

The printer driver passes the printer output for each band to the GDI module, which then stores this printer output
in another temporary file. This file begins with the characters ~SPL and has a .TMP extension. When the entire
page is finished, the GDI module makes an interprocess call to the print spooler indicating that a new print job is
ready. The application program then goes on to the next page. When the application is finished with all the pages
it must print, it calls EndDoc to signal that the print job is completed. Figure 13-1 shows the interaction of the
program, the GDI module, and the printer driver.

Figure 13-1. The interaction of the application program, the GDI module, the printer driver, and the spooler.

The Windows print spooler is actually a collection of several components:

Spooler Component
Description
Print Request Spooler
Routes a data stream to the print provider
Local Print Provider
Creates spool files destined for a local printer
Network Print Provider
Creates spool files destined for a network printer
Print Processor
Performs despooling, which is the conversion of spooled device-independent data into a form specific to the target
printer
Port Monitor
Controls the port to which the printer is connected
Language Monitor
Controls printers capable of two-way communication to set device configuration and to monitor printer status

The spooler relieves application programs of some of the work involved with printing. Windows loads the print
spooler at startup, so it is already active when a program begins printing. When the program prints a document,
the GDI module creates the files that contain printer output. The print spooler's job is to send these files to the
printer. It is notified of a new print job by the GDI module. It then begins reading the file and transferring it
directly to the printer. To transfer the files, the spooler uses various communications functions for the parallel or
serial port to which the printer is connected. When the spooler is done sending a file to a printer, it deletes the
temporary file holding the output. This process is shown in Figure 13-2.

Figure 13-2. The operation of the print spooler.

Most of this process is transparent to the application program. From the perspective of the application, "printing"
occurs only during the time required for the GDI module to save all the printer output in disk files. After that—or
even before, if printing is handled by a second thread—the program is freed up to do other things. The actual
printing of the document becomes the print spooler's responsibility rather than the program's. The user is
responsible for pausing print jobs, changing their priority, or canceling them if necessary. This arrangement allows
programs to "print" faster than would be possible if they were printing in real time and had to wait for the printer
to finish one page before proceeding to the next.

Although I've described how printing works in general, there are some variations on this theme. One variation is
that the print spooler doesn't have to be present for Windows programs to use the printer. The user can usually
turn off spooling for a printer from the printer's property sheet.

Why would a user want to bypass the Windows spooler? Well, perhaps the user has a hardware or software print
spooler that works faster than the Windows spooler. Or perhaps the printer is on a network that has its own
spooler. The general rule is that one spooler is faster than two. Removing the Windows spooler would speed up
printing in these cases, because the printer output doesn't have to be stored on disk. It can go right out to the
printer and be intercepted by the external hardware or software print spooler.

If the Windows spooler isn't active, the GDI module doesn't store the printer output from the device driver in a
file. Instead, GDI itself sends the output directly to the parallel or serial printer port. Unlike the printing done by
the spooler, the printing done by GDI has the potential of holding up the operation of application programs
(particularly the program doing the printing) until the printing is completed.

Here's another variation: Normally, the GDI module stores all the functions necessary to define a page in a
metafile and then plays this metafile into the printer driver once for each band defined by the driver. If the printer
driver doesn't require banding, however, the metafile isn't created; GDI simply passes the drawing functions
directly to the driver. In a further variation, it is also possible for an application to assume responsibility for
dividing printer output into bands. This makes the printing code in the application program more complex, but it
relieves the GDI module of creating the metafile. Once again, GDI simply passes the functions for each band to
the printer driver.

Now perhaps you're starting to see how printing from a Windows program might involve a bit more overhead than
that required for using the video display. Several problems can occur—particularly if the GDI module runs out of
disk space while creating the metafile or the printer output files. Either you can get very involved in reporting
these problems to the user and attempting to do something about them or you can remain relatively aloof.

For an application, the first step in printing is obtaining a printer device context.

The Printer Device Context

Just as you must obtain a handle to a device context before you paint on the video display, you must obtain a
printer device context handle before printing. Once you have this handle (and have called StartDoc to announce
your intention of creating a new document and StartPage to begin a page), you can use this printer device context
handle the same way you use the video display device context handle—as the first parameter to the various GDI
drawing functions.

Many applications use a standard print dialog box invoked by calling the PrintDlg function. (I'll show how to use
this function later in this chapter.) PrintDlg gives the user the opportunity to change printers or specify other job
characteristics before printing. It then gives the application a printer device context handle. This function can save
an application some work. However, some applications (such as Notepad) prefer instead to just obtain a printer
device context without displaying a dialog box. This task requires a job to CreateDC .

In Chapter 5 , we discovered that we can get a handle to a device context for the entire video display by calling

hdc = CreateDC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;

You obtain a printer device context handle using this same function. However, for a printer device context, the
general syntax of CreateDC is

hdc = CreateDC (NULL, szDeviceName, NULL, pInitializationData) ;

The pInitializationData argument is generally also set to NULL. The szDeviceName argument points to a character
string that tells Windows the name of the printer device. Before you can set the device name, you must find out
what printers are available.

A system can have more than one printer attached to it. It may even have other programs, such as fax software,
masquerading as printers. Regardless of the number of attached printers, only one can be considered the
"current" or "default" printer. This is the most recent printer that the user has chosen. Some small Windows
programs use only this printer for printing.

Methods for obtaining the default printer device context have changed over the years. Currently, the standard
method involves using the EnumPrinters function. This function fills an array of structures that contain information
about each attached printer. You even have a choice of several structures to use with this function, depending on
the level of detail you want. These structures have names of PRINTER_INFO_x, where x is a number.

Unfortunately, which structure you use also depends on whether your program is running under Windows 98 or
Microsoft Windows NT. Figure 13-3 shows a GetPrinterDC function that will work under either operating system.

Figure 13-3. The GETPRNDC.C file.

GETPRNDC.C

/*-------------------------------------
 GETPRNDC.C -- GetPrinterDC function
 -------------------------------------*/

#include <windows.h>

HDC GetPrinterDC (void)

{

 DWORD dwNeeded, dwReturned ;
 HDC hdc ;
 PRINTER_INFO_4 * pinfo4 ;
 PRINTER_INFO_5 * pinfo5 ;

 if (GetVersion () & 0x80000000) // Windows 98
 {
 EnumPrinters (PRINTER_ENUM_DEFAULT, NULL, 5, NULL,
 0, &dwNeeded, &dwReturned) ;

 pinfo5 = malloc (dwNeeded) ;

 EnumPrinters (PRINTER_ENUM_DEFAULT, NULL, 5, (PBYTE) pinfo5,
 dwNeeded, &dwNeeded, &dwReturned) ;

 hdc = CreateDC (NULL, pinfo5->pPrinterName, NULL, NULL) ;

 free (pinfo5) ;
 }
 else // Windows NT
 {
 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 4, NULL,
 0, &dwNeeded, &dwReturned) ;

 pinfo4 = malloc (dwNeeded) ;

 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 4, (PBYTE) pinfo4,
 dwNeeded, &dwNeeded, &dwReturned) ;

 hdc = CreateDC (NULL, pinfo4->pPrinterName, NULL, NULL) ;

 free (pinfo4) ;
 }
 return hdc ;
}

This function uses the GetVersion function to determine whether the program is running under Windows 98 or
Windows NT. Regardless of which is running, the function calls EnumPrinters twice—once to obtain the size of a
structure it needs, and again to actually fill the structure. Under Windows 98, the function uses the
PRINTER_INFO_5 structure; under Windows NT, it uses the PRINTER_INFO_4 structure. These structures are
specifically indicated in the EnumPrinters documentation (/Platform SDK/Graphics and Multimedia
Services/GDI/Printing and Print Spooler/Printing and Print Spooler Reference/Printing and Print Spooler
Functions/EnumPrinters , right before the Examples section) as being "easy and extremely fast."

The Revised DEVCAPS Program

The original DEVCAPS1 program in Chapter 5 displayed basic information available from the GetDeviceCaps
function for the video display. The new version, shown in Figure 13-4, shows more information for both the video
display and all printers attached to the system.

Figure 13-4. The DEVCAPS2 program.

DEVCAPS2.C

/*--
 DEVCAPS2.C -- Displays Device Capability Information (Version 2)
 (c) Charles Petzold, 1998
--*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
void DoBasicInfo (HDC, HDC, int, int) ;
void DoOtherInfo (HDC, HDC, int, int) ;
void DoBitCodedCaps (HDC, HDC, int, int, int) ;

typedef struct
{
 int iMask ;
 TCHAR * szDesc ;
}
BITS ;

#define IDM_DEVMODE 1000

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("DevCaps2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, NULL,
 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static TCHAR szDevice[32], szWindowText[64] ;
 static int cxChar, cyChar, nCurrentDevice = IDM_SCREEN,
 nCurrentInfo = IDM_BASIC ;
 static DWORD dwNeeded, dwReturned ;
 static PRINTER_INFO_4 * pinfo4 ;
 static PRINTER_INFO_5 * pinfo5 ;
 DWORD i ;
 HDC hdc, hdcInfo ;
 HMENU hMenu ;
 HANDLE hPrint ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE :
 hdc = GetDC (hwnd) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmAveCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;
 ReleaseDC (hwnd, hdc) ;
 // fall through
 case WM_SETTINGCHANGE:
 hMenu = GetSubMenu (GetMenu (hwnd), 0) ;

 while (GetMenuItemCount (hMenu) > 1)
 DeleteMenu (hMenu, 1, MF_BYPOSITION) ;

 // Get a list of all local and remote printers
 //
 // First, find out how large an array we need; this
 // call will fail, leaving the required size in dwNeeded
 //
 // Next, allocate space for the info array and fill it
 //

 // Put the printer names on the menu

 if (GetVersion () & 0x80000000) // Windows 98
 {
 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 5, NULL,
 0, &dwNeeded, &dwReturned) ;

 pinfo5 = malloc (dwNeeded) ;

 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 5, (PBYTE) pinfo5,
 dwNeeded, &dwNeeded, &dwReturned) ;

 for (i = 0 ; i < dwReturned ; i++)
 {
 AppendMenu (hMenu, (i+1) % 16 ? 0 : MF_MENUBARBREAK, i + 1,
 pinfo5[i].pPrinterName) ;
 }
 free (pinfo5) ;
 }
 else // Windows NT
 {
 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 4, NULL,
 0, &dwNeeded, &dwReturned) ;

 pinfo4 = malloc (dwNeeded) ;

 EnumPrinters (PRINTER_ENUM_LOCAL, NULL, 4, (PBYTE) pinfo4,
 dwNeeded, &dwNeeded, &dwReturned) ;

 for (i = 0 ; i < dwReturned ; i++)
 {
 AppendMenu (hMenu, (i+1) % 16 ? 0 : MF_MENUBARBREAK, i + 1,
 pinfo4[i].pPrinterName) ;
 }
 free (pinfo4) ;
 }

 AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
 AppendMenu (hMenu, 0, IDM_DEVMODE, TEXT ("Properties")) ;

 wParam = IDM_SCREEN ;
 // fall through
 case WM_COMMAND :
 hMenu = GetMenu (hwnd) ;

 if (LOWORD (wParam) == IDM_SCREEN || // IDM_SCREEN & Printers
 LOWORD (wParam) < IDM_DEVMODE)
 {
 CheckMenuItem (hMenu, nCurrentDevice, MF_UNCHECKED) ;
 nCurrentDevice = LOWORD (wParam) ;
 CheckMenuItem (hMenu, nCurrentDevice, MF_CHECKED) ;
 }
 else if (LOWORD (wParam) == IDM_DEVMODE) // Properties selection

 {
 GetMenuString (hMenu, nCurrentDevice, szDevice,
 sizeof (szDevice) / sizeof (TCHAR), MF_BYCOMMAND);

 if (OpenPrinter (szDevice, &hPrint, NULL))
 {
 PrinterProperties (hwnd, hPrint) ;
 ClosePrinter (hPrint) ;
 }
 }
 else // info menu items
 {
 CheckMenuItem (hMenu, nCurrentInfo, MF_UNCHECKED) ;
 nCurrentInfo = LOWORD (wParam) ;
 CheckMenuItem (hMenu, nCurrentInfo, MF_CHECKED) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_INITMENUPOPUP :
 if (lParam == 0)
 EnableMenuItem (GetMenu (hwnd), IDM_DEVMODE,
 nCurrentDevice == IDM_SCREEN ? MF_GRAYED : MF_ENABLED) ;
 return 0 ;

 case WM_PAINT :
 lstrcpy (szWindowText, TEXT ("Device Capabilities: ")) ;

 if (nCurrentDevice == IDM_SCREEN)
 {
 lstrcpy (szDevice, TEXT ("DISPLAY")) ;
 hdcInfo = CreateIC (szDevice, NULL, NULL, NULL) ;
 }
 else
 {
 hMenu = GetMenu (hwnd) ;
 GetMenuString (hMenu, nCurrentDevice, szDevice,
 sizeof (szDevice), MF_BYCOMMAND) ;
 hdcInfo = CreateIC (NULL, szDevice, NULL, NULL) ;
 }

 lstrcat (szWindowText, szDevice) ;
 SetWindowText (hwnd, szWindowText) ;

 hdc = BeginPaint (hwnd, &ps) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 if (hdcInfo)
 {
 switch (nCurrentInfo)
 {
 case IDM_BASIC :
 DoBasicInfo (hdc, hdcInfo, cxChar, cyChar) ;

 break ;

 case IDM_OTHER :
 DoOtherInfo (hdc, hdcInfo, cxChar, cyChar) ;
 break ;

 case IDM_CURVE :
 case IDM_LINE :
 case IDM_POLY :
 case IDM_TEXT :
 DoBitCodedCaps (hdc, hdcInfo, cxChar, cyChar,
 nCurrentInfo - IDM_CURVE) ;
 break ;
 }
 DeleteDC (hdcInfo) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

void DoBasicInfo (HDC hdc, HDC hdcInfo, int cxChar, int cyChar)
{
 static struct
 {
 int nIndex ;
 TCHAR * szDesc ;
 }
 info[] =
 {
 HORZSIZE, TEXT ("HORZSIZE Width in millimeters:"),
 VERTSIZE, TEXT ("VERTSIZE Height in millimeters:"),
 HORZRES, TEXT ("HORZRES Width in pixels:"),
 VERTRES, TEXT ("VERTRES Height in raster lines:"),
 BITSPIXEL, TEXT ("BITSPIXEL Color bits per pixel:"),
 PLANES, TEXT ("PLANES Number of color planes:"),
 NUMBRUSHES, TEXT ("NUMBRUSHES Number of device brushes:"),
 NUMPENS, TEXT ("NUMPENS Number of device pens:"),
 NUMMARKERS, TEXT ("NUMMARKERS Number of device markers:"),
 NUMFONTS, TEXT ("NUMFONTS Number of device fonts:"),
 NUMCOLORS, TEXT ("NUMCOLORS Number of device colors:"),
 PDEVICESIZE, TEXT ("PDEVICESIZE Size of device structure:"),
 ASPECTX, TEXT ("ASPECTX Relative width of pixel:"),
 ASPECTY, TEXT ("ASPECTY Relative height of pixel:"),
 ASPECTXY, TEXT ("ASPECTXY Relative diagonal of pixel:"),
 LOGPIXELSX, TEXT ("LOGPIXELSX Horizontal dots per inch:"),
 LOGPIXELSY, TEXT ("LOGPIXELSY Vertical dots per inch:"),

 SIZEPALETTE, TEXT ("SIZEPALETTE Number of palette entries:"),
 NUMRESERVED, TEXT ("NUMRESERVED Reserved palette entries:"),
 COLORRES, TEXT ("COLORRES Actual color resolution:"),
 PHYSICALWIDTH, TEXT ("PHYSICALWIDTH Printer page pixel width:"),
 PHYSICALHEIGHT, TEXT ("PHYSICALHEIGHT Printer page pixel height:"),
 PHYSICALOFFSETX, TEXT ("PHYSICALOFFSETX Printer page x offset:"),
 PHYSICALOFFSETY, TEXT ("PHYSICALOFFSETY Printer page y offset:")
 } ;
 int i ;
 TCHAR szBuffer[80] ;

 for (i = 0 ; i < sizeof (info) / sizeof (info[0]) ; i++)
 TextOut (hdc, cxChar, (i + 1) * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-45s%8d"), info[i].szDesc,
 GetDeviceCaps (hdcInfo, info[i].nIndex))) ;
}

void DoOtherInfo (HDC hdc, HDC hdcInfo, int cxChar, int cyChar)
{
 static BITS clip[] =
 {
 CP_RECTANGLE, TEXT ("CP_RECTANGLE Can Clip To Rectangle:")
 } ;

 static BITS raster[] =
 {
 RC_BITBLT, TEXT ("RC_BITBLT Capable of simple BitBlt:"),
 RC_BANDING, TEXT ("RC_BANDING Requires banding support:"),
 RC_SCALING, TEXT ("RC_SCALING Requires scaling support:"),
 RC_BITMAP64, TEXT ("RC_BITMAP64 Supports bitmaps >64K:"),
 RC_GDI20_OUTPUT, TEXT ("RC_GDI20_OUTPUT Has 2.0 output calls:"),
 RC_DI_BITMAP, TEXT ("RC_DI_BITMAP Supports DIB to memory:"),
 RC_PALETTE, TEXT ("RC_PALETTE Supports a palette:"),
 RC_DIBTODEV, TEXT ("RC_DIBTODEV Supports bitmap conversion:"),
 RC_BIGFONT, TEXT ("RC_BIGFONT Supports fonts >64K:"),
 RC_STRETCHBLT, TEXT ("RC_STRETCHBLT Supports StretchBlt:"),
 RC_FLOODFILL, TEXT ("RC_FLOODFILL Supports FloodFill:"),
 RC_STRETCHDIB, TEXT ("RC_STRETCHDIB Supports StretchDIBits:")
 } ;

 static TCHAR * szTech[] = { TEXT ("DT_PLOTTER (Vector plotter)"),
 TEXT ("DT_RASDISPLAY (Raster display)"),
 TEXT ("DT_RASPRINTER (Raster printer)"),
 TEXT ("DT_RASCAMERA (Raster camera)"),
 TEXT ("DT_CHARSTREAM (Character stream)"),
 TEXT ("DT_METAFILE (Metafile)"),
 TEXT ("DT_DISPFILE (Display file)") } ;
 int i ;
 TCHAR szBuffer[80] ;

 TextOut (hdc, cxChar, cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-24s%04XH"), TEXT ("DRIVERVERSION:"),
 GetDeviceCaps (hdcInfo, DRIVERVERSION))) ;

 TextOut (hdc, cxChar, 2 * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-24s%-40s"), TEXT ("TECHNOLOGY:"),
 szTech[GetDeviceCaps (hdcInfo, TECHNOLOGY)])) ;

 TextOut (hdc, cxChar, 4 * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("CLIPCAPS (Clipping capabilities)"))) ;

 for (i = 0 ; i < sizeof (clip) / sizeof (clip[0]) ; i++)
 TextOut (hdc, 9 * cxChar, (i + 6) * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-45s %3s"), clip[i].szDesc,
 GetDeviceCaps (hdcInfo, CLIPCAPS) & clip[i].iMask ?
 TEXT ("Yes") : TEXT ("No"))) ;

 TextOut (hdc, cxChar, 8 * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("RASTERCAPS (Raster capabilities)"))) ;

 for (i = 0 ; i < sizeof (raster) / sizeof (raster[0]) ; i++)
 TextOut (hdc, 9 * cxChar, (i + 10) * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-45s %3s"), raster[i].szDesc,
 GetDeviceCaps (hdcInfo, RASTERCAPS) & raster[i].iMask ?
 TEXT ("Yes") : TEXT ("No"))) ;
}

void DoBitCodedCaps (HDC hdc, HDC hdcInfo, int cxChar, int cyChar, int iType)
{
 static BITS curves[] =
 {
 CC_CIRCLES, TEXT ("CC_CIRCLES Can do circles:"),
 CC_PIE, TEXT ("CC_PIE Can do pie wedges:"),
 CC_CHORD, TEXT ("CC_CHORD Can do chord arcs:"),
 CC_ELLIPSES, TEXT ("CC_ELLIPSES Can do ellipses:"),
 CC_WIDE, TEXT ("CC_WIDE Can do wide borders:"),
 CC_STYLED, TEXT ("CC_STYLED Can do styled borders:"),
 CC_WIDESTYLED, TEXT ("CC_WIDESTYLED Can do wide and styled borders:"),
 CC_INTERIORS, TEXT ("CC_INTERIORS Can do interiors:")
 } ;

 static BITS lines[] =
 {
 LC_POLYLINE, TEXT ("LC_POLYLINE Can do polyline:"),
 LC_MARKER, TEXT ("LC_MARKER Can do markers:"),
 LC_POLYMARKER, TEXT ("LC_POLYMARKER Can do polymarkers"),
 LC_WIDE, TEXT ("LC_WIDE Can do wide lines:"),
 LC_STYLED, TEXT ("LC_STYLED Can do styled lines:"),
 LC_WIDESTYLED, TEXT ("LC_WIDESTYLED Can do wide and styled lines:"),
 LC_INTERIORS, TEXT ("LC_INTERIORS Can do interiors:")
 } ;

 static BITS poly[] =
 {
 PC_POLYGON,
 TEXT ("PC_POLYGON Can do alternate fill polygon:"),

 PC_RECTANGLE, TEXT ("PC_RECTANGLE Can do rectangle:"),
 PC_WINDPOLYGON,
 TEXT ("PC_WINDPOLYGON Can do winding number fill polygon:"),
 PC_SCANLINE, TEXT ("PC_SCANLINE Can do scanlines:"),
 PC_WIDE, TEXT ("PC_WIDE Can do wide borders:"),
 PC_STYLED, TEXT ("PC_STYLED Can do styled borders:"),
 PC_WIDESTYLED,
 TEXT ("PC_WIDESTYLED Can do wide and styled borders:"),
 PC_INTERIORS, TEXT ("PC_INTERIORS Can do interiors:")
 } ;

 static BITS text[] =
 {
 TC_OP_CHARACTER,
 TEXT ("TC_OP_CHARACTER Can do character output precision:"),
 TC_OP_STROKE,
 TEXT ("TC_OP_STROKE Can do stroke output precision:"),
 TC_CP_STROKE,
 TEXT ("TC_CP_STROKE Can do stroke clip precision:"),
 TC_CR_90,
 TEXT ("TC_CP_90 Can do 90 degree character rotation:"),
 TC_CR_ANY,
 TEXT ("TC_CR_ANY Can do any character rotation:"),
 TC_SF_X_YINDEP,
 TEXT ("TC_SF_X_YINDEP Can do scaling independent of X and Y:"),
 TC_SA_DOUBLE,
 TEXT ("TC_SA_DOUBLE Can do doubled character for scaling:"),
 TC_SA_INTEGER,
 TEXT ("TC_SA_INTEGER Can do integer multiples for scaling:"),
 TC_SA_CONTIN,
 TEXT ("TC_SA_CONTIN Can do any multiples for exact scaling:"),
 TC_EA_DOUBLE,
 TEXT ("TC_EA_DOUBLE Can do double weight characters:"),
 TC_IA_ABLE, TEXT ("TC_IA_ABLE Can do italicizing:"),
 TC_UA_ABLE, TEXT ("TC_UA_ABLE Can do underlining:"),
 TC_SO_ABLE, TEXT ("TC_SO_ABLE Can do strikeouts:"),
 TC_RA_ABLE, TEXT ("TC_RA_ABLE Can do raster fonts:"),
 TC_VA_ABLE, TEXT ("TC_VA_ABLE Can do vector fonts:")
 } ;

 static struct
 {
 int iIndex ;
 TCHAR * szTitle ;
 BITS (*pbits)[] ;
 int iSize ;
 }
 bitinfo[] =
 {
 CURVECAPS, TEXT ("CURVCAPS (Curve Capabilities)"),
 (BITS (*)[]) curves, sizeof (curves) / sizeof (curves[0]),
 LINECAPS, TEXT ("LINECAPS (Line Capabilities)"),
 (BITS (*)[]) lines, sizeof (lines) / sizeof (lines[0]),

 POLYGONALCAPS, TEXT ("POLYGONALCAPS (Polygonal Capabilities)"),
 (BITS (*)[]) poly, sizeof (poly) / sizeof (poly[0]),
 TEXTCAPS, TEXT ("TEXTCAPS (Text Capabilities)"),
 (BITS (*)[]) text, sizeof (text) / sizeof (text[0])
 } ;

 static TCHAR szBuffer[80] ;
 BITS (*pbits)[] = bitinfo[iType].pbits ;
 int i, iDevCaps = GetDeviceCaps (hdcInfo, bitinfo[iType].iIndex) ;

 TextOut (hdc, cxChar, cyChar, bitinfo[iType].szTitle,
 lstrlen (bitinfo[iType].szTitle)) ;

 for (i = 0 ; i < bitinfo[iType].iSize ; i++)
 TextOut (hdc, cxChar, (i + 3) * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%-55s %3s"), (*pbits)[i].szDesc,
 iDevCaps & (*pbits)[i].iMask ? TEXT ("Yes") : TEXT ("No")));
}

DEVCAPS2.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu
DEVCAPS2 MENU DISCARDABLE
BEGIN
 POPUP "&Device"
 BEGIN
 MENUITEM "&Screen", IDM_SCREEN, CHECKED
 END
 POPUP "&Capabilities"
 BEGIN
 MENUITEM "&Basic Information", IDM_BASIC
 MENUITEM "&Other Information", IDM_OTHER
 MENUITEM "&Curve Capabilities", IDM_CURVE
 MENUITEM "&Line Capabilities", IDM_LINE
 MENUITEM "&Polygonal Capabilities", IDM_POLY
 MENUITEM "&Text Capabilities", IDM_TEXT
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by DevCaps2.rc

#define IDM_SCREEN 40001
#define IDM_BASIC 40002
#define IDM_OTHER 40003
#define IDM_CURVE 40004
#define IDM_LINE 40005
#define IDM_POLY 40006
#define IDM_TEXT 40007

Because DEVCAPS2 obtains only an information context for the printer, you can select printers from DEVCAPS2's
menu, even though they may have an output port of "none." If you want to compare the capabilities of different
printers, you can first use the Printers folder to add various printer drivers.

The PrinterProperties Call

The Device menu of the DEVCAPS2 program includes an option called Properties. To use it, first select a printer
from the Device menu and then select Properties. Up pops a dialog box. Where does the dialog box come from? It
is invoked by the printer driver, and—at the very least—it requests that you make a choice of paper size. Most
printer drivers also give you a choice of "portrait" or "landscape" mode. In portrait mode (often the default), the
short side of the paper is the top; in landscape mode, the long side is the top. If you change this mode, the
change is reflected in the information the DEVCAPS2 program obtains from the GetDeviceCaps function: the
horizontal size and resolution are switched with the vertical size and resolution. Properties dialog boxes for color
plotters can be quite extensive, requesting the colors of the pens installed in the plotter and the type of paper (or
transparencies) being used.

All printer drivers contain an exported function called ExtDeviceMode that invokes this dialog box and saves the
information that the user enters. Some printer drivers store this information in their own section of the Registry,
and some don't. Those that store the information have access to it during the next Windows session.

Windows programs that allow the user a choice of printers generally just call PrintDlg , which I'll show you how to
use later in this chapter. This useful function takes care of all the work of communicating with the user and
handles any changes the user requests in preparation for printing. PrintDlg also invokes the property sheet dialog
when the user clicks the Properties button.

A program can also display a printer's properties dialog by directly calling the printer driver's ExtDeviceMode or
ExtDeveModePropSheet functions. However, I don't recommend this. It's far better to invoke the dialog indirectly
by calling PrinterProperties , as DEVCAPS2 does.

PrinterProperties requires a handle to a printer object, which you get by calling the OpenPrinter function. When
the user cancels a property sheet dialog, PrinterProperties returns. You can then close the printer handle by calling
ClosePrinter . Here's how DEVCAPS2 does it:

The program first obtains the name of the printer currently selected in the Device menu and saves it in a character
array named szDevice :

GetMenuString (hMenu, nCurrentDevice, szDevice,
 sizeof (szDevice) / sizeof (TCHAR), MF_BYCOMMAND) ;

Then it obtains the handle of this device by using OpenPrinter . If the call is successful, the program next calls
PrinterProperties to invoke the dialog box and then ClosePrinter to delete the device handle:

if (OpenPrinter (szDevice, &hPrint, NULL))
{
 PrinterProperties (hwnd, hPrint) ;

 ClosePrinter (hPrint) ;
}

Checking for BitBlt Capability

You can use the GetDeviceCaps function to obtain the size and resolution of the printable area of the page. (In
most cases, this area won't be the same as the full size of the paper.) You can also obtain the relative pixel width
and height, if you want to do your own scaling.

Much of the information regarding various capabilities of the printer is for the purpose of GDI rather than
applications. Often when a printer can't do something itself, GDI will simulate it. However, there is one capability
that some applications should check.

This is the printer characteristic obtained from the RC_BITBLT bit of the value returned from GetDeviceCaps with a
parameter of RASTERCAPS ("raster capabilities"). This bit indicates whether the device is capable of bit-block
transfers. Most dot-matrix, laser, and ink-jet printers are capable of bit-block transfers, but plotters are not.
Devices that can't handle bit-block transfers do not support the following GDI functions: CreateCompatibleDC ,
CreateCompatibleBitmap , PatBlt , BitBlt , StretchBlt , GrayString , DrawIcon , SetPixel , GetPixel , FloodFill ,
ExtFloodFill , FillRgn , FrameRgn , InvertRgn , PaintRgn , FillRect , FrameRect , and InvertRect . This is the single
most important distinction between using GDI calls on a video display and using them on a printer.

The Simplest Printing Program

We're now ready to print, and we're going to start as simply as possible. In fact, our first printing program does
nothing but cause a printer form feed to eject the page. The FORMFEED program, shown in Figure 13-5,
demonstrates the absolute minimum requirements for printing.

Figure 13-5. The FORMFEED program.

FORMFEED.C

/*---
 FORMFEED.C -- Advances printer to next page
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

HDC GetPrinterDC (void) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int iCmdShow)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("FormFeed") } ;
 HDC hdcPrint = GetPrinterDC () ;

 if (hdcPrint != NULL)
 {
 if (StartDoc (hdcPrint, &di) > 0)
 if (StartPage (hdcPrint) > 0 && EndPage (hdcPrint) > 0)
 EndDoc (hdcPrint) ;

 DeleteDC (hdcPrint) ;

 }
 return 0 ;
}

This program also requires the GETPRNDC.C file shown previously in Figure 13-3.

Other than obtaining the printer device context (and later deleting it), the program calls only the four print
functions discussed earlier in this chapter. FORMFEED first calls StartDoc to start a new document. The program
tests the return value from the function and proceeds only if the value is positive:

if (StartDoc (hdcPrint, &di) > 0)

The second argument to StartDoc is a pointer to a DOCINFO structure. This structure contains the size of the
structure in the first field and the text string "FormFeed" in the second. As the document prints or while it is
waiting to print, this string appears in the Document Name column of the printer's job queue. Generally the
identification string includes the name of the application doing the printing and the file being printed.

If StartDoc is successful (indicated by a positive return value), FORMFEED calls StartPage , followed immediately
by a call to EndPage . This sequence advances the printer to a new page. Once again, the return values are
tested:

if (StartPage (hdcPrint) > 0 && EndPage (hdcPrint) > 0)

Finally, if everything has proceeded without error to this point, the document is ended:

EndDoc (hdcPrint) ;

Note that the EndDoc function is called only if no printing errors have been reported. If one of the other print
functions returns an error code, GDI has already aborted the document. If the printer is not currently printing,
such an error code often results in the printer being reset. Simply testing the return values from the print
functions is the easiest way to check for errors. If you want to report a particular error to the user, you must call
GetLastError to determine the error.

If you've ever written a simple form-feed program for MS-DOS, you know that ASCII code 12 (Ctrl-L) activates a
form feed for most printers. Why not simply open the printer port using the C library function open and then
output an ASCII code 12 using write ? Well, nothing prevents you from doing this. You first have to determine the
parallel port or the serial port the printer is attached to. You then have to determine whether another program
(the print spooler, for instance) is currently using the printer. (You don't want the form feed to be output in the
middle of some other program's document, do you?) Finally, you have to determine if ASCII code 12 is a form-
feed character for the connected printer. It's not universal, you know. In fact, the form-feed command in
PostScript isn't a 12; it's the word showpage .

In short, don't even think about going around Windows; stick with the Windows functions for printing.

Printing Graphics and Text

Printing from a Windows program usually involves more overhead than shown in the FORMFEED program, as well
as some GDI calls to actually print something. Let's write a program that prints one page of text and graphics.
We'll start with the method shown in the FORMFEED program and then add some enhancements. We'll be looking
at three versions of this program called PRINT1, PRINT2, and PRINT3. To avoid a lot of duplicated source code,
each of these programs will use the GETPRNDC.C file shown earlier and functions contained in the PRINT.C file,
which is shown in Figure 13-6.

Figure 13-6. The PRINT.C file used in the PRINT1, PRINT2, and PRINT3 programs.

PRINT.C

/*---
 PRINT.C -- Common routines for Print1, Print2, and Print3
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL PrintMyPage (HWND) ;

extern HINSTANCE hInst ;
extern TCHAR szAppName[] ;
extern TCHAR szCaption[] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hInst = hInstance ;

 hwnd = CreateWindow (szAppName, szCaption,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void PageGDICalls (HDC hdcPrn, int cxPage, int cyPage)
{
 static TCHAR szTextStr[] = TEXT ("Hello, Printer!") ;

 Rectangle (hdcPrn, 0, 0, cxPage, cyPage) ;

 MoveToEx (hdcPrn, 0, 0, NULL) ;
 LineTo (hdcPrn, cxPage, cyPage) ;
 MoveToEx (hdcPrn, cxPage, 0, NULL) ;
 LineTo (hdcPrn, 0, cyPage) ;

 SaveDC (hdcPrn) ;

 SetMapMode (hdcPrn, MM_ISOTROPIC) ;
 SetWindowExtEx (hdcPrn, 1000, 1000, NULL) ;
 SetViewportExtEx (hdcPrn, cxPage / 2, -cyPage / 2, NULL) ;
 SetViewportOrgEx (hdcPrn, cxPage / 2, cyPage / 2, NULL) ;

 Ellipse (hdcPrn, -500, 500, 500, -500) ;

 SetTextAlign (hdcPrn, TA_BASELINE | TA_CENTER) ;
 TextOut (hdcPrn, 0, 0, szTextStr, lstrlen (szTextStr)) ;
 RestoreDC (hdcPrn, -1) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 HDC hdc ;
 HMENU hMenu ;
 PAINTSTRUCT ps ;

 switch (message)

 {
 case WM_CREATE:
 hMenu = GetSystemMenu (hwnd, FALSE) ;
 AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
 AppendMenu (hMenu, 0, 1, TEXT ("&Print")) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_SYSCOMMAND:
 if (wParam == 1)
 {
 if (!PrintMyPage (hwnd))
 MessageBox (hwnd, TEXT ("Could not print page!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;
 }
 break ;

 case WM_PAINT :
 hdc = BeginPaint (hwnd, &ps) ;

 PageGDICalls (hdc, cxClient, cyClient) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

PRINT.C contains the functions WinMain and WndProc , and also a function called PageGDICalls , which expects to
receive a handle to the printer device context and two variables containing the width and height of the printer
page. PageGDICalls draws a rectangle that encompasses the entire page, two lines between opposite corners of
the page, an ellipse in the middle of the page (its diameter half the lesser of the printer height and width), and the
text "Hello, Printer!" in the center of this ellipse.

During processing of the WM_CREATE message, WndProc adds a Print option to the system menu. Selecting this
option causes a call to PrintMyPage , a function that we'll enhance over the course of the three versions of the
program. PrintMyPage returns TRUE if it successfully prints the page and FALSE if it encounters an error during
printing. If PrintMyPage returns FALSE, WndProc displays a message box to inform you of the error.

Bare-Bones Printing

PRINT1, the first version of the printing program, is shown in Figure 13-7. After compiling PRINT1, you can
execute it and then select Print from the system menu. In quick succession, GDI saves the necessary printer
output in a temporary file, and then the spooler sends it to the printer.

Figure 13-7. The PRINT1 program.

PRINT1.C

/*---------------------------------------
 PRINT1.C -- Bare Bones Printing
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

HDC GetPrinterDC (void) ; // in GETPRNDC.C
void PageGDICalls (HDC, int, int) ; // in PRINT.C

HINSTANCE hInst ;
TCHAR szAppName[] = TEXT ("Print1") ;
TCHAR szCaption[] = TEXT ("Print Program 1") ;

BOOL PrintMyPage (HWND hwnd)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Print1: Printing") } ;
 BOOL bSuccess = TRUE ;
 HDC hdcPrn ;
 int xPage, yPage ;

 if (NULL == (hdcPrn = GetPrinterDC ()))
 return FALSE ;

 xPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 yPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 if (StartDoc (hdcPrn, &di) > 0)
 {
 if (StartPage (hdcPrn) > 0)
 {
 PageGDICalls (hdcPrn, xPage, yPage) ;

 if (EndPage (hdcPrn) > 0)
 EndDoc (hdcPrn) ;
 else
 bSuccess = FALSE ;
 }
 }
 else
 bSuccess = FALSE ;

 DeleteDC (hdcPrn) ;
 return bSuccess ;
}

Let's look at the code in PRINT1.C. If PrintMyPage can't obtain a device context handle for the printer, it returns
FALSE and WndProc displays the message box indicating an error. If the function succeeds in obtaining the device
context handle, it then determines the horizontal and vertical size of the page in pixels by calling GetDeviceCaps :

xPage = GetDeviceCaps (hdcPrn, HORZRES) ;
yPage = GetDeviceCaps (hdcPrn, VERTRES) ;

This is not the full size of the paper but rather its printable area. After that call, the code in PRINT1's PrintMyPage
function is structurally the same as the code in FORMFEED, except that PRINT1 calls PageGDICalls between the
StartPage and EndPage calls. Only if the calls to StartDoc , StartPage , and EndPage are successful does PRINT1
call the EndDoc print function.

Canceling Printing with an Abort Procedure

For large documents, a program should provide the user with a convenient way to cancel a print job while the
application is still printing. Perhaps the user intended to print only one page of a document but instead elected to
print all 537 pages. That should be a mistake that is correctable before all 537 pages have printed.

Canceling a print job from within an application requires something called an "abort procedure." The abort
procedure is a small exported function in your program. You give Windows the address of this function as an
argument to the SetAbortProc function; GDI then calls the procedure repeatedly during printing, in essence
asking, "Shall I continue printing?"

Let's look first at what's required to add an abort procedure to the printing logic and then examine some of the
ramifications. The abort procedure is commonly called AbortProc , and it takes the following form:

BOOL CALLBACK AbortProc (HDC hdcPrn, int iCode)
{

 [other program lines]
}

Before printing, you must register the abort procedure by calling SetAbortProc :

SetAbortProc (hdcPrn, AbortProc) ;

You make this call before the StartDoc call. You don't need to "unset" the abort procedure after you finish printing.

While processing the EndPage call (that is, while playing the metafile into the device driver and creating the
temporary printer output files), GDI frequently calls the abort procedure. The hdcPrn parameter is the printer
device context handle. The iCode parameter is 0 if all is going well or is SP_OUTOFDISK if the GDI module has run
out of disk space because of the temporary printer output files.

AbortProc must return TRUE (nonzero) if the print job is to be continued and returns FALSE (0) if the print job is
to be aborted. The abort procedure can be as simple as this:

BOOL CALLBACK AbortProc (HDC hdcPrn, int iCode)
{
 MSG msg ;

 while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return TRUE ;
}

This function may seem a little peculiar. In fact, it looks suspiciously like a message loop. What's a message loop
doing here of all places? Well, it is a message loop. You'll note, however, that this message loop calls
PeekMessage rather than GetMessage . I discussed PeekMessage in connection with the RANDRECT program at
the end of Chapter 5 . You'll recall that PeekMessage returns control to a program with a message from the
program's message queue (just like GetMessage) but also returns control if there are no messages waiting in any
program's message queue.

The message loop in the AbortProc function repeatedly calls PeekMessage while PeekMessage returns TRUE. This
TRUE value means that PeekMessage has retrieved a message that can be sent to one of the program's window
procedures using TranslateMessage and DispatchMessage . When there are no more messages in the program's
message queue, the return value of PeekMessage is then FALSE, so AbortProc returns control to Windows.

How Windows Uses AbortProc

When a program is printing, the bulk of the work takes place during the call to EndPage . Before that call, the GDI
module simply adds another record to the disk-based metafile every time the program calls a GDI drawing
function. When GDI gets the EndPage call, it plays this metafile into the device driver once for each band the
device driver defines on a page. GDI then stores in a file the printer output created by the printer driver. If the
spooler isn't active, the GDI module itself must write this printer output to the printer.

During the call to EndPage , the GDI module calls the abort procedure you've set. Normally, the iCode parameter
is 0, but if GDI has run out of disk space because of the presence of other temporary files that haven't been
printed yet, the iCode parameter is SP_OUTOFDISK. (You wouldn't normally check this value, but you can if you
want.) The abort procedure then goes into its PeekMessage loop to retrieve messages from the program's
message queue.

If there are no messages in the program's message queue, PeekMessage returns FALSE. The abort procedure then
drops out of its message loop and returns a TRUE value to the GDI module to indicate that printing should
continue. The GDI module then continues to process the EndPage call.

The GDI module stops the print process if an error occurs, so the main purpose of the abort procedure is to allow
the user to cancel printing. For that we also need a dialog box that displays a Cancel button. Let's take these two
steps one at a time. First we'll add an abort procedure to create the PRINT2 program, and then we'll add a dialog
with a Cancel button in PRINT3 to make the abort procedure useful.

Implementing an Abort Procedure

Let's quickly review the mechanics of the abort procedure. You define an abort procedure that looks like this:

BOOL CALLBACK AbortProc (HDC hdcPrn, int iCode)
{
 MSG msg ;

 while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return TRUE ;

}

To print something, you give Windows a pointer to the abort procedure:

SetAbortProc (hdcPrn, AbortProc) ;

You make this call before the StartDoc call. And that's it.

Well, not quite. We've overlooked a problem with that PeekMessage loop in AbortProc— a big problem. AbortProc
is called only while your program is in the midst of printing. Some very ugly things can happen if you retrieve a
message in AbortProc and dispatch it to your own window procedure. A user could select Print from the menu
again. But the program is already in the middle of the printing routine. A user could load a new file into the
program while the program is trying to print the previous file. A user could even quit your program! If that
happens, all your program's windows will be destroyed. You'll eventually return from the printing routine, but
you'll have nowhere to go except to a window procedure that's no longer valid.

This stuff boggles the mind. And your program isn't prepared for it. For this reason, when you set an abort
procedure, you should first disable your program's window so that it can't receive keyboard and mouse input. You
do this with

EnableWindow (hwnd, FALSE) ;

This prevents keyboard and mouse input from getting into the message queue. The user therefore can't do
anything with your program during the time it's printing. When printing is finished, you reenable the window for
input:

EnableWindow (hwnd, TRUE) ;

So why, you ask, do we even bother with the TranslateMessage and DispatchMessage calls in AbortProc when no
keyboard or mouse messages will get into the message queue in the first place? It's true that the
TranslateMessage call isn't strictly needed (although it's almost always included). But we must use
DispatchMessage in case a WM_PAINT message gets in the message queue. If WM_PAINT isn't processed properly
with a BeginPaint and EndPaint pair in the window procedure, the message will remain in the queue and clog up
the works, because PeekMessage will never return a FALSE.

When you disable your window during the time you're printing, your program remains inert on the display. But a
user can switch to another program and do some work there, and the spooler can continue sending output files to
the printer.

The PRINT2 program, shown in Figure 13-8, adds to PRINT1 an abort procedure and the necessary support—a call
to the AbortProc function and two calls to EnableWindow , the first to disable the window and the second to
reenable it.

Figure 13-8. The PRINT2 program.

PRINT2.C

/*---
 PRINT2.C -- Printing with Abort Procedure

 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

HDC GetPrinterDC (void) ; // in GETPRNDC.C
void PageGDICalls (HDC, int, int) ; // in PRINT.C

HINSTANCE hInst ;
TCHAR szAppName[] = TEXT ("Print2") ;
TCHAR szCaption[] = TEXT ("Print Program 2 (Abort Procedure)") ;

BOOL CALLBACK AbortProc (HDC hdcPrn, int iCode)
{
 MSG msg ;

 while (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return TRUE ;
}

BOOL PrintMyPage (HWND hwnd)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Print2: Printing") } ;
 BOOL bSuccess = TRUE ;
 HDC hdcPrn ;
 short xPage, yPage ;

 if (NULL == (hdcPrn = GetPrinterDC ()))
 return FALSE ;

 xPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 yPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 EnableWindow (hwnd, FALSE) ;

 SetAbortProc (hdcPrn, AbortProc) ;

 if (StartDoc (hdcPrn, &di) > 0)

 {
 if (StartPage (hdcPrn) > 0)
 {
 PageGDICalls (hdcPrn, xPage, yPage) ;

 if (EndPage (hdcPrn) > 0)
 EndDoc (hdcPrn) ;
 else
 bSuccess = FALSE ;

 }
 }
 else
 bSuccess = FALSE ;

 EnableWindow (hwnd, TRUE) ;
 DeleteDC (hdcPrn) ;
 return bSuccess ;
}

Adding a Printing Dialog Box

PRINT2 is not entirely satisfactory. First, the program doesn't directly indicate when it is printing and when it is
finished with printing. Only when you poke at the program with the mouse and find that it doesn't respond can
you determine that it must still be processing the PrintMyPage routine. Nor does PRINT2 give the user the
opportunity to cancel the print job while it is spooling.

You're probably aware that most Windows programs give users a chance to cancel a printing operation currently in
progress. A small dialog box comes up on the screen; it contains some text and a push button labeled Cancel. The
program displays this dialog box during the entire time that GDI is saving the printer output in a disk file or (if the
spooler is disabled) while the printer is printing. This is a modeless dialog box, and you must supply the dialog
procedure.

This dialog box is often called the "abort dialog box," and the dialog procedure is often called the "abort dialog
procedure." To distinguish it more clearly from the "abort procedure," I'll call this dialog procedure the "printing
dialog procedure." The abort procedure (with the name AbortProc) and the printing dialog procedure (which I'll
name PrintDlgProc) are two separate exported functions. If you want to print in a professional, Windows-like
manner, you must have both of these.

These two functions interact as follows. The PeekMessage loop in AbortProc must be modified to send messages
for the modeless dialog box to the dialog box window procedure. PrintDlgProc must process WM_COMMAND
messages to check the status of the Cancel button. If the Cancel button is pressed, it sets a global variable called
bUserAbort to TRUE. The value returned from AbortProc is the inverse of bUserAbort . You will recall that
AbortProc returns TRUE to continue printing and FALSE to abort printing. In PRINT2 we always returned TRUE.
Now we'll return FALSE if the user clicks the Cancel button in the printing dialog box. This logic is implemented in
the PRINT3 program, shown in Figure 13-9.

Figure 13-9. The PRINT3 program.

PRINT3.C

/*---------------------------------------
 PRINT3.C -- Printing with Dialog Box
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

HDC GetPrinterDC (void) ; // in GETPRNDC.C
void PageGDICalls (HDC, int, int) ; // in PRINT.C

HINSTANCE hInst ;
TCHAR szAppName[] = TEXT ("Print3") ;
TCHAR szCaption[] = TEXT ("Print Program 3 (Dialog Box)") ;

BOOL bUserAbort ;
HWND hDlgPrint ;

BOOL CALLBACK PrintDlgProc (HWND hDlg, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 SetWindowText (hDlg, szAppName) ;
 EnableMenuItem (GetSystemMenu (hDlg, FALSE), SC_CLOSE, MF_GRAYED) ;
 return TRUE ;

 case WM_COMMAND:
 bUserAbort = TRUE ;
 EnableWindow (GetParent (hDlg), TRUE) ;
 DestroyWindow (hDlg) ;
 hDlgPrint = NULL ;
 return TRUE ;
 }
 return FALSE ;
}

BOOL CALLBACK AbortProc (HDC hdcPrn, int iCode)

{
 MSG msg ;

 while (!bUserAbort && PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (!hDlgPrint || !IsDialogMessage (hDlgPrint, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return !bUserAbort ;
}

BOOL PrintMyPage (HWND hwnd)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Print3: Printing") } ;
 BOOL bSuccess = TRUE ;
 HDC hdcPrn ;
 int xPage, yPage ;

 if (NULL == (hdcPrn = GetPrinterDC ()))
 return FALSE ;

 xPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 yPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 EnableWindow (hwnd, FALSE) ;

 bUserAbort = FALSE ;
 hDlgPrint = CreateDialog (hInst, TEXT ("PrintDlgBox"),
 hwnd, PrintDlgProc) ;

 SetAbortProc (hdcPrn, AbortProc) ;

 if (StartDoc (hdcPrn, &di) > 0)
 {
 if (StartPage (hdcPrn) > 0)
 {
 PageGDICalls (hdcPrn, xPage, yPage) ;

 if (EndPage (hdcPrn) > 0)
 EndDoc (hdcPrn) ;
 else
 bSuccess = FALSE ;
 }
 }
 else
 bSuccess = FALSE ;

 if (!bUserAbort)
 {
 EnableWindow (hwnd, TRUE) ;
 DestroyWindow (hDlgPrint) ;
 }

 DeleteDC (hdcPrn) ;

 return bSuccess && !bUserAbort ;
}

PRINT.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

PRINTDLGBOX DIALOG DISCARDABLE 20, 20, 186, 63
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "Cancel",IDCANCEL,67,42,50,14

 CTEXT "Cancel Printing",IDC_STATIC,7,21,172,8
END

If you experiment with PRINT3, you may want to temporarily disable print spooling. Otherwise, the Cancel button,
which is visible only while the spooler collects data from PRINT3, might disappear too quickly for you to actually
click on it. Don't be surprised if things don't come to an immediate halt when you click the Cancel button,
especially on a slow printer. The printer has an internal buffer that must drain before the printer stops. Clicking
Cancel merely tells GDI not to send any more data to the printer's buffer.

Two global variables are added to PRINT3: a BOOL called bUserAbort and a handle to the dialog box window called
hDlgPrint . The PrintMyPage function initializes bUserAbort to FALSE, and as in PRINT2, the program's main
window is disabled. The pointer to AbortProc is used in the SetAbortProc call, and the pointer to PrintDlgProc is
used in a CreateDialog call. The window handle returned from CreateDialog is saved in hDlgPrint .

The message loop in AbortProc now looks like this:

while (!bUserAbort && PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
{
 if (!hDlgPrint ¦¦ !IsDialogMessage (hDlgPrint, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
}
return !bUserAbort ;

It calls PeekMessage only if bUserAbort is FALSE—that is, if the user hasn't yet aborted the printing operation. The
IsDialogMessage function is required to send the message to the modeless dialog box. As is normal with modeless
dialog boxes, the handle to the dialog box window is checked before this call is made. AbortProc returns the
inverse of bUserAbort . Initially, bUserAbort is FALSE, so AbortProc returns TRUE, indicating that printing is to
continue. But bUserAbort could be set to TRUE in the printing dialog procedure.

The PrintDlgProc function is fairly simple. While processing WM_INITDIALOG, the function sets the window caption
to the name of the program and disables the Close option on the system menu. If the user clicks the Cancel
button, PrintDlgProc receives a WM_ COMMAND message:

case WM_COMMAND :
 bUserAbort = TRUE ;
 EnableWindow (GetParent (hDlg), TRUE) ;
 DestroyWindow (hDlg) ;
 hDlgPrint = NULL ;
 return TRUE ;

Setting bUserAbort to TRUE indicates that the user has decided to cancel the printing operation. The main window
is enabled, and the dialog box is destroyed. (It is important that you perform these two actions in this order.
Otherwise, some other program running under Windows will become the active program, and your program might
disappear into the background.) As is normal, hDlgPrint is set to NULL to prevent IsDialogMessage from being
called in the message loop.

The only time this dialog box receives messages is when AbortProc retrieves messages with PeekMessage and
sends them to the dialog box window procedure with IsDialogMessage . The only time AbortProc is called is when
the GDI module is processing the EndPage function. If GDI sees that the return value from AbortProc is FALSE, it
returns control from the EndPage call back to PrintMyPage . It doesn't return an error code. At that point,
PrintMyPage thinks that the page is complete and calls the EndDoc function. Nothing is printed, however, because

the GDI module didn't finish processing the EndPage call.

Some cleanup remains. If the user didn't cancel the print job from the dialog box, then the dialog box is still
displayed. PrintMyPage reenables its main window and destroys the dialog box:

if (!bUserAbort)
{
 EnableWindow (hwnd, TRUE) ;
 DestroyWindow (hDlgPrint) ;
}

Two variables tell you what happened: bUserAbort tells you whether the user aborted the print job, and bSuccess
tells you whether an error occurred. You can do what you want with these variables. PrintMyPage simply performs
a logical AND operation to return to WndProc :

return bSuccess && !bUserAbort ;

Adding Printing to POPPAD

Now we're ready to add a printing facility to the POPPAD series of programs and declare POPPAD finished. You'll
need the various POPPAD files from Chapter 11 , plus the POPPRNT.C file in Figure 13-10.

Figure 13-10. The POPPRNT.C file to add printing capability to POPPAD.

POPPRNT.C

/*--
 POPPRNT.C -- Popup Editor Printing Functions
 --*/

#include <windows.h>
#include <commdlg.h>
#include "resource.h"

BOOL bUserAbort ;
HWND hDlgPrint ;

BOOL CALLBACK PrintDlgProc (HWND hDlg, UINT msg, WPARAM wParam, LPARAM lParam)
{
 switch (msg)
 {
 case WM_INITDIALOG :
 EnableMenuItem (GetSystemMenu (hDlg, FALSE), SC_CLOSE, MF_GRAYED) ;
 return TRUE ;

 case WM_COMMAND :

 bUserAbort = TRUE ;
 EnableWindow (GetParent (hDlg), TRUE) ;
 DestroyWindow (hDlg) ;

 hDlgPrint = NULL ;
 return TRUE ;
 }
 return FALSE ;
}

BOOL CALLBACK AbortProc (HDC hPrinterDC, int iCode)
{
 MSG msg ;

 while (!bUserAbort && PeekMessage (&msg, NULL, 0, 0, PM_REMOVE))
 {
 if (!hDlgPrint || !IsDialogMessage (hDlgPrint, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return !bUserAbort ;
}

BOOL PopPrntPrintFile (HINSTANCE hInst, HWND hwnd, HWND hwndEdit,
 PTSTR szTitleName)
{
 static DOCINFO di = { sizeof (DOCINFO) } ;
 static PRINTDLG pd ;
 BOOL bSuccess ;
 int yChar, iCharsPerLine, iLinesPerPage, iTotalLines,
 iTotalPages, iPage, iLine, iLineNum ;
 PTSTR pstrBuffer ;
 TCHAR szJobName [64 + MAX_PATH] ;
 TEXTMETRIC tm ;
 WORD iColCopy, iNoiColCopy ;

 // Invoke Print common dialog box

 pd.lStructSize = sizeof (PRINTDLG) ;
 pd.hwndOwner = hwnd ;
 pd.hDevMode = NULL ;
 pd.hDevNames = NULL ;
 pd.hDC = NULL ;
 pd.Flags = PD_ALLPAGES | PD_COLLATE |
 PD_RETURNDC | PD_NOSELECTION ;
 pd.nFromPage = 0 ;
 pd.nToPage = 0 ;
 pd.nMinPage = 0 ;
 pd.nMaxPage = 0 ;
 pd.nCopies = 1 ;
 pd.hInstance = NULL ;

 pd.lCustData = 0L ;
 pd.lpfnPrintHook = NULL ;
 pd.lpfnSetupHook = NULL ;
 pd.lpPrintTemplateName = NULL ;
 pd.lpSetupTemplateName = NULL ;
 pd.hPrintTemplate = NULL ;
 pd.hSetupTemplate = NULL ;

 if (!PrintDlg (&pd))
 return TRUE ;

 if (0 == (iTotalLines = SendMessage (hwndEdit, EM_GETLINECOUNT, 0, 0)))
 return TRUE ;

 // Calculate necessary metrics for file

 GetTextMetrics (pd.hDC, &tm) ;
 yChar = tm.tmHeight + tm.tmExternalLeading ;

 iCharsPerLine = GetDeviceCaps (pd.hDC, HORZRES) / tm.tmAveCharWidth ;
 iLinesPerPage = GetDeviceCaps (pd.hDC, VERTRES) / yChar ;
 iTotalPages = (iTotalLines + iLinesPerPage - 1) / iLinesPerPage ;

 // Allocate a buffer for each line of text

 pstrBuffer = malloc (sizeof (TCHAR) * (iCharsPerLine + 1)) ;

 // Display the printing dialog box

 EnableWindow (hwnd, FALSE) ;

 bSuccess = TRUE ;
 bUserAbort = FALSE ;

 hDlgPrint = CreateDialog (hInst, TEXT ("PrintDlgBox"),
 hwnd, PrintDlgProc) ;

 SetDlgItemText (hDlgPrint, IDC_FILENAME, szTitleName) ;
 SetAbortProc (pd.hDC, AbortProc) ;

 // Start the document

 GetWindowText (hwnd, szJobName, sizeof (szJobName)) ;
 di.lpszDocName = szJobName ;

 if (StartDoc (pd.hDC, &di) > 0)
 {
 // Collation requires this loop and iNoiColCopy

 for (iColCopy = 0 ;
 iColCopy < ((WORD) pd.Flags & PD_COLLATE ? pd.nCopies : 1) ;
 iColCopy++)
 {

 for (iPage = 0 ; iPage < iTotalPages ; iPage++)
 {
 for (iNoiColCopy = 0 ;
 iNoiColCopy < (pd.Flags & PD_COLLATE ? 1 : pd.nCopies);
 iNoiColCopy++)
 {
 // Start the page

 if (StartPage (pd.hDC) < 0)
 {
 bSuccess = FALSE ;
 break ;
 }

 // For each page, print the lines

 for (iLine = 0 ; iLine < iLinesPerPage ; iLine++)
 {
 iLineNum = iLinesPerPage * iPage + iLine ;

 if (iLineNum > iTotalLines)
 break ;

 *(int *) pstrBuffer = iCharsPerLine ;

 TextOut (pd.hDC, 0, yChar * iLine, pstrBuffer,
 (int) SendMessage (hwndEdit, EM_GETLINE,
 (WPARAM) iLineNum, (LPARAM) pstrBuffer));
 }

 if (EndPage (pd.hDC) < 0)
 {
 bSuccess = FALSE ;
 break ;
 }

 if (bUserAbort)
 break ;
 }

 if (!bSuccess || bUserAbort)
 break ;
 }

 if (!bSuccess || bUserAbort)
 break ;
 }
 }
 else
 bSuccess = FALSE ;

 if (bSuccess)
 EndDoc (pd.hDC) ;

 if (!bUserAbort)
 {
 EnableWindow (hwnd, TRUE) ;
 DestroyWindow (hDlgPrint) ;
 }

 free (pstrBuffer) ;
 DeleteDC (pd.hDC) ;

 return bSuccess && !bUserAbort ;
}

In keeping with the philosophy of making POPPAD as simple as possible by taking advantage of high-level
Windows features, the POPPRNT.C file demonstrates how to use the PrintDlg function. This function is included in
the common dialog box library and uses a structure of type PRINTDLG.

Normally, a Print option is included on a program's File menu. When the user selects the Print option, a program
can initialize the fields of the PRINTDLG structure and call PrintDlg .

PrintDlg displays a dialog box that allows the user to select a page range to print. Thus, this dialog box is
particularly suitable for programs such as POPPAD that can print multipage documents. The dialog box also
provides an edit field to specify the number of copies and a check-box labeled "Collate." Collation affects the page
ordering of multiple copies. For example, if the document is three pages long and the user requests that three
copies be printed, the program can print them in one of two orders. Collated copies are in the page order 1, 2, 3,
1, 2, 3, 1, 2, 3. Noncollated copies are in the order 1, 1, 1, 2, 2, 2, 3, 3, 3. It's up to your program to print the
copies in the correct order.

The dialog box also allows the user to select a nondefault printer, and it includes a button labeled Properties that
invokes a device mode dialog box. At the very least, this allows the user to select portrait or landscape mode.

On return from the PrintDlg function, fields of the PRINTDLG structure indicate the range of pages to print and
whether multiple copies should be collated. The structure also provides the printer device context handle, ready to
be used.

In POPPRNT.C, the PopPrntPrintFile function (which is called from POPPAD when the user selects the Print option
from the File menu) calls PrintDlg and then proceeds to print the file. PopPrntPrintFile then performs some
calculations to determine the number of characters it can fit on a line and the number of lines it can fit on a page.
This process involves calls to GetDeviceCaps to determine the resolution of the page and to GetTextMetrics for the
dimensions of a character.

The program obtains the total number of lines in the document (the variable iTotalLines) by sending an
EM_GETLINECOUNT message to the edit control. A buffer for holding the contents of each line is allocated from
local memory. For each line, the first word of this buffer is set to the number of characters in the line. Sending the
edit control an EM_GETLINE message copies a line into the buffer; the line is then sent to the printer device
context using TextOut . (POPPRNT.C is not smart enough to wrap lines that exceed the width of the printer page.
We'll examine a technique for wrapping such lines in Chapter 17 .)

Notice that the logic to print the document includes two for loops for the number of copies. The first uses a
variable named iColCopy and takes effect when the user has specified collated copies; the second uses the
iNonColCopy variable and takes effect for noncollated copies.

The program breaks from the for loop incrementing the page number if either StartPage or EndPage returns an
error or if bUserAbort is TRUE. If the return value of the abort procedure is FALSE, EndPage doesn't return an
error. For this reason, bUserAbort is tested explicitly before the next page is started. If no error is reported, the
call to EndDoc is made:

if (!bError)
 EndDoc (hdcPrn) ;

You might want to experiment with POPPAD by printing a multipage file. You can monitor progress from the print
job window. The file being printed first shows up in this window after GDI has finished processing the first
EndPage call. At that time, the spooler starts sending the file to the printer. If you then cancel the print job from
POPPAD, the spooler aborts the printing also—that's a result of returning FALSE from the abort procedure. Once
the file appears in the print job window, you can also cancel the printing by selecting Cancel Printing from the
Document menu. In that case, the EndPage call in progress in POPPAD returns an error.

Programmers new to Windows often become inordinately obsessed with the AbortDoc function. This function is
rarely used in printing. As you can see in POPPAD, a user can cancel a print job at almost any time, either through
POPPAD's printing dialog box or through the print job window. Neither requires that the program use the AbortDoc
function. The only time that AbortDoc would be allowed in POPPAD is between the call to StartDoc and the first call
to EndPage , but that code goes so quickly that AbortDoc isn't necessary.

Figure 13-11 shows the correct sequence of print function calls for printing a multipage document. The best place
to check for a bUserAbort value of TRUE is after each call to EndPage . The EndDoc function is used only when the
previous print functions have proceeded without error. In fact, once you get an error from any call to a print
function, the show is over and you can go home.

Figure 13-11. The sequence of function calls for multipage printing.

Chapter 14

Bitmaps and Bitblts

A bitmap is a two-dimensional rectangular array of bits that correspond to the pixels of an image. When real-world
images are captured in bitmaps, the image is divided into a grid and the pixel is the sampling unit. The value of
each pixel in the bitmap indicates the average color of the image within a unit of this grid. Monochrome bitmaps
require only one bit per pixel; gray shade or color bitmaps require multiple bits per pixel.

Bitmaps represent one of two methods for storing pictorial information in a Windows program. The other form of
stored pictorial information is the metafile, which I'll cover in Chapter 18. A metafile is a description of a picture
rather than a digital representation of it.

As I'll discuss in more detail shortly, Microsoft Windows 3.0 introduced something called the device-independent
bitmap (DIB). I'll discuss DIBs in the next chapter. This chapter covers the GDI bitmap object, which is the bitmap
support implemented in Windows prior to the DIB. As the various sample programs in this chapter demonstrate,
the pre-DIB bitmap support of Windows is still quite useful and valuable.

Bitmap Basics

Both bitmaps and metafiles have their place in computer graphics. Bitmaps are often used for very complex
images originating in the real world, such as digitized photographs or video captures. Metafiles are more suitable
for human-generated or machine-generated images, such as architectural drawings. Both bitmaps and metafiles
can exist in memory or be stored on a disk as files, and both can be transferred among Windows applications
through the clipboard.

The difference between bitmaps and metafiles is the difference between raster graphics and vector graphics.
Raster graphics treats output devices in terms of discrete pixels; vector graphics treats the output device as a
Cartesian coordinate system upon which lines and filled objects can be drawn. Most graphics output devices these
days are raster devices. These include video displays, dot-matrix printers, laser printers, and ink-jet printers. A
pen plotter, however, is a vector output device.

Bitmaps have two major drawbacks. First, they are susceptible to problems involving device dependence. The
most obvious device dependency is color. Displaying a color bitmap on a monochrome device is often
unsatisfactory. Another problem is that a bitmap often implies a particular resolution and aspect ratio of an image.
Although bitmaps can be stretched or compressed, this process generally involves duplicating or dropping rows or
columns of pixels, and this can lead to distortion in the scaled image. A metafile can be scaled to almost any size
without distortion.

The second major drawback of bitmaps is that they require a large amount of storage space. For instance, a
bitmap representation of an entire 640-by-480-pixel, 16-color Video Graphics Array (VGA) screen requires more
than 150 KB; a 1024-by-768 image with 24 bits per pixel requires more than 2 MB. Metafiles usually require much
less storage space than bitmaps. The storage space for a bitmap is governed by the size of the image and number
of colors it contains, whereas the storage space for a metafile is governed by the complexity of the image and the
number of individual GDI instructions it contains.

One advantage of bitmaps over metafiles, however, is speed. Copying a bitmap to a video display is usually much
faster than rendering a metafile. In recent years, compression techniques have allowed the shrinking of bitmaps to
a size where they can be effectively transmitted over telephone lines and used extensively in World Wide Web
pages on the Internet.

Where Do Bitmaps Come From?

Bitmap images can be created "manually," for example, by using the Paint program included with Windows 98.
Someone using a raster "paint" program rather than a vector "draw" program is working under the assumption
that the eventual image will be too complex to be rendered with lines and filled areas.

Bitmap images can also be created algorithmically by computer code. Although most algorithmically generated
images can be stored in a vector graphics metafile, highly detailed surfaces or fractals usually require bitmaps.

These days, bitmaps are often used for images from the real world, and various hardware devices let you move
images from the real world into the computer. This hardware generally uses something called a charge-coupled
device (CCD), which releases an electrical charge when exposed to light. Sometimes these CCD cells are arranged
in an array, one CCD per pixel; to keep costs down, a single row of CCDs can be used to scan an image.

The scanner is the oldest of these computer-based CCD devices. It uses a row of CCDs that sweep along the
surface of a printed image, such as a photograph. The CCDs generate electrical charges based on the intensity of
light. Analog-to-digital converters (ADCs) convert the charges into numbers, which then can be arranged in a
bitmap.

Video camcorders also use arrays of CCD cells to capture images. Generally these images are recorded on
videotape. However, the video output can be fed directly into a video frame grabber, which converts an analog
video signal into an array of pixel values. These frame grabbers can be used with any compatible video source,
such as that from a VCR or a laserdisc or DVD player, or even directly from a cable decoding box.

Most recently, digital cameras have become financially viable for the home user. These often look very much like
normal cameras. But instead of film, an array of CCDs is used to capture an image, and an internal ADC allows the
digital image to be stored directly in memory within the camera. Generally, the camera interfaces to the computer
through the serial port.

Bitmap Dimensions

A bitmap is rectangular and has a spatial dimension, which is the width and height of the image in pixels. For
example, this grid could represent a very small bitmap that is 9 pixels wide and 6 pixels high or, more concisely, 9
by 6:

By convention, the shorthand dimension of a bitmap is given with the width first. This bitmap has a total of 9 × 6,
or 54, pixels. I'll often use the symbols cx and cy to refer to the width and height of a bitmap. The `c' stands for
count, so cx and cy are the number of pixels along the x (horizontal) and y (vertical) axes.

We can indicate a particular pixel of the bitmap in terms of x and y coordinates. Generally (but not always, as we'll
see), the origin of a bitmap is considered to be the upper left corner of the image, as I've numbered the pixels in
the grid. Thus, the pixel at the bottom right corner of this bitmap is at the coordinate (8, 5). This is one less than
the width and height of the bitmap because the numbering starts with zero.

The spatial dimensions of a bitmap are often referred to as its resolution, but this is a problematic word. We say
that our video displays have a resolution of 640 by 480 but that our laser printers have a resolution of 300 dots
per inch. I prefer the latter use of the word—resolution as the number of pixels per metrical unit. Bitmaps could
have a resolution in this sense, meaning that some number of pixels in the bitmap correspond to a particular unit
of measurement. Regardless, when I use the word resolution, it should be obvious from the context which
definition I'm using.

Bitmaps are rectangular but computer memory is linear. Bitmaps are generally (but not always) stored in memory
by rows beginning with the top row of pixels and ending with the bottom row. (The DIB is one major exception to
this rule.) Within each row, pixels are stored beginning with the leftmost pixel and continuing to the right. It's just
like storing the individual characters of several lines of text.

Color and Bitmaps

Besides having a spatial dimension, bitmaps also have a color dimension. This is the number of bits required for
each pixel and is sometimes called the color depth of the bitmap or the bit-count or the number of bits per pixel
(bpp). Each pixel in a bitmap has the same number of color bits.

A bitmap with 1 bit per pixel is called a bilevel or bicolor or monochrome bitmap. Each pixel is either a 0 or a 1. A
value of 0 could mean black, and a 1 could mean white, but that's not necessarily always the case. Additional
colors require more bits per pixel. The number of possible colors is equal to 2bit-count. With 2 bits, you get 4 colors,
with 4 bits you get 16 colors, with 8 bits you get 256 colors, with 16 bits you get 65,536 colors, and with 24 bits
you get 16,777,216 colors.

How exactly certain combinations of color bits correspond to real and familiar colors is a question that persistently
occupies (and often plagues) the mind of anyone who works with bitmaps.

Real-World Devices

Bitmaps can be categorized based on the number of color bits they have; the various bitmap color formats are
based on the color capabilities of common video display adapters available throughout the history of Windows.
Indeed, one can think of video display memory as comprising a large bitmap—one that we see when we look at
our monitors.

The most common video adapters used for Windows 1.0 were the IBM Color Graphics Adapter (CGA) and the
Hercules Graphics Card (HGC). The HGC was a monochrome device, and the CGA had to be used in a
monochrome graphics mode under Windows. The monochrome bitmap is still quite common (for example, mouse
cursors are often monochrome), and monochrome bitmaps have other uses beyond the display of images.

With the introduction of the Enhanced Graphics Adapter (EGA), Windows users got access to 16 colors. Each pixel
requires 4 color bits. (The EGA was actually a bit more complex than this, involving a palette of 64 colors from
which an application could select any 16 colors, but Windows used the EGA in a simpler manner.) The 16 colors
used on the EGA were black, white, two shades of gray, and dark and light versions of red, green, and blue (the
three additive primaries), cyan (the combination of blue and green), magenta (the combination of blue and red),
and yellow (the combination of red and green). These 16 colors are now regarded as a minimum standard for
Windows. Likewise, 16-color bitmaps also still show up in Windows. Most icons use 16-color bitmaps. Simple
cartoonlike images can usually be done with these 16 colors.

The color encoding used in 16-color bitmaps is sometimes called IRGB (Intensity-Red-Green-Blue) and actually
derives from colors originally used in character modes of the IBM CGA. The four IRGB color bits used for each pixel
map to Windows hexadecimal RGB colors as shown in the following table.

IRGB RGB Color Color Name

0000 00-00-00 Black

0001 00-00-80 Dark Blue

0010 00-80-00 Dark Green

0011 00-80-80 Dark Cyan

0100 80-00-00 Dark Red

0101 80-00-80 Dark Magenta

0110 80-80-00 Dark Yellow

0111 C0-C0-C0 Light Gray

1000 80-80-80 Dark Gray

1001 00-00-FF Blue

1010 00-FF-00 Green

1011 00-FF-FF Cyan

1100 FF-00-00 Red

1101 FF-00-FF Magenta

1110 FF-FF-00 Yellow

1111 FF-FF-FF White

The memory in the EGA is organized in four "color planes," which means that the four bits that define the color of
each pixel are not consecutive in memory. Instead, the video memory is organized so that all the Intensity bits are
together, all the Red bits are together, and so forth. This certainly sounds like some device-dependent peculiarity
that a Windows programmer shouldn't need to know anything about, and that is more or less the case. However,
these color planes pop up in some API calls, such as GetDeviceCaps and CreateBitmap.

Windows 98 and Microsoft Windows NT require a VGA or higher resolution graphics card. This is the minimum-
standard video graphics board that Windows currently accepts.

The original Video Graphics Array was introduced by IBM in 1987 with its PS/2 line of personal computers. It
offered a number of different video modes, but the best graphics mode (the one that Windows uses) displays 640
pixels horizontally by 480 pixels vertically with 16 colors. To display 256 colors, the original VGA had to be
switched into a 320 by 240 graphics mode, which is an inadequate number of pixels for Windows to work properly.

People often forget about the color limitations of the original VGA board because other hardware manufacturers
soon developed "Super-VGA" (or SVGA) adapters that included more video memory and displayed 256 colors and

more in the 640-by-480 mode. These are now the standard, and that's a good thing because 16 colors are simply
inadequate for the display of real-world images.

A video adapter mode that displays 256 colors uses 8 bits per pixel. However, these 8-bit values do not
necessarily correspond to particular colors. Instead, the video board incorporates a "palette lookup table" that
allows software to specify how these 8-bit values map to real colors. In Windows, applications do not have direct
access to this hardware palette lookup table; instead, Windows reserves 20 of the 256 colors and application
programs use the Windows Palette Manager to customize the other 236 colors. I'll have much more to say about
this in Chapter 16. The Palette Manager allows applications to display real-world bitmaps on 256-color displays.
The 20 colors that Windows reserves are:

Color Value RGB Color Color Name

00000000 00-00-00 Black

00000001 80-00-00 Dark Red

00000010 00-80-00 Dark Green

00000011 80-80-00 Dark Yellow

00000100 00-00-80 Dark Blue

00000101 80-00-80 Dark Magenta

00000110 00-80-80 Dark Cyan

00000111 C0-C0-C0 Light Gray

00001000 C0-DC-C0 Money Green

00001001 A6-CA-F0 Sky Blue

11110110 FF-FB-F0 Cream

11110111 A0-A0-A4 Medium Gray

11111000 80-80-80 Dark Gray

11111001 FF-00-00 Red

11111010 00-FF-00 Green

11111011 FF-FF-00 Yellow

11111100 00-00-FF Blue

11111101 FF-00-FF Magenta

11111110 00-FF-FF Cyan

11111111 FF-FF-FF White

In recent years, full-color video adapter boards have become quite common. These use either 16 bits or 24 bits
per pixel. Sometimes with 16 bits per pixel, one bit is unused and the other 15 bits are apportioned equally for the
red, green, and blue primaries. This allows a total of 32,768 colors with combinations of 32 shades each of red,
green, and blue. More commonly, 6 bits are used for green (the color that humans are most sensitive to) and
65,536 colors are available. For the nontechnical PC user who doesn't want to see wacky numbers like 32,768 or
65,536, such video display boards are usually said to be "high color" adapters that provide "thousands of colors."

Moving up to 24 bits per pixel gives us a total of 16,777,216 colors (or "true color" or "millions of colors"). Each
pixel uses 3 bytes. This is likely to be the standard for years to come because it approximately represents the
limits of human perception and also because it's very convenient.

When you call GetDeviceCaps (such as in the DEVCAPS program in Chapter 5), you can use the BITSPIXEL and
PLANES constants to obtain the color organization of the video board. Over the years, these values have been
those shown here.

BITSPIXEL PLANES Number of Colors

1 1 2

1 4 16

8 1 256

15 or 16 1 32,768 or 65,536

24 or 32 1 16,777,216

These days, you shouldn't encounter monochrome video displays, but your application shouldn't react adversely if
it finds one.

Bitmap Support in GDI

The Windows Graphics Device Interface has supported bitmaps since version 1.0. However, prior to Windows 3.0,
the only bitmaps supported under Windows were GDI objects, which are referenced using a bitmap handle. These
GDI bitmap objects are monochrome or have the same color organization as a real graphics output device, such as
a video display. For example, a bitmap compatible with a 16-color VGA has four color planes. The problem is that
these color bitmaps cannot not be saved and used on a graphics output device that has a different color
organization, for example one having 8 bits per pixel and capable of rendering 256 colors.

Beginning in Windows 3.0, a new bitmap format was defined, called the device- independent bitmap, or DIB. The
DIB includes its own color table that shows how the pixel bits correspond to RGB colors. DIBs can be displayed on
any raster output device. The only problem is that the colors of the DIB must often be converted to colors that the
device can actually render.

Along with the DIB, Windows 3.0 also introduced the Windows Palette Manager that allows programs to customize
colors on 256-color displays. Applications often use the Palette Manager in conjunction with displaying DIBs, as
we'll see in Chapter 16.

Microsoft has expanded the definition of the DIB in Windows 95 (and Windows NT 4.0) and again in Windows 98
(and Windows NT 5.0). These enhancements have generally involved something called Image Color Management
(ICM) that allows DIBs to more accurately specify the exact colors needed for the image. I'll discuss ICM briefly in
Chapter 15.

Despite the vital importance of the DIB, the older GDI bitmap objects still play a strong role when working with
bitmaps. Probably the best strategy to mastering the field of bitmaps is to approach the material chronologically,
beginning with the GDI bitmap object and the concept of the bit-block transfer.

The Bit-Block Transfer

As I mentioned earlier, you can think of the entire video display as one big bitmap. The pixels you see on the
screen are represented by bits stored in memory on the video display adapter board. Any rectangular area of the
video display is also a bitmap, the size of which is the number of rows and columns it contains.

Let's begin our journey into the world of bitmaps by copying an image from one area of the video display to
another. This is a job for the powerful BitBlt function.

Bitblt (pronounced "bit blit") stands for "bit-block transfer." The BLT originated as an assembly language
instruction that did memory block transfers on the DEC PDP-10. The term "bitblt" was first used in graphics in
connection with the SmallTalk system designed at the Xerox Palo Alto Research Center (PARC). In SmallTalk, all
graphics output operations are based around the bitblt. Among programmers, "blt" is sometimes used as a verb,
as in "Then I wrote some code to blt the happy face to the screen and play a wave file."

The BitBlt function is a pixel mover, or (more vividly) a raster blaster. As you'll see, the term "transfer" doesn't
entirely do justice to the BitBlt function. The function actually performs a bitwise operation on pixels and can
result in some interesting effects.

A Simple BitBlt

The BITBLT program shown in Figure 14-1 uses the BitBlt function to copy the program's system menu icon
(located in the upper left corner of the program's window) to its client area.

Figure 14-1. The BITBLT program.

BITBLT.C

/*---------------------------------------
 BITBLT.C -- BitBlt Demonstration
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("BitBlt") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_INFORMATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("BitBlt Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient, cxSource, cySource ;
 HDC hdcClient, hdcWindow ;
 int x, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 cxSource = GetSystemMetrics (SM_CXSIZEFRAME) +
 GetSystemMetrics (SM_CXSIZE) ;

 cySource = GetSystemMetrics (SM_CYSIZEFRAME) +
 GetSystemMetrics (SM_CYCAPTION) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdcClient = BeginPaint (hwnd, &ps) ;
 hdcWindow = GetWindowDC (hwnd) ;

 for (y = 0 ; y < cyClient ; y += cySource)
 for (x = 0 ; x < cxClient ; x += cxSource)

 {
 BitBlt (hdcClient, x, y, cxSource, cySource,
 hdcWindow, 0, 0, SRCCOPY) ;
 }

 ReleaseDC (hwnd, hdcWindow) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;
 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

But why stop at one BitBlt ? In fact, BITBLT fills its client area with multiple copies of the system menu icon
(which in this case is the IDI_INFORMATION icon commonly used in message boxes), as shown in Figure 14-2.

Figure 14-2. The BITBLT display.

The BitBlt function transfers pixels from a rectangular area in one device context, called the source , to a
rectangular area of the same size in another device context, called the destination . The function has the following
syntax:

BitBlt (hdcDst, xDst, yDst, cx, cy, hdcSrc, xSrc, ySrc, dwROP) ;

The source and destination device contexts can be the same.

In the BITBLT program, the destination device context is the window's client area; the device context handle is
obtained from the BeginPaint function. The source device context is the application's whole window; this device
context handle is obtained from GetWindowDC . Obviously, these two device contexts refer to the same physical
device (the video display). However, the coordinate origins of these two device contexts are different.

The xSrc and ySrc arguments indicate the coordinate position of the upper left corner of the source image. In

BITBLT, these two arguments are set to 0, indicating that the image begins in the upper left corner of the source
device context (which is the whole window). The cx and cy arguments are the width and height of the image.
BITBLT calculates these values from information obtained from the GetSytemMetrics function.

The xDst and yDst arguments indicate the coordinate position of the upper left corner where the image is to be
copied. In BITBLT, these two arguments are set to various values to copy the image multiple times. For the first
BitBlt call, these two arguments are set to 0 to copy the image to the upper left corner of the client area.

The last argument to BitBlt is called the raster operation . I'll discuss this value shortly.

Notice that BitBlt is transferring pixels from the actual video display memory and not some other image of the
system menu icon. If you move the BITBLT window so that part of the system menu icon is off the screen, and
you then adjust the size of the BITBLT window to force it to repaint itself, you'll find only part of the system menu
icon drawn within BITBLT's client area. The BitBlt function no longer has access to the entire image.

In the BitBlt function, the source and destination device contexts can be the same. You can rewrite BITBLT so that
WM_PAINT processing does the following:

BitBlt (hdcClient, 0, 0, cxSource, cySource,
 hdcWindow, 0, 0, SRCCOPY) ;

for (y = 0 ; y < cyClient ; y += cySource)
for (x = 0 ; x < cxClient ; x += cxSource)
{
 if (x > 0 || y > 0)
 BitBlt (hdcClient, x, y, cxSource, cySource,
 hdcClient, 0, 0, SRCCOPY) ;
}

This will usually create the same effect as the BITBLT shown above, except if the upper left corner of the client
area is obscured in some way.

The most important restriction in BitBlt is that the two device contexts must be "compatible." What this means is
that either one or the other must be monochrome, or they both must have the same number of bits per pixel. In
short, you can't get a hard copy of something on the screen by blting it to the printer device context.

Stretching the Bitmap

In the BitBlt function, the destination image is the same size as the source image because the function has only
two arguments to indicate the width and height. If you want to stretch or compress the size of the image as you
copy it, you can use the StretchBlt function. StretchBlt has the following syntax:

StretchBlt (hdcDst, xDst, yDst, cxDst, cyDst,
 hdcSrc, xSrc, ySrc, cxSrc, cySrc, dwROP) ;

This function adds two arguments. The function now includes separate widths and heights of the destination and
source. The StretchBlt function is demonstrated by the STRETCH program, shown in Figure 14-3.

Figure 14-3. The STRETCH program.

STRETCH.C

/*--
 STRETCH.C -- StretchBlt Demonstration

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Stretch") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_INFORMATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("StretchBlt Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;
 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient, cxSource, cySource ;
 HDC hdcClient, hdcWindow ;

 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 cxSource = GetSystemMetrics (SM_CXSIZEFRAME) +
 GetSystemMetrics (SM_CXSIZE) ;

 cySource = GetSystemMetrics (SM_CYSIZEFRAME) +
 GetSystemMetrics (SM_CYCAPTION) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdcClient = BeginPaint (hwnd, &ps) ;
 hdcWindow = GetWindowDC (hwnd) ;

 StretchBlt (hdcClient, 0, 0, cxClient, cyClient,
 hdcWindow, 0, 0, cxSource, cySource, MERGECOPY) ;

 ReleaseDC (hwnd, hdcWindow) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program has only one call to the StretchBlt function but uses it to fill the entire client area with its system
menu icon, as shown in Figure 14-4.

Figure 14-4. The STRETCH display.

All the coordinates and sizes in the BitBlt and StretchBlt function are based on logical units. But what happens
when you have two different device contexts in the BitBlt function that refer to the same physical device but have
different mapping modes? If this is so, a call to BitBlt might seem ambiguous: the cx and cy arguments are in
logical units, and they apply to both the rectangle in the source device context and the rectangle in the destination
device context. All coordinates and sizes must be converted to device coordinates before the actual bit transfer.
Because the cx and cy values are used for both the source and destination device contexts, the values must be
converted to device units (pixels) separately for each device context.

When the source and destination device contexts are the same, or when both device contexts use the MM_TEXT
mapping mode, then the size of this rectangle in device units will be the same in both device contexts. Windows
can then do a simple pixel-to-pixel transfer. However, when the size of the rectangle in device units is different in
the two device contexts, Windows turns the job over to the more versatile StretchBlt function.

StretchBlt also allows you to flip an image vertically or horizontally. If the signs of cxSrc and cxDst (when
converted to device units) are different, StretchBlt creates a mirror image: left becomes right, and right becomes
left. You can check this in the STRETCH program by changing the xDst argument to cxClient and the cxDst
argument to -cxClient . If cySrc and cyDst are different, StretchBlt turns the image upside down. You can check
this in the STRETCH program by changing the yDst argument to cyClient and the cyDst argument to -cyClient .

The StretchBlt Mode

StretchBlt can exhibit some problems related to the inherent difficulties of scaling bitmaps. When expanding a
bitmap, StretchBlt must duplicate rows or columns of pixels. If the expansion is not an integral multiple, the
process can result in some distortion of the image.

If the destination rectangle is smaller than the source rectangle, StretchBlt must shrink an image by combining
two or more rows or columns of pixels into a single row or column. It does this in one of four ways, depending on
the stretching mode attribute in the device context. You use the SetStretchBltMode function to change this
attribute:

SetStretchBltMode (hdc, iMode) ;

The value of iMode can be one of the following:

BLACKONWHITE or STRETCH_ANDSCANS (default) If two or more pixels have to be combined into one
pixel, StretchBlt performs a logical AND operation on the pixels. The resulting pixel is white only if all the
original pixels are white, which in practice means that black pixels predominate over white pixels. This is

good for monochrome bitmaps where the image is primarily black against a white background.

WHITEONBLACK or STRETCH_ORSCANS If two or more pixels have to be combined into one pixel,
StretchBlt performs a logical OR operation. The resulting pixel is black only if all the original pixels are black,
which means that white pixels predominate. This is good for monochrome bitmaps where the image is
primarily white against a black background.

COLORONCOLOR or STRETCH_DELETESCANS StretchBlt simply eliminates rows or columns of pixels without
doing any logical combination. This is often the best approach for color bitmaps.

HALFTONE or STRETCH_HALFTONE Windows calculates an average destination color based on the source
colors being combined. This is used in conjunction with a halftone palette and is demonstrated in Chapter 16
.

Windows also includes a GetStretchBltMode function to obtain the current stretching mode.

The Raster Operations

The BITBLT and STRETCH programs simply copy the source bitmap to the destination, perhaps stretching it in the
process. This is the result of specifying SRCCOPY as the last argument to the BitBlt and StretchBlt functions.
SRCCOPY is only 1 of 256 raster operations you can use in these functions. Let's experiment with a few others in
the STRETCH program and then investigate the raster operations more methodically.

Try replacing SRCCOPY with NOTSRCCOPY. As the name suggests, this raster operation inverts the colors of the
bitmaps as it is copied. On the client window, all the colors will be reversed. Black becomes white, white becomes
black, and blue becomes yellow. Now try SRCINVERT. You'll get the same effect. Try BLACKNESS. As the name
suggests, the entire client area is painted black. WHITENESS makes it white.

Now try this: replace the StretchBlt call with the following three statements:

SelectObject (hdcClient, CreateHatchBrush (HS_DIAGCROSS, RGB (0, 0, 0)));

StretchBlt (hdcClient, 0, 0, cxClient, cyClient,
 hdcWindow, 0, 0, cxSource, cySource, MERGECOPY) ;

DeleteObject (hdcClient, GetStockObject (WHITE_BRUSH)) ;

This time you'll see a hatch brush seemingly superimposed over the image. Just what is going on here?

As I mentioned earlier, the BitBlt and StretchBlt functions are not simply bit-block transfers. The functions actually
perform a bitwise operation between the following three images:

Source The source bitmap, stretched or compressed (if necessary) to be the same size as the destination
rectangle.

Destination The destination rectangle before the BitBlt or StretchBlt call.

Pattern The current brush selected in the destination device context, repeated horizontally and vertically to
be the same size as the destination rectangle.

The result is copied to the destination rectangle.

The raster operations are conceptually similar to the drawing modes we encountered in Chapter 5 . The drawing
modes govern the way in which a graphics object, such as a line, is combined with a destination. You'll recall that
there were 16 drawing modes—that is, all the unique results obtained when 0s and 1s in the object being drawn
were combined with 0s and 1s in the destination.

The raster operations used with BitBlt and StretchBlt involve a combination of three objects, and this results in
256 raster operations. There are 256 ways to combine a source bitmap, a destination bitmap, and a pattern.
Fifteen of these raster operations are given names—some of them rather obscure—defined in WINGDI.H. The

others have numeric values that are shown in /Platform SDK/Graphics and Multimedia Services/GDI/Raster
Operation Codes/Ternary Raster Operations .

The 15 ROP codes that have names are shown here.
Pattern (P):
1 1 1 1 0 0 0 0
Source (S):
1 1 0 0 1 1 0 0
Destination (D):
1 0 1 0 1 0 1 0
Boolean Operation
ROP Code
Name
Result:
0 0 0 0 0 0 0 0
0
0x000042
BLACKNESS
0 0 0 1 0 0 0 1
~ (S ¦ D)
0x1100A6
NOTSRCERASE
0 0 1 1 0 0 1 1
~S
0x330008
NOTSRCCOPY
0 1 0 0 0 1 0 0
S & ~D
0x440328
SRCERASE
0 1 0 1 0 1 0 1
~D
0x550009
DSTINVERT
0 1 0 1 1 0 1 0
P ^ D
0x5A0049
PATINVERT
0 1 1 0 0 1 1 0
S ^ D
0x660046
SRCINVERT
1 0 0 0 1 0 0 0
S & D
0x8800C6
SRCAND
1 0 1 1 1 0 1 1
~S ¦ D
0xBB0226
MERGEPAINT
1 1 0 0 0 0 0 0
P & S
0xC000CA
MERGECOPY
1 1 0 0 1 1 0 0
S
0xCC0020
SRCCOPY
1 1 1 0 1 1 1 0
S ¦ D
0xEE0086
SRCPAINT
1 1 1 1 0 0 0 0
P
0xF00021
PATCOPY
1 1 1 1 1 0 1 1
P ¦ ~S ¦ D
0xFB0A09

PATPAINT
1 1 1 1 1 1 1 1
1
0xFF0062
WHITENESS

This table is important in understanding and using raster operations, so let's spend a little time examining it.

In this table, the value in the ROP Code column is the number that is passed as the last argument to BitBlt or
StretchBlt ; the names in the Name column are defined in WINGDI.H to be those values. The low word of the ROP
Code is a number that assists the device driver in carrying out the raster operation. The high word is a number
between 0 and 255. This number is the same as the bit pattern shown in the second column, which is the result of
a bitwise operation between the pattern, source, and destination bits shown at the top. The Boolean Operation
column uses C syntax to show how the pattern, source, and destination are combined.

To begin understanding this table, it's easiest to assume that you're dealing with a monochrome system (1 bit per
pixel) in which 0 is black and 1 is white. The result of the BLACKNESS operation is all zeros regardless of the
source, destination, and pattern, so the destination will be colored black. Similarly, WHITENESS always causes the
destination to be colored white.

Now suppose you use the raster operation PATCOPY. This causes the result bits to be the same as the pattern bits.
The source and destination bitmaps are ignored. In other words, PATCOPY simply copies the current pattern to the
destination rectangle.

The PATPAINT raster operation involves a more complex operation. The result is equal to a bitwise OR operation
between the pattern, the destination, and the inverse of the source. When the source bitmap is black (a 0 bit) the
result is always white (a 1 bit). When the source is white (1), the result is also white if either the pattern or
destination is white. In other words, the result will be black only if the source is white and both the pattern and
the destination are black.

A color display uses multiple bits for each pixel. The BitBlt and StretchBlt functions perform the bitwise operation
between each of these color bits separately. For example, if the destination is red and the source is blue, a
SRCPAINT raster operation will color the destination magenta. Keep in mind that the operations are performed on
bits actually stored in memory on the video board. How these bits correspond to colors is dependent on how the
palette of the video board is set up. Windows does this so that these raster operations work as you might predict.
However, if you change the palette (as discussed in Chapter 16), raster operations can produce unexpected
results.

See the section "Nonrectangular Bitmap Images " later in this chapter for a good application of raster operations.

The Pattern Blt

Besides BitBlt and StretchBlt , Windows also includes a function called PatBlt ("pattern block transfer"). This is the
simplest of the three "blt" functions. Unlike BitBlt and StretchBlt , it uses only a destination device context. The
syntax of PatBlt is

PatBlt (hdc, x, y, cx, cy, dwROP) ;

The x , y , cx , and cy arguments are in logical units. The logical point (x , y) specifies the upper left corner of a
rectangle. The rectangle is cx units wide and cy units high. This is the rectangular area that PatBlt alters. The
logical operation that PatBlt performs on the brush and the destination device context is determined by the dwROP
argument, which is a subset of the ROP codes—that is, you can use only those ROP codes that do not involve a
source destination device context. The 16 raster operations supported by PatBlt are shown in the table below.
Pattern (P):
1 1 0 0
Destination (D):
1 0 1 0
Boolean Operation
ROP Code
Name

Result:
0 0 0 0
0
0x000042
BLACKNESS
0 0 0 1
~(P ¦ D)
0x0500A9
0 0 1 0
~P & D
0x0A0329
0 0 1 1
~P
0x0F0001
0 1 0 0
P & ~D
0x500325
0 1 0 1
~D
0x550009
DSTINVERT
0 1 1 0
P ^ D
0x5A0049
PATINVERT
0 1 1 1
~(P & D)
0x5F00E9
1 0 0 0
P & D
0xA000C9
1 0 0 1
~(P ^ D)
0xA50065
1 0 1 0
D
0xAA0029
1 0 1 1
~P ¦ D
0xAF0229
1 1 0 0
P
0xF00021
PATCOPY
1 1 0 1
P ¦ ~D
0xF50225
1 1 1 0
P ¦ D
0xFA0089
1 1 1 1
1
0xFF0062
WHITENESS

Some of the more common uses of PatBlt are shown below. If you want to draw a black rectangle, you call

PatBlt (hdc, x, y, cx, cy, BLACKNESS) ;

To draw a white rectangle, use

PatBlt (hdc, x, y, cx, cy, WHITENESS) ;

The function

PatBlt (hdc, x, y, cx, cy, DSTINVERT) ;

always inverts the colors of the rectangle. If WHITE_BRUSH is currently selected in the device context, the
function

PatBlt (hdc, x, y, cx, cy, PATINVERT) ;

also inverts the rectangle.

You'll recall that the FillRect function fills in a rectangular area with a brush:

FillRect (hdc, &rect, hBrush) ;

The FillRect function is equivalent to the following code:

hBrush = SelectObject (hdc, hBrush) ;
PatBlt (hdc, rect.left, rect.top,
 rect.right - rect.left,
 rect.bottom - rect.top, PATCOPY) ;
SelectObject (hdc, hBrush) ;

In fact, this code is what Windows uses to execute the FillRect function. When you call

InvertRect (hdc, &rect) ;

Windows translates it into the function:

PatBlt (hdc, rect.left, rect.top,
 rect.right - rect.left,
 rect.bottom - rect.top, DSTINVERT) ;

When I introduced the syntax of the PatBlt function, I said that the point (x , y) specifies the upper left corner of
a rectangle and that this rectangle is cx units wide and cy units high. The statement is not entirely accurate. BitBlt
, PatBlt , and StretchBlt are the only GDI drawing functions that specify logical rectangular coordinates in terms of
a logical width and height measured from a single corner. All the other GDI drawing functions that use rectangular

bounding boxes require that coordinates be specified in terms of an upper left corner and a lower right corner. For
the MM_TEXT mapping mode, the above description of the PatBlt parameters is accurate. For the metric mapping
modes, however, it's not. If you use positive values of cx and cy , the point (x , y) will be the lower left corner of
the rectangle. If you want (x , y) to be the upper left corner of the rectangle, the cy argument must be set to the
negative height of the rectangle.

To be more precise, the rectangle that PatBlt colors has a logical width given by the absolute value of cx and a
logical height given by the absolute value of cy . These two arguments can be negative. The rectangle is defined
by two corners given by the logical points (x , y) and (x + cx , y + cy). The upper left corner of the rectangle is
always included in the area that PatBlt modifies. The lower right corner is outside the rectangle. Depending on the
mapping mode and the signs of the cx and cy parameters, the upper left corner of this rectangle could be the point
(x , y) or (x , y + cy) or (x + cx , y) or (x + cx , y + cy).

If you've set the mapping mode to MM_LOENGLISH and you want to use PatBlt on the square inch at the upper
left corner of the client area, you can use

PatBlt (hdc, 0, 0, 100, -100, dwROP) ;

or

PatBlt (hdc, 0, -100, 100, 100, dwROP) ;

or

PatBlt (hdc, 100, 0, -100, -100, dwROP) ;

or

PatBlt (hdc, 100, -100, -100, 100, dwROP) ;

The easiest way to set the correct parameters to PatBlt is to set x and y to the upper left corner of the rectangle.
If your mapping mode defines y coordinates as increasing as you move up the display, use a negative value for
the cy parameter. If your mapping mode defines x coordinates as increasing to the left (which is almost unheard
of), use a negative value for the cx parameter.

The GDI Bitmap Object

I mentioned earlier in this chapter that Windows has supported a GDI bitmap object since version 1.0. Because of
the introduction of the device-independent bitmap in Windows 3.0, the GDI Bitmap Object is sometimes now also
known as the device-dependent bitmap, or DDB. I will tend not to use the full, spelled-out term device-dependent
bitmap because at a quick glance the words can be confused with device-independent bitmap . The abbreviation
DDB is better because it is more easily visually distinguished from DIB.

The existence of two different types of bitmaps has created much confusion for programmers first coming to
Windows in the version 3.0 and later days. Many veteran Windows programmers also have problems
understanding the precise relationship between the DIB and the DDB. (I'm afraid the Windows 3.0 version of this
book did not help clarify this subject.) Yes, the DIB and DDB are related in some ways: DIBs can be converted to
DDBs and vice versa (although with some loss of information). Yet the DIB and the DDB are not interchangeable
and are not simply alternative methods for representing the same visual data.

It would certainly be convenient if we could assume that DIBs have made DDBs obsolete. Yet that is not the case.
The DDB still plays a very important role in Windows, particularly if you care about performance.

Creating a DDB

The DDB is one of several graphics objects (including pens, brushes, fonts, metafiles, and palettes) defined in the
Windows Graphics Device Interface. These graphics objects are stored internally in the GDI module and referred to
by application programs with numerical handles. You store a handle to a DDB in a variable of type HBITMAP
("handle to a bitmap"). For example,

HBITMAP hBitmap ;

You then obtain the handle by calling one of the DDB-creation functions: for example, CreateBitmap . These
functions allocate and initialize some memory in GDI memory to store information about the bitmap as well as the
actual bitmap bits. The application program does not have direct access to this memory. The bitmap is
independent of any device context. When the program is finished using the bitmap, it should be deleted:

DeleteObject (hBitmap) ;

You could do this when the program is terminating if you're using the DDB throughout the time the program is
running.

The CreateBitmap function looks like this:

hBitmap = CreateBitmap (cx, cy, cPlanes, cBitsPixel, bits) ;

The first two arguments are the width and height of the bitmap in pixels. The third argument is the number of
color planes and the fourth argument is the number of bits per pixel. The fifth argument points to an array of bits
organized in accordance with the specified color format. You can set the last argument to NULL if you do not want
to initialize the DDB with the pixel bits. The pixel bits can be set later.

When you use this function, Windows will let you create any bizarre type of GDI bitmap object you'd like. For
example, suppose you want a bitmap with a width of 7 pixels, a height of 9 pixels, 5 color planes, and 3 bits per
pixel. Just do it like so,

hBitmap = CreateBitmap (7, 9, 5, 3, NULL) ;

and Windows will gladly give you a valid bitmap handle.

What happens during this function call is that Windows saves the information you've passed to the function and
allocates memory for the pixel bits. A rough calculation indicates that this bitmap requires 7 times 9 times 5 times
3, or 945 bits, which is 118 bytes and change.

However, when Windows allocates memory for the bitmap, each row of pixels has an even number of bytes. Thus,

iWidthBytes = 2 * ((cx * cBitsPixel + 15) / 16) ;

or, as a C programmer might tend to write it,

iWidthBytes = (cx * cBitsPixel + 15) & ~15) >> 3 ;

The memory allocated for the DDB is therefore

iBitmapBytes = cy * cPlanes * iWidthBytes ;

In our example, iWidthBytes is 4 bytes, and iBitmapBytes is 180 bytes.

Now, what does it mean to have a bitmap with 5 color planes and 3 color bits per pixel? Not a whole heck of a lot.
It doesn't even mean enough to call it an academic exercise. You have caused GDI to allocate some internal
memory, and this memory has a specific organization, but it doesn't mean anything, and you can't do anything
useful with this bitmap.

In reality, you will call CreateBitmap with only two types of arguments:

cPlanes and cBitsPixel both equal to 1 (indicating a monochrome bitmap); or

cPlanes and cBitsPixel equal to the values for a particular device context, which you can obtain from the
GetDeviceCaps function by using the PLANES and BITSPIXEL indices.

In a much "realer" reality, you will call CreateBitmap only for the first case. For the second case, you can simplify
things using CreateCompatibleBitmap :

hBitmap = CreateCompatibleBitmap (hdc, cx, cy) ;

This function creates a bitmap compatible with the device whose device context handle is given by the first
parameter. CreateCompatibleBitmap uses the device context handle to obtain the GetDeviceCaps information that
it then passes to CreateBitmap . Aside from having the same memory organization as a real device context, the
DDB is not otherwise associated with the device context.

The CreateDiscardableBitmap function has the same parameters as CreateCompatibleBitmap and is functionally
equivalent to it. In earlier versions of Windows, CreateDiscardableBitmap created a bitmap that Windows could
discard from memory if memory got low. The program would then have to regenerate the bitmap data.

The third bitmap-creation function is CreateBitmapIndirect ,

hBitmap CreateBitmapIndirect (&bitmap) ;

where bitmap is a structure of type BITMAP. The BITMAP structure is defined like so:

typedef struct _tagBITMAP
{
 LONG bmType ; // set to 0
 LONG bmWidth ; // width in pixels
 LONG bmHeight ; // height in pixels
 LONG bmWidthBytes ; // width of row in bytes
 WORD bmPlanes ; // number of color planes
 WORD bmBitsPixel ; // number of bits per pixel
 LPVOID bmBits ; // pointer to pixel bits
}
BITMAP, * PBITMAP ;

When calling the CreateBitmapIndirect function, you don't need to set the bmWidthBytes field. Windows will
calculate that for you. You can also set the bmBits field to NULL or to the address of pixel bits to initialize the
bitmap.

The BITMAP structure is also used in the GetObject function. First define a structure of type BITMAP,

BITMAP bitmap ;

and call the function like so:

GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

Windows will fill in the fields of the BITMAP structure with information about the bitmap. However, the bmBits field
will be equal to NULL.

You should eventually destroy any bitmap that you create in a program with a call to DeleteObject .

The Bitmap Bits

When you create a device-dependent GDI bitmap object by using CreateBitmap or CreateBitmapIndirect , you can
specify a pointer to the bitmap pixel bits. Or you can leave the bitmap uninitialized. Windows also supplies two
functions to get and set the pixel bits after the bitmap has been created.

To set the pixel bits, call

SetBitmapBits (hBitmap, cBytes, &bits) ;

The GetBitmapBits function has the same syntax:

GetBitmapBits (hBitmap, cBytes, &bits) ;

In both functions, cBytes indicates the number of bytes to copy and bits is a buffer of at least cBytes size.

The pixel bits in DDBs are arranged beginning with the top row. As I mentioned earlier, each row has an even
number of bytes. Beyond that, there's not too much to say. If the bitmap is monochrome, which means it has 1
plane and 1 bit per pixel, then each pixel is either 1 or 0. The leftmost pixel in each row is the most significant bit
of the first byte in the row. We'll make a monochrome DDB later in this chapter after we figure out how to display
them.

For nonmonochrome bitmaps, you should avoid situations where you need to know what the pixel bits mean. For
example, suppose Windows is running on an 8-bit VGA. You call CreateCompatibleBitmap . You can determine
from GetDeviceCaps that you're dealing with a device that has 1 color plane and 8 bits per pixel. Each pixel is
stored in 1 byte. But what does a pixel of value 0x37 mean? It obviously refers to some color, but what color?

The pixel actually doesn't refer to any fixed specific color. It's just a value. DDBs do not have a color table. The
essential question is: what color is the pixel when the DDB gets displayed on the screen? It has to be some color,
so what is it? The displayed pixel will be the RGB color referenced by an index value of 0x37 in the palette lookup
table on the video board. Now that's device dependence for you.

However, do not assume that the nonmonochrome DDB is useless just because we don't know what the pixel
values mean. We'll see shortly how useful they can be. And in the next chapter we'll see how the SetBitmapBits
and GetBitmapBits functions have been superseded by the more useful SetDIBits and GetDIBits functions.

So, the basic rule is this: you will not be using CreateBitmap or CreateBitmapIndirect or SetBitmapBits to set the
bits of a color DDB. You can safely set the bits of only a monochrome DDB. (The exception to this rule is if you get
the bits from another DDB of the same format through a call to GetBitmapBits .)

Before we move on, let me just mention the SetBitmapDimensionEx and GetBitmapDimensionEx functions. These
functions let you set (and obtain) a metrical dimension of a bitmap in 0.1 millimeter units. This information is
stored in GDI along with the bitmap definition, but it's not used for anything. It's just a tag that you can use to
associate a metrical dimension with a DDB.

The Memory Device Context

The next concept we must tackle is that of the memory device context . You need a memory device context to use
a GDI bitmap object.

Normally, a device context refers to a particular graphics output device (such as a video display or a printer)
together with its device driver. A memory device context exists only in memory. It is not a real graphics output
device, but is said to be "compatible" with a particular real device.

To create a memory device context, you must first have a device context handle for a real device. If it's hdc , you
create a memory device context like so:

hdcMem = CreateCompatibleDC (hdc) ;

Usually the function call is even simpler than this. If you specify NULL as the argument, Windows will create a
memory device context compatible with the video display. Any memory device context that an application creates
should eventually be destroyed with a call to DeleteDC .

The memory device context has a display surface just like a real raster device. However, this display surface is
initially very small—it's monochrome, 1 pixel wide and 1 pixel high. The display surface is just a single bit.

You can't do much with a 1-bit display surface, of course, so the only practical next step is to make the display
surface larger. You do this by selecting a GDI bitmap object into the memory device context, like so:

SelectObject (hdcMem, hBitmap) ;

This is the same function you use for selecting pens, brushes, fonts, regions, and palettes into device contexts.
However, the memory device context is the only type of device context into which you can select a bitmap. (You
can also select other GDI objects into a memory device context if you need to.)

SelectObject will work only if the bitmap you select into the memory device context is either monochrome or has
the same color organization as the device with which the memory device context is compatible. That's why
creating a bizarre DDB (for example, with 5 planes and 3 bits per pixel) is not useful.

Now get this: Following the SelectObject call, the DDB is the display surface of the memory device context . You
can do almost anything with this memory device context that you can do with a real device context. For example,
if you use GDI drawing functions to draw on the memory device context, the images are drawn on the bitmap.
This can be very useful. You can also call BitBlt using the memory device context as a source and the video device
context as a destination. This is how you can draw a bitmap on the display. And you can call BitBlt using the video
device context as a source and a memory device context as a destination to copy something from the screen to a
bitmap. We'll be looking at all these possibilities.

Loading Bitmap Resources

Besides the various bitmap creation functions, another way to get a handle to a GDI bitmap object is through the
LoadBitmap function. With this function, you don't have to worry about bitmap formats. You simply create a
bitmap as a resource in your program, similar to the way you create icons or mouse cursors. The LoadBitmap
function has the same syntax as LoadIcon and LoadCursor :

hBitmap = LoadBitmap (hInstance, szBitmapName) ;

The first argument can be NULL if you want to load a system bitmap. These are the various bitmaps used for little
parts of the Windows visual interface such as the close box and check marks, with identifiers beginning with the
letters OBM. The second argument can use the MAKEINTRESOURCE macro if the bitmap is associated with an
integer identifier rather than a name. All bitmaps loaded by LoadBitmap should eventually be deleted using
DeleteObject .

If the bitmap resource is monochrome, the handle returned from LoadBitmap will reference a monochrome bitmap
object. If the bitmap resource is not monochrome, then the handle returned from LoadBitmap will reference a GDI
bitmap object with a color organization the same as the video display on which the program is running. Thus, the
bitmap is always compatible with the video display and can always be selected into a memory device context
compatible with the video display. Don't worry right now about any color conversions that may have gone on
behind the scenes during the LoadBitmap call. We'll understand how this works after the next chapter.

The BRICKS1 program shown in Figure 14-5 shows how to load a small monochrome bitmap resource. This bitmap
doesn't exactly look like a brick by itself but when repeated horizontally and vertically resembles a wall of bricks.

Figure 14-5. The BRICKS1 program.

BRICKS1.C

/*--
 BRICKS1.C -- LoadBitmap Demonstration
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
 {
 static TCHAR szAppName [] = TEXT ("Bricks1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("LoadBitmap Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static int cxClient, cyClient, cxSource, cySource ;
 BITMAP bitmap ;
 HDC hdc, hdcMem ;
 HINSTANCE hInstance ;
 int x, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;

 hBitmap = LoadBitmap (hInstance, TEXT ("Bricks")) ;

 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

 cxSource = bitmap.bmWidth ;
 cySource = bitmap.bmHeight ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 for (y = 0 ; y < cyClient ; y += cySource)
 for (x = 0 ; x < cxClient ; x += cxSource)
 {
 BitBlt (hdc, x, y, cxSource, cySource, hdcMem, 0, 0, SRCCOPY) ;
 }

 DeleteDC (hdcMem) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteObject (hBitmap) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BRICKS1.RC (excerpts)

//Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Bitmap

BRICKS BITMAP DISCARDABLE "Bricks.bmp"

BRICKS.BMP

When creating the bitmap in Visual C++ Developer Studio, specify that the bitmap's height and width are 8 pixels,
that it's monochrome, and that it has a name of "Bricks". The BRICKS1 program loads the bitmap during the
WM_CREATE message and uses GetObject to determine its pixel dimensions (so that the program will still work if
the bitmap isn't 8 pixels square). BRICKS1 later deletes the bitmap handle during the WM_DESTROY message.

During the WM_PAINT message, BRICKS1 creates a memory device context compatible with the display and
selects the bitmap into it. Then it's just a series of BitBlt calls from the memory device context to the client area
device context. The memory device context handle is then deleted. The program is shown running in Figure 14-6.

By the way, the BRICKS.BMP file that Developer Studio creates is a device-independent bitmap. You may want to
try creating a color BRICKS.BMP file in Developer Studio (of whatever color format you choose) and assure
yourself that everything works just fine.

We've seen that DIBs can be converted to GDI bitmap objects that are compatible with the video display. We'll see
how this works in the next chapter.

Figure 14-6. The BRICKS1 display.

The Monochrome Bitmap Format

If you're working with small monochrome images, you don't have to create them as resources. Unlike color bitmap
objects, the format of monochrome bits is relatively simple and can almost be derived directly from the image you
want to create. For instance, suppose you want to create a bitmap that looks like this:

You can write down a series of bits (0 for black and 1 for white) that directly corresponds to this grid. Reading
these bits from left to right, you can then assign each group of 8 bits a hexadecimal byte. If the width of the
bitmap is not a multiple of 16, pad the bytes to the right with zeros to get an even number of bytes:

0 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 = 51 77 10 00

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 = 57 77 50 00

0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 0 1 = 13 77 50 00

0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 = 57 77 50 00

0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 = 51 11 10 00

The width in pixels is 20, the height in scan lines is 5, and the width in bytes is 4. You can set up a BITMAP
structure for this bitmap with this statement,

static BITMAP bitmap = { 0, 20, 5, 4, 1, 1 } ;

and you can store the bits in a BYTE array:

static BYTE bits [] = { 0x51, 0x77, 0x10, 0x00,
 0x57, 0x77, 0x50, 0x00,
 0x13, 0x77, 0x50, 0x00,
 0x57, 0x77, 0x50, 0x00,
 0x51, 0x11, 0x10, 0x00 } ;

Creating the bitmap with CreateBitmapIndirect requires two statements:

bitmap.bmBits = (PSTR) bits ;
hBitmap = CreateBitmapIndirect (&bitmap) ;

Another approach is

hBitmap = CreateBitmapIndirect (&bitmap) ;
SetBitmapBits (hBitmap, sizeof bits, bits) ;

You can also create the bitmap in one statement:

hBitmap = CreateBitmap (20, 5, 1, 1, bits) ;

The BRICKS2 program shown in Figure 14-7 uses this technique to create the bricks bitmap directly without
requiring a resource.

Figure 14-7. The BRICKS2 program.

BRICKS2.C

/*---
 BRICKS2.C -- CreateBitmap Demonstration
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Bricks2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("CreateBitmap Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAP bitmap = { 0, 8, 8, 2, 1, 1 } ;
 static BYTE bits [8][2] = { 0xFF, 0, 0x0C, 0, 0x0C, 0, 0x0C, 0,
 0xFF, 0, 0xC0, 0, 0xC0, 0, 0xC0, 0 } ;
 static HBITMAP hBitmap ;
 static int cxClient, cyClient, cxSource, cySource ;
 HDC hdc, hdcMem ;
 int x, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 bitmap.bmBits = bits ;
 hBitmap = CreateBitmapIndirect (&bitmap) ;
 cxSource = bitmap.bmWidth ;
 cySource = bitmap.bmHeight ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 for (y = 0 ; y < cyClient ; y += cySource)
 for (x = 0 ; x < cxClient ; x += cxSource)
 {
 BitBlt (hdc, x, y, cxSource, cySource, hdcMem, 0, 0, SRCCOPY) ;
 }

 DeleteDC (hdcMem) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteObject (hBitmap) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

You may be tempted to try something similar with a color bitmap. For example, if your video display is running in
a 256-color mode, you can use the table shown earlier in this chapter to define each pixel for a color brick.
However, this code will not work when the program runs under any other video mode. Dealing with color bitmaps
in a device-independent manner requires use of the DIB discussed in the next chapter.

Brushes from Bitmaps

The final entry in the BRICKS series is BRICKS3, shown in Figure 14-8. At first glance this program might provoke
the reaction "Where's the code?"

Figure 14-8. The BRICKS3 program.

BRICKS3.C

/*---
 BRICKS3.C -- CreatePatternBrush Demonstration
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Bricks3") ;
 HBITMAP hBitmap ;
 HBRUSH hBrush ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 hBitmap = LoadBitmap (hInstance, TEXT ("Bricks")) ;
 hBrush = CreatePatternBrush (hBitmap) ;
 DeleteObject (hBitmap) ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = hBrush ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("CreatePatternBrush Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

 DeleteObject (hBrush) ;
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BRICKS3.RC (excerpts)

//Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Bitmap

BRICKS BITMAP DISCARDABLE "Bricks.bmp"

This program uses the same BRICKS.BMP file as BRICKS1, and the window looks the same.

As you can see, the window procedure doesn't do much of anything. BRICKS3 actually uses the bricks pattern as
the window class background brush, which is defined in the hbrBackground field of the WNDCLASS structure.

As you may have guessed by now, GDI brushes are tiny bitmaps, usually 8 pixels square. You can make a brush
out of a bitmap by calling CreatePatternBrush or by calling CreateBrushIndirect with the lbStyle field of the
LOGBRUSH structure set to BS_PATTERN. The bitmap must be least 8 pixels wide and 8 pixels high. If it's larger,
Windows 98 uses only the upper left corner of the bitmap for the brush. Windows NT, on the other hand, doesn't
have that restriction and will use the whole bitmap.

Remember that brushes and bitmaps are both GDI objects and you should delete any that you create in your
program before the program terminates. When you create a brush based on a bitmap, Windows makes a copy of
the bitmap bits for use when drawing with the brush. You can delete the bitmap immediately after calling
CreatePatternBrush (or CreateBrushIndirect) without affecting the brush. Similarly, you can delete the brush
without affecting the original bitmap you selected into it. Notice that BRICKS3 deletes the bitmap after creating
the brush and deletes the brush before terminating the program.

Drawing on Bitmaps

We've been using bitmaps as a source for drawing on our windows. This requires selecting the bitmap into a
memory device context and calling BitBlt or StretchBlt . You can also use the handle to the memory device context
as the first argument to virtually all the GDI function calls. The memory device context behaves the same as a real
device context except that the display surface is the bitmap.

The HELLOBIT program shown in Figure 14-9 shows this technique. The program displays the text string "Hello,
world!" on a small bitmap and then does a BitBlt or a StretchBlt (based on a menu selection) from the bitmap to
the program's client area.

Figure 14-9. The HELLOBIT program.

HELLOBIT.C

/*---
 HELLOBIT.C -- Bitmap Demonstration

 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("HelloBit") ;
 HWND hwnd ;
 MSG msg ;

 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("HelloBit"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static HDC hdcMem ;
 static int cxBitmap, cyBitmap, cxClient, cyClient, iSize = IDM_BIG ;
 static TCHAR * szText = TEXT (" Hello, world! ") ;
 HDC hdc ;
 HMENU hMenu ;
 int x, y ;
 PAINTSTRUCT ps ;
 SIZE size ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 hdcMem = CreateCompatibleDC (hdc) ;

 GetTextExtentPoint32 (hdc, szText, lstrlen (szText), &size) ;
 cxBitmap = size.cx ;
 cyBitmap = size.cy ;

 hBitmap = CreateCompatibleBitmap (hdc, cxBitmap, cyBitmap) ;

 ReleaseDC (hwnd, hdc) ;

 SelectObject (hdcMem, hBitmap) ;
 TextOut (hdcMem, 0, 0, szText, lstrlen (szText)) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_BIG:
 case IDM_SMALL:
 CheckMenuItem (hMenu, iSize, MF_UNCHECKED) ;
 iSize = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iSize, MF_CHECKED) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 break ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 switch (iSize)
 {
 case IDM_BIG:
 StretchBlt (hdc, 0, 0, cxClient, cyClient,
 hdcMem, 0, 0, cxBitmap, cyBitmap, SRCCOPY) ;
 break ;

 case IDM_SMALL:
 for (y = 0 ; y < cyClient ; y += cyBitmap)
 for (x = 0 ; x < cxClient ; x += cxBitmap)
 {
 BitBlt (hdc, x, y, cxBitmap, cyBitmap,
 hdcMem, 0, 0, SRCCOPY) ;
 }
 break ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteDC (hdcMem) ;

 DeleteObject (hBitmap) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

HELLOBIT.RC (excerpts)

//Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Menu

HELLOBIT MENU DISCARDABLE
BEGIN
 POPUP "&Size"
 BEGIN
 MENUITEM "&Big", IDM_BIG, CHECKED
 MENUITEM "&Small", IDM_SMALL
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by HelloBit.rc

#define IDM_BIG 40001
#define IDM_SMALL 40002

The program begins by determining the pixel dimensions of the text string through a call to GetTextExtentPoint32
. These dimensions become the size of a bitmap compatible with the video display. Once this bitmap is selected
into a memory device context (also compatible with the video display), a call to TextOut puts the text on the
bitmap. The memory device context is retained throughout the duration of the program. While processing the
WM_DESTROY message, HELLOBIT deletes both the bitmap and the memory device context.

A menu selection in HELLOBIT allows you to display the bitmap at actual size repeated horizontally and vertically
in the client area or stretched to the size of the client area as shown in Figure 14-10. As you can see, this is not a
good way to display text of large point sizes! It's just a magnified version of the smaller font, with all the jaggies
magnified as well.

Figure 14-10. The HELLOBIT display.

You may wonder if a program such as HELLOBIT needs to process the WM_DISPLAYCHANGE message. An
application receives this message whenever the user (or another application) changes the video display size or
color depth. It could be that a change to the color depth would cause the memory device context and the video
device context to become incompatible. Well, that doesn't happen because Windows automatically changes the
color resolution of the memory device context when the video mode is changed. The bitmap selected into the
memory device context remains the same, but that doesn't seem to cause any problems.

The Shadow Bitmap

The technique of drawing on a memory device context (and hence a bitmap) is the key to implementing a "shadow
bitmap." This is a bitmap that contains everything displayed in the window's client area. WM_PAINT message
processing thus reduces to a simple BitBlt .

Shadow bitmaps are most useful in paint programs. The SKETCH program shown in Figure 14-11 is not exactly the
most sophisticated paint program around, but it's a start.

Figure 14-11. The SKETCH program.

SKETCH.C

/*---
 SKETCH.C -- Shadow Bitmap Demonstration
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Sketch") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Sketch"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (hwnd == NULL)
 {
 MessageBox (NULL, TEXT ("Not enough memory to create bitmap!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void GetLargestDisplayMode (int * pcxBitmap, int * pcyBitmap)
{
 DEVMODE devmode ;
 int iModeNum = 0 ;

 * pcxBitmap = * pcyBitmap = 0 ;

 ZeroMemory (&devmode, sizeof (DEVMODE)) ;
 devmode.dmSize = sizeof (DEVMODE) ;

 while (EnumDisplaySettings (NULL, iModeNum++, &devmode))
 {
 * pcxBitmap = max (* pcxBitmap, (int) devmode.dmPelsWidth) ;
 * pcyBitmap = max (* pcyBitmap, (int) devmode.dmPelsHeight) ;
 }
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fLeftButtonDown, fRightButtonDown ;
 static HBITMAP hBitmap ;
 static HDC hdcMem ;
 static int cxBitmap, cyBitmap, cxClient, cyClient, xMouse, yMouse ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 GetLargestDisplayMode (&cxBitmap, &cyBitmap) ;

 hdc = GetDC (hwnd) ;
 hBitmap = CreateCompatibleBitmap (hdc, cxBitmap, cyBitmap) ;
 hdcMem = CreateCompatibleDC (hdc) ;
 ReleaseDC (hwnd, hdc) ;

 if (!hBitmap) // no memory for bitmap
 {
 DeleteDC (hdcMem) ;
 return -1 ;
 }

 SelectObject (hdcMem, hBitmap) ;
 PatBlt (hdcMem, 0, 0, cxBitmap, cyBitmap, WHITENESS) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_LBUTTONDOWN:
 if (!fRightButtonDown)
 SetCapture (hwnd) ;

 xMouse = LOWORD (lParam) ;
 yMouse = HIWORD (lParam) ;
 fLeftButtonDown = TRUE ;
 return 0 ;

 case WM_LBUTTONUP:
 if (fLeftButtonDown)
 SetCapture (NULL) ;

 fLeftButtonDown = FALSE ;
 return 0 ;

 case WM_RBUTTONDOWN:
 if (!fLeftButtonDown)
 SetCapture (hwnd) ;

 xMouse = LOWORD (lParam) ;
 yMouse = HIWORD (lParam) ;
 fRightButtonDown = TRUE ;
 return 0 ;

 case WM_RBUTTONUP:
 if (fRightButtonDown)
 SetCapture (NULL) ;

 fRightButtonDown = FALSE ;
 return 0 ;

 case WM_MOUSEMOVE:
 if (!fLeftButtonDown && !fRightButtonDown)
 return 0 ;

 hdc = GetDC (hwnd) ;

 SelectObject (hdc,
 GetStockObject (fLeftButtonDown ? BLACK_PEN : WHITE_PEN)) ;

 SelectObject (hdcMem,
 GetStockObject (fLeftButtonDown ? BLACK_PEN : WHITE_PEN)) ;

 MoveToEx (hdc, xMouse, yMouse, NULL) ;
 MoveToEx (hdcMem, xMouse, yMouse, NULL) ;

 xMouse = (short) LOWORD (lParam) ;
 yMouse = (short) HIWORD (lParam) ;

 LineTo (hdc, xMouse, yMouse) ;
 LineTo (hdcMem, xMouse, yMouse) ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 BitBlt (hdc, 0, 0, cxClient, cyClient, hdcMem, 0, 0, SRCCOPY) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:

 DeleteDC (hdcMem) ;
 DeleteObject (hBitmap) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

To draw lines in SKETCH, you press the left mouse button and move the mouse. To erase (or more precisely, to
draw white lines), you press the right mouse button and move the mouse. To clear the entire window, you…well,
you have to end the program, load it again, and start all over. Figure 14-12 shows the SKETCH program paying
homage to the early advertisements for the Apple Macintosh.

Figure 14-12. The SKETCH display.

How large should the shadow bitmap be? In this program, it should be large enough to encompass the entire
client area of a maximized window. This is easy enough to calculate from GetSystemMetrics information, but what
happens if the user changes the display settings and makes the display, and hence the maximum window size,
larger? SKETCH implements a brute force solution to this problem with the help of the EnumDisplaySettings
function. This function uses a DEVMODE structure to return information on all the available video display modes.
Set the second argument to EnumDisplaySettings to 0 the first time you call the function, and increase the value
for each subsequent call. When EnumDisplaySettings returns FALSE, you're finished.

With that information, SKETCH will create a shadow bitmap that can have more than four times the surface area of
the current video display mode and require multiple megabytes of memory. For this reason, SKETCH checks to see
if the bitmap has been created and returns -1 from WM_CREATE to indicate an error if it has not.

SKETCH captures the mouse when the left or right mouse button is pressed and draws lines on both the memory
device context and the device context for the client area during the WM_MOUSEMOVE message. If the drawing
logic were any more complex, you'd probably want to implement it in a function that the program calls
twice—once for the video device context and again for the memory device context.

Here's an interesting experiment: Make the SKETCH window less than the size of the full screen. With the left
mouse button depressed, draw something and let the mouse pass outside the window at the right and bottom.
Because SKETCH captures the mouse, it continues to receive and process WM_MOUSEMOVE messages. Now
expand the window. You'll discover that the shadow bitmap includes the drawing you did outside SKETCH's
window!

Using Bitmaps in Menus

You can also use bitmaps to display items in menus. If you immediately recoiled at the thought of pictures of file

folders, paste jars, and trash cans in a menu, don't think of pictures. Think instead of how useful menu bitmaps
might be for a drawing program. Think of using different fonts and font sizes, line widths, hatch patterns, and
colors in your menus.

The sample program that demonstrates graphical menu items is called GRAFMENU. The top-level menu of this
program is shown in Figure 14-13 below. The enlarged block letters are obtained from 40-by-16-pixel
monochrome bitmap files created in Visual C++ Developer Studio. Choosing FONT from the menu invokes a popup
containing three options—Courier New, Arial, and Times New Roman. These are the standard Windows TrueType
fonts, and each is displayed in its respective font, as you can see in Figure 14-14 below. These bitmaps were
created in the program using a memory device context.

Figure 14-13. The GRAFMENU program's top-level menu.

Figure 14-14. The GRAFMENU program's popup FONT menu.

Finally, when you pull down the system menu, you see that you have access to some "help" information, with the
word "Help" perhaps mirroring the desperation of a new user. (See Figure 14-15.) This 64-by-64-pixel
monochrome bitmap was created in Developer Studio.

Figure 14-15. The GRAFMENU program's system menu.

The GRAFMENU program, including the four bitmaps created in Developer Studio, is shown in Figure 14-16.

Figure 14-16. The GRAFMENU program.

GRAFMENU.C

/*--
 GRAFMENU.C -- Demonstrates Bitmap Menu Items
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
void AddHelpToSys (HINSTANCE, HWND) ;
HMENU CreateMyMenu (HINSTANCE) ;
HBITMAP StretchBitmap (HBITMAP) ;
HBITMAP GetBitmapFont (int) ;
void DeleteAllBitmaps (HWND) ;

TCHAR szAppName[] = TEXT ("GrafMenu") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{

 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;

 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Bitmap Menu Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 HMENU hMenu ;
 static int iCurrentFont = IDM_FONT_COUR ;

 switch (iMsg)
 {
 case WM_CREATE:
 AddHelpToSys (((LPCREATESTRUCT) lParam)->hInstance, hwnd) ;
 hMenu = CreateMyMenu (((LPCREATESTRUCT) lParam)->hInstance) ;
 SetMenu (hwnd, hMenu) ;
 CheckMenuItem (hMenu, iCurrentFont, MF_CHECKED) ;
 return 0 ;

 case WM_SYSCOMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_HELP:
 MessageBox (hwnd, TEXT ("Help not yet implemented!"),

 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;
 }
 break ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_NEW:
 case IDM_FILE_OPEN:
 case IDM_FILE_SAVE:
 case IDM_FILE_SAVE_AS:
 case IDM_EDIT_UNDO:
 case IDM_EDIT_CUT:
 case IDM_EDIT_COPY:
 case IDM_EDIT_PASTE:
 case IDM_EDIT_CLEAR:
 MessageBeep (0) ;
 return 0 ;

 case IDM_FONT_COUR:
 case IDM_FONT_ARIAL:
 case IDM_FONT_TIMES:
 hMenu = GetMenu (hwnd) ;
 CheckMenuItem (hMenu, iCurrentFont, MF_UNCHECKED) ;
 iCurrentFont = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iCurrentFont, MF_CHECKED) ;
 return 0 ;
 }
 break ;

 case WM_DESTROY:
 DeleteAllBitmaps (hwnd) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowPr
oc (hwnd, iMsg, wParam, lParam) ;
}

/*--
 AddHelpToSys: Adds bitmap Help item to system menu
 --*/

void AddHelpToSys (HINSTANCE hInstance, HWND hwnd)
{
 HBITMAP hBitmap ;
 HMENU hMenu ;

 hMenu = GetSystemMenu (hwnd, FALSE);
 hBitmap = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapHelp"))) ;
 AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
 AppendMenu (hMenu, MF_BITMAP, IDM_HELP, (PTSTR) (LONG) hBitmap) ;

}

/*--
 CreateMyMenu: Assembles menu from components
 --*/

HMENU CreateMyMenu (HINSTANCE hInstance)
{
 HBITMAP hBitmap ;
 HMENU hMenu, hMenuPopup ;
 int i ;

 hMenu = CreateMenu () ;

 hMenuPopup = LoadMenu (hInstance, TEXT ("MenuFile")) ;
 hBitmap = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapFile"))) ;
 AppendMenu (hMenu, MF_BITMAP | MF_POPUP, (int) hMenuPopup,
 (PTSTR) (LONG) hBitmap) ;

 hMenuPopup = LoadMenu (hInstance, TEXT ("MenuEdit")) ;
 hBitmap = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapEdit"))) ;
 AppendMenu (hMenu, MF_BITMAP | MF_POPUP, (int) hMenuPopup,
 (PTSTR) (LONG) hBitmap) ;

 hMenuPopup = CreateMenu () ;

 for (i = 0 ; i < 3 ; i++)
 {
 hBitmap = GetBitmapFont (i) ;
 AppendMenu (hMenuPopup, MF_BITMAP, IDM_FONT_COUR + i,
 (PTSTR) (LONG) hBitmap) ;
 }

 hBitmap = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapFont"))) ;
 AppendMenu (hMenu, MF_BITMAP | MF_POPUP, (int) hMenuPopup,
 (PTSTR) (LONG) hBitmap) ;
 return hMenu ;
}

/*--
 StretchBitmap: Scales bitmap to display resolution
 --*/

HBITMAP StretchBitmap (HBITMAP hBitmap1)
{
 BITMAP bm1, bm2 ;
 HBITMAP hBitmap2 ;
 HDC hdc, hdcMem1, hdcMem2 ;
 int cxChar, cyChar ;

 // Get the width and height of a system font character

 cxChar = LOWORD (GetDialogBaseUnits ()) ;

 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 // Create 2 memory DCs compatible with the display

 hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
 hdcMem1 = CreateCompatibleDC (hdc) ;
 hdcMem2 = CreateCompatibleDC (hdc) ;
 DeleteDC (hdc) ;

 // Get the dimensions of the bitmap to be stretched

 GetObject (hBitmap1, sizeof (BITMAP), (PTSTR) &bm1) ;

 // Scale these dimensions based on the system font size

 bm2 = bm1 ;
 bm2.bmWidth = (cxChar * bm2.bmWidth) / 4 ;
 bm2.bmHeight = (cyChar * bm2.bmHeight) / 8 ;
 bm2.bmWidthBytes = ((bm2.bmWidth + 15) / 16) * 2 ;

 // Create a new bitmap of larger size

 hBitmap2 = CreateBitmapIndirect (&bm2) ;

 // Select the bitmaps in the memory DCs and do a StretchBlt

 SelectObject (hdcMem1, hBitmap1) ;
 SelectObject (hdcMem2, hBitmap2) ;
 StretchBlt (hdcMem2, 0, 0, bm2.bmWidth, bm2.bmHeight,
 hdcMem1, 0, 0, bm1.bmWidth, bm1.bmHeight, SRCCOPY) ;

 // Clean up

 DeleteDC (hdcMem1) ;
 DeleteDC (hdcMem2) ;
 DeleteObject (hBitmap1) ;

 return hBitmap2 ;
}

/*--
 GetBitmapFont: Creates bitmaps with font names
 --*/

HBITMAP GetBitmapFont (int i)
{
 static TCHAR * szFaceName[3] = { TEXT ("Courier New"), TEXT ("Arial"),
 TEXT ("Times New Roman") } ;
 HBITMAP hBitmap ;
 HDC hdc, hdcMem ;
 HFONT hFont ;
 SIZE size ;
 TEXTMETRIC tm ;

 hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
 GetTextMetrics (hdc, &tm) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 hFont = CreateFont (2 * tm.tmHeight, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 szFaceName[i]) ;

 hFont = (HFONT) SelectObject (hdcMem, hFont) ;
 GetTextExtentPoint32 (hdcMem, szFaceName[i],
 lstrlen (szFaceName[i]), &size);

 hBitmap = CreateBitmap (size.cx, size.cy, 1, 1, NULL) ;
 SelectObject (hdcMem, hBitmap) ;

 TextOut (hdcMem, 0, 0, szFaceName[i], lstrlen (szFaceName[i])) ;

 DeleteObject (SelectObject (hdcMem, hFont)) ;
 DeleteDC (hdcMem) ;
 DeleteDC (hdc) ;

 return hBitmap ;
}

/*---
 DeleteAllBitmaps: Deletes all the bitmaps in the menu
 ---*/

void DeleteAllBitmaps (HWND hwnd)
{
 HMENU hMenu ;
 int i ;
 MENUITEMINFO mii = { sizeof (MENUITEMINFO), MIIM_SUBMENU | MIIM_TYPE } ;

 // Delete Help bitmap on system menu

 hMenu = GetSystemMenu (hwnd, FALSE);
 GetMenuItemInfo (hMenu, IDM_HELP, FALSE, &mii) ;
 DeleteObject ((HBITMAP) mii.dwTypeData) ;

 // Delete top-level menu bitmaps

 hMenu = GetMenu (hwnd) ;

 for (i = 0 ; i < 3 ; i++)
 {
 GetMenuItemInfo (hMenu, i, TRUE, &mii) ;
 DeleteObject ((HBITMAP) mii.dwTypeData) ;
 }

 // Delete bitmap items on Font menu

 hMenu = mii.hSubMenu ;;

 for (i = 0 ; i < 3 ; i++)
 {
 GetMenuItemInfo (hMenu, i, TRUE, &mii) ;
 DeleteObject ((HBITMAP) mii.dwTypeData) ;
 }
}

GRAFMENU.RC (excerpts)

//Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Menu
MENUFILE MENU DISCARDABLE
BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open...", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
END

MENUEDIT MENU DISCARDABLE
BEGIN
 MENUITEM "&Undo", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t", IDM_EDIT_CUT
 MENUITEM "&Copy", IDM_EDIT_COPY
 MENUITEM "&Paste", IDM_EDIT_PASTE
 MENUITEM "De&lete", IDM_EDIT_CLEAR
END

///
// Bitmap

BITMAPFONT BITMAP DISCARDABLE "Fontlabl.bmp"
BITMAPHELP BITMAP DISCARDABLE "Bighelp.bmp"
BITMAPEDIT BITMAP DISCARDABLE "Editlabl.bmp"
BITMAPFILE BITMAP DISCARDABLE "Filelabl.bmp"

RESOURCE.H (excerpts

// Microsoft Developer Studio generated include file.
// Used by GrafMenu.rc

#define IDM_FONT_COUR 101
#define IDM_FONT_ARIAL 102
#define IDM_FONT_TIMES 103
#define IDM_HELP 104
#define IDM_EDIT_UNDO 40005
#define IDM_EDIT_CUT 40006
#define IDM_EDIT_COPY 40007
#define IDM_EDIT_PASTE 40008
#define IDM_EDIT_CLEAR 40009
#define IDM_FILE_NEW 40010
#define IDM_FILE_OPEN 40011
#define IDM_FILE_SAVE 40012
#define IDM_FILE_SAVE_AS 40013

EDITLABL.BMP

FILELABL.BMP

FONTLABL.BMP

BIGHELP.BMP

To insert a bitmap into a menu, you use AppendMenu or InsertMenu . The bitmap can come from one of two
places. You can create a bitmap in Visual C++ Developer Studio, include the bitmap file in your resource script,
and within the program use LoadBitmap to load the bitmap resource into memory. You then call AppendMenu or
InsertMenu to attach it to the menu. There's a problem with this approach, however. The bitmap might not be
suitable for all types of video resolutions and aspect ratios; you probably want to stretch the loaded bitmap to
account for this. Alternatively, you can create the bitmap right in the program, select it into a memory device
context, draw on it, and then attach it to the menu.

The GetBitmapFont function in GRAFMENU takes a parameter of 0, 1, or 2 and returns a handle to a bitmap. This
bitmap contains the string "Courier New," "Arial," or "Times New Roman" in the appropriate font and about twice
the size of the normal system font. Let's see how GetBitmapFont does it. (The code that follows is not the same as
that in the GRAFMENU.C file. For purposes of clarity, I've replaced references to the szFaceName array with the
values appropriate for the Arial font.)

The first steps are to determine the size of the system font by using the TEXTMETRIC structure and to create a
memory device context compatible with the screen:

hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
GetTextMetrics (hdc, &tm) ;
hdcMem = CreateCompatibleDC (hdc) ;

The CreateFont function creates a logical font that is twice the height of the system font and has a facename of
"Arial":

hFont = CreateFont (2 * tm.tmHeight, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 TEXT ("Arial")) ;

This font is selected in the memory device context and the default font handle is saved:

hFont = (HFONT) SelectObject (hdcMem, hFont) ;

Now when we write some text to the memory device context, Windows will use the TrueType Arial font selected
into the device context.

But this memory device context initially has a one-pixel monochrome device surface. We have to create a bitmap
large enough for the text we want to display on it. You can obtain the dimensions of the text through
GetTextExtentPoint32 and create a bitmap based on these dimensions with CreateBitmap :

GetTextExtentPoint32 (hdcMem, TEXT ("Arial"), 5, &size) ;
hBitmap = CreateBitmap (size.cx, size.cy, 1, 1, NULL) ;
SelectObject (hdcMem, hBitmap) ;

This device context now has a monochrome display surface exactly the size of the text. Now all we have to do is
write the text to it:

TextOut (hdcMem, 0, 0, TEXT ("Arial"), 5) ;

We're finished, except for cleaning up. To do so, we select the system font (with handle hFont) back into the
device context by using SelectObject , and we delete the previous font handle that SelectObject returns, which is
the handle to the Arial font:

DeleteObject (SelectObject (hdcMem, hFont)) ;

Now we can also delete the two device contexts:

DeleteDC (hdcMem) ;
DeleteDC (hdc) ;

We're left with a bitmap that has the text "Arial" in an Arial font.

The memory device context also comes to the rescue when we need to scale fonts to a different display resolution
or aspect ratio. I created the four bitmaps used in GRAFMENU to be the correct size for a display that has a
system font height of 8 pixels and width of 4 pixels. For other system font dimensions, the bitmap has to be
stretched. This is done in GRAFMENU's StretchBitmap function.

The first step is to get the device context for the screen, obtain the text metrics for the system font, and create
two memory device contexts:

hdc = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
GetTextMetrics (hdc, &tm) ;
hdcMem1 = CreateCompatibleDC (hdc) ;

hdcMem2 = CreateCompatibleDC (hdc) ;
DeleteDC (hdc) ;

The bitmap handle passed to the function is hBitmap1 . The program can obtain the dimensions of this bitmap
using GetObject :

GetObject (hBitmap1, sizeof (BITMAP), (PSTR) &bm1) ;

This copies the dimensions into a structure bm1 of type BITMAP. The structure bm2 is set equal to bm1 , and then
certain fields are modified based on the system font dimensions:

bm2 = bm1 ;
bm2.bmWidth = (tm.tmAveCharWidth * bm2.bmWidth) / 4 ;
bm2.bmHeight = (tm.tmHeight * bm2.bmHeight) / 8 ;
bm2.bmWidthBytes = ((bm2.bmWidth + 15) / 16) * 2 ;

Next a new bitmap with handle hBitmap2 can be created that is based on the altered dimensions:

hBitmap2 = CreateBitmapIndirect (&bm2) ;

You can then select these two bitmaps into the two memory device contexts:

SelectObject (hdcMem1, hBitmap1) ;
SelectObject (hdcMem2, hBitmap2) ;

We want to copy the first bitmap to the second bitmap and stretch it in the process. This involves the StretchBlt
call:

StretchBlt (hdcMem2, 0, 0, bm2.bmWidth, bm2.bmHeight,
 hdcMem1, 0, 0, bm1.bmWidth, bm1.bmHeight, SRCCOPY) ;

Now the second bitmap has the properly scaled bitmap. We'll use that one in the menu. As you can see below,
cleanup is simple.

DeleteDC (hdcMem1) ;
DeleteDC (hdcMem2) ;
DeleteObject (hBitmap1) ;

The CreateMyMenu function in GRAFMENU uses the StretchBitmap and GetBitmapFont functions when constructing
the menu. GRAFMENU has two menus already defined in the resource script. These will become popups for the File

and Edit options. The function begins by obtaining a handle to an empty menu:

hMenu = CreateMenu () ;

The popup menu for File (containing the four options New, Open, Save, and Save As) is loaded from the resource
script:

hMenuPopup = LoadMenu (hInstance, TEXT ("MenuFile")) ;

The bitmap containing the word "FILE" is also loaded from the resource script and stretched using StretchBitmap :

hBitmapFile = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapFile"))) ;

The bitmap handle and popup menu handle become arguments to the AppendMenu call:

AppendMenu (hMenu, MF_BITMAP ¦ MF_POPUP, hMenuPopup, (PTSTR) (LONG) hBitmapFile) ;

The same procedure is followed for the Edit menu:

hMenuPopup = LoadMenu (hInstance, TEXT ("MenuEdit")) ;
hBitmapEdit = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapEdit"))) ;
AppendMenu (hMenu, MF_BITMAP ¦ MF_POPUP, hMenuPopup, (PTSTR) (LONG) hBitmapEdit) ;

The popup menu for the three fonts is constructed from calls to the GetBitmapFont function:

hMenuPopup = CreateMenu () ;
for (i = 0 ; i < 3 ; i++)
{
 hBitmapPopFont [i] = GetBitmapFont (i) ;
 AppendMenu (hMenuPopup, MF_BITMAP, IDM_FONT_COUR + i,
 (PTSTR) (LONG) hMenuPopupFont [i]) ;
}

The popup is then added to the menu:

hBitmapFont = StretchBitmap (LoadBitmap (hInstance, "BitmapFont")) ;
AppendMenu (hMenu, MF_BITMAP ¦ MF_POPUP, hMenuPopup, (PTSTR) (LONG) hBitmapFont) ;

The window menu is now complete, and WndProc makes it the window's menu by a call to SetMenu .

GRAFMENU also alters the system menu in the AddHelpToSys function. The function first obtains a handle to the
system menu:

hMenu = GetSystemMenu (hwnd, FALSE) ;

This loads the "Help" bitmap and stretches it to an appropriate size:

hBitmapHelp = StretchBitmap (LoadBitmap (hInstance, TEXT ("BitmapHelp"))) ;

This adds a separator bar and the stretched bitmap to the system menu:

AppendMenu (hMenu, MF_SEPARATOR, 0, NULL) ;
AppendMenu (hMenu, MF_BITMAP, IDM_HELP, (PTSTR)(LONG) hBitmapHelp) ;

GRAFMENU devotes a whole function to cleaning up and deleting all the bitmaps before the program terminates.

A couple of miscellaneous notes on using bitmap in menus now follow.

In a top-level menu, Windows adjusts the menu bar height to accommodate the tallest bitmap. Other bitmaps (or
character strings) are aligned at the top of the menu bar. The size of the menu bar obtained from
GetSystemMetrics with the SM_CYMENU constant is no longer valid after you put bitmaps in a top-level menu.

As you can see from playing with GRAFMENU, you can use check marks with bitmapped menu items in popups,
but the check mark is of normal size. If that bothers you, you can create a customized check mark and use
SetMenuItemBitmaps .

Another approach to using nontext (or text in a font other than the system font) on a menu is the "owner-draw"
menu.

The keyboard interface to menus is another problem. When the menu contains text, Windows automatically adds a
keyboard interface. You can select a menu item using the Alt key in combination with a letter of the character
string. But once you put a bitmap in a menu, you've eliminated that keyboard interface. Even if the bitmap says
something, Windows doesn't know about it.

This is where the WM_MENUCHAR message comes in handy. Windows sends a WM_MENUCHAR message to your
window procedure when you press Alt with a character key that does not correspond to a menu item. GRAFMENU
would need to intercept WM_MENUCHAR messages and check the value of wParam (the ASCII character of the
pressed key). If this corresponds to a menu item, it would have to return a double word to Windows, where the
high word is set to 2 and the low word is set to the index of the menu item we want associated with that key.
Windows does the rest.

Nonrectangular Bitmap Images

Bitmaps are always rectangular, but they needn't be displayed like that. For example, suppose you have a
rectangular bitmap image that you want to be displayed as an ellipse.

At first, this sounds simple. You just load the image into Visual C++ Developer Studio or the Windows Paint
program (or a more expensive application) and you start drawing around the outside of the image with a white
pen. You're left with an elliptical image with everything outside the ellipse painted white. This will work—but only
when you display the bitmap on a white background. If you display it on any other color background, you'll have
an elliptical image on top of a white rectangle on top of a colored background. That's no good.

There's a very common technique to solve problems like this. The technique involves a "mask" bitmap and some
raster operations. A mask is a monochrome bitmap of the same dimensions as the rectangular bitmap image you
want to display. Each mask pixel corresponds with a pixel of the bitmap image. The mask pixels are 1 (white)
wherever the original bitmap pixel is to be displayed, and 0 (black) wherever you want to preserve the destination
background. (Or the mask bitmap can be opposite this, with some corresponding changes to the raster operations
you use.)

Let's see how this works in real life in the BITMASK program shown in Figure 14-17.

Figure 14-17. The BITMASK program.

BITMASK.C

/*---
 BITMASK.C -- Bitmap Masking Demonstration
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("BitMask") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (LTGRAY_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {

 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Bitmap Masking Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmapImag, hBitmapMask ;
 static HINSTANCE hInstance ;
 static int cxClient, cyClient, cxBitmap, cyBitmap ;
 BITMAP bitmap ;
 HDC hdc, hdcMemImag, hdcMemMask ;
 int x, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = ((LPCREATESTRUCT) lParam)->hInstance ;

 // Load the original image and get its size

 hBitmapImag = LoadBitmap (hInstance, TEXT ("Matthew")) ;
 GetObject (hBitmapImag, sizeof (BITMAP), &bitmap) ;
 cxBitmap = bitmap.bmWidth ;
 cyBitmap = bitmap.bmHeight ;

 // Select the original image into a memory DC
 hdcMemImag = CreateCompatibleDC (NULL) ;
 SelectObject (hdcMemImag, hBitmapImag) ;

 // Create the monochrome mask bitmap and memory DC

 hBitmapMask = CreateBitmap (cxBitmap, cyBitmap, 1, 1, NULL) ;
 hdcMemMask = CreateCompatibleDC (NULL) ;
 SelectObject (hdcMemMask, hBitmapMask) ;

 // Color the mask bitmap black with a white ellipse

 SelectObject (hdcMemMask, GetStockObject (BLACK_BRUSH)) ;
 Rectangle (hdcMemMask, 0, 0, cxBitmap, cyBitmap) ;
 SelectObject (hdcMemMask, GetStockObject (WHITE_BRUSH)) ;
 Ellipse (hdcMemMask, 0, 0, cxBitmap, cyBitmap) ;

 // Mask the original image

 BitBlt (hdcMemImag, 0, 0, cxBitmap, cyBitmap,

 hdcMemMask, 0, 0, SRCAND) ;

 DeleteDC (hdcMemImag) ;
 DeleteDC (hdcMemMask) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Select bitmaps into memory DCs

 hdcMemImag = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMemImag, hBitmapImag) ;

 hdcMemMask = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMemMask, hBitmapMask) ;

 // Center image

 x = (cxClient - cxBitmap) / 2 ;
 y = (cyClient - cyBitmap) / 2 ;

 // Do the bitblts

 BitBlt (hdc, x, y, cxBitmap, cyBitmap, hdcMemMask, 0, 0, 0x220326) ;
 BitBlt (hdc, x, y, cxBitmap, cyBitmap, hdcMemImag, 0, 0, SRCPAINT) ;

 DeleteDC (hdcMemImag) ;
 DeleteDC (hdcMemMask) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteObject (hBitmapImag) ;
 DeleteObject (hBitmapMask) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BITMASK.RC

// Microsoft Developer Studio generated resource script.
#include "resource.h"
#include "afxres.h"

///
// Bitmap

MATTHEW BITMAP DISCARDABLE "matthew.bmp"

The MATTHEW.BMP file referred to in the resource script is a digitized black-and-white photograph of a nephew of
mine. It's 200 pixels wide, 320 pixels high, and has 8 bits per pixel. However, BITMASK is written so that this file
can be just about anything.

Notice that BITMASK colors its window background with a light gray brush. This is to assure ourselves that we're
properly masking the bitmap and not just coloring part of it white.

Let's look at WM_CREATE processing. BITMASK uses the LoadBitmap function to obtain a handle to the original
image in the variable hBitmapImag . The GetObject function obtains the bitmap width and height. The bitmap
handle is then selected in a memory device context whose handle is hdcMemImag .

Next the program creates a monochrome bitmap the same size as the original image. The handle is stored in
hBitmapMask and selected into a memory device context whose handle is hdcMemMask . The mask bitmap is
colored with a black background and a white ellipse by using GDI functions on the memory device context:

SelectObject (hdcMemMask, GetStockObject (BLACK_BRUSH)) ;
Rectangle (hdcMemMask, 0, 0, cxBitmap, cyBitmap) ;
SelectObject (hdcMemMask, GetStockObject (WHITE_BRUSH)) ;
Ellipse (hdcMemMask, 0, 0, cxBitmap, cyBitmap) ;

Because this is a monochrome bitmap, the black area is really 0 bits and the white area is really 1 bits.

Then a BitBlt call alters the original image by using this mask:

BitBlt (hdcMemImag, 0, 0, cxBitmap, cyBitmap,
 hdcMemMask, 0, 0, SRCAND) ;

The SRCAND raster operation performs a bitwise AND operation between the bits of the source (the mask bitmap)
and the bits of the destination (the original image). Wherever the mask bitmap is white, the destination is
preserved. Wherever the mask bitmap is black, the destination becomes black as well. An elliptical area in the
original image is now surrounded by black.

Now let's look at WM_PAINT processing. Both the altered image bitmap and the mask bitmap are selected into
memory device contexts. Two BitBlt calls perform the magic. The first does a BitBlt of the mask bitmap on the
window:

BitBlt (hdc, x, y, cxBitmap, cyBitmap, hdcMemMask, 0, 0, 0x220326) ;

This uses a raster operation for which there is no name. The logical operation is D & ~S. Recall that the
source—the mask bitmap—is a white ellipse (1 bits) surrounded by black (0 bits). The raster operation inverts the
source so that it's a black ellipse surrounded by white. The raster operation then performs a bitwise AND of this
inverted source with the destination—the surface of the window. When the destination is ANDed with 1 bits, it
remains unchanged. When ANDed with 0 bits, the destination becomes black. Thus, this BitBlt operation draws a
black ellipse in the window.

The second BitBlt call draws the image bitmap on the window:

BitBlt (hdc, x, y, cxBitmap, cyBitmap, hdcMemImag, 0, 0, SRCPAINT) ;

The raster operation performs a bitwise OR operation between the source and the destination. The outside of the
source bitmap is black, so it leaves the destination unchanged. Within the ellipse, the destination is black, so the
image is copied unchanged. The result is shown in Figure 14-18.

A few notes:

You may need a mask that is quite complex—for example, one that blots out the whole background of the original
image. You'll probably need to create this manually in a paint program and save it to a file.

Figure 14-18. The BITMASK display.

If you're writing applications specifically for Windows NT, you can use the MaskBlt function to do something similar
to the MASKBIT program with fewer function calls. Windows NT also includes another BitBlt -like function not
supported under Windows 98. This is the PlgBlt ("parallelogram blt") function that lets you rotate or skew bitmap
images.

Finally, if you run BITMASK on your machine and you see only black, white, and a couple of gray shades, it's
because you're running in a 16-color or 256-color video mode. With the 16-color mode, there's not much you can
do to improve things, but an application running in a 256-color mode can alter the color palette to display shades
of gray. You'll find out how in Chapter 16 .

Some Simple Animation

Because the display of small bitmaps is quite fast, you can use bitmaps in combination with the Windows timer for
some rudimentary animation.

Yes, it's time for the bouncing ball program.

The BOUNCE program, shown in Figure 14-19 below, constructs a ball that bounces around in the window's client
area. The program uses the timer to pace the ball. The ball itself is a bitmap. The program first creates the ball by
creating the bitmap, selecting it into a memory device context, and then making simple GDI function calls. The
program draws the bitmapped ball on the display using a BitBlt from a memory device context.

Figure 14-19. The BOUNCE program.

BOUNCE.C

/*---------------------------------------
 BOUNCE.C -- Bouncing Ball Program
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Bounce") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Bouncing Ball"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static int cxClient, cyClient, xCenter, yCenter, cxTotal, cyTotal,
 cxRadius, cyRadius, cxMove, cyMove, xPixel, yPixel ;
 HBRUSH hBrush ;
 HDC hdc, hdcMem ;
 int iScale ;

 switch (iMsg)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 xPixel = GetDeviceCaps (hdc, ASPECTX) ;
 yPixel = GetDeviceCaps (hdc, ASPECTY) ;
 ReleaseDC (hwnd, hdc) ;

 SetTimer (hwnd, ID_TIMER, 50, NULL) ;
 return 0 ;

 case WM_SIZE:
 xCenter = (cxClient = LOWORD (lParam)) / 2 ;
 yCenter = (cyClient = HIWORD (lParam)) / 2 ;

 iScale = min (cxClient * xPixel, cyClient * yPixel) / 16 ;

 cxRadius = iScale / xPixel ;
 cyRadius = iScale / yPixel ;

 cxMove = max (1, cxRadius / 2) ;
 cyMove = max (1, cyRadius / 2) ;

 cxTotal = 2 * (cxRadius + cxMove) ;
 cyTotal = 2 * (cyRadius + cyMove) ;

 if (hBitmap)
 DeleteObject (hBitmap) ;
 hdc = GetDC (hwnd) ;
 hdcMem = CreateCompatibleDC (hdc) ;
 hBitmap = CreateCompatibleBitmap (hdc, cxTotal, cyTotal) ;
 ReleaseDC (hwnd, hdc) ;

 SelectObject (hdcMem, hBitmap) ;
 Rectangle (hdcMem, -1, -1, cxTotal + 1, cyTotal + 1) ;

 hBrush = CreateHatchBrush (HS_DIAGCROSS, 0L) ;
 SelectObject (hdcMem, hBrush) ;
 SetBkColor (hdcMem, RGB (255, 0, 255)) ;
 Ellipse (hdcMem, cxMove, cyMove, cxTotal - cxMove, cyTotal - cyMove) ;
 DeleteDC (hdcMem) ;
 DeleteObject (hBrush) ;

 return 0 ;

 case WM_TIMER:
 if (!hBitmap)
 break ;

 hdc = GetDC (hwnd) ;
 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 BitBlt (hdc, xCenter - cxTotal / 2,
 yCenter - cyTotal / 2, cxTotal, cyTotal,
 hdcMem, 0, 0, SRCCOPY) ;

 ReleaseDC (hwnd, hdc) ;
 DeleteDC (hdcMem) ;

 xCenter += cxMove ;
 yCenter += cyMove ;

 if ((xCenter + cxRadius >= cxClient) || (xCenter - cxRadius <= 0))
 cxMove = -cxMove ;

 if ((yCenter + cyRadius >= cyClient) || (yCenter - cyRadius <= 0))
 cyMove = -cyMove ;

 return 0 ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 KillTimer (hwnd, ID_TIMER) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

BOUNCE reconstructs the ball whenever the program gets a WM_SIZE message. This requires a memory device
context compatible with the video display:

hdcMem = CreateCompatibleDC (hdc) ;

The diameter of the ball is set at one-sixteenth of either the height or the width of the client area, whichever is
shorter. However, the program constructs a bitmap that is larger than the ball: On each of its four sides, the
bitmap extends beyond the ball's dimensions by one-half of the ball's radius:

hBitmap = CreateCompatibleBitmap (hdc, cxTotal, cyTotal) ;

After the bitmap is selected into a memory device context, the entire bitmap is colored white for the background:

Rectangle (hdcMem, -1, -1, xTotal + 1, yTotal + 1) ;

Those odd coordinates cause the rectangle boundary to be painted outside the bitmap. A diagonally hatched brush
is selected into the memory device context, and the ball is drawn in the center of the bitmap:

Ellipse (hdcMem, xMove, yMove, xTotal - xMove, yTotal - yMove) ;

The margins around the edges of the ball effectively erase the previous image of the ball when the ball is moved.
Redrawing the ball at another position requires only a simple BitBlt call using the ROP code of SRCCOPY:

BitBlt (hdc, xCenter - cxTotal / 2, yCenter - cyTotal / 2, cxTotal, cyTotal,
 hdcMem, 0, 0, SRCCOPY) ;

BOUNCE demonstrates the simplest way to move an image around the display, but this approach isn't satisfactory
for general purposes. If you're interested in animation, you'll want to explore some of the other ROP codes (such
as SRCINVERT) that perform an exclusive OR operation on the source and destination. Other techniques for
animation involve the Windows palette (and the AnimatePalette function) and the CreateDIBSection function. For
more sophisticated animation, you may need to abandon GDI and explore the DirectX interface.

Bitmaps Outside the Window

The SCRAMBLE program, shown in Figure 14-20 beginning below, is very rude and I probably shouldn't be
showing it to you. But it demonstrates some interesting techniques and uses a memory device context as a
temporary holding space for BitBlt operations that swap the contents of pairs of display rectangles.

Figure 14-20. The SCRAMBLE program.

SCRAMBLE.C

/*--
 SCRAMBLE.C -- Scramble (and Unscramble) Screen
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

#define NUM 300

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static int iKeep [NUM][4] ;
 HDC hdcScr, hdcMem ;

 int cx, cy ;
 HBITMAP hBitmap ;
 HWND hwnd ;
 int i, j, x1, y1, x2, y2 ;

 if (LockWindowUpdate (hwnd = GetDesktopWindow ()))
 {
 hdcScr = GetDCEx (hwnd, NULL, DCX_CACHE | DCX_LOCKWINDOWUPDATE) ;
 hdcMem = CreateCompatibleDC (hdcScr) ;
 cx = GetSystemMetrics (SM_CXSCREEN) / 10 ;
 cy = GetSystemMetrics (SM_CYSCREEN) / 10 ;
 hBitmap = CreateCompatibleBitmap (hdcScr, cx, cy) ;

 SelectObject (hdcMem, hBitmap) ;

 srand ((int) GetCurrentTime ()) ;

 for (i = 0 ; i < 2 ; i++)
 for (j = 0 ; j < NUM ; j++)
 {
 if (i == 0)
 {
 iKeep [j] [0] = x1 = cx * (rand () % 10) ;
 iKeep [j] [1] = y1 = cy * (rand () % 10) ;

 iKeep [j] [2] = x2 = cx * (rand () % 10) ;
 iKeep [j] [3] = y2 = cy * (rand () % 10) ;
 }
 else
 {
 x1 = iKeep [NUM - 1 - j] [0] ;
 y1 = iKeep [NUM - 1 - j] [1] ;
 x2 = iKeep [NUM - 1 - j] [2] ;
 y2 = iKeep [NUM - 1 - j] [3] ;
 }
 BitBlt (hdcMem, 0, 0, cx, cy, hdcScr, x1, y1, SRCCOPY) ;
 BitBlt (hdcScr, x1, y1, cx, cy, hdcScr, x2, y2, SRCCOPY) ;
 BitBlt (hdcScr, x2, y2, cx, cy, hdcMem, 0, 0, SRCCOPY) ;

 Sleep (10) ;
 }

 DeleteDC (hdcMem) ;
 ReleaseDC (hwnd, hdcScr) ;
 DeleteObject (hBitmap) ;

 LockWindowUpdate (NULL) ;
 }
 return FALSE ;
}

SCRAMBLE doesn't have a window procedure. In WinMain , it first calls LockWindowUpdate with the desktop

window handle. This function temporarily prevents any other program from updating the screen. SCRAMBLE then
obtains a device context for the entire screen by calling GetDCEx with a DCX_LOCKWINDOWUPDATE argument.
This lets SCRAMBLE write on the screen when no other program can.

SCRAMBLE then determines the dimensions of the full screen and divides them by 10. The program uses these
dimensions (named cx and cy) to create a bitmap and then selects the bitmap into the memory device context.

Using the C rand function, SCRAMBLE calculates four random values (two coordinate points) that are multiples of
the cx and cy values. The program swaps two rectangular blocks of the display through the use of three BitBlt
functions. The first copies the rectangle beginning at the first coordinate point to the memory device context. The
second BitBlt copies the rectangle beginning at the second point to the location beginning at the first point. The
third copies the rectangle in the memory device context to the area beginning at second coordinate point.

This process effectively swaps the contents of the two rectangles on the display. SCRAMBLE does this 300 times,
after which the screen should be thoroughly scrambled. But do not fear, because SCRAMBLE keeps track of this
mess and then unscrambles the screen, returning it to normal (and unlocking the screen) before exiting.

You can also use memory device contexts to copy the contents of one bitmap to another. For instance, suppose
you want to create a bitmap that contains only the upper left quadrant of another bitmap. If the original bitmap
has the handle hBitmap , you can copy the dimensions into a structure of type BITMAP,

GetObject (hBitmap, sizeof (BITMAP), &bm) ;

and create a new uninitialized bitmap of one-quarter the size:

hBitmap2 = CreateBitmap (bm.bmWidth / 2, bm.bmHeight / 2,
 bm.bmPlanes, bm.bmBitsPixel, NULL) ;

Now create two memory device contexts and select the original bitmap and the new bitmap into them:

hdcMem1 = CreateCompatibleDC (hdc) ;
hdcMem2 = CreateCompatibleDC (hdc) ;

SelectObject (hdcMem1, hBitmap) ;
SelectObject (hdcMem2, hBitmap2) ;

Finally, copy the upper left quadrant of the first bitmap to the second:

BitBlt (hdcMem2, 0, 0, bm.bmWidth / 2, bm.bmHeight / 2,
 hdcMem1, 0, 0, SRCCOPY) ;

You're done, except for cleaning up:

DeleteDC (hdcMem1) ;
DeleteDC (hdcMem2) ;
DeleteObject (hBitmap) ;

The BLOWUP.C program, shown in Figure 14-21, also uses window update locking to display a capture rectangle
outside the border of the program's window. This program lets you use the mouse to block out any rectangular
area of the screen. BLOWUP then copies the contents of that rectangular area to a bitmap. During the WM_PAINT
message, the bitmap is copied to the program's client area and stretched or compressed, if necessary. (See Figure
14-22)

Figure 14-21. The BLOWUP program.

BLOWUP.C

/*---------------------------------------
 BLOWUP.C -- Video Magnifier Program
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <stdlib.h> // for abs definition
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Blowup") ;
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Blow-Up Mouse Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

void InvertBlock (HWND hwndScr, HWND hwnd, POINT ptBeg, POINT ptEnd)
{
 HDC hdc ;

 hdc = GetDCEx (hwndScr, NULL, DCX_CACHE | DCX_LOCKWINDOWUPDATE) ;
 ClientToScreen (hwnd, &ptBeg) ;
 ClientToScreen (hwnd, &ptEnd) ;
 PatBlt (hdc, ptBeg.x, ptBeg.y, ptEnd.x - ptBeg.x, ptEnd.y - ptBeg.y,
 DSTINVERT) ;
 ReleaseDC (hwndScr, hdc) ;
}

HBITMAP CopyBitmap (HBITMAP hBitmapSrc)
{
 BITMAP bitmap ;
 HBITMAP hBitmapDst ;
 HDC hdcSrc, hdcDst ;

 GetObject (hBitmapSrc, sizeof (BITMAP), &bitmap) ;
 hBitmapDst = CreateBitmapIndirect (&bitmap) ;

 hdcSrc = CreateCompatibleDC (NULL) ;
 hdcDst = CreateCompatibleDC (NULL) ;

 SelectObject (hdcSrc, hBitmapSrc) ;
 SelectObject (hdcDst, hBitmapDst) ;

 BitBlt (hdcDst, 0, 0, bitmap.bmWidth, bitmap.bmHeight,
 hdcSrc, 0, 0, SRCCOPY) ;

 DeleteDC (hdcSrc) ;
 DeleteDC (hdcDst) ;

 return hBitmapDst ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bCapturing, bBlocking ;
 static HBITMAP hBitmap ;
 static HWND hwndScr ;
 static POINT ptBeg, ptEnd ;
 BITMAP bm ;
 HBITMAP hBitmapClip ;
 HDC hdc, hdcMem ;
 int iEnable ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_LBUTTONDOWN:
 if (!bCapturing)
 {
 if (LockWindowUpdate (hwndScr = GetDesktopWindow ()))
 {
 bCapturing = TRUE ;
 SetCapture (hwnd) ;
 SetCursor (LoadCursor (NULL, IDC_CROSS)) ;
 }
 else
 MessageBeep (0) ;
 }
 return 0 ;

 case WM_RBUTTONDOWN:
 if (bCapturing)
 {
 bBlocking = TRUE ;
 ptBeg.x = LOWORD (lParam) ;
 ptBeg.y = HIWORD (lParam) ;
 ptEnd = ptBeg ;
 InvertBlock (hwndScr, hwnd, ptBeg, ptEnd) ;
 }
 return 0 ;

 case WM_MOUSEMOVE:
 if (bBlocking)
 {
 InvertBlock (hwndScr, hwnd, ptBeg, ptEnd) ;
 ptEnd.x = LOWORD (lParam) ;
 ptEnd.y = HIWORD (lParam) ;
 InvertBlock (hwndScr, hwnd, ptBeg, ptEnd) ;
 }
 return 0 ;

 case WM_LBUTTONUP:
 case WM_RBUTTONUP:

 if (bBlocking)
 {
 InvertBlock (hwndScr, hwnd, ptBeg, ptEnd) ;
 ptEnd.x = LOWORD (lParam) ;
 ptEnd.y = HIWORD (lParam) ;

 if (hBitmap)
 {
 DeleteObject (hBitmap) ;
 hBitmap = NULL ;
 }

 hdc = GetDC (hwnd) ;
 hdcMem = CreateCompatibleDC (hdc) ;
 hBitmap = CreateCompatibleBitmap (hdc,
 abs (ptEnd.x - ptBeg.x),
 abs (ptEnd.y - ptBeg.y)) ;

 SelectObject (hdcMem, hBitmap) ;

 StretchBlt (hdcMem, 0, 0, abs (ptEnd.x - ptBeg.x),
 abs (ptEnd.y - ptBeg.y),
 hdc, ptBeg.x, ptBeg.y, ptEnd.x - ptBeg.x,
 ptEnd.y - ptBeg.y, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 ReleaseDC (hwnd, hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 if (bBlocking || bCapturing)
 {
 bBlocking = bCapturing = FALSE ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;
 ReleaseCapture () ;
 LockWindowUpdate (NULL) ;
 }
 return 0 ;

 case WM_INITMENUPOPUP:
 iEnable = IsClipboardFormatAvailable (CF_BITMAP) ?
 MF_ENABLED : MF_GRAYED ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_PASTE, iEnable) ;

 iEnable = hBitmap ? MF_ENABLED : MF_GRAYED ;

 EnableMenuItem ((HMENU) wParam, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem ((HMENU) wParam, IDM_EDIT_DELETE, iEnable) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))

 {
 case IDM_EDIT_CUT:
 case IDM_EDIT_COPY:
 if (hBitmap)
 {
 hBitmapClip = CopyBitmap (hBitmap) ;
 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 SetClipboardData (CF_BITMAP, hBitmapClip) ;
 }
 if (LOWORD (wParam) == IDM_EDIT_COPY)
 return 0 ;
 // fall through for IDM_EDIT_CUT
 case IDM_EDIT_DELETE:
 if (hBitmap)
 {
 DeleteObject (hBitmap) ;
 hBitmap = NULL ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_EDIT_PASTE:
 if (hBitmap)
 {
 DeleteObject (hBitmap) ;
 hBitmap = NULL ;
 }
 OpenClipboard (hwnd) ;
 hBitmapClip = GetClipboardData (CF_BITMAP) ;

 if (hBitmapClip)
 hBitmap = CopyBitmap (hBitmapClip) ;

 CloseClipboard () ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;
 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hBitmap)
 {
 GetClientRect (hwnd, &rect) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;
 GetObject (hBitmap, sizeof (BITMAP), (PSTR) &bm) ;
 SetStretchBltMode (hdc, COLORONCOLOR) ;

 StretchBlt (hdc, 0, 0, rect.right, rect.bottom,
 hdcMem, 0, 0, bm.bmWidth, bm.bmHeight, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BLOWUP.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

BLOWUP MENU DISCARDABLE
BEGIN
 POPUP "&Edit"
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "De&lete\tDelete", IDM_EDIT_DELETE
 END
END

///
// Accelerator

BLOWUP ACCELERATORS DISCARDABLE
BEGIN
 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "V", IDM_EDIT_PASTE, VIRTKEY, CONTROL, NOINVERT
 VK_DELETE, IDM_EDIT_DELETE, VIRTKEY, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Blowup.rc

#define IDM_EDIT_CUT 40001
#define IDM_EDIT_COPY 40002
#define IDM_EDIT_PASTE 40003
#define IDM_EDIT_DELETE 40004

Figure 14-22. A sample BLOWUP display.

Because of restrictions on mouse capturing, using BLOWUP is a little complicated at first and takes some getting
used to. Here's how to use the program:

Press the left mouse button in BLOWUP's client area, and keep the left button held down. The mouse cursor
changes to a crosshair.

1.

Still holding the left button down, move the mouse cursor anywhere on the screen. Position the mouse
cursor at the upper left corner of the rectangular area you want to capture.

2.

Still holding the left button down, press the right mouse button and drag the mouse to the lower right
corner of the rectangular area you want to capture. Release the left and right mouse buttons. (The order in
which you release the buttons doesn't matter.)

3.

The mouse cursor changes back to an arrow, and the area that you blocked out is copied to BLOWUP's client area
and compressed or expanded appropriately.

If you block out a rectangle by moving from the upper right corner to the lower left corner, BLOWUP displays a
mirror image. If you move from the lower left to the upper right, BLOWUP displays an upside-down image. And if
you move from the upper right to the upper left, the program combines the two effects.

BLOWUP also contains logic to copy the bitmap to the clipboard, and to copy any bitmap in the clipboard to the
program. BLOWUP processes the WM_INITMENUPOPUP message to enable or disable the various items on its Edit
menu and the WM_COMMAND message to process these menu items. The structure of this code should look
familiar because it is essentially the same as that shown in Chapter 12 to copy and paste text items.

For bitmaps, however, the clipboard items are not global handles but bitmap handles. When you use the
CF_BITMAP, the GetClipboardData function returns an HBITMAP object and the SetClipboardData function accepts
an HBITMAP object. If you want to transfer a bitmap to the clipboard but still have a copy of it for use by the
program itself, you must make a copy of the bitmap. Similarly, if you paste a bitmap from the clipboard, you
should also make a copy. The CopyBitmap function in BLOWUP does this by obtaining a BITMAP structure of the

existing bitmap and using this structure in the CreateBitmapIndirect function to create a new bitmap. (The Src and
Dst suffixes on the variable names stand for "source" and "destination.") Both bitmaps are selected into memory
device contexts and the bitmap bits transferred with a call to BitBlt . (Alternatively, to copy the bits, you can
allocate a block of memory the size of the bitmap and call GetBitmapBits for the source bitmap and SetBitmapBits
for the destination bitmap.)

I find BLOWUP to be very useful for examining the multitude of little bitmaps and pictures that are scattered
throughout Windows and its applications.

Chapter 15

The Device-Independent Bitmap

In the last chapter, we saw how the Windows GDI bitmap object (also known as the device-dependent bitmap, or
DDB) is useful for a variety of programming chores. However, I did not demonstrate how to save these bitmaps to
disk files or load them back into memory. This is something that was done back in the old days of Windows but is
never done today. The DDB is inadequate for the purpose of image interchange because the format of the bitmap
bits is highly device-dependent. There is no color table in a DDB that specifies a correspondence between the
bitmap bits and color. The DDB makes sense only when it is created and destroyed within the lifetime of a
Windows session.

The device-independent bitmap (or DIB) was introduced in Windows 3.0 to provide a sorely needed image file
format suitable for interchange. As you may know, other image file formats, such as .GIF or .JPEG, are much more
common than DIB files on the Internet. This is mostly because the .GIF and .JPEG formats implement compression
schemes that significantly reduce downloading time. Although there is a compression scheme defined for DIBs, it
is rarely used. The bitmap bits in most DIBs are almost always uncompressed. This is actually a major advantage
if you want to manipulate the bitmap bits in your program. Unlike .GIF and .JPEG files, the DIB is directly
supported by the Windows API. If you have a DIB in memory, you can supply pointers to that DIB as arguments to
several functions that let you display the DIB or convert it into a DDB.

The DIB File Format

Interestingly enough, the DIB format did not originate in Windows. It was first defined in version 1.1 of OS/2, the
operating system originally developed by IBM and Microsoft beginning in the mid-1980s. OS/2 1.1 was released in
1988 and was the first version of OS/2 to include a Windows-like graphical user interface, known as the
Presentation Manager (PM). The Presentation Manager included the Graphics Programming Interface (GPI), which
defined the bitmap format.

That OS/2 bitmap format was then used in Windows 3.0 (released in 1990), where it came to be known as the
DIB. Windows 3.0 also included a variation of the original DIB format that under Windows has come to be the
standard. Additional enhancements were defined in Windows 95 (and Windows NT 4.0) and Windows 98 (and
Windows NT 5.0), as I'll discuss in this chapter.

The DIB is best examined first as a file format. DIB files have the filename extension .BMP or, more rarely, .DIB.
Bitmap images used by Windows applications (for example, on the surfaces of buttons) are created as DIB files
and generally stored as read-only resources in the program's executable file. Icons and mouse cursors are also
DIB files in a slightly different form.

A program can load a DIB file, minus the first 14 bytes, into a contiguous block of memory. It is then sometimes
referred to as "a bitmap in the packed-DIB format." Applications running under Windows can use the packed-DIB
format for exchanging images through the Windows clipboard or for creating brushes. Programs also have
complete access to the contents of the DIB and can modify the DIB in whatever way they choose.

Programs can also create their own DIBs in memory and later save them in files. The images in these DIBs can be
"painted" by a program using GDI function calls. Or the program can set and manipulate the pixel bits directly,
perhaps using other memory-based DIBs in the process.

When a DIB is loaded into memory, programs can also use the DIB data with several Windows API function calls,
that I'll discuss in this chapter. The DIB-related API calls are few in number and are mainly concerned with
displaying display DIBs on the video display or a printer page and with converting them to and from GDI bitmap
objects.

When all is said and done, however, there remain many, many, many DIB tasks that application programs might
need to perform for which there is no support in the Windows operating system. For example, a program might
have access to a 24-bit DIB and might wish to convert it into an 8-bit DIB with an optimal 256-color palette.
Windows will not do this for you. But this chapter and the next will show you how to work with DIBs beyond what
the Windows API provides.

The OS/2-Style DIB

So that we don't get bogged down in too many details just yet, let's take a look at the format of the Windows DIB
that is compatible with the bitmap format first introduced in OS/2 1.1.

A DIB file has four main sections:

A file header

An information header

An RGB color table (but not always)

The bitmap pixel bits

You can think of the first two parts as C data structures and the third part as an array of data structures. These
structures are documented in the Windows header file WINGDI.H. A memory-based DIB in the packed-DIB format
has three sections:

An information header

An RGB color table (but not always)

The bitmap pixel bits

It's exactly the same as a DIB stored in a file except that it doesn't have the file header.

The DIB file, but not the memory-based packed DIB, begins with a 14-byte file header defined as a structure like
so:

typedef struct tagBITMAPFILEHEADER // bmfh
{
 WORD bfType ; // signature word "BM" or 0x4D42
 DWORD bfSize ; // entire size of file
 WORD bfReserved1 ; // must be zero
 WORD bfReserved2 ; // must be zero
 DWORD bfOffsetBits ; // offset in file of DIB pixel bits
}
BITMAPFILEHEADER, * PBITMAPFILEHEADER ;

This may not be exactly the way the structure is defined in WINGDI.H (for example, the comments are mine), but
it is functionally the same. The first comment (that is, the text "bmfh") shows the recommended abbreviation
when naming a structure variable of this data type. If you see a variable in one of my programs named pbmfh ,
that will be a pointer to a structure of type BITMAPFILEHEADER or a variable of type PBITMAPFILEHEADER.

The structure is 14 bytes in length. It begins with the two letters "BM" to indicate a bitmap file. This is the WORD
value 0x4D42. The "BM" indicator is followed by a DWORD indicating the entire size of the file, including the file
header, in bytes. The next two WORD fields are set to zero. (In a mouse cursor file, which is similar in format to a
DIB file, these two fields are used to indicate the "hot spot" of the cursor.) The structure concludes with a DWORD
indicating the byte offset within the file where the pixel bits begin. This number can be derived from information in
the DIB information header, but it is provided here for convenience.

In the OS/2-style DIB, the BITMAPFILEHEADER structure is followed immediately by a BITMAPCOREHEADER
structure, which provides the basic information about the DIB image. A packed DIB begins with the
BITMAPCOREHEADER:

typedef struct tagBITMAPCOREHEADER // bmch
{
 DWORD bcSize ; // size of the structure = 12
 WORD bcWidth ; // width of image in pixels
 WORD bcHeight ; // height of image in pixels
 WORD bcPlanes ; // = 1
 WORD bcBitCount ; // bits per pixel (1, 4, 8, or 24)
}
BITMAPCOREHEADER, * PBITMAPCOREHEADER ;

The word "core" sounds a little odd in this context, and it is. It means that this format is the basis (thus the core)
of other bitmap formats derived from it.

The bcSize field in the BITMAPCOREHEADER structure indicates the size of the data structure, in this case 12
bytes.

The bcWidth and bcHeight fields contain the size of the bitmap in pixels. Although the use of a WORD for these
fields implies that a DIB may be 65,535 pixels high and wide, you'll rarely encounter anything quite that large.

The bcPlanes field is always 1. Always, always, always—from the time it was defined until this very second. The
field is a remnant of the earlier Windows GDI bitmap object that we encountered in the last chapter.

The bcBitCount field indicates the number of bits per pixel. For OS/2-style DIBs, this can be either 1, 4, 8, or 24.
The number of colors in the DIB image is equal to 2bmch.bcBitCount or, in C syntax, to

1 << bmch.bcBitCount

Thus, the bcBitCount field is equal to:

1 for a 2-color DIB

4 for a 16-color DIB

8 for a 256-color DIB

24 for a full-color DIB

When I refer to "an 8-bit DIB," I'll mean a DIB that has 8 bits per pixel.

For the first three cases (that is, for bit counts of 1, 4, and 8), the BITMAPCOREHEADER is followed by the color
table. The color table does not exist for 24-bit DIBs. The color table is an array of 3-byte RGBTRIPLE structures,
one for each color in the image:

typedef struct tagRGBTRIPLE // rgbt
{
 BYTE rgbtBlue ; // blue level
 BYTE rgbtGreen ; // green level
 BYTE rgbtRed ; // red level
}
RGBTRIPLE ;

It is recommended that the color table be arranged so that the most important colors in the DIB appear first. We'll
see why in the next chapter.

The WINGDI.H header file also defines the following structure:

typedef struct tagBITMAPCOREINFO // bmci
{
 BITMAPCOREHEADER bmciHeader ; // core-header structure
 RGBTRIPLE bmciColors[1] ; // color table array
}
BITMAPCOREINFO, * PBITMAPCOREINFO ;

This structure combines the information header with the color table. Although the number of RGBTRIPLE
structures is seemingly equal to 1 in this structure, you'll never find just one RGBTRIPLE in a DIB file. The size of
the color table is always 2, 16, or 256 RGBTRIPLE structures, depending on the number of bits per pixel. If you
need to allocate a structure of PBITMAPCOREINFO for an 8-bit DIB, you can do it like so:

pbmci = malloc (sizeof (BITMAPCOREINFO) + 255 * sizeof (RGBTRIPLE)) ;

Then you can access whatever RGBTRIPLE structure you need like so:

pbmci->bmciColors[i]

Because the RGBTRIPLE structure is 3 bytes in length, some of the RGBTRIPLE structures might begin at odd
addresses within the DIB. However, because there are always an even number of RGBTRIPLE structures in the DIB
file, the data block that follows the color table array always begins at a WORD address boundary.

The data that follow the color table (and what follows the information header for DIBs with a bit count of 24) are
the pixel bits themselves.

Bottoms Up!

Like most bitmap formats, the pixel bits in the DIB are organized in horizontal rows, sometimes also called "scan
lines" from the terminology of video display hardware. The number of rows is equal to the bcHeight field of the
BITMAPCOREHEADER structure. However, unlike most bitmap formats, the DIB begins with the bottom row of the
image and proceeds up through the image.

Let's establish some terminology here. When I say "top row" and "bottom row," I mean the top and bottom of the
visual image as it appears when correctly displayed on the monitor or printer page. The top row of a portrait is
hair; the bottom row of a portrait is chin. When I say "first row," I mean the row of pixels that is found directly
after the color table in the DIB file. And when I say "last row," I mean the row of pixels at the very end of the file.

So, in DIBs, the bottom row of the image is the first row of the file, and the top row of the image is the last row in
the file. This is called a bottom-up organization. Because this organization is counterintuitive, you may ask why it's
done this way.

Well, it all goes back to the OS/2 Presentation Manager. Someone at IBM decided that all coordinate systems in
PM—including those for windows, graphics, and bitmaps—should be consistent. This provoked a debate: Most
people, including programmers who have worked with full-screen text programming or windowing environments,
think in terms of vertical coordinates that increase going down the screen. However, hardcore computer graphics
programmers approach the video display from a perspective that originates in the mathematics of analytic
geometry. This involves a rectangular (or Cartesian) coordinate system where increasing vertical coordinates go
up in space.

In short, the mathematicians won. Everything in PM was saddled with a bottom-left origin, including window
coordinates. And that's how DIBs came to be this way.

The DIB Pixel Bits

The last section of the DIB file—in most cases the great bulk of the DIB file—consists of the actual DIB pixel bits.
The pixel bits are organized in horizontal rows beginning with the bottom row of the image and proceeding up
through the image.

The number of rows in a DIB is equal to the bcHeight field of the BITMAPCOREHEADER structure. Each row
encodes a number of pixels equal to the bcWidth field of the structure. Each row begins with the leftmost pixels
and proceeds to the right of the image. The number of bits per pixel is obtained from the bcBitCount field, which is
either 1, 4, 8, or 24.

The length of each row in bytes is always a multiple of 4. The row length can be calculated like so:

RowLength = 4 * ((bmch.bcWidth * bmch.bcBitCount + 31) / 32) ;

Or, slightly more efficiently in C, like this:

RowLength = ((bmch.bcWidth * bmch.bcBitCount + 31) & ~31) >> 3 ;

The row is padded at the right (customarily with zeros), if necessary, to achieve this length. The total number of
bytes of pixel data is equal to the product of RowLength and bmch.bcHeight .

To see how the pixels are encoded, let's examine the four cases separately. In the diagrams shown below, the bits
of each byte are shown in boxes and are numbered with 7 indicating the most-significant bit and 0 indicating the
least-significant bit. Pixels are also numbered beginning with 0 for the leftmost pixel in the row.

For DIBs with 1 bit per pixel, each byte corresponds to 8 pixels. The leftmost pixel is the most-significant bit of the
first byte:

Each pixel can be either a 0 or a 1. A 0 bit means that the color of that pixel is given by the first RGBTRIPLE entry
in the color table. A 1 bit is a pixel whose color is the second entry of the color table.

For DIBs with 4 bits per pixel, each byte corresponds to 2 pixels. The leftmost pixel is the high 4 bits of the first
byte, and so on:

The value of each 4-bit pixel ranges from 0 to 15. This value is an index into the 16 entries in the color table.

For a DIB with 8 bits per pixel, each byte is 1 pixel:

The value of the byte is 0 through 255. Again, this is an index into the 256 entries in the color table.

For DIBs with 24 bits-per-pixel, each pixel requires 3 bytes for the red, green, and blue color values. Each row of
pixel bits is basically an array of RGBTRIPLE structures, possibly padded with 0 bytes at the end of each row so
that the row has a multiple of 4 bytes:

Again, the 24-bit-per-pixel DIB has no color table.

The Expanded Windows DIB

Now that we've mastered the OS/2-compatible DIB introduced in Windows 3.0, we can take a look at the
expanded version of the DIB introduced in Windows at the same time.

This form of the DIB begins with a BITMAPFILEHEADER structure just like the earlier format but then continues
with a BITMAPINFOHEADER structure rather than a BITMAPCOREHEADER structure:

typedef struct tagBITMAPINFOHEADER // bmih
{
 DWORD biSize ; // size of the structure = 40
 LONG biWidth ; // width of the image in pixels
 LONG biHeight ; // height of the image in pixels
 WORD biPlanes ; // = 1
 WORD biBitCount ; // bits per pixel (1, 4, 8, 16, 24, or 32)
 DWORD biCompression ; // compression code
 DWORD biSizeImage ; // number of bytes in image
 LONG biXPelsPerMeter ; // horizontal resolution
 LONG biYPelsPerMeter ; // vertical resolution

 DWORD biClrUsed ; // number of colors used
 DWORD biClrImportant ; // number of important colors
}
BITMAPINFOHEADER, * PBITMAPINFOHEADER ;

You can distinguish an OS/2-compatible DIB from a Windows DIB by checking the first field of the structure, which
is 12 in the former case and 40 in the latter case.

As you'll note, there are six additional fields in this structure, but the BITMAPINFOHEADER structure is not simply
a BITMAPCOREHEADER with some new stuff tacked on to the end. Take a closer look: In the BITMAPCOREHEADER
structure, the bcWidth and bcHeight fields are 16-bit WORD values. In this structure, they are 32-bit LONG values.
This is an annoying little change that is guaranteed to drive you nuts.

Another change: For 1-bit, 4-bit, and 8-bit DIBs using the BITMAPINFOHEADER structure, the color table is not an
array of RGBTRIPLE structures. Instead, the BITMAPINFOHEADER structure is followed by an array of RGBQUAD
structures:

typedef struct tagRGBQUAD // rgb
{
 BYTE rgbBlue ; // blue level
 BYTE rgbGreen ; // green level
 BYTE rgbRed ; // red level
 BYTE rgbReserved ; // = 0
}
RGBQUAD ;

This is the same as the RGBTRIPLE structure except that it includes a fourth field that is always set to 0. The
WINGDI.H header file also defines the following structure:

typedef struct tagBITMAPINFO // bmi
{
 BITMAPINFOHEADER bmiHeader ; // info-header structure
 RGBQUAD bmiColors[1] ; // color table array
}
BITMAPINFO, * PBITMAPINFO ;

Note that if the BITMAPINFO structure begins at a 32-bit address boundary, each entry in the RGBQUAD array also
begins at a 32-bit address boundary because the BITMAPINFOHEADER structure is 40 bytes in length. This assures
more efficient addressing of the color table data by 32-bit microprocessors.

Although the BITMAPINFOHEADER was originally defined for Windows 3.0, some of the fields were redefined in
Windows 95 and Windows NT 4.0, and these have been carried over into Windows 98 and Windows NT 5.0. For
example, the current documentation states: "If biHeight is negative, the bitmap is a top-down DIB and its origin is
the upper left corner." That's good to know. It would be even better if somebody had made this decision in 1990
when this DIB format was originally defined. My advice is to avoid creating top-down DIBs. You're almost begging
that some program written without awareness of this new "feature" will crash upon encountering a negative
biHeight field. Or that programs such as the Microsoft Photo Editor included with Microsoft Word 97 will report
"Illegal image height" upon encountering a top-down DIB (although Word 97 itself does fine with them).

The biPlanes field is still always 1, but the biBitCount field can now be 16 or 32 as well as 1, 4, 8, or 24. This was
also a new feature in Windows 95 and Windows NT 4.0. I'll discuss how these additional formats work shortly.

Let me skip the biCompression and biSizeImage fields for now. I'll also discuss them shortly.

The biXPelsPerMeter and biYPelsPerMeter fields indicate a suggested real-world size of the image in the ungainly
units of pixels per meter. (The "pel"—picture element—is what IBM liked to call the pixel.) Internally, Windows
does not use this information. However, an application could use it to display a DIB in an accurate size. These
fields are also useful if the DIB originated from a device that does not have square pixels. In most DIBs, these
fields are set to 0, which indicates no suggested real-world size. A resolution of 72 dots per inch (which is
sometimes used for video displays, although the actual resolution depends on the size of the monitor) is
approximately equivalent to 2,835 pixels per meter, and a common printer resolution of 300-dpi is 11,811 pixels
per meter.

The biClrUsed field is a very important field because it affects the number of entries in the color table. For 4-bit
and 8-bit DIBs, it can indicate that the color table contains fewer than 16 or 256 entries, respectively. This is one
method to shrink down the size of the DIB, although not by very much. For example, suppose a DIB image
contains only 64 gray shades. The biClrUsed field is set to 64, and the color table contains 64 RGBQUAD structures
for a total color table size of 256 bytes. The pixel values then range from 0x00 through 0x3F. The DIB still
requires 1 byte per pixel, but the high 2 bits of each pixel byte are zero. If the biClrUsed field is set to 0, it means
that the color table contains the full number of entries implied by the biBitCount field.

Beginning with Windows 95, the biClrUsed field can be nonzero for 16-bit, 24-bit, or 32-bit DIBs. In these cases,
the color table is not used by Windows to interpret the pixel bits. Instead, it indicates the size of a color table in
the DIB that could be used by programs to set a palette to display the DIB on 256-color video displays. You'll
recall that in the OS/2-compatible format, a 24-bit DIB had no color table. This was also true of the extended
format introduced in Windows 3.0. The change in Windows 95 means that a 24-bit DIB can have a color table the
size of which is indicated by the biClrUsed field.

To summarize:

For 1-bit DIBs, biClrUsed is always 0 or 2. The color table always has 2 entries.

For 4-bit DIBs, if the biClrUsed field is 0 or 16, the color table has 16 entries. If it's a number from 2
through 15, it indicates the number of entries in the color table. The maximum value of each pixel is 1 less
than this number.

For 8-bit DIBs, if the biClrUsed field is 0 or 256, the color table has 256 entries. If it's a number from 2
through 255, it indicates the number of entries in the color table. The maximum value of each pixel is 1 less
than this number.

For 16-bit, 24-bit, and 32-bit DIBs, the biClrUsed field is usually 0. If it's not 0, it indicates the number of
entries in the color table. These entries could be used by an application running with a 256-color video
adapter to set a palette for the DIB.

Another warning: Programs originally written using the earlier DIB documentation do not expect to see a color
table in 24-bit DIBs. You put one in at your own risk.

Despite its name, the biClrImportant field is actually much less important than the biClrUsed field. It's usually set
to 0 to indicate that all colors in the color table are important, or it could be set to the same value as biClrUsed .
Both mean the same thing. If it's set somewhere in between 0 and biClrUsed , it means that the DIB image can be
reasonably rendered using only the first biClrImportant entries in the color table. This could be useful when
displaying two or more 8-bit DIBs side by side on a 256-color video adapter.

For 1-bit, 4-bit, 8-bit, and 24-bit DIBs, the organization of the pixel bits is the same as in the OS/2-compatible
DIB. I'll discuss the 16-bit and 32-bit DIBs shortly.

Reality Check

What can you expect to find when you encounter a DIB that was created by some other program or person?

Although OS/2-style DIBs were common when Windows 3.0 was first released, they have become quite scarce in
recent years. Some programmers writing quickie DIB routines virtually ignore them. Any 4-bit DIBs you'll
encounter will probably have been created in the Windows Paint program using a 16-color video display. The color
table will have the standard 16 colors on these displays.

Probably the most common DIBs you'll find will have a bit count of 8. The 8-bit DIBs will fall into two categories:
gray-shade DIBs and palletized color DIBs. Unfortunately, nothing in the header indicates what type of 8-bit DIB
you're dealing with.

Some gray-shade DIBs will have a biClrUsed field equal to 64, indicating 64 entries in the color table. These

entries will usually be in order of ascending levels of gray. That is, the color table will begin with RGB values of 00-
00-00, 04-04-04, 08-08-08, 0C-0C-0C, and conclude with RGB values of F0-F0-F0, F4-F4-F4, F8-F8-F8, and FC-
FC-FC. Such a color table is calculated using a formula something like

rgb[i].rgbRed = rgb[i].rgbGreen = rgb[i].rgbBlue = i * 256 / 64 ;

where rgb is an array of RGBQUAD structures and i ranges from 0 through 63. Or the gray-shade color table will
have been calculated with a formula that looks like

rgb[i].rgbRed = rgb[i].rgbGreen = rgb[i].rgbBlue = i * 255 / 63 ;

so that the table ends with FF-FF-FF.

It really doesn't matter which formula is used. Many video display adapters and monitors don't have a color
precision greater than 6 bits anyway. The first formula recognizes that fact; the second formula, however, is more
appropriate when generating fewer than 64 gray shades, perhaps 16 or 32 (in which case the divisor at the end of
the formula is 15 or 31, respectively), because it ensures that the last entry in the color table is FF-FF-FF, which is
white.

While some 8-bit gray-shade DIBs have 64 entries in the color table, other gray-shade DIBs have 256 entries. The
biClrUsed field can actually be 0 (indicating 256 entries in the color table) or anything from 2 through 256. Of
course, it doesn't make much sense to have a biClrUsed value of 2 (because such an 8-bit DIB could be re-coded
as a 1-bit DIB) or a value less than or equal to 16 (because that could be re-coded as a 4-bit DIB), but it could be
done. Whatever the case, the number of entries in the color table must be the same as the biClrUsed field (or 256
if biClrUsed is 0), and the pixel values cannot number of color table entries minus 1. That's because the pixel
values are indices into the color table array. For 8-bit DIBs with a biClrUsed value of 64, the pixel values range
from 0x00 to 0x3F.

Here's the important thing to remember: When an 8-bit DIB has a color table consisting entirely of gray shades
(that is, when the red, green, and blue levels are equal), and when these gray-shade levels uniformly increase in
the color table (as I described above), then the pixel values themselves represent proportional levels of gray. That
is, if biClrUsed is 64, then a pixel value of 0x00 is black, a pixel value of 0x20 is 50 percent gray, and a pixel value
of 0x3F is white.

This can be important for some image-processing tasks because you can ignore the color table entirely and deal
solely with the pixel values. This is so useful that if I were allowed to go back in time and make a single change to
the BITMAPINFOHEADER structure, I'd add a flag to indicate that the DIB image is gray-shaded, the DIB has no
color table, and the pixel values directly indicate the gray level.

Palletized 8-bit color DIBs will generally use the whole color table and thus have a biClrUsed field of 0 or 256.
However, you'll also encounter some that have a smaller number of colors—for example, 236. This is in
recognition of the fact that programs usually can change only 236 entries in the Windows color palette to display
these DIBs accurately, as I'll discuss in the next chapter.

Encountering nonzero values of biXPelsPerMeter and biYPelsPerMeter will be rare. Also rare will be encountering a
biClrImportant field that is something other than 0 or the value of biClrUsed .

DIB Compression

Earlier I delayed discussion of the biCompression and biSizeImage fields in the BITMAPINFOHEADER. Now's the
time to examine these values.

The biCompression field can be one of four constants—BI_RGB, BI_RLE8, BI_RLE4, or BI_BITFIELDS—defined in
the WINGDI.H header file as the values 0 through 3, respectively. This field serves two purposes: For 4-bit and 8-
bit DIBs, it indicates that the pixel bits have been compressed using a type of run-length encoding. For 16-bit and
32-bit DIBs, it indicates whether color masking has been used to encode the pixel bits. This second feature was
introduced in Windows 95.

Let's examine the RLE compression first:

For 1-bit DIBs, the biCompression field is always BI_RGB.

For 4-bit DIBs, the biCompression field can be either BI_RGB or BI_RLE4.

For 8-bit DIBs, the biCompression field can be either BI_RGB or BI_RLE8.

For 24-bit DIBs, the biCompression field is always BI_RGB.

If the value is BI_RGB, the pixel bits are stored as described for OS/2-compatible DIBs. Otherwise, the pixel bits
are compressed using run-length encoding.

Run-length encoding (RLE) is one of the simplest forms of data compression. It is based on the knowledge that
DIB images often have strings of identical pixels in a row. RLE saves space by encoding the value of the repeating
pixel and the number of times it is repeated. The RLE scheme used for DIBs goes somewhat beyond this in
allowing a sparse definition of the rectangular DIB image. That is, some areas of the rectangle are left undefined.
This could be used for rendering nonrectangular images.

Run-length encoding is conceptually simpler with 8-bit DIBs, so let's begin with those. The following chart will help
you in understanding how the pixel bits are encoded when the biCompression field equals BI_RGB8.
Byte 1
Byte 2
Byte 3
Byte 4
Meaning
00
00
End of row
00
01
End of image
00
02
dx
dy
Move to(x +dx
00
n = 03 through FF
Use next n pixels
n = 01 through FF
pixel
Repeat pixel n times

When decoding a compressed DIB, look at the DIB data bytes in pairs, as indicated by the "Byte 1" and "Byte 2"
headings in this table. The table is arranged in increasing values of these bytes, but it makes more sense to
discuss the table from the bottom up.

If the first byte is nonzero (the case shown in the last row of the table), then that's a run-length repetition factor.
The following pixel value is repeated that many times. For example, the byte pair

0x05 0x27

decodes to the pixel values:

0x27 0x27 0x27 0x27 0x27

The DIB will, of course, have much data that does not repeat from pixel to pixel. That's the case handled by the
second-to-last row of the table. It indicates a number of pixels that follow that should be used literally. For

example, consider the sequence

0x00 0x06 0x45 0x32 0x77 0x34 0x59 0x90

It decodes to the pixel values

0x45 0x32 0x77 0x34 0x59 0x90

These sequences are always aligned on 2-byte boundaries. If the second byte is odd, then there's an extra byte in
the sequence that is unused. For example, the sequence

0x00 0x05 0x45 0x32 0x77 0x34 0x59 0x00

decodes to the pixel values

0x45 0x32 0x77 0x34 0x59

That's how the run-length encoding works. As is obvious, if there are no repeating pixels in the DIB image, then
using this compression technique will actually increase the size of the DIB file.

The first three rows of the table shown above indicate how some parts of the rectangular DIB image can be left
undefined. Imagine yourself, or a program you wrote, decompressing a compressed DIB. During this
decompression routine, you will maintain a number pair (y ,x) starting at (0,0). You will increment x by 1 every
time you decode a pixel, resetting x to 0 and incrementing y every time you finish a row.

When you encounter the byte 0x00 followed by 0x02, you read the next two bytes and add them as unsigned
increments to your current x and y values and then continue decoding. When you read the byte 0x00 followed by
0x00, you're done with the row. Set x equal to 0 and increment y . When you encounter the byte 0x00 followed by
0x01, you're done decoding. These codes allow the DIB to contain areas that are not defined, which is sometimes
useful for encoding a nonrectangular image or for making digital animations or movies (because each frame
mostly has information from the previous frame and need not be recoded).

For 4-bit DIBs, the encoding is generally the same but is complicated somewhat because there isn't a one-to-one
correspondence between bytes and pixels.

If the first byte you read is nonzero, that's a repetition factor n . The second byte (which is to be repeated)
contains 2 pixels, which alternate in the decoded sequence for n pixels. For example, the pair

0x07 0x35

is decoded as

0x35 0x35 0x35 0x3?

where the question mark indicates that the pixel is as yet unknown. If the pair 0x07 0x35 shown above is followed
by the pair

0x05 0x24

then the full decoded sequence becomes

0x35 0x35 0x35 0x32 0x42 0x42

If the first byte in the pair is 0x00 and the second is 0x03 or greater, use the number of pixels indicated by the
second byte. For example, the sequence

0x00 0x05 0x23 0x57 0x10 0x00

decodes to

0x23 0x57 0x1?

Notice that the encoded sequence must be padded to have an even number of bytes.

Whenever the biCompression field is BI_RLE4 or BI_RLE8, the biSizeImage field indicates the size of the DIB pixel
data in bytes. If the biCompression field is BI_RGB, then biSizeImage is usually 0, but it could be set to biHeight
times the byte length of the row, as calculated earlier in this chapter.

The current documentation says that "Top-down DIBs cannot be compressed." The top-down DIBs are those with
negative biHeight fields.

Color Masking

The biCompression field is also used in conjunction with the 16-bit and 32-bit DIBs that were new with Windows
95. For these DIBs, the biCompression field can be either BI_RGB or BI_BITFIELDS (defined as equaling the value
3).

As a review, let's look at the pixel format of the 24-bit DIB, which always has a biCompression field equal to
BI_RGB:

That is, each row is basically an array of RGBTRIPLE structures, with possible padding at the end of the row so
that the number of bytes in the row is a multiple of 4.

For a 16-bit DIB with a biCompression field of BI_RGB, each pixel requires two bytes. The colors are encoded like
so:

Each color uses five bits. For the first pixel in the row, the blue value is the least-significant five bits of the first

byte. The green value requires bits from the first and second byte: the two most-significant bits of the green value
are the two least-significant bits of the second byte, and the three least-significant bits of the green value are the
three most-significant bits of the first byte. The red value is bits 2 through 6 of the second byte. The most-
significant bit of the second byte is 0.

This makes a whole lot more sense when you access the pixel value as a 16-bit word. Because the least-significant
bytes of multibyte values are stored first, the pixel word looks like this:

Suppose you have the 16-bit pixel stored in wPixel . You can calculate the red, green, and blue values like so:

Red = ((0x7C00 & wPixel) >> 10) << 3 ;
Green = ((0x03E0 & wPixel) >> 5) << 3 ;
Blue = ((0x001F & wPixel) >> 0) << 3 ;

First, the pixel undergoes a bitwise AND operation with a mask value. The result is shifted right 10 bits for red, 5
bits for green, and 0 bits for blue. I will be referring to these shift values as "right-shift" values. This produces
color values in the range 0x00 through 0x1F. The values must then be shifted left 3 bits so that the resultant color
values range from 0x00 through 0xF8. I will refer to these shift values as "left-shift" values.

And keep this in mind: if the pixel width of a 16-bit DIB is odd, each row will have an extra 2 bytes padded at the
end to achieve a byte width divisible by 4.

For a 32-bit DIB, if biCompression equals BI_RGB, each pixel requires 4 bytes. The blue color value is the first
byte, green is the second, red is the third, and the fourth byte equals 0. In other words, the pixels are an array of
RGBQUAD structures. Because each pixel is 4 bytes in length, padding is never required at the end of the row.

If you access each pixel as a 32-bit double word, it looks like this:

Or, if dwPixel is the 32-bit double word,

Red = ((0x00FF0000 & dwPixel) >> 16) << 0 ;
Green = ((0x0000FF00 & dwPixel) >> 8) << 0 ;
Blue = ((0x000000FF & dwPixel) >> 0) << 0 ;

The left-shift values are all zero because the color values are already maximized at 0xFF. Be aware that this
double word is not consistent with the 32-bit COLORREF value used to specify RGB color in Windows GDI function
calls. In the COLORREF value, red is the least-significant byte.

So far, we've covered the default case for 16-bit and 32-bit DIBs when the biCompression field is BI_RGB. If the
biCompression field is BI_BITFIELDS, the BITMAPINFOHEADER structure of the DIB is immediately followed by
three 32-bit color masks, the first for red, the second for green, and the third for blue. You use the C bitwise AND
operator (&) to apply these masks to the 16-bit or 32-bit pixel value. You then shift the result right by right-shift
values, which are unfortunately unknown until you examine the masks themselves. The rules regarding these
color masks should be obvious when you think about them: the 1 bits in each color mask must be contiguous, and
the 1 bits must not overlap among the three masks.

Let's take an example. You have a 16-bit DIB, and the biCompression field is BI_BITFIELDS. You examine the first
three double words following the BITMAPINFOHEADER structure:

0x0000F800
0x000007E0
0x0000001F

Note that only bits among the bottom 16 bits are set to 1 because this is a 16-bit DIB. You set the variables
dwMask[0] , dwMask[1] , and dwMask[2] to these values. Now you write little routines that calculate right-shift
and left-shift values from the masks:

int MaskToRShift (DWORD dwMask)
{
 int iShift ;

 if (dwMask == 0)
 return 0 ;

 for (iShift = 0 ; !(dwMask & 1) ; iShift++)
 dwMask >>= 1 ;

 return iShift ;
}

int MaskToLShift (DWORD dwMask)
{
 int iShift ;

 if (dwMask == 0)
 return 0 ;

 while (!(dwMask & 1))
 dwMask >>= 1 ;

 for (iShift = 0 ; dwMask & 1 ; iShift++)
 dwMask >>= 1 ;

 return 8 - iShift ;
}

Then you call the MaskToRShift function three times to obtain right-shift values:

iRShift[0] = MaskToRShift (dwMask[0]) ;
iRShift[1] = MaskToRShift (dwMask[1]) ;
iRShift[2] = MaskToRShift (dwMask[2]) ;

You get values 11, 5, and 0, respectively. You can then call MaskToLShift similarly:

iLShift[0] = MaskToLShift (dwMask[0]) ;

iLShift[1] = MaskToLShift (dwMask[1]) ;
iLShift[2] = MaskToLShift (dwMask[2]) ;

You get values of 3, 2, and 3, respectively. Now you can extract each color from the pixel value:

Red = ((dwMask[0] & wPixel) >> iRShift[0]) << iLShift[0] ;
Green = ((dwMask[1] & wPixel) >> iRShift[1]) << iLShift[1] ;
Blue = ((dwMask[2] & wPixel) >> iRShift[2]) << iLShift[2] ;

The procedure is the same for 32-bit DIBs except that the color masks can be greater than 0x0000FFFF, which is
the maximum mask value for 16-bit DIBs.

Note that with either 16-bit or 32-bit DIBs, the red, green, and blue color values can be greater than 255. In fact,
in a 32-bit DIB, if two of the masks are 0, the third could be 0xFFFFFFFF, for a 32-bit color value! Of course, this is
somewhat ridiculous, so I wouldn't worry about it too much.

Unlike Windows NT, Windows 95 and Windows 98 have some restrictions when using color masks. The only
allowable values are shown in the table below.
16-Bit DIB
16-Bit DIB
32-Bit DIB
Red Mask
0x00007C00
0x0000F800
0x00FF0000
Green Mask
0x000003E0
0x000007E0
0x0000FF00
Blue Mask
0x0000001F
0x0000001F
0x000000FF
Shorthand
5-5-5
5-6-5
8-8-8

In other words, you can use the two sets of masks that you would get by default when biCompression is BI_RGB,
plus the set of masks I showed above in the example. The bottom row in the table shows a shorthand notation for
indicating the number of red, green, and blue bits per pixel.

The Version 4 Header

We're not quite finished yet. As I mentioned, Windows 95 changed some of the original BITMAPINFOHEADER field
definitions. Windows 95 also included a new expanded information header called BITMAPV4HEADER. The name of
this structure is clear when you realize that Windows 95 might have been called Windows 4.0 and that this
structure was also supported by Windows NT 4.0.

typedef struct
{
DWORD bV4Size ; // size of the structure = 120
LONG bV4Width ; // width of the image in pixels
LONG bV4Height ; // height of the image in pixels
WORD bV4Planes ; // = 1

WORD bV4BitCount ; // bits per pixel (1, 4, 8, 16, 24, or 32)
DWORD bV4Compression ; // compression code
DWORD bV4SizeImage ; // number of bytes in image
LONG bV4XPelsPerMeter ; // horizontal resolution
LONG bV4YPelsPerMeter ; // vertical resolution
DWORD bV4ClrUsed ; // number of colors used
DWORD bV4ClrImportant ; // number of important colors
DWORD bV4RedMask ; // Red color mask
DWORD bV4GreenMask ; // Green color mask
DWORD bV4BlueMask ; // Blue color mask
DWORD bV4AlphaMask ; // Alpha mask
DWORD bV4CSType ; // color space type
CIEXYZTRIPLE bV4Endpoints ; // XYZ values
DWORD bV4GammaRed ; // Red gamma value
DWORD bV4GammaGreen ; // Green gamma value
DWORD bV4GammaBlue ; // Blue gamma value
}
BITMAPV4HEADER, * PBITMAPV4HEADER ;

Notice that the first 11 fields are the same as in the BITMAPINFOHEADER structure. The last five fields support the
image color-matching technology of Windows 95 and Windows NT 4.0. Unless you use the last four fields of the
BITMAPV4HEADER structure, you should use BITMAPINFOHEADER (or BITMAPV5HEADER) instead.

The bV4RedMask , bV4GreenMask , and bV4BlueMask values are applicable only for 16-bit and 32-bit DIBs when
the bV4Compression field equals BI_BITFIELDS. These serve the same function as the color masks defined in the
BITMAPINFOHEADER structure and actually occur in the same place in the DIB file as when using the original
structure except that here they are explicit structure fields. As far as I know, the bV4AlphaMask field is not used.

The remaining fields in the BITMAPV5HEADER structure involve Windows Image Color Management, which I'm
afraid is a subject beyond the scope of this book. However, a little background may help get you started.

The problem with using an RGB scheme for color is that it is dependent on the technologies of video monitors,
color cameras, and color scanners. If a color is specified as the RGB value (255, 0, 0), all that means is that a
maximum voltage should be applied to the red electron gun in a cathode ray tube. An RGB value of (128, 0, 0)
indicates that half the voltage is to be applied. Monitors can differ in their response. Moreover, printers use a
different method of color that involves combinations of cyan, magenta, yellow, and black inks. These methods are
known as CMY (cyan-magenta-yellow) and CMYK (cyan-magenta-yellow-black). Mathematical formulas can
translate RGB values to CMY and CMYK, but there is no guarantee that the printer color will match a monitor color.
Image Color Management is an attempt to relate colors to device-independent standards.

The phenomenon of color is related to the wavelengths of visible light, which range from 380 nanometers (blue) to
780 nm (red). Any light that we visually perceive is made up of combinations of different amounts of various
wavelengths in the visible spectrum. In 1931, the Commission Internationale de L'Éclairage (International
Commission on Illumination) or CIE developed a method for scientifically quantifying color. This involves using

three color-matching functions (named , , and) that in their abridged form (with values for every 5 nm) are
documented in CIE Publication 15.2-1986, "Colorimetry, Second Edition," Table 2.1.

A spectrum (S) of a color is a set of values that indicate the strength of each wavelength. If a spectrum is known,
the color-matching functions can be applied to the spectrum to calculate X , Y , and Z :

These values are called Big X , Big Y , and Big Z . The color-matching function is equivalent to the response of
the human eye to the range of light in the visible spectrum. (It looks like a bell curve that goes to 0 at 380 nm
and 780 nm.) Y is called the CIE Luminance because it indicates an overall intensity of the light.

If you're using the BITMAPV5HEADER structure, the bV4CSType field must be set to LCS_CALIBRATED_RGB,
which is equal to 0. The next four fields must be set to valid values.

The CIEXYZTRIPLE structure is defined like so:

typedef struct tagCIEXYZTRIPLE
{
 CIEXYZ ciexyzRed ;
 CIEXYZ ciexyzGreen ;
 CIEXYZ ciexyzBlue ;
}
CIEXYZTRIPLE, * LPCIEXYZTRIPLE ;

And the CIEXYZ structure is

typedef struct tagCIEXYZ
{
 FXPT2DOT30 ciexyzX ;
 FXPT2DOT30 ciexyzY ;
 FXPT2DOT30 ciexyzZ ;
}
CIEXYZ, * LPCIEXYZ ;

The three fields are defined as FXPT2DOT30 values, which means that they are interpreted as fixed-point values
with a 2-bit integer part and a 30-bit fractional part. Thus, 0x40000000 is 1.0 and 0x48000000 is 1.5. The
maximum value 0xFFFFFFFF is just a smidgen under 4.0.

The bV4Endpoints field provides three X , Y , and Z values that correspond to the RGB colors (255, 0, 0), (0, 255,
0), and (0, 0, 255). These values should be inserted by the application that creates the DIB to indicate the device-

independent meaning of these RGB colors.

The remaining three fields of BITMAPV4HEADER refer to "gamma." Gamma (the lowercase Greek letter g) refers to
a nonlinearity in the specification of color levels. In a DIB, levels of red, green, and blue range from 0 through
255. On the video board, these three digital values are converted to three analog voltages that go to the monitor.
The voltages determine the intensity of each pixel. However, due to characteristics of the electronics of the
electron guns in a cathode ray tube, the intensity (I) of the pixel is not linearly related to the voltage (V).
Instead, the relationship is

I = (V + e)g

where e is the black-level of the monitor set by the monitor's Brightness control. (Preferably this is 0.) The
exponent g is set by the monitor's Picture or Contrast control. For most monitors, g is about 2.5.

To compensate for this nonlinearity, video cameras have traditionally included "gamma correction" in their
circuitry. The light input to a camera is modified by an exponent of 0.45. This implies a video display gamma of
about 2.2. (The higher gamma of video displays increases the contrast somewhat, which is usually not undesirable
because ambient light tends to lower contrast.)

This nonlinear response of video monitors is actually much more felicitous than it may at first seem. This is
because human response to light is also nonlinear. Earlier I mentioned that Y is called CIE Luminance. This is a
linear measure of light. The CIE also defines a Lightness value that approximates human perception. Lightness is
L* (pronounced "ell star") and is calculated from Y using the formulas

where Yn is a white level. The first part of the formula is a small linear segment. Generally, human perception of
lightness is related to the cube root of the linear luminance, which is indicated by the second formula. L* ranges
from 0 to 100. Each integral increment of L* is generally assumed to be the smallest change in lightness that
humans can perceive.

It is preferable to code light intensities based on perceptual lightness rather than linear luminance. This keeps the
number of bits down to a reasonable level and also reduces noise in analog circuity.

Let's go through the whole process. The pixel value (P) ranges from 0 to 255. This is linearly converted to a
voltage level, which we can assume is normalized to a value between 0.0 and 1.0. Assuming the monitor's black
level is set to 0, the intensity of the pixel is

where g is probably about 2.5. Human perception of lightness (L*) is based on the cube root of this intensity and
ranges from 0 to 100, so approximately

That exponent will be about 0.85 or so. If the exponent were 1, then CIE lightness would be perfectly matched to
pixel values. We don't have quite that situation, but it's much closer than if the pixel values indicated linear
luminance.

The last three fields of the BITMAPV4HEADER provide a way for programs that create a DIB to indicate a gamma
value assumed for the pixel values. These values are interpreted as 16-bit integer values and 16-bit fractional
values. For example, 0x10000 is 1.0. If the DIB is created by capturing a real-world image, this gamma value is
probably implied by the capture hardware and will probably be 2.2 (encoded as 0x23333). If the DIB is generated
algorithmically by a program, the program would convert any linear luminances it uses to CIE lightness values
using a power function. The inverse of the exponent would be the gamma encoded in the DIB.

The Version 5 Header

Programs written for Windows 98 and Windows NT 5.0 can use DIBs that have a new BITMAPV5HEADER
information structure:

typedef struct
{
DWORD bV5Size ; // size of the structure = 120
LONG bV5Width ; // width of the image in pixels
LONG bV5Height ; // height of the image in pixels
WORD bV5Planes ; // = 1
WORD bV5BitCount ; // bits per pixel (1, 4, 8, 16, 24, or 32)
DWORD bV5Compression ; // compression code
DWORD bV5SizeImage ; // number of bytes in image
LONG bV5XPelsPerMeter ; // horizontal resolution
LONG bV5YPelsPerMeter ; // vertical resolution
DWORD bV5ClrUsed ; // number of colors used
DWORD bV5ClrImportant ; // number of important colors
DWORD bV5RedMask ; // Red color mask
DWORD bV5GreenMask ; // Green color mask
DWORD bV5BlueMask ; // Blue color mask
DWORD bV5AlphaMask ; // Alpha mask
DWORD bV5CSType ; // color space type
CIEXYZTRIPLE bV5Endpoints ; // XYZ values
DWORD bV5GammaRed ; // Red gamma value
DWORD bV5GammaGreen ; // Green gamma value
DWORD bV5GammaBlue ; // Blue gamma value
DWORD bV5Intent ; // rendering intent
DWORD bV5ProfileData ; // profile data or filename
DWORD bV5ProfileSize ; // size of embedded data or filename
DWORD bV5Reserved ;
}
BITMAPV5HEADER, * PBITMAPV5HEADER ;

This has four new fields, only three of which are used. These fields support a proposal made by the International
Color Consortium (founded by Adobe, Agfa, Apple, Kodak, Microsoft, Silicon Graphics, Sun Microsystems, and
others) called the ICC Profile Format Specification . You can obtain a copy of this from http://www.icc.org .
Basically, each input (scanner or camera), output (printer or film recorder), and display (monitor) device is
associated with a profile that relates the native device-dependent colors (generally RGB or CMYK) to a device-
independent color specification, ultimately based on CIE XYZ values. These profiles have filenames with the
extension .ICM (for "image color management"). A profile can be embedded into a DIB file or linked from the DIB
file to indicate how the DIB was created. You can obtain more information about Image Color Management in
Windows at /Platform SDK/Graphics and Multimedia Services/Color Management.

The bV5CSType field in the BITMAPV5HEADER can take on several different values. If it's LCS_CALIBRATED_RGB,
then it's compatible with the BITMAPV4HEADER structure. The bV5Endpoints field and the gamma fields must be
valid.

If the bV5CSType field is LCS_sRGB, none of the remaining fields need to be set. The implied color space is a
"standard" RGB color space devised by Microsoft and Hewlett-Packard to attempt some relative device
independence, particularly across the Internet, without the bulk of profiles. This is documented at
http://www.color.org/contrib/sRGB.html .

If the bV5CSType field is LCS_WINDOWS_COLOR_SPACE, none of the remaining fields need be set. Windows uses

http://www.icc.org
http://www.color.org/contrib/sRGB.html

the color space implied by API function calls for displaying the bitmap.

If the bV5CSType field is PROFILE_EMBEDDED, the DIB file contains an ICC profile. If the field is
PROFILE_LINKED, the DIB file contains the fully qualified filename of an ICC profile. In either case, bV5ProfileData
is an offset from the beginning of the BITMAPV5HEADER to the start of the profile data or filename. The
bV5ProfileSize field gives the size of the data or filename. The endpoints and gamma fields need not be set.

Displaying DIB Information

It is now time to look at some code. We don't know enough to actually display a DIB just yet, but we can at least
display information about the DIB from the header structures. The DIBHEADS program shown in Figure 15-1 does
this.

Figure 15-1. The DIBHEADS program.

DIBHEADS.C

/*---
 DIBHEADS.C -- Displays DIB Header Information
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("DibHeads") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {

 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DIB Headers"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

void Printf (HWND hwnd, TCHAR * szFormat, ...)
{
 TCHAR szBuffer [1024] ;
 va_list pArgList ;

 va_start (pArgList, szFormat) ;
 wvsprintf (szBuffer, szFormat, pArgList) ;
 va_end (pArgList) ;

 SendMessage (hwnd, EM_SETSEL, (WPARAM) -1, (LPARAM) -1) ;
 SendMessage (hwnd, EM_REPLACESEL, FALSE, (LPARAM) szBuffer) ;
 SendMessage (hwnd, EM_SCROLLCARET, 0, 0) ;
}
void DisplayDibHeaders (HWND hwnd, TCHAR * szFileName)
{
 static TCHAR * szInfoName [] = { TEXT ("BITMAPCOREHEADER"),
 TEXT ("BITMAPINFOHEADER"),
 TEXT ("BITMAPV4HEADER"),
 TEXT ("BITMAPV5HEADER") } ;
 static TCHAR * szCompression [] = { TEXT ("BI_RGB"), TEXT ("BI_RLE8"),
 TEXT ("BI_RLE4"),
 TEXT ("BI_BITFIELDS"),
 TEXT ("unknown") } ;
 BITMAPCOREHEADER * pbmch ;
 BITMAPFILEHEADER * pbmfh ;
 BITMAPV5HEADER * pbmih ;

 BOOL bSuccess ;
 DWORD dwFileSize, dwHighSize, dwBytesRead ;
 HANDLE hFile ;
 int i ;
 PBYTE pFile ;
 TCHAR * szV ;

 // Display the file name

 Printf (hwnd, TEXT ("File: %s\r\n\r\n"), szFileName) ;

 // Open the file

 hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 {
 Printf (hwnd, TEXT ("Cannot open file.\r\n\r\n")) ;
 return ;
 }

 // Get the size of the file

 dwFileSize = GetFileSize (hFile, &dwHighSize) ;

 if (dwHighSize)
 {
 Printf (hwnd, TEXT ("Cannot deal with >4G files.\r\n\r\n")) ;
 CloseHandle (hFile) ;
 return ;
 }
 // Allocate memory for the file

 pFile = malloc (dwFileSize) ;

 if (!pFile)
 {
 Printf (hwnd, TEXT ("Cannot allocate memory.\r\n\r\n")) ;
 CloseHandle (hFile) ;
 return ;
 }

 // Read the file

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 bSuccess = ReadFile (hFile, pFile, dwFileSize, &dwBytesRead, NULL) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!bSuccess || (dwBytesRead != dwFileSize))
 {
 Printf (hwnd, TEXT ("Could not read file.\r\n\r\n")) ;
 CloseHandle (hFile) ;
 free (pFile) ;
 return ;
 }

 // Close the file

 CloseHandle (hFile) ;

 // Display file size

 Printf (hwnd, TEXT ("File size = %u bytes\r\n\r\n"), dwFileSize) ;

 // Display BITMAPFILEHEADER structure

 pbmfh = (BITMAPFILEHEADER *) pFile ;

 Printf (hwnd, TEXT ("BITMAPFILEHEADER\r\n")) ;
 Printf (hwnd, TEXT ("\t.bfType = 0x%X\r\n"), pbmfh->bfType) ;
 Printf (hwnd, TEXT ("\t.bfSize = %u\r\n"), pbmfh->bfSize) ;
 Printf (hwnd, TEXT ("\t.bfReserved1 = %u\r\n"), pbmfh->bfReserved1) ;
 Printf (hwnd, TEXT ("\t.bfReserved2 = %u\r\n"), pbmfh->bfReserved2) ;
 Printf (hwnd, TEXT ("\t.bfOffBits = %u\r\n\r\n"), pbmfh->bfOffBits) ;

 // Determine which information structure we have

 pbmih = (BITMAPV5HEADER *) (pFile + sizeof (BITMAPFILEHEADER)) ;

 switch (pbmih->bV5Size)
 {
 case sizeof (BITMAPCOREHEADER): i = 0 ; break ;
 case sizeof (BITMAPINFOHEADER): i = 1 ; szV = TEXT ("i") ; break ;
 case sizeof (BITMAPV4HEADER): i = 2 ; szV = TEXT ("V4") ; break ;
 case sizeof (BITMAPV5HEADER): i = 3 ; szV = TEXT ("V5") ; break ;
 default:
 Printf (hwnd, TEXT ("Unknown header size of %u.\r\n\r\n"),
 pbmih->bV5Size) ;
 free (pFile) ;
 return ;
 }

 Printf (hwnd, TEXT ("%s\r\n"), szInfoName[i]) ;

 // Display the BITMAPCOREHEADER fields

 if (pbmih->bV5Size == sizeof (BITMAPCOREHEADER))
 {
 pbmch = (BITMAPCOREHEADER *) pbmih ;

 Printf (hwnd, TEXT ("\t.bcSize = %u\r\n"), pbmch->bcSize) ;

 Printf (hwnd, TEXT ("\t.bcWidth = %u\r\n"), pbmch->bcWidth) ;
 Printf (hwnd, TEXT ("\t.bcHeight = %u\r\n"), pbmch->bcHeight) ;
 Printf (hwnd, TEXT ("\t.bcPlanes = %u\r\n"), pbmch->bcPlanes) ;
 Printf (hwnd, TEXT ("\t.bcBitCount = %u\r\n\r\n"), pbmch->bcBitCount) ;
 free (pFile) ;
 return ;
 }

 // Display the BITMAPINFOHEADER fields

 Printf (hwnd, TEXT ("\t.b%sSize = %u\r\n"), szV, pbmih->bV5Size) ;
 Printf (hwnd, TEXT ("\t.b%sWidth = %i\r\n"), szV, pbmih->bV5Width) ;
 Printf (hwnd, TEXT ("\t.b%sHeight = %i\r\n"), szV, pbmih->bV5Height) ;
 Printf (hwnd, TEXT ("\t.b%sPlanes = %u\r\n"), szV, pbmih->bV5Planes) ;
 Printf (hwnd, TEXT ("\t.b%sBitCount = %u\r\n"), szV, pbmih->bV5BitCount) ;
 Printf (hwnd, TEXT ("\t.b%sCompression = %s\r\n"), szV,
 szCompression [min (4, pbmih->bV5Compression)]) ;
 Printf (hwnd, TEXT ("\t.b%sSizeImage = %u\r\n"), szV, pbmih->bV5SizeImage) ;
 Printf (hwnd, TEXT ("\t.b%sXPelsPerMeter = %i\r\n"), szV,
 pbmih->bV5XPelsPerMeter) ;
 Printf (hwnd, TEXT ("\t.b%sYPelsPerMeter = %i\r\n"), szV,
 pbmih->bV5YPelsPerMeter) ;
 Printf (hwnd, TEXT ("\t.b%sClrUsed = %i\r\n"), szV, pbmih->bV5ClrUsed) ;
 Printf (hwnd, TEXT ("\t.b%sClrImportant = %i\r\n\r\n"), szV,
 pbmih->bV5ClrImportant) ;

 if (pbmih->bV5Size == sizeof (BITMAPINFOHEADER))
 {
 if (pbmih->bV5Compression == BI_BITFIELDS)
 {
 Printf (hwnd, TEXT ("Red Mask = %08X\r\n"),
 pbmih->bV5RedMask) ;
 Printf (hwnd, TEXT ("Green Mask = %08X\r\n"),
 pbmih->bV5GreenMask) ;
 Printf (hwnd, TEXT ("Blue Mask = %08X\r\n\r\n"),
 pbmih->bV5BlueMask) ;
 }
 free (pFile) ;
 return ;
 }

 // Display additional BITMAPV4HEADER fields

 Printf (hwnd, TEXT ("\t.b%sRedMask = %08X\r\n"), szV,
 pbmih->bV5RedMask) ;
 Printf (hwnd, TEXT ("\t.b%sGreenMask = %08X\r\n"), szV,
 pbmih->bV5GreenMask) ;
 Printf (hwnd, TEXT ("\t.b%sBlueMask = %08X\r\n"), szV,
 pbmih->bV5BlueMask) ;
 Printf (hwnd, TEXT ("\t.b%sAlphaMask = %08X\r\n"), szV,
 pbmih->bV5AlphaMask) ;
 Printf (hwnd, TEXT ("\t.b%sCSType = %u\r\n"), szV,
 pbmih->bV5CSType) ;

 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzRed.ciexyzX = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzRed.ciexyzX) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzRed.ciexyzY = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzRed.ciexyzY) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzRed.ciexyzZ = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzRed.ciexyzZ) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzGreen.ciexyzX = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzGreen.ciexyzX) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzGreen.ciexyzY = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzGreen.ciexyzY) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzGreen.ciexyzZ = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzGreen.ciexyzZ) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzBlue.ciexyzX = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzBlue.ciexyzX) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzBlue.ciexyzY = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzBlue.ciexyzY) ;
 Printf (hwnd, TEXT ("\t.b%sEndpoints.ciexyzBlue.ciexyzZ = %08X\r\n"),
 szV, pbmih->bV5Endpoints.ciexyzBlue.ciexyzZ) ;
 Printf (hwnd, TEXT ("\t.b%sGammaRed = %08X\r\n"), szV,
 pbmih->bV5GammaRed) ;
 Printf (hwnd, TEXT ("\t.b%sGammaGreen = %08X\r\n"), szV,
 pbmih->bV5GammaGreen) ;
 Printf (hwnd, TEXT ("\t.b%sGammaBlue = %08X\r\n\r\n"), szV,
 pbmih->bV5GammaBlue) ;

 if (pbmih->bV5Size == sizeof (BITMAPV4HEADER))
 {
 free (pFile) ;
 return ;
 }

 // Display additional BITMAPV5HEADER fields

 Printf (hwnd, TEXT ("\t.b%sIntent = %u\r\n"), szV, pbmih->bV5Intent) ;
 Printf (hwnd, TEXT ("\t.b%sProfileData = %u\r\n"), szV,
 pbmih->bV5ProfileData) ;
 Printf (hwnd, TEXT ("\t.b%sProfileSize = %u\r\n"), szV,
 pbmih->bV5ProfileSize) ;
 Printf (hwnd, TEXT ("\t.b%sReserved = %u\r\n\r\n"), szV,
 pbmih->bV5Reserved) ;

 free (pFile) ;
 return ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndEdit ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;

 switch (message)
 {
 case WM_CREATE:
 hwndEdit = CreateWindow (TEXT ("edit"), NULL,
 WS_CHILD | WS_VISIBLE | WS_BORDER |
 WS_VSCROLL | WS_HSCROLL |
 ES_MULTILINE | ES_AUTOVSCROLL | ES_READONLY,
 0, 0, 0, 0, hwnd, (HMENU) 1,
 ((LPCREATESTRUCT) lParam)->hInstance, NULL) ;

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
 return 0 ;

 case WM_SIZE:
 MoveWindow (hwndEdit, 0, 0, LOWORD (lParam), HIWORD (lParam), TRUE) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:
 if (GetOpenFileName (&ofn))
 DisplayDibHeaders (hwndEdit, szFileName) ;

 return 0 ;
 }

 break ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;

DIBHEADS.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

//
// Accelerator

DIBHEADS ACCELERATORS DISCARDABLE
BEGIN
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
END

//
// Menu

DIBHEADS MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open\tCtrl+O", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by DibHeads.rc

#define IDM_FILE_OPEN 40001

This program has a short WndProc function that creates a read-only edit window filling its client area and that
processes File Open commands from the menu. It uses the standard File Open dialog box invoked from the
GetOpenFileName function and then calls the large function DisplayDibHeaders . This function reads the entire DIB
file into memory and displays all the header information field by field.

Displaying and Printing

Bitmaps are for looking at. In this section, we'll begin by looking at the two functions that Windows supports for
displaying a DIB on the video display or a printer page. For better performance, you may eventually prefer a more
roundabout method for displaying bitmaps that I'll discuss later in this chapter. But these two functions are a
logical first start.

The two functions are called SetDIBitsToDevice (pronounced "set dee eye bits to device") and StretchDIBits
("stretch dee eye bits"). Each function uses a DIB stored in memory and can display the entire DIB or a
rectangular portion of it. When you use SetDIBitsToDevice , the size of the displayed image in pixels will be the
same as the pixel size of the DIB. For example, a 640-by-480 DIB will cover your entire standard VGA screen, but
on your 300-dpi laser printer it will be only about 2.1 by 1.6 inches. The StretchDIBits function can stretch or
shrink the row and column dimension of a DIB to display it in a particular size on the output device.

Digging into the DIB

When you call one of the two functions to display a DIB, you need several pieces of information about the image.
As I discussed earlier, DIB files contain the following sections:

A DIB file can be loaded into memory. If the entire file less the file header is stored in a contiguous block of
memory, a pointer to the beginning of the block (which is the beginning of the information header) is said to
address a packed DIB . (See below.)

This is the format you use when transferring a DIB through the clipboard, and it's also the format you use when
creating a brush from a DIB. The packed DIB is a convenient way to store a DIB in memory because the entire
DIB is referenced by a single pointer (for example, pPackedDib), which you can define as a pointer to a BYTE.
Using the structure definitions shown earlier in this chapter, you can get at all the information stored in the DIB,
including the color table and the individual pixel bits.

However, getting at much of this information requires several lines of code. For example, you can't simply access
the pixel width of the DIB using the statement

iWidth = ((PBITMAPINFOHEADER) pPackedDib)->biWidth ;

It's possible that the DIB is in the OS/2-compatible format. In that format, the packed DIB begins with a
BITMAPCOREHEADER structure and the pixel width and height of the DIB are stored as 16-bit WORDs rather than
32-bit LONGs. So, you first have to check if the DIB is in the old format and then proceed accordingly:

if (((PBITMAPCOREHEADER) pPackedDib)->bcSize == sizeof (BITMAPCOREHEADER))
 iWidth = ((PBITMAPCOREHEADER) pPackedDib)->bcWidth ;
else
 iWidth = ((PBITMAPINFOHEADER) pPackedDib)->biWidth ;

This isn't all that bad, of course, but it's certainly not as clean as we'd prefer.

Now here's a fun exercise: given a pointer to a packed DIB, find the value of the pixel at coordinate (5, 27). Even
if you assume that the DIB is not in the OS/2-compatible format, you need to know the width, height, and bit
count of the DIB. You need to calculate the byte length of each row of pixels. You need to determine the number
of entries in the color table, and whether the color table includes three 32-bit color masks. And you need to check
whether the DIB is compressed, in which case the pixel is not directly addressable.

If you need to directly access all the pixels of the DIB (as you do when performing many image-processing jobs),
this can add up to quite a bit of processing time. For this reason, while maintaining a pointer to a packed DIB may
be convenient, it certainly doesn't lend itself to efficient code. An excellent solution is defining a C++ class for
DIBs that includes enough member data to allow the very speedy random access of DIB pixels. However, since I
promised at the outset of this book that you need not know any C++, I'll show you a C solution instead in the next
chapter.

For the SetDIBitsToDevice and StretchDIBits functions, the information you need includes a pointer to the
BITMAPINFO structure of the DIB. As you'll recall, the BITMAPINFO structure comprises the BITMAPINFOHEADER
structure and the color table. So, this is simply a pointer to the packed DIB with appropriate casting.

The functions also require a pointer to the pixel bits. This is derivable from information in the information header,
although the code is not pretty. Notice that this pointer can be calculated much more easily when you have access
to the bfOffBits field of the BITMAPFILEHEADER structure. The bfOffBits field indicates the offset from the
beginning of the DIB file to the pixel bits. You could simply add this offset to the BITMAPINFO pointer and then
subtract the size of the BITMAPFILEHEADER structure. However, this doesn't help when you get a pointer to a
packed DIB from the clipboard, because you don't have a BITMAPFILEHEADER structure. This diagram shows the
two pointers you need:

The SetDIBitsToDevice and StretchDIBits functions require two pointers to the DIB because the two sections do

not have to be in one contiguous block of memory. You could have two blocks of memory like so:

Indeed, breaking a DIB into two memory blocks like this is quite useful. It's only because we're preferring for the
moment to work with packed DIBs that the entire DIB is stored in a single memory block.

Besides these two pointers, the SetDIBitsToDevice and StretchDIBits functions also usually require the pixel width
and height of the DIB. If you're displaying only part of the DIB, then you don't need these values explicitly, but
they'll define an upper limit for a rectangle you define within the array of DIB pixel bits.

Pixel to Pixel

The SetDIBitsToDevice function displays a DIB without any stretching or shrinking. Each pixel of the DIB is
mapped to a pixel of the output device. The image is always displayed correctly oriented—that is, with the top row
of the image on top. Any transforms that might be in effect for the device context determine the starting position
where the DIB is displayed but otherwise have no effect on the size or orientation of the image. Here's the
function:

iLines = SetDIBitsToDevice (
 hdc, // device context handle
 xDst, // x destination coordinate
 yDst, // y destination coordinate
 cxSrc, // source rectangle width
 cySrc, // source rectangle height
 xSrc, // x source coordinate
 ySrc, // y source coordinate
 yScan, // first scan line to draw
 cyScans, // number of scan lines to draw
 pBits, // pointer to DIB pixel bits
 pInfo, // pointer to DIB information
 fClrUse) ; // color use flag

Don't be too put off by the number of arguments. For most purposes, the function is easier to use than it initially
appears. For other purposes, well…it's a mess. But we'll work it out.

As usual for GDI display functions, the first argument to SetDIBitsToDevice is the handle of the device context
indicating the device on which you want to display the DIB. The next two arguments, xDst and yDst , are logical
coordinates of the output device and indicate the coordinate where the top left corner of the DIB image is to
appear. (By "top" I mean the visual top of the image, not the first row of pixels in the DIB.) Note that these are
logical coordinates, so they are subject to any mapping mode that may be in effect or—in the case of Windows
NT—any transform you may have set. In the default MM_TEXT mapping mode, you would set both these

arguments equal to 0 to display the DIB image flush against the left side and top of the display surface.

You can display the entire DIB image or only part of it. That's the purpose of the next four arguments. But here's
where the upside-down orientation of DIB pixel data creates some real perversion that I'll discuss shortly. For
now, be aware that to display the entire DIB, you set xSrc and ySrc equal to 0 and cxSrc and cySrc equal to the
pixel width and height of the DIB, respectively. Note that because the biHeight field of the BITMAPINFOHEADER
structure will be negative for top-down DIBs, cySrc should be set to the absolute value of the biHeight field.

The documentation of this function (/Platform SDK/Graphics and Multimedia Services/GDI/Bitmaps/Bitmap
Reference/Bitmap Functions/SetDIBitsToDevice) says that the xSrc , ySrc , cxSrc , and cySrc arguments are in
logical units. This is not true. They are pixel coordinates and dimensions. It makes no sense for the pixels within a
DIB to have logical coordinates and units. Moreover, regardless of the mapping mode, a DIB displayed on an
output device will always be cxSrc pixels wide and cySrc pixels high.

Let me also skip a detailed discussion of the next two arguments, yScan and cyScan , for now. These arguments
let you reduce memory requirements by displaying a DIB sequentially a bit at a time as you read it from a disk file
or a modem connection. Usually, you set yScan to 0 and cyScan to the height of the DIB.

The pBits argument is a pointer to the DIB pixel bits. The pInfo argument is a pointer to the BITMAPINFO
structure of the DIB. Although the address of the BITMAPINFO structure is the same as the address of the
BITMAPINFOHEADER structure, the SetDIBitsToDevice function is defined to use the BITMAPINFO structure as a
subtle hint: for 1-bit, 4-bit, and 8-bit DIBs, the bitmap information header must be followed by a color table.
Although defined as a pointer to a BITMAPINFO structure, this argument can also be a pointer to a
BITMAPCOREINFO, BITMAPV4HEADER, or BITMAPV5HEADER structure.

The last argument is either DIB_RGB_COLORS or DIB_PAL_COLORS, defined in WINGDI.H as 0 and 1,
respectively. For now you'll use DIB_RGB_COLORS, which means that the DIB contains a color table. The
DIB_PAL_COLORS flag indicates that the color table in the DIB has been replaced with 16-bit indices into a logical
color palette selected and realized in a device context. We'll learn about this option in the next chapter. For now,
use DIB_RGB_COLORS, or simply 0 if you're lazy.

The SetDIBitsToDevice function returns the number of scan lines it displays.

So, to call SetDIBitsToDevice to display an entire DIB image, you'll need the following information:

hdc The device context handle to the destination surface.

xDst and yDst The destination coordinates of the top left corner of the image.

cxDib and cyDib The pixel width and height of the DIB, where cyDib is the absolute value of the biHeight
field in the BITMAPINFOHEADER structure.

pInfo and pBits Pointers to the bitmap information section and the pixel bits.

You then call SetDIBitsToDevice like so:

SetDIBitsToDevice (
 hdc, // device context handle
 xDst, // x destination coordinate
 yDst, // y destination coordinate
 cxDib, // source rectangle width
 cyDib, // source rectangle height
 0, // x source coordinate
 0, // y source coordinate
 0, // first scan line to draw
 cyDib, // number of scan lines to draw
 pBits, // pointer to DIB pixel bits
 pInfo, // pointer to DIB information
 0) ; // color use flag

So, out of the 12 arguments to the DIB, four are commonly set to 0 and another is repeated. The SHOWDIB1
program in Figure 15-2 displays a DIB by using the SetDIBitsToDevice function.

Figure 15-2. The SHOWDIB1 program.

SHOWDIB1.C

/*--
 SHOWDIB1.C -- Shows a DIB in the client area
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibfile.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib1") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;

 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPFILEHEADER * pbmfh ;
 static BITMAPINFO * pbmi ;
 static BYTE * pBits ;
 static int cxClient, cyClient, cxDib, cyDib ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 BOOL bSuccess ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 DibFileInitialize (hwnd) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_INITMENUPOPUP:
 EnableMenuItem ((HMENU) wParam, IDM_FILE_SAVE,
 pbmfh ? MF_ENABLED : MF_GRAYED) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:
 // Show the File Open dialog box

 if (!DibFileOpenDlg (hwnd, szFileName, szTitleName))

 return 0 ;

 // If there's an existing DIB, free the memory

 if (pbmfh)
 {
 free (pbmfh) ;
 pbmfh = NULL ;
 }
 // Load the entire DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pbmfh = DibLoadImage (szFileName) ;
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Invalidate the client area for later update

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (pbmfh == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 return 0 ;
 }
 // Get pointers to the info structure & the bits

 pbmi = (BITMAPINFO *) (pbmfh + 1) ;
 pBits = (BYTE *) pbmfh + pbmfh->bfOffBits ;

 // Get the DIB width and height

 if (pbmi->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 {
 cxDib = ((BITMAPCOREHEADER *) pbmi)->bcWidth ;
 cyDib = ((BITMAPCOREHEADER *) pbmi)->bcHeight ;
 }
 else
 {
 cxDib = pbmi->bmiHeader.biWidth ;
 cyDib = abs (pbmi->bmiHeader.biHeight) ;
 }
 return 0 ;

 case IDM_FILE_SAVE:
 // Show the File Save dialog box

 if (!DibFileSaveDlg (hwnd, szFileName, szTitleName))
 return 0 ;

 // Save the DIB to memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 bSuccess = DibSaveImage (szFileName, pbmfh) ;
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!bSuccess)
 MessageBox (hwnd, TEXT ("Cannot save DIB file"),
 szAppName, 0) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (pbmfh)
 SetDIBitsToDevice (hdc,
 0, // xDst
 0, // yDst
 cxDib, // cxSrc
 cyDib, // cySrc
 0, // xSrc
 0, // ySrc
 0, // first scan line
 cyDib, // number of scan lines
 pBits,
 pbmi,
 DIB_RGB_COLORS) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (pbmfh)
 free (pbmfh) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

DIBFILE.H

/*--
 DIBFILE.H -- Header File for DIBFILE.C

 --*/

void DibFileInitialize (HWND hwnd) ;
BOOL DibFileOpenDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName) ;
BOOL DibFileSaveDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName) ;

BITMAPFILEHEADER * DibLoadImage (PTSTR pstrFileName) ;

BOOL DibSaveImage (PTSTR pstrFileName, BITMAPFILEHEADER *) ;

DIBFILE.C

/*---------------------------------
 DIBFILE.C -- DIB File Functions

 ---------------------------------*/

#include <windows.h>
#include <commdlg.h>
#include "dibfile.h"

static OPENFILENAME ofn ;

void DibFileInitialize (HWND hwnd)
{
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0") \
 TEXT ("All Files (*.*)\0*.*\0\0") ;

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = NULL ; // Set in Open and Close functions
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = NULL ; // Set in Open and Close functions
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ; // Set in Open and Close functions
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;

 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
}
BOOL DibFileOpenDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName)
{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFile = pstrFileName ;
 ofn.lpstrFileTitle = pstrTitleName ;
 ofn.Flags = 0 ;

 return GetOpenFileName (&ofn) ;
}

BOOL DibFileSaveDlg (HWND hwnd, PTSTR pstrFileName, PTSTR pstrTitleName)
{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFile = pstrFileName ;
 ofn.lpstrFileTitle = pstrTitleName ;
 ofn.Flags = OFN_OVERWRITEPROMPT ;

 return GetSaveFileName (&ofn) ;
}

BITMAPFILEHEADER * DibLoadImage (PTSTR pstrFileName)
{
 BOOL bSuccess ;
 DWORD dwFileSize, dwHighSize, dwBytesRead ;
 HANDLE hFile ;
 BITMAPFILEHEADER * pbmfh ;

 hFile = CreateFile (pstrFileName, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 dwFileSize = GetFileSize (hFile, &dwHighSize) ;

 if (dwHighSize)
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 pbmfh = malloc (dwFileSize) ;
 if (!pbmfh)
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 bSuccess = ReadFile (hFile, pbmfh, dwFileSize, &dwBytesRead, NULL) ;
 CloseHandle (hFile) ;
 if (!bSuccess || (dwBytesRead != dwFileSize)
 || (pbmfh->bfType != * (WORD *) "BM")
 || (pbmfh->bfSize != dwFileSize))
 {
 free (pbmfh) ;
 return NULL ;
 }
 return pbmfh ;
}

BOOL DibSaveImage (PTSTR pstrFileName, BITMAPFILEHEADER * pbmfh)
{
 BOOL bSuccess ;
 DWORD dwBytesWritten ;
 HANDLE hFile ;

 hFile = CreateFile (pstrFileName, GENERIC_WRITE, 0, NULL,
 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return FALSE ;

 bSuccess = WriteFile (hFile, pbmfh, pbmfh->bfSize, &dwBytesWritten, NULL) ;
 CloseHandle (hFile) ;

 if (!bSuccess || (dwBytesWritten != pbmfh->bfSize))
 {
 DeleteFile (pstrFileName) ;
 return FALSE ;
 }
 return TRUE ;
}

SHOWDIB1.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Menu

SHOWDIB1 MENU DISCARDABLE

BEGIN

 POPUP "&File"
 BEGIN
 MENUITEM "&Open...", IDM_FILE_OPEN
 MENUITEM "&Save...", IDM_FILE_SAVE
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib1.rc

#define IDM_FILE_OPEN 40001
#define IDM_FILE_SAVE 40002

The DIBFILE.C file contains routines to display the File Open and File Save dialog boxes and also to load an entire
DIB file (complete with the BITMAPFILEHEADER structure) into a single block of memory. The program can also
write out such a memory block to a file.

After loading in a DIB file while processing the File Open command in SHOWDIB1.C, the program calculates the
offsets of the BITMAPINFOHEADER structure and the pixel bits within the memory block. The program also obtains
the pixel width and height of the DIB. All of this information is stored in static variables. During the WM_PAINT
message, the program displays the DIB by calling SetDIBitsToDevice .

Of course, SHOWDIB1 is missing a few features. For instance, if the DIB is too big for the client area, there are no
scroll bars to move it into view. These are deficiencies that will be fixed before the end of the next chapter.

The Topsy-Turvy World of DIBs

We are about to learn an important lesson, not only in life but in the design of application program interfaces for
operating systems. That lesson is: if you screw something up at the beginning, it only gets more screwed up when
you later try to patch it.

Back when the bottom-up definition of the DIB pixel bits originated in the OS/2 Presentation Manager, it made
some degree of sense because everything in PM has a default bottom left origin. For example, within a PM
window, the default (0,0) origin is the lower left corner of the window. (If this sounds wacky to you, you're not
alone. If it doesn't sound wacky, you're probably a mathematician.) The bitmap-drawing functions also specified a
destination in terms of lower left coordinates.

So, in OS/2, if you specified a destination coordinate of (0,0) for the bitmap, the image would appear flush against
the left and bottom of the window, as in Figure 15-3.

Figure 15-3. A bitmap as it would be displayed under OS/2 with a (0,0) destination.

With a slow enough machine, you could actually see the bitmap being drawn from the bottom to the top.

While the OS/2 coordinate system may seem wacky, it has the virtue of being highly consistent. The (0,0) origin
of the bitmap is the first pixel of the first row in the bitmap file, and this pixel is mapped to the destination
coordinate indicated in the bitmap-drawing functions.

The problem with Windows is that internal consistency was not maintained. When you want to display only a
rectangular subset within the entire DIB image, you use the arguments xSrc , ySrc , cxSrc , and cySrc . These
source coordinates and sizes are relative to the first row of the DIB data, which is the bottom row of the image.
That's just like OS/2. However, unlike OS/2, Windows displays the top row of the image at the destination
coordinate. Thus, if you're displaying the entire DIB image, the pixel displayed at (xDst , yDst) is the DIB pixel at
coordinate (0, cyDib - 1). That's the last row of DIB data but the top row of the image. If you're displaying only
part of the image, the pixel displayed at (xDst , yDst) is the DIB pixel at coordinate (xSrc , ySrc + cySrc - 1).

Figure 15-4 shows a diagram to help you figure this out. The DIB below is shown as you might imagine it stored in
memory—that is, upside-down. The origin from which the coordinates are measured is coincident with the first bit
of pixel data in the DIB. The xSrc argument to SetDIBitsToDevice is measured from the left of the DIB, and cxSrc
is the width of the image to the right of xSrc . That's straightforward. The ySrc argument is measured from the
first row of the DIB data (that is, the bottom of the image), and cySrc is the height of image from ySrc towards the
last row of the data (the top of the image).

Figure 15-4. Specifying DIB coordinates for normal (bottom-up) DIBs.

If the destination device context has default pixel coordinates using the MM_TEXT mapping mode, the relationship
between the corner coordinates of the source and destination rectangles will be those shown in the table below:
Source Rectangle
Destination Rectangle
(xSrc , ySrc)
(xDst , yDst + cySrc - 1))
(xSrc + cxSrc - 1,ySrc)
(xDst + cxSrc - 1,yDst + cySrc - 1)
(xSrc ,ySrc + cySrc - 1)
(xDst , yDst)
(xSrc + cxSrc - 1,ySrc + cySrc - 1)
(xDst + cxSrc - 1, yDst)

That (xSrc , ySrc) does not map to (xDst , yDst) is what makes this so chaotic. With any other mapping mode,
the point (xSrc , ySrc + cySrc - 1) will still map to the logical point (xDst , yDst) and the image will look the same
as it does in MM_TEXT.

So far, I've been discussing the normal case when the biHeight field of the BITMAPINFOHEADER structure is
positive. If the biHeight field is negative, the DIB data is arranged in a rational top-down manner. You may believe
that this clears up all the problems. If so, you would be very naive.

Apparently someone decided that if you take a top-down DIB, flip all the rows around, and then set the biHeight
field to a positive value, it should work the same as a normal bottom-up DIB. Any existing code that referenced a
rectangle of the DIB shouldn't have to be modified. That's a reasonable objective, I suppose, but it doesn't take
into account the fact that programs need to be modified anyway to deal with top-down DIBs so as not to use a
negative height.

Moreover, the result of this decision has strange implications. It means that source coordinates of top-down DIBs
have an origin at the last row of the DIB data, which is also the bottom row of the image. This is completely alien
to anything we've yet encountered. The DIB pixel at the (0,0) origin is no longer the first pixel referenced by the
pBits pointer. Nor is it the last pixel in the DIB file. It's somewhere in between.

Figure 15-5 shows a diagram indicating how you specify a rectangle within a top-down DIB, again showing the DIB
as it is stored in the file or in memory:

Figure 15-5. Specifying DIB coordinates for top-down DIBs.

At any rate, the real advantage of this scheme is that the arguments to the SetDIBitsToDevice function are
independent of the orientation of the DIB data. If you have two DIBs (one bottom-up and the other top-down)
that show the same image (which means that the order of rows in the two DIB files are opposite each other), you
can select the same part of the image to display using identical arguments to SetDIBitsToDevice .

This is demonstrated in the APOLLO11 program shown in Figure 15-6.

Figure 15-6. The APOLLO11 program.

APOLLO11.C

/*--
 APOLLO11.C -- Program for screen captures
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibfile.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("Apollo11") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{

 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Apollo 11"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPFILEHEADER * pbmfh [2] ;
 static BITMAPINFO * pbmi [2] ;
 static BYTE * pBits [2] ;
 static int cxClient, cyClient, cxDib [2], cyDib [2] ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 pbmfh[0] = DibLoadImage (TEXT ("Apollo11.bmp")) ;
 pbmfh[1] = DibLoadImage (TEXT ("ApolloTD.bmp")) ;

 if (pbmfh[0] == NULL || pbmfh[1] == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 return 0 ;
 }
 // Get pointers to the info structure & the bits

 pbmi [0] = (BITMAPINFO *) (pbmfh[0] + 1) ;
 pbmi [1] = (BITMAPINFO *) (pbmfh[1] + 1) ;
 pBits [0] = (BYTE *) pbmfh[0] + pbmfh[0]->bfOffBits ;
 pBits [1] = (BYTE *) pbmfh[1] + pbmfh[1]->bfOffBits ;

 // Get the DIB width and height (assume BITMAPINFOHEADER)
 // Note that cyDib is the absolute value of the header value!!!
 cxDib [0] = pbmi[0]->bmiHeader.biWidth ;
 cxDib [1] = pbmi[1]->bmiHeader.biWidth ;

 cyDib [0] = abs (pbmi[0]->bmiHeader.biHeight) ;
 cyDib [1] = abs (pbmi[1]->bmiHeader.biHeight) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Bottom-up DIB full size

 SetDIBitsToDevice (hdc,
 0, // xDst
 cyClient / 4, // yDst
 cxDib[0], // cxSrc
 cyDib[0], // cySrc
 0, // xSrc
 0, // ySrc
 0, // first scan line
 cyDib[0], // number of scan lines
 pBits[0],
 pbmi[0],
 DIB_RGB_COLORS) ;

 // Bottom-up DIB partial

 SetDIBitsToDevice (hdc,
 240, // xDst
 cyClient / 4, // yDst
 80, // cxSrc
 166, // cySrc

 80, // xSrc
 60, // ySrc
 0, // first scan line
 cyDib[0], // number of scan lines
 pBits[0],
 pbmi[0],
 DIB_RGB_COLORS) ;

 // Top-down DIB full size

 SetDIBitsToDevice (hdc,
 340, // xDst
 cyClient / 4, // yDst
 cxDib[0], // cxSrc
 cyDib[0], // cySrc
 0, // xSrc
 0, // ySrc
 0, // first scan line
 cyDib[0], // number of scan lines
 pBits[0],
 pbmi[0],
 DIB_RGB_COLORS) ;

 // Top-down DIB partial

 SetDIBitsToDevice (hdc,
 580, // xDst
 cyClient / 4, // yDst
 80, // cxSrc
 166, // cySrc
 80, // xSrc
 60, // ySrc
 0, // first scan line
 cyDib[1], // number of scan lines
 pBits[1],
 pbmi[1],
 DIB_RGB_COLORS) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (pbmfh[0])
 free (pbmfh[0]) ;
 if (pbmfh[1])
 free (pbmfh[1]) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The program loads two DIBS, named APOLLO11.BMP (the bottom-up version) and APOLLOTD.BMP (the top-down
version). Both are 220 pixels wide and 240 pixels high. Note that when the program determines the DIB width and
height from the header information structure, it uses the abs function to take the absolute value of the biHeight
field. When displaying the DIBs in full size or in the partial views, the xSrc , ySrc , cxSrc , and cySrc coordinates
are identical regardless of which bitmap is being displayed. The results are shown in Figure 15-7.

Figure 15-7. The APOLLO11 display.

Notice that the "first scan line" and "number of scan lines" arguments remain unchanged. I'll get to those shortly.
The pBits argument is also unchanged. Don't try to alter pBits so that it points only to the area of the DIB you
wish to display.

I'm spending so much time on this issue not because I have a desire to knock the Windows developers for
attempting their best to reconcile problematic areas in the definition of the API, but because you shouldn't be
nervous if this seems to be confusing. It's confusing because it's confused.

I also want you to be alert to certain statements in the Windows documentation such as this one for
SetDIBitsToDevice : "The origin of a bottom-up DIB is the lower left corner of the bitmap; the origin of a top-down
DIB is the upper left corner." That's not only ambiguous, it's just plain wrong. We can better state the difference
like so: The origin of a bottom-up DIB is the bottom left corner of the bitmap image, which is the first pixel of the
first row of bitmap data. The origin of a top-down DIB is also the bottom left corner of the bitmap image, but in
this case the bottom left corner is the first pixel of the last row of bitmap data .

The problem gets worse if you need to write a function that lets your programs access individual bits of a DIB. This
should be consistent with the way that you specify coordinates for displaying partial DIB images. My solution
(which I'll implement in a DIB library in Chapter 16) is to uniformly reference DIB pixels and coordinates as if the
(0,0) origin refers to the leftmost pixel of the top row of the DIB image as seen when correctly displayed.

Sequential Display

Having lots of memory sure makes programming easier. Displaying a DIB that's located in a disk file can be
broken into two completely independent jobs: loading the DIB into memory and then displaying it.

Regardless, there might be times when you would like to display a DIB without requiring that the entire file be
loaded into memory. Even if enough physical memory is available for the DIB, moving the DIB into memory can
force Windows' virtual memory system to move other code and data out to disk. This can be particularly
distressing if the DIB is needed only for display and can then be immediately discarded from memory.

Here's another problem: Suppose the DIB resides on a slow storage medium such as a floppy disk. Or it's coming
over a modem. Or it's coming from a conversion routine that's getting pixel data from a scanner or a video frame
grabber. Do you want to wait until the entire DIB is loaded into memory before you display it? Or would you rather
display the DIB sequentially right as it's coming off the disk or through the telephone line or from the scanner?

Solving these problems is the purpose of the yScan and cyScans arguments to the SetDIBitsToDevice function. To
use this feature, you make multiple calls to SetDIBitsToDevice , mostly with the same arguments. However, for
each call, the pBits argument points to different sections of the total array of bitmap pixels. The yScans argument
indicates which row of pixel data pBits is pointing to, and the cyScans argument is the number of rows referenced
by pBits . This reduces memory requirements considerably. You need allocate only enough memory to hold the
information section of the DIB (the BITMAPINFOHEADER structure and the color table) and at least 1 row of pixel
data.

For example, suppose the DIB has 23 rows of pixels. You wish to display this DIB in blocks of 5 rows. You'll
probably want to allocate a block of memory, referenced by the variable pInfo , to store the BITMAPINFO section
of the DIB. Then read it in from the file. After examining the fields of this structure, you can calculate the byte
length of a row. Multiply by 5 and allocate another block (pBits) of that size. Now read in the first 5 rows. Call the
function as you would normally, but with yScan set equal to 0 and cyScans set equal to 5. Now read the next 5
rows from the file. This time set yScan equal to 5. Continue with yScan set to 10 and then 15. Finally, read the
last 3 rows into the block addressed by pBits , and call SetDIBitsToDevice with yScan set to 20 and cyScans set to
3.

Now here's the bad news. First, using this feature of SetDIBitsToDevice requires a fairly close coupling between
the data acquisition and the data presentation elements of your program. This is usually undesirable because you
have to alternate between getting the data and showing it. Overall, you'll slow down the entire process. Secondly,
SetDIBitsToDevice is the only bitmap-display function that has this feature. As we'll see, the StretchDIBits
function does not include this feature, so you can't use it to display the incoming DIB in a different pixel size.
You'd have to fake it by calling StretchDIBits multiple times, each time altering information in the
BITMAPINFOHEADER structure and displaying the results in a different area of the screen.

The SEQDISP program in Figure 15-8 demonstrates how to use this feature.

Figure 15-8. The SEQDISP program.

SEQDISP.C

/*---
 SEQDISP.C -- Sequential Display of DIBs
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("SeqDisp") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DIB Sequential Display"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPINFO * pbmi ;
 static BYTE * pBits ;
 static int cxDib, cyDib, cBits ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BITMAPFILEHEADER bmfh ;
 BOOL bSuccess, bTopDown ;
 DWORD dwBytesRead ;
 HANDLE hFile ;
 HDC hdc ;
 HMENU hMenu ;

 int iInfoSize, iBitsSize, iRowLength, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
 return 0 ;

 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:
 // Display File Open dialog
 if (!GetOpenFileName (&ofn))
 return 0 ;

 // Get rid of old DIB

 if (pbmi)
 {
 free (pbmi) ;
 pbmi = NULL ;
 }

 if (pBits)
 {
 free (pBits) ;
 pBits = NULL ;
 }

 // Generate WM_PAINT message to erase background

 InvalidateRect (hwnd, NULL, TRUE) ;
 UpdateWindow (hwnd) ;

 // Open the file

 hFile = CreateFile (szFileName, GENERIC_READ,
 FILE_SHARE_READ, NULL, OPEN_EXISTING,
 FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 {
 MessageBox (hwnd, TEXT ("Cannot open file."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 return 0 ;
 }

 // Read in the BITMAPFILEHEADER

 bSuccess = ReadFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesRead, NULL) ;

 if (!bSuccess || dwBytesRead != sizeof (BITMAPFILEHEADER))
 {
 MessageBox (hwnd, TEXT ("Cannot read file."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 CloseHandle (hFile) ;
 return 0 ;
 }

 // Check that it's a bitmap
 if (bmfh.bfType != * (WORD *) "BM")
 {
 MessageBox (hwnd, TEXT ("File is not a bitmap."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 CloseHandle (hFile) ;
 return 0 ;
 }

 // Allocate memory for header and bits

 iInfoSize = bmfh.bfOffBits - sizeof (BITMAPFILEHEADER) ;
 iBitsSize = bmfh.bfSize - bmfh.bfOffBits ;

 pbmi = malloc (iInfoSize) ;
 pBits = malloc (iBitsSize) ;

 if (pbmi == NULL || pBits == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot allocate memory."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 if (pbmi)
 free (pbmi) ;

 if (pBits)
 free (pBits) ;
 CloseHandle (hFile) ;
 return 0 ;
 }

 // Read in the Information Header

 bSuccess = ReadFile (hFile, pbmi, iInfoSize,
 &dwBytesRead, NULL) ;

 if (!bSuccess || (int) dwBytesRead != iInfoSize)
 {
 MessageBox (hwnd, TEXT ("Cannot read file."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 if (pbmi)
 free (pbmi) ;
 if (pBits)
 free (pBits) ;
 CloseHandle (hFile) ;
 return 0 ;
 }

 // Get the DIB width and height
 bTopDown = FALSE ;

 if (pbmi->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 {
 cxDib = ((BITMAPCOREHEADER *) pbmi)->bcWidth ;
 cyDib = ((BITMAPCOREHEADER *) pbmi)->bcHeight ;
 cBits = ((BITMAPCOREHEADER *) pbmi)->bcBitCount ;
 }
 else
 {
 if (pbmi->bmiHeader.biHeight < 0)
 bTopDown = TRUE ;

 cxDib = pbmi->bmiHeader.biWidth ;
 cyDib = abs (pbmi->bmiHeader.biHeight) ;
 cBits = pbmi->bmiHeader.biBitCount ;

 if (pbmi->bmiHeader.biCompression != BI_RGB &&
 pbmi->bmiHeader.biCompression != BI_BITFIELDS)
 {
 MessageBox (hwnd, TEXT ("File is compressed."),
 szAppName, MB_ICONWARNING | MB_OK) ;
 if (pbmi)
 free (pbmi) ;
 if (pBits)
 free (pBits) ;
 CloseHandle (hFile) ;
 return 0 ;
 }

 }

 // Get the row length

 iRowLength = ((cxDib * cBits + 31) & ~31) >> 3 ;

 // Read and display
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hdc = GetDC (hwnd) ;

 for (y = 0 ; y < cyDib ; y++)
 {
 ReadFile (hFile, pBits + y * iRowLength, iRowLength,
 &dwBytesRead, NULL) ;

 SetDIBitsToDevice (hdc,
 0, // xDst
 0, // yDst
 cxDib, // cxSrc
 cyDib, // cySrc
 0, // xSrc
 0, // ySrc
 bTopDown ? cyDib - y - 1 : y,
 // first scan line
 1, // number of scan lines
 pBits + y * iRowLength,
 pbmi,
 DIB_RGB_COLORS) ;
 }
 ReleaseDC (hwnd, hdc) ;
 CloseHandle (hFile) ;
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (pbmi && pBits)
 SetDIBitsToDevice (hdc,
 0, // xDst
 0, // yDst
 cxDib, // cxSrc
 cyDib, // cySrc
 0, // xSrc
 0, // ySrc
 0, // first scan line
 cyDib, // number of scan lines
 pBits,

 pbmi,
 DIB_RGB_COLORS) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (pbmi)
 free (pbmi) ;

 if (pBits)
 free (pBits) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SEQDISP.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///

// Accelerator

SEQDISP ACCELERATORS DISCARDABLE
BEGIN
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
END

///
// Menu

SEQDISP MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open...\tCtrl+O", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by SeqDisp.rc

#define IDM_FILE_OPEN 40001

All the file I/O in SEQDISP.C occurs while processing the File Open menu command. Toward the end of
WM_COMMAND processing, the program enters a loop that reads single lines of pixels and displays them with
SetDIBitsToDevice . The entire DIB is retained in memory so that it can be displayed also during WM_PAINT
processing.

Stretching to Fit

SetDIBitsToDevice does a pixel-to-pixel display of a DIB to an output device. This is probably not good for printing
DIBs. The better the resolution of the printer, the tinier the image you'll get. You could end up with something the
size of a postage stamp.

To display a DIB in a particular size on the output device by shrinking or stretching it, you can use StretchDIBits :

iLines = StretchDIBits (
 hdc, // device context handle
 xDst, // x destination coordinate
 yDst, // y destination coordinate
 cxDst, // destination rectangle width
 cyDst, // destination rectangle height
 xSrc, // x source coordinate
 ySrc, // y source coordinate
 cxSrc, // source rectangle width
 cySrc, // source rectangle height
 pBits, // pointer to DIB pixel bits
 pInfo, // pointer to DIB information
 fClrUse, // color use flag
 dwRop) ; // raster operation

The function arguments are the same as SetDIBitsToDevice with three exceptions:

The destination coordinates include a logical width (cxDst) and height (cyDst) as well as starting points.

There is no facility to reduce memory requirements by displaying the DIB sequentially.

The last argument is a raster operation, which indicates how the pixels of the DIB are combined with the
pixels of the output device. We learned about these in the last chapter. For now, we'll be using SRCCOPY for
this argument.

There's actually another difference that is more subtle. If you look at the declaration of SetDIBitsToDevice , you'll
find that cxSrc and cySrc are DWORDs, which are 32-bit unsigned long integers. In StretchDIBits , cxSrc and cySrc
(as well as cxDst and cyDst) are defined as signed integers, which implies that they can be negative. Indeed they
can, as we'll shortly see. But let me add a bit of clarification if you've started examining whether other arguments

can be negative: In both functions, xSrc and ySrc are defined as int values, but that's an error. These values are
always nonnegative.

A source rectangle within the DIB is mapped to a destination rectangle as shown in the following table.

Source Rectangle
Destination Rectangle
(xSrc , ySrc)
(xDst , yDst + cyDst - 1)
(xSrc + cxSrc - 1, ySrc)
(xDst + cxDst - 1, yDst + cyDst - 1)
(xSrc , ySrc + cySrc - 1)
(xDst , yDst)
(xSrc + cxSrc - 1, ySrc + cySrc - 1)
(xDst + cxDst - 1, yDst)

The -1 terms in the right column are not quite accurate because the degree of stretch (as well as the mapping
mode and other transforms) can cause the results to be slightly different.

As an example, let's think about a 2×2 DIB, where the xSrc and ySrc arguments to StretchDIBits are both 0 and
cxSrc and cySrc are both 2. Assume we're displaying to a device context with the MM_TEXT mapping mode and no
transforms. If xDst and yDst are both 0 and cxDst and cyDst are both 4, then we're stretching the DIB by a factor
of 2. Each source pixel (x , y) will map to four destination pixels as shown here:

(0,0) --> (0,2) and (1,2) and (0,3) and (1,3)

(1,0) --> (2,2) and (3,2) and (2,3) and (3,3)

(0,1) --> (0,0) and (1,0) and (0,1) and (1,1)

(1,1) --> (2,0) and (3,0) and (2,1) and (3,1)

The table shown above correctly indicates the corners of the destination, which are (0, 3), (3, 3), (0, 0), and (3,
0). In other cases, the coordinates might be only approximate.

SetDIBitsToDevice is affected by the mapping mode of the destination device context only to the extent that xDst
and yDst are logical coordinates. StretchDIBits is fully affected by the mapping mode. For example, if you've set
one of the metric mapping modes where values of y increase going up the display, the DIB will be displayed
upside-down.

You can compensate for this by making cyDst negative. Indeed, you can make any of the width and height
parameters negative to flip the DIB horizontally or vertically. In the MM_TEXT mapping mode, if cySrc and cyDst
are opposite signs, the DIB will be flipped around the horizontal axis and will appear to be upside-down. If cxSrc
and cxDst are opposite signs, the DIB is flipped on its vertical axis and will appear to be a mirror image.

Here are a couple of expressions that summarize this. In these expressions, xMM and yMM indicate the orientation
of the mapping mode; xMM is 1 if values of x increase moving to the right and -1 if values of x increase moving to
the left. Similarly, yMM is 1 if values of y increase going down and -1 if values of y increase going up. The Sign
functions return TRUE for a positive value and FALSE for negative:

if (!Sign (xMM × cxSrc × cxDst))
 DIB is flipped on its vertical axis (mirror image)

if (!Sign (yMM × cySrc × cyDst))
 DIB is flipped on its horizontal axis (upside down)

When in doubt, consult the table shown above.

The SHOWDIB2 program shown in Figure 15-9 displays DIBs in actual size and stretched to the size of its client
window, prints DIBs, and transfers DIBs to the clipboard.

Figure 15-9. The SHOWDIB2 program.

SHOWDIB2.C

/*--
 SHOWDIB2.C -- Shows a DIB in the client area
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibfile.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib2") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

int ShowDib (HDC hdc, BITMAPINFO * pbmi, BYTE * pBits, int cxDib, int cyDib,
 int cxClient, int cyClient, WORD wShow)
{
 switch (wShow)
 {
 case IDM_SHOW_NORMAL:
 return SetDIBitsToDevice (hdc, 0, 0, cxDib, cyDib, 0, 0,
 0, cyDib, pBits, pbmi, DIB_RGB_COLORS) ;

 case IDM_SHOW_CENTER:
 return SetDIBitsToDevice (hdc, (cxClient - cxDib) / 2,
 (cyClient - cyDib) / 2,
 cxDib, cyDib, 0, 0,
 0, cyDib, pBits, pbmi, DIB_RGB_COLORS) ;

 case IDM_SHOW_STRETCH:
 SetStretchBltMode (hdc, COLORONCOLOR) ;

 return StretchDIBits (hdc, 0, 0, cxClient, cyClient,
 0, 0, cxDib, cyDib,
 pBits, pbmi, DIB_RGB_COLORS, SRCCOPY) ;

 case IDM_SHOW_ISOSTRETCH:
 SetStretchBltMode (hdc, COLORONCOLOR) ;
 SetMapMode (hdc, MM_ISOTROPIC) ;
 SetWindowExtEx (hdc, cxDib, cyDib, NULL) ;
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;
 SetWindowOrgEx (hdc, cxDib / 2, cyDib / 2, NULL) ;
 SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

 return StretchDIBits (hdc, 0, 0, cxDib, cyDib,
 0, 0, cxDib, cyDib,
 pBits, pbmi, DIB_RGB_COLORS, SRCCOPY) ;
 }
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPFILEHEADER * pbmfh ;
 static BITMAPINFO * pbmi ;
 static BYTE * pBits ;
 static DOCINFO di = { sizeof (DOCINFO),
 TEXT ("ShowDib2: Printing") } ;
 static int cxClient, cyClient, cxDib, cyDib ;
 static PRINTDLG printdlg = { sizeof (PRINTDLG) } ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static WORD wShow = IDM_SHOW_NORMAL ;
 BOOL bSuccess ;
 HDC hdc, hdcPrn ;
 HGLOBAL hGlobal ;
 HMENU hMenu ;
 int cxPage, cyPage, iEnable ;
 PAINTSTRUCT ps ;
 BYTE * pGlobal ;

 switch (message)
 {
 case WM_CREATE:
 DibFileInitialize (hwnd) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_INITMENUPOPUP:
 hMenu = GetMenu (hwnd) ;

 if (pbmfh)
 iEnable = MF_ENABLED ;
 else
 iEnable = MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_FILE_SAVE, iEnable) ;
 EnableMenuItem (hMenu, IDM_FILE_PRINT, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_DELETE, iEnable) ;
 return 0 ;

 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:
 // Show the File Open dialog box

 if (!DibFileOpenDlg (hwnd, szFileName, szTitleName))
 return 0 ;

 // If there's an existing DIB, free the memory

 if (pbmfh)
 {
 free (pbmfh) ;
 pbmfh = NULL ;
 }
 // Load the entire DIB into memory
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pbmfh = DibLoadImage (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Invalidate the client area for later update

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (pbmfh == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Get pointers to the info structure & the bits

 pbmi = (BITMAPINFO *) (pbmfh + 1) ;
 pBits = (BYTE *) pbmfh + pbmfh->bfOffBits ;

 // Get the DIB width and height

 if (pbmi->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 {
 cxDib = ((BITMAPCOREHEADER *) pbmi)->bcWidth ;
 cyDib = ((BITMAPCOREHEADER *) pbmi)->bcHeight ;
 }
 else
 {
 cxDib = pbmi->bmiHeader.biWidth ;
 cyDib = abs (pbmi->bmiHeader.biHeight) ;
 }
 return 0 ;

 case IDM_FILE_SAVE:
 // Show the File Save dialog box

 if (!DibFileSaveDlg (hwnd, szFileName, szTitleName))
 return 0 ;

 // Save the DIB to a disk file

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 bSuccess = DibSaveImage (szFileName, pbmfh) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!bSuccess)
 MessageBox (hwnd, TEXT ("Cannot save DIB file"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_FILE_PRINT:
 if (!pbmfh)
 return 0 ;

 // Get printer DC

 printdlg.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&printdlg))
 return 0 ;

 if (NULL == (hdcPrn = printdlg.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain Printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }

 // Check whether the printer can print bitmaps

 if (!(RC_BITBLT & GetDeviceCaps (hdcPrn, RASTERCAPS)))
 {
 DeleteDC (hdcPrn) ;
 MessageBox (hwnd, TEXT ("Printer cannot print bitmaps"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Get size of printable area of page

 cxPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 cyPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 bSuccess = FALSE ;
 // Send the DIB to the printer

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 ShowDib (hdcPrn, pbmi, pBits, cxDib, cyDib,
 cxPage, cyPage, wShow) ;

 if (EndPage (hdcPrn) > 0)
 {
 bSuccess = TRUE ;
 EndDoc (hdcPrn) ;
 }
 }
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 DeleteDC (hdcPrn) ;

 if (!bSuccess)
 MessageBox (hwnd, TEXT ("Could not print bitmap"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_EDIT_COPY:
 case IDM_EDIT_CUT:
 if (!pbmfh)
 return 0 ;

 // Make a copy of the packed DIB

 hGlobal = GlobalAlloc (GHND | GMEM_SHARE, pbmfh->bfSize -
 sizeof (BITMAPFILEHEADER)) ;

 pGlobal = GlobalLock (hGlobal) ;

 CopyMemory (pGlobal, (BYTE *) pbmfh + sizeof (BITMAPFILEHEADER),
 pbmfh->bfSize - sizeof (BITMAPFILEHEADER)) ;

 GlobalUnlock (hGlobal) ;

 // Transfer it to the clipboard

 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 SetClipboardData (CF_DIB, hGlobal) ;
 CloseClipboard () ;

 if (LOWORD (wParam) == IDM_EDIT_COPY)
 return 0 ;
 // fall through if IDM_EDIT_CUT
 case IDM_EDIT_DELETE:
 if (pbmfh)
 {
 free (pbmfh) ;

 pbmfh = NULL ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case IDM_SHOW_NORMAL:
 case IDM_SHOW_CENTER:
 case IDM_SHOW_STRETCH:
 case IDM_SHOW_ISOSTRETCH:
 CheckMenuItem (hMenu, wShow, MF_UNCHECKED) ;
 wShow = LOWORD (wParam) ;
 CheckMenuItem (hMenu, wShow, MF_CHECKED) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (pbmfh)
 ShowDib (hdc, pbmi, pBits, cxDib, cyDib,
 cxClient, cyClient, wShow) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (pbmfh)
 free (pbmfh) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB2.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"

#include "afxres.h"

///

// Menu

SHOWDIB2 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open...\tCtrl+O", IDM_FILE_OPEN
 MENUITEM "&Save...\tCtrl+S", IDM_FILE_SAVE
 MENUITEM SEPARATOR
 MENUITEM "&Print\tCtrl+P", IDM_FILE_PRINT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Delete\tDelete", IDM_EDIT_DELETE
 END
 POPUP "&Show"
 BEGIN
 MENUITEM "&Actual Size", IDM_SHOW_NORMAL, CHECKED
 MENUITEM "&Center", IDM_SHOW_CENTER
 MENUITEM "&Stretch to Window", IDM_SHOW_STRETCH
 MENUITEM "Stretch &Isotropically", IDM_SHOW_ISOSTRETCH
 END
END

///
// Accelerator

SHOWDIB2 ACCELERATORS DISCARDABLE
BEGIN
 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
 "P", IDM_FILE_PRINT, VIRTKEY, CONTROL, NOINVERT
 "S", IDM_FILE_SAVE, VIRTKEY, CONTROL, NOINVERT
 VK_DELETE, IDM_EDIT_DELETE, VIRTKEY, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib2.rc

#define IDM_FILE_OPEN 40001

#define IDM_SHOW_NORMAL 40002

#define IDM_SHOW_CENTER 40003
#define IDM_SHOW_STRETCH 40004
#define IDM_SHOW_ISOSTRETCH 40005
#define IDM_FILE_PRINT 40006
#define IDM_EDIT_COPY 40007
#define IDM_EDIT_CUT 40008
#define IDM_EDIT_DELETE 40009
#define IDM_FILE_SAVE 40010

Of particular interest here is the ShowDib function, which displays a DIB in the program's client area in one of four
different ways, depending on a menu selection. The DIB can be displayed using SetDIBitsToDevice either oriented
at the upper left corner of the client area or centered within the client area. The program also has two options
using StretchDIBits . The DIB can be stretched to fill the client area, in which case it is likely to be distorted, or it
can display isotropically—that is, without distortion.

Copying a DIB to the clipboard involves making a copy of the packed-DIB memory block in global shared memory.
The clipboard data type is CF_DIB. What the program doesn't show is how to copy a DIB from the clipboard. The
reason why is that it requires a bit more logic to determine the offset of the pixel bits given only a pointer to a
packed-DIB memory block. I'll show how to do this before the end of the next chapter.

You may also notice some other deficiencies in SHOWDIB2. If you're running Windows with a 256-color video
mode, you'll see problems with displaying anything other than monochrome or 4-bit DIBs. You won't see the
correct colors. Getting access to those colors will require using the palette, a job that awaits us in the next
chapter. You may also notice a speed problem, particularly when running SHOWDIB2 under Windows NT. I'll show
you how to handle this when we wrap up DIBs and bitmaps in the next chapter. I'll also tackle adding scroll bars
to a DIB display so that a DIB larger than the screen can still be viewed in actual size.

Color Conversion, Palettes, and Performance

Remember in William Goldman's screenplay for All the President's Men how Deep Throat tells Bob Woodward that
the key to cracking the Watergate mystery is to "Follow the money"? Well, the key to achieving top performance
in the display of bitmaps is to "Follow the pixel bits" and to understand when and where color conversion takes
place. The DIB is in a device-independent format; the video display memory is almost surely in another format.
During the SetDIBitsToDevice or StretchDIBits function calls, each pixel (and there could be literally millions of
them) must be converted from a device-independent format to a device-dependent format.

In many cases, this conversion is fairly trivial. For example, if you're displaying a 24-bit DIB on a 24-bit video
display, at most the display driver will have to switch around the order of the red, green, and blue bytes.
Displaying a 16-bit DIB on a 24-bit device requires some bit-shifting and padding. Displaying a 24-bit DIB on a 16-
bit device requires some bit-shifting and truncation. Displaying a 4-bit or 8-bit DIB on a 24-bit device requires a
lookup of the DIB pixel bits in the DIB's color table and then perhaps some reordering of the bytes.

But what happens when you wish to display a 16-bit, 24-bit, or 32-bit DIB on a 4-bit or 8-bit video display? An
entirely different type of color conversion has to take place. For each pixel in the DIB, the device driver has to
perform a nearest-color search between the pixel and all the colors available on the display. This involves a loop
and a calculation. (The GDI function GetNearestColor does a nearest-color search.)

The entire three-dimensional array of RGB colors can be represented as a cube. The distance between any two
points within this curve is

where the two colors are R1 G1 B1 and R2 G2 B2 . Performing a nearest-color search involves finding the shortest
distance from one color to a collection of other colors. Fortunately, when comparing distances within the RGB color
cube, the square root part of the calculation is not required. But each pixel to be converted must be compared
with all the colors of the device to find which device color is closest to it. This is still a considerable amount of
work. (Although displaying an 8-bit DIB on an 8-bit device also involves a nearest-color search, it doesn't have to
be done for each pixel; it need only be done for each of the colors in the DIB's color table.)

For that reason, displaying a 16-bit, 24-bit, or 32-bit DIB on an 8-bit video display adapter using
SetDIBitsToDevice or StretchDIBits should be avoided. The DIB should be converted into an 8-bit DIB or, for even
better performance, an 8-bit DDB. Indeed, the display of virtually all DIBs of any appreciable size can be speeded

up by converting to a DDB and using BitBlt and StretchBlt for display purposes.

If you're running Windows in an 8-bit video display (or if you've just switched into an 8-bit mode to see the
performance difference when displaying full-color DIBs), you may notice another problem: The DIBs are not being
displayed with all their colors. Any DIB displayed on an 8-bit video display is restricted to just 20 colors. Getting
more than 20 is a job for the Palette Manager, coming up in the next chapter.

And finally, if you're running both Windows 98 and Windows NT on the same machine, you may notice that
Windows NT takes longer to display large DIBs for comparable video modes. This is a consequence of Windows
NT's client/server architecture, which involves a penalty for large amounts of data passed across the API. The
solution here, too, is to convert the DIB to a DDB. Also, the CreateDIBSection function, which I'll discuss shortly,
was specifically created to help in this situation.

The Union of DIBs and DDBs

You can do a lot knowing the format of the DIB and by calling the two DIB-drawing functions, SetDIBitsToDevice
and StretchDIBits . You have direct access to every single bit, byte, and pixel in the DIB, and once you come up
with a bunch of functions that let you examine and alter this data in a structured manner, there are no restrictions
on what you can do.

Actually, we've found that there are some restrictions. In the last chapter, we saw how you can use GDI functions
to draw images on a DDB. So far, there doesn't appear to be any way we can do that with DIBs. Another problem
is that SetDIBitsToDevice and StretchDIBits are not nearly as fast as BitBlt and StretchBlt , particularly under
Windows NT and when many nearest-color searches have to be performed, such as when 24-bit DIBs are
displayed on 8-bit video boards.

So, it might be advantageous to convert between DIBs and DDBs. For example, if we had a DIB that we needed to
display to the screen and we might have to do this numerous times, then it would make more sense to convert the
DIB into a DDB so that we could use the faster BitBlt and StretchBlt functions with it.

Creating a DDB from a DIB

Is it possible to create a GDI bitmap object from a DIB? We basically already know how to do it: If you have a
DIB, you can use CreateCompatibleBitmap to create a GDI bitmap object of the same size as the DIB and
compatible with the video display. You then select the bitmap object into a memory device context and call
SetDIBitsToDevice to draw on that memory DC. The result is a DDB with the same image as the DIB but with a
color organization that is compatible with the video display.

Or you can do the job with a fewer number of steps by using CreateDIBitmap . The function has the following
syntax:

hBitmap = CreateDIBitmap (
 hdc, // device context handle
 pInfoHdr, // pointer to DIB information header
 fInit, // 0 or CBM_INIT
 pBits, // pointer to DIB pixel bits
 pInfo, // pointer to DIB information
 fClrUse) ; // color use flag

Notice the two arguments I've called pInfoHdr and pInfo . These are defined as pointers to a BITMAPINFOHEADER
structure and a BITMAPINFO structure, respectively. As we know, the BITMAPINFO structure is a
BITMAPINFOHEADER structure followed by a color table. We'll see how this distinction works shortly. The last
argument is either DIB_RGB_ COLORS (which equals 0) or DIB_PAL_COLORS, as with the SetDIBitsToDevice
functions. I'll have more to say about this in the next chapter.

It is important in understanding the full array of bitmap functions in Windows to realize that, despite its name, the
CreateDIBitmap function does not create a device-independent bitmap . It creates a device-dependent bitmap
from a device-independent specification. Notice that the function returns a handle to a GDI bitmap object, the
same as CreateBitmap , CreateBitmapIndirect , and CreateCompatibleBitmap .

The simplest way to call the CreateDIBitmap function is like so:

hBitmap = CreateDIBitmap (NULL, pbmih, 0, NULL, NULL, 0) ;

The only argument is a pointer to a BITMAPINFOHEADER structure (without the color table). In this form, the
function creates a monochrome GDI bitmap object. The second simplest way to call the function is

hBitmap = CreateDIBitmap (hdc, pbmih, 0, NULL, NULL, 0) ;

In this form, the function creates a DDB that is compatible with the device context indicated by the hdc argument.
So far, we've done nothing we couldn't have done using CreateBitmap (to create a monochrome bitmap) or
CreateCompatibleBitmap (to create one compatible with the video display).

In these two simplified forms of CreateDIBitmap , the pixel bits remain uninitialized. If the third argument to
CreateDIBitmap is CBM_INIT, Windows creates the DDB and uses the last three arguments to initialize the bitmap
bits. The pInfo argument is a pointer to a BITMAPINFO structure that includes a color table. The pBits argument is
a pointer to an array of bits in the color format indicated by the BITMAPINFO structure. Based on the color table,
these bits are converted to the color format of the device. This is identical to what happens in SetDIBitsToDevice .
Indeed, the entire CreateDIBitmap function could probably be implemented with the following code:

HBITMAP CreateDIBitmap (HDC hdc, CONST BITMAPINFOHEADER * pbmih,
 DWORD fInit, CONST VOID * pBits,
 CONST BITMAPINFO * pbmi, UINT fUsage)
{
 HBITMAP hBitmap ;
 HDC hdc ;
 int cx, cy, iBitCount ;

 if (pbmih->biSize == sizeof (BITMAPCOREHEADER))
 {
 cx = ((PBITMAPCOREHEADER) pbmih)->bcWidth ;
 cy = ((PBITMAPCOREHEADER) pbmih)->bcHeight ;
 iBitCount = ((PBITMAPCOREHEADER) pbmih)->bcBitCount ;
 }
 else
 {
 cx = pbmih->biWidth ;
 cy = pbmih->biHeight ;
 iBitCount = pbmih->biBitCount ;
 }
 if (hdc)
 hBitmap = CreateCompatibleBitmap (hdc, cx, cy) ;
 else
 hBitmap = CreateBitmap (cx, cy, 1, 1, NULL) ;

 if (fInit == CBM_INIT)
 {
 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;
 SetDIBitsToDevice (hdcMem, 0, 0, cx, cy, 0, 0, 0 cy,
 pBits, pbmi, fUsage) ;
 DeleteDC (hdcMem) ;
 }

return hBitmap ;
}

If you're going to display a DIB only once and you're worried about the performance of SetDIBitsToDevice , it

doesn't make much sense to call CreateDIBitmap and then display the DDB by using BitBlt or StretchBlt . The two
jobs will take the same length of time because SetDIBitsToDevice and CreateDIBitmap both have to perform a
color conversion. Only if you're displaying a DIB multiple times—which is very likely when processing WM_PAINT
messages—does this conversion make sense.

The DIBCONV program shown in Figure 15-10 shows how you can use SetDIBitsToDevice to convert a DIB file to a
DDB.

Figure 15-10. The DIBCONV program.

DIBCONV.C

/*--
 DIBCONV.C -- Converts a DIB to a DDB
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <commdlg.h>
#include "resource.h"
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("DibConv") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DIB to DDB Conversion"),

 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;

 }
 return msg.wParam ;
}
HBITMAP CreateBitmapObjectFromDibFile (HDC hdc, PTSTR szFileName)
{
 BITMAPFILEHEADER * pbmfh ;
 BOOL bSuccess ;
 DWORD dwFileSize, dwHighSize, dwBytesRead ;
 HANDLE hFile ;
 HBITMAP hBitmap ;

 // Open the file: read access, prohibit write access

 hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 // Read in the whole file

 dwFileSize = GetFileSize (hFile, &dwHighSize) ;

 if (dwHighSize)
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 pbmfh = malloc (dwFileSize) ;

 if (!pbmfh)
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 bSuccess = ReadFile (hFile, pbmfh, dwFileSize, &dwBytesRead, NULL) ;
 CloseHandle (hFile) ;

 // Verify the file

 if (!bSuccess || (dwBytesRead != dwFileSize)
 || (pbmfh->bfType != * (WORD *) "BM")
 || (pbmfh->bfSize != dwFileSize))
 {
 free (pbmfh) ;
 return NULL ;
 }
 // Create the DDB

 hBitmap = CreateDIBitmap (hdc,
 (BITMAPINFOHEADER *) (pbmfh + 1),
 CBM_INIT,
 (BYTE *) pbmfh + pbmfh->bfOffBits,
 (BITMAPINFO *) (pbmfh + 1),
 DIB_RGB_COLORS) ;
 free (pbmfh) ;
 return hBitmap ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BITMAP bitmap ;
 HDC hdc, hdcMem ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;

 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;
 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing DIB, delete it

 if (hBitmap)
 {
 DeleteObject (hBitmap) ;
 hBitmap = NULL ;
 }
 // Create the DDB from the DIB

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hdc = GetDC (hwnd) ;
 hBitmap = CreateBitmapObjectFromDibFile (hdc, szFileName) ;
 ReleaseDC (hwnd, hdc) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Invalidate the client area for later update

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (hBitmap == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 return 0 ;
 }
 break ;

 case WM_PAINT:

 hdc = BeginPaint (hwnd, &ps) ;

 if (hBitmap)
 {
 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 BitBlt (hdc, 0, 0, bitmap.bmWidth, bitmap.bmHeight,
 hdcMem, 0, 0, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

DIBCONV.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Menu

DIBCONV MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by DibConv.rc

#define IDM_FILE_OPEN 40001

DIBCONV.C is self-contained and requires no earlier files. In response to its only menu command (File Open),
WndProc calls the program's CreateBitmapObjectFromDibFile function. This function reads the entire file into
memory and passes pointers to the memory block to the CreateDIBitmap function. The function returns a handle
to the bitmap. The memory block containing the DIB can then be freed. During the WM_PAINT message, WndProc
selects the bitmap in a compatible memory device context and uses BitBlt rather than SetDIBitsToDevice to
display the bitmap on the client area. It obtains the width and height of the bitmap by calling GetObject with the
BITMAP structure on the bitmap handle.

You do not need to initialize the DDB pixel bits while creating the bitmap from CreateDIBitmap . You can do it later
by calling SetDIBits . This function has the following syntax:

iLines = SetDIBits (
 hdc, // device context handle
 hBitmap, // bitmap handle
 yScan, // first scan line to convert
 cyScans, // number of scan lines to convert
 pBits, // pointer to pixel bits
 pInfo, // pointer to DIB information
 fClrUse) ; // color use flag

The function uses the color table in the BITMAPINFO structure to convert the bits into the device-dependent
format. The device context handle is required only if the last argument is set to DIB_PAL_COLORS.

From DDB to DIB

A function similar to the SetDIBits function is GetDIBits . You can use this function for converting a DDB to a DIB:

int WINAPI GetDIBits (
 hdc, // device context handle
 hBitmap, // bitmap handle
 yScan, // first scan line to convert
 cyScans, // number of scan lines to convert
 pBits, // pointer to pixel bits (out)
 pInfo, // pointer to DIB information (out)
 fClrUse) ; // color use flag

However, I'm afraid that this function is not simply the reverse of SetDIBits . In the general case, if you convert a
DIB to a DDB using CreateDIBitmap and SetDIBits and then convert back to a DIB using GetDIBits , you won't get
what you started out with. This is because some information is lost when a DIB is converted to a device-

dependent format. How much information is lost depends on the particular video mode you're running Windows
under when you do the conversion.

You probably won't find a need to use GetDIBits much. Think about it: In what circumstances does your program
find itself with a bitmap handle without having the data used to create the bitmap in the first place? The clipboard?
But the clipboard provides automatic conversion to DIBs. The one instance in which the GetDIBits function does
come in handy is when you're doing screen captures, such as what the BLOWUP program did in Chapter 14 . I
won't be demonstrating this function, but some information is available in Knowledge Base article Q80080.

The DIB Section

Now, I hope, you have a good feel for the difference between device-dependent and device-independent bitmaps.
A DIB can have one of several color organizations; a DDB must be either monochrome or the same format as a
real-output device. A DIB is a file or a block of memory; a DDB is a GDI bitmap object and is represented by a
bitmap handle. A DIB can be displayed or converted to a DDB and back again, but this involves a process to
convert between device-independent bits and device-specific bits.

Now you're about to encounter a function that seems to break these rules. This function was introduced in the 32-
bit versions of Windows and is called CreateDIBSection . The syntax is

hBitmap = CreateDIBSection (
 hdc, // device context handle
 pInfo, // pointer to DIB information
 fClrUse, // color use flag
 ppBits, // pointer to pointer variable
 hSection, // file-mapping object handle
 dwOffset) ; // offset to bits in file-mapping object

CreateDIBSection is one of the most important functions in the Windows API (well, at least if you're working with
bitmaps a lot), yet it's burdened with such weirdness that you may find it inordinately esoteric and difficult to
comprehend.

Let's begin with the very name of the function. We know what a DIB is, but what on earth is a "DIB section"?
When you first began examining CreateDIBSection , you may have kept looking for some way that the function
works with only part of the DIB. That's almost right. What CreateDIBSection does is indeed create a section of the
DIB—a memory block for the bitmap pixel bits.

Now let's look at the return value. It's a handle to a GDI bitmap object. That return value is probably the most
deceptive aspect of the function call. The return value seems to imply that CreateDIBSection is similar in
functionality to CreateDIBitmap . Yes, it's similar but also totally different. In fact, the bitmap handle returned
from CreateDIBSection is intrinsically different from the bitmap handle returned from all the previous bitmap-
creation functions we've encountered in this chapter and the last chapter.

Once you understand the true nature of CreateDIBSection , you might wonder why the return value wasn't defined
somewhat differently. You might also conclude that CreateDIBSection should have been called CreateDIBitmap and
that CreateDIBitmap should have been called, as I indicated earlier, CreateDDBitmap .

To first approach CreateDIBSection , let's examine how we can simplify it and put it to use right away. First, you
can set the last two arguments, hSection and dwOffset , to NULL and 0, respectively. I'll discuss the use of these
arguments towards the end of this chapter. Second, the hdc parameter is used only if the fColorUse parameter is
set to DIB_ PAL_COLORS. If fColorUse is DIB_RGB_COLORS (or 0), hdc is ignored. (This is not the case with
CreateDIBitmap , in which the hdc parameter is used to get the color format of the device that the DDB is to be
compatible with.)

So, in its simplest form, CreateDIBSection requires only the second and fourth arguments. The second argument
is a pointer to a BITMAPINFO structure, something we've worked with before. I hope the pointer to a pointer
definition of the fourth argument doesn't upset you too much. It's actually quite simple when using the function.

Let's suppose you want to create a 384×256-bit DIB with 24 bits per pixel. The 24-bit format is simplest because
it doesn't require a color table, so we can use a BITMAPINFOHEADER structure for the BITMAPINFO parameter.

You define three variables: a BITMAPINFOHEADER structure, a BYTE pointer, and a bitmap handle:

BITMAPINFOHEADER bmih ;
BYTE * pBits ;
HBITMAP hBitmap ;

Now initialize the fields of the BITMAPINFOHEADER structure:

bmih->biSize = sizeof (BITMAPINFOHEADER) ;
bmih->biWidth = 384 ;
bmih->biHeight = 256 ;
bmih->biPlanes = 1 ;
bmih->biBitCount = 24 ;
bmih->biCompression = BI_RGB ;
bmih->biSizeImage = 0 ;
bmih->biXPelsPerMeter = 0 ;
bmih->biYPelsPerMeter = 0 ;
bmih->biClrUsed = 0 ;
bmih->biClrImportant = 0 ;

With this minimum amount of preparation, we are now ready to call the function:

hBitmap = CreateDIBSection (NULL, (BITMAPINFO *) &bmih, 0, &pBits, NULL, 0) ;

Notice that we're taking the address of the BITMAPINFOHEADER structure for the second argument, as usual, but
also the address of the BYTE pointer pBits , which is not usual. Thus, the fourth argument is a pointer to a pointer,
as required by the function.

Here's what the function call does: CreateDIBSection examines the BITMAPINFOHEADER structure and allocates a
block of memory sufficient to hold the DIB pixel bits. (In this particular case, the block is 384×256×3 bytes in
size.) It stores a pointer to this memory block in the pBits parameter that you've supplied. The function also
returns a handle to a bitmap, which, as I've said, is not quite the same as the handle returned from
CreateDIBitmap and other bitmap-creation functions.

We're not quite done yet, however. The bitmap pixel bits are uninitialized. If you're reading a DIB file, you can
simply pass the pBits parameter to the ReadFile function and read them in. Or you can set them "manually" with
some program code.

The DIBSECT program shown in Figure 15-11 is similar to the DIBCONV program except that it calls
CreateDIBSection rather than CreateDIBitmap .

Figure 15-11. The DIBSECT program.

DIBSECT.C

/*--

 DIBSECT.C -- Displays a DIB Section in the client area
 (c) Charles Petzold, 1998
 --*/
#include <windows.h>
#include <commdlg.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("DibSect") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DIB Section Display"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;

 }
 return msg.wParam ;
}

HBITMAP CreateDibSectionFromDibFile (PTSTR szFileName)
{
 BITMAPFILEHEADER bmfh ;
 BITMAPINFO * pbmi ;
 BYTE * pBits ;
 BOOL bSuccess ;
 DWORD dwInfoSize, dwBytesRead ;
 HANDLE hFile ;
 HBITMAP hBitmap ;
 // Open the file: read access, prohibit write access

 hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ,
 NULL, OPEN_EXISTING, 0, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 // Read in the BITMAPFILEHEADER

 bSuccess = ReadFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != sizeof (BITMAPFILEHEADER))
 || (bmfh.bfType != * (WORD *) "BM"))
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 // Allocate memory for the BITMAPINFO structure & read it in

 dwInfoSize = bmfh.bfOffBits - sizeof (BITMAPFILEHEADER) ;

 pbmi = malloc (dwInfoSize) ;

 bSuccess = ReadFile (hFile, pbmi, dwInfoSize, &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != dwInfoSize))
 {
 free (pbmi) ;
 CloseHandle (hFile) ;
 return NULL ;
 }
 // Create the DIB Section

 hBitmap = CreateDIBSection (NULL, pbmi, DIB_RGB_COLORS, &pBits, NULL, 0) ;

 if (hBitmap == NULL)
 {
 free (pbmi) ;
 CloseHandle (hFile) ;
 return NULL ;
 }

 // Read in the bitmap bits

 ReadFile (hFile, pBits, bmfh.bfSize - bmfh.bfOffBits, &dwBytesRead, NULL) ;

 free (pbmi) ;
 CloseHandle (hFile) ;

 return hBitmap ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BITMAP bitmap ;
 HDC hdc, hdcMem ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing bitmap, delete it

 if (hBitmap)
 {
 DeleteObject (hBitmap) hBitmap = NULL ;
 }
 // Create the DIB Section from the DIB file

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hBitmap = CreateDibSectionFromDibFile (szFileName) ;
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Invalidate the client area for later update

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (hBitmap == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hBitmap)
 {
 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 BitBlt (hdc, 0, 0, bitmap.bmWidth, bitmap.bmHeight,
 hdcMem, 0, 0, SRCCOPY) ;

 DeleteDC (hdcMem) ;

 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

DIBSECT.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///

// Menu

DIBSECT MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by DibSect.rc

#define IDM_FILE_OPEN 40001

Notice the differences between the CreateBitmapObjectFromDibFile function in DIBCONV and the
CreateDibSectionFromDibFile function in DIBSECT. DIBCONV reads the entire file in one shot and then passes
pointers to the DIB memory block to the CreateDIBitmap function. DIBSECT reads in the BITMAPFILEHEADER
structure first and then determines how big the BITMAPINFO structure is. Memory is allocated for that, and it's
read in on the second ReadFile call. The function then passes pointers to the BITMAPINFO structure and to the
pointer variable pBits to CreateDIBSection . The function returns a bitmap handle and sets pBits to point to a
block of memory into which the function then reads the DIB pixel bits.

The memory block pointed to by pBits is owned by the system. The memory is automatically freed when you
delete the bitmap by calling DeleteObject . However, programs can use the pointer to alter the DIB bits directly.
That the system owns this memory block makes it not subject to the speed penalty incurred under Windows NT
when an application passes large memory blocks across the API.

As I noted above, when you display a DIB on a video display, at some point it must undergo a conversion from
device-independent pixels to device-dependent pixels. Sometimes this format conversion can be lengthy. Let's
look at the three approaches we've used to display DIBs:

When you use SetDIBitsToDevice or StretchDIBits to display a DIB directly to the screen, the format
conversion occurs during the SetDIBitsToDevice or StretchDIBits call.

When you convert a DIB to a DDB using CreateDIBitmap and (possibly) SetDIBits and then use BitBlt or
StretchBlt to display it, the format conversion occurs during CreateDIBitmap , if the CBM_INIT flag is set, or
SetDIBits .

When you create a DIB section using CreateDIBSection and then display it using BitBlt or StretchBlt , the
format conversion occurs during the BitBlt to StretchBlt call.

Read that last sentence over again and make sure you didn't misread it. This is one way in which the bitmap
handle returned from CreateDIBSection is different from the other bitmap handles we've encountered. This bitmap
handle actually references a DIB that is stored in memory maintained by the system but to which an application
has access. This DIB is converted to a particular color format when necessary, which is usually when it's displayed
using BitBlt or StretchBlt .

You can also select the bitmap handle into a memory device context and use GDI functions to draw on it. The
results will be reflected in the DIB pixel bits pointed to by the pBits variable. Because of batching of GDI calls
under Windows NT, call GdiFlush after drawing on the memory device context before accessing the bits
"manually."

In DIBSECT we discarded the pBits variable because it was no longer required by the program. If you need to alter
the bits directly, which is a major reason why you'll use CreateDIBSection , hold onto it. There seems to be no
way to later obtain the bits pointer after the CreateDIBSection call.

More DIB Section Differences

The bitmap handle returned from CreateDIBitmap has the same planes and bits-per-pixel organization as the
device referenced by the hdc parameter to the function. You can verify this by calling GetObject with the BITMAP
structure.

CreateDIBSection is different. If you call GetObject with the BITMAP structure on the bitmap handle returned from
the function, you'll find that the bitmap has the same color organization as indicated by the fields of the
BITMAPINFOHEADER structure. Yet you can select this handle into a memory device context compatible with the
video display. This contradicts what I said in the last chapter about DDBs, of course, but that's why I contend that
this DIB section bitmap handle is different.

Another oddity: As you'll recall, the byte length of the rows of pixel data in DIBs is always a multiple of 4. The
byte length of rows in GDI bitmap objects, which you can get from the bmWidthBytes field of the BITMAP
structure used with GetObject , is always a multiple of 2. Well, if you set up the BITMAPINFOHEADER structure
shown above with 24 bits per pixel and a width of 2 pixels (for example) and later call GetObject , you'll find that
the bmWidthBytes field is 8 rather than 6.

With the bitmap handle returned from CreateDIBSection , you can also call GetObject with a DIBSECTION
structure, like so:

GetObject (hBitmap, sizeof (DIBSECTION), &dibsection) ;

This won't work with a bitmap handle returned from any of the other bitmap-creation functions. The DIBSECTION
structure is defined like so:

typedef struct tagDIBSECTION // ds
{
 BITMAP dsBm ; // BITMAP structure
 BITMAPINFOHEADER dsBmih ; // DIB information header
 DWORD dsBitfields [3] ; // color masks
 HANDLE dshSection ; // file-mapping object handle
 DWORD dsOffset ; // offset to bitmap bits
}
DIBSECTION, * PDIBSECTION ;

This structure contains both a BITMAP structure and a BITMAPINFOHEADER structure. The last two fields are the
last two arguments passed to CreateDIBSection , which I'll discuss shortly.

The DIBSECTION structure tells you much of what you need to know about the bitmap, except for the color table.
When you select the DIB section bitmap handle into a memory device context, you can get the color table by
calling GetDIBColorTable :

hdcMem = CreateCompatibleDC (NULL) ;
SelectObject (hdcMem, hBitmap) ;
GetDIBColorTable (hdcMem, uFirstIndex, uNumEntries, &rgb) ;
DeleteDC (hdcMem) ;

Similary, you can set entries in the color table by calling SetDIBColorTable .

The File-Mapping Option

I haven't yet discussed the last two arguments to CreateDIBSection , which are a handle to a file-mapping object
and an offset within that file where the bitmap bits begin. A file-mapping object allows you to treat a file as if it
were located in memory. That is, you can access the file by using memory pointers, but the file needn't be entirely
located in memory.

In the case of large DIBs, this technique can help reduce memory requirements. The DIB pixel bits can remain on
disk but still be accessed as if they were in memory, albeit with a performance penalty. The problem is, while the
pixel bits can indeed remain stored on disk, they can't be part of an actual DIB file. They'd have to be in some
other file.

To demonstrate, the function shown below is very similar to the function that creates the DIB section in DIBSECT
except that it doesn't read the pixel bits into memory; instead, it supplies a file-mapping object and an offset to
the CreateDIBSection function:

HBITMAP CreateDibSectionMappingFromFile (PTSTR szFileName)
{
 BITMAPFILEHEADER bmfh ;
 BITMAPINFO * pbmi ;
 BYTE * pBits ;

 BOOL bSuccess ;
 DWORD dwInfoSize, dwBytesRead ;
 HANDLE hFile, hFileMap ;
 HBITMAP hBitmap ;

 hFile = CreateFile (szFileName, GENERIC_READ | GENERIC_WRITE,
 0, // No sharing!
 NULL, OPEN_EXISTING, 0, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 bSuccess = ReadFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != sizeof (BITMAPFILEHEADER))
 || (bmfh.bfType != * (WORD *) "BM"))
 {
 CloseHandle (hFile) ;
 return NULL ;
 }
 dwInfoSize = bmfh.bfOffBits - sizeof (BITMAPFILEHEADER) ;
 pbmi = malloc (dwInfoSize) ;
 bSuccess = ReadFile (hFile, pbmi, dwInfoSize, &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != dwInfoSize))
 {
 free (pbmi) ;
 CloseHandle (hFile) ;
 return NULL ;
 }
 hFileMap = CreateFileMapping (hFile, NULL, PAGE_READWRITE, 0, 0, NULL) ;

 hBitmap = CreateDIBSection (NULL, pbmi, DIB_RGB_COLORS, &pBits,
 hFileMap, bmfh.bfOffBits) ;
 free (pbmi) ;
 return hBitmap ;
}

Alas, this does not work. The documentation of CreateDIBSection indicates that "dwOffset [the final argument to
the function] must be a multiple of the size of a DWORD." Although the size of the information header is always a
multiple of 4 and the size of the color table is always a multiple of 4, the bitmap file header is not. It's 14 bytes.
So bmfh.bfOffBits is never a multiple of 4.

In Summary

If you have small DIBs and you need to frequently manipulate the pixel bits, you can display them using
SetDIBitsToDevice and StretchDIBits . However, for larger DIBs, this technique will encounter performance
problems, particularly on 8-bit video displays and under Windows NT.

You can convert a DIB to a DDB by using CreateDIBitmap and SetDIBits . Displaying the bitmap will now involve
the speedy BitBlt and StretchBlt functions. However, you no longer have access to the device-independent pixel
bits.

CreateDIBSection is a good compromise. Using the bitmap handle with BitBlt and StretchBlt gives you better

performance under Windows NT than using SetDIBitsToDevice and StretchDIBits but with none of the drawbacks
of the DDB. You still have access to the DIB pixel bits.

In the next chapter, we'll wrap up our exploration of bitmaps after looking at the Windows Palette Manager.

Chapter 16

The Palette Manager

This chapter would not exist were it not for a hardware deficiency. Although many modern video adapter boards
offer 24-bit color (also known as "true color" or "millions of colors") or 16-bit color ("high color" or "thousands of
colors"), some video adapters—particularly on laptops or in high-resolution video modes—allow only 8 bits per
pixel. The use of 8 bits per pixel implies only 256 simultaneous colors.

What can we do with 256 colors? While a mere 16 colors are clearly inadequate for displaying real-world images
and the use of thousands or millions of color is quite sufficient for that task, 256 colors falls somewhere in the
middle. Yes, 256 colors are adequate for displaying a real-world image, but only if those colors are selected
specifically for the particular image. This means that an operating system simply cannot choose a "standard" set
of 256 colors and expect them to be the ideal colors for every application.

This is what the Windows Palette Manager is all about. It's for specifying the colors that your program needs when
running in an 8-bit video mode. If you know that your programs will never run in 8-bit video modes, you won't
need to use the Palette Manager. However, this chapter contains important information nonetheless, for it ties up
some loose ends with bitmaps.

Using Palettes

Traditionally, a palette is the board that a painter uses to mix colors. The word can also refer to the entire range of
colors that an artist uses in creating a painting. In computer graphics, the palette is the range of colors available
on a graphics output device such as a video display. The word can also refer to a lookup table on video boards that
support 256-color modes.

Video Hardware

The palette lookup table on video boards works something like this:

In 8-bit video modes, each pixel has 8 bits. The pixel value addresses a lookup table that contains 256 RGB
values. These RGB values can be a full 24 bits wide or can be smaller, typically 18 bits wide (that is, 6 bits for
each red, green, and blue primary). The values for each color are input to digital-to-analog converters for the
three analog red, green, and blue signals that go to the monitor.

The palette lookup table can generally be loaded with arbitrary values through software, but there are some
obstacles for a device-independent windowing interface such as that in Microsoft Windows. First, Windows must
provide a software interface so that applications can access the Palette Manager without directly fooling around
with the hardware. The second problem is more serious: because all applications are sharing the same video
display and running side by side, one application's use of the palette lookup table might interfere with another's.

This is where the Windows Palette Manager (introduced in Windows 3.0) comes into play. Windows reserves 20 of
the 256 colors for itself and lets applications change the other 236. (In certain cases, an application can change up
to 254 of the 256 colors—all except black and white—but this is a bit of a chore.) The 20 colors that Windows
reserves for system use, sometimes called the 20 static colors) are shown in Figure 16-1.

Pixel Bits
RGB Value
Color Name
Pixel Bits
RGB Value
Color Name
00000000
00 00 00
Black
11111111
FF FF FF
White
00000001
80 00 00
Dark Red
11111110
00 FF FF
Cyan
00000010
00 80 00
Dark Green
11111101
FF 00 FF
Magenta
00000011
80 80 00

Dark Yellow
11111100
00 00 FF
Blue
00000100
00 00 80
Dark Blue
11111011
FF FF 00
Yellow
00000101
80 00 80
Dark Magenta
11111010
00 FF 00
Green
00000110
00 80 80
Dark Cyan
11111001
FF 00 00
Red
00000111
C0 C0 C0
Light Gray
11111000
80 80 80
Dark Gray
00001000
C0 DC C0
Money Green
11110111
A0 A0 A4
Medium Gray
00001001
A6 CA F0
Sky Blue
11110110
FF FB F0
Cream

Figure 16-1. The 20 reserved colors in 256-color video modes.

When running in 256-color video modes, Windows maintains a "system palette," which is the same as the
hardware palette lookup table on the video board. The default system palette is shown in Figure 16-1. Applications
can change the other 236 colors by specifying "logical palettes." If more than one application is using logical
palettes, Windows gives highest priority to the active window. (As you know, the active window is the window that
has the highlighted title bar and appears to the foreground of all the other windows.) We'll examine how this
works in the context of a simple sample program.

For running the programs shown in the remainder of this chapter, you may want to switch your video board into a
256-color mode. Right click the mouse on the desktop, pick Properties from the menu, and select the Settings tab.

Displaying Gray Shades

The GRAYS1 program shown in Figure 16-2 does not use the Windows Palette Manager but instead tries to
normally display 65 shades of gray as a "fountain" of color ranging black to white.

Figure 16-2. The GRAYS1 program.

GRAYS1.C

/*---------------------------------------
 GRAYS1.C -- Gray Shades
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Grays1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Shades of Gray #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)

{
 static int cxClient, cyClient ;
 HBRUSH hBrush ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Draw the fountain of grays

 for (i = 0 ; i < 65 ; i++)
 {
 rect.left = i * cxClient / 65 ;
 rect.top = 0 ;
 rect.right = (i + 1) * cxClient / 65 ;
 rect.bottom = cyClient ;

 hBrush = CreateSolidBrush (RGB (min (255, 4 * i),
 min (255, 4 * i),
 min (255, 4 * i))) ;
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

During the WM_PAINT message, the program makes 65 calls to the FillRect function, each time with a brush
created using a different gray shade. The gray shades are the RGB values (0, 0, 0), (4, 4, 4), (8, 8, 8), and so
forth, until the last one, which is (255, 255, 255). That last one is the reason for the min macro in the
CreateSolidBrush function.

If you run this program in a 256-color video mode, you'll see 65 shades of gray from black to white, but almost all
of them are rendered using dithering. The only pure colors are black, dark gray (128, 128, 128), light gray (192,
192, 192), and white. The other colors are various bit patterns combining these pure colors. If we were displaying
lines or text rather than filled areas using these 65 gray shades, Windows would not use dithering and would use
only the four pure colors. If we were displaying a bitmap, the image would be approximated using the 20 standard
Windows colors, as you can see for yourself by running one of the programs from the last chapter and loading in a

color or gray-shade DIB. Windows normally does not use dithering for bitmaps.

The GRAYS2 program shown in Figure 16-3 demonstrates the most important Palette Manager functions and
messages with little extraneous code.

Figure 16-3. The GRAYS2 program.

GRAYS2.C

/*---
 GRAYS2.C -- Gray Shades Using Palette Manager
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Grays2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Shades of Gray #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 HBRUSH hBrush ;
 HDC hdc ;
 int i ;
 LOGPALETTE * plp ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 // Set up a LOGPALETTE structure and create a palette

 plp = malloc (sizeof (LOGPALETTE) + 64 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 65 ;

 for (i = 0 ; i < 65 ; i++)
 {
 plp->palPalEntry[i].peRed = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peGreen = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peBlue = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peFlags = 0 ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Select and realize the palette in the device context

 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 // Draw the fountain of grays

 for (i = 0 ; i < 65 ; i++)
 {
 rect.left = i * cxClient / 64 ;
 rect.top = 0 ;
 rect.right = (i + 1) * cxClient / 64 ;
 rect.bottom = cyClient ;

 hBrush = CreateSolidBrush (PALETTERGB (min (255, 4 * i),
 min (255, 4 * i),
 min (255, 4 * i))) ;
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 DeleteObject (hPalette) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Generally the first step in using the Palette Manager is to create a logical palette by calling the CreatePalette
function. The logical palette contains all the colors—or rather, as many as 236 colors—that the program needs.

The GRAYS1 program handles this job during the WM_CREATE message. It initializes the fields of a LOGPALETTE
("logical palette") structure and passes a pointer to this structure to the CreatePalette function. CreatePalette
returns a handle to the logical palette, which is stored in the static variable hPalette .

The LOGPALETTE structure is defined like so:

typedef struct
{
 WORD palVersion ;
 WORD palNumEntries ;
 PALETTEENTRY palPalEntry[1] ;
}
LOGPALETTE, * PLOGPALETTE ;

The first field is always set to 0x0300, indicating Windows 3.0 compatibility, and the second field is set to the
number of entries in the palette table. The third field in the LOGPALETTE structure is an array of PALETTEENTRY
structures, one for each of the palette entries. The PALETTEENTRY structure is defined like this:

typedef struct
{
 BYTE peRed ;
 BYTE peGreen ;
 BYTE peBlue ;
 BYTE peFlags ;
}
PALETTEENTRY, * PPALETTEENTRY ;

Each of the PALETTEENTRY structures defines an RGB color value that we want in the palette.

Notice that LOGPALETTE is defined for an array of only one PALETTEENTRY structure. You need to allocate some
memory large enough for one LOGPALETTE structure and additional PALETTEENTRY structures. GRAYS2 wants 65
gray shades, so it allocates enough memory for a LOGPALETTE structure and 64 additional PALETTEENTRY
structures. It sets the palNumEntries field to 65. GRAYS2 then goes through a loop from 0 through 64, calculates a
gray level (which is simply 4 times the loop index, but not greater than 255), and sets the peRed , peGreen , and
peBlue fields of the structure to this gray level. The peFlags field is set to 0. The program passes the pointer to
this block of memory to CreatePalette , saves the palette handle in a static variable, and then frees the memory.

A logical palette is a GDI object. Programs should delete any logical palettes they create. WndProc takes care of
deleting the logical palette during the WM_DESTROY message by calling DeleteObject .

Notice that the logical palette is independent of a device context. Before you can actually make use of it, it must
be selected into a device context and "realized." During the WM_PAINT message, the SelectPalette function selects
the logical palette into the device context. This is similar to the SelectObject function except that a third argument
is included. Normally this third argument is set to FALSE. If the third argument to SelectPalette is set to TRUE, the
palette is always a "background palette," which means that it gets whatever unused entries still exist in the
system palette after all other programs have realized their palettes.

Only one logical palette can be selected into the device context at any time. The function returns the handle of the
logical palette previously selected in the device context. You can save this for selecting back into the device
context if you wish to.

The RealizePalette function causes Windows to "realize" the logical palette in the device context by mapping the
colors to the system palette, which in turn corresponds to the actual physical palette of the video board. The real
work goes on during this function call. Windows must determine whether the window calling the function is active
or inactive and perhaps notify other windows that the system palette is changing. (We'll see how this notification
works shortly.)

You'll recall that GRAYS1 used the RGB macro to specify the color of the solid brush. The RGB macro constructs a
32-bit long integer (known as a COLORREF value) where the upper byte is 0 and the lower 3 bytes are the
intensities of red, green, and blue.

A program that uses the Windows Palette Manager can continue to use RGB color values to specify color. However,
these RGB color values will not give access to the additional colors in the logical palette. They will have the same
effect as if the Palette Manager were not used. To make use of the additional colors in the logical palette, you use
the PALETTERGB macro. A "Palette RGB" color is very much like an RGB color except that the high byte of the
COLORREF value is set to 2 rather than 0.

Here are the important rules:

To use a color in your logical palette, specify it using a Palette RGB value or a Palette Index value. (I'll
discuss the Palette Index shortly.) Do not use a normal RGB value. If you use a normal RGB value, you will
get one of the standard colors and not a color from your logical palette.

Do not use Palette RGB values or Palette Index values when you have not selected a palette in your device
context.

Although you can use a Palette RGB value to specify a color not in the logical palette, the color you get will
be selected from the logical palette.

For example, during WM_PAINT processing in GRAYS2, after you select and realize the logical palette, if you try to
display something in red, it will come out as a shade of gray. You need to use RGB color values to select colors not
in the logical palette.

Notice that GRAYS2 never checks to see whether the video display driver actually supports palette management.
When running GRAYS2 under video modes that do not support palette management (that is, all video modes that
are not 256 colors), GRAYS2 is functionally equivalent to GRAYS1.

The Palette Messages

If multiple Windows programs are using the Palette Manager, the active window gets priority over the palette. The
most recently active window gets second priority, and so forth. Whenever a new program becomes active, the
Windows Palette Manager usually must reorganize the system palette table.

If a program specifies a color in its logical palette that is identical to one of the 20 reserved colors, Windows will
map that logical palette entry to that color. Also, if two or more applications specify the same color in their logical
palettes, these applications will share the system palette entry. A program can override this default behavior by
specifying the constant PC_NOCOLLAPSE as the peFlags field of the PALETTEENTRY structure. (The other two
possible flags are PC_EXPLICIT, which is used to display the system palette, and PC_RESERVED, which is used in
palette animation. I'll demonstrate both of these flags later in this chapter.)

To help in organizing the system palette, the Windows Palette Manager includes two messages sent to main
windows.

The first is QM_QUERYNEWPALETTE. This message is sent to a main window when it is about to become active. If
your program uses the Palette Manager when drawing on your window, it must process this message. GRAYS2
demonstrates how to do so. The program obtains a device context handle, selects the palette into it, calls
RealizePalette , and then invalidates the window to generate a WM_PAINT message. The window procedure
returns TRUE from this message if it realizes its logical palette and FALSE otherwise.

Whenever the system palette changes as a result of a WM_QUERYNEWPALETTE message, Windows sends the
WM_PALETTECHANGED message to all main windows starting with the most active window and proceeding down
the window chain. This allows the foreground window to have priority. The wParam value passed to the window
procedure is the handle of the active window. A program using the Palette Manager should process this message
only if wParam is not equal to the program's window handle.

Generally, any program that uses a customized palette calls SelectPalette and RealizePalette while processing
WM_PALETTECHANGED. When subsequent windows call RealizePalette during the message, Windows first checks
for matches of RGB colors in the logical palette with RGB colors already loaded in the system palette. If two
programs need the same color, the same system palette entry is used for both. Next Windows checks for unused
system palette entries. If none exist, the color in the logical palette is mapped to the closest color from the 20
reserved entries.

If you don't care about how the client area looks when your program is inactive, you do not need to process the
WM_PALETTECHANGED message. Otherwise, you have two choices. GRAYS2 shows one of them: As when
processing the WM_QUERYNEWPALETTE message, it gets a device context, selects the palette into it, and then
calls RealizePalette . At this point, it could call InvalidateRect as when processing WM_QUERYNEWPALETTE.
Instead, GRAYS2 calls UpdateColors . This function is usually more efficient than repainting the window, and it
changes the values of pixels in your window to help preserve the previous colors.

Most programs that use the Palette Manager will have WM_QUERYNEWPALETTE and WM_PALETTECHANGED
message processing identical to that shown in GRAYS2.

The Palette Index Approach

The GRAYS3 program shown in Figure 16-4 is very similar to GRAYS2 but uses a macro called PALETTEINDEX
instead of PALETTERGB during WM_PAINT processing.

Figure 16-4. The GRAYS3 program.

GRAYS3.C

/*---
 GRAYS3.C -- Gray Shades Using Palette Manager
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Grays3") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Shades of Gray #3"),

 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 HBRUSH hBrush ;
 HDC hdc ;
 int i ;
 LOGPALETTE * plp ;
 PAINTSTRUCT ps ;
 RECT rect ;
 switch (message)
 {
 case WM_CREATE:
 // Set up a LOGPALETTE structure and create a palette

 plp = malloc (sizeof (LOGPALETTE) + 64 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 65 ;

 for (i = 0 ; i < 65 ; i++)
 {
 plp->palPalEntry[i].peRed = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peGreen = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peBlue = (BYTE) min (255, 4 * i) ;
 plp->palPalEntry[i].peFlags = 0 ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:

 hdc = BeginPaint (hwnd, &ps) ;

 // Select and realize the palette in the device context

 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 // Draw the fountain of grays

 for (i = 0 ; i < 65 ; i++)
 {
 rect.left = i * cxClient / 64 ;
 rect.top = 0 ;
 rect.right = (i + 1) * cxClient / 64 ;
 rect.bottom = cyClient ;

 hBrush = CreateSolidBrush (PALETTEINDEX (i)) ;
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, FALSE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;

}

A "Palette Index" color is quite different from the Palette RGB color. The high byte is 1, and the value in the low
byte is an index into the logical palette currently selected in the device context. In GRAYS3, the logical palette has
65 entries. The indices for these entries are thus 0 through 64. The value

PALETTEINDEX (0)

refers to black,

PALETTEINDEX (32)

refers to medium gray, and

PALETTEINDEX (64)

refers to white.

Using palette indices is more efficient than using RGB values because Windows does not need to perform a
nearest-color search.

Querying the Palette Support

As you can easily verify, the GRAYS2 and GRAYS3 programs run fine when Windows is running under a 16-bit or
24-bit video mode. But in some cases, a Windows application that wishes to use the Palette Manager might want
to first determine whether the device driver supports it. You can do this by calling GetDeviceCaps using a device
context handle for the video display and the RASTERCAPS parameter. The function returns an integer composed of
a series of flags. You can test palette support by performing a bitwise AND between the return value and the
constant RC_PALETTE:

RC_PALETTE & GetDeviceCaps (hdc, RASTERCAPS)

If this value is nonzero, the device driver for the video display supports palette manipulation. In that case, three
other important items are also available from GetDeviceCaps . The function call

GetDeviceCaps (hdc, SIZEPALETTE)

returns the total size of the palette table on the video board. This is the same as the total number of colors that
can be simultaneously displayed. Because the Palette Manager is invoked only for video display modes with 8 bits
per pixel, this value will be 256.

The function call

GetDeviceCaps (hdc, NUMRESERVED)

returns the number of colors in the palette table that the device driver reserves for system purposes. This value
will be 20. Without invoking the Palette Manager, these are the only pure colors a Windows application can use in
a 256-color video mode. To use the other 236 colors, a program must use the Palette Manager functions.

One additional item is also available:

GetDeviceCaps (hdc, COLORRES)

This value tells you the resolution (in bits) of the RGB color values loaded into the hardware palette table. These
are the bits going into the digital-to-analog converters. Some video display adapters use only 6-bit ADCs, so this
value would be 18. Others use 8-bit ADCs, so this value would be 24.

It is useful for a Windows program to take a look at this color resolution value and behave accordingly. For
example, if the color resolution is 18, it makes no sense for a program to attempt to request 128 shades of gray
because only 64 discrete shades of gray are possible. Requesting 128 shades of gray will unnecessarily fill the
hardware palette table with redundant entries.

The System Palette

As I've mentioned, the system palette in Windows corresponds directly to the hardware palette lookup table on
the video adapter board. (However, the hardware palette lookup table may have a lower color resolution than the
system palette.) A program can obtain any or all of the RGB entries in the system palette by calling this function:

GetSystemPaletteEntries (hdc, uStart, uNum, &pe) ;

This function works only if the video adapter mode supports palette manipulation. The second and third arguments
are unsigned integer values that indicate the index of the first palette entry you want and the number of palette
entries you want. The last argument is a pointer to a structure of type PALETTEENTRY.

You can use this function in several ways. A program can define one PALETTEENTRY structure like this,

PALETTEENTRY pe ;

and then call GetSystemPaletteEntries multiple times like so,

GetSystemPaletteEntries (hdc, i, 1, &pe) ;

with i being from 0 to one less than the value returned from GetDeviceCaps with the SIZEPALETTE index, which
will be 255. Or a program can obtain all the system palette entries by defining a pointer to a PALETTEENTRY
structure and then allocating a block of memory sufficient to hold as many PALETTEENTRY structures as indicated
by the size of the palette.

The GetSystemPaletteEntries function really lets you examine the hardware palette table. The entries in the
system palette are in the order of increasing values of pixel bits that are used to denote color in the video display
buffer. I'll demonstrate how to do this shortly.

Other Palette Functions

As we saw earlier, a Windows program can change the system palette but only indirectly. The first step is creating
a logical palette, which is basically an array of RGB color values that the program wants to use. The CreatePalette
function does not cause any change to the system palette or the palette table on the video board. The logical
palette must be selected into a device context and realized before anything happens.

A program can query the RGB color values in a logical palette by calling

GetPaletteEntries (hPalette, uStart, uNum, &pe) ;

You can use this function in the same way you use GetSystemPaletteEntries . But note that the first parameter is a
handle to the logical palette rather than a handle to a device context.

A corresponding function lets you change values in the logical palette after it has been created:

SetPaletteEntries (hPalette, uStart, uNum, &pe) ;

Again, keep in mind that calling this function does not cause any change to the system palette—even if the palette
is currently selected in a device context. This function also cannot change the size of the logical palette. For that,
use ResizePalette .

The following function accepts an RGB color reference value as the last argument and returns an index into the
logical palette that corresponds to the RGB color value that most closely approximates it:

iIndex = GetNearestPaletteIndex (hPalette, cr) ;

The second argument is a COLORREF value. If you wish, you can then obtain the actual RGB color value in the
logical palette by calling GetPaletteEntries .

Programs that need more than 236 custom colors in 8-bit video modes can call GetSystemPaletteUse . This lets a
program set 254 custom colors; the system reserves only black and white. However, the program should do this
only when it is maximized to fill the screen, and it should set some system colors to black and white so that title
bars and menus and such are still visible.

The Raster-Op Problem

As you know from Chapter 5 , GDI allows you to draw lines and fill areas by using various "drawing modes" or
"raster operations." You set the drawing mode using SetROP2 . The "2" indicates a binary raster operation
between two objects; tertiary raster operations are used with BitBlt and similar functions. These raster operations
determine how the pixels of the object you're drawing combine with the pixels of the surface. For example, you
can draw a line so that the pixels of the line are combined with the pixels of the display using a bitwise exclusive-
OR operation.

The raster operations work by performing bitwise operations on pixel bits. Changing the palette can affect how
these raster operations work. The raster operations manipulate pixel bits, and these pixel bits might have no
relationship to actual colors.

You can see this for yourself by running the GRAYS2 or GRAYS3 program. Drag the top or bottom sizing border
across the window. Windows displays the dragged sizing border by using a raster operation that inverts the
background pixel bits. The intent is to make the dragged sizing border always visible. But with the GRAYS2 and
GRAYS3 programs, you'll probably see various random colors instead. These colors happen to correspond to
unused entries in the palette table that result from inverting the pixel bits of the display. The visible color is not
being inverted—only the pixel bits.

As you can see in Figure 16-1, the 20 standard reserved colors are placed at the top and bottom of the system
palette so that the results of raster operations are still normal. However, once you begin changing the
palette—and particularly if you take over the reserved colors—then raster operations of color objects can become
meaningless.

The only guarantee you have is that the raster operations will work with black and white. Black is the first entry in
the system palette (all pixel bits set to 0), and white is the last entry (all pixel bits set to 1). These entries cannot
be changed. If you need to predict the results of raster operations on color objects, you can do so by getting the
system palette table and looking at the RGB color values for the various pixel-bit values.

Looking at the System Palette

Programs running under Windows deal with logical palettes; Windows sets up the colors in the system palette to
best service all programs using logical palettes. The system palette mirrors the hardware lookup table of the video
board. Thus, taking a look at the system palette can help in debugging palette applications.

I'm going to show you three programs that display the contents of the system palette because there are three
quite different approaches to this problem.

The SYSPAL1 program is shown in Figure 16-5. This program uses the GetSystemPaletteEntries function that I
described above.

Figure 16-5. The SYSPAL1 program.

SYSPAL1.C

/*--
 SYSPAL1.C -- Displays system palette
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("SysPal1") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("System Palette #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL CheckDisplay (HWND hwnd)
{
 HDC hdc ;
 int iPalSize ;

 hdc = GetDC (hwnd) ;
 iPalSize = GetDeviceCaps (hdc, SIZEPALETTE) ;
 ReleaseDC (hwnd, hdc) ;
 if (iPalSize != 256)
 {
 MessageBox (hwnd, TEXT ("This program requires that the video ")
 TEXT ("display mode have a 256-color palette."),
 szAppName, MB_ICONERROR) ;
 return FALSE ;
 }
 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 static SIZE sizeChar ;
 HDC hdc ;
 HPALETTE hPalette ;
 int i, x, y ;
 PAINTSTRUCT ps ;
 PALETTEENTRY pe [256] ;

 TCHAR szBuffer [16] ;

 switch (message)
 {
 case WM_CREATE:
 if (!CheckDisplay (hwnd))
 return -1 ;

 hdc = GetDC (hwnd) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
 GetTextExtentPoint32 (hdc, TEXT ("FF-FF-FF"), 10, &sizeChar) ;
 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 if (!CheckDisplay (hwnd))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;

 GetSystemPaletteEntries (hdc, 0, 256, pe) ;

 for (i = 0, x = 0, y = 0 ; i < 256 ; i++)
 {
 wsprintf (szBuffer, TEXT ("%02X-%02X-%02X"),
 pe[i].peRed, pe[i].peGreen, pe[i].peBlue) ;

 TextOut (hdc, x, y, szBuffer, lstrlen (szBuffer)) ;

 if ((x += sizeChar.cx) + sizeChar.cx > cxClient)
 {
 x = 0 ;

 if ((y += sizeChar.cy) > cyClient)
 break ;
 }
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_PALETTECHANGED:
 InvalidateRect (hwnd, NULL, FALSE) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

As with the other programs in the SYSPAL series, SYSPAL1 does not run unless GetDeviceCaps with the
SIZEPALETTE argument returns 256.

Notice that SYSPAL1's client area is invalidated whenever it receives a WM_PALETTECHANGED message. During
the resultant WM_PAINT message, SYSPAL1 calls GetSystemPaletteEntries with an array of 256 PALETTEENTRY
structures. The RGB values are displayed as text strings in the client area. When you run the program, note that
the 20 reserved colors are the first 10 and last 10 in the list of RGB values, as indicated by Figure 16-1.

While SYSPAL1 is certainly displaying useful information, it's not quite the same as actually seeing the 256 colors.
That's a job for SYSPAL2, shown in Figure 16-6.

Figure 16-6. The SYSPAL2 program.

SYSPAL2.C

/*--
 SYSPAL2.C -- Displays system palette
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("SysPal2") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("System Palette #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL CheckDisplay (HWND hwnd)
{
 HDC hdc ;
 int iPalSize ;

 hdc = GetDC (hwnd) ;
 iPalSize = GetDeviceCaps (hdc, SIZEPALETTE) ;
 ReleaseDC (hwnd, hdc) ;

 if (iPalSize != 256)
 {
 MessageBox (hwnd, TEXT ("This program requires that the video ")
 TEXT ("display mode have a 256-color palette."),
 szAppName, MB_ICONERROR) ;
 return FALSE ;
 }
 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 HBRUSH hBrush ;
 HDC hdc ;
 int i, x, y ;
 LOGPALETTE * plp ;

 PAINTSTRUCT ps ;
 RECT rect ;
 switch (message)
 {
 case WM_CREATE:
 if (!CheckDisplay (hwnd))
 return -1 ;

 plp = malloc (sizeof (LOGPALETTE) + 255 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 256 ;

 for (i = 0 ; i < 256 ; i++)
 {
 plp->palPalEntry[i].peRed = i ;
 plp->palPalEntry[i].peGreen = 0 ;
 plp->palPalEntry[i].peBlue = 0 ;
 plp->palPalEntry[i].peFlags = PC_EXPLICIT ;
 }

 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 if (!CheckDisplay (hwnd))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 for (y = 0 ; y < 16 ; y++)
 for (x = 0 ; x < 16 ; x++)
 {
 hBrush = CreateSolidBrush (PALETTEINDEX (16 * y + x)) ;
 SetRect (&rect, x * cxClient / 16, y * cyClient / 16,
 (x + 1) * cxClient / 16, (y + 1) * cyClient / 16);
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_PALETTECHANGED:
 if ((HWND) wParam != hwnd)
 InvalidateRect (hwnd, NULL, FALSE) ;

 return 0 ;

 case WM_DESTROY:
 DeleteObject (hPalette) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SYSPAL2 creates a logical palette during the WM_CREATE message. But notice that all 256 values in the logical
palette are palette indices ranging from 0 to 255 and that the peFlags field is PC_EXPLICIT. The definition of this
flag is this: "Specifies that the low-order word of the logical palette entry designates a hardware palette index.
This flag allows the application to show the contents of the display device palette." Thus, this flag is specifically
intended for doing what we're trying to do.

During the WM_PAINT message, SYSPAL2 selects this palette into its device context and realizes it. This does not
cause any reorganization of the system palette but instead allows the program to specify colors in the system
palette by using the PALETTEINDEX macro. SYSPAL2 does this to display 256 rectangles. Again, when you run this
program, notice that the first 10 and last 10 colors of the top row and bottom row are the 20 reserved colors
shown in Figure 16-1. As you run programs that use their own logical palettes, the display changes.

If you like seeing the colors in SYSPAL2 but would like RGB values as well, run the program in conjunction with
the WHATCLR program from Chapter 8 .

The third version in the SYSPAL series uses a technique that occurred to me only recently—some seven years after
I first started exploring the Windows Palette Manager.

Virtually all the GDI functions specify color—either directly or indirectly—as an RGB value. Somewhere deep in GDI
this is converted into certain pixel bits that correspond to that color. In some video modes (for example, in 16-bit
or 24-bit color mode), this conversion is rather straightforward. In other video modes (4-bit or 8-bit color), this
can involve a nearest-color search.

However, there are two GDI functions that let you specify color directly in pixel bits. These two functions used in
this way are, of course, highly device-dependent. They are so device-dependent that they can directly display the
actual palette lookup table on the video display adapter. These two functions are BitBlt and StretchBlt .

The SYSPAL3 program in Figure 16-7 shows how to use StretchBlt to display the colors in the system palette.

Figure 16-7. The SYSPAL3 program.

SYSPAL3.C

/*--
 SYSPAL3.C -- Displays system palette
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("SysPal3") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("System Palette #3"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL CheckDisplay (HWND hwnd)
{
 HDC hdc ;
 int iPalSize ;

 hdc = GetDC (hwnd) ;

 iPalSize = GetDeviceCaps (hdc, SIZEPALETTE) ;
 ReleaseDC (hwnd, hdc) ;

 if (iPalSize != 256)
 {
 MessageBox (hwnd, TEXT ("This program requires that the video ")
 TEXT ("display mode have a 256-color palette."),
 szAppName, MB_ICONERROR) ;
 return FALSE ;
 }
 return TRUE ;
}
LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static int cxClient, cyClient ;
 BYTE bits [256] ;
 HDC hdc, hdcMem ;
 int i ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 if (!CheckDisplay (hwnd))
 return -1 ;

 for (i = 0 ; i < 256 ; i++)
 bits [i] = i ;

 hBitmap = CreateBitmap (16, 16, 1, 8, &bits) ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 if (!CheckDisplay (hwnd))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 StretchBlt (hdc, 0, 0, cxClient, cyClient,
 hdcMem, 0, 0, 16, 16, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteObject (hBitmap) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

During the WM_CREATE message, SYSPAL3 uses CreateBitmap to create a 16-by-16 bitmap with 8 bits per pixel.
The last argument to the function is an array of 256 bytes containing the numbers 0 through 255. These are the
256 possible pixel-bit values. During the WM_PAINT message, the program selects this bitmap into a memory
device context and uses StretchBlt to display it to fill the client area. Windows simply transfers the pixel bits in the
bitmap to the hardware of the video display, thus allowing these pixel bits to access the 256 entries in the palette
lookup table. The program's client area doesn't even need to be invalidated on receipt of the
WM_PALETTECHANGED message—any change to the lookup table is immediately reflected in SYSPAL3's display.

Palette Animation

If you saw the word "animation" in the title of this section and started thinking about kwazy wabbits running
around your screen, your sights are probably set a little too high. Yes, you can do some animation using the
Windows Palette Manager, but it is a rather specialized form of animation.

Usually, animation under Windows involves displaying a series of bitmaps in quick succession. Palette animation is
quite different. You begin by drawing everything you need on the screen, and then you manipulate the palette to
change the colors of these objects, perhaps rendering some of the images invisible against the screen background.
In this way, you can get animation effects without redrawing anything. Palette animation is consequently very
fast.

The initial creation of the palette for use in palette animation is a little different from what we've seen earlier: The
peFlags field of the PALETTEENTRY structure must be set to PC_RESERVED for each RGB color value that will be
changed during animation.

Normally, as we've seen, you set the peFlags flag to 0 when you create a logical palette. This allows the GDI to
map identical colors from multiple logical palettes into the same system palette entry. For example, suppose two
Windows programs create logical palettes containing the RGB entry 10-10-10. Windows needs only one 10-10-10
entry in the system palette table. But if one of these two programs is using palette animation, then you don't want
GDI to do this. Palette animation is intended to be very fast—and it can only be fast if no redrawing occurs. When
the program using palette animation changes the palette, it should not affect other programs or force GDI to
reorganize the system palette table. The peFlags value of PC_RESERVED reserves the system palette entry for a
single logical palette.

When using palette animation, you call SelectPalette and RealizePalette as normal during the WM_PAINT message.
You specify color using the PALETTEINDEX macro. This macro takes an index into the logical palette table.

For animation, you probably want to change the palette in response to a WM_TIMER message. To change the RGB
color values in the logical palette, you call the function AnimatePalette using an array of PALETTEENTRY
structures. This function is fast because it needs to change entries in the system palette only and, consequently,
the video board hardware palette table.

The Bouncing Ball

Figure 16-8 shows the components of the BOUNCE program, yet another program that displays a bouncing ball.
For purposes of simplicity, this ball is drawn as an ellipse depending on the size of the client area. Because I have
several palette animation programs in this chapter, the PALANIM.C ("palette animation") file contains some
overhead common to all of them.

Figure 16-8. The BOUNCE program.

PALANIM.C

/*--
 PALANIM.C -- Palette Animation Shell Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

extern HPALETTE CreateRoutine (HWND) ;
extern void PaintRoutine (HDC, int, int) ;
extern void TimerRoutine (HDC, HPALETTE) ;
extern void DestroyRoutine (HWND, HPALETTE) ;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

extern TCHAR szAppName [] ;
extern TCHAR szTitle [] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL CheckDisplay (HWND hwnd)
{
 HDC hdc ;
 int iPalSize ;

 hdc = GetDC (hwnd) ;

 iPalSize = GetDeviceCaps (hdc, SIZEPALETTE) ;
 ReleaseDC (hwnd, hdc) ;
 if (iPalSize != 256)
 {
 MessageBox (hwnd, TEXT ("This program requires that the video ")
 TEXT ("display mode have a 256-color palette."),
 szAppName, MB_ICONERROR) ;
 return FALSE ;
 }
 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 if (!CheckDisplay (hwnd))
 return -1 ;

 hPalette = CreateRoutine (hwnd) ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 if (!CheckDisplay (hwnd))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 PaintRoutine (hdc, cxClient, cyClient) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_TIMER:
 hdc = GetDC (hwnd) ;

 SelectPalette (hdc, hPalette, FALSE) ;

 TimerRoutine (hdc, hPalette) ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 DestroyRoutine (hwnd, hPalette) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOUNCE.C

/*---------------------------------------

 BOUNCE.C -- Palette Animation Demo
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

#define ID_TIMER 1

TCHAR szAppName [] = TEXT ("Bounce") ;
TCHAR szTitle [] = TEXT ("Bounce: Palette Animation Demo") ;

static LOGPALETTE * plp ;

HPALETTE CreateRoutine (HWND hwnd)
{
 HPALETTE hPalette ;
 int i ;

 plp = malloc (sizeof (LOGPALETTE) + 33 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 34 ;

 for (i = 0 ; i < 34 ; i++)
 {
 plp->palPalEntry[i].peRed = 255 ;
 plp->palPalEntry[i].peGreen = (i == 0 ? 0 : 255) ;
 plp->palPalEntry[i].peBlue = (i == 0 ? 0 : 255) ;
 plp->palPalEntry[i].peFlags = (i == 33 ? 0 : PC_RESERVED) ;
 }
 hPalette = CreatePalette (plp) ;

 SetTimer (hwnd, ID_TIMER, 50, NULL) ;
 return hPalette ;
}

void PaintRoutine (HDC hdc, int cxClient, int cyClient)
{
 HBRUSH hBrush ;
 int i, x1, x2, y1, y2 ;
 RECT rect ;
 // Draw window background using palette index 33

 SetRect (&rect, 0, 0, cxClient, cyClient) ;
 hBrush = CreateSolidBrush (PALETTEINDEX (33)) ;
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;

 // Draw the 33 balls

 SelectObject (hdc, GetStockObject (NULL_PEN)) ;

 for (i = 0 ; i < 33 ; i++)
 {
 x1 = i * cxClient / 33 ;
 x2 = (i + 1) * cxClient / 33 ;

 if (i < 9)
 {

 y1 = i * cyClient / 9 ;
 y2 = (i + 1) * cyClient / 9 ;
 }
 else if (i < 17)
 {
 y1 = (16 - i) * cyClient / 9 ;
 y2 = (17 - i) * cyClient / 9 ;
 }
 else if (i < 25)
 {
 y1 = (i - 16) * cyClient / 9 ;
 y2 = (i - 15) * cyClient / 9 ;
 }
 else
 {
 y1 = (32 - i) * cyClient / 9 ;
 y2 = (33 - i) * cyClient / 9 ;
 }

 hBrush = CreateSolidBrush (PALETTEINDEX (i)) ;
 SelectObject (hdc, hBrush) ;
 Ellipse (hdc, x1, y1, x2, y2) ;
 DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH))) ;
 }
 return ;
}
void TimerRoutine (HDC hdc, HPALETTE hPalette)
{
 static BOOL bLeftToRight = TRUE ;
 static int iBall ;

 // Set old ball to white

 plp->palPalEntry[iBall].peGreen = 255 ;
 plp->palPalEntry[iBall].peBlue = 255 ;

 iBall += (bLeftToRight ? 1 : -1) ;

 if (iBall == (bLeftToRight ? 33 : -1))
 {
 iBall = (bLeftToRight ? 31 : 1) ;
 bLeftToRight ^= TRUE ;
 }

 // Set new ball to red

 plp->palPalEntry[iBall].peGreen = 0 ;
 plp->palPalEntry[iBall].peBlue = 0 ;

 // Animate the palette

 AnimatePalette (hPalette, 0, 33, plp->palPalEntry) ;
 return ;

}

void DestroyRoutine (HWND hwnd, HPALETTE hPalette)
{
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hPalette) ;
 free (plp) ;
 return ;
}

Palette animation will not work unless Windows is in a video mode that supports palettes. So, PALANIM.C begins
WM_CREATE processing by calling its CheckDisplay function, the same function in the SYSPAL programs.

PALANIM.C calls four functions in BOUNCE.C: CreateRoutine during the WM_CREATE message (during which
BOUNCE is expected to create a logical palette), PaintRoutine during the WM_PAINT message, TimerRoutine
during the WM_TIMER message, and DestroyRoutine during the WM_DESTROY message (during which BOUNCE is
expected to clean up). Prior to calling both PaintRoutine and TimerRoutine , PALANIM.C obtains a device context
and selects the logical palette into it. Prior to calling PaintRoutine , it also realizes the palette. PALANIM.C expects
TimerRoutine to call AnimatePalette . Although AnimatePalette requires the palette to be selected in the device
context, it does not require a call to RealizePalette .

The ball in BOUNCE bounces back and forth in a "W" pattern within the client area. The background of the client
area is white. The ball is red. At any time, the ball can be seen in one of 33 nonoverlapping positions. This
requires 34 palette entries, one for the background and the other 33 for the different positions of the ball. In
CreateRoutine , BOUNCE initializes an array of PALETTEENTRY structures by setting the first palette entry
(corresponding to the position of the ball in the upper left corner) to red and the others to white. Notice that the
peFlags field is set to PC_RESERVED for all entries except the background (the last palette entry). BOUNCE
concludes CreateRoutine by setting a Windows timer with an interval of 50 msec.

BOUNCE does all its drawing in PaintRoutine . The background of the window is drawn with a solid brush with a
color specified by a palette index of 33. The colors of the 33 balls are drawn with colors based on palette indices
ranging from 0 to 32. When BOUNCE first draws on its client area, the palette index of 0 maps to red and the
other palette indices map to white. This causes the ball to appear in the upper left corner.

The animation occurs when WndProc processes the WM_TIMER message and calls TimerRoutine . TimerRoutine
concludes by calling AnimatePalette , which has the following syntax:

AnimatePalette (hPalette, uStart, uNum, &pe) ;

The first argument is a handle to the palette, and the last argument is a pointer to one or more PALETTEENTRY
structures arranged as an array. The function alters one or more entries in the logical palette beginning with the
uStart entry and continuing for uNum entries. The new uStart entry in the logical palette is taken from the first
element in the PALETTEENTRY structure. Watch out! The uStart parameter is an index into the original logical
palette table, not an index into the PALETTEENTRY array.

For convenience, BOUNCE uses the array of PALETTEENTRY structures that is part of the LOGPALETTE structure
used when creating the logical palette. The current position of the ball (from 0 to 32) is stored as the static iBall
variable. During TimerRoutine , BOUNCE sets that PALETTEENTRY element to white. It then calculates a new
position of the ball and sets that element to red. The palette is changed with the call

AnimatePalette (hPalette, 0, 33, plp->palPalEntry) ;

GDI changes the first 33 logical palette entries (although only 2 actually change), makes the corresponding
changes in the system palette table, and then changes the hardware palette table on the video board. The ball
appears to move without any redrawing.

You may find it instructive to run SYSPAL2 or SYSPAL3 while BOUNCE is running.

Although AnimatePalette works very quickly, you should probably avoid changing all the logical palette entries
when only one or two actually change. This is a little complicated in BOUNCE because the ball bounces back and
forth—iBall is first incremented and then decremented. One approach would be to have two other variables called
iBallOld (set to the previous position of the ball) and iBallMin (the lesser of iBall and iBallOld). You then call
AnimatePalette like this to change just the two entries:

iBallMin = min (iBall, iBallOld) ;
AnimatePalette (hPal, iBallMin, 2, plp->palPalEntry + iBallMin) ;

Here's another approach: Let's suppose you first define a single PALETTEENTRY structure:

PALETTEENTRY pe ;

During TimerRoutine , you set the PALETTEENTRY fields for white and call AnimatePalette to change one entry at
the iBall position in the logical palette:

 pe.peRed = 255 ;
 pe.peGreen = 255 ;
 pe.peBlue = 255 ;
 pe.peFlags = PC_RESERVED ;
 AnimatePalette (hPalette, iBall, 1, &pe) ;

You then calculate the new value of iBall as shown in BOUNCE, define the fields of the PALETTEENTRY structure for
red, and call AnimatePalette again:

 pe.peRed = 255 ;
 pe.peGreen = 0 ;
 pe.peBlue = 0 ;
 pe.peFlags = PC_RESERVED ;
 AnimatePalette (hPalette, iBall, 1, &pe) ;

Although a bouncing ball is a traditional simple illustration of animation, it's really not suited for palette animation
because all the possible positions of the ball must be drawn initially. Palette animation is more suited for showing
repetitive patterns of movement.

One-Entry Palette Animation

One of the more interesting aspects of palette animation is that you can implement some interesting techniques
using only one palette entry. This is illustrated in the FADER program show in Figure 16-9. This program also
requires the PALANIM.C file shown earlier.

Figure 16-9. The FADER program.

FADER.C

/*--------------------------------------
 FADER.C -- Palette Animation Demo
 (c) Charles Petzold, 1998
 --------------------------------------*/

#include <windows.h>

#define ID_TIMER 1

TCHAR szAppName [] = TEXT ("Fader") ;
TCHAR szTitle [] = TEXT ("Fader: Palette Animation Demo") ;

static LOGPALETTE lp ;

HPALETTE CreateRoutine (HWND hwnd)
{
 HPALETTE hPalette ;

 lp.palVersion = 0x0300 ;
 lp.palNumEntries = 1 ;
 lp.palPalEntry[0].peRed = 255 ;
 lp.palPalEntry[0].peGreen = 255 ;
 lp.palPalEntry[0].peBlue = 255 ;
 lp.palPalEntry[0].peFlags = PC_RESERVED ;

 hPalette = CreatePalette (&lp) ;

 SetTimer (hwnd, ID_TIMER, 50, NULL) ;
 return hPalette ;
}

void PaintRoutine (HDC hdc, int cxClient, int cyClient)
{
 static TCHAR szText [] = TEXT (" Fade In and Out ") ;
 int x, y ;
 SIZE sizeText ;

 SetTextColor (hdc, PALETTEINDEX (0)) ;
 GetTextExtentPoint32 (hdc, szText, lstrlen (szText), &sizeText) ;

 for (x = 0 ; x < cxClient ; x += sizeText.cx)
 for (y = 0 ; y < cyClient ; y += sizeText.cy)

 {
 TextOut (hdc, x, y, szText, lstrlen (szText)) ;
 }

 return ;
}

void TimerRoutine (HDC hdc, HPALETTE hPalette)

{
 static BOOL bFadeIn = TRUE ;

 if (bFadeIn)
 {
 lp.palPalEntry[0].peRed -= 4 ;
 lp.palPalEntry[0].peGreen -= 4 ;

 if (lp.palPalEntry[0].peRed == 3)
 bFadeIn = FALSE ;
 }
 else
 {
 lp.palPalEntry[0].peRed += 4 ;
 lp.palPalEntry[0].peGreen += 4 ;

 if (lp.palPalEntry[0].peRed == 255)
 bFadeIn = TRUE ;
 }

 AnimatePalette (hPalette, 0, 1, lp.palPalEntry) ;
 return ;
}

void DestroyRoutine (HWND hwnd, HPALETTE hPalette)
{
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hPalette) ;
 return ;
}

FADER displays the text string "Fade In And Out" all over its client area. This text is initially displayed in white and
appears invisible against the white background of the window. By using palette animation, FADER gradually
changes the color of the text to blue and then back to white, over and over again. The text appears as if it's fading
in and out.

FADER creates a logical palette in its CreateRoutine function. It needs only one entry of the palette and initializes
the color to white—red, green, and blue values all set to 255. In PaintRoutine (which, you'll recall, is called from
PALANIM after the logical palette has been selected into the device context and realized), FADER calls
SetTextColor to set the text color to PALETTEINDEX(0). This means that the text color is set to the first entry in
the palette table, which initially is white. FADER then fills up its client area with the "Fade In And Out" text string.
At this time, the window background is white and the text is white and hence invisible.

In the TimerRoutine function, FADER animates the palette by altering the PALETTEENTRY structure and passing it
to AnimatePalette . The program initially decrements the red and green values by 4 for each WM_TIMER message
until they reach a value of 3. Then the values are incremented by 4 until they get back up to 255. This causes the
color of the text to fade from white to blue and back to white again.

The ALLCOLOR program shown in Figure 16-10 uses a single-entry logical palette to display all the colors that the
video adapter can render. It doesn't show them simultaneously, of course, but sequentially. If your video adapter
has an 18-bit resolution (in which case it's capable of 262,144 different colors), at the rate of one color every 55
milliseconds you need spend only four hours staring at the screen to see all the colors!

Figure 16-10. The ALLCOLOR program.

ALLCOLOR.C

/*---
 ALLCOLOR.C -- Palette Animation Demo
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define ID_TIMER 1

TCHAR szAppName [] = TEXT ("AllColor") ;
TCHAR szTitle [] = TEXT ("AllColor: Palette Animation Demo") ;

static int iIncr ;
static PALETTEENTRY pe ;

HPALETTE CreateRoutine (HWND hwnd)
{
 HDC hdc ;
 HPALETTE hPalette ;
 LOGPALETTE lp ;

 // Determine the color resolution and set iIncr

 hdc = GetDC (hwnd) ;
 iIncr = 1 << (8 - GetDeviceCaps (hdc, COLORRES) / 3) ;
 ReleaseDC (hwnd, hdc) ;

 // Create the logical palette

 lp.palVersion = 0x0300 ;
 lp.palNumEntries = 1 ;
 lp.palPalEntry[0].peRed = 0 ;
 lp.palPalEntry[0].peGreen = 0 ;
 lp.palPalEntry[0].peBlue = 0 ;
 lp.palPalEntry[0].peFlags = PC_RESERVED ;

 hPalette = CreatePalette (&lp) ;

 // Save global for less typing

 pe = lp.palPalEntry[0] ;

 SetTimer (hwnd, ID_TIMER, 10, NULL) ;
 return hPalette ;
}

void DisplayRGB (HDC hdc, PALETTEENTRY * ppe)
{
 TCHAR szBuffer [16] ;

 wsprintf (szBuffer, TEXT (" %02X-%02X-%02X "),

 ppe->peRed, ppe->peGreen, ppe->peBlue) ;

 TextOut (hdc, 0, 0, szBuffer, lstrlen (szBuffer)) ;
}

void PaintRoutine (HDC hdc, int cxClient, int cyClient)
{
 HBRUSH hBrush ;
 RECT rect ;

 // Draw Palette Index 0 on entire window

 hBrush = CreateSolidBrush (PALETTEINDEX (0)) ;
 SetRect (&rect, 0, 0, cxClient, cyClient) ;
 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH))) ;

 // Display the RGB value

 DisplayRGB (hdc, &pe) ;
 return ;
}

void TimerRoutine (HDC hdc, HPALETTE hPalette)
{
 static BOOL bRedUp = TRUE, bGreenUp = TRUE, bBlueUp = TRUE ;

 // Define new color value

 pe.peBlue += (bBlueUp ? iIncr : -iIncr) ;

 if (pe.peBlue == (BYTE) (bBlueUp ? 0 : 256 - iIncr))
 {
 pe.peBlue = (bBlueUp ? 256 - iIncr : 0) ;
 bBlueUp ^= TRUE ;
 pe.peGreen += (bGreenUp ? iIncr : -iIncr) ;

 if (pe.peGreen == (BYTE) (bGreenUp ? 0 : 256 - iIncr))
 {
 pe.peGreen = (bGreenUp ? 256 - iIncr : 0) ;
 bGreenUp ^= TRUE ;
 pe.peRed += (bRedUp ? iIncr : -iIncr) ;

 if (pe.peRed == (BYTE) (bRedUp ? 0 : 256 - iIncr))
 {
 pe.peRed = (bRedUp ? 256 - iIncr : 0) ;
 bRedUp ^= TRUE ;
 }
 }
 }

 // Animate the palette

 AnimatePalette (hPalette, 0, 1, &pe) ;
 DisplayRGB (hdc, &pe) ;
 return ;
}

void DestroyRoutine (HWND hwnd, HPALETTE hPalette)
{
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hPalette) ;
 return ;
}

Structurally, ALLCOLOR is very similar to FADER. In CreateRoutine , ALLCOLOR creates a palette with only one
palette entry whose color is set to black (the red, green, and blue fields of the PALETTEENTRY structure set to 0).
In PaintRoutine , ALLCOLOR creates a solid brush using PALETTEINDEX(0) and calls FillRect to color the entire
client area with that brush.

In TimerRoutine , ALLCOLOR animates the palette by changing the PALETTEENTRY color and calling
AnimatePalette . I wrote ALLCOLOR so that the change in color is smooth. First, the blue value is progressively
incremented. When it gets to the maximum, the green value is incremented and then the blue value is
progressively decremented. The incrementing and decrementing of the red, green, and blue color values is based
on the iIncr variable. This is calculated during CreateRoutine based on the value returned from GetDeviceCaps
with the COLORRES argument. If GetDeviceCaps returns 18, for example, then iIncr is set to 4—the lowest value
necessary to obtain all the colors.

ALLCOLOR also displays the current RGB color value in the upper left corner of the client area. I originally added
this code for testing purposes, but it proved to be useful so I left it in.

Engineering Applications

In engineering applications, animation can be useful for the display of mechanical or electrical processes. It's one
thing to display a combustion engine on a computer screen, but animation can really make it come alive and show
its workings with much greater clarity.

One possible process that's good for palette animation is showing fluids passing through a pipe. This is a case
where the image doesn't have to be strictly accurate—in fact, if the image were accurate (as if you were looking at
a transparent pipe), it might be difficult to tell how the contents of the pipe were moving. It's better to take a
more symbolic approach here. The PIPES program shown in Figure 16-11 is a simple demonstration of this
technique. It has two horizontal pipes in the client area. The contents of the pipes move from left to right in the
top pipe and from right to left in the bottom pipe.

Figure 16-11. The PIPES program.

PIPES.C

/*--------------------------------------
 PIPES.C -- Palette Animation Demo
 (c) Charles Petzold, 1998
 --------------------------------------*/

#include <windows.h>

#define ID_TIMER 1

TCHAR szAppName [] = TEXT ("Pipes") ;
TCHAR szTitle [] = TEXT ("Pipes: Palette Animation Demo") ;

static LOGPALETTE * plp ;

HPALETTE CreateRoutine (HWND hwnd)
{
 HPALETTE hPalette ;
 int i ;

 plp = malloc (sizeof (LOGPALETTE) + 32 * sizeof (PALETTEENTRY)) ;

 // Initialize the fields of the LOGPALETTE structure

 plp->palVersion = 0x300 ;
 plp->palNumEntries = 16 ;

 for (i = 0 ; i <= 8 ; i++)
 {
 plp->palPalEntry[i].peRed = (BYTE) min (255, 0x20 * i) ;
 plp->palPalEntry[i].peGreen = 0 ;
 plp->palPalEntry[i].peBlue = (BYTE) min (255, 0x20 * i) ;
 plp->palPalEntry[i].peFlags = PC_RESERVED ;

 plp->palPalEntry[16 - i] = plp->palPalEntry[i] ;
 plp->palPalEntry[16 + i] = plp->palPalEntry[i] ;
 plp->palPalEntry[32 - i] = plp->palPalEntry[i] ;
 }

 hPalette = CreatePalette (plp) ;

 SetTimer (hwnd, ID_TIMER, 100, NULL) ;
 return hPalette ;
}

void PaintRoutine (HDC hdc, int cxClient, int cyClient)
{
 HBRUSH hBrush ;
 int i ;
 RECT rect ;

 // Draw window background

 SetRect (&rect, 0, 0, cxClient, cyClient) ;
 hBrush = SelectObject (hdc, GetStockObject (WHITE_BRUSH)) ;
 FillRect (hdc, &rect, hBrush) ;
 // Draw the interiors of the pipes

 for (i = 0 ; i < 128 ; i++)
 {
 hBrush = CreateSolidBrush (PALETTEINDEX (i % 16)) ;
 SelectObject (hdc, hBrush) ;

 rect.left = (127 - i) * cxClient / 128 ;
 rect.right = (128 - i) * cxClient / 128 ;

 rect.top = 4 * cyClient / 14 ;
 rect.bottom = 5 * cyClient / 14 ;

 FillRect (hdc, &rect, hBrush) ;

 rect.left = i * cxClient / 128 ;
 rect.right = (i + 1) * cxClient / 128 ;
 rect.top = 9 * cyClient / 14 ;
 rect.bottom = 10 * cyClient / 14 ;

 FillRect (hdc, &rect, hBrush) ;

 DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH))) ;
 }

 // Draw the edges of the pipes

 MoveToEx (hdc, 0, 4 * cyClient / 14, NULL) ;
 LineTo (hdc, cxClient, 4 * cyClient / 14) ;

 MoveToEx (hdc, 0, 5 * cyClient / 14, NULL) ;
 LineTo (hdc, cxClient, 5 * cyClient / 14) ;

 MoveToEx (hdc, 0, 9 * cyClient / 14, NULL) ;
 LineTo (hdc, cxClient, 9 * cyClient / 14) ;

 MoveToEx (hdc, 0, 10 * cyClient / 14, NULL) ;
 LineTo (hdc, cxClient, 10 * cyClient / 14) ;
 return ;
}

void TimerRoutine (HDC hdc, HPALETTE hPalette)
{
 static int iIndex ;

 AnimatePalette (hPalette, 0, 16, plp->palPalEntry + iIndex) ;
 iIndex = (iIndex + 1) % 16 ;

 return ;
}

void DestroyRoutine (HWND hwnd, HPALETTE hPalette)
{
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hPalette) ;
 free (plp) ;
 return ;
}

PIPES uses 16 palette entries for the animation, but you could probably get by with fewer. At the minimum, all
you really need are enough entries to show the direction of the flow. Even three palette entries would be better
than a static arrow.

The TUNNEL program shown in Figure 16-12 is the piggiest program of this batch, using 128 palette entries for
animation. But the effect is worth it.

Figure 16-12. The TUNNEL program.

TUNNEL.C

/*---------------------------------------
 TUNNEL.C -- Palette Animation Demo
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

#define ID_TIMER 1

TCHAR szAppName [] = TEXT ("Tunnel") ;
TCHAR szTitle [] = TEXT ("Tunnel: Palette Animation Demo") ;

static LOGPALETTE * plp ;

HPALETTE CreateRoutine (HWND hwnd)
{
 BYTE byGrayLevel ;
 HPALETTE hPalette ;
 int i ;

 plp = malloc (sizeof (LOGPALETTE) + 255 * sizeof (PALETTEENTRY)) ;

 // Initialize the fields of the LOGPALETTE structure

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 128 ;

 for (i = 0 ; i < 128 ; i++)
 {
 if (i < 64)
 byGrayLevel = (BYTE) (4 * i) ;
 else
 byGrayLevel = (BYTE) min (255, 4 * (128 - i)) ;

 plp->palPalEntry[i].peRed = byGrayLevel ;
 plp->palPalEntry[i].peGreen = byGrayLevel ;
 plp->palPalEntry[i].peBlue = byGrayLevel ;
 plp->palPalEntry[i].peFlags = PC_RESERVED ;

 plp->palPalEntry[i + 128].peRed = byGrayLevel ;
 plp->palPalEntry[i + 128].peGreen = byGrayLevel ;
 plp->palPalEntry[i + 128].peBlue = byGrayLevel ;
 plp->palPalEntry[i + 128].peFlags = PC_RESERVED ;
 }

 hPalette = CreatePalette (plp) ;

 SetTimer (hwnd, ID_TIMER, 50, NULL) ;
 return hPalette ;
}

void PaintRoutine (HDC hdc, int cxClient, int cyClient)
{
 HBRUSH hBrush ;
 int i ;
 RECT rect ;

 for (i = 0 ; i < 127 ; i++)
 {
 // Use a RECT structure for each of 128 rectangles

 rect.left = i * cxClient / 255 ;
 rect.top = i * cyClient / 255 ;
 rect.right = cxClient - i * cxClient / 255 ;
 rect.bottom = cyClient - i * cyClient / 255 ;

 hBrush = CreateSolidBrush (PALETTEINDEX (i)) ;

 // Fill the rectangle and delete the brush

 FillRect (hdc, &rect, hBrush) ;
 DeleteObject (hBrush) ;
 }
 return ;
}

void TimerRoutine (HDC hdc, HPALETTE hPalette)
{
 static int iLevel ;

 iLevel = (iLevel + 1) % 128 ;

 AnimatePalette (hPalette, 0, 128, plp->palPalEntry + iLevel) ;
 return ;
}

void DestroyRoutine (HWND hwnd, HPALETTE hPalette)
{
 KillTimer (hwnd, ID_TIMER) ;
 DeleteObject (hPalette) ;
 free (plp) ;
 return ;
}

TUNNEL uses 64 moving gray shades in the 128 palette entries—from black to white and back to black—to give
the effect of traveling through a tunnel.

Palettes and Real-World Images

Of course, despite the fun we've been having displaying continuous shades of color and doing palette animation,
the real purpose of the Palette Manager is to allow the display of real-world images under 8-bit video modes. For
the remainder of the chapter, we'll be exploring precisely that. As you might have already anticipated, you must
use palettes differently when using packed DIBs, GDI bitmap objects, and DIB sections. The next six programs
illustrate various techniques for using palettes with bitmaps.

Palettes and Packed DIBs

Assisting us in the next three programs will be a set of functions that work with packed-DIB memory blocks. These
functions are in the PACKEDIB files shown in Figure 16-13.

Figure 16-13. The PACKEDIB files.

PACKEDIB.H

/*--
 PACKEDIB.H -- Header file for PACKEDIB.C
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

BITMAPINFO * PackedDibLoad (PTSTR szFileName) ;
int PackedDibGetWidth (BITMAPINFO * pPackedDib) ;
int PackedDibGetHeight (BITMAPINFO * pPackedDib) ;
int PackedDibGetBitCount (BITMAPINFO * pPackedDib) ;
int PackedDibGetRowLength (BITMAPINFO * pPackedDib) ;
int PackedDibGetInfoHeaderSize (BITMAPINFO * pPackedDib) ;
int PackedDibGetColorsUsed (BITMAPINFO * pPackedDib) ;
int PackedDibGetNumColors (BITMAPINFO * pPackedDib) ;
int PackedDibGetColorTableSize (BITMAPINFO * pPackedDib) ;
RGBQUAD * PackedDibGetColorTablePtr (BITMAPINFO * pPackedDib) ;
RGBQUAD * PackedDibGetColorTableEntry (BITMAPINFO * pPackedDib, int i) ;
BYTE * PackedDibGetBitsPtr (BITMAPINFO * pPackedDib) ;
int PackedDibGetBitsSize (BITMAPINFO * pPackedDib) ;
HPALETTE PackedDibCreatePalette (BITMAPINFO * pPackedDib) ;

PACKEDIB.C

/*--
 PACKEDIB.C -- Routines for using packed DIBs
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

/*---
 PackedDibLoad: Load DIB File as Packed-Dib Memory Block
 ---*/

BITMAPINFO * PackedDibLoad (PTSTR szFileName)
{
 BITMAPFILEHEADER bmfh ;
 BITMAPINFO * pbmi ;
 BOOL bSuccess ;
 DWORD dwPackedDibSize, dwBytesRead ;
 HANDLE hFile ;

 // Open the file: read access, prohibit write access

 hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 // Read in the BITMAPFILEHEADER

 bSuccess = ReadFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != sizeof (BITMAPFILEHEADER))
 || (bmfh.bfType != * (WORD *) "BM"))
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 // Allocate memory for the packed DIB & read it in

 dwPackedDibSize = bmfh.bfSize - sizeof (BITMAPFILEHEADER) ;

 pbmi = malloc (dwPackedDibSize) ;

 bSuccess = ReadFile (hFile, pbmi, dwPackedDibSize, &dwBytesRead, NULL) ;
 CloseHandle (hFile) ;

 if (!bSuccess || (dwBytesRead != dwPackedDibSize))
 {
 free (pbmi) ;
 return NULL ;
 }

 return pbmi ;
}

/*--
 Functions to get information from packed DIB
 --*/

int PackedDibGetWidth (BITMAPINFO * pPackedDib)
{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return ((PBITMAPCOREINFO)pPackedDib)->bmciHeader.bcWidth ;
 else
 return pPackedDib->bmiHeader.biWidth ;
}

int PackedDibGetHeight (BITMAPINFO * pPackedDib)
{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return ((PBITMAPCOREINFO)pPackedDib)->bmciHeader.bcHeight ;
 else
 return abs (pPackedDib->bmiHeader.biHeight) ;
}

int PackedDibGetBitCount (BITMAPINFO * pPackedDib)
{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return ((PBITMAPCOREINFO)pPackedDib)->bmciHeader.bcBitCount ;
 else
 return pPackedDib->bmiHeader.biBitCount ;
}

int PackedDibGetRowLength (BITMAPINFO * pPackedDib)
{
 return ((PackedDibGetWidth (pPackedDib) *
 PackedDibGetBitCount (pPackedDib) + 31) & ~31) >> 3 ;
}

/*---
 PackedDibGetInfoHeaderSize includes possible color masks!
 ---*/

int PackedDibGetInfoHeaderSize (BITMAPINFO * pPackedDib)
{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return ((PBITMAPCOREINFO)pPackedDib)->bmciHeader.bcSize ;

 else if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPINFOHEADER))
 return pPackedDib->bmiHeader.biSize +
 (pPackedDib->bmiHeader.biCompression ==
 BI_BITFIELDS ? 12 : 0) ;

 else return pPackedDib->bmiHeader.biSize ;
}

/*---
 PackedDibGetColorsUsed returns value in information header;
 could be 0 to indicate non-truncated color table!
 ---*/

int PackedDibGetColorsUsed (BITMAPINFO * pPackedDib)

{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return 0 ;
 else
 return pPackedDib->bmiHeader.biClrUsed ;
}

/*--
 PackedDibGetNumColors is actual number of entries in color table
 --*/

int PackedDibGetNumColors (BITMAPINFO * pPackedDib)
{
 int iNumColors ;

 iNumColors = PackedDibGetColorsUsed (pPackedDib) ;

 if (iNumColors == 0 && PackedDibGetBitCount (pPackedDib) < 16)
 iNumColors = 1 << PackedDibGetBitCount (pPackedDib) ;

 return iNumColors ;
}

int PackedDibGetColorTableSize (BITMAPINFO * pPackedDib)
{
 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return PackedDibGetNumColors (pPackedDib) * sizeof (RGBTRIPLE) ;
 else
 return PackedDibGetNumColors (pPackedDib) * sizeof (RGBQUAD) ;
}

RGBQUAD * PackedDibGetColorTablePtr (BITMAPINFO * pPackedDib)
{
 if (PackedDibGetNumColors (pPackedDib) == 0)
 return 0 ;
 return (RGBQUAD *) (((BYTE *) pPackedDib) +
 PackedDibGetInfoHeaderSize (pPackedDib)) ;
}

RGBQUAD * PackedDibGetColorTableEntry (BITMAPINFO * pPackedDib, int i)
{
 if (PackedDibGetNumColors (pPackedDib) == 0)
 return 0 ;

 if (pPackedDib->bmiHeader.biSize == sizeof (BITMAPCOREHEADER))
 return (RGBQUAD *)
 (((RGBTRIPLE *) PackedDibGetColorTablePtr (pPackedDib)) + i) ;
 else
 return PackedDibGetColorTablePtr (pPackedDib) + i ;
}

/*------------------------------
 PackedDibGetBitsPtr finally!

 ------------------------------*/

BYTE * PackedDibGetBitsPtr (BITMAPINFO * pPackedDib)
{
 return ((BYTE *) pPackedDib) + PackedDibGetInfoHeaderSize (pPackedDib) +
 PackedDibGetColorTableSize (pPackedDib) ;
}

/*---
 PackedDibGetBitsSize can be calculated from the height and row length
 if it's not explicitly in the biSizeImage field
 ---*/

int PackedDibGetBitsSize (BITMAPINFO * pPackedDib)
{
 if ((pPackedDib->bmiHeader.biSize != sizeof (BITMAPCOREHEADER)) &&
 (pPackedDib->bmiHeader.biSizeImage != 0))
 return pPackedDib->bmiHeader.biSizeImage ;

 return PackedDibGetHeight (pPackedDib) *
 PackedDibGetRowLength (pPackedDib) ;
}

/*--
 PackedDibCreatePalette creates logical palette from PackedDib
 --*/

HPALETTE PackedDibCreatePalette (BITMAPINFO * pPackedDib)
{
 HPALETTE hPalette ;
 int i, iNumColors ;
 LOGPALETTE * plp ;
 RGBQUAD * prgb ;

 if (0 == (iNumColors = PackedDibGetNumColors (pPackedDib)))
 return NULL ;

 plp = malloc (sizeof (LOGPALETTE) *
 (iNumColors - 1) * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = iNumColors ;

 for (i = 0 ; i < iNumColors ; i++)
 {
 prgb = PackedDibGetColorTableEntry (pPackedDib, i) ;

 plp->palPalEntry[i].peRed = prgb->rgbRed ;
 plp->palPalEntry[i].peGreen = prgb->rgbGreen ;
 plp->palPalEntry[i].peBlue = prgb->rgbBlue ;
 plp->palPalEntry[i].peFlags = 0 ;
 }

 hPalette = CreatePalette (plp) ;
 free (plp) ;

 return hPalette ;
}

The first function is PackedDibLoad , which takes as its single argument a file name and returns a pointer to a
packed DIB in memory. All the other functions take this packed-DIB pointer as their first argument and return
information about the DIB. These functions are arranged in the file in a "bottom-up" order. Each function uses
information obtained from earlier functions.

I don't pretend that this is a "complete" set of functions that might be useful for working with packed DIBs. I have
not attempted to assemble a really extensive collection because I don't think that working with packed DIBs in this
way is a good approach. This will be quite obvious to you when you try to write a function such as

dwPixel = PackedDibGetPixel (pPackedDib, x, y) ;

This kind of function involves so many nested function calls that it becomes horribly inefficient and slow. I'll
describe what I believe to be a better approach later in this chapter.

Also, as you'll note, many of these functions require different processing for OS/2-compatible DIBs; thus, the
functions frequently check if the first field of the BITMAPINFO structure is the size of the BITMAPCOREHEADER
structure.

Of particular interest here is the final function, named PackedDibCreatePalette . This function uses the color table
in the DIB to create a palette. If the DIB does not have a color table (which means that the DIB has 16, 24, or 32
bits per pixel), then no palette is created. A palette created from the DIB color table is sometimes called the DIB's
native palette.

The PACKEDIB files are put to use in SHOWDIB3, shown in Figure 16-14.

Figure 16-14. The SHOWDIB3 program.

SHOWDIB3.C

/*--
 SHOWDIB3.C -- Displays DIB with native palette
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib3") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;

 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #3: Native Palette"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPINFO * pPackedDib ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing packed DIB, free the memory

 if (pPackedDib)
 {
 free (pPackedDib) ;
 pPackedDib = NULL ;
 }

 // If there's an existing logical palette, delete it

 if (hPalette)
 {
 DeleteObject (hPalette) ;
 hPalette = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (pPackedDib)
 {
 // Create the palette from the DIB color table

 hPalette = PackedDibCreatePalette (pPackedDib) ;
 }
 else
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }

 if (pPackedDib)
 SetDIBitsToDevice (hdc,
 0,
 0,
 PackedDibGetWidth (pPackedDib),
 PackedDibGetHeight (pPackedDib),
 0,
 0,
 0,
 PackedDibGetHeight (pPackedDib),
 PackedDibGetBitsPtr (pPackedDib),
 pPackedDib,
 DIB_RGB_COLORS) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:

 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (pPackedDib)
 free (pPackedDib) ;

 if (hPalette)
 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB3.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

SHOWDIB3 MENU DISCARDABLE
BEGIN

 POPUP "&File"
 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib3.rc

#define IDM_FILE_OPEN 40001

The window procedure in SHOWDIB3 maintains the packed-DIB pointer as a static variable that it obtains when it
calls the PackedDibLoad function in PACKEDIB.C during the File Open command. During processing of this
command, SHOWDIB3 also calls PackedDibCreatePalette to obtain a possible palette for the DIB. Notice that
whenever SHOWDIB3 is ready to load in a new DIB, it first frees the memory of the previous DIB and also deletes
the palette of the previous DIB. The last DIB is eventually freed and the last palette is eventually deleted during
processing the WM_DESTROY message.

Processing of the WM_PAINT message is straightforward: If the palette exists, SHOWDIB3 selects it into the
device context and realizes it. It then calls SetDIBitsToDevice , passing to the function information about the DIB
(such as width, height, a pointer to the DIB pixel bits) that it obtains from functions in PACKEDIB.

Again, keep in mind that SHOWDIB3 creates a palette based on the color table in the DIB. If there is no color table
in the DIB—as is almost always the case with 16-bit, 24-bit, and 32-bit DIBs—then no palette is created. When the
DIB is displayed in an 8-bit video mode, it's displayed with only the standard reserved 20 colors.

There are two solutions to this problem. The first is to simply use an "all-purpose" palette that can be applicable
for a large number of images. You can construct such a palette yourself. The second solution is to dig into the
pixel bits of the DIB and determine the optimum colors required to display the image. Obviously this involves
more work (both for the programmer and the processor), but I'll show you how to do it before this chapter has
concluded.

The All-Purpose Palette

The SHOWDIB4 program, shown in Figure 16-15, constructs an all-purpose palette that it uses for displaying all
DIBs loaded into the program. SHOWDIB4 is otherwise very similar to SHOWDIB3.

Figure 16-15. The SHOWDIB4 program.

SHOWDIB4.C

/*---
 SHOWDIB4.C -- Displays DIB with "all-purpose" palette
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "..\\ShowDib3\\PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib4") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #4: All-Purpose Palette"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

/*--
 CreateAllPurposePalette: Creates a palette suitable for a wide variety
 of images; the palette has 247 entries, but 15 of them are
 duplicates or match the standard 20 colors.
 --*/

HPALETTE CreateAllPurposePalette (void)
{
 HPALETTE hPalette ;
 int i, incr, R, G, B ;
 LOGPALETTE * plp ;

 plp = malloc (sizeof (LOGPALETTE) + 246 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 247 ;

 // The following loop calculates 31 gray shades, but 3 of them
 // will match the standard 20 colors
 for (i = 0, G = 0, incr = 8 ; G <= 0xFF ; i++, G += incr)
 {
 plp->palPalEntry[i].peRed = (BYTE) G ;
 plp->palPalEntry[i].peGreen = (BYTE) G ;
 plp->palPalEntry[i].peBlue = (BYTE) G ;
 plp->palPalEntry[i].peFlags = 0 ;

 incr = (incr == 9 ? 8 : 9) ;
 }

 // The following loop is responsible for 216 entries, but 8 of
 // them will match the standard 20 colors, and another
 // 4 of them will match the gray shades above.

 for (R = 0 ; R <= 0xFF ; R += 0x33)
 for (G = 0 ; G <= 0xFF ; G += 0x33)
 for (B = 0 ; B <= 0xFF ; B += 0x33)
 {
 plp->palPalEntry[i].peRed = (BYTE) R ;
 plp->palPalEntry[i].peGreen = (BYTE) G ;
 plp->palPalEntry[i].peBlue = (BYTE) B ;
 plp->palPalEntry[i].peFlags = 0 ;

 i++ ;
 }
 hPalette = CreatePalette (plp) ;

 free (plp) ;
 return hPalette ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPINFO * pPackedDib ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;

 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 // Create the All-Purpose Palette

 hPalette = CreateAllPurposePalette () ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing packed DIB, free the memory
 if (pPackedDib)
 {
 free (pPackedDib) ;
 pPackedDib = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!pPackedDib)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (pPackedDib)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 SetDIBitsToDevice (hdc,
 0,
 0,
 PackedDibGetWidth (pPackedDib),
 PackedDibGetHeight (pPackedDib),
 0,
 0,
 0,
 PackedDibGetHeight (pPackedDib),
 PackedDibGetBitsPtr (pPackedDib),
 pPackedDib,
 DIB_RGB_COLORS) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if ((HWND) wParam != hwnd)

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (pPackedDib)
 free (pPackedDib) ;

 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB4.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Menu

SHOWDIB4 MENU DISCARDABLE
BEGIN
 POPUP "&Open"
 BEGIN
 MENUITEM "&File", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib4.rc

#define IDM_FILE_OPEN 40001

While processing the WM_CREATE message, SHOWDIB4 calls CreateAllPurposePalette . It retains this palette
throughout the course of the program and destroys it during the WM_DESTROY message. Because the program
knows that the palette is always around, it needn't check for its existence while processing the WM_PAINT,
WM_QUERYNEWPALETTE, or WM_PALETTECHANGED messages.

The CreateAllPurposePalette function seems to create a logical palette with 247 entries, which is more than the
236 entries in the system palette that programs normally have access to. Indeed, it does, but this is just a matter
of convenience. Fifteen of these entries are either duplicated or will map to colors in the standard 20 reserved
colors.

CreateAllPurposePalette begins by creating 31 gray shades, with red, green, and blue values of 0x00, 0x09, 0x11,
0x1A, 0x22, 0x2B, 0x33, 0x3C, 0x44, 0x4D, 0x55, 0x5E, 0x66, 0x6F, 0x77, 0x80, 0x88, 0x91, 0x99, 0xA2, 0xAA,
0xB3, 0xBB, 0xC4, 0xCC, 0xD5, 0xDD, 0xE6, 0xEE, 0xF9, and 0xFF. Notice that the first, last, and middle entries
are in the standard 20 reserved colors. Next the function creates colors with all combinations of red, green, and
blue values of 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. That's a total of 216 colors, but eight of them duplicate
colors in the standard 20, and another four duplicate previously calculated gray shades. Windows will not put
duplicate entries in the system palette if you set the peFlags field of the PALETTEENTRY structure to 0.

Obviously, a real program that didn't wish to calculate optimum palettes for 16-bit, 24-bit, or 32-bit DIBs would
probably still continue to use the DIB color table for displaying 8-bit DIBs. SHOWDIB4 does not do this but instead
uses its all-purpose palette for everything. This is because SHOWDIB4 is a demonstration program, and you can
use it to compare SHOWDIB3's display of 8-bit DIBs. If you look at some color DIBs of people, you'll probably
conclude that SHOWDIB4 does not have sufficient colors for the accurate rendering of flesh tones.

If you experiment with the CreateAllPurposePalette function in SHOWDIB4, perhaps by reducing the size of the
logical palette to just a few entries, you'll discover that when a palette is selected into a device context, Windows
will use only the colors in the palette and none of the colors from the standard 20-color palette.

The Halftone Palette

The Windows API includes an all-purpose palette that programs can obtain by calling CreateHalftonePalette . You
can use this in the same way you used the palette obtained from CreateAllPurposePalette in SHOWDIB4, or you
can use it in conjunction with the bitmap stretching mode—set with SetStretchBltMode —known as HALFTONE.
The SHOWDIB5 program in Figure 16-16 demonstrates how to use the halftone palette.

Figure 16-16. The SHOWDIB5 program.

SHOWDIB5.C

/*--
 SHOWDIB5.C -- Displays DIB with halftone palette
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\ShowDib3\\PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib5") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #5: Halftone Palette"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPINFO * pPackedDib ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)

 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 // Create the All-Purpose Palette

 hdc = GetDC (hwnd) ;
 hPalette = CreateHalftonePalette (hdc) ;
 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing packed DIB, free the memory
 if (pPackedDib)
 {
 free (pPackedDib) ;
 pPackedDib = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!pPackedDib)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (pPackedDib)
 {
 // Set halftone stretch mode

 SetStretchBltMode (hdc, HALFTONE) ;
 SetBrushOrgEx (hdc, 0, 0, NULL) ;

 // Select and realize halftone palette

 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;

 // StretchDIBits rather than SetDIBitsToDevice

 StretchDIBits (hdc,
 0,
 0,
 PackedDibGetWidth (pPackedDib),
 PackedDibGetHeight (pPackedDib),
 0,
 0,
 PackedDibGetWidth (pPackedDib),
 PackedDibGetHeight (pPackedDib),
 PackedDibGetBitsPtr (pPackedDib),
 pPackedDib,
 DIB_RGB_COLORS,
 SRCCOPY) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if ((HWND) wParam != hwnd)

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (pPackedDib)
 free (pPackedDib) ;

 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB5.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

SHOWDIB5 MENU DISCARDABLE
BEGIN
 POPUP "&Open"
 BEGIN
 MENUITEM "&File", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib5.rc

#define IDM_FILE_OPEN 40001

The SHOWDIB5 program is similar to SHOWDIB4 in that it doesn't use the color table in the DIB but instead uses
a palette that is appropriate for a wide range of images. SHOWDIB5 uses the logical palette supplied by Windows
for this purpose, a handle to which can be obtained from the CreateHalftonePalette function.

This halftone palette is hardly more sophisticated than the palette created by the CreateAllPurposePalette function
in SHOWDIB4. And indeed, if you use it by itself, the results will be similar. However, if you call these two
functions,

 SetStretchBltMode (hdc, HALFTONE) ;
 SetBrushOrgEx (hdc, x, y, NULL) ;

where x and y are the device coordinates of the upper left corner of the DIB, and if you display the DIB with
StretchDIBits rather SetDIBitsToDevice , the results will surprise you. Color flesh tones are much more accurate
than with CreateAllPurposePalette or with CreateHalftonePalette used without setting the bitmap stretching mode.
Windows uses a type of dithering pattern with the colors of the halftone palette to better approximate the colors of
the original image on 8-bit video boards. As you might expect, the drawback is that it takes more processing time.

Indexing Palette Colors

The time has come to tackle the fClrUse argument to SetDIBitsToDevice , StretchDIBits , CreateDIBitmap ,
SetDIBits , GetDIBits , and CreateDIBSection . Normally, you set this argument to DIB_RGB_COLORS, which
equals 0. However, you can also set it to DIB_PAL_COLORS. In this case, the color table in the BITMAPINFO
structure is assumed to consist not of RGB color values but of 16-bit indices into a logical palette. This logical
palette is the one currently selected in the device context given as the first argument to the function. Indeed, in
CreateDIBSection , the use of DIB_PAL_COLORS is the only reason that you would need to specify a non-NULL
device context handle as the first argument.

What does DIB_PAL_COLORS do for you? It gives you some performance improvement. Consider an 8-bit DIB that
you're displaying in an 8-bit video mode by calling SetDIBitsToDevice . Windows must first do a nearest-color
search of all the colors in the DIB color table with the colors available on the device. It can then set up a little
table that lets it map DIB pixel values to the device pixels. At most, this means 256 nearest-color searches, but
they can be skipped if the DIB color table contains instead indices into a logical palette selected in a device
context.

The SHOWDIB6 program shown in Figure 16-17 is similar to SHOWDIB3 except that it uses palette indices.

Figure 16-17. The SHOWDIB6 program.

SHOWDIB6.C

/*--
 SHOWDIB6.C -- Display DIB with palette indices

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\ShowDib3\\PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib6") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #6: Palette Indices"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BITMAPINFO * pPackedDib ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;

 HDC hdc ;
 int i, iNumColors ;
 PAINTSTRUCT ps ;
 WORD * pwIndex ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box
 if (!GetOpenFileName (&ofn))

 return 0 ;

 // If there's an existing packed DIB, free the memory

 if (pPackedDib)
 {
 free (pPackedDib) ;
 pPackedDib = NULL ;
 }

 // If there's an existing logical palette, delete it

 if (hPalette)
 {
 DeleteObject (hPalette) ;
 hPalette = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (pPackedDib)
 {
 // Create the palette from the DIB color table

 hPalette = PackedDibCreatePalette (pPackedDib) ;

 // Replace DIB color table with indices

 if (hPalette)
 {
 iNumColors = PackedDibGetNumColors (pPackedDib) ;
 pwIndex = (WORD *)
 PackedDibGetColorTablePtr (pPackedDib) ;

 for (i = 0 ; i < iNumColors ; i++)
 pwIndex[i] = (WORD) i ;
 }
 }

 else
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;

 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }

 if (pPackedDib)
 SetDIBitsToDevice (hdc,
 0,
 0,
 PackedDibGetWidth (pPackedDib),
 PackedDibGetHeight (pPackedDib),
 0,
 0,
 0,
 PackedDibGetHeight (pPackedDib),
 PackedDibGetBitsPtr (pPackedDib),
 pPackedDib,
 DIB_PAL_COLORS) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;
 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (pPackedDib)
 free (pPackedDib) ;

 if (hPalette)
 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB6.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

SHOWDIB6 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib6.rc
//
#define IDM_FILE_OPEN 40001

After SHOWDIB6 loads the DIB into memory and creates a palette from it, it simply replaces the colors in the DIB
color table with WORD indices beginning at 0. The PackedDibGetNumColors function indicates how many colors
there are, and the PackedDibGetColorTablePtr function returns a pointer to the beginning of the DIB color table.

Notice that this technique is feasible only when you create a palette directly from the color table of the DIB. If
you're using an all-purpose palette, you would need to perform a nearest-color search yourself to derive the
indices you put into the DIB. That wouldn't make much sense.

If you do use palette indices, be sure to replace the color table in the DIB before you save the DIB to disk. Also,
don't put a DIB containing palette indices in the clipboard. In fact, it would be much safer to put palette indices in
the DIB right before displaying it and then put the RGB color values back in afterward.

Palettes and Bitmap Objects

The SHOWDIB7 program in Figure 16-18 shows how to use palettes in connection with DIBs that you convert to
GDI bitmap objects using the CreateDIBitmap function.

Figure 16-18. The SHOWDIB7 program.

SHOWDIB7.C

/*--
 SHOWDIB7.C -- Shows DIB converted to DDB
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\ShowDib3\\PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib7") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #7: Converted to DDB"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BITMAP bitmap ;
 BITMAPINFO * pPackedDib ;
 HDC hdc, hdcMem ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;

 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box
 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing packed DIB, free the memory

 if (hBitmap)
 {
 DeleteObject (hBitmap) ;
 hBitmap = NULL ;
 }

 // If there's an existing logical palette, delete it

 if (hPalette)
 {
 DeleteObject (hPalette) ;
 hPalette = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (pPackedDib)
 {
 // Create palette from the DIB and select it into DC

 hPalette = PackedDibCreatePalette (pPackedDib) ;

 hdc = GetDC (hwnd) ;

 if (hPalette)

 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }
 // Create the DDB from the DIB

 hBitmap = CreateDIBitmap (hdc,
 (PBITMAPINFOHEADER) pPackedDib,
 CBM_INIT,
 PackedDibGetBitsPtr (pPackedDib),
 pPackedDib,
 DIB_RGB_COLORS) ;
 ReleaseDC (hwnd, hdc) ;

 // Free the packed-DIB memory

 free (pPackedDib) ;
 }
 else
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }
 if (hBitmap)
 {
 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 BitBlt (hdc, 0, 0, bitmap.bmWidth, bitmap.bmHeight,
 hdcMem, 0, 0, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)

 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 if (hPalette)
 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB7.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

SHOWDIB7 MENU DISCARDABLE
BEGIN
 POPUP "&File"

 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib7.rc

#define IDM_FILE_OPEN 40001

As in the earlier programs, SHOWDIB7 obtains a pointer to the packed DIB in response to a File Open command
from the menu. It also creates a palette from the packed DIB. Then—still in WM_COMMAND message
processing—it obtains a device context for the video display, selects the palette into it, and realizes the palette.
SHOWDIB7 then calls CreateDIBitmap to create a DDB from the DIB. If the palette were not selected and realized
into the device context, the DDB that CreateDIBitmap creates would not use the additional colors in the logical
palette.

After calling CreateDIBitmap , the program can then free the memory occupied by the packed DIB. The
pPackedDib variable is not a static variable. Instead, the SHOWDIB7 retains the bitmap handle (hBitmap) and the
logical palette handle (hPalette) as static variables.

During the WM_PAINT message, the palette is selected into the device context again and realized. The width and
height of the bitmap is obtained from the GetObject function. The program can then display the bitmap on the
client area by creating a compatible memory device context, selecting the bitmap into it, and doing a BitBlt . You
must use the same palette when displaying the DDB as you used when creating it from the CreateDIBitmap call.

If you copy a bitmap to the clipboard, it's best that it be in a packed-DIB format. Windows can then provide
bitmap objects to programs that want them. However, if you need to copy a bitmap object to the clipboard, get a
video device context first and select and realize the palette. This will allow Windows to convert the DDB to a DIB
based on the current system palette.

Palettes and DIB Sections

Finally, SHOWDIB8 in Figure 16-19 shows how to use a palette with the DIB section.

Figure 16-19. The SHOWDIB8 program.

SHOWDIB8.C

/*--
 SHOWDIB8.C -- Shows DIB converted to DIB section
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\ShowDib3\\PackeDib.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("ShowDib8") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Show DIB #8: DIB Section"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HBITMAP hBitmap ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient ;
 static OPENFILENAME ofn ;
 static PBYTE pBits ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;

 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BITMAP bitmap ;
 BITMAPINFO * pPackedDib ;
 HDC hdc, hdcMem ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing packed DIB, free the memory

 if (hBitmap)
 {
 DeleteObject (hBitmap) ;

 hBitmap = NULL ;
 }

 // If there's an existing logical palette, delete it

 if (hPalette)
 {
 DeleteObject (hPalette) ;
 hPalette = NULL ;
 }

 // Load the packed DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 pPackedDib = PackedDibLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (pPackedDib)
 {
 // Create the DIB section from the DIB

 hBitmap = CreateDIBSection (NULL,
 pPackedDib,
 DIB_RGB_COLORS,
 &pBits,
 NULL, 0) ;

 // Copy the bits

 CopyMemory (pBits, PackedDibGetBitsPtr (pPackedDib),
 PackedDibGetBitsSize (pPackedDib)) ;

 // Create palette from the DIB

 hPalette = PackedDibCreatePalette (pPackedDib) ;

 // Free the packed-DIB memory

 free (pPackedDib) ;
 }
 else
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file"),
 szAppName, 0) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }
 if (hBitmap)
 {
 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 BitBlt (hdc, 0, 0, bitmap.bmWidth, bitmap.bmHeight,
 hdcMem, 0, 0, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (hBitmap)
 DeleteObject (hBitmap) ;

 if (hPalette)

 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

SHOWDIB8.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

SHOWDIB8 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open", IDM_FILE_OPEN
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by ShowDib8.rc

#define IDM_FILE_OPEN 40001

The WM_PAINT processing in SHOWDIB7 and SHOWDIB8 are identical: Both programs retain as static variables a
bitmap handle (hBitmap) and a logical palette handle (hPalette). The palette is selected into the device context
and realized, the width and height of the bitmap are obtained from the GetObject function, the program creates a
memory device context and selects the bitmap into it, and the bitmap is displayed to the client area by a call to
BitBlt .

The big difference between the two programs is in the processing of the File Open menu command. After obtaining
a pointer to the packed DIB and creating a palette, SHOWDIB7 must select the palette into a video device context
and realize it before calling CreateDIBitmap . SHOWDIB8 calls CreateDIBSection after obtaining the packed-DIB
pointer. Selecting the palette into a device context isn't necessary because CreateDIBSection does not convert a
DIB to a device-dependent format. Indeed, the only purpose of the first argument to CreateDIBSection (that is,
the device context handle) is if you use the DIB_PAL_COLORS flag.

After calling CreateDIBSection , SHOWDIB8 copies the pixel bits from the packed DIB to the memory location

returned from the CreateDIBSection function. It then calls PackedDibCreatePalette . Although this function is
convenient for the program to use, SHOWDIB8 could have created a palette based on information returned from
the GetDIBColorTable function.

A Library for DIBs

It is only now—after our long journey learning about GDI bitmap objects, the device-independent bitmap, the DIB
section, and the Windows Palette Manager—that we're ready to devise some set of functions that help us in
working with bitmaps.

The PACKEDIB files shown earlier illustrate one possible approach: A packed DIB in memory is represented solely
by a pointer to it. All the information that a program needs about the DIB can be obtained by functions that access
the header information structure. In practice, however, this method has serious performance problems when it
comes to "get pixel" and "set pixel" routines. Image-processing tasks routinely require bitmap bits to be accessed,
and these functions should ideally be as fast as possible.

A possible C++ solution involves creating a DIB class where a pointer to the packed DIB is just one of several
member variables. Other member variables and member functions can help implement fast routines for obtaining
and setting pixels in the DIB. However, since I indicated in the first chapter that you'd only need to know C for this
particular book, the use of C++ will have to remain a solution for some other book.

Of course, just about anything that can be done in C++ can also be done in C. A good example of this are the
multitude of Windows functions that use handles. What does an application program know about a handle other
than the fact that it's a numeric value? It knows that the handle references a particular object and that functions
for working with the object exist. Obviously, the operating system uses the handle to somehow reference internal
information about the object. A handle could be as simple as a pointer to a structure.

For example, suppose there exists a collection of functions that use a handle called an HDIB. What's an HDIB?
Well, it might be defined in a header file like so:

typedef void * HDIB ;

This definition answers the question "What's an HDIB?" with "None of your business!"

In reality, however, an HDIB might be a pointer to a structure that contains not only a pointer to a packed DIB but
also some other information:

typedef struct
{
 BITMAPINFO * pPackedDib ;
 int cx, cy, cBitsPerPixel, cBytesPerRow ;
 BYTE * pBits ;
{
DIBSTRUCTURE, * PDIBSTRUCTURE ;

The other five fields of this structure contain information that is derivable from the packed DIB, of course, but the
presence of these values in the structure allows them to be accessed more quickly. The various DIB library
functions could work with this structure rather than the pPackedDib pointer. A DibGetPixelPointer function could be
implemented like so:

BYTE * DibGetPixelPointer (HDIB hdib, int x, int y)
{
 PDIBSTRUCTURE pdib = hdib ;

 return pdib->pBits + y * pdib->cBytesPerRow +
 x * pdib->cBitsPerPixel / 8 ;

}

This is, of course, much faster than a "get pixel" routine that might be implemented in PACKEDIB.C.

While this approach is quite reasonable, I have decided to abandon the packed DIB and instead base my DIB
library on the DIB section. This gives us virtually all of the flexibility involved with packed DIBs (that is, being able
to manipulate DIB pixel bits in a somewhat device-independent manner) but is also more efficient when running
under Windows NT.

The DIBSTRUCT Structure

The DIBHELP.C file—so named because it provides help for working with DIBs—is over a thousand lines long and
will be shown shortly in several parts. But let's first take a close look at the structure that the DIBHELP functions
work with. The structure is defined in DIBHELP.C like so:

typedef struct
{
 PBYTE * ppRow ; // array of row pointers
 int iSignature ; // = "Dib "
 HBITMAP hBitmap ; // handle returned from CreateDIBSection
 BYTE * pBits ; // pointer to bitmap bits
 DIBSECTION ds ; // DIBSECTION structure
 int iRShift[3] ; // right-shift values for color masks
 int iLShift[3] ; // left-shift values for color masks
}
DIBSTRUCT, * PDIBSTRUCT ;

Let me skip the first field for now. There's a reason why it's the first field—it makes some macros easier—but it'll
be easier to understand after I discuss the other fields first.

When this structure is first set up by one of the DIB creation functions in DIBHELP.C, the second field is set to the
binary equivalent of the text string "Dib." This is used as a check of the validity of a pointer to the structure by
some of the DIBHELP functions.

The third field—hBitmap —is the bitmap handle returned from the CreateDIBSection function. You'll recall that this
handle can in many ways be used like the handles to GDI bitmap objects that we encountered in Chapter 14 .
However, the handle returned from CreateDIBSection references a bitmap that remains in a device-independent
format until it is rendered on an output device by calls to BitBlt and StretchBlt .

The fourth field of DIBSTRUCT is a pointer to the bitmap bits. This is a value also set by the CreateDIBSection
function. You'll recall that the operating system controls this memory block but that an application has access to it.
The block is automatically freed when the bitmap handle is deleted.

The fifth field of DIBSTRUCT is a DIBSECTION structure. You'll recall that if you have a bitmap handle returned
from CreateDIBSection , you can pass that to the GetObject function to obtain information about the bitmap in the
DIBSECTION structure:

GetObject (hBitmap, sizeof (DIBSECTION), &ds) ;

As a reminder, the DIBSECTION structure is defined in WINGDI.H like so:

typedef struct tagDIBSECTION {

 BITMAP dsBm ;
 BITMAPINFOHEADER dsBmih ;
 DWORD dsBitfields[3] ; // Color masks
 HANDLE dshSection ;
 DWORD dsOffset ;
}
DIBSECTION, * PDIBSECTION ;

The first field is the BITMAP structure that's used with CreateBitmapIndirect to create a bitmap object and used
with GetObject to return information about a DDB. The second field is a BITMAPINFOHEADER structure.
Regardless of the bitmap information structure passed to the CreateDIBSection function, the DIBSECTION
structure will always have a BITMAPINFOHEADER structure and not, for example, a BITMAPCOREHEADER
structure. This means that a lot of the functions in DIBHELP.C need not check for OS/2-compatible DIBs when
accessing this structure.

You'll recall that for 16-bit and 32-bit DIBs, if the biCompression field of the BITMAPINFOHEADER structure is
BI_BITFIELDS, then three mask values normally follow the information header structure. These mask values
determine how to convert 16-bit and 32-bit pixel values to RGB colors. The masks are stored in the third field of
the DIBSECTION structure.

The final two fields of the DIBSECTION structure refer to a DIB section created with a file-mapping object.
DIBHELP does not use this feature of CreateDIBSection , so these fields can be ignored.

Finally, the last two fields of DIBSTRUCT store left and right shift values that are used with the color masks for 16-
bit and 32-bit DIBs. These shift values were discussed in Chapter 15 .

Let's go back to the first field of DIBSTRUCT. As we'll see, when a DIB is first created, this field is set to a pointer
that references an array of pointers, each of which points to a row of pixels in the DIB. These pointers allow an
even faster method to get at DIB pixel bits and are defined so that the DIB pixel bits can be referenced top row
first. The last element of this array—referencing the bottom row of the DIB image—will usually be equal to the
pBits field of DIBSTRUCT.

The Information Functions

DIBHELP.C begins by defining the DIBSTRUCT structure and then providing a collection of functions that let an
application obtain information about the DIB section. The first part of DIBHELP.C is shown in Figure 16-20.

Figure 16-20. The first part of the DIBHELP.C file.

DIBHELP.C (first part)

/*--
 DIBHELP.C -- DIB Section Helper Routines
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibhelp.h"

#define HDIB_SIGNATURE (* (int *) "Dib ")

typedef struct
{
 PBYTE * ppRow ; // must be first field for macros!
 int iSignature ;

 HBITMAP hBitmap ;
 BYTE * pBits ;
 DIBSECTION ds ;
 int iRShift[3] ;
 int iLShift[3] ;
}
DIBSTRUCT, * PDIBSTRUCT ;

/*---
 DibIsValid: Returns TRUE if hdib points to a valid DIBSTRUCT
 ---*/

BOOL DibIsValid (HDIB hdib)
{
 PDIBSTRUCT pdib = hdib ;

 if (pdib == NULL)
 return FALSE ;

 if (IsBadReadPtr (pdib, sizeof (DIBSTRUCT)))
 return FALSE ;

 if (pdib->iSignature != HDIB_SIGNATURE)
 return FALSE ;

 return TRUE ;
}

/*---
 DibBitmapHandle: Returns the handle to the DIB section bitmap object
 ---*/

HBITMAP DibBitmapHandle (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return NULL ;

 return ((PDIBSTRUCT) hdib)->hBitmap ;
}

/*---
 DibWidth: Returns the bitmap pixel width
 ---*/

int DibWidth (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return ((PDIBSTRUCT) hdib)->ds.dsBm.bmWidth ;
}

/*---

 DibHeight: Returns the bitmap pixel height
 ---*/

int DibHeight (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return ((PDIBSTRUCT) hdib)->ds.dsBm.bmHeight ;
}

/*--
 DibBitCount: Returns the number of bits per pixel
 --*/

int DibBitCount (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return ((PDIBSTRUCT) hdib)->ds.dsBm.bmBitsPixel ;
}

/*--
 DibRowLength: Returns the number of bytes per row of pixels
 --*/

int DibRowLength (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return 4 * ((DibWidth (hdib) * DibBitCount (hdib) + 31) / 32) ;
}

/*--
 DibNumColors: Returns the number of colors in the color table
 --*/

int DibNumColors (HDIB hdib)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib))
 return 0 ;

 if (pdib->ds.dsBmih.biClrUsed != 0)
 {
 return pdib->ds.dsBmih.biClrUsed ;
 }
 else if (DibBitCount (hdib) <= 8)
 {
 return 1 << DibBitCount (hdib) ;

 }
 return 0 ;
}

/*--
 DibMask: Returns one of the color masks
 --*/

DWORD DibMask (HDIB hdib, int i)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib) || i < 0 || i > 2)
 return 0 ;

 return pdib->ds.dsBitfields[i] ;
}

/*---
 DibRShift: Returns one of the right-shift values
 ---*/

int DibRShift (HDIB hdib, int i)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib) || i < 0 || i > 2)
 return 0 ;

 return pdib->iRShift[i] ;
}

/*--
 DibLShift: Returns one of the left-shift values
 --*/

int DibLShift (HDIB hdib, int i)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib) || i < 0 || i > 2)
 return 0 ;

 return pdib->iLShift[i] ;
}

/*---
 DibCompression: Returns the value of the biCompression field
 ---*/
int DibCompression (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return ((PDIBSTRUCT) hdib)->ds.dsBmih.biCompression ;
}

/*--
 DibIsAddressable: Returns TRUE if the DIB is not compressed
 --*/

BOOL DibIsAddressable (HDIB hdib)
{
 int iCompression ;

 if (!DibIsValid (hdib))
 return FALSE ;

 iCompression = DibCompression (hdib) ;

 if (iCompression == BI_RGB || iCompression == BI_BITFIELDS)
 return TRUE ;

 return FALSE ;
}

/*---
 These functions return the sizes of various components of the DIB section
 AS THEY WOULD APPEAR in a packed DIB. These functions aid in converting
 the DIB section to a packed DIB and in saving DIB files.
 ---*/

DWORD DibInfoHeaderSize (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return 0 ;

 return ((PDIBSTRUCT) hdib)->ds.dsBmih.biSize ;
}

DWORD DibMaskSize (HDIB hdib)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib))
 return 0 ;

 if (pdib->ds.dsBmih.biCompression == BI_BITFIELDS)
 return 3 * sizeof (DWORD) ;

 return 0 ;
}

DWORD DibColorSize (HDIB hdib)
{
 return DibNumColors (hdib) * sizeof (RGBQUAD) ;

}

DWORD DibInfoSize (HDIB hdib)
{
 return DibInfoHeaderSize(hdib) + DibMaskSize(hdib) + DibColorSize(hdib) ;
}

DWORD DibBitsSize (HDIB hdib)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib))
 return 0 ;

 if (pdib->ds.dsBmih.biSizeImage != 0)
 {
 return pdib->ds.dsBmih.biSizeImage ;
 }
 return DibHeight (hdib) * DibRowLength (hdib) ;
}

DWORD DibTotalSize (HDIB hdib)
{
 return DibInfoSize (hdib) + DibBitsSize (hdib) ;
}

/*--
 These functions return pointers to the various components of the DIB
 section.
 --*/
BITMAPINFOHEADER * DibInfoHeaderPtr (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return NULL ;

 return & (((PDIBSTRUCT) hdib)->ds.dsBmih) ;
}

DWORD * DibMaskPtr (HDIB hdib)
{
 PDIBSTRUCT pdib = hdib ;

 if (!DibIsValid (hdib))
 return 0 ;

 return pdib->ds.dsBitfields ;
}

void * DibBitsPtr (HDIB hdib)
{
 if (!DibIsValid (hdib))
 return NULL ;

 return ((PDIBSTRUCT) hdib)->pBits ;
}

/*--
 DibSetColor: Obtains entry from the DIB color table
 --*/

BOOL DibGetColor (HDIB hdib, int index, RGBQUAD * prgb)
{
 PDIBSTRUCT pdib = hdib ;
 HDC hdcMem ;
 int iReturn ;

 if (!DibIsValid (hdib))
 return 0 ;

 hdcMem = CreateCompatibleDC (NULL) ;
 SelectObject (hdcMem, pdib->hBitmap) ;
 iReturn = GetDIBColorTable (hdcMem, index, 1, prgb) ;
 DeleteDC (hdcMem) ;

 return iReturn ? TRUE : FALSE ;
}

/*--
 DibGetColor: Sets an entry in the DIB color table
 --*/

BOOL DibSetColor (HDIB hdib, int index, RGBQUAD * prgb)
{
 PDIBSTRUCT pdib = hdib ;
 HDC hdcMem ;
 int iReturn ;

 if (!DibIsValid (hdib))
 return 0 ;

 hdcMem = CreateCompatibleDC (NULL) ;
 SelectObject (hdcMem, pdib->hBitmap) ;
 iReturn = SetDIBColorTable (hdcMem, index, 1, prgb) ;
 DeleteDC (hdcMem) ;

 return iReturn ? TRUE : FALSE ;
}

Most of the functions in this part of DIBHELP.C are self-explanatory. The DibIsValid function helps keep the whole
system fairly bulletproof. The other functions call DibIsValid before attempting to reference information in
DIBSTRUCT. All these functions have a first, and usually only, parameter of HDIB, which (as we'll see shortly) is
defined in DIBHELP.H as a void pointer. The functions can cast this parameter to a PDIBSTRUCT and then access
the fields in the structure.

Note the DibIsAddressable function, which returns a BOOL value. This function could also be called the
DibIsNotCompressed function. The return value indicates whether the individual pixels of the DIB can be
addressed.

A collection of functions beginning with DibInfoHeaderSize obtain the sizes of various components of the DIB
Section as they would appear in a packed DIB. As we shall see, these functions help in converting a DIB section to
a packed DIB and in saving DIB files. These are followed by a collection of functions that obtain pointers to the
various components of the DIB.

Although DIBHELP.C contains a function named DibInfoHeaderPtr that obtains a pointer to the
BITMAPINFOHEADER structure, there is no function that obtains a pointer to the BITMAPINFO structure—that is,
the information structure followed by the DIB color table. That's because when working with DIB sections,
applications don't have direct access to a structure of this type. While the BITMAPINFOHEADER structure and the
color masks are both available in the DIBSECTION structure, and the pointer to the pixel bits is returned from the
CreateDIBSection function, the DIB color table is accessible only indirectly, by calling GetDIBColorTable and
SetDIBColorTable . These functions are encapsulated in DIBHELP's DibGetColor and DibSetColor functions.

Later in DIBHELP.C, a file named DibCopyToInfo allocates a pointer to a BITMAPINFO structure and fills it with
information, but that's not exactly the same as getting a pointer to an existing structure in memory.

Reading and Writing Pixels

One compelling advantage in maintaining a packed DIB or a DIB section by an application is being able to directly
manipulate the pixel bits of the DIB. The second section of DIBHELP.C, shown in Figure 16-21, shows the
functions provided for this purpose.

Figure 16-21. The second part of the DIBHELP.C file.

DIBHELP.C (second part)

/*---
 DibPixelPtr: Returns a pointer to the pixel at position (x, y)
 ---*/

BYTE * DibPixelPtr (HDIB hdib, int x, int y)
{
 if (!DibIsAddressable (hdib))
 return NULL ;

 if (x < 0 || x >= DibWidth (hdib) || y < 0 || y >= DibHeight (hdib))
 return NULL ;

 return (((PDIBSTRUCT) hdib)->ppRow)[y] + (x * DibBitCount (hdib) >> 3) ;
}

/*---
 DibGetPixel: Obtains a pixel value at (x, y)
 ---*/

DWORD DibGetPixel (HDIB hdib, int x, int y)
{
 PBYTE pPixel ;

 if (!(pPixel = DibPixelPtr (hdib, x, y)))
 return 0 ;

 switch (DibBitCount (hdib))
 {

 case 1: return 0x01 & (* pPixel >> (7 - (x & 7))) ;
 case 4: return 0x0F & (* pPixel >> (x & 1 ? 0 : 4)) ;
 case 8: return * pPixel ;
 case 16: return * (WORD *) pPixel ;
 case 24: return 0x00FFFFFF & * (DWORD *) pPixel ;
 case 32: return * (DWORD *) pPixel ;
 }
 return 0 ;
}

/*--
 DibSetPixel: Sets a pixel value at (x, y)
 --*/

BOOL DibSetPixel (HDIB hdib, int x, int y, DWORD dwPixel)
{
 PBYTE pPixel ;

 if (!(pPixel = DibPixelPtr (hdib, x, y)))
 return FALSE ;

 switch (DibBitCount (hdib))
 {
 case 1: * pPixel &= ~(1 << (7 - (x & 7))) ;
 * pPixel |= dwPixel << (7 - (x & 7)) ;
 break ;

 case 4: * pPixel &= 0x0F << (x & 1 ? 4 : 0) ;
 * pPixel |= dwPixel << (x & 1 ? 0 : 4) ;
 break ;

 case 8: * pPixel = (BYTE) dwPixel ;
 break ;

 case 16: * (WORD *) pPixel = (WORD) dwPixel ;
 break ;

 case 24: * (RGBTRIPLE *) pPixel = * (RGBTRIPLE *) &dwPixel ;
 break ;

 case 32: * (DWORD *) pPixel = dwPixel ;
 break ;
 default:
 return FALSE ;
 }
 return TRUE ;
}

/*--
 DibGetPixelColor: Obtains the pixel color at (x, y)
 --*/

BOOL DibGetPixelColor (HDIB hdib, int x, int y, RGBQUAD * prgb)

{
 DWORD dwPixel ;
 int iBitCount ;
 PDIBSTRUCT pdib = hdib ;

 // Get bit count; also use this as a validity check

 if (0 == (iBitCount = DibBitCount (hdib)))
 return FALSE ;

 // Get the pixel value

 dwPixel = DibGetPixel (hdib, x, y) ;

 // If the bit-count is 8 or less, index the color table

 if (iBitCount <= 8)
 return DibGetColor (hdib, (int) dwPixel, prgb) ;

 // If the bit-count is 24, just use the pixel

 else if (iBitCount == 24)
 {
 * (RGBTRIPLE *) prgb = * (RGBTRIPLE *) & dwPixel ;
 prgb->rgbReserved = 0 ;
 }

 // If the bit-count is 32 and the biCompression field is BI_RGB,
 // just use the pixel

 else if (iBitCount == 32 &&
 pdib->ds.dsBmih.biCompression == BI_RGB)

 {
 * prgb = * (RGBQUAD *) & dwPixel ;
 }

 // Otherwise, use the mask and shift values
 // (for best performance, don't use DibMask and DibShift functions)
 else
 {
 prgb->rgbRed = (BYTE) (((pdib->ds.dsBitfields[0] & dwPixel)
 >> pdib->iRShift[0]) << pdib->iLShift[0]) ;

 prgb->rgbGreen = (BYTE) (((pdib->ds.dsBitfields[1] & dwPixel)
 >> pdib->iRShift[1]) << pdib->iLShift[1]) ;

 prgb->rgbBlue = (BYTE) (((pdib->ds.dsBitfields[2] & dwPixel)
 >> pdib->iRShift[2]) << pdib->iLShift[2]) ;
 }
 return TRUE ;
}

/*---
 DibSetPixelColor: Sets the pixel color at (x, y)
 ---*/

BOOL DibSetPixelColor (HDIB hdib, int x, int y, RGBQUAD * prgb)
{
 DWORD dwPixel ;
 int iBitCount ;
 PDIBSTRUCT pdib = hdib ;

 // Don't do this function for DIBs with color tables

 iBitCount = DibBitCount (hdib) ;

 if (iBitCount <= 8)
 return FALSE ;

 // The rest is just the opposite of DibGetPixelColor

 else if (iBitCount == 24)
 {
 * (RGBTRIPLE *) & dwPixel = * (RGBTRIPLE *) prgb ;
 dwPixel &= 0x00FFFFFF ;
 }
 else if (iBitCount == 32 &&
 pdib->ds.dsBmih.biCompression == BI_RGB)
 {
 * (RGBQUAD *) & dwPixel = * prgb ;
 }

 else
 {
 dwPixel = (((DWORD) prgb->rgbRed >> pdib->iLShift[0])
 << pdib->iRShift[0]) ;

 dwPixel |= (((DWORD) prgb->rgbGreen >> pdib->iLShift[1])
 << pdib->iRShift[1]) ;

 dwPixel |= (((DWORD) prgb->rgbBlue >> pdib->iLShift[2])
 << pdib->iRShift[2]) ;
 }

 DibSetPixel (hdib, x, y, dwPixel) ;
 return TRUE ;
}

This section of DIBHELP.C begins with a DibPixelPtr function that obtains a pointer to the byte where a particular
pixel is stored (or partially stored). Recall that the ppRow field of the DIBSTRUCT structure is a pointer to the
addresses of the rows of pixels in the DIB, beginning with the top row. Thus,

((PDIBSTRUCT) hdib)->pprow)[0]

is a pointer to the leftmost pixel of the top row of the DIB and

(((PDIBSTRUCT) hdib)->ppRow)[y] + (x * DibBitCount (hdib) >> 3)

is a pointer to the pixel at position (x ,y). Notice that the function returns a NULL value if the DIB is not
addressable (that is, if it's compressed) or if the x and y parameters to the function are negative or reference an
area outside the DIB. This checking slows the function (and any function that relies on DibPixelPtr), but I'll
describe some faster routines soon.

The DibGetPixel and DibSetPixel functions that follow in the file make use of DibPixelPtr . For 8-bit, 16-bit, 24-bit,
and 32-bit DIBs, these functions need only cast the pointer to the proper data size and access the pixel value. For
1-bit and 4-bit DIBs, some masking and shifting is required.

The DibGetColor function obtains the pixel color as an RGBQUAD structure. For 1bit, 4-bit, and 8-bit DIBs, this
involves using the pixel value to get a color from the DIB color table. For 16-bit, 24-bit, and 32-bit DIBs, in
general the pixel value must be masked and shifted to derive an RGB color. The DibSetPixel function is opposite,
and it allows setting a pixel value from an RGBQUAD structure. This function is defined only for 16-bit, 24-bit, and
32-bit DIBs.

Creating and Converting

The third and final section of DIBHELP, shown in Figure 16-22, shows how DIB sections are created and how they
can be converted to and from packed DIBs.

Figure 16-22. The third and final part of the DIBHELP.C file.

DIBHELP.C (third part)

/*--
 Calculating shift values from color masks is required by the
 DibCreateFromInfo function.
 --*/

static int MaskToRShift (DWORD dwMask)
{
 int iShift ;

 if (dwMask == 0)
 return 0 ;

 for (iShift = 0 ; !(dwMask & 1) ; iShift++)
 dwMask >>= 1 ;

 return iShift ;
}

static int MaskToLShift (DWORD dwMask)
{
 int iShift ;

 if (dwMask == 0)

 return 0 ;

 while (!(dwMask & 1))
 dwMask >>= 1 ;

 for (iShift = 0 ; dwMask & 1 ; iShift++)
 dwMask >>= 1 ;

 return 8 - iShift ;
}

/*---
 DibCreateFromInfo: All DIB creation functions ultimately call this one.
 This function is responsible for calling CreateDIBSection, allocating
 memory for DIBSTRUCT, and setting up the row pointer.
 ---*/

HDIB DibCreateFromInfo (BITMAPINFO * pbmi)
{
 BYTE * pBits ;
 DIBSTRUCT * pdib ;
 HBITMAP hBitmap ;
 int i, iRowLength, cy, y ;

 hBitmap = CreateDIBSection (NULL, pbmi, DIB_RGB_COLORS, &pBits, NULL, 0) ;

 if (hBitmap == NULL)
 return NULL ;

 if (NULL == (pdib = malloc (sizeof (DIBSTRUCT))))
 {
 DeleteObject (hBitmap) ;
 return NULL ;
 }

 pdib->iSignature = HDIB_SIGNATURE ;
 pdib->hBitmap = hBitmap ;
 pdib->pBits = pBits ;

 GetObject (hBitmap, sizeof (DIBSECTION), &pdib->ds) ;

 // Notice that we can now use the DIB information functions
 // defined above.

 // If the compression is BI_BITFIELDS, calculate shifts from masks

 if (DibCompression (pdib) == BI_BITFIELDS)
 {
 for (i = 0 ; i < 3 ; i++)
 {
 pdib->iLShift[i] = MaskToLShift (pdib->ds.dsBitfields[i]) ;
 pdib->iRShift[i] = MaskToRShift (pdib->ds.dsBitfields[i]) ;
 }

 }

 // If the compression is BI_RGB, but bit-count is 16 or 32,
 // set the bitfields and the masks

 else if (DibCompression (pdib) == BI_RGB)
 {
 if (DibBitCount (pdib) == 16)
 {
 pdib->ds.dsBitfields[0] = 0x00007C00 ;
 pdib->ds.dsBitfields[1] = 0x000003E0 ;
 pdib->ds.dsBitfields[2] = 0x0000001F ;

 pdib->iRShift[0] = 10 ;
 pdib->iRShift[1] = 5 ;
 pdib->iRShift[2] = 0 ;

 pdib->iLShift[0] = 3 ;
 pdib->iLShift[1] = 3 ;
 pdib->iLShift[2] = 3 ;
 }
 else if (DibBitCount (pdib) == 24 || DibBitCount (pdib) == 32)
 {
 pdib->ds.dsBitfields[0] = 0x00FF0000 ;
 pdib->ds.dsBitfields[1] = 0x0000FF00 ;
 pdib->ds.dsBitfields[2] = 0x000000FF ;

 pdib->iRShift[0] = 16 ;
 pdib->iRShift[1] = 8 ;
 pdib->iRShift[2] = 0 ;

 pdib->iLShift[0] = 0 ;
 pdib->iLShift[1] = 0 ;
 pdib->iLShift[2] = 0 ;
 }
 }
 // Allocate an array of pointers to each row in the DIB

 cy = DibHeight (pdib) ;

 if (NULL == (pdib->ppRow = malloc (cy * sizeof (BYTE *))))
 {
 free (pdib) ;
 DeleteObject (hBitmap) ;
 return NULL ;
 }

 // Initialize them.

 iRowLength = DibRowLength (pdib) ;
 if (pbmi->bmiHeader.biHeight > 0) // ie, bottom up
 {
 for (y = 0 ; y < cy ; y++)

 pdib->ppRow[y] = pBits + (cy - y - 1) * iRowLength ;
 }
 else // top down
 {
 for (y = 0 ; y < cy ; y++)
 pdib->ppRow[y] = pBits + y * iRowLength ;
 }
 return pdib ;
}

/*--
 DibDelete: Frees all memory for the DIB section
 --*/

BOOL DibDelete (HDIB hdib)
{
 DIBSTRUCT * pdib = hdib ;

 if (!DibIsValid (hdib))
 return FALSE ;

 free (pdib->ppRow) ;
 DeleteObject (pdib->hBitmap) ;
 free (pdib) ;
 return TRUE ;
}

/*--
 DibCreate: Creates an HDIB from explicit arguments
 --*/

HDIB DibCreate (int cx, int cy, int cBits, int cColors)
{
 BITMAPINFO * pbmi ;
 DWORD dwInfoSize ;
 HDIB hDib ;
 int cEntries ;

 if (cx <= 0 || cy <= 0 ||
 ((cBits != 1) && (cBits != 4) && (cBits != 8) &&
 (cBits != 16) && (cBits != 24) && (cBits != 32)))

 {
 return NULL ;
 }

 if (cColors != 0)
 cEntries = cColors ;
 else if (cBits <= 8)
 cEntries = 1 << cBits ;

 dwInfoSize = sizeof (BITMAPINFOHEADER) + (cEntries - 1) * sizeof (RGBQUAD);

 if (NULL == (pbmi = malloc (dwInfoSize)))
 {
 return NULL ;
 }

 ZeroMemory (pbmi, dwInfoSize) ;

 pbmi->bmiHeader.biSize = sizeof (BITMAPINFOHEADER) ;
 pbmi->bmiHeader.biWidth = cx ;
 pbmi->bmiHeader.biHeight = cy ;
 pbmi->bmiHeader.biPlanes = 1 ;
 pbmi->bmiHeader.biBitCount = cBits ;
 pbmi->bmiHeader.biCompression = BI_RGB ;
 pbmi->bmiHeader.biSizeImage = 0 ;
 pbmi->bmiHeader.biXPelsPerMeter = 0 ;
 pbmi->bmiHeader.biYPelsPerMeter = 0 ;
 pbmi->bmiHeader.biClrUsed = cColors ;
 pbmi->bmiHeader.biClrImportant = 0 ;

 hDib = DibCreateFromInfo (pbmi) ;
 free (pbmi) ;

 return hDib ;
}

/*--
 DibCopyToInfo: Builds BITMAPINFO structure.
 Used by DibCopy and DibCopyToDdb
 --*/

static BITMAPINFO * DibCopyToInfo (HDIB hdib)
{
 BITMAPINFO * pbmi ;
 int i, iNumColors ;
 RGBQUAD * prgb ;
 if (!DibIsValid (hdib))
 return NULL ;

 // Allocate the memory

 if (NULL == (pbmi = malloc (DibInfoSize (hdib))))
 return NULL ;

 // Copy the information header

 CopyMemory (pbmi, DibInfoHeaderPtr (hdib),
 sizeof (BITMAPINFOHEADER));

 // Copy the possible color masks

 prgb = (RGBQUAD *) ((BYTE *) pbmi + sizeof (BITMAPINFOHEADER)) ;

 if (DibMaskSize (hdib))

 {
 CopyMemory (prgb, DibMaskPtr (hdib), 3 * sizeof (DWORD)) ;

 prgb = (RGBQUAD *) ((BYTE *) prgb + 3 * sizeof (DWORD)) ;
 }
 // Copy the color table

 iNumColors = DibNumColors (hdib) ;

 for (i = 0 ; i < iNumColors ; i++)
 DibGetColor (hdib, i, prgb + i) ;

 return pbmi ;
}

/*---
 DibCopy: Creates a new DIB section from an existing DIB section,
 possibly swapping the DIB width and height.
 ---*/

HDIB DibCopy (HDIB hdibSrc, BOOL fRotate)
{
 BITMAPINFO * pbmi ;
 BYTE * pBitsSrc, * pBitsDst ;
 HDIB hdibDst ;

 if (!DibIsValid (hdibSrc))
 return NULL ;

 if (NULL == (pbmi = DibCopyToInfo (hdibSrc)))
 return NULL ;

 if (fRotate)
 {
 pbmi->bmiHeader.biWidth = DibHeight (hdibSrc) ;
 pbmi->bmiHeader.biHeight = DibWidth (hdibSrc) ;
 }

 hdibDst = DibCreateFromInfo (pbmi) ;
 free (pbmi) ;

 if (hdibDst == NULL)
 return NULL ;

 // Copy the bits

 if (!fRotate)
 {
 pBitsSrc = DibBitsPtr (hdibSrc) ;
 pBitsDst = DibBitsPtr (hdibDst) ;

 CopyMemory (pBitsDst, pBitsSrc, DibBitsSize (hdibSrc)) ;
 }

 return hdibDst ;
}

/*--
 DibCopyToPackedDib is generally used for saving DIBs and for
 transferring DIBs to the clipboard. In the second case, the second
 argument should be set to TRUE so that the memory is allocated
 with the GMEM_SHARE flag.
 --*/

BITMAPINFO * DibCopyToPackedDib (HDIB hdib, BOOL fUseGlobal)
{
 BITMAPINFO * pPackedDib ;
 BYTE * pBits ;
 DWORD dwDibSize ;
 HDC hdcMem ;
 HGLOBAL hGlobal ;
 int iNumColors ;
 PDIBSTRUCT pdib = hdib ;
 RGBQUAD * prgb ;

 if (!DibIsValid (hdib))
 return NULL ;
 // Allocate memory for packed DIB

 dwDibSize = DibTotalSize (hdib) ;

 if (fUseGlobal)
 {
 hGlobal = GlobalAlloc (GHND | GMEM_SHARE, dwDibSize) ;
 pPackedDib = GlobalLock (hGlobal) ;
 }
 else
 {
 pPackedDib = malloc (dwDibSize) ;
 }

 if (pPackedDib == NULL)
 return NULL ;

 // Copy the information header

 CopyMemory (pPackedDib, &pdib->ds.dsBmih, sizeof (BITMAPINFOHEADER)) ;

 prgb = (RGBQUAD *) ((BYTE *) pPackedDib + sizeof (BITMAPINFOHEADER)) ;

 // Copy the possible color masks

 if (pdib->ds.dsBmih.biCompression == BI_BITFIELDS)
 {
 CopyMemory (prgb, pdib->ds.dsBitfields, 3 * sizeof (DWORD)) ;

 prgb = (RGBQUAD *) ((BYTE *) prgb + 3 * sizeof (DWORD)) ;

 }
 // Copy the color table

 if (iNumColors = DibNumColors (hdib))
 {
 hdcMem = CreateCompatibleDC (NULL) ;
 SelectObject (hdcMem, pdib->hBitmap) ;
 GetDIBColorTable (hdcMem, 0, iNumColors, prgb) ;
 DeleteDC (hdcMem) ;
 }

 pBits = (BYTE *) (prgb + iNumColors) ;

 // Copy the bits

 CopyMemory (pBits, pdib->pBits, DibBitsSize (pdib)) ;

 // If last argument is TRUE, unlock global memory block and
 // cast it to pointer in preparation for return

 if (fUseGlobal)
 {
 GlobalUnlock (hGlobal) ;
 pPackedDib = (BITMAPINFO *) hGlobal ;
 }
 return pPackedDib ;
}

/*--
 DibCopyFromPackedDib is generally used for pasting DIBs from the
 clipboard.
 --*/

HDIB DibCopyFromPackedDib (BITMAPINFO * pPackedDib)
{
 BYTE * pBits ;
 DWORD dwInfoSize, dwMaskSize, dwColorSize ;
 int iBitCount ;
 PDIBSTRUCT pdib ;

 // Get the size of the information header and do validity check

 dwInfoSize = pPackedDib->bmiHeader.biSize ;

 if (dwInfoSize != sizeof (BITMAPCOREHEADER) &&
 dwInfoSize != sizeof (BITMAPINFOHEADER) &&
 dwInfoSize != sizeof (BITMAPV4HEADER) &&
 dwInfoSize != sizeof (BITMAPV5HEADER))
 {
 return NULL ;
 }
 // Get the possible size of the color masks

 if (dwInfoSize == sizeof (BITMAPINFOHEADER) &&
 pPackedDib->bmiHeader.biCompression == BI_BITFIELDS)
 {
 dwMaskSize = 3 * sizeof (DWORD) ;
 }
 else
 {
 dwMaskSize = 0 ;
 }
 // Get the size of the color table
 if (dwInfoSize == sizeof (BITMAPCOREHEADER))
 {
 iBitCount = ((BITMAPCOREHEADER *) pPackedDib)->bcBitCount ;

 if (iBitCount <= 8)
 {
 dwColorSize = (1 << iBitCount) * sizeof (RGBTRIPLE) ;
 }
 else
 dwColorSize = 0 ;
 }
 else // all non-OS/2 compatible DIBs
 {
 if (pPackedDib->bmiHeader.biClrUsed > 0)
 {
 dwColorSize = pPackedDib->bmiHeader.biClrUsed * sizeof (RGBQUAD);
 }
 else if (pPackedDib->bmiHeader.biBitCount <= 8)
 {
 dwColorSize = (1 << pPackedDib->bmiHeader.biBitCount) *
 sizeof (RGBQUAD) ;
 }
 else
 {
 dwColorSize = 0 ;
 }
 }
 // Finally, get the pointer to the bits in the packed DIB

 pBits = (BYTE *) pPackedDib + dwInfoSize + dwMaskSize + dwColorSize ;

 // Create the HDIB from the packed-DIB pointer

 pdib = DibCreateFromInfo (pPackedDib) ;

 // Copy the pixel bits

 CopyMemory (pdib->pBits, pBits, DibBitsSize (pdib)) ;

 return pdib ;
}

/*---

 DibFileLoad: Creates a DIB section from a DIB file
 ---*/

HDIB DibFileLoad (const TCHAR * szFileName)
{
 BITMAPFILEHEADER bmfh ;
 BITMAPINFO * pbmi ;
 BOOL bSuccess ;
 DWORD dwInfoSize, dwBitsSize, dwBytesRead ;
 HANDLE hFile ;
 HDIB hDib ;

 // Open the file: read access, prohibit write access

 hFile = CreateFile (szFileName, GENERIC_READ, FILE_SHARE_READ, NULL,
 OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return NULL ;

 // Read in the BITMAPFILEHEADER

 bSuccess = ReadFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != sizeof (BITMAPFILEHEADER))
 || (bmfh.bfType != * (WORD *) "BM"))
 {
 CloseHandle (hFile) ;
 return NULL ;
 }
 // Allocate memory for the information structure & read it in

 dwInfoSize = bmfh.bfOffBits - sizeof (BITMAPFILEHEADER) ;

 if (NULL == (pbmi = malloc (dwInfoSize)))
 {
 CloseHandle (hFile) ;
 return NULL ;
 }

 bSuccess = ReadFile (hFile, pbmi, dwInfoSize, &dwBytesRead, NULL) ;

 if (!bSuccess || (dwBytesRead != dwInfoSize))
 {
 CloseHandle (hFile) ;
 free (pbmi) ;
 return NULL ;
 }
 // Create the DIB

 hDib = DibCreateFromInfo (pbmi) ;
 free (pbmi) ;

 if (hDib == NULL)
 {
 CloseHandle (hFile) ;
 return NULL ;
 }
 // Read in the bits

 dwBitsSize = bmfh.bfSize - bmfh.bfOffBits ;

 bSuccess = ReadFile (hFile, ((PDIBSTRUCT) hDib)->pBits,
 dwBitsSize, &dwBytesRead, NULL) ;
 CloseHandle (hFile) ;

 if (!bSuccess || (dwBytesRead != dwBitsSize))
 {
 DibDelete (hDib) ;
 return NULL ;
 }
 return hDib ;
}

/*---
 DibFileSave: Saves a DIB section to a file
 ---*/

BOOL DibFileSave (HDIB hdib, const TCHAR * szFileName)
{
 BITMAPFILEHEADER bmfh ;
 BITMAPINFO * pbmi ;
 BOOL bSuccess ;
 DWORD dwTotalSize, dwBytesWritten ;
 HANDLE hFile ;

 hFile = CreateFile (szFileName, GENERIC_WRITE, 0, NULL,
 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 return FALSE ;

 dwTotalSize = DibTotalSize (hdib) ;
 bmfh.bfType = * (WORD *) "BM" ;
 bmfh.bfSize = sizeof (BITMAPFILEHEADER) + dwTotalSize ;
 bmfh.bfReserved1 = 0 ;
 bmfh.bfReserved2 = 0 ;
 bmfh.bfOffBits = bmfh.bfSize - DibBitsSize (hdib) ;

 // Write the BITMAPFILEHEADER

 bSuccess = WriteFile (hFile, &bmfh, sizeof (BITMAPFILEHEADER),
 &dwBytesWritten, NULL) ;

 if (!bSuccess || (dwBytesWritten != sizeof (BITMAPFILEHEADER)))

 {
 CloseHandle (hFile) ;
 DeleteFile (szFileName) ;
 return FALSE ;
 }
 // Get entire DIB in packed-DIB format

 if (NULL == (pbmi = DibCopyToPackedDib (hdib, FALSE)))
 {
 CloseHandle (hFile) ;
 DeleteFile (szFileName) ;
 return FALSE ;
 }
 // Write out the packed DIB

 bSuccess = WriteFile (hFile, pbmi, dwTotalSize, &dwBytesWritten, NULL) ;
 CloseHandle (hFile) ;
 free (pbmi) ;

 if (!bSuccess || (dwBytesWritten != dwTotalSize))
 {
 DeleteFile (szFileName) ;
 return FALSE ;
 }
 return TRUE ;
}

/*---
 DibCopyToDdb: For more efficient screen displays
 ---*/
HBITMAP DibCopyToDdb (HDIB hdib, HWND hwnd, HPALETTE hPalette)
{
 BITMAPINFO * pbmi ;
 HBITMAP hBitmap ;
 HDC hdc ;

 if (!DibIsValid (hdib))
 return NULL ;

 if (NULL == (pbmi = DibCopyToInfo (hdib)))
 return NULL ;

 hdc = GetDC (hwnd) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }

 hBitmap = CreateDIBitmap (hdc, DibInfoHeaderPtr (hdib), CBM_INIT,
 DibBitsPtr (hdib), pbmi, DIB_RGB_COLORS) ;

 ReleaseDC (hwnd, hdc) ;
 free (pbmi) ;

 return hBitmap ;
}

This part of the DIBHELP.C file begins with two little functions that derive left-shift and right-shift values from
color masks for 16-bit and 32-bit DIBs. These functions were described in the Color Masking section in Chapter 15
.

The DibCreateFromInfo function is the only function in DIBHELP that calls CreateDIBSection and allocates memory
for the DIBSTRUCT structure. All other creation and copy functions go through this function. The single parameter
to DibCreateFromInfo is a pointer to a BITMAPINFO structure. The color table of this structure must exist, but it
doesn't necessarily have to be filled with valid values. After calling CreateDIBSection , the function initializes all
the fields of the DIBSTRUCT structure. Notice that when setting the values of the ppRow field of the DIBSTRUCT
structure (the pointers to the DIB row addresses), separate logic exists for bottom-up and top-down DIBs. The
first element of ppRow is always the top row of the DIB.

DibDelete deletes the bitmap created in DibCreateFromInfo and also frees the memory allocated in that function.

DibCreate is probably a more likely function than DibCreateFromInfo to be called from application programs. The
first three arguments provide the pixel width and height and the number of bits per pixel. The last argument can
be set to 0 for a color table of default size or to a nonzero value to indicate a smaller color table than would
otherwise be implied by the bit count.

The DibCopy function creates a new DIB section from an existing DIB section. It uses the DibCreateInfo function
that allocates memory for a BITMAPINFO structure and puts all the data into it. A BOOL argument to the DibCopy
function indicates whether the DIB width and height are to be switched around when creating the new DIB section.
We'll see a use for this later.

The DibCopyToPackedDib and DibCopyFromPackedDib functions are generally used in conjunction with passing
DIBs through the clipboard. The DibFileLoad function creates a DIB section from a DIB file; DibFileSave functions
saves to a DIB file.

Finally, the DibCopyToDdb function creates a GDI bitmap object from a DIB. Notice that the function requires
handles to the current palette and the program's window. The program's window handle is used for getting a
device context into which the palette is selected and realized. Only then can the function make a call to
CreateDIBitmap . This was demonstrated in the SHOWDIB7 program earlier in this chapter.

The DIBHELP Header File and Macros

The DIBHELP.H header file is shown in Figure 16-23.

Figure 16-23. The DIBHELP.H file.

DIBHELP.H

/*-------------------------------------
 DIBHELP.H header file for DIBHELP.C
 -------------------------------------*/

typedef void * HDIB ;

 // Functions in DIBHELP.C

BOOL DibIsValid (HDIB hdib) ;
HBITMAP DibBitmapHandle (HDIB hdib) ;

int DibWidth (HDIB hdib) ;
int DibHeight (HDIB hdib) ;
int DibBitCount (HDIB hdib) ;
int DibRowLength (HDIB hdib) ;
int DibNumColors (HDIB hdib) ;
DWORD DibMask (HDIB hdib, int i) ;
int DibRShift (HDIB hdib, int i) ;
int DibLShift (HDIB hdib, int i) ;
int DibCompression (HDIB hdib) ;
BOOL DibIsAddressable (HDIB hdib) ;
DWORD DibInfoHeaderSize (HDIB hdib) ;
DWORD DibMaskSize (HDIB hdib) ;
DWORD DibColorSize (HDIB hdib) ;
DWORD DibInfoSize (HDIB hdib) ;
DWORD DibBitsSize (HDIB hdib) ;
DWORD DibTotalSize (HDIB hdib) ;
BITMAPINFOHEADER * DibInfoHeaderPtr (HDIB hdib) ;
DWORD * DibMaskPtr (HDIB hdib) ;
void * DibBitsPtr (HDIB hdib) ;
BOOL DibGetColor (HDIB hdib, int index, RGBQUAD * prgb) ;
BOOL DibSetColor (HDIB hdib, int index, RGBQUAD * prgb) ;
BYTE * DibPixelPtr (HDIB hdib, int x, int y) ;
DWORD DibGetPixel (HDIB hdib, int x, int y) ;
BOOL DibSetPixel (HDIB hdib, int x, int y, DWORD dwPixel) ;
BOOL DibGetPixelColor (HDIB hdib, int x, int y, RGBQUAD * prgb) ;
BOOL DibSetPixelColor (HDIB hdib, int x, int y, RGBQUAD * prgb) ;
HDIB DibCreateFromInfo (BITMAPINFO * pbmi) ;
BOOL DibDelete (HDIB hdib) ;
HDIB DibCreate (int cx, int cy, int cBits, int cColors) ;
HDIB DibCopy (HDIB hdibSrc, BOOL fRotate) ;
BITMAPINFO * DibCopyToPackedDib (HDIB hdib, BOOL fUseGlobal) ;
HDIB DibCopyFromPackedDib (BITMAPINFO * pPackedDib) ;
HDIB DibFileLoad (const TCHAR * szFileName) ;
BOOL DibFileSave (HDIB hdib, const TCHAR * szFileName) ;
HBITMAP DibCopyToDdb (HDIB hdib, HWND hwnd, HPALETTE hPalette) ;
HDIB DibCreateFromDdb (HBITMAP hBitmap) ;

/*---
 Quickie no-bounds-checked pixel gets and sets
 ---*/

#define DibPixelPtr1(hdib, x, y) (((* (PBYTE **) hdib) [y]) + ((x) >> 3))
#define DibPixelPtr4(hdib, x, y) (((* (PBYTE **) hdib) [y]) + ((x) >> 1))
#define DibPixelPtr8(hdib, x, y) (((* (PBYTE **) hdib) [y]) + (x))
#define DibPixelPtr16(hdib, x, y) \
 ((WORD *) (((* (PBYTE **) hdib) [y]) + (x) * 2))

#define DibPixelPtr24(hdib, x, y) \
 ((RGBTRIPLE *) (((* (PBYTE **) hdib) [y]) + (x) * 3))

#define DibPixelPtr32(hdib, x, y) \
 ((DWORD *) (((* (PBYTE **) hdib) [y]) + (x) * 4))

#define DibGetPixel1(hdib, x, y) \
 (0x01 & (* DibPixelPtr1 (hdib, x, y) >> (7 - ((x) & 7))))

#define DibGetPixel4(hdib, x, y) \
 (0x0F & (* DibPixelPtr4 (hdib, x, y) >> ((x) & 1 ? 0 : 4)))

#define DibGetPixel8(hdib, x, y) (* DibPixelPtr8 (hdib, x, y))
#define DibGetPixel16(hdib, x, y) (* DibPixelPtr16 (hdib, x, y))
#define DibGetPixel24(hdib, x, y) (* DibPixelPtr24 (hdib, x, y))
#define DibGetPixel32(hdib, x, y) (* DibPixelPtr32(hdib, x, y))

#define DibSetPixel1(hdib, x, y, p) \
 ((* DibPixelPtr1 (hdib, x, y) &= ~(1 << (7 - ((x) & 7)))), \
 (* DibPixelPtr1 (hdib, x, y) |= ((p) << (7 - ((x) & 7)))))

#define DibSetPixel4(hdib, x, y, p) \
 ((* DibPixelPtr4 (hdib, x, y) &= (0x0F << ((x) & 1 ? 4 : 0))), \
 (* DibPixelPtr4 (hdib, x, y) |= ((p) << ((x) & 1 ? 0 : 4))))

#define DibSetPixel8(hdib, x, y, p) (* DibPixelPtr8 (hdib, x, y) = p)
#define DibSetPixel16(hdib, x, y, p) (* DibPixelPtr16 (hdib, x, y) = p)
#define DibSetPixel24(hdib, x, y, p) (* DibPixelPtr24 (hdib, x, y) = p)
#define DibSetPixel32(hdib, x, y, p) (* DibPixelPtr32 (hdib, x, y) = p)

This header file defines the HDIB handle as a void pointer. An application really shouldn't know about the internal
structure of the structure to which HDIB points. The header file also includes declarations of all the functions in
DIBHELP.C. And then there are the macros—the very special macros.

If you look back at the DibPixelPtr , DibGetPixel , and DibSetPixel functions in DIBHELP.C and try to improve their
performance, you'll see a couple of possible solutions. First, you can remove all the bulletproofing and trust that
an application will not call the function with invalid arguments. You can also remove some of the function calls,
such as DibBitCount , and obtain that information directly by using the pointer to the DIBSTRUCT structure
instead.

A less obvious way to improve performance is to do away with all the logic involving the number of bits per pixel
and have separate functions for each type of DIB—for example, DibGetPixel1 , DibGetPixel4 , DibGetPixel8 , and
so forth. The next optimization is to remove the function call entirely and incorporate the logic in inline functions
or macros.

DIBHELP.H takes the macro approach. It provides three sets of macros based on the DibPixelPtr , DibGetPixel ,
and DibSetPixel functions. These macros are all specific to a particular bit count.

The DIBBLE Program

The DIBBLE program shown in Figure 16-24 puts the DIBHELP functions and macros to work. Although DIBBLE is
the longest program in this book, it is really only a crude sampler of some jobs that might be found in simple
digital image-processing programs. One obvious improvement to DIBBLE would be to convert it to a multiple
document interface (MDI), but we won't learn how to do that until Chapter 19 .

Figure 16-24. The DIBBLE program.

DIBBLE.C

/*--
 DIBBLE.C -- Bitmap and Palette Program

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibhelp.h"
#include "dibpal.h"
#include "dibconv.h"
#include "resource.h"

#define WM_USER_SETSCROLLS (WM_USER + 1)
#define WM_USER_DELETEDIB (WM_USER + 2)
#define WM_USER_DELETEPAL (WM_USER + 3)
#define WM_USER_CREATEPAL (WM_USER + 4)

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("Dibble") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szAppName,
 WS_OVERLAPPEDWINDOW | WM_VSCROLL | WM_HSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

/*---
 DisplayDib: Displays or prints DIB actual size or stretched
 depending on menu selection
 ---*/

int DisplayDib (HDC hdc, HBITMAP hBitmap, int x, int y,
 int cxClient, int cyClient,
 WORD wShow, BOOL fHalftonePalette)
{
 BITMAP bitmap ;
 HDC hdcMem ;
 int cxBitmap, cyBitmap, iReturn ;
 GetObject (hBitmap, sizeof (BITMAP), &bitmap) ;
 cxBitmap = bitmap.bmWidth ;
 cyBitmap = bitmap.bmHeight ;

 SaveDC (hdc) ;

 if (fHalftonePalette)
 SetStretchBltMode (hdc, HALFTONE) ;
 else
 SetStretchBltMode (hdc, COLORONCOLOR) ;

 hdcMem = CreateCompatibleDC (hdc) ;
 SelectObject (hdcMem, hBitmap) ;

 switch (wShow)
 {
 case IDM_SHOW_NORMAL:
 if (fHalftonePalette)
 iReturn = StretchBlt (hdc, 0, 0,
 min (cxClient, cxBitmap - x),
 min (cyClient, cyBitmap - y),
 hdcMem, x, y,
 min (cxClient, cxBitmap - x),
 min (cyClient, cyBitmap - y),
 SRCCOPY);
 else
 iReturn = BitBlt (hdc, 0, 0,
 min (cxClient, cxBitmap - x),

 min (cyClient, cyBitmap - y),
 hdcMem, x, y, SRCCOPY) ;
 break ;

 case IDM_SHOW_CENTER:
 if (fHalftonePalette)
 iReturn = StretchBlt (hdc, (cxClient - cxBitmap) / 2,
 (cyClient - cyBitmap) / 2,
 cxBitmap, cyBitmap,
 hdcMem, 0, 0, cxBitmap, cyBitmap, SRCCOPY);
 else
 iReturn = BitBlt (hdc, (cxClient - cxBitmap) / 2,
 (cyClient - cyBitmap) / 2,
 cxBitmap, cyBitmap,
 hdcMem, 0, 0, SRCCOPY) ;
 break ;

 case IDM_SHOW_STRETCH:
 iReturn = StretchBlt (hdc, 0, 0, cxClient, cyClient,
 hdcMem, 0, 0, cxBitmap, cyBitmap, SRCCOPY) ;
 break ;

 case IDM_SHOW_ISOSTRETCH:
 SetMapMode (hdc, MM_ISOTROPIC) ;
 SetWindowExtEx (hdc, cxBitmap, cyBitmap, NULL) ;
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;
 SetWindowOrgEx (hdc, cxBitmap / 2, cyBitmap / 2, NULL) ;
 SetViewportOrgEx (hdc, cxClient / 2, cyClient / 2, NULL) ;

 iReturn = StretchBlt (hdc, 0, 0, cxBitmap, cyBitmap,
 hdcMem, 0, 0, cxBitmap, cyBitmap, SRCCOPY) ;
 break ;
 }
 DeleteDC (hdcMem) ;
 RestoreDC (hdc, -1) ;
 return iReturn ;
}

/*--
 DibFlipHorizontal: Calls non-optimized DibSetPixel and DibGetPixel
 --*/

HDIB DibFlipHorizontal (HDIB hdibSrc)
{
 HDIB hdibDst ;
 int cx, cy, x, y ;

 if (!DibIsAddressable (hdibSrc))
 return NULL ;

 if (NULL == (hdibDst = DibCopy (hdibSrc, FALSE)))
 return NULL ;

 cx = DibWidth (hdibSrc) ;
 cy = DibHeight (hdibSrc) ;

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibSetPixel (hdibDst, x, cy - 1 - y, DibGetPixel (hdibSrc, x, y)) ;
 }

 return hdibDst ;
}

/*---
 DibRotateRight: Calls optimized DibSetPixelx and DibGetPixelx
 ---*/

HDIB DibRotateRight (HDIB hdibSrc)
{
 HDIB hdibDst ;
 int cx, cy, x, y ;

 if (!DibIsAddressable (hdibSrc))
 return NULL ;

 if (NULL == (hdibDst = DibCopy (hdibSrc, TRUE)))
 return NULL ;

 cx = DibWidth (hdibSrc) ;
 cy = DibHeight (hdibSrc) ;

 switch (DibBitCount (hdibSrc))
 {
 case 1:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel1 (hdibDst, cy - y - 1, x,
 DibGetPixel1 (hdibSrc, x, y)) ;
 break ;

 case 4:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel4 (hdibDst, cy - y - 1, x,
 DibGetPixel4 (hdibSrc, x, y)) ;
 break ;

 case 8:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel8 (hdibDst, cy - y - 1, x,
 DibGetPixel8 (hdibSrc, x, y)) ;
 break ;

 case 16:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel16 (hdibDst, cy - y - 1, x,
 DibGetPixel16 (hdibSrc, x, y)) ;
 break ;

 case 24:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel24 (hdibDst, cy - y - 1, x,
 DibGetPixel24 (hdibSrc, x, y)) ;
 break ;

 case 32:
 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 DibSetPixel32 (hdibDst, cy - y - 1, x,
 DibGetPixel32 (hdibSrc, x, y)) ;
 break ;
 }
 return hdibDst ;
}

/*--
 PaletteMenu: Uncheck and check menu item on palette menu
 --*/

void PaletteMenu (HMENU hMenu, WORD wItemNew)
{
 static WORD wItem = IDM_PAL_NONE ;

 CheckMenuItem (hMenu, wItem, MF_UNCHECKED) ;
 wItem = wItemNew ;
 CheckMenuItem (hMenu, wItem, MF_CHECKED) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL fHalftonePalette ;
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Dibble: Printing") } ;
 static HBITMAP hBitmap ;
 static HDIB hdib ;
 static HMENU hMenu ;
 static HPALETTE hPalette ;
 static int cxClient, cyClient, iVscroll, iHscroll ;
 static OPENFILENAME ofn ;
 static PRINTDLG printdlg = { sizeof (PRINTDLG) } ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] = TEXT ("Bitmap Files (*.BMP)\0*.bmp\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 static TCHAR * szCompression[] = {
 TEXT ("BI_RGB"), TEXT ("BI_RLE8"), TEXT ("BI_RLE4"),

 TEXT ("BI_BITFIELDS"), TEXT ("Unknown") } ;
 static WORD wShow = IDM_SHOW_NORMAL ;
 BOOL fSuccess ;
 BYTE * pGlobal ;
 HDC hdc, hdcPrn ;
 HGLOBAL hGlobal ;
 HDIB hdibNew ;
 int iEnable, cxPage, cyPage, iConvert ;
 PAINTSTRUCT ps ;
 SCROLLINFO si ;
 TCHAR szBuffer [256] ;

 switch (message)
 {
 case WM_CREATE:

 // Save the menu handle in a static variable

 hMenu = GetMenu (hwnd) ;

 // Initialize the OPENFILENAME structure for the File Open
 // and File Save dialog boxes.

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = OFN_OVERWRITEPROMPT ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("bmp") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
 return 0 ;

 case WM_DISPLAYCHANGE:
 SendMessage (hwnd, WM_USER_DELETEPAL, 0, 0) ;
 SendMessage (hwnd, WM_USER_CREATEPAL, TRUE, 0) ;
 return 0 ;

 case WM_SIZE:
 // Save the client area width and height in static variables.

 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 wParam = FALSE ;
 // fall through

 // WM_USER_SETSCROLLS: Programmer-defined Message!
 // Set the scroll bars. If the display mode is not normal,
 // make them invisible. If wParam is TRUE, reset the
 // scroll bar position.

 case WM_USER_SETSCROLLS:
 if (hdib == NULL || wShow != IDM_SHOW_NORMAL)
 {
 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_RANGE ;
 si.nMin = 0 ;
 si.nMax = 0 ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 }
 else
 {
 // First the vertical scroll

 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_ALL ;

 GetScrollInfo (hwnd, SB_VERT, &si) ;
 si.nMin = 0 ;
 si.nMax = DibHeight (hdib) ;
 si.nPage = cyClient ;
 if ((BOOL) wParam)
 si.nPos = 0 ;

 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 iVscroll = si.nPos ;

 // Then the horizontal scroll

 GetScrollInfo (hwnd, SB_HORZ, &si) ;
 si.nMin = 0 ;
 si.nMax = DibWidth (hdib) ;
 si.nPage = cxClient ;

 if ((BOOL) wParam)
 si.nPos = 0 ;

 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 iHscroll = si.nPos ;
 }
 return 0 ;

 // WM_VSCROLL: Vertically scroll the DIB

 case WM_VSCROLL:
 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_ALL ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 iVscroll = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_LINEUP: si.nPos -= 1 ; break ;
 case SB_LINEDOWN: si.nPos += 1 ; break ;
 case SB_PAGEUP: si.nPos -= si.nPage ; break ;
 case SB_PAGEDOWN: si.nPos += si.nPage ; break ;
 case SB_THUMBTRACK: si.nPos = si.nTrackPos ; break ;
 default: break ;
 }

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 if (si.nPos != iVscroll)
 {
 ScrollWindow (hwnd, 0, iVscroll - si.nPos, NULL, NULL) ;
 iVscroll = si.nPos ;
 UpdateWindow (hwnd) ;
 }
 return 0 ;

 // WM_HSCROLL: Horizontally scroll the DIB

 case WM_HSCROLL:
 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_ALL ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 iHscroll = si.nPos ;

 switch (LOWORD (wParam))
 {
 case SB_LINELEFT: si.nPos -= 1 ; break ;
 case SB_LINERIGHT: si.nPos += 1 ; break ;
 case SB_PAGELEFT: si.nPos -= si.nPage ; break ;
 case SB_PAGERIGHT: si.nPos += si.nPage ; break ;
 case SB_THUMBTRACK: si.nPos = si.nTrackPos ; break ;
 default: break ;
 }

 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_HORZ, &si, TRUE) ;
 GetScrollInfo (hwnd, SB_HORZ, &si) ;

 if (si.nPos != iHscroll)
 {
 ScrollWindow (hwnd, iHscroll - si.nPos, 0, NULL, NULL) ;
 iHscroll = si.nPos ;
 UpdateWindow (hwnd) ;
 }
 return 0 ;

 // WM_INITMENUPOPUP: Enable or Gray menu items
 case WM_INITMENUPOPUP:
 if (hdib)
 iEnable = MF_ENABLED ;
 else
 iEnable = MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_FILE_SAVE, iEnable) ;
 EnableMenuItem (hMenu, IDM_FILE_PRINT, iEnable) ;
 EnableMenuItem (hMenu, IDM_FILE_PROPERTIES, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_DELETE, iEnable) ;

 if (DibIsAddressable (hdib))
 iEnable = MF_ENABLED ;
 else
 iEnable = MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_EDIT_ROTATE, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_FLIP, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_01, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_04, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_08, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_16, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_24, iEnable) ;
 EnableMenuItem (hMenu, IDM_CONVERT_32, iEnable) ;

 switch (DibBitCount (hdib))
 {
 case 1: EnableMenuItem (hMenu, IDM_CONVERT_01, MF_GRAYED) ; break ;
 case 4: EnableMenuItem (hMenu, IDM_CONVERT_04, MF_GRAYED) ; break ;
 case 8: EnableMenuItem (hMenu, IDM_CONVERT_08, MF_GRAYED) ; break ;
 case 16: EnableMenuItem (hMenu, IDM_CONVERT_16, MF_GRAYED) ; break ;
 case 24: EnableMenuItem (hMenu, IDM_CONVERT_24, MF_GRAYED) ; break ;
 case 32: EnableMenuItem (hMenu, IDM_CONVERT_32, MF_GRAYED) ; break ;
 }

 if (hdib && DibColorSize (hdib) > 0)
 iEnable = MF_ENABLED ;

 else
 iEnable = MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_PAL_DIBTABLE, iEnable) ;

 if (DibIsAddressable (hdib) && DibBitCount (hdib) > 8)
 iEnable = MF_ENABLED ;
 else
 iEnable = MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_PAL_OPT_POP4, iEnable) ;
 EnableMenuItem (hMenu, IDM_PAL_OPT_POP5, iEnable) ;
 EnableMenuItem (hMenu, IDM_PAL_OPT_POP6, iEnable) ;
 EnableMenuItem (hMenu, IDM_PAL_OPT_MEDCUT, iEnable) ;

 EnableMenuItem (hMenu, IDM_EDIT_PASTE,
 IsClipboardFormatAvailable (CF_DIB) ? MF_ENABLED : MF_GRAYED) ;

 return 0 ;

 // WM_COMMAND: Process all menu commands.

 case WM_COMMAND:
 iConvert = 0 ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:

 // Show the File Open dialog box

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing DIB and palette, delete them

 SendMessage (hwnd, WM_USER_DELETEDIB, 0, 0) ;

 // Load the DIB into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hdib = DibFileLoad (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Reset the scroll bars
 SendMessage (hwnd, WM_USER_SETSCROLLS, TRUE, 0) ;

 // Create the palette and DDB

 SendMessage (hwnd, WM_USER_CREATEPAL, TRUE, 0) ;

 if (!hdib)
 {
 MessageBox (hwnd, TEXT ("Cannot load DIB file!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_FILE_SAVE:

 // Show the File Save dialog box

 if (!GetSaveFileName (&ofn))
 return 0 ;

 // Save the DIB to memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 fSuccess = DibFileSave (hdib, szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!fSuccess)
 MessageBox (hwnd, TEXT ("Cannot save DIB file!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;

 case IDM_FILE_PRINT:
 if (!hdib)
 return 0 ;

 // Get printer DC

 printdlg.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&printdlg))
 return 0 ;

 if (NULL == (hdcPrn = printdlg.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain Printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }

 // Check if the printer can print bitmaps

 if (!(RC_BITBLT & GetDeviceCaps (hdcPrn, RASTERCAPS)))

 {
 DeleteDC (hdcPrn) ;
 MessageBox (hwnd, TEXT ("Printer cannot print bitmaps").
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 // Get size of printable area of page
 // Check if the printer can print bitmaps

 if (!(RC_BITBLT & GetDeviceCaps (hdcPrn, RASTERCAPS)))
 {
 DeleteDC (hdcPRN) ;
 MessageBox (hwnd, TEXT ("Printer cannot print bitmaps"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }

 cxPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 cyPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 fSuccess = FALSE ;

 // Send the DIB to the printer

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 DisplayDib (hdcPrn, DibBitmapHandle (hdib), 0, 0,
 cxPage, cyPage, wShow, FALSE) ;

 if (EndPage (hdcPrn) > 0)
 {
 fSuccess = TRUE ;
 EndDoc (hdcPrn) ;
 }
 }
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 DeleteDC (hdcPrn) ;

 if (!fSuccess)
 MessageBox (hwnd, TEXT ("Could not print bitmap"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_FILE_PROPERTIES:
 if (!hdib)
 return 0 ;
 wsprintf (szBuffer, TEXT ("Pixel width:\t%i\n")
 TEXT ("Pixel height:\t%i\n")

 TEXT ("Bits per pixel:\t%i\n")
 TEXT ("Number of colors:\t%i\n")
 TEXT ("Compression:\t%s\n"),
 DibWidth (hdib), DibHeight (hdib),
 DibBitCount (hdib), DibNumColors (hdib),
 szCompression [min (3, DibCompression (hdib))]) ;

 MessageBox (hwnd, szBuffer, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 case IDM_EDIT_COPY:
 case IDM_EDIT_CUT:
 if (!(hGlobal = DibCopyToPackedDib (hdib, TRUE)))
 return 0 ;

 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 SetClipboardData (CF_DIB, hGlobal) ;
 CloseClipboard () ;

 if (LOWORD (wParam) == IDM_EDIT_COPY)
 return 0 ;
 // fall through for IDM_EDIT_CUT
 case IDM_EDIT_DELETE:
 SendMessage (hwnd, WM_USER_DELETEDIB, 0, 0) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_EDIT_PASTE:
 OpenClipboard (hwnd) ;

 hGlobal = GetClipboardData (CF_DIB) ;
 pGlobal = GlobalLock (hGlobal) ;

 // If there's an existing DIB and palette, delete them
 // Then convert the packed DIB to an HDIB.

 if (pGlobal)
 {
 SendMessage (hwnd, WM_USER_DELETEDIB, 0, 0) ;
 hdib = DibCopyFromPackedDib ((BITMAPINFO *) pGlobal) ;
 SendMessage (hwnd, WM_USER_CREATEPAL, TRUE, 0) ;
 }

 GlobalUnlock (hGlobal) ;
 CloseClipboard () ;

 // Reset the scroll bars

 SendMessage (hwnd, WM_USER_SETSCROLLS, TRUE, 0) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_EDIT_ROTATE:
 if (hdibNew = DibRotateRight (hdib))
 {
 DibDelete (hdib) ;
 DeleteObject (hBitmap) ;
 hdib = hdibNew ;
 hBitmap = DibCopyToDdb (hdib, hwnd, hPalette) ;
 SendMessage (hwnd, WM_USER_SETSCROLLS, TRUE, 0) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 else
 {
 MessageBox (hwnd, TEXT ("Not enough memory"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 return 0 ;

 case IDM_EDIT_FLIP:
 if (hdibNew = DibFlipHorizontal (hdib))
 {
 DibDelete (hdib) ;
 DeleteObject (hBitmap) ;
 hdib = hdibNew ;
 hBitmap = DibCopyToDdb (hdib, hwnd, hPalette) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 else
 {
 MessageBox (hwnd, TEXT ("Not enough memory"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 return 0 ;

 case IDM_SHOW_NORMAL:
 case IDM_SHOW_CENTER:
 case IDM_SHOW_STRETCH:
 case IDM_SHOW_ISOSTRETCH:
 CheckMenuItem (hMenu, wShow, MF_UNCHECKED) ;
 wShow = LOWORD (wParam) ;
 CheckMenuItem (hMenu, wShow, MF_CHECKED) ;

 SendMessage (hwnd, WM_USER_SETSCROLLS, FALSE, 0) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_CONVERT_32: iConvert += 8 ;
 case IDM_CONVERT_24: iConvert += 8 ;

 case IDM_CONVERT_16: iConvert += 8 ;
 case IDM_CONVERT_08: iConvert += 4 ;
 case IDM_CONVERT_04: iConvert += 3 ;
 case IDM_CONVERT_01: iConvert += 1 ;
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hdibNew = DibConvert (hdib, iConvert) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (hdibNew)
 {
 SendMessage (hwnd, WM_USER_DELETEDIB, 0, 0) ;
 hdib = hdibNew ;
 SendMessage (hwnd, WM_USER_CREATEPAL, TRUE, 0) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }

 else
 {
 MessageBox (hwnd, TEXT ("Not enough memory"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 return 0 ;

 case IDM_APP_ABOUT:
 MessageBox (hwnd, TEXT ("Dibble (c) Charles Petzold, 1998"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;
 }

 // All the other WM_COMMAND messages are from the palette
 // items. Any existing palette is deleted, and the cursor
 // is set to the hourglass.

 SendMessage (hwnd, WM_USER_DELETEPAL, 0, 0) ;
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 // Notice that all messages for palette items are ended
 // with break rather than return. This is to allow
 // additional processing later on.

 switch (LOWORD (wParam))
 {
 case IDM_PAL_DIBTABLE:
 hPalette = DibPalDibTable (hdib) ;
 break ;

 case IDM_PAL_HALFTONE:
 hdc = GetDC (hwnd) ;

 if (hPalette = CreateHalftonePalette (hdc))
 fHalftonePalette = TRUE ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case IDM_PAL_ALLPURPOSE:
 hPalette = DibPalAllPurpose () ;
 break ;
 case IDM_PAL_GRAY2: hPalette = DibPalUniformGrays (2) ; break ;
 case IDM_PAL_GRAY3: hPalette = DibPalUniformGrays (3) ; break ;
 case IDM_PAL_GRAY4: hPalette = DibPalUniformGrays (4) ; break ;
 case IDM_PAL_GRAY8: hPalette = DibPalUniformGrays (8) ; break ;
 case IDM_PAL_GRAY16: hPalette = DibPalUniformGrays (16) ; break ;
 case IDM_PAL_GRAY32: hPalette = DibPalUniformGrays (32) ; break ;
 case IDM_PAL_GRAY64: hPalette = DibPalUniformGrays (64) ; break ;
 case IDM_PAL_GRAY128: hPalette = DibPalUniformGrays (128) ; break ;
 case IDM_PAL_GRAY256: hPalette = DibPalUniformGrays (256) ; break ;

 case IDM_PAL_RGB222: hPalette = DibPalUniformColors (2,2,2); break;
 case IDM_PAL_RGB333: hPalette = DibPalUniformColors (3,3,3); break;
 case IDM_PAL_RGB444: hPalette = DibPalUniformColors (4,4,4); break;
 case IDM_PAL_RGB555: hPalette = DibPalUniformColors (5,5,5); break;
 case IDM_PAL_RGB666: hPalette = DibPalUniformColors (6,6,6); break;
 case IDM_PAL_RGB775: hPalette = DibPalUniformColors (7,7,5); break;
 case IDM_PAL_RGB757: hPalette = DibPalUniformColors (7,5,7); break;
 case IDM_PAL_RGB577: hPalette = DibPalUniformColors (5,7,7); break;
 case IDM_PAL_RGB884: hPalette = DibPalUniformColors (8,8,4); break;
 case IDM_PAL_RGB848: hPalette = DibPalUniformColors (8,4,8); break;
 case IDM_PAL_RGB488: hPalette = DibPalUniformColors (4,8,8); break;

 case IDM_PAL_OPT_POP4:
 hPalette = DibPalPopularity (hdib, 4) ;
 break ;

 case IDM_PAL_OPT_POP5:
 hPalette = DibPalPopularity (hdib, 5) ;
 break ;

 case IDM_PAL_OPT_POP6:
 hPalette = DibPalPopularity (hdib, 6) ;
 break ;

 case IDM_PAL_OPT_MEDCUT:
 hPalette = DibPalMedianCut (hdib, 6) ;
 break ;
 }

 // After processing Palette items from the menu, the cursor
 // is restored to an arrow, the menu item is checked, and
 // the window is invalidated.

 hBitmap = DibCopyToDdb (hdib, hwnd, hPalette) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (hPalette)
 PaletteMenu (hMenu, (LOWORD (wParam))) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 // This programmer-defined message deletes an existing DIB
 // in preparation for getting a new one. Invoked during
 // File Open command, Edit Paste command, and others.

 case WM_USER_DELETEDIB:
 if (hdib)
 {
 DibDelete (hdib) ;
 hdib = NULL ;
 }
 SendMessage (hwnd, WM_USER_DELETEPAL, 0, 0) ;
 return 0 ;

 // This programmer-defined message deletes an existing palette
 // in preparation for defining a new one.

 case WM_USER_DELETEPAL:
 if (hPalette)
 {
 DeleteObject (hPalette) ;
 hPalette = NULL ;
 fHalftonePalette = FALSE ;
 PaletteMenu (hMenu, IDM_PAL_NONE) ;
 }
 if (hBitmap)
 DeleteObject (hBitmap) ;

 return 0 ;

 // Programmer-defined message to create a new palette based on
 // a new DIB. If wParam == TRUE, create a DDB as well.

 case WM_USER_CREATEPAL:
 if (hdib)
 {
 hdc = GetDC (hwnd) ;
 if (!(RC_PALETTE & GetDeviceCaps (hdc, RASTERCAPS)))
 {
 PaletteMenu (hMenu, IDM_PAL_NONE) ;
 }
 else if (hPalette = DibPalDibTable (hdib))
 {

 PaletteMenu (hMenu, IDM_PAL_DIBTABLE) ;
 }
 else if (hPalette = CreateHalftonePalette (hdc))
 {
 fHalftonePalette = TRUE ;
 PaletteMenu (hMenu, IDM_PAL_HALFTONE) ;
 }
 ReleaseDC (hwnd, hdc) ;

 if ((BOOL) wParam)
 hBitmap = DibCopyToDdb (hdib, hwnd, hPalette) ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hPalette)
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }
 if (hBitmap)
 {
 DisplayDib (hdc,
 fHalftonePalette ? DibBitmapHandle (hdib) : hBitmap,
 iHscroll, iVscroll,
 cxClient, cyClient,
 wShow, fHalftonePalette) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hPalette)
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if (!hPalette || (HWND) wParam == hwnd)
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:
 if (hdib)
 DibDelete (hdib) ;

 if (hBitmap)
 DeleteObject (hBitmap) ;

 if (hPalette)
 DeleteObject (hPalette) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

DIBBLE.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"
///
// Menu

DIBBLE MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open...\tCtrl+O", IDM_FILE_OPEN
 MENUITEM "&Save...\tCtrl+S", IDM_FILE_SAVE
 MENUITEM SEPARATOR
 MENUITEM "&Print...\tCtrl+P", IDM_FILE_PRINT
 MENUITEM SEPARATOR
 MENUITEM "Propert&ies...", IDM_FILE_PROPERTIES
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "&Delete\tDelete", IDM_EDIT_DELETE
 MENUITEM SEPARATOR
 MENUITEM "&Flip", IDM_EDIT_FLIP

 MENUITEM "&Rotate", IDM_EDIT_ROTATE
 END
 POPUP "&Show"
 BEGIN
 MENUITEM "&Actual Size", IDM_SHOW_NORMAL, CHECKED
 MENUITEM "&Center", IDM_SHOW_CENTER
 MENUITEM "&Stretch to Window", IDM_SHOW_STRETCH
 MENUITEM "Stretch &Isotropically", IDM_SHOW_ISOSTRETCH
 END
 POPUP "&Palette"
 BEGIN
 MENUITEM "&None", IDM_PAL_NONE, CHECKED
 MENUITEM "&Dib ColorTable", IDM_PAL_DIBTABLE
 MENUITEM "&Halftone", IDM_PAL_HALFTONE
 MENUITEM "&All-Purpose", IDM_PAL_ALLPURPOSE
 POPUP "&Gray Shades"
 BEGIN
 MENUITEM "&1. 2 Grays", IDM_PAL_GRAY2
 MENUITEM "&2. 3 Grays", IDM_PAL_GRAY3
 MENUITEM "&3. 4 Grays", IDM_PAL_GRAY4
 MENUITEM "&4. 8 Grays", IDM_PAL_GRAY8
 MENUITEM "&5. 16 Grays", IDM_PAL_GRAY16
 MENUITEM "&6. 32 Grays", IDM_PAL_GRAY32
 MENUITEM "&7. 64 Grays", IDM_PAL_GRAY64
 MENUITEM "&8. 128 Grays", IDM_PAL_GRAY128
 MENUITEM "&9. 256 Grays", IDM_PAL_GRAY256
 END
 POPUP "&Uniform Colors"

 BEGIN
 MENUITEM "&1. 2R x 2G x 2B (8)", IDM_PAL_RGB222
 MENUITEM "&2. 3R x 3G x 3B (27)", IDM_PAL_RGB333
 MENUITEM "&3. 4R x 4G x 4B (64)", IDM_PAL_RGB444
 MENUITEM "&4. 5R x 5G x 5B (125)", IDM_PAL_RGB555
 MENUITEM "&5. 6R x 6G x 6B (216)", IDM_PAL_RGB666
 MENUITEM "&6. 7R x 7G x 5B (245)", IDM_PAL_RGB775
 MENUITEM "&7. 7R x 5B x 7B (245)", IDM_PAL_RGB757
 MENUITEM "&8. 5R x 7G x 7B (245)", IDM_PAL_RGB577
 MENUITEM "&9. 8R x 8G x 4B (256)", IDM_PAL_RGB884
 MENUITEM "&A. 8R x 4G x 8B (256)", IDM_PAL_RGB848
 MENUITEM "&B. 4R x 8G x 8B (256)", IDM_PAL_RGB488
 END
 POPUP "&Optimized"
 BEGIN
 MENUITEM "&1. Popularity Algorithm (4 bits)", IDM_PAL_OPT_POP4
 MENUITEM "&2. Popularity Algorithm (5 bits)", IDM_PAL_OPT_POP5
 MENUITEM "&3. Popularity Algorithm (6 bits)", IDM_PAL_OPT_POP6
 MENUITEM "&4. Median Cut Algorithm ", IDM_PAL_OPT_MEDCUT
 END
 END
 POPUP "Con&vert"
 BEGIN
 MENUITEM "&1. to 1 bit per pixel", IDM_CONVERT_01

 MENUITEM "&2. to 4 bits per pixel", IDM_CONVERT_04
 MENUITEM "&3. to 8 bits per pixel", IDM_CONVERT_08
 MENUITEM "&4. to 16 bits per pixel", IDM_CONVERT_16
 MENUITEM "&5. to 24 bits per pixel", IDM_CONVERT_24
 MENUITEM "&6. to 32 bits per pixel", IDM_CONVERT_32
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About", IDM_APP_ABOUT
 END
END

///
// Accelerator

DIBBLE ACCELERATORS DISCARDABLE
BEGIN
 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
 "P", IDM_FILE_PRINT, VIRTKEY, CONTROL, NOINVERT
 "S", IDM_FILE_SAVE, VIRTKEY, CONTROL, NOINVERT
 "V", IDM_EDIT_PASTE, VIRTKEY, CONTROL, NOINVERT
 VK_DELETE, IDM_EDIT_DELETE, VIRTKEY, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
END

#define IDM_FILE_OPEN 40001
#define IDM_FILE_SAVE 40002
#define IDM_FILE_PRINT 40003

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Dibble.rc

#define IDM_FILE_PROPERTIES 40004
#define IDM_APP_EXIT 40005
#define IDM_EDIT_CUT 40006
#define IDM_EDIT_COPY 40007
#define IDM_EDIT_PASTE 40008
#define IDM_EDIT_DELETE 40009
#define IDM_EDIT_FLIP 40010
#define IDM_EDIT_ROTATE 40011
#define IDM_SHOW_NORMAL 40012
#define IDM_SHOW_CENTER 40013
#define IDM_SHOW_STRETCH 40014
#define IDM_SHOW_ISOSTRETCH 40015
#define IDM_PAL_NONE 40016
#define IDM_PAL_DIBTABLE 40017
#define IDM_PAL_HALFTONE 40018
#define IDM_PAL_ALLPURPOSE 40019
#define IDM_PAL_GRAY2 40020
#define IDM_PAL_GRAY3 40021

#define IDM_PAL_GRAY4 40022
#define IDM_PAL_GRAY8 40023
#define IDM_PAL_GRAY16 40024
#define IDM_PAL_GRAY32 40025
#define IDM_PAL_GRAY64 40026
#define IDM_PAL_GRAY128 40027
#define IDM_PAL_GRAY256 40028
#define IDM_PAL_RGB222 40029
#define IDM_PAL_RGB333 40030
#define IDM_PAL_RGB444 40031
#define IDM_PAL_RGB555 40032
#define IDM_PAL_RGB666 40033
#define IDM_PAL_RGB775 40034
#define IDM_PAL_RGB757 40035
#define IDM_PAL_RGB577 40036
#define IDM_PAL_RGB884 40037
#define IDM_PAL_RGB848 40038
#define IDM_PAL_RGB488 40039
#define IDM_PAL_OPT_POP4 40040
#define IDM_PAL_OPT_POP5 40041
#define IDM_PAL_OPT_POP6 40042
#define IDM_PAL_OPT_MEDCUT 40043
#define IDM_CONVERT_01 40044
#define IDM_CONVERT_04 40045
#define IDM_CONVERT_08 40046
#define IDM_CONVERT_16 40047
#define IDM_CONVERT_24 40048
#define IDM_CONVERT_32 40049
#define IDM_APP_ABOUT 40050

DIBBLE uses a couple other files that I'll describe shortly. The DIBCONV files (DIBCONV.C and DIBCONV.H)
convert between different formats—for example, from 24 bits per pixel to 8 bits per pixel. The DIBPAL files
(DIBPAL.C and DIBPAL.H) create palettes.

DIBBLE maintains three crucial static variables in WndProc . These are an HDIB handle called hdib , an HPALETTE
handle called hPalette , and an HBITMAP handle called hBitmap . The HDIB comes from various functions in
DIBHELP; the HPALETTE comes from various functions in DIBPAL or the CreateHalftonePalette function; and the
HBITMAP handle comes from the DibCopyToDdb function in DIBHELP.C and helps speed up screen displays,
particularly in 256-color video modes. However, this handle must be re-created whenever the program creates a
new DIB Section (obviously) and also when the program creates a different palette (not so obviously).

Let's approach DIBBLE functionally rather than sequentially.

File Loading and Saving

DIBBLE can load DIB files and save them in response to WM_COMMAND messages of IDM_FILE_LOAD and
IDM_FILE_SAVE. In processing these messages, DIBBLE invokes the common file dialog boxes by calling
GetOpenFileName and GetSaveFileName , respectively.

For the File Save menu command, DIBBLE need only call DibFileSave. For the File Open menu command, DIBBLE
must first delete the previous HDIB, palette, and bitmap objects. It does this by sending itself a
WM_USER_DELETEDIB message, which is processed by calls to DibDelete and DeleteObject . DIBBLE then calls
the DibFileLoad function in DIBHELP and sends itself WM_USER_SETSCROLLS and WM_USER_CREATEPAL
messages to reset the scroll bars and create a palette. The WM_USER_CREATEPAL message is also the place
where the program creates a new DDB from the DIB section.

Displaying, Scrolling, and Printing

DIBBLE's menu allows it to display the DIB in actual size oriented at the top left corner of its client area or
centered in the client area, or stretched to fill the client area or as much of the client area as possible while still
maintaining the proper aspect ratio. You select which option you want through DIBBLE's Show menu. Note that
these are the same four display options available in the SHOWDIB2 program from the last chapter.

During the WM_PAINT message—and also while processing the File Print command—DIBBLE calls its DisplayDib
function. Notice that DisplayDib uses BitBlt and StretchBlt rather than SetDIBitsToDevice and StretchDIBits .
During the WM_PAINT message, the bitmap handle passed to the function is the one created by the
DibCopyToDdb function, which is called during the WM_USER_CREATEPAL message. This DDB is compatible with
the video device context. When processing the File Print command, DIBBLE calls DisplayDib with the DIB section
handle available from DibBitmapHandle function in DIBHELP.C.

Also notice that DIBBLE retains a static BOOL variable named fHalftonePalette , which is set to TRUE if hPalette
was obtained from the CreateHalftonePalette function. This forces the DisplayDib function to call StretchBlt rather
than BitBlt even if the DIB is being displayed in actual size. The fHalftonePalette variable also causes WM_PAINT
processing to pass the DIB section handle to the DisplayDib function rather than the bitmap handle created by the
DibCopyToDdb function. The use of the halftone palette was discussed earlier in this chapter and illustrated in the
SHOWDIB5 program.

For the first time in any of our sample programs, DIBBLE allows scrolling DIBs in the client area. The scroll bars
are shown only when the DIB is displayed in actual size. WndProc simply passes the current position of the scroll
bars to the DisplayDib function when processing WM_PAINT.

The Clipboard

For the Cut and Copy menu items, DIBBLE calls the DibCopyToPackedDib function in DIBHELP. This function
simply takes all the components of the DIB and puts them in a big memory block.

For the first time in one of the sample programs in this book, DIBBLE pastes a DIB from the clipboard. This
involves a call to the DibCopyFromPackedDib function and replaces the HDIB, palette, and bitmap previously
stored by the window procedure.

Flipping and Rotating

The Edit menu in DIBBLE contains two additional items beyond the standard Cut, Copy, Paste, and Delete options.
These are Flip and Rotate. The Flip option causes the bitmap to be flipped around the horizontal axis—that is,
flipped upside down. The Rotate option causes the bitmap to be rotated 90° clockwise. Both of these functions
require accessing all the pixels of the DIB by copying them from one DIB to another. (Because these two functions
don't require creating a new palette, the palette is not deleted and recreated.)

The Flip menu option uses the DibFlipHorizontal function, also located in the DIBBLE.C file. This function calls
DibCopy to obtain an exact copy of the DIB. It then enters a loop that copies pixels from the original DIB to the
new DIB, but the pixels are copied so that the image is flipped upside down. Notice that this function calls
DibGetPixel and DibSetPixel . These are the general-purpose (but not quite as fast as we may prefer) functions
located in DIBHELP.C.

To illustrate the difference between the DibGetPixel and DibSetPixel functions and the much faster DibGetPixel and
DibSetPixel macros in DIBHELP.H, the DibRotateRight function uses the macros. Notice first, however, that this
function calls DibCopy with a second argument set to TRUE. This causes DibCopy to flip the width and height of
the original DIB to create the new DIB. Also, the pixel bits are not copied by the DibCopy function. The
DibRotateRight function, then, has six different loops to copy the pixel bits from the original DIB to the new
DIB—one for each of the different possible DIB pixel widths (1 bit, 4 bit, 8 bit, 16 bit, 24 bit, and 32 bit). There's
more code involved, but the function is much faster.

Although it's possible to use the Flip Horizontal and Rotate Right options to mimic Flip Vertical, Rotate Left, and
Rotate 180° functions, normally a program would implement all of these options directly. DIBBLE is, of course,
just a demonstration program.

Simple Palettes; Optimized Palettes

In DIBBLE you can choose a variety of palettes for displaying DIBs on 256-color video displays. These are all listed
on DIBBLE's Palette menu. With the exception of the halftone palette, which is created directly by a Windows
function call, all of the functions to create various palettes are provided by the DIBPAL files shown in Figure 16-25.

Figure 16-25. The DIBPAL files.

DIBPAL.H

/*-----------------------------------
 DIBPAL.H header file for DIBPAL.C
 -----------------------------------*/

HPALETTE DibPalDibTable (HDIB hdib) ;
HPALETTE DibPalAllPurpose (void) ;
HPALETTE DibPalUniformGrays (int iNum) ;
HPALETTE DibPalUniformColors (int iNumR, int iNumG, int iNumB) ;
HPALETTE DibPalVga (void) ;
HPALETTE DibPalPopularity (HDIB hdib, int iRes) ;
HPALETTE DibPalMedianCut (HDIB hdib, int iRes) ;

DIBPAL.C

/*--
 DIBPAL.C -- Palette-Creation Functions
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "dibhelp.h"
#include "dibpal.h"

/*--
 DibPalDibTable: Creates a palette from the DIB color table
 --*/

HPALETTE DibPalDibTable (HDIB hdib)
{
 HPALETTE hPalette ;
 int i, iNum ;
 LOGPALETTE * plp ;
 RGBQUAD rgb ;

 if (0 == (iNum = DibNumColors (hdib)))
 return NULL ;

 plp = malloc (sizeof (LOGPALETTE) + (iNum - 1) * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = iNum ;

 for (i = 0 ; i < iNum ; i++)

 {
 DibGetColor (hdib, i, &rgb) ;

 plp->palPalEntry[i].peRed = rgb.rgbRed ;
 plp->palPalEntry[i].peGreen = rgb.rgbGreen ;
 plp->palPalEntry[i].peBlue = rgb.rgbBlue ;
 plp->palPalEntry[i].peFlags = 0 ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return hPalette ;
}
/*--
 DibPalAllPurpose: Creates a palette suitable for a wide variety
 of images; the palette has 247 entries, but 15 of them are
 duplicates or match the standard 20 colors.
 --*/

HPALETTE DibPalAllPurpose (void)
{
 HPALETTE hPalette ;
 int i, incr, R, G, B ;
 LOGPALETTE * plp ;

 plp = malloc (sizeof (LOGPALETTE) + 246 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 247 ;

 // The following loop calculates 31 gray shades, but 3 of them
 // will match the standard 20 colors

 for (i = 0, G = 0, incr = 8 ; G <= 0xFF ; i++, G += incr)
 {
 plp->palPalEntry[i].peRed = (BYTE) G ;
 plp->palPalEntry[i].peGreen = (BYTE) G ;
 plp->palPalEntry[i].peBlue = (BYTE) G ;
 plp->palPalEntry[i].peFlags = 0 ;

 incr = (incr == 9 ? 8 : 9) ;
 }

 // The following loop is responsible for 216 entries, but 8 of
 // them will match the standard 20 colors, and another
 // 4 of them will match the gray shades above.

 for (R = 0 ; R <= 0xFF ; R += 0x33)
 for (G = 0 ; G <= 0xFF ; G += 0x33)
 for (B = 0 ; B <= 0xFF ; B += 0x33)
 {
 plp->palPalEntry[i].peRed = (BYTE) R ;
 plp->palPalEntry[i].peGreen = (BYTE) G ;
 plp->palPalEntry[i].peBlue = (BYTE) B ;

 plp->palPalEntry[i].peFlags = 0 ;

 i++ ;
 }

 hPalette = CreatePalette (plp) ;

 free (plp) ;
 return hPalette ;
}

/*--
 DibPalUniformGrays: Creates a palette of iNum grays, uniformly spaced
 --*/

HPALETTE DibPalUniformGrays (int iNum)
{
 HPALETTE hPalette ;
 int i ;
 LOGPALETTE * plp ;

 plp = malloc (sizeof (LOGPALETTE) + (iNum - 1) * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = iNum ;

 for (i = 0 ; i < iNum ; i++)
 {
 plp->palPalEntry[i].peRed =
 plp->palPalEntry[i].peGreen =
 plp->palPalEntry[i].peBlue = (BYTE) (i * 255 / (iNum - 1)) ;
 plp->palPalEntry[i].peFlags = 0 ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return hPalette ;
}

/*--
 DibPalUniformColors: Creates a palette of iNumR x iNumG x iNumB colors
 --*/

HPALETTE DibPalUniformColors (int iNumR, int iNumG, int iNumB)
{
 HPALETTE hPalette ;
 int i, iNum, R, G, B ;
 LOGPALETTE * plp ;

 iNum = iNumR * iNumG * iNumB ;

 plp = malloc (sizeof (LOGPALETTE) + (iNum - 1) * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;

 plp->palNumEntries = iNumR * iNumG * iNumB ;

 i = 0 ;
 for (R = 0 ; R < iNumR ; R++)
 for (G = 0 ; G < iNumG ; G++)
 for (B = 0 ; B < iNumB ; B++)
 {
 plp->palPalEntry[i].peRed = (BYTE) (R * 255 / (iNumR - 1)) ;
 plp->palPalEntry[i].peGreen = (BYTE) (G * 255 / (iNumG - 1)) ;
 plp->palPalEntry[i].peBlue = (BYTE) (B * 255 / (iNumB - 1)) ;
 plp->palPalEntry[i].peFlags = 0 ;

 i++ ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return hPalette ;
}

/*---
 DibPalVga: Creates a palette based on standard 16 VGA colors
 ---*/

HPALETTE DibPalVga (void)
{
 static RGBQUAD rgb [16] = { 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x80, 0x00,
 0x00, 0x80, 0x00, 0x00,
 0x00, 0x80, 0x80, 0x00,
 0x80, 0x00, 0x00, 0x00,
 0x80, 0x00, 0x80, 0x00,
 0x80, 0x80, 0x00, 0x00,
 0x80, 0x80, 0x80, 0x00,
 0xC0, 0xC0, 0xC0, 0x00,
 0x00, 0x00, 0xFF, 0x00,
 0x00, 0xFF, 0x00, 0x00,
 0x00, 0xFF, 0xFF, 0x00,
 0xFF, 0x00, 0x00, 0x00,
 0xFF, 0x00, 0xFF, 0x00,
 0xFF, 0xFF, 0x00, 0x00,
 0xFF, 0xFF, 0xFF, 0x00 } ;
 HPALETTE hPalette ;
 int i ;
 LOGPALETTE * plp ;

 plp = malloc (sizeof (LOGPALETTE) + 15 * sizeof (PALETTEENTRY)) ;
 plp->palVersion = 0x0300 ;
 plp->palNumEntries = 16 ;

 for (i = 0 ; i < 16 ; i++)
 {
 plp->palPalEntry[i].peRed = rgb[i].rgbRed ;
 plp->palPalEntry[i].peGreen = rgb[i].rgbGreen ;

 plp->palPalEntry[i].peBlue = rgb[i].rgbBlue ;
 plp->palPalEntry[i].peFlags = 0 ;
 }
 hPalette = CreatePalette (plp) ;
 free (plp) ;
 return hPalette ;
}

/*---
 Macro used in palette optimization routines
 ---*/

#define PACK_RGB(R,G,B,iRes) ((int) (R) | ((int) (G) << (iRes)) | \
 ((int) (B) << ((iRes) + (iRes))))

/*--
 AccumColorCounts: Fills up piCount (indexed by a packed RGB color)
 with counts of pixels of that color.
 --*/

static void AccumColorCounts (HDIB hdib, int * piCount, int iRes)
{
 int x, y, cx, cy ;
 RGBQUAD rgb ;

 cx = DibWidth (hdib) ;
 cy = DibHeight (hdib) ;

 for (y = 0 ; y < cy ; y++)
 for (x = 0 ; x < cx ; x++)
 {
 DibGetPixelColor (hdib, x, y, &rgb) ;

 rgb.rgbRed >>= (8 - iRes) ;
 rgb.rgbGreen >>= (8 - iRes) ;
 rgb.rgbBlue >>= (8 - iRes) ;

 ++piCount [PACK_RGB (rgb.rgbRed, rgb.rgbGreen, rgb.rgbBlue, iRes)] ;
 }
}

/*--
 DibPalPopularity: Popularity algorithm for optimized colors
 --*/

HPALETTE DibPalPopularity (HDIB hdib, int iRes)
{
 HPALETTE hPalette ;
 int i, iArraySize, iEntry, iCount, iIndex, iMask, R, G, B ;
 int * piCount ;
 LOGPALETTE * plp ;

 // Validity checks

 if (DibBitCount (hdib) < 16)
 return NULL ;

 if (iRes < 3 || iRes > 8)
 return NULL ;

 // Allocate array for counting pixel colors

 iArraySize = 1 << (3 * iRes) ;
 iMask = (1 << iRes) - 1 ;

 if (NULL == (piCount = calloc (iArraySize, sizeof (int))))
 return NULL ;

 // Get the color counts

 AccumColorCounts (hdib, piCount, iRes) ;

 // Set up a palette

 plp = malloc (sizeof (LOGPALETTE) + 235 * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;

 for (iEntry = 0 ; iEntry < 236 ; iEntry++)
 {
 for (i = 0, iCount = 0 ; i < iArraySize ; i++)
 if (piCount[i] > iCount

 {
 iCount = piCount[i] ;
 iIndex = i ;
 }

 if (iCount == 0)
 break ;

 R = (iMask & iIndex) << (8 - iRes) ;
 G = (iMask & (iIndex >> iRes)) << (8 - iRes) ;
 B = (iMask & (iIndex >> (iRes + iRes))) << (8 - iRes) ;

 plp->palPalEntry[iEntry].peRed = (BYTE) R ;
 plp->palPalEntry[iEntry].peGreen = (BYTE) G ;
 plp->palPalEntry[iEntry].peBlue = (BYTE) B ;
 plp->palPalEntry[iEntry].peFlags = 0 ;

 piCount [iIndex] = 0 ;
 }
 // On exit from the loop iEntry will be the number of stored entries

 plp->palNumEntries = iEntry ;

 // Create the palette, clean up, and return the palette handle

 hPalette = CreatePalette (plp) ;

 free (piCount) ;
 free (plp) ;

 return hPalette ;
}

/*---
 Structures used for implementing median cut algorithm
 ---*/

typedef struct // defines dimension of a box
{
 int Rmin, Rmax, Gmin, Gmax, Bmin, Bmax ;
}
MINMAX ;

typedef struct // for Compare routine for qsort
{
 int iBoxCount ;
 RGBQUAD rgbBoxAv ;
}

BOXES ;
/*----------------------------
 FindAverageColor: In a box
 ----------------------------*/

static int FindAverageColor (int * piCount, MINMAX mm,
 int iRes, RGBQUAD * prgb)
{
 int R, G, B, iR, iG, iB, iTotal, iCount ;

 // Initialize some variables

 iTotal = iR = iG = iB = 0 ;

 // Loop through all colors in the box

 for (R = mm.Rmin ; R <= mm.Rmax ; R++)
 for (G = mm.Gmin ; G <= mm.Gmax ; G++)
 for (B = mm.Bmin ; B <= mm.Bmax ; B++)
 {
 // Get the number of pixels of that color

 iCount = piCount [PACK_RGB (R, G, B, iRes)] ;

 // Weight the pixel count by the color value

 iR += iCount * R ;

 iG += iCount * G ;
 iB += iCount * B ;

 iTotal += iCount ;
 }
 // Find the average color

 prgb->rgbRed = (BYTE) ((iR / iTotal) << (8 - iRes)) ;
 prgb->rgbGreen = (BYTE) ((iG / iTotal) << (8 - iRes)) ;
 prgb->rgbBlue = (BYTE) ((iB / iTotal) << (8 - iRes)) ;

 // Return the total number of pixels in the box

 return iTotal ;
}

/*------------------------------
 CutBox: Divide a box in two
 ------------------------------*/

static void CutBox (int * piCount, int iBoxCount, MINMAX mm,
 int iRes, int iLevel, BOXES * pboxes, int * piEntry)
{
 int iCount, R, G, B ;
 MINMAX mmNew ;

 // If the box is empty, return

 if (iBoxCount == 0)
 return ;

 // If the nesting level is 8, or the box is one pixel, we're ready
 // to find the average color in the box and save it along with
 // the number of pixels of that color

 if (iLevel == 8 || (mm.Rmin == mm.Rmax &&
 mm.Gmin == mm.Gmax &&
 mm.Bmin == mm.Bmax))
 {
 pboxes[*piEntry].iBoxCount =
 FindAverageColor (piCount, mm, iRes, &pboxes[*piEntry].rgbBoxAv) ;

 (*piEntry) ++ ;
 }
 // Otherwise, if blue is the largest side, split it

 else if ((mm.Bmax - mm.Bmin > mm.Rmax - mm.Rmin) &&
 (mm.Bmax - mm.Bmin > mm.Gmax - mm.Gmin))
 {
 // Initialize a counter and loop through the blue side

 iCount = 0 ;

 for (B = mm.Bmin ; B < mm.Bmax ; B++)
 {
 // Accumulate all the pixels for each successive blue value

 for (R = mm.Rmin ; R <= mm.Rmax ; R++)
 for (G = mm.Gmin ; G <= mm.Gmax ; G++)
 iCount += piCount [PACK_RGB (R, G, B, iRes)] ;

 // If it's more than half the box count, we're there

 if (iCount >= iBoxCount / 2)
 break ;

 // If the next blue value will be the max, we're there
 if (B == mm.Bmax - 1)
 break ;
 }
 // Cut the two split boxes.
 // The second argument to CutBox is the new box count.
 // The third argument is the new min and max values.

 mmNew = mm ;
 mmNew.Bmin = mm.Bmin ;
 mmNew.Bmax = B ;

 CutBox (piCount, iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;

 mmNew.Bmin = B + 1 ;
 mmNew.Bmax = mm.Bmax ;

 CutBox (piCount, iBoxCount - iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;
 }
 // Otherwise, if red is the largest side, split it (just like blue)

 else if (mm.Rmax - mm.Rmin > mm.Gmax - mm.Gmin)
 {
 iCount = 0 ;

 for (R = mm.Rmin ; R < mm.Rmax ; R++)
 {
 for (B = mm.Bmin ; B <= mm.Bmax ; B++)
 for (G = mm.Gmin ; G <= mm.Gmax ; G++)
 iCount += piCount [PACK_RGB (R, G, B, iRes)] ;

 if (iCount >= iBoxCount / 2)
 break ;

 if (R == mm.Rmax - 1)
 break ;
 }
 mmNew = mm ;

 mmNew.Rmin = mm.Rmin ;
 mmNew.Rmax = R ;

 CutBox (piCount, iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;

 mmNew.Rmin = R + 1 ;
 mmNew.Rmax = mm.Rmax ;

 CutBox (piCount, iBoxCount - iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;
 }
 // Otherwise, split along the green size
 else
 {
 iCount = 0 ;

 for (G = mm.Gmin ; G < mm.Gmax ; G++)
 {
 for (B = mm.Bmin ; B <= mm.Bmax ; B++)
 for (R = mm.Rmin ; R <= mm.Rmax ; R++)
 iCount += piCount [PACK_RGB (R, G, B, iRes)] ;

 if (iCount >= iBoxCount / 2)
 break ;

 if (G == mm.Gmax - 1)
 break ;
 }
 mmNew = mm ;
 mmNew.Gmin = mm.Gmin ;
 mmNew.Gmax = G ;

 CutBox (piCount, iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;

 mmNew.Gmin = G + 1 ;
 mmNew.Gmax = mm.Gmax ;

 CutBox (piCount, iBoxCount - iCount, mmNew, iRes, iLevel + 1,
 pboxes, piEntry) ;
 }
}

/*---------------------------
 Compare routine for qsort
 ---------------------------*/

static int Compare (const BOXES * pbox1, const BOXES * pbox2)
{
 return pbox1->iBoxCount - pbox2->iBoxCount ;
}

/*---
 DibPalMedianCut: Creates palette based on median cut algorithm
 ---*/
HPALETTE DibPalMedianCut (HDIB hdib, int iRes)
{
 BOXES boxes [256] ;
 HPALETTE hPalette ;
 int i, iArraySize, iCount, R, G, B, iTotCount, iDim, iEntry = 0 ;
 int * piCount ;
 LOGPALETTE * plp ;
 MINMAX mm ;

 // Validity checks

 if (DibBitCount (hdib) < 16)
 return NULL ;

 if (iRes < 3 || iRes > 8)
 return NULL ;

 // Accumulate counts of pixel colors

 iArraySize = 1 << (3 * iRes) ;

 if (NULL == (piCount = calloc (iArraySize, sizeof (int))))
 return NULL ;

 AccumColorCounts (hdib, piCount, iRes) ;

 // Find the dimensions of the total box

 iDim = 1 << iRes ;

 mm.Rmin = mm.Gmin = mm.Bmin = iDim - 1 ;
 mm.Rmax = mm.Gmax = mm.Bmax = 0 ;

 iTotCount = 0 ;

 for (R = 0 ; R < iDim ; R++)
 for (G = 0 ; G < iDim ; G++)
 for (B = 0 ; B < iDim ; B++)
 if ((iCount = piCount [PACK_RGB (R, G, B, iRes)]) > 0)
 {
 iTotCount += iCount ;

 if (R < mm.Rmin) mm.Rmin = R ;
 if (G < mm.Gmin) mm.Gmin = G ;
 if (B < mm.Bmin) mm.Bmin = B ;
 if (R > mm.Rmax) mm.Rmax = R ;
 if (G > mm.Gmax) mm.Gmax = G ;
 if (B > mm.Bmax) mm.Bmax = B ;
 }

 // Cut the first box (iterative function).
 // On return, the boxes structure will have up to 256 RGB values,
 // one for each of the boxes, and the number of pixels in
 // each box.
 // The iEntry value will indicate the number of non-empty boxes.

 CutBox (piCount, iTotCount, mm, iRes, 0, boxes, &iEntry) ;
 free (piCount) ;

 // Sort the RGB table by the number of pixels for each color

 qsort (boxes, iEntry, sizeof (BOXES), Compare) ;

 plp = malloc (sizeof (LOGPALETTE) + (iEntry - 1) * sizeof (PALETTEENTRY)) ;

 if (plp == NULL)
 return NULL ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = iEntry ;

 for (i = 0 ; i < iEntry ; i++)
 {
 plp->palPalEntry[i].peRed = boxes[i].rgbBoxAv.rgbRed ;
 plp->palPalEntry[i].peGreen = boxes[i].rgbBoxAv.rgbGreen ;
 plp->palPalEntry[i].peBlue = boxes[i].rgbBoxAv.rgbBlue ;
 plp->palPalEntry[i].peFlags = 0 ;
 }

 hPalette = CreatePalette (plp) ;

 free (plp) ;
 return hPalette ;
}

The first function—DibPalDibTable— should look familiar. It creates a palette from the DIB's color table. This is
quite similar to the PackedDibCreatePalette function from PACKEDIB.C that was put to use in the SHOWDIB3
program earlier in the chapter. As in SHOWDIB3, this function will work only if the DIB has a color table. It is not
useful when attempting to display a 16-bit, 24-bit, or 32-bit DIB under an 8-bit video mode.

By default, when running on 256-color displays, DIBBLE will first try to call DibPalDibTable to create the palette
from the DIB color table. If the DIB doesn't have the color table, DIBBLE will call CreateHalftonePalette and set the
fHalftonePalette variable to TRUE. All of this logic occurs during the WM_USER_CREATEPAL message.

DIBPAL.C also implements a function named DibPalAllPurpose , which should also look familiar because it is quite
similar to the CreateAllPurposePalette function in SHOWDIB4. You can also select this palette from DIBBLE's
menu.

One of the interesting aspects about displaying bitmaps in 256-color modes is that you can control exactly what
colors Windows uses for displaying the image. If you select and realize a palette, Windows will use the colors in
the palette and no others.

For example, you can create a palette solely with shades of gray by using the DibPalUniformGrays function. Using
two shades of gray gives you a palette with just 00-00-00 (black) and FF-FF-FF (white). Try this out with some
images you have: it provides a high-contrast "chalk and charcoal" effect popular with some photographers. Using
3 shades of gray adds a medium gray to black and white, and using 4 shades of gray adds 2 gray shades.

With 8 shades of gray you will probably see obvious contouring—irregular patches of the same gray shade where
the nearest-color algorithm is obviously working but certainly not with any aesthetic judgment. Moving to 16 gray
shades generally improves the image dramatically. The use of 32 gray shades just about eliminates any
contouring; 64 gray shades is commonly considered the limit of most display equipment in use today. After this
point, the improvements are marginal if evident at all. Going beyond 64 gray shades provides no improvement on
devices with a 6-bit color resolution.

So far, the best we've been able to do for displaying 16-bit, 24-bit, or 32-bit color DIBs under 8-bit video modes is
to devise an all-purpose palette (trivial for gray-shade images but usually inadequate for color images) or use the
halftone palette, which combines an all-purpose color palette with a dithered display.

You'll also notice that when you select an all-purpose palette for a large 16-bit, 24-bit, or 32-bit DIB in an 8-bit
color mode, it takes some time for the program to create the GDI bitmap object from the DIB for display purposes.
Less time is required when the program creates a DDB from the DIB when no palette is used. (You can also see
this difference when comparing the performance of SHOWDIB1 and SHOWDIB4 in displaying large 24-bit DIBs in
an 8-bit color mode.) Why is this?

It's the nearest-color search. Normally, when displaying a 24-bit DIB in an 8-bit video mode (or converting a DIB
to a DDB), GDI must match each and every pixel in the DIB to one of the static 20 colors. The only way it can do
this is by determining which static color is closest to the pixel color. This involves calculating a distance between
the pixel and each static color in a three-dimensional RGB color cube. This takes time, particularly when there may
be millions of pixels in the DIB image.

When you create a 232-color palette such as the all-purpose palette in DIBBLE and SHOWDIB4, you are effectively
increasing the time required for the nearest-color search by more than 11-times! GDI must now search through
232 colors rather than just 20. That's why the whole job of displaying the DIB is slowing down.

The lesson here is to avoid displaying 24-bit (or 16-bit or 32-bit) DIBs in 8-bit video modes. You should convert
them to 8-bit DIBs by finding a palette of 256 colors that most closely approximates the range of colors in the DIB
image. This is often referred to as an "optimal palette." A paper by Paul Heckbert entitled "Color Image
Quantization for Frame Buffer Displays" that appeared in the July 1982 issue of Computer Graphics was helpful
when I was researching this problem.

The Uniform Distribution

The simplest approach to a 256-color palette is choosing a uniform range of RGB color values, similar to the
approach in DibPalAllPurpose . The advantage is that you don't need to examine the actual pixels in the DIB. Such
a function to create a palette based on uniform ranges of RGB primaries is DibPalCreateUniformColors .

One reasonable distribution involves 8 levels of red and green and 4 levels of blue (to which the eye is less
sensitive). The palette is the set of RGB color values with all the possible combinations of red and green values of
0x00, 0x24, 0x49, 0x6D, 0x92, 0xB6, 0xDB, and 0xFF, and blue values of 0x00, 0x55, 0xAA, and 0xFF, for a total
of 256 colors. Another possible uniformly distributed palette uses 6 levels of red, green, and blue. This is a palette
of all possible combinations of red, green, and blue values of 0x00, 0x33, 0x66, 0x99, 0xCC, and 0xFF. The
number of colors in the palette is 6 to the 3rd power, or 216.

These two options and several others are provided by DIBBLE.

The "Popularity" Algorithm

The "popularity" algorithm is a fairly obvious solution to the 256-color palette problem. What you do is plow
through all the pixels of the bitmap and find the 256 most common RGB color values. These are the values you
use in the palette. This is implemented in DIBPAL's DibPalPopularity function.

However, if you use a whole 24 bits for each color, and if you assume that you'll need integers to count all the
colors, your array will occupy 64 megabytes of memory. Moreover, you may find that there are actually no (or
few) duplicated 24-bit pixel values in the bitmap and, thus, no most common colors.

To solve this problem, you can use only the most significant n bits of each red, green, and blue value—for
example, 6 bits rather than 8. This makes sense because most color scanners and video display adapters have
only a 6-bit resolution. This reduces the array to a more reasonable size of 256-KB count values, or 1 megabyte.
Using only 5 bits reduces the total number of possible colors to 32,768. The use of 5 bits usually works better than
6 bits, as you can verify for yourself using DIBBLE and some color images you have.

The "Median Cut" Algorithm

The DibPalMedianCut function in DIBPAL.C implements Paul Heckbert's "median cut" algorithm. It's conceptually
quite simple and, while the implementation in code is more difficult than the popularity algorithm, it is well-suited
to recursive functions.

Picture the RGB color cube. Each pixel of the image is a point within this cube. Some points might represent
multiple pixels in the image. Find the three-dimensional box that encloses all the pixels in the image. Find the
longest dimension of this box and cut the box in two parts, each containing an equal number of pixels. For these 2
boxes, do the same thing. Now you have 4 boxes. Cut the 4 boxes into 8, and then into 16, and then 32, 64, 128,
and 256.

Now you have 256 boxes, each containing about an equal number of pixels. Average the RGB color values of the
pixels in each box, and use the results for the palette.

In reality, the boxes don't usually contain an equal number of pixels. Often, for example, a box containing a single
point has many pixels. This happens with black and white. Sometimes a box ends up with no pixels at all. If so,
you can chop up more boxes, but I decided not to.

Another optimum palette technique is called "octree quantization." This technique was discussed by Jeff Prosise in
the August 1996 issue of Microsoft Systems Journal (included on the MSDN CDs).

Converting Formats

DIBBLE also allows converting a DIB from one format to another. This makes use of the DibConvert function in the
DIBCONV files shown in Figure 16-26.

Figure 16-26. The DIBCONV files.

DIBCONV.H

/*-------------------------------------
 DIBCONV.H header file for DIBCONV.C
 -------------------------------------*/

HDIB DibConvert (HDIB hdibSrc, int iBitCountDst) ;

DIBCONV.C

/*---
 DIBCONV.C -- Converts DIBs from one format to another
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "dibhelp.h"
#include "dibpal.h"
#include "dibconv.h"

HDIB DibConvert (HDIB hdibSrc, int iBitCountDst)
{
 HDIB hdibDst ;

 HPALETTE hPalette ;
 int i, x, y, cx, cy, iBitCountSrc, cColors ;
 PALETTEENTRY pe ;
 RGBQUAD rgb ;
 WORD wNumEntries ;

 cx = DibWidth (hdibSrc) ;
 cy = DibHeight (hdibSrc) ;
 iBitCountSrc = DibBitCount (hdibSrc) ;

 if (iBitCountSrc == iBitCountDst)
 return NULL ;

 // DIB with color table to DIB with larger color table:

 if ((iBitCountSrc < iBitCountDst) && (iBitCountDst <= 8))
 {
 cColors = DibNumColors (hdibSrc) ;
 hdibDst = DibCreate (cx, cy, iBitCountDst, cColors) ;

 for (i = 0 ; i < cColors ; i++)
 {
 DibGetColor (hdibSrc, i, &rgb) ;
 DibSetColor (hdibDst, i, &rgb) ;
 }

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibSetPixel (hdibDst, x, y, DibGetPixel (hdibSrc, x, y)) ;
 }
 }
 // Any DIB to DIB with no color table

 else if (iBitCountDst >= 16)
 {
 hdibDst = DibCreate (cx, cy, iBitCountDst, 0) ;

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibGetPixelColor (hdibSrc, x, y, &rgb) ;
 DibSetPixelColor (hdibDst, x, y, &rgb) ;
 }
 }
 // DIB with no color table to 8-bit DIB

 else if (iBitCountSrc >= 16 && iBitCountDst == 8)
 {
 hPalette = DibPalMedianCut (hdibSrc, 6) ;

 GetObject (hPalette, sizeof (WORD), &wNumEntries) ;

 hdibDst = DibCreate (cx, cy, 8, wNumEntries) ;

 for (i = 0 ; i < (int) wNumEntries ; i++)
 {
 GetPaletteEntries (hPalette, i, 1, &pe) ;
 rgb.rgbRed = pe.peRed ;
 rgb.rgbGreen = pe.peGreen ;
 rgb.rgbBlue = pe.peBlue ;
 rgb.rgbReserved = 0 ;

 DibSetColor (hdibDst, i, &rgb) ;
 }

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibGetPixelColor (hdibSrc, x, y, &rgb) ;

 DibSetPixel (hdibDst, x, y,
 GetNearestPaletteIndex (hPalette,
 RGB (rgb.rgbRed, rgb.rgbGreen, rgb.rgbBlue))) ;
 }
 DeleteObject (hPalette) ;
 }
 // Any DIB to monochrome DIB

 else if (iBitCountDst == 1)
 {
 hdibDst = DibCreate (cx, cy, 1, 0) ;
 hPalette = DibPalUniformGrays (2) ;

 for (i = 0 ; i < 2 ; i++)
 {
 GetPaletteEntries (hPalette, i, 1, &pe) ;

 rgb.rgbRed = pe.peRed ;
 rgb.rgbGreen = pe.peGreen ;
 rgb.rgbBlue = pe.peBlue ;
 rgb.rgbReserved = 0 ;

 DibSetColor (hdibDst, i, &rgb) ;
 }

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibGetPixelColor (hdibSrc, x, y, &rgb) ;

 DibSetPixel (hdibDst, x, y,
 GetNearestPaletteIndex (hPalette,
 RGB (rgb.rgbRed, rgb.rgbGreen, rgb.rgbBlue))) ;
 }
 DeleteObject (hPalette) ;

 }
 // All non-monochrome DIBs to 4-bit DIB

 else if (iBitCountSrc >= 8 && iBitCountDst == 4)
 {
 hdibDst = DibCreate (cx, cy, 4, 0) ;
 hPalette = DibPalVga () ;

 for (i = 0 ; i < 16 ; i++)
 {
 GetPaletteEntries (hPalette, i, 1, &pe) ;

 rgb.rgbRed = pe.peRed ;
 rgb.rgbGreen = pe.peGreen ;
 rgb.rgbBlue = pe.peBlue ;
 rgb.rgbReserved = 0 ;

 DibSetColor (hdibDst, i, &rgb) ;
 }

 for (x = 0 ; x < cx ; x++)
 for (y = 0 ; y < cy ; y++)
 {
 DibGetPixelColor (hdibSrc, x, y, &rgb) ;

 DibSetPixel (hdibDst, x, y,
 GetNearestPaletteIndex (hPalette,
 RGB (rgb.rgbRed, rgb.rgbGreen, rgb.rgbBlue))) ;
 }
 DeleteObject (hPalette) ;
 }
 // Should not be necessary

 else
 hdibDst = NULL ;

 return hdibDst ;
}

Several different strategies are required for converting DIBs from one format to another.

To convert a DIB with a color table to another DIB that also has a color table but with a larger pixel width (that is,
to convert a 1-bit DIB to a 4-bit or 8-bit DIB, or a 4-bit DIB to an 8-bit DIB), all that needs be done is to create
the new DIB by calling DibCreate with the desired bit count but with a number of colors equal to the number of
colors in the original DIB. The function then copies the pixel bits and the color table entries.

If the new DIB has no color table (that is, the bit count is 16, 24, or 32), then the DIB needs only to be created in
the new format and pixel bits copied from the existing DIB with calls to DibGetPixelColor and DibSetPixelColor .

The next case is probably the most common: The existing DIB does not have a color table (that is, the bit count is
16, 24, or 32) and the new DIB has 8 bits per pixel. In this case, DibConvert calls DibPalMedianCut to create a
optimum palette for the image. The color table of the new DIB is set to the RGB values in the palette. The
DibGetPixelColor function obtains a pixel color from the existing DIB. This is converted to a pixel value in the 8-bit
DIB by a call to GetNearestPaletteIndex and the pixel value is stored in the DIB by calling DibSetPixel .

When a DIB needs to be converted to a monochrome DIB, the new DIB is created with a color table containing two
entries—black and white. Again, the GetNearestPaletteIndex helps convert colors in the existing DIB to a pixel
value of 0 or 1. Similarly, when DIBs of 8 color bits or more need to be converted to 4-bit DIBs, the DIB color
table is obtained from the DibPalVga function and GetNearestPaletteIndex also helps calculate the pixel values.

Although DIBBLE shows the basics of how an image-processing program might be started, such a program is
never quite finished. Always another feature becomes obvious. But now, sadly, we must move on.

Chapter 17

Text and Fonts

Displaying text was one of the first jobs we tackled in this book. Now it's time to explore the use of different fonts
and font sizes available in Microsoft Windows and to learn how to justify text.

The introduction of TrueType in Windows 3.1 greatly enhanced the ability of programmers and users to work with
text in a flexible manner. TrueType is an outline font technology that was developed by Apple Computer, Inc., and
Microsoft Corporation and is supported by many font manufacturers. Because TrueType fonts are continuously
scaleable and can be used on both video displays and printers, true WYSIWYG (what-you-see-is-what-you-get) is
now possible under Windows. TrueType also lends itself well to doing "fancy" font manipulation, such as rotating
characters, filling the interiors with patterns, or using them for clipping regions, all of which I'll demonstrate in this
chapter.

Simple Text Output

Let's begin by looking at the different functions Windows provides for text output, the device context attributes
that affect text, and the use of stock fonts.

The Text Drawing Functions

The most common text output function is the one I've used in many sample programs so far:

TextOut (hdc, xStart, yStart, pString, iCount) ;

The xStart and yStart arguments are the starting position of the string in logical coordinates. Normally, this is the
point at which Windows begins drawing the upper left corner of the first character. TextOut requires a pointer to
the character string and the length of the string. The function does not recognize NULL-terminated character
strings.

The meaning of the xStart and yStart arguments to TextOut can be altered by the SetTextAlign function. The
TA_LEFT, TA_RIGHT, and TA_CENTER flags affect how xStart is used to position the string horizontally. The
default is TA_LEFT. If you specify TA_RIGHT in the SetTextAlign function, subsequent TextOut calls position the
right side of the last character in the string at xStart. With TA_CENTER, the center of the string is positioned at
xStart.

Similarly, the TA_TOP, TA_BOTTOM, and TA_BASELINE flags affect the vertical positioning. TA_TOP is the default,
which means that the string is positioned so that yStart specifies the top of the characters in the string. Using
TA_BOTTOM means that the string is positioned above yStart. You can use TA_BASELINE to position a string so
that the baseline is at yStart. The baseline is the line below which descenders, such as those on the lowercase p,
q, and y, hang.

If you call SetTextAlign with the TA_UPDATECP flag, Windows ignores the xStart and yStart arguments to TextOut
and instead uses the current position previously set by MoveToEx or LineTo, or another function that changes the
current position. The TA_UPDATECP flag also causes the TextOut function to update the current position to the
end of the string (for TA_LEFT) or the beginning of the string (for TA_RIGHT). This is useful for displaying a line of
text with multiple TextOut calls. When the horizontal positioning is TA_CENTER, the current position remains the
same after a TextOut call.

You'll recall that displaying columnar text in the series of SYSMETS programs in Chapter 4 required that one
TextOut call be used for each column. An alternative is the TabbedTextOut function:

TabbedTextOut (hdc, xStart, yStart, pString, iCount,
 iNumTabs, piTabStops, xTabOrigin) ;

If the text string contains embedded tab characters (`\t' or 0x09), TabbedTextOut will expand the tabs into spaces
based on an array of integers you pass to the function.

The first five arguments to TabbedTextOut are the same as those to TextOut. The sixth argument is the number of
tab stops, and the seventh argument is an array of tab stops in units of pixels. For example, if the average
character width is 8 pixels and you want a tab stop every 5 characters, then this array would contain the numbers
40, 80, 120, and so forth, in ascending order.

If the sixth and seventh arguments are 0 or NULL, tab stops are set at every eight average character widths. If the
sixth argument is 1, the seventh argument points to a single integer, which is repeated incrementally for multiple
tab stops. (For example, if the sixth argument is 1 and the seventh argument points to a variable containing the
number 30, tab stops are set at 30, 60, 90… pixels.) The last argument gives the logical x-coordinate of the
starting position from which tab stops are measured. This might or might not be the same as the starting position
of the string.

Another advanced text output function is ExtTextOut (the Ext prefix stands for extended):

ExtTextOut (hdc, xStart, yStart, iOptions, &rect,
 pString, iCount, pxDistance) ;

The fifth argument is a pointer to a rectangle structure. This is either a clipping rectangle, if iOptions is set to
ETO_CLIPPED, or a background rectangle to be filled with the current background color, if iOptions is set to
ETO_OPAQUE. You can specify both options or neither.

The last argument is an array of integers that specify the spacing between consecutive characters in the string.
This allows a program to tighten or loosen intercharacter spacing, which is sometimes required for justifying a
single word of text in a narrow column. The argument can be set to NULL for default character spacing.

A higher-level function for writing text is DrawText, which we first encountered in the HELLOWIN program in
Chapter 3. Rather than specifying a coordinate starting position, you provide a structure of type RECT that defines
a rectangle in which you want the text to appear:

DrawText (hdc, pString, iCount, &rect, iFormat) ;

As with the other text output functions, DrawText requires a pointer to the character string and the length of the
string. However, if you use DrawText with NULL-terminated strings, you can set iCount to -1 and Windows will
calculate the length of the string for you.

When iFormat is set to 0, Windows interprets the text as a series of lines that are separated by carriage-return
characters (`\r' or 0x0D) or linefeed characters (`\n' or 0x0A). The text begins at the upper left corner of the
rectangle. A carriage return or linefeed is interpreted as a "newline" character, so Windows breaks the current line
and starts a new one. The new line begins at the left side of the rectangle, spaced one character height (without
external leading) below the previous line. Any text, including parts of letters, that would be displayed to the right
or below the bottom of the rectangle is clipped.

You can change the default operation of DrawText by using the iFormat argument, which consists of one or more
flags. The DT_LEFT flag (which is the default) specifies a left-justified line, DT_RIGHT specifies a right-justified
line, and DT_CENTER specifies a line centered between the left and right sides of the rectangle. Because the value
of DT_LEFT is 0, you needn't include the identifier if you want text to be left-justified only.

If you don't want carriage returns or linefeeds to be interpreted as newline characters, you can include the
identifier DT_SINGLELINE. Windows then interprets carriage returns and linefeeds as displayable characters rather
than control characters. When using DT_SINGLELINE, you can also specify whether the line is to be placed at the
top of the rectangle (DT_TOP, the default), at the bottom of the rectangle (DT_BOTTOM), or halfway between the
top and bottom (DT_VCENTER, the V standing for vertical).

When displaying multiple lines of text, Windows normally breaks the lines at carriage returns or linefeeds only. If
the lines are too long to fit in the rectangle, however, you can use the DT_WORDBREAK flag, which causes
Windows to create breaks at the end of words within lines. For both single-line and multiple-line displays, Windows
truncates any part of the text that falls outside the rectangle. You can override this by including the flag
DT_NOCLIP, which also speeds up the operation of the function. When Windows spaces multiple lines of text, it
normally uses the character height without external leading. If you prefer that external leading be included in the
line spacing, use the flag DT_EXTERNALLEADING.

If your text contains tab characters (`\t' or 0x09), you need to include the flag DT_EXPANDTABS. By default, the
tab stops are set at every eighth character position. You can specify a different tab setting by using the flag
DT_TABSTOP, in which case the upper byte of iFormat contains the character-position number of each new tab
stop. I recommend that you avoid using DT_TABSTOP, however, because the upper byte of iFormat is also used
for some other flags.

The problem with the DT_TABSTOP flag is solved by a newer DrawTextEx function that has an extra argument:

DrawTextEx (hdc, pString, iCount, &rect, iFormat, &drawtextparams) ;

The last argument is a pointer to a DRAWTEXTPARAMS structure, which is defined like so:

typedef struct tagDRAWTEXTPARAMS
{
 UINT cbSize ; // size of structure
 int iTabLength ; // size of each tab stop
 int iLeftMargin ; // left margin
 int iRightMargin ; // right margin
 UINT uiLengthDrawn ; // receives number of characters processed
} DRAWTEXTPARAMS, * LPDRAWTEXTPARAMS ;

The middle three fields are in units that are increments of the average character width.

Device Context Attributes for Text

Besides SetTextAlign, discussed above, several other device context attributes affect text. In the default device
context, the text color is black, but you can change that with

SetTextColor (hdc, rgbColor) ;

As with pen colors and hatch brush colors, Windows converts the value of rgbColor to a pure color. You can obtain
the current text color by calling GetTextColor.

Windows displays text in a rectangular background area that it might or might not color based on the setting of
the background mode. You can change the background mode using

SetBkMode (hdc, iMode) ;

where iMode is either OPAQUE or TRANSPARENT. The default background mode is OPAQUE, which means that
Windows uses the background color to fill in the rectangular background. You can change the background color by
using

SetBkColor (hdc, rgbColor) ;

The value of rgbColor is converted to that of a pure color. The default background color is white.

If two lines of text are too close to each other, the background rectangle of one can obscure the text of another.
For this reason, I have often wished that the default background mode were TRANSPARENT. In the TRANSPARENT
case, Windows ignores the background color and doesn't color the rectangular background area. Windows also
uses the background mode and background color to color the spaces between dotted and dashed lines and the
area between the hatches of hatched brushes, as I discussed in Chapter 5.

Many Windows programs specify WHITE_BRUSH as the brush that Windows uses to erase the background of a
window. The brush is specified in the window class structure. However, you may want to make the background of
your program's window consistent with the system colors that a user can set in the Control Panel program. In that

case, you would specify the background color this way in the WNDCLASS structure:

wndclass.hbrBackground = COLOR_WINDOW + 1 ;

When you want to write text to the client area, you can then set the text color and background color using the
current system colors:

SetTextColor (hdc, GetSysColor (COLOR_WINDOWTEXT)) ;
SetBkColor (hdc, GetSysColor (COLOR_WINDOW)) ;

If you do this, you'll want your program to be alerted if the system colors change:

case WM_SYSCOLORCHANGE :
 InvalidateRect (hwnd, NULL, TRUE) ;
 break ;

Another device context attribute that affects text is the intercharacter spacing. By default it's set to 0, which
means that Windows doesn't add any space between characters. You can insert space by using the function

SetTextCharacterExtra (hdc, iExtra) ;

The iExtra argument is in logical units. Windows converts it to the nearest pixel, which can be 0. If you use a
negative value for iExtra (perhaps in an attempt to squeeze characters closer together), Windows takes the
absolute value of the number— you can't make the value less than 0. You can obtain the current intercharacter
spacing by calling GetTextCharacterExtra. Windows converts the pixel spacing to logical units before returning the
value.

Using Stock Fonts

When you call TextOut, TabbedTextOut, ExtTextOut, DrawText, or DrawTextEx to write text, Windows uses the
font currently selected in the device context. The font defines a particular typeface and a size. The easiest way to
display text with various fonts is to use the stock fonts that Windows provides. However, the range of these is
quite limited.

You can obtain a handle to a stock font by calling

hFont = GetStockObject (iFont) ;

where iFont is one of several identifiers. You can then select that font into the device context:

SelectObject (hdc, hFont) ;

Or you can accomplish this in one step:

SelectObject (hdc, GetStockObject (iFont)) ;

The font selected in the default device context is called the system font and is identified by the GetStockObject
argument SYSTEM_FONT. This is a proportional ANSI character set font. Specifying SYSTEM_FIXED_FONT in
GetStockObject (which I did in a few programs earlier in this book) gives you a handle to a fixed-pitch font
compatible with the system font used in versions of Windows prior to version 3. This is convenient when you need
all the font characters to have the same width.

The stock OEM_FIXED_FONT, also called the Terminal font, is the font that Windows uses in MS-DOS Command
Prompt windows. It incorporates a character set compatible with the original extended character set of the IBM PC.
Windows uses DEFAULT_GUI_FONT for the text in window title bars, menus, and dialog boxes.

When you select a new font into a device context, you must calculate the font's character height and average
character width using GetTextMetrics. If you've selected a proportional font, be aware that the average character
width is really an average and that some characters have a lesser or greater width. Later in this chapter you'll
learn how to determine the full width of a string made up of variable-width characters.

Although GetStockObject certainly offers the easiest access to different fonts, you don't have much control over
which font Windows gives you. You'll see shortly how you can be very specific about the typeface and size that
you want.

Background on Fonts

Much of the remainder of this chapter addresses working with different fonts. Before you get involved with specific
code, however, you'll benefit from having a firm grasp of the basics of fonts as they are implemented in Windows.

The Types of Fonts

Windows supports two broad categories of fonts, called "GDI fonts" and "device fonts." The GDI fonts are stored in
files on your hard disk. Device fonts are native to an output device. For example, it is common for printers to have
a collection of built-in device fonts.

GDI fonts come in three flavors: raster fonts, stroke fonts, and TrueType fonts.

A raster font is sometimes also called a bitmap font, because each character is stored as a bitmap pixel pattern.
Each raster font is designed for a specific aspect ratio and character size. Windows can create larger character
sizes from GDI raster fonts by simply duplicating rows or columns of pixels. However, this can be done in integral
multiples only and within certain limits. For this reason, GDI raster fonts are termed "nonscaleable" fonts. They
cannot be expanded or compressed to an arbitrary size. The primary advantages of raster fonts are performance
(because they are very fast to display) and readability (because they have been hand-designed to be as legible as
possible).

Fonts are identified by typeface names. The raster fonts have typeface names of

System (used for SYSTEM_FONT)

FixedSys (used for SYSTEM_FIXED_FONT)

Terminal (used for OEM_FIXED_FONT)

Courier

MS Serif

MS Sans Serif (used for DEFAULT_GUI_FONT)

Small Fonts

Each raster font comes in just a few (no more than six) different sizes. The Courier font is a fixed-pitch font similar
in appearance to the font used by a typewriter. The word "serif" refers to small turns that often finish the strokes
of letters in a font such as the one used for this book. A "sans serif" font doesn't have serifs. In early versions of
Windows, the MS (Microsoft) Serif and MS Sans Serif fonts were called Tms Rmn (meaning that it was a font
similar to Times Roman) and Helv (similar to Helvetica). The Small Fonts are especially designed for displaying
text in small sizes.

Prior to Windows 3.1, the only other GDI fonts supplied with Windows were the stroke fonts. The stroke fonts are
defined as a series of line segments in a "connect-the-dots" format. Stroke fonts are continuously scaleable, which
means that the same font can be used for graphics output devices of any resolution and the fonts can be
increased or decreased to any size. However, performance is poor, legibility suffers greatly at small sizes, and at
large sizes the characters look decidedly weak because their strokes are single lines. Stroke fonts are now
sometimes called plotter fonts because they are particularly suitable for plotters but not for anything else. The
stroke fonts have typeface names of Modern, Roman, and Script.

For both GDI raster fonts and GDI stroke fonts, Windows can "synthesize" boldface, italics, underlining, and
strikethroughs without storing separate fonts for each attribute. For italics, for instance, Windows simply shifts the
upper part of the character to the right.

Then there is TrueType, to which I'll devote much of the remainder of this chapter.

TrueType Fonts

The individual characters of TrueType fonts are defined by filled outlines of straight lines and curves. Windows can
scale these fonts by altering the coordinates that define the outlines.

When your program begins to use a TrueType font of a particular size, Windows "rasterizes" the font. This means
that Windows scales the coordinates connecting the lines and curves of each character using "hints" that are
included in the TrueType font file. These hints compensate for rounding errors that would otherwise cause a
resultant character to be unsightly. (For example, in some fonts the two legs of a capital H should be the same
width. A blind scaling of the font could result in one leg being a pixel wider than the other. The hints prevent this
from happening.) The resultant outline of each character is then used to create a bitmap of the character. These
bitmaps are cached in memory for future use.

Originally, Windows was equipped with 13 TrueType fonts, which have the following typeface names:

Courier New

Courier New Bold

Courier New Italic

Courier New Bold Italic

Times New Roman

Times New Roman Bold

Times New Roman Italic

Times New Roman Bold Italic

Arial

Arial Bold

Arial Italic

Arial Bold Italic

Symbol

In more recent versions of Windows, this list has been expanded. In particular, I'll be making use of the Lucida
Sans Unicode font that includes some additional alphabets used around the world.

The three main font families are similar to the main raster fonts. Courier New is a fixed-pitch font designed to look
like the output from that antique piece of hardware known as a typewriter. Times New Roman is a clone of the
Times font originally designed for the Times of London and used in much printed material. It is considered to be
highly readable. Arial is a clone of Helvetica, a sans serif font. The Symbol font contains a collection of handy
symbols.

Attributes or Styles?

You'll notice in the list of TrueType fonts shown above that bold and italic styles of Courier, Times New Roman,
and Arial seem to be separate fonts with their own typeface names. This naming is very much in accordance with
traditional typography. However, computer users have come to think of bold and italic as particular "attributes"
that are applied to existing fonts. Windows itself took the attribute approach early on when defining how the raster
fonts were named, enumerated, and selected. With TrueType fonts, however, more traditional naming is
preferred.

This conflict is not quite ever resolved in Windows. In short, as you'll see, you can select fonts by either naming
them fully or by specifying attributes. The process of font enumeration, in which an application requests a list of
fonts from the system, is—as you might expect—complicated somewhat by this dual approach.

The Point Size

In traditional typography, you specify a font by its typeface name and its size. The type size is expressed in units
called points. A point is very close to 1/72 inch—so close in fact that in computer typography it is often defined as
exactly 1/72 inch. The text of this book is printed in 10-point type. The point size is usually described as the
height of the characters from the top of the ascenders (without diacritics) to the bottom of the descenders,
encompassing, for example, the full height of the letters "bq." That's a convenient way to think of the type size,

but it's usually not metrically accurate.

The point size of a font is actually a typographical design concept rather than a metrical concept. The size of the
characters in a particular font might be greater than or less than what the point size implies. In traditional
typography, you use a point size to specify the size of a font; in computer typography, there are other methods to
determine the actual size of the characters.

Leading and Spacing

As you'll recall from as long ago as Chapter 4, you can obtain information about the font currently selected in the
device context by calling GetTextMetrics, as we've also done frequently since then. Figure 4-3 illustrates the
vertical sizes of a font from the FONTMETRIC structure.

Another field of the TEXTMETRIC structure is named tmExternalLeading. The word leading (pronounced "ledding")
is derived from the lead that typesetters insert between blocks of metal type to add white space between lines of
text. The tmInternalLeading value corresponds to the space usually reserved for diacritics; tmExternalLeading
suggests an additional space to leave between successive lines of characters. Programmers can use or ignore the
external leading value.

When we refer to a font as being 8-point or 12-point, we're talking about the height of the font less internal
leading. The diacritics on certain capital letters are considered to occupy the space that normally separates lines of
type. The tmHeight value of the TEXTMETRIC structure thus actually refers to line spacing rather than the font
point size. The point size can be derived from tmHeight minus tmInternalLeading.

The Logical Inch Problem

As I discussed in Chapter 5 (in the section entitled "The Size of the Device"), Windows 98 defines the system font
as being a 10-point font with 12-point line spacing. Depending on whether you choose Small Fonts or Large Fonts
from the Display Properties dialog, this font could have a tmHeight value of 16 pixels or 20 pixels and a tmHeight
minus tmInternalLeading value of 13 pixels or 16 pixels. Thus, the choice of the font implies a resolution of the
device in dots per inch, namely 96 dpi when Small Fonts are selected and 120 dpi for Large Fonts.

You can obtain this implied resolution of the device by calling GetDeviceCaps with the LOGPIXELSX or LOGPIXELSY
arguments. Thus, the metrical distance occupied by 96 or 120 pixels on the screen can be said to be a "logical
inch." If you start measuring your screen with a ruler and counting pixels, you'll probably find that a logical inch is
larger than an actual inch. Why is this?

On paper, 8-point type with about 14 characters horizontally per inch is perfectly readable. If you were
programming a word processing or page-composition application, you would want to be able to show legible 8-
point type on the display. But if you used the actual dimensions of the video display, there would probably not be
enough pixels to show the character legibly. Even if the display had sufficient resolution, you might still have
problems reading actual 8-point type on a screen. When people read print on paper, the distance between the
eyes and the text is generally about a foot, but a video display is commonly viewed from a distance of two feet.

The logical inch in effect provides a magnification of the screen, allowing the display of legible fonts in a size as
small as 8 points. Also, having 96 dots per logical inch makes the 640-pixel minimum display size equal to about
6.5 inches. This is precisely the width of text that prints on 8.5-inch-wide paper when you use the standard
margins of an inch on each side. Thus, the logical inch also takes advantage of the width of the screen to allow
text to be displayed as large as possible.

As you may also recall from Chapter 5, Windows NT does it a little differently. In Windows NT, the LOGPIXELSX
(pixels per inch) value you obtain from GetDeviceCaps is not equal to the HORZRES value (in pixels) divided by
the HORZSIZE value (in millimeters), multiplied by 25.4. Similarly, LOGPIXELSY, VERTRES, and VERTSIZE are not
consistent. Windows uses the HORZRES, HORZSIZE, VERTRES, and VERTSIZE values when calculating window
and offset extents for the various mapping modes; however, a program that displays text would be better off to
use an assumed display resolution based on LOGPIXELSX and LOGPIXELSY. This is more consistent with Windows
98.

So, under Windows NT a program should probably not use the mapping modes provided by Windows when also
displaying text in specific point sizes. The program should instead define its own mapping mode based on the
logical-pixels-per-inch dimensions consistent with Windows 98. One such useful mapping mode for text I call the
"Logical Twips" mapping mode. Here's how you set it:

SetMapMode (hdc, MM_ANISOTROPIC) ;

SetWindowExtEx (hdc, 1440, 1440, NULL) ;
SetViewportExt (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;

With this mapping mode set, you can specify font dimensions in 20 times the point size—for example, 240 for 12
points. Notice that unlike the MM_TWIPS mapping mode, the values of y increase going down the screen. This is
easier when displaying successive lines of text.

Keep in mind that the discrepancy between logical inches and real inches occurs only for the display. On printer
devices, there is total consistency with GDI and rulers.

The Logical Font

Now that we've nailed down the concept of logical inches and logical twips, it's time to talk about logical fonts.

A logical font is a GDI object whose handle is stored in a variable of type HFONT. A logical font is a description of a
font. Like the logical pen and logical brush, it is an abstract object that becomes real only as it is a selected into a
device context when an application calls SelectObject . For logical pens, for instance, you can specify any color
you want for the pen, but Windows converts that to a pure color available on the device when you select the pen
into the device context. Only then does Windows know about the color capabilities of the device.

Logical Font Creation and Selection

You create a logical font by calling CreateFont or CreateFontIndirect . The CreateFontIndirect function takes a
pointer to a LOGFONT structure, which has 14 fields. The CreateFont function takes 14 arguments, which are
identical to the 14 fields of the LOGFONT structure. These are the only two functions that create a logical font. (I
mention this because there are multiple functions in Windows for some other font jobs.) Because the 14 fields are
difficult to remember, CreateFont is rarely used, so I'll focus on CreateFontIndirect .

There are three basic ways to define the fields of a LOGFONT structure in preparation for calling
CreateFontIndirect .

You can simply set the fields of the LOGFONT structure to the characteristics of the font that you want. In
this case, when you call SelectObject , Windows uses a "font mapping" algorithm to attempt to give you the
font available on the device that best matches these characteristics. Depending on the fonts available on the
video display or printer, the result might differ considerably from what you request.

You can enumerate all the fonts on the device and choose from those or even present them to the user with
a dialog box. I'll discuss the font enumeration functions later in this chapter. These are not used much these
days because the third method does the enumeration for you.

You can take the simple approach and call the ChooseFont function, which I discussed a little in Chapter 11 .
You get back a LOGFONT structure that you can use directly for creating the font.

In this chapter, I'll use the first and third approaches.

Here is the process for creating, selecting, and deleting logical fonts:

Create a logical font by calling CreateFont or CreateFontIndirect . These functions return a handle to a
logical font of type HFONT.

1.

Select the logical font into the device context using SelectObject . Windows chooses a real font that most
closely matches the logical font.

2.

Determine the size and characteristics of the real font with GetTextMetrics (and possibly some other
functions). You can use this information to properly space the text that you write when this font is selected
into the device context.

3.

After you've finished using the font, delete the logical font by calling DeleteObject . Don't delete the font
while it is selected in a valid device context, and don't delete stock fonts.

4.

The GetTextFace function lets a program determine the face name of the font currently selected in the device
context:

GetTextFace (hdc, sizeof (szFaceName) / sizeof (TCHAR), szFaceName) ;

The detailed font information is available from GetTextMetrics :

GetTextMetrics (hdc, &textmetric) ;

where textmetric is a variable of type TEXTMETRIC, a structure with 20 fields.

I'll discuss the fields of the LOGFONT and TEXTMETRIC structures in detail shortly. The structures have some
similar fields, so they can be confusing. For now, just keep in mind that LOGFONT is for defining a logical font and
TEXTMETRIC is for obtaining information about the font currently selected in the device context.

The PICKFONT Program

With the PICKFONT program shown in Figure 17-1, you can define many of the fields of a LOGFONT structure. The
program creates a logical font and displays the characteristics of the real font after the logical font has been
selected in a device context. This is a handy program for understanding how logical fonts are mapped to real
fonts.

Figure 17-1 The PICKFONT program.

PICKFONT.C

 /*---
 PICKFONT.C -- Create Logical Font
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

 // Structure shared between main window and dialog box

typedef struct
{
 int iDevice, iMapMode ;
 BOOL fMatchAspect ;
 BOOL fAdvGraphics ;
 LOGFONT lf ;
 TEXTMETRIC tm ;
 TCHAR szFaceName [LF_FULLFACESIZE] ;
}
DLGPARAMS ;

 // Formatting for BCHAR fields of TEXTMETRIC structure

#ifdef UNICODE
#define BCHARFORM TEXT ("0x%04X")
#else
#define BCHARFORM TEXT ("0x%02X")
#endif

 // Global variables

HWND hdlg ;

TCHAR szAppName[] = TEXT ("PickFont") ;

 // Forward declarations of functions

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;
void SetLogFontFromFields (HWND hdlg, DLGPARAMS * pdp) ;
void SetFieldsFromTextMetric (HWND hdlg, DLGPARAMS * pdp) ;
void MySetMapMode (HDC hdc, int iMapMode) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("PickFont: Create Logical Font"),
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (hdlg == 0 || !IsDialogMessage (hdlg, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static DLGPARAMS dp ;
 static TCHAR szText[] = TEXT ("\x41\x42\x43\x44\x45 ")
 TEXT ("\x61\x62\x63\x64\x65 ")

 TEXT ("\xC0\xC1\xC2\xC3\xC4\xC5 ")
 TEXT ("\xE0\xE1\xE2\xE3\xE4\xE5 ")
#ifdef UNICODE
 TEXT ("\x0390\x0391\x0392\x0393\x0394\x0395 ")
 TEXT ("\x03B0\x03B1\x03B2\x03B3\x03B4\x03B5 ")

 TEXT ("\x0410\x0411\x0412\x0413\x0414\x0415 ")
 TEXT ("\x0430\x0431\x0432\x0433\x0434\x0435 ")

 TEXT ("\x5000\x5001\x5002\x5003\x5004")
#endif
 ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 dp.iDevice = IDM_DEVICE_SCREEN ;

 hdlg = CreateDialogParam (((LPCREATESTRUCT) lParam)->hInstance,
 szAppName, hwnd, DlgProc, (LPARAM) &dp) ;
 return 0 ;

 case WM_SETFOCUS:
 SetFocus (hdlg) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_DEVICE_SCREEN:
 case IDM_DEVICE_PRINTER:
 CheckMenuItem (GetMenu (hwnd), dp.iDevice, MF_UNCHECKED) ;
 dp.iDevice = LOWORD (wParam) ;
 CheckMenuItem (GetMenu (hwnd), dp.iDevice, MF_CHECKED) ;

 SendMessage (hwnd, WM_COMMAND, IDOK, 0) ;
 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Set graphics mode so escapement works in Windows NT

 SetGraphicsMode (hdc, dp.fAdvGraphics ? GM_ADVANCED : GM_COMPATIBLE) ;

 // Set the mapping mode and the mapper flag

 MySetMapMode (hdc, dp.iMapMode) ;
 SetMapperFlags (hdc, dp.fMatchAspect) ;

 // Find the point to begin drawing text

 GetClientRect (hdlg, &rect) ;
 rect.bottom += 1 ;
 DPtoLP (hdc, (PPOINT) &rect, 2) ;

 // Create and select the font; display the text

 SelectObject (hdc, CreateFontIndirect (&dp.lf)) ;
 TextOut (hdc, rect.left, rect.bottom, szText, lstrlen (szText)) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK DlgProc (HWND hdlg, UINT message, WPARAM wParam, LPARAM lParam)
{
 static DLGPARAMS * pdp ;
 static PRINTDLG pd = { sizeof (PRINTDLG) } ;
 HDC hdcDevice ;
 HFONT hFont ;

 switch (message)
 {
 case WM_INITDIALOG:
 // Save pointer to dialog-parameters structure in WndProc

 pdp = (DLGPARAMS *) lParam ;

 SendDlgItemMessage (hdlg, IDC_LF_FACENAME, EM_LIMITTEXT,
 LF_FACESIZE - 1, 0) ;

 CheckRadioButton (hdlg, IDC_OUT_DEFAULT, IDC_OUT_OUTLINE,
 IDC_OUT_DEFAULT) ;

 CheckRadioButton (hdlg, IDC_DEFAULT_QUALITY, IDC_PROOF_QUALITY,

 IDC_DEFAULT_QUALITY) ;

 CheckRadioButton (hdlg, IDC_DEFAULT_PITCH, IDC_VARIABLE_PITCH,
 IDC_DEFAULT_PITCH) ;

 CheckRadioButton (hdlg, IDC_FF_DONTCARE, IDC_FF_DECORATIVE,
 IDC_FF_DONTCARE) ;

 CheckRadioButton (hdlg, IDC_MM_TEXT, IDC_MM_LOGTWIPS,
 IDC_MM_TEXT) ;

 SendMessage (hdlg, WM_COMMAND, IDOK, 0) ;

 // fall through
 case WM_SETFOCUS:
 SetFocus (GetDlgItem (hdlg, IDC_LF_HEIGHT)) ;
 return FALSE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_CHARSET_HELP:
 MessageBox (hdlg,
 TEXT ("0 = Ansi\n")
 TEXT ("1 = Default\n")
 TEXT ("2 = Symbol\n")
 TEXT ("128 = Shift JIS (Japanese)\n")
 TEXT ("129 = Hangul (Korean)\n")
 TEXT ("130 = Johab (Korean)\n")
 TEXT ("134 = GB 2312 (Simplified Chinese)\n")
 TEXT ("136 = Chinese Big 5 (Traditional Chinese)\n")
 TEXT ("177 = Hebrew\n")
 TEXT ("178 = Arabic\n")

 TEXT ("161 = Greek\n")
 TEXT ("162 = Turkish\n")
 TEXT ("163 = Vietnamese\n")
 TEXT ("204 = Russian\n")
 TEXT ("222 = Thai\n")
 TEXT ("238 = East European\n")
 TEXT ("255 = OEM"),
 szAppName, MB_OK | MB_ICONINFORMATION) ;
 return TRUE ;

 // These radio buttons set the lfOutPrecision field

 case IDC_OUT_DEFAULT:
 pdp->lf.lfOutPrecision = OUT_DEFAULT_PRECIS ;
 return TRUE ;

 case IDC_OUT_STRING:
 pdp->lf.lfOutPrecision = OUT_STRING_PRECIS ;
 return TRUE ;

 case IDC_OUT_CHARACTER:
 pdp->lf.lfOutPrecision = OUT_CHARACTER_PRECIS ;
 return TRUE ;

 case IDC_OUT_STROKE:
 pdp->lf.lfOutPrecision = OUT_STROKE_PRECIS ;
 return TRUE ;

 case IDC_OUT_TT:
 pdp->lf.lfOutPrecision = OUT_TT_PRECIS ;
 return TRUE ;

 case IDC_OUT_DEVICE:
 pdp->lf.lfOutPrecision = OUT_DEVICE_PRECIS ;
 return TRUE ;

 case IDC_OUT_RASTER:
 pdp->lf.lfOutPrecision = OUT_RASTER_PRECIS ;
 return TRUE ;

 case IDC_OUT_TT_ONLY:
 pdp->lf.lfOutPrecision = OUT_TT_ONLY_PRECIS ;
 return TRUE ;

 case IDC_OUT_OUTLINE:
 pdp->lf.lfOutPrecision = OUT_OUTLINE_PRECIS ;
 return TRUE ;

 // These three radio buttons set the lfQuality field

 case IDC_DEFAULT_QUALITY:
 pdp->lf.lfQuality = DEFAULT_QUALITY ;
 return TRUE ;

 case IDC_DRAFT_QUALITY:
 pdp->lf.lfQuality = DRAFT_QUALITY ;
 return TRUE ;

 case IDC_PROOF_QUALITY:
 pdp->lf.lfQuality = PROOF_QUALITY ;
 return TRUE ;

 // These three radio buttons set the lower nibble
 // of the lfPitchAndFamily field

 case IDC_DEFAULT_PITCH:
 pdp->lf.lfPitchAndFamily =
 (0xF0 & pdp->lf.lfPitchAndFamily) | DEFAULT_PITCH ;
 return TRUE ;

 case IDC_FIXED_PITCH:
 pdp->lf.lfPitchAndFamily =

 (0xF0 & pdp->lf.lfPitchAndFamily) | FIXED_PITCH ;
 return TRUE ;

 case IDC_VARIABLE_PITCH:
 pdp->lf.lfPitchAndFamily =
 (0xF0 & pdp->lf.lfPitchAndFamily) | VARIABLE_PITCH ;
 return TRUE ;

 // These six radio buttons set the upper nibble
 // of the lfPitchAndFamily field

 case IDC_FF_DONTCARE:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_DONTCARE ;
 return TRUE ;

 case IDC_FF_ROMAN:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_ROMAN ;
 return TRUE ;

 case IDC_FF_SWISS:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_SWISS ;
 return TRUE ;

 case IDC_FF_MODERN:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_MODERN ;
 return TRUE ;

 case IDC_FF_SCRIPT:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_SCRIPT ;
 return TRUE ;

 case IDC_FF_DECORATIVE:
 pdp->lf.lfPitchAndFamily =
 (0x0F & pdp->lf.lfPitchAndFamily) | FF_DECORATIVE ;
 return TRUE ;

 // Mapping mode:

 case IDC_MM_TEXT:
 case IDC_MM_LOMETRIC:
 case IDC_MM_HIMETRIC:
 case IDC_MM_LOENGLISH:
 case IDC_MM_HIENGLISH:
 case IDC_MM_TWIPS:
 case IDC_MM_LOGTWIPS:
 pdp->iMapMode = LOWORD (wParam) ;
 return TRUE ;

 // OK button pressed
 // -----------------

 case IDOK:
 // Get LOGFONT structure

 SetLogFontFromFields (hdlg, pdp) ;

 // Set Match-Aspect and Advanced Graphics flags

 pdp->fMatchAspect = IsDlgButtonChecked (hdlg, IDC_MATCH_ASPECT) ;
 pdp->fAdvGraphics = IsDlgButtonChecked (hdlg, IDC_ADV_GRAPHICS) ;

 // Get Information Context

 if (pdp->iDevice == IDM_DEVICE_SCREEN)
 {
 hdcDevice = CreateIC (TEXT ("DISPLAY"), NULL, NULL, NULL) ;
 }
 else
 {
 pd.hwndOwner = hdlg ;
 pd.Flags = PD_RETURNDEFAULT | PD_RETURNIC ;
 pd.hDevNames = NULL ;
 pd.hDevMode = NULL ;

 PrintDlg (&pd) ;

 hdcDevice = pd.hDC ;
 }
 // Set the mapping mode and the mapper flag

 MySetMapMode (hdcDevice, pdp->iMapMode) ;
 SetMapperFlags (hdcDevice, pdp->fMatchAspect) ;

 // Create font and select it into IC

 hFont = CreateFontIndirect (&pdp->lf) ;
 SelectObject (hdcDevice, hFont) ;

 // Get the text metrics and face name

 GetTextMetrics (hdcDevice, &pdp->tm) ;
 GetTextFace (hdcDevice, LF_FULLFACESIZE, pdp->szFaceName) ;
 DeleteDC (hdcDevice) ;
 DeleteObject (hFont) ;

 // Update dialog fields and invalidate main window

 SetFieldsFromTextMetric (hdlg, pdp) ;
 InvalidateRect (GetParent (hdlg), NULL, TRUE) ;
 return TRUE ;
 }

 break ;
 }
 return FALSE ;
}
void SetLogFontFromFields (HWND hdlg, DLGPARAMS * pdp)
{
 pdp->lf.lfHeight = GetDlgItemInt (hdlg, IDC_LF_HEIGHT, NULL, TRUE) ;
 pdp->lf.lfWidth = GetDlgItemInt (hdlg, IDC_LF_WIDTH, NULL, TRUE) ;
 pdp->lf.lfEscapement = GetDlgItemInt (hdlg, IDC_LF_ESCAPE, NULL, TRUE) ;
 pdp->lf.lfOrientation = GetDlgItemInt (hdlg, IDC_LF_ORIENT, NULL, TRUE) ;
 pdp->lf.lfWeight = GetDlgItemInt (hdlg, IDC_LF_WEIGHT, NULL, TRUE) ;
 pdp->lf.lfCharSet = GetDlgItemInt (hdlg, IDC_LF_CHARSET, NULL, FALSE) ;

 pdp->lf.lfItalic =
 IsDlgButtonChecked (hdlg, IDC_LF_ITALIC) == BST_CHECKED ;
 pdp->lf.lfUnderline =
 IsDlgButtonChecked (hdlg, IDC_LF_UNDER) == BST_CHECKED ;
 pdp->lf.lfStrikeOut =
 IsDlgButtonChecked (hdlg, IDC_LF_STRIKE) == BST_CHECKED ;

 GetDlgItemText (hdlg, IDC_LF_FACENAME, pdp->lf.lfFaceName, LF_FACESIZE) ;
}

void SetFieldsFromTextMetric (HWND hdlg, DLGPARAMS * pdp)
{
 TCHAR szBuffer [10] ;
 TCHAR * szYes = TEXT ("Yes") ;
 TCHAR * szNo = TEXT ("No") ;
 TCHAR * szFamily [] = { TEXT ("Don't Know"), TEXT ("Roman"),
 TEXT ("Swiss"), TEXT ("Modern"),
 TEXT ("Script"), TEXT ("Decorative"),
 TEXT ("Undefined") } ;

 SetDlgItemInt (hdlg, IDC_TM_HEIGHT, pdp->tm.tmHeight, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_ASCENT, pdp->tm.tmAscent, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_DESCENT, pdp->tm.tmDescent, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_INTLEAD, pdp->tm.tmInternalLeading, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_EXTLEAD, pdp->tm.tmExternalLeading, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_AVECHAR, pdp->tm.tmAveCharWidth, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_MAXCHAR, pdp->tm.tmMaxCharWidth, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_WEIGHT, pdp->tm.tmWeight, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_OVERHANG, pdp->tm.tmOverhang, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_DIGASPX, pdp->tm.tmDigitizedAspectX, TRUE) ;
 SetDlgItemInt (hdlg, IDC_TM_DIGASPY, pdp->tm.tmDigitizedAspectY, TRUE) ;

 wsprintf (szBuffer, BCHARFORM, pdp->tm.tmFirstChar) ;
 SetDlgItemText (hdlg, IDC_TM_FIRSTCHAR, szBuffer) ;

 wsprintf (szBuffer, BCHARFORM, pdp->tm.tmLastChar) ;
 SetDlgItemText (hdlg, IDC_TM_LASTCHAR, szBuffer) ;

 wsprintf (szBuffer, BCHARFORM, pdp->tm.tmDefaultChar) ;
 SetDlgItemText (hdlg, IDC_TM_DEFCHAR, szBuffer) ;

 wsprintf (szBuffer, BCHARFORM, pdp->tm.tmBreakChar) ;
 SetDlgItemText (hdlg, IDC_TM_BREAKCHAR, szBuffer) ;

 SetDlgItemText (hdlg, IDC_TM_ITALIC, pdp->tm.tmItalic ? szYes : szNo) ;
 SetDlgItemText (hdlg, IDC_TM_UNDER, pdp->tm.tmUnderlined ? szYes : szNo) ;
 SetDlgItemText (hdlg, IDC_TM_STRUCK, pdp->tm.tmStruckOut ? szYes : szNo) ;

 SetDlgItemText (hdlg, IDC_TM_VARIABLE,
 TMPF_FIXED_PITCH & pdp->tm.tmPitchAndFamily ? szYes : szNo) ;

 SetDlgItemText (hdlg, IDC_TM_VECTOR,
 TMPF_VECTOR & pdp->tm.tmPitchAndFamily ? szYes : szNo) ;

 SetDlgItemText (hdlg, IDC_TM_TRUETYPE,
 TMPF_TRUETYPE & pdp->tm.tmPitchAndFamily ? szYes : szNo) ;

 SetDlgItemText (hdlg, IDC_TM_DEVICE,
 TMPF_DEVICE & pdp->tm.tmPitchAndFamily ? szYes : szNo) ;

 SetDlgItemText (hdlg, IDC_TM_FAMILY,
 szFamily [min (6, pdp->tm.tmPitchAndFamily >> 4)]) ;

 SetDlgItemInt (hdlg, IDC_TM_CHARSET, pdp->tm.tmCharSet, FALSE) ;
 SetDlgItemText (hdlg, IDC_TM_FACENAME, pdp->szFaceName) ;
}

void MySetMapMode (HDC hdc, int iMapMode)
{
 switch (iMapMode)
 {
 case IDC_MM_TEXT: SetMapMode (hdc, MM_TEXT) ; break ;
 case IDC_MM_LOMETRIC: SetMapMode (hdc, MM_LOMETRIC) ; break ;
 case IDC_MM_HIMETRIC: SetMapMode (hdc, MM_HIMETRIC) ; break ;
 case IDC_MM_LOENGLISH: SetMapMode (hdc, MM_LOENGLISH) ; break ;
 case IDC_MM_HIENGLISH: SetMapMode (hdc, MM_HIENGLISH) ; break ;
 case IDC_MM_TWIPS: SetMapMode (hdc, MM_TWIPS) ; break ;
 case IDC_MM_LOGTWIPS:
 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1440, 1440, NULL) ;
 SetViewportExtEx (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;
 break ;
 }
}

PICKFONT.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

PICKFONT DIALOG DISCARDABLE 0, 0, 348, 308
STYLE WS_CHILD | WS_VISIBLE | WS_BORDER
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "&Height:",IDC_STATIC,8,10,44,8
 EDITTEXT IDC_LF_HEIGHT,64,8,24,12,ES_AUTOHSCROLL
 LTEXT "&Width",IDC_STATIC,8,26,44,8
 EDITTEXT IDC_LF_WIDTH,64,24,24,12,ES_AUTOHSCROLL
 LTEXT "Escapement:",IDC_STATIC,8,42,44,8
 EDITTEXT IDC_LF_ESCAPE,64,40,24,12,ES_AUTOHSCROLL
 LTEXT "Orientation:",IDC_STATIC,8,58,44,8
 EDITTEXT IDC_LF_ORIENT,64,56,24,12,ES_AUTOHSCROLL
 LTEXT "Weight:",IDC_STATIC,8,74,44,8
 EDITTEXT IDC_LF_WEIGHT,64,74,24,12,ES_AUTOHSCROLL
 GROUPBOX "Mapping Mode",IDC_STATIC,97,3,96,90,WS_GROUP
 CONTROL "Text",IDC_MM_TEXT,"Button",BS_AUTORADIOBUTTON,104,13,56,
 8
 CONTROL "Low Metric",IDC_MM_LOMETRIC,"Button",BS_AUTORADIOBUTTON,
 104,24,56,8
 CONTROL "High Metric",IDC_MM_HIMETRIC,"Button",
 BS_AUTORADIOBUTTON,104,35,56,8
 CONTROL "Low English",IDC_MM_LOENGLISH,"Button",
 BS_AUTORADIOBUTTON,104,46,56,8
 CONTROL "High English",IDC_MM_HIENGLISH,"Button",
 BS_AUTORADIOBUTTON,104,57,56,8
 CONTROL "Twips",IDC_MM_TWIPS,"Button",BS_AUTORADIOBUTTON,104,68,
 56,8
 CONTROL "Logical Twips",IDC_MM_LOGTWIPS,"Button",
 BS_AUTORADIOBUTTON,104,79,64,8
 CONTROL "Italic",IDC_LF_ITALIC,"Button",BS_AUTOCHECKBOX |
 WS_TABSTOP,8,90,48,12
 CONTROL "Underline",IDC_LF_UNDER,"Button",BS_AUTOCHECKBOX |
 WS_TABSTOP,8,104,48,12
 CONTROL "Strike Out",IDC_LF_STRIKE,"Button",BS_AUTOCHECKBOX |
 WS_TABSTOP,8,118,48,12
 CONTROL "Match Aspect",IDC_MATCH_ASPECT,"Button",BS_AUTOCHECKBOX |
 WS_TABSTOP,60,104,62,8
 CONTROL "Adv Grfx Mode",IDC_ADV_GRAPHICS,"Button",
 BS_AUTOCHECKBOX | WS_TABSTOP,60,118,62,8
 LTEXT "Character Set:",IDC_STATIC,8,137,46,8
 EDITTEXT IDC_LF_CHARSET,58,135,24,12,ES_AUTOHSCROLL
 PUSHBUTTON "?",IDC_CHARSET_HELP,90,135,14,14
 GROUPBOX "Quality",IDC_STATIC,132,98,62,48,WS_GROUP
 CONTROL "Default",IDC_DEFAULT_QUALITY,"Button",
 BS_AUTORADIOBUTTON,136,110,40,8
 CONTROL "Draft",IDC_DRAFT_QUALITY,"Button",BS_AUTORADIOBUTTON,

 136,122,40,8
 CONTROL "Proof",IDC_PROOF_QUALITY,"Button",BS_AUTORADIOBUTTON,
 136,134,40,8
 LTEXT "Face Name:",IDC_STATIC,8,154,44,8
 EDITTEXT IDC_LF_FACENAME,58,152,136,12,ES_AUTOHSCROLL
 GROUPBOX "Output Precision",IDC_STATIC,8,166,118,133,WS_GROUP
 CONTROL "OUT_DEFAULT_PRECIS",IDC_OUT_DEFAULT,"Button",
 BS_AUTORADIOBUTTON,12,178,112,8
 CONTROL "OUT_STRING_PRECIS",IDC_OUT_STRING,"Button",
 BS_AUTORADIOBUTTON,12,191,112,8
 CONTROL "OUT_CHARACTER_PRECIS",IDC_OUT_CHARACTER,"Button",
 BS_AUTORADIOBUTTON,12,204,112,8
 CONTROL "OUT_STROKE_PRECIS",IDC_OUT_STROKE,"Button",
 BS_AUTORADIOBUTTON,12,217,112,8
 CONTROL "OUT_TT_PRECIS",IDC_OUT_TT,"Button",BS_AUTORADIOBUTTON,
 12,230,112,8
 CONTROL "OUT_DEVICE_PRECIS",IDC_OUT_DEVICE,"Button",
 BS_AUTORADIOBUTTON,12,243,112,8
 CONTROL "OUT_RASTER_PRECIS",IDC_OUT_RASTER,"Button",
 BS_AUTORADIOBUTTON,12,256,112,8
 CONTROL "OUT_TT_ONLY_PRECIS",IDC_OUT_TT_ONLY,"Button",
 BS_AUTORADIOBUTTON,12,269,112,8
 CONTROL "OUT_OUTLINE_PRECIS",IDC_OUT_OUTLINE,"Button",
 BS_AUTORADIOBUTTON,12,282,112,8
 GROUPBOX "Pitch",IDC_STATIC,132,166,62,50,WS_GROUP
 CONTROL "Default",IDC_DEFAULT_PITCH,"Button",BS_AUTORADIOBUTTON,
 137,176,52,8
 CONTROL "Fixed",IDC_FIXED_PITCH,"Button",BS_AUTORADIOBUTTON,137,
 189,52,8
 CONTROL "Variable",IDC_VARIABLE_PITCH,"Button",
 BS_AUTORADIOBUTTON,137,203,52,8
 GROUPBOX "Family",IDC_STATIC,132,218,62,82,WS_GROUP
 CONTROL "Don't Care",IDC_FF_DONTCARE,"Button",BS_AUTORADIOBUTTON,
 137,229,52,8
 CONTROL "Roman",IDC_FF_ROMAN,"Button",BS_AUTORADIOBUTTON,137,241,
 52,8
 CONTROL "Swiss",IDC_FF_SWISS,"Button",BS_AUTORADIOBUTTON,137,253,
 52,8
 CONTROL "Modern",IDC_FF_MODERN,"Button",BS_AUTORADIOBUTTON,137,
 265,52,8
 CONTROL "Script",IDC_FF_SCRIPT,"Button",BS_AUTORADIOBUTTON,137,
 277,52,8
 CONTROL "Decorative",IDC_FF_DECORATIVE,"Button",
 BS_AUTORADIOBUTTON,137,289,52,8
 DEFPUSHBUTTON "OK",IDOK,247,286,50,14
 GROUPBOX "Text Metrics",IDC_STATIC,201,2,140,272,WS_GROUP
 LTEXT "Height:",IDC_STATIC,207,12,64,8
 LTEXT "0",IDC_TM_HEIGHT,281,12,44,8
 LTEXT "Ascent:",IDC_STATIC,207,22,64,8
 LTEXT "0",IDC_TM_ASCENT,281,22,44,8
 LTEXT "Descent:",IDC_STATIC,207,32,64,8
 LTEXT "0",IDC_TM_DESCENT,281,32,44,8
 LTEXT "Internal Leading:",IDC_STATIC,207,42,64,8

 LTEXT "0",IDC_TM_INTLEAD,281,42,44,8
 LTEXT "External Leading:",IDC_STATIC,207,52,64,8
 LTEXT "0",IDC_TM_EXTLEAD,281,52,44,8
 LTEXT "Ave Char Width:",IDC_STATIC,207,62,64,8
 LTEXT "0",IDC_TM_AVECHAR,281,62,44,8
 LTEXT "Max Char Width:",IDC_STATIC,207,72,64,8
 LTEXT "0",IDC_TM_MAXCHAR,281,72,44,8
 LTEXT "Weight:",IDC_STATIC,207,82,64,8
 LTEXT "0",IDC_TM_WEIGHT,281,82,44,8
 LTEXT "Overhang:",IDC_STATIC,207,92,64,8
 LTEXT "0",IDC_TM_OVERHANG,281,92,44,8
 LTEXT "Digitized Aspect X:",IDC_STATIC,207,102,64,8
 LTEXT "0",IDC_TM_DIGASPX,281,102,44,8
 LTEXT "Digitized Aspect Y:",IDC_STATIC,207,112,64,8
 LTEXT "0",IDC_TM_DIGASPY,281,112,44,8
 LTEXT "First Char:",IDC_STATIC,207,122,64,8
 LTEXT "0",IDC_TM_FIRSTCHAR,281,122,44,8
 LTEXT "Last Char:",IDC_STATIC,207,132,64,8
 LTEXT "0",IDC_TM_LASTCHAR,281,132,44,8
 LTEXT "Default Char:",IDC_STATIC,207,142,64,8
 LTEXT "0",IDC_TM_DEFCHAR,281,142,44,8
 LTEXT "Break Char:",IDC_STATIC,207,152,64,8
 LTEXT "0",IDC_TM_BREAKCHAR,281,152,44,8
 LTEXT "Italic?",IDC_STATIC,207,162,64,8
 LTEXT "0",IDC_TM_ITALIC,281,162,44,8
 LTEXT "Underlined?",IDC_STATIC,207,172,64,8
 LTEXT "0",IDC_TM_UNDER,281,172,44,8
 LTEXT "Struck Out?",IDC_STATIC,207,182,64,8
 LTEXT "0",IDC_TM_STRUCK,281,182,44,8
 LTEXT "Variable Pitch?",IDC_STATIC,207,192,64,8
 LTEXT "0",IDC_TM_VARIABLE,281,192,44,8
 LTEXT "Vector Font?",IDC_STATIC,207,202,64,8
 LTEXT "0",IDC_TM_VECTOR,281,202,44,8
 LTEXT "TrueType Font?",IDC_STATIC,207,212,64,8
 LTEXT "0",IDC_TM_TRUETYPE,281,212,44,8
 LTEXT "Device Font?",IDC_STATIC,207,222,64,8
 LTEXT "0",IDC_TM_DEVICE,281,222,44,8
 LTEXT "Family:",IDC_STATIC,207,232,64,8
 LTEXT "0",IDC_TM_FAMILY,281,232,44,8
 LTEXT "Character Set:",IDC_STATIC,207,242,64,8
 LTEXT "0",IDC_TM_CHARSET,281,242,44,8
 LTEXT "0",IDC_TM_FACENAME,207,262,128,8
END

///
// Menu

PICKFONT MENU DISCARDABLE
BEGIN
 POPUP "&Device"
 BEGIN
 MENUITEM "&Screen", IDM_DEVICE_SCREEN, CHECKED
 MENUITEM "&Printer", IDM_DEVICE_PRINTER

 END
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by PickFont.rc

#define IDC_LF_HEIGHT 1000
#define IDC_LF_WIDTH 1001
#define IDC_LF_ESCAPE 1002
#define IDC_LF_ORIENT 1003
#define IDC_LF_WEIGHT 1004
#define IDC_MM_TEXT 1005
#define IDC_MM_LOMETRIC 1006
#define IDC_MM_HIMETRIC 1007
#define IDC_MM_LOENGLISH 1008
#define IDC_MM_HIENGLISH 1009
#define IDC_MM_TWIPS 1010
#define IDC_MM_LOGTWIPS 1011
#define IDC_LF_ITALIC 1012
#define IDC_LF_UNDER 1013
#define IDC_LF_STRIKE 1014
#define IDC_MATCH_ASPECT 1015
#define IDC_ADV_GRAPHICS 1016
#define IDC_LF_CHARSET 1017
#define IDC_CHARSET_HELP 1018
#define IDC_DEFAULT_QUALITY 1019
#define IDC_DRAFT_QUALITY 1020
#define IDC_PROOF_QUALITY 1021
#define IDC_LF_FACENAME 1022
#define IDC_OUT_DEFAULT 1023
#define IDC_OUT_STRING 1024
#define IDC_OUT_CHARACTER 1025
#define IDC_OUT_STROKE 1026
#define IDC_OUT_TT 1027
#define IDC_OUT_DEVICE 1028
#define IDC_OUT_RASTER 1029
#define IDC_OUT_TT_ONLY 1030
#define IDC_OUT_OUTLINE 1031
#define IDC_DEFAULT_PITCH 1032
#define IDC_FIXED_PITCH 1033
#define IDC_VARIABLE_PITCH 1034
#define IDC_FF_DONTCARE 1035
#define IDC_FF_ROMAN 1036
#define IDC_FF_SWISS 1037
#define IDC_FF_MODERN 1038
#define IDC_FF_SCRIPT 1039
#define IDC_FF_DECORATIVE 1040

#define IDC_TM_HEIGHT 1041
#define IDC_TM_ASCENT 1042
#define IDC_TM_DESCENT 1043
#define IDC_TM_INTLEAD 1044
#define IDC_TM_EXTLEAD 1045
#define IDC_TM_AVECHAR 1046
#define IDC_TM_MAXCHAR 1047
#define IDC_TM_WEIGHT 1048
#define IDC_TM_OVERHANG 1049
#define IDC_TM_DIGASPX 1050
#define IDC_TM_DIGASPY 1051
#define IDC_TM_FIRSTCHAR 1052
#define IDC_TM_LASTCHAR 1053
#define IDC_TM_DEFCHAR 1054
#define IDC_TM_BREAKCHAR 1055
#define IDC_TM_ITALIC 1056
#define IDC_TM_UNDER 1057
#define IDC_TM_STRUCK 1058
#define IDC_TM_VARIABLE 1059
#define IDC_TM_VECTOR 1060
#define IDC_TM_TRUETYPE 1061
#define IDC_TM_DEVICE 1062
#define IDC_TM_FAMILY 1063
#define IDC_TM_CHARSET 1064
#define IDC_TM_FACENAME 1065
#define IDM_DEVICE_SCREEN 40001
#define IDM_DEVICE_PRINTER 40002

Figure 17-2 shows a typical PICKFONT screen. The left side of the PICKFONT display is a modeless dialog box that
allows you to select most of the fields of the logical font structure. The right side of the dialog box shows the
results of GetTextMetrics after the font is selected in the device context. Below the dialog box, the program
displays a string of characters using this font. Because the modeless dialog box is so big, you're best off running
this program on a display size of 1024 by 768 or larger.

Figure 17-2. A typical PICKFONT display (Unicode version under Windows NT).

The modeless dialog box also contains some options that are not part of the logical font structure. These are the
mapping mode, including my Logical Twips mode; the Match Aspect option, which changes the way Windows

matches a logical font to a real font; and "Adv Grfx Mode," which sets the advanced graphics mode in Windows
NT. I'll discuss these in more detail shortly.

From the Device menu you can select the default printer rather than the video display. In this case, PICKFONT
selects the logical font into the printer device context and displays the TEXTMETRIC structure from the printer.
The program then selects the logical font into the window device context for displaying the sample string. Thus,
the text displayed by the program might use a different font (a screen font) than the font described by the list of
the TEXTMETRIC fields (which is a printer font).

Much of the PICKFONT program contains the logic necessary to maintain the dialog box, so I won't go into detail
on the workings of the program. Instead, I'll explain what you're doing when you create and select a logical font.

The Logical Font Structure

To create a logical font, you can call CreateFont , a function that has 14 arguments. Generally, it's easier to define
a structure of type LOGFONT,

LOGFONT lf ;

and then define the fields of this structure. When finish, you call CreateFontIndirect with a pointer to the
structure:

hFont = CreatFontIndirect (&lf) ;

You don't need to set each and every field of the LOGFONT structure. If your logical font structure is defined as a
static variable, all the fields will be initialized to 0. The 0 values are generally defaults. You can then use that
structure directly without any changes, and CreateFontIndirect will return a handle to a font. When you select that
font into the device context, you'll get a reasonable default font. You can be as specific or as vague as you want in
the LOGFONT structure, and Windows will attempt to match your requests with a real font.

As I discuss each field of the LOGFONT structure, you may want to test them out using the PICKFONT program. Be
sure to press Enter or the OK button when you want the program to use any fields you've entered.

The first two fields of the LOGFONT structure are in logical units, so they depend on the current setting of the
mapping mode:

lfHeight This is the desired height of the characters in logical units. You can set lfHeight to 0 for a default
size, or you can set it to a positive or negative value depending on what you want the field to represent. If
you set lfHeightW to a positive value, you're implying that you want this value to be a height that includes
internal leading (but not external leading). In effect, you're really requesting a font that is appropriate for a
line spacing of lfHeight . If you set lfHeight to a negative value, Windows treats the absolute value of that
number as a desired font height compatible with the point size. This is an important distinction: If you want
a font of a particular point size, convert that point size to logical units and set the lfHeight field to the
negative of that value. If lfHeight is positive, the tmHeight field of the resultant TEXTMETRIC structure will
be roughly that value. (It's sometimes a little off, probably because of rounding.) If lfHeight is negative, it
will roughly match the tmHeight field of the TEXTMETRIC structure less the tmInternalLeading field.

lfWidth This is the desired width of the characters in logical units. In most cases, you'll want to set this
value to 0 and let Windows choose a font based solely on the height. Using a nonzero value does not work
well with raster fonts, but with TrueType fonts you can easily use this to get a font that has wider or
slimmer characters than normal. This field corresponds to the tmAveCharWidth field of the TEXTMETRIC
structure. To use the lfWidth field intelligently, first set up the LOGFONT structure with a lfWidth field set to
0, create the logical font, select it into a device context, and then call GetTextMetrics . Get the
tmAveCharWidth field, adjust it up or down, probably by a percentage, and then create a second font using
that adjusted tmAveCharWidth value for lfWidth .

The next two fields specify the "escapement" and "orientation" of the text. In theory, lfEscapement allows
character strings to be written at an angle (but with the baseline of each character still parallel to the horizontal

axis) and lfOrientation allows individual characters to be tilted. These fields have never quite worked as
advertised, and even today they don't work as they should except in one case: you're using a TrueType font,
you're running Windows NT, and you call SetGraphicsMode with the CM_ADVANCED flag set. You can accomplish
the final requirement in PICKFONT by checking the "Adv Grfx Mode" check box.

To experiment with these fields in PICKFONT, be aware that the units are in tenths of a degree and indicate a
counterclockwise rotation. It's easy to enter values that cause the sample text string to disappear! For this reason,
use values between 0 and -600 (or so) or values between 3000 and 3600.

lfEscapement This is an angle in tenths of a degree, measured from the horizontal in a counterclockwise
direction. It specifies how the successive characters of a string are placed when you write text. Here are
some examples:

Value
Placement of Characters
0
Run from left to right (default)
900
Go up
1800
Run from right to left
2700
Go down

In Windows 98, this value sets both the escapement and orientation of TrueType text. In Windows NT, this
value also normally sets both the escapement and orientation of TrueType text, except when you call
SetGraphicsMode with the GM_ADVANCED argument, in which case it works as documented.

lfOrientation This is an angle in tenths of a degree, measured from the horizontal in a counterclockwise
direction. It affects the appearance of each individual character. Here are some examples:
Value
Character Appearance
0
Normal (default)
900
Tipped 90 degrees to the right
1800
Upside down
2700
Tipped 90 degrees to the left

This field has no effect except with a TrueType font under Windows NT with the graphics mode set to
GM_ADVANCED, in which case it works as documented.

The remaining 10 fields follow:

lfWeight This field allows you to specify boldface. The WINGDI.H header file defines a bunch of values to use
with this field:
Value
Identifier
0
FW_DONTCARE
100
FW_THIN
200
FW_EXTRALIGHT or FW_ULTRALIGHT
300
FW_LIGHT
400
FW_NORMAL or FW_REGULAR
500
FW_MEDIUM
600
FW_SEMIBOLD or FW_DEMIBOLD
700
FW_BOLD

800
FW_EXTRABOLD or FW_ULTRABOLD
900
FW_HEAVY or FW_BLACK

In reality, this table is much more ambitious than anything that was ever implemented. You can use 0 or
400 for normal and 700 for bold.

lfItalic When nonzero, this specifies italics. Windows can synthesize italics on GDI raster fonts. That is,
Windows simply shifts some rows of the character bitmap to mimic italic. With TrueType fonts, Windows
uses the actual italic or oblique version of the font.

lfUnderline When nonzero, this specifies underlining, which is always synthesized on GDI fonts. That is, the
Windows GDI simply draws a line under each character, including spaces.

lfStrikeOut When nonzero, this specifies that the font should have a line drawn through the characters. This
is also synthesized on GDI fonts.

lfCharSet This is a byte value that specifies the character set of the font. I'll have more to say about this
field in the upcoming section, "Character Sets and Unicode ". In PICKFONT, you can press the button with
the question mark to obtain a list of the character set codes you can use.

Notice that the lfCharSet field is the only field where a zero does not indicate a default value. A zero value is
equivalent to ANSI_CHARSET, the ANSI character set used in the United States and Western Europe. The
DEFAULT_CHARSET code, which equals 1, indicates the default character set for the machine on which the
program is running.

lfOutPrecision This specifies how Windows should attempt to match the desired font sizes and characteristics
with actual fonts. It's a rather complex field that you probably won't use much. Check the documentation of
the LOGFONT structure for more detail. Note that you can use the OUT_TT_ONLY_PRECIS flag to ensure
that you always get a TrueType font.

lfClipPrecision This field specifies how characters are to be clipped when they lie partially outside the clipping
region. This field is not used much and is not implemented in the PICKFONT program.

lfQuality This is an instruction to Windows regarding the matching of a desired font with a real font. It really
has meaning with raster fonts only and should not affect TrueType fonts. The DRAFT_QUALITY flag indicates
that you want GDI to scale raster fonts to achieve the size you want; the PROOF_QUALITY flag indicates no
scaling should be done. The PROOF_QUALITY fonts are the most attractive, but they might be smaller than
what you request. You'll probably use DEFAULT_QUALITY (or 0) in this field.

lfPitchAndFamily This byte is composed of two parts. You can use the C bitwise OR operator to combine two
identifiers for this field. The lowest two bits specify whether the font has a fixed pitch (that is, all characters
are the same width) or a variable pitch:

Value
Identifier
0
DEFAULT_PITCH
1
FIXED_PITCH
2
VARIABLE_PITCH

The upper half of this byte specifies the font family:

Value
Identifier
0x00
FW_DONTCARE
0x10
FF_ROMAN (variable widths, serifs)
0x20
FF_SWISS (variable widths, no serifs)
0x30

FF_MODERN (fixed pitch)
0x40
FF_SCRIPT (mimics handwriting)
0x50
FF_DECORATIVE

lfFaceName This is the actual text name of a typeface (such as Courier, Arial, or Times New Roman). This
field is a byte array that is LF_FACESIZE (or 32 characters) wide. If you want a TrueType italic or boldface
font, you can get it in one of two ways. You can use the complete typeface name (such as Times New
Roman Italic) in the lfFaceName field, or you can use the base name (that is, Times New Roman) and set
the lfItalic field.

The Font-Mapping Algorithm

After you set up the logical font structure, you call CreateFontIndirect to get a handle to the logical font. When
you call SelectObject to select that logical font into a device context, Windows finds the real font that most closely
matches the request. In doing so, it uses a "font-mapping algorithm." Certain fields of the structure are
considered more important than other fields.

The best way to get a feel for font mapping is to spend some time experimenting with PICKFONT. Here are some
general guidelines:

The lfCharSet (character set) field is very important. It used to be that if you specified OEM_CHARSET
(255), you'd get either one of the stroke fonts or the Terminal font because these were the only fonts that
used the OEM character sets. However, with the advent of TrueType "Big Fonts", a single TrueType font can
be mapped to different character sets, including the OEM character set. You'll need to use
SYMBOL_CHARSET (2) to get the Symbol font or the Wingdings font.

A pitch value of FIXED_PITCH in the lfPitchAndFamily field is important because you are in effect telling
Windows that you don't want to deal with a variable-width font.

The lfFaceName field is important because you're being specific about the typeface of the font that you
want. If you leave lfFaceName set to NULL and set the family value in the lfPitchAndFamily field to a value
other than FF_DONTCARE, that field becomes important because you're being specific about the font family.

For raster fonts, Windows will attempt to match the lfHeight value even if it needs to increase the size of a
smaller font. The height of the actual font will always be less than or equal to that of the requested font
unless there is no font small enough to satisfy your request. For stroke or TrueType fonts, Windows will
simply scale the font to the desired height.

You can prevent Windows from scaling a raster font by setting lfQuality to PROOF_QUALITY. By doing so,
you're telling Windows that the requested height of the font is less important than the appearance of the
font.

If you specify lfHeight and lfWeight values that are out of line for the particular aspect ratio of the display,
Windows can map to a raster font that is designed for a display or other device of a different aspect ratio.
This used to be a trick to get a thin or thick font. (This is not really necessary with TrueType, of course.) In
general, you'll probably want to avoid matching with a font for another device, which you can do in
PICKFONT by clicking the check box marked Match Aspect. If this box is checked, PICKFONT makes a call to
SetMapperFlags with a TRUE argument.

Finding Out About the Font

At the right side of the modeless dialog box in PICKFONT is the information obtained from the GetTextMetrics
function after the font has been selected in a device context. (Notice that you can use PICKFONT's device menu to
indicate whether you want this device context to be the screen or the default printer. The results might be
different because different fonts might be available on the printer.) At the bottom of the list in PICKFONT is the
typeface name available from GetTextFace .

All the size values that Windows copies into the TEXTMETRIC structure are in logical units except for the digitized
aspect ratios. The fields of the TEXTMETRIC structure are as follows:

tmHeight The height of the character in logical units. This is the value that should approximate the lfHeight
field specified in the LOGFONT structure, if that value was positive, in which case it represents the line
spacing of the font rather than the point size. If the lfHeight field of the LOGFONT structure was negative,
the tmHeight field minus the tmInternalLeading field should approximate the absolute value of the lfHeight
field.

tmAscent The vertical size of the character above the baseline in logical units.

tmDescent The vertical size of the character below the baseline in logical units.

tmInternalLeading A vertical size included in the tmHeight value that is usually occupied by diacritics on
some capital letters. Once again, you can calculate the point size of the font by subtracting the
tmInternalLeading value from the tmHeight value.

tmExternalLeading An additional amount of line spacing beyond tmHeight recommended by the designer of
the font for spacing successive lines of text.

tmAveCharWidth The average width of lowercase letters in the font.

tmMaxCharWidth The width of the widest character in logical units. For a fixed-pitch font, this value is the
same as tmAveCharWidth .

tmWeight The weight of the font ranging from 0 through 999. In reality, the field will be 400 for a normal
font and 700 for a boldface font.

tmOverhang The amount of extra width (in logical units) that Windows adds to a raster font character when
synthesizing italic or boldface. When a raster font is italicized, the tmAveCharWidth value remains
unchanged, because a string of italicized characters has the same overall width as the same string of normal
characters. For boldfacing, Windows must slightly expand the width of each character. For a boldface font,
the tmAveCharWidth value less the tmOverhang value equals the tmAveCharWidth value for the same font
without boldfacing.

tmDigitizedAspectX and tmDigitizedAspectY The aspect ratio for which the font is appropriate. These are
equivalent to values obtained from GetDeviceCaps with the LOGPIXELSX and LOGPIXELSY identifiers.

tmFirstChar The character code of the first character in the font.

tmLastChar The character code of the last character in the font. If the TEXTMETRIC structure is obtained by
a call to GetTextMetricsW (the wide character version of the function), then this value might be greater than
255.

tmDefaultChar The character code that Windows uses to display characters that are not in the font, usually
a rectangle.

tmBreakChar The character that Windows, and your programs, should use to determine word breaks when
justifying text. Unless you're using something bizarre (such as an EBCDIC font), this will be 32—the space
character.

tmItalic Nonzero for an italic font.

tmUnderlined Nonzero for an underlined font.

tmStruckOut Nonzero for a strikethrough font.

tmPitchAndFamily The four low-order bits are flags that indicate some characteristics about the font,
indicated by the following identifiers defined in WINGDI.H:

Value
Identifier
0x01
TMPF_FIXED_PITCH
0x02
TMPF_VECTOR
0x04
TMPF_TRUETYPE
0x08
TMPF_DEVICE

Despite the name of the TMPF_FIXED_PITCH flag, the lowest bit is 1 if the font characters have a variable
pitch. The second lowest bit (TMPF_VECTOR) will be 1 for TrueType fonts and fonts that use other scaleable
outline technologies, such as PostScript. The TMPF_DEVICE flag indicates a device font (that is, a font built
into a printer) rather than a GDI-based font.

The top four bits of this field indicate the font family and are the same values used in the LOGFONT
lfPitchAndFamily field.

tmCharSet The character set identifier.

Character Sets and Unicode

I discussed the concept of the Windows character set in Chapter 6 , where we had to deal with international issues
involving the keyboard. In the LOGFONT and TEXTMETRIC structures, the character set of the desired font (or the
actual font) is indicated by a one-byte number between 0 and 255. The character set identifiers are defined in
WINGDI.H like so:

#define ANSI_CHARSET 0
#define DEFAULT_CHARSET 1
#define SYMBOL_CHARSET 2
#define MAC_CHARSET 77
#define SHIFTJIS_CHARSET 128
#define HANGEUL_CHARSET 129
#define HANGUL_CHARSET 129
#define JOHAB_CHARSET 130
#define GB2312_CHARSET 134
#define CHINESEBIG5_CHARSET 136
#define GREEK_CHARSET 161
#define TURKISH_CHARSET 162
#define VIETNAMESE_CHARSET 163
#define HEBREW_CHARSET 177
#define ARABIC_CHARSET 178
#define BALTIC_CHARSET 186
#define RUSSIAN_CHARSET 204
#define THAI_CHARSET 222
#define EASTEUROPE_CHARSET 238
#define OEM_CHARSET 255

The character set is similar in concept to the code page, but the character set is specific to Windows and is always
less than or equal to 255.

As with all of the programs in this book, you can compile PICKFONT both with and without the UNICODE identifier
defined. As usual, on the companion disc, the two versions of the program are located in the DEBUG and RELEASE
directories, respectively.

Notice that the character string that PICKFONT displays towards the bottom of its window is longer in the Unicode
version of the program. In both versions, the character string begins with the character codes 0x40 through 0x45
and 0x60 through 0x65. Regardless of the character set you choose (except for SYMBOL_CHARSET), these
character codes will display as the first five uppercase and lowercase letters of the Latin alphabet (that is, A
through E and a through e).

When running the non-Unicode version of the PICKFONT program, the next 12 characters—the character codes
0xC0 through 0xC5 and 0xE0 through 0xE5—will be dependent upon the character set you choose. For
ANSI_CHARSET, these character codes correspond to accented versions of the uppercase and lowercase letter A .
For GREEK_CHARSET, these codes will correspond to letters of the Greek alphabet. For RUSSIAN_CHARSET, they
will be letters of the Cyrillic alphabet. Notice that the font might change when you select one of these character
sets. This is because a raster font might not have these characters, but a TrueType font probably will. You'll recall

that most TrueType fonts are "Big Fonts" and include characters for several different character sets. If you're
running a Far Eastern version of Windows, these characters will be interpreted as double-byte characters and will
display as ideographs rather than letters.

When running the Unicode version of PICKFONT under Windows NT, the codes 0xC0 through 0xC5 and 0xE0
through 0xE5 will always (except for SYMBOL_CHARSET) be accented versions of the uppercase and lowercase
letter A because that's how these codes are defined in Unicode. The program also displays character codes 0x0390
through 0x0395 and 0x03B0 through 0x03B5. Because of their definition in Unicode, these codes will always
correspond to letters of the Greek alphabet. Similarly the program displays character codes 0x0410 through
0x0415 and 0x0430 through 0x0435, which always correspond to letters in the Cyrillic alphabet. However, note
that these characters might not be present in a default font. You may have to select the GREEK_CHARSET or
RUSSIAN_CHARSET to get them. In this case, the character set ID in the LOGFONT structure doesn't change the
actual character set; the character set is always Unicode. The character set ID instead indicates that characters
from this character set are desired.

Now select HEBREW_CHARSET (code 177). The Hebrew alphabet is not included in Windows' usual Big Fonts, so
the operating system picks Lucida Sans Unicode, as you can verify at the bottom right corner of the modeless
dialog box.

PICKFONT also displays character codes 0x5000 through 0x5004, which correspond to a few of the many Chinese,
Japanese, and Korean ideographs. You'll see these if you're running a Far Eastern version of Windows, or have a
Unicode font that is more extensive than Lucida Sans Unicode such as the Bitstream CyberBit font. (Just to give
you an idea of the difference, Lucida Sans Unicode is roughly 300K while Bitstream CyberBit is about 13
megabytes.) If you have this font installed, Windows will select it if you want a character set not supported by
Lucida Sans Unicode, such as SHIFTJIS_CHARSET (Japanese), HANGUL_CHARSET (Korean), JOHAB_CHARSET
(Korean), GB2312_CHARSET (Simplified Chinese), or CHINESEBIG5_CHARSET (Traditional Chinese).

I'll present a program that lets you view all the characters of a Unicode font later in this chapter.

The EZFONT System

The introduction of TrueType—and its basis in traditional typography—has provided Windows with a solid
foundation for displaying text in its many varieties. However, some of the Windows font-selection functions are
based on older technology, in which raster fonts on the screen had to approximate printer device fonts. In the
next section, I'll describe font enumeration, which lets a program obtain a list of all the fonts available on the
video display or printer. However, the ChooseFont dialog box (to be discussed shortly) largely eliminates the
necessity for font enumeration by a program.

Because the standard TrueType fonts are available on every system, and because these fonts can be used for both
the screen and the printer, it's not necessary for a program to enumerate fonts in order to select one, or to blindly
request a certain font type that might need to be approximated. A program could simply and precisely select
TrueType fonts that it knows to exist on the system (unless, of course, the user has deliberately deleted them). It
really should be almost as simple as specifying the name of the font (probably one of the 13 names listed in this
book) and its point size. I call this approach EZFONT ("easy font"), and the two files you need are shown in Figure
17-3.

Figure 17-3 The EZFONT files

EZFONT.H

/*----------------------
 EZFONT.H header file
 ----------------------*/

HFONT EzCreateFont (HDC hdc, TCHAR * szFaceName, int iDeciPtHeight,
 int iDeciPtWidth, int iAttributes, BOOL fLogRes) ;

#define EZ_ATTR_BOLD 1
#define EZ_ATTR_ITALIC 2

#define EZ_ATTR_UNDERLINE 4
#define EZ_ATTR_STRIKEOUT 8

EZFONT.C

/*---------------------------------------
 EZFONT.C -- Easy Font Creation
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <math.h>
#include "ezfont.h"

HFONT EzCreateFont (HDC hdc, TCHAR * szFaceName, int iDeciPtHeight,
 int iDeciPtWidth, int iAttributes, BOOL fLogRes)
{
 FLOAT cxDpi, cyDpi ;
 HFONT hFont ;
 LOGFONT lf ;
 POINT pt ;
 TEXTMETRIC tm ;

 SaveDC (hdc) ;

 SetGraphicsMode (hdc, GM_ADVANCED) ;
 ModifyWorldTransform (hdc, NULL, MWT_IDENTITY) ;
 SetViewportOrgEx (hdc, 0, 0, NULL) ;
 SetWindowOrgEx (hdc, 0, 0, NULL) ;

 if (fLogRes)
 {
 cxDpi = (FLOAT) GetDeviceCaps (hdc, LOGPIXELSX) ;
 cyDpi = (FLOAT) GetDeviceCaps (hdc, LOGPIXELSY) ;
 }
 else
 {
 cxDpi = (FLOAT) (25.4 * GetDeviceCaps (hdc, HORZRES) /
 GetDeviceCaps (hdc, HORZSIZE)) ;

 cyDpi = (FLOAT) (25.4 * GetDeviceCaps (hdc, VERTRES) /
 GetDeviceCaps (hdc, VERTSIZE)) ;
 }

 pt.x = (int) (iDeciPtWidth * cxDpi / 72) ;
 pt.y = (int) (iDeciPtHeight * cyDpi / 72) ;

 DPtoLP (hdc, &pt, 1) ;
 lf.lfHeight = - (int) (fabs (pt.y) / 10.0 + 0.5) ;

 lf.lfWidth = 0 ;
 lf.lfEscapement = 0 ;
 lf.lfOrientation = 0 ;
 lf.lfWeight = iAttributes & EZ_ATTR_BOLD ? 700 : 0 ;
 lf.lfItalic = iAttributes & EZ_ATTR_ITALIC ? 1 : 0 ;
 lf.lfUnderline = iAttributes & EZ_ATTR_UNDERLINE ? 1 : 0 ;
 lf.lfStrikeOut = iAttributes & EZ_ATTR_STRIKEOUT ? 1 : 0 ;
 lf.lfCharSet = DEFAULT_CHARSET ;
 lf.lfOutPrecision = 0 ;
 lf.lfClipPrecision = 0 ;
 lf.lfQuality = 0 ;
 lf.lfPitchAndFamily = 0 ;

 lstrcpy (lf.lfFaceName, szFaceName) ;

 hFont = CreateFontIndirect (&lf) ;

 if (iDeciPtWidth != 0)
 {
 hFont = (HFONT) SelectObject (hdc, hFont) ;

 GetTextMetrics (hdc, &tm) ;

 DeleteObject (SelectObject (hdc, hFont)) ;

 lf.lfWidth = (int) (tm.tmAveCharWidth *
 fabs (pt.x) / fabs (pt.y) + 0.5) ;

 hFont = CreateFontIndirect (&lf) ;
 }

 RestoreDC (hdc, -1) ;
 return hFont ;
}

EZFONT.C has only one function, called EzCreateFont , which you can use like so:

hFont = EzCreateFont (hdc, szFaceName, iDeciPtHeight, iDeciPtWidth,
 iAttributes, fLogRes) ;

The function returns a handle to a font. The font can be selected in the device context by calling SelectObject .
You should then call GetTextMetrics or GetOutlineTextMetrics to determine the actual size of the font dimensions
in logical coordinates. Before your program terminates, you should delete any created fonts by calling
DeleteObject .

The szFaceName argument is any TrueType typeface name. The closer you stick to the standard fonts, the less
chance there is that the font won't exist on the system.

The third argument indicates the desired point size, but it's specified in "decipoints," which are 1/10ths of a point.
Thus, if you want a point size of 121/2, use a value of 125.

Normally, the fourth argument should be set to zero or made identical to the third argument. However, you can

create a TrueType font with a wider or narrower size by setting this argument to something different. This is
sometimes called the "em-width" of the font, and it describes the width of the font in points. Don't confuse this
with the average width of the font characters or anything like that. Back in the early days of typography, a capital
M was as wide as it was high. So, the concept of an "em-square" came into being, and that's the origin of the em-
width measurement. When the em-width equals the em-height (the point size of the font), the character widths
are as the font designer intended. A smaller or wider em-width lets you create slimmer or wider characters.

You can set the iAttributes argument to one or more of the following values defined in EZFONT.H:

EZ_ATTR_BOLD
EZ_ATTR_ITALIC
EZ_ATTR_UNDERLINE
EZ_ATTR_STRIKEOUT

You could use EZ_ATTR_BOLD or EZ_ATTR_ITALIC or include the style as part of the complete TrueType typeface
name.

Finally, you set the last argument to TRUE to base the font size on the "logical resolution" returned by the
GetDeviceCaps function using the LOGPIXELSX and LOGPIXELSY arguments. Otherwise, the font size is based on
the resolution as calculated from the HORZRES, HORZSIZE, VERTRES, and VERTSIZE values. This makes a
difference only for the video display under Windows NT.

The EzCreateFont function begins by making some adjustments that are recognized by Windows NT only. These
are the calls to the SetGraphicsMode and ModifyWorldTransform functions, which have no effect in Windows 98.
The Windows NT world transform should have the effect of modifying the visible size of the font, so the world
transform is set to the default—no transform—before the font size is calculated.

EzCreateFont basically sets the fields of a LOGFONT structure and calls CreateFontIndirect , which returns a
handle to the font. The big chore of the EzCreateFont function is to convert a point size to logical units for the
lfHeight field of the LOGFONT structure. It turns out that the point size must be converted to device units (pixels)
first and then to logical units. To perform the first step, the function uses GetDeviceCaps . Getting from pixels to
logical units would seem to involve a fairly simple call to the DPtoLP ("device point to logical point") function. But
in order for the DPtoLP conversion to work correctly, the same mapping mode must be in effect when you later
display text using the created font. This means that you should set your mapping mode before calling the
EzCreateFont function. In most cases, you use only one mapping mode for drawing on a particular area of the
window, so this requirement should not be a problem.

The EZTEST program in Figure 17-4 tests out the EZFONT files but not too rigorously. This program uses the
EZTEST files shown above and also includes FONTDEMO files that are used in some later programs in this book.

Figure 17-4 The EZTEST program

EZTEST.C

/*---------------------------------------
 EZTEST.C -- Test of EZFONT
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include "ezfont.h"

TCHAR szAppName [] = TEXT ("EZTest") ;
TCHAR szTitle [] = TEXT ("EZTest: Test of EZFONT") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 HFONT hFont ;
 int y, iPointSize ;
 LOGFONT lf ;
 TCHAR szBuffer [100] ;
 TEXTMETRIC tm ;

 // Set Logical Twips mapping mode

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1440, 1440, NULL) ;
 SetViewportExtEx (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;

 // Try some fonts

 y = 0 ;

 for (iPointSize = 80 ; iPointSize <= 120 ; iPointSize++)
 {
 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"),
 iPointSize, 0, 0, TRUE) ;

 GetObject (hFont, sizeof (LOGFONT), &lf) ;

 SelectObject (hdc, hFont) ;
 GetTextMetrics (hdc, &tm) ;
 TextOut (hdc, 0, y, szBuffer,
 wsprintf (szBuffer,
 TEXT ("Times New Roman font of %i.%i points, ")
 TEXT ("lf.lfHeight = %i, tm.tmHeight = %i"),
 iPointSize / 10, iPointSize % 10,
 lf.lfHeight, tm.tmHeight)) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 y += tm.tmHeight ;
 }
}

FONTDEMO.C

/*--
 FONTDEMO.C -- Font Demonstration Shell Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\EZTest\\EzFont.h"

#include "..\\EZTest\\resource.h"

extern void PaintRoutine (HWND, HDC, int, int) ;
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ;

extern TCHAR szAppName [] ;
extern TCHAR szTitle [] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 TCHAR szResource [] = TEXT ("FontDemo") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szResource ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Font Demo: Printing") } ;
 static int cxClient, cyClient ;
 static PRINTDLG pd = { sizeof (PRINTDLG) } ;
 BOOL fSuccess ;
 HDC hdc, hdcPrn ;
 int cxPage, cyPage ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_COMMAND:
 switch (wParam)
 {
 case IDM_PRINT:

 // Get printer DC

 pd.hwndOwner = hwnd ;
 pd.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&pd))
 return 0 ;

 if (NULL == (hdcPrn = pd.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain Printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Get size of printable area of page

 cxPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 cyPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 fSuccess = FALSE ;

 // Do the printer page

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 PaintRoutine (hwnd, hdcPrn, cxPage, cyPage) ;

 if (EndPage (hdcPrn) > 0)
 {
 fSuccess = TRUE ;
 EndDoc (hdcPrn) ;

 }
 }
 DeleteDC (hdcPrn) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!fSuccess)
 MessageBox (hwnd,
 TEXT ("Error encountered during printing"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_ABOUT:
 MessageBox (hwnd, TEXT ("Font Demonstration Program\n")
 TEXT ("(c) Charles Petzold, 1998"),
 szAppName, MB_ICONINFORMATION | MB_OK) ;
 return 0 ;
 }
 break ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 PaintRoutine (hwnd, hdc, cxClient, cyClient) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

FONTDEMO.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///

// Menu

FONTDEMO MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Print...", IDM_PRINT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_ABOUT
 END
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by FontDemo.rc

#define IDM_PRINT 40001
#define IDM_ABOUT 40002

The PaintRoutine function in EZTEST.C sets its mapping mode to Logical Twips and then creates Times New
Roman fonts with sizes ranging from 8 points to 12 points in 0.1 point intervals. The program output may be a
little disturbing when you first run it. Many of the lines of text use a font that is obviously the same size, and
indeed the tmHeight font on the TEXTMETRIC function reports these fonts as having the same height. What's
happening here is a result of the rasterization process. The discrete pixels of the display can't allow for every
possible size. However, the FONTDEMO shell program allows printing the output as well. Here you'll find that the
font sizes are more accurately differentiated.

Font Rotation

As you may have discovered by experimenting with PICKFONT, the lfOrientation and lfEscapement fields of the
LOGFONT structure allow you to rotate TrueType text. If you think about it, this shouldn't be much of a stretch for
GDI. Formulas to rotate coordinate points around an origin are well known.

Although EzCreateFont does not allow you to specify a rotation angle for the font, it's fairly easy to make an
adjustment after calling the function, as the FONTROT ("Font Rotate") program demonstrates. Figure 17-5 shows
the FONTROT.C file; the program also requires the EZFONT files and the FONTDEMO files shown earlier.

Figure 17-5. The FONTROT program.

FONTROT.C

/*--
 FONTROT.C -- Rotated Fonts
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\eztest\\ezfont.h"

TCHAR szAppName [] = TEXT ("FontRot") ;
TCHAR szTitle [] = TEXT ("FontRot: Rotated Fonts") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 static TCHAR szString [] = TEXT (" Rotation") ;
 HFONT hFont ;
 int i ;
 LOGFONT lf ;

 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"), 540, 0, 0, TRUE) ;
 GetObject (hFont, sizeof (LOGFONT), &lf) ;
 DeleteObject (hFont) ;

 SetBkMode (hdc, TRANSPARENT) ;
 SetTextAlign (hdc, TA_BASELINE) ;
 SetViewportOrgEx (hdc, cxArea / 2, cyArea / 2, NULL) ;

 for (i = 0 ; i < 12 ; i ++)
 {
 lf.lfEscapement = lf.lfOrientation = i * 300 ;
 SelectObject (hdc, CreateFontIndirect (&lf)) ;

 TextOut (hdc, 0, 0, szString, lstrlen (szString)) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 }
}

FONTROT calls EzCreateFont just to obtain the LOGFONT structure associated with a 54-point Times New Roman
font. The program then deletes that font. In the for loop, for each angle in 30-degree increments, a new font is
created and the text is displayed. The results are shown in Figure 17-6.

Figure 17-6. The FONTROT display.

If you're interested in a more generalized approach to graphics rotation and other linear transformation and you
know that your programs will be restricted to running under Windows NT, you can use the XFORM matrix and the
world transform functions.

Font Enumeration

Font enumeration is the process of obtaining from GDI a list of all fonts available on a device. A program can then
select one of these fonts or display them in a dialog box for selection by the user. I'll first briefly describe the
enumeration functions and then show how to use the ChooseFont function, which fortunately makes font
enumeration much less necessary for an application.

The Enumeration Functions

In the old days of Windows, font enumeration required use of the EnumFonts function:

EnumFonts (hdc, szTypeFace, EnumProc, pData) ;

A program could enumerate all fonts (by setting the second argument to NULL) or just those of a particular
typeface. The third argument is an enumeration callback function; the fourth argument is optional data passed to
that function. GDI calls the callback function once for each font in the system, passing to it both LOGFONT and
TEXTMETRIC structures that defined the font, plus some flags indicating the type of font.

The EnumFontFamilies function was designed to better enumerate TrueType fonts under Windows 3.1:

EnumFontFamilies (hdc, szFaceName, EnumProc, pData) ;

Generally, EnumFontFamilies is called first with a NULL second argument. The EnumProc callback function is called
once for each font family (such as Times New Roman). Then the application calls EnumFontFamilies again with
that typeface name and a different callback function. GDI calls the second callback function for each font in the
family (such as Times New Roman Italic). The callback function is passed an ENUMLOGFONT structure (which is a
LOGFONT structure plus a "full name" field and a "style" field containing, for example, the text name "Italic" or
"Bold") and a TEXTMETRIC structure for non-TrueType fonts and a NEWTEXTMETRIC structure for TrueType fonts.
The NEWTEXTMETRIC structure adds four fields to the information in the TEXTMETRIC structure.

The EnumFontFamiliesEx function is recommended for applications running under the 32-bit versions of Windows:

EnumFontFamiliesEx (hdc, &logfont, EnumProc, pData, dwFlags) ;

The second argument is a pointer to a LOGFONT structure for which the lfCharSet and lfFaceName fields indicate
what fonts are to be enumerated. The callback function gets information about each font in the form of
ENUMLOGFONTEX and NEWTEXTMETRICEX structures.

The ChooseFont Dialog

We had a little introduction to the ChooseFont common dialog box back in Chapter 11 . Now that we've
encountered font enumeration, the inner workings of the ChooseFont function should be obvious. The ChooseFont
function takes a pointer to a CHOOSEFONT structure as its only argument and displays a dialog box listing all the
fonts. On return from ChooseFont , a LOGFONT structure, which is part of the CHOOSEFONT structure, lets you
create a logical font.

The CHOSFONT program, shown in Figure 17-7, demonstrates using the ChooseFont function and displays the
fields of the LOGFONT structure that the function defines. The program also displays the same string of text as
PICKFONT.

Figure 17-7. The CHOSFONT program.

CHOSFONT.C

/*---
 CHOSFONT.C -- ChooseFont Demo
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("ChosFont") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("ChooseFont"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;

 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static CHOOSEFONT cf ;
 static int cyChar ;
 static LOGFONT lf ;
 static TCHAR szText[] = TEXT ("\x41\x42\x43\x44\x45 ")
 TEXT ("\x61\x62\x63\x64\x65 ")

 TEXT ("\xC0\xC1\xC2\xC3\xC4\xC5 ")
 TEXT ("\xE0\xE1\xE2\xE3\xE4\xE5 ")
#ifdef UNICODE
 TEXT ("\x0390\x0391\x0392\x0393\x0394\x0395 ")
 TEXT ("\x03B0\x03B1\x03B2\x03B3\x03B4\x03B5 ")

 TEXT ("\x0410\x0411\x0412\x0413\x0414\x0415 ")
 TEXT ("\x0430\x0431\x0432\x0433\x0434\x0435 ")

 TEXT ("\x5000\x5001\x5002\x5003\x5004")
#endif
 ;
 HDC hdc ;
 int y ;
 PAINTSTRUCT ps ;
 TCHAR szBuffer [64] ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:

 // Get text height

 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 // Initialize the LOGFONT structure

 GetObject (GetStockObject (SYSTEM_FONT), sizeof (lf), &lf) ;

 // Inialize the CHOOSEFONT structure
 cf.lStructSize = sizeof (CHOOSEFONT) ;
 cf.hwndOwner = hwnd ;
 cf.hDC = NULL ;
 cf.lpLogFont = &lf ;
 cf.iPointSize = 0 ;
 cf.Flags = CF_INITTOLOGFONTSTRUCT |
 CF_SCREENFONTS | CF_EFFECTS ;
 cf.rgbColors = 0 ;
 cf.lCustData = 0 ;
 cf.lpfnHook = NULL ;

 cf.lpTemplateName = NULL ;
 cf.hInstance = NULL ;
 cf.lpszStyle = NULL ;
 cf.nFontType = 0 ;
 cf.nSizeMin = 0 ;
 cf.nSizeMax = 0 ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FONT:
 if (ChooseFont (&cf))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 // Display sample text using selected font

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 GetTextMetrics (hdc, &tm) ;
 SetTextColor (hdc, cf.rgbColors) ;
 TextOut (hdc, 0, y = tm.tmExternalLeading, szText, lstrlen (szText)) ;

 // Display LOGFONT structure fields using system font

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 SetTextColor (hdc, 0) ;

 TextOut (hdc, 0, y += tm.tmHeight, szBuffer,
 wsprintf (szBuffer, TEXT ("lfHeight = %i"), lf.lfHeight)) ;
 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfWidth = %i"), lf.lfWidth)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfEscapement = %i"),
 lf.lfEscapement)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfOrientation = %i"),
 lf.lfOrientation)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfWeight = %i"), lf.lfWeight)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfItalic = %i"), lf.lfItalic)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,

 wsprintf (szBuffer, TEXT ("lfUnderline = %i"), lf.lfUnderline)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfStrikeOut = %i"), lf.lfStrikeOut)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfCharSet = %i"), lf.lfCharSet)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfOutPrecision = %i"),
 lf.lfOutPrecision)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfClipPrecision = %i"),
 lf.lfClipPrecision)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfQuality = %i"), lf.lfQuality)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfPitchAndFamily = 0x%02X"),
 lf.lfPitchAndFamily)) ;

 TextOut (hdc, 0, y += cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("lfFaceName = %s"), lf.lfFaceName)) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;
 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

CHOSFONT.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

CHOSFONT MENU DISCARDABLE
BEGIN
 MENUITEM "&Font!", IDM_FONT
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by ChosFont.rc

#define IDM_FONT 40001

As usual with the common dialog boxes, a Flags field in the CHOOSEFONT structure lets you pick lots of options.
The CF_INITLOGFONTSTRUCT flag that CHOSFONT specifies causes Windows to initialize the dialog box selection
based on the LOGFONT structure passed to the ChooseFont structure. You can use flags to specify TrueType fonts
only (CF_TTONLY) or fixed-pitch fonts only (CF_FIXEDPITCHONLY) or no symbol fonts (CF_SCRIPTSONLY). You
can display screen fonts (CF_SCREENFONTS), printer fonts (CF_PRINTERFONTS), or both (CF_BOTH). In the latter
two cases, the hDC field of the CHOOSEFONT structure must reference a printer device context. The CHOSFONT
program uses the CF_SCREENFONTS flag.

The CF_EFFECTS flag (the third flag that the CHOSFONT program uses) forces the dialog box to include check
boxes for underlining and strikeout and also allows the selection of a text color. It's not hard to implement text
color in your code, so try it.

Notice the Script field in the Font dialog displayed by ChooseFont . This lets the user select a character set
available for the particular font; the appropriate character set ID is returned in the LOGFONT structure.

The ChooseFont function uses the logical inch to calculate the lfHeight field from the point size. For example,
suppose you have Small Fonts installed from the Display Properties dialog. That means that GetDeviceCaps with a
video display device context and the argument LOGPIXELSY returns 96. If you use ChooseFont to choose a 72-
point Times Roman Font, you really want a 1-inch tall font. When ChooseFont returns, the lfHeight field of the
LOGFONT structure will equal -96 (note the minus sign), meaning that the point size of the font is equivalent to 96
pixels, or one logical inch.

Good. That's probably what we want. But keep the following in mind:

If you set one of the metric mapping modes under Windows NT, logical coordinates will be inconsistent with
the physical size of the font. For example, if you draw a ruler next to the text based on a metric mapping
mode, it will be not match the font. You should use the Logical Twips mapping mode described above to
draw graphics that are consistent with the font size.

If you're going to be using any non-MM_TEXT mapping mode, make sure the mapping mode is not set when
you select the font into the device context and display the text. Otherwise, GDI will interpret the lfHeight
field of the LOGFONT structure as being expressed in logical coordinates.

The lfHeight field of the LOGFONT structure set by ChooseFont is always in pixels, and it is only appropriate
for the video display. When you create a font for a printer device context, you must adjust the lfHeight
value. The ChooseFont function uses the hDC field of the CHOOSEFONT structure only for obtaining printer
fonts to be listed in the dialog box. This device context handle does not affect the value of lfHeight .

Fortunately, the CHOOSEFONT structure includes an iPointSize field that provides the size of the selected font in
units of 1/10 of a point. Regardless of the device context and mapping mode, you can always convert this field to
a logical size and use that for the lfHeight field. The appropriate code can be found in the EZFONT.C file. You can
probably simplify it based on your needs.

Another program that uses ChooseFont is UNICHARS, shown in Figure 17-8. This program lets you view all the
characters of a font and is particularly useful for studying the Lucida Sans Unicode font, which it uses by default
for display, or the Bitstream CyberBit font. UNICHARS always uses the TextOutW function for displaying the font
characters, so you can run it under Windows NT or Windows 98.

Figure 17-8. The UNICHARS program.

UNICHARS.C

/*---
 UNICHARS.C -- Displays 16-bit character codes
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("UniChars") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requies Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Unicode Characters"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;

 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static CHOOSEFONT cf ;
 static int iPage ;
 static LOGFONT lf ;
 HDC hdc ;
 int cxChar, cyChar, x, y, i, cxLabels ;
 PAINTSTRUCT ps ;
 SIZE size ;
 TCHAR szBuffer [8] ;
 TEXTMETRIC tm ;
 WCHAR ch ;

 switch (message)
 {
 case WM_CREATE:
 hdc = GetDC (hwnd) ;
 lf.lfHeight = - GetDeviceCaps (hdc, LOGPIXELSY) / 6 ; // 12 points
 lstrcpy (lf.lfFaceName, TEXT ("Lucida Sans Unicode")) ;
 ReleaseDC (hwnd, hdc) ;

 cf.lStructSize = sizeof (CHOOSEFONT) ;
 cf.hwndOwner = hwnd ;
 cf.lpLogFont = &lf ;
 cf.Flags = CF_INITTOLOGFONTSTRUCT | CF_SCREENFONTS ;

 SetScrollRange (hwnd, SB_VERT, 0, 255, FALSE) ;
 SetScrollPos (hwnd, SB_VERT, iPage, TRUE) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FONT:
 if (ChooseFont (&cf))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 return 0 ;
 case WM_VSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_LINEUP: iPage -= 1 ; break ;
 case SB_LINEDOWN: iPage += 1 ; break ;
 case SB_PAGEUP: iPage -= 16 ; break ;
 case SB_PAGEDOWN: iPage += 16 ; break ;
 case SB_THUMBPOSITION: iPage = HIWORD (wParam) ; break ;

 default:

 return 0 ;
 }

 iPage = max (0, min (iPage, 255)) ;

 SetScrollPos (hwnd, SB_VERT, iPage, TRUE) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;

 GetTextMetrics (hdc, &tm) ;
 cxChar = tm.tmMaxCharWidth ;
 cyChar = tm.tmHeight + tm.tmExternalLeading ;

 cxLabels = 0 ;

 for (i = 0 ; i < 16 ; i++)
 {
 wsprintf (szBuffer, TEXT (" 000%1X: "), i) ;
 GetTextExtentPoint (hdc, szBuffer, 7, &size) ;

 cxLabels = max (cxLabels, size.cx) ;
 }

 for (y = 0 ; y < 16 ; y++)
 {
 wsprintf (szBuffer, TEXT (" %03X_: "), 16 * iPage + y) ;
 TextOut (hdc, 0, y * cyChar, szBuffer, 7) ;

 for (x = 0 ; x < 16 ; x++)
 {
 ch = (WCHAR) (256 * iPage + 16 * y + x) ;
 TextOutW (hdc, x * cxChar + cxLabels,
 y * cyChar, &ch, 1) ;
 }
 }

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

UNICHARS.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

UNICHARS MENU DISCARDABLE
BEGIN
 MENUITEM "&Font!", IDM_FONT
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by Unichars.rc

#define IDM_FONT 40001

Paragraph Formatting

Equipped with the ability to select and create logical fonts, it's time to try our hand at text formatting. The process
involves placing each line of text within margins in one of four ways: aligned on the left margin, aligned on the
right margin, centered between the margins, or justified—that is, running from one margin to the other, with
equal spaces between the words. For the first three jobs, you can use the DrawText function with the
DT_WORDBREAK argument, but this approach has limitations. For instance, you can't determine what part of the
text DrawText was able to fit within the rectangle. DrawText is convenient for some simple jobs, but for more
complex formatting tasks, you'll probably want to employ TextOut .

Simple Text Formatting

One of the most useful functions for working with text is GetTextExtentPoint32 . (This is a function whose name
reveals some changes since the early versions of Windows.) The function tells you the width and height of a
character string based on the current font selected in the device context:

GetTextExtentPoint32 (hdc, pString, iCount, &size) ;

The width and height of the text in logical units are returned in the cx and cy fields of the SIZE structure. I'll begin
with an example using one line of text. Let's say that you have selected a font into your device context and now
want to write the text:

TCHAR * szText [] = TEXT ("Hello, how are you?") ;

You want the text to start at the vertical coordinate yStart , within margins set by the coordinates xLeft and xRight
. Your job is to calculate the xStart value for the horizontal coordinate where the text begins.

This job would be considerably easier if the text were displayed using a fixed-pitch font, but that's not the general
case. First you get the text extents of the string:

GetTextExtentPoint32 (hdc, szText, lstrlen (szText), &size) ;

If size.cx is larger than (xRight - xLeft) , the line is too long to fit within the margins. Let's assume it can fit.

To align the text on the left margin, you simply set xStart equal to xLeft and then write the text:

TextOut (hdc, xStart, yStart, szText, lstrlen (szText)) ;

This is easy. You can now add the size.cy to yStart , and you're ready to write the next line of text.

To align the text on the right margin, you use this formula for xStart :

xStart = xRight - size.cx ;

To center the text between the left and right margins, use this formula:

xStart = (xLeft + xRight - size.cx) / 2 ;

Now here's the tough job—to justify the text within the left and right margins. The distance between the margins
is (xRight - xLeft) . Without justification, the text is size.cx wide. The difference between these two values, which
is

xRight - xLeft - size.cx

must be equally distributed among the three space characters in the character string. It sounds like a terrible job,
but it's not too bad. To do it, you call

SetTextJustification (hdc, xRight - xLeft - size.cx, 3)

The second argument is the amount of space that must be distributed among the space characters in the
character string. The third argument is the number of space characters, in this case 3. Now set xStart equal to
xLeft , and write the text with TextOut :

TextOut (hdc, xStart, yStart, szText, lstrlen (szText)) ;

The text will be justified between the xLeft and xRight margins.

Whenever you call SetTextJustification , it accumulates an error term if the amount of space doesn't distribute
evenly among the space characters. This error term will affect subsequent GetTextExtentPoint32 calls. Each time
you start a new line, you should clear out the error term by calling

SetTextJustification (hdc, 0, 0) ;

Working with Paragraphs

If you're working with a whole paragraph, you have to start at the beginning and scan through the string looking
for space characters. Every time you encounter a space character (or another character that can be used to break
the line), you call GetTextExtentPoint32 to determine whether the text still fits between the left and right margins.
When the text exceeds the space allowed for it, you backtrack to the previous blank. Now you have determined
the character string for the line. If you want to justify the line, call SetTextJustification and TextOut , clear out the
error term, and proceed to the next line.

The JUSTIFY1 program, shown in Figure 17-9, does this job for the first paragraph of Mark Twain's The Adventures
of Huckleberry Finn . You can pick the font you want from a dialog box, and you can also use a menu selection to
change the alignment (left, right, centered, or justified). Figure 17-10 shows a typical JUSTIFY1 display.

Figure 17-9. The JUSTIFY1 program.

JUSTIFY1.C

/*---
 JUSTIFY1.C -- Justified Type Program #1
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("Justify1") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Justified Type #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

 return msg.wParam ;
}

void DrawRuler (HDC hdc, RECT * prc)
{
 static int iRuleSize [16] = { 360, 72, 144, 72, 216, 72, 144, 72,
 288, 72, 144, 72, 216, 72, 144, 72 } ;
 int i, j ;
 POINT ptClient ;

 SaveDC (hdc) ;

 // Set Logical Twips mapping mode

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1440, 1440, NULL) ;
 SetViewportExtEx (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;

 // Move the origin to a half inch from upper left

 SetWindowOrgEx (hdc, -720, -720, NULL) ;

 // Find the right margin (quarter inch from right)

 ptClient.x = prc->right ;
 ptClient.y = prc->bottom ;
 DPtoLP (hdc, &ptClient, 1) ;
 ptClient.x -= 360 ;

 // Draw the rulers

 MoveToEx (hdc, 0, -360, NULL) ;
 LineTo (hdc, ptClient.x, -360) ;
 MoveToEx (hdc, -360, 0, NULL) ;
 LineTo (hdc, -360, ptClient.y) ;

 for (i = 0, j = 0 ; i <= ptClient.x ; i += 1440 / 16, j++)
 {
 MoveToEx (hdc, i, -360, NULL) ;
 LineTo (hdc, i, -360 - iRuleSize [j % 16]) ;
 }

 for (i = 0, j = 0 ; i <= ptClient.y ; i += 1440 / 16, j++)
 {
 MoveToEx (hdc, -360, i, NULL) ;
 LineTo (hdc, -360 - iRuleSize [j % 16], i) ;
 }

 RestoreDC (hdc, -1) ;
}
void Justify (HDC hdc, PTSTR pText, RECT * prc, int iAlign)
{

 int xStart, yStart, cSpaceChars ;
 PTSTR pBegin, pEnd ;
 SIZE size ;

 yStart = prc->top ;
 do // for each text line
 {
 cSpaceChars = 0 ; // initialize number of spaces in line

 while (*pText == ` `) // skip over leading spaces
 pText++ ;

 pBegin = pText ; // set pointer to char at beginning of line

 do // until the line is known
 {
 pEnd = pText ; // set pointer to char at end of line

 // skip to next space

 while (*pText != `\0' && *pText++ != ` `) ;

 if (*pText == `\0')
 break ;

 // after each space encountered, calculate extents

 cSpaceChars++ ;
 GetTextExtentPoint32(hdc, pBegin, pText - pBegin - 1, &size) ;
 }
 while (size.cx < (prc->right - prc->left)) ;

 cSpaceChars-- ; // discount last space at end of line

 while (*(pEnd - 1) == ` `) // eliminate trailing spaces
 {
 pEnd-- ;
 cSpaceChars-- ;
 }

 // if end of text and no space characters, set pEnd to end

 if (*pText == `\0' || cSpaceChars <= 0)
 pEnd = pText ;
 GetTextExtentPoint32 (hdc, pBegin, pEnd - pBegin, &size) ;

 switch (iAlign) // use alignment for xStart
 {
 case IDM_ALIGN_LEFT:
 xStart = prc->left ;
 break ;

 case IDM_ALIGN_RIGHT:

 xStart = prc->right - size.cx ;
 break ;

 case IDM_ALIGN_CENTER:
 xStart = (prc->right + prc->left - size.cx) / 2 ;
 break ;

 case IDM_ALIGN_JUSTIFIED:
 if (*pText != `\0' && cSpaceChars > 0)
 SetTextJustification (hdc,
 prc->right - prc->left - size.cx,
 cSpaceChars) ;
 xStart = prc->left ;
 break ;
 }
 // display the text

 TextOut (hdc, xStart, yStart, pBegin, pEnd - pBegin) ;

 // prepare for next line

 SetTextJustification (hdc, 0, 0) ;
 yStart += size.cy ;
 pText = pEnd ;
 }
 while (*pText && yStart < prc->bottom - size.cy) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static CHOOSEFONT cf ;
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Justify1: Printing") } ;
 static int iAlign = IDM_ALIGN_LEFT ;
 static LOGFONT lf ;
 static PRINTDLG pd ;
 static TCHAR szText[] = {
 TEXT ("You don't know about me, without you ")
 TEXT ("have read a book by the name of \"The ")
 TEXT ("Adventures of Tom Sawyer,\" but that ")
 TEXT ("ain't no matter. That book was made by ")
 TEXT ("Mr. Mark Twain, and he told the truth, ")
 TEXT ("mainly. There was things which he ")
 TEXT ("stretched, but mainly he told the truth. ")
 TEXT ("That is nothing. I never seen anybody ")
 TEXT ("but lied, one time or another, without ")
 TEXT ("it was Aunt Polly, or the widow, or ")
 TEXT ("maybe Mary. Aunt Polly -- Tom's Aunt ")
 TEXT ("Polly, she is -- and Mary, and the Widow ")
 TEXT ("Douglas, is all told about in that book ")
 TEXT ("-- which is mostly a true book; with ")
 TEXT ("some stretchers, as I said before.") } ;
 BOOL fSuccess ;
 HDC hdc, hdcPrn ;

 HMENU hMenu ;
 int iSavePointSize ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 // Initialize the CHOOSEFONT structure

 GetObject (GetStockObject (SYSTEM_FONT), sizeof (lf), &lf) ;

 cf.lStructSize = sizeof (CHOOSEFONT) ;
 cf.hwndOwner = hwnd ;
 cf.hDC = NULL ;
 cf.lpLogFont = &lf ;
 cf.iPointSize = 0 ;
 cf.Flags = CF_INITTOLOGFONTSTRUCT | CF_SCREENFONTS |
 CF_EFFECTS ;
 cf.rgbColors = 0 ;
 cf.lCustData = 0 ;
 cf.lpfnHook = NULL ;
 cf.lpTemplateName = NULL ;
 cf.hInstance = NULL ;
 cf.lpszStyle = NULL ;
 cf.nFontType = 0 ;
 cf.nSizeMin = 0 ;
 cf.nSizeMax = 0 ;

 return 0 ;
 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_PRINT:
 // Get printer DC

 pd.lStructSize = sizeof (PRINTDLG) ;
 pd.hwndOwner = hwnd ;
 pd.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&pd))
 return 0 ;

 if (NULL == (hdcPrn = pd.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain Printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Set margins of 1 inch

 rect.left = GetDeviceCaps (hdcPrn, LOGPIXELSX) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETX) ;

 rect.top = GetDeviceCaps (hdcPrn, LOGPIXELSY) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETY) ;

 rect.right = GetDeviceCaps (hdcPrn, PHYSICALWIDTH) -
 GetDeviceCaps (hdcPrn, LOGPIXELSX) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETX) ;

 rect.bottom = GetDeviceCaps (hdcPrn, PHYSICALHEIGHT) -
 GetDeviceCaps (hdcPrn, LOGPIXELSY) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETY) ;

 // Display text on printer

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 fSuccess = FALSE ;
 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 // Select font using adjusted lfHeight

 iSavePointSize = lf.lfHeight ;
 lf.lfHeight = -(GetDeviceCaps (hdcPrn, LOGPIXELSY) *
 cf.iPointSize) / 720 ;

 SelectObject (hdcPrn, CreateFontIndirect (&lf)) ;
 lf.lfHeight = iSavePointSize ;

 // Set text color

 SetTextColor (hdcPrn, cf.rgbColors) ;

 // Display text

 Justify (hdcPrn, szText, &rect, iAlign) ;

 if (EndPage (hdcPrn) > 0)
 {
 fSuccess = TRUE ;
 EndDoc (hdcPrn) ;
 }
 }
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 DeleteDC (hdcPrn) ;

 if (!fSuccess)
 MessageBox (hwnd, TEXT ("Could not print text"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;

 return 0 ;

 case IDM_FONT:
 if (ChooseFont (&cf))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_ALIGN_LEFT:
 case IDM_ALIGN_RIGHT:
 case IDM_ALIGN_CENTER:
 case IDM_ALIGN_JUSTIFIED:
 CheckMenuItem (hMenu, iAlign, MF_UNCHECKED) ;
 iAlign = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iAlign, MF_CHECKED) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 DrawRuler (hdc, &rect) ;

 rect.left += GetDeviceCaps (hdc, LOGPIXELSX) / 2 ;
 rect.top += GetDeviceCaps (hdc, LOGPIXELSY) / 2 ;
 rect.right -= GetDeviceCaps (hdc, LOGPIXELSX) / 4 ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 SetTextColor (hdc, cf.rgbColors) ;

 Justify (hdc, szText, &rect, iAlign) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

JUSTIFY1.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

JUSTIFY1 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Print", IDM_FILE_PRINT
 END
 POPUP "&Font"
 BEGIN
 MENUITEM "&Font...", IDM_FONT
 END
 POPUP "&Align"
 BEGIN
 MENUITEM "&Left", IDM_ALIGN_LEFT, CHECKED
 MENUITEM "&Right", IDM_ALIGN_RIGHT
 MENUITEM "&Centered", IDM_ALIGN_CENTER
 MENUITEM "&Justified", IDM_ALIGN_JUSTIFIED
 END
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by Justify1.rc

#define IDM_FILE_PRINT 40001
#define IDM_FONT 40002
#define IDM_ALIGN_LEFT 40003
#define IDM_ALIGN_RIGHT 40004
#define IDM_ALIGN_CENTER 40005
#define IDM_ALIGN_JUSTIFIED 40006

JUSTIFY1 displays a ruler (in logical inches, of course) across the top and down the left side of the client area. The
DrawRuler function draws the ruler. A rectangle structure defines the area in which the text must be justified.

The bulk of the work involved with formatting this text is in the Justify function. The function starts searching for
blanks at the beginning of the text and uses GetTextExtentPoint32 to measure each line. When the length of the
line exceeds the width of the display area, JUSTIFY1 returns to the previous space and uses the line up to that
point. Depending on the value of the iAlign constant, the line is left-aligned, right-aligned, centered, or justified.

JUSTIFY1 isn't perfect. It doesn't have any logic for hyphens, for example. Also, the justification logic falls apart
when there are fewer than two words in each line. Even if we solve this problem, which isn't a particularly difficult
one, the program still won't work properly when a single word is too long to fit within the left and right margins.
Of course, matters can become even more complex when you start working with programs that can use multiple
fonts on the same line (as Windows word processors do with apparent ease). But nobody ever claimed this stuff
was easy. It's just easier than if you were doing all the work yourself.

Figure 17-10. A typical JUSTIFY1 display.

Previewing Printer Output

Some text is not strictly for viewing on the screen. Some text is for printing. And often in that case, the screen
preview of the text must match the formatting of the printer output precisely. It's not enough to show the same
fonts and sizes and character formatting. With TrueType, that's a snap. What's also needed is for each line in a
paragraph to break at the same place. This is the hard part of WYSIWYG.

JUSTIFY1 includes a Print option, but what it does is simply set one-inch margins at the top, left, and right sides of
the page. Thus, the formatting is completely independent of the screen display. Here's an interesting exercise:
change a few lines in JUSTIFY1 so that both the screen and the printer logic are based on a six-inch formatting
rectangle. To do this, change the definitions of rect.right in both the WM_PAINT and Print command logic. In the
WM_PAINT logic, the statement is

rect.right = rect.left + 6 * GetDeviceCaps (hdc, LOGPIXELSX) ;

In the Print command logic, the statement is

rect.right = rect.left + 6 * GetDeviceCaps (hdcPrn, LOGPIXELSX) ;

If you select a TrueType font, the line breaks on the screen should be the same as on the printer output.

But they aren't. Even though the two devices are using the same font in the same point size and displaying text in
the same formatting rectangle, the different display resolutions and rounding errors cause the line breaks to occur
at different places. Obviously, a more sophisticated approach is needed for the screen previewing of printer
output.

A stab at such an approach is demonstrated by the JUSTIFY2 program shown in Figure 17-11. The code in
JUSTIFY2 is based on a program called TTJUST ("TrueType Justify") written by Microsoft's David Weise, which was
in turn based on a version of the JUSTIFY1 program in an earlier edition of this book. To symbolize the increased
complexity of this program, the Mark Twain excerpt has been replaced with the first paragraph from Herman
Melville's Moby-Dick .

Figure 17-11. The JUSTIFY2 program.

JUSTIFY2.C

/*---
 JUSTIFY2.C -- Justified Type Program #2
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

#define OUTWIDTH 6 // Width of formatted output in inches
#define LASTCHAR 127 // Last character code used in text

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("Justify2") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Justified Type #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void DrawRuler (HDC hdc, RECT * prc)
{
 static int iRuleSize [16] = { 360, 72, 144, 72, 216, 72, 144, 72,
 288, 72, 144, 72, 216, 72, 144, 72 } ;
 int i, j ;
 POINT ptClient ;

 SaveDC (hdc) ;

 // Set Logical Twips mapping mode

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1440, 1440, NULL) ;
 SetViewportExtEx (hdc, GetDeviceCaps (hdc, LOGPIXELSX),
 GetDeviceCaps (hdc, LOGPIXELSY), NULL) ;

 // Move the origin to a half inch from upper left

 SetWindowOrgEx (hdc, -720, -720, NULL) ;

 // Find the right margin (quarter inch from right)

 ptClient.x = prc->right ;
 ptClient.y = prc->bottom ;
 DPtoLP (hdc, &ptClient, 1) ;
 ptClient.x -= 360 ;

 // Draw the rulers

 MoveToEx (hdc, 0, -360, NULL) ;
 LineTo (hdc, OUTWIDTH * 1440, -360) ;
 MoveToEx (hdc, -360, 0, NULL) ;
 LineTo (hdc, -360, ptClient.y) ;

 for (i = 0, j = 0 ; i <= ptClient.x && i <= OUTWIDTH * 1440 ;
 i += 1440 / 16, j++)
 {
 MoveToEx (hdc, i, -360, NULL) ;
 LineTo (hdc, i, -360 - iRuleSize [j % 16]) ;
 }

 for (i = 0, j = 0 ; i <= ptClient.y ; i += 1440 / 16, j++)
 {
 MoveToEx (hdc, -360, i, NULL) ;
 LineTo (hdc, -360 - iRuleSize [j % 16], i) ;

 }

 RestoreDC (hdc, -1) ;
}

/*--
 GetCharDesignWidths: Gets character widths for font as large as the
 original design size
 --*/

UINT GetCharDesignWidths (HDC hdc, UINT uFirst, UINT uLast, int * piWidths)
{
 HFONT hFont, hFontDesign ;
 LOGFONT lf ;
 OUTLINETEXTMETRIC otm ;

 hFont = GetCurrentObject (hdc, OBJ_FONT) ;
 GetObject (hFont, sizeof (LOGFONT), &lf) ;

 // Get outline text metrics (we'll only be using a field that is
 // independent of the DC the font is selected into)

 otm.otmSize = sizeof (OUTLINETEXTMETRIC) ;
 GetOutlineTextMetrics (hdc, sizeof (OUTLINETEXTMETRIC), &otm) ;
 // Create a new font based on the design size

 lf.lfHeight = - (int) otm.otmEMSquare ;
 lf.lfWidth = 0 ;
 hFontDesign = CreateFontIndirect (&lf) ;

 // Select the font into the DC and get the character widths

 SaveDC (hdc) ;
 SetMapMode (hdc, MM_TEXT) ;
 SelectObject (hdc, hFontDesign) ;

 GetCharWidth (hdc, uFirst, uLast, piWidths) ;
 SelectObject (hdc, hFont) ;
 RestoreDC (hdc, -1) ;

 // Clean up

 DeleteObject (hFontDesign) ;

 return otm.otmEMSquare ;
}

/*---
 GetScaledWidths: Gets floating point character widths for selected
 font size
 ---*/

void GetScaledWidths (HDC hdc, double * pdWidths)

{
 double dScale ;
 HFONT hFont ;
 int aiDesignWidths [LASTCHAR + 1] ;
 int i ;
 LOGFONT lf ;
 UINT uEMSquare ;

 // Call function above

 uEMSquare = GetCharDesignWidths (hdc, 0, LASTCHAR, aiDesignWidths) ;

 // Get LOGFONT for current font in device context

 hFont = GetCurrentObject (hdc, OBJ_FONT) ;
 GetObject (hFont, sizeof (LOGFONT), &lf) ;
 // Scale the widths and store as floating point values

 dScale = (double) -lf.lfHeight / (double) uEMSquare ;

 for (i = 0 ; i <= LASTCHAR ; i++)
 pdWidths[i] = dScale * aiDesignWidths[i] ;
}

/*--
 GetTextExtentFloat: Calculates text width in floating point
 --*/

double GetTextExtentFloat (double * pdWidths, PTSTR psText, int iCount)
{
 double dWidth = 0 ;
 int i ;

 for (i = 0 ; i < iCount ; i++)
 dWidth += pdWidths [psText[i]] ;

 return dWidth ;
}

/*--
 Justify: Based on design units for screen/printer compatibility
 --*/

void Justify (HDC hdc, PTSTR pText, RECT * prc, int iAlign)
{
 double dWidth, adWidths[LASTCHAR + 1] ;
 int xStart, yStart, cSpaceChars ;
 PTSTR pBegin, pEnd ;
 SIZE size ;

 // Fill the adWidths array with floating point character widths

 GetScaledWidths (hdc, adWidths) ;

 // Call this function just once to get size.cy (font height)

 GetTextExtentPoint32(hdc, pText, 1, &size) ;

 yStart = prc->top ;
 do // for each text line
 {
 cSpaceChars = 0 ; // initialize number of spaces in line
 while (*pText == ` `) // skip over leading spaces
 pText++ ;

 pBegin = pText ; // set pointer to char at beginning of line

 do // until the line is known
 {
 pEnd = pText ; // set pointer to char at end of line

 // skip to next space

 while (*pText != `\0' && *pText++ != ` `) ;

 if (*pText == `\0')
 break ;

 // after each space encountered, calculate extents

 cSpaceChars++ ;
 dWidth = GetTextExtentFloat (adWidths, pBegin,
 pText - pBegin - 1) ;
 }
 while (dWidth < (double) (prc->right - prc->left)) ;

 cSpaceChars-- ; // discount last space at end of line

 while (*(pEnd - 1) == ` `) // eliminate trailing spaces
 {
 pEnd-- ;
 cSpaceChars-- ;
 }

 // if end of text and no space characters, set pEnd to end

 if (*pText == `\0' || cSpaceChars <= 0)
 pEnd = pText ;

 dWidth = GetTextExtentFloat (adWidths, pBegin, pText - pBegin - 1) ;

 switch (iAlign) // use alignment for xStart
 {
 case IDM_ALIGN_LEFT:
 xStart = prc->left ;
 break ;

 case IDM_ALIGN_RIGHT:
 xStart = prc->right - (int) (dWidth + .5) ;
 break ;

 case IDM_ALIGN_CENTER:
 xStart = (prc->right + prc->left - (int) (dWidth + .5)) / 2 ;
 break ;

 case IDM_ALIGN_JUSTIFIED:
 if (*pText != `\0' && cSpaceChars > 0)
 SetTextJustification (hdc,
 prc->right - prc->left -
 (int) (dWidth + .5),
 cSpaceChars) ;
 xStart = prc->left ;
 break ;
 }
 // display the text

 TextOut (hdc, xStart, yStart, pBegin, pEnd - pBegin) ;

 // prepare for next line

 SetTextJustification (hdc, 0, 0) ;
 yStart += size.cy ;
 pText = pEnd ;
 }
 while (*pText && yStart < prc->bottom - size.cy) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static CHOOSEFONT cf ;
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("Justify2: Printing") } ;
 static int iAlign = IDM_ALIGN_LEFT ;
 static LOGFONT lf ;
 static PRINTDLG pd ;
 static TCHAR szText[] = {
 TEXT ("Call me Ishmael. Some years ago -- never ")
 TEXT ("mind how long precisely -- having little ")
 TEXT ("or no money in my purse, and nothing ")
 TEXT ("particular to interest me on shore, I ")
 TEXT ("thought I would sail about a little and ")
 TEXT ("see the watery part of the world. It is ")
 TEXT ("a way I have of driving off the spleen, ")
 TEXT ("and regulating the circulation. Whenever ")
 TEXT ("I find myself growing grim about the ")
 TEXT ("mouth; whenever it is a damp, drizzly ")
 TEXT ("November in my soul; whenever I find ")
 TEXT ("myself involuntarily pausing before ")
 TEXT ("coffin warehouses, and bringing up the ")
 TEXT ("rear of every funeral I meet; and ")
 TEXT ("especially whenever my hypos get such an ")

 TEXT ("upper hand of me, that it requires a ")
 TEXT ("strong moral principle to prevent me ")
 TEXT ("from deliberately stepping into the ")
 TEXT ("street, and methodically knocking ")
 TEXT ("people's hats off -- then, I account it ")
 TEXT ("high time to get to sea as soon as I ")
 TEXT ("can. This is my substitute for pistol ")
 TEXT ("and ball. With a philosophical flourish ")
 TEXT ("Cato throws himself upon his sword; I ")
 TEXT ("quietly take to the ship. There is ")
 TEXT ("nothing surprising in this. If they but ")
 TEXT ("knew it, almost all men in their degree, ")
 TEXT ("some time or other, cherish very nearly ")
 TEXT ("the same feelings towards the ocean with ")
 TEXT ("me.") } ;
 BOOL fSuccess ;
 HDC hdc, hdcPrn ;
 HMENU hMenu ;
 int iSavePointSize ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 // Initialize the CHOOSEFONT structure

 hdc = GetDC (hwnd) ;
 lf.lfHeight = - GetDeviceCaps (hdc, LOGPIXELSY) / 6 ;
 lstrcpy (lf.lfFaceName, TEXT ("Times New Roman")) ;
 ReleaseDC (hwnd, hdc) ;

 cf.lStructSize = sizeof (CHOOSEFONT) ;
 cf.hwndOwner = hwnd ;
 cf.hDC = NULL ;
 cf.lpLogFont = &lf ;
 cf.iPointSize = 0 ;
 cf.Flags = CF_INITTOLOGFONTSTRUCT | CF_SCREENFONTS |
 CF_TTONLY | CF_EFFECTS ;
 cf.rgbColors = 0 ;
 cf.lCustData = 0 ;
 cf.lpfnHook = NULL ;
 cf.lpTemplateName = NULL ;
 cf.hInstance = NULL ;
 cf.lpszStyle = NULL ;
 cf.nFontType = 0 ;
 cf.nSizeMin = 0 ;
 cf.nSizeMax = 0 ;

 return 0 ;

 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 switch (LOWORD (wParam))
 {
 case IDM_FILE_PRINT:
 // Get printer DC

 pd.lStructSize = sizeof (PRINTDLG) ;
 pd.hwndOwner = hwnd ;
 pd.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&pd))
 return 0 ;

 if (NULL == (hdcPrn = pd.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain Printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Set margins for OUTWIDTH inches wide

 rect.left = (GetDeviceCaps (hdcPrn, PHYSICALWIDTH) -
 GetDeviceCaps (hdcPrn, LOGPIXELSX) * OUTWIDTH) / 2
 - GetDeviceCaps (hdcPrn, PHYSICALOFFSETX) ;

 rect.right = rect.left +
 GetDeviceCaps (hdcPrn, LOGPIXELSX) * OUTWIDTH ;

 // Set margins of 1 inch at top and bottom

 rect.top = GetDeviceCaps (hdcPrn, LOGPIXELSY) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETY) ;
 rect.bottom = GetDeviceCaps (hdcPrn, PHYSICALHEIGHT) -
 GetDeviceCaps (hdcPrn, LOGPIXELSY) -
 GetDeviceCaps (hdcPrn, PHYSICALOFFSETY) ;

 // Display text on printer

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 fSuccess = FALSE ;

 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 // Select font using adjusted lfHeight

 iSavePointSize = lf.lfHeight ;
 lf.lfHeight = -(GetDeviceCaps (hdcPrn, LOGPIXELSY) *
 cf.iPointSize) / 720 ;

 SelectObject (hdcPrn, CreateFontIndirect (&lf)) ;
 lf.lfHeight = iSavePointSize ;

 // Set text color

 SetTextColor (hdcPrn, cf.rgbColors) ;

 // Display text

 Justify (hdcPrn, szText, &rect, iAlign) ;

 if (EndPage (hdcPrn) > 0)
 {
 fSuccess = TRUE ;
 EndDoc (hdcPrn) ;
 }
 }
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 DeleteDC (hdcPrn) ;

 if (!fSuccess)
 MessageBox (hwnd, TEXT ("Could not print text"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 case IDM_FONT:
 if (ChooseFont (&cf))
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_ALIGN_LEFT:
 case IDM_ALIGN_RIGHT:
 case IDM_ALIGN_CENTER:
 case IDM_ALIGN_JUSTIFIED:
 CheckMenuItem (hMenu, iAlign, MF_UNCHECKED) ;
 iAlign = LOWORD (wParam) ;
 CheckMenuItem (hMenu, iAlign, MF_CHECKED) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 DrawRuler (hdc, &rect) ;

 rect.left += GetDeviceCaps (hdc, LOGPIXELSX) / 2 ;
 rect.top += GetDeviceCaps (hdc, LOGPIXELSY) / 2 ;
 rect.right = rect.left + OUTWIDTH * GetDeviceCaps (hdc, LOGPIXELSX) ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 SetTextColor (hdc, cf.rgbColors) ;

 Justify (hdc, szText, &rect, iAlign) ;

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

JUSTIFY2.RC

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

JUSTIFY2 MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Print", IDM_FILE_PRINT
 END
 POPUP "&Font"
 BEGIN
 MENUITEM "&Font...", IDM_FONT
 END
 POPUP "&Align"
 BEGIN
 MENUITEM "&Left", IDM_ALIGN_LEFT, CHECKED
 MENUITEM "&Right", IDM_ALIGN_RIGHT
 MENUITEM "&Centered", IDM_ALIGN_CENTER
 MENUITEM "&Justified", IDM_ALIGN_JUSTIFIED
 END
END

RESOURCE.H

// Microsoft Developer Studio generated include file.
// Used by Justify2.rc

#define IDM_FILE_PRINT 40001
#define IDM_FONT 40002
#define IDM_ALIGN_LEFT 40003
#define IDM_ALIGN_RIGHT 40004
#define IDM_ALIGN_CENTER 40005
#define IDM_ALIGN_JUSTIFIED 40006

JUSTIFY2 works with TrueType fonts only. In its GetCharDesignWidths function, the program uses the
GetOutlineTextMetrics function to get a seemingly unimportant piece of information. This is the
OUTLINETEXTMETRIC field otmEMSquare .

A TrueType font is designed on an em-square grid. (As I've said, the word "em" refers to the width of a square
piece of type, an M equal in width to the point size of the font.) All the characters of any particular TrueType font
are designed on the same grid, although they generally have different widths. The otmEMSquare field of the
OUTLINETEXTMETRIC structure gives the dimension of this em-square for any particular font. For most TrueType
fonts, you'll find that the otmEMSquare field is equal to 2048, which means that the font was designed on a 2048-
by-2048 grid.

Here's the key: You can set up a LOGFONT structure for the particular TrueType typeface name you want to use
but with an lfHeight field equal to the negative of the otmEMSquare value. After creating that font and selecting it
into a device context, you can call GetCharWidth . This function gives you the width of individual characters in the
font in logical units. Normally, these character widths are not exact because they've been scaled to a different font
size. But with a font based on the otmEMSquare size, these widths are always exact integers independent of any
device context.

The GetCharDesignWidths function obtains the original character design widths in this manner and stores them in
an integer array. The JUSTIFY2 program knows that its text uses ASCII characters only, so this array needn't be
very large. The GetScaledWidths function converts these integer widths to floating point widths based on the
actual point size of the font in the device's logical coordinates. The GetTextExtentFloat function uses those floating
point widths to calculate the width of a whole string. That's the function the new Justify function uses to calculate
the widths of lines of text.

The Fun and Fancy Stuff

Expressing font characters in terms of outlines opens up lots of potential in combining fonts with other graphics
techniques. Earlier we saw how fonts can be rotated. This final section shows some other tricks. But before we
continue, let's look at two important preliminaries: graphics paths and extended pens.

The GDI Path

A path is a collection of straight lines and curves stored internally to GDI. Paths were introduced in the 32-bit
versions of Windows. The path may initially seem similar to the region, and indeed you can convert a path to a
region and use a path for clipping. However, we'll see shortly how they differ.

To begin a path definition, you simply call

BeginPath (hdc) ;

After this call, any line you draw (such as straight lines, arcs, and Bezier splines) will be stored internally to GDI as
a path and not rendered on the device context. Often a path consists of connected lines. To make connected lines,
you use the LineTo , PolylineTo , and BezierTo functions, all of which draw lines beginning at the current position.
If you change the current position by using MoveToEx , or if you call any of the other line-drawing functions, or if
you call one of the window/viewport functions that cause a change in the current position, you create a new
subpath within the entire path. Thus, a path contains one or more subpaths, where each subpath is a series of
connected lines.

Each subpath within the path can be open or closed. A closed subpath is one in which the first point of the first
connected line is the same as the last point of the last connected line, and moreover, the subpath is concluded by
a call to CloseFigure . CloseFigure will close the subpath with a straight line, if necessary. Any subsequent line-
drawing function begins a new subpath. Finally, you end the path definition by calling

EndPath (hdc) ;

At this point you then call one of the following five functions:

StrokePath (hdc) ;
FillPath (hdc) ;
StrokeAndFillPath (hdc) ;
hRgn = PathToRegion (hdc) ;
SelectClipPath (hdc, iCombine) ;

Each of these functions destroys the path definition after completion.

StrokePath draws the path using the current pen. You might wonder: What's the point? Why can't I just skip all
this path stuff and draw the lines normally? I'll tell you why shortly.

The other four functions close any open paths with straight lines. FillPath fills the path using the current brush
according to the current polygon-filling mode. StrokeAndFillPath does both jobs in one shot. You can also convert
the path to a region or use the path for a clipping area. The iCombine argument is one of the RGN_ constants
used with the CombineRgn function, and it indicates how the path is combined with the current clipping region.

Paths are more flexible than regions for filling and clipping because regions can be defined only by combinations of
rectangles, ellipses, and polygons. Paths can be composed of Bezier splines and, at least in Windows NT, arcs. In

GDI, paths and regions are stored quite differently. The path is a collection of line and curve definitions, and the
region (in the general sense) is a collection of scan lines.

Extended Pens

When you call StrokePath , the path is rendered using the current pen. Back in Chapter 4 , I discussed the
CreatePen function that you use to create a pen object. With the introduction of paths, Windows also supports an
extended pen function call named ExtCreatePen . This function reveals why it's sometimes useful to create a path
and stroke it rather than to draw lines without using a path. The ExtCreatePen function looks like this:

hPen = ExtCreatePen (iStyle, iWidth, &lBrush, 0, NULL) ;

You can use this function for normal line drawing, but in that case some of the features aren't supported by
Windows 98. Even when used for rendering paths, some features are still not supported by Windows 98, which
I've indicated above by setting the last two arguments to 0 and NULL.

For the first argument to ExtCreatePen , you can use any of the styles described in Chapter 4 for CreatePen . You
can additionally combine these styles with PS_GEOMETRIC, where the iWidth argument denoting the width of the
line is in logical units and is subject to transforms, or PS_COSMETIC, where the iWidth argument must be 1. In
Windows 98, pens with a dashed or dotted style must be PS_COSMETIC. This restriction is lifted for Windows NT.

One of the arguments to CreatePen is a color; rather than a color, ExtCreatePen uses a brush to color the interiors
of PS_GEOMETRIC pens. That brush can even be defined by a bitmap.

When you're drawing wide lines, you might also be concerned about the appearance of the ends of the lines. When
lines or curves are connected, you might also be concerned about the appearance of the joins between the lines.
With pens created by CreatePen , these ends and joins are always rounded. With ExtCreatePen , you have a
choice. (Actually, in Windows 98, you have a choice only when you use the pen to stroke a path; Windows NT is
more flexible.) The ends of wide lines can be defined using one of the following pen styles in ExtCreatePen :

PS_ENDCAP_ROUND
PS_ENDCAP_SQUARE
PS_ENDCAP_FLAT

The "square" style is different from the "flat" style in that it extends the line for one-half the width. Similarly, joins
between lines in a path can be specified by

PS_JOIN_ROUND
PS_JOIN_BEVEL
PS_JOIN_MITER

The "bevel" style cuts off the end of the join and the "miter" style turns it into a spike. This can be better
illustrated with a program called ENDJOIN, which is shown in Figure 17-12.

Figure 17-12. The ENDJOIN Program.

ENDJOIN.C

/*--

 ENDJOIN.C -- Ends and Joins Demo
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EndJoin") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Ends and Joins Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam, LPARAM lParam)
{
 static int iEnd[] = { PS_ENDCAP_ROUND, PS_ENDCAP_SQUARE, PS_ENDCAP_FLAT } ;

 static int iJoin[]= { PS_JOIN_ROUND, PS_JOIN_BEVEL, PS_JOIN_MITER } ;
 static int cxClient, cyClient ;
 HDC hdc ;
 int i ;
 LOGBRUSH lb ;
 PAINTSTRUCT ps ;

 switch (iMsg)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 100, 100, NULL) ;
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;

 lb.lbStyle = BS_SOLID ;
 lb.lbColor = RGB (128, 128, 128) ;
 lb.lbHatch = 0 ;

 for (i = 0 ; i < 3 ; i++)
 {
 SelectObject (hdc,
 ExtCreatePen (PS_SOLID | PS_GEOMETRIC |
 iEnd [i] | iJoin [i], 10,
 &lb, 0, NULL)) ;
 BeginPath (hdc) ;

 MoveToEx (hdc, 10 + 30 * i, 25, NULL) ;
 LineTo (hdc, 20 + 30 * i, 75) ;
 LineTo (hdc, 30 + 30 * i, 25) ;

 EndPath (hdc) ;
 StrokePath (hdc) ;

 DeleteObject (
 SelectObject (hdc,
 GetStockObject (BLACK_PEN))) ;
 MoveToEx (hdc, 10 + 30 * i, 25, NULL) ;
 LineTo (hdc, 20 + 30 * i, 75) ;
 LineTo (hdc, 30 + 30 * i, 25) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;

 }
 return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

The program draws three V-shaped wide lines using the end and join styles in the order listed above. The program
also draws three identical lines using the stock black pen. This shows how the wide line compares with the normal
thin line. The results are shown in Figure 17-13.

Figure 17-13. The ENDJOIN display.

I hope it's now apparent why Windows supports a StrokePath function: If you were to draw the two lines
individually, GDI would be forced to use the line ends on each of them. Only if they're in a path definition does
GDI know that the lines are connected and then use a line join.

Four Sample Programs

Of what good is this? Well, think about it: The characters in outline fonts are defined by a series of coordinate
values. These coordinates define straight lines and splines. Thus, the straight lines and curves can become part of
a path definition.

And yes, it works! This is demonstrated in the FONTOUT1 program shown in Figure 17-14.

Figure 17-14. The FONTOUT1 program.

FONTOUT1.C

/*--
 FONTOUT1.C -- Using Path to Outline Font
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\eztest\\ezfont.h"

TCHAR szAppName [] = TEXT ("FontOut1") ;

TCHAR szTitle [] = TEXT ("FontOut1: Using Path to Outline Font") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 static TCHAR szString [] = TEXT ("Outline") ;
 HFONT hFont ;
 SIZE size ;

 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"), 1440, 0, 0, TRUE) ;

 SelectObject (hdc, hFont) ;

 GetTextExtentPoint32 (hdc, szString, lstrlen (szString), &size) ;

 BeginPath (hdc) ;
 TextOut (hdc, (cxArea - size.cx) / 2, (cyArea - size.cy) / 2,
 szString, lstrlen (szString)) ;
 EndPath (hdc) ;

 StrokePath (hdc) ;

 SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
 DeleteObject (hFont) ;
}

This program, and the remainder of the programs in this chapter, also use the EZFONT and FONTDEMO files
shown earlier.

The program creates a 144-point TrueType font and calls the GetTextExtentPoint32 function to obtain the
dimensions of the text box. It then calls the TextOut function in a path definition so that the text is centered in the
client window. Because the TextOut function is called in a path bracket—that is, between calls to BeginPath and
EndPath —GDI does not display the text immediately. Instead, the character outlines are stored in the path
definition.

After the path bracket is ended, FONTOUT1 calls StrokePath . Because no special pen has been selected into the
device context, GDI simply draws the character outlines using the default pen, as shown in Figure 17-15.

Figure 17-15. The FONTOUT1 display.

But what have we here? We've got outlined characters, as we expect, but why is the text string surrounded by a
rectangle?

Well, recall that the text background mode is by default OPAQUE rather than TRANSPARENT. That rectangle is the
outline of the text box. This clearly demonstrates the two-step approach that GDI uses when drawing text in the
default OPAQUE mode. First it draws a filled rectangle, and then it draws the characters. The outline of the text
box rectangle thus also becomes part of the path.

Using the ExtCreatePen function, you can outline the characters of a font with something other than the default
pen. This is demonstrated in the FONTOUT2 program shown in Figure 17-16.

Figure 17-16. The FONTOUT2 program.

FONTOUT2.C

/*--
 FONTOUT2.C -- Using Path to Outline Font
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\eztest\\ezfont.h"

TCHAR szAppName [] = TEXT ("FontOut2") ;
TCHAR szTitle [] = TEXT ("FontOut2: Using Path to Outline Font") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 static TCHAR szString [] = TEXT ("Outline") ;
 HFONT hFont ;
 LOGBRUSH lb ;
 SIZE size ;

 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"), 1440, 0, 0, TRUE) ;

 SelectObject (hdc, hFont) ;
 SetBkMode (hdc, TRANSPARENT) ;

 GetTextExtentPoint32 (hdc, szString, lstrlen (szString), &size) ;

 BeginPath (hdc) ;
 TextOut (hdc, (cxArea - size.cx) / 2, (cyArea - size.cy) / 2,
 szString, lstrlen (szString)) ;
 EndPath (hdc) ;

 lb.lbStyle = BS_SOLID ;
 lb.lbColor = RGB (255, 0, 0) ;
 lb.lbHatch = 0 ;

 SelectObject (hdc, ExtCreatePen (PS_GEOMETRIC | PS_DOT,
 GetDeviceCaps (hdc, LOGPIXELSX) / 24,

 &lb, 0, NULL)) ;
 StrokePath (hdc) ;

 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
 DeleteObject (hFont) ;
}

This program creates (and selects into the device context) a red dotted pen with a width of 3 points (1/24th inch)
before calling StrokePath . The results when the program runs under Windows NT are shown in Figure 17-17.

Figure 17-17. The FONTOUT2 display.

You can also use paths to define areas for filling. You create the path in the same way as shown in the past two
programs, select a filling pattern, and call FillPath . Another function you can call is StrokeAndFillPath , which both
outlines a path and fills it with one function call.

The StrokeAndFillPath function is demonstrated in the FONTFILL program shown in Figure 17-18.

Figure 17-18. The FONTFILL program.

FONTFILL.C

/*---
 FONTFILL.C -- Using Path to Fill Font
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "..\\eztest\\ezfont.h"

TCHAR szAppName [] = TEXT ("FontFill") ;
TCHAR szTitle [] = TEXT ("FontFill: Using Path to Fill Font") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 static TCHAR szString [] = TEXT ("Filling") ;
 HFONT hFont ;
 SIZE size ;

 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"), 1440, 0, 0, TRUE) ;

 SelectObject (hdc, hFont) ;
 SetBkMode (hdc, TRANSPARENT) ;

 GetTextExtentPoint32 (hdc, szString, lstrlen (szString), &size) ;

 BeginPath (hdc) ;
 TextOut (hdc, (cxArea - size.cx) / 2, (cyArea - size.cy) / 2,
 szString, lstrlen (szString)) ;
 EndPath (hdc) ;

 SelectObject (hdc, CreateHatchBrush (HS_DIAGCROSS, RGB (255, 0, 0))) ;
 SetBkColor (hdc, RGB (0, 0, 255)) ;
 SetBkMode (hdc, OPAQUE) ;

 StrokeAndFillPath (hdc) ;

 DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH))) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
 DeleteObject (hFont) ;
}

FONTFILL uses the default pen for outlining the path but creates a red hatched brush using the HS_DIAGCROSS
style. Notice that the program sets the background mode to TRANSPARENT when creating the path but then
resets it to OPAQUE when filling the path so that it can use a blue background color for the area pattern. The
results are shown in Figure 17-19.

You may want to try a few variations on this program to observe the effects. First, if you comment out the first
SetBkMode call, you'll get the background of the text box covered with the pattern but not the characters
themselves. That's usually not what you want, but you can certainly do it.

Also, when filling characters and using them for clipping, you want to leave the default ALTERNATE polygon-filling
mode in effect. My experience indicates that TrueType fonts are constructed so that nothing strange will happen
(such as the interiors of O s being filled) if you use the WINDING fill mode, but you'll want to play it safe by
sticking with ALTERNATE.

Figure 17-19. The FONTFILL display.

Finally, you can use a path, and hence a TrueType font, to define a clipping region. This is demonstrated in the
FONTCLIP program shown in Figure 17-20.

Figure 17-20. The FONTCLIP program.

FONTCLIP.C

/*---
 FONTCLIP.C -- Using Path for Clipping on Font
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "..\\eztest\\ezfont.h"

TCHAR szAppName [] = TEXT ("FontClip") ;
TCHAR szTitle [] = TEXT ("FontClip: Using Path for Clipping on Font") ;

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 static TCHAR szString [] = TEXT ("Clipping") ;
 HFONT hFont ;
 int y, iOffset ;
 POINT pt [4] ;
 SIZE size ;

 hFont = EzCreateFont (hdc, TEXT ("Times New Roman"), 1200, 0, 0, TRUE) ;
 SelectObject (hdc, hFont) ;

 GetTextExtentPoint32 (hdc, szString, lstrlen (szString), &size) ;

 BeginPath (hdc) ;

 TextOut (hdc, (cxArea - size.cx) / 2, (cyArea - size.cy) / 2,
 szString, lstrlen (szString)) ;
 EndPath (hdc) ;

 // Set clipping area

 SelectClipPath (hdc, RGN_COPY) ;

 // Draw Bezier splines

 iOffset = (cxArea + cyArea) / 4 ;

 for (y = -iOffset ; y < cyArea + iOffset ; y++)
 {
 pt[0].x = 0 ;
 pt[0].y = y ;

 pt[1].x = cxArea / 3 ;
 pt[1].y = y + iOffset ;

 pt[2].x = 2 * cxArea / 3 ;
 pt[2].y = y - iOffset ;

 pt[3].x = cxArea ;
 pt[3].y = y ;

 SelectObject (hdc, CreatePen (PS_SOLID, 1,
 RGB (rand () % 256, rand () % 256, rand () % 256))) ;

 PolyBezier (hdc, pt, 4) ;

 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
 }

 DeleteObject (SelectObject (hdc, GetStockObject (WHITE_BRUSH))) ;
 SelectObject (hdc, GetStockObject (SYSTEM_FONT)) ;
 DeleteObject (hFont) ;
}

This is a program where I've deliberately excluded the SetBkMode call to achieve a different effect. The program
draws some text in a path bracket and then calls SelectClipPath . It then draws a series of Bezier spline curves
with random colors.

If the FONTCLIP program had called SetBkMode with the TRANSPARENT option, the Bezier curves would have
been restricted to the interiors of the character outlines. With the background mode in the default OPAQUE option,
the clipping region is restricted to the interior of the text box but not the characters themselves. This is shown
inFigure 1721.

Figure 17-21. The FONTCLIP display.

You'll probably want to insert a SetBkMode call into FONTCLIP to see the difference with the TRANSPARENT
option.

The FONTDEMO shell program allows you to print as well as display these effects, and even better, you can try
some of your own special effects.

Chapter 18

Metafiles

Metafiles are to vector graphics as bitmaps are to raster graphics. While bitmaps generally originate from real-
world images, metafiles are constructed by humans, generally helped out by computer programs. A metafile
consists of a series of binary records that correspond to graphics function calls, generally to draw straight lines,
curves, filled areas, and text.

"Paint" programs create bitmaps; "draw" programs create metafiles. In a well-designed drawing program, you can
easily "grab" a particular graphical object (such as a line) and move it somewhere else. That's because all the
individual components of the picture are stored as separate records. In a paint program, such feats are not
possible—you're generally restricted to removing or inserting rectangular chunks of the bitmap.

Because the metafile describes an image in terms of graphical drawing commands, the metafile image can be
scaled without loss of resolution. Bitmaps don't work that way: If you display a bitmap at twice the size, you don't
get twice the resolution. The bits in the bitmap are simply replicated horizontally and vertically.

A metafile can be converted to a bitmap, but with some loss of information: the graphical objects that make up
the metafile are no longer separate and become blended together in one big image. Converting bitmaps to
metafiles is a much more difficult job, usually restricted to very simple images and requiring a lot of processing
power to analyze edges and outlines. However, a metafile can contain a command to draw a bitmap.

Metafiles are used most often for sharing pictures among programs through the clipboard, although they can also
exist on disk as clip art. Because metafiles describe a picture as a collection of graphics function calls, they
generally take up much less space and are more device independent than bitmaps.

Microsoft Windows supports two metafile formats and two sets of functions to support them. I'll first discuss the
metafile functions supported since Windows 1.0, and still supported under the current 32-bit versions of Windows,
and then discuss the "enhanced metafile" developed for the 32-bit versions of Windows. The enhanced metafiles
have several improvements over the old metafile format and should be used whenever possible.

The Old Metafile Format

Metafiles either can exist temporarily in memory or can be saved as disk files. To an application, these two
processes are quite similar; in particular, all the file I/O that would otherwise be involved in saving and loading
data to and from disk-based metafiles is handled by Windows.

Simple Use of Memory Metafiles

You create a metafile in the old format by first creating a metafile device context with a call to CreateMetaFile .
You can then use most of the GDI drawing functions to draw on this metafile device context. These GDI calls don't
really draw on any real device, however. Instead, they are stored within the metafile. When you close the metafile
device context, you get back a handle to the metafile. You can then "play" this metafile on a real device context,
which is equivalent to executing the GDI functions in the metafile.

CreateMetaFile takes a single argument. This can be either NULL or a filename. If NULL, the metafile is stored in
memory. If it's a filename—the extension .WMF, for "Windows Metafile," is customary—then the metafile is stored
in a disk file.

The program METAFILE shown in Figure 18-1 shows how to create a memory metafile during the WM_CREATE
message and display the image 100 times during the WM_PAINT message.

Figure 18-1. The METAFILE program.

METAFILE.C

/*--
 METAFILE.C -- Metafile Demonstration Program
 (c) Charles Petzold, 1998
 --*/
#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("Metafile") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;

 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Metafile Demonstration"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HMETAFILE hmf ;
 static int cxClient, cyClient ;
 HBRUSH hBrush ;
 HDC hdc, hdcMeta ;
 int x, y ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 hdcMeta = CreateMetaFile (NULL) ;
 hBrush = CreateSolidBrush (RGB (0, 0, 255)) ;

 Rect
angle (hdcMeta, 0, 0, 100, 100) ;

 MoveToEx (hdcMeta, 0, 0, NULL) ;
 LineTo (hdcMeta, 100, 100) ;
 MoveToEx (hdcMeta, 0, 100, NULL) ;
 LineTo (hdcMeta, 100, 0) ;

 SelectObject (hdcMeta, hBrush) ;
 Ellipse (hdcMeta, 20, 20, 80, 80) ;

 hmf = CloseMetaFile (hdcMeta) ;

 DeleteObject (hBrush) ;

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetMapMode (hdc, MM_ANISOTROPIC) ;
 SetWindowExtEx (hdc, 1000, 1000, NULL) ;
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;

 for (x = 0 ; x < 10 ; x++)
 for (y = 0 ; y < 10 ; y++)
 {
 SetWindowOrgEx (hdc, -100 * x, -100 * y, NULL) ;
 PlayMetaFile (hdc, hmf) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteMetaFile (hmf) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program demonstrates the use of the four metafile functions essential in using a memory metafile. The first is
CreateMetaFile , which the program calls with a NULL argument during processing of the WM_CREATE message.
The function returns a handle to a metafile device context. METAFILE then draws two lines and one blue ellipse
using this metafile DC. These function calls are stored in a binary form in the metafile. The CloseMetaFile function
returns a handle to the metafile. Notice that the metafile handle is stored in a static variable because it will be
used later.

The metafile contains a binary representation of the GDI function calls, which are two MoveToEx calls, two LineTo
calls, a SelectObject call (indicating the blue brush), and an Ellipse call. No mapping mode or transform is implied
by the coordinates. They are simply stored as numbers in the metafile.

During the WM_PAINT message, METAFILE sets up a mapping mode and calls PlayMetaFile to draw the object 100
times in the window using PlayMetaFile . The coordinates of the function calls in the metafile are interpreted in the
context of the current transform set up for the destination device context. In calling PlayMetaFile , in effect you're
repeating all the calls that you made between CreateMetaFile and CloseMetaFile when you originally created the
metafile during the WM_CREATE message.

As with any GDI object, metafile objects should be deleted before a program terminates. This occurs during the
WM_DESTROY message with the DeleteMetaFile function.

The results of the METAFILE program are shown in Figure 18-2.

Figure 18-2. The METAFILE display.

Storing Metafiles on Disk

In the above example, the NULL argument to CreateMetaFile meant that we wanted to create a metafile stored in
memory. We can also create a metafile stored on a disk as a file. This method is preferred for large metafiles
because it uses less memory space. On the down side, a metafile stored on disk requires a disk access every time
you play it.

To convert METAFILE to using a disk-based metafile, you need to replace the NULL argument to CreateMetaFile
with a filename. At the conclusion of the WM_CREATE processing, you can call DeleteMetaFile with the metafile
handle. The handle has been deleted but the disk file remains behind.

During processing of the WM_PAINT message, you can get a metafile handle to this disk file by calling GetMetaFile
:

hmf = GetMetaFile (szFileName) ;

Now you can play this metafile just as before. When processing of the WM_PAINT message is over, you can delete
the metafile handle:

DeleteMetaFile (hmf) ;

When it comes time to process the WM_DESTROY message, you don't have to delete the metafile, because it was
deleted at the end of the WM_CREATE message and at the end of each WM_PAINT message. But you should still
delete the disk file like so,

DeleteFile (szFileName) ;

unless, of course, you want to keep the file around.

You can make a metafile a programmer-defined resource as discussed in Chapter 10. You'd simply load it as a
data block. If you have a block of data with the contents of a metafile, you can create a metafile using

hmf = SetMetaFileBitsEx (iSize, pData) ;

SetMetaFileBitsEx has a companion function, GetMetaFileBitsEx , that copies the contents of a metafile to a block
of memory.

Old Metafiles and the Clipboard

The old metafiles have a nasty flaw. If you have a handle to an old-style metafile, how can you determine how
large the image will be when you play it? Unless you start digging into the internals of the metafile itself, you
can't.

Moreover, when a program obtains an old-style metafile from the clipboard, it has the most flexibility in working
with it if the metafile has been designed to be played in an MM_ISOTROPIC or MM_ANISOTROPIC mapping mode.
The program that receives the metafile can then scale the image by simply setting viewport extents before playing
the metafile. But if the mapping mode is set to MM_ISOTROPIC or MM_ANISOTROPIC within the metafile, the
program that receives the metafile is stuck. The program can make GDI calls only before or after the metafile is
played. It can't make a GDI call in the middle of a metafile.

To solve these problems, old-style metafile handles are not directly put into the clipboard and retrieved by other
programs. Instead, the metafile handle is part of a "metafile picture," which is a structure of type METAFILEPICT.
This structure allows the program that obtains the metafile picture from the clipboard to set the mapping mode
and viewport extents itself before playing the metafile.

The METAFILEPICT structure is 16 bytes long and defined like so:

typedef struct tagMETAFILEPICT
{
 LONG mm ; // mapping mode
 LONG xExt ; // width of the metafile image
 LONG yExt ; // height of the metafile image
 LONG hMF ; // handle to the metafile
}
METAFILEPICT ;

For all the mapping modes except MM_ISOTROPIC and MM_ANISOTROPIC, the xExt and yExt values are the size
of the image in units of the mapping mode given by mm . With this information, the program that copies the
metafile picture structure from the clipboard can determine how much display space the metafile will encompass
when it is played. The program that creates the metafile can set these values to the largest x -coordinates and y -
coordinates it uses in the GDI drawing functions that enter the metafile.

For the MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, the xExt and yExt fields function differently. You
will recall from Chapter 5 that a program uses the MM_ISOTROPIC or MM_ANISOTROPIC mapping mode when it
wants to use arbitrary logical units in GDI functions independent of the measurable size of the image. A program
uses MM_ISOTROPIC when it wants to maintain an aspect ratio regardless of the size of the viewing surface and
MM_ANISOTROPIC when it doesn't care about the aspect ratio. You will also recall from Chapter 5 that after a
program sets the mapping mode to MM_ISOTROPIC or MM_ANISOTROPIC, it generally makes calls to
SetWindowExtEx and SetViewportExtEx . The SetWindowExtEx call uses logical units to specify the units the
program wants to use when drawing. The SetViewportExtEx call uses device units based on the size of the viewing
surface (for instance, the size of the window's client area).

If a program creates an MM_ISOTROPIC or MM_ANISOTROPIC metafile for the clipboard, the metafile should not
itself contain a call to SetViewportExtEx because the device units in that call would be based on the display surface
of the program creating the metafile and not on the display surface of the program that reads the metafile from
the clipboard and plays it. Instead, the xExt and yExt values should assist the program that obtains the metafile
from the clipboard in setting appropriate viewport extents for playing the metafile. But the metafile itself contains
a call to set the window extent when the mapping mode is MM_ISOTROPIC or MM_ANISOTROPIC. The coordinates
of the GDI drawing functions within the metafile are based on these window extents.

The program that creates the metafile and metafile picture follows these rules:

The mm field of the METAFILEPICT structure is set to specify the mapping mode.

For mapping modes other than MM_ISOTROPIC and MM_ANISOTROPIC, the xExt and yExt fields are set to
the width and height of the image in units corresponding to the mm field. For metafiles to be played in an
MM_ISOTROPIC or MM_ANISOTROPIC environment, matters get a little more complex. For
MM_ANISOTROPIC, zero values of xExt and yExt are used when the program is suggesting neither a size nor
an aspect ratio for the image. For MM_ISOTROPIC or MM_ANISOTROPIC, positive values of xExt and yExt

indicate a suggested width and height of the image in units of 0.01 mm (MM_HIMETRIC units). For
MM_ISOTROPIC, negative values of xExt and yExt indicate a suggested aspect ratio of the image but not a
suggested size.

For the MM_ISOTROPIC and MM_ANISOTROPIC mapping modes, the metafile itself contains calls to
SetWindowExtEx and (possibly) SetWindowOrgEx . That is, the program that creates the metafile calls these
functions in the metafile device context. Generally, the metafile will not contain calls to SetMapMode ,
SetViewportExtEx , or SetViewportOrgEx .

The metafile should be a memory-based metafile, not a disk-based metafile.

Here's some sample code for a program creating a metafile and copying it to the clipboard. If the metafile uses the
MM_ISOTROPIC or MM_ANISOTROPIC mapping mode, the first calls in the metafile should be to set the window
extent. (The window extent is fixed in the other mapping modes.) Regardless of the mapping mode, the window
origin can also be set:

hdcMeta = CreateMetaFile (NULL) ;
SetWindowExtEx (hdcMeta, ...) ;
SetWindowOrgEx (hdcMeta, ...) ;

The coordinates in the drawing functions of the metafile are based on these window extents and the window
origin. After the program uses GDI calls to draw on the metafile device context, the metafile is closed to get a
handle to the metafile:

hmf = CloseMetaFile (hdcMeta) ;

The program also needs to define a pointer to a structure of type METAFILEPICT and allocate a block of global
memory for this structure:

GLOBALHANDLE hGlobal ;
LPMETAFILEPICT pMFP ;
[other program lines]
hGlobal= GlobalAlloc (GHND | GMEM_SHARE, sizeof (METAFILEPICT)) ;
pMFP = (LPMETAFILEPICT) GlobalLock (hGlobal) ;

Next, the program sets the four fields of this structure:

pMFP->mm = MM_... ;
pMFP->xExt = ... ;
pMFP->yExt = ... ;
pMFP->hMF = hmf ;

GlobalUnlock (hGlobal) ;

The program then transfers the global memory block containing the metafile picture structure to the clipboard:

OpenClipboard (hwnd) ;
EmptyClipboard () ;
SetClipboardData (CF_METAFILEPICT, hGlobal) ;
CloseClipboard () ;

Following these calls, the hGlobal handle (the memory block containing the metafile picture structure) and the
hmf handle (the metafile itself) become invalid for the program that created them.

Now for the hard part. When a program obtains a metafile from the clipboard and plays this metafile, the following
steps must take place:

1.

2.

The program uses the mm field of the metafile picture structure to set the mapping mode.1.

For mapping modes other than MM_ISOTROPIC or MM_ANISOTROPIC, the program uses the xExt and yExt
values to set a clipping rectangle or simply to determine the size of the image. For the MM_ISOTROPIC and
MM_ANISOTROPIC mapping modes, the program uses xExt and yExt to set the viewport extents.

2.

The program then plays the metafile.3.

Here's the code. You first open the clipboard, get the handle to the metafile picture structure, and lock it:

OpenClipboard (hwnd) ;
hGlobal = GetClipboardData (CF_METAFILEPICT) ;
pMFP = (LPMETAFILEPICT) GlobalLock (hGlobal) ;

You can then save the attributes of your current device context and set the mapping mode to the mm value of the
structure:

SaveDC (hdc) ;
SetMappingMode (pMFP->mm) ;

If the mapping mode isn't MM_ISOTROPIC or MM_ANISOTROPIC, you can set a clipping rectangle to the values of
xExt and yExt . Because these values are in logical units, you have to use LPtoDP to convert the coordinates to
device units for the clipping rectangle. Or you can simply save the values so that you know how large the image
is.

For the MM_ISOTROPIC or MM_ANISOTROPIC mapping mode, you use xExt and yExt to set the viewport extent.
One possible function to perform this task is shown below. This function assumes that cxClient and cyClient
represent the pixel height and width of the area in which you want the metafile to appear if no suggested size is
implied by xExt and yExt .

void PrepareMetaFile (HDC hdc, LPMETAFILEPICT pmfp,
 int cxClient, int cyClient)
{
 int xScale, yScale, iScale ;

 SetMapMode (hdc, pmfp->mm) ;

 if (pmfp->mm == MM_ISOTROPIC ¦¦ pmfp->mm == MM_ANISOTROPIC)
 {
 if (pmfp->xExt == 0)
 SetViewportExtEx (hdc, cxClient, cyClient, NULL) ;
 else if (pmfp->xExt > 0)
 SetViewportExtEx (hdc,
 pmfp->xExt * GetDeviceCaps (hdc, HORZRES) /
 GetDeviceCaps (hdc, HORZSIZE) / 100),
 pmfp->yExt * GetDeviceCaps (hdc, VERTRES) /
 GetDeviceCaps (hdc, VERTSIZE) / 100),
 NULL) ;

 else if (pmfp->xExt < 0)
 {
 xScale = 100 * cxClient * GetDeviceCaps (hdc, HORZSIZE) /
 GetDeviceCaps (hdc, HORZRES) / -pmfp->xExt ;
 lScale = 100 * cyClient * GetDeviceCaps (hdc, VERTSIZE) /
 GetDeviceCaps (hdc, VERTRES) / -pmfp->yExt ;

 iScale = min (xScale, yScale) ;

 SetViewportExtEx (hdc,
 -pmfp->xExt * iScale * GetDeviceCaps (hdc, HORZRES) /
 GetDeviceCaps (hdc, HORZSIZE) / 100,
 -pmfp->yExt * iScale * GetDeviceCaps (hdc, VERTRES) /
 GetDeviceCaps (hdc, VERTSIZE) / 100,
 NULL) ;
 }
 }
}

This code assumes that both xExt and yExt are 0, greater than 0, or less than 0 (which should be the case). If the
extents are 0, no size or aspect ratio is suggested. The viewport extents are set to the area in which you want to
display the metafile. Positive values of xExt and yExt are a suggested image size in units of 0.01 mm. The
GetDeviceCaps function assists in determining the number of pixels per 0.01 mm, and this value is multiplied by
the extent values in the metafile picture structure. Negative values of xExt and yExt indicate a suggested aspect
ratio but not a suggested size. The value iScale is first calculated based on the aspect ratio of the size in
millimeters corresponding to cxClient and cyClient . This scaling factor is then used to set a viewport extent in
pixels.

With this job out of the way, you can set a viewport origin if you want, play the metafile, and return the device
context to normal:

PlayMetaFile (pMFP->hMF) ;
RestoreDC (hdc, -1) ;

Then you unlock the memory block and close the clipboard:

GlobalUnlock (hGlobal) ;
CloseClipboard () ;

If your program uses enhanced metafiles, you don't have to do this work. The Windows clipboard will convert
between the old metafile format and the enhanced metafile format when one application puts one of these formats
into the clipboard and another application requests the other format from the clipboard.

Enhanced Metafiles

The "enhanced metafile" format was introduced in the 32-bit versions of Windows. It involves a bunch of new
function calls, a couple of new data structures, a new clipboard format, and a new filename extension of .EMF.

The most important enhancement is that the new metafile format includes more extensive header information
accessible through a function call. This information aids in helping an application display the metafile image.

Some of the enhanced metafile functions allow you to translate back and forth between the enhanced metafile
(EMF) format and the old metafile format, which is also called the Windows metafile (WMF) format. Of course, this
conversion may not proceed without hitches because the old metafile format does not support some of the new
32-bit graphics features, such as paths.

The Basic Procedure

Figure 18-3 shows the EMF1 program, which creates and displays an enhanced metafile with a fairly minimal
amount of distraction.

Figure 18-3. The EMF1 Program.

EMF1.C

/*-------------------------------------
 EMF1.C -- Enhanced Metafile Demo #1
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),

 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #1"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, nCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HENHMETAFILE hemf ;
 HDC hdc, hdcEMF ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 hdcEMF = CreateEnhMetaFile (NULL, NULL, NULL, NULL) ;

 Rectangle (hdcEMF, 100, 100, 200, 200) ;

 MoveToEx (hdcEMF, 100, 100, NULL) ;
 LineTo (hdcEMF, 200, 200) ;

 MoveToEx (hdcEMF, 200, 100, NULL) ;
 LineTo (hdcEMF, 100, 200) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 DeleteEnhMetaFile (hemf) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

During WM_CREATE message processing in EMF1's window procedure, the program creates the enhanced
metafile, beginning with a call to CreateEnhMetaFile . This function requires four arguments, but you can set all of
them to NULL. I'll discuss how to use these arguments with non-NULL values shortly.

Like CreateMetaFile , the CreateEnhMetaFile function returns a special device context handle. The program uses
this handle to draw a rectangle and two lines connecting the opposite corners of the rectangle. These function calls
and their arguments are converted to a binary form and stored in the metafile.

Finally, a call to CloseEnhMetaFile wraps up the creation of the enhanced metafile and returns a handle to it. This
is stored in a static variable of type HENHMETAFILE.

During the WM_PAINT message, EMF1 obtains the dimensions of the program's client window in a RECT structure.
The four fields of the structure are adjusted so that the rectangle is half the width and height of the client window
and centered within it. EMF1 then calls PlayEnhMetaFile . The first argument is a handle to the window's device
context, the second argument is the handle to the enhanced metafile, and the third argument is a pointer to the
RECT structure.

What happens here is that during creation of the metafile, GDI figures out the entire dimensions of the metafile
image. In this case, the image is 100 units high and wide. When displaying the metafile, GDI stretches the image
to fit the rectangle specified in the PlayEnhMetaFile function. Three instances of EMF1 running under Windows are
shown in Figure 18-4.

Figure 18-4. The EMF1 Display.

Finally, during the WM_DESTROY message, EMF1 deletes the metafile by calling DeleteEnhMetaFile .

Let's take note of a few things we can learn from the EMF1 program.

First, in this particular program, the coordinates used in the rectangle and line-drawing functions when creating
the enhanced metafile don't really mean all that much. You can double them all or subtract a constant from them
all, and the results will be the same. All that matters is that the coordinates have a relationship among themselves
in defining an image.

Second, the image is stretched to fit the rectangle passed to the PlayEnhMetaFile function. Thus, as Figure 18-4
clearly shows, the image can be distorted. The metafile coordinates imply that the image is square, but that's not
what we get in the general case. And sometimes, that's exactly what you want. For embedding images in a word
processing text, you may want the user to specify a rectangle for the image and be assured that the entire image
fits exactly within the rectangle without any wasted space. Let the user worry about the correct aspect ratio by
adjusting the rectangle appropriately.

However, there are times when something else is appropriate. You may want to maintain the aspect ratio of the
original image because it may be vitally important to rendering the visual information. For example, a police
sketch of a crime suspect shouldn't be fatter or squatter than it was originally drawn. Or, you may want to
preserve the metrical size of the original image. It may be important that the image is two inches high and
shouldn't normally be reproduced otherwise.

Notice also that the lines drawn in the metafile don't seem to exactly meet the corners of the rectangle. This is the
result of a problem in the way that Windows stores rectangle coordinates in the metafile. We'll work on a fix to this
problem later in this chapter.

Looking Inside

You can get a good feel for how metafiles work by looking at the contents of the metafile. This is easiest if you
have a disk-based metafile to look at, so the EMF2 program shown in Figure 18-5 creates one for you.

Figure 18-5. The EMF2 Program.

EMF2.C

/*-------------------------------------
 EMF2.C -- Enhanced Metafile Demo #2
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #2"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, nCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 HDC hdc, hdcEMF ;
 HENHMETAFILE hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf2.emf"), NULL,
 TEXT ("EMF2\0EMF Demo #2\0")) ;

 if (!hdcEMF)
 return 0 ;

 if (GetVersion () & 0x80000000) //Windows 98
 Rectangle (hdcEMF, 100, 100, 201, 201) ;
 else //Windows NT
 Rectangle (hdcEMF, 101, 101, 202, 202) ;

 MoveToEx (hdcEMF, 100, 100, NULL) ;
 LineTo (hdcEMF, 200, 200) ;

 MoveToEx (hdcEMF, 200, 100, NULL) ;

 LineTo (hdcEMF, 100, 200) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 if (hemf = GetEnhMetaFile (TEXT ("emf2.emf")))
 {
 PlayEnhMetaFile (hdc, hemf, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

In EMF1, all the arguments to the CreateEnhMetaFile function were set to NULL. In EMF2, the first argument is
also set to NULL. This argument can be a device context handle. GDI uses this argument to insert metrical
information in the metafile header, as we'll see shortly. If the argument is set to NULL, GDI assumes that this
metrical information is based on the video device context.

The second argument to CreateEnhMetaFile is a filename. If you set this argument to NULL (as EMF1 does but
EMF2 does not), then the function creates a memory metafile. EMF2 creates a disk-based metafile with the name
EMF2.EMF.

The third argument to the function is an address of a RECT structure that indicates the total dimensions of the
metafile in 0.01 mm units. This piece of vital information (one of the deficiencies of the earlier Windows metafile
format) goes into the metafile header, as we'll soon see. If you set this argument to NULL, GDI will figure out the
dimensions for you. I like the idea of operating systems doing things for me, so I've set the argument to NULL. If
performance is critical in your application, you might want to use this argument to avoid some extraneous work on
GDI's part.

Finally, the last argument is a text string describing the metafile. This text string is specified in two pieces: the
first piece is the name of the application (not necessarily the program filename) followed by a NULL character, and
the second piece describes the visual image and is followed by two NULL characters. For example, using the C
notation of `\0' for a NULL character, the description string could be "LoonyCad V6.4\0Flying Frogs\0\0". Because
C normally puts a NULL character at the end of quoted strings, you need only one `\0' at the end, as EMF2
demonstrates.

After creating the metafile, EMF2 proceeds like EMF1 and makes a few GDI function calls by using the device
context handle returned from the CreateEnhMetaFile function. The program then calls CloseEnhMetaFile to destroy
the device context handle and obtain a handle to the completed metafile.

Then, still during WM_CREATE processing, EMF2 does something EMF1 does not: right after obtaining the metafile
handle, the program calls DeleteEnhMetaFile . That gets rid of all memory resources required to maintain the
metafile. However, the disk-based metafile stays behind. (If you ever want to get rid of that file, use a normal file-
deletion function such as DeleteFile .) Notice that the metafile handle is not stored as a static variable as in EMF1,
which implies that it is not required to be saved between messages.

Now, to use that metafile, EMF2 needs to access the disk file. It does this during the WM_PAINT message by
calling GetEnhMetaFile . The single argument to the function is the metafile filename, and the function returns a
handle to the metafile. EMF2 passes this handle to the PlayEnhMetaFile function, just as in EMF1. The metafile
image is displayed in the rectangle described by the last argument to the function. But unlike EMF1, EMF2 deletes
the metafile before concluding WM_PAINT processing. During any following WM_PAINT messages, EMF2 gets the
metafile again, plays it, and deletes it.

Keep in mind that deleting the metafile involves deleting only the memory resources required for maintaining the
metafile. The disk-based metafile stays behind, even after the program has concluded execution.

Because EMF2 leaves behind a disk-based metafile, you can take a look at it. Figure 18-6 shows a simple
hexadecimal dump of the EMF2.EMF file that the program creates.

0000 01 00 00 00 88 00 00 00 64 00 00 00 64 00 00 00 d...d...
0010 C8 00 00 00 C8 00 00 00 35 0C 00 00 35 0C 00 00 5...5...
0020 6A 18 00 00 6A 18 00 00 20 45 4D 46 00 00 01 00 j...j... EMF....
0030 F4 00 00 00 07 00 00 00 01 00 00 00 12 00 00 00
0040 64 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 d...............
0050 40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00 @...............
0060 00 00 00 00 45 00 4D 00 46 00 32 00 00 00 45 00 E.M.F.2...E.
0070 4D 00 46 00 20 00 44 00 65 00 6D 00 6F 00 20 00 M.F. .D.e.m.o. .
0080 23 00 32 00 00 00 00 00 2B 00 00 00 18 00 00 00 #.2.....+.......
0090 63 00 00 00 63 00 00 00 C6 00 00 00 C6 00 00 00 c...c...........
00A0 1B 00 00 00 10 00 00 00 64 00 00 00 64 00 00 00 d...d...
00B0 36 00 00 00 10 00 00 00 C8 00 00 00 C8 00 00 00 6...............
00C0 1B 00 00 00 10 00 00 00 C8 00 00 00 64 00 00 00 d...
00D0 36 00 00 00 10 00 00 00 64 00 00 00 C8 00 00 00 6.......d.......
00E0 0E 00 00 00 14 00 00 00 00 00 00 00 10 00 00 00
00F0 14 00 00 00

Figure 18-6. A hexadecimal dump of EMF2.EMF.

I should note that Figure 18-6 shows the metafile created by EMF2 under Microsoft Windows NT 4 running with a
video display resolution of 1024 by 768. The metafile created by the same program running under Windows 98 will
be 12 bytes shorter, as I'll discuss shortly. Also, the video display resolution will affect some of the information in
the metafile header.

Looking at the enhanced metafile format allows us to more deeply understand the workings of metafiles. The
enhanced metafile consists of variable-length records. The general format of these records is described by the
ENHMETARECORD structure, defined in the WINGDI.H header file like so:

typedef struct tagENHMETARECORD
{
 DWORD iType ; // record type
 DWORD nSize ; // record size
 DWORD dParm [1] ; // parameters
}
ENHMETARECORD ;

Of course, that array of one element really indicates a variable number of array elements. The number of

parameters depends on the record type. The iType field can be one of nearly 100 constants beginning with the
prefix EMR_ defined in the WINGDI.H file. The nSize field is the size of the total record, including the iType and
nSize fields, and one or more dParm fields.

With this knowledge, let's look at Figure 18-6. The first field has a type of 0x00000001 and a size of 0x00000088,
so it occupies the first 136 bytes of the file. A record type of 1 is the constant EMR_HEADER. I want to leave the
discussion of the header for later, so for now let's just skip to offset 0x0088, at the end of this first record.

The next five records correspond to the five GDI calls that EMF2 makes after creating the metafile. The record at
offset 0x0088 has a type code of 0x0000002B, which is EMR_RECTANGLE, obviously the metafile record for the
Rectangle call. It has a length of 0x00000018 (24 in decimal) bytes to accommodate four 32-bit arguments. The
Rectangle function actually has five arguments, of course, but the first—the handle to the device context—is not
stored in the metafile because it would have no real meaning. There are two arguments of 0x00000063 (or 99)
and two arguments of 0x000000C6 (or 198), even though the function call in EMF2 specifies that the Rectangle
corners are (100, 100) and (200, 200). The metafile created by the EMF2 program under Windows 98 will show
the first two arguments as 0x00000064 (or 100) and the next two as 0x000000C7 (or 199). Obviously, Windows
is making an adjustment to the Rectangle arguments before they are stored in the metafile but not doing it
consistently. This is why the lines do not match the corners of the rectangle.

Next, we have four 16-byte records corresponding to the two MoveToEx (0x0000001B or EMR_MOVETOEX) and
LineTo (0x00000036 or EMR_LINETO) calls. The arguments in the metafile are the same as those passed to the
functions.

The metafile ends with a type code of 0x0000000E or EMR_EOF ("end of file"), a 20-byte record.

The enhanced metafile always begins with a header record. This corresponds to a structure of type
ENHMETAHEADER, which is defined like so:

typedef struct tagENHMETAHEADER
{
 DWORD iType ; // EMR_HEADER = 1
 DWORD nSize ; // structure size
 RECTL rclBounds ; // bounding rectangle in pixels
 RECTL rclFrame ; // size of image in 0.01 millimeters
 DWORD dSignature ; // ENHMETA_SIGNATURE = " EMF"
 DWORD nVersion ; // 0x00010000
 DWORD nBytes ; // file size in bytes
 DWORD nRecords ; // total number of records
 WORD nHandles ; // number of handles in handle table
 WORD sReserved ;
 DWORD nDescription ; // character length of description string
 DWORD offDescription ; // offset of description string in file
 DWORD nPalEntries ; // number of entries in palette
 SIZEL szlDevice ; // device resolution in pixels
 SIZEL szlMillimeters ; // device resolution in millimeters
 DWORD cbPixelFormat ; // size of pixel format
 DWORD offPixelFormat ; // offset of pixel format
 DWORD bOpenGL ; // FALSE if no OpenGL records
}
ENHMETAHEADER ;

The existence of this header record is probably the single greatest improvement of the enhanced metafile format
over the old Windows metafile. You do not need to use the file I/O function on the disk-based metafile to obtain
this header information. If you have a handle to the metafile, you can use the GetEnhMetaFileHeader function:

GetEnhMetaFileHeader (hemf, cbSize, &emh) ;

The first argument is the metafile handle, the last is a pointer to an ENHMETAHEADER structure, and the second is
the size of this structure. You can use the similar GetEnhMetaFileDescription function to obtain the description

string.

As defined above, the ENHMETAHEADER structure is 100 bytes in length, but in the EMF2.EMF metafile the size of
the record includes the description string, so the size is 0x88 or 136 bytes. The header stored in a Windows 98
metafile does not include the last three fields of the ENHMETAHEADER structure, which accounts for the 12-byte
difference in size.

The rclBounds field is a RECT structure that indicates the size of the image in pixels. Translating from
hexadecimal, we see that the image is bounded by the points (100, 100) on the upper left and (200, 200) on the
lower right, exactly what we expect.

The rclFrame field is another rectangle structure that provides the same information but in units of 0.01
millimeters. In this case, the file shows a bounding rectangle of (0x0C35, 0x0C35) by (0x186A, 0x186A) or, in
decimal, (3125, 3125) by (6250, 6250). Where does this information come from? We'll see shortly.

The dSignature field is always the value ENHMETA_SIGNATURE, or 0x464D4520. That seems like a strange
number, but if you reverse the byte ordering (in accordance with how multibyte values are stored in memory with
Intel processors) and convert to ASCII, it's simply the string " EMF". The dVersion field is always 0x00010000.

This is followed by the nBytes field, which in this case is 0x000000F4, the total byte size of the metafile. The
nRecords field (in this case, 0x00000007) indicates the number or records—the header record, the five GDI
function calls, and the end-of-file record.

Next we have two 16-bit fields. The nHandles field is 0x0001. Normally this field would indicate the number of
nondefault handles to graphics objects (such as pens, brushes, and fonts) used in the metafile. We haven't done
that, so you might expect the field to be zero, but GDI reserves the first one for itself. We'll see how handles are
stored in metafiles shortly.

The next two fields indicate the length of the description string in characters and its offset within the file, in this
case 0x00000012 (18 in decimal) and 0x00000064. If the metafile did not have a description string, both these
fields would be zero.

The nPalEntries field indicates the number of entries in the metafile's palette table, in this case none.

The header record continues with two SIZEL structures, which contain two 32-bit fields, cx and cy . The szlDevice
field (at offset 0x0040 in the metafile) indicates the size of the output device in pixels, and the szlMillimeters field
(at offset 0x0050) is the size of the output device in millimeters. In the documentation of the enhanced metafile,
this output device is called the "reference device." It is based on the device context indicated by the handle
passed as the first argument to the CreateEnhMetaFile call. If the argument is set to NULL, GDI uses the video
display. When EMF2 created the metafile shown above, I happened to be running Windows NT in a 1024 by 768
video mode, so that's what GDI used as the reference device.

GDI obtains this information from GetDeviceCaps . The szlDevice field in EMF2.EMF is 0x0400 by 0x0300 (that is,
1024 by 768), which is obtained from GetDeviceCaps using the HORZRES and VERTRES arguments. The
szlMillimeters field is 0x140 by 0xF0 or 320 by 240, obtained from GetDeviceCaps using the HORZSIZE and
VERTSIZE arguments.

A simple division reveals that the pixels are 0.3125 millimeters high and wide, which is how GDI figures out the
dimensions of the rclFrame rectangle described above.

The ENHMETAHEADER structure is followed in the metafile by the description string, which was the last argument
to CreateEnhMetaFile . In this example, this is the string "EMF2" followed by a NULL character and "EMF Demo
#2" followed by two NULL characters. That's a total of 18 characters, or 36 bytes because it's stored in Unicode.
The string is always stored in Unicode regardless of whether the program creating the metafile is running under
Windows NT or Windows 98.

Metafiles and GDI Objects

We've now seen how GDI drawing commands are stored in metafiles. Now let's examine how GDI objects are
stored. The EMF3 program shown in Figure 18-7 is similar to the EMF2 program shown earlier, except that it
creates a nondefault pen and brush for drawing the rectangle and lines. I've also provided a little fix for the
problem with the coordinates to Rectangle . EMF3 uses GetVersion to determine if it's running under Windows 98
or Windows NT, and to adjust the arguments appropriately.

Figure 18-7. The EMF3 program.

EMF3.C

/*-------------------------------------
 EMF3.C -- Enhanced Metafile Demo #3
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF3") ;
 HWND hwnd ;

 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #3"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }

 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 LOGBRUSH lb ;
 HDC hdc, hdcEMF ;
 HENHMETAFILE hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf3.emf"), NULL,
 TEXT ("EMF3\0EMF Demo #3\0")) ;

 SelectObject (hdcEMF, CreateSolidBrush (RGB (0, 0, 255))) ;

 lb.lbStyle = BS_SOLID ;
 lb.lbColor = RGB (255, 0, 0) ;
 lb.lbHatch = 0 ;

 SelectObject (hdcEMF,
 ExtCreatePen (PS_SOLID | PS_GEOMETRIC, 5, &lb, 0, NULL)) ;

 Rectangle (hdcEMF, 100, 100, 200, 200) ;

 MoveToEx (hdcEMF, 100, 100, NULL) ;
 LineTo (hdcEMF, 200, 200) ;

 MoveToEx (hdcEMF, 200, 100, NULL) ;
 LineTo (hdcEMF, 100, 200) ;

 DeleteObject (SelectObject (hdcEMF, GetStockObject (BLACK_PEN))) ;
 DeleteObject (SelectObject (hdcEMF, GetStockObject (WHITE_BRUSH))) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 hemf = GetEnhMetaFile (TEXT ("emf3.emf")) ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

As we've seen, when you call GDI functions using the device context handle returned from CreateEnhMetaFile ,
the function calls are stored in the metafile rather than being rendered on the screen or printer. However, some
GDI functions do not refer to a particular device context at all. One important category of these GDI functions are
those that create graphics objects, including pens and brushes. Although the definitions of logical pens and
brushes are stored in memory maintained by GDI, these abstract definitions are not associated with any particular
device context when they're created.

EMF3 calls both the CreateSolidBrush and ExtCreatePen functions. Because these functions do not require a device
context handle, this implies that GDI will not store these calls in the metafile. This implication is true. When called
by themselves, GDI functions simply create the graphics drawing object without affecting the metafile at all.

However, when a program calls SelectObject to select a GDI object into the metafile device context, GDI encodes
both an object-creation function (essentially derived from the internal GDI data used to stored the object) and a
SelectObject call in the metafile. To see how this works, let's take a look at the hexadecimal dump of EMF3.EMF,
shown in Figure 18-8.

0000 01 00 00 00 88 00 00 00 60 00 00 00 60 00 00 00 `...`...
0010 CC 00 00 00 CC 00 00 00 B8 0B 00 00 B8 0B 00 00
0020 E7 18 00 00 E7 18 00 00 20 45 4D 46 00 00 01 00 EMF....
0030 88 01 00 00 0F 00 00 00 03 00 00 00 12 00 00 00
0040 64 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 d...............
0050 40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00 @...............
0060 00 00 00 00 45 00 4D 00 46 00 33 00 00 00 45 00 E.M.F.3...E.
0070 4D 00 46 00 20 00 44 00 65 00 6D 00 6F 00 20 00 M.F. .D.e.m.o. .
0080 23 00 33 00 00 00 00 00 27 00 00 00 18 00 00 00 #.3.....'.......
0090 01 00 00 00 00 00 00 00 00 00 FF 00 00 00 00 00
00A0 25 00 00 00 0C 00 00 00 01 00 00 00 5F 00 00 00 %..........._...
00B0 34 00 00 00 02 00 00 00 34 00 00 00 00 00 00 00 4.......4.......
00C0 34 00 00 00 00 00 00 00 00 00 01 00 05 00 00 00 4...............
00D0 00 00 00 00 FF 00 00 00 00 00 00 00 00 00 00 00
00E0 25 00 00 00 0C 00 00 00 02 00 00 00 2B 00 00 00 %...........+...
00F0 18 00 00 00 63 00 00 00 63 00 00 00 C6 00 00 00 c...c.......
0100 C6 00 00 00 1B 00 00 00 10 00 00 00 64 00 00 00 d...
0110 64 00 00 00 36 00 00 00 10 00 00 00 C8 00 00 00 d...6...........
0120 C8 00 00 00 1B 00 00 00 10 00 00 00 C8 00 00 00
0130 64 00 00 00 36 00 00 00 10 00 00 00 64 00 00 00 d...6.......d...
0140 C8 00 00 00 25 00 00 00 0C 00 00 00 07 00 00 80 %...........
0150 28 00 00 00 0C 00 00 00 02 00 00 00 25 00 00 00 (...........%...
0160 0C 00 00 00 00 00 00 80 28 00 00 00 0C 00 00 00 (.......
0170 01 00 00 00 0E 00 00 00 14 00 00 00 00 00 00 00

0180 10 00 00 00 14 00 00 00

Figure 18-8. A hexadecimal dump of EMF3.EMF.

You may want to compare this metafile with EMF2.EMF shown earlier. The first difference you'll see in the header
section of EMF3.EMF is the rclBounds field. EMF2.EMF indicated that the image was bound between coordinates
(0x64,0x64) and (0xC8, 0xC8). In EMF3.EMF it's (0x60,0x60) and (0xCC,0xCC). This reflects using a wider pen.
The rclFrame field (indicating the size of the image in units of 0.01 millimeters) is also affected.

While the nBytes field (located at offset 0x0030) of EMF2.EMF indicated that the metafile was 0xFA bytes,
EMF3.EMF is 0x0188 bytes. The EMF2.EMF metafile contained 7 records (the header, 5 GDI function calls, and the
end-of-file record), but EMF3.EMF has 15. As we'll see, the extra 8 records are for 2 object-creation functions, 4
calls to SelectObject , and 2 DeleteObject calls.

The nHandles field (at offset 0x0038 in the file) indicates the number of handles to GDI objects. This is always one
more than the number of nondefault objects used by the metafile. (The way that the Platform SDK documentation
indicates this is "Index zero in this table is reserved.") The field is 1 in EMF2.EMF and 3 in EMF3.EMF, indicating
the pen and the brush.

Let's skip to offset 0x0088 in the file, which is the second record (the first after the header). The record type is
0x27, which corresponds to the constant EMR_CREATEBRUSHINDIRECT. This is the metafile record for the
CreateBrushIndirect function, which requires a pointer to a LOGBRUSH structure. The size of the record is 0x18 (or
24) bytes.

Each nonstock GDI object that is selected into the metafile device context is assigned a number beginning with 1.
This is indicated by the next 4-byte word in this record, at offset 0x0090 in the metafile. The next three 4-byte
fields in this record correspond to the three fields of the LOGBRUSH structure, 0x00000000 (the lbStyle field of
BS_SOLID), 0x00FF0000 (the lbColor field), and 0x00000000 (the lbHatch field).

At offset 0x00A0 in EMF3.EMF is the next record, which has a record type of 0x25, or EMR_SELECTOBJECT, the
metafile record for the SelectObject call. The record is 0x0C (or 12) bytes long, and the next field is the number
0x01, indicating that it's selecting the first GDI object, which is the logical brush.

At offset 0x00AC in EMF3.EMF is the next record, which has a record type of 0x5F, or EMR_EXTCREATEPEN. The
record is 0x34 (or 52) bytes. The next 4-byte field is 0x02, which means this is the second nonstock GDI object
used in the metafile.

I won't pretend that I know why the next four fields of the EMR_EXTCREATEPEN record repeat the record size
twice, interspersed with 0 fields, but there they are: 0x34, 0x00, 0x34, and 0x00. The next field is 0x00010000,
which is the pen style of PS_SOLID (0x00000000) combined with PS_GEOMETRIC (0x00010000). The width of
five units is next, followed by the three fields of the logical brush structure used in the ExtCreatePen function,
followed by a field of 0.

If you create a custom extended pen style, the EMR_EXTCREATEPEN record will be longer than 52 bytes, and this
will be reflected not only in the second field of the record, but in the two repeated size fields. Following the three
fields that describe the LOGBRUSH structure, the next field will not be 0 (as it is in EMF3.EMF) but will indicate the
number of dashes and spaces. This is followed by that many fields for the dash and space lengths.

The next 12-byte field in EMF3.EMF is another SelectObject call indicating the second object—the pen. The next
five records are the same as EMF2.EMF—a record type of 0x2B (EMR_RECTANGLE), and two sets of records of
0x1B (EMR_MOVETOEX) and 0x36 (EMR_LINETO).

These drawing functions are followed by two sets of 12-byte records of 0x25 (EMR_SELECTOBJECT) and 0x28
(EMR_DELETEOBJECT). The select-object records have arguments of 0x80000007 and 0x80000000. When the
high bit is set, it indicates a stock object, in this case 0x07 (corresponding to BLACK_PEN) and 0x00
(WHITE_BRUSH).

The DeleteObject calls have arguments of 2 and 1, for the two nondefault objects used in the metafile. Although
the DeleteObject function does not require a device context handle as the first argument, GDI apparently keeps
track of objects used in the metafile that are deleted by the program.

Finally, the metafile concludes with a 0x0E record, which is EMF_EOF ("end of file").

To sum up, whenever a nondefault GDI object is first selected into a metafile device context, GDI encodes both a
record indicating the object-creation function (in this case, EMR_CREATEBRUSHINDIRECT and
EMR_EXTCREATEPEN). Each object will have a unique number beginning with 1, indicated by the third field of the

record. This record will be followed by an EMR_SELECTOBJECT record referencing that number. On subsequent
times an object is selected into the metafile device context (without being deleted in the interim), only an
EMR_SELECTOBJECT record is required.

Metafiles and Bitmaps

Let's try something a little more complex now, in particular drawing a bitmap in a metafile device context. This is
shown in EMF4, in Figure 18-9.

Figure 18-9. The EMF4 program.

EMF4.C

/*-------------------------------------
 EMF4.C -- Enhanced Metafile Demo #4
 (c) Charles Petzold, 1998
 -------------------------------------*/

#define OEMRESOURCE
#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF4") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #4"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 BITMAP bm ;
 HBITMAP hbm ;
 HDC hdc, hdcEMF, hdcMem ;
 HENHMETAFILE hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf4.emf"), NULL,
 TEXT ("EMF4\0EMF Demo #4\0")) ;

 hbm = LoadBitmap (NULL, MAKEINTRESOURCE (OBM_CLOSE)) ;

 GetObject (hbm, sizeof (BITMAP), &bm) ;

 hdcMem = CreateCompatibleDC (hdcEMF) ;

 SelectObject (hdcMem, hbm) ;

 StretchBlt (hdcEMF, 100, 100, 100, 100,
 hdcMem, 0, 0, bm.bmWidth, bm.bmHeight, SRCCOPY) ;

 DeleteDC (hdcMem) ;
 DeleteObject (hbm) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 rect.left = rect.right / 4 ;

 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 hemf = GetEnhMetaFile (TEXT ("emf4.emf")) ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

For convenience, EMF4 loads a system bitmap indicated by the constant OEM_CLOSE. The customary way of
displaying a bitmap in a device context is to create a memory device context compatible with the destination
device context (in this case, that's the metafile device context) by calling CreateCompatibleDC . Then you select
the bitmap into that memory device context by using SelectObject and call BitBlt or StretchBlt from the memory
source device context to the destination device context. When you're finished, you delete both the memory device
context and the bitmap.

You'll note that EMF4 also calls GetObject to determine the size of the bitmap. This is necessary for the
SelectObject call.

At first, the storage of this code in a metafile seems like a real challenge for GDI. No function leading up the
StretchBlt call involves the metafile device context at all. So let's see how it's done by taking a look at EMF4.EMF,
which is partially shown in Figure 18-10.

0000 01 00 00 00 88 00 00 00 64 00 00 00 64 00 00 00 d...d...
0010 C7 00 00 00 C7 00 00 00 35 0C 00 00 35 0C 00 00 5...5...
0020 4B 18 00 00 4B 18 00 00 20 45 4D 46 00 00 01 00 K...K... EMF....
0030 F0 0E 00 00 03 00 00 00 01 00 00 00 12 00 00 00
0040 64 00 00 00 00 00 00 00 00 04 00 00 00 03 00 00 d...............
0050 40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00 @...............
0060 00 00 00 00 45 00 4D 00 46 00 34 00 00 00 45 00 E.M.F.4...E.
0070 4D 00 46 00 20 00 44 00 65 00 6D 00 6F 00 20 00 M.F. .D.e.m.o. .
0080 23 00 34 00 00 00 00 00 4D 00 00 00 54 0E 00 00 #.4.....M...T...
0090 64 00 00 00 64 00 00 00 C7 00 00 00 C7 00 00 00 d...d...........
00A0 64 00 00 00 64 00 00 00 64 00 00 00 64 00 00 00 d...d...d...d...
00B0 20 00 CC 00 00 00 00 00 00 00 00 00 00 00 80 3F ?
00C0 00 00 00 00 00 00 00 00 00 00 80 3F 00 00 00 00 ?....
00D0 00 00 00 00 FF FF FF 00 00 00 00 00 6C 00 00 00 l...
00E0 28 00 00 00 94 00 00 00 C0 0D 00 00 28 00 00 00 (...........(...
00F0 16 00 00 00 28 00 00 00 28 00 00 00 16 00 00 00 (...(.......
0100 01 00 20 00 00 00 00 00 C0 0D 00 00 00 00 00 00
0110 00 00 00 00 00 00 00 00 00 00 00 00 C0 C0 C0 00
0120 C0 C0 C0 00 C0 C0 C0 00 C0 C0 C0 00 C0 C0 C0 00
. . . .
0ED0 C0 C0 C0 00 C0 C0 C0 00 C0 C0 C0 00 0E 00 00 00
0EE0 14 00 00 00 00 00 00 00 10 00 00 00 14 00 00 00

Figure 18-10. A partial hexadecimal dump of EMF4.EMF.

This metafile contains just three records—a header, a 0x4D (or EMR_STRETCHBLT) record that is 0x0E54 bytes
long, and an end-of-file record.

I won't pretend to have deciphered what each and every field of this record means. But I will point out the crucial
key to understanding how GDI can translate the series of function calls in EMF4.C to a single metafile record.

GDI has converted the original device-dependent bitmap to a device-independent bitmap (DIB). The entire DIB is
stored in this record, which accounts for its size. I suspect that when it comes time to play the metafile and
display the bitmap, GDI actually uses the StretchDIBits function rather than StretchBlt . Or, GDI could convert the
DIB back to a device-dependent bitmap by using CreateDIBitmap and then use a memory device context and
StretchBlt for the display.

The EMR_STRETCHBLT record begins at offset 0x0088 in the metafile. The DIB is stored beginning at offset
0x00F4 in the metafile and continues to the end of the record at 0x0EDC. The DIB begins with a 40-byte structure
of type BITMAPINFOHEADER. This is followed at offset 0x011C by 22 rows of 40 pixels each. This is a 32 bit-per-
pixel DIB, so each pixel requires 4 bytes.

Enumerating the Metafile

When you wish to get access to the individual records of a metafile you use a process called metafile enumeration.
This is demonstrated by the EMF5 program shown in Figure 18-11. This program uses a metafile to display the
same image as EMF3 but works by using metafile enumeration.

Figure 18-11. The EMF5 program.

EMF5.C

/*-------------------------------------
 EMF5.C -- Enhanced Metafile Demo #5
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF5") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #5"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

int CALLBACK EnhMetaFileProc (HDC hdc, HANDLETABLE * pHandleTable,
 CONST ENHMETARECORD * pEmfRecord,
 int iHandles, LPARAM pData)
{
 PlayEnhMetaFileRecord (hdc, pHandleTable, pEmfRecord, iHandles) ;

 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;
 HENHMETAFILE hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 hemf = GetEnhMetaFile (TEXT ("..\\emf3\\emf3.emf")) ;

 EnumEnhMetaFile (hdc, hemf, EnhMetaFileProc, NULL, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program uses the EMF3.EMF file created by the EMF3 program, so make sure you run that one before this
one. Also, you need to run both programs from within the Visual C++ environment so that the directory paths are
correct. In WM_PAINT processing, the major difference between the two programs is that EMF3 called
PlayEnhMetaFile , but EMF5 calls EnumEnhMetaFile . You'll recall that the PlayEnhMetaFile function has the
following syntax:

PlayEnhMetaFile (hdc, hemf, &rect) ;

The first argument is the handle to the device context on which the metafile is to be rendered. The second
argument is a handle to the enhanced metafile. The third argument is a pointer to a RECT structure that describes
a rectangle on the device context surface. The metafile image is stretched to fit, but not exceed, this rectangle.

The EnumEnhMetaFile has five arguments, three of which are the same as those to PlayEnhMetaFile (although the
pointer to the RECT structure has been moved to the end of the argument list).

The third argument to EnumEnhMetaFile is the name of an enumeration function, which I've chosen to call
EnhMetaFileProc . The fourth argument is a pointer to arbitrary data you may wish to pass to the enumeration
function. I've simply set this argument to NULL.

Now let's take a look at the enumeration function. When you call EnumEnhMetaFile , GDI will call EnhMetaFileProc
once for each record in the metafile, including the header record and the end-of-file record. Normally the
enumeration function returns TRUE, but it could return FALSE to abort the enumeration process.

The enumeration function has five parameters, which I'll describe shortly. In this program, I just pass the first four
to PlayEnhMetaFileRecord , which causes GDI to execute the function call represented by that record just as if you
had called it explicitly.

EMF5 uses EnumEnhMetaFile and PlayEnhMetaFileRecord to get the same results as EMF3 got by calling
PlayEnhMetaFile . The difference is that EMF5 now has a hook into the process of metafile rendering and gets
access to every metafile record. This can be useful.

The first parameter to the enumeration function is a handle to a device context. GDI simply obtains this handle
from the first parameter to EnumEnhMetaFile . My enumeration function passes it on to PlayEnhMetaFileRecord to
identify the device context on which the image is to be rendered.

Let me skip to the third parameter of the enumeration function. This is a pointer to a structure of type
ENHMETARECORD, which I described earlier. This structure describes the actual metafile record, exactly as it's
encoded in the metafile itself.

You can write code to examine these records if you wish. Perhaps you might elect not to pass some records to the
PlayEnhMetaFileRecord function. For example, in EMF5.C, try inserting the following line right before the
PlayEnhMetaFileRecord call:

if (pEmfRecord->iType != EMR_LINETO)

Recompile the program, run it, and you'll see only the rectangle, not the two lines. Or try the following:

if (pEmfRecord->iType != EMR_SELECTOBJECT)

That little change will cause the image to be rendered with default objects—not the pen and brush we've created.

One thing you should not do is modify the metafile record. But before you get upset about this restriction, let's
take a look at the EMF6 program in Figure 18-12.

Figure 18-12. The EMF6 program.

EMF6.C

/*-------------------------------------
 EMF6.C -- Enhanced Metafile Demo #6
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR lpszCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF6") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #6"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;
 while (GetMessage (&msg, NULL, 0, 0))

 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

int CALLBACK EnhMetaFileProc (HDC hdc, HANDLETABLE * pHandleTable,
 CONST ENHMETARECORD * pEmfRecord,
 int iHandles, LPARAM pData)
{
 ENHMETARECORD * pEmfr ;

 pEmfr = (ENHMETARECORD *) malloc (pEmfRecord->nSize) ;

 CopyMemory (pEmfr, pEmfRecord, pEmfRecord->nSize) ;

 if (pEmfr->iType == EMR_RECTANGLE)
 pEmfr->iType = EMR_ELLIPSE ;

 PlayEnhMetaFileRecord (hdc, pHandleTable, pEmfr, iHandles) ;

 free (pEmfr) ;

 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;
 HENHMETAFILE hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 hemf = GetEnhMetaFile (TEXT ("..\\emf3\\emf3.emf")) ;

 EnumEnhMetaFile (hdc, hemf, EnhMetaFileProc, NULL, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Like EMF5, EMF6 uses the EMF3.EMF metafile created by the EMF3 program, so be sure to run that program before
this one and run all programs within Visual C++.

EMF6 demonstrates that if you want to modify metafile records before rendering them, the solution is fairly
simple: you make a copy and modify that. As you can see, the enumeration procedure begins by using malloc to
allocate a block of memory the size of the metafile record, indicated by the nSize field of the pEmfRecord structure
passed to the function. A pointer to this block is saved in the variable pEmfr , which is a pointer to an
ENHMETARECORD structure.

Using CopyMemory , the program copies the contents of the structure pointed to by pEmfRecord to the structure
pointed to by pEmfr . Now we have something that we can alter. The program checks whether the record is of
type EMR_RECTANGLE and, if so, replaces the iType field with EMR_ELLIPSE. The pEmfr pointer is passed to
PlayEnhMetaFileRecord and then freed. The result is that the program draws an ellipse rather than a rectangle.
Everything else is the same.

Of course, our little alteration worked quite easily because the Rectangle and Ellipse functions have the same
arguments that define the same thing—a bounding box for the figure. Making more extensive alterations will
require some knowledge about the formats of the various metafile records.

Another possibility is to slip in an extra record or two. For example, replace the if statement in EMF6.C with the
following:

if (pEmfr->iType == EMR_RECTANGLE)
{
 PlayEnhMetaFileRecord (hdc, pHandleTable, pEmfr, nObjects) ;

 pEmfr->iType = EMR_ELLIPSE ;
}

Whenever a Rectangle record comes through, the program renders it and then changes it to an Ellipse , which is
also rendered. Now the program draws both a rectangle and an ellipse.

Let's examine now how GDI objects are dealt with when you enumerate a metafile.

In the metafile header, the nHandles field of the ENHMETAHEADER structure is a value of one more than the
number of GDI objects created in the metafile. Thus, for the metafiles in EMF5 and EMF6, this field is 3,
accounting for the pen, the brush, and something else. What this "something else" really is I'll reveal shortly.

You'll notice that the penultimate parameter to the enumeration functions in EMF5 and EMF6 is also called
nHandles . It'll be the same number, which is 3.

The second parameter to the enumeration function is a pointer to a structure called HANDLETABLE, defined in
WINGDI.H like so:

typedef struct tagHANDLETABLE
{
 HGDIOBJ objectHandle [1] ;
}
HANDLETABLE ;

The HGDIOBJ data type is a generalized handle to a GDI object and is defined as a 32-bit pointer, as are all the
other GDI objects. As you'll note, this is one of those structures that has an array field with just one element. This

means the field is actually of variable length. The number of elements in the objectHandle array is equal to
nHandles , which in the case of our programs is 3.

Within the enumeration function, you can obtain these handles using the expression

pHandleTable->objectHandle[i]

where i is either 0, 1, or 2 for the three handles.

Whenever the enumeration function is called, the first element of the array will contain the handle to the metafile
being enumerated. That's the "something else" I referred to above.

When the enumeration function is first called, the second and third elements of the table will be 0. These are
placeholders for the handles of the brush and the pen.

Here's how it works: The first object-creation function in the metafile has a record type of
EMR_CREATEBRUSHINDIRECT. This record indicates an object number of 1. When the record is passed to
PlayEnhMetaFileRecord , GDI creates the brush and obtains a handle to it. This handle is stored as element 1 (the
second element) of the objectHandle array. When the first EMR_SELECTOBJECT record is passed to
PlayEnhMetaFileRecord , GDI notes that the handle number is 1 and is able to retrieve the actual handle from the
table and use it in a SelectObject call. When the metafile eventually deletes the brush, GDI sets element 1 of the
objectHandle array back to 0.

By accessing the objectHandle array, you can use calls such as GetObjectType and GetObject to obtain
information about the objects used in the metafile.

Embedding Images

Perhaps the most important use of metafile enumeration is to embed other images (or even entire metafiles) in an
existing metafile. Actually, the existing metafile remains unchanged; what you really do is create a new metafile
that combines the existing metafile and the new embedded images. The basic trick is to pass a metafile device
context handle as the first argument to EnumEnhMetaFile . That allows you to render both metafile records and
GDI function calls on the metafile device context.

It's easiest to embed new images at the beginning or end of the metafile command sequence—that is, right after
the EMR_HEADER record or right before the EMF_EOF record. However, if you are familiar with the existing
metafile, you can embed new drawing commands anywhere you want. That's what's done in the EMF7 program
shown in Figure 18-13.

Figure 18-13. The EMF7 program.

EMF7.C

/*-------------------------------------
 EMF7.C -- Enhanced Metafile Demo #7
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR lpszCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("EMF7") ;
 HWND hwnd ;

 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Demo #7"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

int CALLBACK EnhMetaFileProc (HDC hdc, HANDLETABLE * pHandleTable,
 CONST ENHMETARECORD * pEmfRecord,
 int iHandles, LPARAM pData)
{
 HBRUSH hBrush ;
 HPEN hPen ;
 LOGBRUSH lb ;

 if (pEmfRecord->iType != EMR_HEADER && pEmfRecord->iType != EMR_EOF)

 PlayEnhMetaFileRecord (hdc, pHandleTable, pEmfRecord, iHandles) ;

 if (pEmfRecord->iType == EMR_RECTANGLE)

 {
 hBrush = SelectObject (hdc, GetStockObject (NULL_BRUSH)) ;

 lb.lbStyle = BS_SOLID ;
 lb.lbColor = RGB (0, 255, 0) ;
 lb.lbHatch = 0 ;

 hPen = SelectObject (hdc,
 ExtCreatePen (PS_SOLID | PS_GEOMETRIC, 5, &lb, 0, NULL)) ;

 Ellipse (hdc, 100, 100, 200, 200) ;

 DeleteObject (SelectObject (hdc, hPen)) ;
 SelectObject (hdc, hBrush) ;
 }
 return TRUE ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 ENHMETAHEADER emh ;
 HDC hdc, hdcEMF ;
 HENHMETAFILE hemfOld, hemf ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:

 // Retrieve existing metafile and header

 hemfOld = GetEnhMetaFile (TEXT ("..\\emf3\\emf3.emf")) ;

 GetEnhMetaFileHeader (hemfOld, sizeof (ENHMETAHEADER), &emh) ;

 // Create a new metafile DC

 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf7.emf"), NULL,
 TEXT ("EMF7\0EMF Demo #7\0")) ;

 // Enumerate the existing metafile

 EnumEnhMetaFile (hdcEMF, hemfOld, EnhMetaFileProc, NULL,
 (RECT *) & emh.rclBounds) ;

 // Clean up

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemfOld) ;
 DeleteEnhMetaFile (hemf) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;
 rect.left = rect.right / 4 ;
 rect.right = 3 * rect.right / 4 ;
 rect.top = rect.bottom / 4 ;
 rect.bottom = 3 * rect.bottom / 4 ;

 hemf = GetEnhMetaFile (TEXT ("emf7.emf")) ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;
 DeleteEnhMetaFile (hemf) ;
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

EMF7 uses the EMF3.EMF metafile created by the EMF3 program, so make sure you run that program to create the
metafile before you run EMF7.

Although WM_PAINT processing in EMF7 has reverted to using PlayEnhMetaFile rather than EnumEnhMetaFile ,
WM_CREATE processing is quite different.

First, the program obtains a metafile handle for the EMF3.EMF file by calling GetEnhMetaFile . It also gets the
enhanced metafile header by calling GetEnhMetaFileHeader . The sole purpose of getting the header is to use the
rclBounds field in the forthcoming EnumEnhMetaFile call.

Next, the program creates a new disk-based metafile to be stored with the name EMF7.EMF. The
CreateEnhMetaFile function returns a device context handle for the metafile. Then EnumEnhMetaFile is called
using the metafile device context handle for EMF7.EMF and the metafile handle from EMF3.EMF.

Now let's take a look at EnhMetaFileProc . If the record being enumerated is not the header or the end-of-file, the
function calls PlayEnhMetaFileRecord to transfer the record into the new metafile device context. (It's not strictly
necessary to exclude the header or end-of-file record, but they make the metafile somewhat larger.)

If the record just transferred is the Rectangle call, the function creates a pen to draw an ellipse with a green
outline and a transparent interior. Notice how the code restores the state of the device context by saving the
previous pen and brush handles. During this time, all these functions are inserted into the metafile. (Keep in mind
that you can also use PlayEnhMetaFile to insert an entire metafile in the existing one.)

Back in WM_CREATE processing, the program calls CloseEnhMetaFile to obtain a handle to the new metafile. Then
it deletes both metafile handles, leaving behind both the EMF3.EMF and EMF7.EMF files on disk.

It's obvious from the program's display output that the ellipse is drawn after the rectangle but before the two
crisscrossing lines.

An Enhanced Metafile Viewer and Printer

Using the clipboard for transferring enhanced metafiles is quite simple. The clipboard type is CF_ENHMETAFILE.
The GetClipboardData function returns a handle to the enhanced metafile; the SetClipboardData also uses the
metafile handle. Need a copy of the metafile? Use the CopyEnhMetaFile function. If you put an enhanced metafile
in the clipboard, Windows will make available a metafile in the old format for those programs that need it. If you
put an old-format metafile in the clipboard, Windows will make available an enhanced metafile.

The EMFVIEW program shown in Figure 18-14 shows code to transfer metafiles to and from the clipboard, and it
also allows loading metafiles, saving metafiles, and printing them.

Figure 18-14. The EMFVIEW program.

EMFVIEW.C

/*--
 EMFVIEW.C -- View Enhanced Metafiles
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <commdlg.h>
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("EmfView") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Enhanced Metafile Viewer"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateAccelerator (hwnd, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

HPALETTE CreatePaletteFromMetaFile (HENHMETAFILE hemf)
{
 HPALETTE hPalette ;
 int iNum ;
 LOGPALETTE * plp ;

 if (!hemf)
 return NULL ;

 if (0 == (iNum = GetEnhMetaFilePaletteEntries (hemf, 0, NULL)))
 return NULL ;

 plp = malloc (sizeof (LOGPALETTE) + (iNum - 1) * sizeof (PALETTEENTRY)) ;

 plp->palVersion = 0x0300 ;
 plp->palNumEntries = iNum ;
 GetEnhMetaFilePaletteEntries (hemf, iNum, plp->palPalEntry) ;

 hPalette = CreatePalette (plp) ;

 free (plp) ;

 return hPalette ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static DOCINFO di = { sizeof (DOCINFO), TEXT ("EmfView: Printing") } ;
 static HENHMETAFILE hemf ;
 static OPENFILENAME ofn ;
 static PRINTDLG printdlg = { sizeof (PRINTDLG) } ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 static TCHAR szFilter[] =
 TEXT ("Enhanced Metafiles (*.EMF)\0*.emf\0")
 TEXT ("All Files (*.*)\0*.*\0\0") ;
 BOOL bSuccess ;
 ENHMETAHEADER header ;

 HDC hdc, hdcPrn ;
 HENHMETAFILE hemfCopy ;
 HMENU hMenu ;
 HPALETTE hPalette ;
 int i, iLength, iEnable ;
 PAINTSTRUCT ps ;
 RECT rect ;
 PTSTR pBuffer ;

 switch (message)
 {
 case WM_CREATE:
 // Initialize OPENFILENAME structure

 ofn.lStructSize = sizeof (OPENFILENAME) ;
 ofn.hwndOwner = hwnd ;
 ofn.hInstance = NULL ;
 ofn.lpstrFilter = szFilter ;
 ofn.lpstrCustomFilter = NULL ;
 ofn.nMaxCustFilter = 0 ;
 ofn.nFilterIndex = 0 ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.lpstrInitialDir = NULL ;
 ofn.lpstrTitle = NULL ;
 ofn.Flags = 0 ;
 ofn.nFileOffset = 0 ;
 ofn.nFileExtension = 0 ;
 ofn.lpstrDefExt = TEXT ("emf") ;
 ofn.lCustData = 0 ;
 ofn.lpfnHook = NULL ;
 ofn.lpTemplateName = NULL ;
 return 0 ;

 case WM_INITMENUPOPUP:
 hMenu = GetMenu (hwnd) ;

 iEnable = hemf ? MF_ENABLED : MF_GRAYED ;

 EnableMenuItem (hMenu, IDM_FILE_SAVE_AS, iEnable) ;
 EnableMenuItem (hMenu, IDM_FILE_PRINT, iEnable) ;
 EnableMenuItem (hMenu, IDM_FILE_PROPERTIES, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_CUT, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_COPY, iEnable) ;
 EnableMenuItem (hMenu, IDM_EDIT_DELETE, iEnable) ;

 EnableMenuItem (hMenu, IDM_EDIT_PASTE,
 IsClipboardFormatAvailable (CF_ENHMETAFILE) ?
 MF_ENABLED : MF_GRAYED) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_OPEN:
 // Show the File Open dialog box

 ofn.Flags = 0 ;

 if (!GetOpenFileName (&ofn))
 return 0 ;

 // If there's an existing EMF, get rid of it.

 if (hemf)
 {
 DeleteEnhMetaFile (hemf) ;
 hemf = NULL ;
 }
 // Load the EMF into memory

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 hemf = GetEnhMetaFile (szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Invalidate the client area for later update

 InvalidateRect (hwnd, NULL, TRUE) ;

 if (hemf == NULL)
 {
 MessageBox (hwnd, TEXT ("Cannot load metafile"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 }
 return 0 ;

 case IDM_FILE_SAVE_AS:
 if (!hemf)
 return 0 ;

 // Show the File Save dialog box

 ofn.Flags = OFN_OVERWRITEPROMPT ;

 if (!GetSaveFileName (&ofn))
 return 0 ;

 // Save the EMF to disk file

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;

 ShowCursor (TRUE) ;

 hemfCopy = CopyEnhMetaFile (hemf, szFileName) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (hemfCopy)
 {
 DeleteEnhMetaFile (hemf) ;
 hemf = hemfCopy ;
 }
 else
 MessageBox (hwnd, TEXT ("Cannot save metafile"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_FILE_PRINT:
 // Show the Print dialog box and get printer DC

 printdlg.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&printdlg))
 return 0 ;

 if (NULL == (hdcPrn = printdlg.hDC))
 {
 MessageBox (hwnd, TEXT ("Cannot obtain printer DC"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;
 }
 // Get size of printable area of page

 rect.left = 0 ;
 rect.right = GetDeviceCaps (hdcPrn, HORZRES) ;
 rect.top = 0 ;
 rect.bottom = GetDeviceCaps (hdcPrn, VERTRES) ;

 bSuccess = FALSE ;

 // Play the EMF to the printer

 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 if ((StartDoc (hdcPrn, &di) > 0) && (StartPage (hdcPrn) > 0))
 {
 PlayEnhMetaFile (hdcPrn, hemf, &rect) ;

 if (EndPage (hdcPrn) > 0)
 {
 bSuccess = TRUE ;
 EndDoc (hdcPrn) ;

 }
 }
 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;
 DeleteDC (hdcPrn) ;

 if (!bSuccess)
 MessageBox (hwnd, TEXT ("Could not print metafile"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return 0 ;

 case IDM_FILE_PROPERTIES:
 if (!hemf)
 return 0 ;

 iLength = GetEnhMetaFileDescription (hemf, 0, NULL) ;
 pBuffer = malloc ((iLength + 256) * sizeof (TCHAR)) ;

 GetEnhMetaFileHeader (hemf, sizeof (ENHMETAHEADER), &header) ;

 // Format header file information

 i = wsprintf (pBuffer,
 TEXT ("Bounds = (%i, %i) to (%i, %i) pixels\n"),
 header.rclBounds.left, header.rclBounds.top,
 header.rclBounds.right, header.rclBounds.bottom) ;

 i += wsprintf (pBuffer + i,
 TEXT ("Frame = (%i, %i) to (%i, %i) mms\n"),
 header.rclFrame.left, header.rclFrame.top,
 header.rclFrame.right, header.rclFrame.bottom) ;

 i += wsprintf (pBuffer + i,
 TEXT ("Resolution = (%i, %i) pixels")
 TEXT (" = (%i, %i) mms\n"),
 header.szlDevice.cx, header.szlDevice.cy,
 header.szlMillimeters.cx,
 header.szlMillimeters.cy) ;

 i += wsprintf (pBuffer + i,
 TEXT ("Size = %i, Records = %i, ")
 TEXT ("Handles = %i, Palette entries = %i\n"),
 header.nBytes, header.nRecords,
 header.nHandles, header.nPalEntries) ;

 // Include the metafile description, if present
 if (iLength)
 {
 i += wsprintf (pBuffer + i, TEXT ("Description = ")) ;
 GetEnhMetaFileDescription (hemf, iLength, pBuffer + i) ;
 pBuffer [lstrlen (pBuffer)] = `\t' ;
 }

 MessageBox (hwnd, pBuffer, TEXT ("Metafile Properties"), MB_OK) ;
 free (pBuffer) ;
 return 0 ;

 case IDM_EDIT_COPY:
 case IDM_EDIT_CUT:
 if (!hemf)
 return 0 ;

 // Transfer metafile copy to the clipboard

 hemfCopy = CopyEnhMetaFile (hemf, NULL) ;

 OpenClipboard (hwnd) ;
 EmptyClipboard () ;
 SetClipboardData (CF_ENHMETAFILE, hemfCopy) ;
 CloseClipboard () ;

 if (LOWORD (wParam) == IDM_EDIT_COPY)
 return 0 ;
 // fall through if IDM_EDIT_CUT
 case IDM_EDIT_DELETE:
 if (hemf)
 {
 DeleteEnhMetaFile (hemf) ;
 hemf = NULL ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case IDM_EDIT_PASTE:
 OpenClipboard (hwnd) ;
 hemfCopy = GetClipboardData (CF_ENHMETAFILE) ;
 CloseClipboard () ;

 if (hemfCopy && hemf)
 {
 DeleteEnhMetaFile (hemf) ;
 hemf = NULL ;
 }

 hemf = CopyEnhMetaFile (hemfCopy, NULL) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case IDM_APP_ABOUT:
 MessageBox (hwnd, TEXT ("Enhanced Metafile Viewer\n")
 TEXT ("(c) Charles Petzold, 1998"),
 szAppName, MB_OK) ;
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0L) ;

 return 0 ;
 }
 break ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hemf)
 {
 if (hPalette = CreatePaletteFromMetaFile (hemf))
 {
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 }
 GetClientRect (hwnd, &rect) ;
 PlayEnhMetaFile (hdc, hemf, &rect) ;

 if (hPalette)
 DeleteObject (hPalette) ;
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_QUERYNEWPALETTE:
 if (!hemf || !(hPalette = CreatePaletteFromMetaFile (hemf)))
 return FALSE ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 InvalidateRect (hwnd, NULL, FALSE) ;

 DeleteObject (hPalette) ;
 ReleaseDC (hwnd, hdc) ;
 return TRUE ;

 case WM_PALETTECHANGED:
 if ((HWND) wParam == hwnd)
 break ;

 if (!hemf || !(hPalette = CreatePaletteFromMetaFile (hemf)))
 break ;

 hdc = GetDC (hwnd) ;
 SelectPalette (hdc, hPalette, FALSE) ;
 RealizePalette (hdc) ;
 UpdateColors (hdc) ;

 DeleteObject (hPalette) ;
 ReleaseDC (hwnd, hdc) ;
 break ;

 case WM_DESTROY:

 if (hemf)
 DeleteEnhMetaFile (hemf) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

EMFVIEW.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

EMFVIEW MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Open\tCtrl+O", IDM_FILE_OPEN
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "&Print...\tCtrl+P", IDM_FILE_PRINT
 MENUITEM SEPARATOR
 MENUITEM "&Properties", IDM_FILE_PROPERTIES
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "&Delete\tDel", IDM_EDIT_DELETE
 END
 POPUP "Help"
 BEGIN
 MENUITEM "&About EmfView...", IDM_APP_ABOUT
 END
END

///
// Accelerator

EMFVIEW ACCELERATORS DISCARDABLE
BEGIN

 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
 "P", IDM_FILE_PRINT, VIRTKEY, CONTROL, NOINVERT
 "V", IDM_EDIT_PASTE, VIRTKEY, CONTROL, NOINVERT
 VK_DELETE, IDM_EDIT_DELETE, VIRTKEY, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by EmfView.rc

#define IDM_FILE_OPEN 40001
#define IDM_FILE_SAVE_AS 40002
#define IDM_FILE_PRINT 40003
#define IDM_FILE_PROPERTIES 40004
#define IDM_APP_EXIT 40005
#define IDM_EDIT_CUT 40006
#define IDM_EDIT_COPY 40007
#define IDM_EDIT_PASTE 40008
#define IDM_EDIT_DELETE 40009
#define IDM_APP_ABOUT 40010

EMFVIEW also has complete palette logic, just in case a palette has been encoded in the metafile. (The way it gets
in there is by a call to SelectPalette .) The program extracts the palette in its CreatePaletteFromMetaFile function,
which is called when it displays a metafile during WM_PAINT and also while processing the
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages.

In response to a Print command from the menu, EMFVIEW displays the common printer dialog box and then
obtains the dimensions of the printable area of the page. The metafile is stretched to fill that whole area. EMFVIEW
displays a metafile in its window similarly.

The Properties item from the File menu causes EMFVIEW to display a message box containing information from
the metafile header.

If you print the EMF2.EMF metafile image created earlier in this chapter, you may find that the lines are very thin
on high-resolution printers, perhaps nearly invisible. Vector images should really have wider pens (for example, 1-
point wide) for printing. The ruler image shown later in this chapter does that.

Displaying Accurate Metafile Images

The great thing about metafile images is that they can be stretched to any size and still maintain reasonable
fidelity. This is because a metafile normally consists of a series of vector graphics primitives, such as lines, filled
areas, and outline fonts. Enlarging or compressing the image simply involves scaling all the coordinate points that
define these primitives. Bitmaps, on the other hand, can lose vital information when compression results in
dropping entire rows and columns of pixels.

Of course, metafile compression in real life is not entirely flawless either. We live with graphical output devices
that have a finite pixel size. A metafile image consisting of lots of lines could start to look like an indecipherable
blob when compressed in size. Also, area-filling patterns and color dithering start to look odd at small sizes. And, if
the metafile contains embedded bitmaps or old-fashioned raster fonts, these too can pose familiar problems.

For the most part, though, metafiles are freely scaleable. This is most useful when dropping a metafile into a word

processing or desktop publishing document. Generally, when you select a metafile image in such an application,
you'll be presented with a bounding rectangle that you can grab with the mouse and scale to any size. The image
will also have the same relative size when rendered on a printer.

Sometimes, however, arbitrarily scaling a metafile is not such a hot idea. An example: Suppose you have a
banking system that stores facsimiles of account-holders' signatures as a series of polylines stored in a metafile.
Widening or heightening this metafile would make the signature look different. At the very least, you should keep
the image's aspect ratio constant.

In the sample programs shown previously, we've based the bounding rectangle in the PlayEnhMetaFile call on the
size of the client area. Thus, as you resize the program's window, you effectively resize the image. This is
conceptually similar to resizing a metafile image within a word-processing document.

Accurately displaying a metafile image—either in specific metrical sizes or with a proper aspect ratio—requires
using size information in the metafile header and setting the rectangle structure accordingly.

The sample programs in the remainder of this chapter will use a shell program called EMF.C that includes printing
logic, a resource script named EMF.RC, and a RESOURCE.H header file. Figure 18-15 shows these files along with
EMF8.C, a program that uses these files to display a 6-inch ruler.

Figure 18-15. The EMF8 program.

EMF8.C

/*-------------------------------------
 EMF8.C -- Enhanced Metafile Demo #8
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>

TCHAR szClass [] = TEXT ("EMF8") ;
TCHAR szTitle [] = TEXT ("EMF8: Enhanced Metafile Demo #8") ;

void DrawRuler (HDC hdc, int cx, int cy)
{
 int iAdj, i, iHeight ;
 LOGFONT lf ;
 TCHAR ch ;

 iAdj = GetVersion () & 0x80000000 ? 0 : 1 ;

 // Black pen with 1-point width
 SelectObject (hdc, CreatePen (PS_SOLID, cx / 72 / 6, 0)) ;

 // Rectangle surrounding entire pen (with adjustment)

 Rectangle (hdc, iAdj, iAdj, cx + iAdj + 1, cy + iAdj + 1) ;

 // Tick marks

 for (i = 1 ; i < 96 ; i++)
 {
 if (i % 16 == 0) iHeight = cy / 2 ; // inches
 else if (i % 8 == 0) iHeight = cy / 3 ; // half inches
 else if (i % 4 == 0) iHeight = cy / 5 ; // quarter inches

 else if (i % 2 == 0) iHeight = cy / 8 ; // eighths
 else iHeight = cy / 12 ; // sixteenths

 MoveToEx (hdc, i * cx / 96, cy, NULL) ;
 LineTo (hdc, i * cx / 96, cy - iHeight) ;
 }
 // Create logical font

 FillMemory (&lf, sizeof (lf), 0) ;
 lf.lfHeight = cy / 2 ;
 lstrcpy (lf.lfFaceName, TEXT ("Times New Roman")) ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 SetTextAlign (hdc, TA_BOTTOM | TA_CENTER) ;
 SetBkMode (hdc, TRANSPARENT) ;

 // Display numbers

 for (i = 1 ; i <= 5 ; i++)
 {
 ch = (TCHAR) (i + `0') ;
 TextOut (hdc, i * cx / 6, cy / 2, &ch, 1) ;
 }
 // Clean up

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
}

void CreateRoutine (HWND hwnd)
{
 HDC hdcEMF ;
 HENHMETAFILE hemf ;
 int cxMms, cyMms, cxPix, cyPix, xDpi, yDpi ;

 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf8.emf"), NULL,
 TEXT ("EMF8\0EMF Demo #8\0")) ;
 if (hdcEMF == NULL)
 return ;

 cxMms = GetDeviceCaps (hdcEMF, HORZSIZE) ;
 cyMms = GetDeviceCaps (hdcEMF, VERTSIZE) ;
 cxPix = GetDeviceCaps (hdcEMF, HORZRES) ;
 cyPix = GetDeviceCaps (hdcEMF, VERTRES) ;

 xDpi = cxPix * 254 / cxMms / 10 ;
 yDpi = cyPix * 254 / cyMms / 10 ;

 DrawRuler (hdcEMF, 6 * xDpi, yDpi) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;

}

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 ENHMETAHEADER emh ;
 HENHMETAFILE hemf ;
 int cxImage, cyImage ;
 RECT rect ;

 hemf = GetEnhMetaFile (TEXT ("emf8.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclBounds.right - emh.rclBounds.left ;
 cyImage = emh.rclBounds.bottom - emh.rclBounds.top ;

 rect.left = (cxArea - cxImage) / 2 ;
 rect.right = (cxArea + cxImage) / 2 ;
 rect.top = (cyArea - cyImage) / 2 ;
 rect.bottom = (cyArea + cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

EMF.C

/*--
 EMF.C -- Enhanced Metafile Demonstration Shell Program
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <commdlg.h>
#include "..\\emf8\\resource.h"

extern void CreateRoutine (HWND) ;
extern void PaintRoutine (HWND, HDC, int, int) ;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HANDLE hInst ;

extern TCHAR szClass [] ;
extern TCHAR szTitle [] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 TCHAR szResource [] = TEXT ("EMF") ;

 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szResource ;
 wndclass.lpszClassName = szClass ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szClass, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szClass, szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL PrintRoutine (HWND hwnd)
{
 static DOCINFO di ;
 static PRINTDLG printdlg = { sizeof (PRINTDLG) } ;
 static TCHAR szMessage [32] ;
 BOOL bSuccess = FALSE ;
 HDC hdcPrn ;
 int cxPage, cyPage ;

 printdlg.Flags = PD_RETURNDC | PD_NOPAGENUMS | PD_NOSELECTION ;

 if (!PrintDlg (&printdlg))

 return TRUE ;

 if (NULL == (hdcPrn = printdlg.hDC))
 return FALSE ;

 cxPage = GetDeviceCaps (hdcPrn, HORZRES) ;
 cyPage = GetDeviceCaps (hdcPrn, VERTRES) ;

 lstrcpy (szMessage, szClass) ;
 lstrcat (szMessage, TEXT (": Printing")) ;

 di.cbSize = sizeof (DOCINFO) ;
 di.lpszDocName = szMessage ;

 if (StartDoc (hdcPrn, &di) > 0)
 {
 if (StartPage (hdcPrn) > 0)
 {
 PaintRoutine (hwnd, hdcPrn, cxPage, cyPage) ;
 if (EndPage (hdcPrn) > 0)
 {
 EndDoc (hdcPrn) ;
 bSuccess = TRUE ;
 }
 }
 }
 DeleteDC (hdcPrn) ;

 return bSuccess ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 BOOL bSuccess ;
 static int cxClient, cyClient ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 CreateRoutine (hwnd) ;
 return 0 ;

 case WM_COMMAND:
 switch (wParam)
 {
 case IDM_PRINT:
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 bSuccess = PrintRoutine (hwnd) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 if (!bSuccess)
 MessageBox (hwnd,
 TEXT ("Error encountered during printing"),
 szClass, MB_ICONASTERISK | MB_OK) ;
 return 0 ;

 case IDM_EXIT:
 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 case IDM_ABOUT:
 MessageBox (hwnd, TEXT ("Enhanced Metafile Demo Program\n")
 TEXT ("Copyright (c) Charles Petzold, 1998"),
 szClass, MB_ICONINFORMATION | MB_OK) ;
 return 0 ;
 }
 break ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 PaintRoutine (hwnd, hdc, cxClient, cyClient) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

EMF.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

EMF MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&Print...", IDM_PRINT
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_EXIT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_ABOUT
 END
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Emf.rc
//
#define IDM_PRINT 40001
#define IDM_EXIT 40002
#define IDM_ABOUT 40003

During the WM_CREATE message, EMF.C calls an external function called CreateRoutine . This function will create
a metafile. EMF.C calls a function named PaintRoutine in two places: once during the WM_PAINT message and
again in the function PrintRoutine in response to a menu command to print the image.

Because modern printers often have a much higher resolution than video displays, the ability to print a metafile is
an important tool for testing our ability to render an image in a specific size. The EMF8 program creates a metafile
image that makes most sense when displayed in a specific size. The image is that of a ruler 6 inches wide by 1
inch high, complete with tick marks every 16th inch and the numbers 1 through 5 in a TrueType font.

To draw a 6-inch ruler, we need to know something about device resolution. The CreateRoutine function in EMF8.C
begins by creating a metafile and calling GetDeviceCaps four times using the device context handle returned from
CreateEnhMetaFile . These calls obtain the width and height of the display surface in both millimeters and pixels.

This may sound a bit odd. The metafile device context is usually seen as a storage medium for GDI drawing
commands. It's not a real device like a video display or a printer, so how can it have a width and height?

Well, as you may recall, the first argument to CreateEnhMetaFile is known as the "reference device context." GDI
uses this to establish device characteristics for the metafile. If the argument is set to NULL (as in EMF8), GDI uses
the video display as the reference device context. Thus, when EMF8 calls GetDeviceCaps using the metafile device
context, it actually obtains information about the video display.

EMF8.C calculates a resolution in dots per inch by dividing the pixel dimension by the millimeter dimension and
multiplying by 25.4, the number of millimeters in an inch.

Even though we've taken great care to draw this metafile ruler in its correct size, the work is not yet done. When
it comes time to render the image, the PlayEnhMetaFile function will display it stretched to the rectangle passed as
its last argument. This rectangle must be set to the size of the ruler.

For this reason, the PaintRoutine function in EMF8 calls the GetEnhMetaFileHeader function to obtain the header
information in the metafile. The rclBounds field of the ENHMETAHEADER structure indicates the bounding
rectangle of the metafile image in pixels. The program uses this information to center the ruler in the client area,
as shown in Figure 18-16.

Figure 18-16. The EMF8 display.

Keep in mind that if you hold a ruler up to the screen, you probably won't match exactly. The video display only
approximates actual metrics, as I discussed in Chapter 5 .

This technique appears to have worked, but now try printing the image. Oops! If you have a 300-dpi laser printer,
the ruler will be about 11 /3 inches wide. That's because we've used a pixel dimension based on the video display.
Although you may think the little printed ruler looks kind of cute, it's not what we want. Let's try again.

The ENHMETAHEADER structure contains two rectangle structures that describe the size of the image. The first,
which EMF8 uses, is the rclBounds field. This gives the size of the image in pixels. The second is the rclFrame field,
which gives the size of the image in units of 0.01 millimeters. The relationship between these two fields is
governed by the reference device context originally used when creating the metafile, in this case the video display.
(The metafile header also contains two fields named szlDevice and szlMillimeters , which are SIZEL structures that
indicate the size of the reference device in pixels and millimeters, the same information available from
GetDeviceCaps .)

The information about the millimeter dimensions of the image is put to use by EMF9, shown in Figure 18-17.

Figure 18-17. The EMF9 program.

EMF9.C

/*--------------------------------------
 EMF9.C -- Enhanced Metafile Demo #9
 (c) Charles Petzold, 1998
 --------------------------------------*/

#include <windows.h>
#include <string.h>

TCHAR szClass [] = TEXT ("EMF9") ;
TCHAR szTitle [] = TEXT ("EMF9: Enhanced Metafile Demo #9") ;

void CreateRoutine (HWND hwnd)
{
}

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)

{
 ENHMETAHEADER emh ;
 HENHMETAFILE hemf ;
 int cxMms, cyMms, cxPix, cyPix, cxImage, cyImage ;
 RECT rect ;

 cxMms = GetDeviceCaps (hdc, HORZSIZE) ;
 cyMms = GetDeviceCaps (hdc, VERTSIZE) ;
 cxPix = GetDeviceCaps (hdc, HORZRES) ;
 cyPix = GetDeviceCaps (hdc, VERTRES) ;

 hemf = GetEnhMetaFile (TEXT ("..\\emf8\\emf8.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclFrame.right - emh.rclFrame.left ;
 cyImage = emh.rclFrame.bottom - emh.rclFrame.top ;

 cxImage = cxImage * cxPix / cxMms / 100 ;
 cyImage = cyImage * cyPix / cyMms / 100 ;

 rect.left = (cxArea - cxImage) / 2 ;
 rect.right = (cxArea + cxImage) / 2 ;
 rect.top = (cyArea - cyImage) / 2 ;
 rect.bottom = (cyArea + cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

EMF9 uses the metafile created by EMF8, so be sure to run EMF8 before running this program.

The PaintRoutine function in EMF9 begins by calling GetDeviceCaps four times using the destination device
context. As in the CreateRoutine function in EMF8, these calls provide information about the resolution of the
device. After getting the metafile handle, it obtains the header structure and uses the rclFrame field to calculate
the size of the metafile image in units of 0.01 millimeters. That's the first step.

The function then converts this dimension to pixels by multiplying by the pixel dimension of the output device,
dividing by the millimeter dimension, and then dividing by 100 to account for the metrical dimension in 0.01
millimeters. The PaintRoutine function now has the dimensions of the ruler in pixels—but not specific to the video
display. This is a pixel dimension appropriate for the destination device. From there on, it's easy to center the
image.

As far as the screen goes, the EMF9 display looks the same as the EMF8 display. But if you print the ruler from
EMF9, you'll see something that looks much more normal—a ruler 6 inches wide by 1 inch high.

Scaling and Aspect Ratios

There may be times when you want to use the ruler metafile created by EMF8 but without necessarily displaying
the 6-inch image. Still, it might be nice to maintain the correct 6-to-1 aspect ratio of the image. As I mentioned
before, using a bounding box to size a metafile in a word-processing program (or whatever) may be convenient,
but it could result in certain undesirable distortions. In such applications, users should be given an option to keep
the original aspect ratio regardless of how the bounding box is sized. That is, the bounding box selected by the
user would not be used directly to define the rectangle structure passed to the PlayEnhMetaFile . The rectangle
structure passed to that function would be only part of the bounding box.

Let's examine how to do this in the EMF10 program shown in Figure 18-18.

Figure 18-18. The EMF10 program.

EMF10.C

/*---------------------------------------
 EMF10.C -- Enhanced Metafile Demo #10
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

TCHAR szClass [] = TEXT ("EMF10") ;
TCHAR szTitle [] = TEXT ("EMF10: Enhanced Metafile Demo #10") ;

void CreateRoutine (HWND hwnd)
{
}

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 ENHMETAHEADER emh ;
 float fScale ;
 HENHMETAFILE hemf ;
 int cxMms, cyMms, cxPix, cyPix, cxImage, cyImage ;
 RECT rect ;

 cxMms = GetDeviceCaps (hdc, HORZSIZE) ;
 cyMms = GetDeviceCaps (hdc, VERTSIZE) ;
 cxPix = GetDeviceCaps (hdc, HORZRES) ;
 cyPix = GetDeviceCaps (hdc, VERTRES) ;

 hemf = GetEnhMetaFile (TEXT ("..\\emf8\\emf8.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclFrame.right - emh.rclFrame.left ;
 cyImage = emh.rclFrame.bottom - emh.rclFrame.top ;

 cxImage = cxImage * cxPix / cxMms / 100 ;
 cyImage = cyImage * cyPix / cyMms / 100 ;

 fScale = min ((float) cxArea / cxImage, (float) cyArea / cyImage) ;

 cxImage = (int) (fScale * cxImage) ;
 cyImage = (int) (fScale * cyImage) ;

 rect.left = (cxArea - cxImage) / 2 ;
 rect.right = (cxArea + cxImage) / 2 ;
 rect.top = (cyArea - cyImage) / 2 ;
 rect.bottom = (cyArea + cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

EMF10 stretches the ruler image to fit the client area (or the printable area of the printer page) but without
otherwise distorting it. Usually you'll see the ruler stretching the full width of the client area but centered between
the top and bottom. If you make the window somewhat stout, the ruler will be as tall as the client area but
centered horizontally.

There are probably numerous ways of calculating the proper display rectangle, but I decided to build upon the
code in EMF9. The PaintRoutine function in EMF10.C begins like EMF9.C, by calculating the pixel size of the 6-inch-
wide image appropriate for the destination device context.

The program then calculates a floating point value, named fScale , that is the minimum of the ratio of the width of
the client area to the width of the image, and the ratio of the height of the client area to the height of the image.
This factor is then used to increase the pixel dimensions of the image before the bounding rectangle is calculated.

Mapping Modes in Metafiles

We've been drawing a ruler that displays inches, and we've also been dealing with dimensions in units of
millimeters. Such jobs might seem like good candidates for using the various mapping modes provided under GDI.
Yet I've insisted on using pixels and doing all the necessary calculations "manually." Why is that?

The simple answer is that the use of mapping modes in connection with metafiles can be quite confusing. But let's
try it out to see.

When you call SetMapMode using a metafile device context, the function is encoded in the metafile just like any
other GDI function. This is demonstrated in the EMF11 program shown in Figure 18-19.

Figure 18-19. The EMF11 program.

EMF11.C

/*---------------------------------------
 EMF11.C -- Enhanced Metafile Demo #11
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

TCHAR szClass [] = TEXT ("EMF11") ;
TCHAR szTitle [] = TEXT ("EMF11: Enhanced Metafile Demo #11") ;

void DrawRuler (HDC hdc, int cx, int cy)
{
 int i, iHeight ;
 LOGFONT lf ;
 TCHAR ch ;

 // Black pen with 1-point width

 SelectObject (hdc, CreatePen (PS_SOLID, cx / 72 / 6, 0)) ;

 // Rectangle surrounding entire pen (with adjustment)
 if (GetVersion () & 0x80000000) // Windows 98
 Rectangle (hdc, 0, -2, cx + 2, cy) ;

 else // Windows NT
 Rectangle (hdc, 0, -1, cx + 1, cy) ;

 // Tick marks

 for (i = 1 ; i < 96 ; i++)
 {
 if (i % 16 == 0) iHeight = cy / 2 ; // inches
 else if (i % 8 == 0) iHeight = cy / 3 ; // half inches
 else if (i % 4 == 0) iHeight = cy / 5 ; // quarter inches
 else if (i % 2 == 0) iHeight = cy / 8 ; // eighths
 else iHeight = cy / 12 ; // sixteenths

 MoveToEx (hdc, i * cx / 96, 0, NULL) ;
 LineTo (hdc, i * cx / 96, iHeight) ;
 }
 // Create logical font

 FillMemory (&lf, sizeof (lf), 0) ;
 lf.lfHeight = cy / 2 ;
 lstrcpy (lf.lfFaceName, TEXT ("Times New Roman")) ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 SetTextAlign (hdc, TA_BOTTOM | TA_CENTER) ;
 SetBkMode (hdc, TRANSPARENT) ;

 // Display numbers

 for (i = 1 ; i <= 5 ; i++)
 {
 ch = (TCHAR) (i + `0') ;
 TextOut (hdc, i * cx / 6, cy / 2, &ch, 1) ;
 }
 // Clean up

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
}

void CreateRoutine (HWND hwnd)
{
 HDC hdcEMF ;
 HENHMETAFILE hemf ;

 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf11.emf"), NULL,
 TEXT ("EMF11\0EMF Demo #11\0")) ;

 SetMapMode (hdcEMF, MM_LOENGLISH) ;

 DrawRuler (hdcEMF, 600, 100) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;
}

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 ENHMETAHEADER emh ;
 HENHMETAFILE hemf ;
 int cxMms, cyMms, cxPix, cyPix, cxImage, cyImage ;
 RECT rect ;

 cxMms = GetDeviceCaps (hdc, HORZSIZE) ;
 cyMms = GetDeviceCaps (hdc, VERTSIZE) ;
 cxPix = GetDeviceCaps (hdc, HORZRES) ;
 cyPix = GetDeviceCaps (hdc, VERTRES) ;

 hemf = GetEnhMetaFile (TEXT ("emf11.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclFrame.right - emh.rclFrame.left ;
 cyImage = emh.rclFrame.bottom - emh.rclFrame.top ;

 cxImage = cxImage * cxPix / cxMms / 100 ;
 cyImage = cyImage * cyPix / cyMms / 100 ;

 rect.left = (cxArea - cxImage) / 2 ;
 rect.top = (cyArea - cyImage) / 2 ;
 rect.right = (cxArea + cxImage) / 2 ;
 rect.bottom = (cyArea + cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

The CreateRoutine function in EMF11 is simpler than the one in EMF8 (our original ruler-metafile program)
because it does not need to call GetDeviceCaps to determine the resolution of the video display in dots per inch.
Instead, EMF11 calls SetMapMode to set the mapping mode to MM_LOENGLISH, where logical units are equal to
0.01 inches. Thus, the dimensions of the ruler are 600 units by 100 units, and these numbers are passed to
DrawRuler .

The DrawRuler function in EMF11 is the same as the one in EMF9, except for the MoveToEx and LineTo calls that
draw the tick marks of the ruler. When drawing in units of pixels (the default MM_TEXT mapping mode), units on
the vertical axis increase going down the screen. For the MM_LOENGLISH mapping mode (and the other metrical
mapping modes), they increase going up. That required a change to this code. The adjustment factors in the
Rectangle function were also changed.

The PaintRoutine function in EMF11 is basically the same as the one in EMF9, which was the version of the
program that successfully displayed the ruler in its correct dimensions on both the video display and the printer.
The only difference is that EMF11 uses the EMF11.EMF file, whereas EMF9 used the EMF8.EMF file created by
EMF8.

The image displayed by EMF11 is basically the same as EMF9. So, we see here how embedding a SetMapMode call
into a metafile can simplify the metafile creation and doesn't affect at all the mechanics of playing the metafile in
its correct size.

Mapping and Playing

Calculating the destination rectangle in EMF11 involves some calls to GetDeviceCaps . Our second goal is to
eliminate those and use a mapping mode instead. GDI treats the coordinates of the destination rectangle as logical
coordinates. Using the MM_HIMETRIC mode seems like a good candidate for these coordinates, because that
makes logical units 0.01 millimeters, the same units used for the bounding rectangle in the enhanced metafile
header.

The EMF12 program shown in Figure 18-20 restores the DrawRuler logic as originally presented in EMF8 but uses
the MM_HIMETRIC mapping mode to display the metafile.

Figure 18-20. The EMF12 program.

EMF12.C

/*---------------------------------------
 EMF12.C -- Enhanced Metafile Demo #12
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

TCHAR szClass [] = TEXT ("EMF12") ;
TCHAR szTitle [] = TEXT ("EMF12: Enhanced Metafile Demo #12") ;

void DrawRuler (HDC hdc, int cx, int cy)
{
 int iAdj, i, iHeight ;
 LOGFONT lf ;
 TCHAR ch ;

 iAdj = GetVersion () & 0x80000000 ? 0 : 1 ;

 // Black pen with 1-point width

 SelectObject (hdc, CreatePen (PS_SOLID, cx / 72 / 6, 0)) ;

 // Rectangle surrounding entire pen (with adjustment)

 Rectangle (hdc, iAdj, iAdj, cx + iAdj + 1, cy + iAdj + 1) ;

 // Tick marks

 for (i = 1 ; i < 96 ; i++)
 {
 if (i % 16 == 0) iHeight = cy / 2 ; // inches
 else if (i % 8 == 0) iHeight = cy / 3 ; // half inches
 else if (i % 4 == 0) iHeight = cy / 5 ; // quarter inches
 else if (i % 2 == 0) iHeight = cy / 8 ; // eighths
 else iHeight = cy / 12 ; // sixteenths

 MoveToEx (hdc, i * cx / 96, cy, NULL) ;
 LineTo (hdc, i * cx / 96, cy - iHeight) ;
 }

 // Create logical font

 FillMemory (&lf, sizeof (lf), 0) ;
 lf.lfHeight = cy / 2 ;
 lstrcpy (lf.lfFaceName, TEXT ("Times New Roman")) ;

 SelectObject (hdc, CreateFontIndirect (&lf)) ;
 SetTextAlign (hdc, TA_BOTTOM | TA_CENTER) ;
 SetBkMode (hdc, TRANSPARENT) ;

 // Display numbers

 for (i = 1 ; i <= 5 ; i++)
 {
 ch = (TCHAR) (i + `0') ;
 TextOut (hdc, i * cx / 6, cy / 2, &ch, 1) ;
 }
 /
/ Clean up

 DeleteObject (SelectObject (hdc, GetStockObject (SYSTEM_FONT))) ;
 DeleteObject (SelectObject (hdc, GetStockObject (BLACK_PEN))) ;
}

void CreateRoutine (HWND hwnd)
{
 HDC hdcEMF ;
 HENHMETAFILE hemf ;
 int cxMms, cyMms, cxPix, cyPix, xDpi, yDpi ;

 hdcEMF = CreateEnhMetaFile (NULL, TEXT ("emf12.emf"), NULL,
 TEXT ("EMF13\0EMF Demo #12\0")) ;

 cxMms = GetDeviceCaps (hdcEMF, HORZSIZE) ;
 cyMms = GetDeviceCaps (hdcEMF, VERTSIZE) ;
 cxPix = GetDeviceCaps (hdcEMF, HORZRES) ;
 cyPix = GetDeviceCaps (hdcEMF, VERTRES) ;

 xDpi = cxPix * 254 / cxMms / 10 ;
 yDpi = cyPix * 254 / cyMms / 10 ;

 DrawRuler (hdcEMF, 6 * xDpi, yDpi) ;

 hemf = CloseEnhMetaFile (hdcEMF) ;

 DeleteEnhMetaFile (hemf) ;
}

void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 ENHMETAHEADER emh ;
 HENHMETAFILE hemf ;
 POINT pt ;

 int cxImage, cyImage ;
 RECT rect ;

 SetMapMode (hdc, MM_HIMETRIC) ;

 SetViewportOrgEx (hdc, 0, cyArea, NULL) ;

 pt.x = cxArea ;
 pt.y = 0 ;

 DPtoLP (hdc, &pt, 1) ;

 hemf = GetEnhMetaFile (TEXT ("emf12.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclFrame.right - emh.rclFrame.left ;
 cyImage = emh.rclFrame.bottom - emh.rclFrame.top ;

 rect.left = (pt.x - cxImage) / 2 ;
 rect.top = (pt.y + cyImage) / 2 ;
 rect.right = (pt.x + cxImage) / 2 ;
 rect.bottom = (pt.y - cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

The PaintRoutine function in EMF12 first sets the mapping mode to MM_HIMETRIC. As with the other metric
modes, values of y increase going up the screen. However, the origin is still at the upper left corner, which means
that y -coordinates within the client area are negative. To correct this oddity, the program calls SetViewportOrgEx
to set the origin to the lower left corner.

The device point (cxArea , 0) is at the upper right corner of the screen. Passing that point to the DPtoLP ("device
point to logical point") function gives us the size of the client area in 0.01 millimeters.

The program then loads the metafile, gets the header, and finds the dimensions of the metafile in 0.01
millimeters. The destination rectangle centered in the middle of the client area is then easy to calculate.

Now we've seen how we can use a mapping mode when creating the metafile and also for displaying it. Can we do
both?

It turns out that it works, as EMF13 (shown in Figure 18-21) demonstrates.

Figure 18-21. The EMF13 program.

EMF13.C

/*---------------------------------------
 EMF13.C -- Enhanced Metafile Demo #13
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

TCHAR szClass [] = TEXT ("EMF13") ;
TCHAR szTitle [] = TEXT ("EMF13: Enhanced Metafile Demo #13") ;

void CreateRoutine (HWND hwnd)
{
}
void PaintRoutine (HWND hwnd, HDC hdc, int cxArea, int cyArea)
{
 ENHMETAHEADER emh ;
 HENHMETAFILE hemf ;
 POINT pt ;
 int cxImage, cyImage ;
 RECT rect ;

 SetMapMode (hdc, MM_HIMETRIC) ;

 SetViewportOrgEx (hdc, 0, cyArea, NULL) ;

 pt.x = cxArea ;
 pt.y = 0 ;

 DPtoLP (hdc, &pt, 1) ;

 hemf = GetEnhMetaFile (TEXT ("..\\emf11\\emf11.emf")) ;

 GetEnhMetaFileHeader (hemf, sizeof (emh), &emh) ;

 cxImage = emh.rclFrame.right - emh.rclFrame.left ;
 cyImage = emh.rclFrame.bottom - emh.rclFrame.top ;

 rect.left = (pt.x - cxImage) / 2 ;
 rect.top = (pt.y + cyImage) / 2 ;
 rect.right = (pt.x + cxImage) / 2 ;
 rect.bottom = (pt.y - cyImage) / 2 ;

 PlayEnhMetaFile (hdc, hemf, &rect) ;

 DeleteEnhMetaFile (hemf) ;
}

In the EMF13 program, it's not necessary to create the ruler metafile by using a mapping mode because it's
already been created by EMF11. EMF13 simply loads that one and uses a mapping mode to calculate the
destination rectangle, just as EMF11 does.

Now we can establish a couple principles. When the metafile is created, GDI uses any embedded changes to the
mapping mode to calculate the size of the metafile image in pixels and millimeters. The size of the image is stored
in the metafile header. When the metafile is played, GDI establishes the physical location of the destination
rectangle based on the mapping mode in effect at the time of the PlayEnhMetaFile call. Nothing in the metafile can
change that location.

Chapter 19

The Multiple-Document Interface

The Multiple-Document Interface (MDI) is a specification for applications that handle documents in Microsoft
Windows. The specification describes a window structure and user interface that allow the user to work with
multiple documents within a single application (such as text documents in a word-processing program or
spreadsheets in a spreadsheet program). Simply put, just as Windows maintains multiple application windows
within a single screen, an MDI application maintains multiple document windows within a single client area. The
first MDI application for Windows was the first Windows version of Microsoft Excel. But many others soon followed.

MDI Concepts

Although the MDI specification has been around since Windows 2.0, at that time MDI applications were difficult to
write and required some very intricate programming work. Since Windows 3.0, however, much of that work has
already been done for you. That support, with some enhancements from Windows 95, has been carried over into
Windows 98 and Microsoft Windows NT.

The Elements of MDI

The main application window of an MDI program is conventional: it has a title bar, a menu, a sizing border, a
system menu icon, and minimize/maximize/close buttons. The client area, however, is often called a "workspace"
and is not directly used to display program output. This workspace contains zero or more child windows, each of
which displays a document.

These child windows look much like normal application windows and much like the main application window of an
MDI program. They too have a title bar, a sizing border, a system menu icon, minimize/maximize/close buttons,
and possibly scroll bars. None of the document windows has a menu, however. The menu on the main application
window applies to the document windows.

At any one time, only one document window is active (indicated by a highlighted title bar), and it appears in front
of all the other document windows. All the document child windows are clipped to the workspace area and never
appear outside the application window.

At first, MDI seems a fairly straightforward job for the Windows programmer. All you need to do is create a
WS_CHILD window for each document, making the program's main application window the parent of the
document window. But with a little exploration of existing MDI applications, you'll find some complications that
require difficult code.

An MDI document window can be minimized. A short title bar with an icon appears at the bottom of the
workspace. Generally, an MDI application will use different icons for the main application window and each
type of document window.

An MDI document window can be maximized. In this case, the title bar of the document window (normally
used to show the filename of the document in the window) disappears and the filename appears appended
to the application name in the application window's title bar. The system menu icon of the document
window becomes the first item in the top-level menu of the application window. The button to close the
document window becomes the last item in the top-level menu and appears to the far right.

The system keyboard accelerator to close a document window is the same as that to close the main window,
except that the Ctrl key is used rather than Alt. That is, Alt-F4 closes the application window, while Ctrl-F4
closes the document window. In addition, Ctrl-F6 switches among the child document windows within the
active MDI application. Alt-Spacebar invokes the system menu of the main window, as usual. Alt-- (minus)
invokes the system menu of the active child document window.

When using the cursor keys to move among items on the menu, control normally passes from the system
menu to the first item on the menu bar. In an MDI application, control passes from the application system
menu to the active document system menu to the first item on the menu bar.

If the application is capable of supporting several types of child windows (for example, the worksheet and
chart documents in Microsoft Excel), the menu should reflect the operations associated with that type of
document. This requires that the program change the menu when a different document window becomes
active. In addition, when no document window exists, the menu should be stripped down to only those
operations involved in opening or creating a new document.

The top-level menu bar has an item called Window. By convention, this is the last item on the top-level
menu bar except for Help. The Window submenu generally has options to arrange the document windows
within the workspace. Document windows can be "cascaded" from the upper left or "tiled" so that each
document window is fully visible. This submenu also has a list of all the document windows. Selecting one
moves that document window to the foreground.

All of these aspects of MDI are supported in Windows 98. Some overhead is required of course (as will be shown in
a sample program), but it isn't anywhere close to the amount of code you'd have to write to support all these
features directly.

MDI Support

Some new terminology is necessary when approaching the Windows MDI support. The main application window is
called the "frame window." Just as in a conventional Windows program, this is a window of the
WS_OVERLAPPEDWINDOW style.

An MDI application also creates a "client window" based on the predefined window class MDICLIENT. The client
window is created by a call to CreateWindow using this window class and the WS_CHILD style. The last argument
to CreateWindow is a pointer to a small structure of type CLIENTCREATESTRUCT. This client window covers the
client area of the frame window and is responsible for much of the MDI support. The color of this client window is
the system color COLOR_APPWORKSPACE.

The document windows, as you've probably noticed, are called "child windows." You create these windows by
initializing a structure of type MDICREATESTRUCT and sending the client window a WM_MDICREATE message with
a pointer to this structure.

The document windows are children of the client window, which in turn is a child of the frame window. The parent-
child hierarchy is shown in Figure 19-1.

Figure 19-1. The parent-child hierarchy of a Windows MDI application.

You need a window class (and window procedure) for the frame window and for each type of child window
supported by the application. You don't need a window procedure for the client window because the window class
is preregistered.

The MDI support of Windows 98 includes one window class, five functions, two data structures, and twelve
messages. I've already mentioned the new window class, which is MDICLIENT, and the new data structures,
CLIENTCREATESTRUCT and MDICREATESTRUCT. Two of the five functions replace DefWindowProc in MDI
applications: rather than call DefWindowProc for all unprocessed messages, a frame window procedure calls
DefFrameProc and a child window procedure calls DefMDIChildProc. Another function specific to MDI,
TranslateMDISysAccel, is used in the same way as TranslateAccelerator, which I discussed in Chapter 10. The MDI
support also includes ArrangeIconicWindows, but one of the special MDI messages makes this function
unnecessary for MDI programs.

The fifth MDI function is called CreateMDIWindow. This allows the child window to be created in a separate thread
of execution. This function is not required in a single-threaded program, which is what I'll be demonstrating.

In the sample program coming up, I'll demonstrate nine of the twelve MDI messages. (The other three are not
normally required.) These messages begin with the prefix WM_MDI. A frame window sends these messages to the
client window to perform an operation on a child window or to obtain information about a child window. (For
example, a frame window sends a WM_MDICREATE message to a client window to create a child window.) The
WM_MDIACTIVATE message is an exception: while a frame window can send this message to the client window to
activate one of the child windows, the client window also sends the message to the child windows being activated
and deactivated to inform them of this change.

A Sample MDI Implementation

The MDIDEMO program, shown in Figure 19-2, demonstrates the basics of writing an MDI application.

Figure 19-2. The MDIDEMO program.

MDIDEMO.C

/*--
 MDIDEMO.C -- Multiple-Document Interface Demonstration
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

#define INIT_MENU_POS 0
#define HELLO_MENU_POS 2
#define RECT_MENU_POS 1

#define IDM_FIRSTCHILD 50000

LRESULT CALLBACK FrameWndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK CloseEnumProc (HWND, LPARAM) ;
LRESULT CALLBACK HelloWndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK RectWndProc (HWND, UINT, WPARAM, LPARAM) ;

 // structure for storing data unique to each Hello child window

typedef struct tagHELLODATA
{
 UINT iColor ;
 COLORREF clrText ;
}
HELLODATA, * PHELLODATA ;

 // structure for storing data unique to each Rect child window

typedef struct tagRECTDATA
{
 short cxClient ;
 short cyClient ;
}
RECTDATA, * PRECTDATA ;
 // global variables

TCHAR szAppName[] = TEXT ("MDIDemo") ;
TCHAR szFrameClass[] = TEXT ("MdiFrame") ;
TCHAR szHelloClass[] = TEXT ("MdiHelloChild") ;

TCHAR szRectClass[] = TEXT ("MdiRectChild") ;
HINSTANCE hInst ;
HMENU hMenuInit, hMenuHello, hMenuRect ;
HMENU hMenuInitWindow, hMenuHelloWindow, hMenuRectWindow ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HACCEL hAccel ;
 HWND hwndFrame, hwndClient ;
 MSG msg ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 // Register the frame window class

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = FrameWndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) (COLOR_APPWORKSPACE + 1) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szFrameClass ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 // Register the Hello child window class

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = HelloWndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = sizeof (HANDLE) ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szHelloClass ;

 RegisterClass (&wndclass) ;

 // Register the Rect child window class

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;

 wndclass.lpfnWndProc = RectWndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = sizeof (HANDLE) ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szRectClass ;

 RegisterClass (&wndclass) ;

 // Obtain handles to three possible menus & submenus

 hMenuInit = LoadMenu (hInstance, TEXT ("MdiMenuInit")) ;
 hMenuHello = LoadMenu (hInstance, TEXT ("MdiMenuHello")) ;
 hMenuRect = LoadMenu (hInstance, TEXT ("MdiMenuRect")) ;

 hMenuInitWindow = GetSubMenu (hMenuInit, INIT_MENU_POS) ;
 hMenuHelloWindow = GetSubMenu (hMenuHello, HELLO_MENU_POS) ;
 hMenuRectWindow = GetSubMenu (hMenuRect, RECT_MENU_POS) ;

 // Load accelerator table

 hAccel = LoadAccelerators (hInstance, szAppName) ;

 // Create the frame window

 hwndFrame = CreateWindow (szFrameClass, TEXT ("MDI Demonstration"),
 WS_OVERLAPPEDWINDOW | WS_CLIPCHILDREN,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, hMenuInit, hInstance, NULL) ;
 hwndClient = GetWindow (hwndFrame, GW_CHILD) ;

 ShowWindow (hwndFrame, iCmdShow) ;
 UpdateWindow (hwndFrame) ;

 // Enter the modified message loop

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (!TranslateMDISysAccel (hwndClient, &msg) &&
 !TranslateAccelerator (hwndFrame, hAccel, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 // Clean up by deleting unattached menus

 DestroyMenu (hMenuHello) ;
 DestroyMenu (hMenuRect) ;

 return msg.wParam ;
 }

LRESULT CALLBACK FrameWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 static HWND hwndClient ;
 CLIENTCREATESTRUCT clientcreate ;
 HWND hwndChild ;
 MDICREATESTRUCT mdicreate ;

 switch (message)
 {
 case WM_CREATE: // Create the client window

 clientcreate.hWindowMenu = hMenuInitWindow ;
 clientcreate.idFirstChild = IDM_FIRSTCHILD ;

 hwndClient = CreateWindow (TEXT ("MDICLIENT"), NULL,
 WS_CHILD | WS_CLIPCHILDREN | WS_VISIBLE,
 0, 0, 0, 0, hwnd, (HMENU) 1, hInst,
 (PSTR) &clientcreate) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_NEWHELLO: // Create a Hello child window

 mdicreate.szClass = szHelloClass ;
 mdicreate.szTitle = TEXT ("Hello") ;
 mdicreate.hOwner = hInst ;
 mdicreate.x = CW_USEDEFAULT ;
 mdicreate.y = CW_USEDEFAULT ;
 mdicreate.cx = CW_USEDEFAULT ;
 mdicreate.cy = CW_USEDEFAULT ;
 mdicreate.style = 0 ;
 mdicreate.lParam = 0 ;

 hwndChild = (HWND) SendMessage (hwndClient,
 WM_MDICREATE, 0,
 (LPARAM) (LPMDICREATESTRUCT) &mdicreate) ;
 return 0 ;

 case IDM_FILE_NEWRECT: // Create a Rect child window

 mdicreate.szClass = szRectClass ;
 mdicreate.szTitle = TEXT ("Rectangles") ;
 mdicreate.hOwner = hInst ;
 mdicreate.x = CW_USEDEFAULT ;
 mdicreate.y = CW_USEDEFAULT ;
 mdicreate.cx = CW_USEDEFAULT ;

 mdicreate.cy = CW_USEDEFAULT ;
 mdicreate.style = 0 ;
 mdicreate.lParam = 0 ;

 hwndChild = (HWND) SendMessage (hwndClient,
 WM_MDICREATE, 0,
 (LPARAM) (LPMDICREATESTRUCT) &mdicreate) ;
 return 0 ;

 case IDM_FILE_CLOSE: // Close the active window

 hwndChild = (HWND) SendMessage (hwndClient,
 WM_MDIGETACTIVE, 0, 0) ;

 if (SendMessage (hwndChild, WM_QUERYENDSESSION, 0, 0))
 SendMessage (hwndClient, WM_MDIDESTROY,
 (WPARAM) hwndChild, 0) ;
 return 0 ;
 case IDM_APP_EXIT: // Exit the program

 SendMessage (hwnd, WM_CLOSE, 0, 0) ;
 return 0 ;

 // messages for arranging windows

 case IDM_WINDOW_TILE:
 SendMessage (hwndClient, WM_MDITILE, 0, 0) ;
 return 0 ;

 case IDM_WINDOW_CASCADE:
 SendMessage (hwndClient, WM_MDICASCADE, 0, 0) ;
 return 0 ;

 case IDM_WINDOW_ARRANGE:
 SendMessage (hwndClient, WM_MDIICONARRANGE, 0, 0) ;
 return 0 ;

 case IDM_WINDOW_CLOSEALL: // Attempt to close all children

 EnumChildWindows (hwndClient, CloseEnumProc, 0) ;
 return 0 ;

 default: // Pass to active child...

 hwndChild = (HWND) SendMessage (hwndClient,
 WM_MDIGETACTIVE, 0, 0) ;
 if (IsWindow (hwndChild))
 SendMessage (hwndChild, WM_COMMAND, wParam, lParam) ;

 break ; // ...and then to DefFrameProc
 }
 break ;

 case WM_QUERYENDSESSION:
 case WM_CLOSE: // Attempt to close all children

 SendMessage (hwnd, WM_COMMAND, IDM_WINDOW_CLOSEALL, 0) ;

 if (NULL != GetWindow (hwndClient, GW_CHILD))
 return 0 ;

 break ; // i.e., call DefFrameProc

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 // Pass unprocessed messages to DefFrameProc (not DefWindowProc)

 return DefFrameProc (hwnd, hwndClient, message, wParam, lParam) ;
}

BOOL CALLBACK CloseEnumProc (HWND hwnd, LPARAM lParam)
{
 if (GetWindow (hwnd, GW_OWNER)) // Check for icon title
 return TRUE ;

 SendMessage (GetParent (hwnd), WM_MDIRESTORE, (WPARAM) hwnd, 0) ;

 if (!SendMessage (hwnd, WM_QUERYENDSESSION, 0, 0))
 return TRUE ;

 SendMessage (GetParent (hwnd), WM_MDIDESTROY, (WPARAM) hwnd, 0) ;
 return TRUE ;
}

LRESULT CALLBACK HelloWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 static COLORREF clrTextArray[] = { RGB (0, 0, 0), RGB (255, 0, 0),
 RGB (0, 255, 0), RGB (0, 0, 255),
 RGB (255, 255, 255) } ;
 static HWND hwndClient, hwndFrame ;
 HDC hdc ;
 HMENU hMenu ;
 PHELLODATA pHelloData ;
 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_CREATE:
 // Allocate memory for window private data

 pHelloData = (PHELLODATA) HeapAlloc (GetProcessHeap (),
 HEAP_ZERO_MEMORY, sizeof (HELLODATA)) ;

 pHelloData->iColor = IDM_COLOR_BLACK ;
 pHelloData->clrText = RGB (0, 0, 0) ;
 SetWindowLong (hwnd, 0, (long) pHelloData) ;

 // Save some window handles

 hwndClient = GetParent (hwnd) ;
 hwndFrame = GetParent (hwndClient) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_COLOR_BLACK:
 case IDM_COLOR_RED:
 case IDM_COLOR_GREEN:
 case IDM_COLOR_BLUE:
 case IDM_COLOR_WHITE:
 // Change the text color

 pHelloData = (PHELLODATA) GetWindowLong (hwnd, 0) ;

 hMenu = GetMenu (hwndFrame) ;

 CheckMenuItem (hMenu, pHelloData->iColor, MF_UNCHECKED) ;
 pHelloData->iColor = wParam ;
 CheckMenuItem (hMenu, pHelloData->iColor, MF_CHECKED) ;

 pHelloData->clrText = clrTextArray[wParam - IDM_COLOR_BLACK] ;

 InvalidateRect (hwnd, NULL, FALSE) ;
 }
 return 0 ;

 case WM_PAINT:
 // Paint the window

 hdc = BeginPaint (hwnd, &ps) ;

 pHelloData = (PHELLODATA) GetWindowLong (hwnd, 0) ;
 SetTextColor (hdc, pHelloData->clrText) ;

 GetClientRect (hwnd, &rect) ;

 DrawText (hdc, TEXT ("Hello, World!"), -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_MDIACTIVATE:
 // Set the Hello menu if gaining focus

 if (lParam == (LPARAM) hwnd)
 SendMessage (hwndClient, WM_MDISETMENU,
 (WPARAM) hMenuHello, (LPARAM) hMenuHelloWindow) ;

 // Check or uncheck menu item

 pHelloData = (PHELLODATA) GetWindowLong (hwnd, 0) ;
 CheckMenuItem (hMenuHello, pHelloData->iColor,
 (lParam == (LPARAM) hwnd) ? MF_CHECKED : MF_UNCHECKED) ;

 // Set the Init menu if losing focus

 if (lParam != (LPARAM) hwnd)
 SendMessage (hwndClient, WM_MDISETMENU, (WPARAM) hMenuInit,
 (LPARAM) hMenuInitWindow) ;

 DrawMenuBar (hwndFrame) ;
 return 0 ;

 case WM_QUERYENDSESSION:
 case WM_CLOSE:
 if (IDOK != MessageBox (hwnd, TEXT ("OK to close window?"),
 TEXT ("Hello"),
 MB_ICONQUESTION | MB_OKCANCEL))
 return 0 ;

 break ; // i.e., call DefMDIChildProc

 case WM_DESTROY:
 pHelloData = (PHELLODATA) GetWindowLong (hwnd, 0) ;
 HeapFree (GetProcessHeap (), 0, pHelloData) ;
 return 0 ;
 }
 // Pass unprocessed message to DefMDIChildProc

 return DefMDIChildProc (hwnd, message, wParam, lParam) ;
}
LRESULT CALLBACK RectWndProc (HWND hwnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 static HWND hwndClient, hwndFrame ;
 HBRUSH hBrush ;
 HDC hdc ;
 PRECTDATA pRectData ;
 PAINTSTRUCT ps ;
 int xLeft, xRight, yTop, yBottom ;
 short nRed, nGreen, nBlue ;

 switch (message)
 {
 case WM_CREATE:
 // Allocate memory for window private data

 pRectData = (PRECTDATA) HeapAlloc (GetProcessHeap (),
 HEAP_ZERO_MEMORY, sizeof (RECTDATA)) ;

 SetWindowLong (hwnd, 0, (long) pRectData) ;

 // Start the timer going

 SetTimer (hwnd, 1, 250, NULL) ;

 // Save some window handles
 hwndClient = GetParent (hwnd) ;
 hwndFrame = GetParent (hwndClient) ;
 return 0 ;

 case WM_SIZE: // If not minimized, save the window size

 if (wParam != SIZE_MINIMIZED)
 {
 pRectData = (PRECTDATA) GetWindowLong (hwnd, 0) ;

 pRectData->cxClient = LOWORD (lParam) ;
 pRectData->cyClient = HIWORD (lParam) ;
 }

 break ; // WM_SIZE must be processed by DefMDIChildProc

 case WM_TIMER: // Display a random rectangle

 pRectData = (PRECTDATA) GetWindowLong (hwnd, 0) ;
 xLeft = rand () % pRectData->cxClient ;
 xRight = rand () % pRectData->cxClient ;
 yTop = rand () % pRectData->cyClient ;
 yBottom = rand () % pRectData->cyClient ;
 nRed = rand () & 255 ;
 nGreen = rand () & 255 ;
 nBlue = rand () & 255 ;

 hdc = GetDC (hwnd) ;
 hBrush = CreateSolidBrush (RGB (nRed, nGreen, nBlue)) ;
 SelectObject (hdc, hBrush) ;

 Rectangle (hdc, min (xLeft, xRight), min (yTop, yBottom),
 max (xLeft, xRight), max (yTop, yBottom)) ;

 ReleaseDC (hwnd, hdc) ;
 DeleteObject (hBrush) ;
 return 0 ;

 case WM_PAINT: // Clear the window

 InvalidateRect (hwnd, NULL, TRUE) ;
 hdc = BeginPaint (hwnd, &ps) ;
 EndPaint (hwnd, &ps) ;

 return 0 ;

 case WM_MDIACTIVATE: // Set the appropriate menu
 if (lParam == (LPARAM) hwnd)
 SendMessage (hwndClient, WM_MDISETMENU, (WPARAM) hMenuRect,
 (LPARAM) hMenuRectWindow) ;
 else
 SendMessage (hwndClient, WM_MDISETMENU, (WPARAM) hMenuInit,
 (LPARAM) hMenuInitWindow) ;

 DrawMenuBar (hwndFrame) ;
 return 0 ;

 case WM_DESTROY:
 pRectData = (PRECTDATA) GetWindowLong (hwnd, 0) ;
 HeapFree (GetProcessHeap (), 0, pRectData) ;
 KillTimer (hwnd, 1) ;
 return 0 ;
 }
 // Pass unprocessed message to DefMDIChildProc

 return DefMDIChildProc (hwnd, message, wParam, lParam) ;
}

MDIDEMO.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

MDIMENUINIT MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "New &Hello", IDM_FILE_NEWHELLO
 MENUITEM "New &Rectangle", IDM_FILE_NEWRECT
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
END

MDIMENUHELLO MENU DISCARDABLE
BEGIN
 POPUP "&File"

 BEGIN
 MENUITEM "New &Hello", IDM_FILE_NEWHELLO
 MENUITEM "New &Rectangle", IDM_FILE_NEWRECT
 MENUITEM "&Close", IDM_FILE_CLOSE
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Color"
 BEGIN
 MENUITEM "&Black", IDM_COLOR_BLACK
 MENUITEM "&Red", IDM_COLOR_RED
 MENUITEM "&Green", IDM_COLOR_GREEN
 MENUITEM "B&lue", IDM_COLOR_BLUE
 MENUITEM "&White", IDM_COLOR_WHITE
 END
 POPUP "&Window"
 BEGIN
 MENUITEM "&Cascade\tShift+F5", IDM_WINDOW_CASCADE
 MENUITEM "&Tile\tShift+F4", IDM_WINDOW_TILE
 MENUITEM "Arrange &Icons", IDM_WINDOW_ARRANGE
 MENUITEM "Close &All", IDM_WINDOW_CLOSEALL
 END
END

MDIMENURECT MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "New &Hello", IDM_FILE_NEWHELLO
 MENUITEM "New &Rectangle", IDM_FILE_NEWRECT
 MENUITEM "&Close", IDM_FILE_CLOSE
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Window"
 BEGIN
 MENUITEM "&Cascade\tShift+F5", IDM_WINDOW_CASCADE
 MENUITEM "&Tile\tShift+F4", IDM_WINDOW_TILE
 MENUITEM "Arrange &Icons", IDM_WINDOW_ARRANGE
 MENUITEM "Close &All", IDM_WINDOW_CLOSEALL
 END
END

///
// Accelerator

MDIDEMO ACCELERATORS DISCARDABLE
BEGIN
 VK_F4, IDM_WINDOW_TILE, VIRTKEY, SHIFT, NOINVERT
 VK_F5, IDM_WINDOW_CASCADE, VIRTKEY, SHIFT, NOINVERT
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by MDIDemo.rc

#define IDM_FILE_NEWHELLO 40001
#define IDM_FILE_NEWRECT 40002
#define IDM_APP_EXIT 40003
#define IDM_FILE_CLOSE 40004
#define IDM_COLOR_BLACK 40005
#define IDM_COLOR_RED 40006
#define IDM_COLOR_GREEN 40007
#define IDM_COLOR_BLUE 40008
#define IDM_COLOR_WHITE 40009
#define IDM_WINDOW_CASCADE 40010
#define IDM_WINDOW_TILE 40011
#define IDM_WINDOW_ARRANGE 40012
#define IDM_WINDOW_CLOSEALL 40013

MDIDEMO supports two types of extremely simple document windows: one displays "Hello, World!" in the center
of its client area, and the other displays a series of random rectangles. (In the source code listings and identifier
names, these are referred to as the Hello document and the Rect document.) Different menus are associated with
these two types of document windows. The document window that displays "Hello, World!" has a menu that allows
you to change the color of the text.

Three Menus

Let's turn first to the MDIDEMO.RC resource script. The resource script defines three menu templates used by the
program.

The program displays the MdiMenuInit menu when no document windows are present. This menu simply allows
creating a new document or exiting the program.

The MdiMenuHello menu is associated with the document window that displays "Hello, World!" The File submenu
allows opening a new document of either type, closing the active document, and exiting the program. The Color
submenu lets you set the text color. The Window submenu has options for arranging the document windows in a
cascaded or tiled fashion, arranging the document icons, and closing all the windows. This submenu will also list
all the document windows as they are created.

The MdiMenuRect menu is associated with the random rectangle document. This is the same as the MdiMenuHello
menu except that it does not include the Color submenu.

As usual, the RESOURCE.H header file defines all the menu identifiers. In addition, the following three constants
are defined in MDIDEMO.C:

#define INIT_MENU_POS 0
#define HELLO_MENU_POS 2
#define RECT_MENU_POS 1

These identifiers indicate the position of the Window submenu in each of the three menu templates. This
information is needed by the program to inform the client window where the document list is to appear. Of course,
the MdiMenuInit menu doesn't have a Window submenu, so I've indicated that the list should be appended to the
first submenu (position 0). The list will never actually be viewed there, however. (You'll see why this is needed
when I discuss the program later.)

The IDM_FIRSTCHILD identifier defined in MDIDEMO.C doesn't correspond to a menu item. This is the identifier
that will be associated with the first document window in the list that will appear in the Window submenu. This
identifier should be greater than all the other menu IDs.

Program Initialization

In MDIDEMO.C, WinMain begins by registering window classes for the frame window and the two child windows.
The window procedures are called FrameWndProc , HelloWndProc , and RectWndProc . Normally, different icons
should be associated with these window classes. For the purpose of simplicity, I've used the standard
IDI_APPLICATION icon for the frame and child.

Note that I've defined the hbrBackground field of the WNDCLASS structure for the frame window class to be the
COLOR_APPWORKSPACE system color. This is not entirely necessary because the client area of the frame window
is covered up by the client window, and the client window has this color anyway. However, using this color looks a
little better when the frame window is first displayed.

The lpszMenuName field is set to NULL for each of these three window classes. For the Hello and Rect child
window classes, this is normal. For the frame window class, I've chosen to indicate the menu handle in the
CreateWindow function when creating the frame window.

The window classes for the Hello and Rect child windows allocate extra space for each window using a nonzero
value as the cbWndExtra field of the WNDCLASS structure. This space will be used to store a pointer that will
reference a block of memory (the size of the HELLODATA or RECTDATA structures defined near the top of
MDIDEMO.C) used to store information unique to each document window.

Next, WinMain uses LoadMenu to load the three menus and save their handles in global variables. Three calls to
the GetSubMenu function obtain handles to the Window submenu to which the document list will be appended.
These are also saved in global variables. The LoadAccelerators function loads the accelerator table.

A call to CreateWindow in WinMain creates the frame window. During the WM_CREATE processing in
FrameWndProc , the frame window creates the client window. This involves another call to CreateWindow . The
window class is set to MDICLIENT, which is the preregistered class for MDI client windows. Much of the support in
Windows for MDI is encapsulated in the MDICLIENT window class. The client window procedure serves as an
intermediary layer between the frame window and the various document windows. When calling CreateWindow to
create the client window, the last argument must be set to a pointer to a structure of type CLIENTCREATESTRUCT.
This structure has two fields,

hWindowMenu is the handle of the submenu to which the document list will be appended. In MDIDEMO, this
is hMenuInitWindow , which was obtained during WinMain . You'll see later how the menu is changed.

idFirstChild is the menu ID to be associated with the first document window in the document list. This is
simply IDM_FIRSTCHILD.

Back in WinMain , MDIDEMO displays the newly created frame window and enters the message loop. The message
loop differs a little from a normal loop: after obtaining a message from the message queue with a call to
GetMessage , an MDI program passes the message to TranslateMDISysAccel (and to TranslateAccelerator if, like
the MDIDEMO program, the program also has menu accelerators).

The TranslateMDISysAccel function translates any keystrokes that may correspond to the special MDI accelerators
(Ctrl-F6, for example) into a WM_SYSCOMMAND message. If either TranslateMDISysAccel or TranslateAccelerator
returns TRUE (indicating that a message was translated by one of these functions), do not call TranslateMessage
and DispatchMessage .

Notice the two window handles passed to TranslateMDISysAccel and TranslateAccelerator : hwndClient and
hwndFrame , respectively. The WinMain function obtains the hwndClient window handle by calling GetWindow with
the GW_CHILD argument.

Creating the Children

The bulk of FrameWndProc is devoted to processing WM_COMMAND messages that signal menu selections. As
usual, the low word of the wParam parameter to FrameWndProc contains the menu ID number.

For menu ID values of IDM_FILE_NEWHELLO and IDM_FILE_NEWRECT, FrameWndProc must create a new
document window. This involves initializing the fields of an MDICREATESTRUCT structure (most of which
correspond to CreateWindow arguments) and sending the client window a WM_MDICREATE message with lParam
set to a pointer to this structure. The client window then creates the child document window. (Another possibility
is using the CreateMDIWindow function.)

Normally the szTitle field of the MDICREATESTRUCT structure would be the filename corresponding to the
document. The style field can be set to the window styles WS_HSCROLL or WS_VSCROLL or both to include scroll
bars in the document window. The style field can also include WS_MINIMIZE or WS_MAXIMIZE to initially display
the document window in a minimized or maximized state.

The lParam field of the MDICREATESTRUCT structure provides a way for the frame window and the child window to
share some variables. This field could be set to a pointer to a memory block containing a structure. During the
WM_CREATE message in the child document window, lParam is a pointer to a CREATESTRUCT structure and the
lpCreateParams field of this structure is a pointer to the MDICREATESTRUCT structure used to create the window.

On receipt of the WM_MDICREATE message, the client window creates the child document window and adds the
title of the window to the bottom of the submenu specified in the MDICLIENTSTRUCT structure used to create the
client window. When the MDIDEMO program creates its first document window, this is the File submenu of the
MdiMenuInit menu. We'll see later how this document list gets moved to the Window submenu of the
MdiMenuHello and MdiMenuRect menus.

Up to nine documents can be listed on the menu, each preceded by an underlined number from 1 to 9. If more
than nine document windows are created, this list is followed by a More Windows item on the menu. This item
invokes a dialog box with a list box that lists all the document windows. The maintenance of this document list is
one of the nicest features of the Windows MDI support.

More Frame Window Message Processing

Let's continue with FrameWndProc message processing before turning our attention to the child document
windows.

When you select Close from the File menu, MDIDEMO closes the active child window. It obtains the handle to the
active child window by sending the client window a WM_MDIGETACTIVE message. If the child window responds
affirmatively to a WM_QUERYENDSESSION message, then MDIDEMO sends the client window a WM_MDIDESTROY
message to close the child window.

Processing the Exit option from the File menu requires only that the frame window procedure send itself a
WM_CLOSE message.

Processing the Tile, Cascade, and Arrange Icons options from the Window submenu is a snap, requiring only that
the WM_MDITILE, WM_MDICASCADE, and WM_MDIICONARRANGE messages be sent to the client window.

The Close All option is a little more complex. FrameWndProc calls EnumChildWindows , passing a pointer
referencing the CloseEnumProc function. This function sends a WM_MDIRESTORE message to each child window,
followed by a WM_QUERYENDSESSION and, possibly, a WM_MDIDESTROY message. This is not done for the icon
title window, indicated by a non-NULL return value from GetWindow with the GW_OWNER argument.

You'll notice that FrameWndProc does not process any of the WM_COMMAND messages that signal one of the
colors being selected from the Color menu. These messages are really the responsibility of the document window.
For this reason, FrameWndProc sends all unprocessed WM_COMMAND messages to the active child window so that
the child window can process those messages that pertain to its window.

All messages that the frame window procedure chooses not to process must be passed to DefFrameProc . This
function replaces DefWindowProc in the frame window procedure. Even if a frame window procedure traps the
WM_MENUCHAR, WM_SETFOCUS, or WM_SIZE messages, these also must be passed to DefFrameProc .

Unprocessed WM_COMMAND messages must also be passed to DefFrameProc . In particular, FrameWndProc does
not process any of the WM_COMMAND messages resulting from the user selecting one of the documents from the
list in the Window submenu. (The wParam values for these options begin with IDM_FIRSTCHILD.) These messages
are passed to DefFrameProc and processed there.

Notice that the frame window does not need to maintain a list of window handles of the document windows that it
creates. If ever these handles are needed (such as when processing the Close All option from the menu), they can

be obtained using EnumChildWindows .

The Child Document Windows

Now let's look at HelloWndProc , which is the window procedure used for the child document windows that display
"Hello, World!"

As with any window class used for more than one window, static variables defined in the window procedure (or
any function called from the window procedure) are shared by all windows created based on that window class.

Data that is unique to each window must be stored using a method other than static variables. One such technique
involves window properties. Another approach—the one I used—uses memory space reserved by defining a
nonzero value in the cbWndExtra field of the WNDCLASS structure used to register the window class.

In MDIDEMO, I use this space to store a pointer that references a block of memory the size of the HELLODATA
structure. HelloWndProc allocates this memory during the WM_CREATE message, initializes the two fields (which
indicate the currently checked menu item and the text color), and stores the pointer using SetWindowLong .

When processing a WM_COMMAND message for changing the text colors (recall that these messages originate in
the frame window procedure), HelloWndProc uses GetWindowLong to obtain the pointer to the memory block
containing the HELLODATA structure. Using this structure, HelloWndProc unchecks the checked menu item, checks
the selected menu item, and saves the new color.

A document window procedure receives the WM_MDIACTIVATE message whenever the window becomes active or
inactive (indicated by whether or not lParam holds the window's handle). You'll recall that the MDIDEMO program
has three different menus: MdiMenuInit for when no documents are present, MdiMenuHello for when a Hello
document window is active, and MdiMenuRect for when a Rect document window is active.

The WM_MDIACTIVATE message provides an opportunity for the document window to change the menu. If lParam
contains the window's handle (meaning the window is becoming active), HelloWndProc changes the menu to
MdiMenuHello. If lParam holds the handle of another window, HelloWndProc changes the menu to MdiMenuInit.

HelloWndProc changes the menu by sending a WM_MDISETMENU message to the client window. The client window
processes this message by removing the document list from the current menu and appending it to the new menu.
This is how the document list is transferred from the MdiMenuInit menu (which is in effect when the first
document is created) to the MdiMenuHello menu. Do not use the SetMenu function to change a menu in an MDI
application.

Another little chore involves the check marks on the Color submenu. Program options such as this should be
unique to each document. For example, you should be able to set black text in one window and red text in
another. The menu check marks should reflect the option chosen in the active window. For this reason,
HelloWndProc unchecks the selected menu item when the window is becoming inactive and checks the appropriate
item when the window is becoming active.

The wParam and lParam values of the WM_MDIACTIVATE message are the handles of the windows being
deactivated and activated, respectively. The window procedure gets the first WM_MDIACTIVATE message with
lParam set to the window's handle. The window procedure gets the last message with lParam set to another value
when the window is destroyed. When the user switches from one document to another, the first document window
receives a WM_MDIACTIVATE message with lParam set to the handle of the first window, at which time the
window procedure sets the menu to MdiMenuInit. The second document window receives a WM_MDIACTIVATE
message with lParam set to the handle of the second window, at which time the window procedure sets the menu
to MdiMenuHello or MdiMenuRect as appropriate. If all the windows are closed, the menu is left as MdiMenuInit.

You'll recall that FrameWndProc sends the child window a WM_QUERYENDSESSION message when the user
selects Close or Close All from the menu. HelloWndProc processes the WM_QUERYENDSESSION and WM_CLOSE
messages by displaying a message box and asking the user whether the window can be closed. (In a real
program, this message box might ask whether a file needed to be saved.) If the user indicates that the window
should not be closed, the window procedure returns 0.

During the WM_DESTROY message, HelloWndProc frees the memory block allocated during the WM_CREATE
message.

All unprocessed messages must be passed on to DefMDIChildProc (not DefWindowProc) for default processing.
Several messages must be passed to DefMDIChildProc whether or not the child window procedure does something
with them. These are WM_CHILDACTIVATE, WM_GETMINMAXINFO, WM_MENUCHAR, WM_MOVE, WM_SETFOCUS,
WM_SIZE, and WM_SYSCOMMAND.

RectWndProc is fairly similar to HelloWndProc in much of the overhead involved, but it's a little simpler (that is, no
menu options are involved and the window does not verify with the user whether it can be closed), so I needn't
discuss it. But note that RectWndProc breaks after processing WM_SIZE, so the message is passed to
DefMDIChildProc .

Cleaning Up

In WinMain , MDIDEMO uses LoadMenu to load the three menus defined in the resource script. Normally Windows
will destroy a menu at the time the window to which the menu is attached is destroyed. That takes care of the Init
menu. However, menus that are not attached to a window should be destroyed explicitly. For this reason,
MDIDEMO calls DestroyMenu twice at the end of WinMain to get rid of the Hello and Rect menus.

Chapter 20

Multitasking and Multithreading

Multitasking is the ability of an operating system to run multiple programs concurrently. Basically, the operating
system uses a hardware clock to allocate "time slices" for each currently running process. If the time slices are
small enough—and the machine is not overloaded with too many programs trying to do something—it appears to a
user as if all the programs are running simultaneously.

Multitasking is nothing new. On large mainframe computers, multitasking is a given. These mainframes often have
hundreds of terminals attached to them, and each terminal user should get the impression that he or she has
exclusive access to the whole machine. In addition, mainframe operating systems often allow users to "submit
jobs to the background," where they are then carried out by the machine while the user can work on something
else.

Multitasking on personal computers has taken much longer to become a reality. But we now often seem to take PC
multitasking for granted. As I'll discuss shortly, to some extent the earlier 16-bit versions of Microsoft Windows
supported multitasking but in a somewhat limited capability. The 32-bit versions of Windows all support both true
multitasking and—as an extra bonus—multithreading.

Multithreading is the ability for a program to multitask within itself. The program can split itself into separate
"threads" of execution that also seem to run concurrently. This concept might at first seem barely useful, but it
turns out that programs can use multithreading to perform lengthy jobs in the background without requiring the
user to take an extended break away from their machines. Of course, sometimes this may not be desired: an
excuse to take a journey to the watercooler or refrigerator is often welcome! But the user should always be able to
do something on the machine, even when it's busy doing something else.

Modes of Multitasking

In the early days of the PC, some people advocated multitasking for the future, but many others scratched their
heads in puzzlement: Of what use is multitasking on a single-user personal computer? Well, it turned out that
multitasking was something users wanted without really knowing it.

Multitasking Under DOS?

The Intel 8088 microprocesssor used in the original PC was not exactly built for multitasking. Part of the problem
was inadequate memory management. As multiple programs are started up and ended, a multitasking operating
system is often called upon to move memory blocks around to consolidate free space. This was not possible on the
8088 in a manner transparent to applications.

DOS itself didn't help much. Designed to be small and to stay out of the way of applications, DOS supported very
little beyond loading programs and providing them with access to the file system.

Still, however, creative programmers in the early days of DOS found a way to overcome those obstacles, mostly
with terminate-and-stay-resident (TSR) programs. Some TSRs, such as print spoolers, hooked into the hardware
timer interrupt to perform true background processing. Others, like popup utilities such as SideKick, could perform
a type of task switching—suspending an application while the popup was running. DOS was also progressively
enhanced to provide support for TSRs.

Some software vendors attempted to mold task-switching or multitasking shells on top of DOS (such as
Quarterdeck's DesqView), but only one of these environments eventually achieved a large market penetration.
That, of course, is Windows.

Nonpreemptive Multitasking

When Microsoft introduced Windows 1.0 in 1985, it was the most sophisticated solution yet devised to go beyond
the limitations of DOS. Back then, Windows ran in real mode, but even so, it was able to move memory blocks
around in physical memory—a prerequisite for multitasking—in a way that was not quite transparent to
applications but almost tolerable.

Multitasking makes a lot more sense in a graphical windowing environment than it does in a command-line single-
user operating system. For example, in classical command-line UNIX, it is possible to execute programs off the
command line so that they run in the background. However, any display output from the program must be
redirected to a file or the output will get mixed up with whatever else the user is doing.

A windowing environment allows multiple programs to run together on the same screen. Switching back and forth
becomes trivial, and it is also possible to quickly move data from one program to another; for example, to imbed a
picture created in a drawing program into a text file maintained by a word processing program. Data transfer has
been supported in various ways under Windows, first with the clipboard, later through Dynamic Data Exchange
(DDE), and now through Object Linking and Embedding (OLE).

Yet the multitasking implemented in the early versions of Windows was not the traditional preemptive time-slicing
found in multiuser operating systems. Those operating systems use a system clock to periodically interrupt one
task and restart another. The 16-bit versions of Windows supported something called "nonpreemptive
multitasking." This type of multitasking is made possible because of the message-based architecture of Windows.
In the general case, a Windows program sits dormant in memory until it receives a message. These messages are
often the direct or indirect result of user input through the keyboard or mouse. After processing the message, the
program returns control back to Windows.

The 16-bit versions of Windows did not arbitrarily switch control from one Windows program to another based on a
timer tick. Instead, any task switching took place when a program had finished processing a message and had
returned control to Windows. This nonpreemptive multitasking is also called "cooperative multitasking" because it
requires some cooperation on the part of applications. One Windows program could tie up the whole system if it
took a long time processing a message.

Although nonpreemptive multitasking was the general rule in 16-bit Windows, some forms of preemptive
multitasking were also present. Windows used preemptive multitasking for running DOS programs and also
allowed dynamic-link libraries to receive hardware timer interrupts for multimedia purposes.

The 16-bit Windows included several features to help programmers solve—or at least cope with—the limitations of

nonpreemptive multitasking. The most notorious is, of course, the hourglass mouse cursor. This is not a solution,
of course, but just a way of letting the user know that a program is busy working on a lengthy job and the system
will be otherwise unusable for a little awhile. Another partial solution is the Windows timer, which allows a
program to receive a message and do some work at periodic intervals. The timer is often used for clock
applications and animation.

Another solution to the limitations of preemptive multitasking is the PeekMessage function call, as we saw in
Chapter 5 in the RANDRECT program. Normally, a program uses the GetMessage call to retrieve the next message
from its message queue. However, if there are no messages in the message queue, then GetMessage will not
return until a message is present. PeekMessage, on the other hand, returns control to the program even if no
messages are pending. Thus, a program can perform a long job and intermix PeekMessage calls in the code. The
long job will continue running as long as there are no pending messages for the program or any other program.

PM and the Serialized Message Queue

The first attempt by Microsoft (in collaboration with IBM) to implement mulittasking in a quasi-DOS/Windows
environment was OS/2 and the Presentation Manager (PM). Although OS/2 certainly supported preemptive
multitasking, it often didn't seem as if this preemption was carried over into the Presentation Manager. The
problem is that PM serialized user input messages from the keyboard and mouse. What this means is that PM
would not deliver a keyboard or mouse message to a program until the previous user input message had been
fully processed.

Although keyboard and mouse messages are just a few of the many messages a PM (or Windows) program can
receive, most of the other messages are the result of a keyboard or mouse event. For example, a menu command
message is the result of the user making a menu selection using the keyboard or mouse. The keyboard or mouse
message is not fully processed until the menu command message is processed.

The primary reason for the serialized message queue was to allow predictable "type-ahead" and "mouse-ahead"
actions by the user. If one of the keyboard or mouse messages caused a shift in input focus from one window to
another, subsequent keyboard messages should go to the window with the new input focus. So, the system
doesn't know where to send a subsequent user input message until the previous ones have been processed.

The common consensus these days is that it should not be possible for one application to be able to tie up the
entire system; that requires a deserialized message queue, which is supported by the 32-bit versions of Windows.
If one program is busy doing a lengthy job, you can switch the input focus to another program.

The Multithreading Solution

I've been discussing OS/2 Presentation Manager only because it was the first environment that provided some
veteran Windows programmers (such as myself) with their first introduction to multithreading. Interestingly
enough, the limitations of PM's implementation of multithreading provided programmers with essential clues to
how multithreaded programs should be architected. Even though these limitations have now largely been lifted
from the 32-bit versions of Windows, the lessons learned from more limited environments are still quite valid. So
let's proceed.

In a multithreaded environment, programs can split themselves into separate pieces, called "threads of
execution," that run concurrently. The support of threads turned out to be the best solution to the problem of the
serialized message queue in Presentation Manager and continues to make a whole lot of sense under Windows.

In terms of code, a thread is simply represented by a function that might also call other functions in the program.
A program begins execution with its main (or primary) thread, which in a traditional C program is the function
called main and which in Windows is WinMain. Once running, the program can create new threads of execution by
making a system call (CreateThread) specifying the name of initial Thread function. The operating system
preemptively switches control among the threads in much the same way it switches control among processes.

In the OS/2 Presentation Manager, each thread could either create a message queue or not. A PM thread must
create a message queue if it wishes to create windows from that thread. Otherwise, a thread needn't create a
message queue if it's just doing a lot of data crunching or graphics output. Because the non-message-queue
threads do not process messages, they cannot hang the system. The only restriction is that a non-message-queue
thread cannot send a message to a window in a message-queue thread or make any function call that causes a
message to be sent. (They can, however, post messages to message-queue threads.)

Thus, PM programmers learned how to divide their programs into one message-queue thread that created all the
windows and processed messages to them, and one or more non-message-queue threads that performed lengthy
background tasks. PM programmers also learned about the "1/10-second rule." Basically, they were advised that a
message-queue thread should spend no more than 1/10 of a second processing a message. Anything that takes

longer should be done in a different thread. If all programmers followed this rule, no PM program could hang the
system for more than 1/10 of a second.

Multithreaded Architecture

I said that the limitations of PM provided programmers with essential clues to understanding how to use multiple
threads of execution in a program running under a graphical environment. So here's what I recommend for the
architecture of your programs: Your primary thread creates all the windows that your program needs, includes all
the window procedures for these windows, and processes all the messages for these windows. Any other threads
are simply background crunchers. They do not interact with the user except through communication with the
primary thread.

One way to think of this is that the primary thread handles user input (and other messages), perhaps creating
secondary threads in the process. These additional threads do the non-user-related tasks.

In other words, your program's primary thread is a governor, and your secondary threads are the governor's staff.
The governor delegates all the big jobs to his or her staff while maintaining contact with the outside world.
Because they are staff members, the secondary threads do not hold their own press conferences. They discreetly
do their work, report back to the governor, and await their next assignment.

Threads within a particular program are all parts of the same process, so they share the process's resources, such
as memory and open files. Because threads share the program's memory, they also share static variables.
However, each thread has its own stack, so automatic variables are unique to each thread. Each thread also has
its own processor state (and math coprocessor state) that is saved and restored during thread switches.

Thread Hassles

Properly designing, coding, and debugging a complex multithreaded application is conceivably one of the most
difficult jobs a Windows programmer can encounter. Because a preemptive multitasking system can interrupt a
thread at any point to switch control to another thread, any undesirable interaction between two threads might not
be obvious and might show up only occasionally, seemingly on a random basis.

One common bug in a multithreaded program is called a "race condition." This happens when a programmer
assumes that one thread will finish doing something—for example, preparing some data—before another thread
needs that data. To help coordinate thread activity, operating systems require various forms of synchronization.
One is the semaphore, which allows the programmer to block the execution of a thread at a certain point in the
code until another thread signals that it can resume. Similar to semaphores are "critical sections," which are
sections of code that cannot be interrupted.

But semaphores can also introduce another common thread-related bug, which is called a "deadlock." This occurs
when two threads have blocked each other's execution and they can only unblock that execution by proceeding.

Fortunately, 32-bit programs are more immune to certain problems involving threads than 16-bit programs. For
example, suppose one thread executes the simple statement

lCount++ ;

where lCount is a long 32-bit global variable that is used by other threads. In a 16-bit program, that single
statement in C is compiled to two machine code instructions, the first one incrementing the low 16 bits of the
variable, and the second adding any carry into the high 16 bits. Suppose the operating system interrupted the
thread between those two machine code instructions. If lCount were 0x0000FFFF before the first machine code
instruction, then lCount would be zero at the time the thread was interrupted, and that's the value another thread
would see. Only when the thread resumed would lCount be incremented to its proper value of 0x00010000.

This is one of those bugs that might cause an operational problem so infrequently that it would never be detected.
In a 16-bit program, the proper way to solve it would be to enclose the statement in a critical section, during
which the thread cannot be interrupted. In a 32-bit program, however, the statement is fine because it is compiled
to a single machine code instruction.

The Windows Advantage

The 32-bit versions of Windows (including Microsoft Windows NT and Windows 98) have a deserialized message
queue. The implementation of this seems very good: If a program is taking a long time processing a message, the
mouse cursor appears as an hourglass when the mouse is over that program's window but it changes to a normal
arrow when positioned over another program's window. A simple click can bring that other window to the

foreground.

However, the user is still prevented from working with the program doing the big job because the big job is
preventing the program from receiving other messages. This is undesirable. A program should be always open to
messages, and that often requires the use of secondary threads.

In Windows NT and Windows 98, there is no distinction between message-queue threads and non-message-queue
threads. Each thread gets its own message queue when the thread is created. This reduces some of the awkward
rules for threads in a PM program. (However, in most cases you'll want to process input through message
procedures in one thread and pass off long jobs to other threads that do not maintain windows. This structure
almost always makes the best sense, as we'll see.)

Still more good news: Windows NT and Windows 98 have a function that allows one thread to kill another thread
in the same process. As you'll discover when you begin writing multithreaded code, this is sometimes convenient.
The early versions of OS/2 did not include a "kill thread" function.

The final good news (at least for this topic) is that Windows NT and Windows 98 have implemented something
called "thread local storage" (TLS). To understand this, recall that I mentioned earlier that static variables, both
global and local to a function, are shared among threads because they sit in the process's data memory space.
Automatic variables, which are always local to a function, are unique to each thread because they occupy space on
the stack, and each thread has its own stack.

It is sometimes convenient for two or more threads to use the same function and for these threads to use static
variables that are unique to the thread. That's thread local storage. There are a few Windows function calls
involved, but Microsoft has also added an extension to the C compiler that makes the use of TLS more transparent
to the programmer.

New! Improved! Now with Threads!

Now that I've made the case for threads, let's put the subject in proper perspective. Sometimes there's a tendency
for programmers to use every feature that an operating system has to offer. But the worst case is when your boss
comes to your desk and says, "I've heard that this new Whatsit thing is really hot. Let's incorporate some Whatsit
in our program." And then you spend a week trying to figure out how (and if) Whatsit can possibly benefit the
application.

The point is—it just doesn't make sense to add multithreading to an application that doesn't need it. Some
applications just can't benefit from multithreading. If your program displays the hourglass cursor for an annoying
period of time, or if it uses the PeekMessage call to avoid the hourglass cursor, then restructuring the program for
multithreading is probably a good idea. Otherwise, you're just making things hard for yourself and possibly
introducing new bugs into the code.

There are even some cases where the hourglass cursor might be entirely appropriate. I mentioned earlier the
1/10-second rule. Well, loading a large file into memory can take longer than 1/10 seconds. Does this mean that
file-loading routines should be implemented in separate threads? Not necessarily. When a user commands a
program to open a file, he or she usually wants that operation to be carried out immediately. Putting the file-
loading routines in a separate thread simply adds overhead. It's just not worth it, even if you want to boast to
your friends that you write multithreaded programs!

Windows Multithreading

The API function to create a new thread of execution is named CreateThread. The function has the following
syntax:

hThread = CreateThread (&security_attributes, dwStackSize, ThreadProc, pParam, dwFlags, &idThread) ;

The first argument is a pointer to a structure of type SECURITY_ATTRIBUTES. This argument is ignored in
Windows 98. It can also be set to NULL in Windows NT. The second argument is an initial stack size for the new
thread; this argument can be set to 0 for a default value. In any case, Windows dynamically lengthens the stack, if
necessary.

The third argument to CreateThread is a pointer to the Thread function. This can have any name but must have
the syntax

DWORD WINAPI ThreadProc (PVOID pParam) ;

The fourth argument to CreateThread becomes the argument to ThreadProc . This is how a main thread and a
secondary thread can share data.

The fifth argument to CreateThread is usually 0 but can be the flag CREATE_SUSPENDED if the thread is to be
created but not immediately executed. The thread will remain suspended until ResumeThread is called. The sixth
argument is a pointer to a variable that will receive the value of the thread ID.

Most Windows programmers instead prefer to use a C run-time library named _beginthread that is declared in the
PROCESS.H header file. This function has the following syntax:

hThread = _beginthread (ThreadProc, uiStackSize, pParam) ;

It's just a bit simpler and is perfectly fine for most applications. This Thread function has the syntax

void __cdecl ThreadProc (void * pParam) ;

Random Rectangles Revisited

The RNDRCTMT program shown in Figure 20-1 is a multithreaded version of the RANDRECT program shown in
Chapter 5. As you'll recall, RANDRECT used the PeekMessage loop to display a series of random rectangles.

Figure 20-1. The RNDRCTMT program.

RNDRCTMT.C

/*--
 RNDRCTMT.C -- Displays Random Rectangles
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <process.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HWND hwnd ;
int cxClient, cyClient ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

{
 static TCHAR szAppName[] = TEXT ("RndRctMT") ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Random Rectangles"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

VOID Thread (PVOID pvoid)
{
 HBRUSH hBrush ;
 HDC hdc ;
 int xLeft, xRight, yTop, yBottom, iRed, iGreen, iBlue ;

 while (TRUE)
 {
 if (cxClient != 0 || cyClient != 0)
 {
 xLeft = rand () % cxClient ;
 xRight = rand () % cxClient ;
 yTop = rand () % cyClient ;

 yBottom = rand () % cyClient ;
 iRed = rand () & 255 ;
 iGreen = rand () & 255 ;
 iBlue = rand () & 255 ;

 hdc = GetDC (hwnd) ;
 hBrush = CreateSolidBrush (RGB (iRed, iGreen, iBlue)) ;
 SelectObject (hdc, hBrush) ;

 Rectangle (hdc, min (xLeft, xRight), min (yTop, yBottom),
 max (xLeft, xRight), max (yTop, yBottom)) ;

 ReleaseDC (hwnd, hdc) ;
 DeleteObject (hBrush) ;
 }
 }
}
LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_CREATE:
 _beginthread (Thread, 0, NULL) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Whenever you create a multithreaded Windows program, you need to change something in the Project Settings
dialog box. Select the C/C++ tab, and select Code Generation in the Category combo box. In the Use Run-Time
Library combo box, you should see Single-Threaded for the Release configuration and Debug Single-Threaded for
the Debug configuration. Change these to Multithreaded and Debug Multithreaded, respectively. This will change a
compiler flag to /MT, which the compiler needs to compile a multithreaded application. In particular, the compiler
inserts the LIBCMT.LIB filename in the .OBJ file rather than LIBC.LIB. The linker uses this name to link with the
run-time library functions.

The LIBC.LIB and LIBCMT.LIB files contain the C library functions. Some C library functions maintain static data.
The strtok function, for example, is designed to be called more than once in succession and stores a pointer in
static memory. In a multithreaded program, each thread must have its own static pointer in the strtok function.
Thus, the multithreaded version of this function is a little different from the single-threaded strtok function.

Also notice that I've included the header file PROCESS.H in RNDRCTMT.C. This file declares the _beginthread
function that starts up the new thread. The function is not declared unless an _MT identifier is defined, and that's
another result of the /MT flag.

In the WinMain function in RNDRCTMT.C, the hwnd value returned from CreateWindow is stored in a global
variable. So also are the cxClient and cyClient values obtained from the WM_SIZE message in the window

procedure.

The window procedure calls _beginthread in the easiest way, with simply the address of the thread function (called
Thread) as the first argument and zeros for the other arguments. The thread function returns VOID and has a
argument that is a pointer to a VOID. The Thread function in RNDRCTMT does not use this argument.

After the _beginthread function is called, the code in that thread function, as well as any other function the thread
function might call, runs concurrently with the rest of the code in the program. Two or more threads can use the
same function in a process. In this case, the automatic local variables (stored on the stack) are unique to each
thread; all static variables are common to all threads in the process. This is how the window procedure can set the
global cxClient and cyClient variables and the Thread function can use them.

There are times that you need persistent data unique to more than one thread. Normally, persistent data involves
static variables but in Windows 98 you can use TLS, which I've touched on and which I'll discuss in greater detail
later in this chapter.

The Programming Contest Problem

On October 3, 1986, Microsoft held a daylong press briefing for technical editors and writers of computer
magazines to discuss their current array of language products, including their first interactive development
environment, QuickBASIC 2.0. At that time, Windows 1.0 was less than a year old, and no one knew when we'd
get something similar for that environment. (It took quite a few years.) What made this event unique was a little
something that Microsoft's public relations folks had cooked up—a programming contest called "Storm the Gates."
Bill Gates would be using QuickBASIC 2.0, and the technical computer press people could use whatever language
product they might decide to bring.

The particular programming problem used for the contest was picked out of a hat from among several others
submitted by the contestants and designed to require about a half hour to program. It went something like this:

Create a multitasking simulation consisting of four windows. The first window must show a series of increasing
numbers, the second must show a series of increasing prime numbers, and the third must show the Fibonacci
series. (The Fibonacci series begins with the numbers 0 and 1, and every successive number is the sum of the two
before it (that is, 0, 1, 1, 2, 3, 5, 8, and so forth.) These three windows should either scroll or clear themselves
when the numbers reached the bottom of the window. The fourth window must display circles of random radii, and
the program must terminate with a press of the Escape key.

Of course, in October 1986, such a program running under DOS couldn't be much more than a multitasking
simulation, and none of the contestants were brave enough—and most not yet knowledgeable enough—to code it
for Windows. Moreover, to do so from scratch would almost certainly have taken longer than a half hour!

Most of the people who participated in this contest wrote a program that divided the screen into four areas. The
program contained a loop that sequentially updated each window and then checked if the Escape key had been
pressed. As is customary under DOS, the program used 100 percent of CPU processing.

Had it been programmed for Windows 1.0, the result would have looked something like the MULTI1 program
shown in Figure 20-2. I say "something like" because I've converted the program to 32-bit processing. But the
structure and much of the code—aside from variable and function argument definitions and the Unicode
support—would have been the same.

Figure 20-2. The MULTI1 program.

MULTI1.C

/*---------------------------------------
 MULTI1.C -- Multitasking Demo
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <math.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int cyChar ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("Multi1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }
 hwnd = CreateWindow (szAppName, TEXT ("Multitasking Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

int CheckBottom (HWND hwnd, int cyClient, int iLine)
{
 if (iLine * cyChar + cyChar > cyClient)
 {
 InvalidateRect (hwnd, NULL, TRUE) ;
 UpdateWindow (hwnd) ;
 iLine = 0 ;
 }

 return iLine ;
}

// --
// Window 1: Display increasing sequence of numbers
// --

LRESULT APIENTRY WndProc1 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int iNum, iLine, cyClient ;
 HDC hdc ;
 TCHAR szBuffer[16] ;

 switch (message)
 {
 case WM_SIZE:
 cyClient = HIWORD (lParam) ;
 return 0 ;
 case WM_TIMER:
 if (iNum < 0)
 iNum = 0 ;

 iLine = CheckBottom (hwnd, cyClient, iLine) ;
 hdc = GetDC (hwnd) ;

 TextOut (hdc, 0, iLine * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%d"), iNum++)) ;

 ReleaseDC (hwnd, hdc) ;
 iLine++ ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// --
// Window 2: Display increasing sequence of prime numbers
// --

LRESULT APIENTRY WndProc2 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int iNum = 1, iLine, cyClient ;
 HDC hdc ;
 int i, iSqrt ;
 TCHAR szBuffer[16] ;

 switch (message)
 {
 case WM_SIZE:
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_TIMER:

 do {
 if (++iNum < 0)
 iNum = 0 ;

 iSqrt = (int) sqrt (iNum) ;
 for (i = 2 ; i <= iSqrt ; i++)
 if (iNum % i == 0)
 break ;
 }
 while (i <= iSqrt) ;

 iLine = CheckBottom (hwnd, cyClient, iLine) ;
 hdc = GetDC (hwnd) ;

 TextOut (hdc, 0, iLine * cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%d"), iNum)) ;
 ReleaseDC (hwnd, hdc) ;
 iLine++ ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// --
// Window 3: Display increasing sequence of Fibonacci numbers
// --

LRESULT APIENTRY WndProc3 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int iNum = 0, iNext = 1, iLine, cyClient ;
 HDC hdc ;
 int iTemp ;
 TCHAR szBuffer[16] ;

 switch (message)
 {
 case WM_SIZE:
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_TIMER:
 if (iNum < 0)
 {
 iNum = 0 ;
 iNext = 1 ;
 }

 iLine = CheckBottom (hwnd, cyClient, iLine) ;
 hdc = GetDC (hwnd) ;
 TextOut (hdc, 0, iLine * cyChar, szBuffer,
 wsprintf (szBuffer, "%d", iNum)) ;

 ReleaseDC (hwnd, hdc) ;

 iTemp = iNum ;
 iNum = iNext ;
 iNext += iTemp ;
 iLine++ ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// ---
// Window 4: Display circles of random radii
// ---

LRESULT APIENTRY WndProc4 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static int cxClient, cyClient ;
 HDC hdc ;
 int iDiameter ;

 switch (message)
 {
 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_TIMER:
 InvalidateRect (hwnd, NULL, TRUE) ;
 UpdateWindow (hwnd) ;

 iDiameter = rand() % (max (1, min (cxClient, cyClient))) ;
 hdc = GetDC (hwnd) ;

 Ellipse (hdc, (cxClient - iDiameter) / 2,
 (cyClient - iDiameter) / 2,
 (cxClient + iDiameter) / 2,
 (cyClient + iDiameter) / 2) ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// -----------------------------------
// Main window to create child windows
// -----------------------------------

LRESULT APIENTRY WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndChild[4] ;
 static TCHAR * szChildClass[] = { TEXT ("Child1"), TEXT ("Child2"),
 TEXT ("Child3"), TEXT ("Child4") } ;

 static WNDPROC ChildProc[] = { WndProc1, WndProc2, WndProc3, WndProc4 } ;
 HINSTANCE hInstance ;
 int i, cxClient, cyClient ;
 WNDCLASS wndclass ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE) ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = NULL ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;

 for (i = 0 ; i < 4 ; i++)
 {
 wndclass.lpfnWndProc = ChildProc[i] ;
 wndclass.lpszClassName = szChildClass[i] ;

 RegisterClass (&wndclass) ;

 hwndChild[i] = CreateWindow (szChildClass[i], NULL,
 WS_CHILDWINDOW | WS_BORDER | WS_VISIBLE,
 0, 0, 0, 0,
 hwnd, (HMENU) i, hInstance, NULL) ;
 }

 cyChar = HIWORD (GetDialogBaseUnits ()) ;
 SetTimer (hwnd, 1, 10, NULL) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 for (i = 0 ; i < 4 ; i++)
 MoveWindow (hwndChild[i], (i % 2) * cxClient / 2,
 (i > 1) * cyClient / 2,
 cxClient / 2, cyClient / 2, TRUE) ;
 return 0 ;

 case WM_TIMER:
 for (i = 0 ; i < 4 ; i++)
 SendMessage (hwndChild[i], WM_TIMER, wParam, lParam) ;

 return 0 ;

 case WM_CHAR:

 if (wParam == `\x1B')
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_DESTROY:
 KillTimer (hwnd, 1) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This program presents nothing we haven't really seen before. The main window creates four child windows, each
of which occupies one-quarter of the client area. The main window also sets a Windows timer and sends
WM_TIMER messages to each of the four child windows.

Normally a Windows program should maintain enough information to recreate the contents of its window during
the WM_PAINT message. MULTI1 doesn't do this, but the windows are drawn and erased so rapidly that I didn't
think it necessary.

The prime number generator in WndProc2 isn't terribly efficient, but it works. A number is prime if it has no
divisors except 1 and itself. To check if a particular number is prime, however, doesn't require dividing by all
numbers and checking for remainders up to that number being checked, but only up to the square root of that
number. That square root calculation is the reason for the unusual introduction of floating-point math in an
otherwise all integer-based program.

There is nothing really wrong with the MULTI1 program. Using the Windows timer is a fine way to simulate
multitasking in earlier and current versions of Windows and in Windows 98. However, the use of the timer
sometimes restricts the speed of a program. If the program can update all its windows within a single WM_TIMER
message with time to spare, then it's not taking full advantage of the machine.

One possible solution is to perform two or more updates during a single WM_TIMER message. But how many?
That would have to depend on the speed of the machine, and that is a major variable. One would not want to
write a program tuned to a 25-MHz 386 or a 50-MHz 486 or a 100-GHz Pentium 7.

The Multithreaded Solution

Let's take a look at a multithreaded solution to this programming problem. The MULTI2 program is shown in
Figure 20-3.

Figure 20-3. The MULTI2 program.

MULTI2.C

/*---------------------------------------
 MULTI2.C -- Multitasking Demo
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <math.h>
#include <process.h>

typedef struct
{

 HWND hwnd ;
 int cxClient ;
 int cyClient ;
 int cyChar ;
 BOOL bKill ;
}
PARAMS, *PPARAMS ;

LRESULT APIENTRY WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{

 static TCHAR szAppName[] = TEXT ("Multi2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Multitasking Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

int CheckBottom (HWND hwnd, int cyClient, int cyChar, int iLine)
{
 if (iLine * cyChar + cyChar > cyClient)
 {
 InvalidateRect (hwnd, NULL, TRUE) ;
 UpdateWindow (hwnd) ;
 iLine = 0 ;
 }
 return iLine ;
}

// --
// Window 1: Display increasing sequence of numbers
// --

void Thread1 (PVOID pvoid)
{
 HDC hdc ;
 int iNum = 0, iLine = 0 ;
 PPARAMS pparams ;
 TCHAR szBuffer[16] ;

 pparams = (PPARAMS) pvoid ;

 while (!pparams->bKill)
 {
 if (iNum < 0)
 iNum = 0 ;

 iLine = CheckBottom (pparams->hwnd, pparams->cyClient,
 pparams->cyChar, iLine) ;

 hdc = GetDC (pparams->hwnd) ;

 TextOut (hdc, 0, iLine * pparams->cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%d"), iNum++)) ;

 ReleaseDC (pparams->hwnd, hdc) ;
 iLine++ ;
 }
 _endthread () ;
}

LRESULT APIENTRY WndProc1 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PARAMS params ;

 switch (message)
 {
 case WM_CREATE:
 params.hwnd = hwnd ;
 params.cyChar = HIWORD (GetDialogBaseUnits ()) ;

 _beginthread (Thread1, 0, ¶ms) ;
 return 0 ;

 case WM_SIZE:
 params.cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 params.bKill = TRUE ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// --
// Window 2: Display increasing sequence of prime numbers
// --

void Thread2 (PVOID pvoid)
{
 HDC hdc ;
 int iNum = 1, iLine = 0, i, iSqrt ;
 PPARAMS pparams ;
 TCHAR szBuffer[16] ;

 pparams = (PPARAMS) pvoid ;

 while (!pparams->bKill)
 {
 do
 {
 if (++iNum < 0)
 iNum = 0 ;

 iSqrt = (int) sqrt (iNum) ;

 for (i = 2 ; i <= iSqrt ; i++)
 if (iNum % i == 0)
 break ;
 }
 while (i <= iSqrt) ;
 iLine = CheckBottom (pparams->hwnd, pparams->cyClient,
 pparams->cyChar, iLine) ;

 hdc = GetDC (pparams->hwnd) ;

 TextOut (hdc, 0, iLine * pparams->cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%d"), iNum)) ;

 ReleaseDC (pparams->hwnd, hdc) ;
 iLine++ ;
 }
 _endthread () ;

}

LRESULT APIENTRY WndProc2 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PARAMS params ;

 switch (message)
 {
 case WM_CREATE:
 params.hwnd = hwnd ;
 params.cyChar = HIWORD (GetDialogBaseUnits ()) ;
 _beginthread (Thread2, 0, ¶ms) ;
 return 0 ;

 case WM_SIZE:
 params.cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 params.bKill = TRUE ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// Window 3: Display increasing sequence of Fibonacci numbers
// --

void Thread3 (PVOID pvoid)
{
 HDC hdc ;
 int iNum = 0, iNext = 1, iLine = 0, iTemp ;
 PPARAMS pparams ;
 TCHAR szBuffer[16] ;

 pparams = (PPARAMS) pvoid ;

 while (!pparams->bKill)
 {
 if (iNum < 0)
 {
 iNum = 0 ;
 iNext = 1 ;
 }
 iLine = CheckBottom (pparams->hwnd, pparams->cyClient,
 pparams->cyChar, iLine) ;

 hdc = GetDC (pparams->hwnd) ;

 TextOut (hdc, 0, iLine * pparams->cyChar, szBuffer,
 wsprintf (szBuffer, TEXT ("%d"), iNum)) ;

 ReleaseDC (pparams->hwnd, hdc) ;

 iTemp = iNum ;
 iNum = iNext ;
 iNext += iTemp ;
 iLine++ ;
 }
 _endthread () ;
}

LRESULT APIENTRY WndProc3 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PARAMS params ;

 switch (message)
 {
 case WM_CREATE:
 params.hwnd = hwnd ;
 params.cyChar = HIWORD (GetDialogBaseUnits ()) ;
 _beginthread (Thread3, 0, ¶ms) ;
 return 0 ;
 case WM_SIZE:
 params.cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 params.bKill = TRUE ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// ---
// Window 4: Display circles of random radii
// ---

void Thread4 (PVOID pvoid)
{
 HDC hdc ;
 int iDiameter ;
 PPARAMS pparams ;

 pparams = (PPARAMS) pvoid ;

 while (!pparams->bKill)
 {
 InvalidateRect (pparams->hwnd, NULL, TRUE) ;
 UpdateWindow (pparams->hwnd) ;

 iDiameter = rand() % (max (1,
 min (pparams->cxClient, pparams->cyClient))) ;

 hdc = GetDC (pparams->hwnd) ;

 Ellipse (hdc, (pparams->cxClient - iDiameter) / 2,

 (pparams->cyClient - iDiameter) / 2,
 (pparams->cxClient + iDiameter) / 2,
 (pparams->cyClient + iDiameter) / 2) ;

 ReleaseDC (pparams->hwnd, hdc) ;
 }
 _endthread () ;
}
LRESULT APIENTRY WndProc4 (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PARAMS params ;

 switch (message)
 {
 case WM_CREATE:
 params.hwnd = hwnd ;
 params.cyChar = HIWORD (GetDialogBaseUnits ()) ;
 _beginthread (Thread4, 0, ¶ms) ;
 return 0 ;

 case WM_SIZE:
 params.cxClient = LOWORD (lParam) ;
 params.cyClient = HIWORD (lParam) ;
 return 0 ;

 case WM_DESTROY:
 params.bKill = TRUE ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

// -----------------------------------
// Main window to create child windows
// -----------------------------------

LRESULT APIENTRY WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndChild[4] ;
 static TCHAR * szChildClass[] = { TEXT ("Child1"), TEXT ("Child2"),
 TEXT ("Child3"), TEXT ("Child4") } ;
 static WNDPROC ChildProc[] = { WndProc1, WndProc2, WndProc3, WndProc4 } ;
 HINSTANCE hInstance ;
 int i, cxClient, cyClient ;
 WNDCLASS wndclass ;

 switch (message)
 {
 case WM_CREATE:
 hInstance = (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE) ;
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;

 wndclass.hInstance = hInstance ;
 wndclass.hIcon = NULL ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;

 for (i = 0 ; i < 4 ; i++)
 {
 wndclass.lpfnWndProc = ChildProc[i] ;
 wndclass.lpszClassName = szChildClass[i] ;

 RegisterClass (&wndclass) ;

 hwndChild[i] = CreateWindow (szChildClass[i], NULL,
 WS_CHILDWINDOW | WS_BORDER | WS_VISIBLE,
 0, 0, 0, 0,
 hwnd, (HMENU) i, hInstance, NULL) ;
 }

 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 for (i = 0 ; i < 4 ; i++)
 MoveWindow (hwndChild[i], (i % 2) * cxClient / 2,
 (i > 1) * cyClient / 2,
 cxClient / 2, cyClient / 2, TRUE) ;
 return 0 ;

 case WM_CHAR:
 if (wParam == `\x1B')
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The WinMain function and WndProc functions of MULTI2.C are very similar to those in MULTI1.C. WndProc
registers four window classes for the four windows, creates those windows, and resizes them during the WM_SIZE
message. The only difference in WndProc is that it no longer sets the Windows timer or processes WM_TIMER
messages.

The big difference in MULTI2 is that each of the child window procedures creates another thread of execution by
calling the _beginthread function during the WM_CREATE message. In total, the MULTI2 program has five threads
of execution that run concurrently. The main thread contains the main window procedure and the four child
window procedures. The other four threads use the functions named Thread1 , Thread2 , and so forth. These
other four threads are responsible for drawing the four windows.

The multithreaded code I showed in the RNDRCTMT program did not use the third argument to _beginthread . This
argument allows a thread that creates another thread to pass information to the other thread in 32-bit variables.
Customarily, this variable is a pointer, and also customarily, it is a pointer to a structure. This allows the creating
thread and the new thread to share information without the use of global variables. As you can see, there are no
global variables in MULTI2.

For the MULTI2 program, I defined a structure named PARAMS near the top of the program and a pointer to that
structure named PPARAMS. This structure has five fields—a window handle, the width and height of the window,
the height of a character, and a Boolean variable named bKill . This final structure field allows the creating thread
to inform the created thread when it's time to terminate itself.

Let's take a look at WndProc1 , the child window procedure that displays the sequence of increasing numbers. The
window procedure has become simple. The only local variable is a PARAMS structure. During the WM_CREATE
message, it sets the hwnd and cyChar fields of this structure and calls _beginthread to create a new thread by
using the Thread1 function, passing to it a pointer to this structure. During the WM_SIZE message, WndProc1 sets
the cyClient field of the structure, and during the WM_DESTROY message, it sets the bKill field to TRUE. The
Thread function concludes by calling _endthread . This is not strictly necessary because the thread is destroyed
after exiting the Thread function. However, _endthread is useful for exiting a thread deep within some complex
levels of processing.

The Thread1 function does the actual drawing on the window, and it runs concurrently with the other four threads
of the program. The function receives a pointer to the PARAMS structure and runs in a while loop, checking each
time through the loop whether the bKill field is TRUE or FALSE. If FALSE, the function essentially performs the
same processing as during the WM_TIMER message in MULTI1.C—formatting the number, obtaining a device
context handle, and displaying the number using TextOut .

As you'll see when you run MULTI2 under Windows 98, the windows are updated much faster than in MULTI1,
indicating the program is using the power of the processor more efficiently. There's another difference between
MULTI1 and MULTI2: Usually when you move or size a window, the default window procedure enters a modal loop
and all output to the window stops. In MULTI2, the output continues.

Any Problems?

It may seem as if MULTI2 is not as bulletproof as it could be. To see what I'm getting at, let's look at some
examples of multithreaded "flaws" in MULTI2.C using WndProc1 and Thread1 as an example.

WndProc1 runs in the main thread of MULTI2, and Thread1 runs concurrently with it. The times at which Windows
98 switches between these two threads are variable and unpredictable. Suppose Thread1 is running and has just
executed the code that checks whether the bKill field of the PARAMS structure is TRUE. It's not, but then Windows
98 switches control to the main thread, at which time the user terminates the program. WndProc1 receives a
WM_DESTROY message and sets the bKill argument to TRUE. Oops! Too late! Suddenly the operating system
switches to Thread1 , and that function attempts to obtain a device context handle to a nonexistent window.

It turns out this is not a problem. Windows 98 itself is sufficiently bulletproof so that the graphics functions simply
fail without causing any problems.

Proper multithreaded programming techniques involve the use of thread synchronization (and, in particular,
critical sections), which I'll discuss in more detail shortly. Basically, critical sections are delimited by calls to
EnterCriticalSection and LeaveCriticalSection . If one thread enters a critical section, another thread cannot enter a
critical section. The latter thread is blocked on the EnterCriticalSection call until the first thread calls
LeaveCriticalSection .

Another possible problem in MULTI2 is that the main thread could receive a WM_ ERASEBKGND or WM_PAINT
message during the time that a secondary thread is drawing its output. Again, using a critical section would help
prevent any problems that could result from two threads attempting to draw on the same window. But
experimentation seems to show that Windows 98 properly serializes access to the graphics drawing functions. That
is, one thread can't draw on a window while another thread is in the middle of doing so.

The Windows 98 documentation warns about one area where graphics functions are not serialized, and that
involves the use of GDI objects, such as pens, brushes, fonts, bitmaps, regions, and palettes. It is possible for one
thread to destroy an object that another thread is using. The solution to this problem requires use of a critical
section or, better yet, not sharing GDI objects between threads.

The Benefits of Sleep

I've discussed what I consider to be the best architecture of a multithreaded program, which is that the primary
thread creates all the program's windows, contains all the window procedures for these windows, and processes all
messages to the windows. Secondary threads carry out background jobs or lengthy jobs.

However, suppose you want to do animation in a secondary thread. Normally, animation in Windows is done with
WM_TIMER messages. But if a secondary thread does not create a window, it cannot receive these messages.
Without any timing, the animation would probably run much too fast.

The solution is the Sleep function. In effect, a thread calls the Sleep function to suspend itself voluntarily. The
single argument is a time in milliseconds. The Sleep function call does not return until the specified time has
elapsed. During that time, the thread is suspended and is allocated no time slices (although obviously the thread
still requires a small amount of processing time during timer ticks when the system must determine whether the
thread should be resumed). An argument of 0 to the Sleep function causes the thread to forfeit the remainder of
its time slice.

When a thread calls Sleep , only that thread is suspended for the specified amount of time. The system still runs
other threads, either in the same process or another process. I used the Sleep function in the SCRAMBLE program
in Chapter 14 to slow down the scrambling operation.

Normally, you should not use the Sleep function in your primary thread because it slows down message
processing; because SCRAMBLE did not create any windows, there is no problem using it there.

Thread Synchronization

About once a year, the traffic lights at the busy intersection outside my apartment window stop working. The
result is chaos, and while the cars usually avoid actually hitting each other, they often come close.

We might term the intersection of two roads a "critical section." A southbound car and a westbound car cannot
pass through an intersection at the same time without hitting each other. Depending on the traffic volume,
different approaches are taken to solve the problem. For light traffic at an intersection with high visibility, drivers
can be trusted to properly yield. More traffic might require a stop sign, and still heavier traffic would require traffic
lights. The traffic lights help coordinate the activity of the intersection (as long as they work, of course).

The Critical Section

In a single-tasking operating system, traditional computer programs don't need traffic lights to help them
coordinate their activities. They run as if they owned the road, which they do. There is nothing to interfere with
what they do.

Even in a multitasking operating system, most programs seemingly run independently of each other. But some
problems can arise. For example, two programs could need to read from and write to the same file at the same
time. In such cases, the operating system provides a mechanism of shared files and record locking to help out.

However, in an operating system that supports multithreading, the situation gets messy and potentially
dangerous. It is not uncommon for two or more threads to share some data. For example, one thread could
update one or more variables and another thread could use those variables. Sometimes this poses a problem, and
sometimes it doesn't. (Keep in mind that the operating system can switch control from one thread to another
between machine code instructions only. If only a single integer is being shared among the threads, then changes
to this variable usually occur in a single instruction and potential problems are minimized.)

However, suppose that the threads share several variables or a data structure. Often, these multiple variables or
the fields of the structure must be consistent among themselves. The operating system could interrupt a thread in
the middle of updating these variables. The thread that uses these variables would then be dealing with
inconsistent data.

The result is a collision, and it's not difficult to imagine how an error like this could crash the program. What we
need are the programming equivalents of traffic lights to help coordinate and synchronize the thread traffic. That's
the critical section. Basically, a critical section is a block of code that should not be interrupted.

There are four functions for using critical sections. To use these functions, you must define a critical section
object, which is global variable of type CRITICAL_SECTION. For example,

CRITICAL_SECTION cs ;

This CRITICAL_SECTION data type is a structure, but the fields are used only internally to Windows. This critical
section object must first be initialized by one of the threads in the program by calling

InitializeCriticalSection (&cs) ;

This creates a critical section object named cs. The online documentation for this function includes the following
warnings: "A critical section object cannot be moved or copied. The process must also not modify the object, but
must treat it as logically opaque." This can be translated as "Don't mess around with it, and don't even look at it."

After the critical section object has been initialized, a thread enters a critical section by calling

EnterCriticalSection (&cs) ;

At this point, the thread is said to "own" the critical section object. No two threads can own the critical section
object at the same time. Thus, if another thread has entered a critical section, the next thread calling
EnterCriticalSection with the same critical section object will be suspended in the function call. The function will
return only when the first thread leaves the critical section by calling

LeaveCriticalSection (&cs) ;

At that time, the second thread—suspended in its call to EnterCriticalSection—will own the critical section and the
function call will return, allowing the thread to proceed.

When the critical section object is no longer needed by the program, it can be deleted by calling

DeleteCriticalSection (&cs) ;

This frees up any system resources that might have been allocated to maintain the critical section object.

This critical section mechanism involves "mutual exclusion," a term that will come up again as we continue to
explore thread synchronization. Only one thread can own a critical section at any time. Thus, one thread can enter
a critical section, set the fields of a structure, and exit the critical section. Another thread using the structure
would also enter a critical section before accessing the fields of the structure and then exit the critical section.

Note that you can define multiple critical section objects—for example, cs1 and cs2. If a program has four threads
and the first two threads share some data, they can use one critical section object, and if the other two threads
share some other data, they can use a second critical section object.

Also note that you should be careful when using a critical section in your main thread. If the secondary thread
spends a long time in its own critical section, it could hang the main thread for an inordinate amount of time. The
secondary thread would probably just want to use the critical section to copy the fields of the structure to its own
local variables.

One limitation with critical sections is that they can be used for coordinating threads within a single process only.
But there are cases where you need to coordinate two different processes that share a resource (such as shared
memory). You can't use critical sections for that; instead, you must use something oddly called a "mutex object."
The fabricated word "mutex" stands for "mutual exclusion," and that's precisely the goal here. You want to
prevent threads of a program from being interrupted while updating or using some shared memory or other
resources.

Event Signaling

The most common use of multiple threads of execution is for programs that find they must carry out some lengthy
processing. We can call this a "big job," which is anything a program has to do that might violate the 1/10-second
rule. Obvious big jobs include a spelling check in a word processing program, a file sort or indexing in a database
program, a spreadsheet recalculation, printing, and even complex drawing. Of course, as we know by now, the
best solution to following the 1/10-second rule is to farm out big jobs to secondary threads of execution. These
secondary threads do not create windows, and hence they are not bound by the 1/10-second rule.

It is often desirable for the secondary threads to inform the primary thread when they have completed, or for the
primary thread to abort the job the secondary thread is doing. That's what we'll examine next.

The BIGJOB1 Program

I'll use a series of floating-point calculations, sometimes known as the "savage" benchmark, as a hypothetical big
job. This calculation increments an integer in a roundabout manner: it squares a number and takes the square
root (which cancels out the square), applies the log and exp functions (which also cancel each other out), applies
the atan and tan functions (another canceling out), and finally adds 1 to the result.

The BIGJOB1 program is shown in Figure 20-4.

Figure 20-4. The BIGJOB1 program.

BIGJOB1.C

/*--
 BIGJOB1.C -- Multithreading Demo
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <math.h>
#include <process.h>

#define REP 1000000

#define STATUS_READY 0
#define STATUS_WORKING 1
#define STATUS_DONE 2

#define WM_CALC_DONE (WM_USER + 0)
#define WM_CALC_ABORTED (WM_USER + 1)

typedef struct
{
 HWND hwnd ;
 BOOL bContinue ;
}
PARAMS, *PPARAMS ;

LRESULT APIENTRY WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)

{
 static TCHAR szAppName[] = TEXT ("BigJob1") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Multithreading Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void Thread (PVOID pvoid)
{
 double A = 1.0 ;
 INT i ;
 LONG lTime ;
 volatile PPARAMS pparams ;

 pparams = (PPARAMS) pvoid ;

 lTime = GetCurrentTime () ;
 for (i = 0 ; i < REP && pparams->bContinue ; i++)
 A = tan (atan (exp (log (sqrt (A * A))))) + 1.0 ;

 if (i == REP)
 {
 lTime = GetCurrentTime () - lTime ;
 SendMessage (pparams->hwnd, WM_CALC_DONE, 0, lTime) ;
 }
 else
 SendMessage (pparams->hwnd, WM_CALC_ABORTED, 0, 0) ;

 _endthread () ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static INT iStatus ;
 static LONG lTime ;
 static PARAMS params ;
 static TCHAR * szMessage[] = { TEXT ("Ready (left mouse button begins)"),
 TEXT ("Working (right mouse button ends)"),
 TEXT ("%d repetitions in %ld msec") } ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;
 TCHAR szBuffer[64] ;

 switch (message)
 {
 case WM_LBUTTONDOWN:
 if (iStatus == STATUS_WORKING)
 {
 MessageBeep (0) ;
 return 0 ;
 }

 iStatus = STATUS_WORKING ;

 params.hwnd = hwnd ;
 params.bContinue = TRUE ;

 _beginthread (Thread, 0, ¶ms) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_RBUTTONDOWN:
 params.bContinue = FALSE ;
 return 0 ;

 case WM_CALC_DONE:
 lTime = lParam ;
 iStatus = STATUS_DONE ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_CALC_ABORTED:
 iStatus = STATUS_READY ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 wsprintf (szBuffer, szMessage[iStatus], REP, lTime) ;
 DrawText (hdc, szBuffer, -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

This is a fairly simple program, but I think you'll see how it illustrates a generalized approach to doing big jobs in a
multithreaded program. To use the BIGJOB1 program, click with the left mouse button on the client area of the
window. This begins 1,000,000 repetitions of the savage calculation. It'll take about 2 seconds on a 300-MHz
Pentium II machine. When the calculation has completed, the elapsed time is displayed in the window. While the
calculation is in progress, you can click on the client area with the right mouse button to abort it.

So, let's take a look how this is done:

The window procedure maintains a static variable called iStatus (which can be set to one of three constants
defined near the top of the program beginning with the prefix STATUS) indicating whether the program is ready to
do a calculation, working on a calculation, or done with a calculation. The program uses the iStatus variable during
the WM_PAINT message to display an appropriate character string in the center of the client area.

The window procedure also maintains a static structure (of type PARAMS, also defined near the top of the
program) to share data between the window procedure and the secondary thread. The structure has only two
fields—hwnd (the handle of the program's window) and bContinue , which is a Boolean variable used to indicate to
the thread whether to continue the calculation or not.

When you click on the client area with the left mouse button, the window procedure sets the iStatus variable to
STATUS_WORKING, and the two fields of the PARAMS structure. The hwnd field of the structure is set to the
window handle, of course, and bContinue is set to TRUE.

The window procedure then calls the _beginthread function. The secondary Thread function, called Thread , begins
by calling GetCurrentTime to get the elapsed time in milliseconds that Windows has been running. It then enters a
for loop to do 1,000,000 repetitions of the savage calculation. Notice also that the thread will drop out of the loop
if bContinue is ever set to FALSE.

After the for loop, the Thread function checks if it's actually completed 1,000,000 calculations. If so, it calls
GetCurrentTime again to get the elapsed time and then uses SendMessage to send the window procedure a
program-defined WM_USER_DONE message with the elapsed time as lParam . If the calculation was aborted
prematurely (that is, if the bContinue field of the PARAMS structure became FALSE during the loop), the thread
sends the window procedure a WM_USER_ABORTED message. The thread then gracefully ends by calling
_endthread .

Within the window procedure, the bContinue field of the PARAMS structure is set to FALSE when you click on the
client area with the right mouse button. This is how the calculation is aborted before completion.

Notice that the pparams variable in Thread is defined as volatile. This type qualifier indicates to the compiler that a
variable might be modified in some way other than actual program statements (such as by another thread).
Otherwise, an optimizing compiler might assume that since pparams->bContinue couldn't possibly be modified by
the code inside the for loop, it's not necessary for the variable to be checked following every iteration of the loop.
The volatile keyword prevents such optimizations.

The window procedure processes the WM_USER_DONE message by first saving the elapsed time. Both the
processing of the WM_USER_DONE and WM_USER_ABORTED messages continue with a call to InvalidateRect to
generate a WM_PAINT message and display a new text string in the client area.

It's usually a good idea to include a provision, such as the bContinue field in the structure, to allow the thread to
terminate gracefully. The KillThread function should be used only when graceful termination is awkward. The
reason why is that threads can allocate resources, such as memory. If this memory is not freed when the thread
terminates, it will still be allocated. Threads are not processes: allocated resources are shared among all threads in
a process, so they are not automatically freed when the thread terminates. Good programming structure dictates
that a thread should free any resources it allocates.

Note also that a third thread can be created while the second thread is still in progress. This could happen if
Windows switches control from the second thread to the first thread between the SendMessage call and the
_endthread call, and the window procedure then creates a new thread on response from a mouse click. This is not
a problem here, but if it is a problem in one of your own applications, you'll want to use a critical section to avoid
thread collisions.

The Event Object

BIGJOB1 creates a thread every time it needs to perform the savage calculation; the thread terminates after doing
the calculation.

An alternative is to keep the thread around for the entire duration of the program and only kick it into action when
necessary. This is an ideal application for an event object.

An event object is either "signaled" (also known as "set") or "unsignaled" (also known as "reset"). You create the
event object by calling

hEvent = CreateEvent (&sa, fManual, fInitial, pszName) ;

The first argument (a pointer to a SECURITY_ATTRIBUTES structure) and the last argument (an event object
name) are meaningful only when event objects are shared among processes. In a single process, these arguments
are generally set to NULL. Set the fInitial argument to TRUE if you want the event object to be initially signaled
and to FALSE for initially unsignaled. I'll describe the fManual argument shortly.

To signal an existing event object, call

SetEvent (hEvent) ;

To unsignal an event object, call

ResetEvent (hEvent) ;

A program generally calls

WaitForSingleObject (hEvent, dwTimeOut) ;

with the second argument set to INFINITE. The function returns immediately if the event object is currently
signaled (or set). Otherwise, the function will suspend the thread until the event object becomes signaled. You can
set the second argument to a time-out value in milliseconds so that the function returns before the event object
becomes signaled.

If the fManual argument of the original CreateEvent call is set to FALSE, the event object becomes automatically
unsignaled when the WaitForSingleObject function returns. This feature usually makes it unnecessary to use the
ResetEvent function.

So, now we're equipped to look at BIGJOB2.C, shown in Figure 20-5.

Figure 20-5. The BIGJOB2 program.

BIGJOB2.C

/*--
 BIGJOB2.C -- Multithreading Demo
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <math.h>
#include <process.h>

#define REP 1000000

#define STATUS_READY 0
#define STATUS_WORKING 1
#define STATUS_DONE 2

#define WM_CALC_DONE (WM_USER + 0)
#define WM_CALC_ABORTED (WM_USER + 1)

typedef struct
{
 HWND hwnd ;
 HANDLE hEvent ;
 BOOL bContinue ;
}
PARAMS, *PPARAMS ;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("BigJob2") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Multithreading Demo"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void Thread (PVOID pvoid)
{
 double A = 1.0 ;
 INT i ;
 LONG lTime ;
 volatile PPARAMS pparams ;

 pparams = (PPARAMS) pvoid ;

 while (TRUE)
 {
 WaitForSingleObject (pparams->hEvent, INFINITE) ;

 lTime = GetCurrentTime () ;

 for (i = 0 ; i < REP && pparams->bContinue ; i++)
 A = tan (atan (exp (log (sqrt (A * A))))) + 1.0 ;

 if (i == REP)
 {
 lTime = GetCurrentTime () - lTime ;

 PostMessage (pparams->hwnd, WM_CALC_DONE, 0, lTime) ;
 }
 else
 PostMessage (pparams->hwnd, WM_CALC_ABORTED, 0, 0) ;
 }
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)

{
 static HANDLE hEvent ;
 static INT iStatus ;
 static LONG lTime ;
 static PARAMS params ;
 static TCHAR * szMessage[] = { TEXT ("Ready (left mouse button begins)"),
 TEXT ("Working (right mouse button ends)"),
 TEXT ("%d repetitions in %ld msec") } ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 RECT rect ;
 TCHAR szBuffer[64] ;

 switch (message)
 {
 case WM_CREATE:
 hEvent = CreateEvent (NULL, FALSE, FALSE, NULL) ;

 params.hwnd = hwnd ;
 params.hEvent = hEvent ;
 params.bContinue = FALSE ;

 _beginthread (Thread, 0, ¶ms) ;

 return 0 ;

 case WM_LBUTTONDOWN:
 if (iStatus == STATUS_WORKING)
 {
 MessageBeep (0) ;
 return 0 ;
 }
 iStatus = STATUS_WORKING ;
 params.bContinue = TRUE ;

 SetEvent (hEvent) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_RBUTTONDOWN:
 params.bContinue = FALSE ;
 return 0 ;

 case WM_CALC_DONE:
 lTime = lParam ;
 iStatus = STATUS_DONE ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_CALC_ABORTED:
 iStatus = STATUS_READY ;
 InvalidateRect (hwnd, NULL, TRUE) ;

 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 wsprintf (szBuffer, szMessage[iStatus], REP, lTime) ;
 DrawText (hdc, szBuffer, -1, &rect,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The window procedure processes the WM_CREATE message by first creating a nonmanual event object that is
initialized in the unsignaled (or reset) state. It then creates the thread.

The Thread function enters an infinite while loop but calls WaitForSingleObject at the beginning of the loop.
(Notice that the PARAMS structure includes a third field containing the handle to the event object.) Because the
event is initially unsignaled, the thread is suspended in the function call. A left mouse button click causes the
window procedure to call SetEvent . This releases the second thread from the WaitForSingleObject call, and it
begins the savage calculation. After finishing, the thread calls WaitForSingleObject again, but the event object has
become unsignaled from the first call. Thus, the thread is suspended until the next mouse click.

Otherwise, the program is almost identical to BIGJOB1.

Thread Local Storage

Global variables in a multithreaded program, as well as any allocated memory, are shared among all the threads in
the program. Local static variables in a function are also shared among all threads using that function. Local
automatic variables in a function are unique to each thread because they are stored on the stack and each thread
has its own stack.

It might be necessary to have persistent storage that is unique to each thread. For example, the C strtok function
I mentioned earlier in this chapter requires this type of storage. Unfortunately, the C language does not support
such a variable. But Windows includes four functions that implement a mechanism to do it, and the Microsoft
extensions to C also support it. As we've seen, this is called thread local storage.

Here's how the APIs work:

First define a structure that contains all the data that needs to be unique among the threads. For example,

typedef struct
{
 int a ;
 int b ;
}
DATA, * PDATA ;

The primary thread calls TlsAlloc to obtain an index value:

dwTlsIndex = TlsAlloc () ;

This index value can be stored in a global variable or passed to the Thread function in the argument structure.

The Thread function begins by allocating memory for the data structure and calling TlsSetValue using the index
obtained above:

TlsSetValue (dwTlsIndex, GlobalAlloc (GPTR, sizeof (DATA)) ;

This associates a pointer with a particular thread and a particular thread index. Now any function that needs to
use this pointer, including the original Thread function itself, can include code like so:

PDATA pdata ;
...
pdata = (PDATA) TlsGetValue (dwTlsIndex) ;

Now it can set or use pdata->a and pdata->b. Before the Thread function terminates, it frees the allocated
memory:

GlobalFree (TlsGetValue (dwTlsIndex)) ;

When all the threads using this data have terminated, the primary thread frees the index:

TlsFree (dwTlsIndex) ;

This process might be confusing at first, so perhaps it might be helpful to see how thread local storage might be
implemented. (I have no knowledge of how Windows actually does it, but the following is plausible.) First, TlsAlloc
might simply allocate a block of memory (zero bytes in length) and return an index value that is a pointer to this
block. Every time TlsSetValue is called with that index, the block of memory is increased by 8 bytes by reallocating
it. Stored in these 8 bytes is the ID of the thread calling the function—obtained by calling
GetCurrentThreadId—and the pointer passed to the TlsSetValue function. TlsGetValue simply uses the thread ID to
search the table and then return the pointer. TlsFree frees up the block of memory. So, as you see, this is
something you could probably easily implement yourself, but it's nice to have the facility already done for us.

A Microsoft extension to C makes this even more simple. Just preface any variable that needs to be different for
each thread with __declspec (thread), like so

__declspec (thread) int iGlobal = 1 ;

for static variables external to any function, or like so

__declspec (thread) static int iLocal = 2 ;

for static variables within functions.

Chapter 21

Dynamic-Link Libraries

Dynamic-link libraries (also called DLLs, dynamic libraries, "dynalink" libraries, or library modules) are one of the
most important structural elements of Microsoft Windows. Most of the disk files associated with Windows are either
program modules or dynamic-link library modules. So far we've been writing Windows programs; now it's time to
take a stab at writing dynamic-link libraries. Many of the principles you've learned in writing programs are also
applicable to writing these libraries, but there are some important differences.

Library Basics

As you've seen, a Windows program is an executable file that generally creates one or more windows and uses a
message loop to receive user input. Dynamic-link libraries are generally not directly executable, and they
generally do not receive messages. They are separate files containing functions that can be called by programs
and other DLLs to perform certain jobs. A dynamic-link library is brought into action only when another module
calls one of the functions in the library.

The term "dynamic linking" refers to the process that Windows uses to link a function call in one module to the
actual function in the library module. "Static linking" occurs during program development when you link various
object (.OBJ) modules, run-time library (.LIB) files, and usually a compiled resource (.RES) file to create a
Windows .EXE file. Dynamic linking instead occurs at run time.

KERNEL32.DLL, USER32.DLL, and GDI32.DLL; the various driver files such as KEYBOARD.DRV, SYSTEM.DRV, and
MOUSE.DRV; and the video and printer drivers are all dynamic-link libraries. These are libraries that all Windows
programs can use.

Some dynamic-link libraries (such as font files) are termed "resource-only." They contain only data (usually in the
form of resources) and no code. Thus, one purpose of dynamic-link libraries is to provide functions and resources
that can be used by many different programs. In a conventional operating system, only the operating system itself
contains routines that other programs can call on to do a job. In Windows, the process of one module calling a
function in another module is generalized. In effect, by writing a dynamic-link library, you are writing an extension
to Windows. Or you can think of DLLs, including those that make up Windows, as extensions to your program.

Although a dynamic-link library module can have any extension (such as .EXE or .FON), the standard extension is
.DLL. Only dynamic-link libraries with the extension .DLL will be loaded automatically by Windows. If the file has
another extension, the program must explicitly load the module by using the LoadLibrary or LoadLibraryEx
function.

You'll generally find that dynamic libraries make most sense in the context of a large application. For instance,
suppose you write a large accounting package for Windows that consists of several different programs. You'll
probably find that these programs use many common routines. You could put these common routines in a normal
object library (with the extension .LIB) and add them to each of the program modules during static linking with
LINK. But this approach is wasteful, because each of the programs in this package contains identical code for the
common routines. Moreover, if you change one of the routines in this library, you'll have to relink all the programs
that use the changed routine. If, however, you put these common routines in a dynamic-link library called, for
instance, ACCOUNT.DLL, you've solved both problems. Only the library module need contain the routines required
by all the programs, thus requiring less disk space for the files and less memory space when running two or more
of the applications simultaneously, and you can make changes to the library module without relinking any of the
individual programs.

Dynamic-link libraries can themselves be viable products. For instance, suppose you write a collection of three-
dimensional drawing routines and put them in a DLL called GDI3.DLL. If you then interest other software
developers in using your library, you can license it to be included with their graphics programs. A user who has
several of these programs would need only one GDI3.DLL file.

Library: One Word, Many Meanings

Part of the confusion surrounding dynamic-link libraries results from the appearance of the word "library" in
several different contexts. Besides dynamic-link libraries, we'll also be talking about "object libraries" and "import
libraries."

An object library is a file with the extension .LIB containing code that is added to your program's .EXE file in the
process called static linking when you run the linker. For example, in Microsoft Visual C++, the normal C run-time
object library that you link with your program is called LIBC.LIB.

An import library is a special form of an object library file. Like object libraries, import libraries have the extension
.LIB and are used by the linker to resolve function calls in your source code. However, import libraries contain no
code. Instead, they provide the linker with information necessary to set up relocation tables within the .EXE file for
dynamic linking. The KERNEL32.LIB, USER32.LIB, and GDI32.LIB files included with the Microsoft compiler are
import libraries for Windows functions. If you call the Rectangle function in a program, GDI32.LIB tells LINK that
this function is in the GDI32.DLL dynamic-link library. This information goes into the .EXE file so that Windows can
perform dynamic linking with the GDI32.DLL dynamic-link library when your program is executed.

Object libraries and import libraries are used only during program development. Dynamic-link libraries are used

during run time. A dynamic library must be present on the disk when a program is run that uses the library. When
Windows needs to load a DLL module before running a program that requires it, the library file must be stored in
the directory containing the .EXE program, the current directory, the Windows system directory, the Windows
directory, or a directory accessible through the PATH string in the MS-DOS environment. (The directories are
searched in that order.)

A Simple DLL

Although the whole idea of dynamic-link libraries is that they can be used by multiple applications, generally you'll
initially design a dynamic-link library in connection with just one application, perhaps a "test" program that puts
the DLL through its paces.

That's what we'll do here. We'll create a DLL called EDRLIB.DLL. The "EDR" of this filename stands for "easy
drawing routines." Our version of EDRLIB will contain only one function (named EdrCenterText), but you can add
other functions to it that simplify the drawing functions in your applications. An application named EDRTEST.EXE
will take advantage of EDRLIB.DLL by calling the function contained in it.

To do this requires an approach a little different than the one we've been taking, involving a feature of Visual C++
we haven't examined yet. Visual C++ differentiates between "workspaces" and "projects." A project is generally
associated with the creation of an application file (.EXE) or a dynamic-link library (.DLL). A workspace can contain
one or more projects. Until now, all our workspaces have contained just one project. We'll now create a workspace
called EDRTEST that will contain two projects—one to create EDRTEST.EXE and the other to create EDRLIB.DLL,
the dynamic-link library used by EDRTEST.

Let's begin. In Visual C++, select New from the File menu. Select the Workspaces tab. (We haven't selected this
before.) Select the directory where you want the workspace to be in the Location field, and type EDRTEST in the
Workspace Name field. Press Enter.

This creates an empty workspace. The Developer Studio will create a subdirectory named EDRTEST and the
workspace file EDRTEST.DSW (as well as a couple other files).

Now let's create a project in this workspace. Select New from the File menu, and select the Projects tab. Whereas
in the past you've selected Win32 Application, this time select Win32 Dynamic-Link Library. Also, click the radio
button Add To Current Workspace. That makes this project part of the EDRTEST workspace. Type EDRLIB in the
Project Name field, but don't press OK just yet. As you type EDRLIB in the Project Name field, Visual C++ alters
the Location field to show EDRLIB as a subdirectory of EDRTEST. You don't want this! In the Location field, remove
the EDRLIB subdirectory so that the project is created in the EDRTEST directory. Now press OK. Visual C++ will
create a project file EDRLIB.DSP and (if you've selected the Export Makefile option on the Build tab of the Tools
Options dialog box) a make file EDRLIB.MAK.

Now you're ready to add a couple files to this project. From the File menu, select New and then the Files tab.
Select C/C++ Header File, and type the filename EDRLIB.H. Type in the file shown in Figure 21-1 (or copy it from
this book's CD-ROM). Select New from the File menu again, and then the Files tab. This time select C++ Source
File, and type the filename EDRLIB.C. Again type the file shown in Figure 21-1.

Figure 21-1. The EDRLIB library.

EDRLIB.H

/*----------------------
 EDRLIB.H header file

 ----------------------*/

#ifdef __cplusplus
#define EXPORT extern "C" __declspec (dllexport)
#else
#define EXPORT __declspec (dllexport)
#endif

EXPORT BOOL CALLBACK EdrCenterTextA (HDC, PRECT, PCSTR) ;
EXPORT BOOL CALLBACK EdrCenterTextW (HDC, PRECT, PCWSTR) ;

#ifdef UNICODE
#define EdrCenterText EdrCenterTextW
#else
#define EdrCenterText EdrCenterTextA
#endif

EDRLIB.C

/*---
 EDRLIB.C -- Easy Drawing Routine Library module

 (c) Charles Petzold, 1998
 ---*/

#include windows.h>
#include "edrlib.h"

int WINAPI DllMain (HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
{
 return TRUE ;
}

EXPORT BOOL CALLBACK EdrCenterTextA (HDC hdc, PRECT prc, PCSTR pString)
{
 int iLength ;
 SIZE size ;

 iLength = lstrlenA (pString) ;

 GetTextExtentPoint32A (hdc, pString, iLength, &size) ;

 return TextOutA (hdc, (prc->right - prc->left - size.cx) / 2,
 (prc->bottom - prc->top - size.cy) / 2,
 pString, iLength) ;
}

EXPORT BOOL CALLBACK EdrCenterTextW (HDC hdc, PRECT prc, PCWSTR pString)
{
 int iLength ;
 SIZE size ;

 iLength = lstrlenW (pString) ;

 GetTextExtentPoint32W (hdc, pString, iLength, &size) ;

 return TextOutW (hdc, (prc->right - prc->left - size.cx) / 2,

 (prc->bottom - prc->top - size.cy) / 2,
 pString, iLength) ;
}

At this point you can build EDRLIB.DLL in either a Release or Debug configuration. After the build, the RELEASE
and DEBUG directories will contain EDRLIB.LIB, which is the import library for the dynamic-link library, and
EDRLIB.DLL, the dynamic-link library itself.

Throughout this book we've been creating programs that can be compiled for Unicode or non-Unicode character
strings depending on the definition of the UNICODE identifier. When you create a DLL, it should include both
Unicode and non-Unicode versions of any function that has arguments involving characters or character strings.
Thus, EDRLIB.C contains functions named EdrCenterTextA (the ANSI version) and EdrCenterTextW (the wide-
character version). EdrCenterTextA is defined as taking a PCSTR (pointer to const string) parameter and
EdrCenterTextW is defined as take PCWSTR (pointer to const wide string) parameter. The EdrCenterTextA function
explicitly calls lstrlenA , GetTextExtentPoint32A , and TextOutA . EdrCenterTextW explicitly calls lstrlenW ,
GetTextExtentPoint32W , and TextOutW . The EDRLIB.H file defines EdrCenterText to be EdrCenterTextW if the
UNICODE identifier is defined and EdrCenterTextA if it's not. This is just like the Windows header files.

EDRLIB.H also includes a function named DllMain , which takes the place of WinMain in a DLL. This function is
used to perform initialization and deinitialization, as I'll discuss later in this chapter. For our purposes, all we need
do right now is return TRUE from DllMain .

The only remaining mystery in these two files should be the definition of the EXPORT identifier. Functions in a DLL
that are used by an application must be "exported." This doesn't involve any tariffs or commerce regulations, just
a few keywords that ensure that the function name is added to EDRLIB.LIB (so that the linker can resolve the
function name when linking an application that uses the function) and that the function is visible from
EDRLIB.DLL. The EXPORT identifier includes the storage-class specifier __declspec (dllexport) and also extern "C"
if the header is being compiled in C++ mode. This prevents the compiler from doing the customary "name
mangling" of C++ functions and thus allows the DLL to be used by both C and C++ programs.

The Library Entry and Exit Point

The DllMain function is called when the library first begins and when it terminates. The first parameter to DllMain is
the instance handle of the library. If your library uses resources that require an instance handle (such as
DialogBox), you should save hInstance as a global variable. The last parameter to DllMain is reserved by the
system.

The fdwReason parameter can be one of four values that indicate why Windows is calling the DllMain function. In
the following discussion, keep in mind that a single program can be loaded multiple times and run concurrently
under Windows. Each time a program is loaded, it is considered a separate process.

A fdwReason value of DLL_PROCESS_ATTACH indicates that the dynamic-link library has been mapped into the
address space of a process. This is a cue for the library to do any initialization tasks it requires to service
subsequent requests from the process. Such initialization might include memory allocation, for example. During
the time that a process is running, DllMain is called with a DLL_PROCESS_ATTACH parameter only once during the
lifetime of that process. Any other process using the same DLL causes another call to DllMain with a
DLL_PROCESS_ATTACH parameter, but that's on behalf of the new process.

If the initialization is successful, DllMain should return a nonzero value. Returning zero will cause Windows to not
run the program.

When fdwReason has a value of DLL_PROCESS_DETACH, it means that the DLL is no longer needed by the
process. This provides an opportunity for the library to clean up after itself. Under the 32-bit versions of Windows
often this is not strictly necessary, but it's a good programming practice.

Similarly, when DllMain is called with an fdwReason parameter of DLL_THREAD_ATTACH, it means that an
attached process has created a new thread. When the thread terminates, Windows calls DllMain with an fdwReason
parameter of DLL_THREAD_DETACH. Be aware that it's possible to get a DLL_THREAD_DETACH call without an
earlier DLL_THREAD_ATTACH call if the dynamic-link library is attached to a process after the thread has been
created.

The thread still exists when DllMain is called with a parameter of DLL_THREAD_DETACH. It can even send the
thread messages during this process. But it shouldn't use PostMessage because the thread might be gone before
the message is retrieved.

The Test Program

Now let's create a second project in the EDRTEST workspace, this one for a program named EDRTEST that will use
EDRLIB.DLL. With the EDRTEST workspace loaded in Visual C++, select New from the File menu. Select the
Projects tab in the New dialog box. This time select Win32 Application. Make sure the Add To Current Workspace
button is checked. Type in the project name EDRTEST. Again, in the Locations field, erase the second EDRTEST
subdirectory. Press OK, and select An Empty Project from the next dialog box. Press Finish.

From the File menu, select New again. Select the Files tab and C++ Source File. Make sure the Add To Project list
box shows EDRTEST rather than EDRLIB. Type in the filename EDRTEST.C, and type in the file shown in Figure
21-2. This program uses the EdrCenterText function to center a text string in its client area.

Figure 21-2. The EDRTEST program.

EDRTEST.C

/*--
 EDRTEST.C -- Program using EDRLIB dynamic-link library

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "edrlib.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("StrProg") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DLL Demonstration Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 HDC hdc ;

 PAINTSTRUCT ps ;
 RECT rect ;

 switch (message)
 {
 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 GetClientRect (hwnd, &rect) ;

 EdrCenterText (hdc, &rect,
 TEXT ("This string was displayed by a DLL")) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

Notice that EDRTEST.C includes the EDRLIB.H header file for the definition of the EdrCenterText function, which it
calls during the WM_PAINT message.

Before you compile this program, there are a few things you'll want to do. First, in the Project menu, choose
Select Active Project. You should see EDRLIB and EDRTEST. You should select EDRTEST. When you build this
workspace, you really want to build the program. Also, in the Project menu, select Dependencies. In the Select
Project To Modify list box, choose EDRTEST. In the Dependent On The Following Project(s) list, check EDRLIB. This
means that EDRTEST requires the EDRLIB dynamic-link library. Whenever you build EDRTEST, EDRLIB will be
rebuilt, if necessary, before compiling and linking EDRTEST.

From the Project menu, select Settings. Pick the General tab. When you select the EDRLIB or EDRTEST projects in
the left pane, the Intermediate Files and Output Files shown in the right pane should be the RELEASE directory for
the Win32 Release configuration and the DEBUG directory for the Win32 Debug configuration. Change them if they
are not. This will ensure that EDRLIB.DLL ends up in the same directory as EDRTEST.EXE and that the program
will have no problem using the DLL.

Still in the Project Setting dialog box and with EDRTEST selected, click the C/C++ tab. In Preprocessor Definitions,
add UNICODE in the Debug configuration, as is customary for the programs in this book.

Now you should be able to build EDRTEST.EXE in both Debug and Release configurations. Visual C++ will first
compile and link EDRLIB, if necessary. The RELEASE and DEBUG directories will contain EDRLIB.LIB (the import
library) and EDRLIB.DLL. When Developer Studio links EDRTEST, it will include the import library automatically.

It is important to understand that the EdrCenterText code is not included in the EDRTEST.EXE file. Instead, there
is simply a reference in the executable to the EDRLIB.DLL file and the EdrCenterText function. EDRTEST.EXE
requires EDRLIB.DLL to run.

When you execute EDRTEST.EXE, Windows performs fixups to functions in external library modules. Many of these
functions are in the normal Windows dynamic-link libraries. But Windows also sees that the program calls a
function from EDRLIB, so Windows loads the EDRLIB.DLL file into memory and calls EDRLIB's initialization routine.
The call within EDRTEST to the EdrCenterText function is dynamically linked to the function in EDRLIB.

Including EDRLIB.H in the EDRTEST.C source code file is similar to including WINDOWS.H. Linking with
EDRLIB.LIB is similar to linking with the Windows import libraries (such as USER32.LIB). When your program runs,
it links with EDLIB.DLL in the same way it links with USER32.DLL. Congratulations! You' ve just created an
extension to Windows!

A few words on the subject of dynamic-link libraries before we continue:

First, although I've just categorized a DLL as an extension to Windows, it is also an extension to your application
program. Everything the DLL does is done on behalf of the application. For example, all memory it allocates is
owned by the application. Any windows it creates are owned by the application. And any files it opens are owned
by the application. Multiple applications can use the same DLL simultaneously, but under Windows these
applications are shielded from interfering with each other.

Multiple processes can share the same code in a dynamic-link library. However, the data maintained by a DLL is
different for each process. Each process has its own address space for any data the DLL uses. Sharing memories
among processes requires extra work, as we'll see in the next section.

Shared Memory in DLLs

It's very nice that Windows isolates applications that are using the same dynamic-link libraries at the same time.
However, sometimes it's not preferable. You may want to write a DLL that contains some memory that can be
shared among various applications, or perhaps among multiple instances of the same application. This involves
using shared memory, which is actually a memory-mapped file.

Let's examine how this works with a program called STRPROG ("string program") and a dynamic-link library called
STRLIB ("string library"). STRLIB has three exported functions that STRPROG calls. Just to make this interesting,
one of the functions in STRLIB uses a call-back function defined in STRPROG.

STRLIB is a dynamic-link library module that stores and sorts up to 256 character strings. The strings are
capitalized and maintained by shared memory in STRLIB. STRPROG can use STRLIB's three functions to add
strings, delete strings, and obtain all the current strings from STRLIB. The STRPROG test program has two menu
items (Enter and Delete) that invoke dialog boxes to add and delete these strings. STRPROG lists in its client area
all the current strings stored by STRLIB.

This function defined in STRLIB adds a string to STRLIB's shared memory:

EXPORT BOOL CALLBACK AddString (pStringIn)

The argument pStringIn is a pointer to the string. The string is capitalized within the AddString function. If an
identical string already exists in STRLIB's list of strings, this function adds another copy of the string. AddString

returns TRUE (nonzero) if it is successful and FALSE (0) otherwise. A FALSE return value can result if the string
has a length of 0, if memory could not be allocated to store the string, or if 256 strings are already stored.

This STRLIB function deletes a string from STRLIB's shared memory:

EXPORT BOOL CALLBACK DeleteString (pStringIn)

Again, the argument pStringIn is a pointer to the string. If more than one string matches, only the first is
removed. DeleteString returns TRUE (nonzero) if it is successful and FALSE (0) otherwise. A FALSE return value
indicates that the length of the string is 0 or that a matching string could not be found.

This STRLIB function uses a call-back function located in the calling program to enumerate the strings currently
stored in STRLIB's shared memory:

EXPORT int CALLBACK GetStrings (pfnGetStrCallBack, pParam)

The call-back function must be defined in the calling program as follows:

EXPORT BOOL CALLBACK GetStrCallBack (PSTR pString, PVOID pParam)

The pfnGetStrCallBack argument to GetStrings points to the call-back function. GetStrings calls GetStrCallBack
once for each string or until the call-back function returns FALSE (0). GetStrings returns the number of strings
passed to the call-back function. The pParam parameter is a far pointer to programmer-defined data.

Of course, this is all complicated by Unicode or, rather, by the necessity of STRLIB supporting both Unicode and
non-Unicode applications. Like EDRLIB, it has A and W versions of all its functions. Internally, STRLIB stores all
the strings in Unicode. If a non-Unicode program uses STRLIB (that is, the program calls AddStringA ,
DeleteStringA , and GetStringsA) the strings are converted to and from Unicode.

The workspace associated with the STRPROG and STRLIB projects is named STRPROG. The files are assembled in
the same way as the EDRTEST workspace. Figure 21-3 shows the two files necessary to create the STRLIB.DLL
dynamic-link library module.

Figure 21-3. The STRLIB library.

STRLIB.H

/*----------------------
 STRLIB.H header file
 ----------------------*/

#ifdef __cplusplus
#define EXPORT extern "C" __declspec (dllexport)
#else
#define EXPORT __declspec (dllexport)
#endif

 // The maximum number of strings STRLIB will store and their lengths

#define MAX_STRINGS 256
#define MAX_LENGTH 63

 // The callback function type definition uses generic strings

typedef BOOL (CALLBACK * GETSTRCB) (PCTSTR, PVOID) ;

 // Each function has ANSI and Unicode versions

EXPORT BOOL CALLBACK AddStringA (PCSTR) ;
EXPORT BOOL CALLBACK AddStringW (PCWSTR) ;

EXPORT BOOL CALLBACK DeleteStringA (PCSTR) ;
EXPORT BOOL CALLBACK DeleteStringW (PCWSTR) ;

EXPORT int CALLBACK GetStringsA (GETSTRCB, PVOID) ;
EXPORT int CALLBACK GetStringsW (GETSTRCB, PVOID) ;

 // Use the correct version depending on the UNICODE identifier

#ifdef UNICODE
#define AddString AddStringW
#define DeleteString DeleteStringW
#define GetStrings GetStringsW
#else
#define AddString AddStringA
#define DeleteString DeleteStringA
#define GetStrings GetStringsA
#endif

STRLIB.C

/*--
 STRLIB.C -- Library module for STRPROG program
 (c) Charles Petzold, 1998

--*/
#include <windows.h>
#include <wchar.h> // for wide-character string functions
#include "strlib.h"

 // shared memory section (requires /SECTION:shared,RWS in link options)

#pragma data_seg ("shared")
int iTotal = 0 ;
WCHAR szStrings [MAX_STRINGS][MAX_LENGTH + 1] = { '\0' } ;
#pragma data_seg ()

#pragma comment(linker,"/SECTION:shared,RWS")

int WINAPI DllMain (HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
{
 return TRUE ;
}

EXPORT BOOL CALLBACK AddStringA (PCSTR pStringIn)
{
 BOOL bReturn ;
 int iLength ;
 PWSTR pWideStr ;

 // Convert string to Unicode and call AddStringW

 iLength = MultiByteToWideChar (CP_ACP, 0, pStringIn, -1, NULL, 0) ;
 pWideStr = malloc (iLength) ;
 MultiByteToWideChar (CP_ACP, 0, pStringIn, -1, pWideStr, iLength) ;
 bReturn = AddStringW (pWideStr) ;
 free (pWideStr) ;

 return bReturn ;
}

EXPORT BOOL CALLBACK AddStringW (PCWSTR pStringIn)
{
 PWSTR pString ;
 int i, iLength ;

 if (iTotal == MAX_STRINGS - 1)
 return FALSE ;

 if ((iLength = wcslen (pStringIn)) == 0)
 return FALSE ;

 // Allocate memory for storing string, copy it, convert to upper case

 pString = malloc (sizeof (WCHAR) * (1 + iLength)) ;
 wcscpy (pString, pStringIn) ;
 _wcsupr (pString) ;

 // Alphabetize the strings

 for (i = iTotal ; i > 0 ; i-)

 {
 if (wcscmp (pString, szStrings[i - 1]) >= 0)
 break ;

 wcscpy (szStrings[i], szStrings[i - 1]) ;
 }
 wcscpy (szStrings[i], pString) ;
 iTotal++ ;

 free (pString) ;
 return TRUE ;
}

EXPORT BOOL CALLBACK DeleteStringA (PCSTR pStringIn)
{
 BOOL bReturn ;
 int iLength ;
 PWSTR pWideStr ;

 // Convert string to Unicode and call DeleteStringW

 iLength = MultiByteToWideChar (CP_ACP, 0, pStringIn, -1, NULL, 0) ;
 pWideStr = malloc (iLength) ;
 MultiByteToWideChar (CP_ACP, 0, pStringIn, -1, pWideStr, iLength) ;
 bReturn = DeleteStringW (pWideStr) ;
 free (pWideStr) ;

 return bReturn ;
}

EXPORT BOOL CALLBACK DeleteStringW (PCWSTR pStringIn)
{
 int i, j ;

 if (0 == wcslen (pStringIn))
 return FALSE ;

 for (i = 0 ; i < iTotal ; i++)
 {
 if (_wcsicmp (szStrings[i], pStringIn) == 0)
 break ;
 }
 // If given string not in list, return without taking action

 if (i == iTotal)
 return FALSE ;

 // Else adjust list downward

 for (j = i ; j < iTotal ; j++)
 wcscpy (szStrings[j], szStrings[j + 1]) ;

 szStrings[iTotal-][0] = '\0' ;
 return TRUE ;
}

EXPORT int CALLBACK GetStringsA (GETSTRCB pfnGetStrCallBack, PVOID pParam)
{
 BOOL bReturn ;
 int i, iLength ;
 PSTR pAnsiStr ;

 for (i = 0 ; i < iTotal ; i++)
 {
 // Convert string from Unicode

 iLength = WideCharToMultiByte (CP_ACP, 0, szStrings[i], -1, NULL, 0,
 NULL, NULL) ;
 pAnsiStr = malloc (iLength) ;
 WideCharToMultiByte (CP_ACP, 0, szStrings[i], -1, pAnsiStr, iLength,
 NULL, NULL) ;

 // Call callback function

 bReturn = pfnGetStrCallBack (pAnsiStr, pParam) ;

 if (bReturn == FALSE)
 return i + 1 ;

 free (pAnsiStr) ;
 }
 return iTotal ;
}

EXPORT int CALLBACK GetStringsW (GETSTRCB pfnGetStrCallBack, PVOID pParam)
{
 BOOL bReturn ;
 int i ;

 for (i = 0 ; i < iTotal ; i++)
 {
 bReturn = pfnGetStrCallBack (szStrings[i], pParam) ;

 if (bReturn == FALSE)
 return i + 1 ;
 }
 return iTotal ;
}

Aside from the DllMain function, STRLIB contains only the six functions that it will export to be used by other
programs. All these functions are defined as EXPORT. This causes LINK to list them in the STRLIB.LIB import
library.

The STRPROG Program

The STRPROG program, shown in Figure 21-4, is fairly straightforward. The two menu options, Enter and Delete,
invoke dialog boxes that allow you to enter a string. STRPROG then calls AddString or DeleteString . When the
program needs to update its client area, it calls GetStrings and uses the function GetStrCallBack to list the
enumerated strings.

Figure 21-4. The STRPROG program.

STRPROG.C

/*--
 STRPROG.C -- Program using STRLIB dynamic-link library
 (c) Charles Petzold, 1998

 --*/
#include <windows.h>
#include "strlib.h"
#include "resource.h"

typedef struct
{
 HDC hdc ;
 int xText ;
 int yText ;
 int xStart ;
 int yStart ;
 int xIncr ;
 int yIncr ;
 int xMax ;
 int yMax ;
}
CBPARAM ;

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("StrProg") ;
TCHAR szString [MAX_LENGTH + 1] ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("DLL Demonstration Program"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

BOOL CALLBACK DlgProc (HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 SendDlgItemMessage (hDlg, IDC_STRING, EM_LIMITTEXT, MAX_LENGTH, 0) ;
 return TRUE ;

 case WM_COMMAND:
 switch (wParam)
 {
 case IDOK:
 GetDlgItemText (hDlg, IDC_STRING, szString, MAX_LENGTH) ;
 EndDialog (hDlg, TRUE) ;
 return TRUE ;

 case IDCANCEL:
 EndDialog (hDlg, FALSE) ;
 return TRUE ;
 }
 }
 return FALSE ;
}

BOOL CALLBACK GetStrCallBack (PTSTR pString, CBPARAM * pcbp)
{
 TextOut (pcbp->hdc, pcbp->xText, pcbp->yText,
 pString, lstrlen (pString)) ;

 if ((pcbp->yText += pcbp->yIncr) > pcbp->yMax)
 {
 pcbp->yText = pcbp->yStart ;
 if ((pcbp->xText += pcbp->xIncr) > pcbp->xMax)
 return FALSE ;
 }
 return TRUE ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HINSTANCE hInst ;
 static int cxChar, cyChar, cxClient, cyClient ;
 static UINT iDataChangeMsg ;
 CBPARAM cbparam ;
 HDC hdc ;
 PAINTSTRUCT ps ;
 TEXTMETRIC tm ;

 switch (message)
 {
 case WM_CREATE:
 hInst = ((LPCREATESTRUCT) lParam)->hInstance ;
 hdc = GetDC (hwnd) ;
 GetTextMetrics (hdc, &tm) ;
 cxChar = (int) tm.tmAveCharWidth ;
 cyChar = (int) (tm.tmHeight + tm.tmExternalLeading) ;
 ReleaseDC (hwnd, hdc) ;

 // Register message for notifying instances of data changes

 iDataChangeMsg = RegisterWindowMessage (TEXT ("StrProgDataChange")) ;
 return 0 ;

 case WM_COMMAND:
 switch (wParam)
 {
 case IDM_ENTER:
 if (DialogBox (hInst, TEXT ("EnterDlg"), hwnd, &DlgProc))
 {
 if (AddString (szString))
 PostMessage (HWND_BROADCAST, iDataChangeMsg, 0, 0) ;
 else
 MessageBeep (0) ;
 }
 break ;

 case IDM_DELETE:
 if (DialogBox (hInst, TEXT ("DeleteDlg"), hwnd, &DlgProc))
 {
 if (DeleteString (szString))
 PostMessage (HWND_BROADCAST, iDataChangeMsg, 0, 0) ;
 else
 MessageBeep (0) ;
 }
 break ;
 }
 return 0 ;

 case WM_SIZE:

 cxClient = (int) LOWORD (lParam) ;
 cyClient = (int) HIWORD (lParam) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 cbparam.hdc = hdc ;
 cbparam.xText = cbparam.xStart = cxChar ;
 cbparam.yText = cbparam.yStart = cyChar ;
 cbparam.xIncr = cxChar * MAX_LENGTH ;
 cbparam.yIncr = cyChar ;
 cbparam.xMax = cbparam.xIncr * (1 + cxClient / cbparam.xIncr) ;
 cbparam.yMax = cyChar * (cyClient / cyChar - 1) ;

 GetStrings ((GETSTRCB) GetStrCallBack, (PVOID) &cbparam) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;

 default:
 if (message == iDataChangeMsg)
 InvalidateRect (hwnd, NULL, TRUE) ;
 break ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;

STRPROG.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ENTERDLG DIALOG DISCARDABLE 20, 20, 186, 47
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Enter"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "&Enter:",IDC_STATIC,7,7,26,9
 EDITTEXT IDC_STRING,31,7,148,12,ES_AUTOHSCROLL

 DEFPUSHBUTTON "OK",IDOK,32,26,50,14
 PUSHBUTTON "Cancel",IDCANCEL,104,26,50,14
END

DELETEDLG DIALOG DISCARDABLE 20, 20, 186, 47
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Delete"
FONT 8, "MS Sans Serif"
BEGIN
 LTEXT "&Delete:",IDC_STATIC,7,7,26,9
 EDITTEXT IDC_STRING,31,7,148,12,ES_AUTOHSCROLL
 DEFPUSHBUTTON "OK",IDOK,32,26,50,14
 PUSHBUTTON "Cancel",IDCANCEL,104,26,50,14
END
///
// Menu

STRPROG MENU DISCARDABLE
BEGIN
 MENUITEM "&Enter!", IDM_ENTER
 MENUITEM "&Delete!", IDM_DELETE
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by StrProg.rc

#define IDC_STRING 1000
#define IDM_ENTER 40001
#define IDM_DELETE 40002
#define IDC_STATIC -1

STRPROG.C includes the STRLIB.H header file; this defines the three functions in STRLIB that STRPROG will use.

What's most interesting about this program becomes evident when you run multiple instances of STRPROG.
STRLIB stores the character strings and their pointers in shared memory, which lets all instances of STRPROG
share this data. Let's look at how it's done.

Sharing Data Among STRPROG Instances

Windows erects a wall around the address space of a Win32 process. Normally, data in an address space is
private, invisible to other processes. But running multiple instances of STRPROG shows that STRLIB has no trouble
sharing its data with all instances of the program. When you add or delete a string in a STRPROG window, the
change is immediately reflected in the other windows.

STRLIB shares two variables among all its instances: an array of strings and an integer indicating the number of
valid strings stored. STRLIB keeps these two variables in a special section of memory that it designates as shared:

#pragma data_seg ("shared")
int iTotal = 0 ;
WCHAR szStrings [MAX_STRINGS][MAX_LENGTH + 1] = { '\0' } ;
#pragma data_seg ()

The first #pragma statement creates the data section, here named shared . You can name the section whatever
you wish. All initialized variables after the #pragma go into the shared section. The second #pragma statement
marks the end of the section. It's important to specifically initialize the variables; otherwise, the compiler puts
them in the normal uninitialized section rather than in shared .

The linker has to be told about shared . In the Project Settings dialog box, select the Link tab. In the Project
Options field for STRLIB (in both the Release and Debug configurations), include the following linker argument:

/SECTION:shared,RWS

The RWS letters indicate that the section has read, write, and shared attributes. Or you can specify the linker
option directly in the DLL source code, as is done in STRLIB.C:

#pragma comment(linker,"/SECTION:shared,RWS")

The shared memory section allows the iTotal variable and the szStrings array of strings to be shared among all
instances of STRLIB. Because MAX_STRINGS is equal to 256 and MAX_LENGTH is equal to 63, the shared memory
section is 32,772 bytes in length-the 4 bytes required for the iTotal variable and 128 bytes each for the 256
pointers.

Using a shared memory section is probably the easiest way to share data among multiple applications. If you need
to dynamically allocate shared memory space, you should look into the use of file mapping objects, documented at
/Platform SDK/Windows Base Services/Interprocess Communication/File Mapping .

Miscellaneous DLL Topics

I mentioned earlier that a dynamic library module doesn't receive messages. However, a library module can call
GetMessage and PeekMessage . The messages the library pulls from the queue with these functions are actually
messages for the program that called the library function. In general, the library works on behalf of the program
calling it—a rule that holds for most Windows functions that a library calls.

A dynamic library can load resources (such as icons, strings, and bitmaps) either from the library file or from the
file of the program that calls the library. The functions that load resources require an instance handle. If the library
uses its own instance handle (which is passed to the library during initialization), the library can obtain resources
from its own file. To load resources from the calling program's .EXE file, the library function requires the instance
handle of the program calling the function.

Registering window classes and creating windows in a library can be a little tricky. Both the window class structure
and the CreateWindow call require an instance handle. Although you can use the library module's instance handle
in creating the window class and the window, the window messages still go through the message queue of the
program calling the library when the library creates the window. If you must create window classes and windows
within a library, it's probably best to use the calling program's instance handle.

Because messages for modal dialog boxes are retrieved outside a program's message loop, you can create a
modal dialog box in a library by calling DialogBox . The instance handle can be that of the library, and the
hwndParent argument to DialogBox can be set to NULL.

Dynamic Linking Without Imports

Rather than have Windows perform dynamic linking when your program is first loaded into memory, you can link a
program with a library module while the program is running.

For instance, you would normally call the Rectangle function like this:

Rectangle (hdc, xLeft, yTop, xRight, yBottom) ;

This works because the program has been linked with the GDI32.LIB import library, which supplied the address of
Rectangle .

You can also call Rectangle in a very roundabout manner. You first use typedef to define a function type for
Rectangle :

typedef BOOL (WINAPI * PFNRECT) (HDC, int, int, int, int) ;

You then define two variables:

HANDLE hLibrary ;
PFNRECT pfnRectangle ;

Now you set hLibrary to the handle of the library and lpfnRectangle to the address of the Rectangle function:

hLibrary = LoadLibrary (TEXT ("GDI32.DLL"))
pfnRectangle = (PFNPRECT) GetProcAddress (hLibrary, TEXT ("Rectangle"))

The LoadLibrary function returns NULL if the library file can't be found or if some other error occurs. Now you can
call the function and then free the library:

pfnRectangle (hdc, xLeft, yTop, xRight, yBottom) ;
FreeLibrary (hLibrary) ;

Although this technique of run-time dynamic linking doesn't make much sense for the Rectangle function, it can
come in handy when you don't know the name of the library module until run time.

The code above uses the LoadLibrary and FreeLibrary functions. Windows maintains "reference counts" for all
library modules. LoadLibrary causes the reference count to be incremented. The reference count is also
incremented when Windows loads any program that uses the library. FreeLibrary causes the reference count to be
decremented, as does the termination of an instance of a program that uses this library. When the reference count
is 0, Windows can discard the library from memory, because the library is no longer needed.

Resource-Only Libraries

Any function in a dynamic-link library that a Windows program or another library can use must be exported.
However, a DLL need not contain any exported functions. What would such a DLL contain? The answer is
resources.

Let's say you're working on a Windows application that requires a number of bitmaps. Normally you would list
these in the resource script of the program and load them into memory with the LoadBitmap function. But perhaps
you want to create several sets of bitmaps, each set customized for one of the major display resolutions
commonly used with Windows. It would make most sense to store these different sets of bitmaps in different files,
because a user would need only one set of bitmaps on the fixed disk. These files are resource-only libraries.

Figure 21-5 shows how to create a resource-only library file called BITLIB.DLL that contains nine bitmaps. The
BITLIB.RC file lists all the separate bitmap files and assigns each one a number. To create BITLIB.DLL, you need
nine bitmaps named BITMAP1.BMP, BITMAP2.BMP, and so forth. You can use the bitmaps provided on this book's
companion disc or create them yourself in the Visual C++ program. They are associated with numeric IDs of 1
through 9.

Figure 21-5. The BITLIB library.

BITLIB.C

/*--
 BITLIB.C -- Code entry point for BITLIB dynamic-link library
 (c) Charles Petzold, 1998

 --*/

#include <windows.h>

int WINAPI DllMain (HINSTANCE hInstance, DWORD fdwReason, PVOID pvReserved)
{
 return TRUE ;
}

BITLIB.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"

#include "afxres.h"
///
// Bitmap

1 BITMAP DISCARDABLE "bitmap1.bmp"
2 BITMAP DISCARDABLE "bitmap2.bmp"
3 BITMAP DISCARDABLE "bitmap3.bmp"
4 BITMAP DISCARDABLE "bitmap4.bmp"
5 BITMAP DISCARDABLE "bitmap5.bmp"
6 BITMAP DISCARDABLE "bitmap6.bmp"
7 BITMAP DISCARDABLE "bitmap7.bmp"
8 BITMAP DISCARDABLE "bitmap8.bmp"
9 BITMAP DISCARDABLE "bitmap9.bmp"

Create the BITLIB project in a workspace named SHOWBIT. Create the SHOWBIT program, shown in Figure 21-6,
in another project named SHOWBIT, the same as before. However, don't make BITLIB a dependency of SHOWBIT;
otherwise, the link step will require a BITLIB.LIB file, and one isn't created because BITLIB has no exported
functions. Instead, build BITLIB and SHOWBIT separately by alternately setting each of them as the Active Project
and building.

SHOWBIT.C reads the bitmap resources from BITLIB and displays them in its client area. You can cycle through
the bitmaps by pressing a key on the keyboard.

Figure 21-6. The SHOWBIT program.

SHOWBIT.C

/*---
 SHOWBIT.C -- Shows bitmaps in BITLIB dynamic-link library
 (c) Charles Petzold, 1998

 ---*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("ShowBit") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;

 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName,
 TEXT ("Show Bitmaps from BITLIB (Press Key)"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

void DrawBitmap (HDC hdc, int xStart, int yStart, HBITMAP hBitmap)
{
 BITMAP bm ;
 HDC hMemDC ;
 POINT pt ;

 hMemDC = CreateCompatibleDC (hdc) ;
 SelectObject (hMemDC, hBitmap) ;
 GetObject (hBitmap, sizeof (BITMAP), &bm) ;
 pt.x = bm.bmWidth ;
 pt.y = bm.bmHeight ;

 BitBlt (hdc, xStart, yStart, pt.x, pt.y, hMemDC, 0, 0, SRCCOPY) ;

 DeleteDC (hMemDC) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{

 static HINSTANCE hLibrary ;
 static int iCurrent = 1 ;
 HBITMAP hBitmap ;
 HDC hdc ;
 PAINTSTRUCT ps ;

 switch (message)
 {
 case WM_CREATE:
 if ((hLibrary = LoadLibrary (TEXT ("BITLIB.DLL"))) == NULL)
 {
 MessageBox (hwnd, TEXT ("Can't load BITLIB.DLL."),
 szAppName, 0) ;
 return -1 ;
 }
 return 0 ;

 case WM_CHAR:
 if (hLibrary)
 {
 iCurrent ++ ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 if (hLibrary)
 {
 hBitmap = LoadBitmap (hLibrary, MAKEINTRESOURCE (iCurrent)) ;

 if (!hBitmap)
 {
 iCurrent = 1 ;
 hBitmap = LoadBitmap (hLibrary,
 MAKEINTRESOURCE (iCurrent)) ;
 }
 if (hBitmap)
 {
 DrawBitmap (hdc, 0, 0, hBitmap) ;
 DeleteObject (hBitmap) ;
 }
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 if (hLibrary)
 FreeLibrary (hLibrary) ;

 PostQuitMessage (0) ;
 return 0 ;

 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

During processing of the WM_CREATE message, SHOWBIT gets a handle to BITLIB.DLL:

if ((hLibrary = LoadLibrary (TEXT ("BITLIB.DLL"))) == NULL)

If BITLIB.DLL isn't in the same directory as SHOWBIT.EXE, Windows will search for it as discussed earlier in this
chapter. If LoadLibrary returns NULL, SHOWBIT displays a message box reporting the error and returns a -1 from
the WM_CREATE message. This causes the CreateWindow call in WinMain to return NULL, and the program
terminates.

SHOWBIT can obtain a handle to a bitmap by calling LoadBitmap with the library handle and the number of the
bitmap:

hBitmap = LoadBitmap (hLibrary, MAKEINTRESOURCE (iCurrent)) ;

This returns an error if the bitmap corresponding to the number iCurrent isn't valid or if not enough memory exists
to load the bitmap.

While processing the WM_DESTROY message, SHOWBIT frees the library:

FreeLibrary (hLibrary) ;

When the last instance of SHOWBIT terminates, the reference count of BITLIB.DLL drops to 0 and the memory it
occupies is freed. As you can see, this is a simple method of implementing a "clip art" program that could load
precreated bitmaps (or metafiles or enhanced metafiles) into the clipboard for use by other programs.

Chapter 22

Sound and Music

The integration of sound, music, and video into Microsoft Windows has been an important evolutionary step.
Mutlimedia support began first with the so-called Multimedia Extensions to Windows in 1991. In 1992, the release
of Windows 3.1 made the multimedia support just another category of APIs. In recent years, CD-ROM drives and
sound boards—rarities in the early 1990s—have become standard for new PCs. Few people these days need to be
convinced that multimedia adds a useful dimension to the graphical visuals of Windows in taking the computer
beyond its traditional role as a cruncher of numbers and text.

Windows and Multimedia

In one sense, multimedia is all about getting access to various pieces of hardware through device-independent
function calls. Let's look at this hardware first and then the structure of the Windows multimedia API.

Multimedia Hardware

Perhaps the most commonly used piece of multimedia hardware is the waveform audio device, commonly known
as the sound card or sound board. The waveform audio device converts microphone input or other analog audio
input into digitized samples for storage in memory or disk files with the .WAV extension. The waveform audio
device also converts the waveform back into analog sound for playing over the PC's speakers.

The sound board usually also contains a MIDI device. MIDI is the industry standard Musical Instrument Digital
Interface. Such hardware plays musical notes in response to short binary messages. The MIDI hardware usually
can also accept a cable connected to a MIDI input device, such as a music keyboard. And often external MIDI
synthesizers can also be attached to the sound board.

The CD-ROM drive attached to most of today's PCs is usually capable of playing normal music CDs. This is known
as "CD Audio." The output from the waveform audio device, MIDI device, and CD Audio device are often mixed
together under user control with the Volume Control application.

A couple other common multimedia "devices" don't require any additional hardware. The Video for Windows device
(also called the AVI Video device) plays movie or animation files with the .AVI ("audio-video interleave")
extension. The ActiveMovie control plays other types of movies, including QuickTime and MPEG. The video board
on a PC may have specialized hardware to assist in playing these movies.

More rare are PC users with certain Pioneer laserdisc players or the Sony series of VISCA video cassette recorders.
These devices have serial interfaces and thus can be controlled by PC software. Certain video boards have a
feature called "video in a window" that allows an external video signal to appear on the Windows screen along with
other applications. This is also considered a multimedia device.

An API Overview

The API support of the multimedia features in Windows is in two major collections. These are known as the "low-
level" and the "high-level" interfaces.

The low-level interfaces are a series of functions that begin with a short descriptive prefix and are listed (along
with high-level functions) in /Platform SDK/Graphics and Multimedia Services/Multimedia Reference/Multimedia
Functions .

The low-level wavefrom audio input and output functions begin with the prefix waveIn and waveOut . We'll be
looking at these functions in this chapter. Also examined in this chapter will be midiOut functions to control the
MIDI Output device. The API also includes midiIn and midiStream functions.

Also used in this chapter are functions beginning with the prefix time that allow setting a high-resolution
preemptive timer routine with a timer interval rate going down to 1 millisecond. This facility is primarily for playing
back MIDI sequences. Several other groups of functions involve audio compression, video compression, and
animation and video sequences; unfortunately, these will not be covered in this chapter.

You'll also notice in the list of multimedia functions seven functions with the prefix mci that allow access to the
Media Control Interface (MCI). This is a high-level, open-ended interface for controlling all multimedia hardware in
the Multimedia PC. MCI includes many commands that are common to all multimedia hardware. This is possible
because many aspects of multimedia can be molded into a tape recorder-like play/record metaphor. You "open" a
device for either input or output, you "record" (for input) or "play" (for output), and when you're done you "close"
the device.

MCI itself comes in two forms. In one form, you send messages to MCI that are similar to Windows messages.
These messages include bit-encoded flags and C data structures. In the second form, you send text strings to MCI.
This facility is primarily for scripting languages that have flexible string manipulation functions but not much
support for calling Windows APIs. The string-based version of MCI is also good for interactively exploring and
learning MCI, as we'll be doing shortly. Device names in MCI include cdaudio , waveaudio , sequencer (MIDI),
videodisc , vcr , overlay (analog video in a window), dat (digital audio tape), and digitalvideo . MCI devices are
categorized as "simple" and "compound." Simple devices (such as cdaudio) don't use files. Compound devices
(like waveaudio) do; in the case of waveform audio, these files have a .WAV extension.

Another approach to accessing multimedia hardware involves the DirectX API, which is beyond the scope of this
book.

Two other high-level multimedia functions also deserve mention: MessageBeep and PlaySound , which was
demonstrated way back in Chapter 3 . MessageBeep plays sounds that are specified in the Sounds applet of the
Control Panel. PlaySound can play a .WAV file on disk, in memory, or loaded as resources. The PlaySound function
will be used again later in this chapter.

Exploring MCI with TESTMCI

Back in the early days of Windows multimedia, the software development kit included a C program called MCITEST
that allowed programmers to interactively type in MCI commands and learn how they worked. This program, at
least in its C version, has apparently disappeared. So, I've recreated it as the TESTMCI program shown in Figure
22-1. The user interface is based on the old MCITEST program but not the actual code, although I can't believe it
was much different.

Figure 22-1. The TESTMCI program.

TESTMCI.C

/*--
 TESTMCI.C -- MCI Command String Tester
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

#define ID_TIMER 1

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("TestMci") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

 PSTR szCmdLine, int iCmdShow)

{
 if (-1 == DialogBox (hInstance, szAppName, NULL, DlgProc))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 }
 return 0 ;
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndEdit ;
 int iCharBeg, iCharEnd, iLineBeg, iLineEnd, iChar, iLine, iLength ;
 MCIERROR error ;
 RECT rect ;

 TCHAR szCommand [1024], szReturn [1024],
 szError [1024], szBuffer [32] ;

 switch (message)
 {
 case WM_INITDIALOG:
 // Center the window on screen

 GetWindowRect (hwnd, &rect) ;
 SetWindowPos (hwnd, NULL,
 (GetSystemMetrics (SM_CXSCREEN) - rect.right + rect.left) / 2,
 (GetSystemMetrics (SM_CYSCREEN) - rect.bottom + rect.top) / 2,
 0, 0, SWP_NOZORDER | SWP_NOSIZE) ;

 hwndEdit = GetDlgItem (hwnd, IDC_MAIN_EDIT) ;
 SetFocus (hwndEdit) ;
 return FALSE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDOK:
 // Find the line numbers corresponding to the selection

 SendMessage (hwndEdit, EM_GETSEL, (WPARAM) &iCharBeg,
 (LPARAM) &iCharEnd) ;

 iLineBeg = SendMessage (hwndEdit, EM_LINEFROMCHAR, iCharBeg, 0) ;
 iLineEnd = SendMessage (hwndEdit, EM_LINEFROMCHAR, iCharEnd, 0) ;

 // Loop through all the lines
 for (iLine = iLineBeg ; iLine <= iLineEnd ; iLine++)
 {
 // Get the line and terminate it; ignore if blank

 * (WORD *) szCommand = sizeof (szCommand) / sizeof (TCHAR) ;

 iLength = SendMessage (hwndEdit, EM_GETLINE, iLine,
 (LPARAM) szCommand) ;
 szCommand [iLength] = `\0' ;

 if (iLength == 0)
 continue ;

 // Send the MCI command

 error = mciSendString (szCommand, szReturn,
 sizeof (szReturn) / sizeof (TCHAR), hwnd) ;

 // Set the Return String field

 SetDlgItemText (hwnd, IDC_RETURN_STRING, szReturn) ;

 // Set the Error String field (even if no error)

 mciGetErrorString (error, szError,
 sizeof (szError) / sizeof (TCHAR)) ;

 SetDlgItemText (hwnd, IDC_ERROR_STRING, szError) ;
 }
 // Send the caret to the end of the last selected line

 iChar = SendMessage (hwndEdit, EM_LINEINDEX, iLineEnd, 0) ;
 iChar += SendMessage (hwndEdit, EM_LINELENGTH, iCharEnd, 0) ;
 SendMessage (hwndEdit, EM_SETSEL, iChar, iChar) ;

 // Insert a carriage return/line feed combination

 SendMessage (hwndEdit, EM_REPLACESEL, FALSE,
 (LPARAM) TEXT ("\r\n")) ;
 SetFocus (hwndEdit) ;
 return TRUE ;

 case IDCANCEL:
 EndDialog (hwnd, 0) ;
 return TRUE ;

 case IDC_MAIN_EDIT:
 if (HIWORD (wParam) == EN_ERRSPACE)
 {
 MessageBox (hwnd, TEXT ("Error control out of space."),
 szAppName, MB_OK | MB_ICONINFORMATION) ;
 return TRUE ;
 }
 break ;
 }
 break ;

 case MM_MCINOTIFY:
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_MESSAGE), TRUE) ;

 wsprintf (szBuffer, TEXT ("Device ID = %i"), lParam) ;
 SetDlgItemText (hwnd, IDC_NOTIFY_ID, szBuffer) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_ID), TRUE) ;

 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_SUCCESSFUL),
 wParam & MCI_NOTIFY_SUCCESSFUL) ;

 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_SUPERSEDED),
 wParam & MCI_NOTIFY_SUPERSEDED) ;

 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_ABORTED),
 wParam & MCI_NOTIFY_ABORTED) ;

 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_FAILURE),
 wParam & MCI_NOTIFY_FAILURE) ;

 SetTimer (hwnd, ID_TIMER, 5000, NULL) ;
 return TRUE ;

 case WM_TIMER:
 KillTimer (hwnd, ID_TIMER) ;

 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_MESSAGE), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_ID), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_SUCCESSFUL), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_SUPERSEDED), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_ABORTED), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_NOTIFY_FAILURE), FALSE) ;
 return TRUE ;

 case WM_SYSCOMMAND:
 switch (LOWORD (wParam))
 {
 case SC_CLOS
E:
 EndDialog (hwnd, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

TESTMCI.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

TESTMCI DIALOG DISCARDABLE 0, 0, 270, 276
STYLE WS_MINIMIZEBOX | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "MCI Tester"
FONT 8, "MS Sans Serif"
BEGIN
 EDITTEXT IDC_MAIN_EDIT,8,8,254,100,ES_MULTILINE | ES_AUTOHSCROLL |
 WS_VSCROLL
 LTEXT "Return String:",IDC_STATIC,8,114,60,8
 EDITTEXT IDC_RETURN_STRING,8,126,120,50,ES_MULTILINE |
 ES_AUTOVSCROLL | ES_READONLY | WS_GROUP | NOT WS_TABSTOP
 LTEXT "Error String:",IDC_STATIC,142,114,60,8
 EDITTEXT IDC_ERROR_STRING,142,126,120,50,ES_MULTILINE |

 ES_AUTOVSCROLL | ES_READONLY | NOT WS_TABSTOP
 GROUPBOX "MM_MCINOTIFY Message",IDC_STATIC,9,186,254,58
 LTEXT "",IDC_NOTIFY_ID,26,198,100,8
 LTEXT "MCI_NOTIFY_SUCCESSFUL",IDC_NOTIFY_SUCCESSFUL,26,212,100,
 8,WS_DISABLED
 LTEXT "MCI_NOTIFY_SUPERSEDED",IDC_NOTIFY_SUPERSEDED,26,226,100,
 8,WS_DISABLED
 LTEXT "MCI_NOTIFY_ABORTED",IDC_NOTIFY_ABORTED,144,212,100,8,
 WS_DISABLED
 LTEXT "MCI_NOTIFY_FAILURE",IDC_NOTIFY_FAILURE,144,226,100,8,
 WS_DISABLED
 DEFPUSHBUTTON "OK",IDOK,57,255,50,14
 PUSHBUTTON "Close",IDCANCEL,162,255,50,14
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by TestMci.rc

#define IDC_MAIN_EDIT 1000
#define IDC_NOTIFY_MESSAGE 1005
#define IDC_NOTIFY_ID 1006
#define IDC_NOTIFY_SUCCESSFUL 1007
#define IDC_NOTIFY_SUPERSEDED 1008
#define IDC_NOTIFY_ABORTED 1009
#define IDC_NOTIFY_FAILURE 1010
#define IDC_SIGNAL_MESSAGE 1011
#define IDC_SIGNAL_ID 1012
#define IDC_SIGNAL_PARAM 1013
#define IDC_RETURN_STRING 1014
#define IDC_ERROR_STRING 1015
#define IDC_DEVICES 1016
#define IDC_STATIC -1

Like many of the programs in this chapter, TESTMCI uses a modeless dialog box as its main window. Like all of the
programs in this chapter, TESTMCI requires the WINMM.LIB import library to be listed in the Links page of the
Projects Settings dialog box in Microsoft Visual C++.

This program uses the two most important multimedia functions. These are mciSendString and mciGetErrorText .
When you type something into the main edit window in TESTMCI and press Enter (or the OK button), the program
passes the string you typed in as the first argument to the mciSendString command:

error = mciSendString (szCommand, szReturn,
 sizeof (szReturn) / sizeof (TCHAR), hwnd) ;

If more than one line is selected in the edit window, the program sends them sequentially to the mciSendString
function. The second argument is the address of a string that gets information back from the function. The

program displays this information in the Return String section of the window. The error code returned from
mciSendString is passed to the mciGetErrorString function to obtain a text error description; this is displayed in
the Error String section of TESTMCI's window.

MCITEXT and CD Audio

You can get an excellent feel for MCI command strings by taking control of the CD-ROM drive and playing an audio
CD. This is a good place to begin because these command strings are often quite simple and, moreover, you get to
listen to some music. You may want to have the MCI command string reference at /Platform SDK/Graphics and
Multimedia Services/Multimedia Reference/Multimedia Command Strings handy for this exercise.

Make sure the audio output of your CD-ROM drive is connected to speakers or a headphone, and pop in an audio
compact disc, for example, Bruce Springsteen's Born to Run . Under Windows 98, the CD Player application might
start up and begin playing the album. If so, end the CD Player. Instead, bring up TESTMCI and type in the
command

open cdaudio

and press Enter. The word open is an MCI command and the word cdaudio is a device name that MCI recognizes
as the CD-ROM drive. (I'm assuming you have only one CD-ROM drive on your system; getting names of multiple
CD-ROM drives requires use of the sysinfo command.)

The Return String area in TESTMCI shows the string that the system sends back to your program in the
mciSendString function. If the open command works, this is simply the number 1. The Error String area in
TESTMCI shows what the mciGetErrorString returns based on the return value from mciSendString . If
mciSendString did not return an error code, the Error String area displays the text "The specified command was
carried out."

Assuming the open command worked, you can now enter

play cdaudio

The CD will begin playing "Thunder Road," the first cut on the album. You can pause the CD by entering

pause cdaudio

or

stop cdaudio

For the cdaudio device, these statements do the same thing. You can resume playing with

play cdaudio

So far, all the strings we've used have been composed of a command and the device name. Some commands have
options. For example, type

status cdaudio position

Depending how long you've been listening, the Return String area should show something like

01:15:25

What is this? It's obviously not hours, minutes, and seconds because the CD is not that long. To find out what the
time format is, type

status cdaudio time format

The Return String area now shows the string

msf

This stands for "minutes-seconds-frames." In CD Audio, there are 75 frames to the second. The frame part of the
time format can range from 0 through 74.

The status command has a bunch of options. You can determine the entire length of the CD in msf format using
the command

status cdaudio length

For Born to Run , the Return String area will show

39:28:19

That's 39 minutes, 28 seconds, and 19 frames.

Now try

status cdaudio number of tracks

The Return String area will show

8

We know from the CD cover that the title tune is the fifth track on the Born to Run album. Track numbers in MCI
commands begin at 1. We can find out how long the song "Born to Run" is by entering

status cdaudio length track 5

The Return String area shows

04:30:22

We can also determine where on the album this track begins

status cdaudio position track 5

The Return String area shows

17:36:35

With this information we can now skip directly to the title track:

play cdaudio from 17:36:35 to 22:06:57

This command will play the one song and then stop. That last value was calculated by adding 4:30:22 (the length
of the track) to 17:36:35. Or, it could be determined by using

status cdaudio position track 6

Or, you can set the time format to tracks-minutes-seconds-frames:

set cdaudio time format tmsf

and then

play cdaudio from 5:0:0:0 to 6:0:0:0

or, more simply,

play cdaudio from 5 to 6

You can leave off trailing components of the time if they are 0. It is also possible to set the time format in
milliseconds.

Every MCI command string can include the options wait or notify (or both) at the end of the string. For example,
suppose you want to play only the first 10 seconds of the song "Born to Run," and right after that happens, you
want the program to do something else. Here's one way to do it (assuming you've set the time format to tmsf):

play cdaudio from 5:0:0 to 5:0:10 wait

In this case, the mciSendString function does not return until the function has been completed, that is, until the
10 seconds of "Born to Run" have finished playing.

Now obviously, in general, this is not a good thing in a single-threaded application. If you accidentally typed

play cdaudio wait

the mciSendString function will not return control to the program until the entire album has played. If you must
use the wait option (and it is handy when blindly running MCI scripts, as I'll demonstrate shortly), use the break
command first. This command lets you set a virtual key code that will break the mciSendString command and
return control to the program. For example, to set the Escape key to serve this purpose, use

break cdaudio on 27

where 27 is the decimal value of VK_ESCAPE. notify option:

play cdaudio from 5:0:0 to 5:0:10 notify

In this case, the mciSendString function returns immediately, but when the operation specified in the MCI
command ends, the window whose handle is specified as the last argument to mciSendString receives an
MM_MCINOTIFY message. The TESTMCI program displays the result of this message in the MM_MCINOTIFY group
box. To avoid confusion as you may be typing in other commands, the TESTMCI program stops displaying the
results of the MM_MCINOTIFY message after 5 seconds.

You can use the wait and notify keywords together, but there's hardly a reason for doing so. Without these
keywords, the default behavior is to not wait and to not notify, which is usually what you want.

When you're finished playing around with these commands, you can stop the CD by entering

stop cdaudio

If you don't stop the CD-ROM device before closing it, the CD will continue to play even after you close the device.

You can try something that may or may not work with your hardware:

eject cdaudio

And then finally close the device like so:

close cdaudio

Although TESTMCI cannot save or load text files by itself, you can copy text between the edit control and the
clipboard. You can select something in TESTMCI, copy it to the clipboard (using Ctrl-C), copy the text from the
clipboard into NOTEPAD, and then save it. Reverse this process to load a series of MCI commands into TESTMCI. If
you select a series of commands and press OK (or the Enter key), TESTMCI will execute the commands one at a
time. This lets you construct MCI "scripts," which are simply lists of MCI commands.

For example, suppose you like to listen to the songs "Jungleland" (the last track on the album), "Thunder Road,"
and "Born to Run," in that order. Construct a script like so:

open cdaudio
set cdaudio time format tmsf
break cdaudio on 27
play cdaudio from 8 wait
play cdaudio from 1 to 2 wait
play cdaudio from 5 to 6 wait
stop cdaudio
eject cdaudio
close cdaudio

Without the wait keywords, this wouldn't work correctly because the mciSendString commands would return
immediately and the next one would then execute.

At this point, it should be fairly obvious how to construct a simple application that mimics a CD player. Your
program can determine the number of tracks and the length of each track and can allow the user to begin playing
at any point. (Keep in mind, however, that mciSendString always returns information in text strings, so you'll need
to write parsing logic that converts those strings to numbers.) Such a program would almost certainly also use the
Windows timer, for intervals of a second or so. During WM_TIMER messages, the program would call

status cdaudio mode

to see whether the CD is paused or playing. The

status cdaudio position

command lets the program update its display to show the user the current position. But something more
interesting is also possible: if your program knows the time positions of key parts of the music, it can synchronize
on-screen graphics with the CD. This is excellent for music instruction or for creating your own graphical music
videos.

Waveform Audio

Waveform audio is the most utilized multimedia feature of Windows. The waveform audio facilities can capture
sounds coming through a microphone, turn them into numbers, and store them in memory or on disk in waveform
files with the extension .WAV. The sounds can then be played back.

Sound and Waveforms

Before plunging into the waveform audio API, it's important to have an understanding of the physics and
perception of sound and the process by which sounds can get in and out of our computers.

Sound is vibration. The human body perceives sound as it changes the air pressure on our eardrums. A
microphone can pick up these vibrations and translate them into electrical currents. Similarly, electrical currents
can be sent to amplifiers and speakers for rendering back into sound. In traditional analog forms of sound storage
(such as audio tape and the phonograph record) these vibrations are stored as magnetic pulses or contoured
grooves. When a sound is translated into an electrical current, it can be represented by a waveform that shows
vibrations over time. The most natural form of vibration is represented by the sine wave, one cycle of which was
shown earlier in this book in Figure 5-7.

The sine wave has two parameters—amplitude (that is, the maximum amplitude over the course of one cycle) and
frequency. We perceive amplitude as loudness and frequency as pitch. Human ears are generally said to be
sensitive to sine waves ranging from low-pitched sounds at 20 Hz (cycles per second) to high-pitched sounds at
20,000 Hz, although sensitivity to these higher sounds degrades with age.

Human perception of frequency is logarithmic rather than linear. That is, we perceive the frequency change from
20 Hz to 40 Hz to be the same as the frequency change from 40 Hz to 80 Hz. In music, this doubling of frequency
defines the octave. Thus, the human ear is sensitive to about 10 octaves of sound. The range of a piano is a little
over 7 octaves, from 27.5 Hz to 4186 Hz.

Although sine waves represent the most natural form of vibration, sine waves rarely occur in nature in pure forms.
Moreover, pure sine waves are not very interesting sounds. Most sounds are much more complex.

Any periodic waveform (that is, a waveform that repeats itself) can be decomposed into multiple sine waves whose
frequency relationships are in integer multiples. This is called a Fourier series, named after the French
mathematician and physicist Jean Baptiste Joseph Fourier (1768–1830). The frequency of periodicity is known as
the fundamental. The other sine waves in the series have frequencies that are 2, 3, 4 (and so forth) times the
frequency of the fundamental. These are called overtones. The fundamental is also called the first harmonic. The
first overtone is the second harmonic, and so forth.

The relative intensities of the sine wave harmonics give each periodic waveform a unique sound. This is known as
"timbre," and it's what makes a trumpet sound like a trumpet and a piano sound like a piano.

At one time it was believed that electronically synthesizing musical instruments required merely that sounds be
broken down into harmonics and reconstructed with multiple sine waves. However, it turned out that real-world
sounds are not quite so simple. Waveforms representing real-world sounds are never strictly periodic. Relative
intensities of harmonics are different over the range of a musical instrument and the harmonics change with time
as each note is played. In particular, the beginning of a note played on a musical instrument—called the
attack—can be quite complex and is vital to our perception of timbre.

Due to the increase in digital storage capabilities in recent years, it has become possible to store sounds directly in
a digital form without any complex deconstruction.

Pulse Code Modulation

Computers work with numbers, so to get sounds into our computers, it is necessary to devise a mechanism to
convert sound to numbers and back again from numbers to sound.

The most common method of doing this without compressing data is called "pulse code modulation" (PCM). PCM is
used on compact discs, digital audio tapes, and in Windows. Pulse code modulation is a fancy term for a
conceptually simple process.

With pulse code modulation, a waveform is sampled at a constant periodic rate, usually some tens of thousands of
times per second. For each sample, the amplitude of the waveform is measured. The hardware that does the job
of converting an amplitude into a number is an analog-to-digital converter (ADC). Similarly, numbers can be

converted back into electrical waveforms using a digital-to-analog converter (DAC). What comes out is not exactly
what goes in. The resultant waveform has sharp edges that are high-frequency components. For this reason,
playback hardware generally includes a low-pass filter following the digital-to-analog converter. This filter removes
the high frequencies and smooths out the resultant waveform. On the input side, a low-pass filter comes before
the ADC.

Pulse code modulation has two parameters: the sample rate, or how many times per second you measure the
waveform amplitude, and the sample size, or the number of bits you use to store the amplitude level. As you
might expect, the faster the sampling rate and the larger the sample size, the better the reproduction of the
original sound. However, there is a point where any improvements to the sampling rate and sample size are
overkill because they go beyond the resolution of human perception. On the other hand, making the sampling rate
and sample size too low can cause problems in accurately reproducing music and other sounds.

The Sampling Rate

The sampling rate determines the maximum frequency of sound that can be digitized and stored. In particular, the
sampling rate must be twice the highest frequency of sampled sound. This is known as the "Nyquist Frequency,"
named after Harry Nyquist, an engineer who did research in the 1930s into sampling processes.

When a sine wave is sampled with too low a sampling rate, the resultant waveform has a lower frequency than the
original. This is known as an alias. To avoid the problem of aliases, a low-pass filter is used on the input side to
block all frequencies greater than half the sampling rate. On the output side, the rough edges of the waveform
produced by the digital-to-analog converter are actually overtones composed of frequencies greater than half the
sampling rate. Thus, a low-pass filter on the output side also blocks all frequencies greater than half the sampling
rate.

The sampling rate used on audio CDs is 44,100 samples per second, or 44.1 kHz. The origin of this peculiar
number is as follows:

The human ear can hear up to 20 kHz, so to capture the entire audio range that can be heard by humans, a
sampling rate of 40 kHz is required. However, because low-pass filters have a roll-off effect, the sampling rate
should be about 10 percent higher than that. Now we're up to 44 kHz. Just in case we want to record digital audio
along with video, the sampling rate should be an integral multiple of the American and European television frame
rates, which are 30 Hz and 25 Hz respectively. That pushes the sampling rate up to 44.1 kHz.

The compact disc sampling rate of 44.1 kHz produces a lot of data and might be overkill for some applications,
such as recording voice rather than music. Halving the sampling rate to 22.05 kHz reduces the upper range of
reproducible sound by one octave to 10 kHz. Halving it again to 11.025 kHz gives us a frequency range to 5 kHz.
Sampling rates of 44.1 kHz, 22.05 kHz, and 11.025 kHz, as well as 8 kHz, are the standards commonly supported
by waveform audio devices.

You might think that a sampling rate of 11.025 kHz is adequate for recording a piano because the highest
frequency of a piano is 4186 Hz. However, 4186 Hz is the highest fundamental of a piano. Cutting off all sine
waves above 5000 Hz reduces the overtones that can be reproduced and will not accurately capture and reproduce
the piano sound.

The Sample Size

The second parameter in pulse code modulation is the sample size measured in bits. The sample size determines
the difference between the softest sound and loudest sound that can be recorded and played back. This is known
as the dynamic range.

Sound intensity is the square of the waveform amplitude (that is, the composite of the maximum amplitudes that
each sine wave reaches over the course of one cycle). As is the case with frequency, human perception of sound
intensity is logarithmic.

The difference in intensity between two sounds is measured in bels (named after Alexander Graham Bell, the
inventor of the telephone) and decibels (dB). A bel is a tenfold increase in sound intensity. One dB is one tenth of
a bel in equal multiplicative steps. Hence, one dB is an increase in sound intensity of 1.26 (that is, the 10th root of
10), or an increase in waveform amplitude of 1.12 (the 20th root of 10). A decibel is about the lowest increase in
sound intensity that the ear can perceive. The difference in intensity between sounds at the threshold of hearing
and sounds at the threshold of pain is about 100 dB.

You can calculate the dynamic range in decibels between two sounds with the following formula:

where A1 and A2 are the amplitudes of the two sounds. With a sample size of 1 bit, the dynamic range is zero,
because only one amplitude is possible.

With a sample size of 8 bits, the ratio of the largest amplitude to the smallest amplitude is 256. Thus, the dynamic
range is

or 48 decibels. A 48-dB dynamic range is about the difference between a quiet room and a power lawn mower.
Doubling the sample size to 16 bits yields a dynamic range of

or 96 decibels. This is very nearly the difference between the threshold of hearing and the threshold of pain and is
considered just about ideal for the reproduction of music.

Both 8-bit and 16-bit sample sizes are supported under Windows. When storing 8-bit samples, the samples are
treated as unsigned bytes. Silence would be stored as a string of 0x80 values. The 16-bit samples are treated as
signed integers, so silence would be stored as a string of zeros.

To calculate the storage space required for uncompressed audio, multiply the duration of the sound in seconds by
the sampling rate. Double that if you're using 16-bit samples rather than 8-bit samples. Double that again if you're
recording in stereo. For example, an hour of CD-quality sound (or 3600 seconds at 44,100 samples per second
with 2 bytes per sample in stereo) requires 635 megabytes, not coincidentally very close to the storage capability
of CD–ROM.

Generating Sine Waves in Software

For our first exercise in waveform audio, we're not going to save sounds to files or play back recorded sounds.
We're going to use the low-level waveform audio APIs (that is, the functions beginning with the prefix waveOut)
to create an audio sine wave generator called SINEWAVE. This program generates sine waves from 20 Hz (the
bottom of human perception) to 5,000 Hz (two octaves short of the top of human perception) in 1 Hz increments.

As you know, the standard C run-time library includes a function called sin that returns the sine of an angle given
in radians. (Two p (2 times pi) radians equals 360 degrees.) The sin function returns a value ranging from –1 to 1.
(We used this function in another program called SINEWAVE way back in Chapter 5 .) Thus, it should be easy to
use the sin function to generate sine wave data to output to the waveform audio hardware. Basically, you fill a
buffer up with data representing the waveform (in this case, a sine wave) and pass it to the API. (It's a little more
complicated than that, but I'll get to the details shortly.) When the waveform audio hardware finishes playing the
buffer, you pass it a second buffer, and so forth.

When first considering this problem (and not knowing anything about PCM), you might think it reasonable to
divide one cycle of the sine wave into a fixed number of samples—for example, 360. For a 20-Hz sine wave, you
output 7200 samples every second. For a 200-Hz sine wave, you output 72,000 samples per second. That might
work, but it's not the way to do it. For a 5000-Hz sine wave, you'd need to output 1,800,000 samples per second,
which would surely tax the DAC! Moreover, for the higher frequencies, this is much more precision than is needed.

With pulse code modulation, the sample rate is a constant. Let's assume the sample rate is 11,025 Hz because
that's what I use in the SINEWAVE program. If you wish to generate a sine wave of 2,756.25 Hz (exactly one-
quarter the sample rate), each cycle of the sine wave is just 4 samples. For a sine wave of 25 Hz, each cycle
requires 441 samples. In general, the number of samples per cycle is the sample rate divided by the desired sine
wave frequency. Once you know the number of samples per cycle, you can divide 2p (2 times pi) radians by that
number and use the sin function to get the samples for one cycle. Then just repeat the samples for one cycle over
and over again to create a continuous waveform.

The problem is the number of samples per cycle may well be fractional, so this approach won't work well either.
You'd get a discontinuity at the end of each cycle.

The key to making this work correctly is to maintain a static "phase angle" variable. This angle is initialized at 0.

The first sample is the sine of 0 degrees. The phase angle is then incremented by 2p (2 times pi) times the
frequency, divided by the sample rate. Use this phase angle for the second sample, and continue in this way.
Whenever the phase angle gets above 2p (2 times pi) radians, subtract 2p (2 times pi) radians from it. But don't
ever reinitialize it to 0.

For example, suppose you want to generate a sine wave of 1000 Hz with a sample rate of 11,025 Hz. That's about
11 samples per cycle. The phase angles—and here I'll give them in degrees to make this a little more
comprehensible—for approximately the first cycle and a half are 0, 32.65, 65.31, 97.96, 130.61, 163.27, 195.92,
228.57, 261.22, 293.88, 326.53, 359.18, 31.84, 64.49, 97.14, 129.80, 162.45, 195.10, and so forth. The
waveform data you put in the buffer are the sines of these angles, scaled to the number of bits per sample. When
creating the data for a subsequent buffer, you keep incrementing the last phase angle value without reinitializing it
to zero.

A function called FillBuffer that does this—along with the rest of the SINEWAVE program—is shown in Figure 22-2.

Figure 22-2. The SINEWAVE program.

SINEWAVE.C

/*--
 SINEWAVE.C -- Multimedia Windows Sine Wave Generator
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <math.h>
#include "resource.h"

#define SAMPLE_RATE 11025
#define FREQ_MIN 20
#define FREQ_MAX 5000
#define FREQ_INIT 440
#define OUT_BUFFER_SIZE 4096
#define PI 3.14159

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("SineWave") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 if (-1 == DialogBox (hInstance, szAppName, NULL, DlgProc))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 }
 return 0 ;
}

VOID FillBuffer (PBYTE pBuffer, int iFreq)
{
 static double fAngle ;
 int i ;

 for (i = 0 ; i < OUT_BUFFER_SIZE ; i++)
 {
 pBuffer [i] = (BYTE) (127 + 127 * sin (fAngle)) ;

 fAngle += 2 * PI * iFreq / SAMPLE_RATE ;

 if (fAngle > 2 * PI)

 fAngle -= 2 * PI ;
 }
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bShutOff, bClosing ;
 static HWAVEOUT hWaveOut ;
 static HWND hwndScroll ;
 static int iFreq = FREQ_INIT ;
 static PBYTE pBuffer1, pBuffer2 ;
 static PWAVEHDR pWaveHdr1, pWaveHdr2 ;
 static WAVEFORMATEX waveformat ;
 int iDummy ;

 switch (message)
 {
 case WM_INITDIALOG:
 hwndScroll = GetDlgItem (hwnd, IDC_SCROLL) ;
 SetScrollRange (hwndScroll, SB_CTL, FREQ_MIN, FREQ_MAX, FALSE) ;
 SetScrollPos (hwndScroll, SB_CTL, FREQ_INIT, TRUE) ;
 SetDlgItemInt (hwnd, IDC_TEXT, FREQ_INIT, FALSE) ;

 return TRUE ;

 case WM_HSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_LINELEFT: iFreq -= 1 ; break ;
 case SB_LINERIGHT: iFreq += 1 ; break ;
 case SB_PAGELEFT: iFreq /= 2 ; break ;
 case SB_PAGERIGHT: iFreq *= 2 ; break ;

 case SB_THUMBTRACK:
 iFreq = HIWORD (wParam) ;
 break ;

 case SB_TOP:
 GetScrollRange (hwndScroll, SB_CTL, &iFreq, &iDummy) ;
 break ;

 case SB_BOTTOM:
 GetScrollRange (hwndScroll, SB_CTL, &iDummy, &iFreq) ;
 break ;

 }

 iFreq = max (FREQ_MIN, min (FREQ_MAX, iFreq)) ;

 SetScrollPos (hwndScroll, SB_CTL, iFreq, TRUE) ;
 SetDlgItemInt (hwnd, IDC_TEXT, iFreq, FALSE) ;
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_ONOFF:
 // If turning on waveform, hWaveOut is NULL

 if (hWaveOut == NULL)
 {
 // Allocate memory for 2 headers and 2 buffers

 pWaveHdr1 = malloc (sizeof (WAVEHDR)) ;
 pWaveHdr2 = malloc (sizeof (WAVEHDR)) ;
 pBuffer1 = malloc (OUT_BUFFER_SIZE) ;
 pBuffer2 = malloc (OUT_BUFFER_SIZE) ;

 if (!pWaveHdr1 || !pWaveHdr2 || !pBuffer1 || !pBuffer2)
 {
 if (!pWaveHdr1) free (pWaveHdr1) ;
 if (!pWaveHdr2) free (pWaveHdr2) ;
 if (!pBuffer1) free (pBuffer1) ;
 if (!pBuffer2) free (pBuffer2) ;

 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, TEXT ("Error allocating memory!"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return TRUE ;
 }

 // Variable to indicate Off button pressed

 bShutOff = FALSE ;

 // Open waveform audio for output

 waveformat.wFormatTag = WAVE_FORMAT_PCM ;
 waveformat.nChannels = 1 ;
 waveformat.nSamplesPerSec = SAMPLE_RATE ;
 waveformat.nAvgBytesPerSec = SAMPLE_RATE ;
 waveformat.nBlockAlign = 1 ;
 waveformat.wBitsPerSample = 8 ;
 waveformat.cbSize = 0 ;

 if (waveOutOpen (&hWaveOut, WAVE_MAPPER, &waveformat,
 (DWORD) hwnd, 0, CALLBACK_WINDOW)
 != MMSYSERR_NOERROR)

 {
 free (pWaveHdr1) ;
 free (pWaveHdr2) ;
 free (pBuffer1) ;
 free (pBuffer2) ;

 hWaveOut = NULL ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd,
 TEXT ("Error opening waveform audio device!"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return TRUE ;
 }

 // Set up headers and prepare them

 pWaveHdr1->lpData = pBuffer1 ;
 pWaveHdr1->dwBufferLength = OUT_BUFFER_SIZE ;
 pWaveHdr1->dwBytesRecorded = 0 ;
 pWaveHdr1->dwUser = 0 ;
 pWaveHdr1->dwFlags = 0 ;
 pWaveHdr1->dwLoops = 1 ;
 pWaveHdr1->lpNext = NULL ;
 pWaveHdr1->reserved = 0 ;

 waveOutPrepareHeader (hWaveOut, pWaveHdr1,
 sizeof (WAVEHDR)) ;

 pWaveHdr2->lpData = pBuffer2 ;
 pWaveHdr2->dwBufferLength = OUT_BUFFER_SIZE ;
 pWaveHdr2->dwBytesRecorded = 0 ;
 pWaveHdr2->dwUser = 0 ;
 pWaveHdr2->dwFlags = 0 ;
 pWaveHdr2->dwLoops = 1 ;
 pWaveHdr2->lpNext = NULL ;
 pWaveHdr2->reserved = 0 ;

 waveOutPrepareHeader (hWaveOut, pWaveHdr2,
 sizeof (WAVEHDR)) ;
 }
 // If turning off waveform, reset waveform audio
 else
 {
 bShutOff = TRUE ;

 waveOutReset (hWaveOut) ;
 }
 return TRUE ;
 }
 break ;

 // Message generated from waveOutOpen call

 case MM_WOM_OPEN:
 SetDlgItemText (hwnd, IDC_ONOFF, TEXT ("Turn Off")) ;

 // Send two buffers to waveform output device

 FillBuffer (pBuffer1, iFreq) ;
 waveOutWrite (hWaveOut, pWaveHdr1, sizeof (WAVEHDR)) ;

 FillBuffer (pBuffer2, iFreq) ;
 waveOutWrite (hWaveOut, pWaveHdr2, sizeof (WAVEHDR)) ;
 return TRUE ;

 // Message generated when a buffer is finished

 case MM_WOM_DONE:
 if (bShutOff)
 {
 waveOutClose (hWaveOut) ;
 return TRUE ;
 }

 // Fill and send out a new buffer

 FillBuffer (((PWAVEHDR) lParam)->lpData, iFreq) ;
 waveOutWrite (hWaveOut, (PWAVEHDR) lParam, sizeof (WAVEHDR)) ;
 return TRUE ;

 case MM_WOM_CLOSE:
 waveOutUnprepareHeader (hWaveOut, pWaveHdr1, sizeof (WAVEHDR)) ;
 waveOutUnprepareHeader (hWaveOut, pWaveHdr2, sizeof (WAVEHDR)) ;

 free (pWaveHdr1) ;
 free (pWaveHdr2) ;
 free (pBuffer1) ;
 free (pBuffer2) ;

 hWaveOut = NULL ;
 SetDlgItemText (hwnd, IDC_ONOFF, TEXT ("Turn On")) ;

 if (bClosing)

 EndDialog (hwnd, 0) ;

 return TRUE ;

 case WM_SYSCOMMAND:
 switch (wParam)
 {
 case SC_CLOSE:
 if (hWaveOut != NULL)
 {
 bShutOff = TRUE ;
 bClosing = TRUE ;

 waveOutReset (hWaveOut) ;
 }
 else
 EndDialog (hwnd, 0) ;

 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

SINEWAVE.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

SINEWAVE DIALOG DISCARDABLE 100, 100, 200, 50
STYLE WS_MINIMIZEBOX | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Sine Wave Generator"
FONT 8, "MS Sans Serif"
BEGIN
 SCROLLBAR IDC_SCROLL,8,8,150,12
 RTEXT "440",IDC_TEXT,160,10,20,8
 LTEXT "Hz",IDC_STATIC,182,10,12,8
 PUSHBUTTON "Turn On",IDC_ONOFF,80,28,40,14
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by SineWave.rc

#define IDC_STATIC -1
#define IDC_SCROLL 1000
#define IDC_TEXT 1001
#define IDC_ONOFF 1002

Note that the OUT_BUFFER_SIZE, SAMPLE_RATE, and PI identifiers used in the FillBuffer routine are defined at the
top of the program. The iFreq argument to FillBuffer is the desired frequency in Hz. Notice that the result of the
sin function is scaled to range between 0 and 254. For each sample, the fAngle argument to the sin function is
increased by 2p (2 times pi) radians times the desired frequency divided by the sample rate.

SINEWAVE's window contains three controls: a horizontal scroll bar used for selecting the frequency, a static text
field that indicates the currently selected frequency, and a push button labeled "Turn On." When you press the
button, you should hear a sine wave from the speakers connected to your sound board and the button text will
change to "Turn Off." You can change the frequency by moving the scroll bar with the keyboard or mouse. To turn
off the sound, push the button again.

The SINEWAVE code initializes the scroll bar so that the minimum frequency is 20 Hz and the maximum frequency
is 5000 Hz during the WM_INITDIALOG message. Initially, the scroll bar is set to 440 Hz. In musical terms, this is
the A above middle C, the note used for tuning an orchestra. DlgProc alters the static variable iFreq on receipt of
WM_HSCROLL messages. Notice that Page Left and Page Right cause DlgProc to decrease or increase the
frequency by one octave.

When DlgProc receives a WM_COMMAND message from the button, it first allocates 4 blocks of memory—2 for
WAVEHDR structures, discussed shortly, and two for buffers, called pBuffer1 and pBuffer2 , to hold the waveform
data.

SINEWAVE opens the waveform audio device for output by calling the waveOutOpen function, which uses the
following arguments:

waveOutOpen (&hWaveOut, wDeviceID, &waveformat, dwCallBack,
 dwCallBackData, dwFlags) ;

You set the first argument to point to a variable of type HWAVEOUT ("handle to waveform audio output"). On
return from the function, this variable will be set to a handle used in subsequent waveform output calls.

The second argument to waveOutOpen is a device ID. This allows the function to be used on machines that have
multiple sound boards installed. The argument can range from 0 to one less than the number of waveform output
devices installed in the system. You can get the number of waveform output devices by calling
waveOutGetNumDevs and find out about each of them by calling waveOutGetDevCaps . If you wish to avoid this
device interrogation, you can use the constant WAVE_MAPPER (defined as equalling –1) to select the device the
user as indicated as the Preferred Device in the Audio tab of the Multimedia applet of the Control Panel. Or the
system could select another device if the preferred device can't handle what you need to do and another device
can.

The third argument is a pointer to a WAVEFORMATEX structure. (More about this shortly.) The fourth argument is
either a window handle or a pointer to a callback function in a dynamic-link library. This argument indicates the
window or callback function that receives the waveform output messages. If you use a callback function, you can
specify program-defined data in the fifth argument. The dwFlags argument can be set to either
CALLBACK_WINDOW or CALLBACK_FUNCTION to indicate what the fourth argument is. You can also use the flag
WAVE_FORMAT_QUERY to check whether the device can be opened without actually opening it. A few other flags
are available.

The third argument to waveOutOpen is defined as a pointer to a structure of type WAVEFORMATEX, defined in
MMSYSTEM.H as shown below:

typedef struct waveformat_tag
{
 WORD wFormatTag ; // waveform format = WAVE_FORMAT_PCM
 WORD nChannels ; // number of channels = 1 or 2
 DWORD nSamplesPerSec ; // sample rate
 DWORD nAvgBytesPerSec ; // bytes per second
 WORD nBlockAlign ; // block alignment
 WORD wBitsPerSample ; // bits per samples = 8 or 16
 WORD cbSize ; // 0 for PCM
}

WAVEFORMATEX, * PWAVEFORMATEX ;

This is the structure you use to specify the sample rate (nSamplesPerSec), the sample size (wBitsPerSample),
and whether you want monophonic or stereophonic sound (nChannels). Some of the information in this structure
may seem redundant, but the structure is designed for sampling methods other than PCM, in which case the last
field is set to a nonzero value and other information follows.

For PCM, set nBlockAlign field to the product of nChannels and wBitsPerSample , divided by 8. This is the total
number of bytes per sample. Set the nAvgBytesPerSec field to the product of nSamplesPerSec and nBlockAlign .

SINEWAVE initializes the fields of the WAVEFORMATEX structure and calls waveOutOpen like this:

waveOutOpen (&hWaveOut, WAVE_MAPPER, &waveformat,
 (DWORD) hwnd, 0, CALLBACK_WINDOW)

The waveOutOpen function returns MMSYSERR_NOERROR(defined as 0) if the function is successful and a nonzero
error code otherwise. If waveOutOpen returns nonzero, SINEWAVE cleans up and displays a message box
indicating an error.

Now that the device is open, SINEWAVE continues by initializing the fields of the two WAVEHDR structures, which
are used to pass buffers through the API. WAVEHDR is defined like so:

typedef struct wavehdr_tag
{
 LPSTR lpData; // pointer to data buffer
 DWORD dwBufferLength; // length of data buffer
 DWORD dwBytesRecorded; // used for recorded
 DWORD dwUser; // for program use
 DWORD dwFlags; // flags
 DWORD dwLoops; // number of repetitions
 struct wavehdr_tag FAR *lpNext; // reserved
 DWORD reserved; // reserved
}
WAVEHDR, *PWAVEHDR ;

SINEWAVE sets the lpData field to the address at the buffer that will contain the data, dwBufferLength to the size
of this buffer, and dwLoops to 1. All other fields can be set to 0 or NULL. If you want to play a repeated loop of
sound, you can specify that with the dwFlags and dwLoops fields.

Next SINEWAVE calls waveOutPrepareHeader for the two headers. Calling this function prevents the structure and
buffer from being swapped to disk.

So far, all of this preparation has been in response to the button click to turn on the sound. But a message is
waiting in the program's message queue. Because we specified in waveOutOpen that we wish to use a window
procedure for receiving waveform output messages, the waveOutOpen function posted a MM_WOM_OPEN
message to the program's message queue. The wParam message parameter is set to the waveform output handle.
To process the MM_WOM_OPEN message, SINEWAVE twice calls FillBuffer to fill the pBuffer buffer with sinewave
data. SINEWAVE then passes the two WAVEHDR structures to waveOutWrite . This is the function that actually
starts the sound playing by passing the data to the waveform output hardware.

When the waveform hardware is finished playing the data passed to it in the waveOutWrite function, the window is
posted an MM_WOM_DONE message. The wParam parameter is the waveform output handle, and lParam is a
pointer to the WAVEHDR structure. SINEWAVE processes this message by calculating new values for the buffer
and resubmitting the buffer by calling waveOutWrite .

SINEWAVE could have been written using just one WAVEHDR structure and one buffer. However, there would be a
slight delay between the time the waveform hardware finished playing the data and the program processed the
MM_WOM_DONE message to submit a new buffer. The "double-buffering" technique that SINEWAVE uses prevents
gaps in the sound.

When the user clicks the "Turn Off" button to turn off the sound, DlgProc receives another WM_COMMAND
message. For this message, DlgProc sets the bShutOff variable to TRUE and calls waveOutReset . The
waveOutReset function stops sound processing and generates a MM_WOM_DONE message. When bShutOff is
TRUE, SINEWAVE processes MM_WOM_DONE by calling waveOutClose . This in turn generates an
MM_WOM_CLOSE message. Processing of MM_WOM_CLOSE mostly involves cleaning up. SINEWAVE calls
waveOutUnprepareHeader for the two WAVEHDR structures, frees all the memory blocks, and sets the text of the
button back to "Turn On."

If the waveform hardware is still playing a buffer, calling waveOutClose by itself will have no effect. You must call
waveOutReset first to halt the playing and to generate an MM_WOM_DONE message. DlgProc also processes the
WM_SYSCOMMAND message when wParam is SC_CLOSE. This results from the user selecting "Close" from the
system menu. If waveform audio is still playing, DlgProc calls waveOutReset . Regardless, EndDialog is eventually
called to close the dialog box and end the program.

A Digital Sound Recorder

Windows includes a program called Sound Recorder that lets you digitally record and playback sounds. The
program shown in Figure 22-3 (RECORD1) is not quite as sophisticated as Sound Recorder because it doesn't do
any file I/O or allow sound editing. However, it does show the basics of using the low-level waveform audio API for
both recording and playing back sounds.

Figure 22-3. The RECORD1 program.

RECORD1.C

/*--
 RECORD1.C -- Waveform Audio Recorder
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "resource.h"

#define INP_BUFFER_SIZE 16384

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("Record1") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 if (-1 == DialogBox (hInstance, TEXT ("Record"), NULL, DlgProc))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 }

 return 0 ;
}

void ReverseMemory (BYTE * pBuffer, int iLength)
{
 BYTE b ;
 int i ;

 for (i = 0 ; i < iLength / 2 ; i++)
 {
 b = pBuffer [i] ;
 pBuffer [i] = pBuffer [iLength - i - 1] ;
 pBuffer [iLength - i - 1] = b ;
 }
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bRecording, bPlaying, bReverse, bPaused,
 bEnding, bTerminating ;
 static DWORD dwDataLength, dwRepetitions = 1 ;
 static HWAVEIN hWaveIn ;
 static HWAVEOUT hWaveOut ;
 static PBYTE pBuffer1, pBuffer2, pSaveBuffer, pNewBuffer ;
 static PWAVEHDR pWaveHdr1, pWaveHdr2 ;
 static TCHAR szOpenError[] = TEXT ("Error opening waveform audio!");
 static TCHAR szMemError [] = TEXT ("Error allocating memory!") ;
 static WAVEFORMATEX waveform ;

 switch (message)
 {
 case WM_INITDIALOG:
 // Allocate memory for wave header

 pWaveHdr1 = malloc (sizeof (WAVEHDR)) ;
 pWaveHdr2 = malloc (sizeof (WAVEHDR)) ;

 // Allocate memory for save buffer

 pSaveBuffer = malloc (1) ;
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_RECORD_BEG:
 // Allocate buffer memory

 pBuffer1 = malloc (INP_BUFFER_SIZE) ;
 pBuffer2 = malloc (INP_BUFFER_SIZE) ;

 if (!pBuffer1 || !pBuffer2)
 {
 if (pBuffer1) free (pBuffer1) ;
 if (pBuffer2) free (pBuffer2) ;

 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szMemError, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 return TRUE ;
 }

 // Open waveform audio for input

 waveform.wFormatTag = WAVE_FORMAT_PCM ;
 waveform.nChannels = 1 ;
 waveform.nSamplesPerSec = 11025 ;
 waveform.nAvgBytesPerSec = 11025 ;
 waveform.nBlockAlign = 1 ;
 waveform.wBitsPerSample = 8 ;
 waveform.cbSize = 0 ;

 if (waveInOpen (&hWaveIn, WAVE_MAPPER, &waveform,
 (DWORD) hwnd, 0, CALLBACK_WINDOW))
 {
 free (pBuffer1) ;
 free (pBuffer2) ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szOpenError, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 }
 // Set up headers and prepare them

 pWaveHdr1->lpData = pBuffer1 ;
 pWaveHdr1->dwBufferLength = INP_BUFFER_SIZE ;
 pWaveHdr1->dwBytesRecorded = 0 ;
 pWaveHdr1->dwUser = 0 ;
 pWaveHdr1->dwFlags = 0 ;
 pWaveHdr1->dwLoops = 1 ;
 pWaveHdr1->lpNext = NULL ;
 pWaveHdr1->reserved = 0 ;
 waveInPrepareHeader (hWaveIn, pWaveHdr1, sizeof (WAVEHDR)) ;

 pWaveHdr2->lpData = pBuffer2 ;
 pWaveHdr2->dwBufferLength = INP_BUFFER_SIZE ;
 pWaveHdr2->dwBytesRecorded = 0 ;
 pWaveHdr2->dwUser = 0 ;
 pWaveHdr2->dwFlags = 0 ;
 pWaveHdr2->dwLoops = 1 ;
 pWaveHdr2->lpNext = NULL ;
 pWaveHdr2->reserved = 0 ;

 waveInPrepareHeader (hWaveIn, pWaveHdr2, sizeof (WAVEHDR)) ;
 return TRUE ;

 case IDC_RECORD_END:
 // Reset input to return last buffer

 bEnding = TRUE ;

 waveInReset (hWaveIn) ;
 return TRUE ;

 case IDC_PLAY_BEG:
 // Open waveform audio for output

 waveform.wFormatTag = WAVE_FORMAT_PCM ;
 waveform.nChannels = 1 ;
 waveform.nSamplesPerSec = 11025 ;
 waveform.nAvgBytesPerSec = 11025 ;
 waveform.nBlockAlign = 1 ;
 waveform.wBitsPerSample = 8 ;
 waveform.cbSize = 0 ;

 if (waveOutOpen (&hWaveOut, WAVE_MAPPER, &waveform,
 (DWORD) hwnd, 0, CALLBACK_WINDOW))
 {
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szOpenError, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 }
 return TRUE ;

 case IDC_PLAY_PAUSE:
 // Pause or restart output

 if (!bPaused)
 {
 waveOutPause (hWaveOut) ;
 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Resume")) ;
 bPaused = TRUE ;
 }
 else
 {
 waveOutRestart (hWaveOut) ;
 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Pause")) ;
 bPaused = FALSE ;
 }
 return TRUE ;

 case IDC_PLAY_END:
 // Reset output for close preparation

 bEnding = TRUE ;
 waveOutReset (hWaveOut) ;
 return TRUE ;

 case IDC_PLAY_REV:
 // Reverse save buffer and play

 bReverse = TRUE ;
 ReverseMemory (pSaveBuffer, dwDataLength) ;

 SendMessage (hwnd, WM_COMMAND, IDC_PLAY_BEG, 0) ;
 return TRUE ;

 case IDC_PLAY_REP:
 // Set infinite repetitions and play

 dwRepetitions = -1 ;
 SendMessage (hwnd, WM_COMMAND, IDC_PLAY_BEG, 0) ;
 return TRUE ;

 case IDC_PLAY_SPEED:
 // Open waveform audio for fast output

 waveform.wFormatTag = WAVE_FORMAT_PCM ;
 waveform.nChannels = 1 ;
 waveform.nSamplesPerSec = 22050 ;
 waveform.nAvgBytesPerSec = 22050 ;
 waveform.nBlockAlign = 1 ;
 waveform.wBitsPerSample = 8 ;
 waveform.cbSize = 0 ;
 if (waveOutOpen (&hWaveOut, 0, &waveform, (DWORD) hwnd, 0,
 CALLBACK_WINDOW))
 {
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szOpenError, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 }
 return TRUE ;
 }
 break ;

 case MM_WIM_OPEN:
 // Shrink down the save buffer

 pSaveBuffer = realloc (pSaveBuffer, 1) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REV), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REP), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_SPEED), FALSE) ;
 SetFocus (GetDlgItem (hwnd, IDC_RECORD_END)) ;

 // Add the buffers

 waveInAddBuffer (hWaveIn, pWaveHdr1, sizeof (WAVEHDR)) ;
 waveInAddBuffer (hWaveIn, pWaveHdr2, sizeof (WAVEHDR)) ;

 // Begin sampling

 bRecording = TRUE ;
 bEnding = FALSE ;
 dwDataLength = 0 ;
 waveInStart (hWaveIn) ;
 return TRUE ;

 case MM_WIM_DATA:

 // Reallocate save buffer memory

 pNewBuffer = realloc (pSaveBuffer, dwDataLength +
 ((PWAVEHDR) lParam)->dwBytesRecorded) ;

 if (pNewBuffer == NULL)
 {
 waveInClose (hWaveIn) ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szMemError, szAppName,
 MB_ICONEXCLAMATION | MB_OK) ;
 return TRUE ;
 }

 pSaveBuffer = pNewBuffer ;
 CopyMemory (pSaveBuffer + dwDataLength, ((PWAVEHDR) lParam)->lpData,
 ((PWAVEHDR) lParam)->dwBytesRecorded) ;

 dwDataLength += ((PWAVEHDR) lParam)->dwBytesRecorded ;

 if (bEnding)
 {
 waveInClose (hWaveIn) ;
 return TRUE ;
 }

 // Send out a new buffer

 waveInAddBuffer (hWaveIn, (PWAVEHDR) lParam, sizeof (WAVEHDR)) ;
 return TRUE ;

 case MM_WIM_CLOSE:
 // Free the buffer memory

 waveInUnprepareHeader (hWaveIn, pWaveHdr1, sizeof (WAVEHDR)) ;
 waveInUnprepareHeader (hWaveIn, pWaveHdr2, sizeof (WAVEHDR)) ;

 free (pBuffer1) ;
 free (pBuffer2) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE) ;
 SetFocus (GetDlgItem (hwnd, IDC_RECORD_BEG)) ;

 if (dwDataLength > 0)
 {
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REP), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REV), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_SPEED), TRUE) ;
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;
 }
 bRecording = FALSE ;

 if (bTerminating)
 SendMessage (hwnd, WM_SYSCOMMAND, SC_CLOSE, 0L) ;

 return TRUE ;

 case MM_WOM_OPEN:
 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REP), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REV), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_SPEED), FALSE) ;
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_END)) ;

 // Set up header

 pWaveHdr1->lpData = pSaveBuffer ;
 pWaveHdr1->dwBufferLength = dwDataLength ;
 pWaveHdr1->dwBytesRecorded = 0 ;
 pWaveHdr1->dwUser = 0 ;
 pWaveHdr1->dwFlags = WHDR_BEGINLOOP | WHDR_ENDLOOP ;
 pWaveHdr1->dwLoops = dwRepetitions ;
 pWaveHdr1->lpNext = NULL ;
 pWaveHdr1->reserved = 0 ;

 // Prepare and write

 waveOutPrepareHeader (hWaveOut, pWaveHdr1, sizeof (WAVEHDR)) ;
 waveOutWrite (hWaveOut, pWaveHdr1, sizeof (WAVEHDR)) ;

 bEnding = FALSE ;
 bPlaying = TRUE ;
 return TRUE ;

 case MM_WOM_DONE:
 waveOutUnprepareHeader (hWaveOut, pWaveHdr1, sizeof (WAVEHDR)) ;
 waveOutClose (hWaveOut) ;
 return TRUE ;

 case MM_WOM_CLOSE:
 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REV), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_REP), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_SPEED), TRUE) ;
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;

 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Pause")) ;
 bPaused = FALSE ;
 dwRepetitions = 1 ;
 bPlaying = FALSE ;

 if (bReverse)
 {
 ReverseMemory (pSaveBuffer, dwDataLength) ;
 bReverse = FALSE ;
 }

 if (bTerminating)
 SendMessage (hwnd, WM_SYSCOMMAND, SC_CLOSE, 0L) ;

 return TRUE ;

 case WM_SYSCOMMAND:
 switch (LOWORD (wParam))
 {
 case SC_CLOSE:
 if (bRecording)
 {
 bTerminating = TRUE ;
 bEnding = TRUE ;
 waveInReset (hWaveIn) ;
 return TRUE ;
 }
 if (bPlaying)
 {
 bTerminating = TRUE ;
 bEnding = TRUE ;
 waveOutReset (hWaveOut) ;
 return TRUE ;
 }

 free (pWaveHdr1) ;
 free (pWaveHdr2) ;
 free (pSaveBuffer) ;
 EndDialog (hwnd, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

RECORD.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

RECORD DIALOG DISCARDABLE 100, 100, 152, 74
STYLE WS_MINIMIZEBOX | WS_VISIBLE | WS_CAPTION | WS_SYSMENU
CAPTION "Waveform Audio Recorder"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "Record",IDC_RECORD_BEG,28,8,40,14
 PUSHBUTTON "End",IDC_RECORD_END,76,8,40,14,WS_DISABLED
 PUSHBUTTON "Play",IDC_PLAY_BEG,8,30,40,14,WS_DISABLED
 PUSHBUTTON "Pause",IDC_PLAY_PAUSE,56,30,40,14,WS_DISABLED
 PUSHBUTTON "End",IDC_PLAY_END,104,30,40,14,WS_DISABLED
 PUSHBUTTON "Reverse",IDC_PLAY_REV,8,52,40,14,WS_DISABLED
 PUSHBUTTON "Repeat",IDC_PLAY_REP,56,52,40,14,WS_DISABLED
 PUSHBUTTON "Speedup",IDC_PLAY_SPEED,104,52,40,14,WS_DISABLED
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Record.rc

#define IDC_RECORD_BEG 1000
#define IDC_RECORD_END 1001
#define IDC_PLAY_BEG 1002
#define IDC_PLAY_PAUSE 1003

#define IDC_PLAY_END 1004
#define IDC_PLAY_REV 1005
#define IDC_PLAY_REP 1006
#define IDC_PLAY_SPEED 1007

The RECORD.RC and RESOURCE.H files will also be used in the RECORD2 and RECORD3 programs.

The RECORD1 window has eight push buttons. When you first run RECORD1, only the Record button is enabled.
When you press Record, you can begin recording. The Record button becomes disabled, and the End button is
enabled. Press End to stop recording. At this point, the Play, Reverse, Repeat, and Speedup buttons also become
enabled. Pressing any of these buttons plays back the sound: Play plays it normally, Reverse plays it in reverse,
Repeat causes the sound to be repeated indefinitely (like with a tape loop), and Speedup plays the sound back
twice as fast. You can end playback by pressing the second End button, or you can pause the playback by pressing
Pause. When pressed, the Pause button changes into a Resume button to resume playing back the sound. If you
record another sound, it replaces the existing sound in memory.

At any time, the only buttons that are enabled are those that perform valid operations. This requires a lot of calls
to EnableWindow in the RECORD1 source code, but the program doesn't have to check if a particular push-button
operation is valid. Of course, it also makes the operation of the program more intuitive.

RECORD1 takes a number of shortcuts to simplify the code. First, if multiple waveform audio hardware devices are
installed, RECORD1 uses the default one. Second, the program records and plays back at the standard 11.025 kHz
sampling rate with an 8-bit sample size regardless of whether a higher sampling rate or sample size is available.
The only exception is for the speed-up function, where RECORD1 plays back the sound at the 22.050 kHz
sampling rate, thus playing it twice as fast and an octave higher in frequency.

Recording a sound involves opening the waveform audio hardware for input and passing buffers to the API to
receive the sound data.

RECORD1 maintains several memory blocks. Three of these blocks are very small, at least initially, and are
allocated during the WM_INITDIALOG message in DlgProc . The program allocates two WAVEHDR structures
pointed to by pWaveHdr1 and pWaveHdr2 . These structures are used to pass buffers to the waveform APIs. The
pSaveBuffer pointer points to a buffer for storing the complete recorded sound; this is initially allocated as a 1-
byte block. Later on, during recording, the buffer is increased in size to accommodate all the sound data. (If you
record for a long period of time, RECORD1 recovers gracefully when it runs out of memory during recording, and
lets you play back that portion of the sound successfully stored.) I'll refer to this buffer as the "save buffer"
because it is used to save the accumulated sound data. Two more memory blocks, 16K in size and pointed to by
pBuffer1 and pBuffer2 , are allocated during recording to receive sound data. These buffers are freed when
recording is complete.

Each of the eight buttons generates a WM_COMMAND message to DlgProc , the dialog procedure for REPORT1's
window. Initially, only the Record button is enabled. Pressing this generates a WM_COMMAND message with
wParam equal to IDC_RECORD_BEG. To process this message, RECORD1 allocates the two 16K buffers for
receiving sound data, initializes the fields of a WAVEFORMATEX structure and passes it to the waveInOpen
function, and sets up the two WAVEHDR structures.

The waveInOpen function generates an MM_WIM_OPEN message. During this message, RECORD1 shrinks the
save buffer down to 1 byte in preparation for receiving data. (Of course, the first time you record something, the
save buffer is already 1 byte in length, but during subsequent recordings, it could be much larger.) During the
MM_WIM_OPEN message, RECORD1 also enables and disables the appropriate push buttons. Next, the program
passes the two WAVEHDR structures and buffers to the API using waveInAddBuffer . Some flags are set, and
recording begins with a call to waveInStart .

At a sampling rate of 11.025 kHz with an 8-bit sample size, the 16K buffer will be filled in approximately 1.5
seconds. At that time, RECORD1 receives an MM_WIM_DATA message. In response to this message, the program
call reallocates the save buffer based on the dwDataLength variable and the dwBytesRecorded field of the
WAVEHDR structure. If the reallocation fails, RECORD1 calls waveInClose to stop recording.

If the reallocation is successful, RECORD1 copies the data from the 16K buffer into the save buffer. It then calls
waveInAddBuffer again. This process continues until RECORD1 runs out of memory for the save buffer or the user
presses the End button.

The End button generates a WM_COMMAND message with wParam equal to IDC_RECORD_END. Processing this
message is simple. RECORD1 sets the bEnding flag to TRUE and calls waveInReset . The waveInReset function
causes recording to stop and generates an MM_WIM_DATA message containing a partially filled buffer. RECORD1

responds to this final MM_WIM_DATA message normally, except that it closes the waveform input device by calling
waveInClose .

The waveInClose message generates an MM_WIM_CLOSE message. RECORD1 responds to this message by
freeing the 16K input buffers and enabling and disabling the appropriate push buttons. In particular, if the save
buffer contains data, which it almost always will unless the first reallocation fails, then the play buttons are
enabled.

After recording a sound, the save buffer contains the total accumulated sound data. When the user selects the
Play button, DlgProc receives a WM_COMMAND message with wParam equal to IDC_PLAY_BEG. The program
responds by initializing the fields of a WAVEFORMATEX structure and calling waveOutOpen .

The waveOutOpen call again generates an MM_WOM_OPEN message. During this message, RECORD1 enables and
disables the appropriate push buttons (allowing only Pause and End), initializes the fields of the WAVEHDR
structure with the save buffer, prepares it by calling waveOutPrepareHeader , and begins playing it with a call to
waveOutWrite .

Normally, the sound will continue until all the data in the buffer has been played. At that time, an
MM_WOM_DONE message is generated. If there are additional buffers to be played, a program can pass them out
to the API at that time. RECORD1 plays only one big buffer, so the program simply unprepares the header and
calls waveOutClose . The waveOutClose function generates an MM_WOM_CLOSE message. During this message,
RECORD1 enables and disables the appropriate buttons, allowing the sound to be played again or a new sound to
be recorded.

I've also included a second End button so that the user can stop playing the sound at any time before the save
buffer has completed. This End button generates a WM_COMMAND message with wParam equal to
IDC_PLAY_END, and the program responds by calling waveOutReset . This function generates an MM_WOM_DONE
message that is processed normally.

RECORD1's window also includes a Pause button. Processing this button is easy. The first time it's pushed,
RECORD1 calls waveOutPause to halt the sound and sets the text in the Pause button to Resume. Pressing the
Resume button starts the playback going again by a call to waveOutRestart .

To make the program just a little more interesting, I've also included buttons labeled "Reverse," "Repeat," and
"Speedup." These buttons generate WM_COMMAND messages with wParam values equal to IDC_PLAY_REV,
IDC_PLAY_REP, and IDC_PLAY_SPEED.

Playing the sound in reverse involves reversing the order of the bytes in the save buffer and playing the sound
normally. RECORD1 includes a small function named ReverseMemory to reverse the bytes. It calls this function
during the WM_COMMAND message before playing the block and again at the end of the MM_WOM_CLOSE
message to restore it to normal.

The Repeat button plays the sound over and over again. This is not complicated because the API includes a
provision for repeating a sound. It involves setting the dwLoops field in the WAVEHDR structure to the number of
repetitions and setting the dwFlags field to WHDR_BEGINLOOP for the beginning buffer in the loop and to
WHDR_ENDLOOP for the end buffer. Because RECORD1 uses only one buffer for playing the sound, these two flags
are combined in the dwFlags field.

Playing the sound twice as fast is also quite easy. When initializing the fields of the WAVEFORMATEX structure in
preparation for opening waveform audio for output, the nSamplesPerSec and nAvgBytesPerSec fields are set to
22050 rather than 11025.

The MCI Alternative

You may find, as I do, that RECORD1 seems inordinately complex. It is particularly tricky to deal with the
interaction between the waveform audio function calls and the messages they generate, and then in the midst of
all this, to deal with possible memory shortages as well. But maybe that's why it's called the "low-level" interface.
As I noted earlier in this chapter, Windows also includes the high-level Media Control Interface.

For waveform audio, the primary differences between the low-level interface and MCI is that MCI records sound
data to a waveform file and plays back the sound by reading the file. This makes it difficult to perform the "special
effects" that RECORD1 implements because you'd have to read in the file, manipulate it, and write it back out
before playing the sound. This is a typical versatility vs. ease-of-use trade-off. The low-level interface gives you
flexibility, but MCI (for the most part) is easier.

MCI is implemented in two different but related forms. The first form uses messages and data structures to send
commands to multimedia devices and receive information from them. The second form uses ASCII text strings.

The text-based interface was originally created to allow multimedia devices to be controlled from simple scripting
languages. But it also provides very easy interactive control, as was demonstrated in the TESTMCI program shown
earlier in this chapter.

The RECORD2 program shown in Figure 22-4 uses the message and data structure form of MCI to implement
another digital audio recorder and player. Although it uses the same dialog box template as RECORD1, it does not
implement the three special effects buttons.

Figure 22-4. The RECORD2 program.

RECORD2.C

/*--
 RECORD2.C -- Waveform Audio Recorder
 (c) Charles Petzold, 1998
--*/

#include <windows.h>
#include "..\\record1\\resource.h"

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("Record2") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 if (-1 == DialogBox (hInstance, TEXT ("Record"), NULL, DlgProc))

 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 }
 return 0 ;
}

void ShowError (HWND hwnd, DWORD dwError)
{
 TCHAR szErrorStr [1024] ;

 mciGetErrorString (dwError, szErrorStr,
 sizeof (szErrorStr) / sizeof (TCHAR)) ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szErrorStr, szAppName, MB_OK | MB_ICONEXCLAMATION) ;
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bRecording, bPlaying, bPaused ;
 static TCHAR szFileName[] = TEXT ("record2.wav") ;
 static WORD wDeviceID ;
 DWORD dwError ;

 MCI_GENERIC_PARMS mciGeneric ;
 MCI_OPEN_PARMS mciOpen ;
 MCI_PLAY_PARMS mciPlay ;
 MCI_RECORD_PARMS mciRecord ;
 MCI_SAVE_PARMS mciSave ;

 switch (message)
 {
 case WM_COMMAND:
 switch (wParam)
 {
 case IDC_RECORD_BEG:
 // Delete existing waveform file

 DeleteFile (szFileName) ;

 // Open waveform audio

 mciOpen.dwCallback = 0 ;
 mciOpen.wDeviceID = 0 ;
 mciOpen.lpstrDeviceType = TEXT ("waveaudio") ;
 mciOpen.lpstrElementName = TEXT ("") ;
 mciOpen.lpstrAlias = NULL ;
 dwError = mciSendCommand (0, MCI_OPEN,
 MCI_WAIT | MCI_OPEN_TYPE | MCI_OPEN_ELEMENT,
 (DWORD) (LPMCI_OPEN_PARMS) &mciOpen) ;
 if (dwError != 0)
 {
 ShowError (hwnd, dwError) ;
 return TRUE ;
 }
 // Save the Device ID

 wDeviceID = mciOpen.wDeviceID ;

 // Begin recording

 mciRecord.dwCallback = (DWORD) hwnd ;
 mciRecord.dwFrom = 0 ;
 mciRecord.dwTo = 0 ;

 mciSendCommand (wDeviceID, MCI_RECORD, MCI_NOTIFY,
 (DWORD) (LPMCI_RECORD_PARMS) &mciRecord) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_RECORD_END)) ;

 bRecording = TRUE ;
 return TRUE ;

 case IDC_RECORD_END:
 // Stop recording

 mciGeneric.dwCallback = 0 ;

 mciSendCommand (wDeviceID, MCI_STOP, MCI_WAIT,
 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric) ;

 // Save the file

 mciSave.dwCallback = 0 ;
 mciSave.lpfilename = szFileName ;

 mciSendCommand (wDeviceID, MCI_SAVE, MCI_WAIT | MCI_SAVE_FILE,
 (DWORD) (LPMCI_SAVE_PARMS) &mciSave) ;

 // Close the waveform device

 mciSendCommand (wDeviceID, MCI_CLOSE, MCI_WAIT,
 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;

 bRecording = FALSE ;
 return TRUE ;

 case IDC_PLAY_BEG:
 // Open waveform audio

 mciOpen.dwCallback = 0 ;
 mciOpen.wDeviceID = 0 ;
 mciOpen.lpstrDeviceType = NULL ;
 mciOpen.lpstrElementName = szFileName ;
 mciOpen.lpstrAlias = NULL ;

 dwError = mciSendCommand (0, MCI_OPEN,
 MCI_WAIT | MCI_OPEN_ELEMENT,
 (DWORD) (LPMCI_OPEN_PARMS) &mciOpen) ;

 if (dwError != 0)
 {
 ShowError (hwnd, dwError) ;

 return TRUE ;
 }
 // Save the Device ID

 wDeviceID = mciOpen.wDeviceID ;

 // Begin playing

 mciPlay.dwCallback = (DWORD) hwnd ;
 mciPlay.dwFrom = 0 ;
 mciPlay.dwTo = 0 ;

 mciSendCommand (wDeviceID, MCI_PLAY, MCI_NOTIFY,
 (DWORD) (LPMCI_PLAY_PARMS) &mciPlay) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), TRUE) ;
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_END)) ;

 bPlaying = TRUE ;
 return TRUE ;

 case IDC_PLAY_PAUSE:
 if (!bPaused)
 // Pause the play
 {
 mciGeneric.dwCallback = 0 ;

 mciSendCommand (wDeviceID, MCI_PAUSE, MCI_WAIT,
 (DWORD) (LPMCI_GENERIC_PARMS) & mciGeneric);

 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Resume")) ;
 bPaused = TRUE ;
 }
 else
 // Begin playing again
 {
 mciPlay.dwCallback = (DWORD) hwnd ;
 mciPlay.dwFrom = 0 ;
 mciPlay.dwTo = 0 ;

 mciSendCommand (wDeviceID, MCI_PLAY, MCI_NOTIFY,
 (DWORD) (LPMCI_PLAY_PARMS) &mciPlay) ;

 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Pause")) ;
 bPaused = FALSE ;
 }

 return TRUE ;

 case IDC_PLAY_END:
 // Stop and close

 mciGeneric.dwCallback = 0 ;

 mciSendCommand (wDeviceID, MCI_STOP, MCI_WAIT,
 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric) ;

 mciSendCommand (wDeviceID, MCI_CLOSE, MCI_WAIT,
 (DWORD) (LPMCI_GENERIC_PARMS) &mciGeneric) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;

 bPlaying = FALSE ;
 bPaused = FALSE ;
 return TRUE ;
 }
 break ;

 case MM_MCINOTIFY:
 switch (wParam)
 {
 case MCI_NOTIFY_SUCCESSFUL:
 if (bPlaying)
 SendMessage (hwnd, WM_COMMAND, IDC_PLAY_END, 0) ;

 if (bRecording)
 SendMessage (hwnd, WM_COMMAND, IDC_RECORD_END, 0);

 return TRUE ;
 }
 break ;

 case WM_SYSCOMMAND:
 switch (wParam)
 {
 case SC_CLOSE:
 if (bRecording)
 SendMessage (hwnd, WM_COMMAND, IDC_RECORD_END, 0L) ;
 if (bPlaying)
 SendMessage (hwnd, WM_COMMAND, IDC_PLAY_END, 0L) ;

 EndDialog (hwnd, 0) ;
 return TRUE ;

 }
 break ;
 }
 return FALSE ;
}

RECORD2 uses only two MCI function calls, the most important being this one:

error = mciSendCommand (wDeviceID, message, dwFlags, dwParam)

The first argument is a numeric identification number for the device. You use this ID number much like a handle.
You obtain the ID when you open the device, and then you use it in subsequent mciSendCommand calls. The
second argument is a constant beginning with the prefix MCI. These are called MCI command messages, and
RECORD2 demonstrates seven of them: MCI_OPEN, MCI_RECORD, MCI_STOP, MCI_SAVE, MCI_PLAY,
MCI_PAUSE, and MCI_CLOSE.

The dwFlags argument is generally composed of zero or more bit flag constants combined with the C bit-wise OR
operator. These generally indicate various options. Some options are specific to particular command messages,
and some are common to all messages. The dwParam argument is generally a long pointer to a data structure that
indicates options and obtains information from the device. Many of the MCI messages are associated with data
structures unique to the message.

The mciSendCommand function returns zero if the function is successful and an error code otherwise. To report
this error to the user, you can obtain a text string that describes the error:

mciGetErrorString (error, szBuffer, dwLength)

This is the same function used in the TESTMCI program.

When the user presses the Record button, RECORD2's window procedure receives a WM_COMMAND message with
wParam equal to IDC_RECORD_BEG. RECORD2 begins by opening the device. This involves setting the fields of an
MCI_OPEN_PARMS structure and calling mciSendCommand with the MCI_OPEN command message. For recording,
the lpstrDeviceType field is set to the string "waveaudio" to indicate the device type. The lpstrElementName field
is set to a zero-length string. The MCI driver uses a default sampling rate and sample size, but you can change
that using the MCI_SET command. During recording, the sound data is stored on the hard disk in a temporary file
and is ultimately transferred to a standard waveform file. I'll discuss the format of waveform files later in this
chapter. For playing back the sound, MCI uses the sampling rate and sample size defined in the waveform file.

If RECORD2 cannot open a device, it uses mciGetErrorString and MessageBox to tell the user what the problem is.
Otherwise, on return from the mciSendCommand call, the wDeviceID field of the MCI_OPEN_PARMS structure
contains the device ID used in subsequent calls.

To begin recording, RECORD2 calls mciSendCommand with the MCI_RECORD command message and the
MCI_WAVE_RECORD_PARMS data structure. Optionally, you can set the dwFrom and dwTo fields of this structure
(and use bit flags that indicate these fields are set) to insert a sound into an existing waveform file, the name of
which would be specified in the lpstrElementName field of the MCI_OPEN_PARMS structure. By default, any new
sound is inserted at the beginning of an existing file.

RECORD2 sets the dwCallback field of the MCI_WAVE_RECORD_PARMS to the program's window handle and
includes the MCI_NOTIFY flag in the mciSendCommand call. This causes a notification message to be sent to the
window procedure when recording has been completed. I'll discuss this notification message shortly.

When done recording, you press the first End button to stop. This generates a WM_COMMAND message with
wParam equal to IDC_RECORD_END. The window procedure responds by calling mciSendCommand three times:
The MCI_STOP command message stops recording, the MCI_SAVE command message transfers the sound data
from the temporary file to the file specified in an MCI_SAVE_PARMS structure ("record2.wav"), and the
MCI_CLOSE command message deletes any temporary files or memory blocks that might have been created and

closes the device.

For playback, the lpstrElementName of the MCI_OPEN_PARMS structure field is set to the filename "record2.wav".
The MCI_OPEN_ELEMENT flag included in the third argument to mciSendCommand indicates that the
lpstrElementName field is a valid filename. MCI knows from the filename extension .WAV that you wish to open a
waveform audio device. If multiple waveform hardware is present, it opens the first device. (It's also possible to
use something other than the first waveform device by setting the lpstrDeviceType field of the MCI_OPEN_PARMS
structure.)

Playing involves an mciSendCommand call with the MCI_PLAY command message and an MCI_PLAY_PARMS
structure. Any part of the file can be played, but RECORD2 chooses to play it all.

RECORD2 also includes a Pause button for pausing the playback of a sound file. This button generates a
WM_COMMAND message with wParam equal to IDC_PLAY_PAUSE. The program responds by calling
mciSendCommand with the MCI_PAUSE command message and an MCI_GENERIC_PARMS structure. The
MCI_GENERIC_PARMS structure is used for any message that requires no information except an optional window
handle for notification. If the playback is already paused, the button resumes play by calling mciSendCommand
again with the MCI_PLAY command message.

Playback can also be terminated by pressing the second End button. This generates a WM_COMMAND message
with wParam equal to IDC_PLAY_END. The window procedure responds by calling mciSendCommand twice, first
with the MCI_STOP command message and then with the MCI_CLOSE command message.

Now here's a problem: Although you can manually terminate playback by pressing the End button, you may want
to play the entire sound file. How does the program know when the file has completed? That is the job of the MCI
notification message.

When calling mciSendCommand with the MCI_RECORD and MCI_PLAY messages, RECORD2 includes the
MCI_NOTIFY flag and sets the dwCallback field of the data structure to the program's window handle. This causes
a notification message, called MM_MCINOTIFY, to be posted to the window procedure under certain circumstances.
The wParam message parameter is a status code, and lParam is the device ID.

You'll receive an MM_MCINOTIFY message with wParam equal to MCI_NOTIFY_ABORTED when mciSendCommand
is called with the MCI_STOP or MCI_PAUSE command messages. This happens when you press the Pause button
or either of the two End buttons. RECORD2 can ignore this case because it already properly handles these buttons.
During playback, you'll receive an MM_MCINOTIFY message with wParam equal to MCI_NOTIFY_SUCCESSFUL
when the sound file has completed. To handle this case, the window procedure sends itself a WM_COMMAND
message with wParam equal to IDC_PLAY_END to simulate the user pressing the End button. The window
procedure then responds normally by stopping the play and closing the device.

During recording, you'll receive an MM_MCINOTIFY message with wParam equal to MCI_NOTIFY_SUCCESSFUL
when you run out of hard disk space for storing the temporary sound file. (I wouldn't exactly call this a
"successful" completion, but that's what happens.) The window procedure responds by sending itself a
WM_COMMAND message with wParam equal to IDC_RECORD_END. The window procedure stops recording, saves
the file, and closes the device, as is normal.

The MCI Command String Approach

At one time, the Windows multimedia interface included a function called mciExecute , with the following syntax:

bSuccess = mciExecute (szCommand) ;

The only argument was the MCI command string. The function returned a Boolean value—nonzero if the function
is successful and zero if not. The mciExecute function was functionally equivalent to calling mciSendString (the
string-based MCI function used in TESTMCI) with NULL or zero for the last three arguments and then
mciGetErrorString and MessageBox if an error occurred.

Although mciExecute is no longer part of the API, I've included such a function in the RECORD3 version of the
digital tape recorder and player. This is shown in Figure 22-5. Like RECORD2, the program uses the RECORD.RC
resource script and RESOURCE.H from RECORD1.

Figure 22-5. The RECORD3 program.

RECORD3.C

/*--
 RECORD3.C -- Waveform Audio Recorder
 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include "..\\record1\\resource.h"

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("Record3") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 if (-1 == DialogBox (hInstance, TEXT ("Record"), NULL, DlgProc))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 }
 return 0 ;
}

BOOL mciExecute (LPCTSTR szCommand)
{
 MCIERROR error ;
 TCHAR szErrorStr [1024] ;

 if (error = mciSendString (szCommand, NULL, 0, NULL))
 {
 mciGetErrorString (error, szErrorStr,
 sizeof (szErrorStr) / sizeof (TCHAR)) ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (NULL, szErrorStr, TEXT ("MCI Error"),
 MB_OK | MB_ICONEXCLAMATION) ;
 }
 return error == 0 ;
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bRecording, bPlaying, bPaused ;

 switch (message)

 {
 case WM_COMMAND:
 switch (wParam)

 {
 case IDC_RECORD_BEG:
 // Delete existing waveform file

 DeleteFile (TEXT ("record3.wav")) ;

 // Open waveform audio and record

 if (!mciExecute (TEXT ("open new type waveaudio alias mysound")))
 return TRUE ;

 mciExecute (TEXT ("record mysound")) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_RECORD_END)) ;

 bRecording = TRUE ;
 return TRUE ;

 case IDC_RECORD_END:
 // Stop, save, and close recording

 mciExecute (TEXT ("stop mysound")) ;
 mciExecute (TEXT ("save mysound record3.wav")) ;
 mciExecute (TEXT ("close mysound")) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;

 bRecording = FALSE ;
 return TRUE ;

 case IDC_PLAY_BEG:
 // Open waveform audio and play

 if (!mciExecute (TEXT ("open record3.wav alias mysound")))
 return TRUE ;

 mciExecute (TEXT ("play mysound")) ;

 // Enable and disable buttons

 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), TRUE) ;
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_END)) ;

 bPlaying = TRUE ;
 return TRUE ;

 case IDC_PLAY_PAUSE:
 if (!bPaused)
 // Pause the play
 {
 mciExecute (TEXT ("pause mysound")) ;
 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Resume")) ;
 bPaused = TRUE ;
 }
 else
 // Begin playing again
 {
 mciExecute (TEXT ("play mysound")) ;
 SetDlgItemText (hwnd, IDC_PLAY_PAUSE, TEXT ("Pause")) ;
 bPaused = FALSE ;
 }

 return TRUE ;

 case IDC_PLAY_END:
 // Stop and close

 mciExecute (TEXT ("stop mysound")) ;
 mciExecute (TEXT ("close mysound")) ;

 // Enable and disable buttons
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_RECORD_END), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_BEG), TRUE) ;
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_PAUSE), FALSE);
 EnableWindow (GetDlgItem (hwnd, IDC_PLAY_END), FALSE);
 SetFocus (GetDlgItem (hwnd, IDC_PLAY_BEG)) ;

 bPlaying = FALSE ;
 bPaused = FALSE ;
 return TRUE ;
 }
 break ;

 case WM_SYSCOMMAND:
 switch (wParam)
 {
 case SC_CLOSE:

 if (bRecording)
 SendMessage (hwnd, WM_COMMAND, IDC_RECORD_END, 0L);

 if (bPlaying)
 SendMessage (hwnd, WM_COMMAND, IDC_PLAY_END, 0L) ;

 EndDialog (hwnd, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

When you begin exploring the message-based and the text-based interfaces to MCI, you'll find that they
correspond closely. It's easy to guess that MCI translates the command strings into the corresponding command
messages and data structures. RECORD3 could use the MM_MCINOTIFY messages like RECORD2, but it chooses
not to—an implication of the mciExecute function. The drawback of this is that the program doesn't know when it's
finished playing the waveform file. Therefore, the buttons do not automatically change state. You must manually
press the End button so that the program will know that it's ready to record or play again.

Notice the use of the alias keyword in the MCI open command. This allows all the subsequent MCI commands to
refer to the device using the alias name.

The Waveform Audio File Format

If you take a look at uncompressed (that is, PCM) .WAV files under a hexadecimal dump program, you'll find they
have a format as shown in Figure 22-6.

Offset
Bytes
Data
0000
4
"RIFF"

0004

4
size of waveform chunk (file size minus 8)
0008
4
"WAVE"
000C
4
"fmt "
0010
4
size of format chunk (16 bytes)
0014
2
wf.wFormatTag = WAVE_FORMAT_PCM = 1
0016
2
wf.nChannels
0018
4
wf.nSamplesPerSec
001C
4
wf.nAvgBytesPerSec
0020

2
wf.nBlockAlign
0022
2
wf.wBitsPerSample
0024
4
"data"
0028
4
size of waveform data
002C
waveform data

Figure 22-6. The .WAV file format.

This format is an example of a more extensive format known as RIFF (Resource Interchange File Format). RIFF
was intended to be the all-encompassing format for multimedia data files. It is a tagged file format, where the file
consists of "chunks" of data that are identified by a preceding 4-character ASCII name and a 4-byte (32-bit) chunk
size. The value of the chunk size does not include the 8 bytes required for the chunk name and size.

A waveform audio file begins with the text string "RIFF", which identifies it as a RIFF file. This is followed by a 32-
bit chunk size, which is the size of the remainder of the file, or the file size less 8 bytes.

The chunk data begins with the text string "WAVE", which identifies it as a waveform audio chunk. This is followed
by the text string "fmt"—notice the blank to make this a 4-character string—which identifies a sub-chunk
containing the format of the waveform audio data. The "fmt " string is followed by the size of the format
information, in this case 16 bytes. The format information is the first 16 bytes of the WAVEFORMATEX structure,
or, as it was defined originally, a PCMWAVEFORMAT structure that includes a WAVEFORMAT structure.

The nChannels field is either 1 or 2, for monaural or stereo sound. The nSamplesPerSec field is the number of
samples per second; the standard values are 11025, 22050, and 44100 samples per second. The
nAvgBytesPerSec field is the sample rate in samples per second times the number of channels times the size of
each sample in bits, divided by 8 and rounded up. The standard sample sizes are 8 and 16 bits. The nBlockAlign
field is the number of channels times the sample size in bits, divided by 8 and rounded up. Finally, the format
concludes with a wBitsPerSample field, which is the number of channels times the sample size in bits.

The format information is followed by the text string "data", followed by a 32-bit data size, followed by the
waveform data itself. The data are simply the consecutive samples in the same format as that used in the low-
level waveform audio facilities. If the sample size is 8 bits or less, each sample consists of 1 byte for monaural or
2 bytes for stereo. If the sample size is between 9 and 16 bits, each sample is 2 bytes for monaural or 4 bytes for
stereo. For stereo waveform data, each sample consists of the left value followed by the right value.

For sample sizes of 8 bits or less, the sample byte is interpreted as an unsigned value. For example, for an 8-bit
sample size, silence is equivalent to a string of 0x80 bytes. For sample sizes of 9 bits or more, the sample is
interpreted as a signed value, and silence is equivalent to a string of 0 values.

One of the important rules for reading tagged files is to ignore chunks you're not prepared to deal with. Although a
waveform audio file requires "fmt " and "data" sub-chunks (in that order), it can also contain other sub-chunks. In
particular, a waveform audio file might contain a sub-chunk labeled "INFO", and sub-sub-chunks within that sub-
chunk that provide information about the waveform audio file.

Experimenting with Additive Synthesis

For many years—going back to Pythagoras at least—people have attempted to analyze musical tones. At first it
seems very simple, but then it gets complex. Bear with me if I repeat a little of what I've already said about
sound.

Musical tones, except for some percussive sounds, have a particular pitch or frequency. This frequency can range
across the spectrum of human perception, from 20 Hz to 20,000 Hz. The notes of a piano, for example, have a
frequency range between 27.5 Hz to 4186 Hz. Another characteristic of musical tones is volume or loudness. This
corresponds to the overall amplitude of the waveform producing the tone. A change in loudness is measured in
decibels. So far, so good.

And then there is an unwieldy thing called "timbre." Very simply, timbre is that quality of sound that lets us

distinguish between a piano and a violin and a trumpet all playing the same pitch at the same volume.

The French mathematician Fourier discovered that any periodic waveform—no matter how complex—can be
represented by a sum of sine waves whose frequencies are integral multiples of a fundamental frequency. The
fundamental, also called the first harmonic, is the frequency of periodicity of the waveform. The first overtone,
also called the second harmonic, has a frequency twice the fundamental; the second overtone, or third harmonic,
has a frequency three times the fundamental, and so forth. The relative amplitudes of the harmonics governs the
shape of the waveform.

For example, a square wave can be represented as a sum of sine waves where the amplitudes of the even
harmonics (that is, 2, 4, 6, etc) are zero and the amplitudes of the odd harmonics (1, 3, 5, etc) are in the
proportions 1, 1/3, 1/5, and so forth. In a sawtooth wave, all harmonics are present and the amplitudes are in the
proportions 1, 1/2, 1/3, 1/4, and so forth.

To the German scientist Hermann Helmholtz (1821_1894), this was the key in understanding timbre. In his classic
book On the Sensations of Tone (1885, republished by Dover Press in 1954), Helmholtz posited that the ear and
brain break down complex tones into their component sine waves and that the relative intensities of these sine
waves is what we perceive as timbre. Unfortunately, it proved to be not quite that simple.

Electronic music synthesizers came to widespread public attention in 1968 with the release of Wendy Carlos's
album Switched on Bach . The synthesizers available at that time (such as the Moog) were analog synthesizers.
Such synthesizers use analog circuitry to generate various audio waveforms such as square waves, triangle waves,
and sawtooth waves. To make these waveforms sound more like real musical instruments, they are subjected to
some changes over the course of a single note. The overall amplitude of the waveform is shaped by an
"envelope." When a note begins, the amplitude begins at zero and rises, usually very quickly. This is known as the
attack. The amplitude then remains constant as the note is held. This is known as the sustain. The amplitude then
falls to zero when the note ends; this is known as the release.

The waveforms are also put through filters that attenuate some of the harmonics and turn the simple waveforms
into something more complex and musically interesting. The cut-off frequencies of these filters can be controlled
by an envelope so that the harmonic content of the sound changes over the course of the note.

Because these synthesizers begin with harmonically rich waveform, and some of the harmonics are attenuated
using filters, this form of synthesis is known as "subtractive synthesis."

Even while working with subtractive synthesis, many people involved in electronic music saw additive synthesis as
the next big thing.

In additive synthesis you begin with a number of sine wave generators tuned in integral multiples so that each
sine wave corresponds to a harmonic. The amplitude of each harmonic can be controlled independently by an
envelope. Additive synthesis is not practical using analog circuitry because you'd need somewhere between 8 and
24 sine wave generators for a single note and the relative frequencies of these sine wave generators would have
to track each other precisely. Analog waveform generators are notoriously unstable and prone to frequency drift.

However, for digital synthesizers (which can generate waveforms digitally using lookup tables) and computer-
generated waveforms, frequency drift is not a problem and additive synthesis becomes feasible. So here's the
general idea: You record a real musical tone and break it down into harmonics using Fourier analysis. You can
then determine the relative strength of each harmonic and regenerate the sound digitally using multiple sine
waves.

When people began experimenting with applying Fourier analysis on real musical tones and generating these
tones from multiple sine waves, they discovered that timbre is not quite as simple as Helmholtz believed.

The big problem is that the harmonics of real musical tones are not in strict integral relationships. Indeed, the
term "harmonic" is not even appropriate for real musical tones. The various sine wave components are inharmonic
and more correctly called "partials."

It was discovered that the inharmonicity among the partials of real musical tones is vital in making the tone sound
"real." Strict harmonicity yields an "electronic" sound. Each partial changes in both amplitude and frequency over
the course of a single note. The relative frequency and amplitude relationships among the partials is different for
different pitches and intensities from the same instrument. The most complex part of a real musical tone occurs
during the attack portion of the note, when there is much inharmonicity. It was discovered that this complex
attack portion of the note was vital in the human perception of timbre.

In short, the sound of real musical instruments is more complex than anyone imagined. The idea of analyzing
musical tones and coming up with relatively few simple envelopes for controlling the amplitudes and frequencies of
the partials was clearly not practical.

Some analyses of real musical sounds were published in early issues (1977 and 1978) of the Computer Music
Journal (at the time published by People's Computer Company and now published by the MIT Press). The three-
part series "Lexicon of Analyzed Tones" was written by James A. Moorer, John Grey, and John Strawn, and it
showed the amplitude and frequency graphs of partials of a single note (less than half a second long) played on a
violin, oboe, clarinet, and trumpet. The note used was the E flat above middle C. Twenty partials are used for the
violin, 21 for the oboe and clarinet, and 12 for the trumpet. In particular, Volume II, Number 2 (September 1978)
of the Computer Music Journal contains numerical line-segment approximations for the various frequency and
amplitude envelopes for the oboe, clarinet, and trumpet.

So, with the waveform support in Windows, it is fairly simple to type these numbers into a program, generate
multiple sine wave samples for each partial, add them up, and send the samples out to the waveform audio sound
board, thereby reproducing the sounds originally recorded over 20 years ago. The ADDSYNTH ("additive
synthesis") program is shown in Figure 22-7.

Figure 22-7. The ADDSYNTH Program.

ADDSYNTH.C

/*---
 ADDSYNTH.C -- Additive Synthesis Sound Generation
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include <math.h>
#include "addsynth.h"
#include "resource.h"

#define ID_TIMER 1
#define SAMPLE_RATE 22050
#define MAX_PARTIALS 21
#define PI 3.14159

BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName [] = TEXT ("AddSynth") ;

// Sine wave generator
// -------------------

double SineGenerator (double dFreq, double * pdAngle)
{
 double dAmp ;

 dAmp = sin (* pdAngle) ;
 * pdAngle += 2 * PI * dFreq / SAMPLE_RATE ;

 if (* pdAngle >= 2 * PI)
 * pdAngle -= 2 * PI ;

 return dAmp ;
}

// Fill a buffer with composite waveform
// -------------------------------------

VOID FillBuffer (INS ins, PBYTE pBuffer, int iNumSamples)
{
 static double dAngle [MAX_PARTIALS] ;
 double dAmp, dFrq, dComp, dFrac ;
 int i, iPrt, iMsecTime, iCompMaxAmp, iMaxAmp, iSmp ;

 // Calculate the composite maximum amplitude

 iCompMaxAmp = 0 ;

 for (iPrt = 0 ; iPrt < ins.iNumPartials ; iPrt++)
 {
 iMaxAmp = 0 ;

 for (i = 0 ; i < ins.pprt[iPrt].iNumAmp ; i++)
 iMaxAmp = max (iMaxAmp, ins.pprt[iPrt].pEnvAmp[i].iValue) ;

 iCompMaxAmp += iMaxAmp ;
 }

 // Loop through each sample

 for (iSmp = 0 ; iSmp < iNumSamples ; iSmp++)
 {
 dComp = 0 ;
 iMsecTime = (int) (1000 * iSmp / SAMPLE_RATE) ;

 // Loop through each partial

 for (iPrt = 0 ; iPrt < ins.iNumPartials ; iPrt++)
 {
 dAmp = 0 ;
 dFrq = 0 ;

 for (i = 0 ; i < ins.pprt[iPrt].iNumAmp - 1 ; i++)
 {
 if (iMsecTime >= ins.pprt[iPrt].pEnvAmp[i].iTime &&
 iMsecTime <= ins.pprt[iPrt].pEnvAmp[i+1].iTime)
 {
 dFrac = (double) (iMsecTime -
 ins.pprt[iPrt].pEnvAmp[i].iTime) /
 (ins.pprt[iPrt].pEnvAmp[i+1].iTime -
 ins.pprt[iPrt].pEnvAmp[i].iTime) ;

 dAmp = dFrac * ins.pprt[iPrt].pEnvAmp[i+1].iValue +
 (1-dFrac) * ins.pprt[iPrt].pEnvAmp[i].iValue ;

 break ;
 }
 }

 for (i = 0 ; i < ins.pprt[iPrt].iNumFrq - 1 ; i++)
 {
 if (iMsecTime >= ins.pprt[iPrt].pEnvFrq[i].iTime &&
 iMsecTime <= ins.pprt[iPrt].pEnvFrq[i+1].iTime)
 {
 dFrac = (double) (iMsecTime -
 ins.pprt[iPrt].pEnvFrq[i].iTime) /
 (ins.pprt[iPrt].pEnvFrq[i+1].iTime -
 ins.pprt[iPrt].pEnvFrq[i].iTime) ;

 dFrq = dFrac * ins.pprt[iPrt].pEnvFrq[i+1].iValue +
 (1-dFrac) * ins.pprt[iPrt].pEnvFrq[i].iValue ;

 break ;
 }
 }
 dComp += dAmp * SineGenerator (dFrq, dAngle + iPrt) ;
 }
 pBuffer[iSmp] = (BYTE) (127 + 127 * dComp / iCompMaxAmp) ;
 }
}

// Make a waveform file
// --------------------

BOOL MakeWaveFile (INS ins, TCHAR * szFileName)
{
 DWORD dwWritten ;
 HANDLE hFile ;
 int iChunkSize, iPcmSize, iNumSamples ;
 PBYTE pBuffer ;
 WAVEFORMATEX waveform ;

 hFile = CreateFile (szFileName, GENERIC_WRITE, 0, NULL,
 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL) ;

 if (hFile == NULL)
 return FALSE ;

 iNumSamples = ((long) ins.iMsecTime * SAMPLE_RATE / 1000 + 1) / 2 * 2 ;
 iPcmSize = sizeof (PCMWAVEFORMAT) ;
 iChunkSize = 12 + iPcmSize + 8 + iNumSamples ;

 if (NULL == (pBuffer = malloc (iNumSamples)))
 {
 CloseHandle (hFile) ;
 return FALSE ;
 }

 FillBuffer (ins, pBuffer, iNumSamples) ;

 waveform.wFormatTag = WAVE_FORMAT_PCM ;

 waveform.nChannels = 1 ;
 waveform.nSamplesPerSec = SAMPLE_RATE ;
 waveform.nAvgBytesPerSec = SAMPLE_RATE ;
 waveform.nBlockAlign = 1 ;
 waveform.wBitsPerSample = 8 ;
 waveform.cbSize = 0 ;

 WriteFile (hFile, "RIFF", 4, &dwWritten, NULL) ;
 WriteFile (hFile, &iChunkSize, 4, &dwWritten, NULL) ;
 WriteFile (hFile, "WAVEfmt ", 8, &dwWritten, NULL) ;
 WriteFile (hFile, &iPcmSize, 4, &dwWritten, NULL) ;
 WriteFile (hFile, &waveform, sizeof (WAVEFORMATEX) - 2, &dwWritten, NULL) ;
 WriteFile (hFile, "data", 4, &dwWritten, NULL) ;
 WriteFile (hFile, &iNumSamples, 4, &dwWritten, NULL) ;
 WriteFile (hFile, pBuffer, iNumSamples, &dwWritten, NULL) ;

 CloseHandle (hFile) ;
 free (pBuffer) ;

 if ((int) dwWritten != iNumSamples)
 {
 DeleteFile (szFileName) ;
 return FALSE ;
 }
 return TRUE ;
}

void TestAndCreateFile (HWND hwnd, INS ins, TCHAR * szFileName, int idButton)
{
 TCHAR szMessage [64] ;

 if (-1 != GetFileAttributes (szFileName))
 EnableWindow (GetDlgItem (hwnd, idButton), TRUE) ;
 else
 {
 if (MakeWaveFile (ins, szFileName))
 EnableWindow (GetDlgItem (hwnd, idButton), TRUE) ;
 else
 {
 wsprintf (szMessage, TEXT ("Could not create %x."), szFileName) ;
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szMessage, szAppName,
 MB_OK | MB_ICONEXCLAMATION) ;
 }
 }
}

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 if (-1 == DialogBox (hInstance, szAppName, NULL, DlgProc))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),

 szAppName, MB_ICONERROR) ;
 }
 return 0 ;
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static TCHAR * szTrum = TEXT ("Trumpet.wav") ;
 static TCHAR * szOboe = TEXT ("Oboe.wav") ;
 static TCHAR * szClar = TEXT ("Clarinet.wav") ;

 switch (message)
 {
 case WM_INITDIALOG:
 SetTimer (hwnd, ID_TIMER, 1, NULL) ;
 return TRUE ;

 case WM_TIMER:
 KillTimer (hwnd, ID_TIMER) ;
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 TestAndCreateFile (hwnd, insTrum, szTrum, IDC_TRUMPET) ;
 TestAndCreateFile (hwnd, insOboe, szOboe, IDC_OBOE) ;
 TestAndCreateFile (hwnd, insClar, szClar, IDC_CLARINET) ;

 SetDlgItemText (hwnd, IDC_TEXT, TEXT (" ")) ;
 SetFocus (GetDlgItem (hwnd, IDC_TRUMPET)) ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;
 return TRUE ;
 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_TRUMPET:
 PlaySound (szTrum, NULL, SND_FILENAME | SND_SYNC) ;
 return TRUE ;

 case IDC_OBOE:
 PlaySound (szOboe, NULL, SND_FILENAME | SND_SYNC) ;
 return TRUE ;

 case IDC_CLARINET:
 PlaySound (szClar, NULL, SND_FILENAME |SND_SYNC) ;
 return TRUE ;
 }
 break ;

 case WM_SYSCOMMAND:
 switch (LOWORD (wParam))
 {
 case SC_CLOSE:

 EndDialog (hwnd, 0) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

ADDSYNTH.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

ADDSYNTH DIALOG DISCARDABLE 100, 100, 176, 49
STYLE WS_MINIMIZEBOX | WS_CAPTION | WS_SYSMENU
CAPTION "Additive Synthesis"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "Trumpet",IDC_TRUMPET,8,8,48,16
 PUSHBUTTON "Oboe",IDC_OBOE,64,8,48,16
 PUSHBUTTON "Clarinet",IDC_CLARINET,120,8,48,16
 LTEXT "Preparing Data...",IDC_TEXT,8,32,100,8
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by AddSynth.rc

#define IDC_TRUMPET 1000
#define IDC_OBOE 1001
#define IDC_CLARINET 1002
#define IDC_TEXT 1003

An additional file called ADDSYNTH.H is not shown here because it contains several hundred lines of boring stuff.
You'll find it on the companion disc for this book. At the beginning of ADDSYNTH.H, I define three structures used
for storing the envelope data. Each amplitude and frequency envelope is stored as an array of structures of type
ENV. These are number pairs that consist of a time in milliseconds followed by an amplitude value (in an arbitrary
scale) or a frequency (in cycles per second). These arrays are of variable length, ranging from 6 to 14 values.
Straight lines are assumed to connect the amplitude and frequency values.

Each instrument consists of a collection of partials (12 for the trumpet and 21 each for the oboe and clarinet)
stored as an array of structures of type PRT. The PRT structure stores the number of points in the amplitude and
frequency envelopes and a pointer to the ENV array. The INS structure contains the total time of the tone in
milliseconds, the number of partials, and a pointer to the PRT array that stores the partials.

ADDSYNTH has three push buttons labeled "Trumpet," "Oboe," and "Clarinet." PCs are not yet quite fast enough to
do all the additive synthesis calculations in real time, so the first time you run ADDSYNTH, these buttons will be
disabled until the program calculates the samples and creates the TRUMPET.WAV, OBOE.WAV, and CLARINET.WAV
sound files. The push buttons are then enabled and you can play the three sounds by using the PlaySound
function. The next time you run the program, it will check for the existence of the waveform files and won't need
to recreate them.

Most of the work is done in ADDSYNTH's FillBuffer function. FillBuffer begins by calculating the total composite
maximum amplitude. It does this by looping through the partials for the instrument to find the maximum
amplitude for each partial and then adding the maximum amplitudes all together. This value is later used to scale
the samples to an 8-bit sample size.

FillBuffer then proceeds to calculate a value for each sample. Each sample corresponds to a millisecond time value
that depends on the sample rate. (Actually, at a 22.05 kHz sample rate, every 22 samples correspond to the same
millisecond time value.) FillBuffer then loops through the partials. For both the frequency and amplitude, it finds
the envelope line segment corresponding to the millisecond time value and performs a linear interpolation.

The frequency value is passed to the SineGenerator function, together with a phase angle value. As I discussed
earlier in this chapter, digitally generating sine waves requires a phase angle value to be maintained and
incremented based on the frequency value. On return from the SineGenerator function, the sine value is multiplied
by the amplitude for the partial and accumulated. After all the partials for a sample are added together, the
sample is scaled to the size of a byte.

Waking Up to Waveform Audio

WAKEUP, which you'll find in Figure 22-8, is one of of those programs where the source code files don't look quite
complete. The program's window looks like a dialog box, but there's no resource script (we already know how to
do that), and the program uses what seems to be a waveform file, but there's no such file on the disk. However,
the program packs quite a wallop: The sound it plays is loud and quite annoying. WAKEUP is my alarm clock, and
it definitely works in waking me up.

Figure 22-8. The WAKEUP program.

WAKEUP.C

/*---------------------------------------
 WAKEUP.C -- Alarm Clock Program
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>
#include <commctrl.h>

 // ID values for 3 child windows

#define ID_TIMEPICK 0
#define ID_CHECKBOX 1
#define ID_PUSHBTN 2

 // Timer ID

#define ID_TIMER 1

 // Number of 100-nanosecond increments (ie FILETIME ticks) in an hour

#define FTTICKSPERHOUR (60 * 60 * (LONGLONG) 10000000)

 // Defines and structure for waveform "file"

#define SAMPRATE 11025
#define NUMSAMPS (3 * SAMPRATE)
#define HALFSAMPS (NUMSAMPS / 2)

typedef struct
{
 char chRiff[4] ;
 DWORD dwRiffSize ;
 char chWave[4] ;
 char chFmt [4] ;
 DWORD dwFmtSize ;
 PCMWAVEFORMAT pwf ;
 char chData[4] ;
 DWORD dwDataSize ;
 BYTE byData[0] ;
}
WAVEFORM ;

 // The window proc and the subclass proc

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
LRESULT CALLBACK SubProc (HWND, UINT, WPARAM, LPARAM) ;

 // Original window procedure addresses for the subclassed windows

WNDPROC SubbedProc [3] ;

 // The current child window with the input focus

HWND hwndFocus ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInst,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName [] = TEXT ("WakeUp") ;
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = 0 ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

 wndclass.hbrBackground = (HBRUSH) (1 + COLOR_BTNFACE) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, szAppName,
 WS_OVERLAPPED | WS_CAPTION |
 WS_SYSMENU | WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static HWND hwndDTP, hwndCheck, hwndPush ;
 static WAVEFORM waveform = { "RIFF", NUMSAMPS + 0x24, "WAVE", "fmt ",
 sizeof (PCMWAVEFORMAT), 1, 1, SAMPRATE,
 SAMPRATE, 1, 8, "data", NUMSAMPS } ;
 static WAVEFORM * pwaveform ;
 FILETIME ft ;
 HINSTANCE hInstance ;
 INITCOMMONCONTROLSEX icex ;
 int i, cxChar, cyChar ;
 LARGE_INTEGER li ;
 SYSTEMTIME st ;
 switch (message)
 {
 case WM_CREATE:
 // Some initialization stuff

 hInstance = (HINSTANCE) GetWindowLong (hwnd, GWL_HINSTANCE) ;

 icex.dwSize = sizeof (icex) ;
 icex.dwICC = ICC_DATE_CLASSES ;
 InitCommonControlsEx (&icex) ;

 // Create the waveform file with alternating square waves

 pwaveform = malloc (sizeof (WAVEFORM) + NUMSAMPS) ;
 * pwaveform = waveform ;

 for (i = 0 ; i < HALFSAMPS ; i++)
 if (i % 600 < 300)
 if (i % 16 < 8)
 pwaveform->byData[i] = 25 ;
 else
 pwaveform->byData[i] = 230 ;
 else
 if (i % 8 < 4)
 pwaveform->byData[i] = 25 ;
 else
 pwaveform->byData[i] = 230 ;

 // Get character size and set a fixed window size.

 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 SetWindowPos (hwnd, NULL, 0, 0,
 42 * cxChar,
 10 * cyChar / 3 + 2 * GetSystemMetrics (SM_CYBORDER) +
 GetSystemMetrics (SM_CYCAPTION),
 SWP_NOMOVE | SWP_NOZORDER | SWP_NOACTIVATE) ;

 // Create the three child windows

 hwndDTP = CreateWindow (DATETIMEPICK_CLASS, TEXT (""),
 WS_BORDER | WS_CHILD | WS_VISIBLE | DTS_TIMEFORMAT,
 2 * cxChar, cyChar, 12 * cxChar, 4 * cyChar / 3,
 hwnd, (HMENU) ID_TIMEPICK, hInstance, NULL) ;
 hwndCheck = CreateWindow (TEXT ("Button"), TEXT ("Set Alarm"),
 WS_CHILD | WS_VISIBLE | BS_AUTOCHECKBOX,
 16 * cxChar, cyChar, 12 * cxChar, 4 * cyChar / 3,
 hwnd, (HMENU) ID_CHECKBOX, hInstance, NULL) ;

 hwndPush = CreateWindow (TEXT ("Button"), TEXT ("Turn Off"),
 WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON | WS_DISABLED,
 28 * cxChar, cyChar, 12 * cxChar, 4 * cyChar / 3,
 hwnd, (HMENU) ID_PUSHBTN, hInstance, NULL) ;

 hwndFocus = hwndDTP ;

 // Subclass the three child windows

 SubbedProc [ID_TIMEPICK] = (WNDPROC)
 SetWindowLong (hwndDTP, GWL_WNDPROC, (LONG) SubProc) ;
 SubbedProc [ID_CHECKBOX] = (WNDPROC)
 SetWindowLong (hwndCheck, GWL_WNDPROC, (LONG) SubProc);
 SubbedProc [ID_PUSHBTN] = (WNDPROC)

 SetWindowLong (hwndPush, GWL_WNDPROC, (LONG) SubProc) ;

 // Set the date and time picker control to the current time
 // plus 9 hours, rounded down to next lowest hour

 GetLocalTime (&st) ;
 SystemTimeToFileTime (&st, &ft) ;
 li = * (LARGE_INTEGER *) &ft ;
 li.QuadPart += 9 * FTTICKSPERHOUR ;
 ft = * (FILETIME *) &li ;
 FileTimeToSystemTime (&ft, &st) ;
 st.wMinute = st.wSecond = st.wMilliseconds = 0 ;
 SendMessage (hwndDTP, DTM_SETSYSTEMTIME, 0, (LPARAM) &st) ;
 return 0 ;

 case WM_SETFOCUS:
 SetFocus (hwndFocus) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam)) // control ID
 {
 case ID_CHECKBOX:

 // When the user checks the "Set Alarm" button, get the
 // time in the date and time control and subtract from
 // it the current PC time.
 if (SendMessage (hwndCheck, BM_GETCHECK, 0, 0))
 {
 SendMessage (hwndDTP, DTM_GETSYSTEMTIME, 0, (LPARAM) &st) ;
 SystemTimeToFileTime (&st, &ft) ;
 li = * (LARGE_INTEGER *) &ft ;

 GetLocalTime (&st) ;
 SystemTimeToFileTime (&st, &ft) ;
 li.QuadPart -= ((LARGE_INTEGER *) &ft)->QuadPart ;

 // Make sure the time is between 0 and 24 hours!
 // These little adjustments let us completely ignore
 // the date part of the SYSTEMTIME structures.

 while (li.QuadPart < 0)
 li.QuadPart += 24 * FTTICKSPERHOUR ;

 li.QuadPart %= 24 * FTTICKSPERHOUR ;

 // Set a one-shot timer! (See you in the morning.)

 SetTimer (hwnd, ID_TIMER, (int) (li.QuadPart / 10000), 0) ;
 }
 // If button is being unchecked, kill the timer.

 else

 KillTimer (hwnd, ID_TIMER) ;

 return 0 ;

 // The "Turn Off" button turns off the ringing alarm, and also
 // unchecks the "Set Alarm" button and disables itself.

 case ID_PUSHBTN:
 PlaySound (NULL, NULL, 0) ;
 SendMessage (hwndCheck, BM_SETCHECK, 0, 0) ;
 EnableWindow (hwndDTP, TRUE) ;
 EnableWindow (hwndCheck, TRUE) ;
 EnableWindow (hwndPush, FALSE) ;
 SetFocus (hwndDTP) ;
 return 0 ;
 }
 return 0 ;

 // The WM_NOTIFY message comes from the date and time picker.
 // If the user has checked "Set Alarm" and then gone back to
 // change the alarm time, there might be a discrepancy between
 // the displayed time and the one-shot timer. So, the program
 // unchecks "Set Alarm" and kills any outstanding timer.

 case WM_NOTIFY:
 switch (wParam) // control ID
 {
 case ID_TIMEPICK:
 switch (((NMHDR *) lParam)->code) // notification code
 {
 case DTN_DATETIMECHANGE:
 if (SendMessage (hwndCheck, BM_GETCHECK, 0, 0))
 {
 KillTimer (hwnd, ID_TIMER) ;
 SendMessage (hwndCheck, BM_SETCHECK, 0, 0) ;
 }
 return 0 ;
 }
 }
 return 0 ;

 // The WM_COMMAND message comes from the two buttons.

 case WM_TIMER:

 // When the timer message comes, kill the timer (because we only
 // want a one-shot) and start the annoying alarm noise going.

 KillTimer (hwnd, ID_TIMER) ;
 PlaySound ((PTSTR) pwaveform, NULL,
 SND_MEMORY | SND_LOOP | SND_ASYNC);

 // Let the sleepy user turn off the timer by slapping the

 // space bar. If the window is minimized, it's restored; then it's
 // brought to the forefront; then the pushbutton is enabled and
 // given the input focus.

 EnableWindow (hwndDTP, FALSE) ;
 EnableWindow (hwndCheck, FALSE) ;
 EnableWindow (hwndPush, TRUE) ;

 hwndFocus = hwndPush ;
 ShowWindow (hwnd, SW_RESTORE) ;
 SetForegroundWindow (hwnd) ;
 return 0 ;

 // Clean up if the alarm is ringing or the timer is still set.
 case WM_DESTROY:
 free (pwaveform) ;

 if (IsWindowEnabled (hwndPush))
 PlaySound (NULL, NULL, 0) ;

 if (SendMessage (hwndCheck, BM_GETCHECK, 0, 0))
 KillTimer (hwnd, ID_TIMER) ;

 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

LRESULT CALLBACK SubProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 int idNext, id = GetWindowLong (hwnd, GWL_ID) ;

 switch (message)
 {
 case WM_CHAR:
 if (wParam == `\t')
 {
 idNext = id ;

 do
 idNext = (idNext +
 (GetKeyState (VK_SHIFT) < 0 ? 2 : 1)) % 3 ;
 while (!IsWindowEnabled (GetDlgItem (GetParent (hwnd), idNext)));

 SetFocus (GetDlgItem (GetParent (hwnd), idNext)) ;
 return 0 ;
 }
 break ;

 case WM_SETFOCUS:
 hwndFocus = hwnd ;
 break ;

 }
 return CallWindowProc (SubbedProc [id], hwnd, message, wParam, lParam) ;
}

The waveform that WAKEUP uses is just two square waves, but they are alternated very quickly. The actual
waveform is calculated during WndProc 's WM_CREATE message. The entire waveform file is stored in memory; a
pointer to this memory block is passed to the PlaySound function, which uses the SND_MEMORY, SND_LOOP, and
SND_ASYNC arguments.

WAKEUP uses a common control called the Date-Time Picker. This control takes care of logic to allow the user to
select a particular date and time. (WAKEUP uses only the time feature.) A program can get and set this time using
the SYSTEMTIME structure used in obtaining and setting the PC's own clock. To see how versatile the Date-Time
Picker really is, try creating the window without any DTS style flags.

Notice the logic at the end of the WM_CREATE message: the program assumes that you run it soon before going
to bed and that you want to wake up in 8 hours from the next stroke of the hour.

Now obviously you could obtain the current time in a SYSTEMTIME structure from the GetLocalTime function and
increment the time "manually." But in the general case this calculation involves checking for a resultant hour
greater than 24, which means you'll have to increment the day field, and then that might involve incrementing the
month (so you have to have logic for the number of days in each month and a leap year check), and finally you
might have to increment the year.

Instead, the recommended method (from /Platform SDK/Windows Base Services/General Library Time/Time
Reference/Time Structures/SYSTEMTIME) is to convert the SYSTEMTIME to a FILETIME structure (using
SystemTimeToFileTime), cast the FILETIME structure to a LARGE_INTEGER structure, perform the calculations on
the large integer, cast back to a FILETIME structure, and then convert back to a SYSTEMTIME structure (using
FileTimeToSystemTime).

The FILETIME structure, as its name implies, is used to get and set the time that a file was last modified. The
structure looks like this:

type struct _FILETIME // ft
{
 DWORD dwLowDateTime ;
 DWORD dwHighDateTime ;
}
FILETIME ;

These two fields together express a 64-bit value that indicates the number of 100-nanosecond intervals from
January 1, 1601.

The Microsoft C/C++ compiler supports 64-bit integers as a nonstandard extension to ANSI C. The data type is
__int64 . You can do all the normal arithmetic operations on __int64 types, and some run-time library functions
support them. The Windows WINNT.H header file defines the following:

typedef __int64 LONGLONG ;
typedef unsigned __int64 DWORDLONG ;

In Windows, this sometimes called a "quad word" or, more commonly, a "large integer." There's also a union
defined:

typedef union _LARGE_INTEGER

{
 struct
 {
 DWORD LowPart ;
 LONG HighPart ;
 } ;
 LONGLONG QuadPart ;
}
LARGE_INTEGER ;

This is all documented in /Platform SDK/Windows Base Services/General Library/Large Integer Operations . The
union lets you work with the large integer either as two 32-bit quantities or as a 64-bit quantity.

MIDI and Music

The Musical Instrument Digital Interface (MIDI) was developed in the early 1980s by a consortium of
manufacturers of electronic music synthesizers. MIDI is a protocol for connecting electronic music instruments
among themselves and with computers. MIDI is an extremely important standard in the field of electronic music.
The MIDI specification is maintained by the MIDI Manufacturers Association (MMA), which has a Web site at
http://www.midi.org .

The Workings of MIDI

MIDI defines a protocol for passing digital commands through a cable. A MIDI cable uses 5-pin DIN connectors,
but only three of the connectors are used. One is a shield, another is a current loop, and the third carries the data.
The MIDI protocol is unidirectional at 31,250 bits per second. Each byte of data begins with a start bit and ends
with a stop bit, for an effective transfer rate of 3,125 bytes per second.

It's important to understand that no actual sounds—in either an analog or digital format—are transferred through
the MIDI cable. What goes through the cable are generally simple messages, usually 1, 2, or 3 bytes in length.

A simple MIDI configuration could consist of two pieces of MIDI-compatible hardware. One is a MIDI keyboard that
makes no sounds by itself but serves solely to generate MIDI messages. This keyboard has a MIDI port labeled
"MIDI Out." You connect a MIDI cable from this port to the "MIDI In" port of a MIDI sound synthesizer. This
synthesizer may simply look like a little box with a few buttons on the front.

When you press a key on the keyboard (let's say middle C), the keyboard sends 3 bytes to the MIDI Out port. In
hexadecimal, these bytes are

90 3C 40

The first byte (90) indicates a "Note On" message. The second byte is the key number, where 3C is middle C. The
third byte is the velocity with which the key is struck and may range from 1 to 127. We happen to be using a
keyboard here that is not velocity-sensitive, so it sends an average velocity value. This 3-byte message goes down
the MIDI cable into the Midi In port of the synthesizer. The synthesizer responds by playing a tone at middle C.

When you release the key, the keyboard sends another 3-byte message to the MIDI Out port:

90 3C 00

This is the same as the Note On command, but with a zero velocity byte. This zero byte indicates a Note Off
command, meaning that the note should be turned off. The synthesizer reponds by stopping the sound.

If the synthesizer is capable of polyphony (that is, playing more than one note at the same time), then you can
play chords on the keyboard. The keyboard generates multiple Note On messages, and the synthesizer plays all
the notes. When you release the chord, the keyboard sends multiple Note Off messages to the synthesizer.

Generally speaking, the keyboard in this configuration is known as a "MIDI controller." It is reponsible for
generating MIDI messages to control a synthesizer. A MIDI controller does not have to look like a keyboard. There
are MIDI wind controllers that look like clarinets or saxophones, MIDI guitar controllers, MIDI string controllers,
and MIDI drum controllers. At the very least, all of these controllers generate 3-byte Note On and Note Off
messages.

Rather than something that resembles a keyboard or traditional musical instrument, a controller can also be a
"sequencer." This is a piece of hardware that stores sequences of Note On and Note Off messages in memory and
then plays them back. Stand-alone sequencers are used much less today than they were some years ago because
they have been replaced with computers. A computer equipped with a MIDI board can also generate Note On and
Note Off messages to control synthesizers. MIDI authoring software, which lets you compose on screen, can store
MIDI messages coming from a MIDI controller, let you manipulate them, and then send the MIDI messages to a
synthesizer.

http://www.midi.org

The synthesizer is sometimes also called a "sound module" or "tone generator." MIDI does not specify how the
sounds are actually generated. The synthesizer could be using any one of a variety of different sound generation
techniques.

In the real world, only very simple MIDI controllers (such as wind controllers) have only MIDI Out cable ports.
Often a keyboard will have a built-in synthesizer, and it will have three MIDI cable ports labeled MIDI In, MIDI
Out, and MIDI Thru. The MIDI In port accepts MIDI messages to play the keyboard's internal synthesizer. The
MIDI Out port sends MIDI messages from the keyboard to an external synthesizer. The MIDI Thru port is an
output port that duplicates the input in the MIDI In port—whatever comes into the MIDI In port is sent back out to
the MIDI Thru port. (The MIDI Thru port does not contain any of the information sent out over the MIDI Out port.)

There are only two ways to connect MIDI hardware by cables: You can connect a MIDI Out on one piece of
hardware to MIDI In of another, or you can connect MIDI Thru to MIDI In. The MIDI Thru port allows for the
daisy-chaining of MIDI synthesizers.

The Program Change

What kind of sound does the synthesizer make? Is it a piano sound, a violin sound, a trumpet sound, or a flying
saucer sound? Generally the various sounds that a synthesizer is capable of producing are stored in ROM or
somewhere else. These are generally called "voices" or "instruments" or "patches." (The word "patch" comes from
the days of analog synthesizers when different sounds were configured by plugging patch chords into jacks on the
front of the synthesizer.)

In MIDI, the various sounds that a synthesizer is capable of producing are known as "programs." Changing the
program requires sending the synthesizer a MIDI Program Change message,

C0 pp

where pp can range from 0 to 127. Often a MIDI keyboard will have a series of numbered buttons across the top
that generate Program Change messages. By pressing these you can control the synthesizer voice from the
keyboard. The numbering of these buttons usually begins with 1 rather than 0, so program number 1 corresponds
to a Program Change byte of 0.

The MIDI specification does not indicate what program numbers should correspond with what instruments. For
example, the first three programs on a Yamaha DX7 synthesizer are called "Warm Strings," "Mellow Horn," and
"Pick Guitar." On a Yamaha TX81Z tone generator, they're "Grand Piano," "Upright Piano," and "Deep Grand." On
a Roland MT-32 sound module, they're "Acoustic Piano 1," "Acoustic Piano 2," and "Acoustic Piano 3." So, if you
don't want to be surprised when you make a program change from a keyboard, you had better know what
instrument voice corresponds to each program number in the synthesizer you happen to be using.

This can be a real problem for MIDI files that contain Program Change messages—these files are not device-
independent because their contents will sound different on different synthesizers. However, in recent years, a
standard known as "General MIDI" (GM) has standardized the program numbers. General MIDI is supported by
Windows. If a synthesizer is not in accordance with the General MIDI specification, program mappings can make it
emulate a General MIDI synthesizer.

The MIDI Channel

I've discussed two MIDI messages so far. The first is Note On,

90 kk vv

where kk is the key number (0 to 127) and vv is the velocity (0 to 127). A zero velocity indicates a Note Off
command. The second is the Program Change,

C0 pp

where pp ranges from 0 to 127. These are typical of MIDI messages. The first byte is called the "status" byte.
Depending on what the status byte is, it is generally followed by 0, 1, or 2 "data" bytes. (The exception is for
"system exclusive" messages that I'll describe shortly.) It is easy to distinguish a status byte from a data byte: the
high bit is always 1 for a status byte and 0 for a data byte.

I have not yet discussed the generalized form of these two messages, however. The generalized form of the Note
On message is

9n kk vv

and the Program Change is

Cn pp

In both cases, n corresponds to the lower four bits of the status byte and can range from 0 to 15. This is called
the MIDI "channel." Channels are generally numbered beginning with 1, so if n is zero, that means channel 1.

The use of 16 different channels allows a MIDI cable to carry messages for 16 different voices. Generally, you'll
find that a particular string of MIDI messages will begin with Program Change messages to set a voice for the
various channels being used, followed by multiple Note On and Note Off commands. Later on, there might be
other Program Change commands. But at any time, each channel is associated with only one voice.

Let's take a simple example: Suppose the keyboard controller I've been describing is able to generate MIDI
messages for two different channels simultaneously—channel 1 and channel 2. You might begin by pressing
buttons on the keyboard to send two Program Change messages to the synthesizer:

C0 01
C1 05

Channel 1 is now set for program 2, and channel 2 is set for program 6. (Recall that channel numbers and
program numbers are 1-based but encoded in a 0-based form in the messages.) Now when you press a key on the
keyboard, it sends two Note On messages, one for each channel:

90 kk vv
91 kk vv

This lets you play two instrument voices simultaneously in unison.

An alternative is a "split" keyboard. The lower keys could generate Note On messages on channel 1, and the upper
keys could generate Note On messages on channel 2. This lets you play two instruments independently from one
keyboard.

The use of 16 channels becomes more powerful when you think about MIDI sequencing software on a PC. Each
channel corresponds to a different instrument. If you have a synthesizer that can play 16 different instruments
independently, you can orchestrate a composition for a 16-piece band and connnect the MIDI board with the
synthesizer using just one MIDI cable.

MIDI Messages

Although the Note On and Program Change messages are the most important messages in any MIDI
implementation, this is not all that MIDI can do. Figure 22-9 is a chart of the MIDI channel messages defined in
the MIDI specification. As I've noted above, the status byte always has the high bit set and all data bytes that
follow the status byte have a high bit equal to 0. This means that status bytes can range from 0x80 through 0xFF,
while data bytes range from 0 through 0x7F.

MIDI Message
Data Bytes
Values
Note Off
8n kk vv
kk = key number (0-127)
vv = velocity (0-127)

Note On

9n kk vv
kk = key number (0-127)
vv = velocity (1-127, 0 = note off)
Polyphonic After Touch
An kk tt
kk = key number (0-127)
tt = after touch (0-127)

Control Change

Bn cc xx
cc = controller (0-121)
xx = value (0-127)
Channel Mode Local Control
Bn 7A xx
xx = 0 (off), 127 (on)
All Notes Off
Bn 7B 00
Omni Mode Off
Bn 7C 00
Omni Mode On
Bn 7D 00
Mono Mode On
Bn 7E cc
cc = number of channels
Poly Mode On
Bn 7F 00
Program Change
Cn pp
pp = program (0-127)
Channel After Touch
Dn tt
tt = after touch (0-127)
Pitch Wheel Change
En ll hh
ll = low 7 bits (0-127)
hh = high 7 bits (0-127)

Figure 22-9. The MIDI Channel Messages (n = channel number, 0 through 15)

The key numbers generally correspond to the traditional notes of Western music, although they don't have to. (For
a percussion voice, each key number could be a different percussion instrument, for example.) When the key
numbers correspond to a piano-type keyboard, key 60 (in decimal) is middle C. The MIDI key numbers extend 21
notes below and 19 notes above the range of a normal 88-key piano. The velocity number is the velocity with
which the key is depressed, which on a piano governs both loudness and the harmonic character of the sound. A
particular voice can respond to key velocity in this way or other ways.

The examples I showed earlier used a Note On message with a velocity byte of zero to indicate a Note Off
command. There is also a separate Note Off command for keyboards (or other controllers) that implement a key
release velocity. This is very rare, however.

There are two "after-touch" messages. After-touch is a feature of some keyboards where you can change the
sound in some way by pressing harder on the key after it's already depressed. One message (status byte 0xDn) is
an after-touch that applies to all the notes currently being played in a channel; this is the most common. The
status byte 0xAn indicates after–touch that applies to each individual key independently.

Generally keyboards have some dials or switches for further controlling the sound. These are called "controllers,"
and any change is indicated by a status byte of 0xBn. Controllers are identified by numbers ranging from 0 to 121.
The 0xBn status byte is also used for Channel Mode messages that indicate how a synthesizer should respond to
simultaneous notes in the channel.

One very important controller is a wheel that shifts the pitch up and down. This has a separate MIDI message with
a status byte of 0xEn.

Missing from the chart in Figure 22-9 are messages that begin with status bytes F0 through FF. These are called
system messages because they apply to the entire MIDI system rather than a particular channel. The system
messages are generally used for synchronization purposes, triggering sequencers, resetting hardware, and
obtaining information.

Many MIDI controllers continually send out status bytes of 0xFE, which is called the Active Sensing message. This
simply indicates that the MIDI controller is still attached to the system.

One important system message is the "system exclusive" message that begins with a status byte of 0xF0. This is
used for transferring chunks of data to a synthesizer in a manufacturer-dependent and synthesizer-dependent
format. (For example, new voice definitions can be passed from a computer to a synthesizer in this way.) The
system exclusive message is the only message that can contain more than 2 data bytes. In fact, the number of
data bytes is variable, but each data byte must have its high bit set to 0. The status byte 0xF7 indicates an end of
the system exclusive message.

System exclusive messages are also used for dumping data (for example, voice definitions) from the synthesizer.
The data comes out of the synthesizer through the MIDI Out port. If you're attempting to program for MIDI in a
device-independent manner, you should probably avoid using system exclusive messages. But they are quite
valuable for defining new synthesizer voices.

A MIDI file (with the extension .MID) is a collection of MIDI messages with timing information. You can play MIDI
files using MCI. However, for the remainder of this chapter, I'll be discussing the low-level midiOut functions.

An Introduction to MIDI Sequencing

The low-level MIDI API consists of functions beginning with the prefix midiIn , for reading MIDI sequences coming
from an external controller, and midiOut , for playing music on the internal or external synthesizer. Despite the
term "low-level," you don't need to know anything about the hardware interface of the MIDI board when using
these functions.

To open a MIDI output device in preparation for playing music, you call midiOutOpen :

error = midiOutOpen (&hMidiOut, wDeviceID, dwCallBack,
 dwCallBackData, dwFlags) ;

The function returns 0 if successful or an error code if not. If you've specified the function arguments correctly, an
error will usually indicate that the MIDI device is already in use by another program.

The first argument is a pointer to a variable of type HMIDIOUT that receives a MIDI output handle for use in
subsequent MIDI output functions. The second argument is the device ID. To use one of the real MIDI devices,
this argument can range from 0 to one less than the number returned from midiOutGetNumDevs . Or you can use
MIDIMAPPER, which is defined in MMSYSTEM.H as –1. In most cases, you'll probably set the last three arguments
of midiOutOpen to NULL or 0.

Once you open a MIDI output device and obtain the handle, you can begin sending MIDI messages to the device.
You do this by calling

error = midiOutShortMsg (hMidiOut, dwMessage) ;

The first parameter is the handle obtained from midiOutOpen . The second parameter is a 1-byte, 2-byte, or 3-
byte MIDI message packed into a 32-bit DWORD. As I discussed earlier, MIDI messages begin with a status byte,
followed by 0, 1, or 2 bytes of data. The status byte forms the least significant byte of dwMessage , the first data
byte is the next significant byte, and the second data byte is the next. The most significant byte of dwMessage is
0.

For example, to play a middle C (the note 0x3C) on MIDI channel 5 with a velocity of 0x7F, you need a 3-byte
Note On message:

0x95 0x3C 0x7F

The dwMessage parameter to midiOutShortMsg is 0x007F3C95.

The three essential MIDI messages are Program Change (to change the instrument voice for a particular channel),
Note On, and Note Off. After opening a MIDI output device, you should always begin with a Program Change
message and you should send an equal number of Note On and Note Off messages.

When you're all done playing the music you want to play, you can reset the MIDI output device to make sure that
all notes are turned off:

midiOutReset (hMidiOut) ;

You can then close the device:

midiOutClose (hMidiOut) ;

The midiOutOpen , midiOutShortMsg , midiOutReset , and midiOutClose functions are the four essential functions
you need for using the low-level MIDI output API.

So, let's play some music! The BACHTOCC program shown in Figure 22-10 plays the first measure of the toccata
section of J. S. Bach's famous Toccata and Fugue in D Minor for organ.

Figure 22-10. The BACHTOCC Program.

BACHTOCC.C

/*---
 BACHTOCC.C -- Bach Toccata in D Minor (First Bar)
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>

#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

TCHAR szAppName[] = TEXT ("BachTocc") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName,
 TEXT ("Bach Toccata in D Minor (First Bar)"),
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

DWORD MidiOutMessage (HMIDIOUT hMidi, int iStatus, int iChannel,

 int iData1, int iData2)
{
 DWORD dwMessage = iStatus | iChannel | (iData1 << 8) | (iData2 << 16) ;

 return midiOutShortMsg (hMidi, dwMessage) ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static struct
 {
 int iDur ;
 int iNote [2] ;
 }
 noteseq [] = { 110, 69, 81, 110, 67, 79, 990, 69, 81, 220, -1, -1,
 110, 67, 79, 110, 65, 77, 110, 64, 76, 110, 62, 74,
 220, 61, 73, 440, 62, 74, 1980, -1, -1, 110, 57, 69,
 110, 55, 67, 990, 57, 69, 220, -1, -1, 220, 52, 64,
 220, 53, 65, 220, 49, 61, 440, 50, 62, 1980, -1, -1 } ;

 static HMIDIOUT hMidiOut ;
 static int iIndex ;
 int i ;

 switch (message)
 {
 case WM_CREATE:
 // Open MIDIMAPPER device

 if (midiOutOpen (&hMidiOut, MIDIMAPPER, 0, 0, 0))
 {
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, TEXT ("Cannot open MIDI output device!"),
 szAppName, MB_ICONEXCLAMATION | MB_OK) ;
 return -1 ;
 }
 // Send Program Change messages for "Church Organ"

 MidiOutMessage (hMidiOut, 0xC0, 0, 19, 0) ;
 MidiOutMessage (hMidiOut, 0xC0, 12, 19, 0) ;

 SetTimer (hwnd, ID_TIMER, 1000, NULL) ;
 return 0 ;

 case WM_TIMER:
 // Loop for 2-note polyphony

 for (i = 0 ; i < 2 ; i++)
 {
 // Note Off messages for previous note

 if (iIndex != 0 && noteseq[iIndex - 1].iNote[i] != -1)
 {

 MidiOutMessage (hMidiOut, 0x80, 0,
 noteseq[iIndex - 1].iNote[i], 0) ;

 MidiOutMessage (hMidiOut, 0x80, 12,
 noteseq[iIndex - 1].iNote[i], 0) ;
 }
 // Note On messages for new note

 if (iIndex != sizeof (noteseq) / sizeof (noteseq[0]) &&
 noteseq[iIndex].iNote[i] != -1)
 {
 MidiOutMessage (hMidiOut, 0x90, 0,
 noteseq[iIndex].iNote[i], 127) ;

 MidiOutMessage (hMidiOut, 0x90, 12,
 noteseq[iIndex].iNote[i], 127) ;
 }
 }

 if (iIndex != sizeof (noteseq) / sizeof (noteseq[0]))
 {
 SetTimer (hwnd, ID_TIMER, noteseq[iIndex++].iDur - 1, NULL) ;
 }
 else
 {
 KillTimer (hwnd, ID_TIMER) ;
 DestroyWindow (hwnd) ;
 }
 return 0 ;

 case WM_DESTROY:
 midiOutReset (hMidiOut) ;
 midiOutClose (hMidiOut) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

The first measure of the Bach D Minor Toccata is shown in Figure 22-11.

Figure 22-11. The firstt measure of Bach's Toccata and Fugue in D Minor.

Our job here is to translate this music into a series of numbers—basically key numbers and timing information that
indicate when to send Note On messages (equivalent to an organ key being depressed) and Note Off messages (a
key release). Because an organ keyboard is not velocity-sensitive, we can play all the notes using the same
velocities. Another simplification is to ignore the difference between staccato playing (that is, leaving a slight
pause between successive notes for a sharper, crisper effect) and legato playing (a smoother overlapping blend
between successive notes). We'll assume that the ending of one note is followed immediately by the beginning of
the next note.

If you can read music, you'll note that the opening of the toccata consists of parallel octaves. So I created a data
structure in BACHTOCC called noteseq to store a series of note durations and two key numbers. Unfortunately,
continuing the music into the second measure would require a more generalized approach to storing this
information. I decided that a quarter note should have a duration of 1760 milliseconds, which means that an
eighth note (which has one stem on the note or rest) has a duration of 880 milliseconds, a 16th note (two stems)
of 440, a 32nd note (three stems) of 220, and a 64th note (four stems) of 110.

There are two mordents in this first measure—one over the first note and the other halfway through the measure.
These are indicated by squiggly lines with a short vertical line. In baroque music, the mordent sign means that the
note should actually be played as three notes—the indicated note, a note a full tone below it, and then the
indicated note. The first two notes should be played quickly, and the third held for the remaining duration. For
example, the first note is an A with a mordent. This is played as A, G, A. I decided to make the first two notes of
the mordent 64th notes; thus, each has a duration of 110 milliseconds.

There are also four fermatas in this first measure. These are indicated by semicircles with dots in the middle. The
fermata sign means that the note should be held longer than its notated duration, generally at the player's
discretion. For the fermatas, I decided to increase the note durations by 50 percent.

As you can see, translating even a piece of music seemingly as simple and straightforward as the opening of the D
Minor Toccata is not always so simple and straightforward!

The noteseq structure array contains three numbers for every parallel note and rest in the measure. The duration
of the note is followed by two MIDI key numbers for the parallel octaves. For example, the first note is an A with a
duration of 110 milliseconds. Because middle C has a MIDI key number of 60, the A above middle C has a key
number of 69 and the A an octave higher has a key number of 81. Thus, the first three values in the noteseq array
are 110, 69, and 81. I've used note values of –1 to indicate a rest.

During the WM_CREATE message, BACHTOCC sets a Windows timer for 1000 milliseconds—meaning that the
music will begin in 1 second—and then calls midiOutOpen using the MIDIMAPPER device ID.

BACHTOCC requires only one instrument voice (an organ), so it needs to use only one channel. To simplify the
sending of MIDI messages, I've defined a short function in BACHTOCC called MidiOutMessage . This function
accepts a MIDI output handle, a status byte, a channel number, and two bytes of data. It assembles these
numbers into a packed 32-bit message and calls midiOutShortMsg .

At the end of WM_CREATE processing, BACHTOCC sends a Program Change message to select the "church organ"
voice. In the General MIDI voice assignments, the church organ voice is indicated by a data byte of 19 in the
Program Change message. The actual playing of notes occurs during the WM_TIMER message. A loop handles the

two-note polyphony. If a previous note is still playing, BACHTOCC sends Note Off messages for that note. Then, if
the new note is not a rest, it sends Note On messages to channels 0 and 12. It then resets the Windows timer to
the duration of the note indicated in the noteseq structure.

After the music concludes, BACHTOCC destroys the window. During the WM_DESTROY message, the program calls
midiOutReset and midiOutClose and then terminates the program.

Although BACHTOCC works and the results sound reasonable (if not exactly like a human being playing an organ),
using the Windows timer for playing music in this way simply does not work in the general case. The problem is
that the Windows timer is based on the PC's system clock and the resolution is not good enough for music.
Moreover, the Windows timer is not asynchronous. There can be slight delays getting WM_TIMER messages if
another program is busy doing something. WM_TIMER messages could even be discarded if the program cannot
handle them immediately. This would start sounding like a real mess.

So, while BACHTOCC shows how to call the low-level MIDI output functions, the use of the Windows timer is
clearly inadequate for accurate music reproduction. This is why Windows also includes a supplementary set of
timer functions that you can take advantage of when using the low-level MIDI output functions. These functions
begin with the prefix time , and you can use them to set a timer with a resolution as low as 1 millisecond. I'll show
you how to use these functions in the DRUM program at the end of this chapter.

Playing a MIDI Synthesizer from the PC Keyboard

Since most PC users probably don't have a MIDI keyboard they can attach to their machines, it makes sense to
substitute the keyboard everyone does have (the one with all the letters and numbers on the keys) for a musical
one. Figure 22-12 shows a program called KBMIDI that lets you use the PC keyboard to play an electronic music
synthesizer—either the one on your sound board or an external synthesizer hooked up to the MIDI Out port.
KBMIDI gives you complete control over the MIDI output device (that is, the internal or external synthesizer), the
MIDI channel, and the instrument voice. Besides being fun to use, I've found the program useful for exploring how
Windows implements MIDI support.

Figure 22-12. The KBMIDI Program.

KBMIDI.C

/*---------------------------------------
 KBMIDI.C -- Keyboard MIDI Player
 (c) Charles Petzold, 1998
 ---------------------------------------*/

#include <windows.h>

// Defines for Menu IDs
// --------------------

#define IDM_OPEN 0x100
#define IDM_CLOSE 0x101
#define IDM_DEVICE 0x200
#define IDM_CHANNEL 0x300
#define IDM_VOICE 0x400

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

TCHAR szAppName [] = TEXT ("KBMidi") ;
HMIDIOUT hMidiOut ;
int iDevice = MIDIMAPPER, iChannel = 0, iVoice = 0, iVelocity = 64 ;
int cxCaps, cyChar, xOffset, yOffset ;

 // Structures and data for showing families and instruments on menu
 // --

typedef struct
{
 TCHAR * szInst ;
 int iVoice ;
}
INSTRUMENT ;

typedef struct
{
 TCHAR * szFam ;
 INSTRUMENT inst [8] ;
}
FAMILY ;

FAMILY fam [16] = {

 TEXT ("Piano"),

 TEXT ("Acoustic Grand Piano"), 0,
 TEXT ("Bright Acoustic Piano"), 1,
 TEXT ("Electric Grand Piano"), 2,
 TEXT ("Honky-tonk Piano"), 3,
 TEXT ("Rhodes Piano"), 4,
 TEXT ("Chorused Piano"), 5,
 TEXT ("Harpsichord"), 6,
 TEXT ("Clavinet"), 7,

 TEXT ("Chromatic Percussion"),

 TEXT ("Celesta"), 8,
 TEXT ("Glockenspiel"), 9,
 TEXT ("Music Box"), 10,
 TEXT ("Vibraphone"), 11,
 TEXT ("Marimba"), 12,
 TEXT ("Xylophone"), 13,
 TEXT ("Tubular Bells"), 14,
 TEXT ("Dulcimer"), 15,

 TEXT ("Organ"),

 TEXT ("Hammond Organ"), 16,
 TEXT ("Percussive Organ"), 17,
 TEXT ("Rock Organ"), 18,
 TEXT ("Church Organ"), 19,
 TEXT ("Reed Organ"), 20,
 TEXT ("Accordian"), 21,
 TEXT ("Harmonica"), 22,
 TEXT ("Tango Accordian"), 23,

 TEXT ("Guitar"),

 TEXT ("Acoustic Guitar (nylon)"), 24,
 TEXT ("Acoustic Guitar (steel)"), 25,
 TEXT ("Electric Guitar (jazz)"), 26,
 TEXT ("Electric Guitar (clean)"), 27,
 TEXT ("Electric Guitar (muted)"), 28,
 TEXT ("Overdriven Guitar"), 29,
 TEXT ("Distortion Guitar"), 30,
 TEXT ("Guitar Harmonics"), 31,

 TEXT ("Bass"),

 TEXT ("Acoustic Bass"), 32,
 TEXT ("Electric Bass (finger)"), 33,
 TEXT ("Electric Bass (pick)"), 34,
 TEXT ("Fretless Bass"), 35,
 TEXT ("Slap Bass 1"), 36,
 TEXT ("Slap Bass 2"), 37,
 TEXT ("Synth Bass 1"), 38,
 TEXT ("Synth Bass 2"), 39,

 TEXT ("Strings"),

 TEXT ("Violin"), 40,
 TEXT ("Viola"), 41,
 TEXT ("Cello"), 42,
 TEXT ("Contrabass"), 43,
 TEXT ("Tremolo Strings"), 44,
 TEXT ("Pizzicato Strings"), 45,
 TEXT ("Orchestral Harp"), 46,
 TEXT ("Timpani"), 47,

 TEXT ("Ensemble"),

 TEXT ("String Ensemble 1"), 48,
 TEXT ("String Ensemble 2"), 49,
 TEXT ("Synth Strings 1"), 50,
 TEXT ("Synth Strings 2"), 51,
 TEXT ("Choir Aahs"), 52,
 TEXT ("Voice Oohs"), 53,
 TEXT ("Synth Voice"), 54,
 TEXT ("Orchestra Hit"), 55,

 TEXT ("Brass"),

 TEXT ("Trumpet"), 56,
 TEXT ("Trombone"), 57,
 TEXT ("Tuba"), 58,
 TEXT ("Muted Trumpet"), 59,
 TEXT ("French Horn"), 60,
 TEXT ("Brass Section"), 61,
 TEXT ("Synth Brass 1"), 62,

 TEXT ("Synth Brass 2"), 63,

 TEXT ("Reed"),

 TEXT ("Soprano Sax"), 64,
 TEXT ("Alto Sax"), 65,
 TEXT ("Tenor Sax"), 66,
 TEXT ("Baritone Sax"), 67,
 TEXT ("Oboe"), 68,
 TEXT ("English Horn"), 69,
 TEXT ("Bassoon"), 70,
 TEXT ("Clarinet"), 71,

 TEXT ("Pipe"),

 TEXT ("Piccolo"), 72,
 TEXT ("Flute "), 73,
 TEXT ("Recorder"), 74,
 TEXT ("Pan Flute"), 75,
 TEXT ("Bottle Blow"), 76,
 TEXT ("Shakuhachi"), 77,
 TEXT ("Whistle"), 78,
 TEXT ("Ocarina"), 79,

 TEXT ("Synth Lead"),

 TEXT ("Lead 1 (square)"), 80,
 TEXT ("Lead 2 (sawtooth)"), 81,
 TEXT ("Lead 3 (caliope lead)"), 82,
 TEXT ("Lead 4 (chiff lead)"), 83,
 TEXT ("Lead 5 (charang)"), 84,
 TEXT ("Lead 6 (voice)"), 85,
 TEXT ("Lead 7 (fifths)"), 86,
 TEXT ("Lead 8 (brass + lead)"), 87,

 TEXT ("Synth Pad"),

 TEXT ("Pad 1 (new age)"), 88,
 TEXT ("Pad 2 (warm)"), 89,
 TEXT ("Pad 3 (polysynth)"), 90,
 TEXT ("Pad 4 (choir)"), 91,
 TEXT ("Pad 5 (bowed)"), 92,
 TEXT ("Pad 6 (metallic)"), 93,
 TEXT ("Pad 7 (halo)"), 94,
 TEXT ("Pad 8 (sweep)"), 95,

 TEXT ("Synth Effects"),

 TEXT ("FX 1 (rain)"), 96,
 TEXT ("FX 2 (soundtrack)"), 97,
 TEXT ("FX 3 (crystal)"), 98,
 TEXT ("FX 4 (atmosphere)"), 99,
 TEXT ("FX 5 (brightness)"), 100,

 TEXT ("FX 6 (goblins)"), 101,
 TEXT ("FX 7 (echoes)"), 102,
 TEXT ("FX 8 (sci-fi)"), 103,
 TEXT ("Ethnic"),
 TEXT ("Sitar"), 104,
 TEXT ("Banjo"), 105,
 TEXT ("Shamisen"), 106,
 TEXT ("Koto"), 107,
 TEXT ("Kalimba"), 108,
 TEXT ("Bagpipe"), 109,
 TEXT ("Fiddle"), 110,
 TEXT ("Shanai"), 111,

 TEXT ("Percussive"),

 TEXT ("Tinkle Bell"), 112,
 TEXT ("Agogo"), 113,
 TEXT ("Steel Drums"), 114,
 TEXT ("Woodblock"), 115,
 TEXT ("Taiko Drum"), 116,
 TEXT ("Melodic Tom"), 117,
 TEXT ("Synth Drum"), 118,
 TEXT ("Reverse Cymbal"), 119,

 TEXT ("Sound Effects"),

 TEXT ("Guitar Fret Noise"), 120,
 TEXT ("Breath Noise"), 121,
 TEXT ("Seashore"), 122,
 TEXT ("Bird Tweet"), 123,
 TEXT ("Telephone Ring"), 124,
 TEXT ("Helicopter"), 125,
 TEXT ("Applause"), 126,
 TEXT ("Gunshot"), 127 } ;

 // Data for translating scan codes to octaves and notes
 // --

#define NUMSCANS (sizeof key / sizeof key[0])

struct
{
 int iOctave ;
 int iNote ;
 int yPos ;
 int xPos ;
 TCHAR * szKey ;
}
key [] =
{
 // Scan Char Oct Note
 // ---- ---- --- ----
 -1, -1, -1, -1, NULL, // 0 None

 -1, -1, -1, -1, NULL, // 1 Esc
 -1, -1, 0, 0, TEXT (""), // 2 1
 5, 1, 0, 2, TEXT ("C#"), // 3 2 5 C#
 5, 3, 0, 4, TEXT ("D#"), // 4 3 5 D#
 -1, -1, 0, 6, TEXT (""), // 5 4
 5, 6, 0, 8, TEXT ("F#"), // 6 5 5 F#
 5, 8, 0, 10, TEXT ("G#"), // 7 6 5 G#
 5, 10, 0, 12, TEXT ("A#"), // 8 7 5 A#
 -1, -1, 0, 14, TEXT (""), // 9 8
 6, 1, 0, 16, TEXT ("C#"), // 10 9 6 C#
 6, 3, 0, 18, TEXT ("D#"), // 11 0 6 D#
 -1, -1, 0, 20, TEXT (""), // 12 -
 6, 6, 0, 22, TEXT ("F#"), // 13 = 6 F#
 -1, -1, -1, -1, NULL, // 14 Back

 -1, -1, -1, -1, NULL, // 15 Tab
 5, 0, 1, 1, TEXT ("C"), // 16 q 5 C
 5, 2, 1, 3, TEXT ("D"), // 17 w 5 D
 5, 4, 1, 5, TEXT ("E"), // 18 e 5 E
 5, 5, 1, 7, TEXT ("F"), // 19 r 5 F
 5, 7, 1, 9, TEXT ("G"), // 20 t 5 G
 5, 9, 1, 11, TEXT ("A"), // 21 y 5 A
 5, 11, 1, 13, TEXT ("B"), // 22 u 5 B
 6, 0, 1, 15, TEXT ("C"), // 23 i 6 C
 6, 2, 1, 17, TEXT ("D"), // 24 o 6 D
 6, 4, 1, 19, TEXT ("E"), // 25 p 6 E
 6, 5, 1, 21, TEXT ("F"), // 26 [6 F
 6, 7, 1, 23, TEXT ("G"), // 27] 6 G
 -1, -1, -1, -1, NULL, // 28 Ent

 -1, -1, -1, -1, NULL, // 29 Ctrl
 3, 8, 2, 2, TEXT ("G#"), // 30 a 3 G#
 3, 10, 2, 4, TEXT ("A#"), // 31 s 3 A#
 -1, -1, 2, 6, TEXT (""), // 32 d
 4, 1, 2, 8, TEXT ("C#"), // 33 f 4 C#
 4, 3, 2, 10, TEXT ("D#"), // 34 g 4 D#
 -1, -1, 2, 12, TEXT (""), // 35 h
 4, 6, 2, 14, TEXT ("F#"), // 36 j 4 F#
 4, 8, 2, 16, TEXT ("G#"), // 37 k 4 G#
 4, 10, 2, 18, TEXT ("A#"), // 38 l 4 A#
 -1, -1, 2, 20, TEXT (""), // 39 ;
 5, 1, 2, 22, TEXT ("C#"), // 40 ` 5 C#
 -1, -1, -1, -1, NULL, // 41 `
 -1, -1, -1, -1, NULL, // 42 Shift
 -1, -1, -1, -1, NULL, // 43 \ (not line continuation)
 3, 9, 3, 3, TEXT ("A"), // 44 z 3 A
 3, 11, 3, 5, TEXT ("B"), // 45 x 3 B
 4, 0, 3, 7, TEXT ("C"), // 46 c 4 C
 4, 2, 3, 9, TEXT ("D"), // 47 v 4 D
 4, 4, 3, 11, TEXT ("E"), // 48 b 4 E
 4, 5, 3, 13, TEXT ("F"), // 49 n 4 F
 4, 7, 3, 15, TEXT ("G"), // 50 m 4 G
 4, 9, 3, 17, TEXT ("A"), // 51 , 4 A

 4, 11, 3, 19, TEXT ("B"), // 52 . 4 B
 5, 0, 3, 21, TEXT ("C") // 53 / 5 C
} ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 MSG msg;
 HWND hwnd ;
 WNDCLASS wndclass ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Keyboard MIDI Player"),
 WS_OVERLAPPEDWINDOW | WS_HSCROLL | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 if (!hwnd)
 return 0 ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd);

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

// Create the program's menu (called from WndProc, WM_CREATE)
// --

HMENU CreateTheMenu (int iNumDevs)

{
 TCHAR szBuffer [32] ;
 HMENU hMenu, hMenuPopup, hMenuSubPopup ;
 int i, iFam, iIns ;
 MIDIOUTCAPS moc ;

 hMenu = CreateMenu () ;

 // Create "On/Off" popup menu

 hMenuPopup = CreateMenu () ;

 AppendMenu (hMenuPopup, MF_STRING, IDM_OPEN, TEXT ("&Open")) ;
 AppendMenu (hMenuPopup, MF_STRING | MF_CHECKED, IDM_CLOSE,
 TEXT ("&Closed")) ;

 AppendMenu (hMenu, MF_STRING | MF_POPUP, (UINT) hMenuPopup,
 TEXT ("&Status")) ;

 // Create "Device" popup menu

 hMenuPopup = CreateMenu () ;

 // Put MIDI Mapper on menu if it's installed

 if (!midiOutGetDevCaps (MIDIMAPPER, &moc, sizeof (moc)))
 AppendMenu (hMenuPopup, MF_STRING, IDM_DEVICE + (int) MIDIMAPPER,
 moc.szPname) ;
 else
 iDevice = 0 ;

 // Add the rest of the MIDI devices
 for (i = 0 ; i < iNumDevs ; i++)
 {
 midiOutGetDevCaps (i, &moc, sizeof (moc)) ;
 AppendMenu (hMenuPopup, MF_STRING, IDM_DEVICE + i, moc.szPname) ;
 }

 CheckMenuItem (hMenuPopup, 0, MF_BYPOSITION | MF_CHECKED) ;
 AppendMenu (hMenu, MF_STRING | MF_POPUP, (UINT) hMenuPopup,
 TEXT ("&Device")) ;

 // Create "Channel" popup menu

 hMenuPopup = CreateMenu () ;

 for (i = 0 ; i < 16 ; i++)
 {
 wsprintf (szBuffer, TEXT ("%d"), i + 1) ;
 AppendMenu (hMenuPopup, MF_STRING | (i ? MF_UNCHECKED : MF_CHECKED),
 IDM_CHANNEL + i, szBuffer) ;
 }

 AppendMenu (hMenu, MF_STRING | MF_POPUP, (UINT) hMenuPopup,
 TEXT ("&Channel")) ;

 // Create "Voice" popup menu

 hMenuPopup = CreateMenu () ;

 for (iFam = 0 ; iFam < 16 ; iFam++)
 {
 hMenuSubPopup = CreateMenu () ;

 for (iIns = 0 ; iIns < 8 ; iIns++)
 {
 wsprintf (szBuffer, TEXT ("&%d.\t%s"), iIns + 1,
 fam[iFam].inst[iIns].szInst) ;
 AppendMenu (hMenuSubPopup,
 MF_STRING | (fam[iFam].inst[iIns].iVoice ?
 MF_UNCHECKED : MF_CHECKED),
 fam[iFam].inst[iIns].iVoice + IDM_VOICE,
 szBuffer) ;
 }

 wsprintf (szBuffer, TEXT ("&%c.\t%s"), `A' + iFam,
 fam[iFam].szFam) ;
 AppendMenu (hMenuPopup, MF_STRING | MF_POPUP, (UINT) hMenuSubPopup,
 szBuffer) ;
 }
 AppendMenu (hMenu, MF_STRING | MF_POPUP, (UINT) hMenuPopup,
 TEXT ("&Voice")) ;
 return hMenu ;
}

// Routines for simplifying MIDI output
// ------------------------------------

DWORD MidiOutMessage (HMIDIOUT hMidi, int iStatus, int iChannel,
 int iData1, int iData2)
{
 DWORD dwMessage ;

 dwMessage = iStatus | iChannel | (iData1 << 8) | (iData2 << 16) ;

 return midiOutShortMsg (hMidi, dwMessage) ;
}

DWORD MidiNoteOff (HMIDIOUT hMidi, int iChannel, int iOct, int iNote, int iVel)
{
 return MidiOutMessage (hMidi, 0x080, iChannel, 12 * iOct + iNote, iVel) ;
}

DWORD MidiNoteOn (HMIDIOUT hMidi, int iChannel, int iOct, int iNote, int iVel)
{
 return MidiOutMessage (hMidi, 0x090, iChannel, 12 * iOct + iNote, iVel) ;

}

DWORD MidiSetPatch (HMIDIOUT hMidi, int iChannel, int iVoice)
{
 return MidiOutMessage (hMidi, 0x0C0, iChannel, iVoice, 0) ;
}

DWORD MidiPitchBend (HMIDIOUT hMidi, int iChannel, int iBend)
{
 return MidiOutMessage (hMidi, 0x0E0, iChannel, iBend & 0x7F, iBend >> 7) ;
}

// Draw a single key on window
// ---------------------------

VOID DrawKey (HDC hdc, int iScanCode, BOOL fInvert)
{
 RECT rc ;
 rc.left = 3 * cxCaps * key[iScanCode].xPos / 2 + xOffset ;
 rc.top = 3 * cyChar * key[iScanCode].yPos / 2 + yOffset ;
 rc.right = rc.left + 3 * cxCaps ;
 rc.bottom = rc.top + 3 * cyChar / 2 ;

 SetTextColor (hdc, fInvert ? 0x00FFFFFFul : 0x00000000ul) ;
 SetBkColor (hdc, fInvert ? 0x00000000ul : 0x00FFFFFFul) ;

 FillRect (hdc, &rc, GetStockObject (fInvert ? BLACK_BRUSH : WHITE_BRUSH)) ;

 DrawText (hdc, key[iScanCode].szKey, -1, &rc,
 DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

 FrameRect (hdc, &rc, GetStockObject (BLACK_BRUSH)) ;
}

// Process a Key Up or Key Down message
// ------------------------------------

VOID ProcessKey (HDC hdc, UINT message, LPARAM lParam)
{
 int iScanCode, iOctave, iNote ;

 iScanCode = 0x0FF & HIWORD (lParam) ;

 if (iScanCode >= NUMSCANS) // No scan codes over 53
 return ;

 if ((iOctave = key[iScanCode].iOctave) == -1) // Non-music key
 return ;

 if (GetKeyState (VK_SHIFT) < 0)
 iOctave += 0x20000000 & lParam ? 2 : 1 ;

 if (GetKeyState (VK_CONTROL) < 0)

 iOctave -= 0x20000000 & lParam ? 2 : 1 ;

 iNote = key[iScanCode].iNote ;

 if (message == WM_KEYUP) // For key up
 {
 MidiNoteOff (hMidiOut, iChannel, iOctave, iNote, 0) ; // Note off
 DrawKey (hdc, iScanCode, FALSE) ;
 return ;
 }

 if (0x40000000 & lParam) // ignore typematics
 return ;

 MidiNoteOn (hMidiOut, iChannel, iOctave, iNote, iVelocity) ; // Note on
 DrawKey (hdc, iScanCode, TRUE) ; // Draw the inverted key
}

// Window Procedure
// ----------------

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bOpened = FALSE ;
 HDC hdc ;
 HMENU hMenu ;
 int i, iNumDevs, iPitchBend, cxClient, cyClient ;
 MIDIOUTCAPS moc ;
 PAINTSTRUCT ps ;
 SIZE size ;
 TCHAR szBuffer [16] ;

 switch (message)
 {
 case WM_CREATE:
 // Get size of capital letters in system font

 hdc = GetDC (hwnd) ;

 GetTextExtentPoint (hdc, TEXT ("M"), 1, &size) ;
 cxCaps = size.cx ;
 cyChar = size.cy ;

 ReleaseDC (hwnd, hdc) ;

 // Initialize "Volume" scroll bar

 SetScrollRange (hwnd, SB_HORZ, 1, 127, FALSE) ;
 SetScrollPos (hwnd, SB_HORZ, iVelocity, TRUE) ;

 // Initialize "Pitch Bend" scroll bar

 SetScrollRange (hwnd, SB_VERT, 0, 16383, FALSE) ;

 SetScrollPos (hwnd, SB_VERT, 8192, TRUE) ;

 // Get number of MIDI output devices and set up menu

 if (0 == (iNumDevs = midiOutGetNumDevs ()))
 {
 MessageBeep (MB_ICONSTOP) ;
 MessageBox (hwnd, TEXT ("No MIDI output devices!"),
 szAppName, MB_OK | MB_ICONSTOP) ;
 return -1 ;
 }
 SetMenu (hwnd, CreateTheMenu (iNumDevs)) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 xOffset = (cxClient - 25 * 3 * cxCaps / 2) / 2 ;
 yOffset = (cyClient - 11 * cyChar) / 2 + 5 * cyChar ;
 return 0 ;

 case WM_COMMAND:
 hMenu = GetMenu (hwnd) ;

 // "Open" menu command

 if (LOWORD (wParam) == IDM_OPEN && !bOpened)
 {
 if (midiOutOpen (&hMidiOut, iDevice, 0, 0, 0))
 {
 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, TEXT ("Cannot open MIDI device"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 }
 else
 {
 CheckMenuItem (hMenu, IDM_OPEN, MF_CHECKED) ;
 CheckMenuItem (hMenu, IDM_CLOSE, MF_UNCHECKED) ;

 MidiSetPatch (hMidiOut, iChannel, iVoice) ;
 bOpened = TRUE ;
 }
 }

 // "Close" menu command

 else if (LOWORD (wParam) == IDM_CLOSE && bOpened)
 {
 CheckMenuItem (hMenu, IDM_OPEN, MF_UNCHECKED) ;
 CheckMenuItem (hMenu, IDM_CLOSE, MF_CHECKED) ;

 // Turn all keys off and close device

 for (i = 0 ; i < 16 ; i++)
 MidiOutMessage (hMidiOut, 0xB0, i, 123, 0) ;

 midiOutClose (hMidiOut) ;
 bOpened = FALSE ;
 }

 // Change MIDI "Device" menu command

 else if (LOWORD (wParam) >= IDM_DEVICE - 1 &&
 LOWORD (wParam) < IDM_CHANNEL)
 {
 CheckMenuItem (hMenu, IDM_DEVICE + iDevice, MF_UNCHECKED) ;
 iDevice = LOWORD (wParam) - IDM_DEVICE ;
 CheckMenuItem (hMenu, IDM_DEVICE + iDevice, MF_CHECKED) ;

 // Close and reopen MIDI device

 if (bOpened)
 {
 SendMessage (hwnd, WM_COMMAND, IDM_CLOSE, 0L) ;
 SendMessage (hwnd, WM_COMMAND, IDM_OPEN, 0L) ;
 }
 }

 // Change MIDI "Channel" menu command

 else if (LOWORD (wParam) >= IDM_CHANNEL &&
 LOWORD (wParam) < IDM_VOICE)
 {
 CheckMenuItem (hMenu, IDM_CHANNEL + iChannel, MF_UNCHECKED);
 iChannel = LOWORD (wParam) - IDM_CHANNEL ;
 CheckMenuItem (hMenu, IDM_CHANNEL + iChannel, MF_CHECKED) ;

 if (bOpened)
 MidiSetPatch (hMidiOut, iChannel, iVoice) ;
 }

 // Change MIDI "Voice" menu command

 else if (LOWORD (wParam) >= IDM_VOICE)
 {
 CheckMenuItem (hMenu, IDM_VOICE + iVoice, MF_UNCHECKED) ;
 iVoice = LOWORD (wParam) - IDM_VOICE ;
 CheckMenuItem (hMenu, IDM_VOICE + iVoice, MF_CHECKED) ;

 if (bOpened)
 MidiSetPatch (hMidiOut, iChannel, iVoice) ;
 }

 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 // Process a Key Up or Key Down message

 case WM_KEYUP:
 case WM_KEYDOWN:
 hdc = GetDC (hwnd) ;

 if (bOpened)
 ProcessKey (hdc, message, lParam) ;

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 // For Escape, turn off all notes and repaint

 case WM_CHAR:
 if (bOpened && wParam == 27)
 {
 for (i = 0 ; i < 16 ; i++)
 MidiOutMessage (hMidiOut, 0xB0, i, 123, 0) ;

 InvalidateRect (hwnd, NULL, TRUE) ;
 }
 return 0 ;

 // Horizontal scroll: Velocity

 case WM_HSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_LINEUP: iVelocity -= 1 ; break ;
 case SB_LINEDOWN: iVelocity += 1 ; break ;
 case SB_PAGEUP: iVelocity -= 8 ; break ;
 case SB_PAGEDOWN: iVelocity += 8 ; break ;
 case SB_THUMBPOSITION: iVelocity = HIWORD (wParam) ; break ;
 default: return 0 ;
 }
 iVelocity = max (1, min (iVelocity, 127)) ;
 SetScrollPos (hwnd, SB_HORZ, iVelocity, TRUE) ;
 return 0 ;

 // Vertical scroll: Pitch Bend

 case WM_VSCROLL:
 switch (LOWORD (wParam))
 {
 case SB_THUMBTRACK: iPitchBend = 16383 - HIWORD (wParam) ; break ;
 case SB_THUMBPOSITION: iPitchBend = 8191 ; break ;
 default: return 0 ;
 }
 iPitchBend = max (0, min (iPitchBend, 16383)) ;
 SetScrollPos (hwnd, SB_VERT, 16383 - iPitchBend, TRUE) ;

 if (bOpened)
 MidiPitchBend (hMidiOut, iChannel, iPitchBend) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 for (i = 0 ; i < NUMSCANS ; i++)
 if (key[i].xPos != -1)
 DrawKey (hdc, i, FALSE) ;

 midiOutGetDevCaps (iDevice, &moc, sizeof (MIDIOUTCAPS)) ;
 wsprintf (szBuffer, TEXT ("Channel %i"), iChannel + 1) ;

 TextOut (hdc, cxCaps, 1 * cyChar,
 bOpened ? TEXT ("Open") : TEXT ("Closed"),
 bOpened ? 4 : 6) ;
 TextOut (hdc, cxCaps, 2 * cyChar, moc.szPname,
 lstrlen (moc.szPname)) ;
 TextOut (hdc, cxCaps, 3 * cyChar, szBuffer, lstrlen (szBuffer)) ;
 TextOut (hdc, cxCaps, 4 * cyChar,
 fam[iVoice / 8].inst[iVoice % 8].szInst,
 lstrlen (fam[iVoice / 8].inst[iVoice % 8].szInst)) ;

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY :
 SendMessage (hwnd, WM_COMMAND, IDM_CLOSE, 0L) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

When you run KBMIDI, the window shows how the keys of the keyboard correspond to the keys of a traditional
piano or organ. The Z key at the lower left corner plays an A at 110 Hz. Moving across the bottom row of the
keyboard, you reach middle C at the right, with the sharps and flats on the second-to-bottom row. The top two
rows continue the scale, from middle C to G#. Thus, the range is 3 octaves. Pressing the Ctrl key drops the entire
range by 1 octave, and pressing the Shift key raises it by 1 octave, giving an effective range of 5 octaves.

If you start trying to play immediately, however, you won't hear anything. You first must select Open from the
Status menu. This will open a MIDI output device. If the port is successfully opened, pressing a key will send a
MIDI Note On message to the synthesizer. Releasing the key generates a Note Off message. Depending on the
rollover characteristics of your keyboard, you might be able to play several notes at once.

Select Close from the Status menu to close the MIDI device. This is handy if you want to run some other MIDI
software under Windows without terminating the KBMIDI program.

The Device menu lists the installed MIDI output devices. These are obtained from the midiOutGetDevCaps
function. One of these will probably be a MIDI Out port to an external synthesizer that might or might not be
present. The list also includes the MIDI Mapper device. This is the MIDI synthesizer selected in the Multimedia
applet of the Control Panel.

The Channel menu lets you select a MIDI channel from 1 through 16. By default, channel 1 is selected. All MIDI
messages that the KBMIDI program generates are sent on the selected channel.

The final menu on KBMIDI is labeled Voice. This is a double-nested menu from which you can select one of the
128 instrument voices defined by the General MIDI specification and implemented in Windows. The 128
instrument voices are divided into 16 instrument families with 8 instruments each. These 128 instrument voices
are called the melodic voices because different MIDI key numbers correspond to different pitches.

General MIDI also defines a wide range of nonmelodic percussion instruments. To play the percussion
instruments, use the Channel menu to select channel 10. Also select the first instrument voice (Acoustic Grand
Piano) from the Voice menu. After you do this, each key plays a different percussion sound. There are 47 different
percussion sounds, from MIDI key number 35 (the B two octaves below middle C) to 81 (the A nearly two octaves
above middle C). We'll take advantage of the percussion channel in the DRUM program coming up.

The KBMIDI program has horizontal and vertical scroll bars. Because a PC keyboard is not velocity-sensitive, the
horizontal scroll bar controls the note velocity. Generally, this corresponds to the volume of the notes that you
play. After setting the horizontal scroll bar, all Note On messages will use that velocity.

The vertical scroll bar generates a MIDI message known as "Pitch Bend." To use this feature, press down one or
more keys and manipulate the vertical scroll bar thumb with the mouse. As you raise the scroll bar thumb, the
frequency of the note increases, and as you lower it, the frequency decreases. Releasing the scroll bar returns the
pitch to normal.

These two scroll bars can be tricky to use: As you manipulate a scroll bar, keyboard messages do not come
through the program's message loop. Therefore, if you press a key and begin manipulating one of the scroll bars
with the mouse and then release the key before finishing with the scroll bar, the note will continue to sound. Thus,
you shouldn't press or release any keys during the time you're manipulating the scroll bars. A similar rule applies
to the menu—do not try to select anything from the menu while a key is depressed. Also, do not change the
octave shift using the Ctrl or Shift keys between the time you press a key and release it.

If one or more notes get "stuck" and continue to sound after being released, press the Esc key. This stops the
sounds by sending 16 "All Notes Off" messages to the 16 channels of the MIDI synthesizer.

KBMIDI does not have a resource script and instead creates its own menu from scratch. The device names are
obtained from the midiOutGetDevCaps function, and the instrument voice families and names are stored in the
program in a large data structure.

KBMIDI has a few short functions for simplifying the MIDI messages. I've discussed these messages previously,
except for the Pitch Bend message. This message uses two 7-bit values that comprise a 14-bit pitch-bend level.
Values between 0 and 0x1FFF lower the pitch, and values between 0x2001 and 0x3FFF raise the pitch.

When you select Open from the Status menu, KBMIDI calls midiOutOpen for the selected device and, if successful,
calls its MidiSetPatch function. When changing a device, KBMIDI must close the previous device, if necessary, and
then reopen the new device. KBMIDI must also call MidiSetPatch when you change the MIDI device, the MIDI
channel, or the instrument voice.

KBMIDI processes WM_KEYUP and WM_KEYDOWN messages to turn notes on and off. A data structure within
KBMIDI maps keyboard scan codes to octaves and notes. For example, the Z key on an American English
keyboard has a scan code of 44, and the structure identifies this as octave 3 and note 9—an A. In the MidiNoteOn
function in KBMIDI, these are combined to form a MIDI key number of 45 (12 times 3, plus 9). This same data
structure is used for drawing the keys on the window: each key has a particular horizontal and vertical position
and a text string shown inside the rectangle.

Horizontal scroll bar processing is straightforward: all that need be done is store the new velocity level and set the
new scroll bar position. Vertical scroll bar processing to control pitch bend is a little unusual, however. The only
scroll bar commands it processes are SB_THUMBTRACK, which occurs when you manipulate the scroll bar thumb
with the mouse, and SB_THUMBPOSITION, activated when you release the thumb. On an SB_THUMBPOSITION
command, KBMIDI sets the scroll bar position to its middle level and calls MidiPitchBend with a value of 8192.

A MIDI Drum Machine

Some percussion instruments, such as a xylophone or timpani, are termed "melodic" or "chromatic" because they
can play tones in different pitches. A xylophone has wooden blocks corresponding to different pitches, and timpani
can be tuned. These two instruments, as well as several other melodic percussion instruments, can be selected
from the Voice menu in KBMIDI.

However, many other percussion instruments are nonmelodic. They cannot be tuned and usually contain too much
noise to be associated with a particular pitch. In the General MIDI specification, these nonmelodic percussion
voices are available through channel 10. Different key numbers correspond to 47 different percussion instruments.

The DRUM program shown in Figure 22-13 is a computer drum machine. This program lets you construct a
sequence of up to 32 notes using 47 different percussion sounds. The program plays the sequence repetitively at a
selectable tempo and volume.

Figure 22-13. The DRUM Program.

DRUM.C

/*-------------------------------------
 DRUM.C -- MIDI Drum Machine
 (c) Charles Petzold, 1998
 -------------------------------------*/

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "drumtime.h"
#include "drumfile.h"
#include "resource.h"

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK AboutProc (HWND, UINT, WPARAM, LPARAM) ;

void DrawRectangle (HDC, int, int, DWORD *, DWORD *) ;
void ErrorMessage (HWND, TCHAR *, TCHAR *) ;
void DoCaption (HWND, TCHAR *) ;
int AskAboutSave (HWND, TCHAR *) ;

TCHAR * szPerc [NUM_PERC] =
{
 TEXT ("Acoustic Bass Drum"), TEXT ("Bass Drum 1"),
 TEXT ("Side Stick"), TEXT ("Acoustic Snare"),
 TEXT ("Hand Clap"), TEXT ("Electric Snare"),
 TEXT ("Low Floor Tom"), TEXT ("Closed High Hat"),
 TEXT ("High Floor Tom"), TEXT ("Pedal High Hat"),
 TEXT ("Low Tom"), TEXT ("Open High Hat"),
 TEXT ("Low-Mid Tom"), TEXT ("High-Mid Tom"),
 TEXT ("Crash Cymbal 1"), TEXT ("High Tom"),
 TEXT ("Ride Cymbal 1"), TEXT ("Chinese Cymbal"),
 TEXT ("Ride Bell"), TEXT ("Tambourine"),
 TEXT ("Splash Cymbal"), TEXT ("Cowbell"),
 TEXT ("Crash Cymbal 2"), TEXT ("Vibraslap"),
 TEXT ("Ride Cymbal 2"), TEXT ("High Bongo"),
 TEXT ("Low Bongo"), TEXT ("Mute High Conga"),
 TEXT ("Open High Conga"), TEXT ("Low Conga"),
 TEXT ("High Timbale"), TEXT ("Low Timbale"),
 TEXT ("High Agogo"), TEXT ("Low Agogo"),
 TEXT ("Cabasa"), TEXT ("Maracas"),
 TEXT ("Short Whistle"), TEXT ("Long Whistle"),
 TEXT ("Short Guiro"), TEXT ("Long Guiro"),

 TEXT ("Claves"), TEXT ("High Wood Block"),
 TEXT ("Low Wood Block"), TEXT ("Mute Cuica"),
 TEXT ("Open Cuica"), TEXT ("Mute Triangle"),
 TEXT ("Open Triangle")
} ;

TCHAR szAppName [] = TEXT ("Drum") ;
TCHAR szUntitled [] = TEXT ("(Untitled)") ;
TCHAR szBuffer [80 + MAX_PATH] ;
HANDLE hInst ;
int cxChar, cyChar ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (hInstance, szAppName) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = szAppName ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, NULL,
 WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU |
 WS_MINIMIZEBOX | WS_HSCROLL | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, szCmdLine) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;

 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static BOOL bNeedSave ;
 static DRUM drum ;
 static HMENU hMenu ;
 static int iTempo = 50, iIndexLast ;
 static TCHAR szFileName [MAX_PATH], szTitleName [MAX_PATH] ;
 HDC hdc ;
 int i, x, y ;
 PAINTSTRUCT ps ;
 POINT point ;
 RECT rect ;
 TCHAR * szError ;

 switch (message)
 {
 case WM_CREATE:
 // Initialize DRUM structure

 drum.iMsecPerBeat = 100 ;
 drum.iVelocity = 64 ;
 drum.iNumBeats = 32 ;

 DrumSetParams (&drum) ;

 // Other initialization

 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;

 GetWindowRect (hwnd, &rect) ;
 MoveWindow (hwnd, rect.left, rect.top,
 77 * cxChar, 29 * cyChar, FALSE) ;

 hMenu = GetMenu (hwnd) ;

 // Initialize "Volume" scroll bar

 SetScrollRange (hwnd, SB_HORZ, 1, 127, FALSE) ;
 SetScrollPos (hwnd, SB_HORZ, drum.iVelocity, TRUE) ;

 // Initialize "Tempo" scroll bar

 SetScrollRange (hwnd, SB_VERT, 0, 100, FALSE) ;
 SetScrollPos (hwnd, SB_VERT, iTempo, TRUE) ;

 DoCaption (hwnd, szTitleName) ;
 return 0 ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDM_FILE_NEW:
 if (bNeedSave && IDCANCEL == AskAboutSave (hwnd, szTitleName))
 return 0 ;

 // Clear drum pattern

 for (i = 0 ; i < NUM_PERC ; i++)
 {
 drum.dwSeqPerc [i] = 0 ;
 drum.dwSeqPian [i] = 0 ;
 }

 InvalidateRect (hwnd, NULL, FALSE) ;
 DrumSetParams (&drum) ;
 bNeedSave = FALSE ;
 return 0 ;

 case IDM_FILE_OPEN:
 // Save previous file

 if (bNeedSave && IDCANCEL ==
 AskAboutSave (hwnd, szTitleName))
 return 0 ;

 // Open the selected file

 if (DrumFileOpenDlg (hwnd, szFileName, szTitleName))
 {
 szError = DrumFileRead (&drum, szFileName) ;

 if (szError != NULL)
 {
 ErrorMessage (hwnd, szError, szTitleName) ;
 szTitleName [0] = `\0' ;
 }
 else
 {
 // Set new parameters

 iTempo = (int) (50 *
 (log10 (drum.iMsecPerBeat) - 1)) ;

 SetScrollPos (hwnd, SB_VERT, iTempo, TRUE) ;
 SetScrollPos (hwnd, SB_HORZ, drum.iVelocity, TRUE) ;

 DrumSetParams (&drum) ;
 InvalidateRect (hwnd, NULL, FALSE) ;
 bNeedSave = FALSE ;
 }

 DoCaption (hwnd, szTitleName) ;
 }
 return 0 ;

 case IDM_FILE_SAVE:
 case IDM_FILE_SAVE_AS:
 // Save the selected file

 if ((LOWORD (wParam) == IDM_FILE_SAVE && szTitleName [0]) ||
 DrumFileSaveDlg (hwnd, szFileName, szTitleName))
 {
 szError = DrumFileWrite (&drum, szFileName) ;

 if (szError != NULL)
 {
 ErrorMessage (hwnd, szError, szTitleName) ;
 szTitleName [0] = `\0' ;
 }
 else
 bNeedSave = FALSE ;

 DoCaption (hwnd, szTitleName) ;
 }
 return 0 ;

 case IDM_APP_EXIT:
 SendMessage (hwnd, WM_SYSCOMMAND, SC_CLOSE, 0L) ;
 return 0 ;

 case IDM_SEQUENCE_RUNNING:
 // Begin sequence

 if (!DrumBeginSequence (hwnd))
 {
 ErrorMessage (hwnd,
 TEXT ("Could not start MIDI sequence -- ")
 TEXT ("MIDI Mapper device is unavailable!"),
 szTitleName) ;
 }
 else
 {
 CheckMenuItem (hMenu, IDM_SEQUENCE_RUNNING, MF_CHECKED) ;
 CheckMenuItem (hMenu, IDM_SEQUENCE_STOPPED, MF_UNCHECKED) ;
 }
 return 0 ;

 case IDM_SEQUENCE_STOPPED:
 // Finish at end of sequence

 DrumEndSequence (FALSE) ;
 return 0 ;

 case IDM_APP_ABOUT:

 DialogBox (hInst, TEXT ("AboutBox"), hwnd, AboutProc) ;
 return 0 ;
 }
 return 0 ;

 case WM_LBUTTONDOWN:
 case WM_RBUTTONDOWN:
 hdc = GetDC (hwnd) ;

 // Convert mouse coordinates to grid coordinates

 x = LOWORD (lParam) / cxChar - 40 ;
 y = 2 * HIWORD (lParam) / cyChar - 2 ;
 // Set a new number of beats of sequence

 if (x > 0 && x <= 32 && y < 0)
 {
 SetTextColor (hdc, RGB (255, 255, 255)) ;
 TextOut (hdc, (40 + drum.iNumBeats) * cxChar, 0, TEXT (":|"), 2);
 SetTextColor (hdc, RGB (0, 0, 0)) ;

 if (drum.iNumBeats % 4 == 0)
 TextOut (hdc, (40 + drum.iNumBeats) * cxChar, 0,
 TEXT ("."), 1) ;

 drum.iNumBeats = x ;

 TextOut (hdc, (40 + drum.iNumBeats) * cxChar, 0, TEXT (":|"), 2);

 bNeedSave = TRUE ;
 }

 // Set or reset a percussion instrument beat

 if (x >= 0 && x < 32 && y >= 0 && y < NUM_PERC)
 {
 if (message == WM_LBUTTONDOWN)
 drum.dwSeqPerc[y] ^= (1 << x) ;
 else
 drum.dwSeqPian[y] ^= (1 << x) ;

 DrawRectangle (hdc, x, y, drum.dwSeqPerc, drum.dwSeqPian) ;

 bNeedSave = TRUE ;
 }

 ReleaseDC (hwnd, hdc) ;
 DrumSetParams (&drum) ;
 return 0 ;

 case WM_HSCROLL:
 // Change the note velocity

 switch (LOWORD (wParam))
 {
 case SB_LINEUP: drum.iVelocity -= 1 ; break ;
 case SB_LINEDOWN: drum.iVelocity += 1 ; break ;
 case SB_PAGEUP: drum.iVelocity -= 8 ; break ;
 case SB_PAGEDOWN: drum.iVelocity += 8 ; break ;
 case SB_THUMBPOSITION:
 drum.iVelocity = HIWORD (wParam) ;
 break ;

 default:
 return 0 ;
 }

 drum.iVelocity = max (1, min (drum.iVelocity, 127)) ;
 SetScrollPos (hwnd, SB_HORZ, drum.iVelocity, TRUE) ;
 DrumSetParams (&drum) ;
 bNeedSave = TRUE ;
 return 0 ;

 case WM_VSCROLL:
 // Change the tempo

 switch (LOWORD (wParam))
 {
 case SB_LINEUP: iTempo -= 1 ; break ;
 case SB_LINEDOWN: iTempo += 1 ; break ;
 case SB_PAGEUP: iTempo -= 10 ; break ;
 case SB_PAGEDOWN: iTempo += 10 ; break ;
 case SB_THUMBPOSITION:
 iTempo = HIWORD (wParam) ;
 break ;

 default:
 return 0 ;
 }

 iTempo = max (0, min (iTempo, 100)) ;
 SetScrollPos (hwnd, SB_VERT, iTempo, TRUE) ;

 drum.iMsecPerBeat = (WORD) (10 * pow (100, iTempo / 100.0)) ;

 DrumSetParams (&drum) ;
 bNeedSave = TRUE ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;

 SetTextAlign (hdc, TA_UPDATECP) ;
 SetBkMode (hdc, TRANSPARENT) ;

 // Draw the text strings and horizontal lines

 for (i = 0 ; i < NUM_PERC ; i++)
 {
 MoveToEx (hdc, i & 1 ? 20 * cxChar : cxChar,
 (2 * i + 3) * cyChar / 4, NULL) ;

 TextOut (hdc, 0, 0, szPerc [i], lstrlen (szPerc [i])) ;

 GetCurrentPositionEx (hdc, &point) ;

 MoveToEx (hdc, point.x + cxChar, point.y + cyChar / 2, NULL) ;
 LineTo (hdc, 39 * cxChar, point.y + cyChar / 2) ;
 }

 SetTextAlign (hdc, 0) ;

 // Draw rectangular grid, repeat mark, and beat marks

 for (x = 0 ; x < 32 ; x++)
 {
 for (y = 0 ; y < NUM_PERC ; y++)
 DrawRectangle (hdc, x, y, drum.dwSeqPerc, drum.dwSeqPian) ;

 SetTextColor (hdc, x == drum.iNumBeats - 1 ?
 RGB (0, 0, 0) : RGB (255, 255, 255)) ;

 TextOut (hdc, (41 + x) * cxChar, 0, TEXT (":|"), 2) ;

 SetTextColor (hdc, RGB (0, 0, 0)) ;

 if (x % 4 == 0)
 TextOut (hdc, (40 + x) * cxChar, 0, TEXT ("."), 1) ;
 }

 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_USER_NOTIFY:
 // Draw the "bouncing ball"

 hdc = GetDC (hwnd) ;

 SelectObject (hdc, GetStockObject (NULL_PEN)) ;
 SelectObject (hdc, GetStockObject (WHITE_BRUSH)) ;

 for (i = 0 ; i < 2 ; i++)
 {
 x = iIndexLast ;
 y = NUM_PERC + 1 ;

 Ellipse (hdc, (x + 40) * cxChar, (2 * y + 3) * cyChar / 4,
 (x + 41) * cxChar, (2 * y + 5) * cyChar / 4);

 iIndexLast = wParam ;

 SelectObject (hdc, GetStockObject (BLACK_BRUSH)) ;
 }

 ReleaseDC (hwnd, hdc) ;
 return 0 ;

 case WM_USER_ERROR:
 ErrorMessage (hwnd, TEXT ("Can't set timer event for tempo"),
 szTitleName) ;

 // fall through
 case WM_USER_FINISHED:
 DrumEndSequence (TRUE) ;
 CheckMenuItem (hMenu, IDM_SEQUENCE_RUNNING, MF_UNCHECKED) ;
 CheckMenuItem (hMenu, IDM_SEQUENCE_STOPPED, MF_CHECKED) ;
 return 0 ;

 case WM_CLOSE:
 if (!bNeedSave || IDCANCEL != AskAboutSave (hwnd, szTitleName))
 DestroyWindow (hwnd) ;

 return 0 ;

 case WM_QUERYENDSESSION:
 if (!bNeedSave || IDCANCEL != AskAboutSave (hwnd, szTitleName))
 return 1L ;

 return 0 ;

 case WM_DESTROY:
 DrumEndSequence (TRUE) ;
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK AboutProc (HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_INITDIALOG:
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDOK:
 EndDialog (hDlg, 0) ;
 return TRUE ;
 }
 break ;
 }

 return FALSE ;
}

void DrawRectangle (HDC hdc, int x, int y, DWORD * dwSeqPerc, DWORD * dwSeqPian)
{
 int iBrush ;

 if (dwSeqPerc [y] & dwSeqPian [y] & (1L << x))
 iBrush = BLACK_BRUSH ;

 else if (dwSeqPerc [y] & (1L << x))
 iBrush = DKGRAY_BRUSH ;

 else if (dwSeqPian [y] & (1L << x))
 iBrush = LTGRAY_BRUSH ;

 else
 iBrush = WHITE_BRUSH ;

 SelectObject (hdc, GetStockObject (iBrush)) ;

 Rectangle (hdc, (x + 40) * cxChar , (2 * y + 4) * cyChar / 4,
 (x + 41) * cxChar + 1, (2 * y + 6) * cyChar / 4 + 1) ;
}

void ErrorMessage (HWND hwnd, TCHAR * szError, TCHAR * szTitleName)
{
 wsprintf (szBuffer, szError,
 (LPSTR) (szTitleName [0] ? szTitleName : szUntitled)) ;

 MessageBeep (MB_ICONEXCLAMATION) ;
 MessageBox (hwnd, szBuffer, szAppName, MB_OK | MB_ICONEXCLAMATION) ;
}

void DoCaption (HWND hwnd, TCHAR * szTitleName)
{
 wsprintf (szBuffer, TEXT ("MIDI Drum Machine - %s"),
 (LPSTR) (szTitleName [0] ? szTitleName : szUntitled)) ;

 SetWindowText (hwnd, szBuffer) ;
}

int AskAboutSave (HWND hwnd, TCHAR * szTitleName)
{
 int iReturn ;

 wsprintf (szBuffer, TEXT ("Save current changes in %s?"),
 (LPSTR) (szTitleName [0] ? szTitleName : szUntitled)) ;

 iReturn = MessageBox (hwnd, szBuffer, szAppName,
 MB_YESNOCANCEL | MB_ICONQUESTION) ;

 if (iReturn == IDYES)

 if (!SendMessage (hwnd, WM_COMMAND, IDM_FILE_SAVE, 0))
 iReturn = IDCANCEL ;

 return iReturn ;
}

DRUMTIME.H

/*--
 DRUMTIME.H Header File for Time Functions for DRUM Program
 --*/

#define NUM_PERC 47
#define WM_USER_NOTIFY (WM_USER + 1)
#define WM_USER_FINISHED (WM_USER + 2)
#define WM_USER_ERROR (WM_USER + 3)

#pragma pack(push, 2)

typedef struct
{
 short iMsecPerBeat ;
 short iVelocity ;
 short iNumBeats ;
 DWORD dwSeqPerc [NUM_PERC] ;
 DWORD dwSeqPian [NUM_PERC] ;
}
DRUM, * PDRUM ;

#pragma pack(pop)

void DrumSetParams (PDRUM) ;
BOOL DrumBeginSequence (HWND) ;
void DrumEndSequence (BOOL) ;

DRUMTIME.C

/*---
 DRUMFILE.C -- Timer Routines for DRUM
 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "drumtime.h"

#define minmax(a,x,b) (min (max (x, a), b))

#define TIMER_RES 5

void CALLBACK DrumTimerFunc (UINT, UINT, DWORD, DWORD, DWORD) ;

BOOL bSequenceGoing, bEndSequence ;
DRUM drum ;
HMIDIOUT hMidiOut ;
HWND hwndNotify ;
int iIndex ;
UINT uTimerRes, uTimerID ;

DWORD MidiOutMessage (HMIDIOUT hMidi, int iStatus, int iChannel,
 int iData1, int iData2)
{
 DWORD dwMessage ;

 dwMessage = iStatus | iChannel | (iData1 << 8) | (iData2 << 16) ;

 return midiOutShortMsg (hMidi, dwMessage) ;
}

void DrumSetParams (PDRUM pdrum)
{
 CopyMemory (&drum, pdrum, sizeof (DRUM)) ;
}

BOOL DrumBeginSequence (HWND hwnd)
{
 TIMECAPS tc ;

 hwndNotify = hwnd ; // Save window handle for notification
 DrumEndSequence (TRUE) ; // Stop current sequence if running

 // Open the MIDI Mapper output port

 if (midiOutOpen (&hMidiOut, MIDIMAPPER, 0, 0, 0))
 return FALSE ;

 // Send Program Change messages for channels 9 and 0

 MidiOutMessage (hMidiOut, 0xC0, 9, 0, 0) ;
 MidiOutMessage (hMidiOut, 0xC0, 0, 0, 0) ;

 // Begin sequence by setting a timer event

 timeGetDevCaps (&tc, sizeof (TIMECAPS)) ;
 uTimerRes = minmax (tc.wPeriodMin, TIMER_RES, tc.wPeriodMax) ;
 timeBeginPeriod (uTimerRes) ;

 uTimerID = timeSetEvent (max ((UINT) uTimerRes, (UINT) drum.iMsecPerBeat),
 uTimerRes, DrumTimerFunc, 0, TIME_ONESHOT) ;

 if (uTimerID == 0)
 {
 timeEndPeriod (uTimerRes) ;
 midiOutClose (hMidiOut) ;
 return FALSE ;
 }

 iIndex = -1 ;
 bEndSequence = FALSE ;
 bSequenceGoing = TRUE ;

 return TRUE ;
}

void DrumEndSequence (BOOL bRightAway)
{
 if (bRightAway)
 {
 if (bSequenceGoing)

 {
 // stop the timer
 if (uTimerID)
 timeKillEvent (uTimerID) ;
 timeEndPeriod (uTimerRes) ;

 // turn off all notes
 MidiOutMessage (hMidiOut, 0xB0, 9, 123, 0) ;
 MidiOutMessage (hMidiOut, 0xB0, 0, 123, 0) ;

 // close the MIDI port
 midiOutClose (hMidiOut) ;
 bSequenceGoing = FALSE ;
 }
 }
 else
 bEndSequence = TRUE ;
}

void CALLBACK DrumTimerFunc (UINT uID, UINT uMsg, DWORD dwUser,
 DWORD dw1, DWORD dw2)
{
 static DWORD dwSeqPercLast [NUM_PERC], dwSeqPianLast [NUM_PERC] ;
 int i ;

 // Note Off messages for channels 9 and 0

 if (iIndex != -1)
 {
 for (i = 0 ; i < NUM_PERC ; i++)
 {
 if (dwSeqPercLast[i] & 1 << iIndex)

 MidiOutMessage (hMidiOut, 0x80, 9, i + 35, 0) ;

 if (dwSeqPianLast[i] & 1 << iIndex)
 MidiOutMessage (hMidiOut, 0x80, 0, i + 35, 0) ;
 }
 }

 // Increment index and notify window to advance bouncing ball

 iIndex = (iIndex + 1) % drum.iNumBeats ;
 PostMessage (hwndNotify, WM_USER_NOTIFY, iIndex, timeGetTime ()) ;

 // Check if ending the sequence

 if (bEndSequence && iIndex == 0)
 {
 PostMessage (hwndNotify, WM_USER_FINISHED, 0, 0L) ;
 return ;
 }

 // Note On messages for channels 9 and 0

 for (i = 0 ; i < NUM_PERC ; i++)
 {
 if (drum.dwSeqPerc[i] & 1 << iIndex)
 MidiOutMessage (hMidiOut, 0x90, 9, i + 35, drum.iVelocity) ;

 if (drum.dwSeqPian[i] & 1 << iIndex)
 MidiOutMessage (hMidiOut, 0x90, 0, i + 35, drum.iVelocity) ;

 dwSeqPercLast[i] = drum.dwSeqPerc[i] ;
 dwSeqPianLast[i] = drum.dwSeqPian[i] ;
 }
 // Set a new timer event

 uTimerID = timeSetEvent (max ((int) uTimerRes, drum.iMsecPerBeat),
 uTimerRes, DrumTimerFunc, 0, TIME_ONESHOT) ;

 if (uTimerID == 0)
 {
 PostMessage (hwndNotify, WM_USER_ERROR, 0, 0) ;
 }
}

DRUMFILE.H

/*---
 DRUMFILE.H Header File for File I/O Routines for DRUM
 ---*/

BOOL DrumFileOpenDlg (HWND, TCHAR *, TCHAR *) ;
BOOL DrumFileSaveDlg (HWND, TCHAR *, TCHAR *) ;

TCHAR * DrumFileWrite (DRUM *, TCHAR *) ;
TCHAR * DrumFileRead (DRUM *, TCHAR
 *) ;

DRUMFILE.C

/*--
 DRUMFILE.C -- File I/O Routines for DRUM
 (c) Charles Petzold, 1998

-*/
#include <windows.h>
#include <commdlg.h>
#include "drumtime.h"
#include "drumfile.h"

OPENFILENAME ofn = { sizeof (OPENFILENAME) } ;

TCHAR * szFilter[] = { TEXT ("Drum Files (*.DRM)"),
 TEXT ("*.drm"), TEXT ("") } ;

TCHAR szDrumID [] = TEXT ("DRUM") ;
TCHAR szListID [] = TEXT ("LIST") ;
TCHAR szInfoID [] = TEXT ("INFO") ;
TCHAR szSoftID [] = TEXT ("ISFT") ;
TCHAR szDateID [] = TEXT ("ISCD") ;
TCHAR szFmtID [] = TEXT ("fmt ") ;
TCHAR szDataID [] = TEXT ("data") ;
char szSoftware [] = "DRUM by Charles Petzold, Programming Windows" ;

TCHAR szErrorNoCreate [] = TEXT ("File %s could not be opened for writing.");
TCHAR szErrorCannotWrite [] = TEXT ("File %s could not be written to. ") ;
TCHAR szErrorNotFound [] = TEXT ("File %s not found or cannot be opened.") ;
TCHAR szErrorNotDrum [] = TEXT ("File %s is not a standard DRUM file.") ;
TCHAR szErrorUnsupported [] = TEXT ("File %s is not a supported DRUM file.") ;
TCHAR szErrorCannotRead [] = TEXT ("File %s cannot be read.") ;

BOOL DrumFileOpenDlg (HWND hwnd, TCHAR * szFileName, TCHAR * szTitleName)
{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFilter = szFilter [0] ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;

 ofn.Flags = OFN_CREATEPROMPT ;
 ofn.lpstrDefExt = TEXT ("drm") ;

 return GetOpenFileName (&ofn) ;
}

BOOL DrumFileSaveDlg (HWND hwnd, TCHAR * szFileName, TCHAR * szTitleName)
{
 ofn.hwndOwner = hwnd ;
 ofn.lpstrFilter = szFilter [0] ;
 ofn.lpstrFile = szFileName ;
 ofn.nMaxFile = MAX_PATH ;
 ofn.lpstrFileTitle = szTitleName ;
 ofn.nMaxFileTitle = MAX_PATH ;
 ofn.Flags = OFN_OVERWRITEPROMPT ;
 ofn.lpstrDefExt = TEXT ("drm") ;

 return GetSaveFileName (&ofn) ;
}

TCHAR * DrumFileWrite (DRUM * pdrum, TCHAR * szFileName)
{
 char szDateBuf [16] ;
 HMMIO hmmio ;
 int iFormat = 2 ;
 MMCKINFO mmckinfo [3] ;
 SYSTEMTIME st ;
 WORD wError = 0 ;

 memset (mmckinfo, 0, 3 * sizeof (MMCKINFO)) ;

 // Recreate the file for writing

 if ((hmmio = mmioOpen (szFileName, NULL,
 MMIO_CREATE | MMIO_WRITE | MMIO_ALLOCBUF)) == NULL)
 return szErrorNoCreate ;

 // Create a "RIFF" chunk with a "CPDR" type

 mmckinfo[0].fccType = mmioStringToFOURCC (szDrumID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[0], MMIO_CREATERIFF) ;

 // Create "LIST" sub-chunk with an "INFO" type

 mmckinfo[1].fccType = mmioStringToFOURCC (szInfoID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[1], MMIO_CREATELIST) ;

 // Create "ISFT" sub-sub-chunk

 mmckinfo[2].ckid = mmioStringToFOURCC (szSoftID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[2], 0) ;
 wError |= (mmioWrite (hmmio, szSoftware, sizeof (szSoftware)) !=
 sizeof (szSoftware)) ;
 wError |= mmioAscend (hmmio, &mmckinfo[2], 0) ;

 // Create a time string
 GetLocalTime (&st) ;

 wsprintfA (szDateBuf, "%04d-%02d-%02d", st.wYear, st.wMonth, st.wDay) ;

 // Create "ISCD" sub-sub-chunk

 mmckinfo[2].ckid = mmioStringToFOURCC (szDateID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[2], 0) ;
 wError |= (mmioWrite (hmmio, szDateBuf, (strlen (szDateBuf) + 1)) !=
 (int) (strlen (szDateBuf) + 1)) ;
 wError |= mmioAscend (hmmio, &mmckinfo[2], 0) ;
 wError |= mmioAscend (hmmio, &mmckinfo[1], 0) ;

 // Create "fmt " sub-chunk

 mmckinfo[1].ckid = mmioStringToFOURCC (szFmtID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[1], 0) ;
 wError |= (mmioWrite (hmmio, (PSTR) &iFormat, sizeof (int)) !=
 sizeof (int)) ;
 wError |= mmioAscend (hmmio, &mmckinfo[1], 0) ;

 // Create the "data" sub-chunk

 mmckinfo[1].ckid = mmioStringToFOURCC (szDataID, 0) ;

 wError |= mmioCreateChunk (hmmio, &mmckinfo[1], 0) ;
 wError |= (mmioWrite (hmmio, (PSTR) pdrum, sizeof (DRUM)) !=
 sizeof (DRUM)) ;
 wError |= mmioAscend (hmmio, &mmckinfo[1], 0) ;
 wError |= mmioAscend (hmmio, &mmckinfo[0], 0) ;

 // Clean up and return

 wError |= mmioClose (hmmio, 0) ;

 if (wError)
 {
 mmioOpen (szFileName, NULL, MMIO_DELETE) ;
 return szErrorCannotWrite ;
 }
 return NULL ;
}

TCHAR * DrumFileRead (DRUM * pdrum, TCHAR * szFileName)
{

 DRUM drum ;
 HMMIO hmmio ;
 int i, iFormat ;
 MMCKINFO mmckinfo [3] ;

 ZeroMemory (mmckinfo, 2 * sizeof (MMCKINFO)) ;

 // Open the file

 if ((hmmio = mmioOpen (szFileName, NULL, MMIO_READ)) == NULL)
 return szErrorNotFound ;

 // Locate a "RIFF" chunk with a "DRUM" form-type

 mmckinfo[0].ckid = mmioStringToFOURCC (szDrumID, 0) ;

 if (mmioDescend (hmmio, &mmckinfo[0], NULL, MMIO_FINDRIFF))
 {
 mmioClose (hmmio, 0) ;
 return szErrorNotDrum ;
 }

 // Locate, read, and verify the "fmt " sub-chunk

 mmckinfo[1].ckid = mmioStringToFOURCC (szFmtID, 0) ;

 if (mmioDescend (hmmio, &mmckinfo[1], &mmckinfo[0], MMIO_FINDCHUNK))
 {
 mmioClose (hmmio, 0) ;
 return szErrorNotDrum ;
 }

 if (mmckinfo[1].cksize != sizeof (int))
 {
 mmioClose (hmmio, 0) ;
 return szErrorUnsupported ;
 }

 if (mmioRead (hmmio, (PSTR) &iFormat, sizeof (int)) != sizeof (int))
 {
 mmioClose (hmmio, 0) ;
 return szErrorCannotRead ;
 }

 if (iFormat != 1 && iFormat != 2)
 {
 mmioClose (hmmio, 0) ;
 return szErrorUnsupported ;
 }

 // Go to end of "fmt " sub-chunk

 mmioAscend (hmmio, &mmckinfo[1], 0) ;

 // Locate, read, and verify the "data" sub-chunk

 mmckinfo[1].ckid = mmioStringToFOURCC (szDataID, 0) ;

 if (mmioDescend (hmmio, &mmckinfo[1], &mmckinfo[0], MMIO_FINDCHUNK))
 {
 mmioClose (hmmio, 0) ;
 return szErrorNotDrum ;
 }

 if (mmckinfo[1].cksize != sizeof (DRUM))
 {
 mmioClose (hmmio, 0) ;
 return szErrorUnsupported ;
 }

 if (mmioRead (hmmio, (LPSTR) &drum, sizeof (DRUM)) != sizeof (DRUM))
 {
 mmioClose (hmmio, 0) ;
 return szErrorCannotRead ;
 }

 // Close the file

 mmioClose (hmmio, 0) ;

 // Convert format 1 to format 2 and copy the DRUM structure data

 if (iFormat == 1)
 {
 for (i = 0 ; i < NUM_PERC ; i++)
 {
 drum.dwSeqPerc [i] = drum.dwSeqPian [i] ;
 drum.dwSeqPian [i] = 0 ;
 }
 }

 memcpy (pdrum, &drum, sizeof (DRUM)) ;
 return NULL ;
}

DRUM.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Menu

DRUM MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open...", IDM_FILE_OPEN
 MENUITEM "&Save", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVE_AS
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_APP_EXIT
 END
 POPUP "&Sequence"
 BEGIN
 MENUITEM "&Running", IDM_SEQUENCE_RUNNING
 MENUITEM "&Stopped", IDM_SEQUENCE_STOPPED
 , CHECKED
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_APP_ABOUT
 END
END

///
// Icon

DRUM ICON DISCARDABLE "drum.ico"

///
// Dialog

ABOUTBOX DIALOG DISCARDABLE 20, 20, 160, 164
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Dialog"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,54,143,50,14
 ICON "DRUM",IDC_STATIC,8,8,21,20
 CTEXT "DRUM",IDC_STATIC,34,12,90,8
 CTEXT "MIDI Drum Machine",IDC_STATIC,7,36,144,8
 CONTROL "",IDC_STATIC,"Static",SS_BLACKFRAME,8,88,144,46
 LTEXT "Left Button:\t\tDrum sounds",IDC_STATIC,12,92,136,8
 LTEXT "Right Button:\t\tPiano sounds",IDC_STATIC,12,102,136,8
 LTEXT "Horizontal Scroll:\t\tVelocity",IDC_STATIC,12,112,136,8
 LTEXT "Vertical Scroll:\t\tTempo",IDC_STATIC,12,122,136,8
 CTEXT "Copyright (c) Charles Petzold, 1998",IDC_STATIC,8,48,
 144,8
 CTEXT """Programming Windows,"" 5th Edition",IDC_STATIC,8,60,
 144,8
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by Drum.rc

#define IDM_FILE_NEW 40001
#define IDM_FILE_OPEN 40002
#define IDM_FILE_SAVE 40003
#define IDM_FILE_SAVE_AS 40004
#define IDM_APP_EXIT 40005
#define IDM_SEQUENCE_RUNNING 40006
#define IDM_SEQUENCE_STOPPED 40007
#define IDM_APP_ABOUT 40008

When you first run DRUM, you'll see the 47 different percussion instruments listed by name in the left half on the
window in two columns. The grid at the right is a two-dimensional array of percussion sound vs. time. Each
instrument is associated with a row in the grid. The 32 columns are 32 beats. If you think of these 32 beats as
occuring within a measure of 4/4 time (that is, four quarter notes per measure), then each beat corresponds to a
32nd note.

When you select Running from the Sequence menu, the program will attempt to open the MIDI Mapper device. If
it's unsuccessful, you'll get a message box. Otherwise, you'll see a little "bouncing ball" skip across the bottom of
the grid as each beat is played.

You can click with the left mouse button mouse anywhere within the grid to play a percussion sound during that
beat. The square will turn dark gray. You can also add some piano beats using the right mouse button. The square
will turn light gray. If you click with both mouse buttons, either together or independently, the square will turn
black and the percussion and piano sounds will be heard. Clicking again with either or both buttons will turn off
the sound for that beat.

Across the top of the grid is a dot every 4 beats. Those dots simply make it easy to pinpoint your button clicks
without too much counting. At the upper righthand corner of the grid is a colon and bar (:|) that together
resemble a repeat sign used in traditional music notation. This indicates the length of the sequence. You can click
with the mouse anywhere above the grid to put the repeat sign somewhere else. The sequence plays up to, but
not including, the beat under the repeat sign. If you want to create a waltz rhythm, for example, you should set
the repeat mark for some multiple of 3 beats.

The horizontal scroll bar controls the velocity byte in the MIDI Note On messages. This generally affects the
volume of the sounds, although it can also affect timbre in some synthesizers. The program initially sets the
velocity scroll bar thumb in the center position. The vertical scroll bar controls the tempo. This is a logarithmic
scale, ranging from 1 second per beat when the thumb is at the bottom to 10 milliseconds per beat at the top. The
program initially sets the tempo at 100 milliseconds (1/10th second) per beat, with the scroll bar thumb in the
center.

The File menu allows you to save and retrieve files with the extension .DRM, which is a format that I invented.
These files are fairly small and use the RIFF file format, which is recommended for all new multimedia data files.
The About option from the Help menu displays a dialog box containing a very brief summary of the use of the
mouse on the grid and the functions of the two scroll bars.

Finally, the Stopped option from the Sequence menu stops the music and closes the MIDI Mapper device after
finishing with the current sequence.

The Multimedia time Functions

You'll notice that DRUM.C makes no calls to any multimedia functions. All the real action occurs in the DRUMTIME

module.

Although the normal Windows timer is certainly simple to use, it's a disaster for time-critical applications. As we
saw in the BACHTOCC program, playing music is one such time-critical application for which the Windows timer is
simply inadequate. To provide the accuracy needed for playing MIDI sequences on the PC, the multimedia API
includes a high-resolution timer implemented through the use of seven functions beginning with the prefix time .
One of these functions is superfluous, and DRUMTIME demonstrates the use of the other six. The timer functions
work with a callback function that runs in a separate thread. This callback function is called by the system
according to a timer delay value specified by the program.

When dealing with the multimedia timer, you specify two different times, both in milliseconds. The first is the
delay time, and the second is called the resolution. You can think of the resolution as a tolerable error. If you
specify a delay of 100 milliseconds with a resolution of 10 milliseconds, the actual timer delay can range anywhere
from 90 to 110 milliseconds.

Before you begin using the timer, you should obtain the timer device capabilities:

timeGetDevCaps (&timecaps, uSize) ;

The first argument is a pointer to a structure of type TIMECAPS, and the second argument is the size of this
structure. The TIMECAPS structure has only two fields, wPeriodMin and wPeriodMax . These are the minimum and
maximum resolution values supported by the timer device driver. If you look at these values after calling
timeGetDevCaps , you'll find that wPeriodMin is 1 and wPeriodMax is 65535, so this function may not seem
crucial. However, it's a good idea to get these resolution values anyway and use them in the other timer function
calls.

The next step is to call

timeBeginPeriod (uResolution) ;

to indicate the lowest timer resolution value that your program requires. This value should be within the range
given in the TIMECAPS structure. This call allows the timer device driver to best provide for multiple programs that
might be using the timer. Every call to timeBeginPeriod must be paired with a later call to timeEndPeriod , which
I'll describe shortly.

Now you're ready to actually set a timer event:

idTimer = timeSetEvent (uDelay, uResolution, CallBackFunc, dwData, uFlag) ;

The idTimer returned from the call will be zero if an error occurs. Following this call, the function CallBackFunc will
be called from Windows in uDelay milliseconds with an allowable error specified by uResolution . The uResolution
value must be greater than or equal to the resolution value passed to timeBeginPeriod . The dwData parameter is
program-defined data later passed to CallBackFunc . The last parameter can be either TIME_ONESHOT to get a
single call to CallBackFunc in uDelay number of milliseconds or TIME_PERIODIC to get calls to CallBackFunc every
uDelay milliseconds.

To stop a one-shot timer event before CallBackFunc is called, or to halt periodic timer events, call

timeKillEvent (idTimer) ;

You don't need to kill a one-shot timer event after CallBackFunc is called. When you're finished using the timer in
your program, call

timeEndPeriod (wResolution) ;

with the same argument passed to timeBeginPeriod .

Two other functions begin with the prefix time . The function

dwSysTime = timeGetTime () ;

returns the system time in milliseconds since Windows first started up. The function

timeGetSystemTime (&mmtime, uSize) ;

requires a pointer to an MMTIME structure as the first argument and the size of this structure as the second.
Although the MMTIME structure can be used in other circumstances to get the system time in formats other than
milliseconds, in this case it always returns the time in milliseconds. So, timeGetSystemTime is superfluous.

The callback function is limited in the Windows function calls it can make. The callback function can call
PostMessage , four timer functions (timeSetEvent , timeKillEvent , timeGetTime , and the superfluous
timeGetSystemTime), two MIDI output functions (midiOutShortMsg and midiOutLongMsg), and the debugging
function OutputDebugStr .

Obviously, the multimedia timer is designed specifically for playing MIDI sequences and has very limited use for
anything else. You can, of course, use PostMessage for informing a window procedure of timer events, and the
window procedure can do whatever it likes, but it won't be responding with the accuracy of the timer callback
itself.

The callback function has five parameters, but only two of them are used: the timer ID number returned from
timeSetEvent and the dwData value originally passed as an argument to timeSetEvent .

The DRUM.C module calls the DrumSetParams function in DRUMTIME.C at various times—when DRUM's window is
created, when the user clicks on the grid or manipulates the scroll bars, when the program loads a .DRM file from
disk, or when the grid is cleared. The single argument to DrumSetParams is a pointer to a structure of type DRUM,
defined in DRUMTIME.H. This structure stores the beat time in milliseconds, the velocity (which generally
corresponds to the volume), the number of beats in the sequence, as well as two sets of forty-seven 32-bit
integers for storing the grid settings for the percussion and piano sounds. Each bit in these 32-bit integers
corresponds to a beat of the sequence. The DRUM.C module maintains a structure of type DRUM in static memory
and passes a pointer to it when calling DrumSetParams . DrumSetParams simply copies the contents of the
structure.

To start the sequence going, DRUM calls the DrumBeginSequence function in DRUMTIME. The only argument is a
window handle. This is used for notification purposes. DrumBeginSequence opens the MIDI Mapper output device
and, if successful, sends Program Change messages to select instrument voice 0 for MIDI channels 0 and 9.
(These are zero-based, so 9 actually refers to MIDI channel 10, the percussion channel. The other channel is used
for the piano sounds.) DrumBeginSequence continues by calling timeGetDevCaps and then timeBeginPeriod . The
desired timer resolution defined in the TIMER_RES constant is 5 milliseconds, but I've defined a macro called
minmax to calculate a resolution within the limits returned from timeGetDevCaps .

The next call is timeSetEvent , specifying the beat time, the calculated resolution, the callback function
DrumTimerFunc , and the constant TIME_ONESHOT. DRUMTIME uses a one-shot timer rather than a periodic timer
so that the tempo can be dynamically changed while a sequence is running. After the timeSetEvent call, the timer
device driver will call DrumTimerFunc after the delay time has elapsed.

The DrumTimerFunc callback is the function in DRUMTIME.C where most of the heavy action takes place. The
variable iIndex stores the current beat in the sequence. The callback begins by sending MIDI Note Off messages
for the sounds currently playing. An initial -1 value of iIndex prevents this first happening when the sequence first

begins.

Next, iIndex is incremented and its value is delivered to the window procedure in DRUM with a user-defined
message called WM_USER_NOTIFY. The wParam message argument is set to iIndex so that WndProc in DRUM.C
can move the "bouncing ball" at the bottom of the grid.

DrumTimerFunc finishes up by sending Note On messages to the synthesizer for both channels 0 and 9, saving the
grid values so that the sounds can be turned off the next time through, and then setting a new one-shot timer
event by calling timeSetEvent .

To stop the sequence, DRUM calls DrumEndSequence with a single argument that can be set to either TRUE or
FALSE. If TRUE, DrumEndSequence ends the sequence right away by killing any pending timer event, calling
timeEndPeriod , sending "all notes off" messages to the two MIDI channels, and then closing the MIDI output port.
DRUM calls DrumEndSequence with a TRUE argument when the user has decided to terminate the program.

However, when the user selects Stop from the Sequence menu in DRUM, the program instead calls
DrumEndSequence with a FALSE argument. This allows the sequence to complete the current cycle before ending.
DrumEndSequence responds to this call by setting the bEndSequence global variable to NULL. If bEndSequence is
TRUE and the beat index has been set to zero, DrumTimerFunc posts a user-defined message called
WM_USER_FINISHED to WndProc . WndProc must respond to this message by calling DrumEndSequence with a
TRUE argument to properly close down the use of the timer and the MIDI port.

RIFF File I/O

The DRUM program can also save and retrieve files containing the information stored in the DRUM structure.
These files are in the Resource Interchange File Format (RIFF) recommended for multimedia file types. You can
read and write RIFF files by using standard file I/O functions, of course, but an easier approach is provided by
functions beginning with the prefix mmio (for "multimedia input/output").

As we saw when examining the .WAV format, RIFF is a tagged file format, which means that the data in the file is
organized in blocks of various lengths (called "chunks"), each of which is identified by a tag. A tag is simply a 4-
byte ASCII string. This makes it easy to compare tag names with 32-bit integers. The tag is followed by the length
of the chunk and the data for the chunk. Tagged file formats are versatile because the information in the file is not
located at fixed offsets from the beginning of the file but is instead identified by tags. Thus, the file format can be
enhanced by adding additional tags. When reading the file, programs can easily find the data they need and skip
tags they don't need or don't understand.

A RIFF file in Windows consists solely of chunks, which are blocks of information in the file. A chunk is composed
of a chunk type, a chunk size, and chunk data. The chunk type is a 4-character ASCII tag. It must have no
embedded blanks but is possibly padded at the end with blanks. The chunk size is a 4-byte (32-bit) value that
indicates the size of the chunk data. Chunk data must occupy an even number of bytes and is padded at the end
with an extra zero byte if necessary. Thus, every component of a chunk is word-aligned with the beginning of the
file. The chunk size does not include the 8 bytes required for the chunk type and the chunk size, and it does not
reflect the padding of the data.

For some chunk types, the chunk size can be the same regardless of the particular file. This is the case when the
chunk data is a fixed-length structure containing information. In other cases, the chunk size is variable depending
on the particular file.

There are two special types of chunks, called RIFF chunks and LIST chunks. In a RIFF chunk, the chunk data
begins with a 4-character ASCII form type, which is then followed by one or more sub-chunks. The LIST chunk is
similar except that the data begins with a 4-character ASCII list type. A RIFF chunk is used for the overall RIFF
file, and the LIST chunk is used within the file to consolidate related sub-chunks.

A RIFF file is a RIFF chunk. Thus, a RIFF file begins with the character string "RIFF" and a 32-bit value that
indicates the size of the file less 8 bytes. (Actually, the file might be one byte longer if data padding is required.)

The multimedia API includes 16 functions beginning with the prefix mmio , specifically designed for working with
RIFF files. Several of these functions are used in DRUMFILE.C to read and write DRUM data files.

To open a file using the mmio functions, the first step is to call mmioOpen . The function returns a handle to the
file. The mmioCreateChunk function creates a chunk in the file. This uses an MMCKINFO to define the name and
characteristics of the chunk. The mmioWrite function writes the chunk data. After writing the chunk data, you call
mmioAscend . The MMCKINFO structure passed to mmioAscend must be the same MMCKINFO structure passed
earlier to mmioCreateChunk to create the chunk. The mmioAscend function works by subtracting the
dwDataOffset field of the structure from the current file pointer, which will now be at the end of the chunk data,
and storing that value before the data. The mmioAscend function also takes care of data padding if the chunk data

is not a multiple of two bytes in length.

RIFF files are composed of nested levels of chunks. To make mmioAscend work correctly, you must maintain
multiple MMCKINFO structures, each of which is associated with a level in the file. The DRUM data files have three
levels. Hence, in the DrumFileWrite function in DRUMFILE.C, I've defined an array of three MMCKINFO structures,
which can be referenced as mmckinfo[0] , mmckinfo[1] , and mmckinfo[2] . The mmckinfo[0] structure is used in
the first mmioCreateChunk call to create a chunk type of RIFF with a form type of DRUM. This is followed by a
second mmioCreateChunk call using mmckinfo[1] to create a chunk type of LIST with a list type of INFO.

A third mmioCreateChunk call using mmckinfo[2] creates a chunk type of ISFT, which identifies the software that
created the data file. Following the mmioWrite call to write the string szSoftware , a call to mmioAscent using
mmckinfo[2] fills in the chunk size field for this chunk. This is the first completed chunk. The next chunk is also
within the LIST chunk. The program proceeds with another mmioCreateChunk call to create a ISCD ("creation
data") chunk, again using mmckinfo[2] . After the mmioWrite call to write the chunk data, a call to mmioAscend
using mmckinfo[2] fills in the chunk size. That's the end of this chunk, and it's also the end of the LIST chunk. So,
to fill in the chunk size field of the LIST chunk, mmioAscend is called again, this time using mmckinfo[1] , which
was originally used to create the LIST chunk.

To create the "fmt " and "data" chunks, mmioCreateChunk uses mmckinfo[1] ; the mmioWrite calls are followed
by mmioAscend , also using mmckinfo[1] . At this point, all the chunk sizes have been filled in except for the RIFF
chunk itself. That requires one more call to mmioAscend using mmckinfo[0] . There's only one more call, and
that's to mmioClose .

It may seem as if an mmioAscend call changes the current file pointer, and it certainly might to fill in the chunk
size, but by the time the function returns, the file pointer is restored to its position after the end of the chunk data
(or perhaps incremented by one byte for data padding). From the application's perspective, all writing to the file is
sequential from beginning to end.

After a successful mmioOpen call, nothing can really go wrong except for the running out of disk space. I use the
variable wError to accumulate error codes from the mmioCreateChunk , mmioWrite , mmioAscend , and
mmioClose calls, each of which could fail if insufficient disk space is available. If that happens, the file is deleted
using mmioOpen with the MMIO_DELETE constant and an error message is returned to the caller.

Reading a RIFF file is similar to creating one, except that mmioRead is called instead of mmioWrite , and
mmioDescend is called rather than mmioCreateChunk . To "descend" into a chunk means to locate a chunk and
put the file pointer after the chunk size (or after the form type or list type for a RIFF or LIST chunk type). To
"ascend" from a chunk means to move the file pointer to the end of the chunk data. Neither the mmioDescend nor
mmioAscend functions move the file pointer to an earlier position in the file.

An earlier version of the DRUM program was published in PC Magazine in 1992. At that time, Windows supported
two different levels of MIDI synthesizers (called "base" and "extended"). Files written from that program have a
format identifier of 1. The DRUM program in this chapter sets the format identifier to 2. It can read the earlier
format, however, and convert them. This is done in the DrumFileRead routine.

Chapter 23

A Taste of the Internet

The Internet—that vast interconnection of computers around the world that implement various protocols to
exchange information—has redefined several aspects of personal computing in recent years. Although dial-up
information services and electronic mail systems existed prior to the proliferation of the Internet, they were often
restricted to character mode and were essentially unlinked. Each information service, for example, required dialing
a different telephone number and logging on with a different user ID and password. Each email system allowed
sending and receiving mail only among people who subscribed to that particular system.

Today, dialing one phone number generally connects with the whole of the Internet and allows universal
correspondence with anyone who has email. Particularly in the World Wide Web, the use of hypertext, graphics,
and multimedia (including sound, music, and video) has extended the range and versatility of online information.

A complete tutorial covering all the programming topics in Microsoft Windows that relate to the Internet would
probably require several additional books. Instead, this chapter focuses on just two areas that might be useful to
small Microsoft Windows applications for obtaining information from the Internet. These are the Windows Sockets
(WinSock) API and the File Transfer Protocol (FTP) support of the Windows Internet (WinInet) API.

Windows Sockets

Sockets are a concept developed at the University of California at Berkeley to add network communication support
to the UNIX operating system. The API developed there is now known as the "Berkeley socket interface."

Sockets and TCP/IP

Sockets are generally, but not exclusively, used in conjunction with the Transmission Control Protocol/Internet
Protocol (TCP/IP) that dominates Internet communications. The Internet Protocol (IP) part of TCP/IP involves
packaging data into "datagrams" that contain header information to identify the source and destination of the
data. The Transmission Control Protocol (TCP) provides a means of reliable transport and error checking for the IP
datagrams.

Within TCP/IP, a communication endpoint is defined by an IP address and a port number. The IP address consists
of 4 bytes that identify a server on the Internet. The IP address is generally shown in "dotted quad" format, with
decimal numbers separated by periods, for example "209.86.105.231". A port number identifies a particular
service or process that the server provides. Some of these port numbers are standardized to provide well-known
services.

When a socket is used with TCP/IP, a socket is the TCP/IP communication endpoint. Thus, the socket specifies an
IP address and a port number.

Network Time Services

The sample program that I'll be presenting shortly connects with an Internet server that provides a service known
as the Time Protocol. This sample program obtains the current exact date and time and uses that information to
set the clock on your PC.

In the United States, the National Institute of Standards and Technology (formerly known as the National Bureau
of Standards) is responsible for maintaining the correct time in conjunction with other bureaus around the world.
The exact time is available to the public through radio broadcasts, telephone numbers, computer dial-up phone
numbers, and the Internet, all of which are documented at the Web site at http://www.bldrdoc.gov/timefreq .
(The domain name of "bldrdoc" refers to the Boulder, Colorado, location of the NIST Time and Frequency
Division.)

We're interested in the NIST Network Time Service, which is further documented at
http://www.bldrdoc.gov/timefreq/service/nts.htm . This Web page lists ten servers that provide NIST time
services. For example, the first one is named time-a.timefreq.bldrdoc.gov , which has an Internet Protocol (IP)
address of 132.163.135.130.

(A program I wrote that uses the non-Internet NIST computer dial-up service was published in PC Magazine and
can be found at the Ziff-Davis Web site http://www.zdnet.com/pcmag/pctech/content/16/20/ut1620.001.html .
This program can be useful for anyone who wants to learn how to use the Windows Telephony API.)

Three different time services are available over the Internet, each one described by a Request for Comment (RFC)
common for documenting Internet standards. The Daytime Protocol (RFC-867) provides an ASCII string that
indicates the exact date and time. The exact format of this ASCII string is not quite standard, but it is meant to be
readable by humans. The Time Protocol (RFC-868) provides a 32-bit number that indicates the number of seconds
since midnight January 1, 1900. This time is in UTC (which, despite the ordering of the letters, stands for
Coordinated Universal Time), which is very similar to what was once called Greenwich Mean Time or GMT—the
time at Greenwich, England. The third protocol is called the Network Time Protocol (RFC-1305), which is quite
complex.

For our purposes—which involve getting a feel for sockets and keeping our PC's clock updated—the Time Protocol
is ideal. RFC-868 is a short two-page document and basically says that a program wishing to use TCP to obtain the
exact time should:

Connect to port 37 on a server that provides this service,1.

Receive the 32-bit time, and2.

Close the connection.3.

http://www.bldrdoc.gov/timefreq
http://www.bldrdoc.gov/timefreq/service/nts.htm
http://www.zdnet.com/pcmag/pctech/content/16/20/ut1620.001.html

2.

3.

We now have everything we need to know to write a sockets-based application that accesses this time service.

The NETTIME Program

The Windows sockets API, commonly called WinSock, is compatible with the Berkeley sockets API; hence, it is
conceivable that UNIX socket code could be ported relatively painlessly to Windows. Further support under
Windows is provided by extensions to Berkeley sockets in the form of functions beginning with the prefix WSA
("WinSock API"). An overview and reference is provided at /Platform SDK/Networking and Distributed
Services/Windows Sockets Version 2 .

The NETTIME program shown in Figure 23-1 demonstrates how to use the WinSock API.

Figure 23-1. The NETTIME program.

NETTIME.C

/*---
 NETTIME.C -- Sets System Clock from Internet Services

 (c) Charles Petzold, 1998
 ---*/

#include <windows.h>
#include "resource.h"

#define WM_SOCKET_NOTIFY (WM_USER + 1)
#define ID_TIMER 1

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK MainDlg (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK ServerDlg (HWND, UINT, WPARAM, LPARAM) ;

void ChangeSystemTime (HWND hwndEdit, ULONG ulTime) ;
void FormatUpdatedTime (HWND hwndEdit, SYSTEMTIME * pstOld,
 SYSTEMTIME * pstNew) ;
void EditPrintf (HWND hwndEdit, TCHAR * szFormat, ...) ;

HINSTANCE hInst ;
HWND hwndModeless ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 static TCHAR szAppName[] = TEXT ("NetTime") ;
 HWND hwnd ;
 MSG msg ;
 RECT rect ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = 0 ;

 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = NULL ;
 wndclass.hbrBackground = NULL ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;

 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Set System Clock from Internet"),
 WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU |
 WS_BORDER | WS_MINIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 // Create the modeless dialog box to go on top of the window

 hwndModeless = CreateDialog (hInstance, szAppName, hwnd, MainDlg) ;

 // Size the main parent window to the size of the dialog box.
 // Show both windows.

 GetWindowRect (hwndModeless, &rect) ;
 AdjustWindowRect (&rect, WS_CAPTION | WS_BORDER, FALSE) ;

 SetWindowPos (hwnd, NULL, 0, 0, rect.right - rect.left,
 rect.bottom - rect.top, SWP_NOMOVE) ;

 ShowWindow (hwndModeless, SW_SHOW) ;
 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 // Normal message loop when a modeless dialog box is used.

 while (GetMessage (&msg, NULL, 0, 0))
 {
 if (hwndModeless == 0 || !IsDialogMessage (hwndModeless, &msg))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_SETFOCUS:
 SetFocus (hwndModeless) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK MainDlg (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static char szIPAddr[32] = { "132.163.135.130" } ;
 static HWND hwndButton, hwndEdit ;
 static SOCKET sock ;
 static struct sockaddr_in sa ;
 static TCHAR szOKLabel[32] ;
 int iError, iSize ;
 unsigned long ulTime ;
 WORD wEvent, wError ;
 WSADATA WSAData ;

 switch (message)
 {
 case WM_INITDIALOG:
 hwndButton = GetDlgItem (hwnd, IDOK) ;
 hwndEdit = GetDlgItem (hwnd, IDC_TEXTOUT) ;
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_SERVER:
 DialogBoxParam (hInst, TEXT ("Servers"), hwnd, ServerDlg,
 (LPARAM) szIPAddr) ;
 return TRUE ;

 case IDOK:
 // Call "WSAStartup" and display description text

 if (iError = WSAStartup (MAKEWORD(2,0), &WSAData))
 {
 EditPrintf (hwndEdit, TEXT ("Startup error #%i.\r\n"),
 iError) ;
 return TRUE ;
 }
 EditPrintf (hwndEdit, TEXT ("Started up %hs\r\n"),

 WSAData.szDescription);

 // Call "socket"

 sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;

 if (sock == INVALID_SOCKET)
 {
 EditPrintf (hwndEdit,
 TEXT ("Socket creation error #%i.\r\n"),
 WSAGetLastError ()) ;
 WSACleanup () ;
 return TRUE ;
 }
 EditPrintf (hwndEdit, TEXT ("Socket %i created.\r\n"), sock) ;

 // Call "WSAAsyncSelect"

 if (SOCKET_ERROR == WSAAsyncSelect (sock, hwnd, WM_SOCKET_NOTIFY,
 FD_CONNECT | FD_READ))
 {
 EditPrintf (hwndEdit,
 TEXT ("WSAAsyncSelect error #%i.\r\n"),
 WSAGetLastError ()) ;
 closesocket (sock) ;
 WSACleanup () ;
 return TRUE ;
 }

 // Call "connect" with IP address and time-server port

 sa.sin_family = AF_INET ;
 sa.sin_port = htons (IPPORT_TIMESERVER) ;
 sa.sin_addr.S_un.S_addr = inet_addr (szIPAddr) ;

 connect(sock, (SOCKADDR *) &sa, sizeof (sa)) ;

 // "connect" will return SOCKET_ERROR because even if it
 // succeeds, it will require blocking. The following only
 // reports unexpected errors.

 if (WSAEWOULDBLOCK != (iError = WSAGetLastError ()))
 {
 EditPrintf (hwndEdit, TEXT ("Connect error #%i.\r\n"),
 iError) ;
 closesocket (sock) ;
 WSACleanup () ;
 return TRUE ;
 }
 EditPrintf (hwndEdit, TEXT ("Connecting to %hs..."), szIPAddr) ;

 // The result of the "connect" call will be reported
 // through the WM_SOCKET_NOTIFY message.

 // Set timer and change the button to "Cancel"

 SetTimer (hwnd, ID_TIMER, 1000, NULL) ;
 GetWindowText (hwndButton, szOKLabel, sizeof (szOKLabel) /
 sizeof (TCHAR)) ;
 SetWindowText (hwndButton, TEXT ("Cancel")) ;
 SetWindowLong (hwndButton, GWL_ID, IDCANCEL) ;
 return TRUE ;

 case IDCANCEL:
 closesocket (sock) ;
 sock = 0 ;
 WSACleanup () ;
 SetWindowText (hwndButton, szOKLabel) ;
 SetWindowLong (hwndButton, GWL_ID, IDOK) ;

 KillTimer (hwnd, ID_TIMER) ;
 EditPrintf (hwndEdit, TEXT ("\r\nSocket closed.\r\n")) ;
 return TRUE ;

 case IDC_CLOSE:
 if (sock)
 SendMessage (hwnd, WM_COMMAND, IDCANCEL, 0) ;

 DestroyWindow (GetParent (hwnd)) ;
 return TRUE ;
 }
 return FALSE ;

 case WM_TIMER:
 EditPrintf (hwndEdit, TEXT (".")) ;
 return TRUE ;

 case WM_SOCKET_NOTIFY:
 wEvent = WSAGETSELECTEVENT (lParam) ; // ie, LOWORD
 wError = WSAGETSELECTERROR (lParam) ; // ie, HIWORD

 // Process two events specified in WSAAsyncSelect

 switch (wEvent)
 {
 // This event occurs as a result of the "connect" call

 case FD_CONNECT:
 EditPrintf (hwndEdit, TEXT ("\r\n")) ;

 if (wError)
 {
 EditPrintf (hwndEdit, TEXT ("Connect error #%i."),
 wError) ;
 SendMessage (hwnd, WM_COMMAND, IDCANCEL, 0) ;
 return TRUE ;
 }

 EditPrintf (hwndEdit, TEXT ("Connected to %hs.\r\n"), szIPAddr) ;

 // Try to receive data. The call will generate an error
 // of WSAEWOULDBLOCK and an event of FD_READ

 recv (sock, (char *) &ulTime, 4, MSG_PEEK) ;
 EditPrintf (hwndEdit, TEXT ("Waiting to receive...")) ;
 return TRUE ;

 // This occurs even when the "recv" call can be made

 case FD_READ:
 KillTimer (hwnd, ID_TIMER) ;
 EditPrintf (hwndEdit, TEXT ("\r\n")) ;

 if (wError)
 {
 EditPrintf (hwndEdit, TEXT ("FD_READ error #%i."),
 wError) ;
 SendMessage (hwnd, WM_COMMAND, IDCANCEL, 0) ;
 return TRUE ;
 }
 // Get the time and swap the bytes

 iSize = recv (sock, (char *) &ulTime, 4, 0) ;
 ulTime = ntohl (ulTime) ;
 EditPrintf (hwndEdit,
 TEXT ("Received current time of %u seconds ")
 TEXT ("since Jan. 1 1900.\r\n"), ulTime) ;

 // Change the system time

 ChangeSystemTime (hwndEdit, ulTime) ;
 SendMessage (hwnd, WM_COMMAND, IDCANCEL, 0) ;
 return TRUE ;
 }
 return FALSE ;
 }
 return FALSE ;
}

BOOL CALLBACK ServerDlg (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static char * szServer ;
 static WORD wServer = IDC_SERVER1 ;
 char szLabel [64] ;

 switch (message)
 {
 case WM_INITDIALOG:
 szServer = (char *) lParam ;
 CheckRadioButton (hwnd, IDC_SERVER1, IDC_SERVER10, wServer) ;
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDC_SERVER1:
 case IDC_SERVER2:
 case IDC_SERVER3:
 case IDC_SERVER4:
 case IDC_SERVER5:
 case IDC_SERVER6:
 case IDC_SERVER7:
 case IDC_SERVER8:
 case IDC_SERVER9:
 case IDC_SERVER10:
 wServer = LOWORD (wParam) ;
 return TRUE ;

 case IDOK:
 GetDlgItemTextA (hwnd, wServer, szLabel, sizeof (szLabel)) ;
 strtok (szLabel, "(") ;
 strcpy (szServer, strtok (NULL, ")")) ;
 EndDialog (hwnd, TRUE) ;
 return TRUE ;

 case IDCANCEL:
 EndDialog (hwnd, FALSE) ;
 return TRUE ;
 }
 break ;
 }
 return FALSE ;
}

void ChangeSystemTime (HWND hwndEdit, ULONG ulTime)
{
 FILETIME ftNew ;
 LARGE_INTEGER li ;
 SYSTEMTIME stOld, stNew ;

 GetLocalTime (&stOld) ;

 stNew.wYear = 1900 ;
 stNew.wMonth = 1 ;
 stNew.wDay = 1 ;
 stNew.wHour = 0 ;
 stNew.wMinute = 0 ;
 stNew.wSecond = 0 ;
 stNew.wMilliseconds = 0 ;
 SystemTimeToFileTime (&stNew, &ftNew) ;
 li = * (LARGE_INTEGER *) &ftNew ;
 li.QuadPart += (LONGLONG) 10000000 * ulTime ;
 ftNew = * (FILETIME *) &li ;
 FileTimeToSystemTime (&ftNew, &stNew) ;

 if (SetSystemTime (&stNew))
 {
 GetLocalTime (&stNew) ;
 FormatUpdatedTime (hwndEdit, &stOld, &stNew) ;
 }
 else
 EditPrintf (hwndEdit, TEXT ("Could NOT set new date and time.")) ;
}

void FormatUpdatedTime (HWND hwndEdit, SYSTEMTIME * pstOld, SYSTEMTIME * pstNew)
{
 TCHAR szDateOld [64], szTimeOld [64], szDateNew [64], szTimeNew [64] ;

 GetDateFormat (LOCALE_USER_DEFAULT, LOCALE_NOUSEROVERRIDE | DATE_SHORTDATE,
 pstOld, NULL, szDateOld, sizeof (szDateOld)) ;

 GetTimeFormat (LOCALE_USER_DEFAULT, LOCALE_NOUSEROVERRIDE |
 TIME_NOTIMEMARKER | TIME_FORCE24HOURFORMAT,
 pstOld, NULL, szTimeOld, sizeof (szTimeOld)) ;

 GetDateFormat (LOCALE_USER_DEFAULT, LOCALE_NOUSEROVERRIDE | DATE_SHORTDATE,
 pstNew, NULL, szDateNew, sizeof (szDateNew)) ;

 GetTimeFormat (LOCALE_USER_DEFAULT, LOCALE_NOUSEROVERRIDE |
 TIME_NOTIMEMARKER | TIME_FORCE24HOURFORMAT,
 pstNew, NULL, szTimeNew, sizeof (szTimeNew)) ;

 EditPrintf (hwndEdit,
 TEXT ("System date and time successfully changed ")
 TEXT ("from\r\n\t%s, %s.%03i to\r\n\t%s, %s.%03i."),
 szDateOld, szTimeOld, pstOld->wMilliseconds,
 szDateNew, szTimeNew, pstNew->wMilliseconds) ;
}

void EditPrintf (HWND hwndEdit, TCHAR * szFormat, ...)
{
 TCHAR szBuffer [1024] ;
 va_list pArgList ;

 va_start (pArgList, szFormat) ;
 wvsprintf (szBuffer, szFormat, pArgList) ;
 va_end (pArgList) ;

 SendMessage (hwndEdit, EM_SETSEL, (WPARAM) -1, (LPARAM) -1) ;
 SendMessage (hwndEdit, EM_REPLACESEL, FALSE, (LPARAM) szBuffer) ;
 SendMessage (hwndEdit, EM_SCROLLCARET, 0, 0) ;
}

NETTIME.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

SERVERS DIALOG DISCARDABLE 20, 20, 274, 202
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "NIST Time Service Servers"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK",IDOK,73,181,50,14
 PUSHBUTTON "Cancel",IDCANCEL,150,181,50,14
 CONTROL "time
-a.timefreq.bldrdoc.gov (132.163.135.130) NIST, Boulder, Colorado",
 IDC_SERVER1,"Button",BS_AUTORADIOBUTTON,9,7,256,16
 CONTROL "time
-b.timefreq.bldrdoc.gov (132.163.135.131) NIST, Boulder, Colorado",
 IDC_SERVER2,"Button",BS_AUTORADIOBUTTON,9,24,256,16
 CONTROL "time
-c.timefreq.bldrdoc.gov (132.163.135.132) Boulder, Colorado, ",
 IDC_SERVER3,"Button",BS_AUTORADIOBUTTON,9,41,256,16
 CONTROL "utcnist.colorado.edu (128.138.140.44) University of Colorado, Boulder",
 IDC_SERVER4,"Button",BS_AUTORADIOBUTTON,9,58,256,16
 CONTROL "time.nist.gov (192.43.244.18) NCAR, Boulder, Colorado",
 IDC_SERVER5,"Button",BS_AUTORADIOBUTTON,9,75,256,16
 CONTROL "time
-a.nist.gov (129.6.16.35) NIST, Gaithersburg, Maryland",
 IDC_SERVER6,"Button",BS_AUTORADIOBUTTON,9,92,256,16
 CONTROL "time
-b.nist.gov (129.6.16.36) NIST, Gaithersburg, Maryland",
 IDC_SERVER7,"Button",BS_AUTORADIOBUTTON,9,109,256,16
 CONTROL "time
-nw.nist.gov (131.107.1.10) Microsoft, Redmond, Washington",
 IDC_SERVER8,"Button",BS_AUTORADIOBUTTON,9,126,256,16
 CONTROL "utcnist.reston.mci.net (204.70.131.13) MCI, Reston, Virginia",
 IDC_SERVER9,"Button",BS_AUTORADIOBUTTON,9,143,256,16
 CONTROL "nist1.data.com (209.0.72.7) Datum, San Jose, California",
 IDC_SERVER10,"Button",BS_AUTORADIOBUTTON,9,160,256,16
END

NETTIME DIALOG DISCARDABLE 0, 0, 270, 150
STYLE WS_CHILD
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "Set Correct Time",IDOK,95,129,80,14
 PUSHBUTTON "Close",IDC_CLOSE,183,129,80,14
 PUSHBUTTON "Select Server...",IDC_SERVER,7,129,80,14

 EDITTEXT IDC_TEXTOUT,7,7,253,110,ES_MULTILINE | ES_AUTOVSCROLL |
 ES_READONLY | WS_VSCROLL | NOT WS_TABSTOP
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by NetTime.rc

#define IDC_TEXTOUT 101
#define IDC_SERVER1 1001
#define IDC_SERVER2 1002
#define IDC_SERVER3 1003
#define IDC_SERVER4 1004
#define IDC_SERVER5 1005
#define IDC_SERVER6 1006
#define IDC_SERVER7 1007
#define IDC_SERVER8 1008
#define IDC_SERVER9 1009
#define IDC_SERVER10 1010
#define IDC_SERVER 1011
#define IDC_CLOSE 1012

Structurally, the NETTIME program creates a modeless dialog box based on the NETTIME template in NETTIME.RC.
The program resizes its window so that the modeless dialog box covers the program's entire client area. The
dialog box consists of a read-only edit field (into which the program writes textual information), a Select Server
button, a Set Correct Time button, and a Close button. The Close button terminates the program.

The szIPAddr variable in MainDlg is used to store the server address. By default, this is the string
"132.163.135.130". The Select Server button invokes a dialog box based on the SERVERS template in
NETTIME.RC. The szIPAddr variable is passed as the last argument to DialogBoxParam . The Server dialog box
lists the ten servers (copied almost verbatim from the NIST Web site) that provide the time service we're
interested in. When the user picks one, ServerDlg parses the button text to obtain the IP address. The new
address is stored in the szIPAddr variable.

When the user pushes the Set Correct Time button, the button generates a WM_COMMAND message with a low
word of wParam equal to IDOK. The IDOK processing in MainDlg is where most of the initial sockets action takes
place.

The first function that must be called by any Windows program using the Windows Sockets API is

iError = WSAStartup (wVersion, &WSAData) ;

NETTIME sets the first argument to 0x0200 (indicating version 2.0). On return, the WSAData structure contains
information about the Windows Sockets implementation, and NETTIME displays the szDescription string. This
simply provides some version information.

NETTIME next calls the socket function like so:

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;

The first argument is an address family, which is indicated here as being some kind of Internet address. The
second argument indicates that data is to be returned in a stream rather than in datagrams. (The data we're
expecting is only 4 bytes long; datagrams are used for larger blocks of data.) The final argument is a protocol,
which we're indicating is the Internet protocol known as TCP (Transmission Control Protocol). This is one of two
protocols specified in RFC-868. The return value of the socket function is stored in a variable of type SOCKET,
which is then used for subsequent socket function calls.

NETTIME next calls WSAAsynchSelect , which is another Windows-specific sockets function. The purpose of this
function is to avoid having an application hang because of slow Internet response time. In the WinSock
documentation, some functions are referred to as "blocking." What this means is that they are not guaranteed to
return control to the program immediately. The WSAAsyncSelect function is intended to force functions that are
normally blocking to be non-blocking, that is, to return control to the program before they have completed. The
result of the function is then reported to the application in a message. The WSAAsyncSelect function lets an
application specify the numeric value of the message and the window that is to receive that message. The function
has the following general syntax:

WSAAsyncSelect (sock, hwnd, message, iConditions) ;

NETTIME uses a program-defined message called WM_SOCKET_NOTIFY for this task. It also uses the last
argument of WSAAsyncSelect to specify the conditions under which this message is to be sent, specifically when
connecting and receiving data (FD_CONNECT | FD_READ).

The next WinSock function that NETTIME calls is connect . This function requires a pointer to a socket address
structure, which could be different for different protocols. NETTIME uses the version of this structure designed for
TCP/IP:

struct sockaddr_in
{
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
} ;

where in_addr is a union that lets you specify an Internet address using either 4 bytes, 2 unsigned shorts, or an
unsigned long.

NETTIME sets the sin_family field equal to AF_INET, indicating the address family. The sin_port field is set to the
port number, in this case the port number for the Time Protocol, which RFC-868 indicates is 37. However, don't
just set this field to 37 as I originally did. As with most numbers going across the Internet, this port number field
of the structure must be "big-endian," which means that the most-significant byte must be first. Intel
microprocessors are little-endian. Fortunately, the htons ("host-to-network short") function flips the bytes, so
NETTIME sets the sin_port field of the sockaddr_in structure to:

htons (IPPORT_TIMESERVER)

The constant is defined in WINSOCK2.H as 37. NETTIME uses the inet_addr function to convert the server address
stored in the szIPAddr string to an unsigned long, which it uses to set the sin_addr field of the structure.

If an application calls connect under Windows 98, and Windows is not currently connected to the Internet, the
Dial-Up Connection dialog box will appear. This feature is known as AutoDial. AutoDial is not implemented in
Windows NT 4.0, so if you're running NT, you'll have to connect to the Internet before running NETTIME.

The connect function is normally blocking because it might take some time before a connection is made. However,
because NETTIME called WSAAsyncSelect , connect doesn't wait for the connection, instead returning immediately
with a value of SOCKET_ERROR. It isn't really an error—all the function is doing is indicating that a connection has
not been made. NETTIME doesn't even bother to check this return value. Instead it calls WSAGetLastError . If
WSAGetLastError returns WSAEWOULDBLOCK (meaning that the function would normally block but isn't blocking)
then all is well. NETTIME changes its Set Correct Time button to Cancel and sets a 1-second timer. WM_TIMER
processing simply displays periods in the program's window to indicate to a user that something is still going on
and the program hasn't crashed the system.

When a connection is finally made, MainDlg is notified by a WM_SOCKET_NOTIFY message—the program-defined
message that NETTIME specified in the WSAAsyncSelect function. The low word of lParam will equal FD_CONNECT,
and the high word might indicate an error. An error at this point probably indicates that the program could not
connect to the indicated server. NETTIME gives you a choice of nine other servers, so try one of those!

If all is well, NETTIME calls the recv ("receive") function to read the data:

recv (sock, (char *) &ulTime, 4, MSG_PEEK) ;

This means that it wants 4 bytes to be stored in the ulTime variable. The last argument specifies that it only wants
to "peek" at this data and not remove it from the input queue. Like the connect function, recv will return with an
error code that indicates that the function normally blocks but in this case will not block. In theory (although it's
not very likely), the function could return at least part of the data. Then it would have to be called again to get the
rest of the 32-bit value. That's why the recv function is called with the MSG_PEEK option.

Also like the connect function, the recv function generates a WM_SOCKET_NOTIFY message, this time with an
event code of FD_READ. NETTIME responds to this by calling recv again, this time with a final argument of 0 to
remove the data from the queue. I'll discuss shortly what the program then does with the ulTime value it's
received. Notice that NETTIME concludes processing the message by sending itself a WM_COMMAND message with
wParam equal to IDCANCEL. The dialog procedure responds to that by calling closesocket and WSACleanup .

Recall that the 32-bit ulTime value that NETTIME receives is the number of seconds since 0:00 UTC on January 1,
1900. But the most significant byte is first, so the value must be processed through the ntohl ("network-to-host
long") function to reorder the bytes so that our Intel microprocessors can deal with them. NETTIME then calls its
ChangeSystemTime function.

ChangeSystemTime begins by obtaining the current local time—that is, the current system time adjusted for the
user's time zone and daylight saving time. It then sets up a SYSTEMTIME structure for midnight (hour zero) on
January 1, 1900. This SYSTEMTIME structure is then passed to SystemTimeToFileTime , which converts it to a
FILETIME structure. FILETIME is actually just two 32-bit DWORDs that together constitute a 64-bit integer that
indicates the number of 100-nanosecond intervals since January 1, 1601.

The ChangeSystemTime function casts the FILETIME structure to a LARGE_INTEGER, which is a union that allows
the 64-bit value to be referenced as two 32-bit values or as a single 64-bit integer based on the __int64 data
type. (This data type is a Microsoft compiler extension to the ANSI C standard.) Thus, this value is the number of
100-nanosecond intervals between January 1, 1601, and January 1, 1900. To this is added the number of 100-
nanosecond intervals from January 1, 1900, to the present—10,000,000 times ulTime .

The resultant FILETIME value is then converted back to a SYSTEMTIME structure by a call to
FileTimeToSystemTime . Because the Time Protocol returns the current UTC time, NETTIME sets the time with a
call to SetSystemTime , which is also based on UTC. For display purposes the program then obtains the updated
time with a call to GetLocalTime . Both the original local time and the new local time are passed to the
FormatUpdatedTime which uses the GetTimeFormat and GetDateFormat functions to convert the times to ASCII
strings.

The SetSystemTime function might fail if the program is run under Windows NT and the user does not have
privileges to set the time. If SetSystemTime fails, NETTIME indicates the problem with a message that the new
time was not set.

WinInet and FTP

The WinInet ("Windows Internet") API is a collection of high-level functions that assist a programmer in using
three popular Internet protocols: the Hypertext Transfer Protocol (HTTP) used for the World Wide Web, the File
Transfer Protocol (FTP), and another file-transfer protocol known as Gopher. The syntax of the WinInet functions
is very similar to the syntax of the normal Windows file functions, making it almost as easy to use these protocols
as it is to use files on local disks. The WinInet API is documented at /Platform SDK/Internet, Intranet, Extranet
Services/Internet Tools and Technologies/WinInet API .

The sample program coming up will demonstrate how to use the FTP portion of the WinInet API. Many companies
that have Web sites also have "anonymous FTP" sites from which users can download files without typing in a user
name or a password. For example, if you enter ftp://ftp.microsoft.com into the Address field of Internet Explorer,
you'll get access to Microsoft's anonymous FTP site, and you can navigate the directories and download files. If
you go to the address ftp://ftp.cpetzold.com/cpetzold.com/ProgWin/UpdDemo , you'll find a list of files on my
anonymous FTP site that are used in conjunction with the sample program I'll be discussing shortly.

These days FTP is considered a bit too user-unfriendly for most Web surfers, but it is still quite useful. For
example, an application program can use FTP to obtain data from an anonymous FTP site almost entirely behind
the scenes with little user intervention. That's the idea behind the UPDDEMO ("update demonstration") program
we'll be examining shortly.

Overview of the FTP API

A program that uses WinInet must include the header file WININET.H in any source file that calls WinInet
functions. The program must also link with WININET.LIB. You can specify this in Microsoft Visual C++ in the
Project Settings dialog box under the Link tab. At runtime, the program links with the WININET.DLL dynamic link
library.

In the following discussion, I won't go into details regarding the function syntax because some of it can be quite
complex with lots of different options. To get a start with WinInet, you can use the UPDDEMO source code as a
cookbook. What's important for the moment is to get an idea of the various steps involved and the range of FTP
functions.

To use any of the Windows Internet API, you first call InternetOpen . Following a single call to this function, you
can then use any of the protocols supported by WinInet. InternetOpen gives you a handle to the Internet session
that you store in a variable of type HINTERNET. When you're all done using the WinInet API, you should close the
handle by calling InternetCloseHandle .

To use FTP, you then call InternetConnect . This function requires the Internet session handle created by
InternetOpen and returns a handle to the FTP session. You use this handle as the first argument to all the
functions that begin with the prefix Ftp . Arguments to the InternetConnect function indicate that you want to use
FTP and also provide the server name, such as ftp.cpetzold.com . The function also requires a user name and a
password. These can be set to NULL if you're accessing an anonymous FTP site. If the PC is not connected to the
Internet when an application calls InternetConnect , Windows 98 will display a Dial-up Connection dialog box.
When an application is finished using FTP, it should close the handle by a call to InternetCloseHandle .

At this point, you can begin calling the functions that have Ftp prefixes. You'll find that these are very similar to
some of the normal Windows file I/O functions. To avoid a lot of overlap with the other protocols, some functions
with an Internet prefix are also used with FTP.

The following four functions let you work with directories:

fSuccess = FtpCreateDirectory (hFtpSession, szDirectory) ;
fSuccess = FtpRemoveDirectory (hFtpSession, szDirectory) ;
fSuccess = FtpSetCurrentDirectory (hFtpSession, szDirectory) ;
fSuccess = FtpGetCurrentDirectory (hFtpSession, szDirectory,
 &dwCharacterCount) ;

Notice that these functions are very similar to the familiar CreateDirectory , RemoveDirectory ,
SetCurrentDirectory , and GetCurrentDirectory functions provided by Windows for working with a local file system.

Applications accessing anonymous FTP sites cannot create or remove directories, of course. Also, programs cannot
assume that an FTP directory has the same type of tree structure that Windows file systems have. In particular, a
program that sets a directory using a relative path name should not assume anything about the new fully qualified
directory name. The SetCurrentDirectory call should be followed with a GetCurrentDirectory call if the program
needs to know the fully qualified name of the resultant directory. The character string argument to
GetCurrentDirectory should accommodate at least MAX_PATH characters, and the last argument should point to a
variable that contains that value.

These two functions let you delete or rename files (but not on anonymous FTP sites):

fSuccess = FtpDeleteFile (hFtpSession, szFileName) ;
fSuccess = FtpRenameFile (hFtpSession, szOldName, szNewName) ;

You can search for a file (or multiple files that fit a template containing wildcard characters) by first calling
FtpFindFirstFile . This function is very similar to the FindFirstFile function and even uses the same
WIN32_FIND_DATA structure. The file returns a handle for the file enumeration. You pass this handle to the
InternetFindNextFile function to obtain additional file names. Eventually you close the handle by a call to
InternetCloseHandle .

To open a file you call FtpFileOpen . This function returns a handle to the file that you can use in the
InternetReadFile , InternetReadFileEx , InternetWrite , and InternetSetFilePointer calls. You eventually close the
handle by calling the all-purpose InternetCloseHandle function.

Finally, two high-level functions are particularly useful: The FtpGetFile call copies a file from an FTP server to local
storage. It incorporates FtpFileOpen , FileCreate , InternetReadFile , WriteFile , InternetCloseHandle , and
CloseHandle calls. One of the arguments to FtpGetFile is a flag that directs the function to fail if a local file by the
same name already exists. Similarly the FtpPutFile copies a file from local storage to an FTP server.

The Update Demo

The UPDDEMO ("update demo") program shown in Figure 23-2 shows how to use the WinInet FTP functions in a
second thread of execution to download files from an anonymous FTP site.

Figure 23-2. The UPDDEMO program.

UPDDEMO.C

/*--
 UPDDEMO.C -- Demonstrates Anonymous FTP Access

 (c) Charles Petzold, 1998
 --*/

#include <windows.h>
#include <wininet.h>
#include <process.h>
#include "resource.h"

 // User-defined messages used in WndProc

#define WM_USER_CHECKFILES (WM_USER + 1)
#define WM_USER_GETFILES (WM_USER + 2)

 // Information for FTP download

#define FTPSERVER TEXT ("ftp.cpetzold.com")
#define DIRECTORY TEXT ("cpetzold.com/ProgWin/UpdDemo")
#define TEMPLATE TEXT ("UD??????.TXT")

 // Structures used for storing filenames and contents

typedef struct
{
 TCHAR * szFilename ;
 char * szContents ;
}
FILEINFO ;

typedef struct
{
 int iNum ;
 FILEINFO info[1] ;
}
FILELIST ;

 // Structure used for second thread

typedef struct
{
 BOOL bContinue ;
 HWND hwnd ;
}
PARAMS ;

 // Declarations of all functions in program

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
BOOL CALLBACK DlgProc (HWND, UINT, WPARAM, LPARAM) ;
VOID FtpThread (PVOID) ;
VOID ButtonSwitch (HWND, HWND, TCHAR *) ;
FILELIST * GetFileList (VOID) ;
int Compare (const FILEINFO *, const FILEINFO *) ;

 // A couple globals

HINSTANCE hInst ;
TCHAR szAppName[] = TEXT ("UpdDemo") ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 PSTR szCmdLine, int iCmdShow)
{
 HWND hwnd ;
 MSG msg ;
 WNDCLASS wndclass ;

 hInst = hInstance ;

 wndclass.style = 0 ;
 wndclass.lpfnWndProc = WndProc ;
 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
 wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = NULL ;
 wndclass.hbrBackground = GetStockObject (WHITE_BRUSH) ;
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 if (!RegisterClass (&wndclass))
 {
 MessageBox (NULL, TEXT ("This program requires Windows NT!"),
 szAppName, MB_ICONERROR) ;
 return 0 ;
 }

 hwnd = CreateWindow (szAppName, TEXT ("Update Demo with Anonymous FTP"),
 WS_OVERLAPPEDWINDOW | WS_VSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 NULL, NULL, hInstance, NULL) ;

 ShowWindow (hwnd, iCmdShow) ;
 UpdateWindow (hwnd) ;

 // After window is displayed, check if the latest file exists

 SendMessage (hwnd, WM_USER_CHECKFILES, 0, 0) ;

 while (GetMessage (&msg, NULL, 0, 0))
 {
 TranslateMessage (&msg) ;
 DispatchMessage (&msg) ;
 }
 return msg.wParam ;
}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static FILELIST * plist ;
 static int cxClient, cyClient, cxChar, cyChar ;
 HDC hdc ;
 int i ;
 PAINTSTRUCT ps ;
 SCROLLINFO si ;
 SYSTEMTIME st ;
 TCHAR szFilename [MAX_PATH] ;

 switch (message)
 {
 case WM_CREATE:

 cxChar = LOWORD (GetDialogBaseUnits ()) ;
 cyChar = HIWORD (GetDialogBaseUnits ()) ;
 return 0 ;

 case WM_SIZE:
 cxClient = LOWORD (lParam) ;
 cyClient = HIWORD (lParam) ;

 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_RANGE | SIF_PAGE ;
 si.nMin = 0 ;
 si.nMax = plist ? plist->iNum - 1 : 0 ;
 si.nPage = cyClient / cyChar ;

 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 return 0 ;

 case WM_VSCROLL:
 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_POS | SIF_RANGE | SIF_PAGE ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 switch (LOWORD (wParam))
 {
 case SB_LINEDOWN: si.nPos += 1 ; break ;
 case SB_LINEUP: si.nPos -= 1 ; break ;
 case SB_PAGEDOWN: si.nPos += si.nPage ; break ;
 case SB_PAGEUP: si.nPos -= si.nPage ; break ;
 case SB_THUMBPOSITION: si.nPos = HIWORD (wParam) ; break ;
 default: return 0 ;
 }
 si.fMask = SIF_POS ;
 SetScrollInfo (hwnd, SB_VERT, &si, TRUE) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_USER_CHECKFILES:
 // Get the system date & form filename from year and month

 GetSystemTime (&st) ;
 wsprintf (szFilename, TEXT ("UD%04i%02i.TXT"), st.wYear, st.wMonth) ;

 // Check if the file exists; if so, read all the files

 if (GetFileAttributes (szFilename) != (DWORD) -1)
 {
 SendMessage (hwnd, WM_USER_GETFILES, 0, 0) ;
 return 0 ;
 }
 // Otherwise, get files from Internet.
 // But first check so we don't try copy files to a CD-ROM!
 if (GetDriveType (NULL) == DRIVE_CDROM)
 {

 MessageBox (hwnd, TEXT ("Cannot run this program from CD-ROM!"),
 szAppName, MB_OK | MB_ICONEXCLAMATION) ;
 return 0 ;
 }
 // Ask user if an Internet connection is desired

 if (IDYES == MessageBox (hwnd,
 TEXT ("Update information from Internet?"),
 szAppName, MB_YESNO | MB_ICONQUESTION))

 // Invoke dialog box

 DialogBox (hInst, szAppName, hwnd, DlgProc) ;

 // Update display

 SendMessage (hwnd, WM_USER_GETFILES, 0, 0) ;
 return 0 ;

 case WM_USER_GETFILES:
 SetCursor (LoadCursor (NULL, IDC_WAIT)) ;
 ShowCursor (TRUE) ;

 // Read in all the disk files

 plist = GetFileList () ;

 ShowCursor (FALSE) ;
 SetCursor (LoadCursor (NULL, IDC_ARROW)) ;

 // Simulate a WM_SIZE message to alter scroll bar & repaint

 SendMessage (hwnd, WM_SIZE, 0, MAKELONG (cxClient, cyClient)) ;
 InvalidateRect (hwnd, NULL, TRUE) ;
 return 0 ;

 case WM_PAINT:
 hdc = BeginPaint (hwnd, &ps) ;
 SetTextAlign (hdc, TA_UPDATECP) ;

 si.cbSize = sizeof (SCROLLINFO) ;
 si.fMask = SIF_POS ;
 GetScrollInfo (hwnd, SB_VERT, &si) ;

 if (plist)

 {
 for (i = 0 ; i < plist->iNum ; i++)
 {
 MoveToEx (hdc, cxChar, (i - si.nPos) * cyChar, NULL) ;
 TextOut (hdc, 0, 0, plist->info[i].szFilename,
 lstrlen (plist->info[i].szFilename)) ;
 TextOut (hdc, 0, 0, TEXT (": "), 2) ;

 TextOutA (hdc, 0, 0, plist->info[i].szContents,
 strlen (plist->info[i].szContents)) ;
 }
 }
 EndPaint (hwnd, &ps) ;
 return 0 ;

 case WM_DESTROY:
 PostQuitMessage (0) ;
 return 0 ;
 }
 return DefWindowProc (hwnd, message, wParam, lParam) ;
}

BOOL CALLBACK DlgProc (HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 static PARAMS params ;

 switch (message)
 {
 case WM_INITDIALOG:
 params.bContinue = TRUE ;
 params.hwnd = hwnd ;

 _beginthread (FtpThread, 0, ¶ms) ;
 return TRUE ;

 case WM_COMMAND:
 switch (LOWORD (wParam))
 {
 case IDCANCEL: // button for user to abort download
 params.bContinue = FALSE ;
 return TRUE ;

 case IDOK: // button to make dialog box go away
 EndDialog (hwnd, 0) ;
 return TRUE ;
 }
 }
 return FALSE ;
}

/*--
 FtpThread: Reads files from FTP server and copies them to local disk
 --*/

void FtpThread (PVOID parg)
{
 BOOL bSuccess ;
 HINTERNET hIntSession, hFtpSession, hFind ;
 HWND hwndStatus, hwndButton ;
 PARAMS * pparams ;
 TCHAR szBuffer [64] ;

 WIN32_FIND_DATA finddata ;

 pparams = parg ;
 hwndStatus = GetDlgItem (pparams->hwnd, IDC_STATUS) ;
 hwndButton = GetDlgItem (pparams->hwnd, IDCANCEL) ;

 // Open an internet session

 hIntSession = InternetOpen (szAppName, INTERNET_OPEN_TYPE_PRECONFIG,
 NULL, NULL, INTERNET_FLAG_ASYNC) ;

 if (hIntSession == NULL)
 {
 wsprintf (szBuffer, TEXT ("InternetOpen error %i"), GetLastError ()) ;
 ButtonSwitch (hwndStatus, hwndButton, szBuffer) ;
 _endthread () ;
 }

 SetWindowText (hwndStatus, TEXT ("Internet session opened...")) ;

 // Check if user has pressed Cancel

 if (!pparams->bContinue)
 {
 InternetCloseHandle (hIntSession) ;
 ButtonSwitch (hwndStatus, hwndButton, NULL) ;
 _endthread () ;
 }

 // Open an FTP session.

 hFtpSession = InternetConnect (hIntSession, FTPSERVER,
 INTERNET_DEFAULT_FTP_PORT,
 NULL, NULL, INTERNET_SERVICE_FTP, 0, 0) ;
 if (hFtpSession == NULL)
 {
 InternetCloseHandle (hIntSession) ;
 wsprintf (szBuffer, TEXT ("InternetConnect error %i"),
 GetLastError ()) ;
 ButtonSwitch (hwndStatus, hwndButton, szBuffer) ;
 _endthread () ;
 }

 SetWindowText (hwndStatus, TEXT ("FTP Session opened...")) ;

 // Check if user has pressed Cancel

 if (!pparams->bContinue)
 {
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;
 ButtonSwitch (hwndStatus, hwndButton, NULL) ;
 _endthread () ;

 }

 // Set the directory

 bSuccess = FtpSetCurrentDirectory (hFtpSession, DIRECTORY) ;

 if (!bSuccess)
 {
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;
 wsprintf (szBuffer, TEXT ("Cannot set directory to %s"),
 DIRECTORY) ;
 ButtonSwitch (hwndStatus, hwndButton, szBuffer) ;
 _endthread () ;
 }

 SetWindowText (hwndStatus, TEXT ("Directory found...")) ;

 // Check if user has pressed Cancel

 if (!pparams->bContinue)
 {
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;
 ButtonSwitch (hwndStatus, hwndButton, NULL) ;
 _endthread () ;
 }
 // Get the first file fitting the template

 hFind = FtpFindFirstFile (hFtpSession, TEMPLATE,
 &finddata, 0, 0) ;

 if (hFind == NULL)
 {
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;
 ButtonSwitch (hwndStatus, hwndButton, TEXT ("Cannot find files")) ;
 _endthread () ;
 }

 do
 {
 // Check if user has pressed Cancel

 if (!pparams->bContinue)
 {
 InternetCloseHandle (hFind) ;
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;
 ButtonSwitch (hwndStatus, hwndButton, NULL) ;
 _endthread () ;
 }
 // Copy file from internet to local hard disk, but fail

 // if the file already exists locally

 wsprintf (szBuffer, TEXT ("Reading file %s..."), finddata.cFileName) ;
 SetWindowText (hwndStatus, szBuffer) ;

 FtpGetFile (hFtpSession,
 finddata.cFileName, finddata.cFileName, TRUE,
 FILE_ATTRIBUTE_NORMAL, FTP_TRANSFER_TYPE_BINARY, 0) ;
 }
 while (InternetFindNextFile (hFind, &finddata)) ;

 InternetCloseHandle (hFind) ;
 InternetCloseHandle (hFtpSession) ;
 InternetCloseHandle (hIntSession) ;

 ButtonSwitch (hwndStatus, hwndButton, TEXT ("Internet Download Complete"));
}

/*---
 ButtonSwitch: Displays final status message and changes Cancel to OK
 ---*/

VOID ButtonSwitch (HWND hwndStatus, HWND hwndButton, TCHAR * szText)
{
 if (szText)
 SetWindowText (hwndStatus, szText) ;
 else
 SetWindowText (hwndStatus, TEXT ("Internet Session Cancelled")) ;

 SetWindowText (hwndButton, TEXT ("OK")) ;
 SetWindowLong (hwndButton, GWL_ID, IDOK) ;
}

/*---
 GetFileList: Reads files from disk and saves their names and contents
 ---*/

FILELIST * GetFileList (void)
{
 DWORD dwRead ;
 FILELIST * plist ;
 HANDLE hFile, hFind ;
 int iSize, iNum ;
 WIN32_FIND_DATA finddata ;

 hFind = FindFirstFile (TEMPLATE, &finddata) ;

 if (hFind == INVALID_HANDLE_VALUE)
 return NULL ;

 plist = NULL ;
 iNum = 0 ;

 do
 {
 // Open the file and get the size

 hFile = CreateFile (finddata.cFileName, GENERIC_READ, FILE_SHARE_READ,
 NULL, OPEN_EXISTING, 0, NULL) ;

 if (hFile == INVALID_HANDLE_VALUE)
 continue ;

 iSize = GetFileSize (hFile, NULL) ;

 if (iSize == (DWORD) -1)
 {
 CloseHandle (hFile) ;
 continue ;
 }
 // Realloc the FILELIST structure for a new entry

 plist = realloc (plist, sizeof (FILELIST) + iNum * sizeof (FILEINFO));

 // Allocate space and save the filename

 plist->info[iNum].szFilename = malloc (lstrlen (finddata.cFileName) +
 sizeof (TCHAR)) ;
 lstrcpy (plist->info[iNum].szFilename, finddata.cFileName) ;

 // Allocate space and save the contents

 plist->info[iNum].szContents = malloc (iSize + 1) ;
 ReadFile (hFile, plist->info[iNum].szContents, iSize, &dwRead, NULL);
 plist->info[iNum].szContents[iSize] = 0 ;

 CloseHandle (hFile) ;
 iNum ++ ;
 }
 while (FindNextFile (hFind, &finddata)) ;

 FindClose (hFind) ;

 // Sort the files by filename

 qsort (plist->info, iNum, sizeof (FILEINFO), Compare) ;

 plist->iNum = iNum ;

 return plist ;
}

/*----------------------------
 Compare function for qsort
 ----------------------------*/

int Compare (const FILEINFO * pinfo1, const FILEINFO * pinfo2)
{
 return lstrcmp (pinfo2->szFilename, pinfo1->szFilename) ;
}

UPDDEMO.RC (excerpts)

//Microsoft Developer Studio generated resource script.

#include "resource.h"
#include "afxres.h"

///
// Dialog

UPDDEMO DIALOG DISCARDABLE 20, 20, 186, 95
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Internet Download"
FONT 8, "MS Sans Serif"
BEGIN
 PUSHBUTTON "Cancel",IDCANCEL,69,74,50,14
 CTEXT "",IDC_STATUS,7,29,172,21
END

RESOURCE.H (excerpts)

// Microsoft Developer Studio generated include file.
// Used by UpdDemo.rc

#define IDC_STATUS 40001

UPDDEMO uses files with names of UDyyyymm.TXT, where yyyy is a 4-digit year (year 2000 compliant, of course)
and mm is a 2-digit month. The assumption here is that the program benefits from having updated files every
month. Perhaps these files are really entire monthly magazines that the program downloads to local storage for
performance purposes.

So, after WinMain calls ShowWindow and UpdateWindow to display UPDDEMO's main window, it sends WndProc a
program-defined WM_USER_CHECKFILES message. WndProc processes this message by obtaining the current
year and month and checking the default directory for a UDyyyymm.TXT file with that year and month. The
existence of such a file means that UPDDEMO is fully updated. (Well, not really. Some of the past files might be
missing. A more complete program might do a more extensive check.) In this case, UPDDEMO sends itself a
WM_USER_GETFILES message, which it processes by calling the GetFileList function. This is a longish function in
UPDDEMO.C, but it's not particularly interesting. All it does is read all the UDyyyymm.TXT files into a dynamically
allocated structure of type FILELIST defined at the top of the program. The program then displays the contents of
these files in its client area.

If UPDDEMO does not have the most recent file, then it must access the Internet to update itself. The program
first asks the user if this is OK. If so, it displays a simple dialog box with a Cancel button and a static text field
with an ID of IDC_STATUS. This will serve to give the user a status report as the download takes place, and to
allow the user to cancel a particularly sluggish session. The dialog procedure is named DlgProc .

DlgProc is very short. It sets up a structure of type PARAMS containing its own window handle and a BOOL
variable named bContinue , and then calls _beginthread to execute a second thread of execution.

The FtpThread function performs the actual transfer using calls to InternetOpen , InternetConnect ,
FtpSetCurrentDirectory , FtpFindFirstFile , InternetFindNextFile , FtpGetFile , and InternetCloseHandle (three
times). As with most code, this thread function could be a lot shorter if it weren't so obsessed with checking for
errors, letting the user know what's going on, and letting the user cancel the whole show if desired. The FtpThread
function keeps the user aware of its progress by calls to SetWindowText using the hwndStatus handle, which
refers to the static text field in the center of the dialog box.

The thread can terminate in one of three ways:

First, FtpThread could encounter an error return from one of the WinInet functions. If so, it cleans up and then
formats an error string and passes that string (along with the handles to the dialog box text field and Cancel
button) to ButtonSwitch . ButtonSwitch is a little function that displays the text string and switches the Cancel
button to an OK button—not only the text string in the button but also the control ID. This allows the user to press
the OK button and terminate the dialog box.

Second, FtpThread could complete its task without any errors. This is handled in the same way as if it encounters
an error, except that the string it displays in the dialog box is "Internet Download Complete."

Third, the user could elect to cancel the download in progress. In this case, DlgProc sets the bContinue field of the
PARAMS structure to FALSE. FtpThread frequently checks that value; if bContinue is FALSE, the function cleans up
and calls ButtonSwitch with a NULL text argument, indicating that the string "Internet Session Cancelled" is to be
displayed. Again, the user must press "OK" to get rid of the dialog box.

Although UPDDEMO is written to display only a single line of each file, it's possible that I (the author of this book)
could use this program to inform you (the reader of this book) about any possible updates or other information
regarding this book that can be found on my Web site in more detail. UPDDEMO thus becomes a means for me to
broadcast information out to you and thus continue this book beyond this page.

About the Author

Charles Petzold has been writing about personal computer programming since 1984 and has been programming
for Microsoft Windows since 1985. He wrote the first magazine article about Windows programming in the
December 1986 issue of Microsoft Systems Journal. Between 1986 and 1995, he wrote the Environments column
for PC Magazine, which introduced his readers to many facets of Windows and OS/2 programming.

Programming Windows was first published by Microsoft Press in 1988 and has since become regarded as the best
introductory text on the subject. In May 1994, Petzold was one of only seven people (and the only writer) to be
given a Windows Pioneer Award from Windows Magazine and Microsoft Corporation for his contribution to the
success of Microsoft Windows.

In the fall of 1999, Microsoft Press will publish Charles Petzold's first book for a general audience. Tentatively
entitled Code: The Hidden Language of Computer Hardware and Software, this book is a unique introduction to the
nature of digital information and how computers work with that information

	Cover
	LOC Page

	Author's Note
	Section I: The Basics
	Chapter 1 -- Getting Started
	The Windows Environment
	Windows Programming Options
	Your First Windows Program

	Chapter 2 -- An Introduction to Unicode
	A Brief History of Character Sets
	Wide Characters and C
	Wide Characters and Windows

	Chapter 3 -- Windows and Messages
	A Window of One's Own
	The Windows Programming Hurdles

	Chapter 4 -- An Exercise in Text Output
	Painting and Repainting
	An Introduction to GDI
	Scroll Bars
	Building a Better Scroll

	Chapter 5 -- Basic Drawing
	The Structure of GDI
	The Device Context
	Drawing Dots and Lines
	Drawing Filled Areas
	The GDI Mapping Mode
	Rectangles, Regions, and Clipping

	Chapter 6 -- The Keyboard
	Keyboard Basics
	Keystroke Messages
	Character Messages
	Keyboard Messages and Character Sets
	The Caret (Not the Cursor)

	Chapter 7 -- The Mouse
	Mouse Basics
	Client-Area Mouse Messages
	Nonclient-Area Mouse Messages
	Hit-Testing in Your Programs
	Capturing the Mouse
	The Mouse Wheel

	Chapter 8 -- The Timer
	Timer Basics
	Using the Timer: Three Methods
	Using the Timer for a Clock
	Using the Timer for a Status Report

	Chapter 9 -- Child Window Controls
	The Button Class
	Controls and Colors
	The Static Class
	The Scroll Bar Class
	The Edit Class
	The Listbox Class

	Chapter 10 -- Menus and Other Resources
	Icons, Cursors, Strings, and Custom Resources
	Menus
	Keyboard Accelerators

	Chapter 11 -- Dialog Boxes
	Modal Dialog Boxes
	Modeless Dialog Boxes
	The Common Dialog Boxes

	Chapter 12 -- The Clipboard
	Simple Use of the Clipboard
	Beyond Simple Clipboard Use
	Becoming a Clipboard Viewer

	Section II: More Graphics
	Chapter 13-- Using the Printer
	Printing Fundamentals
	Printing Graphics and Text

	Chapter 14 -- Bitmaps and Bitblts
	Bitmap Basics
	Bitmap Dimensions
	The Bit-Block Transfer
	The GDI Bitmap Object

	Chapter 15 -- The Device-Independent Bitmap
	The DIB File Format
	Displaying and Printing
	The Union of DIBs and DDBs

	Chapter 16 -- The Palette Manager
	Using Palettes
	Palette Animation
	Palettes and Real-World Images
	A Library for DIBs

	Chapter 17 -- Text and Fonts
	Simple Text Output
	Background on Fonts
	The Logical Font
	Font Enumeration
	Paragraph Formatting
	The Fun and Fancy Stuff

	Chapter 18 -- Metafiles
	The Old Metafile Format
	Enhanced Metafiles

	Section III: Advanced Topics
	Chapter 19 -- The Multiple-Document Interface
	MDI Concepts
	A Sample MDI Implementation

	Chapter 20 -- Multitasking and Multithreading
	Modes of Multitasking
	Windows Multithreading
	Thread Synchronization
	Event Signaling
	Thread Local Storage

	Chapter 21 -- Dynamic-Link Libraries
	Library Basics
	Miscellaneous DLL Topics

	Chapter 22 -- Sound and Music
	Windows and Multimedia
	Waveform Audio
	MIDI and Music

	Chapter 23 -- A Taste of the Internet
	Windows Sockets
	WinInet and FTP

	About the Author

