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Dedication

I wrote this book in an office at the Smithsonian Institution’s National
Air and Space Museum, one of the busiest public spaces in the world. On
a typical summer day there may be upwards of 50,000 visitors to the
museum—the population of a small city. These visitors—with their
desire to know something of modern technology—were a great inspira-
tion to me. Their presence was a constant reminder that technology is
not just about machines but about people: the people who design and
build machines and, more importantly, the people whose lives are
profoundly affected by them. It is to these visitors that I respectfully
dedicate this book.



This page intentionally left blank 



Contents

Dedication v

Preface to the Second Edition ix

Acknowledgments xiii

Introduction: Defining ‘‘Computer’’ 1

1
The Advent of Commercial Computing, 1945–1956 13

2
Computing Comes of Age, 1956–1964 47

3
The Early History of Software, 1952–1968 79

4
From Mainframe to Minicomputer, 1959–1969 109

5
The ‘‘Go-Go’’ Years and the System/360, 1961–1975 143

6
The Chip and Its Impact, 1965–1975 177

7
The Personal Computer, 1972–1977 207



8
Augmenting Human Intellect, 1975–1985 243

9
Workstations, UNIX, and the Net, 1981–1995 281

10
‘‘Internet Time,’’ 1995–2001 307

Conclusion: The Digitization of the World Picture 345

Notes 351

Bibliography 415

Index 431

viii Contents



Preface to the Second Edition

As I was completing the manuscript for the first edition of A History of

Modern Computing, I found myself anxiously looking over my shoulder,
worrying that some new development in computing would render what I
had just written obsolete. My concern was well grounded: as I was writing
the final chapter, at least one event occurred that threatened to upset
the narrative structure I had erected. That was the fanfare that
surrounded Microsoft’s introduction, in the fall of 1997, of version 4.0
of its Internet Explorer—an introduction that led the U.S. Justice
Department to file an antitrust suit against the company. I had not
been paying much attention to Microsoft’s Web strategy at the time, but I
was confronted with the excitement surrounding Internet Explorer
literally on the day I put my completed manuscript of A History of

Modern Computing into a FedEx package for shipment to the publisher.
The antitrust suit did in fact turn out to be one of the biggest
developments in computing since 1995, and this edition will examine
it at length. Are other developments now lurking in the background,
which, when they surface, will render any attempt to write a history of
computing impossible?

With the rise of the World Wide Web came the notion of ‘‘Internet
Time.’’ Netscape’s founder Jim Clark called it ‘‘Netscape Time’’ in his
1999 book by that title: he defined it as a telescoping of the time for a
technology to proceed from invention to prototype, production,
commercial success, maturity, and senescence.1 The historian faces a
modern version of Zeno’s paradox. In the classical story, a fast runner
never reached the finish line in a race, because he first had to traverse
one-half the distance to the end, which took a finite time, and then one-
half the remaining distance, which again took a smaller but still finite
time, and so on. There is a finite time between sending a completed



manuscript to the typesetter and the delivery of a book or journal article
to the reader. When the subject is computing, Zeno’s paradox takes
control: enough happens in that brief interval to render what was just
written obsolete. Many recognize this and embrace the solution of
publishing electronically, thus telescoping that time down to zero.
There are indeed many Web sites devoted to the history of computing,
some of excellent quality. Still, embracing Web publishing is a false hope,
because it does nothing to compress the time spent organizing historical
material into a coherent narrative. History is a chronology of facts, but
the word history contains the word story in it, and telling stories is not
rendered obsolete by technology. The storyteller neither can, nor
should, speed that activity up.

In looking over the first edition, I feel that it has managed to avoid
Zeno’s trap. A number of significant events have developed after 1995,
and in a new chapter I examine three at length. These are the Microsoft
trial, mentioned above; the explosion and equally stunning implosion of
the ‘‘dot.com’’ companies; and the rise of the ‘‘open source’’ software
movement and especially the adoption of the Linux operating system.
These are three of at least a dozen topics that I could have chosen, but to
examine more would not serve the reader.

Zeno may get his revenge yet. The above plan for bringing the history
of computing up to date seems rational, but it may have a fatal flaw. The
history of computing, as a separate subject, may itself become irrelevant.
There is no shortage of evidence to suggest this. For example, when the
financial press refers to ‘‘technology’’ stocks, it no longer means the
computer industry represented by companies like IBM or even Intel, but
increasingly Internet and telecommunications firms. In my work as a
museum curator, I have had to grapple with issues of how to present the
story of computing, using artifacts, to a public. It was hard enough when
the problem was that computers were rectangular ‘‘black boxes’’ that
revealed little of their function; now the story seems to be all about
‘‘cyberspace,’’ which by definition has no tangible nature to it.

Perhaps the invention of the computer is like Nicholaus Otto’s
invention of the four-cycle gasoline engine in 1876. However significant
that was, if Otto is remembered at all it is because the Otto Cycle became
the preferred way to power the automobile. And the automobile in turn
is a topic worthy of study not so much for its intrinsic qualities as a
machine, but for helping shape a society that has grown around personal
transportation. In the preface to the first edition I suggested that this
book’s emphasis on the transition from batch-oriented to interactive
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computing might some day seem to be a minor part of computing
history. Has that day come already? What now seems to have been
critical was the transformation of the computer from a stand-alone to a
networked device. That, however, could not have happened were it not
for the earlier transition from batch to interactive use. Although the
hardware roots of cyberspace are found in chip manufacturers including
Intel, and in personal computer companies like Apple, the spiritual
roots of cyberspace are found in time-sharing experiments like Project
MAC.

I do not feel that the history of computing will vanish into a subfield of
the history of cyberspace. The recent implosion of the dot.com compa-
nies (the second topic covered in the new chapter) suggests that a study
of hardware and software (including Linux, the third topic) will remain
at the core of any history. The study of cyberspace is merging with social,
cultural, military, and political history, as digital technologies increas-
ingly mediate among human interactions. That is the origin of the term
media. I hope this book will continue to serve those who wish to know
how the increasingly mediated world we now live in arose.

Preface xi
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Introduction: Defining ‘‘Computer’’

Computers were invented to ‘‘compute’’: to solve ‘‘complex mathema-
tical problems,’’ as the dictionary still defines that word.1 They still do
that, but that is not why we are living in an ‘‘Information Age.’’ That
reflects other things that computers do: store and retrieve data, manage
networks of communications, process text, generate and manipulate
images and sounds, fly air and space craft, and so on. Deep inside a
computer are circuits that do those things by transforming them into a
mathematical language. But most of us never see the equations, and few
of us would understand them if we did. Most of us, nevertheless,
participate in this digital culture, whether by using an ATM card,
composing and printing an office newsletter, calling a mail-order
house on a toll-free number and ordering some clothes for next-day
delivery, or shopping at a mega-mall where the inventory is replenished
‘‘just-in-time.’’ For these and many other applications, we can use all the
power of this invention without ever seeing an equation. As far as the
public face is concerned, ‘‘computing’’ is the least important thing that
computers do.

But it was to solve equations that the electronic digital computer was
invented. The word ‘‘computer’’ originally meant a person who solved
equations; it was only around 1945 that the name was carried over to
machinery.2

That an invention should find a place in society unforeseen by its
inventors is not surprising.3 The story of the computer illustrates that. It
is not that the computer ended up not being used for calculation—it is

used for calculation by most practicing scientists and engineers today.
That much, at least, the computer’s inventors predicted. But people
found ways to get the invention to do a lot more. How they did that,
transforming the mathematical engines of the 1940s to the networked
information appliance of the 1990s, is the subject of this book.



The Computer Revolution and the History of Technology

In the early 1980s, when I had just taken my first job as a member of the
history department of a state university, I mentioned to one of my
colleagues that I was studying the history of computing. ‘‘Why comput-
ing?’’ he replied. ‘‘Why not study the history of washing machines?’’
I thought he was joking, maybe making fun of the greenhorn just
arrived in the faculty lounge. But he was serious. After all, he had a
washing machine at home, it was a complex piece of technology, and its
effect on his daily life was profound. Surely it had a history. But
computers? Those were exotic things he had heard of but experienced
only indirectly.

In the 1990s that question would not be asked, because few would
argue that computers are not important. We live in an age transformed
by computing.4 This is also the reason why we need to understand its

Figure 0.1
Human ‘‘computers’’ at work at North American Aviation, Los Angeles, in the
early 1950s. The two women in the lower center of the photo are using Friden
calculators, and the man at the lower left is looking up a number on a slide rule.
The rear half of the room is set up for drafting. Absent from this room are any
punched-card machines, although aircraft engineers did use them for some
applications, as described in the text. (Source : NASM.)
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origins. But terms like ‘‘Information Age’’ or ‘‘Computer Revolution’’
are not ones I like. They mislead as much as inform. Technological
revolutions certainly do occur, though not often. The story of how a new
technology finds its place in a society is always more subtle and complex
than implied by the phrase ‘‘X Revolution,’’ or ‘‘X Age,’’ where ‘‘X’’
stands for jet aircraft, nuclear energy, automobiles, computers, informa-
tion, space, the Internet, microelectronics, and so on.5 The daily press
tends to overstate the possible effects of each new model of a chip, each
new piece of software, each new advance in networking, each alliance
between computing and entertainment firms: surely they will change
our lives for the better. A few weeks later the subject of these glowing
reports is forgotten, replaced by some new development that, we are
assured, is the real turning point.6

Yet who would deny that computing technology has been anything
short of revolutionary? A simple measure of the computing abilities of
modern machines reveals a rate of advance not matched by other
technologies, ancient or modern. The number of computers installed
in homes and offices in the United States shows a similar rate of growth,
and it is not slowing down. Modern commercial air travel, tax collection,
medical administration and research, military planning and opera-
tions—these and a host of other activities bear the stamp of computer
support, without which they would either look quite different or not be
performed at all. The history of computing commands—as it probably
should—more attention from the public than the history of the washing
machine. The colleague who in 1981 dismissed the study of computing
no longer prepares his papers on a manual typewriter, I suspect.
Historians are among the most fanatic in embracing the latest advances
in computer-based aids to scholarship.7

Is the electronic computer only one of many large-scale, high-technol-
ogy systems that have shaped the twentieth century? To what extent is it
unique as an information-processing machine? To what extent is
computing after 1945 different from the information-handling activities
of an earlier age? The popular literature tends to stress computing’s
uniqueness, hand in hand with breathless accounts of its revolutionary
impacts. Some writers cast this revolution as a takeover by a ‘‘clean’’
technology, with none of the pollution or other side effects of the
technologies of the Iron Age.8 If the computer is revolutionizing our
lives, who is on the losing side; who are the loyalists that computing
must banish from this new world? Or is computing like the ruling party
of Mexico: a permanent, benign, institutionalized ‘‘revolution’’? The
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narrative that follows will, I hope, provide enough historical data to
answer these questions, at least tentatively.9

Current studies of computing give conflicting answers to these ques-
tions. Some show the many connections between modern computing
and the information-handling machinery and social environments that
preceded it.10 Some make passing references to computing as one of
many technologies that owe their origins to World War II research. Many
stress the distinction between computing and other products of wartime
weapons laboratories; few examine what they have in common.11 Still
others make little attempt to discover any connection at all.12

In writing about the emergence of electrical power systems in the
United States and Europe, Thomas Parke Hughes introduced the notion
of technological systems, into which specific pieces of machinery must
fit.13 His work is too rich and complex to be summarized here, but a few
aspects are particularly relevant to the history of computing. One is that
‘‘inventors’’ include people who innovate in social, political, and
economic, as well as in technical, arenas. Sometimes the inventor of a
piece of hardware is also the pioneer in these other arenas, and some-
times not. Again and again in the history of computing, especially in
discussing the rise of Silicon Valley, we shall encounter an entrepreneur
with a complex relationship to a technical innovator. This narrative will
also draw on another of Hughes’s insights: that technology advances
along a broad front, not along a linear path, in spite of terms like
‘‘milestone’’ that are often used to describe it.

The history of computing presents problems under this systems
approach, however. One definition of a modern computer is that it is

a system: an arrangement of hardware and software in hierarchical
layers. Those who work with the system at one level do not see or care
about what is happening at other levels. The highest levels are made up
of ‘‘software’’—by definition things that have no tangible form but are
best described as methods of organization. Therefore, it might be
argued, one need not make any special effort to apply the systems
approach to the history of computing, since systems will naturally appear
everywhere. This is another example of computing’s uniqueness. Never-
theless, the systems approach will be applied in this narrative, because it
helps us get away from the view of computing solely as a product of
inventors working in a purely technical arena.

Another approach to the history of technology is known as ‘‘social
construction.’’ Like the systems approach, it is too rich a subject to be
summarized here.14 Briefly a social constructionist approach to the
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history of computing would emphasize that there is no ‘‘best’’ way to
design computing systems or to integrate them into social networks.
What emerges as a stable configuration—say, the current use of desktop
systems and their software—is as much the result of social and political
negotiation among a variety of groups (including engineers) as it is the
natural emergence of the most efficient or technically best design. A few
historians of computing have adopted this approach,15 but most have
not, preferring to describe computing’s history as a series of technical
problems met by engineering solutions that in hindsight seem natural
and obvious.

However, a body of historical literature that has grown around the
more recent history of computing does adopt a social constructionist
approach, if only informally. The emergence of personal computing has
been the subject of popular books and articles by writers who are either
unfamiliar with academic debates about social construction or who
know of it but avoid presenting the theory to a lay audience. Their
stories of the personal computer emphasize the idealistic aspirations of
young people, mainly centered in the San Francisco Bay area and
imbued with the values of the Berkeley Free Speech Movement of the
late 1960s. For these writers, the personal computer came not so much
from the engineer’s workbench as from sessions of the Homebrew
Computer Club between 1975 and 1977.16 These histories tend to
ignore advances in fields such as solid state electronics, where technical
matters, along with a different set of social forces, played a significant
role. They also do little to incorporate the role of the U.S. Defense
Department and NASA (two of the largest employers in Silicon Valley) in
shaping the technology. These federal agencies represent social and
political, not engineering, drivers. I shall draw on Hughes’s concepts of
social construction and his systems approach throughout the following
narrative; and we will find abundant evidence of social forces at work,
not only during the era of personal computing but before and after it as
well.

Themes

The narrative that follows is chronological, beginning with the first
attempts to commercialize the electronic computer in the late 1940s and
ending in the mid–1990s, as networked personal workstations became
common. I have identified several major turning points, and these get
the closest scrutiny. They include the computer’s transformation in the
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late 1940s from a specialized instrument for science to a commercial
product, the emergence of small systems in the late 1960s, the advent of
personal computing in the 1970s, and the spread of networking after
1985. I have also identified several common threads that have persisted
throughout these changes.

The first thread has to do with the internal design of the computer
itself: the way that electronic circuits are arranged to produce a machine
that operates effectively and reliably. Despite the changes in implemen-
tation from vacuum tubes to integrated circuits, the flow of information
within a computer, at one level at least, has not changed. This design is
known as the ‘‘von Neumann Architecture,’’ after John von Neumann
(1903–1957), who articulated it in a series of reports written in 1945 and
1946.17 Its persistence over successive waves of changes in underlying
hardware and software provides the historian with at least one path into
the dense forest of recent history. How successive generations of
machines departed from the concepts of 1945, while retaining their
essence, also forms a major portion of the story.

Many histories of computing speak of three ‘‘generations,’’ based on
whether a computer used vacuum tubes, transistors, or integrated
circuits. In fact, the third of these generations has lasted longer than

Figure 0.2
Computing with machines at the same company ten years later. A pair of IBM
7090 computers assist in the design and testing of the rocket engines that will
later take men to the Moon and back. The most visible objects in this scene are
the magnetic tape drives, suggesting that storage and retrieval of information are
as much a part of ‘‘computing’’ as is arithmetic. Obviously fewer people are
visible in this room than in the previous photo, but it is worth noting that of the
four men visible here, two are employees of IBM, not North American Aviation.
(Source : Robert Kelly, Life Magazine, # Time Inc., 1962.)
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the first two combined, and nothing seems to be on the horizon that will
seriously challenge the silicon chip. Silicon integrated circuits, encased
in rectangular black plastic packages, are soldered onto circuit boards,
which in turn are plugged into a set of wires called a bus: this physical
structure has been a standard since the 1970s. Its capabilities have
progressed at a rapid pace, however, with a doubling of the chip’s data
storage capacity roughly every eighteen months. Some engineers argue
that this pace of innovation in basic silicon technology is the true driving
force of history, that it causes new phases of computing to appear like
ripe fruit dropping from a tree. This view is at odds with what historians
of technology argue, but the degree to which it is accepted and even
promoted by engineers makes it a compelling argument that cannot be
dismissed without a closer look.

Computing in the United States developed after 1945 in a climate of
prosperity and a strong consumer market. It was also during the Cold
War with the Soviet Union. How the evolution of computing fits into that
climate is another theme of this story. The ENIAC itself, the machine
that began this era, was built to meet a military need; it was followed by
other military projects and weapons systems that had a significant impact
on computing: Project Whirlwind, the Minuteman ballistic missile, the
Advanced Research Projects Agency’s ARPANET, and others. At the
same time, the corporation that dominated computing, IBM, built its
wealth and power by concentrating on a commercial rather than a
military market, although it too derived substantial revenues from
military contracts. In the 1970s, as the military was subsidizing computer
development, another arm of the U.S. government, the Justice Depart-
ment, was attempting to break up IBM, charging that it had become too
big and powerful.

The military’s role in the advancement of solid state electronics is well
known, but a closer look shows that role to be complex and not always
beneficial.18 The term ‘‘military’’ is misleading: there is no single
military entity but rather a group of services and bureaus that are
often at odds with one another over roles, missions, and funding.
Because the military bureaucracy is large and cumbersome, individual
‘‘product champions’’ who can cut through red tape are crucial. Hyman
Rickover’s role in developing nuclear-powered submarines for the Navy
is a well-known example. Military support also took different forms. At
times it emphasized basic research, at others specific products. And that
relationship changed over the decades, against a backdrop of, first, the
nascent Cold War, then the Korean conflict, the Space Race, the Viet
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Nam War, and so on. From 1945 onward there have always been people
who saw that computing technology could serve military needs, and that
it was therefore appropriate to channel military funds to advance it. Not
everyone shared that view, as the following chapters will show; but
military support has been a constant factor.

The breakup of the Soviet Union and the end of the Cold War have
brought into focus some aspects of that conflict that had been hidden or
suppressed. One was the unusually active role played by scientists and
university researchers in supporting the effort.19 Another was the unique
role that information, and by implication, information-handling
machines, played. Information or ‘‘intelligence’’ has been a crucial
part of all warfare, but as a means to an end. In the Cold War it
became an end in itself. This was a war of code-breaking, spy satellites,
simulations, and ‘‘war games.’’ Both science-based weapons develop-
ment and the role of simulation provided a strong incentive for the U.S.
Defense Department to invest heavily in digital computing, as a custo-
mer and, more importantly, as a source of funds for basic research.20

The role of IBM, which dominated the computer industry from about
1952 through the 1980s, is another recurring theme of this narrative. Its
rise and its unexpected stumble after 1990 have been the subject of
many books. IBM itself sponsored a series of excellent corporate
histories that reveal a great deal about how it operated.21 One issue is
how IBM, a large and highly structured organization with its own first-
class research facilities, fared against start-up companies led by entre-
preneurs such as William Gates III, William Norris, Ken Olsen, or Max
Palevsky. These people were able to surmount the barriers to entry into
the computer business that IBM erected, while a host of others tried and
failed. What, besides luck, made the difference? How did IBM continue
to dominate in an environment of constant and often disruptive
technological innovation? Unlike the start-up companies, IBM had an
existing customer base to worry about, which prevented it from ever
starting with a clean slate. Its engineering and sales force had to retain
continuity with the punched-card business that had been its prewar
mainstay, even as its own research laboratories were developing new
technologies that would render punched cards obsolete. Likewise the
start-up companies, once they became established and successful, faced
the same problem of dealing with new technology. We may thus
compare IBM’s strategy with the strategies of its new competitors,
including Digital Equipment Corporation, Wang Labs, Control Data,
and Microsoft.

8 Introduction



Another theme concerns a term, unknown in the late 1940s, that
dominates computing in the 1990s: software.22 Chapter 3 chronicles the
early development of software, but the topic crops up occasionally
before that, and in the chapters that follow it appears with more
frequency. In the 1950s computer companies supplied system software
as part of the price of a computer, and customers developed their own
applications programs. More than one purchaser of an early computing
system winced at the army of systems analysts, programmers, and soft-
ware specialists that had to be hired into the company to manage a
machine that was supposed to eliminate clerical workers. It was not until
1990 that commercial software came to the fore of computing, as
hardware prices dropped and computer systems became more reliable,
compact, and standardized.

The literature on the history of computing recognizes the importance
of software, but this literature is curiously divided into two camps,
neither of which seems to recognize its dependence on the other. In
one camp we find a glut of books and magazine articles about personal
computer software companies, especially Microsoft, and the fortunes
made in selling the DOS and Windows operating systems for PCs. Some
chronicle the history of UNIX, an influential operating system that has
also had success in the commercial marketplace. These accounts lack
balance. Readers are naturally interested in the enormous sums of
money changing hands, but what does this software do, and why do
the operating systems look the way they do? Moreover, few of these
chronicles connect these systems to the software developed in the first
two decades of computing, as if they had nothing to do with each other.
In fact, there are strong connections.

Another camp adheres to higher standards of scholarship and objec-
tivity, and gives appropriate emphasis to computing before the advent of
the PC. But this body of literature has concentrated its efforts on
programming languages. In a sense, this approach mirrors activity in
computing itself in the early days, when it was not hard to find people
working on new and improved programming languages, but was hard to
find people who worried about integrating these languages into systems
that got work done efficiently and made good use of a customer’s time.23

We now know a great deal about the early development of FORTRAN,
BASIC, COBOL, and a host of other more obscure languages, yet we
know little of the systems those languages were a part of.

A final theme is the place of information in a democratic society.
Computers share many values associated with the printing press, the
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freedom of which is guaranteed by the First Amendment to the U.S.
Constitution. But computers are also agents of control.24 Are the two
attributes at odds with each other? The first customers for commercial
computers were military or government agencies, who hoped these
machines could manage the information that was paralyzing their
operations; at the same time, the popular press was touting ‘‘automa-
tion’’ as the agent of a new era of leisure and affluence for American
workers. Project Whirlwind led, on the one hand, to SAGE, a centralized
command-and-control system whose structure mirrored the command
structure of the Air Force, which funded it; on the other, it led to the
Digital Equipment Corporation, a company founded with the goal of
making computers cheaper and more accessible to more people. The
notion of personal computers as liberating technology will be discussed
in detail in chapter 7; the question we shall ask is whether those ideals
were perverted as PCs found their way into corporate offices in the
1980s. We shall also see that these same issues have surfaced once again
as the Internet has exploded into a mass market.

Computer software is very much a part of this narrative, but one facet
of software development is excluded—Artificial Intelligence (AI). AI
explores the question of whether computers can perform tasks that, if
done by human beings, would be universally regarded as indicating
intelligence. Machine intelligence was first believed to be a problem of
hardware, but for most of this history AI research has dealt with it by
writing programs that run on the same stored-program digital compu-
ters (perhaps with some enhancements) that are made and sold for
other applications. Artificial Intelligence spans a wide range—from fairly
prosaic applications in daily commercial use to philosophical questions
about the nature of humanity. What defines AI research is constantly
changing: cheap pocket chess-playing machines are not AI, for example,
but advanced chess playing by computer still is. To paraphrase Alan
Turing, the history of AI is perhaps better written by a computer than by
a person.

This book focuses on the history of computing as it unfolded in the
United States. Western Europe, especially England, was also a site where
pioneering electronic computing machines were built, first for military
and then for commercial customers. By December 1943, when construc-
tion of the ENIAC had only begun, the British already had at least one
electronic ‘‘Colossus’’ in operation. The British catering firm J. Lyons &
Company had installed and was using a commercial computer, the LEO,
well before the American UNIVACs found their first customers.25 In
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Germany, Konrad Zuse was also taking steps to commercialize inventions
he had created for the German military during World War II. By the late
1950s, though, whatever lead the Europeans had was lost to American
companies. The economist Kenneth Flamm suggests one reason for this:
‘‘European governments provided only limited funds to support the
development of both electronic component and computer technology
in the 1950s and were reluctant to purchase new and untried technology
for use in their military and other systems.’’26 There was little of the easy
flow of information—and more important, people—between military
and commercial computing in Europe. The following narrative will
occassionally address European contributions, but for reasons of space
will not chronicle the unfolding of the computer industry there.

This narrative will also touch only lightly on the history of computing
in Japan. That story is different: Japan had a late start in computing,
never producing vacuum tube computers at all. Japanese firms made
remarkable advances in integrated circuit production, however, and had
established a solid place in portions of the industry by the 1980s. The
announcement in the early 1980s of a Japanese ‘‘Fifth Generation’’
program, intended to leapfrog over U.S. software expertise, created a lot
of anxiety in the United States, but the United States retained its
leadership in software into the 1990s.27 How Japanese firms gained a
foothold is discussed briefly in chapter 5.

The end of the Cold War, and with it the opening of Soviet archives,
may help us better understand the development of computing in the
U.S.S.R. Throughout this era the Soviets remained well behind the
United States in computing.28 So far the reasons that have been given
tend to be post hoc: because it was so, therefore it had to be so. But what
of Soviet achievements in pure mathematics and physics, as well as in
developing ballistic missiles, nuclear weapons, space exploration, and
supersonic aircraft? One might expect that the Soviet military would
have supported computing for the same reasons the U.S. Air Force
supported Whirlwind and SAGE. We know that Soviet scientists began
work on advanced digital computers as soon as the ENIAC was publi-
cized. Yet when they needed advanced machines, the Soviets turned to
their East European satellites (especially Hungary and Czechoslovakia),
or else they reverse-engineered U.S. computers such as the IBM System/
360 and the VAX. Building copies of these computers gave them access
to vast quantities of software, which they could acquire by a purchase on
the open market, or by espionage, but it also meant that they remained
one or two hardware generations behind the United States.

Defining ‘‘Computer’’ 11



Perhaps it was the perception that computers, being instruments that
facilitate the free exchange of information, are antithetical to a totali-
tarian state. But U.S. computing from 1945 through the 1970s was
dominated by large, centralized systems under tight controls, and
these were not at odds with the Soviet political system. Such computers
would have been perfect tools to model the command economy of
Marxism-Leninism. Soviet planners would not have been alone.
Throughout this era some Americans embraced computers for their
potential to perform centralized economic modeling for the United
States—with constitutional rights guaranteed, of course.29 Perhaps the
reason was the other side of the Western European coin: plenty of
military support, but no transfer to a market-driven computer industry.
Americans may have found that military support was ‘‘just right’’:
enough to support innovation but not so focused on specific weapons
systems as to choke off creativity. More research on the history of Soviet
computing needs to be done.

Most of us know that computers are somehow different from washing
machines in the ways they are affecting modern life. This book
concludes with some observations about why that might be so. Through-
out the narrative I question whether the computer is itself the imperso-
nal agent of change, or even whether it is an autonomous force that
people can do little to affect, much less resist. In my conclusion I revisit
that question. I do not have an answer. My hope is that the chronicle
presented in these chapters will enlighten those of us, lay and profes-
sional, who continue to ask.
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1
The Advent of Commercial Computing,
1945–1956

‘‘[Y]ou . . . fellows ought to go back and change your program entirely,
stop this . . . foolishness with Eckert and Mauchly.’’ That was the opinion
of Howard Aiken, Harvard mathematician and builder of the Mark I
calculator, expressed to Edward Cannon of the U.S. National Bureau of
Standards in 1948. Aiken made that remark as a member of a National
Research Council committee that had just recommended that the
Bureau of Standards not support J. Presper Eckert and John Mauchly’s
proposal to make and sell electronic computers (figure 1.1). In
Aiken’s view, a commercial market would never develop; in the United
States there was a need for perhaps for five or six such machines, but no
more.1

Howard Aiken was wrong. There turned out to be a market for
millions of electronic digital computers by the 1990s, many of them
personal devices that fit easily into a briefcase. That would not have
happened were it not for advances in solid state physics, which provided
a way of putting the circuits of a computer on a few chips of silicon.
Nevertheless, the nearly ubiquitous computers of the 1990s are direct
descendants of what Eckert and Mauchly hoped to commercialize in the
late 1940s.

The Eckert-Mauchly Computer Corporation did not remain an inde-
pendent entity for long; it was absorbed by Remington Rand and
became a division of that business-machine company. Eckert and
Mauchly’s computer, the UNIVAC, was a technical masterpiece but was
eclipsed in the market by computers made by Remington-Rand’s
competitor, IBM. So one could say that they were indeed foolish in
their underestimation of the difficulties of commercializing their inven-
tion. What was not foolish was their vision, not only of how to design and
build a computer but also of how a society might benefit from large
numbers of them.



Computing after 1945 is a story of people who at critical moments
redefined the nature of the technology itself. In doing so they opened
up computing to new markets, new applications, and a new place in the
social order. Eckert and Mauchly were the first of many who effected
such a transformation. They took an expensive and fragile scientific
instrument, similar to a cyclotron, and turned it into a product that
could be manufactured and sold, if only in small quantities.2 In the mid-
1950s the IBM Corporation developed a line of products that met the
information-handling needs of American businesses. A decade later,
alumni from MIT’s Project Whirlwind turned the computer into a device
that one interacted with, a tool with which to augment one’s intellectual
efforts. In the mid-1970s, a group of hobbyists and enthusiasts trans-
formed it into a personal appliance. Around 1980, it was transformed

Figure 1.1
Staff of the Eckert-Mauchly Computer Corporation, ca. 1948, in Philadelphia.
Eckert is at the lower left; Mauchly at the lower right. The apparatus behind
them is a portion of the BINAC, which the company was building for the
Northrop Aircraft Company. Back row, left to right : Albert Auerbach, Jean Bartik,
Marvin Jacoby, John Sims, Louis Wilson, Robert Shaw, Gerald Smoliar. Front row :
J. Presper Eckert, Frazier Welsh, James Wiener, Bradford Sheppard, John
Mauchly. (Source : Unisys Corporation.)
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from a piece of specialized hardware to a standardized consumer
product defined by its now-commercialized software. In the 1990s it is
going through another transformation, turning into an agent of a
worldwide nexus, a communications medium. The ‘‘computer age’’—
really a series of ‘‘computer ages’’—was not just invented; it was willed
into existence by people who wanted it to happen. This process of
reinvention and redefinition is still going on.

The UNIVAC in Context

Eckert and Mauchly brought on the first of these transformations in
1951 with a computer they called ‘‘UNIVAC.’’ The acronym came from
‘‘Universal Automatic Computer,’’ a name that they chose carefully.
‘‘Universal’’ implied that it could solve problems encountered by
scientists, engineers, and businesses. ‘‘Automatic’’ implied that it could
solve complex problems without requiring constant human intervention
or judgment, as existing techniques required. Before discussing its
creation, one needs to understand how computing work was being
done in different areas and why a single machine, a UNIVAC, could
serve them equally well. One must also understand how existing
calculating machines, the results of decades of refinement and use,
were deficient. It was that deficiency that made room for the UNIVAC,
which broke with past practices in many ways.

Punched Cards

During the Second World War, Eckert and Mauchly designed and built
the ENIAC at the University of Pennsylvania’s Moore School of Electrical
Engineering. The ENIAC was an electronic calculator that inaugurated
the era of digital computing in the United States. Its purpose was to
calculate firing tables for the U.S. Army, a task that involved the
repetitive solution of complex mathematical expressions. It was while
working on this device that they conceived of something that had a more
universal appeal.

The flow of information through the UNIVAC reflected Eckert and
Mauchly’s background in physics and engineering. That is, the flow of
instructions and data in the UNIVAC mirrored the way humans using
mechanical calculators, books of tables, and pencil and paper
performed scientific calculations.3 Although the vacuum tube circuits
might have appeared novel, a scientist or engineer would not have
found anything unusual in the way a UNIVAC attacked a problem.
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However, those engaged in business calculations, customers Eckert
and Mauchly also wanted their machine to serve, would have found the
UNIVAC’s method of processing unusual.4 In the late nineteenth
century, many businesses adopted a practice that organized work using
a punched card machine; typically an ensemble of three to six different
punched-card devices would comprise an installation.5 To replace these
machines with a computer, the business had also to adopt the UNIVAC’s
way of processing information. Punched-card machines are often called
‘‘unit record equipment.’’ With them, all relevant information about a
particular entity (e.g., a sales transaction) is encoded on a single card
that can serve multiple uses by being run through different pieces of
equipment; for example, to count, sort, tabulate, or print on a particular
set of columns.6 Historical accounts of punched-card machinery have
described in great detail the functioning of the individual machines.
More relevant is the ‘‘architecture’’ of the entire room—including the
people in it—that comprised a punched-card installation, since it was
that room, not the individual machines, that the electronic computer
eventually replaced.

In a typical punched-card installation, the same operation was
performed on all the records in a file as a deck of cards went through
a tabulator or other machine (figure 1.2). The UNIVAC and its
successors could operate that way, but they could also perform a long
sequence of operations on a single datum before fetching the next
record from memory. In punched-card terms, that would require
carrying a ‘‘deck’’ of a single card around the room—hardly an
economical use of the machinery or the people. Processing information
gathered into a deck of cards was entrenched into business practices by
the mid-1930s, and reinforced by the deep penetration of the punched-
card equipment salesmen into the accounting offices of their
customers.7

By the 1930s a few scientists, in particular astronomers, began using
punched-card equipment for scientific problems. They found that it
made sense to perform sequences of operations on each datum, since
often the next operation depended on the results of the previous one.
One such person was Wallace Eckert (no relation to J. Presper Eckert),
who with the aid of IBM established the Thomas J. Watson Computing
Bureau at Columbia University in New York in 1934. In 1940 he
summarized his work in an influential book, Punched Card Methods in

Scientific Computation. In it, he explained that punched-card machines
‘‘are all designed for computation where each operation is done on
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Figure 1.2
IBM punched card. From IBM Corporation, ‘‘IBM Data Processing Functions,’’
Brochure 224-8208-5, ca. 1963. (Source : IBM Corporation.)
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many cards before the next operation is begun.’’8 He emphasized how
one could use existing equipment to do scientific work, but he stated
that it was not worth the ‘‘expense and delay involved’’ in building
specialized machines to solve scientific problems.9 A decade later, that
was precisely what J. Presper Eckert and John Mauchly were proposing to
do—go to great expense and effort to create a ‘‘universal’’ machine that
could handle both business and scientific problems.

Ironically, Wallace Eckert was among the first to venture away from
traditional punched-card practices and toward one more like the digital
computers that would later appear. Despite his recommendation against
building specialized equipment, he did have a device called a control
switch designed at his laboratory. He installed this switch between the
multiplier, tabulator, and summary punch. Its function was to allow short
sequences of operations (up to 12) to be performed on a single card
before the next card was read.10 Following his advice, IBM built and
installed two specially built punched-card machines at the U.S. Army’s
Ballistic Research Laboratory at Aberdeen, Maryland. IBM called these
machines the ‘‘Aberdeen Relay Calculators’’; they were later known as
the PSRC, for ‘‘Pluggable Sequence Relay Calculator.’’11

In late 1945, three more were built for other military labs, and these
were even more complex. During the time one of these machines read a
card, it could execute a sequence of up to forty-eight steps. More
complex sequences-within-sequences were also possible.12 One compu-
ter scientist later noted that this method of programming demanded
‘‘the kind of detailed design of parallel subsequencing that one sees
nowadays at the microprogramming level of some computers.’’13

When properly programmed, the machines were faster than any other
nonelectronic calculator. Even after the ENIAC was completed and
installed and moved from Philadelphia to Aberdeen, the Ballistic
Research Lab had additional Relay Calculators built. They were still in
use in 1952, by which time the BRL not only had the ENIAC but also the
EDVAC, the ORDVAC (both electronic computers), an IBM Card
Programmed Calculator (described next), and the Bell Labs Model V,
a very large programmable relay calculator.14

The Card-Programmed Calculator

The Aberdeen Relay Calculators never became a commercial product,
but they reveal an attempt to adapt existing equipment to post–World
War II needs, rather than take a revolutionary approach, such as the
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UNIVAC. There were also other punched-card devices that represented
genuine commercial alternatives to Eckert and Mauchly’s proposed
invention. In 1935 IBM introduced a multiplying punch (the Model
601); these soon became popular for scientific or statistical work. In 1946
IBM introduced an improved model, the 603, the first commercial IBM
product to use vacuum tubes for calculating. Two years later IBM
replaced it with the 604, which not only used tubes but also incorporated
the sequencing capability pioneered by the Aberdeen machines. Besides
the usual plugboard control common to other punched-card equip-
ment, it could execute up to 60 steps for each reading of a card and
setting of the plugboard.15 The 604 and its successor, the IBM 605,
became the mainstays of scientific computing at many installations until
reliable commercial computers became available in the mid 1950s. It was
one of IBM’s most successful products during that era: over 5,000 were
built between 1948 and 1958.16

One of IBM’s biggest engineering customers, Northrop Aircraft of
Hawthorne, California, connected a 603 multiplying punch to one of
their tabulating machines. That allowed Northrop’s users to print the
results of a calculation on paper instead of punching them on cards.
With a slight further modification and the addition of a small box that
stored numbers in banks of relays, the machine could use punched cards
run through the tabulator to control the sequences carried out by the
multiplier.17

Logically, the arrangement was no different from an ordinary
punched card installation, except that a set of cables and control
boxes replaced the person whose job had been to carry decks of cards
from one machine to the next. One of the Northrop engineers recalled
years later that they rigged up the arrangement because they were
running a problem whose next step depended on the results of the
previous step. What this meant was that the normal decks of cards that
ran through a machine were reduced to ‘‘a batch of one [card], which
was awkward.’’18 In other words, with cables connecting the machines,
the installation became one that executed instructions sequentially and
was programmable in a more flexible way than plugging cables.

IBM later marketed a version of this ensemble as the Card-
Programmed Calculator (CPC).19 Perhaps several hundred in all were
installed between 1948 and the mid 1950s—far fewer than the thousands
of tabulators, punches, and other equipment installed in the traditional
way. But even that was many times greater than the number of electronic
computer installations worldwide until about 1954. For engineering-
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oriented companies like Northrop, the CPC filled a pressing need that
could not wait for the problems associated with marketing stored-
program computers to be resolved.20

The Aberdeen calculators and the 604 were transitional machines,
between calculators, tabulators, and genuine computers like the
UNIVAC. The CPC carried the punched-card approach too far to be
of value to computer designers. By the time of its introduction, it was
already clear that the design used by the UNIVAC, in which both the
instructions and the data were stored in an internal memory device, was
superior. The Card-Programmed Calculator’s combination of program
cards, plugboards, and interconnecting cables was like the epicycles of a
late iteration of Ptolemaic cosmology, while the Copernican system was
already gaining acceptance.21 Customers needing to solve difficult
engineering problems, however, accepted it. It cost less than the
computers then being offered, and it was available. Other southern
California aerospace firms besides Northrop carefully evaluated the
Card-Programmed Calculator against vendors’ claims for electronic
computers.22 Nearly all of them installed at least one CPC.

The Stored-Program Principle

No one who saw a UNIVAC failed to see how much it differed from
existing calculators and punched card equipment. It used vacuum
tubes—thousands of them. It stored data on tape, not cards. It was a
large and expensive system, not a collection of different devices. The
biggest difference was its internal design, not visible to the casual
observer. The UNIVAC was a ‘‘stored program’’ computer, one of the
first. More than anything else, that made it different from the machines
it was designed to replace.

The origins of the notion of storing a computer’s programs internally
are clouded in war-time secrecy. The notion arose as Eckert, Mauchly,
and others were rushing to finish the ENIAC to assist the U.S. Army,
which was engaged in a ground war in Europe and North Africa. It
arose because the ENIAC’s creators recognized that while the ENIAC
was probably going to work, it was going to be a difficult machine to
operate.

Applying the modern term ‘‘to program’’ to a computer probably
originated with the ENIAC team at the Moore School. More often,
though, they used the phrase ‘‘set up’’ to describe configuring the
ENIAC to solve different problems.23 Setting up the ENIAC meant
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plugging and unplugging a maze of cables and setting arrays of switches.
In effect, the machine had to be rebuilt for each new problem it was to
solve. When completed in late 1945, the ENIAC operated much faster
than any other machine before it. But while it could solve a complex
mathematical problem in seconds, it might take days to set up the
machine properly to do that.

It was in the midst of building this machine that its creators conceived
of an alternative. It was too late to incorporate that insight into the
ENIAC, but it did form the basis for a proposed follow-on machine
called the ‘‘EDVAC’’ (Electronic Discrete Variable Computer). In a
description written in September of 1945, Eckert and Mauchly stated
the concept succinctly: ‘‘An important feature of this device was that
operating instructions and function tables would be stored exactly in the
same sort of memory device as that used for numbers.’’24 Six months
later, Eckert and Mauchly left the Moore School, and work on the
EDVAC was turned over to others (which was mainly why it took five
more years to finish building it). The concept of storing both instruc-
tions and data in a common storage unit would become basic features of
the UNIVAC and nearly every computer that followed.25

The stored-program principle was a key to the UNIVAC’s success. It
allowed Eckert and Mauchly, first of all, to build a computer that had
much more general capabilities than the ENIAC, yet required fewer
vacuum tubes. It led to the establishment of ‘‘programming’’ (later
‘‘software’’) as something both separate from and as important as
hardware design. The basics of this design remained remarkably stable
during the evolution of computing from 1945 to 1995. Only toward
the end of this period do we encounter significant deviations from it, in
the form of ‘‘massively parallel’’ processors or ‘‘non–von Neumann’’
architectures.

John von Neumann’s Role

Although Eckert and Mauchly had realized as early as 1944 that
computers would need to store the program, the ‘‘First Draft of a
Report on the EDVAC,’’ by John von Neumann, dated June 30, 1945,
is often cited as the founding document of modern computing.26 From
it, and a series of reports co-authored by von Neumann a few years later,
comes the term ‘‘von Neumann Architecture’’ to describe such a
design.27 According to Herman Goldstine, an army officer assigned to
the ENIAC project, John von Neumann (1903–1957) learned of the
ENIAC from a chance meeting with him in the summer of 1944 at the
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Aberdeen, Maryland, railroad station.28 Despite his involvement in many
other projects, including the design of the atomic bomb, von Neumann
was sufficiently intrigued by what was going on at the Moore School to
have himself introduced to Eckert and Mauchly and brought onto the
project.

Eckert and Mauchly were at that time busy thinking of ways to improve
the process of setting up a computer faster.29 One possibility was to use
perforated paper tape to feed instructions, as several relay machines of
the 1940s did, but this was too slow for the high speeds of the
ENIAC’s calculating circuits. So were the decks of cards used by the Card-
Programmed Calculator. In Mauchly’s words, ‘‘calculations can be per-
formed at high speed only if instructions are supplied at high speed.’’30

In the midst of the ENIAC’s construction in 1944, Eckert wrote a
‘‘Disclosure of a Magnetic Calculating Machine,’’ in which he described
the use of ‘‘[d]iscs or drums which have at least their outer edge made of
a magnetic alloy’’ on which numbers can be stored.31 Although it
focused on ways of designing a machine that was ‘‘speedier, simpler as
well as providing features of utility, ruggedness and ease or repair,’’ the
disclosure did not articulate the design concepts that later would
become known as the stored-program principle.32 Von Neumann’s
1945 Report on the EDVAC went farther—it described a machine in
terms of its logical structure rather than its hardware construction. The
memorandum that Eckert and Mauchly submitted in September 1945,
stated the principle succinctly: they wrote that instructions and numer-
ical data would be stored ‘‘in exactly the same sort of memory device.’’33

From the above sequence of reports and memorandums it appears
that Eckert and Mauchly had conceived of something like a stored-
program principle by 1944, but that it was von Neumann who clarified it
and stated it in a form that gave it great force. Von Neumann’s
international reputation as a mathematician also gave the idea more
clout than it might have had coming solely from Eckert and Mauchly,
neither of whom were well-known outside the Moore School. Although
the term ‘‘von Neumann Architecture’’ is too entrenched to be
supplanted, Eckert and Mauchly, who demonstrated such a deep under-
standing of the nature of electronic computing from an engineering
perspective, deserve equal credit.34

In the summer of 1946, the Moore School and the U.S. military
cosponsored a course on the ‘‘Theory and Techniques for Design of
Electronic Digital Computers.’’ The course was a recognition of the
school’s inability to accommodate the numerous requests for informa-
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tion following the public unveiling of the ENIAC.35 That series of course
lectures and the mimeographed reports that appeared a year or two
later firmly established the Moore School’s approach to computer
design. Machines soon appeared that were based on that concept. An
experimental computer at the University of Manchester, England, was
running test programs by mid-1948. Maurice Wilkes, of Cambridge
University, implemented the idea in his EDSAC, operational in the
spring of 1949. Eckert and Mauchly completed the BINAC later that
year.36 And of course the UNIVAC would also employ it. Others would
continue to propose and build electronic computers of alternate
designs, but after the summer of 1946, computing’s path, in theory at
least, was clear.

The von Neumann Architecture and Its Significance

Before providing a description of the UNIVAC, it is worth a brief look at
the essentials of the architecture that von Neumann described in his
1945 report, especially those aspects of it that have remained stable
through the past half-century of computer design.

Aside from the internal storage of programs, a major characteristic of
a von Neumann computer is that the units that process information are
separate from those that store it. Typically there is only a single channel
between these two units, through which all transfers of information must
go (the so-called von Neumann Bottleneck, about which more later).
This feature arose primarily for engineering reasons: it was easier to
design storage cells that did not also have to perform arithmetic on their
contents.

The main characteristic is that instructions and data are stored in the
same memory device, from which any datum can be retrieved as quickly
as any other. This concept arose from considering that the processing
unit of a computer should not have to sit idle awaiting delivery of the
next instruction. Besides that, the ratio of instructions to data usually
varies for each problem, so it would not make sense to dedicate separate,
expensive storage devices to each. This design implies that one may treat
a coded instruction as a piece of data and perform an operation on it,
thus changing it into another instruction, but that was not fully under-
stood at first. To give a sense of how this was first implemented, the
UNIVAC main store could hold up to 1,000 ‘‘words,’’ which could either
be numbers (11 digits plus sign), characters (12 characters per word), or
instructions (6 characters per instruction; 2 in each word).37
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Finally, the basic cycle of a von Neumann computer is to transfer an
instruction from the store to the processor, decode that instruction, and
execute it, using data retrieved from that same store or already present
in the processor. Once the processor executed an instruction, it fetched,
decoded, and executed another, from the very next position in memory
unless directed elsewhere. Having a fast storage device meant that the
processor could branch to another stream of instructions quickly when-
ever it was necessary. Except when explicit branch instructions are
encountered, the flow through the instructions stored in the memory
was sequential and linear.38 This concept, of fetching and then execut-
ing a linear stream of instructions, is the most lasting of all; even
computer designs that purport to be non–von Neumann typically retain
the fetch-decode-execute heartbeat of a single-processor machine.39

As Alan Perlis once remarked, ‘‘Sometimes I think the only universal
in the computing field is the fetch-execute cycle.’’40 The UNIVAC
could perform this sequence and add two numbers in about half a
millisecond.

Since 1990, computer systems with parallel processing structures have
become more common, and genuine alternatives to the fetch-execute
cycle have been accepted in a few limited markets. Elsewhere the von
Neumann architecture, though much modified, prevails. The emer-
gence of practical parallel designs reveals, however, the unifying effect
of the von Neumann model as it influenced the computer design of the
past five decades.

From ENIAC to UNIVAC: First Transformation 41

The UNIVAC was going to cut through the Gordian knot of solving
complex problems with punched card equipment or plugboard control,
and its designers knew that. The ENIAC, though ill-suited for many
problems, nevertheless was in such demand that its physical transfer
from Philadelphia to Aberdeen had to be put off. With the end of the
War there was less urgency to compute firing tables, although the
Aberdeen Proving Ground still expected the machine to be moved
there for that purpose. After the public unveiling, a flood of interested
parties was petitioning to use it. Mauchly reported, for example, that in
March of 1948 Pratt & Whitney asked him if they could run an urgent
problem ‘‘the week of April 17.’’ That gave him a ‘‘chuckle’’—by 1948
the ENIAC was already fully booked for the next two years!42
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What was less well known was that the Moore School team had
carefully evaluated the architecture of the follow-on computer, the
EDVAC, in light of the problems it might be expected to solve. Von
Neumann found that although it was initially intended for evaluating
mathematical expressions, the EDVAC’s stored-program design made it
‘‘very nearly an ‘all-purpose machine’ ’’ and that it was better than
punched card equipment for sorting data. This was a crucial observa-
tion, as sorting was a central task for commercial work, and punched
card equipment had been optimized for it.43

Still, the climate that surrounded the small group of engineers at the
Eckert–Mauchly Computer Corporation was anything but favorable.
Many experts were skeptical. Wallace Eckert still felt that modifications
to punched card machines, not a radically new and expensive design,
would better serve computing’s needs. Howard Aiken could not imagine
that ‘‘the basic logics of a machine designed for the numerical solution
of differential equations [could] coincide with the logics of a machine
intended to make bills for a department store.’’44 Eckert and Mauchly
knew otherwise. The UNIVAC’s logical structure meant that it could do
those things and more. That knowledge drove them and their company
through the late 1940s to enter the commercial area, with what
eventually became the UNIVAC.

Their drive was matched by an equal, but opposite drive by the
University of Pennsylvania to banish commercial interests from the
academy. Administrators at Penn did not have the vision of a research
university to support technology, which led eventually to the develop-
ment of areas like Silicon Valley in California and Route 128 in
Massachusetts. Irwin Travis, an administrator at the Moore School,
asked that members of the staff sign a release form that would prevent
them from receiving patent royalties on their inventions. He brooked no
discussion. Eckert and Mauchly refused to sign. They resigned on March
31, 1946.45 The Philadelphia-Princeton region, once a contender for the
title of center for computing technology, never recovered.

Eckert and Mauchly could have found work at other universities, or at
IBM, but they chose instead the risky course of founding their own
company. They formed a partnership, the Electronic Control Company,
in 1946; in December 1948 they incorporated as the Eckert–Mauchly
Computer Corporation. Added to the engineering problems of design-
ing and building a universal computer and its associated tape drives,
memory units, and input-output equipment, was the bigger problem of
raising capital. The National Bureau of Standards was encouraging at
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first; through it Eckert and Mauchly carried out serious discussions with
the U.S. Census Bureau. (Census was not allowed to contract for a
machine still in development, so the NBS had to be brought in as an
intermediary.) The Census Bureau is not usually considered among the
technologically astute, but just as it helped inaugurate modern data
processing in 1890 by working with Herman Hollerith, Census also
helped make electronic computing’s transition from the university to
the private sector.

Still there were roadblocks. The NBS commissioned a study, which
resulted in conservative and skeptical conclusions about electronic
computing in general, and Eckert–Mauchly in particular. Another
study conducted by the National Research Council in 1947 produced
equally negative conclusions, mentioned at the beginning of this chap-
ter. This latter study later became infamous as the source of the
statement about how only a few computers would satisfy the world’s
needs. The search for funds took the fledgling company everywhere:
from the American Totalisator Company, who wanted a computer to
calculate betting odds at race tracks, to Northrop Aircraft, who wanted
an airborne control system for an unmanned, long-range bomber.

Their frantic search for capital makes for a depressing story. But it had
a bright side: people wanted this new machine. And as the example of
American Totalisator showed, there were many possible customers
beyond the obvious ones of the large military or government agencies.

On January 12, 1948, John Mauchly wrote a memorandum to his staff
at the Eckert–Mauchly Computer Corporation in which he listed a total
of twenty-two industries, government agencies, or other institutions he
had contacted. Optimistically he gauged the status of each as a potential
customer for a UNIVAC.46 In the next few years the under-capitalized
company would have a great deal of trouble selling UNIVACs. But in the
long run, Mauchly was exactly right: each of those industries, and many
more, would find compelling reasons to purchase or lease electronic
digital computers, if not from Eckert–Mauchly then from someone else.
Here are some of the contacts Mauchly listed in his memo:

Prudential. [Edmund C. Berkeley] . . . . says that considering the number of
persons at Prudential who have now expressed themselves in favor of obtaining
electronic equipment, he believes there will be no difficulty in getting an order
for one UNIVAC.

Oak Ridge . . . . it was almost 100 percent certain that their purchase order would
be approved by Army.
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Army Map Service . . . . Army Map Service has taken an interest in UNIVAC
equipment.

Bureau of Aeronautics . . . . we could possibly obtain a contract.

The Metropolitan Insurance Company has a large problem involving a total file
of 18,000,000 policies with 2,000,000 changes per week. There are about twenty
digits of information for each policy. It appears that this is a natural application
for the UNIVAC . . . . it would be worthwhile to follow it up.

Presidency College, Calcutta. Professor Mahalanobis . . .was anxious to contract
for a UNIVAC as soon as we were in a position to make definite terms.

Aircraft Companies. A number of aircraft companies are good prospects . . . .
There is no doubt that such companies could use UNIVAC equipment. We have
had brief contact with Hughes Aircraft, Glen L. Martin, United Aircraft, North
American Aviation, and have been told that Grumman goes in for some rather
fancy calculations.

The Information Age had dawned.

UNIVAC

I am pleased that history recognizes the first to invent something, but I am more
concerned with the first person to make it work.

—Grace Hopper 47

On March 31, 1951, the Eckert–Mauchly Division of Remington Rand
turned over the first UNIVAC to the U.S. Census Bureau. A formal
dedication ceremony was held in June at the Division’s modest factory in
at 3747 Ridge Avenue in Philadelphia. Thus began the era of commer-
cial sales of large-scale stored-program computers in the United States.48

The event was, however, less of a milestone than it appeared. That first
UNIVAC remained at the plant until late December 1952, when it was
shipped to Washington. Eckert and Mauchly needed it there: As the only
working model of a machine they hoped to sell in quantity, they wanted
to show it to other potential customers.49 And after having gone through
heroic efforts to complete and debug the machine, they were appre-
hensive about dismantling it, moving it, and setting it up again. The first
UNIVAC to leave the factory and be installed on a customer’s premises
was serial #2, installed at the Pentagon for the U.S. Air Force in June
1952.50 By 1954 about twenty were built and sold, at prices on the order
of a million dollars for a complete system.51 Table 1.1 lists UNIVAC
installations from 1951 through 1954.

J. Presper Eckert and John Mauchly, with the help of about a dozen
technical employees, designed and built the UNIVAC (figure 1.3). They
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designed a machine that used four binary digits (bits) to code each
decimal digit. In its central processor, four general-purpose accumula-
tors carried out arithmetic. A word was 45 bits long; each word could
represent 11 decimal digits plus a sign, or two instructions. The
UNIVAC’s clock ran at 2.25 MHz, and it could perform about 465
multiplications per second. That was about the same as the ENIAC’s
multiplication speed; but the UNIVAC’s tape system and stored-program
architecture made it a much faster machine overall. ‘‘Delay lines’’ stored
1,000 words as acoustic pulses in tubes of mercury, while magnetic tape
units stored up to one million characters on reels of half-inch metal tape.

The UNIVAC was rugged and reliable. Vacuum tube failures, the bane
of all early systems, were kept to a reasonably low rate to ensure that the
machine would remain useful for practical, day-to-day work. Statistics
gathered by one customer, Metropolitan Life Insurance Company,

Table 1.1
UNIVAC installations, 1951–1954

Date Customer

Summer 1951 U.S. Census Bureau
late 1952 U.S. Air Force, the Pentagon
late 1952 U.S. Army Map Service
Fall 1953 U.S. AEC, New York, NY (at NYU)
Fall 1953 U.S. AEC, Livermore, CA
Fall 1953 David Taylor Model Basin, Carderock, MD
1954 Remington Rand, New York, NY
1954 General Electric, Louisville, KY
1954 Metropolitan Life, New York, NY
1954 Wright-Patterson AFB, Dayton, OH
1954 U.S. Steel, Pittsburgh, PA
1954 Du Pont, Wilmington, DE
1954 U.S. Steel, Gary, IN
1954 Franklin Life Insurance, Springfield, OH
1954 Westinghouse, Pittsburgh, PA
1954 Pacific Mutual Life Insurance, Los Angeles, CA
1954 Sylvania Electric, New York, NY
1954 Consolidated Edison, New York, NY
1954 Consolidated Edison, New York, NY

Note : This list is compiled from a variety of sources and does not include one or
two UNIVACs that were completed but remained with Remington Rand. In some
cases the dates are approximate. Depending on how one interprets ‘‘installa-
tion,’’ the order listed here may be slightly different. UNIVACs were last installed
in late 1958 or early 1959.

28 Chapter 1



showed the central processor was available 81 percent of the time, a very
high figure compared to contemporary vacuum-tube machines.52 The
Census Bureau said, ‘‘We never encountered an incorrect solution to a
problem which we were sure resulted from an internal computer
error.’’53 The machine’s design reflected Eckert’s philosophy of conser-
vative loads on the vacuum tube circuits, plus enough redundancy, to
ensure reliable operation. Its central processor contained over 5,000
tubes, installed in cabinets that were ranged in a 10-foot by 14-foot
rectangle. Inside this rectangle were the mercury delay-line tanks.

Many design features that later became commonplace first appeared
in the UNIVAC: among them were alphanumeric as well as numeric
processing, an extensive use of extra bits for checking, magnetic tapes
for bulk memory, and circuits called ‘‘buffers’’ that allowed high-speed
transfers between the fast delay line and slow tape storage units.54

Figure 1.3
Grace Murray Hopper and colleagues seated at a UNIVAC console, ca. 1960.
Reels of UNIVAC tape are visible on both sides of the control panel. (Source :
Smithsonian Institution photo #83-14878, gift of Grace Murray Hopper.)
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The UNIVAC in Use

A number of UNIVAC customers were private corporations, not military
or defense agencies. And of those defense agencies that purchased
UNIVACs, many did so for inventory, logistics, and other applications
that in many ways were similar to what business customers bought the
machine for. In short, and in contrast to the IBM 701 (discussed next),
the UNIVAC inaugurated the era of large computers for what is now
called ‘‘data processing’’ applications.

For most customers, what was revolutionary about the UNIVAC was
not so much its stored-program design or even its electronic processor. It
was the use of tape in place of punched cards. To them, the ‘‘Automatic’’
nature of the machine lay in its ability to scan through a reel of tape, find
the correct record or set of records, perform some process in it, and
return the results again to tape. In a punched card installation, these
tasks were performed by people who had to carry large decks of cards
from one punched card machine to another. That made punched card
processing labor-intensive. Published descriptions of the UNIVAC nearly
always referred to it as a ‘‘tape’’ machine. For General Electric, ‘‘the
speed of computing is perhaps of tertiary importance only.’’55 To the
extent that its customers perceived the UNIVAC as an ‘‘electronic
brain,’’ it was because it ‘‘knew’’ where to find the desired data on a
tape, could wind or rewind a tape to that place, and could extract (or
record) data automatically. Customers regarded the UNIVAC as an
information processing system, not a calculator. As such, it replaced
not only existing calculating machines, but also the people who tended
them.

The Census Bureau, which had been pivotal in getting the fledgling
computer company going, hoped to use the UNIVAC for tabulating the
1950 Census. By the time it received its machine in 1951, however, much
of the work had already been put on punched card machines for
processing. In fact, the Census Bureau had to step aside while the U.S.
Air Force and the Atomic Energy Commission commandeered the first
machine off the production line, UNIVAC 1, for problems deemed more
urgent by the federal government.56

Nevertheless, UNIVAC 1 was used for the production of part of the
Second Series Population Tables for the states of Alabama, Iowa,
Louisiana, and Virginia. This involved classifying individuals into one
of several hundred groups, further grouping them by geographic
location, and preparing tables showing the number of persons in each
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group for each local area. The data for this operation, initially punched
onto eleven million cards (one for each person), was transferred to tape
for processing by the UNIVAC.57 The machine was also used for
tabulating another subset of population involving about five million
households. Each problem took several months to complete.

UNIVAC 2, installed at the Pentagon for the Air Comptroller, was
intended for use in Project SCOOP (Scientific Computation of Opti-
mum Problems), which grew out of wartime concerns with getting war
materials and men across the Atlantic. Following the War, the newly
created Air Force was faced with a mathematically similar problem in
maintaining and supplying air bases scattered across the globe. Project
SCOOP played a key role in the discovery of Linear Programming, a
cornerstone of modern applied mathematics.58

It was for SCOOP that the Air Force had helped fund construction of
a computer called SEAC (Standards Eastern Automatic Computer), but
that machine’s limited Input/Output facilities made it less than ideal for
this problem. Soon after its installation, UNIVAC 2 was put to work on
SCOOP around the clock.59 Although the UNIVAC was superior to the
SEAC in many ways, it, too, suffered from a slow output mechanism,
which hampered its use for SCOOP. The UNIVAC’s UNIPRINTER was
based around a standard Remington Rand electric typewriter, and it
printed at a rate commensurate with such a machine, about ten
characters per second, which was too slow for the data processing
applications the UNIVAC was being sold for. In 1954 Remington Rand
addressed the problem by introducing the UNIVAC High Speed Printer,
which printed a full 130-character line at one time.60

The UNIVAC installed in 1954 at Air Force’s Air Material Command at
Wright-Patterson AFB in Ohio performed similar tasks. One of its first
jobs was to calculate ‘‘the complete Fiscal 1956 Budget estimate for
airborne equipment spare parts, involving approximately 500,000
items.’’61 The Air Force noted that the machine did the job in one
day, replacing a battery of punched card equipment.

Some UNIVACs performed classified weapons work in the spirit of the
one-of-a-kind computers that preceded them. UNIVAC 5, installed at the
Lawrence Livermore Labs in April 1953, was one of those. But even that
machine did at least one calculation that was not for the purpose of
weapons designs. In November 1952, before it was shipped to California,
Remington Rand used it to predict Eisenhower’s victory over Adlai
Stevenson in the 1952 presidential election. Narrated on ‘‘live’’ televi-
sion, the event inaugurated the intrusion of television into national
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politics, and of computers into the public’s consciousness. For a brief
period, the word ‘‘UNIVAC’’ was synonymous with computer, as
‘‘Thermos’’ was for vacuum bottles. That ended when IBM took the
lead in the business.62

A final example of the UNIVAC in use comes from the experience at
General Electric’s Appliance Park, outside Louisville, Kentucky. This
installation, in 1954, has become famous as the first of a stored-program
electronic computer for a nongovernment customer (although the
LEO, built for the J. Lyons Catering Company in London, predated it
by three years).

Under the direction of Roddy F. Osborn at Louisville, and with the
advice of the Chicago consulting firm Arthur Andersen & Co., General
Electric purchased a UNIVAC for four specific tasks: payroll, material
scheduling and inventory control, order service and billing, and general
cost accounting.63 These were prosaic operations, but GE also hoped
that the computer would be more than just a replacement for the
punched-card equipment in use at the time. For General Electric, and by
implication for American industries, the UNIVAC was the first step into
an age of ‘‘automation,’’ a change as revolutionary for business as
Frederick W. Taylor’s Scientific Management had been a half-century
earlier.

The term ‘‘automation’’ was coined at the Ford Motor Company in
1947 and popularized by John Diebold in a 1952 book by that title.64

Diebold defined the word as the application of ‘‘feedback’’ mechanisms
to business and industrial practice, with the computer as the principal
tool. He spoke of the 1950s as a time when ‘‘the push-button age is
already obsolete; the buttons now push themselves.’’65 Describing the
GE installation, Roddy Osborn predicted that the UNIVAC would effect
the same kind of changes on business as it had already begun to effect in
science, engineering, and mathematics. ‘‘While scientists and engineers
have been wide-awake in making progress with these remarkable tools,
business, like Rip Van Winkle, has been asleep. GE’s installation of a
UNIVAC may be Rip Van Business’s first ‘blink.’ ’’66

To people at General Electric, these accounts of ‘‘electronic brains’’
and ‘‘automation’’ were a double-edged sword. The Louisville plant was
conceived of and built to be as modern and sophisticated as GE could
make it; that was the motivation to locate it in Kentucky rather than
Massachusetts or New York, where traditional methods (and labor
unions) held sway. At the same time, GE needed to assure its stock-
holders that it was not embarking on a wild scheme of purchasing exotic,
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fragile, and expensive equipment just because ‘‘longhair’’ academics—
with no concern for profits—wanted it to.

Thus, GE had to emphasize the four mundane jobs, already being
done by punched card equipment, to justify the UNIVAC. Once these
jobs became routine, other, more advanced jobs would be given to the
machine. Although automating those four tasks could have been done
with a smaller computer, GE chose a UNIVAC in anticipation of the day
when more sophisticated work would be done. These tasks would involve
long-range planning, market forecasting based on demographic data,
revamping production processes to reduce inventories and shipping
delays, and similar jobs requiring a more ambitious use of corporate
information.67 The more advanced applications would not commence
until after the existing computerization of ‘‘bread and butter’’ work
reached a ‘‘break even point . . . enough to convince management that a
computer system can pay for itself in terms of direct dollar savings
(people off the payroll) without waiting for the ‘jam’ of more glamorous
applications.’’68

Indeed, the analysis of the UNIVACs benefits was almost entirely cast
in terms of its ability to replace salaried clerks and their overhead costs
of office space, furnishings, and benefits. Yet at the end of Osborn’s essay
for the Harvard Business Review, the editors appended a quotation from
Theodore Callow’s The Sociology of Work, published that year. That
quotation began:

The Utopia of automatic production is inherently plausible. Indeed, the situa-
tion of the United States today, in which poverty has come to mean the absence
of status symbols rather than hunger and physical misery, is awesomely favorable
when measured against the budgetary experience of previous generations or the
contemporary experience of most of the people living on the other continents.69

It would not be the last time that the computer would be seen as the
machine that would bring on a digital Utopia.

On Friday, October 15, 1954, the GE UNIVAC first produced payroll
checks for the Appliance Park employees.70 Punched-card machines had
been doing that job for years, but for an electronic digital computer,
which recorded data as invisible magnetic spots on reels of tape, it was a
milestone. Payroll must be done right, and on time. GE had rehearsed
the changeover thoroughly, and they had arranged with Remington
Rand that if their machine broke down and threatened to make the
checks late, they could bring their tapes to another UNIVAC customer
and run the job there.71 Over the course of the next year they had to
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exercise this option at least once. There were several instances where the
checks were printed at the last possible minute, and in the early months
it was common to spend much more time doing the job with UNIVAC
than had been spent with punched card equipment. No payrolls were
late.

IBM’s Response

At the time of the UNIVAC’s announcement, IBM was not fully
committed to electronic computation and was vigorously marketing its
line of punched card calculators and tabulators. But after seeing the
competitive threat, it responded with several machines: two were on a
par with the UNIVAC; another was more modest.

In May 1952, IBM announced the 701, a stored-program computer in
the same class as the UNIVAC. Although not an exact copy, its design
closely followed that of the computer that John von Neumann was
having built at the Institute for Advanced Study at Princeton. That
meant it used a memory device that retrieved all the digits of a word at
once, rather than the UNIVAC’s delay lines that retrieved bits one at a
time. Beginning in January of that year, IBM had hired John von
Neumann as a consultant; as with the Institute for Advanced Study
computer itself, von Neumann was not involved with the detailed design
of the 701. (IBM engineers Jerrier Haddad and Nat Rochester were in
charge of the project.) The first unit was installed at IBM’s offices in New
York in December, with the first shipment outside IBM to the nuclear
weapons laboratory at Los Alamos in early 1953.72

IBM called the 701 an ‘‘electronic data processing machine,’’ a term
(coined by James Birkenstock) that fit well with ‘‘Electric Accounting
Machine,’’ which IBM was using to describe its new line of punched card
equipment. IBM deliberately avoided the word ‘‘computer,’’ which it felt
was closely identified with the UNIVAC and with exotic wartime projects
that appeared to have little relevance to business.

For main storage, the 701 used IBM-designed 3-inch diameter vacuum
tubes similar to those used in television sets. (They were called ‘‘Williams
tubes’’ after their British inventor, F. C. Williams.) Although they were
more reliable than those in other contemporary computers, their
unreliability was a weak link in the system. One story tells of a 701
behaving erratically at its unveiling to the press despite having been
checked out thoroughly before the ceremony. The photographers’ flash
bulbs were ‘‘blinding’’ the Williams tubes, causing them to lose data.
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Another account said that because the memory’s Mean Time Between
Failure (MTBF) was only twenty minutes, data had to be constantly
swapped to a drum to prevent loss.73

Each tube was designed to hold 1,024 bits. An array of 72 tubes could
thus hold 2,048 36-bit words, and transfer a word at a time by reading
one bit from each of 36 tubes.74 Plastic tape coated with magnetic oxide
was used for bulk memory, with a drum for intermediate storage. The
processor could perform about 2,000 multiplications/second, which was
about four times faster than the UNIVAC.

Within IBM, the 701 had been known as the Defense Calculator, after
its perceived market. According to an IBM executive, the name also
helped ‘‘ease some of the internal opposition to it since it could be
viewed as a special project (like the bomb sights, rifles, etc., IBM had
built during World War II) that was not intended to threaten IBM’s main
product line.’’75 True to that perception, nearly all of the 19 models
installed were to U.S. Defense Department or military aerospace firms.76

Initial rental fees were $15,000 a month; IBM did not sell the machines
outright. If we assume the 701 was a million-dollar machine like the
UNIVAC, the rental price seems low; certainly IBM could not have
recouped its costs in the few years that the machine was a viable product.

The 701 customers initially used the machine for problems, many still
classified, involving weapons design, spacecraft trajectories, and crypta-
nalysis, which exercised the central processor more heavily than its
Input/Output facilities. Punched card equipment had been doing
some of that work, but it had also been done with slide rules, mechanical
calculators, analog computers, and the Card-Programmed Calculator.
Eventually, however, customers applied the 701 to the same kinds of jobs
the UNIVAC was doing: logistics for a military agency, financial reports,
actuarial reports, payrolls (for North American Aviation), and even
predicting the results of a presidential election for network television.
(In 1956, the 701 correctly predicted Eisenhower’s reelection.)77

Unlike the UNIVAC, the 701’s central processor handled control of
the slow input/output (I/O) facilities directly. All transfers of data had
to pass through a single register in the machine’s processor, which led to
slow operation for tasks requiring heavy use of I/O. However, the 701’s
lightweight plastic tape could start and stop much faster than the
UNIVAC’s metal tape and thus speed up those operations. The tape
drive also employed an ingenious vacuum-column mechanism, invented
by James Wiedenhammer, which allowed the tape to start and stop
quickly without tearing.
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For scientific and engineering problems, the 701’s unbalanced I/O
was not a serious hindrance. Computer designers—the few there were in
1953—regarded it as an inelegant design, but customers liked it. The
nineteen installations were enough to prevent UNIVAC from completely
taking over the market and to begin IBM’s transition to a company that
designed and built large-scale electronic digital computers.78

The 701 became IBM’s response to UNIVAC in the marketplace, but
that had not been IBM’s intention. Before starting on the 701, IBM had
developed a research project on a machine similar to the UNIVAC, an
experimental machine called the Tape Processing Machine, or TPM. Its
design was completed by March 1950.79 The TPM was a radical depar-
ture from IBM’s punched card machinery in two ways. It used magnetic
tape (like the UNIVAC), and its variable length record replaced the rigid
80-character format imposed by the punched card. Like the UNIVAC, it
worked with decimal digits, coding each digit in binary.

IBM chose to market a second large computer specifically to business
customers based on the Tape Processing Machine. Model 702 was
announced in September 1953 and delivered in 1955. In many ways it
was similar to the 701, using most of the same electronic circuits as well
as the Williams Tube storage. By the time of the first 702 installations,
magnetic core memories were beginning to be used in commercial
machines. And 701 customers were finding that their machine, like
any powerful general-purpose computer, could be used for business
applications as well. IBM received many orders for 702s, but chose to
build and deliver only fourteen, with other orders filled by another
machine IBM brought out a few years later.80

Engineering Research Associates

A third firm entered the field of making and selling large digital
computers in the early 1950s: Engineering Research Associates, a Twin
Cities firm that had its origins in U.S. Navy-sponsored code-breaking
activities during World War II.81 The Navy gave this work the name
‘‘Communications Supplementary Activity—Washington’’ (CSAW), but
it was usually called ‘‘Seesaw’’ after its acronym. It was centered in
Washington, on the commandeered campus of a girls school. After the
War, two members of this group, Howard Engstrom and William Norris,
felt that the talent and skills the Navy had assembled for the war effort
were too valuable to be scattered, and they explored ways of keeping the
group together. They decided to found a private company, and with
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financial assistance from John E. Parker, they were incorporated as
Engineering Research Associates, Inc., in early 1946. Parker was able
to provide space in a St. Paul building that during the war had produced
wooden gliders (including those used for the Normandy invasion).

Thus, by one of the coincidences that periodically occur in this
history, the empty glider factory gave the Twin Cities an entree into
the world of advanced digital computing. The factory was cold and
drafty, but ERA had little trouble finding and hiring capable engineers
freshly minted from the region’s engineering schools. Among them was
a 1951 graduate of the University of Minnesota, who went over to ‘‘the
glider factory’’ because he heard there might be a job there. His name
was Seymour R. Cray.82 We will encounter Cray and his boss, William
Norris, several times in later chapters.

ERA was a private company but was also captive to the Navy, from
which it had sprung. (The propriety of this arrangement would on
occasion cause problems, but none serious.) The Navy assigned it a
number of jobs, or ‘‘tasks,’’ that ERA carried out. Most of these were
highly classified and related to the business of breaking codes. Task 13,
assigned in August 1947, was for a general-purpose electronic computer.
ERA completed the machine, code-named ‘‘Atlas,’’ and asked the Navy
to clear them for an unclassified version they could sell on the open
market. In December 1951 they announced it as Model ‘‘1101’’: ‘‘13’’ in
binary notation.83

As might be expected from a company like ERA, the 1101 was
intended for scientific or engineering customers, and its design reflected
that. Before it could begin delivering systems, however, ERA found itself
needing much more capital than its founders could provide, and like the
Eckert–Mauchly Computer Corporation, was purchased by Remington
Rand. By mid-1952 Remington Rand could offer not one but two well-
designed and capable computer systems, one optimized for science and
engineering, the other for commercial use. Installations of the 1103, its
successor, began in the fall of 1953. Around twenty were built. As with
the IBM 701, most went to military agencies or aerospace companies.

In 1954 the company delivered an 1103 to the National Advisory
Committee for Aeronautics (NACA) that employed magnetic core in
place of the Williams Tube memory. This was perhaps the first use of
core in a commercial machine. The 1103 used binary arithmetic, a 36-bit
word length, and operated on all the bits of a word at a time. Primary
memory of 1,024 words was supplied by Williams tubes, with an ERA-
designed drum, and four magnetic tape units for secondary storage.84
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Following NACA’s advice, ERA modified the machine’s instruction set to
include an ‘‘interrupt’’ facility—another first in computer design. (Core
and interrupts will be discussed in detail in the next chapter.) These
enhancements were later marketed as standard features of the 1103-A
model.85 Another aerospace customer, Convair, developed a CRT tube
display for the 1103, which they called the Charactron. This 7-inch tube
was capable of displaying a 66 6 array of characters, which also affected
the course of computer history.86 Overall, the 1103 competed well
with the IBM 701, although its I/O facilities were judged somewhat
inferior.

The Drum Machines

In the late 1930s, in what may have been the first attempt to build an
electronic digital computer, J. V. Atanasoff conceived of a memory
device consisting of a rotating drum on which 1,600 capacitors were
placed, arrayed in 32 rows.87 His work influenced the developments of
the next decade, although those who followed him did not ultimately
adopt his method. In the following years several people continued to
work on the idea of rotating magnetic devices for data storage, for
example, Perry O. Crawford, who described such a device in his master’s
thesis at MIT.88

After the War, the drum emerged as a reliable, rugged, inexpensive,
but slow memory device. Drawing on wartime research on magnetic
recording in both the United States and Germany, designers rediscov-
ered and perfected the drum, this time using magnetic rather than
capacitive techniques.

The leader in this effort was Engineering Research Associates. Before
they were assigned ‘‘Task 13,’’ they were asked to research available
memory technologies. By 1947 they had made some significant advances
in recording speeds and densities, using a drum on which they had
glued oxide-coated paper (figure 1.4).89 Within two years ERA was
building drums that ranged from 4.3 to 34 inches in diameter, with
capacities of up to two million bits, or 65,000 30-bit words. Access time
ranged from 8 to 64 milliseconds.90 ERA used drums in the 1101; they
also advertised the technology for sale to others.

CRC 102A

One of the first to take advantage of magnetic drums was was Computer
Research Corporation of Hawthorne, California. This company was
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Figure 1.4
Advertisement for magnetic drum memory units, from ERA. (Source : Electronics
Magazine [April 1953]: 397.)
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founded by former employees of Northrop Aircraft Company, the
company that had built the Card-Programmed Calculator described
above. In 1953 they began selling the CRC-102A, a production version
of a computer called CADAC that had been built for the Air Force. It was
a stored-program, general-purpose computer based on a drum memory.
The 102A had a simple design, using binary arithmetic, but a decimal
version (CRC 102D) was offered in 1954.91 In some of the published
descriptions, engineers describe its design as based directly on logic
states derived from statements of Boolean algebra. This so-called West
Coast design was seen as distinct from the designs of Eckert and
Mauchly, who thought in terms not of logic states, but of current
pulses gated through various parts of a machine. As computer engineer-
ing matured, elements of both design approaches merged, and the
distinction eventually vanished.92

The 102A’s drum memory stored 1,024 42-bit words; average access
time was 12.5 msec. A magnetic tape system stored an additional 100,000
words. The principal input and output device was the Flexowriter, a
typewriter-like device that could store or read keystrokes on strips of
paper tape. It operated at about the speeds of an ordinary electric
typewriter, from which it was derived. In keeping with its aerospace roots,
Computer Research Corporation also offered a converter to enter
graphical or other analog data into the machine.93 It was also possible
to connect an IBM card reader or punch to the computer. The
computer’s operating speed was estimated at about eleven multiplica-
tions per second.94 The 102A was a well-balanced computer and sold in
modest numbers. In 1954 the National Cash Register Company
purchased CRC, and the 102 formed the basis of NCR’s entry into the
computer business.95

Computer Research’s experience was repeated with only minor varia-
tions between 1950 and 1954. Typically, a small engineering company
would design a computer around a drum memory. I/O would be
handled by a standard Flexowriter, or by punched card machines
leased from IBM. The company would then announce the new machine
at one of the Joint Computer Conferences of the Institute of Radio
Engineers/Association for Computing Machinery. They would then get
a few orders or development funds from the Air Force or another
military agency. Even though that would lead to some civilian orders and
modest productions runs, the company would still lack the resources to
gear up for greater volume or advanced follow-on designs. Finally, a
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large, established company would buy the struggling firm, which would
then serve as the larger company’s entree into computing.

Many of these computers performed well and represented a good
value for the money, but there was no getting around the inherent
slowness of the drum memory. Their input/output facilities also
presented a dilemma. The Flexowriter was cheap, but slow. Attaching
punched card equipment meant that a significant portion of the profits
would go directly to IBM, and not to the struggling new computer
company.

As mentioned, National Cash Register bought CRC. Electronic
Computer Corporation, founded by Samuel Lubkin of the original
UNIVAC team, merged with Underwood Corporation, known for its
typewriters. (Underwood left the computer business in 1957.) Consoli-
dated Engineering of Pasadena, California, was absorbed by Burroughs
in 1956. The principal legacy of the drum computers may have been
their role as the vehicle by which many of the business machine
companies entered the computer business.

Table 1.2 lists several other magnetic drum computers announced or
available by mid-1952. For each of these systems, the basic cost was from

Table 1.2
Commercially available small computers, ca. mid-1952

Word
Memory
capacity Speed

Computer length (words) (mult./sec.) Manufacturer

CE 30-201 10 dec. 4000 118 Consolidated Engineering
Pasadena, CA

Circle 40 bits 1024 20 Hogan Labs
New York, NY

Elecom 100 30 bits 512 20 Electronic Computer Corp
Brooklyn, NY

MINIAC 10 dec. 4096 73 Physical Research Labs
Pasadena, CA

MONROBOT 20 dec. 100 2 Monroe Calculating
Machine Co
Orange, NJ

Source : Data from U.S. Navy, Navy Mathematical Computing Advisory Panel,
Symposium on Commercially Available General-Purpose Electronic Digital Computers of
Moderate Price (Washington, DC, 14 May 1952).
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$65,000 to $85,000 for a basic system exclusive of added memory,
installation, or auxiliary I/O equipment.

Later Drum Machines, 1953–1956

LGP-30

In the mid-1950s a second wave of better-engineered drum computers
appeared, and these sold in much larger quantities. They provided a
practical and serious alternative for many customers who had neither
the need nor the resources to buy or lease a large electronic computer.

The Librascope/General Precision LGP-30, delivered in 1956, repre-
sented a minimum design for a stored-program computer, at least until
the minicomputer appeared ten years later. It was a binary machine, with
a 30-bit word length and a repertoire of only sixteen instructions. Its
drum held 4,096 words, with an average access time of around 2.3 msec.
Input and output was through a Flexowriter.

The LGP-30 had only 113 vacuum tubes and 1,350 diodes (unlike the
UNIVAC’s 5,400 tubes and 18,000 diodes), and looked like an oversized
office desk. At $30,000 for a basic but complete system, it was also one of
the cheapest early computers ever offered. About 400 were produced
and sold.96 It was not the direct ancestor of the minicomputer, which
revolutionized computing in the late 1960s, but many minicomputer
pioneers knew of the LGP-30. Librascope offered a transistorized version
in 1962, but soon abandoned the general-purpose field and turned to
specialized guidance-and-control computers for aerospace and defense
customers.

Bendix G-15

The G-15, designed by Harry Huskey and built by Bendix, was perhaps
the only computer built in the United States to have been significantly
influenced by the design ideas of Alan Turing rather than John von
Neumann. Both advocated the stored-program principle, with a provi-
sion for conditional branching of instructions based on previously
calculated results. For von Neumann, however, the fundamental concept
was of a steady linear stream of instructions that occasionally branched
based on a conditional test. Turing, on the other hand, felt that there
was no fundamental linear order to instructions; for him, every order
represented a transfer of control of some sort.97

Turing’s concept (much simplified here) was more subtle than the
linear model, and fit well with the nature of drum-based computers.
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Turing’s model required that every instruction have with it the address
where the next instruction was located, rather than assuming that the
next instruction would be found in the very next address location. In a
drum computer, it was not practical to have instructions arranged one
right after the other, since that might require almost a full revolution of
the drum before the next one appeared under the read head. Program-
mers of drum computers often developed complicated ‘‘minimum
latency coding’’ schemes to scatter instructions around the drum
surface, to ensure that the next instruction would be close to the read
head when it was needed. (Note that none of this was required if a
memory that took the same amount of time to access each piece of data
was used.)

Harry Huskey, who had worked with Turing in 1947 on the ACE
project at the National Physical Laboratory in England, designed what
became the G-15 while at Wayne State University in Detroit in 1953. First
deliveries were in 1956, at a basic price of $45,000. It was regarded as
difficult to program, but for those who could program it, it was very fast.
Bendix sold more than four-hundred machines, but the G-15’s success
was not sufficient to establish Bendix as a major player in the computer
field.98 Control Data Corporation later took over Bendix’s computer
business, and Bendix continued to supply only avionics and defense
electronics systems.

IBM 650

Along with the Defense Calculator (a.k.a. IBM 701), IBM was working on
a more modest electronic computer. This machine had its origins in
proposals for extensions of punched card equipment, which IBM had
been developing at its Endicott, New York, plant. IBM’s internal manage-
ment was hesitant about this project, nor was there agreement as to what
kind of machine it would be. One proposal, dubbed ‘‘Wooden Wheel,’’
was for a plug-programmed machine like the 604 Multiplier.99 In the
course of its development, the design shifted to a general-purpose,
stored-program computer that used a magnetic drum for primary
memory. (IBM’s acquisition, in 1949, of drum-memory technology
from Engineering Research Associates was a key element in this
shift.100) The machine, called the 650, was delivered in 1954 and
proved very successful, with eventually around a thousand installations
at a rental of around $3,500 a month.101

By the time of its announcement, the 650 had to compete with many
other inexpensive drum machines. It outsold them all, in part because of
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IBM’s reputation and large customer base of punched card users, and in
part because the 650 was perceived as easier to program and more
reliable than its competitors. IBM salesmen were also quick to point out
that the 650’s drum had a faster access time (2.4 msec) than other drum
machines (except the Bendix G-15).102

The 650 was positioned as a business machine and continued IBM’s
policy of offering two distinct lines of products for business and scientific
customers. Ironically, it had less impact among business customers, for
whom it was intended, than it had at universities. Thomas Watson Jr.
directed that IBM allow universities to acquire a 650 at up to a 60
percent discount, if the university agreed to offer courses in business
data processing or scientific computing. Many universities took up this
offer, making the 650 the first machine available to nascent ‘‘computer
science’’ departments in the late 1950s.103

Summary

Very few of these machines of anybody’s manufacture were sold during the
period we are talking about. Most of them, and I would guess 80 percent at least,
were bought by the customer who made the buy, not the salesman who made the
sale, although the salesman might get the commission.104

— Lancelot Armstrong

The ‘‘first generation’’ began with the introduction of commercial
computers manufactured and sold in modest quantities. This phase
began around 1950 and lasted through the decade. Computers of this
era stored their programs internally and used vacuum tubes as their
switching technology, but beyond that there were few other things they
had in common. The internal design of the processors varied widely.
Whether to code each decimal digit in binary or operate entirely in the
binary system internally remained an unsettled question. The greatest
variation was found in the devices used for memory: delay line, Williams
tube, or drum. Because in one way or another all these techniques were
unsatisfactory, a variety of machines that favored one design approach
over another were built.

The Institute for Advanced Study’s reports, written by Arthur Burks,
Herman Goldstine, and John von Neumann, emphasized the advantages
of a pure binary design, with a parallel memory that could read and
write all the bits of a word at once, using a storage device designed at
RCA called the Selectron. By the time RCA was able to produce
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sufficient quantities of Selectrons, however, core memory was being
introduced, and the Selectron no longer looked so attractive. Only the
Johnniac, built at the RAND Corporation, used it. Most of the other
parallel-word computers used Williams Tubes.105 In practice, these tubes
were plagued by reliability problems.106

The result was that memory devices that accessed bits one at a time,
serially, were used in most first-generation computers. The fastest
computers used mercury delay lines, but the most popular device was
the rotating magnetic drum. A drum is fundamentally an electromecha-
nical device and by nature slow, but its reliability and low cost made it the
technology of choice for small-scale machines.

Commercial computing got off to a shaky start in the early 1950s.
Eckert and Mauchly, who had a clear vision of its potential, had to sell
their business to Remington Rand to survive, as did Engineering
Research Associates. Remington Rand, however, did not fully under-
stand what it had bought. IBM knew that computers were something to
be involved with, but it was not sure how these expensive and complex
machines might fit into its successful line of tabulating equipment.
Customers took the initiative and sought out suppliers, perhaps after
attending the Moore School session in 1946 or visiting a university where
a von Neumann type machine was being built. These customers, from a
variety of backgrounds, clamored for computers, in spite of a reluctance
among UNIVAC or IBM salesmen to sell them.

The UNIVAC and the IBM 701 inaugurated the era of commercial
stored-program computing. Each had its drawbacks, but overall they met
the expectations of the customers who ordered them. The UNIVAC’s
memory was reliable but slow; the 701’s was less reliable but faster. Each
machine worked well enough to establish the viability of large compu-
ters. Drum technology was providing storage at a lower cost per bit, but
its speed was two orders of magnitude slower, closer to the speeds of the
Card-Programmed Calculator (which was capable of reading 125 instruc-
tion cards per minute), which had been available since the late 1940s
from IBM. Given the speed penalty, drum-based computers would never
be able to compete with the others, regardless of price. The many
benefits promised in the 1940s by the stored-program electronic compu-
ter architecture required high-capacity, high-speed memory to match
electronic processing. With the advent of ferrite cores—and techniques
for manufacturing them in large quantities—the memory problem that
characterized the first generation was effectively solved.
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Table 1.3 lists memory and processor characteristics of the major
computers of this era.

Table 1.3
Selected characteristics of early commercial computers

Word Memory capacity Access time Multiplications=
Computer length (words) (microseconds) second

CRC-102 9 dec. 1024 12,500 65
ERA 1103 36 bits 1024 10 2500–8000
G-15 29 bits 2160 1,700 avg. 600
LGP-30 30 bits 4096 8,500 avg. 60
IBM 650 10 dec. 1000–2000 2,400 avg. 50–450
IBM 701 36 bits 2048 48 2000
UNIVAC 11 dec. 1000 400 max. 465

Source : Data from Martin Weik, ‘‘A Survey of Electronic Digital Computing
Systems,’’ Ballistic Research Laboratories Report #971 (Aberdeen Proving
Ground, Maryland, December 1955).
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2
Computing Comes of Age, 1956–1964

Computer technology pervades the daily life of everyone in the United
States. An airline traveler’s tickets, seat assignment, and billing are
handled by a sophisticated on-line reservation system. Those who drive
a car are insured by a company that keeps a detailed and exacting record
of each driver’s policy in a large database. Checks are processed by
computers that read the numerals written in special ink at the bottom.
Each April, citizens file complicated tax returns, which the Internal
Revenue Service processes, files, and keeps track of with computers.

It is hard to imagine a world in which computers do not assist with
these activities, yet they were not computerized until the late 1950s. This
set the stage for further penetration of computing two decades later, in
the form of automatic teller machines, bar-coded products scanned at
supermarket and retail check-out stations, and massive financial and
personal databases maintained by credit-card companies and mail-order
houses.

Before 1955, human beings performed all these activities using type-
writers, carbon paper, and lots of filing cabinets.1 Punched-card equip-
ment assisted with some of the work. The preferred aid to arithmetic was
the Comptometer, manufactured by Felt and Tarrant of Chicago (figure
2.1).2 This machine was key-driven: pressing the keys immediately
performed the addition, with no other levers to pull or buttons to
press. Its use required intensive training, but in the hands of a skilled
operator, a Comptometer could perform an addition every few seconds.
It could neither multiply nor print the results of a calculation, however.

What these applications had in common was their need to store and
retrieve large amounts of data easily and quickly. Required also were a
variety of retrieval methods, so that the data could be used later on in
different ways. Calculations consisted mainly of additions, subtractions,
and less frequently, multiplications. Quantities typically ranged up to a



million and required a precision of two decimal places, for dollars and
cents. Though similar to the work that punched card installations
handled, this activity had the additional requirement of rapid retrieval
of individual records from large files, something punched card machines
could not easily do. The definition of ‘‘data processing’’ evolved to
accommodate this change.

The computers of the early 1950s were ill suited for this work. The
inexpensive drum-based machines that proliferated early in the decade
lacked the memory capacity, speed, and above all, high-capacity input
and output facilities. The larger machines showed more potential, but
even the UNIVAC, designed for data processing applications from the
start, had a slow printer when first introduced.

By the end of the 1950s, digital electronic computers had begun doing
that kind of work. Through the 1950s, computer designers adapted the
architecture of a machine developed for scientific problems to applica-
tions that required more storage and more voluminous input and
output. These were fundamental changes, but computers evolved to

Figure 2.1
Comptometer. (Source : Smithsonian Institution.)
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accommodate them without abandoning their basic stored-program
architecture.

Core Memory

Part of this transformation of computers came from advances in circuit
technology. By 1959 the transistor had become reliable and cheap
enough to serve as the basic circuit element for processors. The result
was increased reliability, lower maintenance, and lower operating costs.
Before that, however, an even more radical innovation occurred—the
development of reliable, high capacity memory units built out of
magnetic cores. These two innovations were able to boost performance
to a point where many commercial applications became cost-effective.

Core memory refers to small, doughnut-shaped pieces of material
through which several fine wires are threaded to store information
(figure 2.2). The wires passing through the core can magnetize it in
either direction; this direction, which another wire passing through can
sense, is defined as a binary zero or one. The technology exploits the
property, known as hysteresis, of certain magnetic materials. A current
passing through the center of such a core will magnetize it, but only if it
is above a certain threshold.3 Likewise, a current passing in the other
direction will demagnetize such a core if the current is strong enough. A
core memory unit arranges cores made of materials having this property
in a plane, with wires running vertically and horizontally through the
hole in each core. Only when there are currents in both the vertical and
the horizontal wires, and both are running in the same direction, will a
core be magnetized; otherwise, there is no effect.

A core memory has many advantages over the memories used in the
first-generation computers. The cores can be made small. The memory
is ‘‘nonvolatile’’: it holds information without having to supply electrical
power (as with Williams tubes and mercury delay lines) or mechanical
power (as with a rotating drum).

Above all, core provides random access memory, now known as RAM:
access to any bit of a core plane is as rapid as to any other. (The term is
misleading: it is not really a ‘‘random’’ time, but since the term is in
common use it will be retained here.) This overcomes a major drawback
to delay lines and drums, where waiting for data to come around can
introduce a delay that slows a computer down.

During World War II, the German Navy developed a magnetic
material with the property of hysteresis, and they used it in the circuits
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of a fire-control system. After the war, samples were brought to the
United States, where it caught the attention of people interested in
digital storage. Researchers at IBM, the University of Illinois, Harvard,
MIT, and elsewhere investigated its suitability for computers.4 An Wang,
a student of Howard Aiken at Harvard, invented a core memory that was
used in the Harvard Mark IV, completed in 1952. Magnetic core
memories were installed on both the ENIAC and the Whirlwind in the
summer of 1953. The ENIAC’s memory, designed by the Burroughs
Corporation, used a two-dimensional array of cores; the Whirlwind’s
memory, designed by Jay Forrester, used a three-dimensional array that
offered faster switching speeds, greater storage density, and simpler
electronics.5 One key advantage of Forrester’s design was a circuit,
developed by Ken Olsen, that reduced the amount of current needed
to operate the array.

Figure 2.2
Magnetic core memory. (Source : From Jan A. Rajchman, ‘‘A Myriabit Magnetic-
Core Matrix Memory,’’ IRE Proceedings (October 1953): 1408.) # 1953 IRE, now
known as IEEE.
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The core memory made the Whirlwind almost a new machine, so
much better was its performance, and commercial systems began
appearing with it. As mentioned in the previous chapter, the first
commercial delivery was around late 1954, when the ERA division of
Remington Rand delivered an 1103A computer to the National Advisory
Committee for Aeronautics. ERA had also delivered core memories to
the National Security Agency as part of a classified project. At IBM, a
team led by Eric Bloch developed a memory unit that served as a buffer
between the electrostatic memory of the 702 computer and its card-
based input and output units. Deliveries to commercial customers began
in February 1955. IBM continued using electrostatic tubes for the 702
but moved to core for machines built after it.6

A contract with the U.S. Air Force to build production versions of the
Whirlwind was a crucial event because it gave engineers the experience
needed for core to become viable in commercial systems. The Air
Force’s SAGE (Semi-Automatic Ground Environment), a system that
combined computers, radar, aircraft, telephone lines, radio links, and
ships, was intended to detect, identify, and assist the interception of
enemy aircraft attempting to penetrate the skies over the United States.
At its center was a computer that would coordinate the information
gathered from far-flung sources, process it, and present it in a combina-
tion of textual and graphical form. All in all, it was an ambitious design;
the Air Force’s desire to have multiple copies of this computer in
operation round the clock made it even more so.7 A primary require-
ment for the system was high reliability, which ruled out mercury delay
lines or electrostatic memory.

The design of SAGE’s computer had much in common with Whirl-
wind; some early literature described it as ‘‘Whirlwind II.’’ That was
especially evident in its core memory, designed to have a capacity of
8,192 words of 32 bits in length. In 1952 the SAGE development team at
Lincoln Laboratory asked three companies about the possibility of
building production models of the computer then being designed.
The team visited the facilities of IBM, Raytheon, and two divisions of
Remington Rand. Based on a thorough evaluation of the plants, the
team selected IBM.8 IBM delivered a prototype in 1955, and completed
the first production model computer the following year. IBM eventually
delivered around thirty computer systems for SAGE. For reliability, each
system consisted of two identical computers running in tandem, with a
switch to transfer control immediately to the backup if the primary
computer failed. Although the computers used vacuum tubes (55,000
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per pair), the reliability of the duplexed system exceeded that of most
solid-state computers built years later. The last original SAGE computer,
operating at a site in North Bay, Ontario, was shut down in 1983.9

Initially IBM had contracted with other companies, primarily General
Ceramics, to deliver cores. It had also begun a research effort on core
production in-house. Among other things, it worked with the Colton
Manufacturing Company, which provided machines to the pharmaceu-
tical industry for making pills, to adapt their equipment to press cores of
uniform properties. (IBM and other computer companies also used
machines modified from those made by General Mills for putting food
into consumer packages, and by United Shoe Machinery for making
shoes, to insert electronic components onto circuit boards.)10 As the
SAGE project got underway, IBM began to rely more and more on its
own expertise. SAGE would require hundreds of thousands of good
cores. Given the low yields of cores supplied to IBM at first, it seemed
that millions would have to be made and tested.11 IBM’s own research
efforts fared much better, producing yields of up to 95 percent by 1954
(figure 2.3).

The SAGE contract generated half a billion dollars in revenue for IBM
in the 1950s. Its value in getting IBM into the business of producing
cores was probably worth just as much.12 By 1956, IBM had surpassed
UNIVAC in the number of installations of large computers. Already
dominant in sales of smaller computers, IBM would continue to domi-
nate the entire computer industry.13 How it managed to do that has
been the subject of many accounts. Most give generous credit to IBM’s
sales force, and note also that Remington Rand’s top management was
less forceful in their support of the UNIVAC division. Some accounts
believe that IBM took this lead despite the technical superiority of
UNIVAC’s machines.14 Also important was the experience in pro-
ducing reliable core memories that IBM gained from its experience
with SAGE.

Figure 2.3
(top) Core memory unit developed for the Memory Test Computer, prior to
installation on the Whirlwind. (Source : Mitre Corporation Archives.) (bottom)
Core memory unit for the IBM 704 computer. (Source : Charles Babbage Institute,
University of Minnesota.)
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Honeywell, GE, RCA

As IBM and UNIVAC competed for business, other companies took steps
to develop and sell large computers. First among them was the Minnea-
polis Honeywell Corporation, a maker of industrial and consumer
controls (including thermostats for the home) and aerospace electro-
nics equipment. In 1955 Honeywell acquired the computer division of
Raytheon, which had been the only established company to respond to
the U.S. government’s request in the late 1940s for large computers for
its needs. Raytheon was unable to deliver the machines it promised,
although one computer, the RAYDAC, was installed in 1952 at a U.S.
Navy base at Point Mugu, California, as part of Project ‘‘Hurricane.’’ In
1954 Raytheon established the Datamatic Corporation jointly with
Honeywell, but the following year it relinquished all its interest in
Datamatic.15

Honeywell’s first large offering was the Datamatic 1000, delivered in
1957. This machine was comparable to the largest UNIVAC or IBM
systems, but it was already obsolete. Among other things, it used vacuum
tubes at a time when it was becoming clear that transistors were practical.
Honeywell temporarily withdrew from the market and concentrated on
designing transistorized machines, which it successfully offered a few
years later. That decision laid the grounds for its successful reentry,
which began in the mid-1960s.16

GE

In 1955, General Electric was the nation’s leading electronics firm, with
sales of almost $3 billion and over 200,000 employees. (Compare IBM’s
sales of $461 million and 46,500 employees, or Remington Rand’s $225
million and 37,000 employees that year.)17 In 1953, the company had
delivered the OARAC to the U.S. Air Force at Wright-Patterson Air Force
Base, and the Air Force had used it for specialized, classified applica-
tions. However, the OARAC was a general-purpose electronic computer
and GE could have marketed a commercial version of it if its senior
management had not decided against entering the computer field. GE
engineers later recalled a consistent bias against entering this market
throughout the 1950s. GE said that it preferred to concentrate on other
products it felt had greater potential, like jet engines and nuclear power.
Others dispute that account.18 One engineer suggested that the fact that
IBM was GE’s largest customer for vacuum tubes might have been a
factor: GE did not want to appear to be in competition with IBM,
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especially given the perception that GE, with its greater resources, could
overwhelm IBM if it chose to do so.

General Electric did, however, produce a computer in the late 1950s
for a system called ERMA (Electronic Recording Machine Accounting),
an automatic check-clearing system developed with the Stanford
Research Institute and the Bank of America. Mindful of the ban by
GE chief Ralph Cordiner against general-purpose computers, ERMA’s
creators sold the project internally as a special, one-time project. A plant
was built outside Phoenix, Arizona, and GE engineers, led by Homer R.
Oldfield, got to work. While still a major supplier of vacuum tubes, GE
had among its sprawling research facilities people who understood the
advantages—and problems—of transistors. The ERMA computer would
be transistorized. Deliveries began in early 1958. The Bank of America
publicly unveiled ERMA in the fall of 1959, at a ceremony hosted by GE
spokesman Ronald Reagan.19

ERMA sucessfully allowed banks to automate the tedious process of
clearing checks, thus avoiding the crisis of paperwork that threatened
banks in the booming postwar economy. Among its components was a
set of numeric and control characters printed with magnetic ink at the
bottom of each check that a machine could read. It was called ‘‘MICR.’’
Advertising agencies adopted the typography as a symbol of ‘‘computer-
ese,’’ and for a while the type was a symbol of the Age of Automation.
Few realize, however, that MICR only specified the shapes of the ten
decimal digits and some control characters, not the letters of the
alphabet.

ERMA’s success emboldened its creators. They continued their risky
game by developing other computers, including a system that in 1962
Dartmouth College would adopt for its pioneering time-sharing system
(to be discussed at length in chapter 5). As with ERMA, they described
their products as special-purpose equipment. But their charade could
only go so far. Without full corporate support the company could hardly
expect to compete against IBM. In one respect, GE’s management had
been correct: the computer division never was profitable, despite the
high quality and technical innovation of its products. In 1970 GE sold
the business to Honeywell for a little over $200 million.20

RCA

RCA’s entry into commercial computing paralleled GE’s. Like GE, RCA
had been involved at an early date in computers—it had developed a
storage tube for a computer built at Princeton in the early 1950s. RCA
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was not as large as GE but in 1955 it had over twice the annual sales of
IBM and four times the sales of Remington Rand. In November 1955
RCA announced a large-scale computer intended for business and data
processing applications, the BIZMAC. (Among the engineers who
worked on it was Arnold Spielberg, a talented engineer whose fame
among computer circles would be eclipsed by that of his son, Steven, the
Hollywood filmmaker. Arnold Spielberg later moved to Phoenix and
worked on the GE computers described above.)

The BIZMAC used core memory, which made it one of the first
commercial machines to do so. Vacuum tubes were used for logic and
arithmetic circuits. The BIZMAC did not sell well. Only one full system
was installed, at a U.S. Army facility in Detroit. A few smaller systems
were installed elsewhere. One reason might have been a too-long
development time. By the time of its first installations in 1956, new
designs based on simpler architectures and using transistors promised to
offer the equivalent performance at a lower cost.21

The BIZMAC’s architecture was different from the machines it was
competing with, which may have been another factor that led to its
commercial failure. Unlike the von Neumann design, the BIZMAC had
specialized processing units for searching and sorting data on reels of
tape. Whereas most contemporary computers had up to a dozen tape
drives for mass storage, the BIZMAC was designed to support several
hundred drives, all connected to its processor and under machine
control. That implied that each reel of tape would be permanently
mounted, and there would be little or no need for an operator to mount
and demount tapes as there was with other computers.22 A system of
relays connected a particular tape to the BIZMAC’s processor. Attached
to the main processor was a special-purpose processor whose only
function was to sort data.

This design would seem to make the BIZMAC especially suited for
business data processing applications, but by 1956 advances in technol-
ogy had eliminated any advantage gained by this architecture. Other
manufacturers were already offering tape drives with much-improved
performance, and those drives, combined with advances in core
memory and processing speeds, made it cheaper to have only a few
high-speed tape drives with human beings employed to mount and
demount tapes from a library.

The BIZMAC’s failure set back RCA’s entry into commercial comput-
ing, but it did not end it. After a brief hiatus, the company responded
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with a line of transistorized computers of more conventional design (the
301 and 501); these were moderately successful.

The BIZMAC was not the only large computer to explore an alternate
architecture. In 1956 UNIVAC (now a division of Sperry Rand, formed
by a merger of the Sperry Corporation and Remington Rand) intro-
duced the UNIVAC File Computer, which it hoped would be a low-cost
successor to the original UNIVAC. As the name implied, the machine
was intended for data handling. It used a magnetic drum as its main
memory, which lowered costs but also compromised performance. It was
programmed by a combination of stored instructions and plugboard
panels. Its designers felt that flexible input/output (I/O) facilities were
critical for commercial customers.23 As with the BIZMAC, the UNIVAC
File could manipulate data without having to go through its central
processor. The UNIVAC File, like the BIZMAC, was a commercial failure,
probably for the same reasons. This notion of designing a machine for
data storage, retrieval, sorting, and searching reappears from time to
time throughout the history of computing. But in nearly every case, a
good general-purpose computer has driven specialized machines from
the market. Table 2.1 lists the major U.S. computer suppliers and their
revenues for 1955.

Table 2.1
Revenues of selected computer and electronic companies, 1955

Company Annual sales Net profit Employees

GE $2.96 billion $213 M 210,000
Western Electric* $1.5 billion $55 M 98,000
RCA $940 M $40 M 70,500
IBM $461 M $46.5 M 46,500
NCR $259 M $12.7 M 37,000
Honeywell $229 M $15.3 M 25,000
Remington Rand** $225 M $12.2 M 37,000
Raytheon $177 M $3.5 M 18,700
Burroughs $169 M $7.8 M 20,000

Source : Data from Fortune (July 1955).
* Western Electric was the manufacturing arm of AT&T, which owned and
controlled it. AT&T’s total revenues for 1955 were greater than GE’s, RCA’s, and
IBM’s combined.
** In 1955 Remington Rand merged with the Sperry Corporation, a company
with $441 million in sales, mostly defense-related.
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A Primer on Computer Architecture

By the end of 1960 there were about 6,000 general-purpose electronic
computers installed in the United States.24 Nearly all of them were
descendents of the EDVAC and IAS computer projects of the 1940s,
where the concept of the stored program first appeared. One often
hears that nothing has really changed in computer design since von
Neumann.25 That is true only in a restricted sense—computers still store
their programs internally and separate storage from arithmetic funtions
in their circuits. In most other ways there have been significant
advances. By 1960 some of these innovations became selling points as
different vendors sought to establish their products in the marketplace.
The most important architectural features are summarized here.26

Word Length The introduction of reliable core memory made it prac-
tical to fetch data in sets of bits, rather than one bit at a time as required
by a delay line. For a computer doing scientific work, it seemed natural
to have this set correspond to the number of digits required for a typical
computation—say, from 7 to 12 decimal digits. That meant a block size,
or word length, of from 30 to 50 bits. Longer word lengths were preferred
for scientific calculations but increased the complexity and cost of the
design. By 1960, additional factors made the word-length decision even
more difficult.

Computers intended for commercial use did not need to handle
numbers with many digits. Money handled in the 1950s seldom
exceeded a million dollars, and two digits to the right of the decimal
place were sufficient. Business-oriented computers could therefore use a
shorter word length or a variable word length, if there was a way to tell
the processor when the end of a word was reached. The IBM 702, IBM
1401, RCA 301, and RCA 501 had variable word lengths, with the end of
a word set by a variety of means. The 1401 used an extra bit appended to
each coded character to indicate whether or not it was the last one of a
word; the 702 used a a special character that signified that the end was
reached.27 Although popular in the 1950s, computers with variable word
lengths fell from favor in the following decades and are no longer
common.

Computers intended for non-numeric applications, especially for
controlling other devices, could also use a shorter word length. The
most influential of these was the Whirlwind, which had a word length of
16 bits. Commercial machines that exploited the advantages of a short
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word length began to appear around 1959, and included the Control
Data Corporation CDC 160 (12 bits) and the Digital Equipment
Corporation PDP-1 (18 bits).

Register Structure Processing units of early computers contained a set of
circuits that could hold a numeric value and perform rudimentary
arithmetic on it—usually nothing more than simple addition. This
device became known as an accumulator, since sums could be built up
or ‘‘accumulated’’ in it; a device with more general, though also
temporary, storage ability is called a register (figure 2.4). Another set of
circuits made up the program counter, which stored the location of the
program instruction that the processor was to fetch from memory and
execute.

The typical cycle of a processor was to fetch an instruction from
memory, carry out that instruction on data in the accumulator, and
update the program counter with the address of the next instruction. In
the simplest case, the program counter was automatically incremented
by one (hence the term ‘‘counter’’), but branch instructions could
specify that the counter point to a different memory location.

A computer program orders the processor to perform arithmetic or
logic (e.g., add or compare), tells the processor where the relevant data
are to be found, and tells it where to store results. As with the sequential
fetching of instructions, often the processor requires data that are stored
close to one another in memory. A program that performs the same
operation on such a list of data might therefore consist of a long list of
the same operation, followed by only a slight change in the address. Or
the program could modify itself and change the address each time an
operation is executed. (This idea may have originated with von
Neumann in his early reports on computer design.) Neither process is
elegant.

Designers began with an experimental computer at the University of
Manchester in 1948, and added to the processor an extra index register to
simplify working with arrays of data. (In early published descriptions of
the Manchester computer, its designers called this register a ‘‘B-line,’’
and used the symbol ‘‘A’’ for ‘‘accumulator,’’ and ‘‘C’’ for ‘‘control.’’
These terms persisted into the 1950s in descriptions of processors.) By
specifying a value to increment the address field of an instruction,
programs no longer had to modify themselves as envisioned by von
Neumann and other pioneers. That greatly simplified the already
difficult process of programming.28
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Figure 2.4
Computer central processing unit, or CPU, showing the different registers. The
register labeled ‘‘Multiply–Divide’’ typically had twice the word length of the
others, because, in general, a multiplication of two n-digit numbers gives a
product having 2n digits. Below: a single-address instruction consisted of an
operation field on one side, and an address field on the other. In between was a
set of bits that performed special functions, such as specifying which of the index
registers held a desired number.
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These three types of registers—accumulator, program counter, and
B-line or index register—made up the processing units of most large
computers of the 1950s. For example, the IBM 704, announced in 1954,
had a 36-bit word length, a core memory holding 4,096 words, and a
processor with an accumulator, program counter, and three index
registers. Another register was coupled to the accumulator and dedi-
cated to multiplication and division (e.g., to store the extra bits that are
generated when two 36-bit numbers are multiplied together).29

In 1956 the British firm Ferranti Ltd. announced a machine, called
Pegasus, whose processor contained a set of eight registers, seven of
which could be used as accumulators or as index registers. That
inaugurated the notion of providing general-purpose registers that a
program could use for any of the above functions, as needed by a
specific program. Other companies were slow to adopt this philosophy,
but by the end of the next decade it became the most favored design.30

Number of addresses Instructions for an accumulator-based machine
had two parts: The first specified the operation (e.g., add, subtract, or
compare) and the second the address of the data to be operated on. If
an operation required two pieces of data, the other operand needed to
be present in the accumulator. It could be there as the result of the
previous operation, or as a result of an explicit instruction to load it into
the accumulator from memory. Because each instruction contained one
memory reference, this was called a single-address scheme. Its virtue was
its simplicity; it also allowed the address field of an instruction to be long
enough to specify large portions of memory. Many computers built in
the 1950s used it, including the original UNIVAC and IBM’s series of
large scientific computers, the 701, 704, 709, and 7090.

There were alternatives to the single-address scheme. One was to have
an operation followed by two addresses, for both operands. A third
address field could be added, to store the results of an operation in
memory rather than assume they would remain in the accumulator. The
UNIVAC 1103, RCA 601, and IBM 1401 used a two-address scheme,
while the UNIVAC File Computer and Honeywell H-800 used a three-
address scheme.

These schemes all had address fields that told where data were
located. One could also include the address of the next instruction,
instead of going to the program counter for it. Drum computers like the
IBM 650 and Librascope LGP-30 used this to minimize the time spent
searching the drum for the next instruction—each instruction could
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direct the computer to the place on the drum where the desired data
would be, after executing the previous instruction. Programming this
way was difficult, but it got around the inherently slow speeds of drum
machinery. With the advent of the magnetic core, this scheme fell from
necessity.31

Finally, one could design an instruction that specified no addresses at
all: both operands were always kept in a specified set of registers, in the
correct order. Results likewise went into that place, in the proper order
for further processing. That required organizing a set of registers (or
memory locations) in a structure called a stack, which presented data to
the processor as Last-In, First-Out (LIFO). (The concept of LIFO came
from the accounting profession; note its similarity to the spring-loaded
stacks of plates found in cafeterias.)32 Computers with this scheme first
appeared in the 1960s, but they never seriously challenged the single-
address design. Stack architecture resurfaced in the mid-1970s in
programmable pocket calculators.

I/O Channels and the ‘‘Wheel of Reincarnation’’ One of the UNIVAC’s
innovations was its use of a storage area that served as a ‘‘buffer’’
between the slow input and output equipment, such as card readers
and electric typewriters, and the much faster central processor. Likewise
the UNIVAC 1103A introduced the concept of the ‘‘interrupt,’’ which
allowed the machine’s processor to work on a problem, stopping to
handle the transfer of data to or from the outside world only when
necessary. These innovations became well-established and were
extended to the large commercial machines of the 1950s.

As the requirements for matching the speeds of I/O with the central
processor grew more complex, so too did the devices designed to handle
this transfer. With the introduction of the IBM 709, IBM engineers
designed a separate processor, called a ‘‘channel,’’ to handle input and
output. This channel was, in effect, a small computer dedicated to the
specific problem of managing a variety of I/O equipment that operated
at different data rates.33 Sometimes, as designers brought out improved
models of a computer, they would add to the capabilities of this channel
until it was as complex and powerful as the main processor—and they
now had a two-processor system. At that point the elegant simplicity of
the von Neumann architecture was in danger of being lost. To recapture
it, the computer’s basic requirements for processing and I/O had to be
reconsidered. This so-called wheel of reincarnation, if not broken by a

62 Chapter 2



fresh design approach, threatened to lead to a baroque and cumber-
some system.34

The complexity of I/O channels drove up the cost of systems, but they
were necessary for customers who used computers for problems that
handled large quantities of data. In time, channels became a defining
characteristic of the mainframe computer—one that was expensive,
physically large, and contained enough memory, flexibility, I/O facil-
ities, and processing speed to handle the needs of large customers. The
mainframe computer became the standard of the 1960s, although other
classes would arise both at the higher end, where faster processing but
simpler I/O was required, and at the lower end, where low cost was a
major design goal.

Floating-point Hardware One final design feature needs to be
mentioned, which was of concern primarily to scientific applications,
but had an impact on commercial customers as well. In the words of one
computer designer, whether or not a machine handles floating-point
arithmetic in its hardware is the ‘‘biggest and perhaps only factor that
separates a small computer from a large computer.’’35

Floating-point arithmetic allows users to keep track of the overall scale
of a computation. It does so by dividing a quantity into two parts, one of
which serves to mark the place of the decimal point (binary point inside
the machine). For example, chemists often work with a quantity known
as Avogadro’s number, which they write as 6.026 1023. When written in
scientific notation, the number has two parts, the second of which
indicates the magnitude. In this example, the 23 indicates that the
decimal point belongs 23 places to the right of where it appears in the
first part of the number. If written in ordinary notation, Avogadro’s
number would have to be written as 602 followed by 21 zeroes. It is
familiar to scientists and engineers (sometimes under the term ‘‘scien-
tific notation’’), but almost unknown in the commercial world because
commercial calculations do not reach beyond trillions of dollars at the
upper end, nor to trillionths of a dollar at the low end. (Inflation has
made million- and even billion-dollar figures a lot more common since
1980. At the same time, it has diminished the value of cents; people now
do not even bother with pennies at the corner store. Although tax rates
are still given in mills (one tenth of a cent), it is unlikely that anyone will
calculate the value of a house, as Henry David Thoreau did, to the half-
penny.)
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Any computer can be programmed to operate as a floating-point
machine, but the programming is complex and slows the machine down.
On the other hand, if the electronic circuits of a machine are designed
to handle floating point in hardware, the processor will be more
complicated and expensive. In the late 1940s there were debates over
which approach was better, although it should be noted that the very
first electromechanical computers, those built by Konrad Zuse in
Germany and by Bell Labs in the United States in the 1940s, had floating
point wired in.

Manufacturers felt that commercial customers did not need floating
point and would be unwilling to pay for it. They typically offered two
separate lines of machines, one for commercial customers and the other
for scientific or engineering applications. The former, which included
the UNIVAC, the UNIVAC File, and IBM 702 and 705, had only fixed-
point arithmetic, and often a variable word length. The latter, like the
704 and the 709, had floating point and a relatively long, fixed word
length. I/O facilities were often more elaborate for the business-
oriented machines.

This parallel development of two almost-similar lines of equipment
persisted through the late 1950s into the next decade. For many
customers the distinction was not that clear. For example, the IBM
650, intended for commercial customers, was often installed in university
centers, where professors and students labored to develop floating-point
software for it. Likewise, the IBM 704 had better performance than the
705, because of what many felt was a superior architecture, and
customers who ordered a 704 for scientific work soon found themselves
using it for commercial applications as well. The preference for the 704
increased even more as the programming language FORTRAN became
available on it. IBM combined both lines with the introduction of the
System/360 line of computers in 1964.

The Transistor

Although the transistor as a replacement for the vacuum tube and core
memory were both working in the laboratory by the early 1950s, the
transistor was not reliable enough to be used in commercial computers
until late in that decade, well after cores were in common use.

Bell Laboratories, where the transistor was invented, was not among
those considering entering the commercial computer market in the
1950s. The company was a regulated monopoly and weighed every
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action it took with an eye on the federal courts. In early 1956, after seven
years of litigation, it settled a lawsuit brought by the U.S. Justice
Department with a consent decree in which it agreed not to enter
into any business ‘‘other than the furnishing of common carrier
communications.’’36 AT&T had enough business installing telephones
in the booming postwar suburbs anyway. If it did not use transistors for
computers, it could use them to replace vacuum tubes in switching
equipment and in telephone amplifiers.

AT&T, including Bell Laboratories and its Western Electric manufac-
turing arm, also had a substantial military business at the time. Bell Labs
built several special-purpose computers for the military around 1952,
including a digital data transmission set, and a special-purpose computer
called TRADIC.37 Throughout the 1950s and 1960s they provided
computing equipment for Air Force and Army missile systems, including
the NIKE and Titan. This laid the foundation for other companies, who
after a decade of development finally began to supply commercial
computers using transistors.

Philco

In part to satisfy federal regulators, Bell Labs made information about
transistors available at a nominal cost. Among the many companies that
began producing transistors was Philco, an established electronics firm
headquartered in Philadelphia. Within a few years Philco pioneered a
type of transistor, which they called ‘‘surface barrier,’’ that could be
made in quantity and that had good performance. Philco’s transistors
were used in the TX-0 experimental computer at MIT in 1954, and later
in Philco’s own machines.38

Philco’s lead in producing surface-barrier transistors catapulted the
company to the forefront of computing. In June 1955 it contracted with
the National Security Agency to produce a fast computer based on the
architecture of the UNIVAC 1103 (itself a commercial version of a
computer built for that agency).39 The result, called ‘‘SOLO,’’ was
completed sometime between 1956 and 1958, and was probably the
first general-purpose transistorized computer to operate in the United
States.40 Philco marketed a commercial version called the TRANSAC
S-1000, followed quickly by an upgraded S-2000, in 1958. First deliveries
of the S-2000 were in January 1960. These, along with deliveries by
UNIVAC of a smaller computer called the Solid State 80, mark the
beginning of the transistor era, or ‘‘Second Generation.’’41
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The S-2000, a large, expensive machine, sold well to those customers,
especially in the U.S. Defense Department, who always demanded top-
ranking performance. Several commercial customers, including GE and
United Aircraft, bought one as a replacement for the large IBM systems
they were already using.42 Having established a beachhead, Philco found
itself under strong pressure to constantly innovate and upgrade its
products. That demanded money and manpower the company was
unwilling, or unable, to provide. In 1962, shortly after being acquired
by Ford Motor Company, Philco dropped out of the computer business.

NCR, Burroughs

The development of transistors also affected the computer business of
National Cash Register, which entered the computer industry in 1954 by
buying the Computer Research Corporation (CRC), a company founded
by a group of engineers from Northrop Aircraft. Although during World
War II NCR had built specialized equipment to assist the U.S. military in
breaking enemy codes, that had not led it away from its prewar focus on
mechanical cash registers. Between 1954 and 1957 the company did not
market CRC-inspired electronic computers aggressively, and when in
1957 NCR announced the model 304, a large transistorized computer, it
turned over production and manufacturing to GE. Modest sales of the
304 (eventually thirty-three were installed) contributed to NCR’s later
success (and kept GE from leaving the computer field entirely).43 With
its focus on retail sales, banking, and a few other specialized, but large
and profitable, commercial niches, the company did not always prosper,
but it did survive a painful transition from the era of brass cash registers
to one of electronics. AT&T bought the company in 1991, in an attempt
to become a competitor in commercial computing. AT&T failed, and it
spun off NCR as an independent company in 1995.

The Burroughs Corporation, a manufacturer of adding machines and
banking equipment, entered the transistorized era like NCR. In 1956
Burroughs purchased a small firm that made a drum-based scientific
computer, Electrodata, a division of Consolidated Engineering of Pasa-
dena. Staffed by engineers who had close ties to the Jet Propulsion
Laboratory, Electrodata had built a computer that was slow, like other
drum-based computers, but had a superior architectural design. It was
among the first American-made computers to have index registers in its
processor,44 which made it a favorite among the more knowledgeable
customers, particularly in universities.
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Burroughs was already offering a machine it designed in-house, the E-
101, which it felt was better suited for the typical commercial customers
that bought its accounting machines. The E-101 was only a little bigger
than a desk, and inexpensive, selling for about $35,000. It lacked a
stored-program architecture.45 It did not sell very well. Once again, the
marketplace chose a well-designed stored-program computer over a less
expensive machine intended for specific needs.

Burroughs’s failure with the E-101, combined with its failure to adapt
the superior Electrodata design to transistors quickly enough, kept
Burroughs’s influence in the commercial market small. It was able to
keep its computer expertise intact through military contracts, including
a large contract to build specialized computers for the SAGE air defense
system. Another contract, for the guidance system for the Atlas inter-
continental ballistic missile, led to a transistorized computer that
successfully guided Atlas launches from 1957 through 1959. Burroughs
claimed that this was ‘‘the first operational computer to use transistors
rather than vacuum tubes.’’46 The SOLO computer, described above,
may have preceeded it, but SOLO’s existence was kept secret for many
years. That experience laid a foundation for Burroughs’s successful re-
entry into commercial computing in the 1960s.

The Rise of IBM

By 1960 IBM dominated the computer industry. With that came an
intense interest in its stock, which in turn gave rise to a legion of
financial and technical analysts who watched the company and tried to
discern its next move. IBM was always careful of its public image, in part
a legacy of the humiliation felt by Thomas Watson Sr. over what he
felt was an unfair and unwarranted conviction for violating antitrust
laws while he was working for National Cash Register in 1912.47 IBM’s
public relations department always courteously and promptly supplied
outsiders with information, but the information was always carefully
structured to reflect an image.

That, in turn, led to groups of people who set out to debunk,
disparage, or otherwise dismantle the company. Among them were, of
course, IBM’s main competitors, but they also included both computer
professionals from universities and officials in the U.S. Justice Depart-
ment. In 1952, before IBM entered the electronic computer business,
the Justice Department had alleged that it violated anti-trust laws in
conducting its punched card business. That led, in 1956, to a Consent
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Decree, which did not break IBM up but deeply affected it and the
computer industry. Perhaps its most important provision was that IBM
was to allow customers to purchase its machines on terms comparable
to those it offered to renters. That signaled a major shift for IBM,
and would eventually lead to a large sub-industry of companies
that purchased IBM mainframes and leased them out to other
customers.48

As IBM’s stock soared and made millionaires of many employees who
had bought shares in earlier decades, ‘‘IBM-ologists,’’ at once fascinated
and repelled by the company, searched for clues to its inner workings.
Like ‘‘Kremlin-ologists,’’ who measured how tall various officials
appeared in official Soviet photographs, IBM-watchers combed whatever
they could find—press clippings, product announcements, figures
buried within financial reports—for patterns.49 Nowhere was this more
evident than in the pages of Datamation, a trade journal founded as
Research & Engineering and oriented toward the computer industry in
1957. The magazine’s owners at first intended to write it off for tax
purposes, but they soon recognized that Datamation’s subject was one of
growing interest, and also a very good source of advertising revenue.50

Under the editorial hand of Santo (Sandi) Lanzarotta, and especially
Robert Forest after 1963, Datamation developed a perfect balance:
relentless criticism of IBM for its alleged heavy hand, tempered by a
passion for computing and its benefits to society, a passion that most
readers recognized was one that IBM shared and furthered in its own
way.

Critics charged that IBM was never an innovator but always waited
until another, smaller company took the technical risks, and then swept
in and took over by questionable marketing practices. IBM was late in
recognizing the future of electronic computing, at least compared to
Eckert and Mauchly. And some regarded the IBM 701 as inferior to the
UNIVAC because of its I/O design. On the other hand, the IBM 704,
with its floating-point arithmetic, FORTRAN programming language,
and core memory, was technically superior to what UNIVAC offered in
1956, by which time the original UNIVAC was then obsolete. Sales of the
704 were a major factor in IBM’s ascendancy, and those sales were not
entirely the result of the company’s marketing and sales force.

A closer look at this charge reveals that IBM also made up for its lag in
technical innovation by superior in-house manufacturing techniques
and field service. These efforts merged into marketing and sales, which
was always aggressive and which competitors often felt was unfair.
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However, with IBM it is not always possible to separate the purely
technical dimension from the salesmanship. The following two examples
may serve to illustrate this merging of marketing, manufacturing, and
technical innovation.

Disk Storage In 1957 IBM marketed a device that would prove to be one
of its most lasting: the spinning disk for random-access storage of large
quantities of data. The disk drive was a cousin to the drum store that had
been a mainstay of electronic computers since the beginning of the
decade, but it had a geometry that exposed more surface area to
magnetization and storage. IBM perfected and brought to market an
innovation that had originated in the mid-1940s with Presper Eckert,
who had suggested using a disk for program and data storage for the
ENIAC’s successor. And in 1952 the National Bureau of Standards was
working on a disk store in response to an order by the Ballistic Research
Laboratory at Aberdeen, Maryland.51

Using an array of spinning disks offered much greater capacity at
lower cost per bit than drums, but it also presented knotty technical
problems. Typical drum stores had a set of fixed heads rigidly fastened
along a line, one for each track on the drum. The whole mechanism
could be made rugged and stable, but it was expensive. A disk array
could never be made as rigid as a drum, and it seemed the only way to
access the surfaces of the disks was to have heads that could be
positioned over the disk like the stylus of a record player. To record
and read data, the heads had to be very close to the surfaces. If they
touched (as the head of a tape drive touches the tape), the high speeds
of the spinning disks would probably cause unacceptable wear.

IBM engineers, working at the newly established laboratory in San
Jose, California, came up with the notion of using a thin film of air as a
cushion to prevent the heads from touching the disk surface. Their first
product used air supplied to the heads from an external compressor.
Later IBM disk drives took advantage of an ingenious application of the
‘‘boundary layer’’—an aerodynamic phenomenon familiar to airplane
designers—to float the disk by air set in motion by the disk itself. The
labs spent 1953 and 1954 experimenting with a bewildering variety of
head geometries and positioning mechanisms.52

By 1956 IBM had solved the problems and publicly announced the
Model 305 Disk Storage unit. It used a stack of fifty aluminum disks, each
24 inches in diameter, rotating at 1200 rpm. Total storage capacity was
five million characters.53 The press release emphasized its revolutionary
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quality of ‘‘random access’’: that any piece of data was as accessible as
any other, in contrast to the sequential retrieval of a datum from a deck
of punched cards or a reel of tape. The machine was later rechristened
RAMAC, for Random Access Memory Accounting Machine. IBM also
announced that the first commercial customer, United Airlines in
Denver, would use it for a reservations system. In the spring of 1958
IBM installed a 305 at the U.S. Pavilion at the Brussels World’s Fair,
where visitors could query ‘‘Professor RAMAC’’ through a keyboard and
receive answers in any of ten languages (including Interlingua, an
artificial language like Esperanto).54 The Brussels exhibit was a master-
ful piece of IBM public relations. Like the famous demonstration of
remote computing staged by George Stibitz at the Dartmouth meeting of
the American Mathematical Society in 1940; it foretold a day when direct
access to large amounts of data would become essential to the operations
of banks, supermarkets, insurance companies, and government agen-
cies. IBM president, Thomas Watson Jr., heralded the RAMAC’s intro-
duction as ‘‘the greatest product day in the history of IBM,’’ but even he
did not fully understand the forces set in motion by Professor RAMAC.
In time, the interactive style of computing made possible by random
access disk memory would force IBM, as well as the rest of the computer
industry, to redefine itself.

The RAMAC was offered as a separate piece of equipment to be
attached to the IBM 650, and like the 650 it used vacuum tubes. Within a
few years of its introduction it was obsolete and was withdrawn from the
market. But the disk technology survived and furthered IBM’s domi-
nance of the industry. Eventually direct access to data that allowed users
to interact directly with a computer spelled the end of the batch method
of processing, on which IBM had built its financial strength ever since
the tabulator days.

From Vacuum Tubes to Transistors A second example of IBM’s strength is
its introduction of model 7090 only a year after it began deliveries of
model 709.

The 7090, a large transistorized computer that many regard as the
classic mainframe computer, showed that IBM accepted the obsoles-
cence of vacuum tube technology and that it was willing to take a
financial loss on the 709. According to folklore, IBM submitted a bid to
the U.S. Air Force to supply solid state computers for the Ballistic Missile
Early Warning System (BMEWS) around the Arctic Circle. At the time
IBM had announced the 709, but the Air Force insisted on transistorized
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machines, perhaps because other, smaller companies had already intro-
duced transistorized products that were getting praise from the trade
press.

IBM planned to meet the Air Force’s strict timetable by designing a
computer that was architecturally identical to the 709 and used transis-
tors. They were thus able to use a 709 to develop and test the software
that the new computer would need. The 709 was programmed to
‘‘emulate’’ the as-yet-unfinished new machine: a program was written
to make the 709 behave as if it were the new computer. (This has since
become a standard procedure whenever a new computer or computer
chip is being designed.) Even that technique did not guarantee that IBM
would meet the Air Force’s deadline of installations before 1960. IBM
delivered computers to a site in Greenland in late 1959, but IBM-
watchers claimed that the machines were not finished and that the
company dispatched a cadre of up to 200 engineers to Greenland to
finish the machine as it was being installed.55

Whether or not that story is true, the company did deliver a transis-
torized computer to Greenland, versions of which it marketed commer-
cially as the Model 7090. The 7090 and its later upgrade, called the 7094,
which had four additional index registers, is regarded as the classic
mainframe because of its combination of architecture, performance,
and financial success: hundreds of machines were installed at a price of
around $2 million each (figure 2.5).

A Description of a 7094 Installation The term ‘‘mainframe’’ probably
comes from the fact that the circuits of a mainframe computer were
mounted on large metal frames, housed in cabinets. The frames were on
hinges and could swing out for maintenance. A typical installation
consisted of a number of these cabinets standing on a tiled floor that
was raised a few inches above the real floor, leaving room for the
numerous thick connecting cables that snaked from one cabinet to
another and for the circulation of conditioned air. The entire room
probably had its own climate-control system that not only was separate
from that of the rest of the building, but also kept the room much more
comfortable than anywhere else in the building on a hot summer day.

A cabinet near the operator’s console housed the main processor
circuits. These were made up of discrete transistors, mounted and
soldered along with resistors, diodes, jumper wires, inductors, and
capacitors, onto printed circuit boards. The boards, in turn, were
plugged into a ‘‘backplane,’’ where a complex web of wires carried
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signals from one circuit board to another. Some mainframes were
laboriously wired by hand, but most used a technique called ‘‘wire
wrap’’: it required no soldering, and for production machines the
wiring could be done by a machine, thus eliminating errors. In practice,
there would always be occasional pieces of jumper wire soldered by hand
to correct a design error or otherwise modify the circuits. The density of
these circuits was about ten components per cubic inch.

The 7094 was delivered with a maximum of 32,768 words of core
memory. In modern terms that corresponds to about 150 Kilobytes
(Kbytes, one byte¼ 8 bits), about what came with the IBM Personal
Computer when it first appeared in the early 1980s. Although marketed
as a machine for science and engineering, many customers found it well

Figure 2.5
Control console of an IBM 7094. Note the small box on top of the console with
four rows of lights, which indicate the status of the computer’s four additional
index registers. The addition of these registers was the principal difference
between the 7094 and the IBM 7090. Note also the other rows of lights indicating
the bits in the other registers of the CPU. The rows at the bottom are labeled
‘‘Storage,’’ ‘‘Accumulator,’’ and ‘‘M-Q’’ (for multiply-quotient). (Source : IBM.)
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suited for a variety of tasks. It could carry out about fifty to one-hundred-
thousand floating-point operations per second, making it among the
fastest of its day. Comparisons with modern computers are difficult, as
the yardsticks have changed, but it was about as fast as a personal
computer of the late 1980s. Its 36-bit word length suited it for scientific
calculations that require many digits of precision, and it had the further
advantage of allowing the processor to address a lot of memory directly.
By comparison, the first personal computers used only an 8-bit word
length; the 32-bit length that had become a standard by 1990 was still
shorter than what the 7904 machine had.

The console itself was festooned with an impressive array of blinking
lights, dials, gauges, and switches. It looked like what people thought a
computer should look like. Even into the 1990s some Hollywood movies
portrayed computers like this. (A few others, like Jurassic Park, showed
modest UNIX workstations.) Rows of small lights indicated the status of
each bit of the various registers that made up the computer’s central
processor. In the event of a hardware malfunction or programming
error, operators could read the contents of each register directly in
binary numbers. They could also execute a program one step at a time,
noting the contents of the registers at each step. If desired, they could
directly alter the bits of a register by flipping switches. Such ‘‘bit
twiddling’’ was exceedingly tedious, but it gave operators an intimate
command over the machine that few since that time have enjoyed.

Most of the time, an operator had no need to do those kinds of things.
The real controlling of the computer was done by its programmers, few
of whom were ever allowed in the computer room. Programmers
developed their work on decks of punched cards, which were read by
a small IBM 1401 computer and transferred to a reel of tape. The
operator took this tape and mounted it on a tape drive connected to the
mainframe (although there was a card reader directly attached for
occasional use). Many programmers seldom saw the machine that
actually ran the programs. In fact, many programmers did not even
use a keypunch, but rather wrote out their programs on special coding
sheets, which they gave to keypunch operators.56 The operator’s job
consisted of mounting and demounting tapes, pressing a button to start
a job every now and then, occasionally inserting decks of cards into a
reader, and reading status information from a printer. It was not a
particularly interesting or high-status job, though to the uninitiated it
looked impressive. Over the course of the 7904’s heyday, many of the
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operator’s jobs that required judgment were taken over by a control
program, appropriately called an ‘‘operating system.’’

A 7094 installation rented for about $30,000 a month, or an equivalent
purchase price of about $1.6 million. With that cost it was imperative
that the machine never be left idle. Although our personal computers
run a screen-saver while we go to a meeting or to lunch, the number of
computer cycles wasted by this practice would have been scandalous in
1963. On the 7094, programs were gathered onto reels of tape and run
in batches. Programmers had to wait until a batch was run to get their
results, and if they then found that they had made a mistake or needed
to further refine the problem, they had to submit a new deck and wait
once more. However tempting, the idea of gaining direct access to the
machine—to submit a program to it and wait a few seconds while it
ran—was out of the question, given the high costs of letting the
processor sit idle for even a few minutes. That method of operation
was a defining characteristic of the mainframe era.

Along with the processor circuit cabinets, magnetic tape drives
dominated a mainframe installation. These tapes were the medium
that connected a mainframe computer to the outside world. Programs
and data were fed into the computer through tapes; the results of a job
were likewise sent to a tape. If a program ran successfully, an operator
took the tape and moved it to the drive connected to a 1401 computer,
which, like a ‘‘smart’’ printer of the Personal Computer era, handled the
slower process of printing out results on a chain printer. (Unlike a
modern printer, there was typically no direct connection.) Results were
printed, in all capital letters, on 15-inch wide, fan-folded paper.

A few mainframes had a video console, but there was none on the
7094’s main control panel. Such a console would have been useful only
for control purposes, since the sequential storage on tapes prevented
direct access to data anyway. In general, they were not used because of
their voracious appetite for core memory.

With the advent of personal computers and workstations, mainframes
are often viewed as dinosaurs that will not survive the turn of the
century. In fact, the mainframe has survived and even prospered,
because of its ability to store and move large quantities of data. But
the sequential, batch-oriented mode of operation, with its characteristic
libraries of tapes, decks of punched cards, and printouts, has ceased to
dominate, as it did in the 1960s when there was no alternative.
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Small Transistorized Machines

The maturing of transistor technology by the end of the 1950s also had
an impact at the low end of the computer industry. It became possible to
offer solid state computers at low cost and with much better perfor-
mance than the drum machines of a only a few years earlier. The use of
transistors also made these machines compact, allowing them to be
installed in the same rooms that previously housed the array of tabula-
tors and card punches that typically handled a company’s data-proces-
sing needs.

Once again, the most successful of these machines came from IBM,
the model 1401, announced in 1959 (figure 2.6). If the 650 had
demonstrated that the market for computers was potentially very
large, the 1401, intended for business customers, showed that the
market was indeed a real one and included nearly every place where
punched card equipment was used. Eventually over ten thousand 1401s
were installed—compare this number to the thirty to forty UNIVACs and
IBM 701s, or the approximately one thousand installations of the IBM
650. At the same time IBM also introduced the 1620, a small computer
with a slightly different architecture, for scientific customers, and it, too,
sold well.

The 1401 had a plugboard architecture throughout its early phases of
development. As happened with the 650’s design, in 1955–1956 IBM
engineers redesigned it to incorporate a stored-program architecture
which allowed it to be programmed as a general-purpose computer.57

The 1620 carried this to an extreme: most of its arithmetic was done not
by logic circuits wired into the processor, but by references to arithmetic
tables stored in the cheaper (but slower) core memory. Some savvy
customers even altered the 1620’s instruction set and logic by the simple
act of storing different numbers in the memory locations the computer
looked to for the sums of numbers. They said that the informal name
‘‘CADET’’ was an acronym for ‘‘Can’t Add; Doesn’t Even Try!’’ But it
worked. (The 1620’s ability to do arithmetic with such a primitive set of
circuits would later inspire one of the inventors of the microprocessor to
do the same on a sliver of silicon.)

The 1401 offered modest performance. With its variable word length,
its processing speed varied, and on average it was only about seven times
faster than a 650. Unlike the 650 it was rarely used for scientific or
engineering applications, although most scientific mainframe installa-
tions used one or more to transfer data from cards to tape and to print.
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Whether used alone or as an adjunct to a large computer, the 1401’s
success owed a lot to a piece of peripheral equipment that IBM
introduced with it, the type 1403 printer. This printer used a continuous
chain of characters that moved laterally across the page. Magnetically
driven hammers struck the chain at the precise place where a desired
character was to be printed. Capable of printing 600 lines per minute, it
was much faster than anything else on the market, and it was rugged
enough to stand up under heavy use.58 The printer used old-fashioned

Figure 2.6
IBM 1401 production line. The 1401 was the first electronic digital computer to
be produced in quantities comparable to IBM’s line of punched-card accounting
machines. (Source : IBM.)
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mechanical technology to complement the exotic electronic processing
going on in the mainframe. It was a utilitarian device but one that users
had an irrational affection for. At nearly every university computer
center, someone figured out how to program the printer to play the
school’s fight song by sending appropriate commands to the printer.
The quality of the sound was terrible, but the printer was not asked to
play Brahms. Someone else might use it to print a crude image of
Snoopy as a series of alphabetic characters. In and out of Hollywood, the
chattering chain printer, spinning tapes, and flashing lights became
symbols of the computer age.

Conclusion

By 1960 a pattern of commercial computing had established itself, a
pattern that would persist through the next two decades. Customers with
the largest needs installed large mainframes in special climate-controlled
rooms, presided over by a priesthood of technicians. These mainframes
utilized core memories, augmented by sets of disks or drums. Backing
that up were banks of magnetic tape drives, as well as a library where
reels of magnetic tape were archived. Although disks and drums allowed
random access to data, most access conformed to the sequential nature
of data storage on tapes and decks of cards.

For most users in a university environment, a typical transaction began
by submitting a deck of cards to an operator through a window (to
preserve the climate control of the computer room). Sometime later the
user went to a place where printer output was delivered and retrieved
the chunk of fan-fold paper that contained the results of his or her job.
The first few pages of the printout were devoted to explaining how long
the job took, how much memory it used, which disk or tape drives it
accessed, and so on—information useful to the computer center’s
operators, and written cryptically enough to intimidate any user not
initiated into the priesthood.

For commercial and industrial computer centers, this procedure was
more routine but essentially the same. The computer center would
typically run a set of programs on a regular basis—say, once a week—
with new data supplied by keypunch operators. The programs that
operated on these data might change slightly from one run to the
next, although it was assumed that this was the exception rather than the
rule. The printouts were ‘‘burst’’ (torn along their perforations), bound
between soft covers, and placed on rolling racks or on shelves. These
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printouts supplied the organization with the data it needed to make
decisions and to run its day to day operations.

Thus the early era of computing was characterized by batch proces-
sing. The cost of the hardware made it impractical for users to interact
with computers as is done today. Direct interactive access to a computer’s
data was not unknown but was confined to applications where cost was
not a factor, such as the SAGE air defense system. For business
customers, batch processing was not a serious hindrance. Reliance on
printed reports that were a few days out of date was not out of line with
the speeds of transportation and communication found elsewhere in
society. The drawbacks of batch processing, especially how it made
writing and debugging programs difficult, were more noticed in the
universities, where the discipline of computer programming was being
taught. University faculty and students thus recognized a need to bring
interactive computing to the mainstream. In the following years that
need would be met, although it would be a long and difficult process.

Table 2.2 lists the characteristics of some of the machines discussed in
this chapter.

Table 2.2
Characteristics of selected computers discussed in this chapter

Year
announced

Words of
main Device

Name or installed Word length memory type

SAGE 1955–1958 32 bits 8 K Tubes
Philco

TRANSAC-2000
1958 — — Transistors

RCA 501 1958 12 decimal digits Transistors
IBM 1401 1959 variable 4–16 K Transistors

(7 bits/char.)
IBM 7090 1960 36 bits 32 K Transistors
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3
The Early History of Software, 1952–1968

He owned the very best shop in town, and did a fine trade in soft ware, especially
when the pack horses came safely in at Christmas-time.

—R. D. Blackmore, Lorna Doone1

There will be no software in this man’s army!

—General Dwight D. Eisenhower, ca. 19472

In 1993 the National Academy of Engineering awarded its Charles Stark
Draper Prize to John Backus, ‘‘for his development of FORTRAN . . . the
first general-purpose, high-level computer language.’’3 The Academy’s
choice was applauded by most computer professionals, most of whom
knew well the contribution of Backus and FORTRAN to their profession.
FORTRAN, although currently still in use, has long been superseded by
a host of other languages, like Cþþ or Visual Basic, as well as by system
software such as UNIX and Windows, that reflect the changing hardware
environment of personal computers and workstations. In accepting the
award, Backus graciously acknowledged that it was a team effort, and he
cited several coworkers who had labored long and hard to bring
FORTRAN into existence.

The Draper Prize was instituted to give engineers the prestige and
money that the Nobel Prize gives scientists. Here it was being awarded
for developing a piece of software—something that, by definition, has no
physical essence, precisely that which is not ‘‘hardware.’’ The prize was
being awarded for something that, when the electronic computer was
first developed, few thought would be necessary. Not only did it turn out
that software like FORTRAN was necessary; by the 1990s its development
and marketing overshadowed hardware, which was becoming in some
cases a cheap mass-produced commodity. How did the entity now called



‘‘software’’ emerge, and what has been its relationship to the evolution
of computer hardware?

A simple definition of software is that it is the set of instructions that
direct a computer to do a specific task. Every machine has it. Towing a
boat through a lock of a nineteenth-century canal required a perform-
ing sequence of precise steps, each of which had to be done in the right
order and in the right way. For canal boats there were two sets of
procedures: one for getting a boat from a lower to a higher level, and
one for going the other way. These steps could be formalized and
written down, but no canal workers ever called them ‘‘software.’’ That
was not because the procedures were simple, but because they were
intimately associated with the single purpose of the lock: to get a canal
boat from one level stretch to another. A canal lock may have secondary
purposes, like providing water for irrigation, but these are not the
reasons the lock is designed or installed.

A computer, by contrast, does not specify any single problem to be
solved. There is no division into primary and secondary functions: a
stored-program digital computer is by nature a general-purpose
machine, which is why the procedures of users assume greater impor-
tance. These procedures should be considered separate from the
machine on which they run.

The word ‘‘software’’ suggests that there is a single entity, separate
from the computer’s hardware, that works with the hardware to solve a
problem. In fact, there is no such single entity. A computer system is like
an onion, with many distinct layers of software over a hardware core.
Even at the center—the level of the central processor—there is no clear
distinction: computer chips carrying ‘‘microcode’’ direct other chips to
perform the processor’s most basic operations. Engineers call these
codes ‘‘firmware,’’ a term that suggests the blurred distinction.

If microcode is at one end, at the other one encounters something
like an automatic teller machine (ATM), on which a customer presses a
sequence of buttons that causes a sophisticated computer network to
perform a complex set of operations correctly. The designers of ATMs
assume that users know little about computers, but just the same, the
customer is programming the bank’s computer. Using an ATM shares
many of the attributes of programming in the more general sense.
Pressing only one wrong key out of a long sequence, for example, may
invalidate the entire transaction, and a poorly designed ATM will
confuse even a computer-literate customer (like the home video-cassette
recorder, which most owners find impossible to program).
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Somewhere between these extremes lies the essence of software. One
programmer, Scott Kim, said that ‘‘there is no fundamental difference
between programming a computer and using a computer.’’4 For him the
layers are smooth and continuous, from the microcode embedded in
firmware to the menu commands of an ATM, with his own work lying
somewhere in the middle. (Kim is a designer of personal computer
software.) Others are not so sure. People who develop complex system
software often say that their work has little to do with the kind of
computer programing taught in schools. What is worse, they feel that the
way computer programming is taught, using simple examples, gives
students a false sense that the production of software is a lot simpler
than it is.5 They also point out that developing good software is not so
much a matter of writing good individual programs as it is of writing a
variety of programs that interact well with each other in a complex
system.

The history of software should not be treated separately from the
history of computing, even if such a distinction is of value to computer
engineers or scientists (figure 3.1). Several of the examples that follow
will show innovations in software that had little or no impact until they
could mesh well with corresponding innovations in hardware.6 Likewise,
the often-repeated observation that progress in hardware, measured by
metrics like the number of circuits on a silicon chip, far outpaces
progress in software is probably false.7 While it is true that hardware
technology must face and overcome limits of a physical, tangible nature,
both face and overcome the much more limiting barrier of complexity
of design.8

Beginnings (1944–1951)

In order to program the electromechanical Harvard Mark I, users
punched a row of holes (up to 24 in a line) on a piece of paper tape
for each instruction.9 In the summer of 1944, when the machine was
publicly unveiled, the Navy ordered Grace Murray Hopper to the
Computation Lab to assist Howard Aiken with programming it.
Hopper had been a professor of mathematics at Vassar College and
had taken leave to attend the Navy’s Midshipmen School. According to
Hopper, she had just earned her one and one-half stripes when she
reported to the lab at Harvard. There, Howard Aiken showed her
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a large object, with three stripes . . .waved his hand and said: ‘‘That’s a comput-
ing machine.’’ I said, ‘‘Yes, Sir.’’ What else could I say? He said he would like to
have me compute the coefficients of the arc tangent series, for Thursday. Again,
what could I say? ‘‘Yes, Sir.’’ I did not know what on earth was happening, but
that was my meeting with Howard Hathaway Aiken.10

Thus began the practice of computer programming in the United
States. Hopper wrote out the sequence of codes for that series, and later
the codes for more complex mathematical expressions—one of the first
was a lens design problem for James Baker (a Harvard Fellow known
among insider circles for his design of lenses for the top-secret cameras
used by U.S. intelligence agencies).11

Some sequences that were used again and again were permanently
wired into the Mark I’s circuits. But these were few and their use did not
appreciably extend its flexibility. Since the Mark I was not a stored-
program computer, Hopper had no choice for other sequences than to
code the same pattern in successive pieces of tape.12 It did not take long
for her to realize that if a way could be found to reuse the pieces of tape
already coded for another problem, a lot of effort would be saved. The
Mark I did not allow that to be easily done, but the idea had taken root
and later modifications did permit multiple tape loops to be mounted.

In the design of a later Harvard calculator (the Mark III), Howard
Aiken developed a device that took a programmer’s commands, typed

Figure 3.1
Relative costs of software vs. hardware for typical systems, 1965–1985. This
famous graph was popularized in the early 1970s by Barry Boehm, then of
TRW. The graph has been reprinted in numerous textbooks and articles about
software development and has become one of the great myths of software. As
with any myth there is much truth in this graph, but more recent studies of
software expenditures seem to conclude that over the years the ratio has
remained more or less constant. (Source : Adapted from Barry Boehm, ‘‘Software
and its Impact,’’ Datamation [May 1973]: 49.)
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on a keyboard in the notation of ordinary mathematics, and translated
them into the numerical codes that the Mark III could execute (figure
3.2). These codes, recorded on a magnetic tape, were then fed into the
Mark III and carried out. Frequently used sequences were stored on a
magnetic drum. In Germany, Konrad Zuse had independently proposed
a similar idea: he had envisioned a ‘‘Plan Preparation Machine’’
(Planfertigungsgeräte) that would punch tapes for his Z4 computer, built
during World War II.13 Zuse’s device would not only translate commands
but also check the user’s input to ensure that its syntax was correct, that
is, that it had the same number of left and right parentheses, that more
than one arithmetic operation did not appear between two numbers,
and so on.

Figure 3.2
A programming machine attached to the Harvard Mark III, ca. 1952. The
operator is Professor Ambros P. Speiser, of the Federal Technical Institute of
Zurich. Programs would be keyed into this device in a language similar to
ordinary algebra, and the machine would translate it into the codes that the
Mark III proper could execute. With a stored program computer this additional
piece of hardware is unnecessary. (Source : Gesellschaft für Mathematik und
Datenverarbeitung [GMD], Bonn, Germany.)
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Zuse never completed the Plan Preparation Machine, although he
had refined its design (and changed its name to ‘‘Programmator’’) by
1952. Meanwhile, his Z4 computer had been refurbished and installed at
the Federal Technical Institute in Zurich. While using it there, Heinz
Rutishauser recognized an important fact: that a general-purpose
computer could itself be programmed to act like such a ‘‘Programma-
tor,’’ getting rid of the need for a separate machine. Solving a problem
would thus take two steps: one in which the computer is programmed to
check and translate the user’s commands, and another to carry out these
commands, which are now encoded in numerical code on a piece of
tape.14 Rutishauser stated it simply: ‘‘Use the computer as its own Plan
Preparation Machine.’’15

None of the machines described above stored their programs in
internal memory, which meant that programming them to translate
a user’s commands as Rutishauser envisioned would have been
very difficult. The Zuse machine, however, had a flexible and
elegant design, which inspired Rutishauser to see clearly how to
make computers easier to program. Like Hopper’s realization
that the tapes she was preparing could be used more than once,
Rutishauser’s realization that the same computer that solved a problem
could prepare its own instructions was a critical moment in the birth of
software.

With a stored-program computer, a sequence of instructions that
would be needed more than once could be stored on a tape. When a
particular problem required that sequence, the computer could read
that tape, store the sequence in memory, and insert the sequence into
the proper place(s) in the program. By building up a library of
sequences covering the most frequently used operations of a computer,
a programmer could write a sophisticated and complex program without
constant recourse to the binary codes that directed the machine. Of the
early stored-program computers, the EDSAC in Cambridge, England,
carried this scheme to the farthest extent, with a library of sequences
already written, developed, and tested, and punched onto paper tapes
that a user could gather and incorporate into his own program.16 D. J.
Wheeler of the EDSAC team devised a way of storing the (different)
addresses of the main program that these sequences would have to jump
to and from each time they were executed. This so-called Wheeler Jump
was the predecessor of the modern subroutine call.17
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UNIVAC Compilers (1952)

If these sequences were punched onto decks of cards, a program could
be prepared by selecting the appropriate decks, writing and punching
transitional codes onto cards, and grouping the result on a new deck of
cards. That led to the term ‘‘to compile’’ for such activity. By the early
1950s, computer users developed programs that allowed the computer
to take over these chores, and these programs were called ‘‘compilers.’’
Grace Hopper (1906–1992) played a crucial role in transferring that
concept from Howard Aiken’s laboratory at Harvard to the commercial
world. Even though she had a desire to remain in uniform and the Navy
had offered her continued employment in computing, John Mauchly
was able to persuade her to join him and work on programming the
UNIVAC as it was being built.18 (She eventually returned to active duty
in the Navy and reached the rank of rear admiral at her retirement.)19

Hopper defined ‘‘compiler’’ as ‘‘a program-making routine, which
produces a specific program for a particular problem.’’20 She called the
whole activity of using compilers ‘‘Automatic Programming.’’ Beginning
in 1952, a compiler named ‘‘A-0’’ was in operation on a UNIVAC; it was
followed in 1953 by ‘‘A-1’’ and ‘‘A-2.’’ A version of A-2 was made available
to UNIVAC’s customers by the end of that year; according to Hopper
they were using it within a few months.21

The term ‘‘compiler’’ has come into common use today to mean a
program that translates instructions written in a language that human
beings are comfortable with, into binary codes that a computer can
execute. That meaning is not what Hopper had in mind.22 For her, a
compiler handled subroutines stored in libraries.23 A compiler method,
according to Hopper’s definition, was a program that copied the
subroutine code into the proper place in the main program where a
programmer wanted to use it. These subroutines were of limited scope,
and typically restricted to computing sines, cosines, logs, and, above all,
floating-point arithmetic. Compilers nonetheless were complex pieces of
software. To copy a routine that computed, say, the log of a number,
required specifying the location of the number it was to calculate the log
of, and where to put the results, which would typically be different each
time a program used this specific subroutine.24 The metaphor of
‘‘assembling’’ a program out of building blocks of subroutines, though
compelling, was inappropriate, given the difficulty of integrating subrou-
tines into a seamless flow of instructions. The goal for proponents of
Automatic Programming was to develop for software what Henry Ford
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had developed for automobile production, a system based on inter-
changeable parts. But just as Ford’s system worked best when it was set
up to produce only one model of car, these early systems were likewise
inflexible, they attempted to standardize prematurely and at the wrong
level of abstraction. But it was only in making the attempt that they
realized that fact.25

Laning and Zierler (1954)

The first programming system to operate in the sense of a modern
compiler was developed by J. H. Laning and N. Zierler for the Whirlwind
computer at the Massachusetts Institute of Technology in the early
1950s. They described their system, which never had a name, in an
elegant and terse manual entitled ‘‘A Program for Translation of
Mathematical Equations for Whirlwind I,’’ distributed by MIT to about
one-hundred locations in January 1954.26 It was, in John Backus’s words,
‘‘an elegant concept elegantly realized.’’ Unlike the UNIVAC compilers,
this system worked much as modern compilers work; that is, it took as its
input commands entered by a user, and generated as output fresh and
novel machine code, which not only executed those commands but also
kept track of storage locations, handled repetitive loops, and did other
housekeeping chores. Laning and Zierler’s ‘‘Algebraic System’’ took
commands typed in familiar algebraic form and translated them into
machine codes that Whirlwind could execute.27 (There was still some
ambiguity as to the terminology: while Laning and Zierler used the word
‘‘translate’’ in the title of their manual, in the Abstract they call it an
‘‘interpretive program.’’)28

One should not read too much into this system. It was not a general-
purpose programming language but a way of solving algebraic equa-
tions. Users of the Whirlwind were not particularly concerned with the
business applications that interested UNIVAC customers. Although
Backus noted its elegance, he also remarked that it was all but ignored,
despite the publicity given Whirlwind at that time.29 In his opinion, it was
ignored because it threatened what he called the ‘‘priesthood’’ of
programmers, who took a perverse pride in their ability to work in
machine code using techniques and tricks that few others could fathom,
an attitude that would persist well into the era of personal computers.
Donald Knuth, who surveyed early programming systems in 1980, saw
another reason in the allegation that the Laning and Zierler system was
slower by a factor of ten than other coding systems for Whirlwind.30 For

86 Chapter 3



Knuth, that statement, by someone who had described various systems
used at MIT, contained damning words.31 Closing that gap between
automatic compilers and hand coding would be necessary to win
acceptance for compiler systems and to break the priesthood of the
programmers.

Assemblers

These systems eventually were improved and came to be known as
Programming Languages. The emergence of that term had to do with
their sharing of a few restricted attributes with natural language, such as
rules of syntax. The history of software development has often been
synonymous with the history of high-level programming languages—
languages that generated machine codes from codes that were much
closer to algebra or to the way a typical user might describe a process.
However, although these so-called high-level languages were important,
programming at many installations continued to be done at much lower
levels well into the 1960s. Though also called ‘‘languages,’’ these codes
typically generated only a single, or at most a few, machine instructions
for each instruction coded by a programmer in them. Each code was
translated, one-to-one, into a corrresponding binary number that the
computer could directly execute. A program was not compiled but
‘‘assembled,’’ and the program that did that was called an ‘‘assembler.’’
There were some extensions to this one-to-one correspondence, in the
form of ‘‘macro’’ instructions that corresponded to more than one
machine instruction. Some commercial installations maintained large
libraries of macros that handled sorting and merging operations; these,
combined with standard assembly-language instructions, comprised soft-
ware development at many commercial installations, even as high-level
languages improved.

A typical assembler command might be ‘‘LR’’ followed by a code for a
memory address. The assembler would translate that into the binary
digits for the operation ‘‘Load the contents of a certain memory location
into a register in the central processor.’’ An important feature was the
use of symbolic labels for memory locations, whose numerical machine
address could change depending on other circumstances not known at
the time the program was written. It was the job of the assembler
program to allocate the proper amount of machine storage when it
encountered a symbol for a variable, and to keep track of this storage
through the execution of the program. The IBM computer user’s group
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SHARE (described next) had a role in developing an assembler for the
IBM 704, and assembly language continued to find strong adherents
right up into the System/360 line of IBM computers.

SHARE (1955)

While computer suppliers and designers were working on high-level
languages, the small but growing community of customers decided to
tackle software development from the other direction. In 1955, a group
of IBM 701 users located in the Los Angeles area, faced with the
daunting prospect of upgrading their installations to the new IBM 704,
banded together in the expectation that sharing experiences was better
than going alone. That August they met on the neutral territory of the
RAND Corporation in Santa Monica. Meeting at RAND avoided
problems that stemmed from the fact that users represented competing
companies like North American Aviation and Lockheed. Calling itself
SHARE,32 the group grew rapidly and soon developed an impressive
library of routines, for example, for handling matrices, that each
member could use.

IBM had for years sponsored its own version of customer support for
tabulator equipment, but the rapid growth of SHARE shows how
different was the world of stored-program digital computers. Within a
year the membership—all customers of large IBM systems—had grown
to sixty-two members. The founding of SHARE was probably a blessing
for IBM, since SHARE helped speed the acceptance of IBM’s equipment
and probably helped sales of the 704. As SHARE grew in numbers and
strength, it developed strong opinions about what future directions IBM
computers and software ought to take, and IBM had little choice but to
acknowledge SHARE’s place at the table. As smaller and cheaper
computers appeared on the market, the value and clout of the groups
would increase. For instance, DECUS, the users group for Digital
Equipment minicomputers, had a very close relationship with DEC,
and for personal computers the users groups would become even more
critical, as will be discussed in chapter 7.

Sorting Data

Regardless of what level of programming language they used, all
commercial and many scientific installations had to contend with an
activity that was intimately related to the nature of the hardware—
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namely, the handling of data in aggregates called files, which consisted of
records stored sequentially on reels of tape. Although tape offered many
advantages over punched cards, it resembled cards in the way it stored
records one after the other in a sequence. In order to use this data, one
frequently had to sort it into an order (e.g., alphabetic) that would allow
one to find a specific record. Sorting data (numeric as well as non-
numeric) dominated early commercial computing, and as late as 1973
was estimated to occupy 25 percent of all computer time.33 In an
extreme case, one might have to sort a very large file after having
made only a few changes to one or two records—obviously an inefficient
and costly use of computer time. Analysts who set up a company’s data
processing system often tried to minimize such situations, but they could
not avoid them entirely.

Computer programming was synchronized to this type of operation.
On a regular basis a company’s data would be processed, files updated,
and a set of reports printed. Among the processing operations was a
program to sort a file and print out various reports sorted by one or
more keys. These reports were printed and bound into folders, and it
was from these printed volumes that people in an organization had
access to corporate data. For example, if a customer called an insurance
company with a question about his or her account, an employee would
refer to the most recent printout, probably sorted by customer number.
Therefore sorting and merging records into a sorted file dominated data
processing, until storage methods (e.g., disks) were developed that
allowed direct access to a specific record. As these methods matured,
the need to sort diminished but did not go away entirely—indeed, some
of the most efficient methods for sorting were invented around the time
(late 1960s) that these changes were taking place.34

As mentioned in chapter 1, John von Neumann carefully evaluated
the proposed design of the EDVAC for its ability to sort data. He
reasoned that if the EDVAC could sort as well as punched-card sorting
machines, it would qualify as an all-purpose machine.35 A 1945 listing in
von Neumann’s handwriting for sorting on the EDVAC is considered
‘‘probably the earliest extant program for a stored-program compu-
ter.’’36 One of the first tasks that Eckert and Mauchly took on when they
began building the UNIVAC was to develop sorting routines for it.

Actually, they hired someone else to do that, Frances E. (Betty)
Holberton, one of the people who followed Eckert and Mauchly from
the ENIAC to the Eckert–Mauchly Computer Corporation. Mauchly
gave her the responsibility for developing UNIVAC software (although
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that word was not in use at the time).37 One of Holberton’s first
products, in use in 1952, was a routine that read and sorted data
stored on UNIVAC tape drives. Donald Knuth called it ‘‘the first major
‘software’ routine ever developed for automatic programming.’’38

The techniques Holberton developed in those first days of electronic
data processing set a pattern that was followed for years. In the
insurance company mentioned above, we can assume that its customer
records have already been placed on the tape sequentially in customer
number order. If a new account was removed or changed, the computer
had to find the proper place on the tape where the account was, make
the changes or deletions, and shuffle the remaining accounts onto other
positions on the tape. A simple change might therefore involve moving a
lot of data. A more practical action was to make changes to a small
percentage of the whole file, adding and deleting a few accounts at the
same time. These records would be sorted and written to a small file on a
single reel of tape; then this file would be merged into the master file by
inserting records into the appropriate places on the main file, like a
bridge player inserting cards into his or her hand as they are dealt. Thus
for each run a new ‘‘master’’ file was created, with the previous master
kept as a backup in case of a mechanical failure.39

Because the tape held far more records than could fit in the
computer’s internal memory, the routines had to read small blocks of
records from the tape into the main memory, sort them internally, write
the sorted block onto a tape, and then fetch the next block. Sorted
blocks were merged onto the master file on the tape until the whole file
was processed. At least two tape drives were used simultaneously, and the
tapes were read both forward and backward. The routines developed by
Holberton and her team at UNIVAC were masterpieces of managed
complexity; but even as she wrote them she recognized that it would be
better if one could organize a problem so that it could be solved without
recourse to massive sorts.40 With the advent of disk storage and a
concept of ‘‘linked lists,’’ in which each record in a list contained
information about where the next (or previous) record was, sorting
lost its dominance.

FORTRAN (1957)

The programming language FORTRAN (‘‘Formula Translation’’—the
preferred spelling was all capitals) was introduced by IBM for the 704
computer in early 1957. It was a success among IBM customers from the
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beginning, and the language—much modified and extended—
continues to be widely used.41 Many factors contributed to the success
of FORTRAN. One was that its syntax—the choice of symbols and the
rules for using them—was very close to what ordinary algebra looked
like, with the main difference arising from the difficulty of indicating
superscripts or subscripts on punched cards. Engineers liked its famil-
iarity; they also liked the clear, concise, and easy-to-read users manual.
Perhaps the most important factor was that it escaped the speed penalty
incurred by Laning and Zierler’s system. The FORTRAN compiler
generated machine code that was as efficient and fast as code written
by human beings. John Backus emphasized this point, although critics
have pointed out that FORTRAN was not unique among high-level
languages.42 IBM’s dominant market position obviously also played a
role in FORTRAN’s success, but IBM’s advantage would not have
endured had the Model 704 not been a powerful and well-designed
computer on which to run FORTRAN. Backus also noted that the
provision, in the 704’s hardware, of floating-point arithmetic drove
him to develop an efficient and fast compiler for FORTRAN, as there
were no longer any cumbersome and slow floating-point routines to
‘‘hide’’ behind.43

FORTRAN’s initial success illustrates how readily users embraced a
system that hid the details of the machine’s inner workings, leaving them
free to concentrate on solving their own, not the machine’s, problems.
At the same time, its continued use into the 1990s, at a time when newer
languages that hide many more layers of complexity are available,
reveals the limits of this philosophy. The C language, developed at
Bell Labs and one of the most popular after 1980, shares with FORTRAN
the quality of allowing a programmer access to low-level operations when
that is desired. The successful and long-lasting computer languages, of
which there are very few, all seem to share this quality of hiding some,
but not all, of a computer’s inner workings from its programmers.

COBOL

FORTRAN’s success was matched in the commercial world by COBOL
(‘‘Common Business Oriented Language’’), developed a few years later.
COBOL owed its success to the U.S. Department of Defense, which in
May 1959 convened a committee to address the question of developing a
common business language; that meeting was followed by a brief and
concentrated effort to produce specifications for the language, with
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preliminary specifications released by the end of that year. As soon as
those were published, several manufacturers set out to write compilers
for their respective computers. The next year the U.S. government
announced that it would not purchase or lease computer equipment
that could not handle COBOL.44 As a result, COBOL became one of the
first languages to be standardized to a point where the same program
could run on different computers from different vendors and produce
the same results. The first recorded instance of that milestone occurred
in December 1960, when the same program (with a few minor changes)
ran on a UNIVAC II and an RCA 501. Whether COBOL was well
designed and capable is still a matter of debate, however.

Part of COBOL’s ancestry can be traced to Grace Hopper’s work on
the compilers for the UNIVAC. By 1956 she had developed a compiler
called ‘‘B-0,’’ also called in some incarnations ‘‘MATH-MATIC’’ or
‘‘FLOW-MATIC,’’ which unlike her ‘‘A’’ series of compilers was geared
toward business applications. An IBM project called Commercial Trans-
lator also had some influence. Through a contract with the newly
formed Computer Sciences Corporation, Honeywell also developed a
language that many felt was better than COBOL, but the result, ‘‘FACT,’’
did not carry the imprimatur of the U.S. government. FACT never-
theless had an influence on later COBOL development; part of its legacy
was its role in launching Computer Sciences Corporation, one of the
first commercial software companies.45

It was from Grace Hopper that COBOL acquired its most famous
attribute, namely, the ability to use long character names that made the
resulting language look like ordinary English. For example, whereas in
FORTRAN one might write:

IF A>B

the corresponding COBOL statement might read:

IF EMPLOYEE-HOURS IS GREATER THAN MAXIMUM46

Proponents argued that this design made COBOL easier to read and
understand, especially by ‘‘managers’’ who used the program but had
little to do with writing it. Proponents also argued that this made the
program ‘‘self-documenting’’: programmers did not need to insert
comments into the listing (i.e., descriptions that were ignored by the
compiler but that humans could read and understand). With COBOL,
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the actual listing of instructions was a good enough description for
humans as well as for the machine. It was already becoming known what
later on became obvious: a few months after a code was written, even the
writer, never mind anyone else, cannot tell what that code was supposed
to do.

Like FORTRAN, COBOL survived and even thrived into the personal
computer era. Its English-like syntax did not achieve the success its
creators hoped for, however. Many programmers felt comfortable with
cryptic codes for variables, and they made little use of the ability to
describe variables as longer English words. Not all managers found the
language easy to read anyway. Still, it provided some documentation,
which was better than none—and too many programs were written with
none. In the years that followed, researchers explored the relationship
between machine and human language, and while COBOL was a
significant milestone, it gave the illusion that it understood English
better than it really did. Getting computers to ‘‘do what I meant, not
what I said’’ is still at the forefront of computer science research.

The year 2001 came and went, with computer languages coming
nowhere near the level of natural language understanding shown by
HAL, the computer that was the star of the Stanley Kubrick movie 2001:

A Space Odyssey (figure 3.3).47 As the year 2000 approached, the
industrial world faced a more serious issue: the inability of many
computer programs to recognize that when a year is indicated by two
decimal digits, the first of which is a zero, it means 2000, 2001, etc., not
1900, 1901, etc. Many of those offending programs were written in the
1960s, in COBOL. In order to fix them, programmers familiar with
COBOL had to wade through old program listings and find and correct
the offending code. A story circulated around Internet discussion
groups of companies visiting retirement communities in Florida and
coaxing old-time COBOL programmers off the golf course. The ‘‘Year-
2000 Bug’’ gave ample evidence that, although it was possible to write
COBOL programs that were self-documenting, few ever did. The
programs that had to be corrected were incomprehensible to many of
the best practitioners of modern software development.

The word ‘‘language’’ turned out to be a dangerous term, implying
much more than its initial users foresaw. The English word is derived
from the French langue, meaning tongue, implying that it is spoken.
Whatever other parallels there may be with natural language, computer
languages are not spoken but written, according to a rigidly defined and
precise syntax.48 Hopper once recounted how she developed a version
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of FLOW-MATIC in which she replaced all the English terms, such as
‘‘Input,’’ ‘‘Write,’’ and so on, with their French equivalents. When she
showed this to a UNIVAC executive, she was summarily thrown out of his
office. Later on she realized that the very notion of a computer was
threatening to this executive; to have it ‘‘speaking’’ French—a language
he did not speak—was too much.49

Languages Versus Software

From the twin peaks of FORTRAN and COBOL we can survey the field
of software through the 1960s. After recognizing the important place of
assembly language and then looking at the histories of a few more high-
level languages, we might conclude that we have a complete picture.

Among the high-level languages was ALGOL, developed mainly in
Europe between 1958 and 1960 and proposed as a more rigorous
alternative to FORTRAN. ALGOL was intended from the start to be
independent of any particular hardware configuration, unlike the
original FORTRAN with its commands that pointed to specific registers

Figure 3.3
A scene from 2001: A Space Odyssey . A camera eye of HAL, the on-board
computer, is visible between the two astronauts. Publicity that accompanied
the film’s release in 1968 stated that its creators depicted a level of technology
that they felt was advanced but not unreasonably so for the year 2001. Computers
have become more powerful and more compact, but it turned out that machine
understanding of natural language, on a level shown by HAL, was not attained by
2001. (Source : 2001: A Space Odyssey . # 1968 Turner Entertainment Co.)
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of the IBM 704’s processor. Also unlike FORTRAN, ALGOL was carefully
and formally defined, so that there was no ambiguity about what an
expression written in it would do. That definition was itself specified in a
language known as ‘‘BNF’’ (Backus-Normal-Form or Backus-Naur-
Form). Hopes were high among its European contributors that
ALGOL would become a worldwide standard not tied to IBM, but that
did not happen. One member of the ALGOL committee ruefully noted
that the the name ALGOL, a contraction of Algorithmic Language, was
also the name of a star whose English translation was ‘‘the Ghoul.’’
Whatever the reason for its ill fate, ALGOL nonetheless was influential
on later languages.

Of the many other languages developed at this time, only a few
became well known, and none enjoyed the success of FORTRAN or
COBOL. JOVIAL (Jules [Schwartz’s] Own Verison of the International
Algebraic Language) was a variant of ALGOL developed by the Defense
Department, in connection with the SAGE air-defense system; it is still
used for air-defense and air-traffic-control applications. LISP (List
Processing) was a language oriented toward processing symbols rather
than evaluating algebraic expressions; it has been a favorite language for
researchers in artificial intelligence. SNOBOL (StriNg-Oriented
symBOlic Language) was oriented toward handling ‘‘strings’’—
sequences of characters, like text. A few of the many other languages
developed in the late 1960s will be discussed later.50

Somewhere between assemblers and COBOL was a system for IBM
computers called RPG (Report Program Generator; other manufac-
turers had similar systems with different names). These were in
common use in many commercial installations throughout the 1960s
and after. Textbooks on programming do not classify RPG as a language,
yet in some ways it operated at a higher level than COBOL.51 RPG was
akin to filling out a preprinted form. The programmer did not have to
specify what operations the computer was to perform on the data.
Instead the operations were specified by virtue of where on the form
the data were entered (e.g., like on an income tax return). Obviously
RPG worked only on routine, structured problems that did not vary from
day to day, but in those situations it freed the programmer from a lot of
detail. It is still used for routine clerical operations.
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System Software

Besides programs that solved a user’s problem, there arose a different set
of programs whose job was to allocate the resources of the computer
system as it handled individual jobs. Even the most routine work of
preparing something like a payroll might have a lot of variation, and the
program to do that might be interspersed with much shorter programs
that used the files in different ways. One program might consist of only a
few lines of code and involve a few pieces of data; another might use a
few records but do a lot of processing with them; a third might use all the
records but process them less, and so on.

Early installations relied on the judgment of the operator to schedule
these jobs. As problems grew in number and complexity, people began
developing programs that, by the 1990s, would dominate the industry.
These programs became known as operating systems (figure 3.4). The
most innovative early work was done by users. One early system,
designed at the General Motors Research Laboratories beginning in
1956 was especially influential.52 Its success helped establish batch
computing—the grouping of jobs into a single deck of cards, separated
by control cards that set the machine up properly, with only minimal
work done by the human operator. A simple but key element of these
systems was their use of special ‘‘control’’ cards with specific codes
punched into reserved columns. These codes told the computer that the
cards that followed were a FORTRAN program, or data, or that a new job
was starting, and so on. That evolved into a system known at IBM as Job
Control Language (JCL). Many a novice programmer has a vivid
memory of JCL cards, with their distinctive double slash (//) or slash-
asterisk (/*) punched into certain fields. Many also remember the
confusion that resulted if a missing card caused the computer to read
a program deck as data, or vice versa.53

MAD

In university environments there arose a similar need to manage the
workflow efficiently. Student programs tended not to be uniform from
week to week, or from one student to another, and it was important that
students received clear messages about what kinds of errors they made.
(In fact, every installation needed this clarity but few recognized that at
the time.) In 1959 a system called MAD (Michigan Algorithmic Deco-
der) was developed at the University of Michigan by Bernie Galler, Bob
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Figure 3.4
The origins and early evolution of operating systems. (a) Simple case of a single
user, with entire computer’s resources available. Note that the process requires a
minimum of two passes through the computer: the first to compile the program
into machine language, the second to load and execute the object code (which
may be punched onto a new deck of cards or stored on a reel of tape). If the
original program contained errors, the computer would usually, though not
always, print a diagnostic message, and probably also a ‘‘dump,’’ rather than
attempt to generate object code. (b) If at a later date the user wants to run the
same program with different data, there is no need to recompile the original
program.



Graham, and Bruce Arden. MAD was based on ALGOL, but unlike
ALGOL it took care of the details of running a job in ways that few other
languages could do. MAD offered fast compilation, essential for a
teaching environment, and it had good diagnostics to help students
find and correct errors. These qualities made the system not only
successful for teaching, but also for physicists, behavioral scientists,
and other researchers on the Michigan campus. One feature of MAD
that may have helped win its acceptance among students was that it
printed out a crude picture of Alfred E. Newman, the mascot of Mad

Magazine, under many error conditions. (Bob Rosin, who coded the
image on a deck of punched cards, recalled that this ‘‘feature’’ had
eventually to be removed because students were deliberately making
errors in order to get the printout.)54

Both industrial and teaching installations had the same goal of
accommodating programs of different lengths and complexity. For
economic reasons, another goal was to keep the computer busy at all
times. Unfortunately, few industrial and commercial installations
realized, as MAD’s creators did, the importance of good error diagnosis.
And since the commercial systems did not have such diagnostics, many
teaching environments did not, either, reasoning that students would

Figure 3.4 (Continued)
The origins and early evolution of operating systems. (c) ‘‘Load and Go’’: The
Michigan Algorithmic Decoder (MAD) system collapsed the generation of object
code and execution, so that students and other users could more quickly get
results, or diagnostic messages if there were errors in their programs.
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sooner or later have to get used to that fact. In these batch systems, if a
program contained even a simple syntax error, the operating system
decided whether the computer should continue trying to solve the
problem. If it decided not to, it would simply transfer the contents of
the relevant portion of memory to a printer, print those contents as rows
of numbers (not even translating the numbers into decimal), suspend
work on that program, and go on to the next program in the queue. The
word for that process was ‘‘dump.’’ Webster’s definition, ‘‘to throw down

Figure 3.4 (Continued)
The origins and early evolution of operating systems. (d) Batch processing. The
economics of a large computing system made it unlikely that a single user could
have exclusive use of the machine, as in (a). In practice his or her deck of cards
would be ‘‘batched’’ with other users. The program and data would be separated
by a specially punched card; likewise, each person’s job would be separated from
the next person’s job by one or more ‘‘job control’’ cards. The operating system
would load the appropriate compiler into the computer as each user required it;
it might also extract the data from the deck of cards and load it onto a faster
medium such as tape or disk, and handle the reading and printing of data and
results, including error messages. The computer operator might be required to
find and mount tapes onto drives, as indicated by a signal from the console; the
operator would also pull the printout from the printer and separate it for
distribution to each user.
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or out roughly,’’ was appropriate. The hapless user who received a ‘‘core
dump’’ was in effect being told, rather rudely, that the computer had
decided that someone else’s work was more important. Trying to find
the error based on row upon row of numbers printed by a core dump
was intimidating to the lay person and difficult even for the expert.

As operating systems evolved, they tended to consume more precious
amounts of memory, until there was little left for running the programs
the computer was installed for in the first place. The evolution of the
name given to them reflects their growing complexity: They were called
‘‘monitors,’’ then ‘‘supervisor systems,’’ and finally ‘‘operating systems.’’
In the early days, simple and lean systems were developed by customers,
for example, the Fortran Monitor System for the IBM 7090 series.
Scaling up to more complex systems proved difficult. SOS (Share
Operating System), developed by SHARE for IBM mainframes, was
more complex but less efficient. When IBM decided to combine its
line of scientific and business systems into a series called System/360, the

Figure 3.4 (Continued)
The origins and early evolution of operating systems. (e) Multiprogramming. A
mix of programs as in (d) would use different portions of the computer in a
different mix. One program might make heavy use of the tape drives but little
use of the central processor’s advanced mathematical powers. Operating systems
thus evolved to support ‘‘multiprogramming’’: the ability of a computer to run
more than one program at the same time, each using portions of the machine
that the other was not using at a given instant. The operating system took care
that the programs did not interfere with one another, as in two programs
attempting to write data at the same time to the same memory location.
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company also set out to develop an operating system, OS/360, to go with
it.55 System/360 was a success for IBM and redefined the industry, as
subsequent chapters will show, but the operating system OS/360, avail-
able by 1966, was a failure and its troubles almost sank the company.56

Fred Brooks, who had been in charge of it, wrote a book on OS/360’s
development, The Mythical Man-Month, which has become a classic
description of the difficulty of managing large software projects.
Among Brooks’s many insights is that committees make poor structures
for software projects; this was also a factor in the problems with the
Share Operating System noted above, as well as with the languages PL/I
and ALGOL-68 (discussed later).

IBM eventually developed workable system software for its 360 Series,
but when the minicomputer was invented in the mid 1960s, the history
of operating systems started over again: the first minis did not have the
internal memory capacity to do more than support a simple monitor,
and individuals wrote Spartan monitors that worked well. As minicom-
puters got more powerful, so did their operating systems, culminating in
Digital Equipment Corporation’s VMS for its VAX line of computers
(1978). The phenomenon was repeated yet again with the personal
computer. The first personal computers had rudimentary monitors that
loaded data from tape cassettes, and these were followed by more
complex but still lean disk operating systems. Finally, ‘‘windows’’-based
systems appeared, whose complexity required teams of programmers
working on subsections. As expected, some of these projects have been
accompanied by the same management problems discussed by Brooks
for the System/360. Computers seem to be cursed with having to go
through this painful wheel of reincarnation every other decade or so.

Computer Science

These examples show that there was more to software than the devel-
opment and evolution of programming languages. But programming
languages came to dominate the academic discipline that arose during
this period, namely, computer science. The discipline first appeared in
the late 1950s at pioneering institutions, including Stanford and Purdue,
under different names and often as a division of the Mathematics or
Electrical Engineering Departments. It established a beachhead based
on inexpensive drum-based computers, including the Librascope LGP-
30 and especially the IBM 650. Summer school sessions at several top
universities in the mid-1950s further legitimized the discipline.57
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In the early 1960s computer science struggled to define itself and its
purpose, in relation not only to established disciplines of electrical
engineering and applied mathematics, but also in relation to—and as
something distinct from—the use of computers on campus to do
accounting, record keeping, and administrative work.58 Among those
responsible for the discipline that emerged, Professor George Forsythe
of Stanford’s mathematics faculty was probably the most influential.
With his prodding, a Division of Computer Science opened in the
mathematics department in 1961; in 1965 Stanford established a sepa-
rate department, one of the first in the country and still one of the most
well-regarded.59

In the fall of 1967 Herbert Simon, Alan Perlis, and Allen Newell, all of
the Carnegie Institute of Technology in Pittsburgh, wrote an eloquent
and influential letter to the editor of Science, in which they defined
computer science as ‘‘the study of computers.’’60 Implicit in that
definition was the notion of a computer not as a static artifact but as a
system that carried out dynamic processes according to a set of rules.
They defended that definition and the legitimacy of computer science
against a number of objections, including the obvious one that compu-
ters were a man-made phenomenon and hence their study could not be
one of the natural sciences. Simon (who won a Nobel Prize for his work
in what might be called management science) argued that many natural
sciences studied phenomena that were not totally divorced from human
creation, and anyway, there was nothing wrong with making a science of
the study of the artificial. The following year he delivered a series of
lectures that further developed this argument, published as The Sciences

of the Artificial.61

One objection that the trio raised and then refuted was that computer
science was really ‘‘the study of algorithms (or programs), not compu-
ters.’’62 They felt that such a definition was too restrictive. Their
refutation was weak—among the reasons they gave was that their
professional society was called the Association for Computing Machin-
ery. In any event, computer science evolved in subsequent years to mean
precisely what they said it was not—the study of algorithms, with a focus
on the even narrower field of programming languages. The ACM’s
name notwithstanding, hardware issues remained with electrical
engineering. Six months after the appearance of the letter in Science,
the ACM published Curriculum ’68, a set of courses that the association
felt would provide an intellectually defensible grounding in com-
puter science for undergraduates.63 Curriculum ’68 emphasized a
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mathematical and theoretical basis for computer science. The study of
computer hardware was absent. An earlier version published in 1965
recommended (as electives) courses in electronics and analog compu-
ters; these were dropped from the 1968 curriculum. A student wanting
to study ‘‘computers,’’ as Newell, Simon, and Perlis defined them, would
have to study Electrical Engineering as well. The ACM chose to
emphasize algorithmic procedures, programming languages, and data
structures. One critic called Curriculum ’68 as influential on the
discipline of computer science as the 1945 EDVAC Report.64 By
1968 computer science had gained respectability. An undergraduate
could obtain a degree in it at one of one hundred U.S. universities, up
from only twelve in 1964. By the 1980s it had become one of the most
popular undergraduate majors on nearly every campus in the United
States.65

Other Events of 1968 and 1969

In 1968 and 1969 a cluster of similar events further established the place
of software, its relationship to computer science, and its relationship to
industrial, commercial, and military computer users.

Donald E. Knuth

In 1968 Donald E. Knuth published the first of a projected seven
volumes of a series on The Art of Computer Programming. Fundamental

Algorithms, in his words, set down in print techniques of programming
that had been passed along as ‘‘folklore, . . . but [for which] compara-
tively little theory had been developed.’’66 Others had also attempted to
place computer programming on solid theoretical ground, but often
these attempts did not offer much practical help in solving actual
programing problems. Most teaching of programming was intimately
bound up with the idiosyncrasies of a particular machine, including the
binary codes for certain registers, the timing of signals to and from disk
or drum stores, and so on. Knuth provided a theoretical basis for
computing that was practical, and his books established it as the algorithm,
a formal procedure that one can use to solve a problem in a reasonable
length of time, given the constraints of actual computing machines.

Structured Programming

In March 1968, in the same issue of the ACM journal that published
Curriculum ’68, there appeared a letter to the editor with the curious
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title ‘‘Go-To Statement Considered Harmful.’’67 The letter opened with
the statement,

For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the frequency of go to statements in
the programs they produce.

The author was Edsger Dijkstra of the Technical University of Eindho-
ven, the Netherlands. His letter set off an argument that continued for
the next few years. It was only a minor part of his long effort to move
computer science toward a more formal theoretical basis, but the letter’s
bold assertion became a symbol for the more complex work he was
trying to do to move complex software systems from foundations of sand
to the bedrock of basic theory.

There followed a long and acrimonious debate over Dijkstra’s asser-
tion about ‘‘go to.’’ Few participants seemed to realize that Dijkstra was
concerned with something more profound than one particular
command. Critics in the industrial world saw the fuss as one more
example that proved the irrelevance of academic computer science. In
the short term, the letter gave a push to the concept of ‘‘structured
programming,’’ a method that its adherents believed would advance
programming from an art (as Knuth called it in the title of his books) to
a science. Whether Dijkstra’s letter was the impetus or not, program-
ming did move in this direction in the following years.

Intellectual Property Issues

The very next exchange of letters to the editor of the Communications of
the ACM concerned another issue, that also came to have a profound
effect on the quality of programming.68 The exchange was between
Professor Bernard Galler of the University of Michigan (one of the
creators of MAD), and Calvin Mooers, a developer of a language he
called ‘‘the TRAC language.’’ The Rockford Research Institute, of which
Mooers was a founder, had sought legal protection for the TRAC
language, protection which would have prevented anyone from altering,
modifying, or extending it. Galler pointed out that the best and most
successful languages were those that had benefitted from users, includ-
ing graduate students, who had improved or modified them in use. Both
sides had a point. Without some protection, one version of a language,
albeit ‘‘improved,’’ would be incompatible with another, and this alone
could vitiate whatever improvements might be claimed. But as the
examples of SHARE and MAD proved, software development needed
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the user to progress. In part because of Mooers’s policy, his language
found little use.69

Eight years later, during the early development of the personal
computer, the question of ownership and control of commercial soft-
ware became crucial. As the Microsoft Corporation clarified that ques-
tion and established its rights, not only did Microsoft become a
dominant software provider, it also set the stage for the production of
large amounts of inexpensive software from a myriad of vendors.70 (This
will be discussed further in chapter 7.)

Software Engineering

In October 1968 a conference was convened in Garmisch, Germany,
with the provocative title ‘‘Software Engineering.’’71 The conference
marked the end of the age of innocence, a realization that a ‘‘crisis’’ in
software production would not end soon but could—and had to—be
managed. The name given to that activity—engineering—was deliber-
ately provocative, suggesting that what lay behind the software crisis was
the fact that programmers lacked the theoretical foundations and
disciplines of daily practice that one found in traditional fields of
engineering. That the conference was sponsored by NATO further
revealed software engineering’s distance from computer science,
which was centered in the universities.72 Conference organizers had
recognized that computers were responsible for systems that put human
lives at risk, including the military systems employed at NATO. These
systems could not tolerate a ‘‘bug’’ that in a batch data processing
environment might be only a minor irritant. That suggested a parallel
with other forms of engineering, especially civil engineering, where
people routinely trusted a bridge because they trusted the people who
designed it. In other respects, however, the analogy broke down. In civil
engineering, a tradition of certification and a chain of legal responsi-
bility had evolved over the years; no such tradition had been established
in computing and none would emerge. Attempts to control who might
claim the title ‘‘computer programmer’’ seem always to be futile. Part of
the reason is that new technology, like the personal workstation, offers
an avenue for new entrants into the field, and established members of
the profession cannot control that. A 1996 conference on the history of
software engineering, also held in Germany, came to the unintended
conclusion that the attempt to establish software engineering on the
whole had failed.73
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Unbundling

In December 1968, under pressure from the U.S. government, IBM
announced that the following year it would ‘‘unbundle’’ its software; that
is, charge separately for it instead of combining its costs with that of the
hardware systems.74 One of the first products it began to sell was also one
of the most successful in the history of computing, its Customer
Information Control System (CICS), which it offered on a tape begin-
ning in July 1969 for $600 a month.75 Software remained ethereal, but
now it could be bought and sold. The effect of that decision was to open
up the field of software to commercial vendors, who would now be
driven by the powerful and unforgiving forces of the free marketplace.

The effects of what was going on in the academic world eventually
made their way to the software houses. Programming became more
structured and more firmly based on theory, although the software crisis
became a permanent fixture. Meanwhile, the computer industry was
going through one of its most innovative periods. It was in the late 1960s
that the integrated circuit began to show up in commercial systems,
which immediately created a new class of inexpensive computers that
had limited memory requirements. These computers had no room to
implement the highly structured languages, like Pascal, that critics of
FORTRAN preferred. So programmers resorted to unstructured mach-
ine or assembly language, ‘‘go to’’ and all. Putting software on a more
formal basis, which so many had hoped for, would arrive late, if ever.

In 1969 Ken Thompson and Dennis Ritchie at the Bell Telephone
Laboratories in New Jersey began work on what would become the
UNIX operating system. The computer they used was a Digital Equip-
ment Corporation PDP-7, a machine with extremely limited memory
even by the standards of that day.76 Thompson wrote the earliest version
of this system in assembler, but soon he and his colleagues developed
a ‘‘system programming language’’ called ‘‘B,’’ which by 1973 had
evolved into a language called C.77 C is a language that is ‘‘close to the
machine,’’ in Ritchie’s words, a characteristic that reflected its creators’
desire to retain the power of assembly language.78 To that extent it went
against the tenets of structured programming that were then being
espoused. That quality also made it one of the most popular languages
of the personal computer era, as practiced at the giant software houses of
the 1990s such as Microsoft.

The success of UNIX and C balanced two failed programming
languages of the late 1960s, ALGOL-68 and PL/I. These failed languages
illustrated, on the one hand, the worst of the gulf between academic
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computer science and the users, and on the other hand, the already
familiar realization that committees are ill-suited to good software
development.

ALGOL-68 was an attempt to improve upon ALGOL-60, which outside
the academy only the Burroughs Corporation supported. The reasons
for ALGOL-60’s failure was the subject of much discussion at the time.
Many believed that IBM’s support for FORTRAN doomed it, but we shall
see that IBM’s support for PL/I did not have the power to save it. More
serious was ALGOL-60’s lack of I/O specifications. For computer users
who were still debating whether to use any high-level language at all, that
was a fatal omission.79 In the mid-1960s, the International Federation for
Information Processing (IFIP) established a working group to extend
the ALGOL language, and they released a new version of it, which came
to be known as ALGOL-68.80 It, too, failed in the marketplace, but for
different reasons. Whereas ALGOL-60 was based on a formal structure
and was very lean, ALGOL-68 was burdened by an attempt to do too
much, with the effects that some features interfered with the clean
implementation of others. It was hard to understand. In an attempt to
satisfy a broad range of users worldwide, the committee produced
something that satisfied few.81 It was implemented in a few places,
notably on ICL computers in the U.K. Otherwise, its chief legacy may
have been the language Pascal, the tightly structured language that
Nicholas Wirth of the Swiss Federal Technical Institute developed in
reaction to ALGOL-68’s complexity.82

At IBM there was a similar effort to develop a language to replace the
venerable FORTRAN and COBOL. When in 1964 IBM announced its
System/360 series of computers as a replacement for both its business
and scientific computers (see chapter 5), the company assumed that a
new language could likewise be developed for both applications. A joint
IBM-SHARE committee concluded in early 1963 that the new language
would not be an extension of FORTRAN, even though the existing
version of that language, FORTRAN-IV, was very popular and heavily
used. The new language, PL/I (Programming Language, One), drew
from FORTRAN, COBOL, and ALGOL. Preliminary versions were
released in 1964, but by the time the full language was ready, COBOL
and FORTRAN-IV had established a foothold on the System/360 series
and could not be dislodged. PL/I’s complexity overwhelmed its many
advantages, including the advantage that IBM was supporting it and that
it was suitable for both business and science. Many IBM installations
made PL/I available, but it never became very popular.
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Conclusion

The activity known as computer programming was not foreseen by the
pioneers of computing. During the 1950s they and their customers
slowly realized: first, that it existed; second, that it was important; and
third, that it was worth the effort to build tools to help do it. These tools,
combined with the applications programs, became collectively known as
‘‘software,’’ a term that first came into use around 1959.83 People like
Grace Hopper and Maurice Wilkes initially focused on building up
libraries of subroutines, and then getting the computer to call these up
and link them together to solve a specific problem. That gave way to a
more general notion of a high-level computer language, with the
computer generating fresh machine code based on a careful analysis
of what the programmer specified, in something that resembled a
combination of algebra and English.

Despite great strides in software, programming always seemed to be in
a state of crisis and always seemed to play catch-up to the advances in
hardware. This crisis came to a head in 1968, just as the integrated
circuit and disk storage were making their impact on hardware systems.
That year, the crisis was explicitly acknowledged in the academic and
trade literature and was the subject of a NATO-sponsored conference
that called further attention to it. Some of the solutions proposed were a
new discipline of software engineering, more formal techniques of
structured programming, and new programming languages that would
replace the venerable but obsolete COBOL and FORTRAN. Although
not made in response to this crisis, the decision by IBM to sell its software
and services separately from its hardware probably did even more to
address the problem. It led to a commercial software industry that
needed to produce reliable software in order to survive. The crisis
remained, however, and became a permanent aspect of computing.
Software came of age in 1968; the following decades would see further
changes and further adaptations to hardware advances.

108 Chapter 3



4
From Mainframe to Minicomputer, 1959–1969

The room could have been designed by Hollywood producers of
dystopian films like Blade Runner or Brazil. As far as the eye could see
were rows of IBM Model 027 keypunches—machines that punched
rectangular holes into 80-column cards, each of them a standard
3-1/46 7-3/8 inches. Seated at each station was a woman, her head
tilted to the left to scan a piece of paper mounted on a frame, her right
hand deftly floating over the keys of the machine. Each press of a key
caused it to punch a hole in a card with a solid ‘‘thunk.’’ When the room
was in full swing, said one operator, ‘‘there was a certain rhythm, a beat,
a sound’’ that let each operator know she was getting the job done.1 A
data processing manager had a slightly different opinion: he said the
sound was ‘‘like you had a helmet on and someone was hitting it with a
hammer.’’2 A film was made of the operation; from its soundtrack one
might conclude that, if anything, the second opinion was conservative.

The room was in one of several regional centers set up in the mid-
1960s by the U.S. Internal Revenue Service to process tax returns. By
then the IRS had embraced the electronic digital computer and owned
one of the most sophisticated and complex systems in the world. At its
heart was a set of IBM mainframes at a national center in Martinsburg,
West Virginia. In 1964, around the time the film was made, the Center
was using a set of transistorized IBM 7070s, business versions of the 7090
discussed in chapter 2.3

At the same time that the women were keypunching tax returns, the
Worcester (Massachusetts) Telegram and Gazette was also entering the
computer age. A few big-city newspapers had already installed main-
frames to replace the Mergenthaler Linotypes that set type in hot lead.
The Worcester paper was able to join this movement by purchasing a
much smaller, but very capable, $30,000 ‘‘Computer Typesetting



System’’ from the Digital Equipment Corporation of Maynard, Massa-
chusetts. The system was not much bigger than a couple of office desks.
At its heart was a new type of computer offered by Digital, a PDP-8.4

Digital computers began the decade of the 1960s with a tentative
foothold; they ended with an entrenched position in many business,
accounting, and government operations. They were also now found in a
host of new applications.

The forces driving this movement were both technical and social.
Among the former were the introduction of transistors in place of
vacuum tubes and the development of languages like FORTRAN and
COBOL that made programming easier. Among the latter was the
increased demand for record-keeping by the federal government,
brought on by programs of the ‘‘Great Society.’’ President John Ken-
nedy’s challenge, in May 1961, to put a man on the moon and return
him safely by the end of the decade transformed the U.S. space program
into a complex of research and production centers with unlimited
budgets and insatiable appetites for computing power. The United
States was entering a decade of economic growth and prosperity,
accompanied by major investments in interstate highways, suburban
housing, and jet aircraft. All of these put a strain on information-
processing procedures that were based on punched card tabulators,
mechanical adding machines, and calculators.

Computing in the 1960s was not just a story of existing firms selling
new machines in increasing volume to existing customers, although that
did occur. That decade also saw the nature of the industry transformed.
In a sense the computer was reinvented yet again. Just as Eckert and
Mauchly transformed a fast calculator, the ENIAC, into a general-
purpose data processing and scientific device, so now did new compa-
nies like the Digital Equipment Corporation rework the computer’s
internal architecture, its programming, the way it was marketed, and the
applications it was used for.

The rate of technological advance in computing, and the rapid
obsolescence of existing products, had few counterparts in other indus-
tries. It was a fact that was well understood by IBM, whose market share
hovered around 70 percent from the late 1950s onward.5 IBM built up a
large research department, with major laboratories on both coasts as
well as in Europe, to ensure that it could stay abreast of developments in
solid-state electronics, tape and disk storage, programming languages,
and logic circuits. Some of that research was conducted at fundamental
levels of solid-state physics and mathematics, which offered little chance
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of a quick payoff, but the nature of computing dictated that such
research be done. Applied research might have produced a faster
vacuum tube or a better card punch (and such devices were indeed
invented), but it would not produce the kinds of advances in computing
that are regarded in the popular press as revolutionary.6

Supporting such research, though expensive, gave IBM an advantage
over its competitors, who had to work from a smaller customer base. And
it created a high barrier to any new firm wishing to enter the industry. If
a newcomer wanted to exploit a radically new piece of technology IBM
had developed, it would have to build and market a balanced system,
including software—all the pieces of which IBM was probably also better
at producing. One such company was Philco, discussed earlier. The
surface-barrier transistors that Philco developed put it a year ahead of
IBM, which in the late 1950s had just introduced the vacuum-tube 709.7

But once IBM countered with its transistorized 7090, Philco could not
maintain the pace of competition and left the business by 1964.8 In
order to survive, a new entrant into the field had to have, in addition to
superior technology, a niche that was poorly served by IBM and the
other mainframe companies. IBM’s dominant position meant that it
could mete out technical advances at a pace that did not render its
installed base obsolete too quickly. Almost no manufacturers save IBM
made a profit selling large computer systems in the late 1950s.

Despite what its critics charged, IBM did not always succeed in
controlling the pace of innovation. It abandoned the vacuum-tube 709
faster than it wanted to, for example; ten years later it made an un-
comfortably quick transition from the System/360 to the System/370.
One place where IBM did succeed was in keeping viable the basic input
medium of the punched card, and with that the basic flow of data
through a customer’s installation. The same card, encoded the same way
and using a keypunch little changed since the 1930s, served IBM’s
computers through the 1960s and beyond. The sequential processing
and file structure, implicit in punched card operations, also survived in
the form of batch processing common to most mainframe computer
centers in the 1960s. That eased the shock of adopting the new
technology for many customers, as well as ensuring IBM’s continued
influence on computing at those sites.

IBM thus created a state of equilibrium in the industry. Its 70 percent
market share, some economists felt, was ‘‘just enough’’ to maintain
innovation, stability, and profits, but not so much as to bring on
stagnation and the other evils of monopolization.9 Were it not for a
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radical change in an external factor, the computer industry might have
gone on this way for decades, just as the U.S. auto industry, dominated
by three firms, achieved an equilibrium into the 1980s.

The Influence of the Federal Government

The external factor was the U.S. Defense Department, whose funding
was crucial to the advance of computer technology. Military support was
nothing new to computing, beginning with the ENIAC. What changed
was the nature of research done under defense support, especially after
the onset of the war in Korea in 1950. Military support for basic research
in physics, electrical engineering, and mathematics increased dramati-
cally after 1950. The nature of that research also changed, from one
where the military specified its needs in detail, to one where the
researchers themselves—professors and their graduate students at
major universities—took an active role in defining the nature and
goals of the work.10 Military funding, channeled into research depart-
ments at prestigious universities, provided an alternative source of
knowledge to that generated in large industrial laboratories. This knowl-
edge, in turn, allowed individuals outside established corporations to
enter the computer industry. Its effect on computing was dramatic.

This chapter begins by looking at case studies that illustrate how other
branches of the federal government affected computing as customers;
that is, how their heavy demands for computation combined with
generous budgets spurred the growth of large mainframe installations,
dominated by the IBM 7000 series of computers. Following that, the
chapter looks at computing from the other side and describes how
research in solid-state physics and electronics produced a fundamentally
different type of computer, and how a key group of individuals leveraged
that research to redefine the the industry.

Massachusetts Blue Cross

Massachusetts Blue Cross was a typical commercial customer. In Decem-
ber 1960, after three years of planning and analysis, Massachusetts Blue
Cross/Blue Shield acquired an IBM 7070 computer to process work it
had been doing on tabulating machines.11 Blue Cross intended to place,
on twenty-four reels of tape, the records of 2,500,000 subscribers. By
June 1961 the transfer was completed, and the 150 file cabinets that held
the punched cards and printed records were retired.12 The 7070 was
upgraded three years later to a 7074; Blue Cross also acquired a smaller
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IBM 1401 dedicated solely to input and output. Although by this time
COBOL and FORTRAN were both widely available and supported, Blue
Cross chose to use instead the more primitive language AUTOCODER,
because, in the words of a former employee, ‘‘FORTRAN and
COBOL . . .used up too much main memory and took too much
processing time for compilation.’’13 (See figure 4.1.)

The fortunes of the medical insurance business took a dramatic turn
in 1965, with the passage of amendments to the Social Security Act that
established Medicare for Americans age sixty-five and over. Blue Cross/
Blue Shield of Massachusetts successfully bid for the job of administering
the program in that commonwealth and managed to computerize the
account by the fall of 1966. It claimed to be the first in the country to
have fully computerized Medicare. However, the thousand-fold increase
in processing speeds that Blue Cross got from using a 7070, revolu-
tionary in 1961, was now inadequate. The company rented computer
time on another 7070 located in the Boston suburbs, with Blue Cross
employees driving a car loaded with decks of cards out to Southbridge
every evening, running the programs overnight, and driving back to
Boston with the output in the morning.

In 1967 Blue Cross acquired one of IBM’s new-generation System/360
computers to handle the workload. By the end of that decade there were
three System/360s on site, as well as the 7074/1401 system. Forty-three
tape drives handled the records, and computer operations went on
twenty-four hours a day, seven days a week. COBOL was now the
preferred language, although the AUTOCODE programs continued to
be used by running an emulator on one of the 360s that made it ‘‘look
like’’ a 7074/1401 system.14 The company continued to rely on IBM
mainframe systems.

NASA-Ames Research Center

The NASA-Ames Research Center, located in Mountain View, California,
had been a center for high-speed aerodynamics research since its
founding in 1940, as part of what was then the National Advisory
Committee for Aeronautics. The shock of the Soviet’s Sputnik in 1957,
followed by President Kennedy’s challenge to the nation to put a man on
the Moon before the end of the 1960s, gave the center a sense of
urgency not seen since the Second World War. Its focus on aerodynamic
research meant that the laboratory had been involved with numerical
calculations from its beginning. In 1955 Ames had acquired its first
stored-program electronic computer, an IBM 650. In 1958, shortly after
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Figure 4.1
IBM coding forms. Not only would a programmer hardly ever see the computer, he or she might never even see the keypunch on
which the programs were entered into the computer. (Source : Thomas E. Bergin.)
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the center became part of the newly founded National Aeronautics and
Space Administration (NASA), it acquired an IBM 704, replaced in 1961
by an IBM 7090.15 These were all used for scientific calculations, for
example, satellite trajectories, heat transfer, and particle physics.

In the fall of 1961 the center acquired a medium-size Honeywell
H-800 for processing of wind tunnel data. That was followed by the
acquisition of other similar machines for dedicated purposes: control-
ling experiments, operating a flight simulator, and reducing wind tunnel
data. These computers came from Honeywell, Digital Equipment
Corporation, Scientific Data Systems (SDS), and EAI. IBM was also
represented by its 1800, which was used for controlling an experiment
in real time, but IBM’s presence at the Center was mainly in the large,
centralized computing system used for ‘‘general scientific’’ work.16

Throughout the 1960s the demands on the central IBM installation
grew at a compounded rate of over 100 percent a year. Meeting that
demand was a never-ending headache for the Ames Computation
Division. Beginning in 1963 the 7090 was upgraded to a complex of
machines called a Direct Couple System. At its heart was an IBM 7094,
acquired in July. To keep this machine from being diverted from its main
scientific work, an IBM 7040—itself a large mainframe—was coupled to
it to handle input/output (I/O). Although the 7094 had channels, the
Direct Couple System allowed the 7040 to handle I=O instead, putting
less strain on the 7094. Each machine had a core memory of 32,768 36-
bit words. An IBM 7740 communications computer handled a connec-
tion to several remote terminals.

The Direct Couple System communicated to the outside world mainly
through reels of magnetic tape, which were prepared by an IBM 1401
connected to a keypunch; the 1401 also handled printing results, from
tapes brought to it from the 7074. The 1401 could also operate as a
stand-alone computer, a very capable one at that. NASA did use it this
way to handle the center’s administrative work, such as budgeting.17 In
1974, when it was declared surplus government property, the complete
DCS was valued at $1.6 million. Monthly costs were in the range of
around $35,000. A variety of other equipment rounded out the config-
uration.

This Direct Couple System served the Ames laboratory through the
dramatic years of the space race. Similar configurations appeared at
other large research centers, especially among West Coast aerospace
firms. By 1968 the system was working around the clock (except
for weekends), with about twenty-seven hours a month reserved for
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maintenance, and it was running well over capacity. That year an IBM
System/360 Model 50 replaced it, at a rental of $21,000 a month for the
processor alone, and $45,000 a month for the whole system. NASA was
still reluctant to move administrative work off the 1401 to the 360,
however, and eventually acquired another small computer to handle
those tasks. Nevertheless, one of the main programs installed on the 360
was a piece of software that allowed it to behave as if it were a 1401, to
run programs developed for that machine.18

The large systems at Ames operated in batch, using decks of punched
cards, tape, and line printers. Some of the smaller computers, especially
those connected to a wind tunnel, simulator, or other piece of apparatus,
operated in real time—processing data as fast as data were presented to
it. These systems might also have a provision for direct, interactive
control by a user. By the end of the 1960s people at Ames wanted to
extend that kind of interactive access to its mainframe system, through a
technique called time-sharing. Time-sharing will be discussed at length
in the next chapter, but for now it is worth noting how it first appeared at
places like NASA.19

In 1969 the Ames laboratory installed an IBM 360 Model 67, IBM’s
attempt to provide for time-sharing on that product line. But the Model
67 proved a disappointment,20 and by 1971 its ‘‘heavy compute load’’
was shifted to other machines. The Model 67 was retained but reconfi-
gured to serve as a ‘‘communications center,’’ mainly for connection to
the newly established ARPA-Network.21 The Model 67’s failure was due
to deficiencies in its design and to difficulties in incorporating time-
sharing into work patterns at NASA-Ames. NASA engineers were using
computers to analyze wind-tunnel data. In these problems the basic
program remained unchanged, with new data arriving with each test.
Wind tunnels were scheduled well in advance, the programs were
debugged, and the engineers had established a rhythm between the
two large and expensive systems: tunnel and computer. With the full
resources of the main computer brought to bear on the data they
generated each evening, they were confident that they would have
useful results the next morning. With time-sharing that was not the
case: how fast or slow one person’s job ran depended on who else was
using the machine and what kinds of jobs they were doing. That was
unpredictable and not under the wind tunnel team’s control.22 In the
case studies that follow we shall encounter variants of both these
technical and social issues as interactive computing became more of
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an option. Table 4.1 lists the computing facilities at NASA-Ames during
this period.

The IRS

The U.S. Internal Revenue Service performs such a monumental job of
processing data that one can scarcely imagine that they ever did their
work without computers. As with Blue Cross and NASA-Ames, its

Table 4.1
Selected computer installations at NASA-Ames, 1955–1969

Date Date
acquired released Equipment Use

2/55 6/63 Electrodata, On-line processing of wind tunnel data.
Datatron

5/55 9/58 IBM 650 General scientific computing.
9/58 7/61 IBM 704 General scientific computing and for

satellite trajectory and heat transfer
calculations. Replaced the IBM 650.

7/61 3/63 IBM 7090 General scientific computing. Added
additional capacity for inlet design
calculations and plasma particle
studies. Replaced the IBM 704.

11/61 Honeywell 800 On-line processing of wind tunnel data.
3/63 7/64 IBM 7094 Replaced the IBM 7090.
7/64 IBM 7094/7040

Direct-Coupled
General scientific computing,
large-scale data reduction and

System (DCS) administrative data processing.
Included an IBM 1401.
Replaced the IBM 7094.

8/64 Honeywell 200 Served as an I/O control unit to the
H-800 system; replaced associated
HON-800 system.

7/65 12/67 IBM 7740,
4 IBM 1440s

Communications unit and terminals to
provide remote access to Central
Facility.

12/67 IBM 360/50 and
IBM 1800

General scientific computing.
Acquired to supplement capacity of the
DCS and assume remote job entry
function. Replaced IBM 7740, four
IBM 1440s, and two IBM 1401 systems.

1968 ILLIAC IV Advanced parallel-processing. Early
supercomputer.

7/69 IBM 360/67 Time-sharing operation.

Source : Data from NASA Ames Research Center, ‘‘ADPE Acquisition Plan:
Proposed Central Computer Facility’’ (October 1969): 4–5; NASM Archives.
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computer needs increased by orders of magnitude from 1959 to 1969.
We shall also see that it followed a similar trajectory.

The basic operation of this agency is familiar to most Americans. In
contrast to the work of NASA, it involves mainly simple arithmetic and
the quantities involved are seldom more than a million. But unlike
scientific calculations, these calculations have to be accurate to the
penny. What really distinguishes this work is the huge number of tax
returns the IRS must process, year in and year out, with no slack time.

The need to raise revenue to wage the Second World War set in
motion events that would transform the Internal Revenue Service.23 At
that time the number of Americans who were required to file returns
and pay taxes increased from around eight million to sixty million; the
practice of withholding tax from a paycheck also became common. The
IRS handled this work with a combination of Friden calculators,
Burroughs or National accounting machines, and pencil and paper.
Punched card equipment was not installed until 1948. In 1955 the
agency installed an IBM 650 in its regional center in Kansas City,
where it helped process 1.1 million returns on a test basis. But
keypunching was still the main activity at each regional center, where
around 350 employees keyed in basic information from each return.24

In 1959 the U.S. Treasury Department authorized the IRS to compu-
terize its operations fully. The IRS selected IBM after soliciting bids from
forty manufacturers. An IBM 1401 with a 4K core memory, a card reader,
punch, line printer, and two tape drives was installed in each regional
center. An IBM 7070 mainframe, the first of several, was purchased for a
National Center established in Martinsburg, West Virginia. (Note that
thus far the IRS was following the same path as Massachusetts Blue
Cross.) The changeover to electronic processing was complete by 1967:
Honeywell H-200s had replaced the 1401 and IBM 360s had replaced the
7070s.25

Although stored-program computers were now processing the returns,
the first step in the process was still keypunchers entering data from
returns onto punched cards—over 400 million cards a year, for over 100
million taxpayers, by the mid-1960s. Rooms full of mostly women worked
at a steady, unflagging pace, each woman’s eye focused on a return
propped up to her left, her right hand floating over a keypunch. The
1401s at each regional center read the cards, verified that the required
information was there, did some simple data reduction, and transferred
the results to tape. Couriers flew these tapes to Martinsburg, where the
7070 processed the returns. The National Center then sent a tape to the
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Treasury Department to issue refund checks; for others less fortunate, a
tape was sent back to a regional center to send out a bill or otherwise ask
for more information. Since the topic of computer networking will arise
later, it is worth noting that a courier carrying these reels of tape was
moving data at a rate of about 30,000 bits per second on a cross-country
flight. That was equivalent to what a personal computer in the 1990s
could handle over ordinary telephone lines.26

By 1965 the IRS was identifying each taxpayer by a unique number—
his or her Social Security number—eliminating the confusion of hand-
ling persons with the same names. That had required an act of
Congress; one easily forgets the modest origins of the Social Security
number when it was established in the 1930s. Requiring one to put this
number on all forms, plus the attendant publicity about ‘‘electronic
brains,’’ led to a few nasty letters to congresspeople about ‘‘Big Brother.’’
Few realized the social watershed they had just crossed. (They would
later on, as will be discussed.) The punching of cards ended in 1967,
when machines were installed that allowed direct entry of data onto a
drum (later a disk), but otherwise this division of labor among field
centers and the National Center remained into the 1990s. (When the
keypunch machines were retired, managers found that productivity did
not go up as they expected. By reintroducing some of the sound that was
lost, the operators were able to reestablish the rhythm necessary to
maintain high rates of data entry.)27

As at Blue Cross and NASA-Ames, the IRS processed data sequentially.
To find or change a particular record, one mounted the appropriate
tape and ran it through a tape drive until that record appeared. A
taxpayer who had a problem would have to wait for his or her record to
be delivered to a regional center. By the mid-1970s the operation had
settled into a pattern whereby the master file was updated once a week,
producing an updated file on microfilm that could be flown to a
regional center to address questions about a specific return. This kind
of data retrieval was not due to any bureaucratic inertia on the part of
the IRS; it was built into the structure of the system.

By 1967, with the computerized processing in place and operating
smoothly, the agency began looking for an improved system. It hoped
not only to eliminate punching cards but also to eliminate manually
keying in data altogether—whether by using machines that could read
handwritten figures, or by having the taxpayer fill out his or her return
in some sort of machine-readable form. The agency also intended to
move away from sequential toward random, on-line access to data.
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An ambitious plan, projected to cost 650 to 850 million dollars, called
the Tax Administration System (TAS), was conceived to implement these
goals.28 Processing would be dispersed to ten service centers across the
United States, instead of only to the one in Martinsburg. A combination
‘‘batch and realtime [sic] transaction-oriented computer network
employing a decentralized database’’ would be installed, with direct
access to taxpayer information available at one of over 8,000 terminals.29

Taxpayer data would be stored at the centers on ‘‘random access storage
devices’’ (probably magnetic disks), instead of on tapes. Other terminals
would allow data entry directly into the network, without the need for
punching cards.

The planners of the TAS gave much thought to making the system
secure—from physical damage, from malicious intrusion, and from
simple human errors. But the seed of mistrust in computers that had
lain dormant now sprouted. The late 1960s was a time when many
citizens questioned the federal government’s truthfulness. During the
Watergate hearings, which led to President Nixon’s resignation in 1974,
it was revealed that the White House had breached the wall of integrity
that the IRS had carefully built up to shield its operations from political
interference. Although the IRS had not yet adopted an interactive data-
retrieval system, White House operatives had been able to obtain the tax
records of those not in their favor. Trust, without which no system of
taxation can function, had eroded.

This time there were more than a few irate letters to Congress.
Congress directed the General Accounting Office (GAO) to look at
the privacy implications of the proposed TAS; the GAO’s preliminary
report, issued in 1976 and early 1977, criticized the system for not
addressing security and privacy issues thoroughly enough.30 A copy of
the report was leaked to the trade journal Computerworld, which ran a
lead story under the headline ‘‘Proposed IRS System May Pose Threat to
Privacy.’’31 In the spring of 1977 there were hearings in both the Senate
and the House, at which IRS officials were asked questions such as
whether someone could ‘‘attach a terminal in parallel’’ with the existing
terminal network and thereby be capable of ‘‘pulling all this information
out.’’32 Some IRS employees recall members of Congress dictating what
types of computer architecture the agency was allowed to bid on.33

Under pressure from Congress, the IRS dropped its plans for the TAS
in January 1978. In its place the IRS proposed an ‘‘equipment replace-
ment and enhancement program.’’ (Congress made them drop the
word ‘‘enhancement.’’) The old architecture in which a centralized
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master file was kept on magnetic tape was retained. Patrick Ruttle of the
IRS called this ‘‘a way of moving into the future in a very safe fashion.’’34

Instantaneous on-line access to records was verboten. Hamstrung by a
hostile Congress, the agency limped along. In 1985 the system collapsed;
newspapers published lurid stories of returns being left in dumpsters,
refund checks lost, and so on.35 Congress had a change of heart and
authorized money to develop a new data-handling architecture.

NASA’s Manned Space Program

Both NASA-Ames and the IRS made attempts to move away from batch
processing and sequential access to data, and both failed, at least at first.
But the failures revealed advantages of batch operation that may have
been overlooked otherwise. Batch operation preserved continuity with
the social setting of the earlier tabulator age; it also had been fine-tuned
over the years to give the customer the best utilization of the machine
for his or her dollar. The real problem with batch processing was more
philosophical than technical or economic. It made the computer the
equivalent of a horseless carriage or wireless telegraph—it worked faster
and handled greater quantities than tabulators or hand calculations, but
it did not alter the nature of the work.

During this period, up to the late 1960s, direct, interactive access to a
computer could exist only where cost was not a factor. NASA’s Manned
Space Program was such an installation where this kind of access was
developed, using the same kind of hardware as the IRS, NASA-Ames, and
Blue Cross.36 In the late 1950s a project was begun for which cost was not
an objection: America’s race to put men on the Moon by the end of the
decade.

Most of a space mission consists of coasting in unpowered flight. A lot
of computing must be done during the initial minutes of a launch, when
the engines are burning. If the craft is off-course, it must be destroyed to
prevent its hitting a populated area. If a launch goes well, the resulting
orbit must be calculated quickly to determine if it is stable, and that
information must be transmitted to tracking stations located around the
globe. The calculations are formidable and must be carried out, literally,
in a matter of seconds.

In 1957 the Naval Research Laboratory established a control center in
Washington, D.C., for Project Vanguard, America’s first attempt to orbit
a satellite. The Center hoped to get information about the satellite to its
IBM 704 computer in real time: to compute a trajectory as fast as the
telemetry data about the booster and satellite could be fed to it.37 They
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did not achieve that goal—data still had to be punched onto cards. In
November 1960 NASA installed a system of two 7090 computers at the
newly formed Goddard Space Flight Center in Greenbelt, Maryland. For
this installation, real-time processing was achieved. Each 7090 could
compute trajectories in real time, with one serving as a backup to the
other. Launch data were gathered at Cape Canaveral and transmitted to
Greenbelt; a backup system, using a single IBM 709, was located in
Bermuda, the first piece of land the rocket would pass over after launch.
Other radar stations were established around the world to provide
continuous coverage.38

The system calculated a predicted trajectory and transmitted that back
to NASA’s Mission Control in Florida. Depending on whether that
trajectory agreed with what was planned, the flight controller made a
‘‘Go’’ or ‘‘No Go’’ decision, beginning ten seconds after engine cut-off
and continuing at intervals throughout the mission.39 At launch, a
special-purpose Atlas Guidance computer handled data at rates of
1,000 bits per second. After engine cut-off the data flowed into the
Goddard computers at a rate of six characters a second.40 For the
generation of Americans who remember John Glenn’s orbital flight in
February 1962, the clipped voice of the Mercury Control Officer issuing
periodic, terse ‘‘Go for orbit!’’ statements was one of the most dramatic
aspects of the flight.

In a typical 7090 installation, its channels handled input and output
between the central processor and the peripheral equipment located in
the computer room. In this case the data was coming from radar stations
in Florida, a thousand miles away from Greenbelt. IBM and NASA
developed an enhancement to the channels that further conditioned
and processed the data. They also developed system software, called
Mercury Monitor, that allowed certain input data to interrupt whatever
the processor was doing, to ensure that a life-threatening situation was
not ignored. Like a busy executive whose memos are labeled urgent,
very urgent, and extremely urgent, multiple levels of priority were
permitted, as directed by a special ‘‘trap processor.’’ When executing a
‘‘trap,’’ the system first of all saved the contents of the computer’s
registers, so that these data could be returned after the interruption was
handled.41

The Mercury Monitor represented a significant step away from batch
operation, showing what could be done with commercial mainframes
not designed to operate that way.42 It evolved into one of IBM’s most
ambitious and successful software products and laid the foundation for
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the company’s entry into on-line systems later adopted for banking,
airline reservations systems, and large on-line data networks.43

In the mid-1960s Mission Control moved to Houston, where a system
of three (later five) 7094 computers, each connected to an IBM 1401,
was installed. In August 1966 the 7094s were replaced by a system based
on the IBM 360, Model 75. The simple Mercury Monitor had evolved
into a real-time extension of the standard IBM 360 operating system.
IBM engineers Tom Simpson, Bob Crabtree and three others called the
program HASP (Houston Automatic Spooling Priority—SPOOL was
itself an acronym from an earlier day). It allowed the Model 75 to
operate both as a batch and real-time processor. This system proved
effective and for some customers was preferred over IBM’s standard
System/360 operating system. HASP was soon adopted at other commer-
cial installations and in the 1970s became a fully supported IBM
product.44

These modifications of IBM mainframes could not have happened
without the unique nature of the Apollo mission: its goal (to put a man
on the Moon and return him safely) and its deadline (‘‘before the
decade is out’’). Such modifications were neither practical nor even
permitted by IBM for most other customers, who typically leased and did
not own equipment.45 NASA’s modifications did show that a large,
commercial mainframe could operate in other than a batch mode.
NASA’s solution involved a lot of custom work in hardware and software,
but in time other, more traditional customers were able to build similar
systems based on that work.

The Minicomputer

Having described changes in computing from the top down, changes
caused by increased demands by well-funded customers, we’ll now look
at how these changes were influenced by advances in research into solid-
state physics, electronics, and computer architecture. The result was a
new type of machine called the ‘‘minicomputer.’’ It was not a direct
competitor to mainframes or to the culture of using mainframes. Instead
the minicomputer opened up entirely new areas of application. Its
growth was a cultural, economic, and technological phenomenon. It
introduced large groups of people—at first engineers and scientists,
later others—to direct interaction with computing machines. Mini-
computers, in particular those operated by a Teletype, introduced
the notion of the computer as a personal interactive device. Ultimately
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that notion would change our culture and dominate our expecta-
tions, as the minicomputer yielded to its offspring, the personal
computer.

Architecture

A number of factors define the minicomputer: architecture, packaging,
the role of third-parties in developing applications, price, and financing.
It is worth discussing the first of those, architecture, in some detail to see
how the minicomputer differed from what was prevalent at the time.

A typical IBM mainframe in the early 1960s operated on 36 bits at a
time, using one or more registers in its central processor. Other registers
handled the addressing, indexing, and the extra digits generated during
a multiplication of two 36-bit numbers. The fastest, most complex, and
most expensive circuits of the computer were found here. A shorter
word length could lower the complexity and therefore the cost, but that
incurred several penalties. The biggest penalty was that a short word
length did not provide enough bits in an instruction to specify enough
memory addresses. It would be like trying to provide telephone service
across the country with seven-digit phone numbers but no area codes.
Another penalty of using a short word was that an arithmetic operation
could not provide enough digits for anything but the simplest arith-
metic, unless one programmed the machine to operate in ‘‘double
precision.’’ The 36-bit word used in the IBM 7090 series gave the
equivalent of ten decimal digits. That was adequate for most applica-
tions, but many assumed that customers would not want a machine that
could not handle at least that many.

Minicomputers found ways to get around those drawbacks. They did
that by making the computer’s instruction codes more complex. Besides
the operation code and memory address specified in an instruction,
minicomputers used several bits of the code to specify different ‘‘modes’’
that extend the memory space. One mode of operation might not refer
directly to a memory location but to another register in which the
desired memory location is stored. That of course adds complexity;
operating in double precision also is complicated, and both might slow
the computer down. But with the newly available transistors coming on
the market in the late 1950s, one could design a processor that, even
with these added complexities, remained simple, inexpensive, and fast.

The Whirlwind had a word length of only 16 bits, but the story of
commercial minicomputers really begins with an inventor associated
with very large computers: Seymour Cray. In 1957, the Control Data
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Corporation was founded in the Twin Cities by William Norris, the
cofounder of Engineering Research Associates, later part of Remington
Rand UNIVAC, as mentioned in chapter 1. Among the many engineers
Norris persuaded to go with him was Cray. While at UNIVAC Cray had
worked on the Navy Tactical Data System (NTDS), a computer designed
for Navy ships and one of the first transistorized machines produced in
quantity.46 Around 1960 CDC introduced its model 1604, a large
computer intended for scientific customers. Shortly thereafter the
company introduced the 160, designed by Cray (‘‘almost as an after-
thought,’’ according to a CDC employee) to handle input and output
for the 1604. For the 160 Seymour Cray carried over some key features
he pioneered for the Navy system, especially its compact packaging. In
fact, the computer was small enough to fit around an ordinary-looking
metal desk—someone who chanced upon it would not even know it was
a computer.

The 160 broke new ground by using a short word length (12 bits)
combined with ways of accessing memory beyond the limits of a short
address field.47 It was able to directly address a primary memory of eight
thousand words, and it had a reasonably fast clock cycle (6.4 micro-
seconds for a memory access). And the 160 was inexpensive to produce.
When CDC offered a stand-alone version, the 160A, for sale at a price of
$60,000, it found a ready market. Control Data Corporation was concen-
trating its efforts on very high performance machines (later called
‘‘supercomputers,’’ for which Cray became famous), but it did not
mind selling the 160A along the way. What Seymour Cray had invented
was, in fact, a minicomputer.48

Almost immediately new markets began to open for a computer that
was not tied to the culture of the mainframe. One of the first customers,
which provides a good illustration of the potential of such designs, was
Jack Scantlin, the head of Scantlin Electronics, Inc. (SEI). When he saw a
CDC 160A in 1962, he conceived of a system built around it that would
provide on-line quotations from the New York Stock Exchange to
brokers across the country. By 1963 SEI’s Quotron II system was
operational, providing stock prices within about fifteen seconds, at a
time when trading on the NYSE averaged about 3.8 million shares a
day.49 SEI engineers resorted to some ingenious tricks to carry all the
necessary information about stock prices in a small number of 12-bit
words, but ultimately the machine (actually, two 160As connected to a
common memory) proved fully capable of supporting this sophisticated
application.
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The Digital Equipment Corporation

In the same year that CDC was founded, 1957, Kenneth H. Olsen and
Harlan Anderson founded the Digital Equipment Corporation (DEC,
pronounced ‘‘deck’’). Financing came from the American Research and
Development Corporation, a firm set up by Harvard Business School
Professor Georges Doriot, whose goal was to find a way to commercialize
the scientific and technical innovations he had observed during the
Second World War as an officer in the U.S. Army. They set up operations
in a corner of a woolen mill astride the Assabet River in Maynard,
Massachusetts. As a student at MIT, Olsen had worked on fitting the
Whirlwind with core memory in place of its fragile and unreliable
storage tubes, and in the mid-1950s he had worked for MIT’s Lincoln
Laboratory in suburban Lexington. He had represented the Lincoln Lab
to IBM when it was building computers for the SAGE air-defense system.
In 1955 Olsen had taken charge of a computer for Lincoln Lab called
TX-0, a very early transistorized machine.50 Under his supervision, the
TX-0 first operated at Lincoln Lab in 1956.51

The TX-0 had a short word length of 18 bits. It was designed to utilize
the new surface-barrier transistors just then being produced by Philco (it
used around 3,600 of them). These transistors were significantly faster
and of higher quality than any transistors available previously. Although
each one cost $40 to $80 (compared to about $3 to $10 for a tube), and
their long-term reliability was unknown, the TX-0 designers soon
learned that the transistors were reliable and did not need any treatment
different from other components.52 Reflecting its connections to the
interactive SAGE system, the TX-0 had a cathode-ray tube display and a
light-pen, which allowed an operator to interact directly with a program
as it was running. The designer of that display was Ben Gurley, who left
Lincoln Labs in 1959 to become one of Digital Equipment Corporation’s
first employees.

When completed in 1957, the TX-0 was one of the most advanced
computers in the world, and in 1959 when Digital Equipment Corpora-
tion offered its PDP-1 designed by Gurley, it incorporated many of the
TX-0’s architectural and circuit innovations. Recall that the IBM 7090
was a transistorized machine that employed the same architecture as the
vacuum tube 709, with transistors replacing the individual tubes. The
PDP-1 owed nothing to tube design; it was intended to take full
advantage of what transistors had had to offer from the start. It was
capable of 100,000 additions per second, not as fast as the IBM 7090, but
respectable and much faster than the drum-based computers in its price
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class. Its basic core memory held four thousand, later expanded to sixty-
four thousand, 18-bit words.

The PDP-1 was not an exact copy of the TX-0, but it did imitate one of
its most innovative architectural features: foregoing the use of channels,
which mainframes used, and allowing I/O to proceed directly from an
I/O device to the core memory itself. By careful design and skillful
programming, this allowed fast I/O with only a minimal impact on the
operation of the central processor, at a fraction of the cost and complex-
ity of a machine using channels.53 In one form or another this ‘‘direct
memory access’’ (DMA) was incorporated into nearly all subsequent
DEC products and defined the architecture of the minicomputer. It is
built into the microprocessors used in modern personal computers as
well. To allow such access to take place, the processor allowed interrupts
to occur at multiple levels (up to sixteen), with circuits dedicated to
handling them in the right order. The cost savings were dramatic: as
DEC engineers later described it, ‘‘A single IBM channel was more
expensive than a PDP-1.’’54 The initial selling price was $120,000.

Digital Equipment Corporation sold about fifty PDP-1s. It was hardly a
commercial success, but it deserves a place in the history of computing
for its architectural innovations—innovations that were as profound and
long-lasting as those embodied in John von Neumann’s 1945 report on
the EDVAC.

The modest sales of the PDP-1 set the stage for Digital’s next step.
That was to establish a close relationship between supplier and customer
that differed radically from those of IBM and its competitors. From the
time of its founding, IBM’s policy had been to lease, not sell, its
equipment. That policy gave it a number of advantages over its compe-
titors; it also required capital resources that DEC did not have. Although
IBM agreed to sell its machines as part of a Consent Decree effective
January 1956, leasing continued to be its preferred way of doing
business.55 That policy implied that the machine on the customer’s
premises was not his or hers to do with as he wished; it belonged to IBM,
and only IBM was allowed to modify it. The kinds of modifications that
NASA made at its Houston center, described above, were the rare
exceptions to this policy.

The relationship DEC developed with its customers grew to be
precisely the opposite. The PDP-1 was sold, not leased. DEC not only
permitted, it encouraged modification by its customers. The PDP-1’s
customers were few, but they were sophisticated. The first was the
Cambridge consulting firm Bolt Beranek and Newman (BBN), which
later became famous for its role in creating the Internet. Others
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included the Lawrence Livermore Laboratory, Atomic Energy of
Canada, and the telecommunications giant, ITT.56 Indeed, a number
of improvements to the PDP-1 were suggested by Edward Fredkin of
BBN after the first one was installed there. Olsen donated another PDP-1
to MIT, where it became legendary as the basis for the hacker culture
later celebrated in popular folklore. These students flocked to the PDP-1
rather than wait their turn to submit decks of cards to the campus IBM
mainframe. Among its most famous applications was as a controller for
the Tech Model Railroad Club’s layout.57 Clearly the economics of
mainframe computer usage, as practiced not only at commercial instal-
lations but also at MIT’s own mainframe facility, did not apply to the
PDP-1.

DEC soon began publishing detailed specifications about the inner
workings of its products, and it distributed them widely. Stan Olsen,
Kenneth Olsen’s brother and an employee of the company, said he
wanted the equivalent of ‘‘a Sears Roebuck catalog’’ for Digital’s
products, with plenty of tutorial information on how to hook them up
to each other and to external industrial or laboratory equipment.58 At
Stan’s suggestion, and in contrast to the policy of other players in the
industry, DEC printed these manuals on newsprint, cheaply bound and
costing pennies a copy to produce (figure 4.2). DEC salesmen carried
bundles of these around and distributed them liberally to their custo-
mers or to almost anyone they thought might be a customer.

This policy of encouraging its customers to learn about and modify its
products was one borne of necessity. The tiny company, operating in a
corner of the Assabet Mills, could not afford to develop the specialized
interfaces, installation hardware, and software that were needed to turn
a general-purpose computer into a useful product. IBM could afford to
do that, but DEC had no choice but to let its customers in on what, for
other companies, were jealously guarded secrets of the inner workings of
its products. DEC found, to the surprise of many, that not only did the
customers not mind the work but they welcomed the opportunity.59

The PDP-8 The product that revealed the size of this market was one
that was first shipped in 1965: the PDP-8 (figure 4.3). DEC installed over
50,000 PDP-8 systems, plus uncounted single-chip implementations
developed years later.60

The PDP-8 had a word length of 12 bits, and DEC engineers have
traced its origins to discussions with the Foxboro Corporation for a
process-control application. They also acknowledge the influence of the
12-bit CDC-160 on their decision.61 Another influence was a computer
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designed by Wes Clark of Lincoln Labs called the LINC, a 12-bit machine
intended to be used as a personal computer by someone working in a
laboratory setting.62 Under the leadership of C. Gordon Bell, and with
Edson DeCastro responsible for the logic design, DEC came out with a
12-bit computer, the PDP-5, in late 1963. Two years later they introduced
a much-improved successor, the PDP-8.

The PDP-8’s success, and the minicomputer phenomenon it spawned,
was due to a convergence of a number of factors, including perfor-
mance, storage, packaging, and price. Performance was one factor. The
PDP-8’s circuits used germanium transistors made by the ‘‘micro-alloy
diffused’’ process, pioneered by Philco for its ill-fated S-2000 series.
These transistors operated at significantly higher speeds than those
made by other techniques. (A PDP-8 could perform about 35,000
additions per second.)63 The 12-bit word length severely limited the
amount of memory a PDP-8 could directly access. Seven bits of a word
comprised the address field; that gave access to 27 or 128 words. The

Figure 4.2
DEC manuals. DEC had these technical manuals printed on cheap newsprint,
and the company gave them away free to anyone who had an interest in using a
minicomputer. (Source : Mark Avino, NASM.)
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Figure 4.3
Digital Equipment Corporation PDP-8. The computer’s logic modules were
mounted on two towers rising from the control panel. Normally these were
enclosed in smoked plastic. Note the discrete circuits on the boards on the left:
The original PDP-8 used discrete, not integrated circuits. (Source : Laurie Minor,
Smithsonian.)
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PDP-8 got around that limitation in two ways. One was to use ‘‘indirect
addressing,’’ to specify in the address field a memory location that
contained not the desired piece of data but the address of that data. (This
allowed for the full 12 bits of a word instead of only seven to be used for
an address.) The other was to divide the memory into separately
addressed ‘‘pages,’’ exploiting the fact that most of the time one is
accessing data from a small portion of memory; only occassionally would
the computer have to jump to another page. That process was not as
simple as addressing memory directly, but it did not slow things down if
it did not happen too often.

Improvements in logic and core memory technology reduced the
memory cycle time to 1.6 microseconds—slightly faster than the IBM
7090, four times faster than the CDC 160, and over a thousand times
faster than the Bendix G-15, the fastest drum computer of the late
1950s.64 The PDP-8’s short word length meant that it could not compete
with its mainframe competitors in doing arithmetic on 10-digit decimal
or floating-point numbers, but for many other applications it was as fast
as any computer one could buy at any price.65 That kind of performance
made the PDP-8 and the minicomputers that followed it fundamentally
different from the G-15, the LGP-30, the IBM 1401, and other ‘‘small’’
computers.

The basic PDP-8 came with four thousand words of memory, divided
into 32 blocks of 128 words each. Access across a block, or ‘‘page,’’ was
possible by setting one of two bits in the operation code of an instruction
word. For external memory DEC provided a simple, inexpensive, but
capable tape system derived from the LINC. They called it ‘‘DECtape.’’
Again in contrast to mainframe tape systems, a reel of DECtape was light
and portable; the drive was compact and could fit into the same
equipment rack as the computer itself. Data could be read or written
in either direction, in blocks of 128 words, not just appended at the end
of a record. DECtape acted more like the floppy disk drives on modern
personal computers, than like the archival storage style of mainframe
tape drives.66

The physical packaging of the PDP-8, a factor that mattered less for
large systems, played a key role in its success. The PDP-8 used a series of
compact modules, on which transistors, resistors, and other components
were mounted. Each module performed a well-defined logic function
(similar to the functions that the first integrated circuits performed).
These in turn were plugged into a hinged chassis that opened like a
book. The result was a system consisting of processor, control panel, and
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core memory in a package small enough to be embedded into other
equipment. The modules themselves were interconnected by wire-wrap
(see chapter 2). DEC used automatic wire-wrapping machinery from the
Gardner-Denver Corporation to wire the PDP-8. This eliminated wiring
errors and allowed DEC to handle the large orders it soon received. The
computer occupied eight cubic feet of volume and weighed 250
pounds.67

There was the matter of pricing the PDP-8. A low price would generate
sales, but it might also prevent DEC from generating enough revenue to
support research and development, which it would need to keep its lead
in technology and (avoid the fate of many of the start-up computer
companies of the mid-1950s, which ended up being bought by estab-
lished companies like Burroughs or NCR). Executives at DEC decided to
take the risk, and they priced the PDP-8 at $18,000, including a teletype
terminal for I/O. Within a few years one could be bought for less than
$10,000. The low price shocked the computer industry and generated a
flood of orders. Once again all estimates of the size of the market for
computers turned out to be too timid.68 Established companies, includ-
ing IBM, eventually entered this market, but DEC continued to grow and
prosper. It found a way, first of all, to stay at the forefront of computer
technology by continuing to draw from the knowledege and skills of the
MIT research community. It also continued to keep the cost of its
operations low. Being based in an old woolen mill certainly helped,
but even more important was the relationship DEC developed with its
customers, who took responsibility for development work and associated
costs. (This will be discussed shortly.)

For loading and editing programs the PDP-8 used a new device from
the Teletype Corporation, the Model 33 ASR (‘‘automatic send-
receive’’).69 It was cheaper, simpler, and more rugged than the Flexo-
writer used by earlier small computers (figure 4.4). Like the Flexowriter,
it functioned as a typewriter that could print onto a roll of continuous
paper, send a code indicating what key was pressed directly to a
computer, or punch that code onto a paper tape. Data were transmitted
at a rate from six to ten characters per second. Introduced in the mid-
1960s, the Model 33 was one of the first to adopt the standard for coding
bits then being promulgated by the American Standards Association, a
code known as ASCII (American Standard Code for Information Inter-
change). The Flexowriter’s code was popular with some business equip-
ment companies, but its code was rejected as a basis for the computer
industry when ASCII was developed.70 Just as the Chain Printer symbo-
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lized the mainframe computing environment, the Model 33 came to
symbolize the minicomputer era and the beginnings of the personal
computer era that followed it. It had a far-reaching effect on personal
computing, especially on the keyboard: the control and escape keys, for
example, first made their general appearance on the Model 33. Many
other key codes peculiar to this machine found their way into personal
computer software fifteen years later, with few people realizing how they
got there.

Finally, there was the computer’s name. ‘‘Minicomputer’’ was catchy, it
fit the times, and it gave the PDP-8 an identity. One could obtain a
minicomputer and not feel obliged also to get a restrictive lease

Figure 4.4
An ASR-33 Teletype, the standard input/output device for early minicomputers,
although it was not originally designed for that purpose. Note the ‘‘Control’’
(CTRL) and ‘‘Escape’’ (ESC) keys, which later became standard for desktop
computer keyboards. The ‘‘X-ON’’ (CTRL-Q) and ‘‘X-OFF’’ (CTRL-S)
commands also became embedded into personal computer operating systems.
The ‘‘@’’ symbol (Shift-P) was later adopted for indicating addresses on the
Internet. (Source : Charles Babbage Institute, University of Minnesota.)
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agreement, a climate-controlled room, or a team of technicians whose
job seemed to be keeping users away. The miniskirt happened to come
along (from Britain) at the time the PDP-8 was beginning to sell, and no
doubt some of its glamour was transferred to the computer. It may have
been a DEC salesman stationed in Europe who gave the PDP-8 that
name.71 (Given Kenneth Olsen’s conservative religious upbringing, it
was unlikely that he would have come up with it. Of Scandinavian
descent, he neither smoked nor drank nor used profanity.) Another
source of the name, one that fits the PDP-8 perfectly, was also a British
export—the Morris Mini-Minor, designed by the legendary automobile
engineer Alec Issigonis, in response to the Suez Canal Crisis that cut off
Persian Gulf oil to Britain in 1956. Issigonis’s design was lightweight,
responsive, and economical to operate. Most important, it outperformed
most of the stodgy, bloated British cars with which it competed. The
British exported Mini-Minors and miniskirts around the world. Digital
Equipment Corporation did the same with minicomputers.

Programming a PDP-8 to do something useful required no small
amount of skill. Its limited memory steered programmers away from
high-level programming languages and toward assembly or even
machine code. But the simplicity of the PDP-8’s architecture, coupled
with DEC’s policy of making information about it freely available, made
it an easy computer to understand. This combination of factors gave rise
to the so-called original equipment manufacturer (OEM); a separate
company that bought minicomputers, added specialized hardware for
input and output, wrote specialized software for the resulting systems,
and sold them (at a high markup) under its own label. The origin of the
term ‘‘OEM’’ is obscure. In some early references it implies that the
computer manufacturer, not the third party, is the OEM, which seems a
logical definition of ‘‘original equipment.’’ Eventually, however, the
meaning attached entirely to the party that built systems around the
mini.72

Dealing with an OEM relieved the minicomputer manufacturer of the
need to develop specialized software. DEC developed some applications
of its own, such as the computerized typesetting system, but that was the
exception.73 A typical OEM product was the LS-8 from Electronics
Diversified of Hillsboro, Oregon, which it was used to operate theatrical
stage lighting, controlling a complex of lights through programmed
sequences. The LS-8’s abilities were cited as a key element in the success
of the long-running Broadway hit A Chorus Line.74 Inside the LS-8 was a
PDP-8A, a model that DEC had introduced in 1975. Users of the LS-8 did
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not necessarily know that, because the LS-8 had its own control panel,
tailored not to computer users but to theatrical lighting crews. OEM
applications ranged across all segments of society, from medical instru-
mentation to small business record keeping, to industrial controllers.
One PDP-8–based system was even installed in a potato-picking machine
and carried on the back of a tractor (figure 4.5).75

The DEC Culture Alec Issigonis believed that the key to the success of
the Morris Mini-Minor was that it was designed by a capable engineering
team of no more than six persons, which was permitted by management
to operate with little or no outside interference.76 That is about as good
a description of the culture at Digital Equipment as one could hope to
find.77 Though growing fast, DEC retained the atmosphere of a small
company where responsibility for product development fell to small
groups of engineers. In 1965 it had revenues of $15 million and 876
employees. By 1970 DEC had revenues of $135 million and 5,800

Figure 4.5
A PDP-8 mounted on a tractor and controlling a potato-picker. Although an
awkward installation, it foreshadowed the day when microprocessors were
embedded into nearly all complex machinery, on the farm and elsewhere.
(Source : Digital Equipment Corporation.)
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employees.78 That was a small fraction of IBM’s size, although DEC was
shipping as many PDP-8 computers as IBM was shipping of its 360 line.

As Digital grew into one of IBM’s major competitors, it remained
Spartan—excessively so. Digital gradually took over more and more of
the Assabet Mills, until it eventually bought it all (figure 4.6). Finding
one’s way through the complex was daunting, but the ‘‘Mill rats’’ who
worked there memorized the location of the corridors, bridges, and
passageways. Digital opened branch facilities in neighboring towns, but
‘‘the Mill’’ remained the spiritual center of the company. Customers
were continually amazed at its simplicity and lack of pretension. One
Wall Street analyst said, with unconcealed scorn, that the company had
only ‘‘barely refurbished’’ the nineteenth-century mill before moving
in.79 An administrator from the Veterans Administration, who was
adapting DEC equipment for monitoring brain functions during
surgery, expressed similar surprise:

I don’t know if you’ve ever been to the original factory, but it is (or was) a nice
old nineteenth-century mill that was used to make wool blankets during the civil
war, so the wooden floors were soaked with lanolin and had to be swabbed
occasionally. It was a huge building, and a little spooky to work in at night when
no one else was around.80

Figure 4.6
The Mill, Maynard, Massachusetts. Headquarters for Digital Equipment Corpora-
tion. (Source : Digital Equipment Corporation.)
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A professor of English from a small midwestern college, who wanted to
use a PDP-8 to sort and classify data on the London Stage in the
seventeenth and eighteenth centuries, described his first visit to the
Mill this way:

Maynard is still rural enough to remind one that Thoreau once roamed its
woods. Like many New England towns it has a dam in its river just above the
center and a jumble of old red brick mills mellowing toward purple beneath the
dam. DEC apparently occupied all the mill buildings in Maynard Center, and
they were all connected by abutment at some angle or another by covered
bridges, and the river got through them somehow.

The main entrance from the visitors’ disintegrating asphalt parking lot was a
wooden footbridge across a gully into an upper floor of one of the factory
buildings. One entered a fairly large, brightly lighted, unadorned, carpetless
section of a loft with a counter and a door at the far end. At the counter a
motherly person helped one write down one’s business on a card and asked one
to take a seat in a row of about seven chairs down the middle of the room. There
were a few dog-eared magazines to look at. It was impossible to deduce the
principle of their selection or the series of accidents by which they had arrived
here. Colorado Municipalities, Cat-Lover’s Digest, Psychology Today.81

A cult fascination with Digital arose, and many customers, especially
scientists or fellow engineers, were encouraged to buy by the Spartan
image. DEC represented everything that was liberating about compu-
ters, while IBM, with its dress code and above all its punched card,
represented everything that had gone wrong.82 Wall Street analysts,
accustomed to the trappings of corporate wealth and power, took the
Mill culture as a sign that the company was not a serious computer
company, like IBM or UNIVAC.83 More to the point, DEC’s marketing
strategy (including paying their salesmen a salary instead of commis-
sions) was minimal. Some argued it was worse than that: that DEC had
‘‘contempt’’ for marketing, and thus was missing chances to grow even
bigger than it did.84 DEC did not grow as fast as Control Data or
Scientific Data Systems, another company that started up at the same
time, but it was selling PDP-8s as fast as it could make them, and it was
opening up new markets for computers that neither CDC nor SDS had
penetrated. It was this last quality that set the company apart. One could
say from the perspective of the 1990s that DEC was just another
computer company that grew, prospered, and then was eclipsed by
events. But that would miss the fact that DEC reoriented computing
toward what we now assume is the ‘‘natural’’ or obvious way to define
computing. It is impossible to understand the state of computing at the

138 Chapter 4



end of the twentieth century without understanding computing’s debt to
the engineers at the Assabet Mills.

But whatever its image, DEC did not see itself as a company that built
only small computers. Simultaneously with the PDP-8 it introduced a
large system, the 36-bit PDP-6. Only twenty-three were sold, but an
improved version, the PDP-10, became a favorite of many university
computer science departments and other sophisticated customers. First
delivered in 1966, the PDP-10 was designed from the start to support
time-sharing as well as traditional batch processing. Outside the small
though influential group of people who used it, however, the PDP-10
made only a small dent on the mainframe business that IBM dominated
with its 7090 and 360-series machines.

DEC did eventually became a serious contender in the large systems
market with its VAX line, beginning in the late 1970s. By that time it had
also smoothed the rougher edges off of the Mill culture. Its sales force
continued to draw a salary, but in other respects DEC salesmen
resembled IBM’s. Digital remained in the Mill but refurbished the
visitors’ reception area so it resembled that of any other large corpora-
tion. (Because of its location in the middle of Maynard, however, there
still was limited parking; visitors simply parked on a downtown street,
being careful to put a few dimes into the meter to keep from getting a
ticket. Maynard still was a thrifty New England town.) The brick walls
were still there, adorned with a few well-chosen pieces of a loom or
carding machine leftover from the woolen mill days. A visitor could
announce his or her name to a receptionist seated at a well-appointed
security desk, settle into a comfortable and modern chair, and peruse
the Wall Street Journal while waiting for an appointment. By the late 1980s
the manufacturing had moved overseas or to more modern and
utilitarian buildings scattered throughout Massachusetts and New
Hampshire. The Mill was now a place for office workers seated at
desks, not for engineers at workbenches. Olsen’s successor, Robert B.
Palmer, decided in 1993 to move the company’s headquarters out of the
Mill and into a smaller, modern building in Maynard. Around the same
time word went out that the company was to be called Digital, not
DEC—a small change but somehow symbolic of the passing of an age.
The era of the minicomputer came to an end, but only after it had
transformed computing.
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The MIT Connection The Mill was one clue to DEC’s approach to
entering the computing business. A more revealing clue is found in a
corporate history that the company published in 1992 (when the
personal computer was challenging DEC’s business). The first chapter
of Digital at Work is a discussion not of the Mill, the PDP-1, or of Olsen,
but of ‘‘MIT and the Whirlwind Tradition.’’85 The chapter opens with a
photograph of MIT’s main building. The first photographs in the book
of people are of MIT students; next are photos of professors and of the
staff (Jay Forrester, Robert Everett, and J. A. O’Brien) of Project Whirl-
wind.

The Whirlwind computer was operational in 1950, and by the time
DEC was founded it was obsolete. But the foundations laid by Project
Whirlwind were stong enough to support DEC years later. The most
visible descendant of Whirlwind was the SAGE air-defense system. DEC,
the minicomputer, and the other computer companies that sprouted in
suburban Boston were other, more important offspring. Ken Olsen,
allied with Georges Doriot, found a way to carry the MIT atmosphere of
engineering research, whose greatest exponent was Jay Forrester, off the
campus, away from military funding, and into a commercial company. It
was so skillfully done, and it has been repeated so often, that in hindsight
it appears natural and obvious. Although there have been parallel
transfers to the private sector, few other products of World War II and
early Cold War weapons labs (radar, nuclear fission, supersonic aero-
dynamics, ballistic missiles) have enjoyed this trajectory. Computing, not
nuclear power, has become ‘‘too cheap to meter.’’

That new culture of technical entrepreneurship, considered by many
to be the main force behind the United States’s economic prosperity of
the 1990s, lasted longer than the ambience of the Mill. It was successfully
transplanted to Silicon Valley on the West Coast (although for reasons
yet to be understood, Route 128 around Boston, later dubbed the
Technology Highway, faded). In Silicon Valley, Stanford and Berkeley
took the place of MIT, and the Defense Advanced Research Projects
Agency (DARPA) took over from the U.S. Navy and the Air Force.86 A
host of venture capital firms emerged in San Francisco that were
patterned after Doriot’s American Research and Development Corpora-
tion. Many of the popular books that analyze this phenomenon miss its
university roots; others fail to understand the role of military funding.
Some concentrate on the wealth and extravagant lifestyles adopted by
the millionaires of Silicon Valley—hardly applicable to Ken Olsen, whose
plain living was legendary.
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IBM represented the perfection of what John Kenneth Galbraith
called the ‘‘technostructure’’: a large, highly organized, vertically inte-
grated firm that controlled, managed, and channeled the chaos of
technical innovation into market dominance. Central to smooth opera-
tions at IBM was a character from a best-seller from that era, The

Organization Man, by William Whyte.87 People made fun of the IBM
employee, with his white shirt and conservative suit, who followed the
‘‘IBM way’’ so closely. Yet who among them was not jealous of the
company’s profits and the generous commissions earned by IBM sales-
men? A closer reading of Whyte’s book reveals a genuine admiration for
such people, without whom a company could hardly survive, let alone
prosper. Olsen tapped into an alternate source of knowledge; he had no
choice. Olsen and his young engineers just out of MIT were ‘‘organiza-
tion men,’’ too, only of a different stripe. They, too, shared a set of
common values, only theirs came from the old temporary buildings on
the MIT campus, the ones where the Radiation Lab was housed during
the War. Those values seemed very different from IBM’s, but they were
strong enough to mold DEC employees into a competitive organization.
These engineers refuted the wisdom of the day, which stated that the era
of the lone pioneer was over, that start-up companies could never
compete against the giants.

The modest appearance of the PDP-8 concealed the magnitude of the
forces it set into motion. Mainframe computing would persist, although
its days of domination were numbered. As long as the economics were in
its favor, many would continue to use a computer by punching decks of
cards. IBM would continue to dominate the industry. The computer
business was not a zero-sum game; DEC’s gain was not automatically
IBM’s loss—at least not for a while. The mini showed that with the right
packaging, price, and above all, a more direct way for users to gain
access to computers, whole new markets would open up. That amounted
to nothing less than a redefinition of the word ‘‘computer,’’ just as
important as the one in the 1940s, when that word came to mean a
machine instead of a person that did calculations. Fulfilling that
potential required two more decades of technical development. Ulti-
mately Digital Equipment Corporation, as well as IBM and the other
mainframe companies, would be buffeted by the forces unleashed in the
Assabet Mills, forces that would prove impossible to restrain.
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5
The ‘‘Go-Go’’ Years and the System/360,
1961–1975

IBM, the Seven Dwarfs, and the BUNCH

As the minicomputer established its markets in the mid-1960s, most
computer dollars continued to be spent on large mainframes sold by
IBM and a few competitors. IBM held about a 70% share of the
commercial market, with 1963 revenues of $1.2 billion, growing to
over $3 billion in 1965, and $7.5 billion by 1970.1 Second to IBM was
Sperry Rand, inheritor of the original UNIVAC and ERA developments
of the 1940s, with $145 million in revenue. Other players in the U.S.
market were Control Data, Honeywell, Philco, Burroughs, RCA, General
Electric, and NCR. (AT&T also manufactured computers, but as a
regulated monopoly its figures are not comparable here.)2

With the partial exception of Control Data, all the above companies
focused on the same model of computing espoused by IBM: large,
centralized mainframe installations, running batches of programs
submitted as decks of punched cards.3 Those who wished to compete
in this business provided everything from bottom to top—hardware,
peripherals, system and applications software, and service. They sought
further to compete with IBM by offering to lease as well as sell their
computers outright. That required enormous amounts of capital, and
profits for everyone except IBM were low or nonexistent.

The status of the players at the time led IBM-ologists to call them
‘‘Snow White and the Seven Dwarfs.’’ The term was ironic: ‘‘Snow
White’’ was periodically the target of lawsuits either from one of the
‘‘Dwarfs’’ (e.g., Control Data) or the Federal government itself, for
monopoly practices. By the 1970s General Electric and RCA had left the
business, leading to a new term for IBM’s competitors, the ‘‘BUNCH’’
(Burroughs, UNIVAC, NCR, Control Data, and Honeywell). This
constellation remained stable into the 1980s—remarkably so in an



industry as volatile as computers. The advent of personal computers in
the 1980s changed the nature of the entire business, and the simple
grouping of mainframe suppliers unraveled.

IBM System/360

As DEC began shipping its PDP-8 in early 1965, IBM delivered the first of
a series of mainframes that would propel that company into an even
more commanding position in the industry. That was the System/360,
announced in April 1964 (figure 5.1). It was so named because it was
aimed at the full circle of customers, from business to science, at
customers who did a lot of mathematical calculation and at those who
did simpler arithmetic on large sets of data. System/360’s primary selling
point was that IBM was offering not one but a whole line of computers,

Figure 5.1
IBM System/360. A publicity photo from IBM, showing the vast size and scope of
products announced in 1964 (Source : IBM.)
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with a promise that programs written for one model would work on
larger models, thus saving a customer’s investment in software as
business grew. IBM announced six models on April 7, 1964. Later on
it announced others, while dropping some of the original six by the time
deliveries began. The idea was not entirely new: computer companies
had tried to preserve software compatibility as they introduced newer
models, as IBM had done with its 704, 709, and 7090 machines. But the
360 was a series of computers, all announced at the same time, offering
about a 25 : 1 performance range. Except for a small run of machines
delivered to the Army in the late 1950s, that had never been attempted
before.4

In an often-repeated phrase, first used in a Fortune magazine article,
an IBM employee said ‘‘you bet your company’’ on this line of compu-
ters.5 Besides the six computer models, IBM introduced ‘‘over 150
different things—new tapes, new disks, the 029 card punch’’ on the
same day.6 Had the 360 failed, it would have been a devastating blow,
although IBM would still have survived as a major player in the business.
The company could have introduced newer versions of its venerable
1401 and 7090-series machines, and it still had a steady stream of
revenue from precomputer punched card installations. But such a
failure would have restructured the computer industry.7

System/360 did not fail. Within weeks of the product announcement
in April 1964 orders began coming in. ‘‘Orders for System/360 compu-
ters promptly exceeded forecasts: over 1100 were received in the first
month. After five months the quantity had doubled, making it equal to a
fifth of the number of IBM computers installed in the U.S.’’8 The basic
architecture served as the anchor for IBM’s product line into the 1990s.

Manufacturing and delivering the line of computers required enor-
mous resources. The company expanded its production facilities, but
delivery schedules slipped, and shortages of key components arose. The
success of the 360 threatened the company’s existence almost as much as
a failure might have. For those employees driven to the breaking point—
and there were many—the jump in revenues for IBM may not have been
worth the physical and mental stress. From 1965 to 1970, thanks mostly
to System/360, IBM’s gross income more than doubled. Net earnings
also doubled, surpassing $1 billion by 1971. IBM had led the U.S.
computer industry since the mid 1950s. By 1970 it had an installed
base of 35,000 computers, and by the mid-1970s it made sense to
describe the U.S. computer industry as having two equal parts: IBM
on one side and everyone else combined on the other.9
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The problems IBM faced in trying to meet the demand—employee
burnout, missed shipping dates, quality control on the production
lines—were problems its competitors might have wished for. Obviously
many customers found this line of machines to their liking. Most NASA
centers, for example, quickly switched over to 360 (Model 65 or higher)
from their 7090 installations to meet the demands of putting a man on
the Moon. Commercial firms that used computers for business data
processing likewise replaced their 7030s and other systems with models
of the System/360. There was some resistance to replacing the venerable
1401 with the low-end 360, but in general the marketplace gave over-
whelming approval to the notion of a compatible family of machines
suitable for scientific as well as business applications (figure 5.2).

The decisions that led to System/360 came from an IBM committee
known as SPREAD, which met daily in the Sheraton New Englander
motel in Cos Cob, Connecticut, for two months in late 1961. Their

Figure 5.2
A small-scale System/360 installation. Note the vacuum-column tape drives in the
background and a typewriter with the Selectric mechanism in the front. In the
extreme foreground is a disk drive. (Source : IBM Archives.)
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report, issued internally on December 28, 1961, and published twenty-
two years later, reveals much about the state of computing, as it then
existed, and as key engineers and executives at IBM thought it would
become.10

Their deliberations began with a survey of the company’s existing
products. In 1961 IBM was fielding a confusing tangle of machines, few
of which were compatible with one another. Two of them stood out and
have already been described. The 1401 was a small, character-oriented
computer that rented at a low price and was well liked. Intended for
business customers, it was also popular for scientific use, mainly due to
the excellent Model 1403 chain printer that came with it. Sales of the
1401 were measured in the thousands. The other outstanding machine
was the 7090/7094 scientific computer. It was expensive, but its perfor-
mance made it popular with customers like NASA and the large aero-
space firms. Its sales measured in the low hundreds. IBM’s large business
computer, the 7070, had had disappointing sales, while the small
scientific machine, the 1620, was doing well, although not as well as
the 1401.11

All were transistorized machines, although the 7090 was a transistor-
ized version of the vacuum-tube 709, hastily introduced to win an Air
Force contract. Because both the 7090 and the 1401 were built on an old
foundation, it would have been difficult to achieve an order-of-magni-
tude increase in performance for either. And they were incompatible
with each other.12 Meanwhile, the notion of what divided business from
scientific use was not holding up. According to that notion, business
customers handled large sets of data, on which they performed simple
arithmetic, while scientific customers did the opposite, advanced calcu-
lation on small sets of data. In fact, however, along with a need for
floating-point arithmetic, scientists and engineers also needed to handle
large data sets in applications like finite-element analysis, for instance, a
technique developed for building complex aerospace structures.13 And
routine business transactions like payroll had increasing complexity, as
federal programs like Medicare spread through the workplace. The
SPREAD Committee, composed of members from both of IBM’s
product lines, did not agree at first on a unified product line, but
eventually they recognized its advantages and incorporated that as a
recommendation in their final report. As with many great ideas, the
notion of having a unified product line seems obvious in retrospect, but
that was not the way it seemed at first to those assembled in the rooms of
the motel.14
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Less obvious was scalability. Even though the SPREAD Committee
agreed that this was needed, at the early stages both Fred Brooks and
Gene Amdahl—later two of the 360’s principal architects—argued that
‘‘it couldn’t be done.’’15 Few other technologies, if any, scale simply. Civil
engineers, for example, use different criteria when designing large dams
than they use for small ones. The engine, transmission, power train, and
frame of a large sedan are not simply bigger versions of those designed
for a subcompact. What the SPREAD Committee was proposing was a
range of 25 : 1 in computing—more like comparing a subcompact to an
18-wheeler. By 1970, however, after IBM had announced an upgrade to
the 360 line, it was offering compatible computers with a 200 : 1 range.16

What changed Brooks’s and Amdahl’s mind was the rediscovery of a
concept almost as old as the stored-program computer itself. In 1951, at
a lecture given at a ceremony inaugurating the Manchester University
digital computer, Maurice Wilkes argued that ‘‘the best way to design an
automatic calculating machine’’ was to build its control section as a little
stored-program computer of its own, wherein each control operation
(say, the command to add two numbers) is broken down into a series of
‘‘micro-operations’’ directed by a matrix of components that stored a
‘‘micro-programme [sic].’’17 By adding a layer of complexity to the
design, Wilkes in fact simplified it. The design of the control unit,
typically the most difficult, could now be made up of an array of simpler
circuits, like those for the computer’s memory unit.18 Wilkes made the
bold assertion that this was the ‘‘best way’’ because he felt it would give
the design more logical regularity and simplicity; almost as an after-
thought he mentioned that ‘‘the order code need not be decided on
finally until a late stage in the construction of the machine.’’19 He did
not say anything about a series of machines or computers having a range
of power.

The idea was kept alive in later activity at Manchester, where John
Fairclough, a member of the SPREAD Committee, studied electrical
engineering. Through him came the notion of using microprogram-
ming (adopting the American spelling) as a way of implementing a
common set of instructions across the line of 360s, while allowing the
engineers charged with the detailed design of each specific model to
optimize the design for low cost and adequate performance. The
microprogram, in the form of a small read-only memory built into the
control unit of each model’s processor, would be written to ensure
compatibility. Microprogramming gave the 360’s designers ‘‘the ability to
separate the design process . . . from the control logic that effectively
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embodied the instruction-set characteristics of the machine we were
trying to develop.’’20

IBM’s adoption of this concept extended Wilkes’s original insight. In
essence it is a restatement of the fundamental property of a general-
purpose, stored-program computer—that by accepting complexity at
one level (computers require very large numbers of components), one
gains power and simplicity at another level (the components are in the
form of regular arrays that can be analyzed by tools of mathematics and
logic). Some understanding of this concept appears inchoate in the
earliest of the digital machines. Wilkes himself may have been inspired
by the Bell Labs relay computer Model VI, which he probably inspected
during a visit to America in 1950. On the Model VI a set of coils of wire
stored information that allowed the machine to execute complex sub-
sequences upon receiving one simple instruction from a paper tape.21

By adopting microprogramming, IBM gained one further advantage,
which some regard as the key to the 360’s initial success.22 That was the
ability to install a microprogram that would allow the processor to
understand instructions written for an earlier IBM computer. In this
way IBM salesmen could convince a customer to go with the new
technology without fear of suddenly rendering an investment in applica-
tions software obsolete. Larry Moss of IBM called this ability emulation,
implying that it was ‘‘as good as’’ (or even better than) the original,
rather than mere ‘‘simulation’’ or worse, ‘‘imitation.’’ The 360 Model 65
sold especially well because of its ability to emulate the large business
computer 7070, and IBM devoted extra resources to the low-end models
30 and 40 to emulate the 1401.23

In theory, any stored-program computer can be programmed to act as
if it were another—a consequence of its being a ‘‘Universal Turing
Machine,’’ named after the mathematician Alan M. Turing, who devel-
oped this concept in the 1930s. In practice, that usually implies an
unacceptable loss of performance, as the extra layers of code slow things
down. Trying to emulate one computer with another usually lands the
hapless designer in the ‘‘Turing Tar-Pit,’’ where anything is possible but
nothing is practical.24 The 360 avoided that pit because its emulation
used a combination of software and the microprogram of each
machine’s control unit (figure 5.3). When combined with the faster
circuits it also used, the combination permitted the new machines to run
the old programs as much as ten times faster than the same program
would have run on, say, a 1401. By 1967, according to some estimates,
over half of all 360 applications were emulations of older hardware.
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Figure 5.3
IBM 9020 Configuration Control Console. The 9020 consisted of a set of three
System/360, Model 50 computers, configured to operate in real time. The system
was designed to run correctly during the failure of any one or even two
individual computers. The 9020 systems were used for en route civilian air
traffic control operations throughout the United States until the summer of
1997. (Source : Terry McCrae, Smithsonian.)
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1401 emulation was especially crucial to IBM’s bet-the-company
gamble: In December 1963 Honeywell introduced the H-200 computer,
with a program they called ‘‘Liberator’’ that allowed it to run 1401
programs. H-200 sales were immediately brisk, just as IBM was announ-
cing the 360 line with its implied incompatibility with the 1401. The IBM
division that sold the 1401 went through a Slough of Despond in early
1964, but it climbed out after orders for the lower-end models of the 360
came rolling in.25 The success of emulation demonstrated a paradox of
computer terminology: software, despite its name, is more permanent
and hard to modify than hardware. To this day there are 1401 programs
running routine payroll and other data-processing jobs, on modern
computers from a variety of suppliers. When programmers coded these
jobs in the early 1960s using keypunch machines, they had no idea how
long-lived their work would be. (The longevity of 1401 software was a
major cause of the ‘‘Year-2000’’ bug.)

The System/360 had other architectural features worth mentioning.
Many of these were first introduced in a system called STRETCH,
designed for the Los Alamos National Laboratory and completed in
the early 1960s. The name came from its goal, to ‘‘stretch’’ the state of
the art in processing speed. After delivering the STRETCH to Los
Alamos in 1961, IBM marketed a commercial version as the IBM 7030,
but after eight deliveries it withdrew it and wrote off a large financial
loss. Later on IBM realized that perhaps it was not a failure after all,
since so many concepts first explored in STRETCH found their way into
the System/360.26

Every System/360 except for the smallest Model 20 contained sixteen
general-purpose registers in its central processor. Nearly all previous
computer designs specified one register, the accumulator, where simple
arithmetic and logical operations took place; another register, the index
register or ‘‘B-line,’’ held indexing information for memory access. Still
other registers might be dedicated to other special functions. In the 360,
any of the sixteen registers could be used for any operation (with a few
exceptions, like extra registers for floating-point numbers).

The 360’s word length was 32 bits—4 bits shorter than word length of
the 7090/7094 scientific computers, but because 32 was a power of 2, it
simplified the design. Most early computers used sets of 6 bits to encode
characters; System/360 IBM used 8 bits, which Werner Buchholz of IBM
called a ‘‘byte,’’ in 1956.27 Because eight is also a power of 2, this further
simplified the machine’s logic. It also allowed 28 or 256 different
combinations for each character; which was more than adequate for
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upper- and lowercase letters, the decimal digits 1 to 10, punctuation,
accent marks, and so on. And since 4 bits were adequate to encode a
single decimal digit, one could ‘‘pack’’ two decimal digits into each byte,
compared to only one decimal digit in a 6-bit byte. (The 360’s memory
was addressed at the byte level; one could not fetch a sequence of bits
that began in the middle of a byte.)

To encode the 256 different combinations, IBM chose an extension of
a code they had developed for punched card equipment. This Extended
Binary Coded Decimal Interchange Code (EBCDIC) was well designed,
complete, and offered room for future expansion. It had one unfortu-
nate characteristic—incompatibility with the ASCII standard being
developed at the same time. ASCII, supported by the American National
Standards Institute in 1963, standardized only seven bits, not eight. One
reason was that punched paper tape was still in common use, and the
committee felt that punching eight holes across a standard piece of tape
would weaken it too much. (There were a few other reasons as well.)
The lack of an 8-bit standard made it inferior to EBCDIC, but because of
its official status, ASCII was adopted everywhere but at IBM. The rapid
spread of minicomputers using ASCII and Teletypes further helped
spread the code. With the dominance by IBM of mainframe installations,
neither standard was able to prevail over the other.28 IBM had had
representatives on the committee that developed ASCII, and the
System/360 had a provision to use either code, but the ASCII mode
was later dropped as it was little used.29 The adoption of two incompa-
tible standards within a few years of each other was unfortunate but
probably not surprising. Similar events would occur later on.30

There have been only a few consequences of the spread of these two
standards. In ASCII, the ten decimal digits were encoded with lower
numerical values than the letters of the alphabet; with EBCDIC it was the
opposite. Therefore a sorting program would sort ‘‘3240’’ before
‘‘Charles’’ if the data were encoded in ASCII, but ‘‘Charles’’ before
‘‘3240’’ if EBCDIC had been used. In EBCDIC, possibly reflecting its
punched card ancestry, the eight bits of a byte were numbered sequen-
tially from left to right, with the leftmost representing the most signifi-
cant bit; for example, the bit representing the 28th value was bit #0, 27 bit
1, and so on. With ASCII it was the reverse. From an engineering
standpoint this is a trivial difference, and most users never have to worry
about it.31 Because of its beachhead in minicomputers, ASCII would
prevail in the personal computer and workstation environment begin-
ning in the 1980s.
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The 360’s designers allowed for 4 bits of a word to address the 16
general-purpose registers, and 24 bits to address the machine’s core
memory. That allowed direct access to 224, or 16 million addresses,
which seemed adequate at the time. Like nearly every other computer
design, the address space was eventually found to be inadequate, and in
1981 IBM extended the number of address bits to 31, allowing for access
to 2 billion addresses.32

For the cheaper models, even allowing 24 bits was extravagant, as
these were intended to do their work with a much smaller memory
space. Carrying the extra address bits would impose an overhead penalty
that might allow competitors like Honeywell to offer machines that were
more cost-effective. IBM’s solution was to carry only 12 of the possible 24
address bits in an instruction. This number would then be added to
another number stored in a ‘‘base’’ address register to give the full 24-bit
address.33 If a program required fewer than 212 or four thousand bytes
of memory, going to the base register was not necessary. That was the
case for many smaller problems, especially those that the cheaper
models of the 360 were installed for. For longer problems there was of
course the additional penalty incurred when going to the base register to
obtain an address, but in practice this was not a severe problem.

Finally, the System/360 retained the concept of having channels to
handle input and output. With a standard interface, IBM could offer a
single line of tape, card, and printing equipment that worked across the
whole line of machines—a powerful selling point whose advantages
easily offset whatever compromises had to be made to provide compat-
ibility. The trade press called I/O devices ‘‘peripherals,’’ but they were
central to the System/360 project—a new model keypunch, new disk
and tape drives, and even the Selectric typewriter with its famous golf-
ball print head and classic keyboard layout. All of these devices defined
the 360-era of mainframe computing as much as the beige, slanted
control panel.34

The architectural design of the 360 used creative and sometimes
brilliant compromises to achieve compatibility across a range of perfor-
mance. Initially it had a fairly simple design, but over the years it grew
ever more complex, baroque, and cumbersome. The fact that it could
grow as it did, enough to remain viable into the 1990s, is testimony to the
strength of the initial effort.

System/360 and the Full Circle of Computing The orders that began
streaming in for models of the 360 shortly after it was announced
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validated the decision to offer such an ambitious, unified line of
products. But did those orders mask any sectors in the ‘‘360 degrees’’
that the machines did not cover well? They did, though not in obvious
ways.

Chapter 4 discussed the rise of the minicomputer, led by the PDP-8,
which was introduced just as deliveries of the 360 began. As minicom-
puters grew in capability, they began to compete with IBM’s mainframe
line, but initially there was little overlap or competition. The PDP-8 was
not intended for the jobs the mainframes were being used for, such as
processing large payrolls, and the System/360 was ill-suited as a control-
ler for laboratory experiments, real-time data collection, and other uses
that the PDP-8 was especially good for. For those applications, IBM
offered an incompatible line of hardware.

Time-Sharing and System/360

There was, however, one very important sector that System/360 did not
cover—using a large computer interactively or ‘‘conversationally.’’ For
economic reasons one could not dedicate a mainframe to a single user,
so in practical terms the only way to use a large machine interactively was
for several users to share its computational cycles, or ‘‘time,’’ simulta-
neously.

The term ‘‘time-sharing’’ for computers has had several meanings.
The earliest meaning was fairly restricted, and referred only to the ability
of programmers to debug a program without having to prepare and
submit a new deck of cards into the queue of jobs for a system. The time
the computer spent going through the batch of jobs would be shared by
a programmer making a few changes to a program, which would then be
inserted into the original program that was already on the machine. By
the late 1960s the term had a more general definition, one that was
especially advocated by Professor John McCarthy, then of MIT, and
which will be used in the following discussion of the System/360. By that
definition, each user had the illusion that a complete machine and its
software was at his or her disposal. That included whatever programming
languages the computer supported, and any data sets the user wanted to
use, whether supplied by others or by the user. The only constraint was
the physical limits of the machine. That went far beyond the notion of
time-sharing as a tool for programmers, as well as beyond the interactive
nature of SAGE, which allowed multiple users of one and only one data
set, and beyond NASA’s real-time systems, which restricted users to both
specialized data sets and programming languages.
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What made such a concept thinkable was the disparity between the
few milliseconds (at least) between a typist’s keystrokes and the ability of
a computer to fetch and execute dozens, perhaps hundreds, of simple
instructions. The few seconds a person might pause to ponder the next
command to type in was time enough for a computer to let another
user’s creation emerge, grow, and die—at least in theory. In practice,
instructions that directed a computer to switch from one user to another
required many cycles of the computer’s processor just to keep track of
things. The time required by those instructions could easily take up all
the time—and more—between a user’s keystrokes. But the rewards for a
successful time-sharing system were great enough to lead many to try to
build one.

By the mid-1960s, time-sharing seemed an idea whose time had come.
An experimental system was operating at MIT on an IBM 7090 by 1962.
It evolved into Compatible Time-Sharing System (CTSS) using the
upgraded 7094.35 CTSS supported only a few users simultaneously, but
it did successfully address many concerns about time-sharing’s viability. It
led in part to a proposal for a more ambitious system, which would
become the centerpiece for Project MAC (‘‘Man and Computer,’’ a.k.a.
‘‘Machine-Aided Cognition’’).36 With support from the Defense
Advanced Research Projects Agency, Project MAC sought a computer
on which to base its system. System/360s were among those considered,
but in May 1964 Project MAC informed IBM that the just-announced
System/360 was not suitable. The project chose a General Electric
machine instead.37 Shortly after that, Bell Laboratories, another of
IBM’s most favored customers, spurned IBM and chose a GE system
for its time-sharing work. By 1967, GE seemed to be on its way to a
position of leadership in the computer business, based on its successful
GE-635 line of computers that seemed to support time-sharing better
than IBM’s products.

IBM’s own history of those events describes an air of crisis, a feeling
that after such hard work the company was rapidly losing its place in the
field and sinking in the face of competition.38 The 360’s basic architec-
ture was not hostile to time-sharing applications, but neither was it
optimum.39 Some of the participants in Project MAC recall that the
System/360’s most serious deficiency was its lack of dynamic address
translation: an ability to stop the execution of a program, move it out of
core memory to a disk, then at a later time move it back (probably into a
different section of core) and resume execution of it. Other members of
the Project MAC team have a different recollection—that it was not so
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much a matter of dynamic address translation as it was of the inherent
‘‘processor-oriented’’ architecture of the 360.40 In any event, time-
sharing requires the ability to swap programs to and from core quickly,
if each of several users is to have the illusion that the entire resources of
the computer are brought to bear on his or her problem.

The problem seemed to be that IBM simply did not see time-sharing
as as important as some customers wanted the company to see it.
Amdahl and Brooks had focused their attention on the need to
introduce a unified line of processors, which may have caused them to
miss the depth of feeling among IBM’s best customers for intrinsic
hardware features that supported time-sharing. Amdahl’s and Brooks’s
response, that the 360 would meet these customers’ needs, was techni-
cally true. But it did not convince MIT or Bell Labs that IBM shared their
vision of the future of computing.

With the heroic rededication of resources that IBM was famous for,
the company announced the Model 67 with address translation hard-
ware in August 1965. Historians have accepted the view that the Model
67 was a failure for IBM, perhaps because IBM’s announcement of it was
later introduced as evidence in an antitrust trial. This hasty announce-
ment was cited as an example of the company’s alleged policy of
announcing products more with an aim of cutting off competition
than of introducing genuine value. The Model 67’s time-sharing
system software (TSS) did not work well and IBM’s announcement of
it did not stop MIT and Bell Labs from going through with their
purchase of computers from General Electric. One systems programmer
who lived through that era stated:

Losing Project MAC and Bell Labs had important consequences for IBM. Seldom
after that would IBM processors be the machines of choice for leading-edge
academic computer science research. Project MAC would go on to implement
Multics [a time-sharing operating system] on a GE 645 and would have it in
general use at MIT by October, 1969. Also in 1969, the system that was to become
UNIX would be begun at Bell Labs as an offshoot and elegant simplification of
both CTSS and Multics, and that project, too, would not make use of IBM
processors.41

Comments like these are clouded as much as they are clarified by
hindsight. Early time-sharing systems worked well enough to demon-
strate the feasibility of the concept, but it took years before any of them
fulfilled their initial promise of supporting many users and running
different types of jobs with a quick response time. The Model
67, although a failure, laid the basis for a revamping of the entire
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System/360 line, in which time-sharing was available and did work well:
the System/370, announced at the end of the decade as an upgrade to
the 360 line. Throughout the 1970s and 1980s, System/370s using the
Conversational Monitoring System (CMS) software handled demanding
time-sharing applications.

Nor did General Electric vault to a position of leadership. GE sold its
computer business to Honeywell in 1970, a sale that allowed Honeywell
to make solid profits and gain customer loyalty for a few years.42 Bell
Laboratories found the GE time-sharing system wanting, and dropped
out of the MULTICS project in 1969. Two researchers there, Ken
Thompson and Dennis Ritchie, ended up developing UNIX, in part
because they needed an environment in which to do their work after
their employer removed the GE system. They began work on what
eventually became UNIX on a Digital Equipment Corporation PDP-7,
a computer with far less capability than the GE mainframe and already
obsolete in 1969. They later moved to a PDP-11. For the next decade and
a half, UNIX’s development would be associated with DEC computers.
The name implies that ‘‘UNIX’’ is a simplified form of ‘‘MULTICS,’’ and
it did borrow some of MULTICS’s features. UNIX was also inspired by
the earlier, and simpler, CTSS as well. UNIX’s impact on mainstream
computing would occur in the 1980s, and it will be discussed again in a
later chapter.

Whatever advantage Honeywell had in obtaining GE’s business, it did
not last the decade. We shall see that Honeywell also squandered a lead
in minicomputers. Still, Honeywell’s and GE’s loss was not IBM’s gain.
Successful commercial time-sharing systems became common in the late
1960s—too common, as venture capital firms funded too many compa-
nies for the market. Most of these companies used neither IBM nor GE/
Honeywell products, but rather PDP-10s from Digital Equipment
Corporation or SDS-940s from Scientific Data Systems. The revolution-
ary breakthroughs in interactivity, networking, and system software that
characterized computing in the late 1970s and early 1980s would not be
centered on IBM equipment.

The System/360 Model 67 repeated IBM’s experience with
STRETCH. Both were commercial failures, but both laid the ground-
work for the line of successful products that followed, whose success
overcame the initial lost revenues. The issues raised in litigation have
obscured the lesson of System/360 architecture—because it was so well
designed, it could absorb a major enhancement five years later and still
maintain software compatibility and its customer base. As for the crisis
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precipitated by MIT’s defection to General Electric, one can say that
IBM should have been more accommodating to MIT. To be fair, one
could also say, in hindsight, that MIT would have been better off basing
Project MAC around a different computer from the one it chose.

As the 1960s drew to a close, the minicomputer—especially new
models like the PDP-11 and Data General Nova—was breaking out of
its laboratory and OEM setting and moving into territory that IBM and
the ‘‘Seven Dwarfs’’ had considered their own. Unfortunately for IBM,
the 360’s architecture did not permit a minicomputer version—the low-
end 360 Model 20 was about as small and cheap as IBM could go with the
line, and it was already partly incompatible with the rest of the line.
Some basic architectural features, especially the use of input/output
channels and standardized interfaces to tape and disk drives, prevented
going much lower in price.

So despite the name of the series, there were sectors missing from the
full circle promised by System/360—sectors that would grow in the next
two decades. Orders for the 360 strained IBM’s resources, although IBM
was still big enough and astute enough not to ignore the minicomputer
market, and in 1969 it responded with System/3, an incompatible
computer that could be rented for as low as $1000 a month.43 It was
‘‘a candid concession that System/360 could not bridge the widening
opportunities in the marketplace.’’44 System/3 was a successful product,
because it was easier to adapt for small business and accounting jobs
than minicomputers, which often carried their laboratory workbench
heritage with them. One interesting feature of the System/3 was its use
of a new and smaller punched card that could encode 96 characters. Even
as this product was introduced, IBM was developing the storage medium
that would forever displace the punched card: the floppy disk. As soon as
inexpensive disk storage was made available for the computer, customers
abandoned the incompatible punched card. The venerable 80-column
card, however, continued to be popular through the next decade.

Fortune magazine’s quote that ‘‘you bet your company’’ on the 360,
which disturbed IBM’s senior management, turned out to be true, but
for the wrong reason. It was success, not failure, that threatened the
company’s existence. Success meant the need to raise capital quickly,
build new plants, hire new workers, and expand production. It meant
that anyone who wanted the company to adopt an alternate style of
computing, such as the ones that Project MAC or the minicomputer
companies promoted, would have to swim against the rushing current of
360 orders.
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The Period of Soaring Stocks

Spurred on by Defense Department spending for the Vietnam War, and
by NASA’s insatiable appetite for computing power to get a man on the
Moon, the late 1960s was a time of growth and prosperity for the
computer industry in the United States. For those who remember the
personal computer explosion of the 1980s, it is easy to overlook earlier
events. From about 1966 to 1968, almost any stock that had ‘‘-ex,’’
‘‘-tronics,’’ or simply ‘‘-tron’’ in its name rode an upward trajectory that
rivalled the Moon rockets.45 John Brooks, a well-known business journal-
ist and astute observer of Wall Street, labeled them the ‘‘go-go years,’’
referring to the rabid chants of brokers watching their fortunes ascend
with the daily stock ticker.46

Some of the go-go stocks were issued by companies that focused on
the base technology of transistors and the newly invented integrated
circuit. Others were brand-new minicomputer companies following in
Digital Equipment Corporation’s footsteps. Others were the time-shar-
ing utilities. Others were software and service companies, which
sprouted to help ease customers into the complexity of operating the
complex and expensive new mainframes. Some were ‘‘plug-compatible
manufacturers,’’ which sold, at lower cost, pieces of a system that were
compatible with IBM’s product line. Finally, there were third-party
leasing companies that lived under an ‘‘umbrella’’ of IBM’s pricing
and leasing policy. We shall begin with the latter group.

Leasing Companies Having entered into a consent decree with the U.S.
government in 1956, IBM agreed to sell as well as lease its computers.
Leasing continued to predominate, however, because IBM had the
capital that few others had. And many customers liked leasing, which
did not tie up their capital, and made it possible to cancel a lease and
move to the better product if new technology came along. IBM, in turn,
received a steady flow of cash from its leases, although it had to meet the
challenge of competitors offering machines with newer technology.

The key to the emergence of leasing companies in the mid-1960s was
the perception that IBM was charging artificially high rents on its
equipment—specifically, that IBM was charging rent on the expectation
that the computers would become obsolescent, and therefore returned
from lease, in as little as five years. The leasing companies reckoned that
customers would want to hang on to them longer—up to ten years.
Beginning with a company called Leasco that started in a Brooklyn loft
in 1961, these companies would buy mainframes from IBM (as
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permitted by the consent decree), and then rent them to customers at
up to 20 percent less than what IBM charged.47 These companies had
little trouble raising the necessary capital from Wall Street, as they were
able to convince financiers that they were sheltered under an umbrella
of artificially high prices charged by IBM.

The question remained whether IBM’s prices were, in fact, too high.
Given the enormous cost of bringing out System/360, IBM naturally
wanted to get that investment back. There were other factors, however.
System/360 offered its own software-compatible path for a customer to
migrate to a new computer. With this generation of mainframes, the cost
of writing software was higher than ever before, which might encourage
customers to hold onto a computer even if a competitor offered better
hardware but no software compatibility. Financial models that predicted
how long a customer might keep a mainframe had to take this into
account, but by how much?

Even as the 360 was going to its first customers, IBM recognized that
the pace of technology was not going to slacken. The company spent
lavishly on research facilities, building up laboratories in Yorktown
Heights, New York, San Jose, California, and in Europe. That was an
expense the leasing companies did not have to bear, but it meant that
IBM could ensure that at least some technical innovation was under its
control. To the extent that IBM dominated the computer industry, it
could mete out this innovation gradually, thus not making its installed
base obsolete too quickly. But dominance was a fleeting thing: if IBM
held back too much, another company was sure to enter in. And others
did, as the examples of Control Data and RCA will reveal.

Just how much of the market IBM controlled became the subject of
another federal antitrust action beginning in 1969, but no single
company, no matter how big, could control the pace of the underlying
technology. GE’s sales to customers who wanted time-sharing facilities
was only one example. In any event, at the end of the 1960s IBM
announced a successor to System/360—the 370 line. This line was
software-compatible with the 360, but it was better suited for time-
sharing, and it used integrated circuits for its processor and memory.
System/370 probably came sooner than IBM wanted, but by 1970 it had
no choice.48 Given the timing of System/370’s announcement, perhaps
IBM’s prices were not too high after all.

In the late 1970s the company had to respond to other pressures as
well. These came from the minicomputer companies whose products
were evolving to handle mainframe applications. In 1978, IBM intro-
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duced a low-cost 4300-series, compatible with the 360-370 line, and a
midsized AS/400, which was not compatible. It responded to pressures
from the makers of large mainframes by bringing out a successor to the
larger models of the 370—the 3030 series. None of these competitive
pressures—from other mainframes, from the minicomputer, from time-
sharing, and from low-cost workstations (discussed later)—were enough
to do serious damage, but their combination, evolving by 1990 into a
networked system of inexpensive workstations, would.

System/360’s dominance of the market was certainly shorter than the
ten years that the leasing companies had gambled on, although not
every customer felt the need to upgrade immediately. In any event, the
pace of technology, combined with the end of the bull market in 1971
and with IBM’s careful manipulation of pricing and product announce-
ments, served to fold up the pricing umbrella by the mid-1970s, leaving
investors in the leasing companies with heavy financial losses.

Compatible Mainframes The second consequence of the announcement
of System/360 was a redefinition of the role of IBM’s principal compe-
titors, and led to the emergence of smaller companies aimed directly at
the 360 line. During the initial SPREAD Committee discussions, some-
one expressed the fear that by introducing a broad line of machines,
‘‘the competition would be out after each [specific model] with a rifle.’’
Unconstrained by a need for compatibility, someone could bring out a
machine with far better performance for the same cost.49 The commit-
tee had to argue that the advantages of having a path for upward
migration for 360-customers would overwhelm any advantages of a
competitor’s shot at a particular model.

At the highest end there would be no higher model to migrate to
anyway. Control Data Corporation, which introduced the small-scale
160A already mentioned, came out with its 6600 computer in 1964
(figure 5.4). Designed by Seymour Cray and soon dubbed a ‘‘super-
computer,’’ the 6600 offered what Seymour Cray wanted to deliver in a
computer—the fastest performance possible, period.50 In terms of
absolute sales, the CDC 6600 was not much of a threat, but its customers
were unusual: the weapons laboratories like Lawrence Livermore, the
large aerodynamics research organizations, the National Security
Agency, and others for whom performance was all that mattered.
These customers might collectively buy only a few units, but other, less
glamorous customers held them in high regard. Whatever systems they
chose was therefore reported and discussed seriously in the trade press.
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IBM countered with a System/360, Model 91, but it was late in delivering
it, and its performance never matched the CDC machines.

Here the compatibility issue took its toll. The 6600 owed a lot of its
performance to Seymour Cray’s talent for design, and Cray had the
further advantage that he could ‘‘start with a clean sheet of paper’’—
unconstrained by compatibility issues—whenever he designed a compu-
ter.51 IBM lost the battle for the high end to CDC (and later on to Cray
Research, founded by Seymour Cray in 1972). Control Data Corporation
eventually sued IBM, alleging that the Model 91 was a ‘‘phantom,’’
announced before it was ready, in order to kill the CDC 6600. Whatever
the merits of the lawsuit, except for a few exceptional customers, most
preferred the advantages of software compatibility. Even many weapons
laboratories, with their unlimited budgets, installed one or more
System/360s alongside their CDC 6600.

Another threat to the 360 came from RCA. RCA had tried and failed
to enter commercial computing in the 1950s with the BIZMAC, but in
1959 RCA had better luck with the model 501, a small commercial

Figure 5.4
Console of the Control Data Corporation’s CDC-6600, ca. 1964. The 6600 was
designed by Seymour Cray and popularized the term ‘‘supercomputer.’’ (Source :
Control Data Corporation Archives.)
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computer that was best known for being one of the first to be supplied
with a compiler for the COBOL programming language. Professor Saul
Rosen of Purdue University once said, ‘‘It was quite slow, and . . . the
COBOL compiler was also very slow, but for many users a slow COBOL
was better than no COBOL.’’52 Another transistorized computer, the
Model 301, was capable of real-time operation. (One was used by NASA
to sequence and control the Saturn rockets that took men to the Moon.)
Through the late 1950s and early 1960s, the company focused on
bringing color television to a consumer market, giving digital electronics
a lower priority.

Late in 1964 RCA announced a bolder offensive, the Spectra 70 series.
This was a line of four computers that would execute, without modifica-
tion, software written for corresponding models of the IBM 360 line.
And they would cost up to 40 percent less. This was the competition IBM
had feared. RCA did not need to plant spies inside IBM’s laboratories—
they could rely on specifications supplied to customers and software
developers. The System/360 project was so big that IBM had to share a
lot of information about it, and it was powerless to stop someone from
building what later on would be called a ‘‘clone.’’ Building 360-compa-
tible computers also became a quick way for the Soviet Union to
construct powerful mainframes.

RCA’s aggressive pricing came from several factors. Because it had
escaped the cost of designing the architecture that IBM had borne, its
development costs were less than one tenth of IBM’s.53 And by starting
later, RCA could also take advantage of advances in component technol-
ogy. Two models, the Spectra 70/45 and the 70/55, used true integrated
circuits, and thus offered better performance for the dollar than the
360.

RCA’s Spectra 70 Series was successful, but sales withered after IBM
returned fire in 1970 with its System/370, which also used integrated
circuits. After incurring massive losses with no end in sight, RCA
announced in 1971 that it was leaving the computer business. For a
bargain price, the installed customer base was bought by UNIVAC (now
a division of Sperry), and Digital Equipment Corporation bought RCA’s
brand-new manufacturing plant in Marlboro, Massachusetts. UNIVAC
continued to service the RCA machines and carefully cultivated the
hundreds of companies that owned them, eventually easing them over to
UNIVAC mainframes. This echoed the sale of GE’s computer business to
Honeywell in 1970: an electronics giant selling out to a company more
knowledgeable about marketing business equipment. Sperry UNIVAC
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got a good deal. It paid only $70 million for RCA’s business, compared to
the $234 million that Honeywell had paid for GE’s.54 Digital Equipment
Corporation got the ‘‘deal of a lifetime’’ in the Marlboro plant, finding
its modern facilities just what it needed at a time when it was expanding
rapidly.55

The Plug-Compatible Manufacturers

RCA’s failure did not invalidate the basic economics of copying the 360
architecture. Other companies with far less capital than RCA proved
successful, not by copying the entire line, but by targeting pieces of the
360 system: memory units, tape drives, and central processing units.
These companies, also operating under the umbrella of IBM’s pricing
policies, established the ‘‘plug-compatible manufacturer,’’ or PCM busi-
ness, another defining segment of the go-go years.

In 1970, Gene Amdahl, one of the company’s star computer designers,
left IBM to found a company that would make a compatible processor.
The Amdahl Corporation began installations in 1975 of its Model 470
V/6, a machine that, like the CDC-6600, competed with the top of the
IBM line. More than that, it far outperformed it. Unlike the CDC 6600,
the Amdahl processor could run IBM 360 software.56 Well before that
time, companies like Memorex, Telex, Ampex, Storage Technology, and
CalComp were offering tape drives, disk drives, and even main memory
units, that one could simply plug into an IBM 360 or 370 installation in
place of IBM’s own equipment (hence the name), giving equal or better
performance at a lower price. Coupled with an Amdahl processor, one
could thus build a complete computer system that ran all the 360
software almost without any ‘‘Big Blue’’ hardware. (IBM’s 360 products
were painted a distinctive blue.)

These were the true ‘‘rifle shots’’ that Fred Brooks had worried about,
and they did a lot of damage. On Wall Street, stock in these companies
soared. IBM responded in some cases by repackaging and repricing its
products to make the cost difference less. Those actions spawned no
fewer than ten lawsuits between 1969 and 1975, charging IBM with
antitrust violations.57 This was in addition to the U.S. Justice Depart-
ment’s own antitrust suit, launched in 1969, and the Control Data
lawsuit over the Model 91 already mentioned. Most of these suits were
settled by 1980, by which time the rush of technology had rendered their
substance irrelevant.

Some of the plug-compatibles prospered throughout all this, although
the bear market of the 1970s took its toll. Amdahl survived, mainly
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through financing from Fujitsu, a Japanese company that had been
casting about for ways to enter the U.S. computer market. In 1975
Fujitsu began building Amdahl computers in Japan for sale in the
United States, relying on Gene Amdahl’s talent to offer a competitive
design based on the latest integrated-circuit technology. Another Japa-
nese company, Hitachi, began making and selling plug-compatible
mainframes as well, sold in the United States under the name National
Advanced Systems, a division of National Semiconductor Corporation.58

This was the first serious Japanese competition ever faced by the U.S.
computer industry. A by-product of the PCM phenomenon, it long
outlasted most of the PCM companies themselves. IBM’s counter
punch, the faster 3030-series introduced in the late 1970s, slowed the
defections of customers to Amdahl’s machines, leaving a competitive
environment with the Japanese firmly entrenched. Gene Amdahl left the
company still bearing his name to form Trilogy in 1980, but Trilogy
never achieved the success he had hoped for. Many of the tape and disk
manufacturers folded or merged with one another; few survived into the
workstation era.59

UNIVAC, SDS Another consequence of the System/360 was that several
competitors found small sectors in the full circle where the 360’s
coverage was spotty. Besides the supercomputers and minicomputers
covering the high and low ends, in the middle some scientific and
engineering customers found that the performance of mid-range 360s
suffered in comparison to the elegant 7090s they were obliged to
abandon. These customers were more willing than others to go with a
competitor, primarily because they were used to writing much of their
own software. Sperry UNIVAC developed a version of its 1100 series of
mainframes that employed integrated circuits and offered fast proces-
sing speeds. The 1108 mainframe, announced in 1964, sold especially
well.60 The 1100-series of computers was a strong challenge to the 360
line and were the basis for most of UNIVAC’s profits into the early 1970s.
Sales were especially strong to government and military agencies such as
the Federal Aviation Administration.61

More dramatic was the success of a company that started up at the
same time as CDC and DEC, namely Scientific Data Systems of Califor-
nia. SDS was founded by Max Palevsky, a philosophy major in college
who found that, because of the invention of the digital computer, the
1950s was the ‘‘first time in history that a philosopher could get a job!’’62

Palevsky had first worked on a computer project at Bendix, then joined
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Packard-Bell, a small electronics firm that he claims he found in the
Yellow Pages. He convinced the company that they ought to enter the
computer business. His training as a philosopher helped him under-
stand not only computer logic but also the art of argumentation. The
result, the inexpensive PB-250, was a modest success when it was
introduced in 1960.63 Palevsky developed an especially good relationship
with the German rocket engineers who had come after World War II to
Huntsville, Alabama, where they were involved with the Army’s ballistic
missile program. The computer that Palevsky had worked on at Bendix,
though of an unconventional design, had caught the attention of this
group, who were looking for ways of controlling a missile in real time.

In 1961 Palevsky left Packard Bell and founded his own company,
Scientific Data Systems, raising around $1 million in venture capital.
Within a year SDS had introduced a computer, the Model 910, and the
company was profitable. Palevsky attributes the 910’s success to its
superior Input/Output facilities. It also made effective use of the latest
developments in component technology. The 910 was one of the first
nonmilitary computers to use silicon transistors, and a model delivered
in 1965 was one of the first (along with RCA’s) to use integrated
circuits.64

By 1964 SDS had revenues greater than those of DEC—of course, it
had started out with over ten times the capital. In 1969, when SDS had
sales of $100 million and after-tax revenues of $10 million, Palevsky sold
the company to Xerox for $900 million worth of Xerox stock.65 (A few
years later Xerox wrote off the division, incurring a loss of $1.3 billion.)
Because of its modest beginnings, SDS is often compared to DEC, and its
computers are sometimes placed in the class of minicomputers. The 12-
bit Model 92 was in some ways similar to the PDP-8, but SDS’s main
business was the 24-bit 910 and 920—large-scale scientific computers,
not as powerful as Control Data’s supercomputers, but much more
capable than minicomputers. Another model introduced in 1965, the
940, was explicitly marketed for time-sharing use, and it was also a
success.66 Many West Coast time-sharing companies, including the
pioneer Tymshare, were based on it. The 940 was used for many
pioneering research projects in human-computer interaction and
networking in the Palo Alto, California area (before it became known
as ‘‘Silicon Valley’’). In a sense, it was the West Coast counterpart of the
DEC PDP-10, a well-engineered, time-sharing system that had its greatest
impact in advanced computing research. By using the best components,
and by tailoring the design to suit scientific applications, SDS computers,
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like the UNIVAC 1108, were the natural descendants of the IBM 7090.
They were both sold and leased, and prices ranged up to $250,000.

In 1967 SDS announced a more powerful computer, the Sigma 7,
which cost around $1 million.67 Palevsky’s Huntsville connections served
his company well. By the early 1960s the facilities were transferred from
the Army to NASA, where, under the leadership of Wernher von Braun,
the ‘‘rocket team’’ was charged with developing the boosters that would
take men to the Moon and back. IBM hardware handled the bulk of the
Center’s chores, but SDS computers were installed to do real-time
simulations and tests of the rockets’ guidance systems. Drawing on a
relationship established when Palevsky was working for Bendix, Helmut
Hoelzer and Charles Bradshaw chose to install SDS computers after
becoming disillusioned with RCA machines they had initially ordered for
that purpose.68

SDS’s fortunes rose and fell with the Apollo program: even as men
were walking on the Moon in 1969, NASA was cutting back and having
to plan for operations on smaller budgets. Xerox bought Palevsky’s
company at a value ten times its earnings, expecting that SDS, now the
XDS division, would grow. Some journalists claimed that Palevsky knew he
was selling a company with no future, but Palevsky stated, under oath for
the United States vs. IBM antitrust trial, that he believed otherwise.69

The division did not grow, and Xerox closed XDS in 1975. SDS had no
adequate plan for expanding its products beyond the narrow niche it
occupied—again revealing the wisdom of IBM’s System/360 philosophy.
But Xerox must also shoulder the blame. The company had built up the
finest research laboratory for computing in the world, in Palo Alto,
California, but it failed to fit these two pieces of its organization together,
much less fit both of them into its core business of selling copiers.

Software Houses

A final measure of how the System/360 redefined the computer industry
was in its effect on software and ‘‘service bureaus.’’70 The idea of
forming a company that bought or rented a computer to deliver a
solution to another company’s problem was not new. The first may have
been Computer Usage Company, founded in 1955, which developed
programs for the IBM 701 and 704 for industrial clients.71 The major
computer companies had their own in-house service bureaus that
performed the same services—IBM’s went back to the era of tabulators,
and Control Data Corporation’s service business was as important
financially to the company as its hardware sales.
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One of the pioneering independent companies was Automatic Data
Processing, founded as Automatic Payrolls in 1949 by Henry Taub in
Paterson, New Jersey. ADP’s core business was handling payroll calcula-
tions for small and medium-sized companies. It primarily used IBM
tabulating machinery, even after it acquired its first computer in 1961.
The following year ADP’s revenues reached $1 million.72 It took a
conservative approach to technology, using the computer to process
data in batches of punched cards just as it had with its tabulators. Its first
salesman, Frank Lautenberg, continued Taub’s conservative and profit-
oriented approach when he took over as CEO in 1975. (Lautenberg later
became a U.S. senator from New Jersey.)73

Computer Sciences Corporation was founded in 1959 by Fletcher
Jones and Roy Nutt, who had worked in the southern California aero-
space industry. As described in chapter 3, CSC’s first contract was to
write a compiler for a business programming language (‘‘FACT’’) for
Honeywell. That evolved into a company that concentrated more on
scientific and engineering applications, for customers like the NASA-
Goddard Space Flight Center and the Jet Propulsion Laboratory. CSC
also did basic systems programming for the large mainframes being sold
in the mid-1960s.74 Another major company that had a similar mix of
scientific and commercial work was Informatics, founded by Walter F.
Bauer in 1963.

In contrast to the minicomputer companies, who let third party OEMs
customize a system for specific customers, IBM had a policy of including
that support, including systems analysis and programming, into the
already substantial price of the hardware. In 1968 IBM agreed to
charge for these services separately; still, the complexity of setting up
any System/360 meant that IBM had to work closely with its customers to
ensure that an installation went well. The decision to ‘‘unbundle’’
turned what had been a trickle into a flood of third-party mainframe
software and systems houses.75

The complexity of systems like the IBM 360 and its competitors
opened up new vistas. Manufacturers were hard-pressed to deliver all
the software needed to make these computers useful, because these
machines were designed to handle multiple tasks at the same time,
support remote terminals, be connected to one another in networks,
and deliver other features not present in the mainframes of the late
1950s. The introduction of commercial time-sharing systems opened up
still another avenue for growth. Many new software companies, like
American Management Systems (AMS), were formed with the specific
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goal of getting customers up to speed with this new and complex
technology.

While mindful of the impact a company like AMS would have on
revenues from its own software teams, IBM was probably relieved to have
such a company around to step into the breach. IBM was at the time
unable to deliver system and programming software that was as good as
its System/360 hardware. The original operating system software
intended for the 360 was delivered late, and when it was delivered it
did not work very well. And the programming language PL/I, intended
to be the main language for the System/360, was not well received. The
question arose, how could IBM, which could carry off such an ambitious
introduction of new hardware, fail so badly in delivering software for it?
Fred Brooks wrote a book to answer that question, The Mythical Man-

Month, which has become a classic statement of the difficulties of
managing complex software projects.76

After its decision to unbundle software pricing from hardware in 1969,
IBM became, in effect, a software house as well. That decision has been
described as an attempt to forestall rumored antitrust action. (If so, it
did not work, because the Justice Department filed suit the month after
IBM’s announcement.) It is more accurate to say that IBM acknowl-
edged that the computer industry had irrevocably changed, that soft-
ware and services were becoming a separate industry anyway.77

The spectrum of service and software providers not only ran from
scientific to commercial, it also included an axis of government and
military contractors. These provided what came to be known as ‘‘systems
integration’’ for specialized applications. One example was Electronic
Data Systems (EDS), founded by H. Ross Perot in 1962. Perot had been a
star salesman for IBM, and he had proposed that IBM set up a division
that would sell computer time, instead of the computers themselves, to
customers. When IBM turned him down he started EDS. After a shaky
start, the company prospered, growing rapidly in the mid-1960s after the
passage of the Medicare Act by Congress in 1965. Much of EDS’s
business was to customers in the federal government.78

The Cold War, especially after Sputnik in 1957, led to work for a
variety of companies to manage systems for defense agencies. This
business had deep roots, going back to the founding of the RAND
Corporation and its spin-off, the System Development Corporation
(SDC), to develop air defense software.79 What was new was that, for
the first time, there appeared companies that hoped to make profits only
by contracting for systems work, that were not, like SDC, federally
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funded extensions of a defense agency. Ramo-Woldridge, centered in
southern California, was perhaps the most successful of these. It was
founded in 1953, when Simon Ramo and Dean Woldridge left Hughes
Aircraft to form a company that focused on classified missiles and space
operations work. R-W was later acquired by Thompson, an automotive
supplier based in Cleveland, Ohio. That marriage of a ‘‘rust belt’’
industry with ‘‘high tech’’ might have seemed a poor one, but the
result, TRW, became one of the most profitable of these companies. A
major reason was that Thompson supplied a manufacturing capability
that the other systems houses lacked, which enabled TRW to win bids for
complex (mostly classified) space projects as a prime supplier. In the
mid-1960s, with net sales around $500 million, TRW began branching
into nonmilitary commercial work, building a division that developed a
database of credit information.80 The company remained focused on
military software and space systems, however. One of its employees,
Barry Boehm, helped found the discipline of ‘‘software engineering.’’
Another person TRW employed briefly, Bill Gates, helped develop
software for a computer network that managed the flow of water
through the series of dams on the Columbia River. (We shall return to
Gates’s experience with TRW and his subsequent career in a later
chapter.)

Besides TRW and the federally funded companies like SDC or MITRE,
there were dozens of smaller fry as well. Their common denominator
was that they supplied software and support services for a profit. Most of
these began in southern California, like TRW, often founded by aero-
space engineers. Some of them, wanting to be closer to the Pentagon,
moved to the Washington, D.C., area, more specifically, to the open
farmland in northern Virginia just beyond the District’s Beltway
(completed in 1964). Here land was cheap, and the new highways
made access to the Defense agencies easy. (These agencies, like the
Pentagon itself, were mainly on the Virginia side of the Potomac.)81 Most
of them have done very well, especially by profiting from defense
contracts during Ronald Reagan’s first term as president. The major
aerospace and defense companies also opened up divisions to serve this
market. The end of the Cold War has thrown these companies into
turmoil, but the systems analysis they pioneered has been of lasting value
and is now an accepted practice in most modern industries.

A final consequence of the System/360 was, indirectly, the antitrust
action filed by the U.S. Justice Department in January 1969, on the last
business day of the Johnson Administration. The suit dragged on for

170 Chapter 5



twelve years, generating enormous amounts of paper and work for teams
of lawyers from all sides. (The documents produced for the trial have
been a windfall for historians.) IBM continued to be profitable and to
introduce new and innovative products during this time; its revenues
tripled and its market share stayed at about 70 percent. One must
wonder what the company might have done otherwise. The premise of
the action was that IBM’s actions, and its dominance of the business,
were detrimental to the ‘‘dwarfs.’’ In January 1982, with a new admin-
istration in power, the Justice Department dismissed the case, stating that
it was ‘‘without merit.’’82 By 1982 the place of the mainframe was being
threatened by the personal computer, which had already been on the
market for a few years, and by local-area networking, just invented.
These developments, not the Justice Department, restructured the
industry, in spite of IBM’s role as a successful marketer of personal
computers. Whether IBM would have acted more aggressively in estab-
lishing its dominance of the PC market had there been no threat of
litigation remains unanswered.

The Fate of the BUNCH

The Justice Department suit implied that the BUNCH’s very existence
was being threatened by IBM’s policies. Ironically, each of the BUNCH
faced a depressing fate that had little to do with IBM.

In 1986 Burroughs and UNIVAC merged into a company called
Unisys, which briefly became the second-largest computer company. In
its travels from Eckert and Mauchly, to Remington Rand, to Sperry, to
Burroughs, the name UNIVAC was somewhere dropped. By 1986 few
remembered that ‘‘UNIVAC’’ was once synonymous with ‘‘computer,’’
like ‘‘Scotch’’ tape or ‘‘Thermos’’ bottle. The casual abandonment of
this venerated name was perhaps symbolic of the troubles of Unisys; with
a few years it began suffering losses and fell to the lower ranks. It cut
employment drastically, and after some painful restructuring began to
show some profits.

In the 1980s NCR made a brave attempt to adopt the new architec-
tures based on cheap microprocessors and the nonproprietary UNIX
operating system. It was one of the first large system companies to do so.
NCR also pioneered in building systems that gave mainframe perfor-
mance from clusters of smaller, microprocessor-based subunits—a Holy
Grail that many others had sought with little success. But its innovative
culture made the company a takeover target. In 1991, a now-deregulated
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AT&T, seeking to vault into a competitive position in large commercial
systems, bought NCR in a hostile takeover. Like the Burroughs-Univac
combination, this was also a disappointment. AT&T promised NCR
employees that it would preserve the computer company’s management
structure, culture, and even the initials (to mean ‘‘Networked Comput-
ing Resources’’ instead of ‘‘National Cash Register’’). But a few years
later AT&T broke all three promises when companies like SUN and
Silicon Graphics beat them to market with these kinds of products.
AT&T spun off NCR as an independent company in 1996.

Honeywell allied itself with the Nippon Electric Company (NEC) to
build its mainframes, which were IBM compatible. It had also been allied
since the 1970s with the French company Machines Bull and the Italian
company Olivetti. Beginning in 1986, Honeywell began a retreat out of
the mainframe business and the next year turned it completely over to
Bull, with NEC a minor partner.83 Honeywell continued supplying the
U.S. military market with domestic products, and along with Sperry
became a leading supplier of specialized aerospace computers, military
and civilian—a growing field as new-generation aircraft adopted ‘‘fly-by-
wire’’ controls. In the mid-1980s Honeywell developed, under military
contract, a set of specialized chips called VHSIC (Very High Speed
Integrated Circuits), which were resistant to radiation. But unlike the
situation two decades earlier, military contracts for integrated circuits
did not lead nicely to commercial products.84

Control Data had an unusual history. It developed a healthy business
of manufacturing tape drives and printers for competitors’ computers,
and it entered the service business as well. In 1968, with its stock riding
the crest of the go-go years, it used that stock to acquire the Baltimore
finance company Commercial Credit—a company many times larger
than CDC. The acquisition gave CDC a source of funds to finance its
diversification. Some observers charge that CDC milked the assets of
Commercial Credit and drained it of its vitality over the next two
decades, a foreshadowing of the leveraged buyouts of the 1980s.85

Unlike most of the companies that brought suit against IBM, Control
Data achieved a favorable settlement in 1973. That resulted in IBM’s
transferring its own Service Bureau to CDC.86

These victories made Bill Norris, CDC’s founder and chairman, look
like a wily fox, but we now know that Norris made the unforgivable error
of taking his eye off the advancing pace of technology.87 CDC’s success
came from the superior performance of its products, especially super-
computers—a class of machines that CDC pioneered. Norris’s ability to
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win in the courtroom or play with inflated stock was no substitute. CDC
never really survived Seymour Cray’s leaving. In 1972 Cray founded Cray
Research, with a laboratory next to his house in Chippewa Falls,
Wisconsin, and set out to recreate the spirit of CDC’s early days. The
CRAY-1 was introduced in 1976 and inaugurated a series of successful
supercomputers. CDC continued to introduce supercomputers, but
none could match the products from Seymour Cray’s laboratory.

Even more heartbreaking was the failure of CDC’s PLATO, an
interactive, graphics-based system intended for education and training
at all levels, from kindergarten on up (figure 5.5). It promised, for the
expert and lay-person alike, easy and direct access to information from
libraries and archives worldwide. CDC spent millions developing PLATO
and had a large pilot installation operating at the University of Illinois by
the mid-1970s.88 But ultimately it failed. The reasons are complex.
PLATO required a central CDC mainframe to run on, the terminals
were expensive, and PLATO may have been too far ahead of its time. In
1994 most of the predictions for PLATO came true, via the Internet and
using a system called the World Wide Web. (Note that the federal
government paid most of the R&D costs of these systems.) By then it
was too late for CDC to reap any benefits from PLATO. The company
began losing large amounts of money in the mid-1980s, and in 1986 Bill
Norris resigned. CDC survived, but only as a supplier of specialized
hardware and services, mainly to an ever-shrinking military market.

Conclusion

John Brooks’s ‘‘go-go years’’ are now a distant memory. The stories of
Apple, Microsoft, and other companies from the 1980s and 1990s make
those of an earlier era seem tame by comparison. People remember the
high-flying financial doings, but they forget that those were the years
when the foundation was laid for later transformations of the computer
industry. That foundation included building large systems using inte-
grated circuits, large data stores using disk files, and above all complex
software written in high-level languages. The rise of independent soft-
ware and systems houses, as well as plug-compatible manufacturers, also
foreshadowed a time when software companies would become equal if
not dominant partners in computing, and when clones of computer
architectures also became common. Finally, it was a time when Wall
Street learned that computers, semiconductors, and software deserved
as much attention as the Reading Railroad or United States Steel.
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Figure 5.5
CDC’s PLATO System. (top) One use for PLATO was to store and retrieve
engineering drawings and data. (middle) Another use, one that was widely
publicized, was for education. (bottom) A PLATO terminal being used by a
handicapped person (note the brace leaning against the desk). William Norris,
the head of Control Data, wrote and spoke extensively on the social benefits of
computing when made available to lay persons. The photograph inadvertently
reveals why PLATO ultimately failed. In the background is an early model of a
personal computer from Radio Shack. It is very primitive in comparison to
PLATO, but eventually personal computers became the basis for delivering
computing and telecommunications to the home, at a fraction of the cost of
PLATO. (Source : Charles Babbage Institute, University of Minnesota.)
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6
The Chip and Its Impact, 1965–1975

Just as the IBM System/360 transformed mainframe computing, so did a
series of new machines transform minicomputing in the late 1960s. At
first these two computing segments operated independently, but
during the 1970s they began to coalesce. Behind these changes was an
invention called the integrated circuit, now known universally as ‘‘the
chip.’’

Minicomputers such as the PDP-8 did not threaten mainframe busi-
ness; they exploited an untapped market and lived in symbiosis with
their large cousins. Some thought it might be possible to do a main-
frame’s work with an ensemble of minis, at far lower cost. Mainframe
salesmen, citing ‘‘Grosch’s Law,’’ argued that this tempting idea went
against a fundamental characteristic of computers that favored large
systems. Named for Herb Grosch (figure 6.1), a colorful figure in the
computer business, this law stated that a computer system that was twice
as big (i.e., that cost you twice as much money) got you not twice but
four times as much computing power. If you bought two small compu-
ters, giving you two times the power of a single one, you would not
do as well as you would if you used the money to buy a single larger
computer.1

Believers in that law cited several reasons for it. Computers of that era
used magnetic cores for storage. The cores themselves were cheap, but
the support circuitry needed to read, write, and erase information on
them was expensive. And a certain amount of that circuitry was required
whether a memory capacity was large or small. That made the cost per
bit higher for small memories than for large, so it was more economical
to choose the latter, with an accompanying large processor system to
take advantage of it. The most compelling reason was that no one really
knew how to link small computers to one another and get coordinated
performance out of the ensemble. It would have been like trying to fly



passengers across the Atlantic with an armada of biplanes instead of a
single jumbo jet. Eventually both barriers would fall, with the advent of
semiconductor memory and new network architectures. By the time that
happened—around the mid 1980s—the minicomputer itself had been
replaced by a microprocessor-based workstation.2 But as minicomputers
had grown more and more capable through the late 1960s, they had
slowly begun a penetration into mainframe territory while opening up
new areas of application. Grosch’s Law held, but it no longer ruled.

The force that drove the minicomputer was an improvement in its
basic circuits, which began with the integrated circuit (IC) in 1959. The
IC, or chip, replaced transistors, resistors, and other discrete circuits in
the processing units of computers; it also replaced cores for the memory
units. The chip’s impact on society has been the subject of endless
discussion and analysis. This chapter, too, will offer an analysis, recogniz-
ing that the chip was an evolutionary development whose origins go
back to the circuit designs of the first electronic digital computers, and
perhaps before that.

The von Neumann architecture described a computer in terms of its
four basic functional units—memory, processor, input, and output.
Below that level were the functional building blocks, which carried out

Figure 6.1
Herbert Grosch, ca. 1955. (Source : Herbert Grosch.)
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the logical operations ‘‘AND,’’ ‘‘OR,’’ ‘‘NOT,’’ ‘‘EXCLUSIVE OR,’’ and
a few others. Below that were circuits that each required a few—up to
about a dozen—components that electrical engineers were familiar with:
tubes (later transistors), resistors, capacitors, inductors, and wire. In the
1940s anyone who built a computer had to design from that level. But as
computer design emerged as a discipline of its own, it did so at a higher
level, the level of the logical functions operating on sets of binary digits.
Thus arose the idea of assembling components into modules whose
electrical properties were standardized, and which carried out a logical
function. Using standardized modules simplified not only computer
design but also testing and maintenance, both crucial activities in the
era of fragile vacuum tubes.

J. Presper Eckert pioneered in using modules in the ENIAC to handle
a group of decimal digits, and in the UNIVAC to handle digits coded in
binary, a key and often overlooked invention that ensured the long-term
usefulness of those two computers, at a time when other computers
seldom worked more than an hour at a time.3 When IBM entered the
business with its Model 701, it also developed circuit modules—over two
thousand different ones were required. For its transistorized machines it
developed a compact and versatile ‘‘Standard Modular System’’ that
reduced the number of different types.4 Digital Equipment Corpora-
tion’s first, and only, products for its first year of existence were logic
modules, and the success of its PDP-8 depended on ‘‘flip-chip’’ modules
that consisted of discrete devices mounted on small circuit boards.

Patents for devices that combined more than one operation on a
single circuit were filed in 1959 by Jack Kilby of Texas Instruments and
Robert Noyce of Fairchild Semiconductor. Their invention, dubbed at
first ‘‘Micrologic,’’ then the ‘‘Integrated Circuit’’ by Fairchild, was simply
another step along this path.5 Both Kilby and Noyce were aware of the
prevailing opinion that existing methods of miniaturization and of
interconnecting devices, including those described above, were inade-
quate. A substantial push for something new had come from the U.S. Air
Force, which needed ever more sophisticated electronic equipment on-
board ballistic missiles and airplanes, both of which had stringent
weight, power consumption, and space requirements. (A closer look at
the Air Force’s needs reveals that reliability, more than size, was foremost
on its mind.6) The civilian electronics market, which wanted something
as well, was primarily concerned with the costs and errors that accom-
panied the wiring of computer circuits by hand. For the PDP-8’s
production, automatic wire-wrap machines connected the flip-chip
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modules. That eliminated, in Gordon Bell’s words, ‘‘a whole floor full of
little ladies wiring computers,’’ although building a computer was still
labor-intensive.7 In short, ‘‘[a] large segment of the technical commu-
nity was on the lookout for a solution of the problem because it was clear
that a ready market awaited the successful inventor.’’8

Modern integrated circuits, when examined under a microscope, look
like the plan of a large, futuristic metropolis. The analogy with archi-
tectural design or city planning is appropriate when describing chip
design and layout. Chips manage the flow of power, signals, and heat just
as cities handle the flow of people, goods, and energy. A more illuminat-
ing analogy is with printing, especially printing by photographic meth-
ods. Modern integrated circuits are inexpensive for the same reasons
that a paperback book is inexpensive—the material is cheap and they
can be mass produced. They store a lot of information in a small volume
just as microfilm does. Historically, the relationship between printing,
photography, and microelectronics has been a close one.

Modules like Digital Equipment Corporation’s flip chips intercon-
nected components by etching a pattern on a plastic board covered with
copper or some other conductor; the board was then dipped into a
solvent that removed all the conductor except what was protected by the
etched pattern. This technique was pioneered during the Second World
War in several places, including the Centrallab Division of the Globe-
Union Company in Milwaukee, Wisconsin, where circuits were produced
for an artillery fuze used by allied forces. Other work was done at the
National Bureau of Standards in Washington, D.C.9 Some of this work
was based on patents taken out by Paul Eisler, an Austrian refugee who
worked in England during the war, Eisler claims his printed circuits were
used in the war’s most famous example of miniaturized electronics, the
Proximity Fuze, although others dispute that claim.10 In his patent
granted in 1948, Eisler describes his invention as ‘‘a process based on
the printing of a representation of the conductive metal.’’11 After the
war the ‘‘printed circuit,’’ as it became known, was adopted by the U.S.
Army’s Signal Corps for further development. The Army called it ‘‘Auto-
Sembly’’ to emphasize production rather than its miniaturization.12 It
was the ancestor of printed circuits, familiar to both the consumer and
military markets, and still in use.13

Throughout the 1950s, the U.S. armed services pressed for a solution
to the interconnection problem, seeing it as a possible way to increase
reliability. Reliability was of special concern to the U.S. Air Force, which
had found itself embarrassed by failures of multimillion dollar rocket
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launches, failures later found to have been caused by a faulty component
that cost at most a few dollars. The Air Force mounted a direct attack on
this problem for the Minuteman ballistic missile program, setting up a
formal procedure that penetrated deep into the production lines of the
components’ manufacturers.

At the same time it inaugurated an ambitious program it called
‘‘molecular electronics,’’ whose goal was to develop new devices made
of substances whose individual molecules did the switching. Just how that
would be done was unspecified, but the Air Force awarded a $2 million
development contract to Westinghouse in April 1959—within months of
the invention of the IC—to try.14 Later on Westinghouse received
another $2.6 million. The idea never really went anywhere. Two years
after awarding the contract, the Air Force and Westinghouse reported
substantial progress, but the press, reporting that the ‘‘USAF Hedges
Molectronics Bets,’’ called the use of ICs an ‘‘interim step’’ needed to
reduce the size and complexity of airborne electronics.15 The term
‘‘molecular electronics’’ quietly vanished from subsequent reports.

The Air Force’s push for higher reliability of parts for the Minuteman
ballistic missile had a greater impact on the electronics industry because
it did achieve a breakthrough in reliability. Suppliers introduced ‘‘clean
rooms,’’ where workers wore gowns to keep dust away from the materials
they were working with. Invented at the Sandia National Laboratories in
the early 1960s for atomic weapons assembly, such rooms were washed by
a constant flow of ultra-filtered air flowing from the ceiling to the floor.16

Eventually the industry would build fabrication rooms, or ‘‘fabs,’’ that
were many times cleaner than a hospital. They would control the
impurities of materials almost to an atom-by-atom level, at temperatures
and pressures regulated precisely. The electronics industry developed
these techniques to make transistors for Minuteman. The culture took
root.

At every step of the production of every electronic component used in
Minuteman, a log was kept that spelled out exactly what was done to the
part, and by whom. If a part failed a subsequent test, even a test
performed months later, one could go back and find out where it had
been. If the failure was due to a faulty production run, then every system
that used parts from that run could be identified and removed from
service. Suppliers who could not or would not follow these procedures
were dropped.17 Those who passed the test found an additional benefit:
they could market their components elsewhere as meeting the ‘‘Minute-
man Hi-Rel’’ standard, charging a premium over components produced
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by their competitors. Eventually the estimated hundred-fold reduction
of failure rates demanded by the Air Force came to be accepted as the
norm for the commercial world as well.18 In a reverse of Gresham’s Law,
high-quality drove low-quality goods from the market.

This program came at a steep price. Each Minuteman in a silo cost
between $3 and $10 million, of which up to 40 percent was for the
electronics.19 And the Hi-Rel program’s emphasis remained on discrete
components, although the clean-room production techniques were later
transferred to IC production. However successful it was for the Minute-
man, the Hi-Rel program did not automatically lead to advances in
commercial, much less consumer, markets.20

The Invention of the Integrated Circuit

In the early 1960s the Air Force initiated the development of an
improved Minuteman, one whose guidance requirements were far
greater than the existing missile’s computer could handle. For mainly
political reasons, ‘‘those who wished other capabilities from ICBMs
[intercontinental ballistic missiles] were unable to start afresh with an
entirely new missile. Instead, they had to seek to build what they wanted
into successive generations of Minuteman.’’21 The reengineering of
Minuteman’s guidance system led, by the mid-1960s, to massive Air
Force purchases for the newly invented IC, and it was those purchases
that helped propel the IC into the commercial marketplace.

Before discussing those events, it is worth looking at the circumstances
surrounding the IC’s invention. As important as the military and NASA
were as customers for the IC, they had little to do with shaping its
invention.

After graduating from the University of Illinois with a degree in
Electrical Engineering in 1947, Jack Kilby took a job at Centrallab in
Milwaukee—the industrial leader in printed circuits and miniaturiza-
tion. At first he worked on printed circuit design; later he became
involved in getting the company to make products using germanium
transistors. ‘‘By 1957 . . . it was clear that major expenditures would soon
be required. The military market represented a major opportunity, but
required silicon devices. . . . The advantages of the diffused transistor
were becoming apparent, and its development would also have required
expenditures beyond the capabilities of Centrallab. . . . I decided to leave
the company.’’22 The following year he joined Texas Instruments in
Dallas, already known in the industry for having pioneered the shift
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from germanium to silicon transistors. ‘‘My duties were not precisely
defined, but it was understood that I would work in the general area of
microminiaturization.’’23 Texas Instruments (TI) was one among many
companies that recognized the potential market, both military and
civilian, for such devices. But how to build them?

Jack Kilby is a tall, modest man whose quiet manner reflects the
practical approach to problems people often associate with Midwester-
ners. He was born in Jefferson City, Missouri, and grew up in the farming
and oil-well supply town of Great Bend, Kansas, named after the south-
ern turn that the Arkansas River takes after coming out of the Rockies.
His father was an engineer for a local electrical utility.24 He recalls
learning from his father that the cost of something was as important a
variable in an engineering solution as any other.25

As others at TI and elsewhere were doing in 1958, Kilby looked at
microminiaturization and made an assessment of the various govern-
ment-funded projects then underway. Among those projects was one
that TI was already involved with, called Micro-Module, which involved
depositing components on a ceramic wafer.26 Kilby did not find this
approach cost effective (although IBM chose a variation of it for its
System/360). In the summer of 1958 he came up with a fresh
approach—to make all the individual components, not just the transis-
tors, out of germanium or silicon. That swam against the tide of
prevailing economics in the electronics business, where resistors sold
for pennies, and profits came from shaving a few tenths of a cent from
their production cost. A resistor made of silicon had to cost a lot more
than one made of carbon. But Kilby reasoned that if resistors and other
components were made of the same material as the transistors, an entire
circuit could be fashioned out of a single block of semiconductor
material. Whatever increased costs there were for the individual compo-
nents would be more than offset by not having to set up separate
production, packaging, and wiring processes for each.

Jack Kilby built an ordinary circuit with all components, including its
resistors and capacitor, made of silicon instead of the usual materials, in
August, 1958. In September he built another circuit, only this time all
the components were made from a single piece of material—a thin
1/16-inch6 7/16-inch wafer of germanium. (The company’s abilities to
work with silicon for this demonstration were not quite up to the task.)
He and two technicians laboriously laid out and constructed the few
components on the wafer and connected them to one another by fine
gold wires. The result, an oscillator, worked. In early 1959 he applied for
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a patent, which was granted in 1964 (figure 6.2).27 Texas Instruments
christened it the ‘‘solid circuit.’’ It was a genuine innovation, a radical
departure from the military-sponsored micromodule, molecular electro-
nics, and other miniaturization schemes then being pursued.28

Robert Noyce also grew up in the Midwest, in Grinell, Iowa, where his
father was a Congregational minister. Some ascribe Noyce’s inventive-
ness to Protestant values of dissent and finding one’s own road to
salvation,29 but not all Protestant faiths shared that, and one would
not describe Noyce or the other Midwestern inventors as religious. A
more likely explanation is the culture of self-sufficiency characteristic
of Midwestern farming communities, even though only one or two of
the inventors in this group actually grew up on farms. In any event,
the Corn Belt in the 1930s and 1940s was fertile ground for digital
electronics.

(a)
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Figure 6.2
The chip. (a) Patent for integrated circuit by Jack Kilby. (b) Planar transistor.
(Source : Fairchild Semiconductor.) (c) Patent for integrated circuit by Robert
Noyce.

(c)

(b)



Robert Noyce was working at Fairchild Semiconductor in Mountain
View, California, when he heard of Kilby’s invention. He had been
thinking along the same lines, and in January 1959 he described in his
lab notebook a scheme for doing essentially the same thing Kilby had
done, only with a piece of silicon.30 One of his coworkers at Fairchild,
Swiss-born Jean Hoerni, had paved the way by developing a process for
making silicon transistors that was well-suited for photo-etching produc-
tion techniques, making it possible to mass-produce ICs cheaply.31 It was
called the ‘‘planar process,’’ and as the name implies, it produced
transistors that were flat. (Other techniques required raised metal
lines or even wires somehow attached to the surface to connect a
transistor.) The process was best suited to silicon, where layers of silicon
oxide—‘‘one of the best insulators known to man,’’ Noyce recalled—
could be built up and used to isolate one device from another.32 For
Noyce the invention of the IC was less the result of a sudden flash of
insight as of a gradual build-up of engineering knowledge about
materials, fabrication, and circuits, most of which had occurred at
Fairchild since the company’s founding in 1957. (By coincidence, the
money used to start Fairchild Semiconductor came from a camera
company, Fairchild Camera and Instrument. Sherman Fairchild, after
whom the company was named, was the largest individual stockholder in
IBM—his father helped set up IBM in the early part of the century.)33

Noyce applied for a patent, too, in July 1959, a few months after Kilby.
Years later the courts would sort out the dispute over who the ‘‘real’’
inventor was, giving each person and his respective company a share of
the credit. But most acknowledge that Noyce’s idea to incorporate
Hoerni’s planar process, which allowed one to make the electrical
connections in the same process as making the devices themselves, was
the key to the dramatic progress in integrated electronics that followed.

Hoerni did not share in the patents for the integrated circuit, but his
contribution is well known. ‘‘I can go into any semiconductor factory in
the world and see something I developed being used. That’s very
satisfying.’’34 His and Noyce’s contributions illustrate how inventors
cultivate a solution to a problem first of all visually, in what historian
Eugene Ferguson calls the ‘‘mind’s eye.’’35 Although the invention
required a thorough knowledge of the physics and chemistry of silicon
and the minute quantities of other materials added to it, a nonverbal,
visual process lay behind it.36

These steps toward the IC’s invention had nothing to do with Air
Force or military support. Neither Fairchild nor Texas Instruments were
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among the first companies awarded Air Force contracts for miniaturiza-
tion. The shift from germanium to silicon was pioneered at Texas
Instruments well before it was adopted for military work. Kilby’s insight
of using a single piece of material to build traditional devices went
against the Air Force’s molecular electronics and the Army’s micro-
module concepts. And the planar process was an internal Fairchild
innovation.37

But once the IC was invented, the U.S. aerospace community played a
crucial role by providing a market. The ‘‘advanced’’ Minuteman was a
brand-new missile wrapped around an existing airframe. Autonetics, the
division of North American Aviation that had the contract for the
guidance system, chose integrated circuits as the best way to meet its
requirements. The computer they designed for it used about 2,000
integrated and 4,000 discrete circuits, compared to the 15,000 discrete
circuits used in Minuteman I, which had a simpler guidance require-
ment.38 Autonetics published comparisons of the two types of circuits to
help bolster their decision. According to Kilby, ‘‘In the early 1960s these
comparisons seemed very dramatic, and probably did more than
anything else to establish the acceptability of integrated circuits to the
military.’’39 Minuteman II first flew in September 1964; a year later the
trade press reported that ‘‘Minuteman is top Semiconductor User,’’ with
a production rate of six to seven missiles a week.40 The industry had a
history of boom and bust cycles caused by overcapacity in its transistor
plants. Were it not for Minuteman II they would not have established
volume production lines for ICs: ‘‘Minuteman’s schedule called for over
4,000 circuits a week from Texas Instruments, Westinghouse, and
RCA.’’41

Fairchild was not among the three major suppliers for Minuteman.
Noyce believed that military contracts stifled innovation—he cited the
Air Force’s molecular electronics as an example of approaching innova-
tion from the wrong direction. He was especially bothered by the
perception that with military funding,

the direction of the research was being determined by people less competent in
seeing where it ought to go, and a lot of time of the researchers themselves was
spent communicating with military people through progress reports or visits or
whatever.42

However, before long, the company recognized the value of a military
market: ‘‘Military and space applications accounted for essentially the
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entire integrated circuits market last year [1963], and will use over 95
percent of the circuits produced this year.’’43

Although reluctant to get involved in military contracts, Fairchild did
pursue an opportunity to sell integrated circuits to NASA for its Apollo
Guidance Computer (figure 6.3).44 Apollo, whose goal was to put a man
on the Moon by the end of the 1960s, was not a military program. Its
guidance system was the product of the MIT Instrumentation Labora-
tory, which under the leadership of Charles Stark Draper was also
responsible for the design of guidance computers for the Polaris and
Poseidon missiles. Like Minuteman, Apollo’s designers started out with
modest on-board guidance requirements. Initially most guidance was to
be handled from the ground; as late as 1964 it was to use an analog

computer.45 However, as the magnitude of the Lunar mission manifested
itself the computer was redesigned and asked to do a lot more. The lab
had been among the first to purchase integrated circuits from TI in
1959. After NASA selected the Instrumentation Lab to be responsible for
the Apollo guidance system in August 1961, Eldon Hall of the lab
opened discussions with TI and Fairchild (figure 6.4). The IC’s small
size and weight were attractive, although Hall was concerned about the
lack of data on manufacturing reliable numbers of them in quantity. In a
decision that looks inevitable with hindsight, he decided to use ICs in the
computer, adopting Fairchild’s ‘‘micrologic’’ design with production
chips from Philco-Ford, Texas Instruments, and Fairchild. His selection
of Fairchild’s design may have been due to Noyce’s personal interest in
the MIT representatives who visited him several times in 1961 and 1962.
(Noyce was a graduate of MIT.)46 NASA approved Hall’s decision in
November 1962, and his team completed a prototype that first operated
in February 1965, about a year after the Minuteman II was first flown.47

In contrast to the Minuteman computer, which used over twenty types
of ICs, the Apollo computer used only one type, employing simple
logic.48 Each Apollo Guidance Computer contained about 5,000 of these
chips.49 The current ‘‘revolution’’ in microelectronics thus owes a lot to
both the Minuteman and the Apollo programs. The Minuteman was
first: it used integrated circuits in a critical application only a few years
after they were invented. Apollo took the next and equally critical step:
it was designed from the start to exploit the advantages of integrated
logic.

Around 75 Apollo Guidance Computers were built, of which about 25
actually flew in space. During that time, from the initial purchase of
prototype chips to their installation in production models of the Apollo
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computer, the price dropped from $1,000 a chip to between $20 and
$30.50 The Apollo contract, like the earlier one for Minuteman, gave
semiconductor companies a market for integrated circuits, which in turn
they could now sell to a civilian market. By the time of the last Apollo
flight in 1975 (the Apollo-Soyuz mission), one astronaut carried a pocket
calculator (an HP-65) whose capabilities were greater than the on-board
computer’s. Such was the pace of innovation set in motion by the
aerospace community.

Figure 6.3
Launch of the Saturn V/Apollo 11 spacecraft, July 1969. The relationship
between the U.S. space program and the advance of computing technology
was a complex one. The demands of programs like Apollo and Minuteman
advanced the state of the art of microelectronics and computer circuits.
Advances in computing, on the other hand, shaped the way programs like
Apollo were designed and operated. (Source : NASA.)
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Commercial Impact of the Chip

The biggest impact of this invention on commercial computing was in
the minicomputer, not the mainframe, industry. For its System/360 line,
IBM developed ‘‘solid logic technology,’’ a scheme similar to micro-
module, in which circuits were deposited on a ceramic substrate about
half an inch thick, with metallic conducting channels printed on it.51 By
the time of the 360’s announcement in April 1964 the integrated circuit
was rapidly proving itself, and some in IBM worried that it would be left
behind with obsolete technology. An internal IBM memorandum written
in September 1963 stated that ICs ‘‘do not constitute a competitive
threat either now or in the next five years,’’ while another internal
report written in September 1964 argued that rapid progress in ‘‘mono-
lithics’’ (IBM’s term for ICs) had been made, and that IBM had a ‘‘2–4

Figure 6.4
Eldon Hall, head of the Apollo Computer Division at the MIT Instrumentation
Laboratory, ca. 1968. (Source : Charles Stark Draper Laboratory.)
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year lag in practical experience’’ and needed ‘‘6 months to a year to
catch up’’ in IC expertise.52

Both memorandums were right: IBM had learned to produce solid
logic technology circuits reliably and in large quantities, which had
served the System/360 well. But to remain competitive, it adopted ICs
for the System/370, announced at the end of the decade. But as early as
the first deliveries of the System/360 in the spring of 1965, Scientific
Data Systems (SDS) had announced a computer that used ICs. When
RCA decided to compete against IBM with a family of 360-compatible
machines, it also decided to go with integrated circuits. By 1966, both
SDS and RCA computers were being delivered and IBM’s ‘‘five year’’
lead was now one year. Integrated circuits went from Kilby’s crude
laboratory device to practical use in commercial computers faster than
anticipated. Part of the reason was the eagerness of military and aero-
space customers; credit is also due to Noyce’s observation that the basic
techniques of IC fabrication were an evolutionary advance over planar
transistor production.

Second-Generation Minicomputers Digital Equipment Corporation
showed how one could enter the computer business with a modest
amount of capital and a modest physical plant. With inexpensive but
powerful ICs on the market, the road opened up for others to follow
DEC’s example. DEC did not dominate in minicomputers in the same
way IBM dominated mainframes. Unlike the BUNCH, DEC’s competi-
tors did not feel they had to answer every product announcement, or
offer software-compatible products. Technical innovation, at low cost
and in a compact package, mattered more. The result was that the
performance of minis increased at a phenomenal rate from 1965
through the 1970s. Prices remained low and even dropped. To enter
this market, one needed to have a grasp of the latest technology, but
banks and venture capital firms did not fear—as they did with those who
wanted to compete with IBM—that Digital would crush the newcomer
by virtue of its dominant market share.

Between 1968 and 1972, around one hundred new companies or
divisions of established companies offered minicomputers on the
commercial market, an average of one every three weeks for that five-
year period. Table 6.1 lists some of the more well-known among them.53

There were a few barriers that one had to surmount to enter the
business, but most barriers were low.54 Semiconductor firms were
offering a ready supply of inexpensive chips, which provided basic
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logic in a simple package. By 1970 the IC makers had adopted a standard
that laid a solid foundation on which the computer industry would grow
for the next two decades. That was to supply a set of chips that used
transistors to implement the logic, called ‘‘transistor-transistor logic’’
(TTL). TTL chips were inexpensive and easy to design with.55 They were
packaged in a black plastic or ceramic case, with leads arranged along
either side like a flattened caterpillar. Engineers at Fairchild introduced
this ‘‘dual in-line package’’ (DIP) in 1964. Rex Rice led this effort; his
work was based in part on work patented by Nathan Pritikin (a self-made

Table 6.1
Minicomputers, 1965–1974

Manufacturer Computer Year

California Data Processors XI/35 1974
Cincinnati Milacron CIP/2200 1970
Computer Automation LSI ‘‘Naked Mini’’ series 1972
Computer Terminal Corporation Datapoint 2200
Data General Nova 1969

Supernova 1971
Digital Computer Controls DCC-116, 112 1972
Digital Equipment Corp. PDP-11 series 1970
General Automation SPC-16 1971
General Electric GEPAC 4010, 4020
GRI Computer Corp. GRI-99 series 1972
GTE Information Systems IS/1000 1970
Hewlett-Packard 2100 Series 1971
Honeywell H-316 ca. 1970

DDP-516 ca. 1971
IBM System 3 1969
Interdata Model 70
Lockheed Electronics MAC-16 1968

SUE 1972
Modular Computer Systems MODCOMP line 1971
Motorola MDP-1000 1968
Prime Computer 300 series 1973
Raytheon 500 series 1974
Scientific Data Systems SDS-910 1962

SDS-920 1965
Systems Engineering Labs SEL-810
Texas Instruments 960, 980 1974
Varian Associates 520

620 1972
Westinghouse W-2500 1971
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inventor who later became famous for advocating a low-cholesterol
diet). The package was rugged and easy to handle.56

By 1970 a way of connecting the chips to one another had also
standardized. The printed circuit board, pioneered by Globe-Union,
had evolved to handle integrated circuits as well. A minicomputer
designer could now lay out a single large printed circuit board, with
places for all the ICs necessary for the circuits of a small computer. On
an assembly line (possibly located in Asia and staffed by women to save
labor costs), a person (or machine) would ‘‘stuff’’ chips into holes on
one side of the board. She would then place the board in a chamber,
where a wave of molten solder would slide across the pins protruding
through to the other side, attaching them securely to the printed
connections. The process was fast, reliable, and yielded a rugged
product. It was Fairchild engineers who first explored this method of
packaging and wiring, on an experimental computer called SYMBOL, in
the late 1960s. SYMBOL was built to explore a new computer architec-
ture; its packaging and wiring proved far more influential than its
architecture.57 This combination—TTL logic, dual in-line packaging,
and large, wave-soldered printed circuit boards—remained a standard
into the 1990s.58

The Founding of Intel Digital Equipment Corporation made its mark by
architectural advances like Direct Memory Access. The second wave of
minicomputer products showed an equally-remarkable set of architec-
tural innovations. The first was to settle on sixteen bits for the mini’s
word length. This move followed the lead of IBM, after its announce-
ment of the System/360 in 1964. System/360 used a 32-bit word, but it
also set a standard of 8 bits as the ‘‘byte,’’ the basic group of bits to
encode a letter of the alphabet or other character. An 8-bit byte allowed
256 different combinations—far more than needed for numbers, punc-
tuation and the upper and lower case alphabet—but eight was a power
of two, which simplified certain aspects of a computer’s design. And the
‘‘extra’’ combinations left room for future growth.59 IBM’s choice of an
8-bit byte became a standard, so much so that few remember that 6 bits
had been the standard among minicomputer manufacturers, for whom
the ‘‘extra’’ bits made up a proportionally greater cost of the overall
system.

There was one difference: minicomputers did not use IBM’s EBCDIC
code for a character but developed an 8-bit extension of ASCII instead.
This decision had some long-term consequences. It widened the gap

The Chip and Its Impact, 1965–1975 193



between IBM and the rest of the computer industry. Because the eighth
bit of ASCII was not standardized, it led also to a proliferation of
different standard codes for mini, and later personal, computers. The
ultimate consequences of this split would play out in the 1980s, after IBM
entered the personal computer market with an ASCII machine.

DEC’s PDP-8, with its 12-bit word length and a 6-bit code for each
character, was shipped after the 360’s announcement. For Gardner
Hendrie, an engineer working on a 14-bit mini at the rival Computer
Controls Corporation, IBM’s announcement of the System/360 was a
bombshell. Over the summer of 1964 CCC redesigned its machine, and
in October it announced the DDP-116, the first 16-bit minicomputer.60

The machine was profitable for CCC. The company grew rapidly and for
a while it looked like it would overtake Digital Equipment Corporation,
but in 1966 Honeywell bought CCC, and it lost its independence.
Honeywell continued the 16-bit line, but perhaps because it was devoting
more attention to mainframes, the product line withered.

Honeywell’s foray into the minicomputer market ended up as a minor
diversion. No one would remember Honeywell minicomputers were it
not for one exceptional event associated with them. Beginning in 1967
the Advanced Research Projects Agency (ARPA) of the Department of
Defense began a series of meetings to discuss how to link computers
across the country in a network.61 ARPA had several reasons for wanting
such a network, the main one being a desire to share resources among
places receiving its funding at a time when computers were large and
expensive. Early in the process the ARPA researchers recognized that the
diverse nature of the computers being connected was a major problem.
They proposed to solve it by using a minicomputer at each node,
between the main computer being networked and the network itself.
For this interface message processor (IMP), they chose a Honeywell
DDP-516, a descendent of the 16-bit CCC mini.62 Four nodes (i.e., four
IMPS) were operating west of the Rockies in December 1969; a year later
there were ten, spanning the country. By 1971 ARPANET consisted of
fifteen nodes connecting twenty-three host computers. Of those, nine
were PDP-10s, five were IBM System/360s, one was the Illiac-IV, and the
rest were assorted minicomputers and mainframes.63 ARPANET was
demonstrated publicly at a hotel in Washington, D.C., in October
1972; by that year there were thirty nodes.64 ARPANET was dismantled
in 1988, but it will always be remembered as the precursor of the
Internet, which burst into the public’s consciousness in the 1990s. By
that time IMPS were no longer needed to connect the nodes; they were
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replaced by a set of software and hardware developments that made
them unnecessary. A few DDP-516 computers were saved and have been
carefully preserved in museums and private collections as the modern
equivalent of Samuel Morse’s telegraph apparatus of the 1840s.65

Another company that quickly recognized the advantages of a 16-bit
word length was Data General. Edson DeCastro, an engineer at Digital
Equipment Corporation, grew frustrated with DEC’s plans for a 16-bit
computer, which DEC was calling the PDP-X. Developing a 16-bit
machine was a major assignment, as DEC was well aware of Computer
Controls Corporation’s success. DeCastro proposed a design for the
PDP-X, but DEC’s management turned it down. In the spring of 1968 he
and two other DEC engineers resigned and founded Data General in the
neighboring town of Hudson. Their goal was to produce a 16-bit mini.66

Data General’s founding as a descendent of Digital Equipment
echoed a phenomenon that came to define the computer culture,
especially in Silicon Valley on the West Coast. One observer remarked:
‘‘In this business, . . . capital assets in the traditional sense of plant,
equipment, and raw materials counted for nothing. . . . Brainpower was
the entire franchise.’’67 Ken Olsen felt otherwise. He believed that
DeCastro had developed the PDP-X while a DEC employee and now
was using that design to launch Data General. The Nova, the 16-bit
machine that Data General announced at the end of 1968, was not the
rejected PDP-X, however. It was simpler and more elegant. Those who
used one still talk of it as a ‘‘clean machine,’’ a rare example of a truly
optimal design—complex, but no more complex than necessary.68

The Nova also incorporated advances in circuits and packaging not
available the previous year. It used chips that contained more transistors
than earlier computers had used. These were later called medium scale
integration (MSI) to distinguish them from their predecessors. (Later on
came large scale integration [LSI] and finally very large scale integration
[VLSI], based on the number of transistors on a chip.) These, in turn,
were mounted on a single printed circuit board about 15 inches square.
This board was larger than what was standard at the time and made for a
very compact package.

In mid-1971 the company introduced an advanced ‘‘Super Nova,’’
which incorporated still another technical innovation, integrated circuits
instead of magnetic cores for random access memory (RAM). Although
it had always been possible to make ICs that would store information,
core memories had been about ten times cheaper because of the
experience in producing them, going back to SAGE. A breakthrough
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came in 1970, when a supercomputer project at the University of Illinois
chose 256-bit memory chips from Fairchild for its central memory
(figure 6.5). The Illiac-IV was an ambitious attempt to break out of
the von Neumann architecture of sequential processing. The Illiac-IV
was beset with many difficulties, including student unrest on the Urbana
campus, as well as problems implementing the ambitious design. Its
greatest legacy was probably its use of semiconductor memory, which
paved the way for Data General’s commercial use.69

The Super Nova established semiconductor RAM’s viability for
commercial computers. It was only one of several indicators that a
revolution in silicon was about to happen. We have already mentioned
IBM’s decision to go to monolithic memory for its System/370. Before

(a)
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Figure 6.5
(a) Fairchild memory chip, used in Illiac-IV, and the first practical alternative to
magnetic core. The chip stored 256 bits. (Source : Fairchild Semiconductor.)
(b) Data General Super Nova. (Source : Data General Corporation.) (c) Intel
1103 memory chip. Capacity 1,024 bits. (Source : Charles Babbage Institute,
University of Minnesota.)

(b)

(c)



the Illiac-IV, System/370, or the Super Nova appeared, an event took
place that would be even more significant. In July 1968 Robert Noyce
and Gordon Moore left Fairchild and founded a new company, whose
initial focus would be on semiconductor memory. Once again, ‘‘Brain-
power was the entire franchise’’: Noyce and Moore had been among the
original founders of Fairchild’s semiconductor division in 1957, having
left a company founded by William Shockley that began transistor
production in the lower San Francisco peninsula. The two men, soon
joined by Andrew Grove, also of Fairchild, chose a name that would be a
contraction of the words ‘‘integrated electronics’’: Intel.70 In 1970 it
introduced a 1,024-bit dynamic RAM chip, the 1103. That, plus deliveries
of Super Novas and IBM System/370s, marked the beginning of the end
for magnetic core.71 From that modest beginning, Intel would become a
dominant force in computing in the 1980s and 1990s. (Its subsequent
path will be discussed in following chapters).

The Super Nova was packaged in a compact rectangular box. On the
front panel were rows of lights indicating the status of its internal
registers, with parallel rows of switches that allowed one to set or reset
individual bits in those registers. Later generations of computers would
do away with the front panel. With that exception, the hardware
configuration of the Nova—a rectangular box, large printed circuit
boards, and chips for both the processor and memory—has persisted
to the present day.

The PDP-11 Digital Equipment Corporation found itself at a disadvan-
tage by 1969. It had introduced a model of the PDP-8 that used
integrated circuits (the PDP 8/I), but its 12-bit word length and limited
instruction repertoire did not compare well to the machines from CCC/
Honeywell or Data General. Other companies, large and small, were also
entering the field.72 Stung by DeCastro’s defection, DEC made another
try at designing a 16-bit mini. In March 1969 four DEC engineers flew to
Pittsburgh to consult with Gordon Bell, who had taken a temporary
leave from DEC to teach at Carnegie Mellon University, and with
William Wulff, also a professor there. The Carnegie professors were
not enthusiastic about the proposed design. An alternate design
proposed by one of the DEC engineers, Harold McFarland, showed
more promise. The group ‘‘decided to discard about a year’s worth of
work’’ and redesign the computer around McFarland’s ideas.73 DEC
called the new machine the PDP-11, announced it in January 1970, and
began deliveries a few months later.
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In the course of the redesign, the team came up with an innovation
that allowed it to regain the ground it had lost to Data General. That was
a redefinition of the concept of a bus, a set of wires that served all major
sections of the machine in a common and standard way. The notion was
not new. The electromechanical Mark I, installed at Harvard in the
1940s, used one (spelled ‘‘buss’’).74 The Whirlwind also had a bus, as did
the Nova, and models of the PDP-8. But the PDP-11’s Unibus carried this
concept further: nearly all major units of the machine, including
memory and I/O devices, were connected to a common, 56-line bus.
That made the machine especially easy for DEC as well as its customers
to configure for specialized applications or to expand.75

The bus architecture, like the packaging pioneered by the Nova, has
prevailed in computer design ever since.76 The 16-bit wordlength of this
generation would double to 32, and then 64 bits, but it would remain a
power of two.

The PDP-11 quickly surpassed its rivals and continued to fuel Digital
Equipment Corporation’s growth. Sales of the PDP-8 had enlarged the
company from about 900 employees in 1965 to 5,800 in 1970. With the
help of the PDP-11, it grew to 36,000 employees by 1977.77 Over 170,000
PDP-11’s were sold in the 1970s.78 A recession hit the computer industry
around 1970, but DEC, with its PDP-11, and Data General, with the
Nova, survived and prospered. Competitors fell by the wayside or found
only small niche markets. The go-go years were over (they would
return), but they left in their wake a redefinition of the computer
industry and its technology.

The Nova’s success came from its elegant design and innovative
packaging; the PDP-11’s from its innovative architecture, which
opened up minicomputers to a host of applications that had previously
been the domain of mainframe computers. In addition to the Unibus,
the machine employed a number of addressing ‘‘modes,’’ which allowed
one access to data in a variety of flexible and powerful ways. ‘‘Digital’s
traditional business is to sell architecture,’’ said one engineer who
worked for DEC in those years. In his view, the PDP-11’s architecture
was ‘‘wonderful,’’ although the way the company implemented it was
overly complex compared to the way Data General did things.79 It was a
much more complex machine than the PDP-8. According to Gordon
Bell, ‘‘The PDP-11 was initially a hard machine to understand and was
marketable only to those with extensive computer experience.’’80

The PDP-11’s power meant that those who did understand it could
develop software to make it easy for others to use, which suggests
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another way to distinguish this generation of minicomputers: users
programmed them in familiar languages like FORTRAN rather than
in machine code, an activity that seemed close to black magic for users
of the PDP-8. The new minicomputers also came with tools that allowed
easy editing and simplified finding and correcting bugs in programs. For
many customers it was the best of both worlds—the flexibility and ease of
use of a time-sharing system, with none of the overhead and expense of
time-sharing a mainframe.

Direct-Access Computing Triumphant

While minicomputer systems were maturing, mainframe systems were
evolving to offer similar, interactive capabilities. Time-sharing a main-
frame was difficult in the late 1960s; by the mid-1970s, time-sharing
packages were robust and stable parts of many System/370 installations.
In addition to its Conversational Monitoring System (CMS), IBM offered
a time sharing option (TSO) for its 370 computers beginning in 1971,
while General Electric/Honeywell offered a successful commercial
system based on its work at Dartmouth College (discussed later). For
large and small systems, time-sharing became an acceptable and
economical way of using a computer.

A key factor was the development of disk storage that offered rapid
and direct access to large amounts of data. IBM had pioneered the use
of disk storage with RAMAC in the late 1950s, but for the next ten years
sequentially accessed tape, not disks, remained the mainstay of mass
storage on mainframes. With the System/370, IBM introduced new
models of disk storage that offered dramatically increased performance.
During the late 1960s and early 1970s, the cost of storing data on disks
dropped twentyfold, while the capacity of a typical disk storage system
increased fortyfold.81

At many installations, the tape reels were joined by disk packs—they
looked like cake boxes—as mass storage media. By 1980 it became
common to use drives with disks that were not removable, or if they
were, they were sealed with their read-write heads, to maintain tight
tolerances. IBM came up with a drive that initially had two spindles
holding 30 megabytes of data each: people called them ‘‘Winchester’’
drives, after the 30-30 rifle. IBM called disks ‘‘Direct Access Storage
Devices,’’ shortened to the acronym DASD. The commercial success of
these products led other companies to rush in with disk drives that were
plug-compatible with IBM’s, leading once again to a flurry of activity on
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Wall Street and the inevitable lawsuits against IBM for alleged antitrust
activity.82

A little-recognized factor in the triumph of direct access computing
was the IBM software product CICS, developed in the late 1960s for the
electric utility industry but soon found throughout the commercial
world.83 CICS was not tailored to any specific application but rather
allowed customers to write their own programs to permit direct query
and retrieval of data from large databases. Among the first to exploit it
were gas and electric utilities, who could use it to answer customer
queries over the telephone. It has also transformed retail sales in the
United States. Consider, for example, a typical transaction that occurs
day and night, year round: a person calls a mail order house in Maine,
asks about price, color, size, and availability of a pair of shoes, confirms
the order, pays by credit card, and orders it to be shipped that afternoon
for overnight delivery. By giving out a customer number printed on the
catalog, the company determines the person’s correct address including
ZIP code, as well credit history and recent buying patterns. The person’s
credit card account is checked and debited; the telephone company bills
the mail-order house for the telephone call, the inventory record is
updated, and perhaps an order is sent to a factory in Asia to make more
shoes. The overnight carrier is notified of the shipment, and an invoice
for that is generated as well. The whole transaction takes a few minutes.
Most of the inventory and billing information is transferred directly
from one computer to another. There are only a few paper records.
CICS, or software similar to it, is used in many of these operations. This
kind of activity has become so common that traditional retail buying at a
downtown department store is increasingly seen as exceptional. The
mainframe’s ability to handle this kind of data kept it viable in spite of
the increasing competition from minicomputers and workstations.

Computer Science Education

Another place affected by these trends was the academic world, where
the technological advances of the 1970s transformed both research and
the teaching of computer programming.

Although universities had been teaching courses on computing since
the 1950s, a batch environment was hardly optimum for that. Running
batches of programs worked best when the programs themselves were
error-free. In an installation like the NASA-Ames Research Center,
where the computer-processed wind tunnel data, it was important that
the program plow through each day’s data as fast as possible. After an
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initial shakedown period, whatever errors the programs had were found
and corrected. The compiler was a sophisticated program that used a lot
of the computer’s memory and time, but that time was well spent since
the compiler generated machine code that executed quickly.

In a teaching environment the opposite was the case: the programs
were bound to contain errors. Because the programs were short and
typically did not handle large quantities of data, it mattered less that the
compiled program execute quickly. Since many students would be
submitting different programs, it did matter that the compiler work
quickly, and that it produce, besides machine code, a detailed diagnosis
of the errors it found, so that the student would know how to correct
them. In fact, many commercial installations found a need to tinker with
a program and thus recompile more frequently than NASA’s wind
tunnel experience would suggest. These, too, found a need to telescope
the operations of batch computing that had grown up around main-
frame installations.

The batch method of computer use remained at center stage at many
universities, if for no other reason than that universities wanted their
students to become familiar with the kind of systems that they would find
in the industrial world upon graduation. Several university departments
developed systems that would compile a student’s program, and imme-
diately direct the machine to execute it. These ‘‘load-and-go’’ compilers
allowed the student to get a much quicker response.84 (The University of
Michigan MAD system, described in chapter 3, was an early version of
this.)

The most innovative work in adapting batch computing to teaching
was done at the University of Waterloo Canada. Waterloo’s computer
science department was among the first to be founded (in 1962), and
before long, under the leadership of J. Wesley Graham, it was teaching
computing to more undergraduates than almost any other school in
Canada. In 1967 it apparently also owned the most powerful computer
in all of Canada (a System/360 Model 75). By that year the department
already had developed a FORTRAN compiler for another computer. It
was called WATFOR (Waterloo FORTRAN) and was based on a similar
compiler developed at the University of Wisconsin in the early 1960s:

WATFOR was written by four third-year math students in the summer of 1965. It
was a fast in-core compiler with good error diagnostics, which proved especially
useful to students for debugging their programs, as well as speeding up
execution.85
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The compiler allowed the university computer to run 6,000 jobs an hour,
and by Graham’s estimate reduced the cost of running a student’s
program from ten dollars to ten cents.86 WATFOR was rewritten for
the 360 Model 75 when it arrived; it was also upgraded (and given the
whimsical name WATFIV). Graham’s textbook Fortran IV with WATFOR

and WATFIV influenced a generation of computer science students, who
learned programming from it.87 The university developed a similar
compiler for the COBOL language, called WATBOL, for the 360/75
in 1972; it also developed Waterloo SCRIPT, a text-processing program
widely used at a time when stand-alone word processors were rare.
Waterloo distributed this software to academic computing centers world-
wide, earning the university a steady stream of revenue from modest
service fees.

BASIC at Dartmouth

Time-sharing offered another avenue for university instruction. A time-
sharing environment could be set up to handle small programs and data
sets from many users, giving each a rapid diagnosis of any errors he or
she might have made. It was not enough simply to have time-sharing;
one also had to design the system so that users could write programs
easily and receive a quick and intelligible diagnosis of any errors. Under
the leadership of John G. Kemeny, chairman of the mathematics
department (and later president of the college), Dartmouth began
building such a system in 1963. Kemeny had done calculations using
punched-card equipment for the design of atomic weapons at Los
Alamos. That experience led him to believe that ‘‘next to the original
development of general-purpose high-speed computers the most impor-
tant event was the coming of man-machine interaction.’’88 He wanted a
system that would teach interactive computing to all of Dartmouth’s
students—not just those studying computer science or engineering or
physics. He was aware of work being done in the Cambridge area,
including the IBM-based CTSS and a system running on a DEC PDP-1.89

Whereas MIT went on from these modest beginnings to the more
ambitious Project MAC, Kemeny and Thomas E. Kurtz (also of the
Dartmouth mathematics department) decided to build a modest system
around a programming language especially tailored to the needs of
Dartmouth students. They called that language BASIC.

Bell Laboratories and Project MAC had chosen General Electric
computers for their ambitious time-sharing systems, and now Dart-
mouth, too, chose GE. Dartmouth used a General Electric 235 computer
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connected to a smaller GE Datanet computer, which collected and
managed the signals from the Teletype terminals scattered across the
campus. Dartmouth’s system was not a general-purpose time-sharing
system, as defined by proponents like John McCarthy. It was tightly
focused on undergraduate education, at a school where only 25 percent
of students majored in science or engineering. MIT wanted a variety of
languages available on its systems; at Dartmouth, the students
programmed only in BASIC.90

The Dartmouth experience was a success for both Dartmouth and GE.
But Dartmouth’s model of open, free access, like the college library, did
not prevail. General Electric offered a commercial version, and a few
other universities adopted the model, and these continued to be
supported after General Electric sold its computer business to Honey-
well. Mainframe computers were still expensive, and what worked for a
small, private college like Dartmouth did not necessarily work at a state
university with a large, diverse graduate and undergraduate student
body. Most universities felt a need to charge a fee based on the time a
student was connected to the computer system, with higher fees charged
for the time his or her program used the central processor. Who actually
paid this fee varied from one university to the next, although often the
National Science Foundation or some other government agency was
involved.91 In many cases, little real money was paid. The computer
manufacturer gave the university a discount on the hardware; it may also
have claimed a tax deduction; the university found ways to bury the
remaining charges into some other, federally funded (sometimes mili-
tary) research project. Many universities continued to teach computing
using punched cards, Fortran, COBOL, and batch processing.

Although the Dartmouth model had only a modest influence, the
programming language they developed, BASIC, became one of the most
widely used computer programming languages in the world with an
influence that extended well beyond the time-sharing system for which it
was written. We saw how the IBM System/360 was able to evolve for
decades while retaining its essential structure; so too did BASIC evolve to
serve new markets while preserving its ease of use. It eventually became a
language that propelled the personal computer into the mainstream,
along with the company that provided the best BASIC for personal
computers, the Microsoft Corporation.

The crucial step in the evolution of BASIC was taken in 1971 at the
Digital Equipment Corporation. For the just-announced PDP-11, DEC
developed a system called ‘‘Resource Sharing Time Sharing’’ (RSTS-11)
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that allowed time-sharing on the PDP-11. Initially it was offered for the
Model 20, the simplest PDP-11; later versions ran on bigger models. The
PDP-11/20 had a fraction of the power of the GE mainframe at Dart-
mouth, and with its 56K core memory would be considered a toy by
1990s standards. It had no facilities in hardware for protecting memory
locations from alteration, either deliberate or accidental—something
most thought was absolutely necessary for time-sharing.92

A team of engineers led by Mark Bramhall implemented RSTS-11
entirely in BASIC, but a version of BASIC with some interesting exten-
sions. RSTS-11 needed to make system calls to log on or off and the like,
which was implemented by a command called ‘‘SYS.’’ A user could recall
the individual bytes stored at a specific location in memory by another
command, called PEEK. A PDP-11 user with special privileges could
POKE bytes directly into memory—the reverse of PEEK, although unlike
PEEK, this was a very dangerous command that could destroy the
viability of time-sharing. None of these commands would have been
feasible on the General Electric system used at Dartmouth, but for the
PDP-11 they worked, and worked well.

Besides adding these commands, DEC engineers further modified
BASIC so that it also could be implemented without taking up much
memory. These implementations severely compromised some of
Kemeny and Kurtz’s principles of what the language ought to look
like, something that upset the Dartmouth professors.93 But as a result,
one no longer needed machine language for even a simple minicom-
puter installation. This combination of features of DEC’s BASIC—its
ability to do low-level system calls or byte transfers, and its ability to fit on
machines with limited memory—would be adopted by the Microsoft
Corporation a few years later for its version of BASIC for the first
personal computers.

Time-sharing systems based on more advanced models of the new
minicomputers, like the PDP-11/45 and the Hewlett-Packard HP-2000,
were very popular. These systems provided an alternative to the main-
frame for computer science departments. Through the 1970s, as that
discipline emerged, many universities and colleges found they could
build a respectable curriculum around a time-shared minicomputer at a
modest cost. For the beginning student there was BASIC; for those more
advanced, there were more advanced languages, such as Pascal, then in
favor as a better teaching language. This variety compensated for the fact
that these students did not experience the flavor of the world of data
processing using the ‘‘big iron’’ of the IBM System/370 and its giant
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OS/MVS operating system. In some cases, these students learned some-
thing far in advance of what students using mainframes learned—the
UNIX operating system, which had been developed on DEC minicom-
puters. This generation of computers thus created a new generation of
students; students who took for granted the small size, low cost, and
interactive use of the minicomputer, and the power of the UNIX
operating system.

By the mid-1970s, the minicomputer had established strong positions
in several markets and had moved out of its niche as an embedded
processor for the OEM market. What held it back from the business
data-processing market was the mainframe’s ability to move enormous
quantities of data through its channels, back and forth to rows of tape
drives and ‘‘disk farms.’’ But the minicomputer took better advantage
than mainframes of advances in integrated circuits, packaging, and
processor architecture. Its future seemed bright indeed. What happened
next, however, was not what its creators intended. The mini generated
the seeds of its own destruction, by preparing the way for personal
computers that came from an entirely different source.
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7
The Personal Computer, 1972–1977

Ready or not, computers are coming to the people.
That’s good news, maybe the best since psychedelics.

Those words introduced a story in the fifth anniversary issue of Rolling

Stone1 (December 7, 1972). ‘‘Spacewar: Fanatic Life and Symbolic Death
Among the Computer Bums’’ was written by Stewart Brand, a lanky
Californian who had already made a name for himself as the publisher
of the Whole Earth Catalog. Brand’s resumé was unique, even for an
acknowledged hero of the counterculture. At Stanford in the 1960s, he
had participated in Defense Department–sponsored experiments with
hallucinogenic drugs. In 1968 he had helped Doug Engelbart demon-
strate his work on interactive computing at a now-legendary session of
the Fall Joint Computer Conference in San Francisco.2 Brand was no
stranger to computers or to the novel ways one might employ them as
interactive tools.

Brand was right. Computers did come to the people. The spread of
computing to a mass market probably had a greater effect on society
than the spread of mind-altering drugs. Personal computing, however,
did not arrive in the way that Brand—or almost anyone else—thought it
would. The development of personal computing followed a trajectory
that is difficult to explain as rational. When trying to describe those
years, from 1972 through 1977, one is reminded of Mark Twain’s words:
‘‘Very few things happen at the right time, and the rest do not happen at
all. The conscientious historian will correct these defects.’’3 This chapter
will examine how computers came ‘‘to the people,’’ not as Twain’s
historian would have written it, but as it really occurred.

What triggered Brand’s insight was watching people at the Stanford
Artificial Intelligence Laboratory playing a computer game, Spacewar.
Spacewar revealed computing as far from the do-not-fold-spindle-or-



mutilate punched-card environment as one could possibly find. The
hardware they were using was not ‘‘personal,’’ but the way it was being
used was personal: for fun, interactively, with no concern for how many
ticks of the processor one was using. That was what people wanted when,
two years later, personal computers burst into the market.

Spacewar was running on a PDP-10. In terms of its hardware, a PDP-10
had nothing in common with the personal computers of the next
decades.4 It was large—even DEC’s own literature called it a main-
frame.5 It had a 36-bit word length. A full system cost around a half
million dollars and easily took up a room of its own. It used discrete
transistors and magnetic cores, not integrated circuits, for logic and
memory.6 Still, one can think of the PDP-10 as an ancestor of the
personal computer. It was designed from the start to support interactive
use. Although its time-sharing abilities were not as ambitious as those of
MIT’s Project MAC, it worked well. Of all the early time-sharing systems,
the PDP-10 best created an illusion that each user was being given the
full attention and resources of the computer. That illusion, in turn,
created a mental model of what computing could be—a mental model
that would later be realized in genuine personal computers.7

Chapter 5 discussed the early development of time-sharing and the
selection of a General Electric computer for Project MAC at MIT. While
that was going on, the MIT Artificial Intelligence Laboratory obtained a
DEC PDP-6, the PDP-10’s immediate predecessor, for its research (figure
7.1). According to the folklore, MIT students, especially members of the
Tech Model Railroad Club, worked closely with DEC on the PDP-6,
especially in developing an operating system for it, which would later
have an influence on the PDP-10’s system software.8 As a pun on the
Compatible Time Sharing System that was running on an IBM main-
frame nearby, the students called their PDP-6 system ITS—Incompatible
Time Sharing System.9 The PDP-6 did not have the disk storage
necessary to make it a viable time-sharing system and only about
twenty were sold. The PDP-10 did have a random-access disk system,
which allowed its users direct access to their own personal files.10 Like
other DEC computers, the PDP-10 also allowed users to load personal
files and programs onto inexpensive reels of DECtape, which fitted easily
into a briefcase.

The feeling that a PDP-10 was one’s own personal computer came
from its operating system—especially from the way it managed the flow
of information to and from the disks or tapes. With MIT’s help,
DEC supplied a system called ‘‘TOPS-10,’’ beginning in 1972. In the
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introduction to the TOPS-10 manual, the authors stated, ‘‘Our goal has
always been that in a properly configured system, each user has the
feeling that he owns his portion of the machine for the time he needs to
use it.’’11 Users could easily create, modify, store, and recall blocks of
data from a terminal. The system called these blocks by the already-
familiar term, ‘‘files.’’ Files were named by one to six characters,
followed by a period, then a three-character extension (which typically
told what type of file it was, e.g.: xxxxxx.BAS for a program written in
BASIC). By typing DIR at a terminal users could obtain a directory of all
the files residing on a disk. They could easily send the contents of a file
to a desired output device, which typically consisted of a three-letter
code, for example, LPT for line printer, or TTY for Teletype.12

A small portion of TOPS-10 was always present in core memory. Other
programs were stored on the disk and could be called up as necessary.
One, called PIP (Peripheral Interchange Program), allowed users to

Figure 7.1
One of the most influential computers of all time, the DEC PDP-6, flanked by its
creators at the Mill, 1964. C. Gordon Bell is at the left, wearing the sports jacket.
The PDP-6 did not sell well but was the prototype for the more successful PDP-10
and DEC System-20. It would have as much of an impact on the course of
computing as the much more celebrated PDP-8, also introduced at that time.
(Source: Digital Equipment Corporation.)
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move files in a variety of ways to and from input/output equipment.
Another program, TECO (Text Editor and Corrector), allowed users to
edit and manipulate text from a terminal. DDT (Dynamic Debugging
Tool) allowed users to analyze programs and correct errors without
going through the long turnaround times that plagued batch processing.

For PDP-10 users, TOPS-10 was a marvel of simplicity and elegance
and gave them the illusion that they were in personal control. TOPS-10
was like a Volkswagen Beetle: basic, simple, and easy to understand and
work with.13 Using a PDP-10 was not only fun but addictive. It was no
accident that Brand saw people playing Spacewar on one, or that it was
also the computer on which Adventure—perhaps the most long-lasting
of all computer games—was written.14

On the West Coast another system appeared with similar capabilities,
the SDS-940, offered by Scientific Data Systems (SDS) of southern
California. The 940 was an extension of a conventional computer, the
SDS 930, modified by researchers at Berkeley with support from the
Defense Department’s Advanced Research Projects Agency. The 940 was
more polished than the PDP-10, and it performed well. Still, the PDP-10
seemed to be preferred. At the Xerox Palo Alto Research Center, the
legendary lab where so much of personal computing would be created,
the staff was encouraged to use SDS machines, since Xerox had just
purchased SDS. But the researchers there resisted and instead built a
clone of a PDP-10, which they called MAXC—Multiple Access Xerox
Computer—the name a pun on Max Palevsky, the founder of SDS.15

(Palevsky, after becoming very wealthy from the sale of SDS to Xerox,
dabbled in Hollywood movies, politics, and culture—and joined the
board of Rolling Stone. Palevsky also became a venture capitalist with that
money, helping to fund Intel, among other companies.)16

For a while, when Wall Street was enamored of anything connected
with computers, it was easy to raise money to buy or lease a PDP-10 or
SDS-940, and then sell computer time to engineering companies or
other customers. Most of these firms were undercapitalized and did not
understand the complexities of what they were selling. Like their
counterparts in the electric utility industry, they had to have enough
capacity to handle peak loads, in order not to discourage customers. But
that meant that during off-peak times they would be wasting unused and
expensive computing equipment. The capital requirements necessary to
manage the cycles of the business were as large as they were in the
electric power business, which had gone through decades of chaos and
turmoil before settling down. Only a few survived,17 and even fewer, like
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Tymshare of Cupertino, California, did well (although it was sold to
McDonnell-Douglas in the early 1980s).18 Among those many compa-
nies, one is worth mentioning, Computer Center Corporation, or C-
Cubed, which installed one of the first PDP-10s in the Seattle area in
1968. While it was getting started, it offered a local teenager, Bill Gates,
free time on the computer in exchange for helping find and rid the
system of bugs. C-Cubed folded in 1970, having given Gates a taste of the
potential of interactive computing.19

Many of those who had access to these systems saw the future of
computing. But the financial troubles of time-sharing companies also
showed that it would be difficult to make personal, interactive use widely
available. There were attempts to make terminals accessible to the public
for free or at low cost—the most famous being the Resource One project
in the San Francisco Bay area (partially funded by the Whole Earth

Catalog). But it did not last, either.20

Calculators and Corporate Personal Computer Projects

Economics prevented the spread of computing to the public from the
top down—from large mainframes through time-shared terminals. But
while those attempts were underway, the underlying technology was
advancing rapidly. Could personal computing arrive from the bottom
up—from advances in semiconductor electronics?

Many engineers believe that a mental model of the personal computer
was irrelevant. They believe that no one invented the personal compu-
ter, it simply flowed from advances in semiconductors. Chuck House, an
engineer involved with the early Hewlett-Packard calculators, said, ‘‘One
could uncharitably say that we invented essentially nothing; we simply
took all the ideas that were out there and figured out how to implement
them cost-effectively.’’ Gordon Bell stated, ‘‘The semiconductor density
has really been the driving force, and as you reach different density
levels, different machines pop out of that in time.’’21 To them, inven-
tions are like a piece of fruit that falls to the ground when it is ripe, and
the inventor is given credit for doing little more than picking it up. If
that were true, one would find a steady progression of machines offering
personal, interactive use, as advances in semiconductors made them
viable. And these would have come from established firms who had the
engineering and manufacturing resources to translate those advances
into products.
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Products that took advantage of advances in semiconductors did
appear on the market. It is worth looking at them to see whether they
validate or refute the bottom-up explanation of the PC’s invention.

The first electronic computers were of course operated as if they were
personal computers. Once a person was granted access to a machine
(after literally waiting in a queue), he or she had the whole computer to
use, for whatever purpose. That gave way to more restricted access, but
those at MIT and Lincoln Labs who used the Whirlwind,
TX-0, and TX-2 that way never forgot its advantages. In 1962 some of
them developed a computer called the LINC, made of Digital Equip-
ment Corporation logic modules and intended for use by a researcher as
a personal tool. A demonstration project, funded by the NIH, made
sixteen LINCs available to biomedical researchers. DEC produced
commercial versions, and by the late 1960s, about 1,200 were in use as
personal computers. A key feature of the LINC was its compact tape
drive and tapes that one could easily carry around: the forerunner of
DECtape. The ease of getting at data on the tape was radically different
from the clumsy access of tape in mainframes, and this ease would be
repeated with the introduction of floppy-disk systems on personal
computers.22 DEC also marketed a computer that was a combination
of a LINC and a PDP-8, for $43,000. Although DECtape soon was offered
on nearly all DEC’s products, the LINC did not achieve the same kind of
commercial success as the PDP-8 and PDP-11 lines of minicomputers.23

Advances in chip density first made an impact on personal devices in
calculators.24 For decades there had been a small market for machines
that could perform the four functions of arithmetic, plus square root. In
the 1950s and 1960s the calculator industry was dominated by firms such
as Friden and Marchant in the United States, and Odhner in Europe.
Their products were complex, heavy, and expensive.25 In 1964 Wang
Laboratories, a company founded by An Wang, a Chinese immigrant
who had worked with Howard Aiken at Harvard, came out with an
electronic calculator. The Wang LOCI offered more functions, at a lower
cost, than the best mechanical machines. Its successor, the Wang 300,
was even easier to use and cheaper, partly because Wang deliberately set
the price of the 300 to undercut the competitive mechanical calculators
from Friden and others.26 (Only one or two of the mechanical calculator
firms survived the transition to electronics.) A few years later Hewlett-
Packard, known for its oscilloscopes and electronic test equipment, came
out with the HP-9100A, a calculator selling for just under $5,000. And
the Italian firm Olivetti came out with the Programma 101, a $3,500
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calculator intended primarily for accounting and statistical work. Besides
direct calculation, these machines could also execute a short sequence
of steps recorded on magnetic cards.27 Like the LINC, these calculators
used discrete circuits. To display digits, the Wang used ‘‘Nixie’’ tubes,
an ingenious tube invented by Burroughs in 1957. HP used a small
cathode-ray tube, as might be expected from a company that made
oscilloscopes.

By 1970 the first of a line of dramatically cheaper and smaller
calculators appeared that used integrated circuits.28 They were about
the size of a paperback book and cost as little as $400. A number of
wealthy consumers bought them immediately, but it wasn’t until Bowmar
advertised a Bowmar Brain for less than $250 for the 1971 Christmas
season that the calculator burst into public consciousness.29 Prices
plummeted: under $150 in 1972; under $100 by 1973; under $50 by
1976; finally they became cheap enough to be given away as promotional
trinkets.30 Meanwhile Hewlett-Packard stunned the market in early 1972
with the HP-35, a $400 pocket calculator that performed all the
logarithmic and trigonometric functions required by engineers and
scientists. Within a few years the slide rule joined the mechanical
calculator on the shelves of museums.31

Like processed foods, whose cost is mostly in the packaging and
marketing, so with calculators: technology no longer determined
commercial success. Two Japanese firms with consumer marketing
skills, Casio and Sharp, soon dominated. Thirty years after the comple-
tion of the half-million dollar ENIAC, digital devices became throw-away
commodities. The pioneering calculator companies either stopped
making calculators, as did Wang, or went bankrupt, as did Bowmar.
Hewlett-Packard survived by concentrating on more advanced and
expensive models; Texas Instruments survived by cutting costs.

The commodity prices make it easy to forget that these calculators
were ingenious pieces of engineering. Some of them could store
sequences of keystrokes in their memory and thus execute short
programs. The first of the programmable pocket calculators was
Hewlett-Packard’s HP-65, introduced in early 1974 for $795 (figure
7.2). Texas Instruments and others soon followed. As powerful as they
were, the trade press was hesitant to call them computers, even if
Hewlett-Packard introduced the HP-65 as a ‘‘personal computer’’
(possibly the first use of that term in print).32 Their limited program-
ming was offset by their built-in ability to compute logarithms and
trigonometric functions, and to use floating-point arithmetic to ten
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decimal digits of precision. Few mainframes could do that without
custom-written software.

The introduction of pocket programmable calculators had several
profound effects on the direction of computing technology. The first was
that the calculator, like the Minuteman and Apollo programs of the
1960s, created a market where suppliers could count on a long produc-
tion run, and thereby gain economies of scale and a low price. As chip
density, and therefore capability, increased, chip manufacturers faced
the same problem that Henry Ford had faced with his Model T: only
long production runs of the same product led to low prices, but markets
did not stay static. That was especially true of integrated circuits, which
by nature became ever more specialized in their function as the levels of
integration increased. (The only exception was in memory chips, which
is one reason why Intel was founded to focus on memories.) The
calculator offered the first consumer market for logic chips that allowed
companies to amortize the high costs of designing complex integrated
circuits. The dramatic drop in prices of calculators between 1971 and
1976 showed just how potent this force was.33

Figure 7.2
HP-65. (Source: Smithsonian Institution.)
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The second effect was just as important. Pocket calculators, especially
those that were programmable, unleashed the force of personal creativ-
ity and energy of masses of individuals. This force had already created
the hacker culture at MIT and Stanford (observed with trepidation by at
least one MIT professor).34 Their story is one of the more colorful
among the dry technical narratives of hardware and software design.
They and their accomplishments, suitably embellished, have become
favorite topics of the popular press. Of course their strange personal
habits made a good story, but were they true? Developing system
software was hard work, not likely to be done well by a salaried employee,
working normal hours and with a family to go home to in the evening.
Time-sharing freed all users from the tyranny of submitting decks of
cards and waiting for a printout, but it forced some users to work late at
night, when the time-shared systems were lightly loaded and thus more
responsive.

The assertion that hackers created modern interactive computing is
about half-right. In sheer numbers there may never have been more
than a few hundred people fortunate enough to be allowed to ‘‘hack’’
(that is, not do a programming job specified by one’s employer) on a
computer like the PDP-10. By 1975, there were over 25,000 HP-65
programmable calculators in use, each one owned by an individual
who could do whatever he or she wished to with it.35 Who were these
people? HP-65 users were not ‘‘strange’’. Nearly all were adult profes-
sional men, including civil and electrical engineers, lawyers, financial
people, pilots, and so on. Only a few were students (or professors),
because an HP-65 cost $795. Most purchased the HP-65 because they
had a practical need for calculation in their jobs. But this was a personal

machine—one could take it home at night. These users—perhaps 5 or
10 percent of those who owned machines—did not fit the popular
notion of hackers as kids with ‘‘[t]heir rumpled clothes, their unwashed
and unshaven faces, and their uncombed hair.’’36 But their passion for
programming made them the intellectual cousins of the students in the
Tech Model Railroad Club. And their numbers—only to increase as the
prices of calculators dropped—were the first indication that personal
computing was truly a mass phenomenon.

Hewlett-Packard and Texas Instruments were unprepared for these
events. They sold the machines as commodities; they could ill-afford a
sales force that could walk a customer through the complex learning
process needed to get the most out of one. That was what IBM sales-
men were known for—but they sold multimillion dollar mainframes.
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Calculators were designed to be easy enough to use to make that
unnecessary, at least for basic tasks. What was unexpected was how
much more some of those customers wanted to do. Finding little help
from the supplier, they turned to one another. Users groups, clubs,
newsletters, and publications proliferated.

This supporting infrastructure was critical to the success of personal
computing; in the following decade it would become an industry all its
own. Many histories of the personal computer emphasize this point; they
often cite the role of the Homebrew Computer Club, which met near
the Stanford campus in the mid-1970s, as especially important.37 The
calculator users groups were also important, though for different
reasons. As the primitive first personal computers like the Altair gave
way to more complete systems, a number of calculator owners purchased
one of them as well. In the club newsletters there were continuous
discussions of the advantages and drawbacks of each—the one machine
having the ability to evaluate complex mathematical expressions with
ease, the other more primitive but potentially capable of doing all that
and more.38 There was no such thing as a typical member of the
Homebrew Computer Club, although calculator owners tended to be
professionals whose jobs required calculation during the day, and who
thought of other uses at night. Many of them were bitten by the PC bug;
at the same time they took a show-me attitude toward the computer.
Could you rely on one? Could you use one to design a radar antenna?
Could it handle a medium-sized mailing list? Was the personal computer
a serious machine? At first the answers were, ‘‘not yet,’’ but gradually,
with some firm prodding by this community, the balance shifted. Groups
like the Homebrew Computer Club emphasized the ‘‘personal’’ in
personal computer; calculator users emphasized the word computer.

Ever since time-sharing and minicomputers revealed an alternative to
mainframe computing, there have been prophets and evangelists who
raged against the world of punched cards and computer rooms,
promising a digital paradise of truly interactive tools. The most famous
was Ted Nelson, whose self-published book Computer Lib proclaimed
(with a raised fist on the cover): ‘‘You can and must understand
computers now.’’39 By 1974 enough of these dreams had become real
that the specific abilities—and limits—of actual ‘‘dream machines’’ (the
alternate title to Nelson’s book) had to be faced. Some of the dreamers,
including Nelson, were unable to make the transition. They dismissed
the pocket calculator. They thought it was puny, too cheap, couldn’t do
graphics, wasn’t a ‘‘von Neumann machine,’’ and so on.40 For them, the
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dream machine was better, even if (or because) it was unbuilt.41 By 1985
there would be millions of IBM Personal Computers and their copies in
the offices and homes of ordinary people. These computers would use a
processor that was developed for other purposes, and adapted for the
personal computer almost by accident. But they would be real and a
constant source of inspiration and creativity to many who used them, as
well as an equal source of frustration for those who knew how much
better they could be.

The Microprocessor

Calculators showed what integrated circuits could do, but they did not
open up a direct avenue to personal interactive computing. The chips
used in them were too specialized for numerical calculation to form a
basis for a general-purpose computer. Their architecture was ad-hoc and
closely guarded by each manufacturer. What was needed was a set of
integrated circuits—or even a single integrated circuit—that incorpo-
rated the basic architecture of a general-purpose, stored-program
computer.42 Such a chip, called a ‘‘microprocessor,’’ did appear.

In 1964 Gordon Moore, then of Fairchild and soon a cofounder of
Intel, noted that from the time of the invention of integrated circuits in
1958, the number of circuits that one could place on a single integrated
circuit was doubling every year.43 By simply plotting this rate on a piece
of semi-log graph paper, ‘‘Moore’s Law’’ predicted that by the mid 1970s
one could buy a chip containing logic circuits equivalent to those used in
a 1950s-era mainframe. (Recall that the UNIVAC I had about 3,000
tubes, about the same number of active elements contained in the first
microprocessor discussed below.) By the late 1960s transistor-transistor
logic (TTL) was well established, but a new type of semiconductor called
metal-oxide semiconductor (MOS), emerged as a way to place even
more logic elements on a chip.44 MOS was used by Intel to produce its
pioneering 1103 memory chip, and it was a key to the success of pocket
calculators. The chip density permitted by MOS brought the concept of
a computer-on-a-chip into focus among engineers at Intel, Texas Instru-
ments, and other semiconductor firms. That did not mean that such a
device was perceived as useful. If it was generally known that enough
transistors could be placed on a chip to make a computer, it was also
generally believed that the market for such a chip was so low that its sales
would never recoup the large development costs required.45
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By 1971 the idea was realized in silicon. Several engineers deserve
credit for the invention. Ted Hoff, an engineer at Intel, was responsible
for the initial concept, Federico Faggin of Intel deserves credit for its
realization in silicon, and Gary Boone of Texas Instruments designed
similar circuits around that time. In 1990, years after the microprocessor
became a household commodity and after years of litigation, Gil Hyatt,
an independent inventor from La Palma, California, received a patent
on it. Outside the courts he has few supporters, and recent court rulings
may have invalidated his claim entirely.46

The story of the microprocessor’s invention at Intel has been told
many times.47 In essence, it is a story encountered before: Intel was
asked to design a special-purpose system for a customer. It found that by
designing a general-purpose computer and using software to tailor it to
the customer’s needs, the product would have a larger market.

Intel’s customer for this circuit was Busicom, a Japanese company that
was a top seller of hand-held calculators. Busicom sought to produce a
line of products with different capabilities, each aimed at a different
market segment. It envisioned a set of custom-designed chips that
incorporated the logic for the advanced mathematical functions. Intel’s
management assigned Marcian E. (‘‘Ted’’) Hoff, who had joined the
company in 1968 (Intel’s twelfth employee), to work with Busicom.

Intel’s focus had always been on semiconductor memory chips. It had
shied away from logic chips like those suggested by Busicom, since it felt
that markets for them were limited. Hoff’s insight was to recognize that
by designing fewer logic chips with more general capabilities, one could
satisfy Busicom’s needs elegantly. Hoff was inspired by the PDP-8, which
had a very small set of instructions, but which its thousands of users had
programmed to do a variety of things. He also recalled using an IBM
1620, a small scientific computer with an extremely limited instruction
set that nevertheless could be programmed to do a lot of useful work.

Hoff proposed a logic chip that incorporated more of the concepts of
a general-purpose computer (figure 7.3). A critical feature was the ability
to call up a subroutine, execute it, and return to the main program as
needed.48 He proposed to do that with a register that kept track of where
a program was in its execution and saved that status when interrupted to
perform a subroutine. Subroutines themselves could be interrupted,
with return addresses stored on a ‘‘stack’’: an arrangement of registers
that automatically retrieved data on a last-in-first-out basis.49

With this ability, the chip could carry out complex operations stored
as subroutines in memory, and avoid having those functions perma-

218 Chapter 7



nently wired onto the chip. Doing it Hoff’s way would be slower, but in a
calculator that did not matter, since a person could not press keys that
fast anyway. The complexity of the logic would now reside in software
stored in the memory chips, so one was not getting something for
nothing. But Intel was a memory company, and it knew that it could
provide memory chips with enough capacity. As an added inducement,
sales of the logic chips would mean more sales of its bread-and-butter
memories.

Figure 7.3
(top) Patent for a ‘‘Memory System for a Multi-Chip Digital Computer,’’ by M. E.
Hoff, Stanley Mazor, and Federico Faggin of Intel. The patent was not specifically
for a ‘‘computer on a chip,’’ but note that all the functional blocks found in the
processor of a stored-program computer are shown in this drawing. (bottom) Intel
8080. (Source: Smithsonian Institution.)
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That flexibility meant that the set of chips could be used for many
other applications besides calculators. Busicom was in a highly compe-
titive and volatile market, and Intel recognized that. (Busicom eventually
went bankrupt.) Robert Noyce negotiated a deal with Busicom to
provide it with chips at a lower cost, giving Intel in return the right to
market the chips to other customers for noncalculator applications.
From these unsophisticated negotiations with Busicom, in Noyce’s
words, came a pivotal moment in the history of computing.50

The result was a set of four chips, first advertised in a trade journal in
late 1971, which included ‘‘a microprogrammable computer on a
chip!’’51 That was the 4004, on which one found all the basic registers
and control functions of a tiny, general-purpose stored-program compu-
ter. The other chips contained a read-only memory (ROM), random-
access memory (RAM), and a chip to handle output functions. The 4004
became the historical milestone, but the other chips were important as
well, especially the ROM chip that supplied the code that turned a
general-purpose processor into something that could meet a customer’s
needs. (Also at Intel, a team led by Dov Frohman developed a ROM chip
that could be easily reprogrammed and erased by exposure to ultraviolet
light. Called an EPROM (erasable programmable read-only memory)
and introduced in 1971, it made the concept of system design using a
microprocessor practical.)52

The detailed design of the 4004 was done by Stan Mazor. Federico
Faggin was also crucial in making the concept practical. Masatoshi
Shima, a representative from Busicom, also contributed. Many histories
of the invention give Hoff sole credit; all players, including Hoff, now
agree that that is not accurate. Faggin left Intel in 1974 to found a rival
company, Zilog. Intel, in competition with Zilog, felt no need to
advertise Faggin’s talents in its promotional literature, although Intel
never showed any outward hostility to its ex-employee.53 The issue of
whom to credit reveals the way many people think of invention: Hoff had
the idea of putting a general-purpose computer on a chip, Faggin and
the others ‘‘merely’’ implemented that idea in silicon. At the time, Intel
was not sure what it had invented either: Intel’s patent attorney resisted
Hoff’s desire at the time to patent the work as a ‘‘computer.’’54 Intel
obtained two patents on the 4004, covering its architecture and implemen-
tation; Hoff’s name appears on only one of them. (That opened the door
to rival claims for patent royalties from TI, and eventually Gil Hyatt.)

The 4004 worked with groups of four bits at a time—enough to code
decimal digits but no more. At almost the same time as the work with
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Busicom, Intel entered into a similar agreement with Computer Term-
inal Corporation (later called Datapoint) of San Antonio, Texas, to
produce a set of chips for a terminal to be attached to mainframe
computers. Again, Mazor and Hoff proposed a microprocessor to
handle the terminal’s logic. Their proposed chip would handle data in
8-bit chunks, enough to process a full byte at a time. By the time Intel
had completed its design, Datapoint had decided to go with conven-
tional TTL chips. Intel offered the chip, which they called the 8008, as a
commercial product in April 1972.55

In late 1972, a 4-bit microprocessor was offered by Rockwell, an
automotive company that had merged with North American Aviation,
maker of the Minuteman Guidance System. In 1973 a half dozen other
companies began offering microprocessors as well. Intel responded to
the competition in April 1974 by announcing the 8080, an 8-bit chip that
could address much more memory and required fewer support chips
than the 8008. The company set the price at $360—a somewhat arbitrary
figure, as Intel had no experience selling chips like these one at a time.
(Folklore has it that the $360 price was set to suggest a comparison with
the IBM System/360.)56 A significant advance over the 8008, the 8080
could execute programs written for the other chip, a compatibility that
would prove crucial to Intel’s dominance of the market. The 8080 was
the first of the microprocessors whose instruction set and memory
addressing capability approached those of the minicomputers of the
day.57

From Microprocessor to Personal Computer

There were now, in early 1974, two converging forces at work. From one
direction were the semiconductor engineers with their ever-more-power-
ful microprocessors and ever-more-capacious memory chips. From the
other direction were users of time-sharing systems, who saw a PDP-10 or
XDS 940 as a basis for public access to computing. When these forces
met in the middle, they would bring about a revolution in personal
computing.

They almost did not meet. For the two years between Brand’s
observation and the appearance of the Altair, the two forces were
rushing past one another. The time-sharing systems had trouble
making money even from industrial clients, and the public systems like
Community Memory were also struggling. At the other end, semicon-
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ductor companies did not think of their products as a possible basis for a
personal computer.

A general-purpose computer based on a microprocessor did appear in
1973. In May of that year Thi T. Truong, an immigrant to France from
Viet Nam, had his electronics company design and build a computer
based on the Intel 8008 microprocessor. The MICRAL was a rugged and
well-designed computer, with a bus architecture and internal slots on its
circuit board for expansion. A base model cost under $2,000, and it
found a market replacing minicomputers for simple control operations.
Around two thousand were sold in the next two years, none of them
beyond an industrial market.58 It is regarded as the first microprocessor-
based computer to be sold in the commercial marketplace. Because of
the limitations of the 8008, its location in France, and above all, the
failure by its creators to see what it ‘‘really’’ was, it never broke out of its
niche as a replacement for minicomputers in limited industrial loca-
tions.

The perception of the MICRAL as something to replace the mini was
echoed at Intel as well. Intel’s mental model of its product was this: an
industrial customer bought an 8080 and wrote specialized software for it,
which was then burned into a read-only-memory to give a system with
the desired functions. The resulting inexpensive product (no longer
programmable) was then put on the market as an embedded controller
in an industrial system. A major reason for that mental model was the
understanding of how hard it was to program a microprocessor. It
seemed absurd to ask untrained consumers to program when Intel’s
traditional customers, hardware designers, were themselves uncomfor-
table with programming.

With these embedded uses in mind, microprocessor suppliers devel-
oped educational packages intended to ease customers into system
design. These kits included the microprocessor, some RAM and ROM
chips, and some other chips that handled timing and control, all
mounted on a printed circuit board. They also included written material
that gave a tutorial on how to program the system. This effort took Intel
far from its core business of making chips, but the company hoped to
recoup the current losses later on with volume sales of components.59

These kits were sold for around $200 or given away to engineers who
might later generate volume sales.

Intel and the others also built more sophisticated ‘‘Development
Systems,’’ on which a customer could actually test the software for an
application (figure 7.4). These were fully assembled products that sold
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for around $10,000. To use these systems, customers also needed
specialized software that would allow them to write programs using a
language like FORTRAN, and then ‘‘cross-compile’’ it for the micro-
processor—that is, from the FORTRAN program generate machine
code, not for the computer on which it was written, but for the
microprocessor. The company hired Gary Kildall, an instructor at the
Naval Postgraduate School in Monterey, California, to develop a
language based on IBM’s PL/I.60 He called it PL/M, and in 1973 Intel
offered it to customers. Initially this software was intended to be run on a
large mainframe, but it was soon available for minicomputers, and finally
to microprocessor-based systems. In 1974 Intel offered a development
system, the Intellec 4, which included its own resident PL/M compiler
(i.e., one did not need a mainframe or a mini to compile the code).61 A
similar Intellec-8 introduced the 8-bit microprocessors.

With these development systems, Intel had in fact invented a personal
computer. But the company did not realize it. These kits were not

Figure 7.4
Intellec-8 Development System. This was, in fact, a general-purpose computer,
but Intel did not market it as such. Intel intended that customers buy them to
assist in writing and debugging microprocessor software that would go into
embedded systems. A few were purchased and used as alternatives to minicom-
puters. (Source: Intel.)
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marketed as the functional computers they were. Occasionally someone
bought one of these systems and used it in place of a minicomputer, but
Intel neither supported that effort nor recognized its potential.62 Intel
and the other microprocessor firms made money selling these develop-
ment systems—for some they were very profitable—but the goal was to
use them as a lever to open up volume purchases of chips. The public
could not buy one. The chip suppliers were focused on the difficulties in
getting embedded systems to do useful work; they did not think that the
public would be willing to put up with the difficulties of programming
just to own their own computer.

Role of Hobbyists

Here is where the electronics hobbyists and enthusiasts come in. Were it
not for them, the two forces in personal computing might have crossed
without converging. Hobbyists, at that moment, were willing to do the
work needed to make microprocessor-based systems practical.

This community had a long history of technical innovation—it was
radio amateurs, for example, who opened up the high-frequency radio
spectrum for long-distance radio communications after World War I.
After World War II, the hobby expanded beyond amateur radio to
include high-fidelity music reproduction, automatic controls, and simple
robotics. A cornucopia of war surplus equipment from the U.S. Army
Signal Corps found its way into individual hands, further fueling the
phenomenon. (A block in lower Manhattan known as ‘‘Radio Row,’’
where the World Trade Center was built, was a famous source of surplus
electronic gear.)63 The shift from vacuum tubes to integrated circuits
made it harder for an individual to build a circuit on a breadboard at
home, but inexpensive TTL chips now contained whole circuits them-
selves.64 As the hobby evolved rapidly from analog to digital applications,
this group supplied a key component in creating the personal computer:
it provided an infrastructure of support that neither the computer
companies nor the chip makers could.

This infrastructure included a variety of electronics magazines. Some
were aimed at particular segments, for example, QST for radio amateurs.
Two of them, Popular Electronics and Radio-Electronics, were of general
interest and sold at newsstands; they covered high-fidelity audio, short-
wave radio, television, and assorted gadgets for the home and car. Each
issue typically had at least one construction project. For these projects
the magazine would make arrangements with small electronics compa-
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nies to supply a printed circuit board, already etched and drilled, as well
as specialized components that readers might have difficulty finding
locally. By scanning the back issues of these magazines we can trace how
hobbyists moved from analog to digital designs.

A machine called the Kenbak-1, made of medium and small-scale
integrated circuits, was advertised in the September 1971 issue of
Scientific American. The advertisement called it suitable for ‘‘private
individuals,’’ but it was really intended for schools. The Kenbak may
be the first personal computer, but it did not use a microprocessor, and
its capabilities were quite limited.

The Scelbi-8H was announced in a tiny advertisement in the back of
the March 1974 issue of QST. It used an Intel 8008, and thus may be the
first microprocessor-based computer marketed to the public. According
to the advertisement, ‘‘Kit prices for the new Scelbi-8H mini-computer
start as low as $440!’’65 It is not known how many machines Scelbi sold,
but the company went on to play an important part in the early personal
computer phenomenon.66

In July 1974, Radio-Electronics announced a kit based on the Intel 8008,
under the headline ‘‘Build the Mark-8: Your Personal Minicomputer.’’67

The project was much more ambitious than what typically appeared in
that magazine. The article gave only a simple description and asked
readers to order a separate, $5.00 booklet for detailed instructions. The
Mark-8 was designed by Jonathan Titus of Virginia Polytechnic University
in Blacksburg. The number of machines actually built may range in the
hundreds, although the magazine reportedly sold ‘‘thousands’’ of book-
lets. At least one Mark-8 users club sprang up, in Denver, whose
members designed an ingenious method of storing programs on an
audio cassette recorder.68 Readers were directed to a company in
Englewood, New Jersey, that supplied a set of circuit boards for $47.50,
and to Intel for the 8008 chip (for $120.00). The Mark-8’s appearance in
Radio-Electronics was a strong factor in the decision by its rival Popular

Electronics to introduce the Altair kit six months later.69

These kits were just a few of many projects described in the hobbyist
magazines. They reflected a conscious effort by the community to bring
digital electronics, with all its promise and complexity, to amateurs who
were familiar only with simpler radio or audio equipment. It was not an
easy transition: construction of both the Mark-8 and the TV-typewriter
(described next) was too complex to be described in a magazine article;
readers had to order a separate booklet to get complete plans. Radio-

Electronics explained to its readers that ‘‘[w]e do not intend to do an
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article this way as a regular practice.’’70 Although digital circuits were
more complex than what the magazine had been handling, it recog-
nized that the electronics world was moving in that direction and that its
readers wanted such projects.

Other articles described simpler digital devices—timers, games,
clocks, keyboards, and measuring instruments—that used inexpensive
TTL chips. One influential project was the TV-Typewriter, designed by
Don Lancaster and published in Radio-Electronics in September 1973.
This device allowed readers to display alphanumeric characters,
encoded in ASCII, on an ordinary television set. It presaged the
advent of CRT terminals as the primary input-output device for personal
computers—one major distinction between the PC culture and that of
the minicomputer, which relied on the Teletype. Lee Felsenstein called
the TV-Typewriter ‘‘the opening shot of the computer revolution.’’71

Altair

1974 was the annus mirabilis of personal computing. In January, Hewlett-
Packard introduced its HP-65 programmable calculator. That summer
Intel announced the 8080 microprocessor. In July, Radio-Electronics

described the Mark-8. In late December, subscribers to Popular Electronics

received their January 1975 issue in the mail, with a prototype of the
‘‘Altair’’ minicomputer on the cover (figure 7.5), and an article describ-
ing how readers could obtain one for less than $400. This announce-
ment ranks with IBM’s announcement of the System/360 a decade
earlier as one of the most significant in the history of computing. But
what a difference a decade made: the Altair was a genuine personal
computer.

H. Edward Roberts, the Altair’s designer, deserves credit as the
inventor of the personal computer. The Altair was a capable, inexpen-
sive computer designed around the Intel 8080 microprocessor. Although
calling Roberts the inventor makes sense only in the context of all that
came before him, including the crucial steps described above, he does
deserve the credit. Mark Twain said that historians have to rearrange
past events so they make more sense. If so, the invention of the personal
computer at a small model-rocket hobby shop in Albuquerque cries out
for some creative rearrangement. Its utter improbability and unpredict-
ability have led some to credit many other places with the invention,
places that are more sensible, such as the Xerox Palo Alto Research
Center, or Digital Equipment Corporation, or even IBM. But Albuquer-
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que it was, for it was only at MITS that the technical and social
components of personal computing converged.

Consider first the technical. None of the other hobbyist projects had
the impact of the Altair’s announcement. Why? One reason was that it
was designed and promoted as a capable minicomputer, as powerful as
those offered by DEC or Data General. The magazine article, written by
Ed Roberts and William Yates, makes this point over and over: ‘‘a full-
blown computer that can hold its own against sophisticated minicom-
puters’’; ‘‘not a ‘demonstrator’ or a souped-up calculator’’; ‘‘perfor-
mance competes with current commercial minicomputers.’’72 The
physical appearance of the Altair computer suggested its minicomputer
lineage. It looked like the Data General Nova: it had a rectangular metal
case, a front panel of switches that controlled the contents of internal

Figure 7.5
MITS Altair 8800 Computer. The front panel was copied from the Data General
Nova. The machine shown in this photograph was one of the first produced and
was owned by Forrest Mims, an electronics hobbyist and frequent contributor to
Popular Electronics, who had briefly worked at MITS. (Source: Smithsonian Institu-
tion.)
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registers, and small lights indicating the presence of a binary one or
zero. Inside the Altair’s case, there was a machine built mainly of TTL
integrated circuits (except for the microprocessor, which was a MOS
device), packaged in dual-in-line packages, soldered onto circuit boards.
Signals and power traveled from one part of the machine to another on
a bus. The Altair used integrated circuits, not magnetic cores, for its
primary memory. The Popular Electronics cover called the Altair the
‘‘world’s first minicomputer kit’’; except for its use of a microprocessor,
that accurately described its physical construction and design.73

But the Altair as advertised was ten times cheaper than minicomputers
were in 1975. The magazine offered an Altair for under $400 as a kit,
and a few hundred more already assembled. The magazine cover said
that readers could ‘‘save over $1,000.’’ In fact, the cheapest PDP-8 cost
several thousand dollars. Of course, a PDP-8 was a fully assembled,
operating computer that was considerably more capable than the basic
Altair, but that did not really matter in this case. (Just what one got for
$400 will be discussed later.) The low cost resulted mainly from its use of
the Intel 8080 microprocessor, just introduced. Intel had quoted a price
of $360 for small quantities of 8080s, but Intel’s quote was not based on a
careful analysis of how to sell the 8080 to this market. MITS bought them
for only $75 each.74

The 8080 had more instructions and was faster and more capable than
the 8008 that the Mark-8 and Scelbi-8 used. It also permitted a simpler
design since it required only six instead of twenty supporting chips to
make a functional system. Other improvements over the 8008 were its
ability to address up to 64 thousand bytes of memory (vs. the 8008’s 16
thousand), and its use of main memory for the stack, which permitted
essentially unlimited levels of subroutines instead of the 8008’s seven
levels.

The 8080 processor was only one architectural advantage the Altair
had over its predecessors. Just as important was its use of an open bus.75

According to folklore, the bus architecture almost did not happen. After
building the prototype Altair, Roberts photographed it and shipped it via
Railway Express to the offices of Popular Electronics in New York. Railway
Express, a vestige of an earlier American industrial revolution, was about
to go bankrupt; it lost the package. The magazine cover issue showed the
prototype, with its light-colored front panel and the words ‘‘Altair 8800’’
on the upper left. That machine had a set of four large circuit boards
stacked on top of one another, with a wide ribbon cable carrying 100
lines from one board to another. After that machine was lost, Robert
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redesigned the Altair. He switched to a larger deep blue cabinet and
discarded the 100-wire ribbon cable. In the new design, wires connected
to a rigid backplane carried the signals from one board to another. That
allowed hobbyists to add a set of connectors that could accept other
cards besides the initial four.76

The $400 kit came with only two cards to plug into the bus: those two,
plus a circuit board to control the front panel and the power supply,
made up the whole computer. The inside looked quite bare. But
laboriously soldering a set of wires to an expansion chassis created a
full set of slots into which a lot of cards could be plugged. MITS was
already designing cards for more memory, I/O and other functions.

Following the tradition established by Digital Equipment Corporation,
Roberts did not hold specifications of the bus as a company secret. That
allowed others to design and market cards for the Altair. That decision
was as important to the Altair’s success as its choice of an 8080 processor.
It also explains one of the great ironies of the Altair, that it inaugurated
the PC era although it was neither reliable nor very well-designed. Had it
not been possible for other companies to offer plug-in cards that
improved on the original MITS design, the Altair might have made no
greater impact than the Mark-8 had. The bus architecture also led to the
company’s demise a few years later, since it allowed other companies to
market compatible cards and, later, compatible computers. But by then
the floodgates had opened. If MITS was unable to deliver on its promises
of making the Altair a serious machine (though it tried), other compa-
nies would step in. MITS continued developing plug-in cards and
peripheral equipment, but the flood of orders was too much for the
small company.

So while it was true that for $400 hobbyists got very little, they could
get the rest—or design and build the rest. Marketing the computer as a
bare-bones kit offered a way for thousands of people to bootstrap their
way into the computer age, at a pace that they, not a computer company,
could control.

Assembling the Altair was much more difficult than assembling other
electronics kits, such as those sold by the Heath Company or Dynaco.
MITS offered to sell ‘‘completely assembled and tested’’ computers for
$498, but with such a backlog of orders, readers were faced with the
choice of ordering the kit and getting something in a couple of months,
or ordering the assembled computer and perhaps waiting a year or
more.77 Most ordered the kit and looked to one another for support in
finding the inevitable wiring errors and poorly soldered connections
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that they would make. The audience of electronics hobbyists, at whom
the magazine article was aimed, compared the Altair not to the simple
Heathkits, but to building a computer from scratch, which was almost
impossible: not only was it hard to design a computer, it was impossible
to obtain the necessary chips. Chips were inexpensive, but only if they
were purchased in large quantities, and anyway, most semiconductor
firms had no distribution channels set up for single unit or retail sales.
Partly because of this, customers felt, rightly, that they were getting an
incredible bargain.

The limited capabilities of the basic Altair, plus the loss of the only
existing Altair by the time the Popular Electronics article appeared, led to
the notion that it was a sham, a ‘‘humbug,’’ not a serious product at all.78

The creators of the Altair fully intended to deliver a serious computer
whose capabilities were on a par with minicomputers then on the
market. Making those deliveries proved to be a lot harder than they
anticipated. Fortunately, hobbyists understood that. But there should be
no mistake about it: the Altair was real.

MITS and the editors of Popular Electronics had found a way to bring
the dramatic advances in integrated circuits to individuals. The first
customers were hobbyists, and the first thing they did with these
machines, once they got them running, was play games.79 Roberts was
trying to sell it as a machine for serious work, however. In the Popular

Electronics article he proposed a list of twenty-three applications, none of
them games.80 Because it was several years before anyone could supply
peripheral equipment, memory, and software, serious applications were
rare at first. That, combined with the primitive capabilities of other
machines like the Mark-8, led again to an assumption that the Altair was
not a serious computer. Many of the proposed applications hinted at in
the 1975 article were eventually implemented. Years later one could still
find an occasional Altair (or more frequently, an Altair clone)
embedded into a system just like its minicomputer cousins.

The next three years, from January 1975 through the end of 1977, saw
a burst of energy and creativity in computing that had almost no equal in
its history. The Altair had opened the floodgates, even though its
shortcomings were clear to everyone. One could do little more than
get it to blink a pattern of lights on the front panel. And even that was
not easy: one had to flick the toggle switches for each program step, then
deposit that number into a memory location, then repeat that for the
next step, and so on—hopefully the power did not go off while this was
going on—until the whole program (less than 256 bytes long!) was in
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memory. Bruised fingers from flipping the small toggle switches were
the least of the frustrations. In spite of all that, the bus architecture
meant that other companies could design boards to remedy each of
these shortcomings, or even design a copy of the Altair itself, as IMSAI
and others did.81

But the people at MITS and their hangers-on created more than just a
computer. This $400 computer inspired the extensive support of user
groups, informal newsletters, commercial magazines, local clubs,
conventions, and even retail stores. This social activity went far beyond
traditional computer user groups, like SHARE for IBM or DECUS for
Digital. Like the calculator users groups, these were open and informal,
and offered more to the neophyte. All of this sprang up with the Altair,
and many of the publications and groups lived long after the last Altair
computer itself was sold.

Other companies, beginning with Processor Technology, soon began
offering plug-in boards that gave the machine more memory. Another
board provided a way of connecting the machine to a Teletype, which
allowed fingers to heal. But Teletypes were not easy to come by—an
individual not affiliated with a corporation or university could only buy
one secondhand, and even then they were expensive. Before long,
hobbyists-led small companies began offering ways of hooking up a
television set and a keyboard (although Don Lancaster’s TV Typewriter
was not the design these followed). The board that connected to the
Teletype sent data serially—one bit at a time; another board was
designed that sent out data in parallel, for connection to a line printer
that minicomputers used, although like the Teletype these were expen-
sive and hard to come by.82

The Altair lost its data when the power was shut off, but before long
MITS designed an interface that put out data as audio tones, to store
programs on cheap audio cassettes. A group of hobbyists met in Kansas
City in late 1975 and established a ‘‘Kansas City Standard’’ for the audio
tones stored on cassettes, so that programs could be exchanged from
one computer to another.83 Some companies brought out inexpensive
paper tape readers that did not require the purchase of a Teletype.
Others developed a tape cartridge like the old 8-track audio systems,
which looped a piece of tape around and around. Cassette storage was
slow and cumbersome—users usually had to record several copies of a
program and make several tries before successfully loading it into the
computer. Inadequate mass storage limited the spread of PCs until the
‘‘floppy’’ disk was adapted.
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The floppy was invented by David L. Noble at IBM for a completely
different purpose. When IBM introduced the System/370, which used
semiconductor memory, it needed a way to store the computer’s initial
control program, as well as to hold the machine’s microprogram. That
had not been a problem for the System/360, which used magnetic cores
that held their contents when the power was switched off. From this
need came the 8-inch diameter flexible diskette, which IBM announced
in 1971.84 Before long, people recognized that it could be used for other
purposes besides the somewhat limited one for which it had been
invented. In particular, Alan Shugart, who had once worked for IBM,
recognized that the floppy’s simplicity and low cost made it the ideal
storage medium for low-cost computer systems.85 Nevertheless, floppy
drives were rare in the first few years of personal computing. IBM’s
hardware innovation was not enough; there had to be an equivalent
innovation in system software to make the floppy practical. Before that
story is told, we shall look first at the more immediate issue of develop-
ing a high-level language for the PC.

Software: BASIC

The lack of a practical mass storage device was one of two barriers that
blocked the spread of personal, interactive computing. The other was a
way to write applications software. By 1977 two remarkable and influen-
tial pieces of software—Microsoft BASIC and the CP/M Operating
System—overcame those barriers.

In creating the Altair, Ed Roberts had to make a number of choices:
what processor to use, the design of the bus (even whether to use a bus
at all), the packaging, and so on. One such decision was the choice of a
programming language. Given the wide acceptance of BASIC it is hard
to imagine that there ever was a choice, but there was. BASIC was not
invented for small computers. The creators of BASIC abhorred the
changes others made to shoehorn the language onto systems smaller
than a mainframe. Even in its mainframe version, BASIC had severe
limitations—on the numbers and types of variables it allowed, for
example. In the view of academic computer scientists, the versions of
BASIC developed for minicomputers were even worse—full of ad hoc
patches and modifications. Many professors disparaged BASIC as a toy
language that fostered poor programming habits, and they refused to
teach it. Serious programming was done in FORTRAN—an old and
venerable but still capable language.

232 Chapter 7



If, in 1974, one asked for a modern, concise, well-designed language
to replace FORTRAN, the answer might have been APL, an interactive
language invented at IBM by Kenneth Iverson in the early 1960s. A team
within IBM designed a personal computer in 1973 that supported APL,
the ‘‘SCAMP,’’ although a commercial version of that computer sold
poorly.86 Or PL/I: IBM had thrown its resources into this language,
which it hoped would replace both FORTRAN and COBOL. Gary Kildall
chose a subset of PL/I for the Intel microprocessor development kit.

BASIC’s strength was that it was easy to learn. More significant, it
already had a track record of running on computers with limited
memory. Roberts stated that he had considered FORTRAN and APL,
before he decided the Altair was to have BASIC.87

William Gates III was born in 1955, at a time when work on FORTRAN
was just underway. He was a student at Harvard when the famous cover
of Popular Electronics appeared describing the Altair. According to one
biographer, his friend Paul Allen saw the magazine and showed it to
Gates, and the two immediately decided that they would write a BASIC
compiler for the machine.88 Whether it was Gates’s or Roberts’s decision
to go with BASIC for the Altair, BASIC it was (figure 7.6).

In a newsletter sent out to Altair customers, Gates and Allen stated
that a version of BASIC that required only 4K bytes of memory would be
available in June 1975, and that more powerful versions would be avail-
able soon after. The cost, for those who also purchased Altair memory
boards, was $60 for 4K BASIC, $75 for 8K, and $150 for ‘‘extended’’ BASIC
(requiring disk or other mass storage). Those who wanted the language to
run on another 8080-based system had to pay $500.89

In a burst of energy, Gates and Allen, with the help of Monte Davidoff,
wrote not only a BASIC that fit into very little memory; they wrote a
BASIC with a lot of features and impressive performance. The language
was true to its Dartmouth roots in that it was easy to learn. It broke with
those roots by providing a way to move from BASIC commands to
instructions written in machine language. That was primarily through a
USR command, which was borrowed from software written for DEC
minicomputers (where the acronym stood for user service routine).90 A
programmer could even directly put bytes into or pull data out of
specific memory locations, through the PEEK and POKE commands—
which would have caused havoc on the time-shared Dartmouth system.
Like USR, these commands were also derived from prior work done by
DEC programmers, who came up with them for a time-sharing system
they wrote in BASIC for the PDP-11. Those commands allowed users to
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pass from BASIC to machine language easily—a crucial feature for
getting a small system to do useful work.

These extensions kept their BASIC within its memory constraints
while giving it the performance of a more sophisticated language. Yet
it remained an interactive, conversational language that novices could
learn and use. The BASIC they wrote for the Altair, with its skillful
combination of features taken from Dartmouth and from the Digital
Equipment Corporation, was the key to Gates’s and Allen’s success in
establishing a personal computer software industry.

The developers of this language were not formally trained in compu-
ter science or mathematics as were Kemeny and Kurtz. They were

Figure 7.6
Paper tape containing BASIC, version 1.1, from the Smithsonian Collections.
According to a letter by Bill Gates in the December 1975 issue of the Altair Users
Group newsletter, Computer Notes: ‘‘If anyone is using BASIC version 1.1, you have
a copy of a tape that was stolen back in March. No customers were ever shipped
1.1, as it was experimental and is full of bugs!’’ (Source: Smithsonian Institution.)
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introduced to computing in a somewhat different way. Bill Gates’s
private school in Seattle had a General Electric time-sharing system
available for its pupils in 1968, a time when few students even in
universities had such access. Later on he had access to an even better
time-shared system: a PDP-10 owned by the Computer Center Corpora-
tion. Later still, he worked with a system of PDP-10s and PDP-11s used to
control hydroelectric power for the Bonneville Power Administration.
One of his mentors at Bonneville Power was John Norton, a TRW
employee who had worked on the Apollo Program and who was a legend
among programmers for the quality of his work.91

When he was writing BASIC for the Altair, Gates was at Harvard. He
did not have access to an 8080-based system, but he did have access to a
PDP-10 at Harvard’s computing center (named after Howard Aiken).
He and fellow student Monte Davidoff used the PDP-10 to write the
language, based on the written specifications of the Intel 8080. In early
1975 Paul Allen flew to Albuquerque and demonstrated it to Roberts
and Yates. It worked. Soon after, MITS advertised its availability for the
Altair. Others were also writing BASIC interpreters for the Altair and for
the other small computers now flooding the market, but none was as
good as Gates’s and Allen’s, and it was not long before word of that got
around.

It seemed that Roberts and his company had made one brilliant
decision after another: the 8080 processor, the bus architecture, and
now BASIC. However, by late 1975 Gates and Allen were not seeing it
that way. Gates insists that he never became a MITS employee (although
Allen was until 1976), and that under the name ‘‘Micro Soft,’’ later
‘‘Micro-Soft,’’ he and Allen retained the rights to their BASIC.92 In a
now-legendary ‘‘Open Letter to Hobbyists,’’ distributed in early 1976,
Gates complained about people making illicit copies of his BASIC by
duplicating the paper tape. Gates claimed ‘‘the value of the computer
time we have used [to develop the language] exceeds $40,000.’’ He said
that if he and his programmers were not paid, they would have little
incentive to develop more software for personal computers, such as an
APL language for the 8080 processor. He argued that illicit copying put
all personal computing at risk: ‘‘Nothing would please me more than to
hire ten programmers and deluge the hobby market with good soft-
ware.’’93

Gates did his initial work on the PDP-10 while still an undergraduate
at Harvard. Students were not to use that computer for commercial
purposes, although these distinctions were not as clear then as they
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would be later. The language itself was the invention of Kemeney and
Kurtz of Dartmouth; the extensions that were crucial to its success came
from programmers at the Digital Equipment Corporation, especially
Mark Bramhall, who led the effort to develop a time-sharing system
(RSTS-11) for the PDP-11. Digital, the only commercial entity among the
above group, did not think of its software as a commodity to sell; it was
what the company did to get people to buy hardware.94

Bill Gates had recognized what Roberts and all the others had not:
that with the advent of cheap, personal computers, software could and
should come to the fore as the principal driving agent in computing.
And only by charging money for it—even though it had originally been
free—could that happen. By 1978 his company, now called ‘‘Microsoft,’’
had severed its relationship with MITS and was moving from Albuquer-
que to the Seattle suburb of Bellevue. (MITS itself had lost its identity,
having been bought by Pertec in 1977.) Computers were indeed coming
to ‘‘the people,’’ as Stewart Brand had predicted in 1972. But the driving
force was not the counterculture vision of a Utopia of shared and free
information; it was the force of the marketplace. Gates made good on
his promise to ‘‘hire ten programmers and deluge the . . .market’’
(figure 7.7).

System Software: The Final Piece of the Puzzle

Gary Kildall’s entree into personal computing software was as a consul-
tant for Intel, where he developed languages for system development.
While doing that he recognized that the floppy disk would make a good
mass storage device for small systems, if it could be properly adapted. To
do that he wrote a small program that managed the flow of information
to and from a floppy disk drive. As with the selection of BASIC, it appears
in hindsight to be obvious and inevitable that the floppy disk would be
the personal computer’s mass storage medium. That ignores the fact
that it was never intended for that use. As with the adaptation of BASIC,
the floppy had to be recast into a new role. As with BASIC, doing that
took the work of a number of individuals, but the primary effort came
from one man, Gary Kildall.

A disk had several advantages over magnetic or paper tape. For one, it
was faster. For another, users could both read and write data on it. Its
primary advantage was that a disk had ‘‘random’’ access: Users did not
have to run through the entire spool of tape to get at a specific piece of
data. To accomplish this, however, required tricky programming—some-
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thing IBM had called, for one of its mainframe systems, a Disk Operating
System, or DOS.95

A personal computer DOS had little to do with mainframe operating
systems. There was no need to schedule and coordinate the jobs of many
users: an Altair had one user. There was no need to ‘‘spool’’ or otherwise
direct data to a roomful of chain printers, card punches, and tape drives:
a personal computer had only a couple of ports to worry about. What
was needed was rapid and accurate storage and retrieval of files from a
floppy disk. A typical file would, in fact, be stored as a set of fragments,
inserted at whatever free spaces were available on the disk. It was the job
of the operating system to find those free spaces, put data there, retrieve
it later on, and reassemble the fragments. All that gave the user an
illusion that the disk was just like a traditional file cabinet filled with
folders containing paper files.

Figure 7.7
Microsoft Team, ca. 1978. This photograph shows Microsoft as it was moving
from Albuquerque, where the Altair was built, to the Seattle area, where Bill
Gates (lower left) and Paul Allen (lower right) were from. It was still a small
company that focused mainly on supplying programming languages for personal
computers. (Source: Microsoft.)
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Once again, Digital Equipment Corporation was the pioneer, in part
because of its culture; because of the experience many of its employees
had had with the TX-0 at MIT, one of the first computers to have a
conversational, interactive feel to it. For its early systems DEC introduced
DECtape, which although a tape, allowed programmers rapid access to
data written in the middle, as well as at the ends, of the reel.96 The PDP-
10s had powerful DECtape as well as disk storage abilities; its operating
systems were crucial in creating the illusion of personal computing that
had so impressed observers like Stewart Brand.

In the late 1960s DEC produced OS/8 for the PDP-8, which had the
feel of the PDP-10 but ran on a machine with very limited memory. OS-8
opened everyone’s eyes at DEC; it showed that small computers could
have capabilities as sophisticated as mainframes, without the bloat that
characterized mainframe system software. Advanced versions of the PDP-
11 had an operating system called RT-11 (offered in 1974), which was
similar to OS/8, and which further refined the concept of managing
data on disks.97 These were the roots of personal computer operating
systems. DEC’s role in creating this software ranks with its invention of
the minicomputer as major contributions to the creation of personal
computing.

Gary Kildall developed PL/M for the Intel 8080. He used an IBM
System/360, and PL/M was similar to IBM’s PL/I. While working on that
project Kildall wrote a small control program for the mainframe’s disk
drive. ‘‘It turned out that the operating system, which was called CP/M
for Control Program for Micros, was useful, too, fortunately.’’98 Kildall
said that PL/M was ‘‘the base for CP/M,’’ even though the commands
were clearly derived from Digital’s, not IBM’s software.99 For example,
specifying the drive in use by a letter; giving file names a period and
three-character extension; and using the DIR (Directory) command,
PIP, and DDT were DEC features carried over without change.100 CP/M
was announced to hobbyists as ‘‘similar to DECSYSTEM 10’’ in an article
by Jim Warren in Dr. Dobb’s Journal of Computer Calisthenics and Orthodontia

[sic] in April 1976. Warren was excited by CP/M, stating that it was ‘‘well
designed, based on an easy-to-use operating system that has been around
for a DECade.[sic]’’101 Suggested prices were well under $100, with a
complete floppy system that included a drive and a controller for around
$800—not cheap, but clearly superior to the alternatives of cassette,
paper tape, or any other form of tape. CP/M was the final piece of the
puzzle that, when made available, made personal computers a practical
reality.
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Gary Kildall and his wife, Dorothy McEwen, eased themselves into the
commercial software business while he also worked as an instructor at
the Naval Postgraduate School in Monterey, California (figure 7.8). As
interest in CP/M picked up, he found himself writing variations of it for
other customers. The publicity in Dr. Dobb’s Journal led to enough sales to
convince him of the potential market for CP/M. In 1976 he quit his job
and with Dorothy founded a company, Digital Research (initially Inter-
galactic Digital Research), whose main product was CP/M.102

The next year, 1977, he designed a version with an important
difference. IMSAI, the company that had built a ‘‘clone’’ of the Altair
(figure 7.9), wanted a license to use CP/M for its products. Working with
IMSAI employee Glen Ewing, Kildall rewrote CP/M so that only a small
portion of it needed to be customized for the specifics of the IMSAI. The
rest would be common code that would not have to be rewritten each
time a new computer or disk drive came along. He called the specialized
code the BIOS—Basic Input/Output System.103 This change standar-
dized the system software in the same way that the 100-pin Altair bus had

Figure 7.8
Gary Kildall. A DEC VT-100 terminal is visible in the background. (Source: Kristen
Kildall.)
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standardized hardware. IMSAI’s computer system became a standard,
with its rugged power supply, room for expansion with plenty of internal
slots, external floppy drive, and CP/M.

End of the Pioneering Phase, 1977

By 1977 the pieces were all in place. The Altair’s design shortcomings
were corrected, if not by MITS then by other companies. Microsoft
BASIC allowed programmers to write interesting and, for the first time,
serious software for these machines. The ethic of charging money for
this software gave an incentive to such programmers, although software
piracy also became established. Computers were also being offered with
BASIC supplied on a read-only-memory (ROM), the manufacturer
paying Microsoft a simple royalty fee. (With the start-up codes also in
ROM, there was no longer a need for the front panel, with its array of
lights and switches.) Eight-inch floppy disk drives, controlled by CP/M,

Figure 7.9
IMSAI 8080, one of the most successful copies of the Altair, with a video monitor
and a disk storage system supplied by Micropolis. (Source: Smithsonian Institu-
tion.)
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provided a way to develop and exchange software that was independent
of particular models. Machines came with standardized serial and
parallel ports, and connections for printers, keyboards, and video
monitors. Finally, by 1977 there was a strong and healthy industry of
publications, software companies, and support groups to bring the
novice on board. The personal computer had arrived.
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8
Augmenting Human Intellect, 1975–1985

In the mid-1970s, amid the grassroots energy and creativity of the small
systems world, what else was happening? When the established computer
companies saw personal computers appear, they, too, entered a period
of creativity and technical advance. At first there was little overlap. By
1985, though, there was overlap and more: the paradigm of personal
computing based on inexpensive microprocessors forced itself onto the
industry. This chapter looks at how that happened.

Digital Equipment Corporation

Digital Equipment Corporation built the foundation for interactive
personal computing with its minicomputers and its software. What
were they doing when Intel announced its 8080, a device with the
essentials of a minicomputer on one chip? ‘‘We were just in the throes
of building the VAX.’’1 The VAX was an extension of the PDP-11 that
reached toward mainframe performance. It was a major undertaking for
DEC and strained the company’s resources. As IBM had done with its
System/360, Digital ‘‘bet the company’’ on the VAX—a move toward
higher performance and larger systems.

Many within DEC felt that the company was not so much a mini-
computer builder as it was a company that sold architecture.2 Beginning
with the TX-0, DEC’s founders had taken pride in their ability to build
high-performance computers—large or small—through innovative
design. That may explain why DEC failed to counter the threat that
companies like Intel posed to its business. To build a computer around
the Intel 8080 meant surrendering decisions about architecture to a
semiconductor house—how could they allow themselves to do that? The
other alternative, licensing the PDP-11 instruction set to chip makers,
who would produce microprocessors based on it, was likewise rejected.



The company thought that would be giving the ‘‘corporate jewels’’ away.
Digital did produce the LSI-11, a single-board PDP-11, in 1974, but that
did not lead to inexpensive systems as did the Intel 8080. A single-chip
PDP-11, called T-11, was developed but never marketed. The micro-
processor phenomenon passed the PDP-11 by, even though elements of
its architecture turned up in microprocessor designs (especially the
Motorola 6800).3

Planning for an extension to the PDP-11 began in 1974 or 1975. DEC
announced the VAX, Model 11/780, in October 1977 (figure 8.1). The
full name was VAX-11, which stood for Virtual Address eXtension [of
the] PDP-11. The implication was that the VAX was simply a PDP-11 with
a 32-bit instead of a 16-bit address space. In fact, the VAX was really a
new machine. It could, however, execute existing PDP-11 software by
setting a ‘‘mode bit’’ that called forth the PDP-11 instruction set.
(Eventually the compatibility mode was dropped.)

DEC continued to market small computers at successively lower prices
and in smaller packages, for example, the PDP-8/A, introduced in 1975
for under $3,000.4 But the company preferred to develop and market
higher performance. One reason it gave was that for a given application,
the cost of the computer was only part of the total cost; there was also

Figure 8.1
VAX 11/780, ca. 1978. (Source: Digital Equipment Corporation.)
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‘‘the high fixed overhead costs associated with the [existing] applica-
tion.’’5 Apparently DEC did not feel it could achieve truly drastic price
reductions, as MITS had done with the Altair. That argument, coupled
with DEC’s reluctance to turn over its skill in computer architecture to
semiconductor companies, kept the company out of the personal
computer market during the crucial years, 1974 to 1977, when it could
most easily have entered it.

Just as DEC was not the first to market a 16-bit mini, it was not the first
to extend address space beyond 16 bits. In 1973, Prime, also located off
Route 128 in Massachusetts, shipped a 32-bit minicomputer. Prime grew
rapidly until merging with Computervision in the late 1980s. Another
company, Interdata, described a ‘‘mega-mini’’ in 1974. Their design was
also commercially successful, and that year the company was bought by
Perkin-Elmer, the Connecticut optics company.6 Systems Engineering
Laboratory of Fort Lauderdale, Florida, also introduced a 32-bit mini,
which was popular with NASA and aerospace customers. S.E.L. was sold
to Gould in 1980 and became the basis for that venerable company’s
entree into the computer business.7 The impetus for these develop-
ments was the growing availability of relatively cheap semiconductor
memory to replace magnetic core. These memory chips made it more
practical to design machines with large main memories, which in turn
demanded more address space.

If the VAX was only nominally an extension of the PDP-11, it was
genuinely a ‘‘virtual’’ memory computer. An informal definition of this
term is that it is a way to make a computer’s small but fast main memory
seem to be bigger than it is, by swapping data to and from a slower but
larger memory on a disk. A more precise definition concerns the way
this is done: first of all, overall performance must not be seriously
degraded by this process, and second, the user should not have to
know that this swapping is going on (hence the term: the memory is
‘‘virtually’’ large but in reality small).8

The need for a hierarchy of memories, each slower but larger than the
one below it, was discussed in the Institute for Advanced Study reports by
Burks, Goldstine, and von Neumann in the late 1940s. The Atlas,
designed at Manchester University in England and built by Ferranti in
1962, was probably the first to use a design that gave the user the illusion
of a single-level fast memory of large capacity.9 It was one of the fastest
computers in the world at the time and also one of the most influential
on successive generations. A user of the Atlas saw a machine with a
virtual memory of one million 48-bit words. The computer automatically
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swapped data between the core and the drum, based on the contents of
a set of registers (a technique called associative memory-addressing).10

Though influential, commercial versions of the Atlas were only a modest
success for Ferranti. In the United States, Burroughs offered virtual
memory, with some important architectural advances, in the mid-1960s.
IBM offered it with System/370 models announced in 1972. (It is
probably from marketing the 370 that the term virtual memory came
into wide use.)11 The SDS 940 time-sharing system also followed the
Atlas design.

C. Gordon Bell led the initial design effort for the VAX, and Bill
Strecker was its chief architect. Breaking through the limits of the PDP-
11’s 65 Kbyte address space was their primary goal. The VAX provided
232 or 4.3 gigabytes (equivalent to one billion 32-bit words) of virtual
address space. Its addressing scheme divided memory into blocks, called
pages, and used an associative comparison to determine whether the
desired page was in core or not. The VAX processor used sixteen 32-bit
general registers, like the IBM 360. It also had a rich set of over 250
instructions with nine different addressing modes, which allowed a
single instruction to carry out complex operations.12

The VAX was a commercial success, selling around 100,000 over the
next decade and leaping over the other 32-bit minis even though it
appeared later. The 11/780’s performance, roughly calculated at one
million instructions per second (MIPS), became a benchmark against
which competitors would compare their machines into the 1990s. A
whole family of ‘‘Vaxen’’ followed: the less-powerful 11/750 in 1980, the
higher-performance 8600 in 1984, and the compact MicroVax II in 1985,
among others.13 These machines kept DEC profitable and dominant
along Route 128. Even Data General, whose Nova had been such a
strong competitor for the PDP-11, had trouble competing with the VAX,
although it did introduce a 32-bit Eclipse in 1980, as chronicled in Tracy
Kidder’s bestseller The Soul of a New Machine.14

The VAX was a general-purpose computer that came with the stan-
dard languages and software. It sold to a wide market, but its biggest
impact was on engineering and science. Prices started at $120,000, which
was too expensive for a single engineer, but just cheap enough to serve a
division at an aerospace, automotive, or chemical firm. For them the
standard practice had been either to get in line to use the company’s
mainframe, or to sign up for time on a commercial time-sharing service.
The VAX gave them computing power at hand. It had a solid, engineer-
ing-oriented operating system (VMS), and sophisticated I/O facilities for
data collection.
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Finally, the VAX came with a powerful and easy-to-use terminal, the
VT-100. It had an impressive number of features, yet one felt that none
was superfluous. It somehow managed to retain the comfortable feel of
the old Teletype. One feature that many users loved was its ability to
scroll a pixel at a time, rather than a line at a time. There was no
practical reason to have this feature, and it failed to catch on with other
terminal displays, but it had a great appeal. The VT-100’s codes, using
ASCII, did become the standard for terminals for the next twenty years.

A Word about UNIX

The impact of UNIX on commercial computing will be discussed more
fully in the next chapter, and here we will just briefly describe its place
with regard to the VAX. In addition to VMS, the VAX’s PDP-11 ancestry
meant that users could also run UNIX on it. UNIX was developed on
DEC minicomputers, and for the first few years of UNIX’s existence it
ran only on DEC computers, mainly PDP-11s. The University of Califor-
nia at Berkeley’s version of UNIX, which had an enormous influence on
computing and on the Internet, was developed on a VAX. Still, DEC was
ambivalent about UNIX for the VAX. Ken Olsen allegedly stated at one
point that ‘‘UNIX is snake oil!’’ (The context in which he made that
statement has been disputed.15) At any rate, the VAX could and did run
Berkeley UNIX, and for at least the formative years, VAX computers
were the most common nodes on the Internet.16

IBM and the Classic Mainframe Culture

In the mid-1970s, while the personal computer was being invented and
while Digital was building the VAX, what was IBM doing? Like Digital,
IBM was busy extending its existing line, with the high-end 3033
announced in early 1977, and the low-priced 4300-series announced in
1979. This latter series offered a dramatic increase in performance per
dollar over the mid-range 370 systems then being marketed, an improve-
ment that came mainly from using large-scale integrated circuits. These
LSI chips were developed and designed by IBM in-house and did not
resemble the ones being marketed by companies like Intel or Fair-
child.17 As System/370 installations grew in number and complexity, the
issue of interconnecting them also arose. Bob Evans of IBM remarked
that, in the early 1970s, the plethora of incompatible and ad hoc
networking schemes resembled the chaos of computer architectures
that IBM had sought to reduce a decade before.18 The result was Systems
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Network Architecture (SNA), first shipped in 1974. SNA was a layer cake
of standards, spelled out in detail. It formed the basis for networking
large computer systems into the 1990s.

In 1975 IBM introduced a product that might have seemed at odds
with its mainframe orientation: a ‘‘personal’’ computer, Model 5100.
This machine could fit on a desk and contained a processor, keyboard,
cassette tape drive, and small video terminal in a single package. Prices
began at $9,000 for a machine with 16 Kbytes of memory.19 It supported
both BASIC and APL (the developer of APL, Kenneth Iverson, had
joined IBM in 1960), which the user could select by flipping a switch on
the front panel. But little or no applications software was available; the
third-party support community that grew up around the Altair failed to
materialize for the 5100. Sales were modest but steady. (The ‘‘other’’
IBM personal computer will be discussed shortly.)

Another answer to the question of what IBM was doing is that it was in
court. For IBM the 1970s was the decade of the lawsuit: U.S. vs. IBM, filed
January 17, 1969, and dismissed in 1981. The charge was that IBM was in
violation of antitrust laws by virtue of its dominance of the U.S. market
for general-purpose electronic digital computers. The Justice Depart-
ment based this charge on a definition of ‘‘market’’ that covered the
business-oriented electronic data-processing activities served by main-
frame computers, of which IBM held about 70 percent of the market
and the ‘‘BUNCH’’ nearly all the rest. IBM countered by arguing that its
competition was not just Burroughs, Univac, NCR, CDC, and Honeywell,
but rather thousands of companies, large and small, that made and sold
computers, peripherals, software, services, and the like. After a long
discovery process, during which depositions were taken from represen-
tatives of most of these companies, the case finally went to trial in May,
1975—that is, around the time that Bill Gates and Paul Allen were
talking about developing BASIC for the Altair.

The discovery process and the testimony were thorough and detailed.
Transcripts of the depositions and testimony run into thousands of
pages.20 But none of the gathering storm of personal systems made it
into the trial. Neither Bill Gates nor Ed Roberts was called to testify or
give depositions. The court focused its attention on the former
‘‘Dwarfs,’’ especially RCA and GE, who had left the business. Occasion-
ally firms that competed with IBM’s mainframes at one or two places
were examined. These included SDS (a subsidiary of Xerox by then),
whose computers competed with the System/360 Model 44 for scientific
applications, and Digital Equipment Corporation, not for its minicom-
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puters but for its PDP-10. The court even looked closely at Singer, the
venerable sewing machine company, which had purchased Friden in
1963 and built up a business in point-of-sale retail terminals. (The British
company ICL bought Singer’s computing business in 1976.)

Reading through the volumes of transcripts, one feels a sense of
tragedy and unreality about the whole trial. The judge, David Edelstein,
was often baffled by the avalanche of jargon that spewed forth from the
expert witnesses each day; this typically resulted in his losing his temper
by mid-afternoon. (The courtroom had a defective air-conditioning
system, which did not help matters in the summer, either.) The money
spent on hiring and retaining a team of top-notch attorneys (led by
Nicholas Katzenbach for IBM) and their research staffs was money that
did not go into the research and development of new computer
technology. And yet both sides, with all their highly paid legal and
research staffs, utterly and completely missed what everyone has since
recognized as the obvious way that computing would evolve: toward
microprocessor-based, networked desktop computing. There is no
record of someone bringing an Apple II into the courthouse building
in lower Manhattan; if someone had, would anyone have recognized it
for what it was? By coincidence, just as the Apple II was being introduced
at a computer fair in California in 1977, one expert witness testified, ‘‘I
will be a little stronger than that . . . it is most unlikely that any major new
venture into the general purpose [sic] computer industry can be
expected.’’21 As late as 1986 one Justice Department economist, still
fuming over the dismissal of the case, complained that ‘‘IBM faces no
significant domestic or foreign competition that could threaten its
dominance.’’22 That statement was made the year that Microsoft offered
its shares to the public. A few years later IBM began suffering unprece-
dented losses and began laying off employees for the first time in its
history. A new crop of books soon appeared, these telling the story of
how IBM had been outsmarted by Bill Gates. Other than writing tell-all
books about IBM, everything else about the computer industry had
fundamentally and irrevocably changed.23

In the end the combatants ran out of energy. The 1981 inauguration
of Ronald Reagan, who had campaigned against an excessive exercise of
federal power, was enough to end it. But what really killed the govern-
ment’s case was that, even neglecting the personal computer, there was
vigorous and healthy competition throughout the decade. The failures
of GE and RCA were more than offset by the successes of Digital
Equipment, SDS, Amdahl, and software companies like EDS. The
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industry was too healthy: the personal fortunes amassed by Gene
Amdahl and Max Palevsky made it hard to take the charges seriously.24

In one of the rare instances of levity, IBM’s lawyers were able to elicit
more than a few chuckles in the courtroom when they described the
enormous wealth that Palevsky—a philosophy student—made in a few
years with machines aimed right at IBM’s middle range of mainframes.

IBM continued to develop new products. In addition to the 4300 and
3030 mainframes, IBM went after the minicomputer companies with its
System/38 in 1978, following that with its AS/400 in 1988. The AS/400
was aimed more at business than engineering customers, but otherwise
it was a strong competitor to the VAX. It used advanced architectural
features that IBM had planned for its follow-on to the System/370 but
had not implemented. As such, the AS/400 represented IBM’s most
advanced technology, and it generated strong revenues for IBM into the
1990s, when its mainframe sales suffered from technological obsoles-
cence.25 IBM failed to bring other products to market at this time,
however, a failure that ultimately hurt the company. It is not clear how
much the antitrust suit had to do with that.

From ‘‘POTS’’ to ‘‘OLTP’’

The concept of a computer utility, naively envisioned in the late 1960s as
being like the electric power utilities, evolved in several directions in the
1970s. General Electric built a large international network from its
association with Dartmouth. Using machines like the PDP-10 and SDS
940, other utilities offered unstructured computer time. By 1975
TYMNET comprised a network of twenty-six host computers, routed
through eighty communications processors. The simple hub-and-spoke
topology of time-sharing evolved into a web of multiple rings, so that the
failure of one host would not bring the system down.26

At the same time, a more tightly structured and disciplined use of
terminals for on-line access also appeared. This was tailored for a specific
application, such as processing insurance claims, where the programs
and types of data handled by a terminal were restricted. Many were
private, though some were semipublic, such as the effort by the U.S.
National Library of Medicine to put its century-old Index Medicus on-line.
(By the end of the 1970s its MEDLINE system provided on-line searches
of medical literature from research libraries worldwide.) These systems
were more like the SAGE air-defense and SABRE airline reservations
systems of the late 1950s than they were like the Dartmouth College
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model. A new acronym appeared to describe it, ‘‘OLTP’’ for ‘‘On-line
Transaction Processing,’’ to differentiate it from the less-structured
connotations of ‘‘POTS’’ (Plain Old Time-Sharing). Thus although
computer usage was no longer in batches of cards, some of the basic
structure of a punched-card installation remained.

A number of companies introduced terminals to serve this market.
Some were descended from the Teletype and combined a typewriter
keyboard and a printing mechanism (e.g., the DECwriter II or Teletype
Model 37, both ca. 1975). Others replicated the Teletype, only with a
video screen instead of a printer. These, like the Lear-Siegler ADM-3,
were sometimes called ‘‘dumb terminals,’’ ‘‘glass teletypes,’’ or ‘‘glass
TTY’’: they offered little beyond simple data entry and viewing. In
contrast to them were ‘‘smart’’ terminals that allowed users to see and
edit a full screen of text, and which contained a measure of computing
power. Besides the VT-100, DEC had produced several designed around
a PDP-8 processor; another company that had some success was Data-
point of San Antonio. Recall that it was Datapoint’s contract with Intel
that led to the 8080 microprocessor; however, the Datapoint 2200
terminal did not use a microprocessor. Some of these terminals,
especially the Datapoint, came close to becoming personal computers
without the vendor realizing it.27

The VT-100 became the standard ASCII terminal, while a terminal
introduced by IBM became the EBCDIC standard by 1980. That was the
model 3270, announced in 1971.28 The 3270 was the philosophical
opposite of the DEC VT-100: it operated on the assumption that the user
would be keying structured information into selected fields, with other
fields (e.g., for a person’s name or date of birth) replicated over and
over for each record. Therefore, the terminal did not transmit informa-
tion as it was keyed in but waited until a full screen was keyed in; then it
sent only whatever was new to the computer (in compressed form). IBM
mainframe installations now routinely included terminals and time-
shared access through the time sharing option (TSO) software. Typically
these terminals were segregated in special rooms near the mainframe
installation. They were seldom found in a private office.

By 1980, as the lawsuit was coming to an end, IBM still dominated the
industry. But more and more, IBM was floating in a slower channel of
the river. That began in 1963 with the development of ASCII, when IBM
adopted EBCDIC. In 1964 IBM chose a hybrid semiconductor technol-
ogy over ICs. In 1970 it adopted integrated circuits of its own design,
slightly different from the standard TTL chips then flooding the market.
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In the mid-70s, IBM’s Systems Network Architecture established a
standard for networking large systems, but SNA was different from the
networking schemes then being developed by the Defense Department.
Finally, there were the different approaches to terminal design repre-
sented by the 3270 and VT-100. Only with hindsight can we discern a
pattern.

IBM’s introduction of the personal computer in 1981 brought the
issue to a head. The IBM PC used ASCII, not EBCDIC. It used standard
TTL and MOS chips from outside suppliers. And its connections with its
keyboard and monitor were closer to the minicomputer than to the
3270. The PC’s internal design reveals how the pressures of the market-
place were able to accomplish what the courts and the U.S. Justice
Department could not do.

The mainframe, batch model of computing, whose high-water mark
was the 7090, was giving way, not only to interactive but also to
decentralized processing. The increasingly fuzzy line that distinguished
‘‘smart’’ terminals from stand-alone personal computers was one indica-
tion. New design questions came to the fore: how to apportion proces-
sing functions and memory among the terminals and a central system,
and how to send data efficiently and reliably through such a network.
IBM had embarked on the design of a ‘‘Future System’’ (FS) that
attacked some of these issues head-on. Planning for FS began in the
early 1970s, and IBM hoped to announce products to replace its System/
370 line by 1975. But FS was abandoned in 1975, in part because its
designers were unable to solve the architectural problems, and in part
because the success of the System/370 architecture meant that IBM
would put itself at an unacceptable risk to abandon that market to third-
party vendors.29 Some of the concepts found their way into the mid-
range AS/400, but canceling FS was ‘‘the most expensive development-
effort failure in IBM’s history.’’30

Viatron

A start-up company from Route 128 had an idea with similar promise but
equally dismal results. The John the Baptist of distributed computing was
Viatron Computer Systems of Bedford, Massachusetts. It was the
outgrowth of an Air Force Project from the mid-1960s called AESOP
(Advanced Experimental System for On-line Planning). Prepared by the
MITRE Corporation, AESOP envisioned a network of terminals that pro-
vided visual as well as text information to middle and high-level managers,

252 Chapter 8



including those without any sophistication in computing, to help them
do their work with the same level of acceptance as the telephone:

The core of the management system . . .will be not so much the central processor
or central memory. The real basis . . .will be the unique program of instructions
which makes the central processor, the central memory, and the organization’s
store of data and formal quantitative models easily available to the manager
through the window of his desk top display, thus making it possible for him to
exert the full power of his intentions through the use of his simple lightgun
pointer. As AESOP-type management systems are developed, managers will learn
to converse and interact with the processor with ease and naturalness. They will
also learn to communicate through the processor with other members of the
organization.31

Two of the report’s authors, Joseph Spiegel and Dr. Edward Bennett,
left MITRE and cofounded Viatron in 1967. Bennett was successful in
raising venture capital—these were the go-go years—and announced
that by 1969 Viatron would be renting interactive terminals that would
move processing onto the desktop. He also predicted that his company
would surpass IBM in numbers of installed computers. System 21
terminals were to rent for the unbelievably low price of $40 a
month.32 The system included a keyboard, a 9-inch video display, and
two cassette tape drives for storage of data and formatting information
(figure 8.2). An optional attachment allowed users to disconnect the
keyboard and tape unit and connect it to any standard television set for
remote computing, say, in a hotel room. The terminal contained within
it a ‘‘micro-processor’’ [sic] with 512 characters of memory. Other
options included an optical character-recognition device, a ‘‘commu-
nications adapter,’’ and an ingenious, Rube Goldberg–inspired ‘‘print-
ing robot’’ which one placed over a standard IBM Selectric typewriter.
Activating a set of solenoids, mechanical fingers pressed the Selectric
keys to type clean output at 12 characters/second.33

The key to Viatron’s impressive specifications was its use of MOS
integrated circuits. This technique of integrated-circuit fabrication was
the technical foundation for the microprocessor revolution of the 1970s,
but it was immature in 1969. Viatron had to invest its start-up capital in
perfecting MOS, and then it needed more money to gear up for volume
production. That was too ambitious. By 1970, production lines were just
starting, but the volume was small, and Viatron’s sales and marketing
were in disarray. At a meeting of the board held in Bennett’s home in
the summer of 1970, he found himself ousted from Viatron just as his
wife was about to serve everyone dinner (they never ate the meal). The
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company delivered a few systems by 1971, but in April of that year it
declared bankruptcy. Losses to venture capitalists ran upwards of $30
million in fiscal year 1969–1970 alone.34 Viatron became just another of
many companies to fail while attempting to topple IBM from the top of
the industry.

Wang

Even by the metric of the go-go years, Viatron’s trajectory was bizarre,
which should not obscure the truth of Bennett’s observation. Advances
in MOS integrated circuits were making IBM’s way of doing computing
obsolete, at least in the office environment. The company that
succeeded where Viatron failed was Wang Labs, which in an earlier
era had pioneered in electronic calculators. By 1971 Wang recognized
that calculators were becoming a commodity, with razor-thin profit

Figure 8.2
Office automation: Viatron 21. (Source: Charles Babbage Institute, University of
Minnesota.)
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margins dependent on packaging more than on technical innovation.
Wang Labs began a transition to a minicomputer company, and by 1972
made a complete crossover with its Model 2200 ‘‘computing calcula-
tor’’—a general-purpose computer, although Wang was careful not to
market it as such. Like Digital Equipment in the late 1950s, Wang was
reluctant to use the word ‘‘computer’’ because of the word’s connota-
tions. Wang had an astute sense of knowing when to get out of one
market and into a new one about to open up. As Wang’s profits soared,
Wall Street analysts concocted elaborate theories to explain this, some
based on an alleged innate sense that his Chinese ancestors gave him.
Dr. Wang was, in fact, a conservative engineer who understood the
technology of his company’s products and who valued his company’s
independence. In this regard he was closer to his Yankee counterpart
and neighbor, Ken Olsen of DEC, than he was to any Western stereotype
of Oriental mind-set.35

An Wang chose next to direct the company toward what would later
be known as ‘‘Office Automation.’’ In the mid-1970s that meant word
processing. Word processing has become so commonplace that it is hard
to recall how absurd the concept was at a time when even small
computers cost thousands and skilled typists were paid $1.25 an hour.
An old story tells of how graduate students at MIT programmed the
$120,000 PDP-1 to serve as an ‘‘expensive typewriter’’ in the early 1960s.
IBM developed a program called TEXT-90 for the 7090, but that was
used only for special applications and never penetrated the office
environment. In the early 1960s, some members of the committee
working on the ASCII standard argued that codes for lowercase letters
were unnecessary and a waste of space.36

The term ‘‘word processing’’ came into use after 1964, when IBM
announced the MTST—a version of its Selectric typewriter that could
store and recall sequences of keystrokes on a magnetic tape cartridge.37

An early Wang product, the Model 1200, was similar, but customers
found its complexity daunting. Other companies that entered the field
at this time included NBI (‘‘Nothing But Initials’’) outside of Denver,
Lanier in Atlanta, and CPT in Minneapolis.

The second time around Wang got it right. Wang engineers found out
first of all what office people wanted. They realized that many users of
word-processing equipment were terrified of losing a day’s work by the
inadvertent pressing of the wrong key. And it wasn’t just secretaries who
were prone to such actions: in 1981 ex-President Jimmy Carter lost a few
pages of his memoirs—‘‘I had labored over them for a couple of days’’—
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by pressing the wrong key on his $12,000 Lanier ‘‘No Problem’’ [sic]
word-processing system. An anxious phone call to Lanier produced a
utilities disk that allowed him to recover the data from the original
diskette.38 After this, Wang’s engineers came up with a design that would
make such a loss nearly impossible. They also decided on a terminal that
used a cathode ray tube, which displayed half a page of text instead of
the one or few lines that other systems used. Commands were accessed
by a simple screen of menus. In a later era Wang’s design might have
been known by the cliché ‘‘user-friendly’’; it was also a ‘‘distributed’’
system. But the company used neither term in its marketing. Unlike
other minicomputer companies, Wang did little OEM business; it sold
machines to the people who were going to use it. Wang spared its
customers—Wall Street brokerage houses, large banks, and oil compa-
nies at first—the technical jargon. (A decade later office workers were
not so lucky, everything would get plastered with the term ‘‘user
friendly’’ no matter how obtuse it was.)39

A major requirement was that the system have a speedy response.
Time-sharing relieved users of the need to wait in a queue with a deck of
punched cards, but on a busy day users faced an equally onerous wait at
their terminals while the mainframe got around to each job. Unlike MIT
hackers, office employees could not be expected to come in at midnight
to do their work. The answer was to put some of the processing power
into the terminal itself, with the central computer serving primarily for
data storage and retrieval—commonplace after 1985, but a radical
departure from time-sharing in 1975. The WPS (Wang Word Processing
System) was unveiled at a trade show in New York in June 1976, and
according to some accounts nearly caused a riot (figure 8.3).40 A basic
system, including hard disk storage, cost $30,000. Wang Labs, ranked
forty-fifth in data-processing revenues in 1976, moved up to eighth place
by 1983, just below IBM, DEC, and the remnants of the BUNCH. Some
analysts thought Wang was in the best position of any company to
become number two in the industry. (No Wall Street person would
risk his career by predicting a new number one.) Others put the
company’s success into the pigeonhole of ‘‘office automation’’ rather
than general-purpose computing, but what Wang was selling was at heart
a general-purpose, distributed computer system. Wang’s success was a
vindication of Viatron’s vision. However, Wang was unable to reinvent
itself once again in the 1990s, when it faced competition from commod-
ity personal computers running cheap word-processing software, and it
too went bankrupt.41

256 Chapter 8



Xerox PARC

One of the ironies of the story of Wang is that despite its innovations, few
stories written about the 1970s talk about Wang. To read the literature
on these subjects, one would conclude that the Xerox Corporation was

Figure 8.3
Office automation: WANG Word Processing System. (Source: Charles Babbage
Institute, University of Minnesota.)
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the true pioneer in distributed, user-friendly computing; that the Xerox
Palo Alto Research Center, which Stewart Brand so glowingly described
in his 1972 Rolling Stone article, was the place where the future of
computing was invented. Why was that so?

The Xerox Corporation set up a research laboratory in the Palo Alto
foothills in 1970. Its goal was to anticipate the profound changes that
technology would bring to the handling of information in the business
world. As a company famous for its copiers, Xerox was understandably
nervous about talk of a ‘‘paperless office.’’ Xerox did not know if that
would in fact happen, but it hoped that its Palo Alto Research Center
(PARC) would help the company prosper through the storms.42

Two things made PARC’s founding significant for computing. The first
was the choice of Palo Alto: Jacob Goldman, director of corporate
research at Xerox, had favored New Haven, Connecticut, but the
person he hired to set up the lab, George Pake, favored Palo Alto and
prevailed, even though it was far from Xerox’s upstate New York base of
operations and its Connecticut headquarters. The lab opened just as
‘‘Silicon Valley,’’ led by Robert Noyce of the newly founded Intel, was
taking form.

The second reason for PARC’s significance took place in the halls of
Congress. As protests mounted on college campuses over the U.S.
involvement in Viet Nam, a parallel debate raged in Congress that
included the role of universities as places where war-related research
was being funded by the Defense Department. Senator J. William Ful-
bright was especially critical of the way he felt science research was losing
its independence in the face of the ‘‘monolith’’ of the ‘‘military-
industrial complex’’ (a term coined by President Eisenhower in 1961).
In an amendment to the 1970 Military Procurement Authorization Bill,
a committee chaired by Senator Mike Mansfield inserted language that
‘‘none of the funds authorized . . .may be used to carry out any research
project or study unless such a study has a direct and apparent relation-
ship to a specific military function or operation.’’43 The committee did
not intend to cripple basic research at universities, only to separate basic
from applied research. Some members assumed that the National
Science Foundation would take the DoD’s place in funding basic
research. Even before the passage of this ‘‘Mansfield Amendment,’’
the DoD had moved to reduce spending on research not related to
specific weapons systems; thus this movement had support among hawks
as well as doves.
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The NSF was never given the resources to take up the slack. At a few
select universities, those doing advanced basic research on computing
felt that they were at risk, because their work was almost entirely funded
by the Defense Department’s Advanced Research Projects Agency
(ARPA).44 At that precise moment, George Pake was scouring the
country’s universities for people to staff Xerox PARC. He found a
crop of talented and ambitious people willing to move to Palo Alto.
ARPA funding had not been indiscriminate but was heavily concentrated
at a few universities—MIT, Carnegie-Mellon, Stanford, UC-Berkeley,
UCLA, and the University of Utah—and researchers from nearly every
one of them ended up at PARC, including Alan Kay and Robert Taylor
from Utah, and Jerome Elkind and Robert Metcalfe from MIT.45 There
were also key transfers from other corporations, in particular from the
Berkeley Computer Corporation (BCC), a struggling time-sharing
company that was an outgrowth of an ARPA-funded project to adapt
an SDS computer for time-sharing. Chuck Thacker and Butler Lampson
were among the Berkeley Computer alumni who moved to PARC. All
those cited above had had ARPA funding at some point in their careers,
and Taylor had been head of ARPA’s Information Processing Tech-
niques Office.

Two ARPA researchers who did not move to PARC were the inspira-
tion for what would transpire at Xerox’s new lab. They were J.C.R.
Licklider, a psychologist who initiated ARPA’s foray into advanced
computer research beginning in 1962, and Douglas Engelbart, an
electrical engineer who had been at the Stanford Research Institute
and then moved to Tymshare. In 1960, while employed at the
Cambridge firm Bolt Beranek and Newman, Licklider published a
paper titled ‘‘Man-Computer Symbiosis’’ in which he forecast a future
of computing that ‘‘will involve a very close coupling between the
human and electronic members of the partnership.’’ In a following
paper, ‘‘The Computer as a Communication Device,’’ he spelled out his
plan in detail.46 He was writing at the heyday of batch processing, but in
his paper Licklider identified several technical hurdles that he felt would
be overcome. Some involved hardware limits, which existing trends in
computer circuits would soon overcome. He argued that it was critical to
develop efficient time-sharing operations. Other hurdles were more
refractory: redefining the notions of programming and data storage as
they were then practiced. In 1962 ‘‘Lick’’ joined ARPA, where he was
given control over a fund that he could use to realize this vision of
creating a ‘‘mechanically extended man.’’47
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Douglas Engelbart was one of the first persons to apply for funding
from ARPA’s Information Processing Techniques Office in late 1962; he
was seeking support for a ‘‘conceptual framework’’ for ‘‘augmenting
human intellect.’’48 Engelbart says that a chance encounter with Vanne-
var Bush’s Atlantic Monthly article ‘‘As We May Think’’ (published in July
1945) inspired him to work on such a plan. Licklider directed him to
work with the time-shared Q-32 experimental computer located in Santa
Monica, through a leased line to Stanford; later Engelbart’s group used a
CDC 160A, the proto-minicomputer. The group spent its time studying
and experimenting with ways to improve communication between
human beings and computers. His most famous invention, first
described in 1967, was the ‘‘mouse,’’ which exhaustive tests showed
was more efficient and effective than the light pen (used in the SAGE),
the joystick, or other input devices.49 Engelbart recalled that he was
inspired by a device called a planimeter, which an engineer slid over a
graph to calculate the area under a curve. Among many engineers this
compact device was a common as a slide rule; it is now found only
among antique dealers and museums.

In December 1968 Engelbart and a crew of over a dozen helpers
(among them Stewart Brand) staged an ambitious presentation of his
‘‘Augmented Knowledge Workshop’’ at the Fall Joint Computer Confer-
ence in San Francisco. Interactive computer programs, controlled by a
mouse, were presented to the audience through a system of projected
video screens and a computer link to Palo Alto. Amazingly, everything
worked. Although Engelbart stated later that he was disappointed in the
audience’s response, the presentation has since become legendary in
the annals of interactive computing. Engelbart did not join Xerox-PARC,
but many of his coworkers, including Bill English (who did the detail
design of the mouse), did.50

What was so special about the mouse? The mouse provided a practical
and superior method of interacting with a computer that did not strain a
user’s symbolic reasoning abilities. From the earliest days of the
machine’s existence, the difficulties of programming it were recognized.
Most people can learn how to drive a car—a complex device and lethal if
not used properly—with only minimal instruction and infrequent refer-
ence to an owner’s manual tossed into the glove box. An automobile’s
control system presents its driver with a clear, direct connection between
turning the steering wheel and changing direction, pressing on the gas
pedal and accelerating, pressing on the brake pedal and slowing down.
Compare that to, say, UNIX, with its two- or three-letter commands, in
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which the command to delete a file might differ from one to print a file
only by adjacent keys. Automobiles—and the mouse—use eye-hand
coordination, a skill human beings have learned over thousands of
years of evolution, but a keyboard uses a mode of human thought that
humans acquired comparatively recently. Researchers at PARC refined
the mouse and integrated it into a system of visual displays and iconic
symbols (another underutilized dimension of human cognition) on a
video screen.

For the U.S. computing industry, the shift of research from ARPA to
Xerox was a good thing; it forced the parameters of cost and marketing
onto their products. It is said that Xerox failed to make the transition to
commercial products successfully; it ‘‘fumbled the future,’’ as one writer
described it. Apple, not Xerox, brought the concept of windows, icons, a
mouse, and pull-down menus (the WIMP interface) to a mass market,
with its Macintosh in 1984. Xerox invented a networking scheme called
Ethernet and brought it to market in 1980 (in a joint effort with Digital
and Intel), but it remained for smaller companies like 3-Com to
commercialize Ethernet broadly. Hewlett-Packard commercialized the
laser printer, another Xerox-PARC innovation. And so on.51

This critique of Xerox is valid but does not diminish the magnitude of
what it accomplished in the 1970s. One may compare Xerox to its more
nimble Silicon Valley competitors, but out of fairness one should also
compare Xerox to IBM, Digital, and the other established computer
companies. Most of them were in a position to dominate computing:
DEC with its minicomputers and interactive operating systems, Data
General with its elegant Nova architecture, Honeywell with its Multics
time-sharing system, Control Data with its Plato interactive system, and
IBM for the technical innovations that its research labs generated.
Although they did not reap the rewards they had hoped for, each of
these companies built the foundation for computing after 1980.

Within Xerox-PARC, researchers designed and built a computer, the
Alto, in 1973 (figure 8.4). An architectural feature borrowed from the
MIT-Lincoln Labs TX-2 gave the Alto the power to drive a sophisticated
screen and I/O facilities without seriously degrading the processor’s
performance. Eventually over a thousand were built, and nearly all were
used within the company. Networking was optional, but once available,
few Alto users did without an Ethernet connection. An Alto cost about
$18,000 to build. By virtue of its features, many claimed that the Alto was
the first true personal computer. It was not marketed to the public,
however—it would have cost too much for personal use.52 Besides using
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a mouse and windows, the Alto also had a ‘‘bit-mapped’’ screen, where
each picture element on the screen could be manipulated by setting bits
in the Alto’s memory. That allowed users to scale letters and mix text
and graphics on the screen. It also meant that a text-editing system
would have the feature ‘‘what you see is what you get’’ (WYSIWYG)—a
phrase made popular by the comedian Flip Wilson on the television
program ‘‘Laugh-In.’’53

In 1981 Xerox introduced a commercial version, called the 8010 Star
Information System, announced with great fanfare at the National
Computer Conference in Chicago that summer. Advertisements
described an office environment that would be commonplace ten
years later, even more capable than what office workers in 1991 had.
But the product fizzled. Around the same time Xerox introduced an
‘‘ordinary’’ personal computer using CP/M, but that, too, failed to sell.54

Figure 8.4
Xerox Alto, ca. 1973. (Source: Smithsonian Institution.)
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The Star, derived from the Alto, was technically superior to almost any
other office machine then in existence, including the Wang WPS.
Personal computers would have some of the Star’s features by 1984,
but integrated networks of personal computers would not become
common for another ten years. In the late 1970s, Wang had a better
sense than Xerox of what an office environment was like and what its
needs were. Advertisements for the Star depicted an executive calling
up, composing, and sending documents at his desk; somehow Xerox
forgot that business executives do not even place their own telephone
calls but get a secretary to do that. By contrast, Wang aimed its products
at the office workers who actually did the typing and filing. The Alto was
more advanced, which explains why its features became common in
office computing in the 1990s. The Wang was more practical but less on
the cutting edge, which explains both Wang’s stunning financial success
in the late 1970s, and its slide into bankruptcy afterward.

Along with its invention of a windows-based interface, Xerox’s inven-
tion of Ethernet would have other far-reaching consequences. Ethernet
provided an effective way of linking computers to one another in a local
environment. Although the first decade of personal computing empha-
sized the use of computers as autonomous, separate devices, by the mid-
1980s it became common to link them in offices by some form of
Ethernet-based scheme. Such a network was, finally, a way of circumvent-
ing Grosch’s Law, which implied that a large and expensive computer
would outperform a cluster of small machines purchased for the same
amount of money. That law had held up throughout the turmoil of the
minicomputer and the PC; but the effectiveness of Ethernet finally
brought it, and the mainframe culture it supported, down.55 How that
happened will be discussed in the next chapter.

Personal Computers: the Second Wave, 1977–1985

Once again, these top-down innovations from large, established firms
were matched by an equally brisk pace of innovation from the bottom
up—from personal computer makers.

In the summer of 1977 Radio Shack began offering its TRS-80 in its
stores, at prices starting at $400. The Model 1 used the Z-80 chip; it was
more advanced than the Intel 8080 (although it did not copy the Altair
architecture). The Model 1 included a keyboard and a monitor, and
cassettes to be used for storage. A start-up routine and BASIC (not
Microsoft’s) were in a read-only memory. The marketing clout of Radio
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Shack, with its stores all over the country, helped make it an instant hit
for the company.56 Because Radio Shack’s customers included people
who were not electronics hobbyists or hackers, the Model 1 allowed the
personal computer to find a mass audience. Years later one could find
TRS-80 computers doing the accounting and inventory of small busi-
nesses, for example, using simple BASIC programs loaded from cassettes
or a floppy disk. The TRS-80 signaled the end of the experimental phase
of personal computing and the beginning of its mature phase.

Two other computers introduced that year completed this transition.
The Commodore PET also came complete with monitor, keyboard, and
cassette player built into a single box. It used a microprocessor with a
different architecture from the Intel 8080—the 6502 (sold by MOS
Technologies). The PET’s chief drawback was its calculator-style key-
board, and for that reason it was not as successful in the U.S. as the other
comparable computers introduced that year. But it sold very well in
Europe, and on the Continent it became a standard for many years.

The third machine introduced in 1977 was the Apple II (figure 8.5).
The legend of its birth in a Silicon Valley garage, assisted by two idealistic
young men, Steve Jobs and Steve Wozniak, is part of the folklore of
Silicon Valley. According to the legend, Steve Wozniak chose the 6502
chip for the Apple simply because it cost less than an 8080. Before
designing the computer he had tried out his ideas in discussions at the
Homebrew Computer Club, which met regularly at a hall on the
Stanford campus. The Apple II was a tour de force of circuit design. It
used fewer chips than the comparable Altair machines, yet it outper-
formed most of them. It had excellent color graphics capabilities, better
than most mainframes or minicomputers. That made it suitable for fast-
action interactive games, one of the few things that all agreed personal
computers were good for. It was attractively housed in a plastic case. It
had a nonthreatening, nontechnical name. Even though users had to
open the case to hook up a printer, it was less intimidating than the
Altair line of computers. Jobs and Wozniak, and other members of the
Homebrew Computer Club, did not invent the personal computer, as
the legend often goes. But the Apple II came closest to Stewart Brand’s
prediction that computers would not only come to the people, they
would be embraced by the people as a friendly, nonthreatening piece of
technology that could enrich their personal lives. The engineering and
design of the Apple II reflected those aims.

Wozniak wrote his own BASIC for the Apple, but the Apple II was later
marketed with a better version, written by Microsoft for the 6502 and
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supplied in a ROM. A payment of $10,500 from Apple to Microsoft in
August 1977, for part of the license fee, is said to have rescued Microsoft
from insolvency at a critical moment of its history.57 Although it was
more expensive than either the TRS-80 or the PET, the Apple II sold
better. It did not take long for people to write imaginative software for it.
Like the Altair, the Apple II had a bus architecture with slots for
expansion—a feature Wozniak argued strenuously for, probably because
he had seen its advantages on a Data General Nova.58 The bus
architecture allowed Apple and other companies to expand the
Apple’s capabilities and keep it viable throughout the volatile late
1970s and into the 1980s. Among the cards offered in 1980 was the
SoftCard, from Microsoft, which allowed an Apple II to run CP/M. For
Microsoft, a company later famous for software, this piece of hardware
was ironically one of its best selling products at the time.

By the end of 1977 the personal computer had matured. Machines
like the TRS-80 were true appliances that almost anyone could buy and

Figure 8.5
Personal computers: Apple II, ca. 1977, with a monitor and an Apple disk drive.
(Source: Smithsonian Institution.)
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get running. They were useful for playing games and for learning the
rudiments of computing, but they were not good enough for serious
applications. Systems based on the Altair bus were more sophisticated
and more difficult to set up and get running, but when properly
configured could compete with minicomputers for a variety of applica-
tions. The Apple II bridged those two worlds, with the flexibility of the
one and the ease of use and friendliness of the other. At the base was a
growing commercial software industry.

None of this was much of a threat to the computer establishment of
IBM, Digital, Data General, or the BUNCH. Within a few years, though,
the potent combination of cheap commodity hardware and commercial
software would redefine the computer industry and the society that
would come to depend on it. The trajectories of DEC, IBM, Wang, and
Xerox did not intersect those of MITS, IMSAI, Apple, Radio Shack, or
the other personal computer suppliers into the late 1970s. Innovations
in personal computing did not seem as significant as those at places like
Xerox or even IBM. But in time they would affect all of computing just as
much. One of those innovations came from Apple.

APPLE II’s Disk Drive and VisiCalc

By 1977 many personal computer companies, including MITS and
IMSAI, were offering 8-inch floppy disk drives. These were much
better than cassette tape but also expensive. The Apple II used cassette
tape, but by the end of 1977 Steve Wozniak was designing a disk
controller for it. Apple purchased the drives themselves (in a new 5
1/4-inch size) from Shugart Associates, but Wozniak felt that the
controlling circuits then in use were too complex, requiring as many
as fifty chips. He designed a circuit that used five chips. It was, and
remains, a marvel of elegance and economy, one that professors have
used as an example in engineering courses. He later recounted how he
was driven by aesthetic considerations as much as engineering concerns
to make it simple, fast, and elegant.59

Apple’s 5 1/4-inch floppy drive could hold 113 Kbytes of data and sold
for $495, which included operating system software and a controller that
plugged into one of the Apple II’s internal slots.60 It was a good match
for the needs of the personal computer—the drive allowed people to
market and distribute useful commercial software, and not just the
simple games and checkbook-balancing programs that were the limit
of cassette tape capacity. Floppy disk storage, combined with operating
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system software that insulated software producers from the peculiarities
of specific machines, brought software to the fore. Ensuing decades
would continue to see advances in hardware. But no longer would
computer generations, defined by specific machines and their technol-
ogy, best describe the evolution of computing. With a few exceptions,
new computers would cease to be pivotal—or even interesting—to the
history of computing.

In October 1979 a program called VisiCalc was offered for the Apple
II. Its creators were Daniel Bricklin and Robert Frankston, who had met
while working on Project MAC at MIT. Bricklin had worked for Digital
Equipment Corporation and in the late 1970s attended the Harvard
Business School. There he came across the calculations that generations
of B-school students had to master: performing arithmetic on rows and
columns of data, typically of a company’s performance for a set of
months, quarters, or years. Such calculations were common throughout
the financial world, and had been semi-automated for decades using
IBM punched-card equipment. He recalled one of his professors post-
ing, changing, and analyzing such tables on the blackboard, using
figures that his assistant had calculated by hand the night before.
Bricklin conceived of a program to automate these ‘‘spreadsheets’’ (a
term already in limited use among accountants). Dan Flystra, a second-
year student who had his own small software marketing company, agreed
to help him market the program. Bricklin then went to Frankston, who
agreed to help write it.

In January 1979 Bricklin and Frankston formed Software Arts, based
in Frankston’s attic in Arlington, Massachusetts (the Boston area has
fewer garages than in Silicon Valley). That spring the program took
shape, as Frankston and Bricklin rented time on the MIT Multics system.
In June, VisiCalc was shown at the National Computer Conference. The
name stood for visible calculator, although inspiration for it may have
come from eating breakfast one morning at Vic’s Egg on One coffee
shop on Massachusetts Avenue. (Nathan Pritikin would not have
approved, but such eateries are another common feature of the
Boston scene not found in Silicon Valley.)61

Bricklin wanted to develop this program for DEC equipment, ‘‘and
maybe sell it door-to-door on Route 128.’’ Flystra had an Apple II and a
TRS-80; he let Bricklin use the Apple, so VisiCalc was developed on an
Apple. The price was around $200. Apple itself was not interested in
marketing the program. But the product received good reviews. A
financial analyst said it might be the ‘‘software tail that wags the
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hardware dog.’’62 He was right: in many computer stores people would
come in and ask for VisiCalc and then the computer (Apple II) they
needed to run it. Sales passed the hundred thousand mark by mid-1981
(the year the IBM personal computer was announced, an event that led
to Software Arts’s demise).

An owner of an Apple II could now do two things that even those with
access to mainframes could not do. The first was play games; admittedly
not a serious application, but one that nevertheless had a healthy
market. The second was use VisiCalc; which was as important as any
application running on a mainframe. Word processing, previously avail-
able only to corporate customers who could afford systems from Wang
or Lanier, soon followed.

IBM PC (1981)

Although after the Apple II and its floppy drive were available, one could
say that hardware advances no longer drove the history of computing,
there were a few exceptions, and among them was the IBM Personal
Computer. Its announcement in August 1981 did matter, even though it
represented an incremental advance over existing technology. Its proces-
sor, an Intel 8088, was descended from the 8080, handling data
internally in 16-bit words (external communication was still 8 bits).63 It
used the ASCII code. Its 62-pin bus architecture was similar to the
Altair’s bus, and it came with five empty expansion slots. Microsoft
BASIC was supplied in a read-only memory chip. It had a built-in cassette
port, which, combined with BASIC, meant there was no need for a disk
operating system. Most customers wanted disk storage, and they had a
choice of three operating systems: CP/M-86, a Pascal-based system
designed at the University of California at San Diego, and PC-DOS
from Microsoft. CP/M-86 was not ready until 1982, and few customers
bought the Pascal system, so PC-DOS prevailed. The floppy disk drives,
keyboard, and video monitor were also variants of components used
before. IBM incorporated the monitor driver into the PC’s basic circuit
board, so that users did not tie up a communication port. The mono-
chrome monitor could display a full screen of 25 lines of 80 characters—
an improvement over the Apple II and essential for serious office applica-
tions. A version with a color monitor was also available (figure 8.6).

With the PC, IBM also announced the availability of word processing,
accounting, games software, and a version of VisiCalc. A spreadsheet
introduced in October 1982, 1-2-3 from Lotus Development, took

268 Chapter 8



advantage of the PC’s architecture and ran much faster than its
competitor, VisiCalc. This combination of the IBM Personal Computer
and Lotus 1-2-3 soon overtook Apple in sales and dispelled whatever
doubts remained about these machines as serious rivals to mainframe
and minicomputers. In December 1982 Time magazine named the
computer ‘‘Machine of the Year’’ for 1983.64

MS-DOS

Microsoft was a small company when an IBM division in Boca Raton,
Florida, embarked on this project, code named ‘‘Chess.’’ Microsoft was
best known for its version of BASIC. IBM had developed a version of
BASIC for a product called the System/23 Datamaster, but the need to
reconcile this version of BASIC with other IBM products caused delays.
The Chess team saw what was happening in the personal computer field,

Figure 8.6
Personal computers: IBM PC, 1981. Note the two internal floppy disk drives.
(Source: Smithsonian Institution.)
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and they recognized that any delays would be fatal. As a result they would
go outside the IBM organization for nearly every part of this product,
including the software.65

Representatives of IBM approached Bill Gates in the summer of 1980
to supply a version of BASIC that would run on the Intel 8088 that IBM
had chosen.66 IBM thought it would be able to use a version of CP/M for
the operating system; CP/M was already established as the standard for
8080-based systems, and Digital Research was working on a 16-bit
extension. But negotiations with Gary Kildall of Digital Research stalled.
When IBM visited Digital Research to strike the deal, Kildall was not
there, and his wife, who handled the company’s administrative work,
refused to sign IBM’s nondisclosure agreement. (Given the charges that
had been leveled against IBM over the years, she was not being
unreasonable.67) In any event, Digital Research’s 16-bit version of
CP/M was not far enough along in development, although the company
had been promising it for some time. (It was eventually offered for the
IBM PC, after PC-DOS had become dominant.)

In the end, Microsoft offered IBM a 16-bit operating system of its own.
IBM called it PC-DOS, and Microsoft was free to market it elsewhere as
MS-DOS. PC-DOS was based on 86-DOS, an operating system that Tim
Paterson of Seattle Computer Products had written for the 8086 chip.
Microsoft initially paid about $15,000 for the rights to use Seattle
Computer Products’s work. (Microsoft later paid a larger sum of
money for the complete rights.) Seattle Computer Products referred
to it internally by the code name QDOS for ‘‘Quick and Dirty Operating
System’’; it ended up as MS-DOS, one of the longest-lived and most-
influential pieces of software ever written.68

MS-DOS was in the spirit of CP/M. Contrary to folklore, it was not
simply an extension of CP/M written for the advanced 8086 chip.
Paterson was familiar with a dialect of CP/M used by the Cromemco
personal computer, as well as operating systems offered by Northstar and
a few other descendants of the Altair. A CP/M users manual was another
influence, although Paterson did not have access to CP/M source code.
Another influence was an advanced version of Microsoft BASIC that also
supported disk storage, which probably led to the use of a file allocation
table by MS-DOS to keep track of data on a disk. The 86-DOS did use the
same internal function calls as CP/M; actually, it used 8086 addresses
and conventions that Intel had published in documenting the chip, to
make it easy to run programs written for the 8080 on the new micro-
processor. It used the CP/M commands ‘‘Type,’’ ‘‘Rename,’’ and
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‘‘Erase.’’ MS-DOS also retained CP/M’s notion of the BIOS, which
allowed it to run on computers from different manufacturers with
relatively minor changes.69

It is worth mentioning the differences between CP/M and MS-DOS,
since these help explain the latter’s success. A few changes were
relatively minor: the cryptic all-purpose PIP command was changed to
more prosaic terms like ‘‘Copy’’; this made MS-DOS more accessible to a
new generation of computer users but severed the historical link with
the Digital Equipment Corporation, whose software was the real ancestor
of personal computer systems. CP/M’s syntax specified the first argu-
ment as the destination and the second as the source; this was reversed
to something that seems to be more natural to most people. (The CP/M
syntax was also used by Intel’s assembler code and by the assembler for
the IBM System/360).70 More fundamental improvements included MS-
DOS’s ability to address more memory—a consequence of the Intel chip
it was written for. MS-DOS used a file allocation table; CP/M used a less-
sophisticated method. CP/M’s annoying need to reboot the system if the
wrong disk was inserted into a drive was eliminated. Doing that in MS-
DOS produced a message, ‘‘Abort, Retry, Fail?’’ This message would
later be cited as an example of MS-DOS’s unfriendly user interface, but
those who said that probably never experienced CP/M’s ‘‘Warm Boot’’
message, which was much worse and sometimes gave the feeling of
being kicked by a real boot. Several features may have been inspired
by UNIX, for example, version 2, which allowed users to store files on a
disk in a hierarchical tree of directories and subdirectories.71 Tim
Paterson later stated that he had intended to incorporate multitasking
into DOS, but ‘‘they [Microsoft] needed to get something really
quick.’’72

System software, whether for mainframes or for personal computers,
seems always to require ‘‘mythical man-months’’ to create, to come in
over budget, and to be saddled with long passages of inefficient code.
Tim Paterson’s initial work on 86-DOS took about two months, and the
code occupied about 6 K.73 MS-DOS was, and is, a piece of skillful
programming. It was the culmination of ideas about interactive comput-
ing that began with the TX-0 at MIT. It has its faults, some perhaps
serious, but those who claim that MS-DOS’s success was solely due to Bill
Gates’s cunning, or to Gary Kildall’s flying his airplane when IBM’s
representatives came looking for him, are wrong.
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The PC and IBM

The Personal Computer was IBM’s second foray into this market, after
the 5100—it even had the designation 5150 in some product literature.
Neither IBM nor anyone else foresaw how successful it would be, or that
others would copy its architecture to make it the standard for the next
decade and beyond. In keeping with a long tradition in the computer
industry, IBM grossly underestimated sales: it estimated a total of 250,000
units; ‘‘[a]s it turned out, there were some months when we built and sold
nearly that many systems.74 MS-DOS transformed Microsoft from a
company that mainly sold BASIC to one that dominated the small
systems industry in operating systems. IBM found itself with an enor-
mously successful product made up of parts designed by others, using
ASCII instead of EBCDIC, and with an operating system it did not have
complete rights to. It was said that if IBM’s Personal Computer division
were a separate company, it would have been ranked #3 in the industry
in 1984, after the rest of IBM and Digital Equipment Corporation.
Within ten years there were over fifty million computers installed that
were variants of the original PC architecture and ran advanced versions
of MS-DOS.75

‘‘The Better is the Enemy of the Good’’

The evolution of technological artifacts is often compared to the
evolution by natural selection of living things. There are many parallels,
including the way selective forces of the marketplace affect the survival
of a technology.76 There are differences, too: living things inherit their
characteristics from their parents—at most two—but an inventor can
borrow things from any number of existing devices. Nor does nature
have the privilege that Seymour Cray had, namely, to start with a clean
sheet of paper when embarking on a new computer design.

The history of personal computing shows that these differences are
perhaps less than imagined. The IBM PC’s microprocessor descended
from a chip designed for a terminal, although Datapoint never used it
for that. Its operating system descended from a ‘‘quick and dirty’’
operating system that began as a temporary expedient. The PC had a
limit of 640 K of directly addressable memory. That, too, was unplanned
and had nothing to do with the inherent limits of the Intel micropro-
cessor. 640 K was thought to be far more than adequate; within a few
years that limit became a millstone around the necks of programmers
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and users alike. The IBM PC and its clones allowed commercial software
to come to the fore, as long as it could run on that computer or
machines that were 100 percent compatible with it. Those visionaries
who had predicted and longed for this moment now had mixed feelings.
This was what they wanted, but they had not anticipated the price to be
paid, namely, being trapped in the architecture of the IBM PC and its
operating system.

Macintosh (1984)

Among those who looked at the IBM PC and asked why not something
better were a group of people at Apple. They scoffed at its conservative
design, forgetting that IBM had made a deliberate decision to produce
an evolutionary machine. They saw the limitations of MS-DOS, but not
its value as a standard. (Of course, neither did IBM at the time.) But
what would personal computing be like if it incorporated some of the
research done in the previous decade at Xerox’s Palo Alto Research
Center? The Xerox Star had been announced within months of the PC,
but it failed to catch on. Some people at Apple thought they could be
more successful.

For all the creative activity that went on at Xerox-PARC in the 1970s, it
must be emphasized that the roots of personal computing—the micro-
processor, the Altair, the bus architecture, the Apple II, BASIC, CP/M,
VisiCalc, the IBM PC, the floppy disk, Lotus 1-2-3, and MS-DOS—owed
nothing to Xerox-PARC research.

In 1979 that began to change. That fall Apple began work on a
computer called the Macintosh. It was the brainchild of Jef Raskin, who
before joining Apple had been a professor of computer science at UC
San Diego. He had also been the head of a small computer center, where
he taught students to program Data General Novas.77 Raskin had also
been a visiting scholar at Stanford’s Artificial Intelligence Laboratory,
and while there he became familiar with what was going on at Xerox-
PARC. According to Raskin, he persuaded the Apple team then devel-
oping another text-based computer to incorporate the graphics features
he had seen at PARC. Apple introduced that computer, the Lisa, in 1983.
Like the Xerox Star, it was expensive (around $10,000), and sales were
disappointing. Raskin’s Macintosh would preserve the Lisa’s best
features but sell at a price that Apple II customers could afford.78 As
with so much in the history of computing, there is a dispute over who
was responsible for the Macintosh.79 Many histories describe a visit by
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Apple cofounder Steve Jobs to PARC in 1979 as the pivotal moment in
transferring PARC technology to a mass market. Work on the Macintosh
was already underway at Apple by the time of that visit. The visit did
result in Jobs’ hiring several key people away from Xerox, however, and
moving people is the best way to transfer technology. According to
Raskin, the visit also resulted in Jobs’ insisting that the Macintosh have
features not present in the original design. Among those was the mouse
(figure 8.7).80

In January 1984 Apple introduced the Macintosh in a legendary
commercial during the Super Bowl, in which Apple promised that the
Macintosh would prevent the year 1984 from being the technological
dystopia forecast by Orwell’s novel 1984. The computer sold for
$2,495—more than the $1,000 Raskin was aiming for, but cheaper
than the Lisa. It was more expensive than an IBM PC, but no PC at

Figure 8.7
Personal computers: Apple Macintosh, 1984. Most Macintosh users soon found
that the machine required a second, external disk drive. (Source: Smithsonian
Institution.)
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that time, no matter what software or boards users added, could offer
the graphical interface of the Macintosh.

The Macintosh used a Motorola 68000 microprocessor, whose archi-
tecture resembled that of the PDP-11. The computer came with a single
disk drive, using the new 3 1/2-inch form, a high-resolution black-on-
white monitor, a mouse, and 128K of memory. Most users found they
soon had to upgrade to a 512K ‘‘Fat Mac’’; they also found it necessary to
purchase a second disk drive. A few programs were announced at the
same time: a ‘‘paint’’ (drawing) program, based on work done at Xerox-
PARC on a Data General Nova, and a word processor that came close to
WYSIWYG.

A year later the Macintosh came with a rudimentary networking
ability, called AppleTalk. This allowed the simple sharing of files and
printers. Like so much about the system, it was simple, easy to use, and
not challenged by the PC and its clones for years. But there was no hard
disk option, so users could not effectively set up a Mac as a server to the
others. A person using a Macintosh at home would not be connected to
a network, and the Mac was unable to challenge the lead of IBM and its
clones in an office environment, except in those offices where the
graphics abilities were especially needed. Unlike the Apple II and the
IBM PC, the Macintosh was ‘‘closed’’: users could not add boards and
were discouraged from even opening up the case.81 This was a bold—
some argued foolish—departure from the prevailing wisdom, but it
helped make the Macintosh cheaper, smaller, and faster than the Lisa
or the Star. A version introduced in 1987 offered color and opened up
the system, although Apple still tightly controlled the Macintosh’s
configuration.82

The Mac’s elegant system software was its greatest accomplishment. It
displayed a combination of aesthetic beauty and practical engineering
that is extremely rare. One can point to specific details. When a file was
opened or closed, its symbol expanded or contracted on the screen in
little steps—somehow it just felt right. Ultimately this feeling is subjec-
tive, but it was one that few would disagree with. The Macintosh software
was something rarely found among engineering artifacts. The system
evolved as the Mac grew, and it was paid the highest compliment from
Microsoft, who tried to copy it with its Windows program. One can hope
that some future system will have that combination as well, but the odds
are not in favor of it.

The Macintosh had more capability than the Alto, it ran faster than
the Lisa, yet its software occupied a fraction of the memory of either of
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those predecessors. It was not just a copy of what Xerox had done at
PARC. But there was a price for being so innovative: the Macintosh was
difficult for programmers to develop applications software for, especially
compared to MS-DOS. And though faster than the Lisa, its complex
graphics meant that it could not be as fast as a DOS program, like Lotus
1-2-3, that used more primitive commands that were closer to machine
code. Among sophisticated customers that created a split: one group
favored the elegance and sophistication of the Mac, while others
preferred the raw horsepower and access to individual bits that MS-
DOS allowed. For those who were not members of the computer
priesthood, the Macintosh was a godsend; whatever time was lost by its
relative slowness was more than compensated for by the time the user
did not have to spend reading an indecipherable users manual.

Microsoft had supplied some of the applications software for the
Macintosh, but Apple developed and controlled its operating system
in-house. Even before the Macintosh’s announcement, other companies
were trying to provide a similar interface for the IBM PC. In 1982 the
creators of VisiCalc announced a product called VisiOn for the IBM PC
that was similar to the Macintosh’s interface but never lived up to its
promise. IBM developed a program called Top View, and Digital
Research developed GEM (Graphics Environment Manager) along the
same lines. Microsoft came up with a product called Interface Manager,
but early versions introduced in the mid-1980s sold poorly. Later
versions of Interface Manager, renamed ‘‘Windows,’’ would succeed
dramatically. Version 3 of Windows, the breakthrough version, was not
introduced until around 1990, so for the next seven years, IBM PCs and
their clones would be known by the primitive MS-DOS interface
inherited from the minicomputer world.

Like the IBM PC, the Macintosh’s design created a barrier to
expanding memory, only it was a more generous 4 megabytes instead
of the PC’s miserly 640 Kbytes. A laser printer offered in 1985 completed
the transfer of Xerox-PARC innovations and allowed the Macintosh to
keep a strong foothold in at least some offices. The Macintosh’s
equivalent of VisiCalc was a program called PageMaker from Aldus,
introduced in 1985. When combined with the laser printer it allowed
users to do sophisticated printing on an Apple, at a fraction of the cost of
traditional methods.
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The Clones

The personal computer revolution seems to have little to do with the age
of mainframes that preceded it, but with the passage of time, we can find
common themes. IBM’s success with its System/360, and its need to give
out a lot of technical information about it, led to the plug compatible
industry, which in turn led to IBM’s having to adjust its own product line.
Something similar happened with the PC, only this time with a different
outcome. Most of the IBM PCs, including the 8088 microprocessor,
consisted of parts made by other manufacturers, who were free to sell
those parts elsewhere. Microsoft, for instance, retained the right to sell
its operating system to others. The core of what made a personal
computer an ‘‘IBM PC’’ was the basic input-output system (BIOS),
which was stored on a read-only memory chip. The idea went back to
Gary Kildall’s CP/M: let the BIOS be the only place where there could
be code that tailored the operating system to the specifics of a particular
machine. IBM owned the code in the personal computer’s BIOS and
prosecuted any company that used it without permission.

Around the time of the PC’s announcement, three Texas Instruments
employees were thinking of leaving their jobs and starting a company of
their own, which they called Compaq. Legend has it that Rod Canion,
Jim Harris, and Bill Murto sketched out an IBM-compatible PC on a
napkin in a Houston restaurant. They conceived of the idea of reverse-
engineering the IBM PC and producing a machine that would be 100
percent compatible. To get around IBM’s ownership of the BIOS code,
they hired people who had no knowledge of that code, put them in a
‘‘clean room,’’ where they would not be corrupted by anyone sneaking
the forbidden code to them, and had them come up with a BIOS of their
own that replicated the functions of IBM’s. This was expensive, but it was
legal. The Compaq computer, delivered in 1983, was portable, although
heavy. That was really a marketing ploy: At twenty-five pounds they ‘‘gave
new meaning to the phrase pumping iron.’’ What made it a success was
its complete compatibility with the IBM PC at a competitive price.
Compaq’s sales propelled the company into the top 100 rankings of
computer companies by 1985, one of the fastest trajectories of any start-
up.83

Compaq’s heroic efforts to break through IBM’s control of its PC
architecture did not have to be repeated too often. A small company
named Phoenix Technologies also reverse-engineered the BIOS chip,
and instead of building a computer around it, they simply offered a
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BIOS chip for sale. Now building an IBM-compatible PC was easy. The
trade press instituted a test for compatibility: would the machine run
Lotus 1-2-3, which was written to take advantage of the PC’s inner
workings to gain maximum speed? Better still, would it run Flight
Simulator, a program written by Bruce Artwick that exercised every
nook and cranny of the IBM architecture?84 If the answer was Yes and
Yes, the machine was a true clone. The floodgates opened. Unlike its
successful footwork during the times of System/360 and the plug
compatibles, this time IBM lost control over its own architecture.

The introduction of IBM Compatibles and the Macintosh signaled the
end of the pioneering phase of personal computing. Minicomputer and
mainframe manufacturers could no longer ignore this phenomenon. In
the late 1980s, companies like Novell would introduce more capable
networking abilities for personal computers, which allowed networks of
PCs to seriously challenge many large systems. After some hesitant

Figure 8.8
An early ‘‘transportable’’ computer. Osborne, ca. 1981. Just as revolutionary as its
small size was the fact that the computer came with the CP/M operating system
and applications software, all for less than $2,000.
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beginnings based on 8-bit designs, manufacturers developed portable
computers that were compatible with those on the desktop (figs. 8.8,
8.9). Commercial software, driven relentlessly by the marketplace
created by Microsoft, led to applications that likewise challenged the
mini and mainframe world. By 1991 the IBM-compatible computers,
based on advanced versions of the Intel 8086 chip and running Windows
3.1, brought the Macintosh’s features to the business and commercial
world. For reasons having to do more with IBM’s poor management
than anything else, companies like Compaq and Dell would earn more
profits selling IBM-compatible computers than IBM would. IBM
remained a major vendor, but the biggest winner was Microsoft, whose
operating system was sold with both IBM computers and their clones.

Figure 8.9
An early ‘‘laptop’’ computer. Tandy Radio Shack TRS-80, Model 100, ca. 1983.
Like the Osborne, it used an 8-bit microprocessor. System software and the
BASIC programming language were supplied by Microsoft and included with the
machine. The machine shown here was much modified and extended and
served as the author’s home computer for many years. (Source: Smithsonian
Institution.)
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The personal computer revolutionized the office environment, but it
had not become a revolutionary machine in the political or cultural
sense, the sense that Stewart Brand and others had predicted and hoped
for. Computers came ‘‘to the people,’’ but for a price: corporate control.
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9
Workstations, UNIX, and the Net, 1981–1995

The VAX brought the power of a scientific mainframe into the engi-
neering division of a company. Beginning in the 1980s a new class of
computers brought that power to the individual desktop. These ‘‘work-
stations’’ did that by using an inexpensive microprocessor, typically the
Motorola 68000. The lower cost was relative, less than a VAX but much
more than a PC. Their architecture and physical design also had much
in common with personal computers. The difference was their use of the
UNIX operating system, and their extensive networking abilities that
allowed sharing data and expensive peripherals like plotters.

First out of the gate was Apollo, of Chelmsford, Massachusetts. Its
founder, Bill Poduska, had previously cofounded Prime, the company
that pioneered the 32-bit mini. In 1981 Apollo delivered a product that
used the Motorola microprocessor and its own operating and network-
ing systems, called Domain.1 The price for a single workstation (the
name apparently originated at this time) began at $40,000.2 As Wang
and Xerox had already discovered, having a computer at each worker’s
desk, networked to other machines, was more efficient than having a
centralized time-shared computer accessed through ‘‘dumb’’ terminals.
The workstations sold well to firms like GE-Calma and Mentor Graphics,
who used them for computer-aided design and engineering of products
like circuit boards, aircraft components, and automobiles. By mid-1980
Apollo had shipped 1,000 systems. It soon encountered competition,
and in 1989 it was acquired by Hewlett-Packard, which had entered the
market with a workstation (the 9000) of its own design in 1985.3

Competition soon came from a new company located just down the
road from Apple in Silicon Valley. SUN Microsystems, founded in early
1982 by Vinod Khosla, continued the long tradition of effecting a
transfer of technology from a publicly funded university research project
to a profit-making company by moving key people. In this case the



project was the Stanford University Networked workstation (hence the
company’s name); the person was Andy Bechtolsheim of Stanford. A
parallel transfer brought its software; Bill Joy, who, with ARPA funding,
had enhanced the UNIX operating system while at Berkeley (figure 9.1).
Joy moved across the Bay to join SUN in June 1982.4 SUN had already
introduced a workstation in May, with the more capable SUN-2 following
shortly. Prices were in the $20,000 range. Among the things that Bill Joy
brought with him to Mountain View was Berkeley UNIX.

UNIX: From New Jersey to California

Bill Joy’s move to SUN signified the last stop on a transcontinental
journey for UNIX: it began in New Jersey, stopped in Champaign-
Urbana for a while, and was extensively rewritten while at Berkeley. In
Silicon Valley it would move from its academic niche into commercial
use. Berkeley UNIX was a key to SUN’s success and helped push the
Internet out of its ARPA roots in the 1990s.

Bell Laboratories, where UNIX was created, was a part of AT&T, a
regulated monopoly. Before it breakup in 1981, AT&T had agreed not to
engage in commercial computing activities; in return it enjoyed steady

Figure 9.1
Bill Joy. (Source : SUN Microsystems.)
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and regular profits from its business of providing telephone service
throughout the United States. Ken Thompson and Dennis Ritchie said
that they initially thought of UNIX as something to be used only within
Bell Labs, but several factors conspired to all but ensure that it would
‘‘escape,’’5 most importantly, that AT&T would not offer to sell it for a
profit. Thus universities could obtain a UNIX license for a nominal cost—
a few hundred dollars at most (commercial customers had to pay more).
Also important was that UNIX was not a complete operating system, as it
was then understood, but rather a set of basic tools that allowed users to
manipulate files in a simple and straightforward manner.

The result was that UNIX was a godsend for university computer
science departments. For a nominal fee, AT&T’s Western Electric
subsidiary supplied UNIX’s source code. The code was written in the
C programming language, not machine language. That meant that
although developed on DEC computers, UNIX could run on any
machine that had a C compiler. By contrast, most computer vendors
guarded source code as their family jewels, seldom gave it out, and did
all they could to lock a customer into their products. And no one
minded if a university modified the UNIX to enhance its capabilities.
That was what graduate students—and many bright undergraduates as
well—were in school for. Thus all the things needed to turn AT&T’s
UNIX into a practical system—for example, tailoring it for specific
monitors, printers, and storage systems—got done cheaply. That work
was excellent training for students as well. When these students grad-
uated, they took these skills with them, along with an appreciation for
the software that had allowed them such freedom. Some of them found
after graduation and entry into the ‘‘real world’’ that corporate compu-
ter centers had little room for that kind of easy access to the lower levels
of a machine. Those programmers turned themselves into evangelists,
spreading the UNIX way of programming into the corporate world.

Bill Joy was one of many students who had tinkered with AT&T’s
version of UNIX hoping to make it better. The University of California at
Berkeley obtained a UNIX tape in 1974, following a visit by Ken
Thompson. The system was soon running on several PDP-11s on the
campus. Bill Joy also arrived on the campus that year.6

Thompson and Ritchie’s immediate goal in creating UNIX was to
have a way of sharing files easily. They also were in need of programming
tools, after the Labs canceled work on Multics in 1969. After the initial
effort on the PDP-7, they moved UNIX to a PDP-11 and rewrote it in C.
For those reasons UNIX was frugal in the extreme: two- or three-letter
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abbreviations were the norm for most commands. Sometimes these
abbreviations corresponded to what the command did (e.g. ‘‘cp’’ for
copy); other times the relationship was tenuous (e.g. ‘‘grep’’: globally
search for the regular expression and print).7 One of UNIX’s tenets was
that the output of any UNIX process be usable as input for another. That
gave UNIX enormous power and flexibility. It also meant an absence of
features like page-breaks or information that revealed the status of the
file being worked on, since these would clutter up the file if ‘‘piped’’ to
another process. It also made it easy to write programs that acted like a
‘‘virus,’’ programs that could replicate themselves by producing execu-
table code as output. UNIX was powerful, but not useful for the hoi
polloi.8

Bill Joy and his fellow students at Berkeley set out to make UNIX more
accessible. The initial impetus came when the primitive Model 33
Teletypes were replaced by ‘‘dumb’’ CRT-based terminals (Lear-Siegler
ADM-3s). By 1978 Joy was offering tapes of the first Berkeley Software
Distribution (BSD) at a nominal cost to his friends and colleagues
around the country.9 The enhancements to Bell Labs’s UNIX strained
the capabilities of the PDP-11, and work shifted over to a VAX, which
DEC had just introduced. In 1980 ARPA threw its support behind
Berkeley UNIX as a common system the agency could recommend for
all its clients. That UNIX was, in theory, portable to computers from
manufacturers other than DEC was a main reason. Among the many
enhancements added to Berkeley UNIX (in version 4.2 BSD) was
support for networking by a protocol known as TCP=IP, which ARPA
promoted as a way to interconnect networks. This protocol, and its
bundling with Berkeley UNIX, forever linked UNIX and the Internet.10

The Ironies of UNIX

Although UNIX was written by Thompson and Ritchie for themselves
and for researchers like them, it found its way into general use. UNIX’s
strength came from the fact that Thompson and Ritchie had a firm
sense of what they wanted and what they did not want; it did, however,
sprout a number of incompatible, baroque, and feature-laden versions.
Berkeley UNIX was developed on a VAX; Digital Equipment only
grudgingly tolerated UNIX on the VAX and steered its customers to
VMS. VAX computers, running Berkeley UNIX with TCP=IP, helped
transform the restricted ARPANET to the wide-open Internet; when the
Internet broke through to public use in the 1990s, Digital Equipment
Corporation hardly profited. UNIX, born in a collegial environment, was
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best known for the way it made the sharing of files easy; that also meant
that UNIX systems would be vulnerable to viruses and unauthorized
intrusions by hackers. UNIX spread because AT&T gave it away;
Berkeley UNIX generated enormous profits for SUN and other work-
station vendors but not for AT&T. When AT&T was allowed to market
computer products after divestiture, it failed to set a standard for, or
profit from, its creation. AT&T touted UNIX as an ‘‘open’’ system; other
companies introduced incompatible versions for little more reason than
to be different from AT&T, a competitor. The name UNIX was a pun on
Multics, chosen to imply a simpler system; it was not intended to imply
unity, and after 1985 it was anything but universal. Finally, for all its
qualities, UNIX never challenged the dominance of Microsoft’s MS-
DOS=Windows, which became the real desktop standard after 1981. Such
were the ironies of UNIX.

SUN Microsystems took full advantage of the strategy of open systems.
It not only used UNIX and the Motorola microprocessor but also a
standardized version of Ethernet, and an internal bus that others were
free to adopt. Apollo and Hewlett-Packard retained their proprietary
systems, although each eventually offered UNIX as well. The SUN
model, its profits, and the availability of venture capital spawned the
JAWS phenomenon (just another work station). Many of the competi-
tors tried to find a toehold in a specific niche: for example, Symbolics
produced a workstation that was optimized to run the LISP program-
ming language for artificial intelligence applications. But most failed in
the face of SUN’s open, general-purpose machines offering good
performance at a low price. Besides HP and Apollo, the only serious
exception was Silicon Graphics. Like SUN, Silicon Graphics commercial-
ized a university-sponsored research project; a ‘‘geometry engine’’ chip
that performed the calculations needed to represent three-dimensional
images. Like SUN, technology transfer was effected by moving a key
person—Jim Clark, who had studied under David Evans and Ivan
Sutherland at Utah and had developed a prototype engine at Stanford.
(Clark later left Silicon Graphics to found Netscape, a company aimed at
commercializing software for the Internet.)

VAX Strategy

Just as the personal computer field was divided into the DOS and
Macintosh camps, there was also a battle going on in the scientific and
engineering field.
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Workstation companies could not compete with mini and mainframes
on the basis of the power of a single machine; they competed by selling
networks of machines, whose collective power they alleged was greater
than the sum of the parts. SUN stated this succinctly in its advertising
slogan, ‘‘The network is the computer.’’ Throughout the 1980s Digital
Equipment Corporation had a powerful strategy of its own that
combined SUN’s emphasis on networking with IBM’s concept of a
unified family of computers. DEC’s plan was to offer the customer a
single architecture, the VAX, with a single operating system, VMS, in
solitary or networked configurations that ranged from desktop to
mainframe capability. The only part of the VAX Strategy that was not
Digital’s own was the networking—Ethernet, which DEC obtained in an
agreement with Intel and Xerox. The VAX 11=780 was followed by
smaller machines like the 11=750 in 1980 and MicroVax II in 1984; and
larger machines like the 8600 (Venus) in 1984 and the 9000 (which DEC
called a mainframe) in 1990.11

The VAX Strategy had risks of its own, risks that resembled IBM’s
‘‘betting the company’’ with the System=360. DEC had to convince the
customer that it could supply everything, from office automation soft-
ware to printer ribbons, yet not convey a sense that it was charging
excessively high prices. It had to design and build products with good
performance across the entire line. DEC had to stop marketing its own
competing architectures, including the 36-bit computers descended
from the PDP-10. The PDP-10 series was based on an old design and
was incompatible with the VAX; a simple conversion of PDP-10 applica-
tions to the VAX seemed straightforward.

DEC misjudged how beloved the PDP-10 was among its customers—
either forgetting, or perhaps never realizing, how much modern
computing was a child of that venerable machine. There was even an
outcry when DEC announced it was phasing out DECtape. DEC’s
announcement that no PDP-10 machines would be developed after
1983 was met by strong customer resistance, but Ken Olsen stood
firm. A rational decision? Yes, but how does one measure its intangibles?
The PDP-10 was the system that first created the illusion of personal
computing. Its TOPS-10 operating system inspired personal computer
system software. It was the computer that William Gates learned to
program on, and to write Microsoft BASIC on. The early ARPANET
linked up more PDP-10s than any other computer. The PDP-10 hard-
ware was long obsolete. The mental model of computing that it created
is not only still alive, it greets us every time we turn on a networked
personal computer or workstation.

286 Chapter 9



But there was a deviation from the VAX strategy—at the personal
computer level. There DEC introduced not one but three incompatible
machines in 1982. Not only were these incompatible with the VAX, they
were not fully compatible with the IBM PC either. One of them, the
Rainbow, sold modestly but could not slow down the IBM-compatible
juggernaut.12 The lack of full compatibility with the IBM PC standard
was a fatal error.

The VAX Strategy worked well through the 1980s. By that time the
IBM 360-370 architecture was becoming top-heavy with enhancements,
modifications, and extensions. Meanwhile IBM was enjoying brisk sales
of its mid-range System=38 and of course its PC, neither compatible with
the System=370. IBM’s customers were confused. IBM salesmen, who
grew up selling ‘‘big iron’’ (large mainframes) and who regarded
anything smaller as toys, often added to the confusion by trying to
steer every customer to the System=370. For a brief and glorious
moment—just before the stock market crash in October 1987—it
looked as if DEC was not only in a solid number two position but
poised to do the unthinkable, surpass IBM and dominate the industry.
But it was not to be. DEC’s stock was among the heaviest losers that
month, and by 1990 the drawbacks to its VAX strategy, combined with its
inability to bring new VAX products to market, began a series of quarters
in which DEC lost most of the money it had earned through the entire
minicomputer era. DEC probably could have weathered an assault from
UNIX workstations or from the IBM PC if either occurred alone, but the
combination was too much.

RISC

If those two blunders were not enough, DEC made a third. This blunder
involved what had been the company’s strongest suit; computer archi-
tecture. Simply put, DEC failed to develop new architectures to reflect
the changes in chip and software technology that had taken place in the
1970s.

Although its name implied an extension of the PDP-11 minicomputer,
the VAX architecture had a lot in common with the IBM System=360 and
its descendants. Like the 360, its instruction set was contained in a
microprogram, stored in a read-only memory. Like the 360, the VAX
presented its programmers with a rich set of instructions that operated
on data in almost every conceivable way. The 370=168 had over 200
instructions, the VAX 11=780 over 250. There were sets of instructions
for integers, floating-point numbers, packed decimal numbers, and

Workstations, UNIX, and the Net, 1981–1995 287



character strings, operating in a variety of modes.13 This philosophy had
evolved in an environment dominated by magnetic core memory, to
which access was slow relative to processor operations. Thus it made
sense to specify in great detail what one wanted to do with a piece of data
before going off to memory to get it. The instruction sets also reflected
the state of compiler technology. If the processor could perform a lot of
arithmetic on data with only one instruction, then the compiler would
have that much less work to do. A rich instruction set would reduce the
‘‘semantic gap’’ between the English-like commands of a high-level
programming language and the primitive and tedious commands of
machine code. Cheap read-only memory chips meant that designers
could create these rich instruction sets at a low cost if the computer was
microprogrammed.14

Those assumptions had been long accepted. But computer science
was not stagnant. In the mid-1970s John Cocke of IBM looked at the
rapid advances in compilers and concluded that a smaller set of
instructions, using more frequent commands to load and store data to
and from memory, could operate faster than the System=370. Thomas
Watson Jr. once wrote a memo describing IBM’s need to have ‘‘wild
ducks’’ among its ranks—-people who were not content to accept
conventional wisdom about the way things were done. Cultivating such
people in the conservative culture of IBM was not easy, but Watson knew,
perhaps better than any other computer executive, that IBM could not
survive without them. John Cocke, with his then-radical ideas about
computer design, fit that description.15

Cocke’s ideas led to an experimental machine called the IBM 801,
completed under the direction of George Radin in 1979.16 For many
reasons, including the success and profits of the 370 line and its
successors, IBM held back introducing a commercial version of the
design. (The IBM-RT, introduced in 1986, was a commercial failure and
did not exploit the idea very well.) Still, word of the 801 project got out,
along with a rumor that it could execute System=370 programs at much
faster speeds although it was a smaller computer. By the late 1970s
magnetic core had been replaced by semiconductor memory, whose
access times matched the speeds of processors. Frequent load and store
instructions no longer exacted a speed penalty. Finally, some researchers
looked at the VAX and concluded that they could not extend its design
any further; they began looking for alternatives.

In 1980 a group at Berkeley led by David Patterson, after hearing
‘‘rumors of the 801,’’ started a similar project called RISC—‘‘Reduced
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Instruction Set Computer.’’ Another project, called MIPS (Millions of
Instructions Per Second), began in 1981 at Stanford under the leader-
ship of John Hennessy.17 As they publicized their work they were met
with skepticism: RISC looked good in a university laboratory but did not
address the real needs of actual customers (figure 9.2). One trade
journal even worried that RISC, from the start associated with UNIX,
was not well-suited for data-processing jobs written in COBOL.18 Mean-
while, sales of Intel-based PCs, the VAX, and the System=370 family—all
complex instruction-set processors—were booming. With a massive
buildup of the Defense Department under President Ronald Reagan,
Wall Street was enjoying another round of go-go years. Those watching
the trajectory of their stocks in DEC, Data General, IBM, and Wang were
not worried about RISC.

SUN Microsystems’ products initially used the Motorola 68000 micro-
processor, whose design was very much in the spirit of the PDP-11 and
VAX. Beginning in 1987 and probably owing to Bill Joy’s influence, SUN
introduced a workstation with a RISC chip based on Patterson’s research

Figure 9.2
The Benefits of RISC: Computer Performance of Microprocessors. Hennessy
and Patterson used graphs such as this one to show how inexpensive micro-
processors would soon overtake all other classes of computers in performance.
(Source : John L. Hennessy and Norman P. Jouppi, ‘‘Computer Technology
and Architecture: an Evolving Interaction,’’ IEEE Computer [September 1991]:
19.) # IEEE.

Workstations, UNIX, and the Net, 1981–1995 289



at Berkeley. Called SPARC (Scalable Processor Architecture), this design
did more than anything else to overcome skepticism about RISC.
Hennessy and Patterson became evangelists for RISC, buttressed by
some impressive quantitative measurements that showed how a RISC
design could squeeze much more processing power out of a piece of
silicon than conventional wisdom had thought possible. More telling,
their data showed that RISC offered a way of improving microprocessor
speeds much more rapidly than mini and mainframe speeds were
improving—or could improve. The unmistakable implication was that
the puny, cheap microprocessor, born of a pocket calculator, would soon
surpass minicomputers, mainframes, and even supercomputers, in
performance. If true, their conclusions meant that the computer
industry as it had been known for decades, and over which the U.S.
Justice Department fought IBM throughout the 1970s, was being driven
to extinction by its own offspring.19

SUN went a step further to promote RISC: they licensed the SPARC
design so that other companies might adopt it and make SPARC a
standard.20 The combination of a license to copy the SPARC processor,
plus Berkeley UNIX, made it almost as easy to enter the workstation
market as it was to make an IBM compatible PC. SUN gambled that it,
too, would benefit by continuing to introduce products with high
performance and a low price. They succeeded, although such a philo-
sophy meant it had to accept slim profit margins, since SUN could not
own the architecture.

The Stanford MIPS project also spawned a commercial venture, MIPS
Computer Systems, which also helped establish a commercial market for
RISC microprocessors. Digital Equipment Corporation bought a chip
from MIPS for one of their workstations in 1989—even DEC now
admitted that RISC was not going away. (An internal RISC project at
DEC, called Prism, had been canceled in 1988.) Silicon Graphics also
based its newer workstations on MIPS microprocessors.21 Hewlett-Pack-
ard converted its line of workstations to a RISC design called precision
architecture. After failing with the RT, IBM introduced a successful RISC
workstation in 1990, the R=6000. In the early 1990s Apple and IBM
joined forces with Motorola to produce a RISC microprocessor called
Power PC, which they hoped would topple the Intel 8086 family. IBM’s
role in the design of the Power PC was a fitting vindication of the ideas of
John Cocke, the ‘‘wild duck’’ who started the whole phenomenon.
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Networking I: Ethernet

A RISC architecture, UNIX, and scientific or engineering applications
differentiated workstations from personal computers. Another distinc-
tion was that workstations were designed from the start to be networked,
especially at the local level, for example, within a building or a division of
an engineering company. That was done using Ethernet, one of the most
significant of all the inventions that came from the Xerox Palo Alto
Research Center. If the Internet of the 1990s became the ‘‘Information
Superhighway,’’ then Ethernet became the equally important network of
local roads to feed it. As a descendent of ARPA research, the global
networks we now call the Internet came into existence before the local
Ethernet was invented at Xerox. But Ethernet transformed the nature of
office and personal computing before the Internet had a significant
effect. How Ethernet did that will therefore be examined first.

In his autobiography, Herb Grosch notes with pride that Grosch’s Law
(see chapter 6), conceived in 1950 before there were even commercial
installations, held through waves of technical innovation.22 In the late
1970s it was especially frustrating to realize that even though one could
get all the functions of an IBM 7090 on a fifty-dollar chip, buying an
ensemble of cheap systems did not give as much computing power as
spending the same money on one large system. Ethernet changed that
equation, by enabling small clusters of workstations and, later, PCs to
work together effectively.

Ethernet was invented at Xerox-PARC in 1973 by Robert Metcalfe and
David Boggs. Metcalfe was an alumnus of MIT’s Project MAC, and in
1969 he helped link MIT to ARPANET, connecting a PDP-10 to it. He
moved to Xerox-PARC in 1972; one of his first tasks there was to hook up
PARC’s PDP-10 clone, the MAXC, to ARPANET. ‘‘As of June 1972, I was
the networking guy at PARC.’’23 Metcalfe connected Xerox’s MAXC to
ARPANET, but the focus at Xerox was on local networking: to connect a
single-user computer (later to become the Alto) to others like it, and to a
shared, high-quality printer, all within the same building. The ARPANET
model, with its expensive, dedicated Interface Message Processors was
not appropriate.

When Metcalfe arrived at PARC there was already a local network
established, using Data General minicomputers linked in a star-shaped
topology.24 Metcalfe and his colleagues felt that even the Data General
network was too expensive and not flexible enough to work in an office
setting, where one may want to connect or disconnect machines
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frequently. He also felt it was not robust enough—the network’s opera-
tion depended on a few critical pieces not failing. He recalled a network
he saw in Hawaii that used radio signals to link computers among the
Hawaiian islands, called ALOHAnet.25 With this system, files were
broken up into ‘‘packets,’’ no longer than 1000 bits long, with an
address of the intended recipient attached to the head of each. Other
computers on the net were tuned to the UHF frequency and listened for
the packets, accepting the ones that were addressed to it and ignoring all
the others.

What made this system attractive for Metcalfe was that the medium—
in this case radio—was passive. It simply carried the signals, with the
computers at each node doing the processing, queuing, and routing
work. The offices at Xerox PARC were not separated by water, but the
concept was perfectly suited for a suite of offices in a single building.
Metcalfe proposed substituting a cheap coaxial cable for the ‘‘ether’’
that carried ALOHAnet’s signals.26 A new computer could be added to
the ‘‘Ethernet’’ simply by tapping into the cable. To send data, a
computer first listened to make sure there were no packets already on
the line; if not, it sent out its own. If two computers happened to
transmit at the same time, each would back off for a random interval
and try again. If such collisions started to occur frequently, the compu-
ters themselves would back off and not transmit so often.27 By careful
mathematical analysis Metcalfe showed that such a system could handle
a lot of traffic without becoming overloaded. He wrote a description of it
in May 1973 and recruited David Boggs to help build it. They had a fairly
large network running by the following year. Metcalfe recalled that its
speed, around three million bits per second, was unheard of at the
time, when ‘‘the 50-kilobit-per-second (Kbps) telephone circuits of the
ARPANET were considered fast.’’28

Those speeds fundamentally altered the relationship between small
and large computers. Clusters of small computers now, finally, provided
an alternative to the classic model of a large central system that was time-
shared and accessed through dumb terminals.

Ethernet would have its biggest impact on the workstation, and later
PC, market, but its first success came in 1979, when Digital Equipment
Corporation, Intel, and Xerox joined to establish it as a standard, with
DEC using it for the VAX. Gordon Bell believes that it was fortunate in
becoming rooted firmly enough to withstand the introduction of a
competing scheme, Token Ring, by IBM.29 UNIX-based workstations
nearly all adopted Ethernet, although Token Ring and a few alternate
schemes are also used.
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DOS-based personal computers were late in getting networking.
Neither the Intel processors they used, nor DOS, was well-suited for it.
There was a social factor at work, too: it was, after all, a personal

computer—why should one want to connect it with someone else’s, or
even worse, have to share resources like mass storage or a printer? IBM’s
entry into the market made personal computers respectable. But many
users had not forgotten the idealistic notions of empowerment that had
spawned the PC in the first place. Personal computers eventually became
networked, too, though by a circuitous route.

Workstations and ‘‘VAXen’’ found a market among engineers and
scientists, but with only a few exceptions the commercial office environ-
ment continued to use office automation systems from Wang, IBM, and
others.30 Good word-processing programs, and especially the spread-
sheet program 1-2-3, introduced for the IBM Personal Computer by
Lotus Development Corporation in 1982, helped bring the IBM PC and
its clones into that market. Lotus 1-2-3 was like VisiCalc, with some
additional features. (The ‘‘2’’ and ‘‘3’’ implied the features of graphing
and database capabilities.) Because it was written specifically for the IBM
PC, using assembly language to gain faster performance, it ran much
faster than other spreadsheets. In corporate offices the little stream of
personal computers that began with the Apple II became a flood of IBM
PCs and PC-compatibles, running Lotus 1-2-3, word processing software
like Word Perfect, and database programs like dBase III.

The people running corporate information services departments saw
this flood as a Biblical plague. Purchasers of PCs and PC software were
driven by personal, not corporate, needs. These personal needs were
often driven by advertising hyperbole in the trade journals, which
promised digital Utopia for anyone smart enough to buy the latest
piece of software, and smart enough to bypass the bureaucracy of
corporate purchasing and evaluation. Information services people,
wedded to Wang word processors or IBM mainframes, were losing
control of what they were hired to manage.

Both sides were right. The PC and DOS standards led to commercial
software that was not only inexpensive but also better than what came
with centralized systems. The PC also led to poor quality software that
wasted more company time than it saved. The ‘‘personal’’ in the PC
meant also that a worker’s choices of software, based on personal
satisfaction, did not always mesh with the goals of his or her employer.

By the mid-1980s it was clear that no amount of corporate policy
directives could keep the PC out of the office, especially among those
employees who already had a PC at home. The solution was a technical
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fix: network the PCs to one another, in a local-area network (LAN). By
1984 there were over twenty products announced or on the market that
claimed to connect IBM PCs in a local-area network.31 Many of these
performed poorly, given the limits of the Intel processor that powered
early IBM Personal Computers and clones. After more advanced
versions of the Intel chip became common (especially the 80386,
introduced in 1985), there was a shakeout, and networking for PCs
became practical. The company that emerged with over half the business
by 1989 was Novell, located in the Salt Lake City area. Novell’s Netware
was a complex—and expensive—operating system that overlaid DOS,
seizing the machine and directing control to a ‘‘file server’’—typically a
PC with generous mass storage and I=O capability (the term ‘‘server’’
originated in Metcalfe and Boggs’s 1976 paper on Ethernet). By locating
data and office automation software on this server rather than on
individual machines, some measure of central control could be reestab-
lished.

Networking of PCs lagged behind the networking that UNIX work-
stations enjoyed from the start, but the personal computer’s lower cost
and better office software drove this market. Some predicted a conver-
gence of PC and UNIX workstations, but that did not occur. Office
workers used computers for word processing, basic accounting using a
spreadsheet, and those who filed data used simple database programs.
There was an abundant selection of good software for these applications,
at reasonable prices, for the PC. Those who needed graphics, say for
desktop publishing, could buy a Macintosh. There was no incentive to
spend more money for a UNIX workstation, which offered less workaday
software. Recall that UNIX was more a set of tools than a complete
operating system. And it was even harder to use and understand than
DOS. Nor was UNIX as standardized. Several windowing systems,
including X-Windows, came to the UNIX world in the late 1980s, but
no standard emerged that compared to Microsoft Windows for DOS
machines.32

For all the criticisms of the IBM PC architecture and of MS-DOS, it is a
measure of their quality that those standards could evolve so far and
remain not just viable but dominant for so long. By 1995 the standard
still included a descendant of the Intel 8086 processor, an advanced
version of DOS enhanced by Microsoft Windows, version 3.1 or later, and
a networking scheme from Novell or a handful of other companies. The
Macintosh also evolved and remained competitive, although its share of
the market declined in the face of competition from advanced versions
of Windows for the IBM-compatible machines.
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Local networking took the ‘‘personal’’ out of personal computing, at
least in the office environment. (One could still do whatever one wanted
at home.) PC users in the workplace accepted this Faustian bargain. The
more computer-savvy among them resisted, but the majority of office
workers hardly even noticed how much this represented a shift away
from the forces that drove the invention of the personal computer in the
first place. The ease with which this transition took place shows that
those who believed in truly autonomous, personal computing were
perhaps naive. Still, the networked office computers of the 1990s gave
their users a lot more autonomy and independence than the time-
shared mainframes accessed through ‘‘dumb terminals’’ or ‘‘glass Tele-
types’’ in the 1970s. It was just not how the people at Byte magazine or
the Homebrew Computer Club had imagined things would evolve.

Networking II: Internet

Most benefits of connecting office workers to a LAN went to adminis-
trators and managers. For their part, users no longer had to worry about
backing up files—something few PC owners ever learned to do faithfully
anyway—and they could now exchange files and messages with one
another using electronic mail. But there was one unanticipated, very
important thing that users connected to a LAN got in return—access to
the Internet.

The present-day Internet, though well known, is hard to define. It is
descended from the ARPANET described in chapter 6 (figure 9.3). Like
ARPANET and the other networks described earlier, the Internet uses
‘‘packet switching.’’ Sending a message does not require a dedicated
connection from one computer to another, as, say, one has when calling
someone on the telephone.33 There are however several major differ-
ences. The Internet is not a single network but rather the connection of
many different networks across the globe; hence the name. Some of
those networks are open to the public, not just to a restricted or
privileged community. (Note there are still many networks that are
restricted, e.g., one used by a bank for its internal operations.) Finally,
the Internet allows communication across these different networks by its
use of a common protocol, TCP=IP (transmission control protocol=
internet protocol). This interconnection of networks to one another,
using the glue of TCP=IP, constitutes the present-day Internet.34

The Internet made its way into general use by a combination of social
and technical factors. Among the former was the shift of financial and
administrative support from ARPA, to the National Science Foundation
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in the 1980s, and then in the 1990s to entities that allowed Internet
access to anyone, including those who would use it for commercial
purposes. As recently as 1992, Internet users were about evenly distrib-
uted among governmental, educational, military, net-related, commer-
cial, and nonprofit organizations (identified in their addresses,
respectively, by the sequences ‘‘.gov,’’ ‘‘.edu,’’ ‘‘.mil,’’ ‘‘.net,’’ ‘‘.com,’’
and ‘‘.org’’). By 1995 commercial users overwhelmed the rest, and the
phrase ‘‘‘X’ dot com,’’ where ‘‘X’’ is the name of a corporation, has
entered our vocabulary. Documenting this sequence of events is a work
still in progress and that aspect of the Internet’s growth will not be
discussed further here.35

The technical factors behind the emergence of the Internet are better
known. One has already been mentioned: ARPA’s support for the
development of, and its decision in 1980 to adopt, the TCP=IP protocol.
ARPA’s support, and the protocol’s inclusion in Berkeley UNIX, meant
that it would become widely available in universities and would not be
held as a proprietary product by IBM, DEC, or any other computer
company.36

Another factor was the rise of local area networks. The initial goal for
ARPANET was the sharing of expensive computer resources; individuals
would gain access to these resources through terminals that were

Figure 9.3
ARPANET, as of December 1970. The map shows 11 nodes, mainly concentrated
in the Los Angeles and Boston regions. (Source : DARPA.)
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connected to mainframes by time-sharing. (As the ARPANET took shape
one could also, in a few places, connect a terminal directly to the
network through a terminal interface processor (TIP)—a variation of
the IMP concept.) With the invention of Ethernet in 1973, and the
personal computer the following year, the economics of computing
changed. Computing power was no longer scarce. Time-sharing
matured and became available on many mainframes, but it was
supplanted by client-server computing that descended from the work
at Xerox-PARC. And throughout this era Moore’s Law ruled: computing
power, as measured by the density of the silicon chips that went into
these machines, was doubling about every eighteen months.

Local area networks made it possible for large numbers of people to
gain access to the Internet. Ethernet’s speeds were fast enough to match
the high speeds of the dedicated lines that formed the Internet’s
backbone. High-speed networking had always been among the features
workstation companies wanted to supply—recall SUN’s marketing
slogan: ‘‘The Network is the Computer.’’ What had not been anticipated
was how advances in personal computers, driven by ever more powerful
processors from Intel, brought that capability to offices and other places
outside the academic and research worlds. By the late 1980s those with
UNIX workstations, and by 1995 those with personal computers on a
LAN, all had access to the Internet, without each machine requiring a
direct connection to the Internet’s high-speed lines.

Ethernet’s high data rates thus provided a way of getting around the
fact that communication speeds and data capacity had not kept up with
the advances in computer processing speeds and storage. Gordon
Moore’s colleague at Intel, Andrew Grove, came up with his own
‘‘law’’ to describe this disparity: while chip density doubles every
eighteen months (Moore’s Law), telecommunications bandwidth
doubles every 100 years (Grove’s Law).37 Bandwidth growth has
picked up since 1990, but it still lags well behind the growth of chip
density. Grove believes the disparity is a result of overregulation of the
telecommunications industry. Whatever the cause, it is true that the
telephone lines coming into homes and offices cannot handle data at
more than about 50 thousand bits per second—usually less, and in any
case well below the speeds achieved by Ethernet and required by many
Internet activities.

Since the mid-1990s modem manufacturers have made heroic efforts
to improve data rates for ordinary telephone connections. Plans have
also emerged to use other wires that come into the home for Internet
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traffic: the line that carries cable television or even the power lines.
Various satellite or microwave wireless technologies are also being
developed. One of these approaches will probably break the bottleneck.
Meanwhile, people do connect their home computers to the Internet by
dialing a local telephone number, but the access they get is a fraction of
what they can find at the office, laboratory, or university. For now,
Grove’s Law seems to hold.

Networking III: the World Wide Web

As the Internet emerged from its roots in ARPA, it began to change. The
initial activities on the Internet were ARPANET derived: users could log
on to a remote computer, transfer large files from one machine to
another, and send mail. The first two activities later known as (‘‘Telnet’’
and ‘‘FTP’’) were explicit goals of the original ARPANET; mail was not,
but it emerged soon after the first few nodes were working. Early e-mail
facilities were grafted onto the file-transfer operation, but before long
dedicated e-mail software was developed, with most of the features found
in modern e-mail systems already in place (e.g. the ability to reply to
someone, save a message, or send a message to a list).38

The first serious extension to that triad gave a hint of what the popular
press calls a ‘‘virtual community’’ based on the Internet. Whether that
phrase has any meaning, and if so, what it is, will be discussed later, but
what evoked it was the development of news or discussion groups on the
early Internet. Although these groups are associated with the Internet,
for years only those with access to UNIX systems had access to them. For
the general public they were anticipated in the personal computer arena
by so-called bulletin-board systems (BBSs), which as the name implies,
acted like bulletin boards, on which anyone could post a note for all to
read. BBSs typically ran on limited facilities, using public-domain soft-
ware running on an IBM XT or the equivalent. Key technical develop-
ments were the introduction in 1981 of an inexpensive modem by Hayes
Microcomputer Products, and of the XT itself in 1983, with its 10-
megabyte hard disk. Users dialed into these bulletin boards with a local
telephone call, at a rate of a few hundred bits per second.39 But they
worked and were well liked, and some remained in use into the 1990s.

UNIX-based news groups first appeared after 1979, somewhat inde-
pendently of the mainstream ARPANET-Internet activities and under
the general name of Usenet.40 These were arranged into a set of major
categories, for example, ‘‘comp’’ for computers, or ‘‘rec’’ for hobbies. A
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category called ‘‘alt’’ (‘‘alternative’’) included subcategories that tended
to the bizarre; of course these were the ones that newspaper reporters
focused on in the first stories about the Internet to appear in print.
Reporters knew that a story about alternative sexual preferences would
attract more readers than a story about UNIX file structures, even if the
latter were far more important to the operation of the Net. And perhaps
editors were somewhat fearful that, if unchecked, news groups would put
them out of business (they might). The resulting stories were hardly
accurate but did kindle a general interest in the Internet, although at a
time when few people outside universities could gain access to these
groups.

Another bulletin board system emerged at university and industrial
computer centers that used IBM mainframes. Beginning around 1981,
IBM system administrators at the City University of New York and Yale
developed BITNET, which linked large IBM systems by a clever bit of
programming that treated messages as though they were data punched
on decks of 80-column cards. With BITNET came LISTSERV, a system
for managing discussion groups. As might be expected among IBM
mainframe users, LISTSERV discussions were a little more formal and
serious than those on Usenet, although they also had a wide range. After
about a decade and a half of parallel operations, all three of these
streams blended into a community of news, discussions, real-time chat,
and other venues for exchanging information, now found on the World
Wide Web.

Gopher, WAIS

File transfer and remote log-in were fine if users already knew where a
desired file was located and what it was called. Perhaps that information
might be posted on a news group in response to a query, but as the
Internet grew, the amount of information available on it overwhelmed
these facilities. The Internet began to feel like a large library that had no
card catalog, or a used bookstore that had an incredible number of great
books at bargain prices but with the books piled at random on the
shelves. In 1990 or early 1991, programmers at the University of
Minnesota responded by creating Gopher, in honor of the university
mascot. Gopher at first allowed students and faculty, including those with
little experience using computers, to query campus computers for
information such as class schedules, administrative policy statements,
and sporting events, Gopher would then ‘‘go fer’’ the data and deliver it
to the person seated at the terminal. It soon spread elsewhere, where
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system administrators installed the program on machines connected to
the Internet. If Gopher was installed at a local site, users could call the
program and use it directly; if not, they could telnet to a distant site that
had Gopher and allowed outsiders to use it (several places soon
emerged). The program displayed information as menus of menus, in
a hierarchical tree. Eventually users could get to the desired data (e.g.,
the local weather forecast, starting at the top of the tree with, say,
‘‘National Weather Service’’). Using Gopher was tedious, but it did work
and was quickly accepted.

Gopher’s lists of menus sometimes led to a dead end, from which it
was hard to backtrack. That left more than one person ‘‘lost in cyber-
space.’’ The file name that Gopher listed might not be the name a user
had in mind (e.g., ‘‘local weather,’’ listed on Gopher as ‘‘regional radar
image’’). At the Cambridge supercomputer company Thinking
Machines, Brewster Kahle and his colleagues developed a system
called WAIS (Wide Area Information Service) that allowed users to
search the contents of files directly. WAIS searched documents for which
an index of every word was constructed. This may have at first seemed
absurdly daunting, but by 1990 there were already several word-process-
ing programs available for PCs that constructed such indexes, and the
advanced computers sold by Thinking Machines were intended to do
just that kind of heavy-duty processing. WAIS was not much harder to
learn or to use than Gopher, but it never become as widespread. When it
worked and retrieved exactly what a user wanted to find, the fortunate
user got an immediate sense that this was what the Internet was all about.

Like the early news groups, Gopher and WAIS were rendered obsolete
by the World Wide Web and its system of information retrieval. They
could still be found in 1995, but by then, as with Telnet, FTP, and
LISTSERV, these indexing programs were no longer central to using the
Internet. Most people who used the Net after 1995 had probably not
even heard of them. One could easily write a history of the Internet
without mentioning Gopher at all, so brief was its time on the stage. But
it is mentioned, if only briefly, in this chapter, for the same reason that
earlier chapters dealt (at greater length) with punched cards. Perhaps
someday the World Wide Web will be forgotten after it, too, has been
replaced by something new.

World Wide Web, Mosaic

It is difficult to discuss the World Wide Web without confronting a
general feeling that this is the culmination of all the developments in
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computing since von Neumann’s EDVAC Report of 1945. Or is it the
culmination of advances in communication since the invention of
printing with movable type? Or the invention of writing? Take your
pick. Giving a history of the World Wide Web, the initial code for which
was written in 1990, will be much more difficult than writing about the
early days of computing. Historians avoid writing about the recent past
for good reasons. What would readers think of a history that ended with
a statement that the culmination of all computing history was Gopher?

At the same time, the Web attracts the historian because its roots are
so deep. It is attractive also for the way it illustrates a central theme of
this narrative, of how computing progresses at times by almost random
events. We have seen how computing was moved along at times by the
vision, energy, and determination of inventors like Eckert and Mauchly,
who almost willed the future into being. At other times it has proceeded
as if by accident, for example, the introduction of the Altair by a model-
rocket hobby shop in Albuquerque.

The development of the World Wide Web has elements of both
randomness and planning. It was invented at an unforeseen and totally
unexpected place: the high-energy physics laboratory CERN, on the
Swiss-French border. It did not come from the research laboratories of
IBM, Xerox, or even Microsoft, nor did it come out of the famed Media
Lab at MIT, which stated with great fanfare that its primary goal was to
transform the world through the integration of computers and commu-
nications. Yet the Web’s fundamental concept, of structuring informa-
tion as ‘‘hypertext,’’ goes back to a seminal essay by Vannevar Bush in
1945, about the coming glut of information and how technology might
be applied to handle it.41 Bush’s essay influenced subsequent genera-
tions of computer researchers. Two of those people have been
mentioned in previous chapters: Doug Engelbart, who demonstrated a
prototype information retrieval system at the 1968 Fall Joint Computer
Conference, and Ted Nelson, the author of Computer Lib=Dream Machines

and developer of a similar system called Xanadu.42

In his self-published manifesto, Nelson defined ‘‘hypertext’’ as ‘‘forms
of writing which branch or perform on request; they are best presented
on computer display screens.’’43 Nelson praised Engelbart’s On-Line
System (NLS) but noted that Engelbart believed in tightly structuring
information in outline formats.44 Nelson wanted something closer to
Vannevar Bush’s earlier concept, which Bush hoped would replicate the
mind’s ability to make associations across subject boundaries. Nelson
worked tirelessly through the 1970s and 1980s to bring Xanadu to life.
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He remained close to, but always outside of the academic and research
community, and his ideas inspired work at Brown University, led by
Andries van Dam.45 Independently of these researchers, Apple intro-
duced a program called HyperCard for the Macintosh in 1987. Hyper-
Card implemented only a fraction of the concepts of hypertext as van
Dam or Nelson understood the concept, but it was simple, easy to use,
and even easy for a novice to program. For all its limits, HyperCard
brought the notion of nonlinear text and graphics out of the laboratory
setting.

In the midst of all that sprouted the Internet, with a sudden and
unexpected need for a way to navigate through its rich and ever-
increasing resources.46 It is still too early to write the history of what
happened next. Tim Berners-Lee, who wrote the original Web prototype
in late 1990, has written a brief memoir of that time, but the full story has
yet to be told.47 Berners-Lee developed the Web while at CERN, the
European particle physics laboratory. He stated that ‘‘[t]he Web’s major
goal was to be a shared information space through which people and
machines could communicate. This space was to be inclusive, rather
than exclusive.’’48 He was especially concerned with allowing commu-
nication across computers and software of different types. He also
wanted to avoid the structure of most databases, which forced people
to put information into categories before they knew if such classifica-
tions were appropriate or not. To these ends he devised a Universal
Resource Identifier (later called the Uniform Resource Locator or URL)
that could ‘‘point to any document (or any other type of resource) in the
universe of information.’’49 In place of the File Transfer Protocol then in
use, he created a more sophisticated Hypertext Transfer Protocol
(HTTP), which was faster and had more features. Finally, he defined a
Hypertext Markup Language (HTML) for the movement of hypertext
across the network. Within a few years, these abbreviations, along with
WWW for the World Wide Web itself, would be as common as RAM, K,
or any other jargon in the computer field.

The World Wide Web got off to a slow start. Its distinctive feature, the
ability to jump to different resources through hyperlinks, was of little use
until there were at least a few other places besides CERN that supported
it. Until editing software was written, users had to construct the links in a
document by hand, a very tedious process. To view Web materials one
used a program called a ‘‘browser’’ (the term may have originated with
Apple’s Hypercard). Early Web browsers (including two called Lynx and
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Viola) presented screens that were similar to Gopher’s, with a lists of
menu selections.

Around the fall of 1992 Marc Andreessen and Eric Bina began
discussing ways of making it easier to navigate the Web. While still a
student at the University of Illinois, Andreessen took a job programming
for the National Center for Supercomputing Applications, a center set
up with NSF money on the campus to make supercomputing more
accessible (cf. the impetus for the original ARPANET). By January 1993
Andreessen and Bina had written an early version of a browser they
would later call Mosaic, and they released a version of it over the
Internet.50 Mosaic married the ease of use of Hypercard with the full
hypertext capabilities of the World Wide Web. To select items one used a
mouse (thus circling back to Doug Engelbart, who invented it for that
purpose). One knew an item had a hyperlink by its different color. A
second feature of Mosaic, the one that most impressed the people who
first used it, was its seamless integration of text and images.

With the help of others at NCSA, Mosaic was rewritten to run on
Windows-based machines and Macintoshes as well as workstations. As a
product of a government-funded laboratory, Mosaic was made available
free or for a nominal charge. As with the UNIX, history was repeating
itself. But not entirely: unlike the developers of UNIX, Andreessen
managed to commercialize his invention quickly. In early 1994 he was
approached by Jim Clark, the founder of Silicon Graphics, who
suggested that they commercialize the invention. Andreessen agreed,
but apparently the University of Illinois objected to this idea. Like the
University of Pennsylvania a half-century before it, Illinois saw the value
of the work done on its campus, but it failed to see the much greater
value of the people who did that work. Clark left Silicon Graphics, and
with Andreessen founded Mosaic Communications that spring. The
University of Illinois asserted its claim to the name Mosaic, so the
company changed its name to Netscape Communications Corporation.
Clark and Andreessen visited Champaign-Urbana and quickly hired
many of the programmers who had worked on the software. Netscape
introduced its version of the browser in September 1994. The University
of Illinois continued to offer Mosaic, in a licensing agreement with
another company, but Netscape’s software quickly supplanted Mosaic as
the most popular version of the program.51

On August 8, 1995, Netscape offered shares to the public. Investors
bid the stock from its initial offering price of $28 a share to $58 the first
day; that evening the network news broadcast stories of people who had
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managed to get shares at the initial price. The public now learned of a
crop of new ‘‘instant billionaires,’’ adding that knowledge to their
awareness of ‘‘dot.com,’’ ‘‘HTTP,’’ and ‘‘HTML.’’ Within a few months
Netscape shares were trading at over $150 a share, before falling back.
Reading the newspaper accounts and watching the television news, one
had the feeling that the day Netscape went public marked the real
beginning of the history of computing, and that everything else had
been a prologue. For this narrative, that event will mark the end.

Conclusion

Since 1945 computing has never remained stagnant, and the 1990s were
no exception. The emergence of the Internet was the biggest story of
these years, although it was also a time of consolidation of the desktop
computer in the office. Desktop computing reached a plateau based on
the Intel, DOS, Macintosh, and UNIX standards that had been invented
earlier. Most offices used personal computers for word processing,
spreadsheets, and databases; the only new addition was communications
made possible by local-area networking. A new class of computer
emerged, called the laptop (later, as it lost more weight, the notebook),
but these were functionally similar to PCs. Indeed, they were advertised
as being software-compatible with what was on the desk. The basic
architectural decisions made in the late 1970s, including the choice of
a microprocessor and the structure of a disk operating system, remained
(with RISC a small but significant exception). Networking promised for
some a potential conceptual shift in computing, but as of 1995 it had not
replaced the concept of an autonomous, general-purpose computer on
individual desks. As the World Wide Web matures, some argue that all
the consumer will need is a simple Internet appliance—a reincarnation
of the dumb terminal—not a general-purpose PC. But the numerous
examples cited in this study—the IBM 650, the 1401, the PDP-8, the
Apple II—all support the argument that the market will choose a good,
cheap, general-purpose computer every time.

The biggest story of the 1990s was how the Altair, a $400 kit of parts
advertised on the cover of Popular Electronics, managed to bring down the
mighty houses of IBM, Wang, UNIVAC, Digital, and Control Data
Corporation. IBM almost made the transition with its personal compu-
ter, but its inability to follow through on the beachhead it established led
to multi-billion-dollar losses between 1991 and 1993.52 Personal computer
profits went increasingly to new companies like Dell, Compaq, and
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above all Microsoft. IBM recovered, but only after abandoning its no-
layoff policy (which it had held to even through the 1930s), and when it
emerged from that crisis it found Microsoft occupying center stage. Even
the American Federation of Information Processing Societies (AFIPS),
the umbrella trade organization of computer societies, perished on
December 31, 1990.53

Of course it was not simply the $400 Altair that changed computing.
DEC and Data General had a lot to do with that as well, but neither DEC
nor Data General were able to build on the foundations they had laid.
One could understand IBM’s failings, with its tradition of punched-card
batch processing, and its constant courtroom battles against plaintiffs
charging that it was too big. It is not as easy to understand how the Route
128 minicomputer companies failed to make the transition. These were
the companies that pioneered in processor and bus architectures,
compact packaging, interactive operation, and low unit costs. Led by
General Doriot of the Harvard Business School, they also were the first
to do what later became a defining characteristic of Silicon Valley: to
start up a technology-based company with venture capital. Netscape
generated so much public interest because it showed that this tradition
was still alive. There was even a possibility that this company, founded to
exploit a model of computing centered on the Internet, might be able to
do to Microsoft what Microsoft had just done to DEC, IBM, and the
others who were founded on earlier, now-outdated models of comput-
ing.

As of 1995 Digital and Data General were still in business, although
both were struggling and much-reduced in size. Data General’s decline
began in the early 1980s, just when Tracy Kidder’s The Soul of a New

Machine became one of the first books about the computer industry to
get on the best-seller list. That book chronicled Data General’s attempt
to chase after the VAX and regain its leadership in minicomputers. It
captured the youth, energy, and drive of the computer business, and it
remains an accurate description of the computer business today. Lacking
the 20-20 hindsight that we now all have, Kidder did not, however,
mention how Data General’s Nova, the ‘‘clean machine,’’ had inspired
the designers of personal computers, including Ed Roberts and Steve
Wozniak. Someone at Data General may have recommended an alter-
nate course: that it ignore the VAX and concentrate instead on the small
systems it had helped bring into being. If so, Kidder’s book does not
record it.
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In 1992, Ken Olsen resigned as head of Digital, as the company he
founded was heading toward bankruptcy. A typical news story contrasted
Olsen and a tired DEC with the young Bill Gates and his vibrant
Microsoft. Few saw the irony of that comparison. Gates learned how to
program on a PDP-10, and we have seen DEC’s influence on Microsoft’s
software. More than that: Digital Equipment Corporation set in motion
the forces that made companies like Microsoft possible. One person was
quoted stating that were it not for Olsen we would still be programming
with punched cards. That sounded like a generous overstatement made
out of sympathy; in fact, one could credit him with doing that and much
more. Modern computing is a story of how a vision of ‘‘man-machine
symbiosis,’’ in J. C. R. Licklider’s term, came to fruition. That happened
through the efforts of people like Licklider himself, as well as Doug
Engelbart, Ted Hoff, Ed Roberts, Steve Jobs, Steve Wozniak, Bill Gates,
Gary Kildall, Tim Berners-Lee, and many others. To that list, perhaps
near the top, should be added the name Ken Olsen. The ‘‘creative
destruction’’ of the capitalist system had worked wonders, but the
process was neither rational nor fair.
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10
‘‘Internet Time,’’ 1995–2001

The narrative in the first edition ended on August 8, 1995, the day that
Netscape offered shares on the stock market. The commercialization of
the Internet, and the role that Netscape played in it, ushered in a new
era in computing. It is too early to write a history of this era. There is no
clear theoretical framework on which the historian can build a narrative.
Still, so much has happened in the past few years that one cannot put
off an attempt to write some kind of historical narrative about the
‘‘dot.com’’ phenomenon. A section of this chapter will do that, but this
chronicle of the inflation and bursting of the dot.com bubble is very
much a work in progress.

This chapter also addresses two other developments of the past few
years. Like the dot.com phenomenon, these are ongoing developments
whose direction seems to change daily if one reads the newspaper
headlines. Fortunately, these developments have nice connections to
events of computing’s ‘‘ancient history’’ (i.e., before 1995). Thus they
allow the historian to gain a glimmer of perspective. The antitrust trial
against Microsoft, discussed first, is the culmination of a sequence of
legal actions taken against the company, and it reflects issues that were
present at Microsoft as early as 1975, when the company was founded.
Not only that, the Microsoft trial echoes many of the arguments made
against IBM during its legal troubles with the U.S. Justice Department in
the 1970s.

The discussion of the GNU/Linux operating system and the ‘‘open
source’’ software movement, discussed last, likewise has deep roots.
Chapter 3 discussed the founding of SHARE, as well as the controversy
over who was allowed to use and modify the TRAC programming
language. GNU/Linux is a variant of UNIX, a system developed in the
late 1960s and discussed at length in several earlier chapters of this book.
UNIX was an open system almost from the start, although not quite in



the ways that ‘‘open’’ is defined now. As with the antitrust trial against
Microsoft, the open source software movement has a strong tie to the
beginnings of the personal computer’s invention. Early actions by
Microsoft and its founders played an important role here as well. We
begin with the antitrust trial.

Microsoft

A commercial, aired during the third quarter of the game, was the most
memorable part of the broadcast of the January 1984 Super Bowl (see
chapter 8). The Macintosh, Apple assured us, would usher in a new era
of personal computing, and therefore the year 1984 would not be one of
dreary conformity and oppression as prophesied by George Orwell’s
novel 1984. A revolution in personal computing was indeed in the works,
and the Macintosh was leading the way. But Microsoft, not Apple, helped
bring the revolution to a mass market. That happened not in 1984, the
year the Mac appeared, but in 1992, when Microsoft began shipping
version 3.1 of its Windows program. In 1984, Apple hoped that the Mac
would bring the innovative ideas from the Xerox Palo Alto Research
Center, ideas already present in a few personal computer systems, to the
consumer. A dozen years later, Microsoft, not Apple, would dominate
personal computer software.1 And that domination, in turn, would lead
to its entanglement in a bitter antitrust trial.

Just as IBM spent a significant fraction of its resources during the
1970s facing a challenge by the U.S. Justice Department, so too is
Microsoft in the same situation, following a similar filing against it in
1997. In November 2001 the federal government announced a settle-
ment, but several states, and the European Union, refused to go along.
Their arguments were also rejected by a ruling on November 1, 2002.
Almost daily, the business press reports whenever a judge or lawyer
makes a statement. Until the case is settled, one can only make
provisional comments about its significance. The lesson of the IBM
trial, however, applies to the present case against Microsoft: namely that
the Justice Department is not a place that recognizes how advancing
technology will render much of the lawsuit irrelevant. What is the
Microsoft-equivalent of the personal computer, whose appearance in
the midst of the IBM trial was ignored as the litigants fought over
mainframe dominance? It is too early to tell, although I will discuss some
candidates later in this chapter. What is certain is that advances in
computing already threaten, and will continue to threaten, Microsoft’s
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ability to dominate personal computing, based on its Windows and
Office software.

The licensing policies of Microsoft and Intel gave rise to clone
manufacturers, like Dell, Compaq, and Gateway, who provided choices
unavailable to Apple customers. (Apple, for most of its history, has
refused to license its Macintosh software to third-party computer
makers.) That policy yielded a greater variety of products and, above
all, lower prices for computers based on Intel microprocessors and
running Microsoft’s DOS and then Windows. Windows version 3.1,
Intel’s introduction of the Pentium processor, and Microsoft’s combin-
ing applications software into a suite called Microsoft Office, combined
to give consumers, let’s say, 80 percent of what the Macintosh was
offering, at a lower price for the total package. To Apple’s surprise
(and to the chagrin of Mac fans), that percentage was good enough
to tip the balance, perhaps forever, away from Apple. By 1995 the
advantage of Apple’s more elegant design no longer mattered, as
the Microsoft/Intel combination became a standard, like COBOL in
the 1960s. As with COBOL, what mattered was the very existence of a
standard, not the intrinsic value or lack thereof of the software.

The Macintosh Connection

One could begin this story of Microsoft’s triumph and troubles at any
number of places, but the introduction of the Mac conveniently allows us
to identify several critical factors. The first was that when the Mac
appeared in 1984, it had a magnificent user interface but almost no
applications software—the programs that people actually bought perso-
nal computers for. The most interesting application that it did have was
MacPaint, a drawing program descended from the pioneering work at
Xerox, and something that no software for IBM compatibles could
approach. But for word processing, an application that any serious
new computer had to have, Apple offered only MacWrite, which took
advantage of its graphical interface, but which otherwise was extremely
limited in capability.2 Both MacPaint and MacWrite were developed
in-house.

Besides those programs, early Mac customers could also get a spread-
sheet: Multiplan, developed by Microsoft for other computers but ported
to the Mac. Although some popular accounts enjoy setting up Bill Gates
and Steve Jobs as mortal enemies, for much of this period the two men
had a cordial and mutually beneficial business relationship. At the onset
of the Mac’s development, in June 1981, Jobs and Jef Raskin (who had
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the initial idea for the Macintosh) met with Gates, and in January of
the following year Microsoft agreed to develop software for the new
machine.3

Gates needed little convincing of where personal computing was
going. Even as Microsoft was negotiating to supply DOS for the IBM
PC in 1980, Gates hired a programmer who would take the company in
the opposite direction. That was Charles Simonyi, a native of Hungary
who learned how to program first on a Soviet-built vacuum-tube compu-
ter called the Ural-II, then on a Danish transistorized computer that had
an advanced ALGOL compiler installed on it. In the 1970s Simonyi
worked at Xerox-PARC, where he developed a word processor called
‘‘Bravo’’ for the Alto workstation. Bravo is often credited with having
the first true WYSIWYG (‘‘What-You-See-Is-What-You-Get’’) display, a
concept that other Xerox employees brought with them to Apple.4

In 1985 Microsoft produced another spreadsheet, Excel, for the
Macintosh, which took advantage of all that the Macintosh interface
had to offer. Excel was a success and helped Apple get through a difficult
period when Mac sales were in danger of completely drying up. Mac
users finally had a spreadsheet that was comparable to Lotus 1-2-3 on
the IBM PCs. For its efforts, Microsoft gained something too: besides
winning a commercial success, Microsoft programmers learned how to
develop software for a Windows-based interface—something that Lotus
and Word Perfect would have a hard time learning.

The ultimate impact of hiring Simonyi, and of these interactions
between Microsoft and Apple, was that Bill Gates decided to recreate the
Macintosh experience on the Intel 80686 platform. Consider the
context of that decision. In the mid-1980s, ‘‘Windows’’ was but one of
many graphical systems (e.g., VisiOn, GEM, et al.) proposed for IBM
compatibles. And Microsoft’s applications programs, like Multiplan,
were not as well regarded by industry critics as programs like Lotus
1-2-3 or Word Perfect. The Windows model was also being challenged by
a competing idea, mainly from Lotus: that of a single program, running
under DOS, that combined spreadsheets, databases, and word proces-
sing. Lotus offered such a program called Symphony for the IBM PC and
was working on one for the Mac called Jazz. At Ashton-Tate, the leading
supplier of database software for the PC, a Xerox-PARC alumnus named
Robert Carr was developing a similar program called Framework.5

It turned out that the practice of keeping the applications separate,
while requiring that each adhere to a common graphical interface,
would prevail.6 That was what Jobs insisted on for all Macintosh
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developers, and Gates made it the focus (slightly less sharp) at Microsoft.
Simonyi developed a system of programming that allowed Microsoft to
manage increasingly larger and more complex programming jobs as the
company grew. The style involved a way of naming variables, and was
called ‘‘Hungarian,’’ an inside joke referring to its incomprehensibility
to anyone not familiar with Microsoft’s programming, like Simonyi’s
native Hungarian language supposedly is to speakers of other European
languages.7

‘‘Hungarian’’ may not have been the crucial factor, but somehow
Microsoft’s managers learned to manage the development and intro-
duction of complex software written by ever-larger teams of program-
mers. One other technique was especially innovative. Although it had
been developed elsewhere, Microsoft embraced this technique and
applied it on a large scale not seen elsewhere, and broke radically
from the way large projects were managed at mainframe software
houses. At Microsoft, programmers working on a section of a new
product were required to submit their work to a central file at the
end of each day, where overnight it would be compiled, along with
everyone else’s, into a daily ‘‘build.’’8 If your contribution caused the
central file to crash, you were responsible for fixing it. That build then
became the basis for the next day’s work.9 What was more, as soon as the
build became marginally functional, members of the programming team
were required to use it, regardless of how inefficient that might be. This
requirement made life difficult, especially when the software was in an
early stage and little of it worked well, but it kept the programmers
focused on shipping a finished product of high quality. This process, too,
had an evocative name: ‘‘eating your own dog food.’’10 The public has
since become aware of the large fortunes amassed by Microsoft program-
mers who worked there long enough to have their stock options vest.
Less well known is the dog’s life of no sleep, eating out of vending
machines, endless hours spent staring into a computer screen, no social
or family life, and other tribulations for a programmer caught in the
‘‘death march’’ of fixing a ‘‘broken’’ build while getting a program
finished on time.11

The cumulative effect of these efforts was a steady stream of ever-
improved versions of Windows and an ever-expanding suite of applica-
tions. Word and Excel were the two pillars of applications software, soon
joined by the database program Access, the presentation program
PowerPoint, the project management program Project, and a host of
others (table 10.1). Microsoft purchased many of these programs from
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Table 10.1
Selected chronology of Microsoft Software, 1983–2001

Windows Intel
Year versions Applications processors

1983 ‘‘Interface Manager’’
announced, not
shipped

Word for PC (DOS)

1984 Project; Chart; Word for
Macintosh

80286

1985 1.0 Word 2.0 for PC (DOS);
Excel for Macintosh

1986 Works 80386
1987 2.0 Forefront (later

PowerPoint); Excel
for PC (Windows)

1988
1989 80486
1990 3.0 Word for Windows 1.0;

Office
1991
1992 3.1 Access
1993 3.11; NT Office 4.0 Pentium
1994 NT 3.5
1995 95 (‘‘Chicago’’) Office 95; Network

(MSN); Internet
Explorer 1.0

Pentium Pro

1996 Internet Explorer 3.0;
Exchange

1997 Office 97; Internet
Explorer 4.0

MMX; Pentium 2

1998 98 Hotmail Celeron
1999 Pentium 3
2000 2000; Me Office 2000
2001 XP Pentium 4

(Source : Data taken from a number of sources, including Michael A. Cusumano
and Richard W. Selby, Microsoft Secrets (New York: Free Press, 1995); Martin
Campbell-Kelly, ‘‘Not Only Microsoft: The Maturing of the Personal Computer
Software Industry, 1982–1995,’’ Business History Review (Spring 2001): 103–145;
Stephen Manes and Paul Andrews, Gates: How Microsoft’s Mogul Reinvented an
Industry, and Made Himself the Richest Man in America (New York: Doubleday,
1993). Sources also include a clipping file in the possession of the author of
selected articles from Infoworld and PC Week, 1990–1994. In some cases the dates
are approximate, reflecting the difference between the announcement of a
product and its actual availability to consumers.)

312 Chapter 10



smaller, independent companies and then reworked them to conform to
the Windows interface.12 Major applications were combined into an
applications suite called Microsoft Office.13 The cumulative effect was to
change the revenue stream for Microsoft. In its earliest days Microsoft
mainly sold BASIC and other language compilers; after 1981 it derived
its revenues primarily from the DOS operating system for the PC. By
1991 over 50 percent of Microsoft’s revenues came from applications,
especially Office. The resulting juggernaut of Windows and Office rolled
over IBM and Digital Research among the operating system suppliers,
and Lotus, Ashton-Tate, and Word Perfect among the applications
providers. By the mid-1990s, many independent software companies
supplied applications for the Windows platform, but only a few were of
significant size, and fewer still offered word processing, database, or
spreadsheet applications.

Internet Explorer

When that juggernaut finally caught the attention of antitrust lawyers at
the U.S. Justice Department, few observers of the personal computer
industry outside of Microsoft were surprised, because pressure had been
building up among Microsoft’s competitors. The specific action that
triggered the lawsuit was Microsoft’s bundling a Web browser into
Windows. In December 1994, Microsoft paid Spyglass for a license to
use its work as the basis for a Web browser, which Microsoft renamed
Internet Explorer. (Spyglass, like Netscape, descended from Mosaic at
the University of Illinois.) In the summer of 1995, just after Netscape’s
public offering, Microsoft offered a version of Spyglass’s browser as part
of Windows. From this point Microsoft followed a familiar road: it issued
successive versions of the browser, each one with more features and
more integration with the base operating system’s functions. Note that
by bundling Internet Explorer into Windows and selling it at a single
price, Microsoft effectively prevented Spyglass from charging money, at
least for retail sales, for a Windows version of its browser.

Internet Explorer 4.0, introduced in the fall of 1997, was just another
new version to Microsoft. It was something else entirely to Netscape and
to the Justice Department. In their view, Microsoft’s tight integration
of IE 4.0 was an action contrary to antitrust laws. There had been
earlier warnings of trouble. With the fast pace of events, few remem-
bered these warnings by 1997. What follows is a brief overview of only
the most visible warnings. Some of the colorful phrases that arose in
connection with those actions are also introduced.
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The first indication of a legal issue did not involve Microsoft but did
introduce a phrase that would figure in later trials. This was a suit filed in
1987 by Lotus against a company called Paperback Software, established
by Adam Osborne of portable computer fame. Paperback was selling a
spreadsheet that functioned identically to 1-2-3, but at a fraction of the
price.14 Lotus charged that Paperback, even if it did not copy or steal
Lotus’s code, nonetheless copied the ‘‘look and feel’’ of 1-2-3, and that
was illegal. While that lawsuit was in progress, in 1988 Apple sued
Microsoft (and Hewlett-Packard) for copying the ‘‘look and feel’’ of
the Macintosh in version 2.0 of Windows. Apple and Microsoft had
signed a licensing agreement, but Apple charged that it had only
licensed the Macintosh interface for Windows 1.0. It is worth noting
that by this time the head of Apple was John Sculley, not Steve Jobs. Jobs
not only admitted but even boasted of having stolen the graphical
interface from Xerox-PARC.15 Throughout 1989 the case dragged on,
eventually to be overtaken by events. Both parties also realized that they
had a fundamental need to do business with one another, a need that
went back to the founding of both companies in the 1970s.16

In 1990 the Federal Trade Commission investigated Microsoft in
connection with its agreements with IBM over the development of a
joint IBM/Microsoft operating system, which IBM marketed as OS/2.
The FTC had also investigated a charge that in 1990, Microsoft gained
access to details of a prototype pen-based computer developed by a start-
up called GO, and then announced at a trade show that it would soon
integrate pen-based input into Windows (something Microsoft never
really did). The effect was to immediately dry up all financial support for
GO, which eventually folded.17 This technique was known by the phrase
‘‘Fear, Uncertainty, and Doubt,’’ or ‘‘FUD.’’ It was a charge that Control
Data leveled against IBM in the 1960s for the same reason, when IBM
announced its System/360, Model 91, to compete with Control Data’s
supercomputer (chapter 5). Who would buy a small company’s product
when the dominant vendor promised that the same technology would
soon be part of its mainstream line?18 Another phrase, which emerged at
this time, was that Microsoft’s actions against GO amounted to ‘‘cutting
off its air supply’’: making it impossible for GO to sell its product or to
raise money. Some accused Microsoft of doing that to Spyglass as well,
when it bundled Internet Explorer. Through 1999 and into 2001,
litigants, journalists, and judges alike would parse this phrase at great
length, as it applied—or not—to Netscape.
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The Justice Department had threatened to sue Microsoft in 1994 over
bundling of products into Windows, but it dropped the suit after
Microsoft entered into a Consent Decree. Microsoft promised not to
engage in the practice of ‘‘tying’’ sales of one product to another—that
is, insisting that customers who bought Windows also buy another
Microsoft product. This concept of the tie-in was well understood and
had historical roots in early-twentieth-century antitrust legislation.
Although Microsoft carefully guarded the source code for Windows, it
agreed to make available the parts of Windows code that interacted with
applications programs: the so-called Applications Program Interface, or
API. Thus, for example, developers of a database program were assured
that their product would, in theory, work as smoothly with Windows as
any database developed by Microsoft would.

However, the company developed a policy in the way it charged for
Windows that was less magnanimous. By 1995 consumers rarely bought
Windows in a ‘‘shrink-wrapped’’ package and installed it themselves;
instead they bought a computer on which Windows was already installed
at the factory. That brought distribution costs, already low, even lower;
the computer companies could negotiate for a low cost for Windows and
could pass on the savings; and the consumer did not need to bother with
a cumbersome installation process. By the Consent Decree, Microsoft
could not insist that anyone who bought a computer from, say, Compaq
had to buy Windows, too. However, Microsoft billed Compaq on a ‘‘per
processor’’ basis, not on the actual numbers of Windows programs
installed. Therefore Compaq had to pay for a copy of Windows even if
it sold a computer that had another operating system—even no operat-
ing system—installed on it. Legal, but not a policy to calm the growing
army of Microsoft critics.19

One more event occurred in 1995 that caused a minor ripple in the
trade press, but in hindsight it appears to have further enraged Micro-
soft’s competitors and people in the Justice Department. That year,
Microsoft announced that it would buy Intuit, the maker of the financial
program Quicken and one of the few independent suppliers of an
application that had a commanding market share. After Microsoft
initiated the purchase (and, critics charged, after learning the tech-
niques of Intuit’s best programmers), the acquisition was dropped when
the Department of Justice objected. Clearly sentiment was building up
against Microsoft.

That brings us to the fall of 1997 and Internet Explorer, version 4.0.
For Netscape the case was complicated. Bundling Internet Explorer
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implied that Microsoft was guilty of a tie-in, making it impossible for
Netscape to sell its browser. But when in December 1994 Netscape
posted a preliminary version of its Navigator on a Web server, users
could download it for free.20 In fact, the trade press called that a brilliant
marketing innovation by Netscape. By giving away the browser, Netscape
would ‘‘lock in’’ customers who, from that moment onward, would be
captive to a Netscape standard. The browser was free to individuals.
Businesses were charged a modest licensing fee. The company assumed
that once it established its browser as a standard, everyone would pay for
other Netscape products that adhered to it.

For a while, the strategy worked brilliantly. So great was the interest in
Web browsers in general, and in Netscape in particular, that it was able to
offer shares to the public in August 1995 before the company was
profitable. The soaring price for the stock made multimillionaires of
its employees (on paper at least). The Internet madness began.

Microsoft was focused on the introduction of Windows 95, but it was
aware of what was happening to the Internet. Microsoft’s critics were
gloating over how, in his book The Road Ahead published in 1995, Gates
missed the biggest thing on that road, namely, the World Wide Web.21

The critics were off the mark: the book frequently describes a future
based on networked computers, even if it got the details about the Web
wrong. Most critics also failed to note the passages in The Road Ahead

where Gates wrote of how IBM and Digital Equipment Corporation
failed to sense a sea change in computing and stumbled badly.22 Gates
implied that Microsoft faced the same risk.

As the release of Internet Explorer 4.0 approached, the company’s
public relations apparatus kicked into high gear and touted the story of
how Gates, unlike his ‘‘hero’’ Ken Olsen at DEC, listened to the message
of his troops in the field.23 The stories told of how Microsoft recruiters
visited college campuses and found students and professors conducting
their coursework by e-mail and file transfers. Internal memos and
transcripts of speeches, released to the press, revealed a fear among
Microsoft employees that a properly designed Web browser could
replace the Windows desktop that users saw when they turned their
computers on. On December 7 and 8, 1995, Gates spoke with analysts, to
whom he declared ‘‘the sleeping giant has awakened’’—a reference to
the American response to the Japanese attack on Pearl Harbor fifty-four
years before.24 Microsoft won a key battle in March 1996, when America
Online agreed to provide its customers with Web browsing through
Internet Explorer instead of Netscape’s browser.
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From this point on the sequence of events gets murky, and it is
impossible to summarize in a few pages what it has taken the courts
several years, unsuccessfully, to straighten out. A shelf of books has
already appeared on the trial, and once it is settled there will be more.
The simplest description of the charge against Microsoft is that Internet
Explorer 4.0 violated the Consent Decree by being tied too closely to
Windows. That is, personal computer users, who by 1997 were over-
whelmingly using Windows, could not easily access the Web using
Netscape’s or any other browser, but rather were steered too strongly
to IE. A corollary to the charge was that by bundling IE into Windows,
the browser was essentially free, for individuals as well as for business
customers—an action that Microsoft took primarily to cut off Netscape’s
major source of revenue.

In its defense, Microsoft made blunders that led prosecutors to
resurrect charges that otherwise might have remained buried—charges
over holding back the details of APIs from third-party developers, for
example. Microsoft’s stormy relations with IBM during the development
of the operating system OS/2 also resurfaced. In the fall of 1997 Steve
Ballmer blurted out, in a speech to employees, ‘‘to heck with [Attorney
General] Janet Reno!’’ In the summer of 1998, Gates gave a deposition
on video, in which he appeared nervous, evasive, and inarticulate—the
polar opposite of the confident public image he so carefully cultivated. A
good portion of the trial was devoted to the question of whether one
could remove the IE icon from the Windows desktop, and whether such
a removal, if it could be done, implied that Microsoft was following the
Consent Decree against a tie-in.25 Reams of printed e-mail messages
from Microsoft’s internal servers were introduced into the record,
causing further embarrassment.

The prosecution made blunders, too. The worst was an interview by
Judge Thomas Penfield Jackson, in which he flatly stated his prejudice
against Microsoft. That was enough to get most of his judgment over-
turned in June 2001, and to have Jackson removed from the case.

Whatever the judgment of the court is, historians are not obligated to
accept it as a binding judgment of history. In the 1970s, a court ruled
that John V. Atanasoff, not J. Presper Eckert and John Mauchly, was the
inventor of the electronic digital computer. That judgment had signifi-
cant legal implications, but among historians it received little support. If
the courts decide against Microsoft in the present case, historians may
or may not accept that judgment depending on how they place it in
historical context. I would be skeptical of a judgment against Microsoft
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that does not recognize the pace of innovation in the computer industry
in the past fifty years. Among the reasons for my skepticism is a
statement by Judge Jackson, made in November 1999, that ‘‘there
exists no commercially viable alternative [to Windows] to which [custo-
mers] could switch in response to a substantial and sustained price
increase or its equivalent by Microsoft.’’26 That sounds too close to the
statement made by a government economist after the government
dropped its suit against IBM in the 1980s (chapter 8). Perhaps it will
be true this time, but if so it would represent a first for the history of
computing.

From the perspective of the past fifty years of computing, one could
conclude that Microsoft’s brave attempt to avoid the pitfalls that caught
DEC and IBM may give it some breathing space but not for long. It has
no choice but to accommodate itself to the Internet and its accessibility
to the consumer via the World Wide Web. I will refrain from further
speculation, but I do wish to mention one example that illustrates what is
happening.

Hotmail, UNIX

Recognizing the threat of networking, Microsoft introduced a proprie-
tary network, MSN, in 1995, and a ‘‘groupware’’ communications system,
Exchange, in 1996. These were aimed at America Online and Lotus
Notes, respectively. It also introduced a full-featured e-mail program
called Outlook. But as the Web exploded, Microsoft had to face a new
threat: the advent of free services like Yahoo! that offered mail, news,
chat, and a friendly on-ramp (called a ‘‘portal’’) to the Information
Highway. In 1997 Microsoft purchased (for $400 million) a mail
program called ‘‘Hotmail’’ to counter this threat. Hotmail was already
growing rapidly and soon became Microsoft’s biggest presence on the
Web.27 MSN was reconfigured to be an Internet portal rather than a
proprietary network, and Microsoft’s market share for these services
began to grow rapidly. Not only was Hotmail free, it was only loosely
coupled to Windows. And it ran on UNIX machines, not Windows NT,
and remained so after Microsoft bought it. Thus even Microsoft violated
the sacred dictum of ‘‘eating your own dog food.’’28 In other words,
Gates’s boast that he likes to hire the smartest people he can find is
probably true, even if it means those hired will threaten the basis of his
company.

The parallels with IBM’s introduction of the personal computer, with
its Intel processor, Microsoft software, ASCII codes, and an open
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architecture should be obvious. To the extent that Microsoft derives its
revenues from successive versions of Windows and a few applications
tightly coupled to it, it will have to adapt or lose its place as the leading
personal computer software company. Even if Microsoft does adapt
successfully, it will be a different company. Again, consider the example
of IBM, which under the leadership of Louis Gerstner successfully
adapted to the changing computing field after 1991. IBM today is a
successful and profitable company, but it is not the mainframe company
it was in 1980, and it no longer dominates and controls the computer
industry as its critics charged it would after the lawsuit against it was
dropped.29

Dot.Com

‘‘I don’t think any of us know where this thing is going anymore, . . .but there’s
something exciting happening, and it’s big.’’
—William Wulf, May 199330

Professor Wulf probably thought he was exaggerating. He wasn’t.
Not since Dorothy remarked that she and Toto were not in Kansas
anymore has such a momentous change been described with such
understatement.

The Internet was once something that a few professors in academia
or engineers in the computer industry knew about. Many of us can
remember the day when we realized it was going to be something bigger.
That happened to me on an evening in November 1997, shortly after
completing the manuscript for the first edition of this book. I was riding
in a chauffeured limousine, on my way to speak before a group of high-
level industry executives. The topic was the history of computing, and
what insights, if any, the study of history could offer to chart the future. I
had prepared some remarks about the history of the Internet, and about
how it would facilitate collaboration among scientists, humanists, and
others among the intellectual and professional elite in the country. On
the way to the hotel the limo passed by a brightly lit billboard, on which
was plastered a huge image of Shaquille O’Neal, who, I vaguely knew,
was a basketball player. Parts of the billboard were extended with strips
of plywood to accommodate his gangly arms and legs sticking out in all
directions. The text of the advertisement consisted of one phrase:
‘‘www.Shaq.com.’’31
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By the time I got to the hotel I realized my talk was obsolete. Until that
night I had understood the Internet in a narrow historical context: of
attempts to access computers remotely, to build air-defense and airline-
reservation networks, to time-share mainframes, and to share expensive
resources. Now the Internet was something else. It was no longer only a
facet of computing technology; now it was part of entertainment,
consumer spending, and popular culture. The Internet had fused
computing with the mainstream of social life in America.

No single event, not even Shaquille O’Neal’s decision to mount a
personal Web page, turned this innovation from one direction to
another. In hindsight one can easily say that the commercialization of
the Internet was inevitable, as people often do when looking back on the
confusing tangle of facts as they happened. In fact such a transformation
could not have occurred without jumping over a number of hurdles,
social, political, and technical. The Internet jumped over the technical
hurdle so easily that it is often not even acknowledged: its ability to
evolve from handling a few thousand nodes linked by 56 Kbps lines to
millions of nodes linked by ever-faster satellite, microwave, and fiber-
optic lines. It would be hard to find another technology that scaled so
well. The Internet scaled because of its robust design, one that put most
of the network activities not on the physical network itself but on the
computers and routers that were connected to it. Because these end
devices, in turn, grew in capability and speed (following Moore’s law),
the network was able to grow by a factor of 1,000 in speed and one
million in number of hosts from 1969 to 1996, without experiencing any
severe disruptions.32 Continued growth after 1996, plus increasing
commercial use, have put incredible strains on the network, yet it
continues to function, although not always smoothly.

The Acceptable Use Policy

The political hurdle was how to accommodate obvious commercial
traffic on a network that was conceived and built by contracts let by
the federal government. In the early 1980s the focus of networking
shifted from ARPA to the National Science Foundation, which managed
a network called NSFnet from 1988 through 1995. The NSF assumed
responsibility for the Internet in 1990, and the original ARPANET was
decommissioned (the military evolved its own, restricted networks). The
NSF had to address the question of how to deal with commercial firms
being connected to and using the Net. It responded with an ‘‘Acceptable
Use Policy,’’ which read in part: ‘‘NSF Backbone services are provided to
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support open research and education in and among U.S. research and
instructional institutions, plus research arms of for-profit firms when
engaged in open scholarly communication and research. Use for other
purposes is not acceptable.’’33

The policy allowed ‘‘announcements of new products or activi-
ties . . . but not advertising of any kind.’’ Thus it was all right for, say,
IBM to use the Internet to disseminate technical information about one
of its products, especially if that would help users connect that product
to the Internet. It could announce the availability of new PCs but not
announce a year-end sale on them. The line was not clear, but the NSF
tried to draw it anyway. The policy further allowed ‘‘communication
incidental to otherwise acceptable use, except for illegal or specifically
unacceptable use.’’ That implied that personal e-mail and even discus-
sion groups were allowed, as long as they did not dominate the traffic to
or from a particular site. ‘‘Extensive use for private or personal business’’
was specifically deemed unacceptable. Shaq would have to wait.

By 1992 the restrictions were lifted. Traffic on the Internet, already
growing rapidly, grew even faster—from one trillion byes a month in
January 1992 to ten trillion a month in 1994. Professor Wulf, quoted at
the beginning of this section, was a former DEC engineer, on leave from
an academic post at the University of Virginia, and in charge of the
NSF’s networking program in the late 1980s. Like the others at the
research-oriented federal agency, he looked at the growth of traffic on
NSFnet with a mixture of fear and excitement. Scientific knowledge in
general has been growing exponentially since the seventeeth century,
but not at these rates. The NSF had to get off the train before it
accelerated any faster. In 1995 the NSFnet was dissolved, and the NSF
got out of the business of running a network and back to funding
research. The Internet was privatized.

But how? The particulars of this transfer are murky. Some of the
confusion comes from a claim made by Vice President Al Gore, Jr., who
people thought tried to claim responsibility for this transition, in an
interview with Wolf Blitzer of CNN in March 1999. Gore did not claim
that he ‘‘invented the Internet,’’ as his critics charged, but that was the
impression he gave and that was how the press reported it. The exact
words were, ‘‘During my service in the United States Congress, I took the
initiative in creating the Internet.’’ Gore’s blunder did not help his
candidacy.34 As a seasoned politician he knew how the press could
distort a story, but what he apparently did not understand was that the
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public has little understanding of—or tolerance for—the nuances that
accompany the ‘‘invention’’ of any major technology.

Looking back on the whole brouhaha, it appears that Gore was trying
to claim credit for easing the transition to public usage: a transition on
which the subsequent ‘‘revolution’’ depended, and one that obviously
required some sort of legislative action to effect. For a television series
on the Internet, produced in 1998 for educational television, Stephen
Segaller claimed that the crucial legislation came not from Gore but
from Congressman Rich Boucher of Virginia, who in June 1992 intro-
duced an amendment to legislation that authorized the NSF to ‘‘support
the development and use of computer networks which may be used
substantially for purposes in addition to research and education in the
sciences and engineering.’’35 According to Segaller, when President
George H. W. Bush signed the bill into law, it effectively ended the
Acceptable Use Policy. That may have been the law that effected the
change, but Gore, not Boucher, played a more important role.

Even Gore’s critics admit that as a senator, before he became vice
president, he was a fierce champion of federal support of computer
networking. If he did not coin the phrase ‘‘Information Superhighway,’’
he promoted the concept tirelessly and was responsible for bringing that
phrase into common currency.36 One curious aspect of his gaffe to the
press was that no one reported that Gore, along with many others at
the NSF and elsewhere, envisioned a future Internet that was nearly the
opposite of how things turned out. To summarize briefly the complex
and rapidly evolving series of events, Gore’s vision was reminiscent of the
earliest days of the ARPANET. He wanted the federal government to
assist in building a high-speed network, called the National Research and
Education Network (NREN), which would allow researchers to gain
access to scarce resources, especially expensive supercomputers.37 With
that net in place, scientist all across the country could push the frontiers
of physics, chemistry, and above all biomedical research. The NSF in
turn would get out of the business of running and paying for a network
but would insist that the scientists themselves pay for whatever network-
ing they needed. They could, of course, include those charges as part of
the grant applications to the NSF or any other funding agency, and
people assumed that telecommunications companies would build a
physical plan to respond to this market. Not only did that happen, but
with the opening up of the Internet to commercial traffic, there was a
land rush to build such facilities. (Too many companies jumped in,
and the bubble burst in 2001.) Ultimately, the demand for access to
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supercomputers or other scarce resources was small compared to the
demand for general Internet access on PCs and workstations for many
applications, of which scientific research was in the minority. The impact
of opening up networking to science was enormous; it only seems small
in comparison to the other things that happened when the Internet was
opened to public access.

While a senator in 1991, Gore proposed a bill to create what he called
a National Information Infrastructure, which would formalize this
transition. The essential parts of the High Performance Computing
Act (the ‘‘Gore bill’’) were debated through 1992, and a version was
eventually passed. Meanwhile, Gore left the Senate and became vice
president in January 1993.38 As vice president he continued to cham-
pion Internet usage, insisting that federal agencies set up Web pages
containing basic public information about who they were and what they
did. The White House set up a Web hpage at www.whitehouse.govi, which
among other things, showed a picture of the First Family’s cat (Socks).
When someone clicked on the cat’s image, it meowed. That does not
sound like much in the twenty-first century, but in the context of
personal computing in the early 1990s it was a major advance.

Alexander Graham Bell thought the telephone would primarily be
a business tool and was surprised to find people using it for idle
chat. Thomas Edison did not envision his phonograph being used for
music and entertainment. Likewise, the commercial use of the World
Wide Web was not foreseen by the Internet’s inventors (and it had
many ‘‘inventors,’’ certainly not a single individual like an Edison
or Bell). Symbolic of these ‘‘unanticipated consequences,’’ to use
Ed Tenner’s phrase, occurred when Web surfers tried to go to
hwww.whitehouse.comi instead of hwww.whitehouse.govi: they were
taken to a site offering pornographic materials (for a fee). Pornography
drove much of the commercialization of the Internet, just as it did the
early days of video recording and of motion pictures.39 In 1992, the
number of registered dot.com sites was well behind dot.edu (although
ahead of dot.gov), but by mid-decade the dot.com world overwhelmed
all the others, so it was no surprise that people typed in that suffix when
trying to reach the White House.40

Java

The preceding discussion of how commercialism came to the Internet
does not respect the distinction between ‘‘the Internet’’ and the public
perception of the Internet, accessed through the World Wide Web. The
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two are different and that distinction should be understood. Commer-
cial activities, almost exclusively, are done via the Web. Tim Berners-
Lee’s Hypertext Transfer Protocol (HTTP) overwhelms Internet trans-
actions that use FTP, Gopher, WAIS, or remote login. It was not just the
Web’s invention that paved the way for commercial use, however. In the
early 1990s, just as this phenomenon was starting, Bill Joy of SUN
Microsystems recognized a need for a programming language that
would fit the times. He was no more certain of where the Internet was
going than anyone else, but he believed that existing languages were not
up to the task. He spoke of a need for a language that retained the
advances of Cþþ, then rapidly gaining popularity, but with more of the
low-level power of C or assembly language. He called on programmers to
write a language that was, he said, ‘‘C-plus-plus-minus.’’41 Beginning in
1991 James Gosling, along with a small team of other programmers at
SUN, came up with a language, called Oak, that filled Joy’s needs. With
Joy’s support, it was reworked, renamed ‘‘Java’’ (for legal reasons), and
publicly announced in March 1995. At the precise moment that
commercial uses were being allowed on the Internet, and as the
World Wide Web made navigating easy, along came Java: a language
that enabled Web designers to put the ‘‘sizzle’’ in their offerings. As
everyone knows, it is the ‘‘sizzle’’—not the ‘‘steak’’—that sells.

Java quickly became the means by which Web designers could give
their pages animation, movement, and interactivity. It caught on because
a program written in Java could run on nearly any computer, large or
small, from any vendor that was connected. As with the underlying
design of the Internet itself, Java took advantage of the growing power of
the PCs and workstations to provide the translating capabilities, so that
the Java programmer cold simply ‘‘write it once, run it anywhere.’’ It did
that by using a notion that went back at least to the beginnings of the
personal computing. Recall that when the IBM PC was announced in
1981, customers had a choice of three operating systems. Besides
Microsoft’s DOS and Digital Research’s CP/M, one could get the
UCSD (University of California, San Diego) ‘‘p-system.’’ This system,
written in Pascal, translated code not into machine language but into
code for an intermediate ‘‘pseudo’’ machine (hence the name), which
in turn was compiled and executed. Why this extra layer of complexity?
The reason was that by letting each computer manufacturer write its
own p-code compiler, the operating system would run on any number of
computers without modification.
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The p-system never caught on. One reason was that the IBM PC
quickly became a standard, and all those other machines that might have
taken advantage of the p-system never established themselves. Another
reason was that the speed penalty, which the p-system’s two-stage
translation process required, made it unacceptably slow compared to
MS-DOS. And PC programmers did not care for the Pascal language,
though it was admired in the universities; they preferred the raw, close-
to-the-metal code of MS-DOS and Microsoft’s BASIC.

A dozen years later—an eternity in ‘‘Internet time’’—the situation had
changed. The Web was now hosting machines of a great variety and
size—there were even plans to provide Web access to televisions, hand-
held organizers, and cell phones. Suppliers of hardware and software,
seeing how Web access boosted sales for them, did not mind writing the
code to translate from the Java pseudomachine. Finally, the brute force
of the Pentium processor was enough to overcome the inefficiencies of a
dual translation. Note that the inefficiency is still there and will always be
there, when compared to a program tailored for a specific machine. But
given the mix of processor power, compiler and language design, and
telecommunications speeds of the mid-1990s, it mattered less this time.

As Java caught on, it garnered media interest all out of proportion to
what the language actually did, and that was unfortunate. Java’s write-
once, run-anywhere feature was heralded in the trade press not as a way
to do something interesting on the Web, but to break Microsoft’s hold
on personal computing software. If people could write programs on
large servers, and have those programs sent to the desktop over the
Internet, who needed to buy the Office suite from Microsoft? If people
could write programs in Java, which any computer could run, who
needed Windows? It was a variant of what people were saying about
Netscape’s Navigator, and in both cases they were wrong. Microsoft was
not enthusiastic about Java’s popularity, although they got a license from
SUN to use it. SUN later claimed that Microsoft violated the agreements,
and these arguments made their way into the courtroom along with
those coming from Netscape. For the hapless Web surfer Java was a
mixed blessing: it provided ‘‘sizzle,’’ all right, but a lot of Web designers
used it to design sites that had little else. Waiting for a Java-heavy page to
load through a slow telephone connection, surfers experienced the first
evidence of gridlock on Al Gore’s Information Superhighway. Java has
yet to prove its worth in making ‘‘smart’’ appliances like toasters,
thermostats, or even cell phones, but people with things to sell on the
Internet embraced it immediately.
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With all these pieces now in place, the dot.com bubble followed
naturally. The U.S. computer industry had already seen several of these.
We have chronicled most in earlier chapters: drum-based vacuum-tube
computers in the late 1950s, minicomputer companies during the ‘‘go-
go’’ 1960s, Altair-compatible PCs in the late 1970s, the ‘‘JAWS’’ (just
another workstation) phenomenon in the mid-1980s, and personal
software for the IBM PC also in that decade.

In July 1995 Jeff Bezos opened an on-line bookstore he called
Amazon.com. By October it was processing 100 orders a day. According
to the company, by July 2000, ‘‘a 100-order minute [was] common.’’ The
company has yet to demonstrate profitability, although Bezos was named
Time Magazine’s ‘‘Person of the Year’’ in December 1999.42 In Septem-
ber 1995 Pierre Omidyar started an on-line auction service called
‘‘Auction Web’’ that he hoped would help his girlfriend trade Pez
dispensers (or so he claimed; critics claim that this story was a fabrica-
tion). Auction Web grew into eBay, with seven million ongoing auctions
in 2001, trading items from baseball cards to new, used, and vintage
automobiles, to a Gulfstream jet (which sold for $4.9 million).43 Unlike
Amazon and many other commercial sites, eBay is profitable. It levies a
small charge to the seller to list an item, and levies another charge based
on the selling price if the item is sold. Amazon and eBay were among the
few Web businesses (other than pornographers) with a steady revenue
stream. The myriad of sites that relied on advertising—their ads often
driven by Java—did not fare as well; many were in financial trouble or
out of business by the summer of 2001. At the time of this writing the
dot.com collapse is still in force, so it is too early to tell who among
the start-up companies will survive and what will emerge from all the
turmoil. Besides eBay and Amazon, mentioned above, the Internet
‘‘portal’’ Yahoo! seems to have achieved bulk and stability, although
like Amazon it has been unprofitable and does not have a clear future.

If there is any pattern to be found among the commercial Web sites
that have survived, it is that they provide their patrons with a sense of
community. They remain commercial sites at their core, but users get at
least a vestigial sense of what ARPANET must have been like, of the on-
line communities created on the first Usenet sites. Besides Usenet and
the on-line bulletin boards already mentioned, one community stood
out as a precursor, and was the Internet equivalent of the Homebrew
Computer Club. That was the WELL (‘‘Whole Earth ’Lectronic Link’’),
located in Sausalito, California. It was founded in late 1984 as an
electronic version of the Whole Earth Catalog. Once again, Stewart
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Brand, who helped start it and gave it its name, played a key role in
fusing computer technology with countercultural values. Users paid a
modest subscription fee, and it ran over the slow dial-up modem
connections of the day. From its beginnings, and on to the present
day (it is still active), it was notable not just for its Bay-area counter-
cultural flavor but also for the quality of the postings. It attracted a large
number of writers and remains focused on writing, not graphics or
multimedia. It was the home for an especially active group of fans of the
Grateful Dead, who traded information about the band. According to
chronicles of the era, the traffic from Deadheads kept the WELL
financially solvent through perilous times.44

Among the members of the WELL was Howard Rheingold, whose
writings promoted the concept of ‘‘virtual communities.’’ Another was
John Perry Barlow, who was not only a Deadhead but even wrote lyrics
for the Dead (to be sure, in the band’s later, baroque period). Barlow
was a cofounder, with Mitch Kapor, of the Electronic Frontier Founda-
tion, and in 1996 he posted on the Web his ‘‘Declaration of the
Independence of Cyberspace,’’ a rant against those in the commercial
and government world who were trying to muzzle the burgeoning
Internet.45 It opened with these words: ‘‘Governments of the Industrial
World, you weary giants of flesh and steel, I come from Cyberspace, the
new home of the Mind. On behalf of the future, I ask you of the past to
leave us alone. You are not welcome among us. You have no sovereignty
where we gather.’’

Once again this phenomenon should remind us that nontechnical
factors, so strong at the invention of the personal computer, continue to
shape the direction of computing. In the 1970s, executives at the big
computer companies could not understand how the Apple II could ever
be successful. In the 1990s it was those Web companies, and the Web
itself, that created a new commercial paradigm, at a time when industry
leaders were touting things like 500-channel cable television or ‘‘video
on demand.’’

On the Amazon site, customers were encouraged to write reviews of a
book. Even more ingenious, others could rate a review. A review that
panned a book, which in turn was rated low by other members of
Amazon’s ‘‘community,’’ could thereby be judged accordingly. Some,
including former Representative Newt Gingrich, became well known for
the quantity and quality of their reviews. College professors found
students writing research papers that referred to books they had neither
borrowed, bought, nor read: they simply looked at the reviews on
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Amazon.com and summarized the contents.46 Authors afflicted with
writer’s block found a new excuse not to write: several times a day they
would check Amazon’s site to see how well (or poorly) their existing
books were selling. Likewise, eBay devised a system of customer feedback
that ranked the credibility of those auctioning items. A seller who was
late delivering goods, or who falsely advertised the condition of a
collectible doll, would soon be chastised by the community. The result
was to lower the rate of fraud, in a field—auctions of used goods—where
fraud is common. The customers did the work, and it is unlikely that
eBay could have been so effective in policing its site. Other Web sites let
users buy and review consumer items, then let others rate the credibility
of the reviewer. Still others provided advice by ‘‘experts,’’ whose reputa-
tion and authority came not from their academic degree or position but
from how well their advice has been rated by those who followed it in the
past. How many of these sites will be able to convert that communal
feeling into profitability is an open question, but sites that do not offer a
sense of community had trouble staying in business.

As PCs found their way onto the desks of corporations, they carried
with them the spirit of the hackers who created the first of their kind. So
too did the Web’s commercialization carry the communal spirit of the
first on-line communities. That spirit was not the same, of course, and
some who had been present at the creation of were unhappy to see it
become a mass phenomenon. Still, a small but critical piece of John
Perry Barlow’s Declaration is embedded in the commercialized Web,
and an understanding of this spirit, along with the more obvious factors
of developing a sound business plan, and so on, separated the few
commercial sites that have so far survived the shakeout from those who
have not.

Search Engines, Portals

Besides the commercial sites mentioned above, another group of Web
sites that emerged were search engines and ‘‘portals’’: sites that help
people navigate the Web and find information of interest to them. The
most successful of these was Yahoo!, founded in 1994 as ‘‘Jerry’s Guide to
the World Wide Web,’’ by Dave Filo and Jerry Yang while students at
Stanford University. As the Web grew, a number of search engines
appeared. Most used some sort of automated program (‘‘bot,’’ short
for ‘‘robot’’) to ‘‘crawl’’ through Web sites and extract keywords. Yahoo!
used automation, too, but its index was assembled by Yang and Filo—
personally at first, later supplemented by other people. So from the
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onset Yahoo! was not just a search engine, but a place where a human
touch took some of the fear out of visiting the Web naked. All of that was
offered for free, and it remained so. When in August 1995 the site began
running advertisements to generate revenue, a few complained but the
site stayed popular.47 The site got an early boost from Netscape, which
put a link to it from its own site. When people installed the Netscape
browser, Netscape’s home page was the first thing they saw, and many
never bothered to change that. As Netscape’s management was railing
against Microsoft, the company did not realize, until it was too late, that
it had also invented a ‘‘portal’’ but did not know it. Netscape was
eventually acquired by AOL, another company adept at easing ordinary
people into the complexities of cyberspace.

Computer-savvy Internet users did not need a portal. They preferred
brute-force search engines and were not afraid to construct complex
searches using Boolean algebra to find what they wanted. An early leader
was Altavista, founded by the Silicon Valley lab of Digital Equipment
Corporation. Altavista’s success was not enough to rescue its parent
company, and by late 1998 its search engine was surpassed by a rival,
Google, founded by Sergei Brin and Larry Page (also in Silicon Valley).
Google’s succcess lay in the way it dealt with the retrieval of a keyword: it
ranked sites containing that word according to how much that site was
referenced by other sites—again taking advantage of the built-in
community of cyberspace.

Google’s success illustrates something fundamental about the Web: as
it emerged by the end of the 1990s, the Web is flawed. Tim Berners-Lee,
its creator, described how only half of his vision has come true—he
initially wanted a Web that was as easy to write to as it was to surf.48 Users
should be able to construct their own ‘‘portal’’ tailored precisely to their
needs, a notion that Yahoo! has followed with its ‘‘My Yahoo!’’ feature
but that is nowhere near as integral to the Web as Berners-Lee
envisioned. Likewise, those I have chronicled as Web pioneers—Ted
Nelson, who envisioned ‘‘Xanadu,’’ and Doug Engelbart, who created an
‘‘On Line System’’—are today among the Web’s harshest critics. They
argue, to an audience that increasingly does not want to listen, that users
pay a high price for the flat, one-way file structure of the Hypertext
Transfer Protocol.49 Almost forgotten, too, was a system for the retrieval
of scientific information developed by Eugene Garfield, called Science
Citation Index. Like Google, it indexed scientific papers by noting how
many other papers, if any, referenced them in their footnotes. Citation
Index ran on traditional mainframes and made a transition to the
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Internet age, but it is no longer a major force in helping navigate
thorough knowledge spaces. Brewster Kahle, the creator of WAIS, also
recognized the Web’s shortcomings, and in 2001 he launched an
‘‘Internet Archive’’ that allowed users to retrieve old Web sites that
have otherwise disappeared into the ether.50

Tragedy of the Commons

In 1968, at the onset of the modern-day environmental movement, the
biologist Garrett Hardin wrote a paper called ‘‘The Tragedy of the
Commons.’’ It became widely cited and referred to in the decades that
followed as one of the most insightful observations on the causes of the
environmental problems afflicting industrial societies.51

In the paper he likened global environmental problems to a common
grazing area of a village, where the cost of letting ‘‘just one more’’ animal
graze is low, while the benefit to the owner of that animal is high. When
the total population is low, the damage to the commons is insignificant.
But as the number of grazing animals increases, the damage gradually
becomes more severe, until the entire commons is destroyed. In the
paper, Hardin quantifies the economic relationship of benefits to
individuals versus damage to the common resource, but he also argues
that nothing short of external regulation can prevent this tragedy from
occurring. Neither unfettered market forces nor altruistic behavior by
the commons’ users will suffice.

By a strict technical measure, the Internet has not come close to
approaching this point of overpopulation. Many, including Bob
Metcalfe, who predicted its collapse as it grew exponentially, have had
to eat their words.52 The Internet passed through challenges like the
1988 worm, viruses, the Y2K crisis, the dot.com collapse, and the
terrorists’ attacks of September 11, 2001, with hardly a hiccup. It is
based on a robust design. As for the content and quality of information
that the Internet conveys, however, it has indeed been tragic. The simple
delivery of high-quality text files that the now-obsolete Gopher interface
delivered has evolved into a stream of information polluted with pop-up
ads, spam, and pornography. Web surfing has gotten so frustrating that
one has a hard time remembering how exhilarating it once was. The
collapse of the dot.coms may have been a signal that something was
wrong, like the collapse of fisheries in the North Atlantic Ocean. More
such collapses may be forthcoming. Regulation, which Hardin proposed
for the natural environment, will not come easily to the Internet if
people like John Perry Barlow have their say. Consolidation and control
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by a few giant media companies like AOL Time Warner may come to the
fore. Neither future is appealing. A third solution is possible: leave the
infrastructure of the Internet in place, but reconstruct its content space
along the lines of what researchers like Nelson, Engelbart, and Berners-
Lee have advocated.53 That would not be an easy task, but neither was
the construction of the Internet and the World Wide Web in the first
place. This in an ongoing issue and it is too early to say how, or if, it will
be resolved.

GNU/Linux

In 1988 the late Seymour Cray made one of his rare public appearances,
in which he described plans to build a new supercomputer with chips
made from gallium arsenide. A member of the audience asked him what
it was like working with this unusual material, whose properties were far
less understood than those of silicon, to which Cray is said to have
replied, ‘‘Well, if you can pronounce it, I guess that’s the hardest thing
about working with it.’’54

That also applies to Linux, which since 1995 has been at the center of
a highly visible movement to provide an alternative operating system to
Microsoft’s Windows, and to break out of the Babel of dialects that was
threatening UNIX after 1990. Linux is the creation of Linus Torvalds,
born in 1969 in Finland, where his name is pronounced ‘‘Lee-noose.’’
The name is not rare in Finland, but his parents named him after the
American biologist Linus Pauling, whose name (like Snoopy’s friend) is
pronounced with a long i. As for the operating system itself, Linux
adherents say it is pronounced ‘‘Lih-nooks,’’ but many also pronounce it
‘‘Lie-nux,’’ or with a short i: ‘‘Lin-ux.’’ Hard-core Linux fans scoff at
anyone who pronounces it ‘‘wrong,’’ but since one of Linux’s appeals is
that it is an ‘‘open source’’ program (more on that later), they can only
exclude newcomers so far. Pronouncing gallium arsenide is easy
compared to this conundrum.55

Leaving that issue unresolved for the moment, what is Linux and why
all the interest in it? A little backtracking into the history of UNIX will be
helpful here. Chapter 3 discussed the origin of operating systems,
initially by the first customers of IBM mainframes who developed
‘‘batch’’ methods to keep their costly investments busy all the time.
Chapter 7 discussed how operating systems for small computers evolved
out of different needs. For minicomputers and personal computers, the
central processor and memory itself were relatively cheap, and one did
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not need to always keep them busy. For these machines the central issue
was the movement of information into the processor and main memory
from keyboards, from the processor to monitors and printers, and to and
from external (disk) storage. UNIX first took form at Bell Labs in 1969
as a set of basic file management tools, initially written for the Digital
Equipment Corporation PDP-7 and later PDP-11 minicomputers. The
commands that actually moved data were machine specific, but after
Ken Thompson and Dennis Ritchie rewrote it in the programming
language ‘‘C,’’ UNIX could be moved over (‘‘ported’’) to other compu-
ters from different manufacturers, as long as someone had written a C
compiler for those machines. And because of AT&T’s position as a
regulated monopoly, UNIX quickly spread to locations outside Bell Labs,
especially to universities, as documented earlier.

From its origins, UNIX acquired characteristics that have set it apart
from all other programming systems, and these characteristics are
crucial to an understanding of Linux. One was social, not technical:
the wide use of UNIX in universities and other noncommercial locations
outside Bell Labs. It grew by a cooperative effort of researchers scattered
widely, who worked with an existing version of UNIX as they built
improvements—thus becoming an early, perhaps the first, instance of
‘‘eating your own dog food.’’ Ken Thompson and Dennis Ritchie, its
creators, said that

if the designers of a system are forced to use that system, they quickly become
aware of its functional and superficial deficiencies and are strongly motivated to
correct them before it is too late. Because all source programs were always
available and easily modified on-line, we were willing to revise and rewrite the
system and its software when new ideas were invented, discovered, or suggested
by others.56

The technical characteristics include a ‘‘kernel’’ that consists of only
the most essential commands to move data and control the processor.
UNIX programmers are able to build up complex and sophisticated
operations from combinations of simpler commands, primarily by
allowing the output data of one program to serve as the input data for
another (using so-called ‘‘pipes’’). Files are stored in UNIX with a
minimum of structure or formatting: ‘‘No particular structuring is
expected by the system . . . the structure of files is controlled by the
programs that use them, not by the system.’’57 A final characteristic is the
system’s reliance on the C programming language and the use of C
compilers. Those who work with UNIX speak of the elegance of its initial
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design. Ritchie and Thompson modestly point to the physical constraints
of the PDP-7 that they had to use, a computer whose power was about
equal to a Commodore VIC-20, one of which Torvalds’s grandfather let
him play with as a child. They clearly put a lot of careful thought into the
system’s design.58

UNIX was created and nurtured on minicomputers and became the
preferred operating system for workstations. On IBM-compatible perso-
nal computers, which after 1985 were being sold in greater numbers, the
situation was different. In 1980, before Microsoft acquired a DOS for the
IBM PC, it developed a version of UNIX called XENIX. Microsoft hoped
it would become a standard for 16-bit processors.59 XENIX sold well, but
the industry evolved in a different direction. The portability of UNIX
was less important, because the IBM architecture drove competitors
from the personal computer market. And XENIX required more
memory than other operating systems. Thus personal computers stan-
dardized around the spartan DOS, written by Tim Paterson of Seattle
Computer Products. Later versions of DOS incorporated some of
UNIX’s features, such as the treelike structure of ordering files, and
even something like pipes although not as powerful or as elegant as what
UNIX offered. Other features, especially the all-important multitasking,
either never got into DOS or else had to wait for Windows, where they
were grafted on in an inelegant fashion. The way DOS stored files was
also different, imposing more structure on data stored in files. In other
respects the two systems had much in common, especially in the way
users typed in brief commands at a ‘‘command line’’ to move, copy,
delete, or port files. (In the fall of 2001 Microsoft officially retired DOS
when it introduced a version of Windows that, finally, did not have DOS
code at its core.)

In 1991, Torvalds, then twenty-two years old, set out to write a version
of UNIX for his IBM-compatible personal computer.60 The details of
how he came to do that are recorded in his memoir of the era, and are
summarized briefly here. The previous year he had taken a course at the
University of Helsinki on UNIX. The instructor, he said, was as new to
the subject as the students, but that did not matter, because the
enrollment in the course gave him access to a version of Digital
Equipment Corporation’s UNIX running on a time-shared VAX.
Torvalds was already familiar with UNIX from reading a book on
operating systems by Andrew Tanenbaum, of Vrije University in Amster-
dam. Tanenbaum had also developed a teaching version of UNIX, which
he called ‘‘Minix.’’61 Reading that book, combined with a childhood
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spent hacking on personal computers like the Sinclair QL and the
Commodore VIC-20, convinced Torvalds that he wanted not only to
learn all he could about UNIX, but also that he wanted Minix on his
home computer. The Sinclair used an advanced Motorola processor, but
Torvalds recognized that the IBM-PC standard was becoming so well
established that he had to switch to the Intel-based architecture. Just at
that time, PCs began to appear on the Finnish market based on the Intel
80386 chip—a chip that enabled personal computers to offer perfor-
mance competitive with minicomputers and workstations.62

Torvalds bought (on the installment plan) a 386-based PC, and a
version of Minix for it about a month later. According to his memoir,
almost as soon as he had it installed and running, in the winter of 1991,
he found Minix wanting. Specifically, he needed a terminal-emulation
program, which would allow him to use the PC as a terminal to access
the university’s computer, with its software resources and access to on-
line discussion groups.63 Rather than write it as a process under Minix,
he wrote an emulation program of his own, programming ‘‘to the bare
metal’’ as he described it. From that beginning eventually came a version
of UNIX that was separate from Minix, and that was not crippled or
restricted in any way, as he felt Minix was. A brief note posted to a
newsgroup in July 1991 gave a hint to the world that he was thinking not
just of an expanded terminal emulator but of a 386 implementation of
UNIX that would conform to a standard set out by a subcommittee of
the International Standards Organization.64 One person responded to
his query not with information on the standard but with an offer of
space on a computer at the Helsinki University of Technology, where
Torvalds could post versions of his work and where others could down-
load it via the file transfer protocol (FTP).

Another brief note to the discussion group in August 1991 went
further: ‘‘I’m doing a (free) operating system ( just a hobby, won’t be
big and professional like gnu) for 386 (486) AT clones . . . I’d like any
feedback on things people like/dislike in minix, as my OS resembles it
somewhat.’’65 Note that he was still thinking in terms of addressing the
deficiencies he saw in Minix. The next month he posted his work on the
FTP site, and at the suggestion of Ari Lemke, who made the site
available, the program was called ‘‘Linux.’’ As Linux got legs of its
own, Torvalds thought of it less and less as a derivative of Minix and
more as a new version of UNIX. That led to a break with Tanenbaum,
who registered his disapproval of Torvalds’s approach in a posting to the
newsgroup in early 1992. Torvalds responded with a vigorous defense of
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his work, accompanied by ‘‘flaming’’ rhetoric that was typical of on-line
discussions in those days.66 (The discussions had been going on in the
‘‘comp.os.minix’’ newsgroup; after a heated exchange with Tanenbaum,
Linux discussions moved to a newsgroup of their own.)

Meanwhile Torvalds kept working on the program, with encourage-
ment from people on the discussion list. Like Marc Andreesen at
Netscape, Torvalds exploited the Internet’s ability to distribute his
work cheaply around the world and to generate almost instant feedback
from enthusiastic users. No classical theories of marketing could have
foreseen the close relationship between creator and user that Torvalds
developed.

In spite of all the various flavors of UNIX then available, Linux was
filling a need. The fragmentation of UNIX, mentioned in chapter 9,
turned to Torvalds’s advantage. His version allowed users to get the
operating system with none of the baggage associated with other
versions then available. AT&T had hoped to profit from its creation
once the company was free to market it, but its marketing was ineffec-
tive. AT&T did manage to annoy people with its insistence on owning
the name ‘‘UNIX,’’ leading to other names ending in ‘‘IX,’’ the spelling
‘‘UN*X,’’ or other silliness. Worse than that, the company sued vendors
who were selling variants of UNIX that had portions, however small, of
AT&T’s code in them. The Berkeley distributions of UNIX were more
accessible, owing to the U.S. government’s support through ARPA, but
even SUN moved to a closed version (Solaris) for its later generations of
workstations. In 1993 AT&T sold its version of UNIX to Novell, which
resold it shortly thereafter. Berkeley distributions of UNIX have evolved
into several versions, some of them freely available (figure 10.1).

For the next decade, Linux thus grew in size and quality. Around it
grew a cadre of enthusiasts, for whom Linux was much more than just an
operating system. To them, the successful development of Linux by
dedicated volunteers working around the globe represented both a
vindication and a refutation of the tenets of software engineering set
out by Fred Brooks in his classic book The Mythical Man-Month (1975).
Recall that Brooks wrote that book to explain the difficulties he had, as
project manager, in developing an operating system for IBM’s System/
360 line of mainframes. He argued that adding people to a software
development team in the middle of a project makes things worse, not
better, because the difficulties of coordination among its members
overwhelm any contributions the new members can make. To the
growing numbers of Linux enthusiasts, that seemed to be precisely
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what Torvalds was doing without harm to the project: he enlisted the
help of users around the world, and gradually turned over portions of
Linux to those among that group whom he trusted.67 Elsewhere in his
book Brooks suggests that one should organize a large software project
around a leader with strong technical skills who is given proper
authority. That certainly applies to Torvalds, even if not precisely in
the way Brooks suggested. Torvalds has no authority in any formal sense,
yet he is able to act and speak with authority on the evolution of the
system that bears his name. Brooks argued that large projects need both
a ‘‘producer’’ and ‘‘technical director’’—roles that in Linux develop-
ment are filled by Alan Cox and Torvalds, respectively.68 In any event, it
worked, and it continues to work as Torvalds moved from Finland to
Silicon Valley, where he works at a company called Transmeta. Cox, a
year older than Torvalds, lives in Wales but is employed by the Linux
company Red Hat of North Carolina.

Whether the development of Linux is a vindication or refutation of
Brooks’s law is of central importance to the Linux community. Fred
Brooks’s writings are respected, but The Mythical Man-Month is funda-
mentally a book about a project that failed. Linux enthusiasts come to

Figure 10.1
UNIX License Plate, replica. The original was owned by Armando Stettner, a
DEC employee and resident of New Hampshire, whose state motto appears on its
license plates. Stettner was the leading evangelist for UNIX at DEC, although he
faced resistance from Dave Cutler, the architect of the proprietary VMS operat-
ing system and later of Microsoft’s Windows NT. Note the obligatory credit line
to Bell Labs. Smithsonian Institution collections, gift of Eugene Miya.
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his writings with an agenda: to demonstrate that they will not fail as IBM
did. They wish to show further that their work will produce better-quality
software than what Microsoft can produce, even if Microsoft’s methods
are different from IBM’s. Brooks added several chapters to the 1995
reissue of his book, discussing at length the evidence both for and
against his theories of how teams develop large-scale software projects.
Although he discussed the impact of commercial PC software, at that
time still sold in ‘‘shrink-wrapped’’ packages, the edition was published
before Linux became well known. (Brooks did mention UNIX as an
example of an ‘‘exciting’’ project whose qualities stem from having one
or a few dedicated individuals involved in its creation.)69

Eric Raymond was among the programmers who saw the merits of this
model of software development, and, in an influential essay called ‘‘The
Cathedral and the Bazaar,’’ he analyzed it with regard to writings by
Brooks and others about large software projects.70 Raymond argued that
by letting people look at, and modify, the source code, bugs are found
and fixed. As they do that, the general level of quality rises, much faster
than it possibly could in a closed system. As Raymond said (paraphrasing
Torvalds), ‘‘Given enough eyeballs, all bugs are shallow.’’71 Raymond’s
philosophy recalled the spirit of the Homebrew Computer Club of the
1970s, where sharing was the order of the day. It recalls an even earlier
time, in the 1950s, when IBM 704 programmers banded together to
form SHARE, even if the individual members worked for competing
aerospace companies.

Just as the Homebrew spirit was opposed by Bill Gates in his ‘‘Open
Letter to Hobbyists’’ (chapter 7), so too did Microsoft again play the role
of the enemy to this movement. In a few public speeches, Microsoft
executives railed against the philosophy of making source code available,
arguing as Gates did in 1976 that ‘‘free’’ software would not properly
reward talented programmers for their hard work. Linux is free to the
consumer; who pays for its development? Most members of the Linux
development community have ‘‘day jobs,’’ where their employers allow
them to work on Linux as a perk, in hopes of keeping their talents
available for developing commercial products. With the recent down-
turn in the economy, some of those employers may be less generous.
Other free software is supported by the publisher O’Reilly & Associates,
which makes money selling books about UNIX. The commercial
company VA Linux also supports this effort, but recently VA Linux
announced it was shifting its business model to proprietary products
(and changing its name to VA Systems).
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Microsoft executives also argued that nothing would prevent the
system from careening off in a dozen directions—a likely scenario that
is only prevented by the hard work and talents of Torvalds and his inner
circle of collaborators. Whether Linux can succeed without the dedica-
tion of Torvalds and Cox is an open question. An internal memo, written
by someone at Microsoft in 1998, was leaked to Eric Raymond, who
promptly posted it on the Internet, where it became known as the
notorious ‘‘Halloween Document.’’ In it, Microsoft allegedly laid out
plans to make it difficult for Windows users to install or use Linux on
their machines.72 As for Torvalds’s attitude toward all this, he claimed
that he was never motivated by political considerations. Nor did he feel
any animosity toward Microsoft, other than believing its code was
technically not as good as his. In any event, Linux grew on the shoulders
of a worldwide, voluntary group of enthusiasts.

GNU

Any discussion of UNIX must include a discussion of the C program-
ming language, which was developed in tandem with it, and in which
UNIX was rewritten. Thus one of the first things Torvalds did, in the fall
of 1991, was to adapt a C compiler for use on his machine. It was not an
easy task, but once it was done he would gain access to a library
of C programs, which allowed him to bootstrap his way to a more
developed UNIX system. The compiler he chose was GCC, the ‘‘GNU C
Compiler,’’ which had been written by Richard Stallman of Cambridge,
Massachusetts.73

Torvalds’s relationship with Stallman, like his relationship with Tanen-
baum, is complex. Torvalds relied on work done by the older program-
mers, but he deliberately set off in a direction different from what either
of them would have preferred. Nevertheless, in the case of a C compiler,
Stallman’s was one of the best available, if not the best. Its widespread
adoption established a de facto standard for the C programming
language—that is, a standard C was defined as a language that the
GNU C Compiler understood. And it was free. Very free.

Stallman’s campaign to develop and spread software that is ‘‘free’’ in a
carefully defined way is by now well known.74 His odyssey began at the
MIT Artificial Intelligence Laboratory, the home of a PDP-10 and the
‘‘Incompatible Timesharing System’’ (chapter 7). In the early 1980s he
felt that the ethic of the lab, in which programmers freely shared their
work, was being drained away by the founding of a company that sought
to commercialize some of the AI research being done there. Stallman
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resolved to produce similar software, with the distinction that it would be
freely given away. The business model of commercializing AI research
was flawed anyway (especially after ARPA withdrew financial support
around 1985), but Stallman’s resolution remained. He decided to create
a version of UNIX, an operating system he knew little about, and give
that away.75 He would have preferred copying ITS, the system used on
the PDP-10, but UNIX had the advantage of being used on more than
just one or two machines from a single manufacturer. He called his
UNIX copy ‘‘GNU’’ (pronounced as a two-syllable word): a recursive
acronym for ‘‘Gnu’s Not UNIX.’’

In a Usenet post in September 1983 he wrote: ‘‘Starting this Thanks-
giving I am going to write a complete Unix-compatible software system
called GNU (for Gnu’s Not Unix), and give it away free to everyone who
can use it. Contributions of time, money, programs and equipment are
greatly needed.’’ Later in the same posting he stated his philosophy of
free software: ‘‘I consider that the golden rule requires that if I like a
program I must share it with other people who like it. I cannot in good
conscience sign a nondisclosure agreement or a software license agree-
ment. So that I can continue to use computers without violating my
principles, I have decided to put together a sufficient body of free
software so that I will be able to get along without any software that is not
free.’’76 His definition of ‘‘free’’ would change but would always retain
the notion that free software would never become entangled with
software that had restrictions attached to it.

Stallman found that some components of a UNIX system were already
available free—the X-Windows system and Donald Knuth’s TeX type-
setting program, among others. To those he added the Emacs text
editing system he had already written while at MIT, which he rewrote for
UNIX. And of course the C compiler.77 To avoid legal problems with
AT&T, he refused to look at any source code for AT&T UNIX, just as
those who recreated the BIOS for the IBM PC worked in a ‘‘clean
room.’’ Thus the GNU C Compiler (gcc) was offered as a replacement
for ‘‘pcc,’’ a compiler written by AT&T’s Steve Johnson and offered for a
price. Stallman’s ‘‘Bison’’ parser generator (a component of a compiler)
was offered as a free replacement for ‘‘yacc’’ (‘‘yet another compiler
compiler’’), also written by Steve Johnson. Note the pun on the word yak;
Stallman follows an old hacker tradition of punning whenever possible.78

He did much of this himself, in an office generously loaned to him by
MIT. For a while that was also his sleeping quarters. (As with Linux, GNU
benefited from an informal but nevertheless real generosity from those

‘‘Internet Time,’’ 1995–2001 339



who had access to computing resources.) Stallman’s hands suffered from
the stress of constant, repetitive keystroking. With the help of a few
colleagues, he began building up a body of software comparable to, or
even better than, what it took large teams of people to create in the
commercial or academic world.

As important as that programming was, just as important was the legal
agreement Stallman crafted to guarantee the rights to his work. With the
help of an attorney he developed a ‘‘GNU General Public License’’
(GPL) that not only put his work into the public domain, it also required
that those who used and modified it put their modifications in the public
domain as well. In his words, ‘‘It is a legal instrument that requires those
who pass on a program to include the rights to use, modify, and
redistribute the code; the code and the freedoms become legally
inseparable.’’79 It does not prevent someone from selling the code for
a profit, as companies like Red Hat and VA Linux do. It does, however,
prevent them from owning the code portion of what they sell.80

It is this last provision that is so radical, and it defines the character of
Linux (which Torvalds released under the GPL) and other so-called
open source software. Using ‘‘free’’ software was nothing new: Microsoft
began with the BASIC programming language, developed at Dartmouth
but modified by Gates, Allen, and Davidoff. The creators of BASIC
wanted their program to become widespread and publicly described its
specifications with that in mind. Microsoft’s version of BASIC for the
Altair was very different from Dartmouth’s BASIC, something that
Kemeney and Kurtz did not approve of, but such modifications of
existing languages were common. Other types of personal computer
software, including dBase II and some word processors, were modifica-
tions of software developed at universities or with government support
and therefore considered ‘‘free.’’ But once modified, their creators
could and did sell them for a profit. One cannot do that with Linux,
with GNU tools, or with other software under the GPL. What is more,
the GPL requires that if one uses such software in a product, the entire

product must be covered by the GPL, even if other parts of it had
previously been proprietary. The GPL thus ‘‘converts’’ proprietary soft-
ware into free software, the opposite of what had been happening in the
industry. It is this provision that is so threatening to companies like
Microsoft, and that led senior executives at Microsoft to denounce the
movement as being contrary to the ‘‘American Way’’ of free enterprise.81

Many popular accounts of the history of Linux emphasize the rift
between Torvalds and Stallman, who are only sixteen years apart in age
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but represent different generations in many ways. Such accounts neglect
the fact that Torvalds completed what Stallman set out to do, and Linux
is protected by the GPL. Stallman ran into difficulties in developing a
UNIX kernel, which was the first thing Torvalds wrote. Stallman came
from an environment of DEC mainframes like the PDP-10 and mini-
computers like the PDP-11; he may not have recognized how the Intel
80386 and successor chips were taking over. Or there may have been
other reasons, related to the underlying philosophy of how to write a
good kernel. In any event, Stallman reminds people that the full set of
UNIX tools should be called ‘‘GNU/Linux,’’ not just ‘‘Linux.’’ On that
he is correct. Some advocates of the GPL philosophy coined the term
open source, mainly to distance themselves from him personally, but
software that is in the public domain but not covered by the GPL or
its equivalent is not a part of this social phenomenon.

This activity might have gone unnoticed had it not been for the
explosion of Internet activity after the creation of the World Wide Web
and the Netscape browser. Suddenly there was a demand for larger
computers to run Web sites and route Internet traffic. UNIX fit that
need perfectly. Besides Linux, a free version of Berkeley UNIX, from
which all the AT&T code was ‘‘cleansed,’’ became the UNIX systems of
choice. Each offered Web administrators the ability to modify and
extend their systems without legal troubles or charges. As of this writing,
the most popular Web server software is Apache (‘‘a patchy server’’),
coordinated by Brian Behlendorf; the most popular mail-routing
program is ‘‘Sendmail,’’ written by Eric Allman; and the most-used
scripting language for Web pages is Perl, written by Larry Wall. All are
based around UNIX, and all are free. Web giants like Google rely on
Linux, and as mentioned, Microsoft’s Hotmail service runs on the free
Berkeley Distribution.

IBM

Apple’s 1984 Super Bowl commercial announced that the future would
be nothing like Orwell’s vision, but in one respect Apple was wrong.
Orwell predicted a world where today’s enemy becomes tomorrow’s ally,
and as that happened, all memory of the previous alliance or warfare
was erased. In Orwell’s novel, that was Winston Smith’s job: to put all
records of previous alliances down the ‘‘memory hole.’’ In 2001 IBM, the
implied enemy in the Super Bowl commercial, became an ally; Microsoft
became the enemy. The trade press dutifully does Winston Smith’s job of
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erasing everyone’s memory of the relative roles of those two entities
twenty years ago.

IBM has embraced Linux as an alternative to the closed, proprietary
operating systems it so jealously guarded in its days of ‘‘big iron.’’
Throughout its reign as the dominant computer company, IBM was
known as a company that set its own standards—think of EBCDIC
instead of ASCII—and tried to impose them on the rest of the comput-
ing community. But IBM suffered huge losses in the early 1990s and
might have vanished or shriveled into insignificance, along with the rest
of the BUNCH, had it not changed. The company’s embrace of Linux is
too recent for a coherent story to emerge, but it appears that it began as
a ‘‘skunk works’’ project at IBM’s lab in Böblingen, Germany, outside
Stuttgart, where in late 1999 a team of young programmers succeeded in
porting Linux to an IBM 390 mainframe. That was not IBM’s first
exposure to open source software, though: for the 1996 Summer
Olympics in Atlanta, IBM was the prime contractor in providing compu-
ter services, including a Web presence. Instead of ‘‘eating your own dog
food’’ and using a server offered by the IBM subsidiary Lotus, it chose
Apache instead.82 Financially troubled, IBM knew that the world would
be watching how well it handled the Olympics, and it had more faith in
Apache than in the Lotus product (Domino).

Nor was the notion of a skunk works developing something out of the
mainstream all that foreign to IBM either. It had always supported such
activities, going back at least to the famous ‘‘wild duck’’ memo from
Thomas Watson, Jr. (chapter 9). What was startling is how this effort
made its way through the layers of managers and programmers
committed to the classic IBM way, until it gained the attention and
approval of the chair, Lou Gerstner. According to one account, the
Linux effort was stuck in a vortex of memos, meetings, and committees
when John Markoff, a reporter for the New York Times, reported in
December 1998 on IBM’s plan to release a mail program developed by
one of its staff as open source.83 Gerstner allegedly read the story and
demanded that IBM develop a coherent policy on open source from that
day onward. In any event, IBM made a substantial commitment to Linux
and announced that for the year 2002 it would devote 20 percent of its
R&D budget toward getting Linux to run on its product line.84 In a series
of ads in the trade press, IBM announced: ‘‘The facts are clear: Linux is
here and Linux is ready. Ready for business. Ready for e-business. Ready
for enterprise.’’ One ad showed a fuzzy black-and-white image of a
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penguin, the Linux mascot, walking through the towers of a mainframe
installation, with the caption ‘‘Fact: Linux in the enterprise.’’

Perhaps the reason for this embrace of Linux was IBM’s experience
with Microsoft and Windows, versus its own personal computer operat-
ing system, OS/2. By most accounts, Microsoft got the best of that deal,
and OS/2, the product of months of work by a large team of IBM
programmers, was forgotten. Or perhaps the reason was simply that
Linux offered the best set of capabilities. This story is very much
ongoing, and it is not at all clear that Linux will prevail, but since
those ads appeared IBM has gone even further and introduced a line of
computers that run only Linux.85 In the press release IBM claimed that
Linux systems account for 11 percent of the computing capacity that it
shipped in late 2001, based on millions of instructions per second. And
all of this happening only ten years after Torvalds began writing a
terminal emulator for his PC.

Conclusion

Seymour Cray never did succeed in building gallium arsenide circuits
that could compete with silicon, even if people did learn how to
pronounce the term. Linux, however it is pronounced, is going to
have to deal with Microsoft one way or another. The experience with
Java shows that simply being an alternative to Microsoft is not sufficient
in itself to prevail. Among Linux evangelists are a strong and vocal group
who tout Linux-based programs that offer a graphical interface like
Windows (‘‘KDE’’ and ‘‘GNOME’’), word processors (‘‘AbiWord’’), and
other products.86 In keeping with the UNIX philosophy, and in contrast
to Windows, the code that generates the graphical user interfaces is kept
separate from the base Linux code. Linux is still accessed by typing a
command line, like DOS. As Microsoft moved away from DOS, Linux
enthusiasts steadfastly prefer typing cryptic commands, many of which
resemble the DOS commands of old. Apple seems to be of two minds
on this. When it introduced the Macintosh in 1984 it got rid of the
command line, but with the latest version of the Mac operating system
(‘‘X,’’ based on UNIX), a savvy user can bypass the graphical interface
that Apple made so famous.

The Web site ‘‘Slashdot.org’’ posts daily messages on the battle against
Microsoft, the tone of which suggests that flame wars are not extinct
after all. But not all messages are in favor of this approach: Rob Malda,
one of the founders of Slashdot who goes by the screen name

‘‘Internet Time,’’ 1995–2001 343



‘‘CmdrTaco,’’ recently took a less aggressive stance. And Russ Mitchell,
who worked for Red Hat, is even more skeptical. He argues that going
against Microsoft head to head is a waste of time; Microsoft has won this
battle. He hopes to see Linux establish a stronger position in the server
market, as IBM has done. If well executed, Microsoft might be unable to
threaten that market.87 For its part, Microsoft is not going to let this
happen without a fight.

Linux evangelists might learn from the experience of Marc Andree-
sen, when he was touting Netscape Navigator as a competitor for
Windows. In an interview he described Windows as ‘‘a partially-
debugged set of device drivers.’’88 Bill Gates and Steve Ballmer did not
think that was funny. Today, Netscape is buried in a corner of America
Online.89 Neither Andreesen nor Jim Clark has been forthright about
why Netscape ultimately lost the browser war to Microsoft, but the hubris
of statements like that one did not help. Someone should have
reminded Andreesen of the folk wisdom, ‘‘You don’t tug on Superman’s
cape.’’ Unless you are IBM. In any event, what started out as a footnote
to the Microsoft antitrust trial, something that Linus Torvalds claimed
was ‘‘just a hobby, won’t be big and professional,’’ is turning out to be
quite interesting, after all. We will see.
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Conclusion: The Digitization of the World Picture

Between 1945 and 2002 the computer transformed itself over and over
again, each time redefining its essence. ‘‘The computer’’ started out as
a fast scientific calculator; Eckert and Mauchly transformed it into
UNIVAC, a machine for general data processing. Ken Olsen made it
into a real-time information processor that worked symbiotically with its
users. Ed Roberts transformed it into a device that anyone could own
and use. Steve Jobs and Steve Wozniak turned it into an appliance that
was both useful and fun. Gary Kildall and William Gates transformed it
into a standardized platform that could run a cornucopia of commercial
software sold in retail stores. Bob Metcalfe, Tim Berners-Lee, and others
turned it into a window to a global network.

Each transformation was accompanied by assertions that further
transformations were unlikely, yet each time someone managed to
break through. The latest transformation, to the World Wide Web, was
also preceded by statements that the computer industry was stagnating,
that there was, to paraphrase a software salesman, ‘‘no more low-hanging
fruit.’’ He was wrong, and those who predict that the World Wide Web is
the ultimate resting place for computing will no doubt be wrong as well.

By the mid-1990s personal computers had become a commodity,
allowing commercial software to come to the fore as the central place
where innovation was conveyed to users. The layering of software, a
process that began with the first ‘‘automatic coding’’ schemes developed
for the UNIVAC, continued. That was the only way to broaden the
market to include users who had no inclination or talent to write
programs. Again, with each software advance, one heard that the ‘‘end
of programming’’ had come, that ‘‘anyone’’ could now get a computer to
do what he or she wished. As new markets opened up, the end proved
elusive. The difficulty many people have in programming a VCR is a
minor but real example of the problem: getting a computer to do what



users want it to do is as difficult as ever and requires talent, hard work
and a commitment by developers to the user’s needs.

The ease of use that the Macintosh interface brought to personal
computing, which Microsoft copied with Windows, has led to a new set of
frustrations. Users now find interfaces laid over these interfaces, which
are supposed to make computing even easier. In fact, they have made
things more difficult. This process will doubtless continue. The year
2001 has come and gone, and it did not bring with it a realization of the
intelligent computer HAL, the star of Stanley Kubrick’s movie 2001 A

Space Odyssey. Many people came away from the movie thinking that the
problem with HAL was that it was somehow out of control; but a closer
viewing shows that HAL’s real problem was that it worked perfectly. It
broke down because it was trying to obey two conflicting instructions
that were part of its programming: to obey the humans on board but to
conceal from them the true nature of their mission.1 If a real version of a
HAL-like intelligent interface ever appears, it will probably not be as
robust and reliable as the fictional one.

The Digitization of the World Picture

In 1948 a book appeared with the bold title The Mechanization of the World

Picture. The author, a Dutch physicist named E. J. Dijksterhuis, argued
that much of history was best understood as an unfolding of the
‘‘mechanistic’’ way of looking at the world that actually began with the
Greeks and culminated in the work of Isaac Newton.2 Dijksterhuis’s work
found a willing audience of readers who had experienced the power and
the horrors of a mechanized world view after six years of world war.

It took a millennium and a half for a mechanistic view to take hold,
but it has taken less time—about fifty years—for a view equally as
revolutionary to take hold. The ‘‘digitization of the world picture’’
began in the mid-1930s, with the work of a few mathematicians and
engineers. By 1985 this world view had triumphed. It began in an
obscure corner of mathematics. Alan Turing’s ‘‘machine,’’ introduced
in a paper in 1936, was a theoretical construction.3 The invention of the
stored-program electronic computer breathed life into his idea and
made it more real than he probably thought possible. The ensuing
decades saw one field after another taken over, absorbed, or trans-
formed by the computer as if it were a universal solvent.4 A special issue
of the trade journal Electronics, in October 1973 described as ‘‘The Great
Takeover,’’ the way traditional analog electronic circuits were replaced
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by miniature digital computers programmed to emulate them; most
ordinary radios, for example, had lost their tuning dial by 1973 and were
‘‘tuned’’ by digital keypads. Ten years later, Time proclaimed the compu-
ter ‘‘Machine of the Year’’ for 1983, with the opening headline ‘‘The
Computer Moves In.’’5

The latest manifestation of this takeover is the Internet, embraced
across the political and cultural spectrum, by Newt Gingrich, Al Gore,
Stewart Brand, the late Timothy Leary, ‘‘Generation X,’’ and numerous
people in between. Most accounts describe it as a marriage of commu-
nications and computing.6 The evidence presented here suggests other-
wise; that the Internet simply represents yet another takeover, by digital
computing of an activity (telecommunications) that had a long history
based on analog techniques.

Those who so glowingly describe the World Wide Web as the culmina-
tion of fifty years of prologue either do not know or have forgotten
history. The very same statements were made when the first UNIVACs
were installed, when minicomputers and time-sharing appeared, and
when the personal computer was introduced (figure C.1). This will not
be the last time these words are spoken. But promises of a technological
Utopia have been common in American history, and at least a few
champions of the Internet are aware of how naive these earlier visions
were.7 Silicon Valley has some of the most congested real highways in the
country, as people commute to work with a technology that Henry Ford
invented to reduce urban congestion. Most people have some sense of the
fact that the automobile did not fulfill many of Ford’s promises simply
because it was too successful. The word ‘‘smog’’ crept into the English
language around the time of Ford’s death in the late 1940s; ‘‘gridlock,’’
‘‘strip malls,’’ and ‘‘suburban sprawl’’ came later. What equivalent will
describe the dark side of networked digital computing? And will those
‘‘side effects’’ become evident only fifty years from now, as was the case
with automobiles? Can we anticipate them before it is too late or too
difficult to manage them?

Each transformation of digital computing was propelled by individuals
with an idealistic notion that computing, in its new form, would be a
liberating force that could redress many of the imbalances brought on
by the smokestack of the ‘‘second wave,’’ in Alvin Toffler’s phrase.
UNIVAC installations were accompanied by glowing predictions that
the ‘‘automation’’ they produced would lead to a reduced workweek. In
the mid-1960s enthusiasts and hackers saw the PDP-10 and PDP-8 as
machines that would liberate computing from the tentacles of the IBM
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Figure C.1
Digital Utopia, as depicted on the cover of Byte magazine ( January 1977). Byte’s
cover illustrations stood out among all the computer publications. (Source :
Robert Tinney.)
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octopus. The Apple II reflected the Utopian visions of the San Francisco
Bay area in the early 1970s. And so it will be with universal access to the
Internet.

In each case the future has turned out to be more complex, and less
revolutionary, than its proponents imagined. The UNIVAC did not solve
the problem of unemployment. Personal computers did not put ordin-
ary individuals on an equal footing with those in positions of power. It
did find a market that exceeded all expectations—but in the office and
not the home, as a tool that assisted the functions of the corporate
workplace.8 Looking out over the polluted and decayed landscape of the
1970s-era industrial Rustbelt, young people programmed their personal
computers to model a middle landscape; one that gave its inhabitants all
the benefits of industrialization with none of the drawbacks. But the
social problems of the outside world remained. Utopia stayed inside the
computer screen and stubbornly refused to come out. Computer
modeling evolved into ‘‘virtual reality’’—a new variant of the mind-
altering drugs in vogue in the 1960s. Timothy Leary argued that virtual
reality was more effective than LSD as a way to bring humans back to the
Garden of Eden. So far that is not happening, and perhaps this is a good
thing, given the level of thought that characterizes most visions of what
Digital Utopia ought to look like.

We have seen that political and social forces have always shaped the
direction of digital computing. Now, with computing among the defin-
ing technologies of American society, those forces are increasingly out in
the open and part of public discussion. Politicians and judges as much as
engineers decide where highways and bridges get built, who may serve a
region with telephone service, and how much competition an electric
utility may have. These legislators and jurists rely upon industry lobbyists
or specialists on their staff to guide them through the technical dimen-
sion of their policies. All the while, new technologies (such as direct
broadcast satellite television) disrupt their plans. But that does not stop
the process or shift decision-making away from these centers.

Computing is no different. The idea of politicians directing technol-
ogy is still distasteful to computer pioneers, many of whom are still alive
and retain a vivid memory of how they surmounted technical, not
political, challenges. But when a technology becomes integrated into
the affairs of ordinary daily life, it must acknowledge politics. Some
groups, such as the Electronic Frontier Foundation (founded by Mitch
Kapor), are doing this by stepping back to try to identify the digital
equivalents of ‘‘smog’’ and ‘‘gridlock.’’ But historically the United States
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has promoted as rapid a deployment of technology as possible, and has
left it to future generations to deal with the consequences. It is not
surprising, therefore, that attempts to regulate or control the content of
the Internet have so far been clumsy and have failed. How that plays out
remains to be seen.

A century and a half ago, Henry David Thoreau observed with
suspicion the technophilic aspect of American character. Railroads
were the high technology of his day, but he did not share the public’s
enthusiasm for the Fitchburg line, whose tracks ran behind Walden
Pond. ‘‘We do not ride on the railroad; it rides on us,’’ he said. What the
nation needs is ‘‘a stern and more than Spartan simplicity of life.’’ A few
miles west of Thoreau’s cabin, the Fitchburg railroad built a branch to
serve the Assabet Mills, which by the time of the Civil War was one of the
country’s largest producers of woolen goods. A century later these same
mills were blanketing the Earth with PDP-8s. One wonders what Thoreau
would have made of this connection.9 Would he have seized the
opportunity to set up his own Walden Pond home page, to let others
know what he was up to? Or would he have continued to rely on the
pencils he made for himself?

We created the computer to serve us. The notion that it might become
our master has been the stuff of science fiction for decades, but it was
always hard to take those stories seriously when it took heroic efforts just
to get a computer to do basic chores. As we start to accept the World
Wide Web as a natural part of our daily existence, perhaps it is time to
revisit the question of control. My hope is that, with an understanding of
history and a dash of Thoreauvian skepticism, we can learn to use the
computer rather than allowing it to use us.
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26. Jackon, quoted in Richard B. McKenzie, Trust on Trial: How the Microsoft Case
Is Reframing the Rules of Competition (Cambridge: Perseus Books, 2000): 51.

27. Research for this section consists mainly of observing the author’s preteen
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53. See, for example, Nathaniel S. Borenstein, ‘‘The Once and Future Internet,’’
paper presented at a symposium on the occasion of the tenth anniversary of the
first U.S. Web site, at the Stanford Linear Accelerator Center (SLAC), December
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legends surrounding Seymour Cray, but I have been unable to verify it. It does
not appear on a videotape of a meeting he gave in Orlando, Florida, in
November 1988, but he had given essentially the same briefing at other
venues around that time.

55. Glyn Moody, Rebel Code: Inside the Open Source Revolution (Cambridge: Perseus,
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56. D. M. Ritchie and K. Thompson, ‘‘The UNIX Time-Sharing System,’’ Bell
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p. 1927.

57. Ibid., 1907–1908.

58. The PDP-7 on which UNIX was first written had a memory capacity of 18K,
18-bit words, or about 18K bytes. See Dennis M. Ritchie, ‘‘The Development of
the C Programming Language,’’ in Thomas J. Bergin and Richard G. Gibson,
eds., History of Programming Languages—II (Reading, MA: Addison-Wesley, 1996):
671–698.

59. Manes and Andrews, Gates, 147. AT&T’s licensing policies placed restrictions
on the name ‘‘UNIX,’’ hence Microsoft’s (and others’) adopting a different
name.

60. Linus Torvalds and David Diamond, Just for Fun: The Story of an Accidental
Revolutionary (New York: HarperCollins, 2001), chapters 2, 3.

61. Andrew S. Tanenbaum, Operating Systems: Design and Implementation (Engle-
wood Cliffs, NJ: Prentice Hall, 1987).

62. Torvalds and Diamond, Just for Fun, chapters 2, 3.

63. Ibid., 61–62.

64. Robert H. Follett and Jean E. Sammett, ‘‘Programming Language Stan-
dards,’’ in Anthony Ralston, Edwin Reilly, and David Hemmendinger, eds.,
Encyclopedia of Computer Science, fourth edition (London: Nature Publishing
Group, 2000): 1466–1470. The standard was called ‘‘POSIX,’’ for ‘‘Portable
Operating System Interface for Computer Environments.’’

65. Torvalds and Diamond, Just For Fun, 85. Punctuation and spelling are
original. Some of these postings have been saved and archived on the Web site
hGoogle.comi.

66. The notion of ‘‘flame wars,’’ and whether they truly represented the feelings
of the persons posting such messages, is a matter for future research and will not
be further discussed here. Seen out of context, phrases calling another’s work
‘‘brain damaged’’ or saying that it ‘‘sucks’’ can indeed appear shocking, especially
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given the traditional respect accorded to professors in European universities.
Flame wars seem to have died out recently, although they are alive in a restricted
form on the Web site hSlashdot.orgi (see text).

67. Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering
(Reading, MA: Addison Wesley, 1975). Russ Mitchell lists the fifteen people in
the ‘‘inner circle’’ of Linux developers as of 2001; see his essay ‘‘Open War,’’
Wired (October 2001): 135–139, especially p. 137. They come from nine
countries and nearly all have ‘‘day jobs’’: they do something else to earn money.

68. Brooks, The Mythical Man-Month, 80–81.

69. Brooks, The Mythical Man-Month anniversary edition (Reading, MA: Addison-
Wesley, 1995): 203. New material was added after chapter 15. I have avoided
relying on this edition, because I feel that, with a few exceptions, it does not add
much to the classic qualities of the original.

70. Raymond’s essay is available on the Internet, but I have relied on a published
version, in Knowledge, Technology, and Policy, 12/3 (Fall 1999): 23–49.

71. Ibid., 29.

72. Bryan Pfaffenberger, ‘‘The Rhetoric of Dread: Fear, Uncertainty, and Doubt
(FUD) in Information Technology Marketing,’’ Knowledge, Technology, and Policy
13/3 (Fall 2000): 78–92.

73. Torvalds and Diamond, Just for Fun, 87–89.

74. Stallman’s personal Web page is at hwww.stallman.org/i; the Free Software
Foundation’s official page is at hwww.gnu.ai.mit.edui. The on-line magazine
Salon.com has been running an ongoing chronicle of the Free Software move-
ment, by Andrew Leonard. These sites were accessed by the author in the winter
of 2001–2002, and they may change.

75. Moody, Rebel Code, 14–19.

76. The Usenet posting, to net.unix-wizards, was recovered and archived in 2001
by the search engine Google.com, from which this passage was taken.

77. Richard M. Stallman, ‘‘What Is a GNU/Linux System?’’, in GNU’s Bulletin
1/23 (1997): 4–5.

78. Steven Johnson, personal communication to the author, January 31, 2002.
The names of these programs are often, but not always or consistently, written in
lowercase letters. I have tried to follow the conventions of those who created
them wherever possible.

79. Ibid., 3.

80. Stallman’s relations with companies like Red Hat are fairly cordial, but he
objects to O’Reilly & Associates’ making money by selling books that serve as
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manuals for free software. According to Stallman, those manuals are an integral
part of the software and should be free as well.

81. Microsoft executive James Allchin was quoted by Andrew Leonard, ‘‘Life,
Liberty, and the Pursuit of Free Software,’’ Salon.com (on-line), February 15,
2001.

82. The basic outline of this story has been taken from Andrew Leonard’s
on-line history of open source, chronicled in Salon.com.

83. Ibid.; John Markoff, ‘‘Sharing Software, I.B.M. to Release Mail Program
Blueprint,’’ New York Times (December 14, 1998): C-5.

84. Spencer E. Ante, ‘‘Big Blue’s Big Bet on Free Software,’’ Business Week
(December 10, 2001): 78–79. That same magazine issue carried a two-page ad
in which IBM affirmed its commitment to Linux.

85. ‘‘IBM Unveils First Linux-Only Mainframes,’’ IBM press release, January 25,
2002.

86. GNOME stands for ‘‘Gnu Network Object Model Environment’’; KDE for ‘‘K
Desktop Environment.’’

87. Mitchell, ‘‘Open War.’’

88. Andreesen is quoted in Banks, Breaking Windows, p. 26, but the phrase has
become part of common folklore.

89. Open source advocates are eagerly anticipating Netscape’s latest version of
its browser, which it promises will be open source. That version, 7.0, was finally
released in the summer of 2002.

Conclusion

1. Frederick I. Ordway, III, ‘‘2001: A Space Odyssey in Retrospect,’’ in Eugene M.
Emme, ed., Science Fiction and Space Futures, Past and Present (San Diego, CA:
American Astronautical Association, 1982): 47–105. Ordway was a consultant
to the film’s director, Stanley Kubrick. The development of the character/
computer HAL was the result of extensive consultations with IBM, Honeywell,
RCA, General Electric, and other companies and technical experts. HAL seems
to be physically much larger than on-board computers of the 1990s, but in its
conversational user interface it is very close to what modern computer research-
ers hope to attain. For an assessment of how close we are to reproducing HAL,
see David G. Stork, ed., HAL’s Legacy: 2001’s Computer as Dream and Reality
(Cambridge: MIT Press, 1997).

2. E. J. Dijksterhuis, The Mechanization of the World Picture (Oxford: Clarendon
Press, 1961).
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3. Alan Turing, ‘‘On Computable Numbers, with an Application to the Entschei-
dungsproblem,’’ Proceedings London Mathematical Society, Series 2, 42 (1936): 230–
267.

4. I am indebted to Professor W. David Lewis of Auburn University for this
concept.

5. Electronics, October 25, 1973; Time, January 3, 1983.

6. For example, this thesis is the basis for the Smithsonian’s exhibition,
‘‘Information Age,’’ which opened at the National Museum of American History
in 1990.

7. See, for example, Clifford Stoll, Silicon Snake Oil (New York: Doubleday, 1995).

8. Bryan Pfaffenberger, ‘‘The Social Meaning of the Personal Computer, or Why
the Personal Computer Revolution was no Revolution,’’ Anthropological Quarterly
61 ( January 1988): 39–47.

9. Theoreau’s skepticism about techology was, of course, unusual. Recently I
heard a historian assert that Thomas Jefferson would probably have been an
enthusiastic proponent of modern computing and especially of the Internet
(David K. Allison, ‘‘The Information Revolution in Jefferson’s America,’’ speech
given at the University of Virginia for ‘‘Monticello Memoirs,’’ May 30, 1996). The
Library of Congress calls its Web site ‘‘Thomas’’ in Jefferson’s honor.
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