

Advanced Textbooks in Control and Signal Processing

Series Editors

Professor Michael J. Grimble, Professor of Industrial Systems and Director
Professor Emeritus Michael A. Johnson, Professor of Control Systems and Deputy Director

Industrial Control Centre, Department of Electronic and Electrical Engineering,
University of Strathclyde, Graham Hills Building, 50 George Street, Glasgow G1 1QE, UK.

Other titles published in this series:

Genetic Algorithms
K.F. Man, K.S. Tang and S. Kwong

Neural Networks for Modelling and Control of Dynamic Systems
M. Norgaard, O. Ravn, L.K. Hansen and N.K. Poulsen

Modelling and Control of Robot Manipulators (2nd Edition)
L. Sciavicco and B. Siciliano

Fault Detection and Diagnosis in Industrial Systems
L.H. Chiang, E.L. Russell and R.D. Braatz

Soft Computing
L. Fortuna, G. Rizzotto, M. Lavorgna, G. Nunnari, M.G. Xibilia and R. Caponetto

Statistical Signal Processing
T. Chonavel

Discrete-time Stochastic Processes (2nd Edition)
T. Soderstrém

Parallel Computing for Real-time Signal Processing and Control
M.O. Tokhi, M.A. Hossain and M.H. Shaheed

Multivariable Control Systems
P. Albertos and A. Sala

Control Systems with Input and Output Constraints
A.H. Glattfelder and W. Schaufelberger

Analysis and Control of Non-linear Process Systems
K. Hangos, J. Bokor and G. Szederkényi

Model Predictive Control (2nd Edition)
E.E. Camacho and C. Bordons

Digital Self-tuning Controllers
V. Bobdl, J. Bohm, J. Fessl and J. Machédcek

Control of Robot Manipulators in Joint Space
R. Kelly, V. Santibdfiez and A. Lorfa
Publication due July 2005

Robust Control Design with MATLAB®
D.-W. Gu, P.Hr. Petkov and M.M. Konstantinov
Publication due July 2005

Active Noise and Vibration Control
M.O. Tokhi
Publication due November 2005

A. Zaknich

Principles of
Adaptive Filters and
Self-learning
Systems

With 95 Figures

@ Springer

Anthony Zaknich, PhD

School of Engineering Science, Rockingham Campus,
Murdoch University, South Street, Murdoch, WA 6150, Australia

and

Centre for Intelligent Information Processing Systems,
School of Electrical, Electronic and Computer Engineering,
The University of Western Australia,

35 Stirling Highway, Crawley, WA 6009, Australia

Instructors Solutions Manual in PDF can be downloaded from the book’s page
at springeronline.com

British Library Cataloguing in Publication Data

Zaknich, Anthony
Principles of adaptive filters and self-learning systems.
(Advanced textbooks in control and signal processing)
1. Adaptive filters 2. Adaptive signal processing 3. System
analysis
L. Title
621.3°815324

ISBN-10: 1852339845

Library of Congress Control Number: 2005923608

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

Advanced Textbooks in Control and Signal Processing series ISSN 1439-2232
ISBN-10 1-85233-984-5

ISBN-13 978-1-85233-984-5

Springer Science+Business Media

springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Typesetting: Camera ready by author

Production: LE-TgX Jelonek, Schmidt & Vockler GbR, Leipzig, Germany
Printed in Germany

69/3141-543210 Printed on acid-free paper SPIN 10978566

Franica, Nikola, Iris, Nelli and Pi Pi

Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduate or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies in the textbook series.

This new advanced course textbook for the control and signal processing series,
Principles of Adaptive Filtering and Self-learning Systems by Anthony Zaknich,
presents a bridge from classical filters like the Wiener and Kalman filters to the
new methods that use neural networks, fuzzy logic and genetic algorithms. This
links the classification-based adaptive filtering methods to the innovative non-
classical techniques, and both are presented in a unified manner. This eliminates
the dichotomy of many textbooks which focus on either classical methods or non-
classical methods.

The textbook is divided into six parts: Introduction, Modelling, Classical Filters
and Spectral Analysis, (Classical) Adaptive Filters, Non-Classical Adaptive
Systems and finally Adaptive Filter Applications. As befits an advanced course
textbook there are many illustrative examples and problem sections. An outline
Solutions Manual complete with a typical course framework and with specimen
examination papers is also available to tutors to download from
springeronline.com.

Solid foundations for a possible adaptive filtering course are laid in the
Introduction (Part I) with an overview chapter and a linear systems and stochastic
processes chapter of nearly 60 pages. All the main basic terms and definitions are
found in this introductory part.

viii Series Editors’ Foreword

Signal models and optimization principles are covered in Part II. In the two
chapters of this part are found concepts like the pseudo-inverse, matrix singular
value decompositions, least squares estimation and Prony’s method.

Filters proper emerge in Part III which covers the classical Wiener filter, the
Kalman filter and power spectral density analysis methods. The chapter on the
Kalman filter is nicely presented since it includes examples and an assessment of
the advantages and disadvantages of the Kalman filter method.

In Part IV, adaptation and filtering are united to yield a set of chapters on
adaptive filter theory. Since many of the techniques are used by control engineers
it is pleasing to have a chapter devoted to adaptive control systems (Chapter 11).
In fact the way that the author keeps linking the specifics of filtering theory to the
broader fields of filter implementation, practical applications and control systems
is a real strength of this book.

Neural networks, fuzzy logic and genetic algorithms are the constituent
techniques of the non-classical methods presented in Part V. Each technique is
given a chapter-length presentation and each chapter is full of reviews,
perspectives and applications advice. In all three chapters links are made to similar
applications in the field of control engineering. This gives credence to the idea that
twin adaptive filtering and digital control systems courses would be powerful
reinforcing strategy in any advanced systems postgraduate qualification.

The final part of the book comprises two chapters of adaptive filter applications
(Part VI). Whilst the range of applications presented is not exhaustive, fields like
speech encoding, event detection, data transmission and discussing both classical
and non-classical filter solution methods are covered.

In summary Anthony Zaknich’s is a particularly welcome entry to the
Advanced Textbooks in Control and Signal Processing series. Graduate students,
academics and industrial engineers will find the book is a constructive introduction
to adaptive filtering with many of the chapters appealing to a wider control,
electronic and electrical engineering readership.

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

January 2005

Preface

This book can be used as a textbook for a one semester undergraduate or
postgraduate introductory course on adaptive and self-learning systems for signal
processing applications. The topics are introduced and discussed sufficiently to
give the reader adequate background to be able to confidently pursue them at depth
in more advanced literature. Subject material in each chapter is covered concisely
but with adequate discussion and examples to demonstrate the important ideas. Key
chapters include exercises at the end of the chapter to help provide a deeper topic
understanding. It is strongly recommended that the exercises be attempted first
before making reference to the answers, which are available in a separate Solutions
Manual. The Solutions Manual also includes a possible course outline using this
book as the textbook, plus sample assignments and representative past examination
papers with solutions that may aid in the design and conduct of such a course.

Topics are presented in a progressive sequence starting with a short introduction
to adaptive filters and systems, linear systems and stochastic process theory.
Unavoidably the first Chapter refers to some advanced concepts that are more fully
described in later Chapters. In the first reading of this first Chapter it may be best to
gloss over these and just accept a general understanding of what is described to
gain initial familiarity with the terminology and ideas.

The introductory part of the book is followed by the detailed developments of
system and signal modelling theory, classical Wiener filter theory, Kalman filter
theory, spectral analysis theory, classical adaptive linear and nonlinear filter theory,
adaptive control systems, nonclassical adaptive systems theory, through to adaptive
filter application issues. Although the book concentrates on the more established
adaptive filter theory, introductions to artificial neural networks, fuzzy logic and
genetic algorithms are also included to provide a more generic perspective of the
topic of adaptive learning. A significant further offering of the book is a method to
seamlessly combine a set of both classical and/or nonclassical adaptive systems to
form a powerful self-learning engineering solution method that is capable of
solving very complex nonlinear problems typical of the underwater acoustic signal
processing environment, as well as other equally difficult application domains.

The concepts of system adaptation and self-learning are quite general and can
conjure up all sorts of ideas. In this book, these concepts have a very specific
meaning. They signify that a system can be configured in such a way that allows it
to in some sense progressively organise itself towards a learned state in response to
input signals. All learning has to be with respect to some appropriate context and

X Preface

suitable constraints. A human designer hoping to achieve some meaningful
functionality will of necessity initially supply the required context and constraints.
The systems of interest here start out with predetermined structures of some sort.
However, these structures have sufficient inherent flexibility to be able to adapt
their parameters and components to achieve specific solutions formed from classes
of relationships predetermined by those structures. Sometimes all the signals
involved will come exclusively out of the system’s environment and sometimes
some of the signals will be supplied by a human supervisor, but in all cases the
system must be able to eventually achieve coherent solutions within that context by
its own adaptive or learning processes.

The difference between an adaptive system and a learning system is in principle
slight. It is to do with history and convention, but more importantly it is to do with
the degree of flexibility allowed by the system model. Classical linear and nonlinear
adaptive filters typically have less flexibility in the way they can change themselves
and are generally referred to as adaptive. On the other hand nonclassical adaptive
systems such as Artificial Neural Networks (ANN), Adaptive Fuzzy Logic (FL),
Genetic Algorithms (GA), and other machine learning systems have a much greater
flexibility inherent within their structures and therefore can be seen more as
learning systems.

The field of nonclassical learning systems is often referred to as Computational
Intelligence (CI). However, the word intelligence can also conjure up unintended
meanings. Intelligent methods are often referred to as model-free and are mostly
based on the example signals (or data) rather than on the constraints imposed by the
model itself (Haykin and Kosko 2001). In this special context, “more intelligent”
implies more able to extract system information from the example data alone and
be less dependent on a priori environmental and system information. It is fair to say
that no limited physical system can be absolutely model free. Although some
models like ANNs can be made to be very flexible, having a huge number of
possible configurations or states, it is really a matter of degree. Before the advent of
recent finite data based statistical learning theories (Cherkassky and Mulier 1998,
Vapnik 1998, 2001) it was commonplace to limit the flexibility of learning
machines down to a sufficient degree in order to force some regularization or
smoothness in a local sense. This is somewhat like classical adaptive systems do by
keeping the number of their model parameters (model order) to as low as necessary
in order to achieve good generalization results for the chosen problem. The
learning has to have a degree of local smoothness such that close input states are
close to their corresponding output states; else generalization of learning would be
impossible. The higher the order of the model with respect to the order of the
problem the more difficult it is for the adaptive system to maintain adequate
performance.

A unique situation is applicable to GAs with respect to CI and machine learning
in that they have been able to consistently create numerous and varied programmed
solutions automatically, starting from a high level statement of what needs to be
done (Koza et al 2003). Using a common generic approach they have produced
parameterized topologies for a vast number of complex problems. In that sense
GAs are exhibiting what Turing called Machine Intelligence (MI). To him MI was

Preface Xi

some mechanical process that exhibited behaviour, if done by humans, would be
assumed to be intelligent behaviour. Since Turing’s time in the 1940s and 50s the
term machine learning has tended to move away from this goal-orientated meaning
more toward specific approaches for attempting to achieve automatic machine
solutions to problems. These approaches tend to use somewhat arbitrary
methodologies, many of which are statistical in nature. It is because of this de-
emphasis on broad intelligence that narrower methodologies like adaptive filters,
ANNs and FL can also been included within the definition of CI or machine
learning. Although Turing did not have a way of doing it, he did suggest that true
MI might be achieved by an evolutionary process whereby a computer program
undergoes progressive modifications under the guidance of a natural selection
process. Since many successful natural systems seem to have developed by natural
evolutionary process it should be no surprise that GAs are also beginning to
produce very impressive results, especially as computer processing speed and
capacity increases. Genetic Programming (GP), a generalisation of GAs, can quite
effectively use all the other CI methodologies as substructures in its evolutionary
constructs. Therefore GP has a very special generic position in the scheme of
adaptive and self-learning systems and probably deserves much more attention than
it has received to date.

The final Chapter of this book introduces a model for seamlessly combining any
set of adaptive filters or systems to form an engineering solution method for
complex nonlinear adaptive filtering problems. The model is referred to as the Sub-
Space Adaptive Filter (SSAF) model (Zaknich 2003b). This model, when
constructed with a set of piecewise linear adaptive filters spread throughout the data
space of the problem, can be adjusted by a single smoothing parameter
continuously from the best piecewise linear adaptive filter in each sub-space to the
best approximately piecewise linear adaptive filter over the whole data space. A
suitable smoothing value in between ensures that all the adaptive filters remain
decoupled at the centre of their individual operating spaces and at the same time
neighbouring linear adaptive filters merge together smoothly at their common
boundaries. The SSAF allows each piecewise linear adaptive filter section to be
adapted separately as new data flows through it. By doing this the SSAF model
represents a learning/filtering method for nonlinear processes that provides one
solution to the stability-plasticity dilemma associated with standard adaptive filters
and feedforward neural networks. This is achieved by simply keeping the piecewise
linear adaptive filter models decoupled. As a complex nonlinear adaptive filter
model, the SSAF adapts only the one piecewise linear adaptive filter that is in the
current operating data space, leaving all the others unaffected. As a learning
system, it is possible to achieve local learning with the SSAF without affecting
previous global learning. This is done by the same process of only adjusting the one
piecewise linear adaptive filter at a time. In principle the SSAF structure can
smoothly integrate decoupled sets of any type of adaptive structures, linear or
nonlinear or combinations of both. However, by keeping all the adaptive filters
linear this makes it simpler to design and to deal with.

The SSAF does require human design input to determine the number of
piecewise linear adaptive filters to use and where to place them in the data space.

xii Preface

However, the smoothing factor can then be systematically optimised using typical
training data. It would be possible to automate the entire SSAF model construction,
of adding and pruning piecewise linear adaptive filter centres, based on the data
and keep it optimised as the data statistics change. However this is the subject of
ongoing research and is not reported on in this book. The SSAF model presented
here is a very useful approach, which can be applied to many practical problems
with judicious human design. It is a generic structure that can meaningfully use and
integrate all or any of the adaptive and self-learning systems covered in this book,
as well as many others, to tailor make special adaptive solutions for individual
problems.

Anthony Zaknich
Perth

Western Australia
January 2005

Acknowledgements

Since knowledge truly lives in brains and is subsequently broadcast from mind to
minds I do recognise that all the people with whom I have engaged throughout my
professional and academic careers have contributed significantly to the production
of this book. “That which has been is that which will be; and that which has been
done is that which will be done; and there is nothing new under the sun”
(Ecclesiastes 1:9). Still, occasionally, if only by quantum tunnelling, a very rare
soul must be able to happen upon a unique idea that the rest of us can then exploit
in every conceivable way, to either add to or to reconfigure previous knowledge.

Nevertheless it is fitting and proper to identify and heartily thank those that
have, in various ways, helped and contributed most significantly. These are,
Professor Yianni Attikiouzel, Dr Chris deSilva, Dr Mike Alder, Dr Thomas
Hanselmann, Stanley McGibney, Dr James Young, Brad Finch, Jordan Kosek and
the many undergraduate students that have been subjected to and have test driven
earlier versions of the document. Then there are the anonymous reviewers who
have provided valid and expert suggestions for the significant improvement of the
book. Professor Derek Humpage who, before his untimely death on the 31* of
October 2003, always unreservedly supported and encouraged my work, also
deserves a very special mention. Other people that deserve a mention for
miscellaneous input and assistance are Associate Professor Thomas Briunl,
Peyman Kouchakpour, Nicholas Pelly, Sandra Snook and Linda Barbour. Finally,
without the help of Professor Lakhmi C. Jain I'm sure I would not have gained
timely access to the publisher for the submission of my initial book proposal.

This book certainly offers some unique contributions of my own but it also
draws from many other fine textbooks by taking relevant ideas and representing
them in a context suitable to the specific aims of the book. Of all the textbooks that
have been referenced Monson Hayes’ “Statistical digital signal processing and
modelling” was one of the best that I do highly recommend to anyone. Also, Simon
Haykin’s book “Adaptive filter theory” has been especially helpful. Of all the
authors on this and allied subjects I have found Simon Haykin to be the one that I
can most identify with, both in respect to relevance of subject matter and emphasis.
Haykin’s work has always drawn from a more generic framework of concepts that
rightly places adaptive filters in the same category as artificial neural networks and
other nonlinear optimising systems. Astrom and Wittenmark’s book “Adaptive
control” has been an invaluable source for the identification and understanding of
the key adaptive control ideas and their very interesting history.

xiv Acknowledgements

Alcoa World Alumina through the Technology Delivery Group has kindly
approved of the use of two images in the Artificial Neural Networks Chapter to
demonstrate some practical applications. Dr Gerald Roach and John Cornell of
Alcoa were very helpful to me during the work that I performed for Alcoa in
relation to those applications.

In the final analysis, this book represents my perspective on the subject and as
such I accept full responsibility for any errors or oversights.

Contents

Part I Introduction 1
1 Adaptive FIltering.............ccoooiiiiiiiiiiiiieeee e 3
1.1 Linear Adaptive FIltersccccooervieriiniiniiiciicneeicciceectceececsee e 5
1.1.1 Linear Adaptive Filter Algorithmsc..cccccoecerviniininncnncnnene. 7

1.2 Nonlinear Adaptive FIlters.........coocevvieriiniiniiiiniiniiieieeeeeeiceeeee e 9
1.2.1 Adaptive Volterra Filters......cc..coccevviinieninninienicnieneececeee 9

1.3 Nonclassical Adaptive SYSTEMScccuerveriereinerrienieneeneeieeieeveseenieens 10
1.3.1 Artificial Neural NEtWorksccccceevvevieninininininicicieienn 10

1.3.2 FUZZY LOZIC .eiiiiiriiiiiiiiitieeeeeeeestetecee et 11

1.3.3 Genetic AIZOTItRMS ...c..covviriiriiniiniiierientccececee e 11

1.4 A Brief History and Overview of Classical Theories...........cccccecueeeenneen. 12
1.4.1 Linear Estimation Theory.........cccccoveevernenienieneeniniienieneenens 12

1.4.2 Linear Adaptive FIlters.........cocevvieniininiiniiniinieiciiceceneces 13

1.4.3 Adaptive Signal Processing Applications.......c..ccccceveereenuernens 14

1.4.4 Adaptive CONtrol.........ccocuerienienieniiiiienienicnicneenceeeieeeeneae 16

1.5 A Brief History and Overview of Nonclassical Theories.........c..ccc.c...... 17
1.5.1 Artificial Neural NetWOrkscceceeveiieviinininininiiiciceenn 17

1.5.2 FUZZY LOZIC .eiiiiiiiiiiiiieieeiteteeeeeeetesteseee et 18

1.5.3 Genetic AIZOTIthMScocueriiriiniiiiiienienieneecec e 18

1.6 Fundamentals of Adaptive NetWorks........ccccocerieniinenncnniinieneenceiene 19
1.7 Choice of Adaptive Filter Algorithmccccocerviiniineiniinniniinienceiene 23
2 Linear Systems and Stochastic Processes...............c.ccccoovininieniienieieenee, 25
2.1 Basic Concepts of Linear Systems.........cc.ccceeouirienieneeneeniiieneceeiens 27
2.2 Discrete-time Signals and SyStemsccocceeievirieniienieniiieeneceeeee 29
2.3 The Discrete Fourier Transform (DFT)ccccoocoiviiiiiieeieeeeee e 31
2.3.1 Discrete Linear Convolution using the DFT..................c...o..c... 32

2.3.2 Digital Sampling Theorycccocieiiiiiniiniiiniiceiceeee 33
2.3.2.1 Analogue Interpretation Formula................cccccecee. 37

2.4 The Fast Fourier TransfOorm..........ccoocueevieiiiiinieniieiieeiceeeeeeeeeee 37
2.5 The z-Transform.......ccoceieviiiiiiinieiieeeee e 40
2.5.1 Relationship between Laplace Transform and z-Transform......40

2.5.1.1 Bilateral z-Transformccceeeeuvevmeemmeeenennennnnnnnnnnnnns 41

XVi Contents

2.5.1.2 Unilateral z-Transformcccceceeeevvenincnineenenne. 42
2.5.1.3 Region of Convergence (ROC) for the z-Transform .42
2.5.1.4 Region of Convergence (ROC) for General Signals..43

2.5.2 General Properties of the DFT and z-Transform...........c........... 44

2.6 Summary of Discrete-Time LST SyStems......cccccocveveevernienieneenennecneenne 46
2.7 Special Classes Of FIltersccccoevuirieriiiiriiniinieneerieeiceec e 48
2.7.1 Phase Response from Frequency Magnitude Response............. 50

2.8 Linear Algebra SUMMATYcccccoviriiriiniinienienientenieeieee et 51
2.8.1 VECLOTS ittt st st 51

2.8.2 Linear Independence, Vector Spaces, and Basic Vectors.......... 52

2.8.3 MALIICES . c.uteieeiienieeiieeiteetestt ettt sttt et 53

2.8.4 Linear EQUAtiONScccccocterieriinieenieiieiieneenieeieeie et 55

2.8.5 Special MatriCescovuiriireiniiiiiniiniienieeieeieee st 56

2.8.6 Quadratic and Hermitian FOrmscccccoeiieiiiiiiiiieeeciieeen, 59

2.8.7 Eigenvalues and Eigenvectors.........ccccoceveereeneenienienieneennenns 59

2.9 Introduction to Stochastic Processes........ccouevervierienieneencnnieneeneeene 61
2.10 Random Signalscccccevieriiriiniiniiiiiieeieee et 63
2.11 Basic Descriptive Models of Random Signals.........c.ccceceeverieniencenncnne 64
2.11.1 The Mean Square Value and Variance........c..ccocceveereeneennennnen. 64
2.11.2 The Probability Density FUnction.........c..ccecceceenceneeniinieneennens 65
2.11.3 Jointly Distributed Random Variables.........cc..ccccceveerveneenennnen. 68
2.11.4 The Expectation OPeratorccecceevuereeneeneenuenneeneeneeneennens 68
2.11.5 The Autocorrelation and Related Functions............c.ccceceevueennen. 69
2.11.6 Power Spectral Density FUnctions..........ccocceveeviereeneeneeniennn. 72
2.11.7 Coherence FUNCHON..........cocueriiniinieiieiienieneenceceee et 73
2.11.8 Discrete Ergodic Random Signal Statisticsccccceeevvervennnens 74
2.11.9 Autocovariance and Autocorrelation Matrices..........cccceevennen. 75
2.11.10 Spectrum of a Random Process...........cccceevveriiniencencencnniennen. 76
2.11.11 Filtering of Random Processes.........c.cceveeverneriicnecnceneeniennen. 78
2.11.12 Important Examples of Random Processescc..ccoccevueeuennen. 80
2.11.12.1 Gaussian Processccoceeveevuerrienieneeneeneenensiennens 80

2.11.12.2 White NOISEeevueeiieieeienienieniienieenieete st eiee e 80

2.11.12.3 White SEqUENCESeevveeverririeniienieenieeieeieeieesieenieens 81

2.11.12.4 Gauss-Markov Processes.........cccceveereeneeneeniennuennne 81

2.11.12.5 The Random Telegraph Wave........cc.cccoceeverienuennnene 81

2,12 EXEICISES c.uveeutieuiieiieniieieeieete ettt stt et et ettt sbte bt e b et st st seee b e e eae 82
2121 Problems........coeeiieneiniiiiiiieeieteieeeeeee ettt 82

Part II Modelling 87
3 Optimisation and Least Square Estimation.................ccccccoeeviniinniiinnennen. 89
3.1 Optimisation THEOTY ..cc.uieruiieiiiierieeiieete ettt ere e 89
3.2 Optimisation Methods in Digital Filter Design........cccccccvvevveerciiennennnen. 91
3.3 Least Squares EStimationcoccueeriienieeniienieeiieenieeieeesieeeieeeeee s 95
3.4 Least Squares Maximum Likelihood Estimator...........cccceevvevrveeninennnen. 97

Contents xvii

3.5 Linear Regression — Fitting Datato a Linec..ccoccoveniencnncnicncnncne. 98
3.6 General Linear Least SQUATESc..ccoceevueevierienieneenieeienienieneenieeeeenee 99
3.7 A Ship Positioning Example of LSE.........ccccocoviiniiniiniiniiiicniene, 100
3.8 Acoustic Positioning System Example..........cccccoceevenveniinieniencnnenne. 104
3.9 Measure of LSE Precisionccoccvievieieieiienininciieieieienceeeeeens 108
3.10 Measure of LSE Reliability.........cccoceererninniiniiniiniinieeicnicnieneeeene, 109
3.11 Limitations of LSE.........ccooiiiiiiiiiiicieecceceee e 110
3.12 Advantages of LSEc.cooiiiiiiiiiiiiiiiceececeeeeeeeeeee e 110
3.13 The Singular Value Decomposition...........c.cceveerueeierienueneeneenenneenne 111
3.13.1 The PSeudOINVErse........cccccuevuiruiruinieieieniiiene e 112
3.13.2 Computation of the SVDcccccooiiiiniiniiiniiiineeeeeee 112
3.13.2.1 The Jacobi Algorithm..........cccceecuerieniineincnncnnncne 112

3.13.2.2 The QR Algorithm.......cccccevuerienieniinieneiiciicneee 115

314 EXEICISES ..oviuiiiiiieiiiieitieieet ettt st 116
3.14.1 ProblemsS....cciiciiieiiieieiesieeeeee e 116

4 Parametric Signal and System Modellingc..coccoceeviiiinininincnenne. 119
4.1 The Estimation Problemccccccovviiiniiiiniiiniiiniiiieeieceeeieeeeee 120
4.2 Deterministic Signal and System Modelling............cccccccevevirieniennnnne. 121
4.2.1 The Least Squares Method............ccceoieiiiiiiiiiiininicces 122

4.2.2 The Padé Approximation Methodccocceeeviiiniinniiennennnns 124

423 Prony’s Method..........cccoooieiiiiiniiiniiieececce e 127
4.2.3.1 All-Pole Modelling using Prony’s Method.............. 130

4.2.3.2 Linear Predictionccccceeveeecieiiiienieenieenieenieeee, 131

4.2.3.3 Digital Wiener Filter..........ccccoccooveniiiiniiniinnnens 132

424 Autocorrelation and Covariance Methods..........ccccceevveereeennne 133

4.3 Stochastic Signal Modellingccccccceeciriiniieniienieniiie e 137
4.3.1 Autoregressive Moving Average Models.............ccccceceeeeenens 137

4.3.2 Autoregressive Models..........ccccoeeeiiiiiiiiniiniiiiciienceees 139

4.3.3 Moving Average Models...........cocevieeiiiiiiiniiiiinicneceeies 140

4.4 The Levinson-Durbin Recursion and Lattice Filters...........ccccccoveenuneene. 141
4.4.1 The Levinson-Durbin Recursion Development....................... 142
4.4.1.1 Example of the Levinson-Durbin Recursion............ 145

4.42 The Lattice Filter........ccoceiniiiniiiiiiiiiiiiceteeeeeeeeeeee 146

4.43 The Cholesky DeCOMPOSItIONcccceeueerueenueeiereinieneenieeieens 149

4.44 The Levinson Recursion...........ccecueevvieenieeniieenieeniieenieeneenne 151

4.5 EXEICISES .eeutiiiiiiiieeniiteeiee ettt ettt eate e st e st e st e st e s be e st sbee e b s 154
451 Problems.....ccccceoiieiiiiiiieieeieee e 154

Part III Classical Filters and Spectral Analysis 157
5 Optimum Wiener Filter.................cocoooiiiiiiii e 159
5.1 Derivation of the Ideal Continuous-time Wiener Filter 160
5.2 The Ideal Discrete-time FIR Wiener Filter............ccoccevviiniiiniinnennnne. 162

5.2.1 General Noise FIR Wiener Filteringc.ccceceeeinienennne 164

xviii ~ Contents
5.2.2 FIR Wiener Linear Predictioncccecvevvevieninininininnenn. 165
5.3 Discrete-time Causal IIR Wiener Filterccccccccevininiiniininnennne. 167
5.3.1 Causal IIR Wiener Filteringc.ccccceevenienienenncnneneeneene. 169
5.3.2 Wiener Deconvolutioncccccceeivirieienienienenincneeieeennen 170
54 EXEICISES cueouiiuiiuiiiiiiiiiciictctete sttt st s 171
541 Problems.....cccoviiiniiiiiiiiiicieiceee e 171
6 Optimal Kalman Filterocoiiiiiiiiiinccccceeeeeeee 173
6.1 Background to The Kalman Filterccccocieiiniiniininiiniieneee. 173
6.2 The Kalman Filter..........ccoociiiiiiiiiiiiiiniiiieeeeeeeee e 174
6.2.1 Kalman Filter Examplescccccoccooiiiiiiiniiniiniiniicieeeee 181
6.3 Kalman Filter for Ship MOtiOn.........c..ccooviiviiiiieiiniinieeccceeeeeee 185
6.3.1 Kalman Tracking Filter Proper............ccccocenvenininninnnnen. 186
6.3.2 Simple Example of a Dynamic Ship Models.......................... 189
6.3.3 Stochastic MOdEISccceeveiiiieniiiiiiiiiceiceec e 192
6.3.4 Alternate Solution Models........ccccceevuerniiinienniiiinienicieeeee, 192
6.3.5 Advantages of Kalman Filtering...........cc.ccoeceeviniiniininnnnnns 193
6.3.6 Disadvantages of Kalman Filteringcccccccocenieniininnnnne 193
6.4 Extended Kalman Filter.........cccoovuiiniiiiiiiiniiiiiiieeceeeeeeeeee 194
0.5 EXETCISES ..vvieuuiiiiiieiieeiteeite ettt sttt sttt sttt ettt e st e e et 194
6.5.1 Problems.....cccccoviiiiiiiiiiiiieieeiee e 194
7 Power Spectral Density Analysiscccoecveeviiiniiieniiiiniieeieceeeiee e 197
7.1 Power Spectral Density Estimation Techniquesccccceeceeverieneenne. 198
7.2 Nonparametric Spectral Density Estimationc..ccecevveevernienieneenne. 199
7.2.1 Periodogram Power Spectral Density Estimation.................... 199
7.2.2 Modified Periodogram — Data Windowingc..cc.cceeeeunene. 203
7.2.3 Bartlett’s Method — Periodogram Averagingc..cc..ce...... 205
7.24 Welch’s Methodcocoeiviiiiiiiiiiniicecccccee e 206
7.2.5 Blackman-Tukey Method.........ccccocueriinieniiniiiniincinciiceiee 208
7.2.6 Performance Comparisons of Nonparametric Models............. 209
7.2.7 Minimum Variance Methodcccccceveninininniiciciinennenne. 209
7.2.8 Maximum Entropy (All Poles) Method...........cccccocveriencnncnnn 212
7.3 Parametric Spectral Density EStimation.........c..cceccevervienieneencnneneene. 215
7.3.1 Autoregressive Methods...........coceveevieneenenicnienienceneeenn 215
7.3.1.1 Yule-Walker Approach.........ccoccevceevecrvueneenieneenene 216
7.3.1.2 Covariance, Least Squares and Burg Methods........ 217
7.3.1.3 Model Order Selection for the
Autoregressive Methodsccocceveevinvienicnieneenne. 218
7.3.2 Moving Average Methodcccccecueriinienieninnenneniciieneene 218
7.3.3 Autoregressive Moving Average Method........c...cccccvceeneencene 219
7.3.4 Harmonic Methods..........oceeieieiiiiininiiiiicicieniceceeeeee 219
7.3.4.1 Eigendecomposition of the Autocorrelation
IMALTIX ¢ 219
7.3.4.1.1 Pisarenko’s Methodcccoecveveienennene. 221

7.3.4.1.2 MUSIC.....coooiiiiiiiiiniiieicicieieeseeee 222

Contents Xix

T4 EXEICISES ..eeiiiiiiieiieiieieie sttt sttt s e 223
TA1 Problems.....cccociciiiiininiiicicicieeccceee e 223
Part IV Adaptive Filter Theory 225
8 Adaptive Finite Impulse Response Filters.................cccooeivniiiniinniinnnnnns 227
8.1 Adaptive Interference Cancellingccoceeveereriieniineeneenienienieneens 228
8.2 Least Mean Squares Adaptationcocecoeereenerrienieneeneenieeieneeneens 230
8.2.1 Optimum Wiener SOIUtion..........ccoceeveerieeniinienieneeneeienienaeen 231
8.2.2 The Method of Steepest Gradient Descent Solution................ 233
8.2.3 The LMS Algorithm Solution..........cccceeceevverienieneenennennncnnne. 235
8.2.4 Stability of the LMS Algorithm.........ccocceveriiniiniiincnncnenen. 237
8.2.5 The Normalised LMS Algorithm........cc.ccoceecvenienenncnnennennen. 239
8.3 Recursive Least Squares EStimationc..ccoccevevvienieneeninnieniencenenns 239
8.3.1 The Exponentially Weighted Recursive Least
Squares Algorithm.........cccceveeviiriienieniinieeeeeeeeeceee 240
8.3.2 Recursive Least Squares Algorithm Convergence................... 243
8.3.2.1 Convergence of the Filter Coefficients in
the Mean.......cccooiviriiieiiiiieicenccceeeee 243
8.3.2.2 Convergence of the Filter Coefficients in
the Mean SqUarecocceevvereverienieneenennenieneene 244
8.3.2.3 Convergence of the RLS Algorithm in
the Mean SqUarec..cocceevvervenienieneeneenenieneene 244
8.3.3 The RLS Algorithm as a Kalman Filter..........c..ccccccecceeennennen. 244
84 EXEICISES ...ueiuiiuieiiiiiiiitinie ettt ettt s 245
841 Problems.......ccocuiviiiiiiiiiieiiieicceeeeee e 245
9 Frequency Domain Adaptive Filtersc..cccoccociiinininninienincnennn 247
9.1 Frequency Domain Processing...........ccccoceeeuieciieiiniinieniienceieeeneee 247
9.1.1 Time Domain Block Adaptive Filteringc..cccccoceneenne 248
9.1.2 Frequency Domain Adaptive Filteringccccocceoeniennnne 249
9.1.2.1 The Overlap-Save Method............ccccocrevinininnnnnn. 251
9.1.2.2 The Overlap-Add Methodcc.cocceoviniinininnnnn. 254
9.1.2.3 The Circular Convolution Method...........c...cccc.c...... 255
9.1.2.4 Computational Complexity.........cccccervuirveinieniennenns 256
0.2 EXETCISES c.uvteeuiiieiieeiieeiteeite et e it e bt e e st et e st e e bt e st e e bt e s e e sbee e 256
9.2.1 ProbIemS...cccueiiiiiiiieiiieeiie ettt 256
10 Adaptive Volterra Filtersccccccovviiiiiiiiiiniiieie e 257
10.1 Nonlinear FIItersccccceeueriiriiniriniiiiieiciciccese e 257
10.2 The Volterra Series EXpansionccecceeceeveevienvienienieneenceneneeneenee 259
10.3 A LMS Adaptive Second-order Volterra Filterc.cccoceveeneenenncnne. 259
10.4 A LMS Adaptive Quadratic Filtercccceeveriinenncnniniinienceieeeee 261
10.5 A RLS Adaptive Quadratic Filterc..coccevvieniiniinenncnicnieneeceeee 262

1O.6 EXEICISES . eeiiiiiiiiiirieiiieeeeeeeteeeee e eeett et ee e e e e e e eeetaareeeeeeeeeaaaaeeeas 264

XX Contents

10.6.1 Problems........ccecueviiiniiiriiieicieeceeceeeee e 264
11 Adaptive Control SYyStems...........c..coceeeriiiiniinininenieieicee e 267
11.1 Main Theoretical ISSUESc.c.eervueeriieriiiniienieenieeeieesiee et 268
11.2 Introduction to Model-reference Adaptive Systems..........ccccecevvenuenee. 270
11.2.1 The Gradient Approach..........c.cceeceeeierienienieeneeneeneeeeeeens 271
11.2.2 Least Squares EStimationcccceeeieveriiiicnieneenieeenens 273
11.2.3 A General Single-input-single-output MRAS.......................... 274
11.2.4 Lyapunov’s Stability Theorycccccceeviriiniininninniiiinees 277
11.3 Introduction to Self-tuning Regulators...........c.ccceecierienienceninnennenne. 280
11.3.1 Indirect Self-tuning Regulators..........cc.cccceeeeeriiinienienieniienenns 282
11.3.2 Direct Self-tuning Regulators............cccccecereniininniininicnnens 283
11.4 Relations between MRAS and STR..........ccccoociiiiiiiiiiiiiceeee 284
11.5 APPLCAIONS....c..iiiieiiiiiiiieieee et 285
Part V Nonclassical Adaptive Systems 287
12 Introduction to Neural NetWorkscccccoceeeniniiniininiicnininineneeceeenen 289
12.1 Artificial Neural Networks.........cccccocvevieiiiiiniiniiiiiicecece e 289
12.1.1 DefiNItionS ..c..eeruieiieiieiieieeiieeiieieeie et 290
12.1.2 Three Main TYPesc.cccoveeriiiiiiiiiiicieeieseereeneeeee e 290
12.1.3 Specific Artificial Neural Network Paradigms........................ 292
12.1.4 Artificial Neural Networks as Black Boxedccccceceeuens 293
12.1.5 Implementation of Artificial Neural Networks....................... 294
12.1.6 'When to Use an Artificial Neural Networkc..ccccocceeeeae 295
12.1.7 How to Use an Artificial Neural Network............c..cccccceeieas 295
12.1.8 Artificial Neural Network General Applications..................... 296
12.1.9 Simple Application EXamplesccc.coccerviriinienieninnienens 297

12.1.9.1 Sheep Eating Phase Identification from Jaw
SOUNAS ..o 298
12.1.9.2 Hydrate Particle Isolation in SEM Images............... 298

12.1.9.3 Oxalate Needle Detection in Microscope Images....299
12.1.9.4 Water Level Determination from Resonant

Sound ANalysis.........ccceeverierieeieienieneeneeeee e 299

12.1.9.5 Nonlinear Signal Filteringc.cccccceeirvennnnne. 299

12.1.9.6 A Motor Control Example...........cccccceevieriinienennne. 300

12.2 A Three-layer Multi-layer Perceptron Modelccccceciriiniencnne. 300
12.2.1 MLP Backpropagation-of-error Learning............c.c.cccccoceeneene 302
12.2.2 Derivation of Backpropagation-of-error Learning 303
12.2.2.1 Change in Error due to Output Layer Weights 303
12.2.2.2 Change in Error due to Hidden Layer Weights........ 304

12.2.2.3 The Weight Adjustmentsccccceceereeneencenncnne. 305
12.2.2.4 Additional Momentum Factorc..cc.ccceeeeienn. 307

12.2.3 Notes on Classification and Function Mapping....................... 308

12.2.4 MLP Application and Training Issues..........c..ccocoveeviriinnens 308

Contents xxi

12.3 EXEICISES cuouviuieiiiiniieiieiciete sttt st s s 310
12.3.1 Problems.......coeeiiieieiiiiiiiiieieeeieee e 310

13 Introduction to Fuzzy Logic Systems...........cc.cccccoevininiinieniincnenicnenennee. 313
13.1 Basic FUZZY LOZIC ..cccviiiiiiiieiicicecceeeeceee e 313
13.1.1 Fuzzy Logic Membership Functionsccccocccovenianinnnnne. 314

13.1.2 Fuzzy Logic Operationsceceeveerueerreecrersuerieeneeneeneeeneenns 315

13.1.3 Fuzzy Logic Rules.........cc.cciiiiiminiiiiiieicccceceeeee 316

13.1.4 Fuzzy Logic Defuzzificationc..ccccceeeeviriinienienieniennenns 317

13.2 Fuzzy Logic Control Designc..cociviiriinieniinieieeieeec e 318
13.2.1 Fuzzy Logic Controllers............cocueeeevirniiecenienieneeneeieeeeeee 319

13.2.1.1 Control Rule Construction...........ceecveervveeriueernueennne 319

13.2.1.2 Parameter Tuningccceceeeueeeriecencieneeneeneenncnn. 321

13.2.1.3 Control Rule Revisionccccceevvveerieenieencieenieennne. 322

13.3 Fuzzy Artificial Neural Networksccccoceviinieninniincicneciece 322
13.4 Fuzzy APPLICAtIONSooviiiiiiiiieiieiieeceieeteee e 323

14 Introduction to Genetic Algorithmsccoeviiiiiiniiiiiiiiniceeees 325
14.1 A General Genetic AlOrithmccccocuiviiniiniininiinienicncececee e 326
14.2 The Common Hypothesis Representation.............ceceveereeneenenniennenne. 327
14.3 Genetic AlgOrithm OPerators.........coceeverienieeneeniernienieneeneeneeneeeeeeans 329
14.4 Fitness FUNCLIONSccccuiviiiiiniiiiiiicieceiesiee e 330
14.5 Hypothesis Searching.........ccoccevervierieneiniiiniinienieneeieeieee et 330
14.6 Genetic Programmingcocccevuerienienienieenieeienientesee e 331
14.7 Applications of Genetic Programming..........c...cccceeceeveeneenieniieneeneene. 332
14.7.1 Filter Circuit Design Applications of GAs and GP 333

14.7.2 Tic-tac-to Game Playing Application of GASc..cccceeeeneee 334

Part VI Adaptive Filter Application 337
15 Applications of Adaptive Signal Processingccccocceevviiviiiiiiencnnns 339
15.1 Adaptive PrediCtionc.ccocueeeciieiiiieeiie ettt s e s 340
15.2 Adaptive Modellingcccceevveriiriinieniiniiiciiesteneeieeeee e 342
15.3 Adaptive Telephone Echo Cancelling...........ccocceeveeuenienieneenennienncnne 343
15.4 Adaptive Equalisation of Communication Channels.............c..ccecceuueene. 344
15.5 Adaptive Self-tuning Filters........c.cccoceeviriiniiiniiniiniiciiceeneecee 346
15.6 Adaptive Noise Cancellingcocceeeevuerienieniienieneineiicneeneeneeeeene 346
15.7 Focused Time Delay Estimation for Rangingcccccoecevviereencenncnne. 348
15.7.1 Adaptive Array Processing......c..ccoceeveevuerienieneeneenennienneenne. 349

15.8 Other Adaptive Filter AppliCatioNnS.......cccveereerivreerieeenieeerieenieesveenaeenns 350
15.8.1 Adaptive 3-D Sound SyStemsS........cceeeveerveercueenreenieeenreennennns 350

15.8.2 MIiCrOPNONE ATTAYS.....eeerreererierreerreeniieenieenieesreeeseesnsresnsnesns 351

15.8.3 Network and Acoustic Echo Cancellation...........c.cccoccevueennenne. 352

15.8.4 Real-world Adaptive Filtering Applications..........cccccceeeveenee. 353

XXii Contents

16 Generic Adaptive Filter Structures..............ccccoccovnirinicninininineeeeees 355
16.1 Sub-band Adaptive FIiltersc.cccocieviiiiiiiniiniiicicreceeeeseeeee 355
16.2 Sub-space Adaptive FIiltersccoceviiiiiiiniiniiiiciceneeeceeee, 358

16.2.1 MPNN MoOdel......coiniiniriiiiiiniininiieeeecentese et 360
16.2.2 Approximately Piecewise Linear Regression Model............... 362
16.2.3 The Sub-space Adaptive Filter Model............ccccociriininnnnn. 364
16.2.4 Example Applications of the SSAF Model............c.cccceeeueee. 366

16.2.4.1 Loudspeaker 3-D Frequency Response Model........ 367

16.2.4.2 Velocity of Sound in Water 3-D Model................... 369
16.3 Discussion and Overview of the SSAF ..., 370
REFEI@IICESooooiieiieiiiiee e e eea e e e eeaanees 373

PART I. INTRODUCTION

This introduction to the subject of adaptive filters and self-learning systems consists
of two chapters including a general introduction to adaptive systems and an
overview of linear systems and stochastic processes. Some of the more significant
types of adaptive and self-learning systems of interest to engineering design are
overviewed. These include; linear adaptive filters, nonlinear adaptive filters,
adaptive controllers, Artificial Neural Networks (ANN), Fuzzy Logic (FL), and
Genetic Algorithms (GA). Linear adaptive filters, nonlinear adaptive filters, and
adaptive controllers are categorised as classical adaptive systems as they represent
a culmination of initial research in these areas. On the other hand ANNs, FL and
GAs can be regarded as nonclassical Computational Intelligence (CI) approaches to
adaptive systems because they tend to go beyond classical methods. However, it is
fair to say that the boundary between classical and nonclassical can be a little
blurred in some cases, where development proceeded in concert using simpler
underlying concepts. Sufficient discussion is provided to give a reasonable
introductory understanding of them and to show some of the fundamental
relationships between them. All of these adaptive systems may be used for many
different types of functions and applications related to signal processing and control
as is indicated in these introductory and in later Chapters.

A short history is given of all of these approaches starting with linear estimation
theory upon which they are either directly founded or at least reliant on for signal
processing applications. Linear estimation theory technically began with Galileo
Galilei in 1632 but it was Gauss who was given credit for it, based on his very
significant invention of the method of least squares in 1795. Through a series of
research efforts starting in the late 1930s through to the 1940s by Kolmogorov,
Klein and Wiener mean squares estimation was studied in relation to stochastic
prediction and filtering processes. Work during the 1950s by Widrow and Hoff
resulted in the very successful and now famous Least Mean Squares (LMS)
algorithm that can be used to adapt a linear filter. During the same time period
work begun by Placket eventually resulted in the family of Recursive Least Squares
(RLS) algorithms (a special case of the Kalman filter) for linear filter adaptation.
From then on significant progress has been made on linear and subsequently
nonlinear adaptive filter theory, eventually opening the way for the more current
nonclassical methods of CI in the form of ANNs, FL and GAs.

The fundamentals of adaptive filters are discussed to show the basic
commonalities and issues involved. All adaptive filter systems require some kind of

2 Principles of Adaptive Filters and Self-learning Systems

desired signal to guide the adaptation process. Clearly, if the desired signal for a
given input signal were always known it would obviate the need for any kind of a
processing system at all. However, in practice, such a signal is not always known
either in part or in whole. Therefore there are many ways that adaptive filters can
be configured to work with physically available information that is in some way
correlated with the theoretically desired signal. A study of specific ways to deal
with this issue for prediction, modelling, inverse-modelling and interference
cancelling problems provides considerable insight into how to approach other new
problems. Not all adaptive algorithms are suitable for use under all practical
conditions so it is necessary to understand their individual strengths and limitations
for proper choice in specific applications.

The second Chapter reviews the basic aspects of linear systems and stochastic
processes as a necessary background for later topics. A good grounding is provided
in discrete-time signal processing concepts, including, the discrete Fourier
Transform and its practical uses, along with a concise review of digital sampling
theory. The relationship between continuous-time and discrete-time signals and
transformations is investigated through a study of the Laplace Transform and the z-
Transform and their connections. This culminates in an overview of discrete-time
linear shift invariant system theory and properties of some special filter forms.

A basic summary of linear algebra appropriate to discrete signal processing is
provided to define operational elements and functions for the various algorithmic
structures and operations required for adaptive filtering. To this same end a very
basic overview of random signals and processes is also provided with formal
definitions of fundamental stochastic processes, functions and operators.

1. Adaptive Filtering

Adaptive filters represent a significant part of the subject of statistical signal
processing upon which they are founded. Historically, the parametric approach has
been the main engineering approach to signal processing and is based on a priori
models derived from scientific knowledge about the problem. At the other extreme,
the alternative nonparametric approach is based on the use of more general models
trained to replicate desired behaviour using statistical information from
representative data sets. Adaptive filters are actually based on an approach which is
somewhere in between these two extremes. When a priori knowledge of a dynamic
process and its statistics is limited then the use of adaptive filters can offer
performance improvements over the more conventional parametrically based filter
designs. Furthermore, they can offer other signal processing benefits that would not
be possible otherwise. Consequently, adaptive filters have found application in
diverse fields including communications, controls, robotics, sonar, radar,
seismology and biomedical engineering to name but a few.

Filtering in the most general terms is a process of noise removal from a
measured process in order to reveal or enhance information about some quantity of
interest. Any real data or signal measuring process includes some degree of noise
from various possible sources. The desired signal may have added noise due to
thermal or other physical effects related to the signal generation system, or it may
be introduced noise due the measuring system or a digital data sampling process.
Often the noise is a wide-sense stationary random process (has a constant finite
mean and variance, and an autocorrelation function dependent only on the
difference between the times of occurrence of the samples), which is known and
therefore may be modelled by a common statistical model such as the Gaussian
statistical model. It may also be random noise with unknown statistics. Otherwise, it
may be noise that is correlated in some way with the desired signal itself. The so-
called filtering problem can be identified and characterised more specifically by the
terms filtering, smoothing, prediction (Haykin 1996) and deconvolution (Hayes
1996).

1. Filtering, strictly means the extraction of information about some quantity
of interest at the current time ¢ by using data measured up to and including
the time ¢.

4 Principles of Adaptive Filters and Self-learning Systems

2. Smoothing, involves a delay of the output because it uses information
extracted both after and before the current time ¢ to extract the
information. The benefit expected from introducing the delay is more to
do with accuracy than filtering.

3. Prediction, involves forecasting information some time into the future
given the current and past data at time ¢ and before.

4. Deconvolution, involves the recovery of the filter characteristics given the
filter’s input and output signals.

Filters can be classified as either linear or nonlinear types. A linear filter is one
whose output is some linear function of the input. In the design of linear filters it is
necessary to assume stationarity (statistical-time-invariance) and know the relevant
signal and noise statistics a priori. The linear filter design attempts to minimise the
effects of noise on the signal by meeting a suitable statistical criterion. The classical
linear Wiener filter, for example, minimises the Mean Square Error (MSE) between
the desired signal response and the actual filter response. The Wiener solution is
said to be optimum in the mean square sense, and it can be said to be truly optimum
for second-order stationary noise statistics (fully described by constant finite mean
and variance). For nonstationary signal and/or noise statistics, the linear Kalman
filter can be used. Very well developed linear theory exists for both the Wiener and
Kalman filters and the relationships between them.

When knowledge of the signal and noise statistics is unavailable a priori it is
still possible to develop a useful filter by using a recursive algorithm to adjust the
filter parameters based on the input data stream. This is what an adaptive filter
does. If the signal and noise statistics are stationary then the adaptive filter would
be expected to eventually converge to the optimum Wiener solution. If they are
nonstationary then the adaptive filter tracks them if they vary at a sufficiently slow
rate. The adaptation rate must be faster than the rate of change in statistics to
maintain tracking. The parameters of an adaptive filter are updated continuously as
the data flows through it; therefore the adaptive filter is strictly a nonlinear system.
However, it is common to distinguish linear and nonlinear adaptive filters. A linear
adaptive filter is one whose output is some linear combination of the actual input at
any moment in time between adaptation operations. A nonlinear adaptive filter does
not necessarily have a linear relationship between the input and output at any
moment in time. Many different linear adaptive filter algorithms have been
published in the literature. Some of the important features of these algorithms can
be identified by the following terms (Haykin 1996),

1. Rate of convergence - how many iterations to reach a near optimum
Wiener solution.

2. Misadjustment - measure of the amount by which the final value of the
MSE, averaged over an ensemble of adaptive filters, deviates from the
MSE produced by the Wiener solution.

Adaptive Filters 5

3. Tracking - ability to follow statistical variations in a nonstationary
environment.

4. Robustness - implies that small disturbances from any source (internal or
external) produce only small estimation errors.

5. Computational requirements - the computational operations per iteration,
data storage and programming requirements.

6. Structure - of information flow in the algorithm, e.g., serial, parallel etc.,
which determines the possible hardware implementations.

7. Numerical properties - type and nature of quantization errors, numerical
stability and numerical accuracy.

The filters described so far may be referred to as classical adaptive filters in so
far as they draw upon theory and methods extending from classical Wiener filter
theory. A nonclassical approach to adaptive filtering is one that does not rely so
much on linear modelling techniques. Artificial neural networks, fuzzy logic, and
genetic algorithms have come to prominence in more recent years and are described
more as learning systems and belong to the family of CI methods. These employ a
range of nonlinear learning techniques that are not dependent on such strict
assumptions about either the process model or process statistics. Nevertheless, they
can still often be adapted in whole or in part by some form of a gradient descent
algorithm (Principe et al 2000) that attempts to minimise a mean square error
function, not unlike the classical adaptive filters.

1.1 Linear Adaptive Filters

A linear adaptive filter system filters a sequence of input data by controlling its
adjustable parameters via an adaptive process. The choice of filter structure is a
very important part of the system. There are three main types of structures
commonly used (Haykin 1996),

1. Transversal structure (tapped delay line) - similar to the linear FIR filter
structure.

2. Lattice predictor - a modular structure with a lattice appearance.
3. Systolic array - a parallel computing network ideally suited for mapping
important linear algebra computations such as matrix multiplication,

triangulation, and back substitution.

Of these the transversal structure, although not necessarily the most efficient, is
very successfully employed for many practical systems. It forms the basis of the

6 Principles of Adaptive Filters and Self-learning Systems

Finite Impulse Response (FIR) discrete-time filter (Loy 1988). The terms
associated with this filter structure are defined more thoroughly in later Chapters
but for now it is sufficient to say that given an input sequence set of discrete real
numbers {x[n]}, where n is an integer index value, the output sequence y[n] of a
Mth order FIR filter is defined by Equation 1.1 and depicted in Figure 1.1. The
index value n represents the current discrete-time instant, and n - k represents the
previous kth instant, i.e., delayed by k instants.

M
yln] =2 blk] x[n—k] (1.1)
k=0

where:
b[k] are the fixed filter coefficients that define the filter’s characteristics.

x[n] x[n—-1] xn-2] x[n-3]
Unit Delay Unit Delay Unit Delay
b[0] bl1 (2] b[3] etc.
A A A >
yin]

Figure 1.1. FIR Transversal Structure

To design a real FIR filter, Equation 1.1 must be converted into realisable
blocks, including a means for obtaining a delayed version of the input sequence
x[n], a means for multiplying input signal values in the delay line by the filter
coefficients, b[k], and a means for adding the scaled sequence values. The FIR

filter is completely defined once the coefficients of the filter are known. For
example, if the filter coefficients are the set{b[k] }= {3,—1,2,1 } then this represents

a third order (M = 3) FIR filter, having a tap length of four. Here, a tap is simply a
tap-off point in a serial delay line. The equation for this example filter can be
expanded into a four-point (4-tap) difference equation defined by Equation 1.2.

3
ylnl=> blklx[n—k]
k=0

yln]=b[0]x[n]+b[1]x[n—1]+b[2] x[n—2]+b[3] x[n—3] (1.2)
e.g.,

y[n] = 3x[n]+—x[n—1]+2x[n—2]+ x[n —3]
The general direct-form realisation of a FIR filter using basic computational
elements is depicted in Figure 1.1 with the tapping points shown with black dots.
Notice that the input sequence x[n] flows through the delay line continuously and
uniformly step by step producing another output value y[n] at each integer step,
indefinitely. This filter can be made into an adaptive filter by the addition of a
suitable adaptation mechanism that is capable of sensibly adapting the coefficients
b[n] progressively at each time step based on some real-time data information.

Adaptive Filters 7

1.1.1 Linear Adaptive Filter Algorithms

No unique algorithmic solution exists for linear adaptive filtering problems. There
are various algorithms and approaches that may be used depending on the
requirements of the problem. However, there are two main approaches to the
development of recursive adaptive filter algorithms (Haykin 1996),

1.

where:

e[k]
x[k]
w(k]

The Stochastic Gradient Approach - uses a tapped delay line or
transversal structure. The relation between the tap weights and the mean
square error between the desired and actual filter output is a multi-
dimensional paraboloid (quadratic) error function with a uniquely defined
minimum, representing the optimum Wiener solution. This solution can be
found by the well-established optimisation method called steepest descent,
which uses the gradient vector to gradually descend step by step to the
minimum of the error function. The so-called Wiener-Hopf equations, in
matrix form, define this optimum Wiener solution. A simpler way to do
this is with the Least Mean Squares (LMS) algorithm, invented by B.
Widrow and M. E. Hoff Jr in 1959. It is a modified system of Wiener-
Hopf equations and is used to adapt the filter weights toward the
minimum. This algorithm estimates the gradient of the error function from
instantaneous values of the correlation matrix of the tap inputs and the
cross-correlation vector between the desired response and the tap weights.
The LMS algorithm is very simply and elegantly defined by Equation 1.3.

wlk+1] = w[k] + 27 e[k] x[k] (1.3)

= learning rate parameter.
= scalar error (desired output minus the actual output).
=[xy, Xp,.eens xp]T, the tap vector at time instance k.
=[wpwy,..., wp] T the tap weight matrix at time instance k.
A problem with the LMS algorithm is that it is slow to converge and is
dependent on the ratio of the largest to smallest eigenvalue of the
correlation matrix of the tap inputs. The higher the ratio, the slower the
convergence. Nevertheless, it is very popular and the most widely used
learning algorithm, which under the right conditions can perform very
adequately. Its tracking behaviour is said to be model-independent and
consequently it exhibits good tracking behaviour.

A lattice structure can also be used with the gradient approach in
which case the resulting adaptive filtering algorithm is called the Gradient
Adaptive Lattice (GAL).

Least Squares Estimation (LSE) - minimises an objective, or error,
function that is defined as the sum of weighted error squares, where the
error or residual is defined as the difference between the desired and actual
filter output as before. LSE can be formulated in two important ways, with

8 Principles of Adaptive Filters and Self-learning Systems

block estimation or recursive estimation approaches. In block estimation
the input data sequence is arranged in blocks of equal time length and
processing proceeds block by block. In recursive estimation the processing
proceeds sample by individual time sample. Recursive estimation is more
popular because it typically requires less data storage overhead than block
estimation. Recursive Least Squares (RLS) can be seen as a special case of
the well known Kalman filter, which itself is a form of LSE. The Kalman
filter uses the idea of state, where state represents a measure of all the
relevant inputs applied to the filter up to and including a specific instance
in time. In the most general terms the Kalman filtering algorithm can be
defined by Equation 1.4.

s[k+1] = s[k] + K(k) i[k] (1.4)

where:
K(k) = the Kalman gain matrix at instance k.
i[k] = the innovation vector at instance k.
s[k] = the state at instance k.

The innovation vector i[k] in Equation 1.4 contains the new information (being the
observed new data at time k less its linear prediction based on observations up to
and including time k-1) that is presented to the filter at the time of the processing
for the instance k. As there is a one-to-one correspondence between the Kalman and
RLS variables it is possible to learn useful ideas for RLS from the vast Kalman
filter literature. There are three main categories of RLS depending on the specific
approach taken (Haykin 1996),

1. The Standard RLS Algorithm - uses a tapped delay line or transversal
structure. Both the RLS and Kalman algorithms rely on the matrix
inversion lemma, which results in lack of numerical robustness and
excessive numerical complexity. The next two categories address these
problems.

2. Square-root RLS Algorithms - linear adaptive filter approaches based
on QR-decomposition of the incoming data matrix and they represent the
square-root forms of the standard RLS algorithm. The QR-decomposition
can be performed by the Householder transformation and the Givens
rotation, which are both numerically stable and robust data-adaptive
transformations.

3. Fast RLS Algorithms - by exploiting the redundancy in the Toeplitz
structure of the input data matrix (a matrix where all the elements along
each of its diagonals have the same value) and through use of linear least
squares prediction in both the forward and backward direction the
standard and square-root RLS algorithms can be reduced in computational
complexity from O(M?) to O(M), where M is the number of adjustable
weights and O(.) denotes “the order of.” This reduction in computational

Adaptive Filters 9

complexity is welcomed for hardware realisations. There are two types of
fast RLS algorithms depending on the structure used (Haykin 1996),

1. Order-recursive Adaptive Filters - make linear forward and
backward predictions using a lattice like structure. These can be
realised in numerically stable forms.

2. Fast Transversal Filters - where the linear forward and backward
predictions are done with separate transversal filters. These suffer
from numerical stability problems and they require some form of
stabilisation for practical implementations.

The tracking behaviour of the family of RLS algorithms, unlike the LMS algorithm,
are model-dependent and therefore their tracking behaviour can be inferior to the
stochastic gradient approach unless care is taken to choose an accurate model for
the underlying physical process producing the input data.

1.2 Nonlinear Adaptive Filters

The linear adaptive filters discussed above are all based on the minimum mean
square error criterion, which results in the Wiener solution for wide sense stationary
statistics. This means that these filters can only relate to the second-order statistics
of the input data and are strictly only optimum for Gaussian, or at least
symmetrical, statistics. It is a fortunate happenstance that these types of filters have
been found to be useful for statistics that deviate from this Gaussian ideal. If the
input data has non-Gaussian statistics, where the Wiener solution is not guaranteed
to be optimum, it is necessary to incorporate some form of nonlinearity in the
structure of the adaptive filter to deal adequately with the higher-order statistical
information. Although this will improve the learning efficiency it will be at the
expense of more complex mathematical analysis of the problem. One important
type of nonlinear adaptive filter is the adaptive Volterra filter.

1.2.1 Adaptive Volterra Filters

The adaptive Volterra filter can be seen as a kind of polynomial extension to the
linear adaptive filter. It includes a zero order Direct Current (DC) offset term, a
first-order linear term, and then a number of higher order terms starting with the
second-order quadratic terms, third-order cubic terms and so on to some chosen
order. In practice the Volterra filter is often implemented only up to quadratic or
cubic order and rarely higher because of the huge increase in computational
complexity beyond that, especially for high input dimensions.

10 Principles of Adaptive Filters and Self-learning Systems

1.3 Nonclassical Adaptive Systems

Three types of nonclassical adaptive systems that do not rely on linear modelling
techniques are Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and Genetic
Algorithms (GAs). All these types of systems can be classified as nonlinear
learning structures. Some forms of ANNs are similar to the classical adaptive
systems in that they do have a set of parameters that are optimised based on the
minimisation of a scalar quadratic error function. To some extent, fuzzy logic
systems also have the same kind of similarity as they can be integrated with ANNs
to produce hybrid adaptive systems. On the other hand genetic algorithms are
different in their form and function although they do have various types of
adaptation, or learning mechanisms designed to search, if not for optimal then at
least better states.

1.3.1 Artificial Neural Networks

ANNSs are a type of massively parallel computing architecture based on brain-like
information encoding and processing models. The particular class of supervised
training or learning ANNs have a similar external form as the linear adaptive filter.
That is, there is a desired output behaviour that the ANN tries to learn as it is
exposed to input training data and then it tries to generalise that behaviour after
training. In this form ANNs offer the following advantages for adaptive filter
applications,

1. Ability to learn the model of almost any continuous (and preferable
differentiable) nonlinear physical process given sufficient input-output
data pairs generated from that process.

2. Ability to accept weak statistical assumptions about the process.
3. Ability to generalise its learning to new data after initial training.

4. VLSI implementation in a massively parallel structure that is fault tolerant
to hardware failure of some of the circuits because of the inherent
redundancy.

ANN:Ss, although theoretically able to model linear processes, are less useful for
this purpose and should not be used for linear modelling. The well-established
linear design methods are easier to use and analyse. The major disadvantage of
ANN:Ss is that it is much harder to specify and analyse their application to specific
problems. Since the process model is developed from a limited set of training input-
output data pairs a degree of uncertainty may exist about the bounds of
applicability of the ANN solution. The training data may not be fully representative
of the process and may not contain rare but very significant samples that are critical
to the system’s success.

Adaptive Filters 11

1.3.2 Fuzzy Logic

Initially fuzzy logic was conceived of as a better method for sorting and handling
data but has since proven to be good for control applications because it effectively
mimics human control logic. It uses an imprecise but very descriptive language to
deal with input data more like a human operator does and it is very robust and
forgiving of operator and data input error. FL can be implemented in hardware,
software, or a combination of both.

FL is based on the idea that although people do not require precise numerical
information input, they are still capable of highly adaptive control functionality.
Therefore, it is reasonable to assume that if feedback controllers could be
programmed to accept noisy, imprecise inputs, they may be much more effective
and perhaps easier to implement. FL uses a simple rule-based approach, such as “IF
A AND B THEN C,” to control problems as opposed to a strict system model
based approach. In that sense a FL. model is empirically-based, built by a designer’s
experience rather than on his/her technical understanding of the system. The design
is based on imprecise terms such as “too cool,” “add heat,” etc. that are descriptive
rather than numerically specific. For instance, if a person was trying to regulate the
temperature of a shower they might just increase the hot water tap a little if they felt
it was too cool and then adjust again if it still was not satisfactory. FL is capable of
mimicking this type of behaviour but at a much higher rate than a human can do it.

1.3.3 Genetic Algorithms

Genetic algorithms represent a learning or adaptation method based on search that
is analogous to biological evolution and can be described as a kind of simulated
evolution. The interest in GAs lies in the fact that evolution is known to be a
successful and robust method for biological adaptation. GAs can be seen as general
optimisation mechanisms that are not guaranteed to find strictly “optimum”
solutions but they often succeed in finding very suitable solutions. They are very
useful not only for machine learning problems including function approximation
and learning network topologies but also for very many other types of complex
problems. In their most common form GAs work with hypotheses that may be
described by symbolic expressions, computer programs, specific model parameters,
collections of rules, and so on. They are useful in applications where hypotheses
contain complex interacting parts, where the impact of each part on overall
hypothesis fitness may be difficult to understand or model. GAs can also take
advantage of parallel computer hardware since they lend themselves to
computational subdivision into parallel subparts.

When the hypotheses are specifically computer programs the evolutionary
computing process is called Genetic Programming (GP), where GP is a method for
automatically creating computer programs. It starts from a high-level statement of
what needs to be done and uses the Darwinian principle of natural selection to
breed a population of improving programs over many generations (Koza et al
2003). Given a collection or population of initial hypotheses the search for an
acceptable hypothesis proceeds from one generation to the next by means of

12 Principles of Adaptive Filters and Self-learning Systems

operations inspired by processes in biological evolution such as random mutation
and crossover. A measure of “fitness” is required to evaluate the relative worth of
the hypotheses in each generation. For each generation the most “fit” hypotheses
are selected probabilistically as seeds for producing the next generation by
mutating and then recombining their components.

What makes GAs very special is that very little design effort is required to make
transitions to new problem solutions within a given domain or even new problems
from a completely different domain. In this sense GAs can truly be classified as
intelligent in a broader sense because they can provide solutions through a generic
approach that can rival solutions produced by human intelligence.

1.4 A Brief History and Overview of Classical Theories

It is both interesting and instructive to consider a brief history of the related areas
of linear estimation theory, linear adaptive filters, adaptive signal processing
applications and adaptive control. The following historical summary is according to
Haykin (Haykin 1996) and the view of Astrém and Wittenmark (Astrom and
Wittenmark 1995). It is not in any sense complete but it is sufficient to provide a
suitable structure to relate the fundamentally important discoveries and techniques
in these areas. Some, but not all, of the most significant techniques mentioned
below are more fully developed and analysed in later Chapters.

1.4.1 Linear Estimation Theory

Galileo Galilei, in 1632, originated a theory of estimation, which he developed to
minimise various functions of errors. However, it was Gauss who was given credit
for the development of linear estimation theory. This was based on his invention of
the method of least squares that he developed in 1795 to study the motion of
heavenly bodies. Legendre invented the method of least squares independently of
Gauss and actually published before Gauss in 1805 and was therefore subsequently
given equal credit for the invention.

In the late 1930s and 1940s Kolmogorov and, Krein and Wiener originated the
first studies of minimum mean square estimation in connection with stochastic
processes. In 1939 Kolmogorov (Kolmogorov 1939) developed a comprehensive
treatment of the linear prediction problem for discrete-time stochastic processes. In
1945 Krein (Krein 1945) subsequently extended Kolmogorov’s results to
continuous-time by using a bilinear transformation. By 1949 Wiener (Wiener
1949), working independently of either Kolmogorov or Krein, had formulated the
continuous-time linear prediction problem but in a different context to the other
two. He derived an explicit formula for the optimum predictor as well as solving
the filtering problem of estimating a process corrupted by added noise. This
required the solution of the integral equation known as the Wiener-Hopf equation,
which was developed in 1931.

Adaptive Filters 13

In 1947 Levinson (Levinson 1947) formulated the Wiener filtering problem in
discrete-time in the form of a transversal filter structure as expressed by matrix
Equation 1.5.

Rwy=p (1.5)

where:
R = autocorrelation matrix of the tap inputs.
w(, = tap-weight vector of the optimum Wiener filter solution.
p = the cross-correlation vector between the tap inputs and the desired output.

For the special case of stationary inputs R takes the form of a Toeplitz structure,
which allowed Levinson to derive a recursive procedure for solving the matrix
Equation 1.5. Later in 1960 Durbin (Durbin 1960) rediscovered Levinson’s
procedure when he used it for recursive fitting of autoregressive time-series models.

Both Wiener and Kolmogorov assumed that the stochastic process was
stationary and that there would be an infinite amount of data available. Other
researchers in the 1950s generalised the Wiener and Kolmogorov filter theory for
finite observation intervals and for nonstationary processes. However, these
solutions were found to be complex and difficult to apply to the prevailing
application of satellite orbit estimation. In 1960 Kalman (Kalman 1960) achieved
considerable fame with his Kalman filter algorithm, which seemed to be very
suitable for the dynamical estimation problems of the new space age. Kalman’s
original filter was developed for discrete-time processes. A year later in 1961, in
conjunction with Bucy, he also developed it for the continuous-time case (Kalman
and Bucy 1961).

Over the period from 1968 to 1973 Kailath reformulated the solution to the
linear filtering problem by using the so called “innovations” approach, which was
first introduced by Kolmogorov in 1941. The term “innovation” conveyed the idea
of new information that is statistically independent of past samples of the process,
i.e., orthogonal to the linear estimate given all the past data samples.

1.4.2 Linear Adaptive Filters

From earlier work in the 1950s the LMS algorithm for adaptive transversal filters
emerged in 1959. It was developed by Widrow and Hoff for their ADALINE
pattern recognition system (Widrow and Hoff 1960). The LMS algorithm is a
stochastic gradient algorithm and is closely related to the concept of stochastic
approximation developed by Robins and Monro (Robins and Monro 1951). The
GAL algorithm was developed by Griffiths around 1977 and is only structurally
different from the LMS algorithm. In 1981 Zames (Zames 1981) introduced the so
called H*° norm (or minimax criterion) as a robust index of performance for solving
problems in estimation and control. Subsequently, it was shown by Hassibi et al
(Hassibi et al 1996) that the LMS algorithm is optimum under this new H®* criterion
and thereby proving that its performance is robust. In 1965 Lucky (Lucky 1965)
introduced a zero-forcing algorithm alternative to the LMS algorithm for the

14 Principles of Adaptive Filters and Self-learning Systems

adaptive equalisation of communication channels, which also used a minimax type
of performance criterion.

The family of RLS algorithms saw its beginnings with the work of Placket
(Placket 1950). After much work by many researchers, in 1974 Godard (Godard
1974) presented the most successful application of the Kalman filter theory used to
derive a variant of the RLS algorithm. It wasn’t until 1994 that Sayed and Kailath
(Sayed and Kailath 1994) exposed the exact relationship between the RLS
algorithm and Kalman filter theory opening the way for the full exploitation of the
vast literature on Kalman filtering for solving linear adaptive filtering problems.
They showed that QR-decomposition-based RLS and fast RLS algorithms were
simply special cases of the Kalman filter.

1.4.3 Adaptive Signal Processing Applications
Five significant applications of linear adaptive signal processing are,
1. Adaptive equalisation.
2. Speech coding.
3. Adaptive spectrum analysis.
4. Adaptive noise cancellation.
5. Adaptive beamforming.

Adaptive equalisation of telephone channels to minimise data transmission
intersymbol interference was first developed by Lucky in 1965 (Lucky 1965). He
used his minimax criterion based zero-forcing algorithm to automatically adjust the
tap weights of a transversal equaliser by minimising what he called the peak
distortion. This pioneering work by Lucky spearheaded many other significant
contributions to the adaptive equalisation problem. In 1969, Gerosho and Proakis,
and Miller independently reformulated the adaptive equaliser problem using a mean
square-error criterion. In 1978 Falconer and Ljung (Falconer and Ljung 1978)
developed a simplifying modification to a Kalman based algorithm, for adaptive tap
adjustment, derived by Godard in 1974. This simplification reduced the
computational complexity of Godard’s algorithm to that comparable with the LMS
algorithm. Satorius, Alexander and Pack in the late 1970s and early 80s showed the
usefulness of lattice-based algorithms for adaptive equalisation.

Linear Predictive Coding (LPC) was introduced and developed for the problem
of speech coding in the early 1970s by Atal and Hanauer. In LPC the speech
waveform is represented directly in terms of time-varying parameters related to the
transfer function of the vocal tract and excitation characteristics. The predictor
coefficients are determined by minimising the mean square error between actual
and predicted speech samples. Although a lattice structure for the linear prediction
problem was developed by a number of investigators it was Saito and Itakura who

Adaptive Filters 15

were credited with the invention in 1972. They were able to show that the filtering
process of a lattice predictor model and an acoustic tube model of speech were
identical.

From the time when Schuster invented the periodogram for analysing the power
spectrum of a time-series in 1898 until 1927 it was the only numerical method
available for spectrum analysis. In 1927 Yule (Yule 1927) introduced a new
approach based on the concept of a finite parameter model for a stationary
stochastic process. This new approach was developed to combat the problem of the
periodogram’s erratic behaviour when applied to empirical time-series observed in
nature such as sunspot activity. Yule’s model was a stochastic feedback model in
which the present sample of the time-series is assumed to consist of a linear
combination of past samples plus an error term. This approach was called
autoregressive spectrum analysis. Burg rekindled interest in the autoregressive
method in the 1960s and 70s with his maximum-entropy method of power spectrum
estimation directly from the available time-series. In 1971 Van den Bos (Van den
Bos 1971) was able to show that the maximum-entropy method is equivalent to
least squares fitting of an autoregressive model to the known autocorrelation
sequence. The maximum-entropy method involved the extrapolation of the
autocorrelation function of the time series in such a way that the entropy of the
corresponding probability is maximised at each step of the extrapolation.

In 1967 Kelly of Bell Telephone Laboratories was given credit for inventing an
adaptive filter for speech echo cancellation, which used the speech signal itself in
the adaptation processes. Work on echo cancellers only started around 1965.
Another type of adaptive noise canceller was the line canceller used for removing
the mains power frequency interference from instrument and sensor preamplifier
circuits. This was invented by Widrow and his co-workers at Stanford University.
An early version of the device was built in 1965 and described in Widrow’s paper
in 1975 (Widrow et al 1975).

Initial contributions to adaptive array antennas were made by Howells in the
late 1950s and by Applebaum in 1966. Howells developed a sidelobe canceller that
became a special case of Applebaum’s adaptive antenna array system. Applebaum’s
algorithm was based on maximising the Signal-to-Noise Ratio (SNR) at the array
output for any type of noise. This classic work was reprinted in the 1976 special
issue of IEEE Transactions on Antennas and Propagation (Applebaum and
Chapman 1976). Another major work related to adaptive array antennas was put
forward independently by Widrow and his co-workers in 1967. Their theory was
based on the LMS algorithm and their paper, (Widrow et al 1967), the first
publication in the open literature on adaptive array antenna systems, was
considered to be another classic of that era. In 1969 Capon (Capon 1969) proposed
a different method for solving the adaptive beamforming problem based on
variance (average power) minimisation. Finally, in 1983, McWhirter (McWhirter
1983) developed a simplified version of the Gentleman-Kung systolic array for
recursive least squares estimation, which is very well suited for adaptive beam
forming applications.

16 Principles of Adaptive Filters and Self-learning Systems

1.4.4 Adaptive Control

Much of the history that is related to adaptive filters is also relevant to adaptive
control systems as they incorporate much of the same theory. In fact, the main
difference between the two is mostly a matter of application rather than underlying
principles of operation. It is helpful to view signal processing and control theory,
generally, as divergent branches of application of the same underlying theory. In
some ways there should be more reintegration of the two fields for the sake of
economy of understanding.

Historically, adaptive control has been very difficult to define explicitly,
because it is seen to be superficially similar to feedback control. Both feedback
control and adaptive control involve changing behaviour to conform to new
circumstances. Attempts to draw distinctions between the two have not always been
successful but it is now commonly agreed that a constant-gain feedback is not an
adaptive system. From a pragmatic view point adaptive control can be seen as a
special type of nonlinear feedback control in which the states of the process are
separated into two categories related to the rate of change involved. In this view the
slowly changing states are seen as the parameters and the fast ones are the ordinary
feedback states. This definition precludes linear constant parameter regulators and
gain scheduling from being called adaptive. Constant parameter regulators do not
change their parameters and gain scheduled systems don’t have any feedback once
the parameters are changed to a new state.

There was extensive research on adaptive control applied to autopilots for high
performance aircraft in the early 1950s. The dynamics of high-performance aircraft
undergo major changes when they fly from one operating point to another (Levine
1996). This autopilot control problem was investigated by Whitaker et al
(Whitaker et al 1958) using Model Reference Adaptive Control (MRAC). Early
enthusiasm for more sophisticated regulators, which work well over a wider range
of conditions, diminished through bad hardware, nonexistent theory, a general lack
of insight, and finally an in flight test disaster. However, in the 1960s important
underlying theory for adaptive control was introduced through the development of
state space and stability theory based on Lyapunov and other important results in
stochastic control theory. Correct proofs for stability of adaptive systems under
very restrictive assumptions were developed in the late 1970s and early 1980s.
Nevertheless, controversies over the practicality of adaptive control were still
raging, mostly based on the sensitivity and potential instability of earlier designs.
From this early work new and interesting research began into the robustness of
adaptive control and into controllers that are universally stabilising. By the mid
1980s the field of robust adaptive control was opened based on new designs and
analysis. In the late 1980s and early 1990s the focus of adaptive control research
turned to extending the results of the 1980s to certain classes of nonlinear plants
with unknown parameters. This led to new classes of MRAC with improved
transient and steady-state performance.

Adaptive control has traditionally been classified into the MRAC and Adaptive
Pole Placement Control schemes (APPC). In MRAC both the poles and zeros of the
plant model are changed and in APPC only the poles are changed so that the

Adaptive Filters 17

closed-loop plant has the same input-output properties as those of the reference
model.

1.5 A Brief History and Overview of Nonclassical
Theories

The three main types of nonclassical adaptive or learning systems are ANN, FL and
GAs. These form the foundation of what is now called the computational intelligent
systems that have slowly developed into viable and accepted engineering solution
methods over the past six decades. Although their origins are not much more recent
than the classical adaptive filtering theories they have found broader commercial
application only in more recent times.

1.5.1 Artificial Neural Networks

The history of ANNs has two significant periods. The period before 1970
represents the period of initial investigation and the period after 1970 opened the
modern era of ANNs.

William James, in 1890, was the first to publish about brain structure and
function in connection with psychological theories and neuropsychological research
(James 1890). The first theorists to conceive the fundamentals of neural computing
were W. S. McCulloch and W. A. Pitts in 1943 (McCulloch and Pitts 1943). They
derived theorems related to the then current neural models. Their work proved that
networks consisting of neurons could represent any finite logical expression but
they did not demonstrate any learning mechanisms. It was Donald Hebb, in 1949,
who was the first to define a method of neural network learning (Hebb 1949).
Rosenblatt, in 1958, defined the ANN structure called the Perceptron that engineers
recognised as a “learning machine” (Rosenblatt 1958). This work laid the
foundations for both supervised and unsupervised training algorithms that are seen
today in both the Multi-Layer Perceptron (MLP) and Kohonen networks
respectively.

The advent of silicon based integrated circuit technology and consequent
growth in computer technology in the 1960s was instrumental in the general surge
in artificial neural computer systems. The ADALINE introduced by Widrow and
Hoff was similar to the Perceptron but it used a much better learning algorithm,
called the LMS algorithm, which can also be used for adaptive filters. The
extension of the LMS algorithm is used in today’s MLP. As the 1960s drew to a
close there was growing optimism for the advance of ANN technology. However,
funding and research activity in ANNs took a major dive after the publication of
Minsky and Papert’s book “Perceptrons” in 1969, which was mistakenly thought to
have criticised the whole field of ANNs rather than just the simple Perceptron.

The decade of the 1970s saw a much reduced but stable activity in ANN
research by a smaller number of researchers including Kohonen, Anderson,
Grossberg and Fukushima. After the low period of the 1970s, several very

18 Principles of Adaptive Filters and Self-learning Systems

significant publications appeared between 1982 and 1986 that advanced the state of
ANN research. John J. Hopfield published a most significant single paper in 1982
(Hopfield 1982) and a follow-on paper in 1984 (Hopfield 1984) identifying ANN
structures that could be generalised and that had a high degree of robustness. The
Parallel Distributed Processing (PDP) Research Group published the first two
volumes of their “Parallel Distributed Processing in 1986 followed by a third
volume in 1988. The most significant contribution of the PDP volumes was the
derivation and subsequent popularisation of the Backpropagation-of-error learning
algorithm for MLPs. Closely following that, important ANNs based on Radial
Basis Functions (RBFs) (Powell 1985) (Broomhead and Lowe 1988) including
Donald Specht’s Probabilistic Neural Network (PNN) (Specht 1988) and General
Regression Neural Network (GRNN) (Specht 1988, 1991) were introduced.

A significant resurgence in interest in ANNs occurred in the 1980s as
computers got bigger, faster and cheaper. This ubiquitous computing power
allowed the development of many mathematical tools to express analytically, the
complex equilibrium state energy landscapes necessary to study ANN architectures.
Because of this increased and enthusiastic research activity, especially in
conjunction with statistics, many new and useful learning theories have now been
proposed and implemented. One of the most important of these is Vapnik’s
“Statistical Learning Theory* (Cherkassky and Mulier 1998).

1.5.2 Fuzzy Logic

The basic foundations of fuzzy logic were conceived by Lotfi Zadeh in 1965 as an
extension of classic set theory (Zadeh 1965). He presented it not as a control
methodology, but as a way of processing data by allowing partial set membership
rather than specific or crisp set membership/non-membership. Due to inadequacy of
computing systems at the time this approach to set theory was not applied to control
systems until the 1970s. U.S. manufacturers were not quick to embrace this
technology, whereas the Europeans and Japanese began to aggressively build
commercial products with it almost from the outset.

Ebraham Mamdani applied FL to control a simple steam engine for the first time
in 1974 at the University of London (Mamdani 1974). It was not for another six
years that the first industrial application appeared for the control of a cement kiln
by F. H. Smidth of Denmark. Fuji Electric of Japan applied FL to the control of a
water purification plant in the 1980s and Hitachi later developed an automatic train
control system. This led to the FL. boom in Japan in the early 1990s with the
production of household electronics products using FL. Since then, FL has been
applied to a wide range of growing applications including decision support systems,
investment consultation, fault diagnosis, medical diagnosis, transport scheduling,
management strategy, social and environmental systems (Tanaka 1997).

1.5.3 Genetic Algorithms

In 1948 Alan Turing identified an approach to machine intelligence based on
genetical or evolutionary search by which a combination of genes is sought based

Adaptive Filters 19

on survival value. He didn’t specify how to conduct the search or mention the
concept of population recombination but he did introduce the idea that a number of
child-machines should be experimented with to see how well they learn and then
choose from the best of these (Turing 1950). Here, the structure of the machine
represented hereditary material. Changes of the machine represented mutations, and
natural selection (fitness) was based on the experimenter’s judgement. It was left to
John Holland between 1962 and 1975 to introduce the crucial concepts of
maintaining large populations and sexual recombination within them (Holland
1962, 1995).

Since the 1950s there has been a great variety of experimentation with
evolution-based computational approaches, which has included optimisation of
numerical parameters in engineering design. In 1966 Fogel, Owens and Walsh
(Fogel, Owens and Walsh 1966) first developed evolutionary programming, which
was a method of evolving finite-state machines. This method was followed up and
further developed by numerous researchers including John Koza (Koza 1992).
Koza applied the search strategy of GAs to hypotheses consisting of computer
programs, which has now come to be known as Genetic Programming (GP).

1.6 Fundamentals of Adaptive Networks

An adaptive network can be used to model either a linear system whose parameters
are unknown (or changing with time) or a nonlinear system whose model is
unknown (or also changing with time). A linear adaptive system will eventually
converge to a linear solution over sufficient time and range of input signals. It will
then continue to adapt only if the system or noise statistics change. For a nonlinear
process, a linear adaptive system can only adapt to a linear approximation at the
current operating point. It is possible however, to keep a historical record of the set
of linear models for each small region around a set of operating points and then
apply an appropriate model as the set point changes. This is called schedule or
switching control with multiple models. A nonlinear adaptive network will adapt to
a more accurate model at the current operating point, but like the linear adaptive
network it cannot generalise this to new operating points, unless a historical record
is kept. To ensure a more robust control of nonlinear systems it is desirable to have
some historical information about the system over the expected range of operating
points in parallel with a fast adaptive network to make up for any differences.

The basic system structure that is applicable to both adaptive and some learning
networks is depicted in Figure 1.2. In the most general terms the vector of the noisy
input signal at discrete instance k is x;, and the vector error signal is e, = (d; - y).
where d, is the vector of the noiseless desired output response and y, is the actual
vector network response given an input of x;. The network is adapted or trained by
presenting it with successive input and desired vector pairs and then using the error
signal to adapt the network in such a way as to consistently reduce the error
according to some specific learning rule. A least squares error rule is commonly
used for both linear networks and nonlinear learning and adaptation. When the
network is trained or adapted the error arrives at some statistical minimum. As the

20 Principles of Adaptive Filters and Self-learning Systems

statistics of the input vectors change with time the network can be continually
adapted to maintain a minimum error, otherwise the network parameters are fixed
after training. Either way the network then represents an estimate of the noiseless
model of the underlying process or function at that point. The process function is
represented by the set of input and desired vector pairs used to train the network.

Desired Response Error
d, + €x

N

Adaptive Network

N\

Figure 1.2. Basic Adaptive Structure

Yk
X

Network Response

Input

There are two main considerations related to the basic adaptive structure shown
in Figure 1.2. Firstly, if the desired responses are known why is the network needed
at all? Secondly, the adaptation mechanism may be simple or complex depending
on the network and consequently, the convergence may take considerable time or
computation. In the first case, although the desired responses are not usually known
explicitly it is often possible to derive them or find responses that are correlated to
them. Since there is no general solution to this problem it is necessary to look at
specific examples to gain insight into application issues. The most common generic
configurations according to (Lim and Oppenheim 1988) are for,

1. Adaptive prediction.

2. Adaptive forward modelling.

3. Adaptive inverse modelling.

4. Adaptive interference cancelling.

These can best be represented by Figures 1.3 to 1.6 respectively.

Slave Network

(copy of weights)

>

Adaptive Filters

Prediction
of Input
f(k

Desired Response

= Xk

N

| %
|
\

Adaptive

Network

Netwo

N\

Response

€k

" Error

Figure 1.3. Adaptive Prediction

Unknown

d; Desired Response

System

N

Adaptive Yk

o

System Output

Error

Network

N\

Network

Response

Figure 1.4. System Forward Modelling

sy—o Desired Response

Input Delay | Xk-0
Xk
of &
Input
Xk
Input
Unknown | **
Sk
System

Delay
of 0 d;
C
>— e
‘\ Error

Adaptive Yk
Network Network

Response

Figure 1.5. Inverse System Modelling

21

22 Principles of Adaptive Filters and Self-learning Systems

Signal + Noise Estimate
Sk+Xg —® 9 S
X'k Adaptive

Network Network
Noise Response
(correlated
with noise in signal) \ Error ei

Figure 1.6. Interference Cancelling

For the adaptive prediction model, shown in Figure 1.3, the input is delayed by
J time units and fed to an adaptive network. The input serves as the desired
response. The network weights are adapted and when they converge this produces a
best estimate of the present input given an input delayed by J. After convergence
the weights are copied into a slave network, which is then taken to be the best
predictive model. Wiener developed optimum linear least squares filtering
techniques for linear signal prediction. When the signal’s autocorrelation function
is known, Wiener’s theory yields the impulse response of the optimum filter. The
autocorrelation function can be determined using a correlator, or alternatively the
predictive filter can be determined directly by adaptive filtering. For nonlinear
problems and for non-Gaussian noise it is strictly necessary to use adaptation with a
nonlinear network to achieve acceptable results.

In cases where a system of unknown structure has observable inputs and outputs
an adaptive network as shown in Figure 1.4 can be used to model the system’s
response. This is called forward system modelling. Inverse modelling involves
developing a filter that is the inverse of the unknown system, as shown in Figure
1.5. The delay by J units is usually included to account for the propagation delay
through the plant and the adaptive network, assuming that both are causal systems,
i.e., their output depends only on inputs up to and including the current time.

Separating a signal from additive noise, also called interference cancelling, is a
common problem in signal processing. An adaptive network as shown in Figure 1.6
can be used to subtract the noise out of the signal. This gives a better result than
applying an optimum Kalman or a Wiener filter, both of which introduce some
inevitable phase distortion. The adaptive network solution is only viable when there
is an additional reference input X’; containing noise that is correlated with the
original corrupting noise x;. The network filters the reference noise x’;, to produce
an estimate y;, of the actual noise x;. Then, it subtracts y, from the primary input
(S¢ + x;), which acts as the desired response d;. The error signal e, becomes the
estimate of the signal s; if, s;, X", X; and y, are statistically stationary, have zero
means, and s, is uncorrelated with X’ and x;.

Adaptive Filters 23

1.7 Choice of Adaptive Filter Algorithm

In the most general terms an adaptive algorithm tries to minimise an appropriate
objective or error function that involves the input, reference and filter output
signals. An objective function must be non-negative and ideally have an optimum
value of zero. The adaptive algorithm can be seen to consist of three main parts, the
definition of the minimisation algorithm, the definition of the objective function
and the definition of the error signal (Dinz 1997).

The most commonly used minimisation methods used for adaptive filters are
Newton’s method, quasi-Newton methods and the steepest-descent gradient method
(Principe 2000). Gradient methods are easy to implement but the Newton method
usually requires less iterations to achieve convergence. A good compromise
between these two are the Quasi-Newton methods which have reasonable
computational efficiency and good convergence. However, the Quasi-Newton
methods are susceptible to instability problems. In all these methods the gain or
convergence factor must be chosen carefully based on good knowledge of the
specific adaptation problem.

The error function can be formed in many ways but the most common ways
include the Mean Square Error (MSE), Least Squares (LS), Weighted Least
Squares (WLS), and Instantaneous Squared Value (ISV). Strictly speaking the
MSE is approximated by the other more practical methods since the MSE is a
theoretical value requiring an infinite amount of data. ISV is the easiest to
implement but it has noisy convergence properties. The LS method is suitable for
stationary data, whereas WLS is valuable for slowly varying data statistics. The
choice of error signal is crucial to algorithm complexity, convergence properties,
robustness and control of biased or multiple solutions.

There is a great diversity of adaptive applications with their own peculiarities.
Every application must be carefully evaluated and understood before a suitable
adaptive algorithm can be chosen, because a solution to one application may not be
suitable for another. The choice of algorithm must take into account not only the
specifics of the application environment but also issues of computational cost,
performance, and robustness. Often it can be instructive to apply the simple but
robust LMS or Backpropagation-of-error algorithm to the problem first, to study,
evaluate and compare the benefits of an adaptive solution to the problem. Further
and more detailed design decisions can then be made based on those findings. All
adaptive system forms can be implemented to accept and process either real or
complex input signals depending on the requirements.

2. Linear Systems and Stochastic Processes

A review of linear systems theory and stochastic processes is presented here to
provide a reference and a summary of the fundamental ideas required for following
chapters that draw upon linear methods. It is assumed that the reader already has a
basic familiarity with these concepts and thus reading through them will cement
them more firmly in mind. More advanced readers may skip this Chapter but it is
recommended that they at least skim through it because there are some useful
summary panels that help provide a good overview of important concepts.

Every physical system is broadly characterised by its ability to accept an input
such as voltage, current, pressure etc. and to produce an output response to this
input. The analysis of most systems can be reduced to the study of the relationship
between certain input excitations and the resulting outputs. The two main types of
systems are lumped parameter and distributed parameter systems. Lumped
parameter systems are those made-up of a finite number of physical discrete
elements, each of which are able to store or dissipate energy (for example
capacitors, inductors and resistors) or if it is a source, to deliver energy. These
systems can be described by ordinary differential equations. Distributed parameter
systems consist of elements that cannot be described by simple lumped elements
because of propagation time delays in signals traversing the elements. However,
each infinitesimal part of distributed elements can be modelled in lumped
parameter form. These systems can be described in terms of partial differential
elements, for example transmission lines. Figure 2.1 shows the taxonomy of the
type of systems of interest to signal processing. The main system types relevant to
this book are the stochastic and the deterministic systems, which include both
continuous-time and discrete-time linear and nonlinear systems, and in particular
discrete-time linear and nonlinear time varying systems.

A system is defined as an entity that manipulates one or more signals to
accomplish a function, thereby yielding new signals. In its simplest form a system
takes an input signal, performs some signal processing and then presents a required
output signal. Some examples of important engineering systems include
communications systems, control systems, electrical and electronic circuits,
electrical power systems, remote sensing systems, and biomedical signal processing
systems. System analysis is usually performed to determine system response to
input or excitation signals over desired ranges. Some reasons why this may be done
are to establish a performance specification, aid in component selection, uncover
and study system deficiencies, explain unusual or unexpected system operation or

26 Principles of Adaptive Filters and Self-learning Systems

produce quantitative data related to system operation for various needs. A
mathematical system model is essential for the analysis of the system under various
ambient conditions and to determine the effects of changing parameters of system
components. In most practical circumstances a final system design requires an
intelligent mixture of analytic and experimental approaches. An initial analytic
study provides a basis for interpretation of experimental results and a design
direction, which then establishes suitable variable ranges for experimental design.

Systems

Distributed Lumped
Parameters Parameter
| Stochastic | | Deterministic |
Continuous Discrete
Time Time
| Nonlinear | | Linear | | Nonlinear | | Linear |
Time Time Time Time
Varying Invariant Varying Invariant

Figure 2.1. A System Representation

A signal is defined to be a function of one or more variables that conveys
information on the nature of a physical phenomenon. A signal can also be seen as a
varying quantity or variable that represents a form of energy propagation within or
through a system. Signals can be one-dimensional, two-dimensional or multi-
dimensional, depending on the number of variables. A signal can be naturally
occurring or it can be synthesised or simulated. The variation of signal amplitude as
a function of some independent variable or variables (usually time) is defined as the
signal waveform. Signals can be generally classified as deterministic (predictable),
random (unpredictable) or chaotic (predictable only in the short term). Random or
stochastic signal theory is an essential part of linear systems analysis because all
real systems and signals are invariably contaminated with random noise of some
type or other. A chaotic signal emanates from a chaotic system, defined by a
coupled system of nonlinear differential equations, whose parameters are fixed.
Because chaotic systems are defined to be very sensitive to initial conditions they

Linear Systems and Stochasic Processes 27

are only predictable in the short term. Any small uncertainty in the initial conditions
of a chaotic system grows exponentially with time. Therefore a chaotic signal is a
random-like signal with only slight predictability. Examples of chaotic signals and
systems include fluid turbulence and radar sea clutter.

2.1 Basic Concepts of Linear Systems

A mathematical system model of a physical process relates the input signals to the
output signals of the system. A linear system relates the inputs to the outputs by a
linear transformation, L7(.), as shown in Figure 2.2. Systems may be continuous-
time systems or discrete-time systems. Continuous-time system input signals,
impulse responses, and output signals are usually denoted by symbols x(¢), h(f), and
y(t) respectively, where ¢ is the continuous-time variable. The corresponding
discrete-time symbols are either x(n), h(n), and y(n), or alternatively and preferably,
using square brackets, x[n], h[n], and y[n], where n is the discrete-time variable.
The square brackets are very often used for discrete-time variables but round
brackets are also perfectly acceptable and can be used interchangeably as
appropriate.

Inputs Linear Transformation Outputs

MO N LT(x(0). (o) N
x(n) LT (x(n)), h(n) y(n)
x[n] LT (x{n]),hn] yln]

t = continuous - time variable
n = discrete - time variable

Figure 2.2. Linear System

The output of a noiseless linear continuous-time system y(f) is equal to the
convolution of the input signal x(r) with the system’s impulse response h(f), as
defined by Equation 2.1. The Fourier transform of the impulse response A(r) is
defined as the frequency response of the system H(f) or H(w), where f is the

frequency variable in Hertz and @ is the frequency variable in radians per second.

y(t)=x@)*h(t) = o}x(z')h(t -7)dt
e 2.1

x()xh(DSX(HH(f)
where:

* denotes convolution.
X (f) is the frequency response of x(z).

H (f) is the frequency response of (7).

The class of real physical systems are causal systems. A causal system produces
an output that at any time ?#; is a function of only those input values that have

28 Principles of Adaptive Filters and Self-learning Systems

occurred for times up to and including #; (Gabel and Roberts 1987). Noncausal
systems produce outputs as a function of inputs ahead of #,. These are often useful
for computational purposes in the process of eventually producing real outputs for
real systems.

The state of a system is defined by a minimal set of variables known at #; such
that for all inputs for 7 > ¢, it is possible to calculate the system outputs for # > ;.
Continuous-time systems are systems for which the input, output and state are all
functions of a continuous real-time variable ¢, e.g. f(f). Sets of variables for
continuous-time signals and systems can be represented as vector quantities as
follows,

x; (1)

(0)
x)=| 2 =0 no . x,of

x, (1)

Vectors are denoted by bold lowercase letters and are single column matrices as
exemplified above. Scalar values and time domain signals are denoted by plane
lowercase letters. Uppercase plain letters can denote scalars or signal or system
frequency domain representations. Bold uppercase letters usually denote matrices.

Uniformly sampled discrete-time systems have a discrete time variable 7, =t =
nT, where n is an integer and T is the uniform sampling time interval, i.e., f(t,) =
f(inT) = f(n) = fln]. Discrete-time functions by convention are represented using an
integer time variable n, where it is understood that the true time variable is actually
nT. Sets of variables for discrete-time signals and systems can also be represented
as vector quantities as follows,

x[n]

x,[n]

xnl=| " |=lxln] xnl . ox, [l

x,[n]

Linear systems possess the property of supposition, i.e., for a scalar rational
constant ¢ and signals x; and y,,

ifx; >y and xy) =y, then x; + x, >y +y,
and ifx >y then ax —> ay

A linear system is defined by a linear transformation LT of inputs x into outputs
y if the LT satisfies,

LT(ax| + Bxy) = aLT(y)) + B LT(y,),
where: aand f are arbitrary constants.

Linear Systems and Stochasic Processes 29

This type of system is referred to as Linear Shift-Invariant (LSI) if it is a discrete-
time system and Linear Time-Invariant (LTI) if is a continuous-time system. LTI
systems are characterised by linear differential systems equations with constant
parameters, i.e.,

if x(t) = y(r) then x(t+ 7) > y(t + 7)

LSI systems are characterised by difference equations with constant parameters,
ie.,

if x[n] — y[n] then x[n + k] — y[n + k]

Constant parameter systems have parameters that do not change with time and
variable parameter systems have parameters that do change or adapt with time.

2.2 Discrete-time Signals and Systems

Uniformly sampled discrete-time signals and systems defined by x have a discrete
time integer index variable n, and are typically denoted by x(n) or x[n]. Discrete-
time systems are most often characterised by difference equations. The most
general form of a difference equation for a LSI system is as follows,

ayyln] = byx[n+byx[n—1]+.... +qu[n —ql-a;y[n—1}-...—- apy[n -pl

q P
aOy[n] = mex[n_m]_ Zamy[n_m]
m=1

m=0
The constant indices p and g determine the order of the system (p, q)
ie.,p=0,12,.., andg=0,1,2,..., and gy, =1 (by convention)
The associated transfer function is,

q
v _Ba _ =

X(2) AR &

—m

H(z)=

The variables a,, and b,, are the filter coefficients that need to be solved for
particular filter realisations. When upper bound constant indices p and ¢ are both
nonzero the system described by the difference equation (and associated transfer
function) is said to be recursive or an Autoregressive Moving-Average (ARMA)
model (pole-zero filter). If ¢ = 0 and p > 0 the model is called Autoregressive (AR),
(all-pole filter). If p = 0 and ¢ > O the system is nonrecursive, which is also referred
to as a Finite Impulse Response (FIR) system or Moving Average (MA) model (all-
zero filter). Although recursive systems can in theory implement FIR systems, they

30 Principles of Adaptive Filters and Self-learning Systems

more typically have Infinite Impulse Responses (IIR). Often recursive systems are
spoken of as though they were all IIR, but that is not necessarily the case.

The output of a noiseless LSI discrete-time system y[n], is equal to the
convolution sum of the input signal x[n], with the system’s impulse response h[n],
as defined by Equation 2.2.

.ﬂm=xhﬂ*MM=£§jMﬂmn—m] o)

x[n]*h[n]=X(k)H (k)

The impulse response is defined as the output of the system given a unit sample
J'[n] input as defined by Equation 2.3.

1, =0
oln] = { ! (2.3)

0, otherwise

The finite impulse response of a nonrecursive system is defined by Equation
2.4. The variables b[m] (or b,) in Equation 2.4 are the FIR filter’s coefficients,
which are equal to the FIR filter’s impulse response, i.e., b[n] = b, = h[n].

q
ylnl =2 b[m]6(n—m) (2.4)

m=0
An example of a simple recursive system is defined by Equation 2.5.
yln]= a,yln—1]+x[n] (2.5)

The impulse response of a recursive system is likely to be infinite and for the
example Equation 2.5 it is A[n]= a'u[n], where u[n] is the unit step defined by
Equation 2.6.

m={> =0 26
uln]= .
0, otherwise (2.6)

Another most important signal often used for the Fourier decomposition of
signals is the periodic complex exponential defined by Equation 2.7 which is also
known as Euler’s identity.

e = cos(nay)+ jsin(na,) 2.7

where:
@, is a constant.

The properties of stability and invertibility are important properties for LSI
systems. Stability implies that an output y[n] is bounded in amplitude for whenever
the input is bounded. This type of system is said to be stable in the Bounded-Input-
Bounded-Output (BIBO) sense, i.e., for any bounded input Ix[n]l £ A < o, the

Linear Systems and Stochasic Processes 31

output is bounded, ly[n]l < B < co. For LSI systems, stability is guaranteed whenever
the unit sample response is absolutely summable, i.e., as defined by Equation 2.8.

+Zlh[n]l <oo (2.8)

A system is invertible if the input to the system may be uniquely determined from
observation of the output. The invertibility of a LSI system is intimately related to
its phase characteristics. A LSI system is causal, invertible and stable if it is of
minimum phase or equivalently minimum delay (Proakis and Dimitris 1996).

2.3 The Discrete Fourier Transform (DFT)

The numerical calculation of the frequency spectrum of a continuous-time signal is
an important engineering tool for both system design and analysis. The numerical
calculation of the Fourier transform (Kammler 2000) of a continuous-time signal
h(?) involves two sampling processes. Firstly, the Fourier transform integral defined
by Equation 2.9 must be approximated by a summation.

H(jw)=H(j2xf)= Th(t)e_jmdt = Th(t)e‘jz”’ dt (2.9)

—oo)

This implies that the continuous-time function h(f), must be represented by a
discrete sequence h[n]. Secondly, H(j@) must be represented by a discrete set of
frequency samples H(k). The sampling process in both time and frequency results
in periodicity in both domains, which creates certain problems such as aliasing that
must be avoided. Aliasing is avoided by band-limiting the signal to a bandwidth
less than or equal to half the sampling frequency F;, which is referred to as the
Nyquist sampling rate. Given a N-point real, discrete-time signal A(nT) of finite-
duration NT, a corresponding periodic signal hp(nT) with period NT can be formed
as defined by Equation 2.10.

h,(nT) = ifh(nT+mNT) (2.10)

Taking the periodic signal defined by Equation 2.10, its corresponding periodic
Discrete Fourier Transform (DFT), H , (k) is defined as follows,

N-l —j2rmkn
H,(k) = %hp[n]e N, The DFT is circular or periodic with period N.

S

F .k
The index k represents the discrete frequencies f, = f (k) = .

The discrete frequency domain variable is represented by the frequency integer
index k such that the discrete frequency represented by kis f; =f(k) = F .k / N . The

32 Principles of Adaptive Filters and Self-learning Systems

continuous-time Fourier transform H(f(k)) at these discrete frequencies is only
approximately related to the DFT as follows,

H(f)= o}h(r)e_ﬂ’d(k’dt
- - _j2n
H(f)= NZl hp[n]e_ﬂ"sznTT = TNZI h,[nle N
n=0 n=0
H(fi)=H(fk))=TH (k)

The Fourier transform and DFT are only approximately related to each other due to
the fact that the DFT is circular. If F, the sampling frequency, is made greater than
twice the highest frequency existing in the signal the approximation gets better and
better as F; is increased further. However, the DFT H (k) and what is called the

Discrete-time Fourier Transform (DTFT) H p(e-i 0) are directly related as defined

by Equation 2.11.

H,,(k):Hp(eja)g:% @2.11)

The DTFT is sampled at N frequencies that are equally spaced between 0 and 27, to
produce the DFT. The Inverse DFT (IDFT) hp [n] is defined as follows,

J27kn

1 Nl .. L. .
h,[n]= N >H p(K)e N The IDFT is circular or periodic with period N.
k=0

h,[n = IDFT[H , (k)] = %DFT[H;)

The power or energy of a time domain signal representation must be equal to
the power or energy of its corresponding frequency domain representation. This
most useful property is known as Parseval’s theorem, which states that the sum of
the squares of a signal, x[n], is equal to the integral of the square of its DTFT, as
defined by Equation 2.12.

> |dnl =$+ﬂX(ej€)‘2d9 2.12)

n=—o0

2.3.1 Discrete Linear Convolution Using the DFT

The DFT and IDFT can be used to perform linear convolution of two discrete-time
signals, x[n] of length N, and h[n] of length N),. If N > N_+ N,, then the N-point

Linear Systems and Stochasic Processes 33

circular convolution of the two sequences is certain to be the same as their linear
convolution and it can be computed as follows,

x[n]*h[n] —> xp[n]* hp [n]

N
x,[n]*h,[n]= Z:Oxp[m]hp[n—k]

= IDFT, [DFTy [x[n]| DFT,, [h[n]]]

A N-point DFT is fairly inefficient to compute because it requires N2 complex
multiplications and (N> — N) complex additions. For large N, the computation
efficiency can be improved dramatically by using a Fast Fourier Transform (FFT)
algorithm. For a radix-2 decimation-in-time N-point FFT, if N is power of 2, it only
requires (NV/2)log,N complex multiplications and (V)log,N complex additions.

2.3.2 Digital Sampling Theory

The digital signal sampling theorem is known as the Uniform Sampling Theorem. A
band-limited analogue continuous-time signal can be uniquely and completely
described by a set of uniformly time spaced discrete analogue amplitude samples
taken at a sampling frequency rate of F,, the Nyquist sampling rate, provided no
signal energy exists at a frequency equal to or greater than F/2. This is strictly only
true if the samples are of infinite amplitude precision and sampled with a Dirac
impulse function having a zero time width. Of course this is unrealisable, so the
theory must be treated as an approximation to real sampling systems.
The initial signal measurement process can be modelled by Equation 2.13.

m() = s(t) + n(?) (2.13)

where:
m(t) is the measured signal including noise.
s(t) is the true signal (if it is stochastic there is a random nature to s(7)).
n(t) is a random noise component (the most common type is Gaussian noise).

If the signal s(7) is to be digitally sampled at uniform intervals of T seconds (a
sampling rate of F; = I/T" Hz) for a total of N samples then,

m(kT) = s(kT) + n(kT), where k =1,....., N the sampling integer index number.
or for short,
mlk] = s[k] + n[k]

In theory, if m[k] is the exact amplitude value of the signal plus noise at precisely
time ¢ = kT then some useful things can be said about the sampling process. Given
that the highest frequency component (highest Fourier series component) in the
signal m(?) is say f;,, then according to the sampling theorem, a choice of F; = 2 f;
is sufficient to fully capture all the m(r) signal information in the N uniformly

34 Principles of Adaptive Filters and Self-learning Systems

sampled amplitude points of infinite amplitude precision. Fortunately a band-
limited analogue continuous-time signal has a lot of redundancy and the signal
amplitudes between the sample points can, at least in theory, be fully recovered
through the use of a special interpolation equation implicit in the sampling and
recovery processes. This discussion strictly only applies to m(f) not s(¢), but for
theoretical purposes it can be assumed that m(r) = s(f). However, in practice this is
never exactly the case. In any practical case, the amplitude m[k] is never exact
because the Analogue to Digital Converter (ADC) that must be used to do the
sampling has a finite accuracy and resolution. The sample is never taken at exactly
time ¢ = kT because all ADCs have finite aperture times (or sample capture times).
Therefore, for various reasons, there is always some small error in the digitised
signal m[k] compared to the actual signal m(#). This error can be minimised if the
resolution of the ADC is high (has a high number of conversion bits) and the
aperture time is kept small (aperture time < 7/8). Cheaper ADCs have much high
errors of these two types.

When a signal is digitally sampled the sampled signal has a periodic frequency
spectrum M, (f), which is the signal’s baseband spectrum M(f) repeated in higher
bands at integer multiples of F. If F_ is less than twice f;,, the signal’s baseband
frequency spectrum is 1nev1tab1y ahased or corrupted by the overlap of the higher
bands. Refer to and compare example Figures 2.3, 2.4 and 2.5.

M(f)
| | | | | | LN
1 1 1 | 1 1 1
—F; £ F 2F f
2

Figure 2.3. Signal Baseband Spectrum

The ideal sampling process introduces exact signal spectrum replicas centred at
integer multiples of F as depicted in Figure 2.4.

ﬂﬁ A
s i s s
2

Figure 2.4. Ideal Sampled Spectrum

If the sampling frequency is lower than the Nyquist frequency aliasing occurs,
which produces signal errors not removable by signal processing, except under
special circumstances. As can be seen in Figure 2.5 aliasing means that the signal

Linear Systems and Stochasic Processes 35

spectrum replicas overlap, producing a corruption to the baseband frequency
spectral region.

M, (f)

Aliasing Error

|
I

F
2

Figure 2.5. Aliased Sampled Spectrum

If the same digital input signal is to be converted back to an analogue signal it is
output via a Digital to Analogue Converter (DAC) and passed through another
lowpass filter called the anti-imaging filter, which cuts off all frequencies above f},
or F /2 to remove the higher spectral bands associated with the periodic digital
signal spectrum. In this way the original baseband spectrum can be recovered and
consequently the original continuous-time analogue signal. Refer to example
Figures 2.6 and 2.7.

N
M
Ideal Anti-imaging Filter p(F)
F,>2f,
| | | | l .
I T | | |
-F, R o 7
2

Figure 2.6. Sampled Spectrum and Ideal Anti-imaging Filter

Figure 2.6 shows a perfect brick wall lowpass anti-imaging filter, which is
impossible to design in practice. Consequently, a real lowpass filter must be used,
which inevitably introduces some errors in the perfectly recovered baseband signal
spectrum shown in Figure 2.7.

M(f)

| | |
! ! !

|
I

F, F 2F,
2

Figure 2.7. Recovered Signal Baseband Spectrum

~

A proof of the sampling theory discussed above may be derived as follows.
Assume a band-limited continuous-time analogue signal m(#) for which the Fourier

36 Principles of Adaptive Filters and Self-learning Systems

transform M(ja) = O for lad > 272FJ2. A sampled signal m(r)is generated by

sampling the signal m(f) using an ideal signal sampler p(f) defined by Equation
2.14, which is also known as the comb function.

py= 3 8(t—nT) (2.14)

The sampled signal is defined by Equations 2.15 and 2.16 and the sampling
processes are represented by Figure 2.8.

m(t) = p(t)m(t) (2.15)
() = ngf(nTw(t —nT) (2.16)
m(t) m(t)
p()

Figure 2.8. Sampling Process

Equation 2.16 represents the convolution of signal m(nT) with the single impulse
function 5(nT). Taking the Fourier transform F T[] of the sampled signal

m(t) results in the mathematical development defined by Equations 2.17 to 2.20.

M ,(jw):FT[n%(z)]zFT{ im(nT)5(l—nT)} (2.17)
M, (jo)= S mnT) FT[5(t-nT)] (2.18)
M, (jo)= SmnT) ¥e ™ (2.19)

n=—oco n=—oco

M, (jo)=— SM(jo+ jn2aF,) (2.20)

n=—oco

Linear Systems and Stochasic Processes 37

From Equation 2.20 it can be seen that the sampled spectrum M ,(j®) is simply
the baseband spectrum M (jw) repeated at integer multiples of F;, as stated

previously.
2.3.2.1 Analogue Interpolation Formula
F,
If H(f)=0 for all | f | < 7* (band-limited) then the function A(¢) is completely and

fully determined by its samples A[n] through the analogue interpolation Equation
2.21.

W) =T, 3 i) S0 T,)

oo 7t —nT,)

2.21)

where:

2.4 The Fast Fourier Transform (FFT)

The FFT has been and still is one of the most useful and successful linear signal
processing algorithms ever developed (Cooley and Tukey 1965). Its value and
success is derived from the fact that it can be used to compute the DFT very
efficiently, thereby contributing to many practical real-time digital signal
processing implementations. It can be easily developed starting from the DFT of a
sequence {x[n]} as defined by Equation 2.22.

N-1
X(k) = Y xn]Wy*, 0<k<N-1 (2.22)
n=0

where:
_ _j2xIN
Wy =e

An example, for N=4, of the matrix form of Equation 2.22 is as follows,

xXO] (w) w) w) w}|x0]
X | |wl owowi o ow} | Al
X (wd w2 wi w2l
X3 (w) owP owe o ow) | 3]

38 Principles of Adaptive Filters and Self-learning Systems

xO] [w? wd w? w0
X | (wd owl w2 owp |«
X (w) wi ow) w2l
XA] |w) w) owg w3
xO] [w? w? owe w0
XM |w) wp —w) —wy | Al
X |w) -w) w) -w} | 2]
LX) (w) -wo-w) w3

Due to periodicity WY =Wk =wlmedV

Due to symmetry =Wy =W /2 for even N.

The Fast Fourier Transform (FFT) is actually a name given to the whole family
of algorithms for computing the DFT with fewer multiplications than N2, required
by the DFT defining Equation 2.22. In one of its simplest forms the FFT proceeds
as follows. Assume the sequence length N is a power of 2 and it is split into two
equal lengths N/2. Now, suppose that the two subsequences can be transformed
separately and then combined to form the required DFT. If this can be done, then
only 0.5N2 multiplications would be required to compute the DFT plus the
computational cost of the combining operations. It is then possible to keep splitting
the subsequences in two until there are only subsequences of length one left. Since
the DFT of a sequence of length one is itself, the need to do any transformations
can thereby be avoided entirely, leaving only a set of combining operations to do. It
takes log,N iterations to get down to subsequences of one, which means that log,N
combining operations are required. It turns out that it is possible to do this in such a
way as to require only N multiplications for each combining operation, reducing the
computational burden from N2 to (Mlog,N.

The key to this method is the combining operation, which can be developed as
along the following lines. Let the N point sequence {x[n]} be split into its even and
odd parts as follows,

{x,[n1}={x[01, x[2].....x[N =21}
{x, [n1}={x11], x(3],..., [N -1}

The DFT of the even sequence {xe[n]} is defined by X,(k) and the DFT of the
odd sequence {xo[n]} is defined by X_ (k). The DFT X(k)of the sequence

{x[n]}, being linear, can now be rewritten in terms of the defining Equation 2.23.

N2l ok N —(2n+Dk
X(k) = Y x[nlWy ™" + Y x,[n]Wy (2.23)
n=0 n=0

Linear Systems and Stochasic Processes 39

where:
_ _J2#m/N
Wy =e

2 _ -
Foraneven N, Wy =W N = Wy o therefore,
2

N/2-1 _nk N/2-1 —nk
X(k) = er[n]WN/Z + Zxo[n]WN/z
n=0 n=0

= X, () +Wy" X, (k)

For k > N /2, the periodic property of the DFT can be used and therefore,

X, (k+N/2)=X,(k)
X, (k+N/2)=X,(k)

For any even N, W/\§+N 2 - —W/\} , hence the required combining method is,

= X, (k) +Wy X, (k), for0Sk<N/2
X (k)= —(k=N/2) .
X, (k—=N/2)-Wy X, (k=N12), otherwise
Bit Reversed Binary Index Correct Binary Index
00 00
10 01
01 10

Where, the FFT Butterfly operator is defined as:
k
W,
ool
Figure 2.9. FFT Parallel Computations for N = 4

The price for this approach to the FFT is that the input sequence must be
presented in a permuted order to obtain the result in the correct order, but this has a

40 Principles of Adaptive Filters and Self-learning Systems

very low computational overhead. This permutation is called decimation in time
and can be done simply if the sequence index numbers are firstly expressed in a
binary form. The bits of binary index number are then reversed to produce the new
index for that sequence position. For N = 4 there are two stages of parallel
operations. The input sequence is bit reversed ordered and the FFT is performed
efficiently using the so-called FFT butterfly operator as demonstrated in Figure 2.9.

2.5 The z-Transform

The z-Transform is a generalisation of the discrete-time Fourier transform in the
same way that the continuous-time Laplace transform is a generalisation of the
continuous-time Fourier transform (Haykin and Van Veen 1999). In fact, the two-
sided or bilateral z-Transform can be derived directly from the bilateral Laplace
transform. The bilateral Laplace transform, a generalisation of the Fourier
transform Equation 2.9, and the most general form of the Laplace transform, is
defined by Equation 2.24.

H(s)=H(o+ jo) = Th(t)e‘”dtz Th(t)e‘("+-f“’)’dt (2.24)

—oo —oo

For a signal A[n] the bilateral z-Transform is defined by Equation 2.25.

+oo
H(z)=) hln)z™" (2.25)
where:
z=re’?
6=wT

The inverse z-Transform is defined by Equation 2.26 (Rabiner and Gold 1975).

1 n—1
hin]l=— {H(z)""'d .
2]93: Z)Z 4 (2.26)

where:
C, isaclosed path in region of convergence encompassing origin in z-plane.

The Discrete-time Fourier Transform (DTFT) is the z-Transform as defined by
Equation 2.25 for the special case when z =e/? ie.r=1.

2.5.1 Relationship between Laplace Transform and z-Transform

In the time-domain an infinite-length signal h[n] sampled uniformly at an interval

of T, seconds can be represented by,

Linear Systems and Stochasic Processes 41

hnT,)= Sh)S(—nT,) = 3 h(nT,)5(t~nT,)

n=—oo n=—oo

The Laplace transform H (s) of this sampled signal A[n] is,

H(s)= oj. (ih(nTb)O(t —nT,)je_”dt

—o0 \ N=—00

oo

H(s)= ih(nTs) [(8(t=nT,))e " dt

n=—oco —oco

H(s)= ih(nTs)e_S"T‘

n=—oo0

There are two forms of the z-Transform commonly used, the bilateral and the
unilateral transforms. The bilateral transform is defined over infinite discrete-time
from n=—c to n=+oo, and is suitable for general signals, causal and noncausal.
Whereas, the unilateral is defined from n=0 to n=+c and is only suitable for
use with causal signals.

2.5.1.1 Bilateral z-Transform
If z=e "% is taken as the complex z-domain variable then an infinite length of

h[n] can be represented by what is called the two-sided or bilateral z-Transform,

H(z)= Y h(nT,)z" = > h[nlz™", dropping the T, for convenience.

n=—co n=—oo

The relationship between the discrete-time domain and the discrete-frequency
domain is,

Discrete — Time Domain < Discrete — Frequency Domain

W)= S hKISIn—K] & H(z)= Y Hnlz™"

k=—oo n=—oo
H(z)= H(e'™) = H(e ") = H(e ¢/) = H(re’™™) = H(re'?)

where:

_ of,
r=e °
s =0+ jw, the complex Laplace-domain variable.

6 = wT';radians, @ is in radians per second and 7 is in seconds.

For example, the z-Transform of the sequence,

42 Principles of Adaptive Filters and Self-learning Systems

x[n]=0.50[n]+0.80[n—2]-80[n—5]

is,

X(2)= Salnlz™ = 3(0.581n]+0.85[n — 2] - 88Tn —5])z™"

n=—oo n=—oo

X(2)=05z"+08z2-8z7=05+0.8272-8z7

2.5.1.2 Unilateral z-Transform

For causal signals and systems the one-sided or unilateral z-Transform is often used
by changing the lower limit in the summation of the bilateral z-Transform as
follows,

X(z)= ix[n]z‘” = x[0]+x[1z 7 + 2212 2 + o+ x[0]2 " +...
n=0

In most practical cases signals begin at (or after) n =0, taken as the reference
point. Furthermore, the impulse response h[n] of any causal system is zero for
n < 0. Therefore, whether describing signals or LTI systems with the z-Transform,
the unilateral version is usually adequate. Care must be taken with respect to its
region of convergence in the z-domain. An instructive example is to determine the

z
unilateral z-Transform of a unit step, u[n]—U(z),

X(2)= iu[n]z‘" = iz‘”
n=0

n=0

_ 1
Z 1‘<1 , therefore, X(Z):—:L_

1-(z7) z-1

This transform only converges for

2.5.1.3 Region of Convergence (ROC) for the z-Transform
The function X (z) is the z-Transform of x[n] but since it is a power series it may

not converge for all z. Just like the Laplace transform the z-Transform also has a
Region of Convergence (ROC). The ROC defines the values of z for which the z-

Transform sum will converge. Take the example, x[n]=a"u[n]. The bilateral z-

Transform is,

X(z)= ia"u[n]z_" = ia"z_" = i(a"z_l)"
n=0

n=—oco n=0

This power series converges to,

Linear Systems and Stochasic Processes 43

1 . _ . . L.
X(g)=—= < , iff ‘az 1‘<1, ie., 1ff|z| >|a| , which is its ROC
l—az! z-a

Another example is, x[n]= —a"u[—(n + 1)] . The z-Transform of this signal is,

-1 oo

X()= Y-d"ul-n-1z"= Y-a"z" =-Fa"z" =‘Z(ij
n=1

n=—co n=—co n=1\a4

This power series converges to,

X(Z)=_ a = 1 = ! = ! , iff ‘G_IZ‘<1, i.e.,

T B T
a Z Z
iff |2| <|a| , which s its ROC.

N
4
3

2.5.1.4 Region of Convergence (ROC) for General Signals

1. If the signal x[n] is right handed (causal), the ROC is the area outside a
circle, |z| > |a|max , the magnitude of the largest pole. This is a necessary and

sufficient condition for convergence.

44 Principles of Adaptive Filters and Self-learning Systems

2. If the signal x[n] is left handed (anti-causal), the ROC is the area inside a

circle, |z| < |b|min , the magnitude of the smallest pole.

3. If the signal x[n] is two-side or the sum of a left and right sided signal, the
ROC is either a donut, |a|maX < |z| < |b|mjn , or else the individual ROCs don’t

overlap, producing the null set.

4. If the signal x[n] is of finite duration, then the ROC is the entire z-plane,
except possibly for z=0 and z=c0.

2.5.2 General Properties of the DFT and z-Transform

When r = 1, then z = &9 and the z-Transform becomes the DTFT as defined by
Equation 2.27.

Linear Systems and Stochasic Processes 45

H(ej9)=H(z)‘ = S hinle 9 = S hinlz "

n=—oo n=—oo

(2.27)

where:
6 = wl radians

The z-Transform is a continuous function of & with a period of 27 and can be used
for digital filter design, amongst other things. A short summary of the properties of
the DFT and z-Transform are listed below (Hayes 1996, Stanley et al 1984),

Property Sequence DFT z-Transform
Transform x[n] X(k) X(2)
Delay x[n-m] e 27N (k) 7"X(z)
Modulation &2y p] X(k - m) X(el(6-2mm)
Conjugation x"n] X*(N-k) X* 5
Time Reversal Xx[N-n] X(N-k) X(z'h
Convolution x[n]*xh[n] X(k)H(k) X(2)H(z)
Multiplication x[n]h[n] X(k)xH(k) | N -
Multiplication by & a'x(n] - Xz
Multiplication by n nx[n] - -z d/dz X(z)

A Summary of some common series closed-form formulations is as follows,

N-1 1-agV

Ya'=—=

n=0 I-a

Nt (N=1aM = Na +a
na" =

=0 (1-a)?

Nl
anEN(N—l)

S n?= éN(N —-DR2N-1)

46 Principles of Adaptive Filters and Self-learning Systems

A Summary of some common z-Transform pairs is as follows,

Sequence Transform Convergence
oln] 1 Allz
. =gV
&' luln)~uln-N1| —F—— |4 >0
az
. 1
a"uln] = |z| >a
1-az
1
—a"u[-n—1] — |z| <a
l-az”
I 1-a* 1
a - a< |z| <—
(l-az 7)(A-az) a

2.6 Summary of Discrete-time LSI Systems

Discrete-time LSI systems can be generally described by the block diagram of
Figure 2.10 and the following panel of expressions and equations. Figure 2.10
shows the relationship between the system z-Transform H(z) and the input and

output signal z-Transforms, X(z) and Y(z) respectively.

X(z) ——) H@)= ?(Zz)) —> Y(2)

Figure 2.10. z-Transformed Linear System

The following panel provides a concise summary of important equations and
relationships for discrete-time LSI systems including the relationship between z-
Transforms and difference equations. The relationship between the DFT and the
DTFT (z-Transform when r = 1) is exemplified in Figure 2.11, which shows a

27k
diagram of a simple DFT H(k)=H (z)|":€/T , for N = 12. Notice carefully the

relationships between all the variables for the DTFT and corresponding DFT
representations.

Linear Systems and Stochasic Processes 47

z=rel?, 9=af, 6, =%,fork=0,l....N—l

=1 =270 s a unit delay when r =1

where : T is the sampling interval,i.e., T =1/ F,

X (z)is the z—Transform (or DTFT when r =1) of sequence x[n].
Y(z)is the z—Transform (or DTFT when r =1) of sequence y[n].
H (z) is the z— Transform (or DTFT when r =1) of impulse response A[n].

_ zq+ﬁzq‘l+....+b—"
H(z)= Y(z2) — B(2) - byz ! by by , usually a, =1,
X@AQ a0 py @y
4o o
Therefore,
Ho) = by+bz "+ 4b,2l zgnzobm[’”m’

a, +a1z_1 +..ta,z? do + 2 0m1an

which can be represented as the difference equation,

aoy[n]+a1y[n—l]+....+apy[n— pl=byx[n]+bx[n —l]+....+qu[n —q]

q)4
agylnl= X b, xln—m]— Y a,,yln—m,

m=0 m=1
where :
the constant indices p and g represent the order (p,q) of the system
pandg < N —1.

In terms of poles and zeros in the z - plane,

H(Z):b—oz_q*'l’ (Z—Z])(Z_Zz)....(z—zq) ’
a (Z-P1)(Z—p2)....(z—pp)

Z,, = Zeros, p,, = poles

by (=22)=z)l =2,27)

H(z) T]]
ay (1-piz H)A=pyz).ll=pyz)

48 Principles of Adaptive Filters and Self-learning Systems

o, :%,fork =0l..N-1
N
6, =A0k
k Agzzl
N

Unit Circle in z-Plane

H (k)

H(ejgk) ? Z:eje N=12

DFT T T
P et ?

0]T\t/ 2n Hk
ey O L N1 Nk
H(e'%)

DTFT Q:aﬂ“:ﬁ
z-Transform $
0 % Oy o
0 L Fg f
2

Figure 2.11. DFT and DTFT (z-Transform for r = 1) Relationship

2.7 Special Classes of Filters

Three filter classes that are of special significance are linear phase filters, allpass
filters and minimum phase filters. Linear phase filters are important in speech and
image processing because they introduce no signal distortion due to the filter’s
phase characteristics. If a causal filter’s phase characteristic is linear then all
frequencies are delayed through the filter by the same amount resulting in no
distortion, only a bulk signal delay. The delay 7 is equal to the derivative with
respect to frequency (radians per second), or slope, of the phase characteristic (in
do(w)

radians), i.e., 7= . A generalised linear phase filter has the form defined by
Equation 2.28 (Hayes 1996),
H(e'?) = A(e’?)e P20 (2.28)

where:

Ale’ g) is a real valued function of @, and & and S are constants.

To realise a linear phase causal filter using a finite-order linear constant
coefficient difference equation it must be a FIR filter. However, not all FIR filters

Linear Systems and Stochasic Processes 49

are linear phase filters. For a FIR filter to be linear phase its impulse response must
be either conjugate symmetric (Hermitian) or conjugate antisymmetric (anti-
Hermitian) as defined by Equations 2.29 and 2.30 respectively.

h'[nl=h[N-1-n], Hermitian (2.29)
or
h'[n]=—h[N—1-n], anti-Hermitian (2.30)

These constraints require that the zeros of the filter function H(z) occur in
conjugate pairs as defined by Equation 2.31, i.e., if H(z) has a zero at z = z; then

there must also be a zero z =

*

Z1
H'(z)= izN“H(lj (2.31)
Z

Allpass filters have a constant magnitude frequency response and are useful for
phase equalisation. The H(z) must be of the form defined by Equation 2.32, i.e.,

if H(z) has a zero (or pole) at z = ¢, there must also be a zero (or pole) at z = L .

*

a k

N Lo
* % — Z -
H (Z) =2 noAH—kI’

— (2.32)
k=1 1- a’kZ

where:
A is a constant.

A minimum phase filter is a stable causal filter that has a rational filter transfer
function with all its poles and zeros inside the unit circle of the z-plane, i.e., Ip;l <
1 and Iz;] < 1. A minimum phase filter has a stable and causal inverse, 1/H(z), which
also has a minimum phase. For a rational LSI system characterised by the transfer
B(2)
A(2)

of A(z)) and zeros (roots of B(z)) are inside the unit circle of the z-plane. In this

function H(z) = it is causal, invertible and stable if all its poles (roots

case the filter is a minimum phase system as its phase characteristic is always inside
the bound of *7 radians (Oppenheim and Schafer 1975). An alternative condition

for minimum phase is HY(2)H(z)=1. For such a system or signal,

In(l H(e’®) 1) and arg(H (e’“")) are Hilbert transform pairs.

Maximum phase systems have all their zeros outside the unit circle, and mixed
phase systems have a mixture of zeros in and out of the unit circle. Allpass systems

are defined by | H(e/®")|=1 for all & . Any rational system H(z) corresponding

to a causal system can be expressed as H(z) = H ;, (z)H ;(z) , where H_; (z) is

50 Principles of Adaptive Filters and Self-learning Systems

a minimum phase system and H g (z) is an allpass system. Any pole or zero of
H(z) that is inside the unit circle is also in H,_;, (z). Any pole or zero of
H(z) that is outside the unit circle is in H;, (z) in the conjugate reciprocal

location. Therefore, a minimum phase system with the same magnitude can be
formed from a non-minimum phase system by reflecting inside the unit circle all
those zeros that were outside the unit circle. In like manner, a non-minimum phase
system can be formed from a minimum phase system by reflecting some or all of
the inside zeros to outside the unit circle.

2.7.1 Phase Response from Frequency Magnitude Response

Loudspeakers are typically minimum phase systems but their transfer functions are
too complex to accurately model analytically. Nevertheless their phase
characteristics can be computed directly from the magnitude of the amplitude

response. The phase response of a minimum phase system S(e’) can be

jaf,

reconstructed from the two-side magnitude response | S(e’")| using the Hilbert

Transform. This is commonly done in loudspeaker testing where it is relatively easy
to measure the magnitude response but not the phase response, due to the
uncertainty of the testing signal delay through the air. The phase response

arg S (e’ in radians is found by taking the real part of the Hilbert transform

H{} of In(1S(e’")1) as defined by Equation 2.33.

28") = real{H{In(l S(e’“"*))} } (2.33)

If a Discrete Fourier Transform (DFT) is used to compute the Hilbert transform
(Poularikas 1996) then the number of sample points N should be chosen such that
NT, is at least twice the length of the impulse response s(n7,). The phase in

radians is found in the real part of the final result. The imaginary part is a constant,
which varies in relation to the scale of the original signal to preserve the energy
relation between the Fourier, transform pairs. Assume that a discrete Hilbert

H
transform pair u[n] and v[n]is defined by u[n]¢«sv[n], and a discrete Fourier

‘ DFT .
transform pair v[n] and V(e’“") is defined by v[n]¢sV(e’/“").
If

DFT . DFT T
uln] ¢« U’) and v[n]¢<s V(e!"),

then,

DFT -
vinle V(') =~jsgn(@U (e’),

Linear Systems and Stochasic Processes 51

+1 0<a)<&
2

where: sgn(w) =+ 0 a)=% ,

-1 —&<a)<0
2

-1

DFT - T ol DFT
it follows that, u[n] <3 U (e’) =V (e’) =—jsgn(@)U (') — v[n].

2.8 Linear Algebra Summary

Vector and matrix notation is very useful because it simplifies mathematical
expressions and many useful results from linear algebra can be employed to solve
them. For present purposes it is only necessary to summarise some of the more
significant tools of vector and matrix analysis. Refer to (Hayes 1996) for more
comprehensive details. The convention has been adopted, that bold lowercase
letters represent vectors, bold uppercase letters represent matrices, and normal
upper and lower case letters are scalars, unless otherwise stated or implied.

2.8.1 Vectors

As already mentioned vectors are written as column vectors and their transposes as
row vectors. Vectors can be real or complex vectors. A vector having p elements is
said to be a p-dimensional vector. The Hermitian transpose, H, of a complex vector
x is defined by Equation 2.34 as x/.

XT=)"=")"=[xf x . x,] (2.34)
where:
X
X = 2 =[x, x, xp]T
xl’

The magnitude of a vector is commonly defined according to the Euclidean or
L, norm defined by Equation 2.35, where p is the dimension or number of vector
coefficients x;. This most commonly used norm is usually represented by just IIxII.

p
Il = _21|xi|2 =x| (2.35)
b

52 Principles of Adaptive Filters and Self-learning Systems

Other useful norms are the L; and L_, norms defined by Equations 2.36 and
2.37 respectively. The L. norm represents the maximum vector coefficient value.

p
I, =2 il (2.36)

=

1
. = tim {zu} _ | 037
m—>oo i=1 i

A vector x, if lixIl # 0, can be normalised to a unit magnitude vector v, by
simply dividing by its norm lIxI| as defined by Equation 2.38.

V. =T 238
T 239

The dot product or inner product of two complex vectors a = [ay,...., ap]T and
b =[b,...., bp]T is scalar and defined by Equation 2.39.

Py
a.b=(ab)=ab= Y (2.39)
i=1
Two vectors are said to be orthogonal if their inner product is zero and orthonormal

if they also have unit norms. One use of the dot product is to represent the output of
a LSI FIR filter, e.g.,

Yn]= Elh[i]x[n ~il=h"x(n],
where: -
h[0] x[n]
h=| "M | and xmp=| Y
h[N.—l] x[n—.N+1]

2.8.2 Linear Independence, Vector spaces, and Basis Vectors

A set of n vectors {vy, V,,....., v, } are linearly independent if & v+ o)V, ++
o,v, =0, with ;= 0 for all i = 1,..., n. If a set of nonzero ¢; can be found that will
make the equation hold then the vectors are linearly dependent. If the vectors are
linearly dependent then at least one of the vectors, say v, can be expressed as a
linear combination of the others, i.e., v = B,V,+ B3v;3 + ...+ B,v,, for some set of
scalars f;. For p-dimensional vectors no more than p of them can be linearly
independent.

Linear Systems and Stochasic Processes 53

For a set of n vectors, {vy, V,,..., v,,}, the set of all vectors S that may be

n
formed from a linear combination of the vectors v, v= Y a;v; , forms a linear
i=1
vector space and the vectors v; are said to span the space S. If the vectors v; are
linearly independent they form a basis for the space S and the number of vectors in
the basis, n, is the dimension of the space.

2.8.3 Matrices

A n X m matrix A is a real or complex array of numbers or functions formed into n
rows and m columns as defined by Equation 2.40.

ay a2 - A
dy;p dypp .- Ay

A= {aij} = (2.40)
apl Ap2 - Auy

If n = m the matrix is called a square matrix. A n X m matrix is sometimes
represented by a set of m column vectors, or a set of n row vectors or a partition of
submatrices as defined by Equation 2.41.

T
r A, A
A=le, ¢, . ¢,]=|7 {A“ A‘Z} (2.41)
. 21 22
I'T

n

The transpose of a n X m matrix A, denoted by A7, is a m X n matrix formed by
simply interchanging the rows and columns of A as defined by Equations 2.42 and
2.43.

a A - Gy
A={ay)= ay, Gy . az.m (2.42)
Ap Ay A
ap dip A1
AT = {aﬁ} _| %1 a2 a?n (2.43)
Ay Gy - Ay

If a square matrix is equal to its transpose it is said to be a symmetric matrix.
For complex matrices the Hermitian transpose is the complex conjugate of the

transpose, i.e., Al = (A*)T = (AT)* . The rank p(A) of a matrix A is equal to the

54 Principles of Adaptive Filters and Self-learning Systems

number of linearly independent rows and columns, therefore p(A) < min(m, n). If
P(A) = min(m, n), then A is said to be of full rank. If A is a square matrix of full
rank then there exists a unique matrix A-l called the inverse of A such that A-1A =
AA-! =1, where I is the square identity matrix defined by Equation 2.44.

1 0 .0
01 .0

= (2.44)
00 .1

In this case A is said to be invertible or nonsingular. If A is not of full rank it is said
to be noninvertible or singular.

Some properties of matrices A (n X n), B (n x m) and C (m x m), where matrices
A and B are nonsingular, are as follows,

(AB)'=B'A"!
A=A

A formula that is useful for efficiently inverting matrices, especially in adaptive
filtering algorithms is defined by Equation 2.45.

(A+BCD)'=A"'-AB(C'+DA'B)'DA™! (2.45)

In the special case when C=1,B=u,and D = v and u and v are n-dimensional
vectors Equation 2.45 is referred to as Woodbury’s identify and it is expressed as

AlavA™!
1+v7A™a
A special case of Woodbury’s Identity occurs when A =1 as follows,

follows, (A +uv?)_1 =A"-

T+uv?)T =1- 1H uv’
1+v7ua

The determinant of a n X n matrix A, det(A), is defined recursively in terms of
the determinants of (n - 1) X (n - 1) matrices as follows,

For any j,det(A) =3 (-1)"/a; det(A;),

i=l))
where : A is the (n-1)X (n-1) matrix formed
by deleting the ith row and jth column of A.
If A=ay,det(A) =qy;.

app dp
If A= ,det(A) = ay1ay, —appay,;.

daz dxp

Linear Systems and Stochasic Processes 55

A n X n matrix A is invertible if and only if det(A) # 0. Some properties of the
determinant involving n X n matrices A and B are as follows,
det(AB) = det(A)det(B)
det(AT) =det(A)

det(aA) = a" det(A), where : @ is a constant.

det(A™H = ! , if Aisinvertible.
det(A)

The trace of a n X n matrix A, tr(A), is the sum of the terms along the diagonal.

2.8.4 Linear Equations

The solution of linear equations is an important part of signal modelling, Wiener
filtering and spectrum estimation. Consider the set of linear Equations 2.46 in m
unknowns xy, X,..., X,,,.

ap X, +apx, ..+ ap,x, =b

a21x1 +a22x2 +...+a2 X =b2
) e (2.46)

a1, X + 0%y +..Fa,,,x, =b,

These equations can be written more efficiently in matrix form as defined by
Equation 2.47.

Ax=b (2.47)

For a square matrix where n = m the solution is x = A b, if A is nonsingular. If A
is singular, then there may be no solution if the equations are inconsistent or there
may be many possible solutions.

If n < m, then there are fewer equations than unknowns, and provided that the
equations are not inconsistent there may be many solution vectors (this is an
undetermined or incompletely specified solution). One way to find a unique
solution for this case is to satisfy the equation that has the minimum norm, i.e.,
minlixll such that Ax = b. If the rows of A are linearly independent (0(A) = n), then
the n X n matrix AAH is invertible and the minimum norm solution is defined by the
Equation 2.48.

xo=AZ(AAT) T (2.48)

The matrix AT =AY (AAH)_l is known as the pseudoinverse of the matrix A for
the underdetermined problem.

If n > m, then there are more equations than unknowns and the equations are
inconsistent and the solution is said to be overdetermined, which in general means

56 Principles of Adaptive Filters and Self-learning Systems

that no solution exists. In this case the least squares solution can be sought
producing a vector x that minimises the norm of error e defined by Equation 2.49.

2
2] =1b- ax| (2.49)
To solve this equation the so called normal Equations 2.50 are constructed.

AfAx=Ap (2.50)

If the columns of A are linearly independent (A has full rank), then the matrix AFA
is invertible and the least squares solution is defined by Equation 2.51.

x, = (A7A)TATD
=A'b

2.51)

where :

AT =(A"A) A is the pseudo - inverse for the overdetermined problem.

2.8.5 Special Matrices

A diagonal matrix is a square matrix that has the form defined by Equation 2.52.

ar 0 .. 0
0 dry .. 0 .

A=l T |=dagla.axp,. a4y} (2.52)
0 0 . a

The identity matrix is a diagonal matrix. If its entries along the diagonal are
replaced with matrices then A is said to be a block diagonal matrix as defined by
Equation 2.53.

Ay O .. 0
0 Ay .. O

=R (2.53)
0 0 . A

nn

The exchange matrix J is defined by Equation 2.54, like the identity matrix but
with the cross-diagonal (diagonal which is perpendicular to the main diagonal)
populated by 1s.

0 .. 01

=l 7 (2.54)

Linear Systems and Stochasic Processes 57

Since J2 = I therefore J is its own inverse. If a matrix A is multiplied on the left
by the exchange matrix the order of each column vector is reversed. If it is
multiplied on the right then the order of the entries in each row are reversed. The
effect of the product JTAJ is to reverse the order of each row and column. These
operations are demonstrated below as follows,

apn app - Ay Ay Auy - Ay
. a21 a22 . a2 . .
if A= mLITAT =
dy axp Ay
_anl Apy -+ Ay i any app - Ay
ayy - Gy dq App -+ Apa Ay
a . a a
2m 2 4y T
AJ = JJTAY =
. . . . a2m a22 a21
L%m - Gu2 Ay | Ay ap 4y

An upper triangular matrix is one in which all the terms below the diagonal are
zero and a lower triangle matrix is one in which all the terms above the diagonal are
zero. The transpose of an upper triangle is a lower triangle matrix. The determinant
of a lower or upper triangle matrix is equal to the products along the diagonal. The
inverse of an upper (lower) triangle matrix is an upper (lower) triangle matrix. The
product of two upper (lower) triangle matrices is an upper (lower) triangle matrix.

A n X n matrix A is said to be Toeplitz if all the elements along each of the
diagonals have the same value, i.e., A=Ay iyl for all i < n and j < n. An example
of a 4 X 4 Toeplitz matrix is,

3
2
1
5

N N L —
AN L — N
—_— N W A

A Toeplitz matrix is fully defined by the terms in the first row and first column.

The Hankel matrix has equal elements along the diagonals which are
perpendicular to the main diagonal (cross-diagonals), i.e., Q=i 1> foralli<n
and j < n. An example of a 4 X 4 Hankel matrix is,

—_ N W A
D = N W
~N N L =

2
1
5
6

The exchange matrix J is a Hankel matrix.

58 Principles of Adaptive Filters and Self-learning Systems

Toeplitz matrices are a special case of persymmetric matrices, i.e., symmetrical
about the cross-diagonal (diagonal from bottom left to top right corners). If a
Toeplitz is symmetric, or Hermitian in the case of a complex matrix, then all the
elements are determined by either the first row or first column. Symmetric Toeplitz
and Hermitian Toeplitz matrices A can be represented as follows,

A =Toep{a(0),a(l),..,a(p)}

where:
a(i) are the elements in the first column.

Symmetric Toeplitz matrices are centrosymmetric matrices, which are both
symmetric and persymmetric. An example of a 4 X 4 Symmetric Toeplitz matrix is,

N O S
[USTI ST \]
N = N W
—_— N W s

If A is a symmetric Toeplitz matrix then,
JIAJ=A

If A is a Hermitian Toeplitz matrix, then,
JTAJ = A"

A summary of relationships between various matrices and their inverses is listed
below,

Matrix Inverse
Symmetric Symmetric
Hermitian Hermitian

Persymmetric Persymmetric

Centrosymmetric Centrosymmetric

Toeplitz Persymmetric
Hankel Symmetric
Triangular Triangular

A real n X n matrix is said to be orthogonal if the columns (and rows) are
orthogonal. If ATA =1 then A is said to be orthonormal (this implies that its rows
and columns are orthonormal), and the inverse of A is equal to its transpose, i.e.,
Al = AT, The exchange matrix J is an example of this type of orthogonal matrix

Linear Systems and Stochasic Processes 59

since J7J = J2 = I. A complex n X n matrix said to be unitary if the columns (and
rows) are orthogonal, therefore APA =T and Al = AH.

2.8.6 Quadratic and Hermitian Forms

The quadratic form of a real symmetric n X n matrix A is the scalar defined by
Equation 2.55.

QA(x):xTAx:Z‘Ileiaijxj (2.55)
i=lj=

where:
X is an n-dimensional real variable vector.

The Hermitian form of a n X n Hermitian matrix A is the scalar defined by
Equation 2.56

n n
H *
0,(x)=x"Ax=3 > x;a;x; (2.56)
i=1 j=1
where:
X is an n-dimensional complex variable vector.

If the quadratic form of matrix A is positive for all nonzero vectors x, then A is
said to be positive definite, i.e., A > 0. If the quadratic form is nonnegative for all
nonzero vectors it is said to be positive semidefinite. Likewise for the negative and
nonpositive cases A is said to be negative definite and negative semidefinite
respectively.

2.8.7 Eigenvalues and Eigenvectors

Eigenvalues can be used to determine if a matrix is positive definite, invertible as
well as indicate how sensitive the determination of the inverse will be to numerical
errors. Given the set of linear Equations 2.57 for a n X n matrix A, the matrix (A-
AI) must be singular, i.e., det(A-AI) = 0, in order for a nonzero vector to be the
solution to the set of linear equations represented by Equation 2.57.

Av=Adv,ie., (A-ADv=0 (2.57)

The characteristic nth order polynomial of the matrix A is defined by Equation
2.58.

P(A) = det(A-AI) = 0 (2.58)

The n roots, 4;, of the characteristic polynomial are known as the eigenvalues of A.
For each eigenvalue the matrix (A-4I) will be singular and there will be at least
one nonzero vector, v;, that solves the equation Av = v, ie., Avl- = ﬂivi. These
vectors v; are called the eigenvectors. For any eigenvector v, av; will, for any

60 Principles of Adaptive Filters and Self-learning Systems

constant ¢, also be an eigenvector, therefore eigenvectors are often normalised, i.e.,
II'v, I = 1. The nonzero eigenvectors, V;, Vs,..., V,, corresponding to distinct
eigenvalues, 4, 4,...., 4,, are linearly independent.

If A is a n X n singular matrix, then there are nonzero solutions to the
homogeneous Equations 2.59, and it follows that A = 0 is an eigenvalue of A. Then
A will have p(A) nonzero eigenvalues and (n - p(A)) eigenvalues equal to zero.

Av;=0 (2.59)

n’

The eigenvalues of a Hermitian matrix are real. A Hermitian matrix is positive
definite if and only if the eigenvalues of the matrix are positive. Similar properties
hold for positive semidefinite, negative definite, and negative semidefinite matrices.
The determinant of a n X n matrix A is related to its eigenvalues by the following
relationship,

det(A) =] A
i=1

Consequently, a matrix is invertible if and only if all of its eigenvalues are nonzero
and any positive definite matrix is nonsingular. The eigenvectors of a Hermitian
matrix corresponding to distinct eigenvalues are orthogonal, i.e., if ﬂi * /1j, then
<v,v> =0.

For any n X n matrix A having a set of linearly independent eigenvectors it is
possible to perform the following eigenvalue decomposition,

A=VAV'= [V, V,se, v, 1 diaglA4, Ay o, 4,11V, Voo, ¥, -l
where:
V is a matrix that contains the eigenvectors of A.

Ais a diagonal matrix that contains the eigenvalues.

For a Hermitian matrix A, V is unitary and the eigenvalue decomposition
becomes Equation 2.60.

A=VAVY =S Av.v," (2.60)
i=1

This result is known as the Spectral Theorem, which states that: Any Hermitian
matrix A may be decomposed as defined by Equation 2.61.

A=VAA "= 4v v vovE A v, v (2.61)

" "n'n
An application of the Spectral Theorem is to find the inverse of a nonsingular
Hermitian matrix A as defined by Equation 2.62.

AT =(VAV) T = VI TIATV T = VATV =5 (2.62)

Linear Systems and Stochasic Processes 61

If B is a n X n matrix with eigenvalues 4; and A is a matrix related to B by A =
B + o1, then A and B have the same eigenvectors and the eigenvalues are 4; + «.
This property can be used to stabilise a problem solution in some signal processing
applications if B is singular or ill-conditioned (one or more eigenvalues are close to
zero). By applying this remedy to B it does not change the eigenvectors but it
conditions the eigenvalues in such a way as to stabilise the solution.

For a symmetrical positive definite matrix A, the equation x’Ax = 1 defines an
ellipse in n dimensions whose axes are in the direction of the eigenvectors \f of A

with the half-length of these axes equal to 1/ /4 j - A loose upper bound for the

largest eigenvalue A, is as defined by Equation 2.63.
Amax € 24 = tr(A) (2.63)
i=1

A tighter upper bound is given by,

n
Apax S Max » a;
ij=l
also,
n
Ao SMAX D a;
J =1
where:
A ={a;}

2.9 Introduction to Stochastic Processes

A stochastic process most commonly, but not always, represents the noise or
unknown and unwanted part of a measurement made on a physical system.
Stochastic or random processes are those that may only be described
probabilistically or in terms of their expectation or average behaviour. The most
common statistical averages are the mean, variance, and autocorrelation. These
averages are strictly the ensemble averages over all possible process outputs over
all times and situations typical of that process. A single infinite time history of a
random process is called a sample function (or a sample record when recorded over
a finite time interval) (Bendat and Piersol 1971). The collection of all sample
functions, called the ensemble, is defined as the random process, since it
encompasses all the possible process information. Random processes may be
categorised as either stationary or nonstationary. Stationary processes may be
further categorised as ergodic or nonergodic as shown in Figure 2.12.

62 Principles of Adaptive Filters and Self-learning Systems

[Random Process]

l

l |
[Stationary Process] [Nonstationary ProcessJ
l
l I
[Ergodic Process] [Nonergodic Process]

Figure 2.12. Basic Classifications of Random Processes

The notion of stationarity and the concept of ergodicity are important to
understand in the context of systems engineering. Stationarity refers to statistical-
time-invariance, that is, all the probability density functions associated with the
process are invariant with respect to translation in time. An ergodic process is one
whose statistical properties can be estimated from the time averages of a single
sample function or realisation. This means that the same statistical information
about a process can be determined by averaging outputs measured at different times
(possible to do) as by averaging different outputs obtained at the same time (strictly
impossible to do). Fortunately, in practice, many processes of engineering interest
are in fact ergodic and therefore amenable to mathematical analysis.

A process is called wide-sense or weakly stationary if both its mean and
variance are finite and constant, and its autocorrelation function depends only on
the difference between the times of occurrence of the samples, or lag time. Wide-
sense stationarity is a common assumption made about stochastic processes. This is
an adequate enough assumption for many signals of interest if a short enough time
interval is taken, although it may not be strictly true in practice. However, for many
practical applications an assumption of strong stationarity can often be made if
weak stationarity is verified.

A nonstationary random process is one that does not meet the requirements for
stationarity. Therefore nonstationary processes are those whose statistics are time-
variant. In practice it is necessary to impose some restrictions on them to be able to
accurately estimate their statistics from a single sample record. Without restrictions,
such as an assumption that the nonstationary process can be modelled by a
stationary process multiplied by a deterministic function of time, it is often not
feasible to obtain a sufficient number of sample records to achieve accurate
ensemble averaging. Each type of nonstationarity must be analysed and dealt with
separately since there are so many possible types with their own special
characteristics.

Linear Systems and Stochasic Processes 63

2.10 Random Signals

A Signal is defined as the output from a process of some type, mathematical or
physical, and it can be either deterministic or random. A deterministic signal is one
that can be reproduced exactly by repeating the process. For example, the impulse
response of a linear time-invariant continuous-time filter or linear shift-invariant
discrete-time filter is a deterministic signal. A random signal, on the other hand, is
one that is not repeatable in a predictable manner. An example of a random signal
is the type of static noise that adds to a speech or music signal during an analogue
radio transmission process. Depending on the signal processing that will be done on
the signal the same type of signal can be considered to be either deterministic or
random. Speech, for example, can be defined as deterministic if it is seen as a set of
specific waveform signals, and defined as random if it is seen as all possible signals
emanating from a general speech process.

501 <~ > |

X (1) /N

X ()

Figure 2.13. Sample Function Ensemble

A signal is termed random if it is not possible to specify deterministically what
its amplitude value will be at any given time. Instead, a probability distribution is
associated with each instant of time, which describes the likelihood of occurrence

64 Principles of Adaptive Filters and Self-learning Systems

within some amplitude range. A stochastic process can also be defined as a
collection of random variables, one for each instant of time. In the most general
sense a stochastic or random signal can be seen as a continuous or discrete R"
valued function of time. If the process is represented by a vector x = [x, x,,..., xn]T
then each random real variable x; represents a sample function associated with that
instant of time. Refer to Figure 2.13.

Wide-sense stationary random processes, denoted by {x(#)} or {y(?)}, are the
most typically encountered types (the brackets “{ }” indicate a set or ensemble of
sample functions). The statistics of stationary processes don’t change with time,
which effectively means that the process can be fully described by the moments of
the process, i.e., the mean, variance etc. For example, a Gaussian, or second order
random process, is fully described by its mean and variance alone. Many practical
problems assume a Gaussian noise process. For least squares estimation problems
Gaussian noise statistics will ensure that the optimum solution is achieved, since it
attempts to minimise a second order or quadratic error function. The processes of
main interest to engineering are ergodic processes. These are stationary processes
whose means, covariance and other statistical functions can be computed from time
averages on arbitrary sample functions from the process.

2.11 Basic Descriptive Properties of Random Signals

The main types of statistical functions commonly used to describe the basic
properties of stationary random signals (Bendat and Piersol 1971) are the,

1. Mean square value.

2. Probability density function.

3. Autocorrelation function.

4. Power spectral density.
The mean square value provides a rough description of the signal intensity. The
probability density provides statistical information about the signal amplitude. The
power spectral density is the Fourier transform of the autocorrelation function and

the power spectral density provides the same information in the frequency domain
that the autocorrelation function does in the time domain.

2.11.1 The Mean Square Value and Variance

For a random real valued process {x(¢)} the estimates of the ensemble mean, mean
square and variance are computed by taking the instantaneous value for each of say
N sample functions of the ensemble at some arbitrary value ¢; as follows,

Linear Systems and Stochasic Processes 65

N
Mean value of {x(;)}is x(t;) = lim LZxk ;)
N—oe N k=1
. 2 N R
Mean square value of {x(z;)} is Yo = lim — > x; (1)
Noe N 5
. . 2 .1 X — 2
Variance of {x(z;)}is o (t) = Uim — Y (x,(t;) — x(1,))
N—oe N k=1
where: 62(1;) = W2 (1,)— x(t;)

The time-averaged mean, mean square and variance for an arbitrary kth sample
function of the real valued process {x(¢)} are as follows,

T
Mean value of x,(¢)is X;= lim l jxk (t)dt
T—e T 0
. 2 . 1T,
Mean square value of x; (¢) is Yo = hm—_ka (t)dt
ko ToeT 0
. . > lim 17 - 32
Variance of x;, () is o, = T_,m?j(xk t)—x;)dt
0

L 22 g2
where: 0, =¥ —x;

If the ensemble averages of a random process are equal to the time averages of
any sample function the process is said to be ergodic. Only stationary processes can
be ergodic. If the mean of x is zero the mean square value of x is equal to the
variance of x. This can be very advantageous in some filter algorithm computations
therefore the mean is often removed before processing.

2.11.2 The Probability Density Function

The Probability Density Function (PDF) of a signal describes the probability that
the signal will assume a particular amplitude value within some defined range at
any instant in time.

x(1) ‘
é

%: Aty

Figure 2.14. Probability Density Function Measurement

66 Principles of Adaptive Filters and Self-learning Systems

Consider the sample record of x(7) in Figure 2.14. The probability that the signal
x(t) assumes an amplitude value between x and x + Ax can be computed by taking
the ratio of time that the signal is in the interval T, = X At; = At;+ At, compared to
the total time of the record T. For an ergodic signal the ratio 7,/T will approach the
exact probability density function p(x) as T approaches infinity,

p(x)=

Ax—0 Ax Ax—>0AX|T — oo T

lim Probability[x < x(f) <x+Ax] _ lim 1 { lim T, }

The probability density function is always real-valued and nonnegative. The
probability that the instantaneous value x(¢) is less than or equal to some value x is
defined by P(x), which is also know as the cumulative probability distribution
function,

P(x) = Probability[x(t) < x] = [_p(&)dé

Conversely, the probability density function can be computed as the differential of
the probability distribution function as defined by Equation 2.64.
dP(x
p(x) = 4P (2.64)
dx

P(x) is also a nonnegative function since it is bounded by zero at -, i.e., P(-o0) =
and one at +oo, i.e., P(e0) = 1. The probability that x(¢) lies between the open
interval range (x;,x,) is defined by Equation 2.65.

P(x,)— P(x;) = Probability[x; < x(#) £ x,] = J;:z p(&)dé (2.65)

AN
p(x)

=

Figure 2.15. The Univariate Gaussian PDF

The Gaussian PDF is a very common distribution associated with noise
statistics, especially those related to the optimum filtering problem. The univariate
Gaussian probability density function p(x) of a random variable x, shown in Figure
2.15, is defined by Equation 2.66.

Linear Systems and Stochasic Processes 67

T (C) B!
p(x) :—26 2 (2.66)
270,
A measure of the linear association between the variables X;j and Xij of N
random vectors X; = [x; j» Xojreees xpj]T is provided by the sample covariance or the
average product of deviations from their respective means as defined by Equation
2.67.

1 X _ _ .
oy =F Zl(xl-j = X)) (X —Xg), i=12,..p, k=12,..p (2.67)
=

The notation defined in Equation 2.68 is often used to represent the covariance
matrix of the matrix X containing N samples of vector X;,

oy O - Oy
. 031 Opn . O
¥ = Covariance (X) =| oo r (2.68)
Cp Op - Oy

The multivariate Gaussian probability density function p(x) of a p-dimensional
random vector x is defined by Equation 2.69.

B 1 4x-%" () x=)
P(X) - P T e 2 (269)
Q221212

where:
X is the covariance matrix of the vector process {x}.

p(x)

Figure 2.16. The Tophat PDF

Another important PDF is the tophat PDF shown in Figure 2.16, also known as
a uniform or rectangular PDF and is defined by Equation 2.70.

68 Principles of Adaptive Filters and Self-learning Systems

! , fora<x<b
b-a (2.70)

p(x)=0, for x otherwise

p(x) =

2.11.3 Jointly Distributed Random Variables

It may be possible that there is some statistical dependence between two random
variables. The statistical dependence between random variables is measured by the
joint probability density function. The joint probability density function p(x, y) of
two random variables or sample records, defined by Equation 2.71, describes the
probability they will simultaneously assume values within a defined pair of ranges
at any instant in time. The probability that the signal x(f) assumes an amplitude
value between x and x+Ax while a signal y(#) simultaneously assumes an amplitude
value between y and y+Ay can be computed by taking the ratio of time that the
signals are both in their respective intervals, T, compared to the total time of the
record T. For an ergodic signal the ratio Txy/T will approach the exact probability
function as T approaches infinity.

(x,y) | tim T 2.71
X, V) = Ax—0 — .
Py Ay:O AxAy|T—o T ()

The joint probability density function is always real-valued and nonnegative.
The probability that the instantaneous values x(7) and y(¢) are less than or equal to
some values x and y, P(x,y), is defined by Equation 2.71, the joint probability
distribution function.

P(x, y) = Probability[x(1) < x, y(t) < y] = [[p(&.m)d&dn (2.71)

If two processes {x(f)} and {y(r)} are statistically independent, the joint
probability density function is the product of their individual probability functions
as defined by Equation 2.72. If two random variables are statistically independent
then they are also linearly independent. The converse is not necessarily true.

p(x,y) = p(x)p(y) (2.72)

The main application of the joint probability function is to establish a
probabilistic description for an event associated with two sets of correlated random
data. For example, to determine the probability of detecting two similar signals
being transmitted randomly, but with some correlation, from separate sources to the
same receiver.

2.11.4 The Expectation Operator

In the most general terms, if f{x) is a (deterministic) m-dimensional vector function
of a n-dimensional continuous vector variable X, the expected value or expectation

Linear Systems and Stochasic Processes 69

of fix) is defined by Equation 2.73. The expected value of the function is
effectively the function’s statistical average.

400
E{f(®)}= [f(X)p(x)dx 2.73)
where:
E{.} is the linear expectation operator.
p(x) is the probability density function of x.

For the case of a discrete m-dimensional vector function f(x(k)) of a n-dimensional
discrete vector variable x(k), the expectation of f(x(k)) is defined by Equation 2.74.

ELf (k) = lim - § F(x(k) 2.74)

—eo N k=—oc0

The statistical moments of a signal can be defined in terms of the expectation
operator and probability density function p(x) of x as follows,

400
x=E{x}= jxp(x)dx, Mean = first statistical moment.

—oo

40
‘I’x2= E{x*}= sz p(x)dx, Mean square = second statistical moment.

—o0

400
O'x2 =E{(x— E)z} = j(x— Fc)zp(x) dx, Variance = second central moment.

—oo

+oo
M /"=E{x"}= Ix" p(x)dx, nth statistical moment.

—o0

400
CM "=E{(x-X)"}= [(x=X)" p(x)dx, nth central moment.

—o0

2.11.5 The Autocorrelation and Related Functions

The autocorrelation function of a stationary real valued signal x(#) describes the
general dependence of its values at one time on its values at another time. An
estimate of the autocorrelation between the values of x(¢) at the times #r and 7 + 7
may be made by taking the product of the two values and averaging over an
observation time 7. The exact autocorrelation function r,(7), defined by Equation
2.75, is approached as T approaches infinity,

. T
r.(7) = E{x()x(1 + 7)) =1T‘an% [x(0)x(t +7)dt (2.75)
0

Some properties of the autocorrelation function are as follows,

70 Principles of Adaptive Filters and Self-learning Systems

r.(=7)=r.(7)
X =4/r,. ()

‘I‘x2 = r,(0) = Average signal power.
The autocorrelation function is always a real valued even function with its
maximum at 7 = 0. A lowpassed or narrow band white noise example of the
autocorrelation function is shown in Figure 2.17. For infinite band white noise the
autocorrelation function is an impulse function at 7= 0 and zero elsewhere.

x(t) r.(7) ; G.(f)
Spectrum
A_AAN
| Y ' 7 B 7
r(©=a B[sin(ZIBz')]
27BT

Figure 2.17. Band-limited White Noise
The cross-correlation function between x(f) and y(f) describes the general

dependence of the values of x(#) at one time on the values of y(f) at another time
and is defined by Equation 2.76.

17
1y (0) = E{x(t) y(t +7)} = lim — [x(1) y(¢ + 7)dt 2.76)
T—oT 0
Some useful properties of the cross-correlation function are as follows,

ry(=7) = r,(7)

ro @[<01, (0)

1
ry (0| < S0 +1,0)]

When Ty = 0 then x(7) and y(¢) are uncorrelated. If x(#) and y(¢) are statistically
independent then o~ () =0if either X or y =0, and if neither mean is zero then

Iy = Xy . The cross-correlation function is often used for measurement of time
delays, determination of transmission paths and detection and recovery of signals in
noise.

The autocovariance function is defined by Equation 2.77.

Linear Systems and Stochasic Processes 71

c (1) = E{(x(t)-x)(x(t+7)=X)}
. T
e (7)= ITIEL% [lx)) =%][x(e+2)~xar
0
e (0)=r.(1)-X* @277
Covariance = Correlation when the mean is zero.

As for the mean square value and the variance, the covariance and correlation
functions are equal when the mean is zero, which can be advantageous for some
filter processing algorithms.

The cross-covariance function is defined by Equation 2.78.

i 17 _ _
e(®) = 10 [~Flyasr) -l
0

(1) = 1y, (D-X5 (2.78)

Cross - covariance = Cross - correlation when either mean is zero.

The correlation function coefficient (normalised cross-variance function) is
defined by Equation 2.79.

C(7)
= 1< p <1
P a0 279)
where:
c,(0)=0,
c,(0)=0,

This correlation function coefficient Py, measures the degree of linear dependence
between x and y for a displacement of 7 in y relative to x.

A measure of the correlation between the variables Xjj and Xy of N random p-
dimensional vectors X; = [x; jr Xojreees xpj]T is provided by the sample correlation
defined by Equation 2.80.

1 X .
T :F Z](xl:/.)(xkj), i=12,...p, k=12,...p (2.80)
=

The notation defined by Equation 2.81 is often used to represent the correlation
matrix of the matrix X containing N samples of vector X,

ni na .. rlp
. Dt M - N
Correlation(X)=| ~ .7 °F (2.81)
Tp1 Tp2 Fpp

72 Principles of Adaptive Filters and Self-learning Systems

2.11.6 Power Spectral Density Functions

The Power Spectral Density (PSD) function describes the general frequency
composition of a signal in terms of the spectral density of its mean square value. It
gives the distribution of signal power per unit frequency. The PSD can be defined
as either a one-sided or two-sided function. The one-sided PSD G (f) of a signal
x(#) at a particular frequency f is found by taking the limit as defined by Equation
2.82.

e g2
Gx(f)—g;gloAf‘Px(f,Af), only for f 20 (2.82)

where:
2 N
WL (f,AF) = lim — [x° (¢, f,Af)dt
T T 0

T is the observation time.
x(t, f,Af) is the portion of x(¢) in the frequency range from fto f + Af.

¥ = [G,.(fHdf
0

G, (f)is derived by first postulating the filtering of a signal sample x(¢) with a
bandpass filter having sharp cut off characteristics between f and f + Af and then
computing the average of the squared output from the filter (Bendat and Piersol
1971). This average squared value approaches an exact square value as the
observation time 7 approaches infinity. The single sided power spectral density
G.(f) is then defined by Equation 2.82 as the filter bandwidth Af approaches
Zero.

G (f) is termed one-sided as it is only defined for f= 0 . The two-sided PSD is
defined over all f for stationary signals. According to the Wiener-Khinchine
theorem the power spectral density is equal to the Fourier transform of the
autocorrelation function as defined by Equation 2.83.

+oo . .
P(f)= [r()e *dz, (2.83)
The relation between these two PSDs is defined by Equation 2.84.
G, (f)=2P,(f)=2P.(-f) (2.84)

The two cross-spectral density functions for two stationary processes {x(¢)} and
{y(r)} are defined as the Fourier transforms of the respective cross-correlation
functions as defined by Equations 2.85 and 2.86 respectively.

Linear Systems and Stochasic Processes 73
oo af
- T
P, (f)=FTlry1= [r,(r)e " dr (2.85)

P (f)=FTIr, 1= [r,()edz (2.86)

X

P, and Py, are complex conjugates of each other and their sum is real.
Furthermore, if {x(r)} and {y(¢)} are zero mean then,

Py (f) = P(f)+ Py (f)+ Py (f)+ P (f)

2.11.7 Coherence Function

The coherence function y, (f), defined by Equation 2.87, between two wide-sense

stationary random processes {x(f)} and {y(#)} is equal to the cross-power spectrum
ny(f) divided by the square root of the product of the two auto-power spectra
(Chen 1988). This coherence function is a normalised cross-spectral density
function. The Magnitude-Squared Coherence (MSC) function is defined Equation
2.88.

7x\(f) B)
JP.HP(f) (2.87)

Analogous to the correlation function coefficient p,, (1')
i i
Sy (f) = [ry@e /=¥ %dz,

Fourier Transform of the cross - correlation function.

MSC.y (f)=|75 (5|, 0<MSC,(f)<1 (2.89)

When the MSC = 0 for all frequencies then x(#) and y(f) are statistically
independent and when the MSC = 1 for all frequencies they are said to be fully
coherent. Since the coherence function, and particularly the MSC function, is a
measure of the relative linearity of two processes, or correlation between them, it
can be used for numerous purposes, including,

1. System identification.
2. Measurement of Signal to Noise Ratio (SNR).

3. Determination of time delay.

74 Principles of Adaptive Filters and Self-learning Systems

However, the use of the coherence function is valid only when it can be estimated
accurately.

2.11.8 Discrete Ergodic Random Signal Statistics

The statistical properties discussed above were primarily for continuous-time real
valued random signals. Discrete-time real valued signals have similar properties.
Some of the main statistical properties for discrete-time wide-sense stationary
random signals generated by ergodic discrete-time random real valued processes
{x[k]} and {y[k]} are,

Mean valueof {x[k]}, T= Bk =tim L %x[k]
N—oo N k=1
Mean square value of {x[k]}, ‘PXZ = E{(«[k])?} = lim 1 %xz[k]
N—o N k=1
Varianceof {x[k]}, o2 = E{(xlk]-5°) =lim L %(xz[k]—?c]
N—o N k=1

o’ = E{(xk])?*}-X2 =¥ -X°

Autocorrelation of {x[k]}, v (m) = E{x[kx{k +m]} = llivm % % XkI[k +m]
e k=1
Autocovariance of {x[k]}, ¢, (m)=E{(x[k]—X)(x[k +m]—X)}

Cross - correlation of {x[k]} & {y[k]}, rx).(m) = E{x[k]ylk +m]}
Cross - covariance of {x[k]} & {y[k]}, cx).(m) = E{(x[k]-X)(y[k+m]—-X)}

where : m is the lag factor

Some relational properties are as follows,

r(=m)=r.(m)

X =41, (o)

‘I’x2 =r,(0) = Average signal power.

For discrete-time wide-sense stationary random signals generated by ergodic
discrete-time random complex valued processes {x[k]=x[k]+jx;[k]} and
{ylkl=y,[kl+jy,[k]} the autocorrelation, autocovariance, cross-correlation and
cross-covariance functions are defined and related as follows,

Linear Systems and Stochasic Processes 75

Autocorrelation of complex {x[k]}, ro(m) = E{x[k](x[k + m])*}
=[r, (M) + 1]+ jl=r, . (M) +r, . (m)]

Autocovariance of complex {x[k]}, ¢, (m) = E{(x[k + m]—Xx)(x[k]— %) }

¢, (m) = r,(m) = X[k]x"[m]
Cross - correlation of complex {x[k]} & {y[k]}, rx).(m) = E{x[k](ylk + m])*}

Cross - covariance of complex {x[k]} &{y[k]}, Cyy (m) = E{(x[k]—X)(y[k + m]— })*}

€y (m) =1, (m) = X[k]X [m]

where: mis the lag factor

The autocorrelation function of complex wide-sense stationary processes is a
very important function which is used extensively. Consequently, it deserves closer
attention. The autocorrelation between the random variables x[k] and x[i] depends
only on the difference, k - i, separating the two random variables in time, i.e.,

ro(koi) =1 (k—i0) = r (ki)

The difference, m = k - i, is called the lag. The autocorrelation sequence of a wide-
sense stationary process is a conjugate symmetric function of k, r,(m) = r: (—m).

This property is evident from the definition Equation 2.89,
ro(m) = E{x(k +m)x" (k)} = E{x(k)x" (k +m)} = r,(=m) (2.89)

where:
m is the lag.

2.11.9 Autocovariance and Autocorrelation Matrices

The autocovariance and autocorrelation sequences are important second-order
moments of discrete-time random processes that are often represented in a matrix
form. For a (p+1)-dimensional vector x = [x[0], x[1], x[2],...., x[p]]T of a wide-sense
stationary process {x[n]} its outer product is a (p+1) X (p+1) matrix defined by
Equation 2.90.

x[01x[0] x[01x'[1] .. x[Olx'[p]
o | A0 AT {1 [p]

(2.90)

x[plx'[0] xplx] .. x[plx'[p]

76 Principles of Adaptive Filters and Self-learning Systems

The expectation of this matrix is the (p+1) X (p+1) autocorrelation matrix, R,, as
defined by Equation 2.91.

0 @ . r(p)
R, - E{XXH}: rx-(l) rXFO) T, (p.—l) 2.91)
re(p) rd(p=-D : (0

where:

r.(m) = r: (—m), according to Hermitian symmetry.

By the same process the expectation of the outer product of the vector x minus
the mean vector of the process, i.e., (x—X), produces the autocovariance matrix,
C,., which for a zero mean process is equal to the autocorrelation matrix. The
autocovariance matrix is defined by Equation 2.92.

C, =E{(x-0)x-%)"}=R, -xx" (2.92)

The autocorrelation matrix of a wide-sense stationary process is a Hermitian matrix
with all the diagonal values real and equal. For a real valued random process it is a
symmetric Toeplitz matrix.

A wide-sense stationary Gaussian process with covariance c,(m) is referred to
as autocorrelation ergodic if,

N-1
lim — 3 c2(m)=0

N —e0 m=0

In most applications it is not practical to determine whether a given process is
ergodic. Therefore, often, time averages are simply used to estimate the ensemble
averages and the validity of the assumption is tested by the performance of the
algorithm requiring the information.

2.11.10 Spectrum of a Random Process

The power Spectrum of a discrete-time wide-sense stationary random process,
{x[n]}, is the Fourier transform of its autocorrelation sequence r, (k) as defined by

Equation 2.93.

P.(e®) = Sr.()e P ()= Sr.(k)™ (2.93)
fem—oo fe=—oo
where:

€=wT:ﬂ

N

Linear Systems and Stochasic Processes 77

The autocorrelation sequence may be computed by taking the inverse Fourier

transform of P, (ej 9) as defined by Equation 2.94.

+7 X .
r (k) =$ [P.(e’®)e’?do (2.94)
-

The power spectrum of a wide-sense random process x[#n] is nonnegative and real-
valued, ie., P, (e’ = P; (e’%), and P.(z) satisfies the symmetry condition,
P.(2)= P: (I/z). If x[n] is real then the power spectrum is even, i.e.,
Px(eja) =P, (e_j'g), which implies that P, (z) = P; (z). The total power in a zero

mean wide-sense stationary process is proportional to the area under the power
spectral curve as defined by Equation 2.95.

1 +7 .
E{xn]’) = [P(e?)a0 (2.95)

The eigenvalues of the n X n autocorrelation matrix of a zero mean wide-sense
stationary random process are upper and lower bounded by the maximum and
minimum values of the power spectrum as defined by Equation 2.96.

min P, (/%) < A, < max P, (e’?
i e (€7) S A ax (e’7) (2.96)
The power spectrum can also be seen as the expected value of the squared

Fourier magnitude, PN(ej 9), in the limit as N — oo for 2N + 1 samples of a given
realisation of the random process, i.e., refer to Equation 2.97.

2} (2.97)

P.(e!?) = E{Py(e’®)} = Y r (k)e
k=—o0
N R
= lim ! E{| S x(n)e™®
N—eo 2N +1 n=—N

where:
2
N ,
3 x(n)e "?
n=—N

, 1
Py(el?)=—
w(e™) ON +1

If the power spectrum Px(ejg) of a wide-sense stationary process is a
continuous function of 6, then P.(z) may be factored into a product of a form

known as the “spectral factorisation” of P.(z) as defined by Equation 2.98.

P(2)= 6§Q(Z)Q*(i*j (2.98)

<

78 Principles of Adaptive Filters and Self-learning Systems

where:

1 .
o; = exp{g fﬂ InP,(e’?)d@}

For a real-valued process the spectral factorisation is defined by Equation 2.99.

P(e")=030()Q(z™") (2.99)

Any process that can be factored in this way is called a regular process and has the
following properties,

1. The process x[n] can be realised as the output of a causal and stable filter
H(z) thatis driven by white noise having a variance of 0'3 .

2. If the process x[n] is filtered with the inverse filter

the output v[n]

is white noise having a variance of 0'5 . In this case is known as a

H(z)
whitening filter.

3. Since v[n] and x[n] are related by an invertible transformation then they
both contain the same information and may be derived from each other.

N(2)

For the special case when P,(z) =

, a rational function, then according to the

spectral factorisation P,(z) may be factored in the following form,

« 1
B (=)
omstnso(2)-f 2]
Z

where:
O'g is a constant.
B(z)=1+b[11z"" + ..+b[g]z™?, is a monic polynomial having all its roots inside
the unit circle.
A(2)=1+a[l]z" +..+a[p]z”?, is monic polynomial having all its roots inside
the unit circle.

2.11.11 Filtering of Random Processes

The output y[n] of a stable LSI filter, 4[n], driven by x[n], a wide-sense stationary
process, is defined by Equation 2.100.

Linear Systems and Stochasic Processes 79

ylnl=x[n]*h(n]= ih[k]x[n—k] (2.100)

k=—c0
The mean of y[n] is defined by Equation 2.101.

E{ynl}= E{ ih[k]x[n—k]} = S hIKEfn-k1)

k=—c0

k=—co

(2.101)

=%[n] 3 hik]=%[n]H (')
k=—oo

The crosscorrelation between y[n] and x[n], ryx(n+k,n), depends only on the

difference between n + k and n and is defined by Equation 2.102.
ry (k) = E{yln+klx [n]} = r, (k) = h k] (2.102)

where:
k is the difference between n+k and n .

The autocorrelation of y[r] is defined by Equation 2.103.

ry (k) = ry, (k) B [—k]

= S Sl (m—1+k)h [m] (2.103)

[=—co, m=—oo

= r (k) *h[k]% k" [-k]

It can also be said that,

r (k) = KK R' =k = S hlnlk [n+k]

n=—oco

therefore,
ry (k) = r.(k)*n, (k)
The variance of the output process is defined by Equation 2.104.

E(yinf}=02=r @)= 3 Shlllr,n—Dh"Tm] (2.104)

[=—00 m=—c0

In the special case when h[n] is finite with a length of N then the variance, or
power, of y[n] may be expressed in terms of the autocorrelation matrix R, of x[n]
and the vector filter coefficients h as defined by Equation 2.105.

o2 = E{yin]'} =h"R h (2.105)

The power spectrum of x[n] and y[n] are related as follows,

80 Principles of Adaptive Filters and Self-learning Systems

. . . 2
P,(e') = Px(efe)‘H(eja)‘
and,

P,(2)= P H(H ()
Z

If h[n] is real, then H(z) = H*(Z*) and Py (z) = P.(2)H(z2)H(1/2) .

2.11.12 Important Examples of Random Processes

Some random processes that are typically found and used in relation to signal
processing algorithms are Gaussian, white noise and sequences, Gauss-Markov, and
random telegraph wave processes.

2.11.12.1 Gaussian Process

A Gaussian stochastic process is one for which all the probability density functions
are Gaussian distributions, including all the joint probability density functions as
well as the distribution functions at individual instants. Stationary Gaussian
processes have the property that they are completely determined by their
autocorrelation functions.

2.11.12.2 White Noise

Any stationary stochastic process {x(¢)} having a constant spectral density function
is described as white noise. Its power spectral density function is P, (f)=a for
some constant a, and the autocorrelation function is r,(7) =ad(7), where (1) is

the Dirac delta-function (impulse function). These relations strictly only apply to
the ideal case of a process having an infinite bandwidth.

Band-limited white noise is a more realistic process model that has a density
function defined by Equation 2.106.

a, W, < f<W,

Px(f):{o, | fl< Wyl f1> W, (2.106)

where:
W, and W, are the lower and upper limits of the passband in Hertz.

The autocorrelation function of band-limited white noise is defined by Equation
2.107.

sin(2zx W, 1) W sin(2zx Wt)
2z W,T ! 2r Wt

sin(ZAWT)
TAWT

r (1) = 2{%

(2.107)

=2aAW cos(2zW,7),

where:

Linear Systems and Stochasic Processes 81

AW =W, —W,
_ (W +Wy)

2.11.12.3 White Sequences
The discrete equivalent of white noise is a white sequence, which is defined to be a
sequence of zero mean, uncorrelated random variables x[n] each having a variance

of G)ZC . If the random variables x[n] are normally distributed, the sequence is called

a Gaussian white sequence. A wide-sense stationary process is said to be white if
the autocovariance function c,(m) is zero for all m # O and it is defined by

Equation 2.108.
¢ (m) = 628(m) (2.108)

Since white noise is defined only in terms of the second-order moment there are an
infinite variety of white noise random processes that are possible.

2.11.12.4 Gauss-Markov Processes

A zero mean stationary Gaussian process {x(¢)} with an exponential autocorrelation
function is called a Gauss-Markov process. The autocorrelation function is defined
by Equation 2.109.

re(z)=c2e P (2.109)

where:

2

o

% is the mean square value of the process and 1/f is its time constant.

The power spectral density function of the Gauss-Markov process is defined by
Equation 2.110.

2028

P.(jo)=
x(J@) s

(2.110)

2.11.12.5 The Random Telegraph Wave
A random telegraph wave is a voltage waveform with the following properties,

1. The voltage is either +1 or -1 volts.
2. The voltage at time t = 0 may be either +1 or -1 with equal likelihood.
3. The distribution of changes of voltage is a Poisson distribution.

The third property means that the probability of £ number of voltage changes in a
time interval T is defined by the Poisson distribution Equation 2.111.

82 Principles of Adaptive Filters and Self-learning Systems

P(k) = (aT)* e k! @2.111)

where:
a is the average number of voltage changes per unit time.

The autocorrelation function of the random telegraph wave is defined by Equation
2.112, which is the same as the autocorrelation of the Gauss-Markov process.

However, the random telegraph wave is not a Gaussian process and the two
waveforms do look different.

o (7) = e 201 (2.112)
2.12 Exercises
The following Exercises identify some of the basic ideas presented in this Chapter.

2.12.1 Problems

2.1. Does the equation of a straight line y = @ x + 5, where aand S are
constants, represent a linear system? Show the proof.

2.2. Show how the z-Transform can become the DFT.

2.3. Which of the FIR filters defined by the following impulse responses are
linear phase filters?

a. h[n]=1{0.2,0.3,0.3,0.2}
b. h[n]={0.1,0.2,0.2,0.1,0.2,0.2}
c. h[n]=1{0.2,0.2,0.1,0.1,0.2, 0.2}
d. h[n] =1{0.05, 0.15, 0.3, -0.15,-0.15}
e. h[n]=1{0.05,0.3,0.0,-0.3,-0.05}
24. Given the following FIR filter impulse responses what are their H(z) and

H(z‘])? What are the zeros of the filters? Express the transfer functions in
terms of zeros and poles? Prove that these filters have linear phases.

a. h[n]=1{0.5,0.5}
b. h[n]={0.5,0.0,-0.5}
c. h[n]=1{0.5,0.0,0.5}
d. h[n]=1{0.25,-0.5,0.25}
2.5. Which of the following vector pairs are orthogonal or orthonormal?

a. [1,-3,5]Tand [-1, -2, -11T

2.6.

2.1.

2.8.

2.9.

2.10.

b. [0.6,0.8]T and [4,-3]T

c. [0.8,0.6]7 and [0.6,-0.8]"

d. [1,2,3]7 and [4,5,6]T

Linear Systems and Stochasic Processes

Which of the following matrices are Toeplitz?

3 1 1
a. |4 2|,b. |1
5 3 1

B~ W
[NSTN \S R S

1 A+ a-j]
fla-5H 1 d+))
a+j a-j 1

3] 111 3
3,c. |1 1 1,d.]2
3 111 1

What is special about matrices c, d, e, and f?

o =N

w N =

w N =

o =N

— N W

83

Which of the following matrices are orthogonal? Compute the matrix
inverses of those that are orthogonal.

010 0 0 1 111 1 00
a. |0 0 1|,b.|0 1 Of,c.|1 1 1},d.]0 2 Of,e.
1 00 1 00 111 0 0 3

Why are ergodic processes important?

Find the eigenvalues of the following 2 X 2 Toeplitz matrix,

b

Find the eigenvectors for a =4 and b = 1.

Compute the rounding quantization error variance for an Analogue to
Digital Converter (ADC) with a quantization interval equal to A. Assume
that the signal distribution is uniform and that the noise is stationary white

noise.

What is the mean and autocorrelation of the random phase sinusoid
defined by, x[n]= Asin(na), +¢), given that A and ¢, are fixed constants

and ¢ is a random variable that is uniformly distributed over the interval

—7 tox . The probability density function for @is,

84

2.12.

2.13.

2.14.

Principles of Adaptive Filters and Self-learning Systems

1 _r<a<x

a) =
p¢() 26[,elsewhere

Repeat the computations for the harmonic process, x[n]= A" DT

Given the autocorrelation function for the random phase sinusoid in the
previous Problem 2.11 compute the 2 X 2 autocorrelation matrix.

The autocorrelation sequence of a zero mean white noise process is
r,(k)= 035(1() and the power spectrum is P, (e’ 9y = O'VZ, where O'V2 is
the variance of the process. For the random phase sinusoid the
autocorrelation sequence is,

1
ry(m) = 5 A? cos(may)
and the power spectrum is,

P,(e'?) Z%ﬁAz[uo(a)—a)O)+u0(a)+a)0)]

where:
uy(w— w) represents an impulse at frequency @.

What is the power spectrum of the first-order autoregressive process that
has an autocorrelation sequence of,

o

r.(m)=o
where:
ld< 1

Let x[n] be a random process that is generated by filtering white noise
w[n] with a first-order LSI filter having a system transfer function of,

H(z)= PE—
1-0.25z

If the variance of the white noise is O'i, = 1 what is the power spectrum

of x[n], P.(z) ? Find the autocorrelation of x[n] from P, (z).

2.15.

Linear Systems and Stochasic Processes 85

If x[n] is a zero mean wide-sense stationary white noise process and y[n] is
formed by filtering x[n] with a stable LSI filter h[#n] then is it true that,

o2 =c2 ¥ |nn’

where :

0'3 and O'f are the variances of x[n]and y[n] respectively.

PART II. MODELLING

“The study of modelling is inseparable from the practice of modelling”
(Gershenfeld 1999). According to Gershenfeld there are no rigorous ways to make
choices about mathematical modelling issues, but once they have been made there
are rigorous ways to use and apply them. Although it is easy to say that the “best”
model is the smallest model (Occam’s Razor), unfortunately, there is no analytic
way to find such a model or to determine the definitive metric to judge it by. In the
end, the “best model” is the one that does the best job according to the designer’s
satisfaction. This Part II comprising two chapters presents some of these rigorous
ways that can be applied to signal and system modelling, keeping in mind that
adequacy of the model is the business of the designer and his/her preconceptions.
Optimisation is an important tool employed in the modelling process.

Optimisation involves finding the best possible solution to a problem given the
constraints of model choice and noise statistics. It is usually associated with the
differential equations of a suitable model formulated in such a way as to identify
the extrema of the model equations, where an optimal result is expected to be
found. Least Squares Estimation (LSE) is a solution method that is fundamental to
classical linear and nonlinear signals and systems model optimisation and is
actually a general solution method for simultaneous linear equations. It has been
used successfully for over two hundred years in a very wide range of modelling
applications and is especially useful where the measurement error statistics
associate with the observations are Gaussian or at least symmetrical.

Parametric signal and system modelling is generally concerned with the
efficient mathematical representation of signals and systems by choosing an
appropriate parametric form for the model and then finding the parameters that
provide “the best” approximation to the signal or system according to some suitable
metric. In this signals and systems context the metric is very often chosen and
configured as the Mean Square Error (MSE) between desired and observed
quantities as a function of the unknown parameters. The optimisation proceeds by
minimising the MSE through differentiation and ultimately by the solution of sets
of simultaneous equations using LSE methods.

Parametric signal modelling can be applied to both deterministic and stochastic
signals. Key methods of deterministic signal modelling that are covered include the
least squares method, the Padé approximation method, Prony’s method and the
autocorrelation and covariance methods. Stochastic signal modelling can be
performed by autoregressive moving average modelling, autoregressive models and

88 Principles of Adaptive Filters and Self-learning Systems

moving average models, amongst others. Within these approaches a common
special linear equation form is seen repeatedly, which can be solved efficiently
using the Levinson-Durbin recursion. This solution method leads to a number of
interesting results including lattice filters and efficient Toeplitz matrix inversion.

3. Optimisation and Least Squares Estimation

Optimisation theory is fundamental to signal processing and adaptive systems in so
far as it involves finding the best possible solution to a problem given the
constraints of system structure and noise statistics. The theory is used in the design
of filters given a desired response specification and it is also incorporated in the
design of some adaptive filter algorithms to ensure proper convergence to the best
solution. It forms the basis of gradient descent approaches that rely on moving
consistently down hill of an error function in order to achieve the lowest error and
therefore the best solution.

Least Squares Estimation (LSE) is an optimisation method that aims to find the
best solution to a set of linear equations where the data error statistics are Gaussian
or at least symmetrical. LSE is fundamental to classical linear and nonlinear filter
theory, where the model’s dependence on its parameters is linear and measurement
errors are Gaussian or symmetrical with constant variance. In this Chapter it is
shown how LSE may be applied to arbitrary problems by first developing solution
equations for simple geometric problems related to navigation position calculations
given noisy navigation measurements. From these specific examples it is easy to
see how LSE can be adapted and used to also solve problems from other domains.

3.1 Optimisation Theory

Optimisation theory is generally involved with finding minima or maxima of
functions of one or more variables. The simplest and most common application of
optimisation theory is to find the global minimum of a scalar function f(x) of a
single variable x. If the function is differentiable then all the stationary points of the
function, including the local minima and global minimum must satisfy the
following conditions,

2
_df(x) =0, and, d fgx) >0

dx dx

If the function f{x) is strictly convex then there is only one solution to the equation
df (x)

7 =0, otherwise each stationary point must be checked to see if it is the
by

90 Principles of Adaptive Filters and Self-learning Systems

global minimum. A function is strictly convex over a closed interval [a, b] if, for
any two pairs x; and x, in [a, b], and for any scalar & such that 0 < & <1, then
fax; +(1-a) xy) < afix) + (1-a) fix,).

For a scalar function of n real variables, fix) = f(x;, x,,...., x,,), the minima are
found by first computing the gradient, i.e., a vector of partial derivatives as defined
by Equation 3.1.

Jd
c9_x1f(x)

V. f(x) -4 f(x)= : (3.1)
dx J
o f(x)

The gradient vector points in the direction of the greatest rate of the function’s
change and is equal to zero at the stationary points of the function. A stationary
point X is the minimum if the Hessian matrix H is positive definite, i.e., H, > 0.
The Hessian matrix H is a n X n matrix of second-order partial derivatives with
respect to the (i, j)th element, and is defined by Equation 3.2.

a2
{0}, =mf (x) 3.2)

If f(x) is strictly convex, then the solution to the equation V f(x) =0 is unique and

is equal to the global minimum of f(x).

When the function is a real-valued function of complex vectors z and z",
finding the minimum of f{(z, z*) is complicated by the fact that the function is not
differentiable. If f(z, z*) is a real-valued function of the complex vectors z and z"
then the vector pointing in the direction of the maximum rate of change of the

function is V *f(z,z*), which is the derivative of f(z, z*) with respect to z".
Zz

Therefore, the stationary points of the function f(z, z*) are solutions to Equation
3.3.

Vz*f(z,z*) =0 (3.3)

An example of a minimisation problem found in array processing is to minimise
the quadratic form, zHRz, with the constraint that, z7a = 1, where z = (21> 295eees
zn]T is the complex solution vector, R is a positive definite Hermitian matrix, and a
is a given complex vector. One way to solve this problem for z is to introduce a
Lagrange multiplier A and minimise the unconstrained objective function as defined
by Equation 3.4.

Qr(z,) :%ZHRZ+/1(l—zHa) (3.4)

Optimisation and Least Squares Estimation 91

By setting the gradient to zero the result is V .Qg(z,4)=Rz+4a=0, then

z=AR"'a. To solve for A it is also necessary to compute the derivative of

aQR (Z’ /1) —
oA

Qg (z,A) with respect to A and set it to zero as follows, 1-z%a=0.
The Lagrange multiplier A can then be computed by combining these two results as
defined by Equation 3.5.

1
A= TR e 33

The solution for z is now defined by Equation 3.6.

-1
2= 2 (3.6)
a’R7a

The minimum value of zF/Rz is achieved by substituting the solution z into the
quadratic form Qg (z,) = zRz to arrive at the solution defined by Equation 3.7

H

. z'a 1

min{z"” Rz} =— ——=——— 3.7)
z a’'R7a a"R7a

3.2 Optimisation Methods in Digital Filter Design

The digital filter design problem can be formulated as an approximation problem
utilising optimisation methods. The form of the filter’s transfer function is first
assumed and then an error function is formulated on the basis of some desired
amplitude and/or phase response. A norm of the error function is minimised with
respect to the transfer function coefficients to achieve some arbitrary amplitude or
phase response. The optimisation methods used to achieve this are iterative,
requiring extensive computations and they are not guaranteed to converge. The
same methods may be used for analogue filter design, as well as for any modelling
problem given the form of the transfer function.

Consider the design of a digital filter whose transfer function H(z) is to

approximate a prescribed transfer function I;V(z) over some frequency interval at
discretely chosen frequency points. Suppose that the type of filter has already been
specified in relation to form, i.e., recursive, nonrecursive, stability, sensitivity etc.
The design problem is then stated as follows,

Obtain the parameter (coefficients) values of the transfer function so that it is
as close as possible to the ideal transfer function at the prescribed frequency
points.

92 Principles of Adaptive Filters and Self-learning Systems

To give a more precise definition to the term “as close as possible” an error
norm must be chosen. Let M (@) be the specified or required filter amplitude

response and M (X,®) be the actual filter’s amplitude response, where X is a vector
of the filter’s coefficients. The approximation error e(X,®) can be defined as the

difference between the filter’s response and the desired response, i.e.,
e(x,w)=M (x,0)— M (w). By sampling e(x,®) at K discrete frequencies @,
@,...., U, the error vector can then be formed as defined by Equation 3.8.

e (x)
e(x)=| 2 FX) 3.8)

e (x)

where:
e;(x)=e(x, ;)

If a solution exists then an error or objective function W(x) is needed that is a

scalar differentiable function whose minimisation with respect to x should lead to
the minimisation of all the elements of e(x) in some sense. The Lp norm of e(x) is
commonly used as the objective function. It is defined by Equation 3.9.

1
. 1
) =[], =L, = {z|e,. (x)|”}” (3.9)
i=1

Lp norms of possible use are the L;, L, (Euclidean) and L, (minimax) norms
defined respectively as follows,

K
ecol, =| SJeco]
i=1
1

S
ecol, =| Secof’
i=1

K m
||e(x)||m = lim {Zki (x)|m} = max|e,~ (X)|
m—ool ;| i

The optimisation problem then becomes a matter of minimising one of these norms.
However, L; and L, are not differentiable and cannot be used for the proposed
optimisation. The Euclidean norm is the sum of squares and is therefore often used
to compute the mean square error function. Most optimisation algorithms operate in
essentially the same iterative manner. Given a small minimum error tolerance of say
E, a typical iteration process for optimisation is as follows,

Optimisation and Least Squares Estimation 93

1. Make a reasonable guess on the coefficient values given any known
constraints.

2. Use the coefficient values of Step 1 to compute the objective
function W(x) . If W(x) > E then go to Step 3 else stop.

3. Introduce small changes to the coefficient values, i.e., x is replaced with
x+0x. Using these adjusted coefficient values compute the

corresponding transfer function and objective function values. Jx is
chosen such that the following two conditions are satisfied,

i Yx+0x)<¥(x)
ii. [W(x+0x)—¥(x)!| is maximised.

The first condition i guarantees that the adjustment of the element values
is in the right direction in the sense that the new coefficient values are one
step closer to the desired one. The second condition ii assures that dx is

chosen in an optimal fashion, in the sense that the difference between the
original objective function and the adjusted one is as large as possible.
Ideally the two conditions should be satisfied simultaneously.

4. If I'¥(x+0x)I<E, then stop the iterations and take x+ Jx as the optimal

coefficient vector.
If I'P(x+0x)|>E, then use x+dx as the new coefficient vector and go

back to Step 3 and repeat the process until one of the following three
conditions are satisfied,

i. 1¥WY(x+0x)I<E
ii. ¥, -, lfori<n,apreassigned positive integer.
iii. The number of loops back to Step 1 exceeds some specified

maximum number implying that the problem cannot be solved to the
required error tolerance.

The second condition above implies that the objective function has
reached a minimum point or a saddle point and further iterations will not
reduce it any further. If this happens then try going back to Step 1 and start
again.

Although this technique will lead to a minimum it will not necessarily be the
global minimum. If the minimum reached is suspected not to be the global
minimum the process can be repeated with new initial coefficient guesses until a
more satisfactory solution is achieved. The lack of certainty in reaching the global
minimum is the main drawback of this type of optimisation process. In most
practical problems however, the advantages heavily outweigh the disadvantages.

94 Principles of Adaptive Filters and Self-learning Systems

The heart of this iterative optimisation technique is in the method of
computation of the optimal J0x. This is commonly done using the method of
steepest descent. The parameter vector x must be adjusted to minimise the objective
function as stated above. Firstly, the change in the current vector x;, Ax;is defined

as the difference between the new vector value, x
defined by Equation 3.10.

;+7> and the current value x; as

AX; =X —X; (3.10)

The change vector Ax; indicates both the direction and the magnitude of the

difference between vectors X, ; and x; in the parameter vector space. The vector
Ax; needs to be found such that Equation 3.11 is satisfied.

W(xi) = P(x; +Ax;) < P(x;) (3.11)

To do this, the multi-dimensional Taylor series is taken of W(x; +Ax;) about X;

and only the linear part is retained, i.e., the first two terms, as defined by Equation
3.12.

P(x; +Ax;) = P(x;) +[VP (x)Ax; < P(x;) (3.12)
The gradient vector VW(X;) in Equation 3.12 is a row vector defined by Equation

3.13.

da¥

V¥(x;)=|— (3.13)

In order to decrease W(x;)it is necessary that [V‘I’(xi)]Axi < 0. If a unit vector
S; = Ax; / |Ax,-| is defined to have the same direction as the change vector Ax;, then

Equation 3.14 can be formulated to define AXx; in terms of s;.
AX; =X, —X; = a8, (3.14)

where:
«; is the step size, a real number representing the magnitude of Ax;.

The step size ¢; and direction, represented by the unit vector s;, must be chosen
such that o;[V¥(x,)]s; <0, for a; >0. The equation [V¥(x,)]s; is the dot
product between two vectors as defined by Equation 3.15.

[V¥(x,)]s; =|V‘P(xl-)||sl-|cose

3.15)
i.e., it is most negative when & =180°

Optimisation and Least Squares Estimation 95

To ensure that W(x; + Ax;) decreases X; must be changed along a direction that
is opposite to the gradient VW(x;). Since the gradient represents the direction of

the greatest increase in a function, the parameter vector can be adjusted along the
direction of the steepest descent, i.e., opposite to the gradient. The next step is to
find a suitable value for «; along the direction of the steepest descent that will
minimise the function W(X; +¢;s;). The search for «; is a one-dimensional
search for which there are a number of methods. The simplest method is to start
with a very small estimate for «; and progressively double it, i.€., X gimae =

2 &> j=0,1,...., until the value of W(x; + Zjasmausi) achieves its lowest value

at j = k. Since the error function is unimodal the minimum of W(X; +¢;s;) can be

assumed to be between 2"_105%al

method can be used to find @; = ,;, . This approach has the disadvantage that a

(<o <2, . and then the bisection

small step size is needed, therefore it may only find a local minimum and it also has
slow convergence. The other simple gradient descent methods also suffer
limitations, nevertheless they still find use in many areas.

In addition to the steepest descent methods a number of other optimisation
methods exist that do help to overcome some of the limitations of steepest descent.
These include,

1. The conjugate gradient method.
2. Simulated annealing.
3. The simplex method.

4. The minimax method.

3.3 Least Squares Estimation

Least Squares Estimation (LSE) is an extremely important and widely used
statistical technique for solving both linear and nonlinear equation sets. In one way
or another LSE is fundamental to general signal processing, pattern recognition and
neural network theory through its links to probability theory (maximum likelihood
estimation). It is fundamental to stochastic approximation, linear and nonlinear
regression, Backpropagation-of-error and other artificial neural network learning
and in optimum and nonlinear filter design.

Given a set of determined or over determined linear or nonlinear equations, that
model a system or a process, it is possible to solve for the dependent variables
(model parameters) given values for the independent variables (measured values)
using LSE. Provided that the model’s dependence on its parameters is linear and
measurement errors are Gaussian with constant variance, the least squares solution
is a maximum likelihood estimation (Press ef al 1986). Serious problems can arise

96 Principles of Adaptive Filters and Self-learning Systems

with LSE if the measurement errors are not close to Gaussian, especially if there are
large outliers in the measurements. Therefore measures must be taken to correct
these problems before LSE can be used with good effect. The basic LSE problem
can be stated as follows,

Given a real m X n matrix A of rank k < min(m, n), and given a real m-
dimensional vector y, find a real n-dimensional vector x! that minimises the
Euclidean length of vector Ax-y, (Lawson and Hanson 1974).

The matrix A is the design matrix that relates the unknowns x to the measured
quantities y by linear equations. The equation Ax = y can be solved for the
unknown X most economically by Gaussian elimination, but Gaussian elimination
can suffer from rounding error when solving large matrices. In practical situations,
orthogonalization methods such as Householder Orthogonalization, Modified
Gram-Schmidt, Bidiagonalization or Singular Valued Decomposition (SVD) are
favoured. Orthogonalization methods have guaranteed stability and they do not
suffer badly from rounding errors. In cases of ill-conditioning or over
determination, the SVD method is unsurpassed (Golub and Van Loan 1983). It is
also possible to use relaxation techniques like the Gauss-Seidel method (Miller
1981). These start with an initial guess to the solution and improve it iteratively
until it relaxes to the true solution. Their advantages are that they do not suffer from
rounding problems, they can solve very large matrices and the equations do not
need to be linear. However the disadvantage is that they may not always converge.

If equation Ax = y is multiplied by A transpose (A7) the so called normal
equations of the LSE problem result, as defined by Equation 3.16.

ATAx=ATy (3.16)

These normal equations can be solved using similar techniques to those described
above. The major disadvantage of the normal equations is that in many practical
cases they can be close to singular if two equations or two different combinations of
the same equation in the A matrix happen to fit the measured data either equally
well or equally badly, i.e., ill-conditioned. However, this can be avoided by good
design in the first place. The matrix ATA is now a square n X n matrix for which it
is at least possible to compute an inverse.

In cases where the error variances of the measured quantities are not equal, it is
desirable to add a weight matrix W, which is the inverse of the variance-covariance
matrix of the measured quantities. The normal equations then become as defined by
Equation 3.17 (Cross 1981).

ATWAx=ATWy (3.17)

The weight matrix ensures that more significance is given to more accurately
measured quantities in the final solution. If the measurements are uncorrelated then
the W matrix simply becomes a diagonal matrix with each diagonal element being
the inverse of the respective measurement variance. If the measurements are
correlated then it contains values in the off-diagonal and it can be more difficult to
compute or estimate.

Optimisation and Least Squares Estimation ~ 97

For nonlinear problems the design equations are partially differentiated so that
now B = dy/dx becomes the matrix that relates the unknown differentials Jx to the
differences between the measured quantities y and the calculated ones using the
provisional solution x,. Given Bdx = Jdy = Ay (difference between observed and
calculated values) + r (residuals), the estimate of the solution becomes X = X+ J X

and the process is iterated until a satisfactory solution is reached when Jx
converges to a very small value. The design equation B d X = Ay can be solved, for

each iteration, in a similar manner to equation Ax =y as described above.

The LSE method finds the best solution for a set of observations or
measurements that include noise. To achieve the best benefit from the LSE a design
should include more measurement equations than solution variables. The more
measurement equations the more precision is achieved through error variance
reduction. This can be achieved in two ways, or by a combination of both ways. A
range of different equations related to the solution variables can be developed.
Otherwise, extra measurements for the same equations can be taken and integrated
into the LSE design.

3.4 Least Squares Maximum Likelihood Estimator

Least squares is a maximum likelihood estimator. Suppose that it is desired to fit N
data points (x;, y;), i = 1,...., N, to a model that has M adjustable parameters aj, j=
1,...., M. The model predicts a functional relationship between the measured
independent variables and the desired dependent variables,

y(xX) = y(x s ay,...., ay)

The least squares fit minimises the error over the variables ay,...., a,,, as defined by
Equation 3.18

N 2
Error =3[y, = y(x; 1 ay.....ap,)] (3.18)

i=1

Suppose that each data point y; has a measurement error that is independently
random and a Gaussian distribution around the “true” model y(x). Also assume, as
is often the case, that the error standard deviations of the measured data are the
same for all points and represented by o. Then the probability P that a given set of
fitted parameters Qjrenes Ay is correct is the product of the probabilities of each
point as defined by Equation 3.19.

yi = y(x;)

& L yi=y()
P=TI{exp[2(p) 1Ay} (3.19)

i=1

Maximising P (or its log) is like minimising the negative of its log, namely,

98 Principles of Adaptive Filters and Self-learning Systems
Y (i =y’

[>————"—1-NlogAy

i-1 20

Since N, o and Ay are constants, minimising this equation is equivalent to
minimising,

N 2
;[)’i—)’(xi)]

On the other hand if each data point (x;, y;) has its own measurement error o;
then the Chi-square metric 2, as defined by Equation 3.20, can be used.

2
o g[L{?an (320)
O,

i=l ;

Here the derivative of »? with respect to each parameter a, is set equal to zero as
defined by Equation 3.21.

N oy —y(x) (X5
;(yl O-y2(xz))(y(x, Ay)):0’ k=1,.M 3.21)

1

Equation 3.21 is a set of M nonlinear simultaneous equations that need to be solved
for the M unknowns a, to find the least squares fit.

3.5 Linear Regression - Fitting Data to a Line

The LSE linear regression solution, or the fitting of a straight line to a two-
dimensional data set, is defined by Equation 3.22. The model parameters of a line
in two dimensions are the y intercept a and the line’s slope b.

y(x) = y(x; a, b) = a + bx (3.22)

To solve for these parameters a and b Equation 3.20 is applied as defined by
Equation 3.23.

2
2 ab) = ﬁ[%} (3.23)
i=1

i

The solution to Equation 3.23 is in accordance with Equation 3.21 and results in the
set of solution Equations 3.24 to 3.27.

A=SS,.-S?2 (3.24)

Optimisation and Least Squares Estimation ~ 99

S .S, -S.S
a= x My xMxy
A
S§§ =S.S, (3.25)
xy
b=—"——
A
where:
<1 & X & Vi
§=>—, S, = — 5, =27~ (3.26)
i=1 0; i=10; i= 0,
N xiz N Xy
Su=2Y—5 Sy=2—"5 (3.27)
i=l O, i=l O,

0'a2 zsi
A (3.28)
, S
O-b :Z

3.6 General Linear Least Squares

The general linear least squares problem is involved with fitting a set of data points
(x;,y;) to a linear combination of any M specified functions of x. Equation 3.29

defines a specific polynomial example using basis functions 1, x, x2,...., xM-1,
whereas Equation 3.30 defines the more general case.
y(x) =a; +ax + a3x2 ++a,V,)c/V"1 (3.29)
M
y(x) =2 a, X (x) (3.30)
k=1

where:
X{(x),...., X3y (x) are arbitrary functions of x, i.e., the basis functions.

Linear, in the context of least squares refers to the model’s dependence on its
parameters a, not the function itself. Consequently, LSE can be used for either
linear or nonlinear function estimation so long as the problem can be formulated in
terms of an equation like Equation 3.30.

100 Principles of Adaptive Filters and Self-learning Systems

3.7 A Ship Positioning Example of LSE

The workings of LSE is best demonstrated with a practical application problem
such as ship position at sea. Such a problem requires that a set of nonlinear
geometric equations be solved. Therefore, a general introduction to the LSE
solution for nonlinear problems is given first before showing its application to ship
positioning using range information gathered from fixed navigation radio beacons.

Take the case of a nonlinear differentiable vector function model y = F(x). To
compute a LSE solution for the model parameters x it is first necessary to take the
partial differentials of the measured (observed) variables y with respect to the
model parameters X, i.e., B = dy/dx. This can be reformulated in terms of Equation
3.31, which shows that the function differential can be estimated by an observed
minus a calculated term (Ay=[O - C]) plus a residual vector r quantity.

dy =Bdx=Ay+r =[O0 - C]+r (3.31)

The estimates of the parameter differentials JX and residuals r are defined by
Equations 3.32 and 3.33 respectively.

ox=[BTWB]'BT WAy (3.32)

r=BJx-Ay (3.33)

The normal LSE equations for this problem configuration are defined by Equation
3.34, which also include a weight matrix W.

B’ WBJx =B” WAy (3.34)
The required normal equation solution is then defined by Equation 3.35.

X =x, +Jy =x, +(B" WB]'B” WAy (3.35)
Starting with an initial provisional parameter estimate X, the solution Equation
3.35 is iterated whereby each estimate X becomes the next provisional estimate X,

until JX approaches zero or is less than some very small value. This is a gradient

descent adaptation algorithm, where the variables are defined as follows,

ay = differential observed or measures patterns. (Vector size m).

B = matrix of partial differentials - function of y. (Matrix size m X n).
ax = differentials of unknowns. (Vector size n).

W = weight matrix. Inverse of covariance matrix of observations or

. . 1
measurements. If observations are independent then W;=—:-.

O;
(Matrix size m X m).

Ay = difference between observed and calculated values (O - C).

Optimisation and Least Squares Estimation 101

(Vector size m).

r = residuals. (Vector size m).

X = solution estimate, starts with a first guess then becomes the solution
estimate of the previous iteration and also the provisional estimate.
(Vector size n).

X = solution vector. (Vector size n).

The problem Equation 3.31, Bd x = Ay+r = (O-C)+r = Jdy, is approximately
linear near the solution and can therefore be expressed as set of linear equations
defined by Equation 3.36. These set of equations are repeatedly solved for each
iteration of the process.

[dy,1dx, Iy, 19x, dyldx, |Ix
Ay, 1dx; Iy, 1dx, dy 1dx, | Ix,
1yl dxy Iy, 1dx; dy,/dx,|dx,

- : - - 3.36
(0-0C), i Iy (330

0-0), e dy,

[(0-C) r 1OV |

m | L m_|
Northing Beacon 1 BeaconTZ
v, E] [Ny, By]
. .
Q\\ Lz
\\\\\\ 01 CZ///://
C o~ \‘\\< -7 // 0,
“Xo T~ g%
N /,\ PR
c, -~ -~ 1o
r 7 //0/ G~ T
[Ny E)) o Y ’ ~ 0[N3 Es]
. Beacon’
eacon
Beacon 4 ‘
Easting
E

Figure 3.1. A Ship Positioning Example

The best way to illustrate LSE is with a detailed worked example. A typical
problem might be to estimate the position of a ship by taking distance
measurements to a number of fixed and known navigation beacons. Refer to Figure
3.1. The measurements to the beacons have different measurement accuracies but
all errors may be assumed to be zero mean Gaussian. This examples is taken from a
paper from the Hydrographic Journal (Cross 1981), which gives a complete

102 Principles of Adaptive Filters and Self-learning Systems

working and analysis of the problem with numeric examples. The variables relevant
to this example are defined as follows,

x =[N, EIT the actual ship’s northing and easting position.

Xy =[Ny, Eg]T the ship’s provisional position.

0,= observed, measured distance to beacon number 1 to the ship.

0, = observed, measured distance to beacon number 2 to the ship.

05 = observed, measured distance to beacon number 3 to the ship.

O, = observed, measured distance to beacon number 4 to the ship.

C = computed distance from beacon number 1 to the ship’s
provisional position.

G, = computed distance from beacon number 2 to the ship’s
provisional position.

Cy= computed distance from beacon number 3 to the ship’s
provisional position.

C,= computed distance from beacon number 4 to the ship’s

provisional position.
dx=[JdN, JE]T differentials of the unknowns x = [N, E]T.

This problem’s model equations y = F(x) are defined by the set of Equations 3.37.

Cy = V((N;-Ny)? + (E{-E)?)
Cy = N((Ny-Ny)? + (Ey-Ep)?)
C; = V((N3-Ny)? + (E5-E)?)
Cy = N((Ng-Np)? + (E4-Ep)?)

(3.37)

The differentials of the unknowns with respect to the measured quantities
dyldx=0dF(x)/Jx can be expressed in detail by Equations 3.38.

dC, = ((Ny-Np INIC,) + ((Ey-E,) IEIC,)
JCy= ((Ny-N,) INICy) + ((Ey - E,) JEIC,)
JC3= ((Ny-N3) INIC;) + ((Ey- E3) JEICS)
JC,= ((Ny-Ny) INIC,) + ((Ey-E,) IEIC,)

(3.38)

Subsequent analysis can be simplified if the following equivalences are adopted,
L;= ((Ny-NpIC;) and K;= ((Ej-E)/C;)

Given these new symbols the general problem Equation 3.39 can then be more
economically expressed as Equation 3.40.

dy=BJdx = Ay +r =(0-C) +r (3.39)

Optimisation and Least Squares Estimation 103

From Equation 3.40 the matrix B is,

LK,
LK,
LK
LK,

B=

In principle it is possible to add more equations to improve the estimate if there
were more beacons. The more redundant equations there are the better the LSE
solution. Although two beacons are theoretically enough to compute a two-
dimensional position coordinate there would be two possible solutions because the
two equations cannot distinguish solutions on either side of the baseline between
the two beacons. Therefore in this problem it is necessary to have a minimum of
three beacons to compute a unique solution.

The problem requires a solution for the position variables JE and JN, i.e., dx
as defined by Equation 3.41, which are a set of simultaneous and hopefully linearly
independent equations.

Jx=[B"WB]'BT WAy (3.41)

W is the inverse covariance matrix of observations. In this case it can be assumed
that the measurements are independent of each other. W can often be computed by
theory or else estimated by measurement. The weight matrix ensures that the factors
with the lowest variances carry more weight toward the solution. The weight matrix
W is,

Equation 3.41 can be expanded, for clarity, as follows,

!

o o
) LK s 0,-Ci
IN | _ [L|L2L3L4 } 02 L2K> {L1L2L3L4 } 02 02-C»
g'?EA' KiK2K3K4 652 13K3 KiK2K3K4 0-52 03— C3
LsK4 04— Cy
o7 o7

2x1) (2x4) (4x4) (4x2) (2x4) (4x4) @x1)

104 Principles of Adaptive Filters and Self-learning Systems

To find a solution to Equation 3.35 it is necessary to first start with a reasonable
guess for X, possibly from a graphic solution. Equation 3.35 can be re-expressed as
defined by Equation 3.42.

ﬁ:{ﬂ:x rox=|Noly N (3.42)
El"? E,| | 9E :

The solution is finally found by iterating Equation 3.42 until either |E - E, l< e
and |N— Ny | < & or | JE | < € and | 8N| < & where €£1is a small acceptable error
margin. During each iteration the residuals are estimated by r=Bdy—Ay . If the

residuals are zero or very close to zero at convergence it means that the model
chosen and Gaussian assumption for noise variance are probably correct. If not it
indicates there is a bias, most probably due to an inadequate model.

If observation measurements were made at regular or known time intervals it is
possible to introduce ship velocity into the equations without additional velocity
sensors and thus make better ship position estimates for a moving ship. Refer to
(Cross 1981) for details.

z
y
Receiver 0
Tramsmitter and .
Receiver 1 Receiver ¢ Receiver 3
X
Receiver 2
3
x=[x,y,z]"

Transponder
Beacon
Figure 3.2. A Beacon Position Example

3.8 Acoustic Positioning System Example

Another instructional example of LSE involves a three-dimensional acoustic
positioning system. The system can be designed a number of different ways but the

Optimisation and Least Squares Estimation 105

following method has been chosen because it is an easy way of doing it. The
problem is to compute the position of an underwater transponder beacon by using
array of short base-line acoustic transducers as shown in Figure 3.2. In the
transducer array there are four receiver transducers and one transmitter/receiver
transducer ¢ placed at the centre of the array. The centre transmitter transmits a
signal to the beacon, which after detection the beacon immediately sends back
another signal that is subsequently detected by all five transducers in the array.
Allowing for the beacon detection delay it is then possible to measure the turn
around times from transducer ¢ to the beacon and back to each of the five array
transducers, receiver ¢ and receiver O to receiver 3. The array is in a flat plane and
each transducer is placed on a rectangular axis location.

To compute the position, x =[x, y, Z]T, (in relation to the array’s orthogonal

axes) of the underwater transponder beacon a geometric model of the flight times
of a signal transmitted to the beacon and back again to each receiver on the array is
required. The appropriate model is defined by the set of Equations 3.43 and 3.44.

r=qxt+yi+ 77

n =\/(x+%)2 +y2 4277

_ diz\2 2 2
r3—\/(x—7) +y +Z (343)

Ty z\/x2 -i-(y-i—%)2 +z°

T =\/x2 +(y—%)2 +z°

where:
dy3=10.20 m, fixed distance between receiver 1 and 3, receiver c in the middle.
d>y = 0.20 m, fixed distance between receiver 2 and 0, receiver ¢ in the middle.

T, = (r+\/(x+%)2 +y2+22)V

TC3=(r+\/(x—%)2+y2+Zz)/V (3.44)

T., :(r+\/x2+(y+%)2+zz)/V

T,= (r-i-\/x2 +(y—%)2+zz)/V

106 Principles of Adaptive Filters and Self-learning Systems

where:

r =range from c the centre of the array to the beacon.

r; = ranges from receiver i to the beacon.
T, .=flight time of a turn around signal from ¢ to beacon back to c.
T, = flight time of a turn around signal from ¢ to beacon to i.

V' =1507.9 m/s velocity of sound in sea water.

From these basic model equations it is necessary to construct some linearly
independent observation equations. It is possible to use all the five 7, and T,
Equations 3.44 directly. However, this would result in a very poor LSE solution
because the differences between flight times are small, especially over longer
ranges, resulting in a set of ill-conditioned equations. To achieve a more robust
solution it is much better to make appropriate combinations of them such that the
average difference between measurements is as large as possible. It is possible to
make three suitable equations as defined by Equations 3.45 to 3.47. Three
equations are the minimum number required for a solution of three unknowns.
Since the transducer array is in a flat plane the system cannot distinguish between
solutions above or below the plane, but in this case it doesn’t matter since the
beacon can only be located below the plane. Otherwise, this ambiguity can easily
be resolved by adding another receiver transducer on the z-axis (preferably on the
negative side) and adding the appropriate model equation for that.

Go= V(T -Ty), ie., r-rs (3.45)
Hy= V(T,,- T, (3.46)
ro= V(T (3.47)

These are a set of equations that give measured observations in terms of array
geometry and the measured return flight times of the acoustic signal. Taking the
partial differentials of Equations 3.45 to 3.47 with respect to x, y, and z provides the
B matrix as defined by Equations 3.48 to 3.50.

dy
B=2
Ox (3.48)
[9G, 9G, G, |
dx dy Jz
JH 9:] JH Pt bra
B= . ¢ 1= by byy byy (3.49)
dx dy Jz
r Ir Ir by by b3
| dx dy dz

Optimisation and Least Squares Estimation 107

bn=[(x+%)/rl]—[(x—%)/r3]

by, =[yir }-[y/r]
bys =[Z/”1]_[Z/”3]
by, =[x/r2]—[x/ro]

by =[<y+%)/rz]—[<y—%>/r0]

by = [Z/rz]—[Z/ro]

b31 =.x/r
b32 :y/r
a33 =Z/r

(3.50)

The weight matrix is defined by Equation 3.51 if it is assumed that all
measurements are accurate to say 0.1%.

Wi

[1x10°
dl32
1x10°
dy’
1x10°

2
r

00

0 0

00

o?
1

1
=——— for i=j, and Wij =0 otherwise.

(3.51)

It is fairly important to make the first guess of the unknowns as close as possible
to the true values. There are regions of first guesses that will either not lead to
convergence or converge to the wrong solution. In this, case since all the receivers
are in the x-y plane there are two possible solutions (x, y, z) and (x, y, -z). If the z

guess is positive it will converge to the positive solution and vice versa.

The iteration process toward the solution is started by computing the estimate of
Jdx and guessing the first estimate X, i.e.,

values must be computed,

B
1
G n=rn *
c=|C, |=|rp—ry| givenx,= y'|, the first guess.
1
& r Z

X =x,+Jx. To do this the following

108 Principles of Adaptive Filters and Self-learning Systems

0,-C O, = G+ error
Ay = 0,=C, |, where: O, = H+ error
05-C; O; =1+ error
JBT
BTW
B'™WAy
B’W B

With these computations it is then possible to solve for JX in the normal equations

[BTWB][&X]=[BTWAy]. This can be done by using a number of possible
techniques such as,

1. Gaussian elimination.

2. Householder orthogonalization.

3. Modified Gram-Schmidt.

4. Bidiagonalisation.

5. Singular Valued Decomposition (SVD) - (probably is the best one).

6. Gauss-Seidel.

Then the new provisional solution %' is defined by Equation 3.52.

ol

X =x,+dX (3.52)

Next, let the new provisional solution %' be the next estimate X ,1.e., Xg= %' and

continue the iteration and stop when +/d3? +d$% +92% < 1x107°.

3.9 Measure of LSE Precision

The LSE precision o(dX) is determined from the variance - covariance matrix of

the least squares solution and is defined by Equation 3.53.
o(d%) =0, [B" WB]! (3.53)

Here, 0'3 is a unitless scaler quantity known as the unit variance (or often called

the standard error of an observation of unit weight) and is defined by Equation
3.54.

Optimisation and Least Squares Estimation 109

2, (FTWE)
0 _—(m—j) (3.54)
where:
Jj = number of parameters in vector Jx plus 2.
m = number of observations.

m - j = number of degrees of freedom.

If the degrees of freedom (m - j) is small 0'3 has a large uncertainty so it is best to
compute it by taking an average of 0'3 over a large number of fixes. If W has been
correctly estimated then 0'3 will be unity, therefore o(Jy)=[B’ WB]™'. If the

average O'g turns out not to be unity it is best to make a new estimate of W from

W
W _ old
new 2 "
)

3.10 Measure of LSE Reliability

A reliable value is one that is known to not contain a gross error. Gross error
detection in the ith observation can done by application of reliability Equation 3.55.

o!
rel,=—- (3.55)

O;
where:
o; = standard error of ith observation.
O'il = a posteriori standard error of ith observation, determined by the least

squares estimate Jy .

A R matrix is defined by Equation 3.56, which is used to compute the least square
reliability as defined by Equation 3.57.

R=B[B"WB]'B” (3.56)
V Ri

rel, =—— (3.57)
(o

where:
R; = the diagonal elements of the reliability matrix R.

In practice, if any of the reliabilities rel; exceed 0.90 the fix may be unreliable and
it should be investigated.

110 Principles of Adaptive Filters and Self-learning Systems

3.11 Limitations of LSE

LSE is used successfully in many applications but it does have some limitations that
need to be considered. These are,

1.

The accuracy of the solution along with its measure of precision and
reliability is limited by the mathematical model used. If the model does
not truly reflect the physical situation the results will be of limited value.
However, it is not always easy to detect errors in the model.

The method depends on a proper choice of weight matrix W. Although
errors in W are unlikely to seriously affect the final solution and its
reliability, they will have a direct effect on the assessment of precision. In
practice, observations are often considered to be uncorrelated when in fact
they are unlikely to be so.

Precision and reliability analysis assumes that the constants in the model
are perfectly known. If they are in error the solution will be thought to be
of better quality than it actually is.

3.12 Advantages of LSE

Despite its limitations LSE does have significant advantages, as follows,

1.

The LSE method has a sound statistical basis and on average it should
give the solution with the minimum variance. If the observation errors are
Gaussian then the least squares solution is the most probable, i.e.,
maximum likelihood estimate.

One general computer program can handle any kind of problem with any
number of measurements. The measurements may be mixed. LSE is easy
to program.

The LSE method is automatic, typically requiring no or at most limited
human intervention.

The full precision and reliability analysis can be carried out before any
observations are made because the precision and reliability equations do
not depend on the observations.

Optimisation and Least Squares Estimation 111

3.13 The Singular Value Decomposition

LSE requires the computation of a matrix inversion, which is usually the most
computationally intensive part of the solution. One way to achieve this is to use the
Singular Value Decomposition (SVD). SVD is a generalisation of matrix
diagonalisation, which can be used to define the pseudoinverse matrix, a one-sided
generalisation of a square matrix. Once a square matrix has been diagonalised it is
trivial to find its inverse by simply taking the reciprocals of all the diagonal
elements. The SVD is one of the most powerful methods used for solving the LSE
problem and it can also be used to perform spectral estimation.

To explain the meaning and interpretation of SVD let A be a k X m matrix.
Then, there exists a k X k orthogonal matrix U and a m X m orthogonal matrix V and
diagonal matrix ¥ such that Equation 3.58 is true.

vrav=|= Y 3.58
0 0 (3.58)
where:
o 0 0
0 o, .. O) .
=] - |, withoy20,2..20, >0, and wis the rank of A.
0 O o

The 04,0;,...,0,, are the singular values of A and the singular value decomposition

of A is the factorisation defined by Equation 3.59.
X 0.,
A=U \% (3.59)

If A is a square and symmetric matrix the usual diagonalisation result can be
obtained by making U = V. The columns of V can be considered to be a set of m
real vectors vy, V,...., v,,, which are the right singular vectors of A. The columns
of U can be considered to be a set of & real vectors uy, u,,...., u,,, which are the left
singular vectors of A. Since UU” = I, then the following defining relationships
hold,

X0 L4
AV=U , A=Y ouyv!
0 0

i=1
and,

X0

ATu=v
0 0

w

T _ T

} A" =30V,
i=l

112 Principles of Adaptive Filters and Self-learning Systems

3.13.1 The Pseudoinverse

If A has the SVD defined by Equation 3.60 then the pseudoinverse, A*, of A is
defined by Equation 3.61.

T 0],
A=U 0 o A% (3.60)
ool ,
At =V) 0U (3.61)
where:
o' 0 0
si_| 0 o' 0
0 0 o !

If k > m and w = m, then it can be shown that A* = (ATA)1AZ, and therefore AtA
=I. In this case it can also be shown that,

w
AT = Ziv-u»T

[}
i=10;

On the other hand if m > k and w = k, then A+ = AT(AAT)"!, and therefore A*A =L

3.13.2 Computation of the SVD

Two common algorithms used to compute the SVD are the Jacobi algorithm and
the QR algorithm.

3.13.2.1 The Jacobi Algorithm

The Jacobi algorithm for computing the SVD is an extension of the Jacobi
algorithm for diagonalising a symmetric square matrix, which makes it suitable for
dealing with matrices which are not symmetric and not square. The computation of
the SVD for a 2 X 2 matrix A is as follows. Let,

app ap
A {
daz; dxp

and let a general rotation matrix J be defined as,

Optimisation and Least Squares Estimation 113

J- c sl cosd sin@
=5 c¢| |-sin@ cos@
where:

ct+s?=1

To do the diagonalisation two rotation matrices J; and J, are needed such that
JITAJZ is a diagonal matrix, i.e.,

c K r a a c) d 0
J1TAJ2=[1 1}[11 12}[2 2}:[1 }
—=S1] a1 an]—s © 0 &

The diagonalisation is carried out in two steps. Firstly, a rotation matrix is found
that makes A symmetrical and then another rotation matrix that annihilates the off-
diagonal terms.

Step 1
To make A symmetrical a rotation J is needed such that J TAs symmetric. Since,

T
JTA— c N ar arn _ cayjg —sajp; cdyp —Ssajny
—-S C ary dax say| +cay; sapp tcar ’

¢ and s must be found such that ca;, —sa,, = sa;+ca,; and st =1.1f P

. . c . . . aj +ay .
is defined such that p=—, the symmetric condition givesp=—1—2% if
s

app —dyy

1
a;, # a,, . This is true by hypothesis therefore, s =——— and c =sp , thereby
1+ p2
providing the required rotation matrix J. Next, let,

b, b
B=J'A= { = 12}, if A is not symmetric,
12 22
and,
B =A,if Aissymmetric.
Step 2

A rotation matrix J, is found to make J g BJ, diagonal, by using the procedure for

diagonalising a symmetric matrix as follows.

Set:

114 Principles of Adaptive Filters and Self-learning Systems

E= by, —byy
2b,

and solve the following equation for 7.

2 +2&-1=0

ie.,

t=—Ex£ 1+ &2,
Then put,

and s, =tc, toformJ,.

1
C2 =
V1+1?
Set:

Ji=11,,
then J| AJ, will be a diagonal matrix.

There are two special cases that can be treated with a single rotation. If a5, = 0 =
a5y, then J, is the identity matrix. If a5; = 0 = a,,, then J; is the identity matrix
and J, must be computed differently.

When A is a n X n matrix with n > 2, rotation matrices are used to annihilate
symmetrically placed pairs of off-diagonal elements in turn. Each of these
individual annihilations undoes previous annihilations, but still makes the resulting
matrix closer to a diagonal matrix. The annihilation process is repeated until the
off-diagonal elements are all smaller than some threshold. When A is not square it
must be made square by the addition of zeros. If A is a k X m matrix with k> m A is
extended to a square matrix by adding columns of zeros to obtain [A O].
Diagonalising this matrix will provide a form defined by Equation 3.62.

o .. 0 0 . O
UA O]V 0] |0 . o, 0 . 0 6
o 1| |0 .. 0 0 .. O (3.62)

0 . 0 0 . 0]

The diagonalisation of A is given by UTAV. If A is a k X m matrix with m > k A is
extended to a square matrix by adding rows of zeros and proceeding in a similar
fashion as described above.

Optimisation and Least Squares Estimation 115

3.13.2.2 The QR Algorithm
The QR algorithm uses Householder matrices and rotation matrices to find the
SVD. It is computed in two steps. Firstly, the matrix is reduced to bidiagonal form
using Householder matrices and secondly, the off-diagonal terms are annihilated by
an iterative process using rotation matrices.

If v is any nonzero vector, it determines a Householder matrix, H(v), as defined
by Equation 3.63

2w’
H(v)=I-—3 (3.63)
vl
Householder matrices are useful for diagonalisation because of the following
property.

If the first standard basis vector is,

and x is any nonzero vector and putting,
v=x-[x]e,

then if x is not a scalar multiple of e;, H(v)x is a scalar multiple of e,, in
fact H(v)x = ||x||e1 .

The desired bidiagonal form has zeros everywhere except along the main diagonal
from the top left corner and along the diagonal just above it.

To reduce a k X m matrix A to bidiagonal form, when k > m, a k X k,
Householder matrix Q; is found such that QlT A has a first column consisting of
zeros below the diagonal. Then a m X m Householder matrix Py is found such that

the first row of QlTAPl has a first row of zeros apart from the first two columns.

The first column of QlTAPl will still have zeros below the diagonal. This process

is repeated for the columns and rows in succession until the matrix is reduced to
bidiagonal form.

The off-diagonal terms are annihilated by the Golub-Kahan algorithm, which
uses rotations in a way similar to the Jacobi algorithm to reduce the absolute values
of these terms (Haykin 1996).

116 Principles of Adaptive Filters and Self-learning Systems

3.14 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

3.14.1 Problems
3.1. Assume that you have a square piece of sheet steel which you wish to bend
up into a square open tray. The sheet is 6 by 6 units in area and the bend

lines are x units in from the edge as shown in the diagram below,

/ 4 Corners cut out

i i 6 Units

N

Solve for x to make a tray having the maximum volume, using differential
calculus and a standard optimisation method.

3.2. Show how you could use the LSE equations to solve Problem 3.1.

3.3. Assume that you have three independent measurements, y;, y, and y; with
a measurement error variance of o2, of the volume of water in the tray of
optimum volume (tray of Problem 3.1). Show how you would use LSE to
solve for x, the tray depth.

3.4. In the Acoustic Positioning System example why were the modified set of
model equations,

Gy
Hy
T

Optimisation and Least Squares Estimation 117

used instead of the original model equations,

to solve the LSE problem?

4. Parametric Signal and System Modelling

Parametric signal modelling involves the reduction of a complicated process with
many variables to a simpler one with a smaller number of parameters. This is
known as data compression and is common in speech and other areas including
economic models, communication systems and efficient data storage systems. The
reduction often requires approximation but even so, if the parameters of the model
turn out to be physically meaningful, then one can gain insight into the behaviour of
the overall process by understanding the influence of each parameter. Another
important application for signal modelling is for signal prediction or extrapolation.
In both data compression and prediction the signal is known over some interval of
time or space and then the goal is to determine the signal over some other unknown
interval.

Signal modelling is generally concerned with the efficient representation of
signals. There are two main steps in this modelling process. The first is to choose
an appropriate parametric form for the model and the second is to find the
parameters that provide “the best” approximation to the signal. For example, if the
class of signals is known to be sinusoidal then any signal in the class can be fully
represented with only three sinusoid model parameters, the amplitude, frequency
and phase. Finding the best approximations to the unknown signal’s amplitude,
frequency and phase allows the signal to be efficiently represented and fully
reproduced given the sinusoidal model and parameter values.

Modelling of discrete-time signals can be done by the output of a Linear Time-
Invariant (LTI) system driven by a fixed input signal such as a unit-sample signal or
white Gaussian noise. Nonstationary signals can be modelled by modelling small
sections of the signal with a model whose parameters can change from section to
section, e.g., in speech where the fundamental block for analysis is one pitch period
(= 10ms). In adaptive filtering the coefficients are allowed to evolve over time
according to an update strategy that is always working to minimise an error
measure (e.g., LMS algorithm). The frequency domain model that is most
commonly used is one that represents a signal as the output of a causal Linear Shift-
Invariant (LSI) filter with the rational system function defined by Equation 4.1.
Notice that the filter coefficients in Equation 4.1 have been defined by the
parameter sets {a;} and {b;}. They could have been alternatively represented by
{alk]} and {b[k]}, but the first representation will be used throughout this Chapter
to distinguish between filter coefficient values and discrete-time signal values.

120 Principles of Adaptive Filters and Self-learning Systems

Equation 4.1 can also be represented as the difference Equation 4.2 in the discrete-
time domain.

B,(2) by+biz +..+bez?

A, (D) ag+az” +ota,z”’

s

ay =1, typically, therefore,

- 4.1
B,(2) _ ké) K
A[, (Z) 1+ iakz_k
k=1
q P
yinl= 2 bxln—kl-> a;,yln—k] (4.2)
k=0 k=1

where:
p=12,..andg=0,1,2,...

Here, the linear stochastic model assumes that a discrete time series y[n] is the
result of applying a linear filtering operation to some unknown time series x[n].
Another way to state this is to say that the value of y[n] can be predicted from the
values of y[m] for m < n and the values of x[m] for m < n, by taking a linear
combination of these values.

The roots of the numerator and denominator polynomials of Equation 4.1 are
the zeros and poles of the model, respectively. For both Equations 4.1 and 4.2 if all
the coefficients a;, except for ag=1, are zero the model is referred to as an all-zero
or Moving Average (MA) model. If the all the coefficients b, are zero for k > 0 the
model is referred to as an all-pole or Autoregressive (AR) model. If at least one of
each of the coefficients a; and b for k > 0 are nonzero the model is referred to as a
pole-zero or Autoregressive Moving-Average (ARMA) model.

4.1 The Estimation Problem

The estimation problem for linear stochastic models can be defined as follows,

Given a finite set of observations of the time series {x[n]}, determine the
parameters aj, YN by, by ,..,bq of the model that generated the series{x[n]}.

This problem is not well posed. Firstly, the input to the filter is unknown. Secondly,
there is no general a priori information regarding the number of unknown
parameters. The first issue is adequately solved for many problems by assuming
that input has the spectral characteristics of white noise. Finding the number of
unknown parameters to be estimated is made difficult by a number of factors. It can
be shown that any model with a finite number of zeros can be approximated

Parametric Signal and System Modelling 121

arbitrarily closely by a model without any zeros, and conversely, that any model
with a finite number of poles can be approximated arbitrarily closely by a model
without any poles. Also, increasing the number of parameters does not lead to a
consistent improvement in the fit. The typical behaviour is that the fit will improve
as the number of parameters is increased until some point is reached where the fit
will begin to slowly worsen. This effect tends to be followed by small variations in
the fit in either direction as the number of parameters is increased.

In the absence of any objective criteria the choice of the number of poles and
zeros to be used is generally based on considerations of efficiency and tractability.
The most desirable model is one having the least parameters whose estimation
requires the least amount of effort. The all-pole model is by far the simplest with
respect to parameter estimation. The relationship between the pole coefficients and
the autocorrelation function yields a set of simultaneous linear equations for the
pole coefficients. The estimation of the parameters of an all-pole model can be
performed by simply computing estimates of the autocorrelation terms, substituting
the values into the normal equations, and solving the resulting set of simultaneous
linear equations for the pole coefficients. These linear equations have special
symmetries, which make it possible to devise efficient algorithms for their solution.
Some procedures for the efficient solution of the equations arising from the all-pole
estimation problem have been proposed by (Levinson 1947), (Durbin 1960) and
(Robinson 1964). In 1977 Makhoul described a class of lattice methods for solving
the problem (Makhoul 1977). In contrast, the estimation of parameters of a model
having zeros requires the solution of non-linear equations and is correspondingly
more difficult. These nonlinear equations are such that their solution requires
iterative methods, which are both computationally expensive and numerically
delicate. Box and Jenkins have developed suitable methods for solving these
ARMA models as applied to stationary time series (Box and Jenkins 1970).

4.2 Deterministic Signal and System Modelling
There are a number of methods for deterministic signal modelling that have been
developed over the years from diverse fields but no one of them stands out as the
best. Some of the more important ones are,

1. The Least Squares (LS) Method.

2. The Padé Approximation Method (constrained LS).

3. Prony’s Method (approximate matching - blend of LS and Pad¢).

4. Autocorrelation Method (finite data modification of Prony all-pole
modelling).

5. Covariance Method (finite data modification of Prony all-pole modelling).

122 Principles of Adaptive Filters and Self-learning Systems

The first method is a direct method of signal modelling based on the method of
least squares whereas the remaining four are indirect methods. Prony’s method is
the most important of the indirect methods. All these methods are based on the idea
that the signal represents the impulse response of a linear system. Consequently,
given the impulse response of a desired system or filter it is possible to use these
same methods to model linear systems or filters.

The direct signal modelling approach is represented in Figure 4.1 (Lim and

Oppenheim 1988).
Desired Signal

LTI System An]
Unit | | Error Signal
nit Impulse H) _B@ hin] fg
d[n] A(z) U
e[n] = x[n]—h[n]

Figure 4.1. Direct Signal Modelling

The direct error, e[n] = x[n] — h[n], is nonlinear in the coefficients of A(z) and B(z)
so it is solved by solving nonlinear equations resulting from minimising the least
squares error.

The indirect signal modelling approach as typified by Figure 4.2 (Lim and
Oppenheim 1988) is a practical approach employed by most methods because it
involves the solution of only linear equations.

FIR Filter B
Desired Signal Ao f » yln] \A&Error Signal e[n]
=1+ , _
) PR A
E(z) = B(z)- A(2)X (2)

Figure 4.2. Indirect Signal Modelling

The indirect frequency domain error, E(z) = B(z) - X(z) A(z), is linear in the
coefficients of A(z) and B(z) so it can be solved by solving linear equations through
minimising a least squares error generated by filtering the signal x[n] with a FIR
filter. The FIR filter attempts to remove the poles of X(z), i.e., A(2).

4.2.1 The Least Squares Method

Direct modelling is not widely used because it is difficult to solve the associated
nonlinear equations. However, it does accurately state the goal of matching the
impulse response of a rational linear shift invariant (LSI) system to an arbitrary
deterministic signal. The direct method is also referred to as the least squares
method. The least squares method of signal modelling attempts to solve the rational
Equation set 4.1 by driving the LSI system with an impulse function as shown in
Figure 4.1.

Parametric Signal and System Modelling 123

The desired signal x[n] is assumed to be equal to zero for n < 0 and the filter
h[n] is assumed to be causal (h[n] = O for n < 0). The numerator, B(z), and
denominator, A(z), polynomials of the rational LSI system are defined in terms of
the unknown parameters, {a;} and {b,}, by Equations 4.3 respectively.

q
B(z)=Yb, 7"
":"p 4.3)
A=Y a z7*
k=1

The problem is to find the filter coefficients (parameters) {a;} and {b;}, which
make the error between the desired signal and the filter response, e[n] = x[n] — h[n],
as small as possible in the least squares sense, as defined by Equation 4.4.

- 2
min £= Y |e[n]| (4.4)
A(2),B(2) n=0
A necessary condition for parameters {a;} and {b;} to minimise the squared error &
is, the partial derivative of £ with respect to both a; and b; must vanish (Hayes
1996), i.e.,
oe

da, X

Using Parseval’s theorem, the error Equation 4.4 can be expressed in terms of the
Fourier transform of e[n], E(¢/ 9), as defined by Equation 4.5.

g—i+ﬂE(e-f")‘2d9=iﬂE(e‘f")rde 45)
27 Com “
where:
. . -j6
Ee) = x(e %) -2)
A(e %)

The Partial differentiation of Equation 4.5 with respect to variables az and bZ

results in Equations 4.6 and 4.7 respectively.

+7 . -jé *,m0)
da, 27 A(e™) [A*(e*-/f’)] (4.6)
fork=12,....p
7 : -jé —Jké
a—iz—LI X(eila)—B(e .9) f > =0,
b, 27 A A (779 4.7

for £k =0,1,2,....q

124 Principles of Adaptive Filters and Self-learning Systems

From Equations 4.6 and 4.7 it can be seen that optimum set of model parameters
are defined explicitly in terms of a set of p + ¢ + 1 nonlinear equations. These can
be solved using iterative techniques such as the method of steepest descent or
Newton’s method or iterative prefiltering (Lim and Oppenheim 1988). However,
these methods are not very suitable for real-time signal processing applications. It is
for this reason that indirect methods of signal modelling are mostly used in
practice, where the parameters can be solved much more easily.

4.2.2 The Padé Approximation Method

If the Padé approximation model, represented by Equation 4.1 and Figure 4.1, is
forced to be exact over a fixed finite interval of the first p + ¢ + 1 points of the
signal, then this only requires the solution to a set of linear equations. However, the
disadvantage is that there is no guarantee on how accurate the model will be for
values outside this interval. In fact, the Padé approximation is not actually an
approximation over the interval of the first p + ¢ + 1 points of the signal, rather it is
only likely to be approximate outside that interval. Also, unless the signal just
happens to be exactly the impulse response of some low-order rational system the
Padé method is not very practical. Nevertheless, the Padé method is an important
lead into the more practical Prony method discussed in the next Section.

Given a causal signal x[r] to be modelled with the rational model defined by
Equation 4.8 h[n] can be forced to equal x[n] for n =0, 1,..., p + g, (the interval [0,
p + ql) by a suitable choice of parameters {a;} and {b;}. Notice that the same
method can also be used to design a filter given the filter’s impulse response.

q
Zbkz_k
_B(2) _ _k=0 _y -n
H(z)= A2) . > hln]z 4.8)

1+ Zakz_k n=0
k=1

This can be achieved in a two-step process that conveniently requires the solution
of only linear equations. Equation 4.8 can be rearranged to obtain B(z) = A(z)H(2),
which represents the fact that b, is the convolution of z[n] and a,,. The time-domain
convolution is defined by Equation 4.9.

b, = hnl+ S a hln—k] (4.9)
k=1

where:
h[n]=0forn<0Oand b, =0 for n<0 and n>gq.

This general convolution equation can also be expressed in matrix form as defined
by the matrix Equation 4.10.

Parametric Signal and System Modelling 125

(ho] o0 0 . 0 by
A1 ROl O . 0 [1] |p
R[2] R[] KO] .. O |q :

h31 A[21 A1 . i |ay|=|b, (4.10)
: mo1| : 0
hil | a, | |0

After imposing the impulse matching restriction, h[n] = x[n] forn =0, 1,.....,p + g,
matrix Equation 4.10 then becomes matrix Equation 4.11.

x[0] 0 0 . 0 b,
1] x[0] 0 . 0 (1] | p
: : - ’ 0 a :
xlq] x[g—1] xg-21 .. xlg-pl |a|=|),
xlg+1] x[q] xg=1 .. xlg—-p+11| : 0w@1n
: : B B : a, :
| xlg+pl xlg+p-1 xlg+p-2] . xlq] | 1 0|

Xa= { 0 } , where: 0, is a p-dimensional vector with p zeros.
P

Matrix Equation 4.11 represents a set of p + g + 1 linear equations in p + g + 1
unknowns as defined by Equation 4.12.

[]+§, (k] b, : n=0l.,q 4.12)
x[n apx[n—k]=)
k=1 , 0 : n=q+l.,g+p

The matrix Equation 4.11 can be partitioned into a top part and bottom part and
written as matrix Equation 4.13.

X b
a = (4.13)
{XJ {OJ
where:

X, isthe top (g +1)x(p +1) part of X.
X, is the bottom p x(p +1) part of X.
aisa p +1dimensional vector of 1and {a, }.

bis a g +1dimensional vector of {b, }.

The two-step approach used to solve for the parameters {a;} and {b;} proceeds
by solving the denominator parameters {a;,} first and then the denominator
parameters {b;} after that. The bottom partition of Equation 4.13 is used to solve

126 Principles of Adaptive Filters and Self-learning Systems

for {a,;} since it is independent of {b;} and then the top partition for {b;}. The first
step involves solving Equation 4.14.

Xza=0p
ie., (4.14)

where:
5(2 is the matrix X, less the first column, p X p matrix.
a is the vector a less the first element = 1, p - dimensional.

X is the first column of X,, p - dimensional.

The matrix equation 5(2§=—§ represents a set of p linear equations in p
unknowns as defined by Equation 4.15.

xlq] xlg-1 .. xlg-p+11| q x[g+1]
: : : = (4.15)
xlg+p-1 xlg+p-2] . x[q] a, xlg+p]

The solution of Equation 4.15 involves three cases where,

1. Xz is nonsingular and there is a unique solution, a = —Xgli .

2. XZ is singular but a nonunique solution exists to Equation 4.15. If r is the

rank of Xz the solution with (p — r) zero entries is preferred because it
will produce the lowest order model. For any solution a to Equation 4.15,

and solution z to equation Xzz =0 then a + z is also a solution.

3. 5(2 is singular but no solution to Equation 4.15 exists. In this case the

assumption that ay = 1 is incorrect. If a is set to O a nonunique solution
can be found to Equation 4.14 but it may not be able to match to x[p+q].

Once suitable {a;} parameters are found then the {b;} parameters are found from
the upper partition of Equation 4.13 by simple matrix multiplication. Refer to the
Exercises Section of this Chapter for example computations.

As is evident from the approach taken there is no mechanism built into the Padé
approximation method to ensure that the solution is stable. The method can be
guaranteed to produce a stable solution and exact fit to the data over the interval [0,

p+q] only if 5(2 is nonsingular. A second more serious problem with the method is

that the order of the model is tied directly to the number of signal points being
matched. In practice this inevitably requires a very high order model if a significant

Parametric Signal and System Modelling 127

portion of the signal is to be matched. The only exception to this is the unlikely
situation when it is possible to represent the signal with a low-order rational model.
In practical applications having long signal records it is possible to derive lower
order models using Prony’s approximate matching method.

4.2.3 Prony’s Method

Prony’s method is a blend between the least squares approach and the Padé
approximation method but it still only requires the solution to a set of linear
equations. Even though the method is a true approximation technique it is on
average still more accurate than the Padé method if taken over the whole signal. It
is fundamentally based on signal approximation with a linear combination of
adjustable exponentials.

The impulse matching problem for modelling an entire causal signal x[n], n = 0,
1,..., oo, produces an infinite number of equations as defined by Equation 4.16. The
orders of the model numerator and denominator coefficients are fixed and finite.

T17 |a
x[0] O 0
a, :
x[1] x[0] .. O ?
az = b
x[2]1 (1] 0 a
- 0 (4.16)
__ap_ O

Equation 4.16 can be partitioned into a top and bottom part to decouple the effects
of the numerator and denominator coefficients as in the Padé method. The first g +
1 rows of matrix X are separated from the rest of the matrix and the vector a is
separated as defined by Equation 4.17.

MEH
MHEN

where:
X, isthe top (g +1)x(p +1) part of X.

128 Principles of Adaptive Filters and Self-learning Systems

X, is the bottom part of X.

aisa p dimensional vector of {a, }.

bis a g +1dimensional vector of {b, }.

5(2 is the matrix X, less the first column.

X is the first column of X,.

The lower partition contains an infinite number of equations to be solved for a as
defined by Equation 4.18, which is expanded in detail as Equation 4.18a.

?

X,a =0

[i Xz]alﬂ

el
e
[N}

1
—_
= | I—
-

<

[xlg+1] xlg] xlg-1]
xlg+2] xlg+1] xlq]

[x[g+1] xlqg] xlg-1]
x[g+2]|+| xlg+1] x[q]

(4.18)
xlg—p+1]) 0
xlg—p+2] .1 =0
a,| - (4.182)
xlg—p+1] || a) 0
xlg—=p+2]|| : |=10
: a

p

In general Equation 4.18 describes a system of over determined linear equations

that need not have an exact solution, even if the columns of f(z are linearly

independent vectors. This means that since the vector X can only be approximated

by the columns of matrix f(z , it is necessary to choose a to minimise the equation

error e defined by Equation 4.19. This error is not the same error as used before in

the Padé approximation method.

e=X,a=%+X,a

(4.19)

The least squares error norm & (min e’e), as defined by Equation 4.20, is chosen
to be minimised because of its mathematical simplicity.

2
e=ele= Ye’[n]= Y {x[n]+ iakx[n—k]} (4.20)

n=q+1 n=q+1

k=1

Parametric Signal and System Modelling 129

Minimising the error Equation 4.20 by partial differentiation with respect to
coefficients {a;} leads to the normal equations defined by Equation 4.21 (Lim and
Oppenheim 1988).

X, X,a= { {g(})“ﬂ“} 4.21)

There are actually two equations in Equation 4.21. One is due to the orthogonality
condition, eﬁlmiz =0, used in the least squares minimisation and is defined by
Equation 4.22.

XI'X,a=-XI%x (4.22)

The other is an expression for the minimal value of the least squares error as
defined by Equation 4.23.

(4.23)
=x'Xa

In principle Equation 4.22 provides a solution for the optimum vector a , which
can then be used to find the solution to vector b by simple matrix multiplication in

Equation 4.17. The solution is facilitated by the fact that the p X p matrix ng(z is
always symmetric, or Hermitian for complex data, and also positive semidefinite.
This means that the matrix is always invertible if and only if the columns of 5(2 are

linearly independent. Equation 4.21 has a special structure for the case of all-pole
modelling that allows it to be solved using fast solution algorithms such as the
Levinson-Durbin recursion.

The form of matrix X5X, shows it to be an unscaled autocorrelation matrix, R,,
defined by the matrix coefficient Equation 4.24.

G,)= Yalm—ilIm=j1=r (j,i), i,j=012..,p (4.24)
m=q+1

A summary of the Prony equations is as follows,

1. The Prony normal equations are,

P
Ya,rk,m)==r.(k0); k=12...p

m=1
r.(k,m) = Zx[n—m]x*[n—k]; k,m=>0
n=q+1
2. The numerator is,
p
b, =x[nl+ > a,x[n—k]; n=01.,q
k=1
3. The minimum error is,

130 Principles of Adaptive Filters and Self-learning Systems

{€}min =1,(0,0)+ iaer (0,k)
k=1

Refer to the Exercises Section of this Chapter for example computations.

4.2.3.1 All-pole Modelling Using Prony’s Method

All-pole models are important for various reasons. They can accurately model
many physical processes. For example, in speech modelling the tube model for
speech production is an all-pole model. Even if an all-pole model is not physically
justified it has been found that an all-pole model may still be accurate in many
practical signal modelling problems. Probably the most important reason is that
there is a special structure in all-pole models that allows for the development of fast
and efficient algorithms for solving the pole parameters.

An all-pole model for a signal x[n] = 0 for n < 0 is defined by Equation 4.25.

b b &
H(Z)= 0 — 0 — Zh[n]z—n
A, iakz—k n=0 (4.25)
k=1

In Prony’s method the pole parameters {a;} are found by minimising the error
Equation 4.20 for ¢ = 0. The coefficients {a;} that minimise the error Equation

4.20 also minimise g, = Zez[n], since the error at n = 0 is defined to be
n=0

x(0)? and is not dependent on {a;}. The all-pole normal equations that minimise

g, = 282[11] can be shown to be as defined by Equation 4.26 (Hayes 1996).
n=0

p
Y a,r.(k,m)=-r(k0), k=12,..p (4.26)
m=1

For a complex signal and the new error €, the autocorrelation function r, (k,m) is
defined by Equation 4.27.
ro(k,m)y="Y x[n—mlx [n—k] (4.27)
n=0
There is an underlying structure in r, (k,m) that provides the simplification defined
by Equation 4.28.

rak+l,m+l)=r.(k,m), k=20,m=20

(4.28)

ro(k—m)=r,(k,m)= ﬁ:x[n—m]x*[n—k]zr:(m—k)
n=0

The all-pole normal equations can therefore be defined by Equation 4.29.

Parametric Signal and System Modelling 131

P
Zamrx(k_m)=_rx(k), k=1,....,p

m=1

RO) e . ore-pal [rO]
O M) L on(p-2)| @2 ()| (4.29)
r(2) re(1) () . or(p=3) a3 |=— 3

n(p=D r(p=2) r(p=3) .. O |9] [=(P)]

The autocorrelation matrix in Equation 4.29 is Hermitian Toeplitz, which allows
the Levinson-Durbin recursion to be used to solve the equation efficiently. The
{a,} can also be determined by finding the least squares solution to set of
overdetermined equations defined by Equation 4.18 for g = 0.

The minimum all-pole modelling error {€,},,, is defined by Equation 4.30.

{€, min =7 (0) + fakr*(k) (4.30)
k=1

The remaining b, coefficient can be determined in two different ways. The first
way is to simply make it equal to x[0] as in the Prony method. However, this may
be problematic if x[0] takes on an anomalous or a bad data value. The other,
preferred, way is to choose by such that the energy in x[n] is equal to the energy in
X[n]=h[n], ie., r(0) = r,(0). In this case the solution for b, is defined by
Equation 4.31.

bO ='\’{8p}min (43])

4.2.3.2 Linear Prediction
There is an equivalence between all-pole signal modelling and the linear prediction
problem. In Prony’s method the error is defined by Equation 4.32.

e[n] = x[n]+ Zp:akx[n—k] (4.32)
k=1

14
If this error is expressed as e[n]=x[n]—X[n], where x[n]=-> a,x[n—k], then
k=l

X[n]is a linear combination of the values of x[n] over the interval [n-p, n-1].
Because e[n] is the difference between x[n] and X[n], minimising the sum of
squares of e[n] is equivalent to finding the {a;} that make x[n] as close as possible
to x[n]. Therefore, x[n]is an estimate, or prediction, of x[n] in terms of a linear

combination of the p previous values of x[n]. Consequently, the error e[n] is the
linear prediction error and the {a;} are the linear prediction coefficients.

Furthermore, since x[n]*a, = e[n], then A(z) is called the prediction error filter.

132 Principles of Adaptive Filters and Self-learning Systems

Desired Signal
FIR Wiener Filter d[n]

Input Signal , Ml *Error Signal
Anl — N AD)=1+Ya, " -t
N/

k=1

e[n] =d[n]- y[n]

Figure 4.3. Wiener Filter Block Diagram

4.2.3.3 Digital Wiener Filter
The indirect signal model of Figure 4.2 can be modified to that shown in Figure
4.3, where the {b;} are replaced with some desired signal d[n]. This now represents
a Wiener shaping filter. The problem is to find a FIR filter whose output y[n] best
approximates d[n] in the sense that the mean square norm of the error is minimised.
However, if d[n] is a unit variance white Gaussian noise signal then X(0)A(0)2=1,
and therefore A(z) can be used for the poles of a model of signal x[n].

The optimum Wiener filter is called a whitening filter and is found by solving
the normal equation for the least squares problem. In this case the error signal can
be defined by Equation 4.33.

p
e[n]=d[n]-ylnl=d[n]- > a,x[n—k] (4.33)
k=0

The normal equations are obtained by the projection theorem which requires that
the optimum error signal must be orthogonal to the basis signals xj[n] =x[n-jl,j =
0, 1,...., p. This requirement is expressed by Equation 4.34, which defines p+1
optimum filter equations.

E{e[n]xj[n]} =0, j=0lL.p
P
E{[> dnl—agx[n—kllx[n— j]} =0
k=0

(4.34)
akE{x[n —k1x[n— j1}= E{d[n]x[n- j1}

M~

i
[=}

M~

agr(j=k)=ry (), i=01...p
0

~
Il

Equation 4.34 is more economically expressed in matrix form as Equation 4.35.

ag 11, (0)

a 1
R '1 _ "dx'()

X

(4.35)

Clp "dx(P)

Parametric Signal and System Modelling 133

The autocorrelation matrix R, is a (p+1) X (p+1) Toeplitz matrix with coefficients
r.(j-k). Equation 4.35 can be solved very efficiently using the Levinson-Durbin
recursion. The normal equations for the Wiener filter are similar to the equations
for the autocorrelation method (discussed in the next Section) but they are more
general. The autocorrelation normal equations are obtained by taking d[n] to be
unit variance white Gaussian noise. Therefore, 7,,(0) = 1 and r;,(j) = 0 for j # 0
and Equation 4.35 becomes Equation 4.36.

ao 1
al O

R, |=| (4.36)
a, 0

Equation 4.36 is nearly identical to the autocorrelation equations (to within the
scale factor ag) and the solution is obtained in two steps. First Equation 4.37 is
solved, and then a;j= a;-/saforj =12,....,p.

1 £y
0{1 0

R, |=| . (4.37)
a, 0

In theory, the solutions to all the Prony equations discussed above require
infinite signal lengths. However for practical solutions a finite limit must be
imposed on the signal length. This means that the statistical autocorrelation and
cross-correlation functions, which are defined over an infinite time range, must be
estimated from finite data samples. There are two ways of imposing this limit, each
of which result in solution methods with quite different properties. For the case of
all-pole modelling the two ways produce the so called autocorrelation and the
covariance methods.

4.2.4 Autocorrelation and Covariance Methods

The autocorrelation and covariance methods of all-pole modelling are
modifications to the all-pole Prony method for the case in which only a finite length
data record is available. A fast algorithm, called the Levinson-Durbin recursion
method, is available to solve the linear equations related to the autocorrelation
method.

The first way to deal with finite signal lengths is to simply assume that the
signals are infinite by padding them with an infinite number of zeros on their ends.
In that case, for a signal x[n] of length N, the least squares error Equation 4.20
becomes Equation 4.38.

134 Principles of Adaptive Filters and Self-learning Systems

r N+p-1 5 N+p—])4 2
e=e'e= Y e[n]l= Y {x[n]thakx[n—k]} (4.38)
n=q+1 n=q+l1 k=1

The error is zero for n = N+p and x[n] is zero between the range N to N+p-1.
However, x[n] is still being approximated by a linear combination of terms x[n-k],
some of which are nonzero. Unless all the {a;} are set to zero there is no way to
make the error equal to zero over this entire range. The result of this is a type of
edge effect that introduces a bias in the coefficients {a;}.

For the special case of all-pole modelling, ie., ¢ = 0, an important
simplification is possible. The general finite signal length all-pole problem is now
defined by Equation 4.39 or matrix Equation 4.39a, where the signal length is N.

[x[0] 0 0 0
x[1] x[0] O 0 BR
x[2] x[1] x[0] 0 4 b,
) - : A0] al _|© for N > 4.39
AN 1] I P9
0 x2] 0
L%p]
|0 0 0 0 xN-1]]
()
0
(4.392)

where:
X is the first row of X.

X, is the bottom part of X.

In this case, r,(i,j) in the correlation Equation 4.24 is only a function of the

difference (i - j) as can be seen by writing out the (i+1,j+1)st entry of Equation 4.24
as defined by Equation 4.40.

N+p-1 N

r+Lj+D)= > dm—-i-1lx [m—j-1]
m=q+1
= (4.40)

=x[g—ilx [g—jl+r., J)
=r(i,j)=r.(—j), exceptfori<Oand j <0

Parametric Signal and System Modelling 135

The result is more tidy if it is also applied for i = 0 and j = 0. Fortunately this can
easily be achieved by defining a constant error term €2[0] = x2[0], in which case the
sums in Equations 4.38 and 4.40 start with O instead of 1 and the new error norm is

N+p-1
£,= > e[n]. The result is defined by Equation 4.41.
n=0
def
reG+1j+)=r.G, j) = r,(i—j), fori, j=0,12,...p (4.41)

Therefore, the corresponding (p+1) X (p+1) autocorrelation matrix, R, — Xng ,

has equal valued entries. This matrix is called Hermitian Toeplitz and is defined by
Equation 4.42.

r0) @) . f: (p)
Rx — rx.(l) erO) Ty (p_l) (442)
rdp) rd(p=-D : r(0)

where:

r (m)=r, (-m)

The so called autocorrelation method comes from the fact that the entries in
Equation 4.42 are simply the first p+1 autocorrelation coefficients of the signal
x[n]. Because of the Toeplitz structure the AutoCorrelation Normal Equations

£
(ACNE), R xa={ ()p }, can be solved simply by using the Levinson-Durbin

method. R, is guaranteed to be invertible because the columns of X, are always
linearly independent for the all-pole case.

Strictly, the ACNE solution for the coefficients {a;} is incorrect because the
implicit rectangular window placed over the signal x[n] from n = 0 to n = N-1
distorts the true autocorrelation estimates. This error occurs whether the signal is
deterministic or stochastic. Using other standard windows with tapered ends can
help improve the quality of the model as is also the case for spectral estimation.

A summary of the all-pole autocorrelation modelling method equations is as
follows,

1. The all-pole autocorrelation normal equations are,
)4
Ya,rdk—m)y=-r.(k); k=12...p
m=1

ro(k) = §:X[n]x*[n—k]; k>0
n=k

136 Principles of Adaptive Filters and Self-learning Systems

2. The minimum error is,

(€, nin =1 (0)+ fakr;‘(k)
k=1

The covariance method, however, is able to compute a correct model from a
finite segment of signal data. In the covariance method Equations 4.18 and 4.21 are
restricted to a finite set based on the finite signal length for n = 0 to n = N-1. The
matrix X, now becomes the matrix defined by Equation 4.43.

xlg+1) xlq] xlg-1 .. xlg-p+1]

xlg+2] x[g+1] x[q] . x[g—p+2]

2= (4.43)

x[N-1] x[N-2] x[N-3] .. x[N-p-1]

Stated another way, the minimisation of the squared error norm is restricted to the
N-1

range [g+1, N-1] and so the error 6‘; = Z ez[n] is never evaluated outside the
n=g+1

finite range of the signal data. The main disadvantage of the covariance method is

that the normal equations do not have the Toeplitz matrix structure, even in the all-

pole case, which means that the guaranteed stability in the all-pole model is lost.

The covariance and Prony’s method equations are identical except that the

computation of the autocorrelation sequence, r,(i, j) of Equation 4.24 (matrix

Xg X,), is modified as defined by Equation 4.44.
N-1

.)= Y dm—ilx' [m—jl=r (j.i), i,j=012...p (4.44)

m=q+1

The fast Levinson-Durbin recursion cannot be used to solve the all-pole (¢ = 0)
covariance method normal equations but a fast covariance algorithm is available,
which is faster than Gaussian elimination.

A summary of the all-pole covariance modelling method equations is as follows,

1. The all-pole covariance normal equations are,

)4
Zamrx(k,m):—rx(k,O); k=12,...p

m=l1

ro(k,m) = %x[n—m]x*[n—k]; k,m>0

n=p

Parametric Signal and System Modelling 137

2. The minimum error is,

)4
(€5 Ymin = 1(0.0)+ Y a, 7, (0,k)
k=1

4.3 Stochastic Signal Modelling

Stochastic signals are different from deterministic signals in that they must be
described statistically and the values of x[n] are only known in a probabilistic
sense. Since the values of x[n] are unknown until they arise it is no longer possible
to minimise the deterministic squared error as before. Also, the input signal to the
signal model can no longer be a unit sample, rather it must be a random process. To
model a wide sense stationary random process it is possible to use an ARMA
model, defined by Equation 4.1, driven by white noise. It is possible to use a
similar method for stochastic signal modelling as was done for the all-pole
modelling of deterministic signals. Other methods are also available for the all-pole
model.

4.3.1 Autoregressive Moving Average Models

A random process x[n] may be modelled as an ARMA process by using a unit
variance white noise source v[n] as the input to the ARMA system as shown in
Figure 4.4.

ARMA System
Signal Estimate
Unit Variance x[n)
. ——> HE =
White Noise

Figure 4.4. ARMA Random Signal Modelling

Generally, if the power spectrum of v[n] is P,(z) = ¢, then the power spectrum of
the order (p, ¢) ARMA system output P (z) is defined by Equation 4.45.

BB (1)

P.(z)=0" —Z1
A(A" ()
‘) (4.45)
| B’
P.(e’) =o? , in terms of @.

. 2
A(e’w)‘

138 Principles of Adaptive Filters and Self-learning Systems

The power spectrum has 2p poles and 2¢g zeros with reciprocal symmetry. The
variables x[n] and v[n] are related by the system difference equations as defined by
Equation 4.46.

p q
x[nl+ Y. a,x[n—ml= Y.b,v[n—m] (4.46)
m=1 m=0
If Equation 4.46 is multiplied by x*[n-k] and expectations are taken then another
equation similar to Equation 4.46 is formed, which relates the autocorrelation of
x[n] and the cross-correlation between x[r] and v[n], as defined by Equation 4.47.

p q

ro(k)+ X ary(k—m)= 2 b,r, (k—m) 4.47)
m=1 m=0

The cross-correlation term r, (k-m) needs to be broken into a function of the

autocorrelation function r (k) and the impulse response of the filter A[k]. This is

done by reducing the cross-correlation term down to 7, (k-m) = E{v[n-m]x*[n-k]} =

szh*[m-k] as detailed in Equation 4.48, given, x[n]= h[n]*[n]= iv[j]h[n— jl.

j=-o0

E{vn—m]x [n—k]} =E{ iv[n—m]v*[j]h*[n—k—j]}

Jj=—o0

= iE{V[n—m]V*[J]}hx[n_k_j] (4.48)

J=7

o2h m—k]

Equation 4.47 becomes Equation 4.49 by using the substitution of Equation 4.48.

k)t Sa,r.(k—m)=c> b, iim—k] (4.49)

m=l1 m=0

If it is assumed that h[n] is causal the sum on the right side of Equation 4.49,
denoted by c(k), can be defined by Equation 4.50.

q . q-k .
c(ky= 3 b,h [m—kl= >.b,.h [m] (4.50)
m=k m=0
where:
c(k)y=0fork >q.

Equation 4.49 can now be written as Equation 4.51 for k = 0, which represents the
so called Yule-Walker equations. These equations provide a relationship between
the filter coefficients and the autocorrelation sequence.

Parametric Signal and System Modelling 139

O'fc(k),OSk <gq

p
rx(k)+mz_lamrx(k—WZ)={ N k>q 4.51)

In matrix form the Yule-Walker equations are defined by Equations 4.52 and 4.52a.

R.a= aim (4.52)
[(0 1 (=1) o r(=p)]| [c(0)]
re(D) r,(0) . nL(=p+D |- | c(1)
N N . . ay , N
r(q) rn@-1y .. nrg—p) . |Fov c(q) (4.52a)
r(g+1) r(q) . rlg-p+l) 0
)) .) | 9p)
| n(@+p) rnlg+p-1) . (g | | 0 |

Equation 4.51 defines a recursion for the autocorrelation sequence in terms of the
filter coefficients, therefore it can be used to extrapolate the autocorrelation
sequence from a finite set of values of r (k) for k = p where p 2 q. If h[n] is causal
the coefficients {a;} can be solved using the Yule-Walker Equation 4.52 for k > g,
as defined by the modified Yule-Walker Equation 4.53.

(@) n@-) .. n@-p+h|a r(g+1)
r(g+1) (@) . nKlg—-p+2)| @ r(q+2)

)) . . =T . (4.53)
r(g+p-1) nrlg+p-2) .. (@) a, r(q+p)

If the autocorrelations in this modified Yule-Walker Equation 4.53 are unknown
then they may be replaced with estimated values using a sample signal realisation.
The form of the Yule-Walker equations is the same as the Padé equations and the
solutions go the same way. Therefore, once the {q;} coefficients are solved the
{b,} are found by substituting into the top part of Equation 4.52, i.e., R.a = 0'V2c,
where 6,2 = 1.

4.3.2 Autoregressive Models
A wide sense autoregressive process of order p is a special case of the ARMA
process for which g = 0, i.e., the all-pole or AR model defined by Equation 4.54.

by _ by
A(2)

H@z)= r (4.54)
1+ Zakz
=1

140 Principles of Adaptive Filters and Self-learning Systems

The autocorrelation sequence of an AR process satisfies the Yule-Walker equations
as defined by Equation 4.55.

)+ Sar(k—m)= lbo|*5(K), k>0 (4.55)
m=1

In matrix form Equation 4.55 for k = 1,2,..., p is defined by Equation 4.56 if the
conjugate symmetry of r, (k) is used.

r.(0) n) . rnp-bla re()
*p— 2
rx-(l) rx(-O) Ty (p- 2) a.z __ er) 4.56)
Vx(p—l) rx(p_z) .. rx(o) ap rx(p)

Equation 4.56 is the same as the normal equations for all-pole modelling of a
deterministic signal using Prony’s method, Equation 4.29. The only difference
between them is how the autocorrelation r,(k) is defined. In Equation 4.29 r (k) is a
deterministic autocorrelation and in Equation 4.56 it is a statistical autocorrelation.
Equation 4.56 is solved via the so called Yule-Walker method given the
autocorrelations r (k) for k = 1, 2,..., p. The coefficient b, is solved by taking k = 0

in Equation 4.55 as defined by Equation 4.57.
i 2
re(0)+ Layr(m)=|by| 4.57)
m=1

In most situations the statistical autocorrelation is unknown and therefore must
be estimated from a finite sample realisation of the process, i.e., x[n], for 0 <n < N.
The required sample estimate for r,(k) is defined by Equation 4.58.

~ 1 AL *

F.(k)y=—7> x[n]x [n—k] (4.58)
N n=l1

However, once the autocorrelation must be estimated from a sample the method is

actually the autocorrelation method and it can be said that the two methods, the

deterministic and stochastic all-pole signal modelling methods, become equivalent.

4.3.3 Moving Average Models

A wide sense moving average process of order ¢ is a special case of the ARMA
process for which p = 0, i.e., the all-zero or MA model (FIR filter) defined by
Equation 4.59.

H(z)=B(2) = fbkz"f (4.59)
k=0

A MA model for a process x[n] may be developed using Durbin’s method. Durbin’s
method firstly finds a high pth order all-pole model A(z) for the MA model of

Parametric Signal and System Modelling 141

Equation 4.59. The resulting coefficients of the all-pole model a; become a new
data set for which another gth order all-pole model is found, which is then defined
as the all-zero model of Equation 4.59.

This is achieved by first letting x[n] be a gth order MA process defined by
Equation 4.60 where w[n] is white noise.

x[n]= Zq:bkw[n—k] (4.60)
k=0

The pth order all-pole model for x[n] can be defined by Equation 4.61 if p is made
large enough.

1 1
Bo=J5=" 461
(Z) a0+zakz—k (.)
k=1

The required MA coefficients b, can be estimated by finding the gth order all-pole
model of A(z). This works because the inverse of Equation 4.61 is Equation 4.62
and the coefficients for A(z) can be taken as the coefficients of the MA model.

A(z) = !

B (4.62)

"
by+Y.bz
k=1

Durbin’s method can be performed in two steps as follows,

1. Given x[n] for n = 0,1,..., N-1 or r,(k) for k =0,1,..., N-1 find a pth order
all-pole model and normalise the coefficients according to Equation 4.61,
i.e., divide by the gain term. Typically the all-pole model order p is chosen
to be at least four times the order g of the MA process.

2. Using the p coefficients of the all-pole model of Step 1 as data find a gth
order all-pole model. The resulting coefficients after normalisation,
according to Equation 4.62, become the estimated coefficients of the MA
process.

4.4 The Levinson-Durbin Recursion and Lattice Filters

In the preceding Sections there were a number signal modelling problems that
involved the solution of a set of linear equations of the form defined by Equation
4.63, where R is a Toeplitz matrix.

R,a,=b (4.63)

In the Padé approximation method and the Yule-Walker equations R, is a non-
symmetric Toeplitz matrix. Hermitian Toeplitz equations occur in the all-pole

142 Principles of Adaptive Filters and Self-learning Systems

modelling of deterministic and stochastic signals. Toeplitz equations will also be
encountered in a later Chapter in relation to the design of FIR Wiener filters.

The Levinson-Durbin recursion is one important efficient solution to a special
form of Equation 4.63. The form of this solution leads to a number of interesting
results including the so called lattice filter structure and the Cholesky
decomposition of a Toeplitz matrix, and an important procedure for the recursive
computation of the Toeplitz matrix inverse. In 1947 Levinson developed a
recursive algorithm for solving a set of linear symmetric Toeplitz equations
generally defined by Equation 4.63. Then, in 1961 Durbin improved the Levinson
recursion for the special case in which the vector b is a unit vector. This recursion
is known as the Levinson-Durbin recursion. The number of divisions and
multiplications that it requires is proportional to p? for a set of p equations in p
unknowns. This compares very favourably with the Gaussian elimination technique,
which requires divisions and multiplications proportional to p3. The Levinson-
Durbin recursion also requires less data storage than Gaussian elimination.
Although the Levinson-Durbin recursion is very efficient in solving the normal
equations, in modelling problems the required computation of the autocorrelation
sequence will dominate the computational cost.

4.4.1 The Levinson-Durbin Recursion Development

The pth order all-pole normal equations for Prony’s method or the autocorrelation
method were defined by Equation 4.29 previously. The model error was also
defined previously by Equation 4.30. Combining these two equations results in
Equation 4.64, which represents p+1 linear equations in p+1 unknowns a;, ay,....d,,
plus &,

O @ . e U] [N

re() r.(0) r)y . (=D 0

er2) erl) erO) r;(p.—Q) ay =€p9 (4.64)

L7e(p) re(p=1) r(p=2) .. (0 9| [0O]
R,a,=¢€,u

The autocorrelation matrix Rp in Equation 4.64 is a (p+1) X (p+1) Hermitian
Toeplitz matrix. The Levinson-Durbin recursion that will solve Equation 4.64 is a
recursion in the model order. This means that the coefficients of the (j+1)st order
all-pole model a;, are found from the coefficients of the jth order model a;. In
other words, given the jth order solution, Rj a;=guy, it is possible to derive the
(j+Dst order solution, R; ;a; ;=& u;. This is done by first appending a zero to
the vector a; and multiplying the resulting vector by Rj +1 as defined by Equation

J
4.65.

Parametric Signal and System Modelling 143

O @ @ . oG 1] Te
@ O 0 . G |al |0
@ @ O . orG-D| =0 (4.65)
: : : - : a; :
r G+ () rG-D . 0 O] |7

The consequential parameter % is defined by Equation 4.66.

J
7j:rx(j+1)+2airx(j+1—i) (4.66)
i=1
In the special case when the parameter % = 0, then the right side of Equation 4.65
is a scaled unit vector and the vector = (1, ay,..., a;, 0]7 is the (j+1)st order
solution. However, in general ks 0 and [1, a l,...,aj,O] is not the solution. It is
possible to proceed by noting that the Toeplitz property of Rj +1 allows Equation
4.65 to be rewritten equivalently as Equation 4.67.

O () @ . orGHEDOT [
r® 0 M . () |a;| |0
@2 @ r@© . rG-bf:|[=0 (4.67)
: : : : a, :

nGHD) oG () 1] g

If the complex conjugate is taken of Equation 4.67 and combined with Equation
4.65, the result is Equation 4.69 for any complex constant Fj 1

! o] e 7
a aj- 0 0
Rjql o [+ ¢ |p=| 0 [+ 0 (4.68)
aj; al* : :
L 0 | L 1] _J/j_ _Sj:_
Vi, . . .
If I'jyy=-— 1is set in Equation 4.68 then the equation becomes
E .
J

R;,a;, =¢€;,u,, where a;,, is defined by Equation 4.69, and ¢, is defined by
Equation 4.70.

144 Principles of Adaptive Filters and Self-learning Systems

1 0

a; aj
aj+1= : +Fj+1 .
ES

aj ag
0 _1_

s 2
£ =8+T,7; =&,11-|[]

(4.69)

(4.70)

If ay = 1 and a;,; = 0 are set then Equation 4.69, the Levinson order-update

equation, may be expressed as Equation 4.71.
ai(j+1) =al'(j) +1—‘j+1a‘lj_l'+1(j), f0r i = 0,1,...,j+1

where:

The (j+1) subscript signifies the (j +1)st model coefficients.

The (j) subscripts signify the jth model coefficients.

4.71)

To initialise the recursion the values for the order j = 0 model are set to ay = 1 and

& =r.0).
A summary of the Levinson-Durbin recursion is as follows,

1. Initialise the recursion by setting,
1. aO =1
ii. &=r/0)

2. Forj=0,1,..,p-1,
J
i }/j=rx(j+1)+2ai(j)rx(j—i+l)
i=l

.. Vi
11. F]+1=__*

€j

iii. Fori= I,J , ai(j+l) = ai(j) +Fj+1a;_i+1(j)

. ajeny =

2
V. Ej= gj[l—‘rjﬂ‘]

Parametric Signal and System Modelling 145

4.4.1.1 Example of the Levinson-Durbin Recursion
Solve the autocorrelation normal equations and find a third-order all-pole model for
a signal having the following autocorrelation values,

r.(0)=1,r,(1)=0.25,r,(2)=0.25,r.(3) = 0.19 .

The normal equations for the third-order all-pole model are,

@ O e [rO
r® 0 rW|a|=-rQ2
r.(2) r.() r.(0) | a, r.(3)
[1 025 025]4q 0.25
025 1 025|a,|=-025
1025 025 1 |a 0.20

Using the Levinson-Durbin recursion the models from first order to third-order can
be defined as follows. First-order model,
Yo =1,(1)=0.25

& r,.(0)

& =r,(O1-|0,[*1=09375

SHEHE

Second-order model,

I=- -0.25

N =r.(2)+ar,(1)=0.1875

r,=-"=—02
&
2
& =g[1-|1,|'1=09
1 0 1
a, =|—025 [+, -025|=|-0.2
0 1 -0.2

Third-order model,

146 Principles of Adaptive Filters and Self-learning Systems

V=r3)+ al(z)rx(z) +ayory (1H)=0.09

r,=-22-_0.1
&
&= &[1-|03*1=0.891
1 0 1
-02 -02| [-0.18
-02 —02| [-0.18
0 1 -0.1

The third-order all-pole model for the signal x[n] becomes,

by
l+az " +ayz +ayz?
~ 0.9439279
C1-0.1827"-0.18272 - 0.1z

H3(Z) =

Equation 4.66 can be used to compute the values for r (k) for k > 3 if it is noted that
It =0, ¥4 =0, fork > 3. The relevant equation derivation is then defined by,

3
r(k)y==> iy (k=1)
i=1

4.4.2 The Lattice Filter

The lattice digital filter structure is derived from the Levinson-Durbin recursion.
Lattice filters have a number of significant properties including a modular structure,
low sensitivity to parameter quantization effects, and a simple method to ensure
minimum phase and stability. There are many possible lattice filter structures
including all-pole and pole-zero lattice filters but only the all-zero lattice filter for
FIR digital filters will be derived from the Levinson-Durbin recursion in this
Section.

The lattice filter derivation begins with the Levinson order-update Equation

4.71. In the derivation of the Levinson-Durbin recursion a reciprocal vector, alf to

vector a; was implied but not defined. These vectors are now defined by

Equations 4.72.

Parametric Signal and System Modelling 147

1 0

aq aj-

— R _| .

a;=|:| a;= 3
a; a 4.72)

ai(jy =aj_ijy, fori=01..,J

R

The reciprocal vector a’;

; 1is created by reversing the order of the elements in vector

a; and taking the complex conjugate. By substituting the reciprocal vector notation
into Equation 4.71 the Levinson order-update becomes Equation 4.73.

R . .
Aicjeny =i jy T a5, for i=01..,j+1 (4.73)

where:
The (j+1) subscript signifies the (j +1)st model coefficients.

The (j) subscripts signify the jth model coefficients.

Taking the z-Transform of Equations 4.72 and 4.73 results in Equations 4.74 and
4.75 respectively.

ARG = AT 4.74)
Z

where:
A;(2)is the z—Transform of a; .

Af (z) is the z — Transform of al-lfj).

A=A +T7 AR (4.75)

Equation 4.75 is the order update for A;(z). To derive the order update for
a,-lf j+1) and Aﬁl(z) take the complex conjugate of Equation 4.73 and replace i

with j—1i+1 to produce Equation 4.76.

.
ajinany =4y (4.76)

If Equation 4.74 is substituted into a,»’f) = al-li i +T j +14;(j the z-Transform is,

AR L@ =" AR @) +T] A (2).

148 Principles of Adaptive Filters and Self-learning Systems

In summary, it is possible to express the pair of coupled order update equations as
difference and z-domain equations as follows,

R
Aty = neiy T L g
R R *
Aty = An-1(jy)
—1 4R
A =4;,()+1z A7 (2)
R —14R
Ai(2)=2"Aj () +T;4A;(2)
These order update equations can be written in a matrix form as defined by

Equation 4.77 and consequently can be implemented as a two-port network as
shown in Figure 4.5.

Am@| |1 T) 4@ 4.77)
R =\ - R .
Am@| (T 78 | A®
An-104)
Anj) Q An(j+1)
Fj+l F.f+1
Zil (ZR
R O n(j+l
A j) f s
anfl(j)

Figure 4.5. Two-port Network for the Order Update Equations

An(0) An(1) An(2) Ap(p-1) Ay(p)

6(”) % rl Fz r

R R R R R
p(0) L)) An(2) An(p-1) Au(p)

Figure 4.6. pth Order FIR Lattice Filter

The two-port network of Figure 4.5 is the basic module that is used to implement
the FIR lattice filter. A pth order lattice filter can be formed by cascading p lattice

filter modules with reflection coefficients I, I ..., Fp as shown in Figure 4.6.

With an impulse input of J[n] the output at a,,(,) is the impulse response of the

n(p
system function A, (z) and the output at a,,) is the impulse response of the system

function Allf(z). Therefore, this filter is an all-zero lattice filter for a FIR digital

Parametric Signal and System Modelling 149

filter represented by the z-Transform A, (z). In this signal modelling context this

filter can be interpreted as the forward prediction error filter. If the filter is fed by
the input signal x[n] it gives the error between the signal and the signal estimate,
ie., e,[n]=xn]- x[n].

One important advantage of a lattice filter structure over a direct form filter is
the modularity. The order of the filter can be increased or decreased in a linear
prediction or all-pole signal modelling application without having to recompute the
reflection coefficients. Another advantage is that the lattice filter will be minimum
phase filter if and only if the reflection coefficient magnitude is bounded by one,

ie., ‘F j‘ < 1. For IIR lattice filters this constraint also ensures stability, which is

crucial in an adaptive filtering situation, where the reflection coefficients are
changing with time.

4.4.3 The Cholesky Decomposition

The Levinson-Durbin recursion may be used to perform the Cholesky

decomposition of the Hermitian Toeplitz autocorrelation matrix, R,. The

Cholesky (LDU) decomposition is useful because it allows the derivation of a
closed form expression for the inverse of the autocorrelation matrix as well a
recursive algorithm for inverting the Toeplitz matrix. It also allows the
establishment of the equivalence between the positive definiteness of R, the

positivity of the error &; sequence, and the unit magnitude constraint on the
reflection coefficients I; .
The Cholesky decomposition of a Hermitian matrix C is a factorisation of the

form,
C=LDpL"

where, L is a lower triangular matrix with ones along the diagonal and D is a
diagonal matrix. If the terms of D are nonnegative, i.e., C is positive definite, then
D may be split into a product of two matrices by simply taking square roots as
follows,

D = D"2p"2

To derive the Cholesky decomposition start with a (p+1) X (p+1) upper triangle
matrix Ap formed from the vectors, ag,ap,...,a p- These vectors are produced

when the Levinson-Durbin recursion is applied to the autocorrelation sequence
7, (0),r,(1),...,r,(p), as defined by Equation 4.78.

150 Principles of Adaptive Filters and Self-learning Systems

* * *
Loaygy aya - app)
* £
_ 0 1 (112 .. a -1
A,=" @ T (4.78)
0 0 0o .. 1

The jth column of AI7 has the filter coefficients af_l padded with zeros. Since,

from the Hermitian Toeplitz property of R,, R jaf =€ where

vy
u; = [O,O,...,I]Tis a unit vector of length j+1, then R pA » is defined by Equation

4.79.

& 0 0 . 0
? g 0 .0

RoAp=l . - 4.79)
77 Lg,

Equation 4.79 is a lower triangle matrix with the prediction errors along the
diagonal. If JR;J =R, then Equation 4.80 can be defined.

Rja;=(JR)a; =¢u; (4.80)

where:
J?>=1 and Ja, =(af)*

If R,A, is multiplied on the left by the lower triangle matrix A II,{ the result is
another lower triangle matrix A;’ R ,A . Because the terms on the diagonal of

A, are equal to one, the diagonal of AIF,I R ,A, will be the same as that of

. .. . H .
R ,A ,and the resulting Hermitian matrix A, R ,A, has the form defined by
Equation 4.81.

&E 0 0 .0

o 0 &g 0 . O
AR A = T =D, (4.81)

0 0 0 . g,

where:
D = diag{g,, &,....€,}

—€p

Parametric Signal and System Modelling 151

The desired Cholesky factorisation, Equation 4.82, is achieved by multiplying
Equation 4.81 on the left by L, = (A;’)" and on the right by LI;, where Af

and (Af)_1 are both lower triangle matrices and det(A'Z)=1, since Ag is

nonsingular with ones along its diagonal.

R, =L,DL" (4.82)

p
The determinant of R p= L1 & . the product of the modelling errors.
k=0

The inverse of a Toeplitz matrix R , is easily found by using the decomposition

of Equation 4.81 and taking the inverse as defined by Equation 4.83.

AR, A) =ARA =D (4.83)

If Equation 4.83 is multiplied by A, on the left and by A;I on the right this gives
the inverse as defined by Equation 4.84.

R, =A,D'AY (4.84)

The matrix A, is formed by applying the Levinson-Durbin recursion on the
autocorrelation sequence r,(0),r,(l),...,r,(p), and the inverse of D p is easy to

find since D, is a diagonal matrix.

4.4.4 The Levinson Recursion

The Levinson-Durbin recursion allows an efficient solution to the all-pole normal
equations in the form of Equation 4.64 and Equation 4.85. However, it is often
necessary to solve a more general form of Toeplitz equations as defined by
Equation 4.86 , where vector b is arbitrary.

O R v N ¢) N B 1

) NN (1) AT () B ¢ B VN KT 0

rx@ afl) rx@) r;*(j.—2> a2 =€_,-§ (455)

() G- (=2 . 0 |495] (0]
Rjajz«s‘ju1

152 Principles of Adaptive Filters and Self-learning Systems

O o re . G [x00] [k
r.() 7. (0)) .o G=D | x| b
r(2) () r(0) .or(j=2) |21 =] b,
: : : : : : (4.86)
() rG-D (-2 . 0 | x0T |5y
Rx;=b

Levinson’s original recursion has the Levinson-Durbin recursion embedded in it
and it can simultaneously solve Equations 4.85 and 4.86 for j=0,1,...,p. In fact

Levinson’s recursion is very similar to the Levinson-Durbin recursion.

Levinson’s recursion starts by finding the solution to Equations 4.85 and 4.86
for j = 0, which is simply &, =r,(0) and x,[0]=b, / r.(0). Given that the
solutions to the jth order equations are known it is possible to derive the (j+1)st
order equations as follows. Having the solution a; to Equation 4.85 the Levinson-
Durbin update Equation 4.69 gives the solution to a, and to the (j+1)st equations
as defined by Equation 4.87.

PO @) @ . G+ 1 Ein

@) O) . () | @G 0

r2 r() O . (=D g |=| 0 (4.87)
|r G+ r () G- . 0 ||9aga | [0

Equation 4.87 can be rewritten as Equation 4.88 by taking the complex conjugate
and reversing of the order of the rows and columns of the Hermitian Toeplitz
matrix R, .

r(0) r () V;(z) . r;(.j+1)— a;rl(jﬂ) 0

r)y r0) r.Q) . I”;(]') a;(j+l) 0

@ r® O . R G-D|ag =] 0 (4.88)
LnG+) r() rG-D . O | 1 | _5;1_

As the solution to Equation 4.86 is X; it is possible to append a zero to vector X; and
multiply it by R;,,, as done in the Levinson-Durbin recursion, to arrive at

J
Equation 4.89, where J; = dr.(j +1)x;[i].
i=0

Parametric Signal and System Modelling 153

) M @ . Gy [0 [b
r) r.(0) rndy . oG | | h
() nG=D nG=2 . @) x|
L GHD r() nG=D L n©@ |0] 6]

(4.89)

The extended vector [x j,O]T is generally not the solution to the (j+1)st order

equations because generally & ; #bj, . However, the sum defined by Equation

490 can be formed, where qj+1=(bj+1—5j)/€j+l is an arbitrary
constant.
[10T] @jai(jan by
X, @) g
R R a;—l(j+l) = :
x;[J] : b;
| 0 | 1 _6j+qj+l£j+l_

Then, it follows that the solution is,

*

b= Jd; +4q;.€

j+l
x,;[0] aji(jen)
*

x;l1] aj(j+1)

X = S B
J+l JHL A1 j+1)

xj[]] :

0 1

A summary of the Levinson recursion is as follows,

1. Initialise the recursion by setting,
i. ay=1
ii. xp[0] = by /r(0)
iii. &g =r/(0)

2. Forj=0,1,..p—-1 set,
J
iy :rx(j+l)+2ai(j)rx(j—i—l)
i=1
7

i, Ty =-——L
j

complex

(4.90)

154 Principles of Adaptive Filters and Self-learning Systems

e . . *
ii. Fori= l,J . al'(j+1) = ai(j) +Fj+1aj_i+1(j)
. ajuceny =Ljn

R

V. 8j+1 =€j[1—‘1—‘j+1
J
Vi. 5_/‘ = Z;‘)rx(j—i+l)xj[i]

vil. g4y = (b, = 0;)/5}41
v *
viii. Fori =0, 1,...j, x;lil=x;[il4 g0, 114

iX. xjlj+11=q;.

4.5 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

4.5.1 Problems

4.1.

4.2.

43.

4.4.

45.

4.6.

Under what conditions are Equations 4.1 and 4.2 referred to as a Moving-
Average (MA), Autoregressive (AR) and Autoregressive Moving-Average
(ARMA) model?

Which models, MA, AR or ARMA, are the easiest to solve for their
unknown parameters?

Show that Partial differentiation of Equation 4.5 with respect to variables

a: results in Equation 4.6.

Explain why the Padé “approximation” method is badly named.

Explain the main idea behind the Padé approximation method and why it
is likely to be problematic in practice.

Given the signal, x = [1 15 O.75]T, find the Padé approximation model
for,

a. p=2andg=0

b. p=0andg=2

c. p=g=1

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

Parametric Signal and System Modelling 155

. . 1, n=0,1.,.,20
Given the signal, x[n]= .~ , use Prony’s method to model
0, otherwise

x[n] with an ARMA, pole-zero, model withp =g = 1.

Find,
a. the first-order, and,
b. the second-order all-pole models for the signal,

x[n]=98[n]-90[n-1].

Find the second-order all-pole model of a signal x[n] whose first N = 20
values are x = [1,—1,1,—1,...,1,—1]T by using,

a. the autocorrelation method, and,
b. the covariance method.

Use the modified Yule-Walker equations to find the first order ARMA
model (p = g = 1) of a real valued stochastic process having the following
autocorrelation values,

r,(0)=26, r.()=7, r.(2) :%

Solve the autocorrelation normal equations using the Levinson-Durbin
recursion to find a third-order all-pole model for a signal having the
following autocorrelation values,

r(0) =1, r,(1) =05, r.(2) =05, r,(3) =025

For Problem 4.11 compute the next two values in the autocorrelation
sequence, i.e., r,(4) and r.(5).

PART III. CLASSICAL FILTERS and
SPECTRAL ANALYSIS

Classical linear filters are used to estimate a specific signal from another noisy or
linearly corrupted signal. Often a classical lowpass, bandpass, highpass or
bandreject filter can be employed to achieve an acceptable result in basic problems.
In more complex problems, however, these types of filters fall short of achieving an
optimum or best estimate of the desired signal. To achieve an optimum linear
filtering solution a Wiener or Kalman filter may be used. The optimality criteria
used in both the Wiener and Kalman filters is the minimisation of the mean square
error with respect to the desired signal.

In relation to discrete Wiener filters, the four following problems of filtering,
smoothing, prediction and deconvolution are the most important ones (Hayes
1996).

1. Filtering - given x[n]=s[n]+v[n] the goal is to estimate s[n] using a

causal Wiener filter (a filter using only current and past values of x[n]).

2. Smoothing - the same as filtering except the filter may be noncausal
(using all the available data).

3. Prediction - the causal Wiener filter produces a prediction of x[n+1] in

terms of a linear combination of previous values of x[n].

4. Deconvolution - when x[n]=s[n]* g[n]+v[n], where g[n] is the unit

sample response of a linear shift-invariant filter, the Wiener filter becomes
a deconvolution filter.

The discrete Wiener filter is linear shift-invariant and meant for estimating
stationary processes. The discrete form of the Wiener-Hopf equations specify the
filter coefficients of the optimum FIR filter. It is also possible to design causal IIR
Wiener filters but it requires the solution to a nonlinear problem that requires a
spectral factorisation of the power spectrum of the input process.

Recursive approaches to signal estimation lead to the derivation of the discrete
Kalman filter. The Kalman filter is a shift-varying filter and therefore applicable to

158 Principles of Adaptive Filters and Self-learning Systems

nonstationary as well as stationary processes. It can be described as a deterministic
system with stochastic excitation and observation errors. The general framework
for all of the known algorithms that constitute the recursive least-squares family of
adaptive filters is provided by the Kalman filter (Sayed and Kailath 1994).

The problem of estimating the power spectrum of wide-sense stationary
processes is very important to the development of filter systems. The power
spectrum is the Fourier transform of the autocorrelation function, therefore
estimating the power spectrum is equivalent to estimating the autocorrelation.
However, in practice only finite and often noisy data records are available to
estimate the power spectrums of what are essentially infinite data processes. This
estimation problem can be solved using various parametric and nonparametric
techniques, each of which have their advantages and disadvantages that determine
their appropriateness for specific applications.

5. Optimum Wiener Filter

The optimum Wiener filter, in theory, provides the best linear method to remove
stationary Gaussian noise added to a linear process and it is a form of the stochastic
estimation model. Wiener developed his continuous-time filtering ideas based on
wide-sense stationary statistics in the early 1940s for application to anti-aircraft fire
control systems. He considered the problem of designing a linear filter that would
produce the minimum mean square error estimate with respect to the desired signal.
Kolmogorov later developed similar filtering approaches utilising mean square
theory for discrete stochastic processes.

Given a process x(f) = s(t) + v(¢) where s(¥) is the result of the convolution of an
unknown original signal d(f) with a known linear system having an impulse
response g(¢) then it is possible to estimate d(f) using a Wiener filter. Refer to
Figure 5.1. If s(f) and v(f) are zero mean with stationary statistics and they are
uncorrelated the optimum Wiener filter ®(f) is defined by Equation 5.1 in the
frequency domain (Press et al 1986).

S 2
o) = N

= 5.1
SOOI+)

Since s(¢) and v(¢) are uncorrelated |S(f)|2 -i—|V(f)|2 can be estimated by |X(f)|2
from a long sample of x(#) using a spectral estimation technique. If the statistics of

v(t) are known then |V(f)|2 can be subtracted from |X f)|2, else it is often

possible to deduce both |S(f)|2 and |V(f)|2 from an inspection of |X(f)|2. The

filter is useful even if it is not completely accurate because it is derived by least
squares minimisation, consequently the output differs from the true optimum by
only a second-order amount.

The signal spectrum of the unknown signal D(f) is estimated by Equation 5.2.

X(HPS)
G(f)
The Wiener filter requirement that the signal statistics be stationary limits its

application and this naturally led to the development of the Kalman filter for
dealing with the nonstationary case. When the measurement noise is white, the

D(f)= (5.2)

160 Principles of Adaptive Filters and Self-learning Systems

signal model is finite dimensional, and all processes are stationary then Wiener and
Kalman filtering theories lead to the same result. Otherwise the Kalman filter is
expected to produce superior results.

5.1 Derivation of the Ideal Continuous-time Wiener
Filter

The general ideal continuous-time Wiener filter defined by Equation 5.1 can be
derived starting with the system configuration shown in Figure 5.1.

Gaussian Noise

. (1)
Linear System

s(t) N

e

d(t) g

x(t) =s(t)+v(t)

Figure 5.1. Wiener Filter Derivation

The signal s(7) is the output of the linear filter G(f), which is the convolution of the
unknown signal d(#) and the filter impulse response g(7). The signal x(¢) is the signal
s(¢) plus some random noise v(f) as follows,

s(1) = fg(t)d(t—f)df, ie, S(f)=G(f)D(f),

and,

X(f)=S(H+V(f)
The problem is to find a filter ®(f) to estimate D(f) from X(f), i.e.,

A X(f)
D(f)=""LLd
f) f

If ﬁ(f) 1is to be close to D(f) in the least squares sense then it is necessary to
minimise the squared difference function & between the signal d(¢) and its estimate

d (#) along the following lines,

Foo) 2 RN
£= [|do-do)| di= [|BcH-pin | ar

Optimum Wiener Filter 161

_lspvene) sl
=] d
B TS G|

T|G<f>|2{|s<f>|‘2|1—<1><f)|2+|v<f>|2|<1><f)|2}df

Since the signal S(f) and noise V(f) are uncorrelated their cross-product is zero
when integrated over frequency. (Noise by definition is that part that does not
correlate with the signal). The error function & can be minimised with respect to
O(f) at every value of f by differentiating it with respect to ®(f) and equating to
zero. This results in the following optimum Wiener filter solution,

S 2
d(f) :%
SO HV)

Statistically speaking ®(f) is the optimum Wiener filter, which means it is best
in the least squares sense for Gaussian noise. The reason that ®(f) is the optimum
filter is that Gaussian noise is fully described by its second-order statistics (its
variance if the mean is zero) and least squares is a second-order minimisation
technique. Note that the optimum filter can be found independently of the de-
convolution function which relates S(f) and D(f).

In practice it is necessary to have a way to estimate |S f)|2and |V(f)|2 if they

are not known a priori. Often, in simple problems this can be done from X(f) alone
without other information or assumptions. If a long stretch of x(¢) is sampled and its
power spectral density P, (f) is estimated from it then,

PN =X(H =[SO AV, since S() and V() are uncorrelated.

Log
Scale

X ()

Extrapolated

V[S(f)” Deduced
|

Figure 5.2. Wiener Filter Spectrum Example

162 Principles of Adaptive Filters and Self-learning Systems

For example, a typical filtering problem may be described by the spectrums shown
in Figure 5.2. Usually the power spectral plot will show the spectral signature of a
signal sticking up above a continuous noise spectrum. The noise spectrum may be
flat, or tilted, or smoothly varying; it doesn’t matter, provided a guess can be made
at a reasonable hypothesis of it. One way to do this is to draw a smooth curve
through the noise spectrum and extrapolate it into the signal region. The difference
between |X(}‘)|2 and |V(}‘)|2 gives |S(f)|2. Extend the ®(f) to negative values of
frequency by making ®(-f) = ®(f). The resulting Wiener filter ®(f) will be close to
unity where the noise is negligible and close to zero where the noise is dominant.
The model is still useful even if [S(f)|? is not completely accurate because the
optimum filter results from a minimisation where the quality of the result differs
from the true optimum by only a second-order amount in precision. Even a 10%
error in |S(f)| can still give excellent results. However, it is not possible to improve
on the estimate of |D(f)| any further by using the resulting ®(f) to make a better

guess at ﬁ(f) and then reapplying the same filtering technique to it, and so on.

Doing this will only result in a convergence to S(f) = 0.

5.2 The Ideal Discrete-time FIR Wiener Filter

The general Wiener filtering problem can be stated as follows. Given two wide-
sense stationary processes x[n] and s[n] that are statistically related to each other,
the Wiener filter W(z) produces the minimum mean square estimate y[n] of s[n]. A
FIR filter whose output y[n] best approximates the desired signal s[n] in the sense
that the mean square norm of the error is minimised is called the optimum FIR
Wiener filter. Figure 5.3 illustrates the discrete-time FIR Wiener filtering problem.

Desired Signal

FIR Wiener Filter s[n]
Input Signal ot yln] %Error Signal
— W(z)= —m "+
x[n] (2) mZ::Ow(m)z X))
e[n] = s[n]- yln]

Figure 5.3. FIR Wiener Filter Block Diagram

It is assumed that the statistics including autocorrelations (k) and r (k) and the
cross-correlation 7, (k) are all known. For a (g-1)th order FIR filter having an
impulse response of w = [w[0], w[1],...., wlg-1117, the system convolution function
is defined by Equation 5.3.

q-1
yln]= X2 wimlx{n—m] (5.3)

m=0

Optimum Wiener Filter 163

It is necessary to find the filter coefficients w[k] that minimise the mean square
error ¢ as defined by Equation 5.4.

&= Efleln]’} = E{sIn]- y[n]’} (5.4)

To minimise & Equation 5.4 is differentiated with respect to w'[k] and set to zero
and solved for k = 0,1,...., g — 1 as defined by Equations 5.5 and 5.6 (Hayes 1996).

o J .) .
k] Ikl {e[n]e [n]} {6 [n] o k] e [n]} (5.5

d o«
—e
dw [k]

(n)=

-1
= awf[k] [s*[n] - ZZ:‘,OW*[M] x'[n- m]} =—x'[n-kl (5.6

Since the error is defined by Equation 5.7, Equation 5.5 becomes Equation 5.8 and
consequently 5.9 according to the orthogonality principle.

-1
e[n]=s[n]- qu[m] x[n—m] 5.7
m=0
E{e[n)x [n—k]} =0, fork=0,,..,q-1 (5.8)
ie.,
-1
E{s[nlx'[n—k]}- qu[m]E{x[n—m]x*[n—k]} =0 (5.9)
m=0

As, E{s[n]x'[n—kl}=r, (k) and E{x[n—m]...x [n—k]}=r(k—m) Equation
5.9 becomes a set of g linear equations in the g unknowns w(k] for k=0,1,...., g-1,
and then the required solution can be defined by Equation 5.10.

-1
S Wikl (k=m)=r. k), k=01,.q-1 (5.10)

m=0

Equation 5.10 is the so called Wiener-Hopf solution. It can be expressed in matrix
form as defined by Equation 5.11, R w=r,, by using the fact that the

sx

autocorrelation sequence is conjugate symmetric, i.e., r,.(k) =r, (=k) .

r.(0) () . r(g=1){ wlo] 1 (0)
) 0 . or(g=2)|| wii Fye (D)

(5.11)

rg=1) r(qg=2) . 0 |wlg-11] |[r.(g=D

164 Principles of Adaptive Filters and Self-learning Systems

The minimum mean square error of the estimate of s[n] may be determined by
Equation 5.4 as defined by Equation 5.12.

*

Ein = E{e[n]e*[n]} =FE e[n]{s[n] - qz_:lw[m] x[n— m]}
m=0

-1 ;
= E{e[n]s"[n]} - qzw*[m]E{e[n]x*[n—m]}

m=0

= E{e[n]s [n]}, since by equation (5.8), E{e[n]x [n—m]}=0

(5.12)

-1 . —1)
= Eﬂs[n] - qz wimlx[n— m]}s*[n]} =r,(0)- qz wimlr,, (m)

m=0 m=0

Using vector notation the minimum mean square error can then be expressed as
defined Equation 5.13.

gmin =rs(0)—rgw

=T (0) _rSI;CIR;Irsx

(5.13)

A summary of the Wiener-Hopf equations for the FIR Wiener filter is as follows,

q-1
1. Wiener-Hopf equations: > w[m]r (k—m)=r,(k), k=01,..,q—1

m=0

2. Correlations: r.(k—m) = E{x[n—m] x' [n—k] }

ro (k) = E{sln—m]x [n—k])

q-1 "
3. Minimum error: Emin = 7,(0)= X wlm]ry, (m)
m=0

5.2.1 General Noise FIR Wiener Filtering
In general noise filtering problems there are the following data sets,

{s[n]}, adesired signal process,
{v[n]}, anoise process, not necessarily white,
{x[n] = s[n+c]+v[n]}, a measurement process,

where, {s[n]} and {v[n]} are independent, zero mean and stationary and their initial
time is in the infinitely remote past. Here, the desired signal s[n+c] must be
estimated from the noisy measurement x[n]. This problem may be best represented
by the model shown in Figure 5.4.

Optimum Wiener Filter 165

White Noise
{wnl}

Wz(Z)

A{M}
White Noise
—) W@ A {xln]}

{win]} {sln+cl}

Figure 5.4. Wiener Noise Filtering Model

Systems W,(z) and W,(z) are real rational transfer function matrices with all their
poles inside the unit circle, i.e., |z | < 1 and {w[n]} and {w’[n]} are both
independent zero mean unit variance white noise processes. From this one model it
is possible to pose three important problem definitions. Forming the expectation
E{s[n+c] |x[n]} for zero, negative and positive integers of ¢ defines the filtering,
smoothing and prediction problems respectively.

Using the results from the previous Section it is possible to derive the optimum
FIR Wiener filter, i.e., the special case for ¢ = 0. Since s[n] and v[n] are
uncorrelated the cross-correlation between s[n] and x[n] is simply the
autocorrelation of s[n] as defined by Equation 5.14.

ry (k) = E{s[n]x [n—k]}
= E{s[n]s [n—k]}+E{s[n]v'[n—k]} (5.14)
=r, (k)
It also follows that r, (k) is defined by Equation 5.15.

ro(k) = E{x[n+k]x"[n]}
= E{[s[n+k1+vin+k]][s[n]+vIn]} (5.15)
=ry(k)+r, (k)
Therefore, the Wiener-Hopf equations for this filter are defined by Equation 5.16.
[R, +R,Jw=r, (5.16)

Equation 5.16 may be simplified further if more specific statistical information
about the signal and noise is available.

5.2.2 FIR Wiener Linear Prediction

In the special case of noise-free measurements of a signal x[n], linear prediction is
concerned with the prediction or estimation of x[n+c] in terms of a linear
combination of the current and previous values of x[n] as defined by Equation 5.17.

166 Principles of Adaptive Filters and Self-learning Systems

g-1
xX[n+cl= Y wlklx[n—m], typically c=1. (5.17)

m=0

If the desired signal is defined to be s[n] = x[n+c], for ¢ = 1, the linear predictor can
be treated as a FIR Wiener filtering problem. The cross-correlation between s[n]
and x[n] can then be evaluated as defined by Equation 5.18.

r, (k) = E{s[n]x"[n—k]}
= E{x[n+11x"[n—k]} (5.18)
=r.(k+1)

From this, the Wiener-Hopf equations for the optimum predictor are defined by
Equation 5.19 (Hayes 1996).

Rxw = rsx(l) = rx(l)

r.(0) () . r(g=1| wlo] r.(D
) O . n@-d| Wl || n@) (5.19)
r(g=1) r(qg-2) . r0 |[wlqg-1] [n(@

The corresponding minimum mean square error for this predictor is defined by
Equation 5.20.

q-1 .
Ein =1.(0)= Y wmlr, (m+1)=r,(0) —rf(’l)w (5.20)
m=0
The set of Equations 5.19 are essentially the same as the Prony all-pole normal
Equations 4.29 except for the fact that in the Prony equations r(k) is a
deterministic autocorrelation rather than a stochastic one, as is the case here.

Linear prediction for ¢ > 1, where the desired signal is to be s[n] = x[n+c], is
referred to as multistep prediction as opposed to ¢ = 1, which is single step
prediction. The development of the equations for multistep linear prediction is
similar to single step linear prediction. The only difference is in the crosscorrelation
vector r,. Since s[n] = x[n+c] then r,, (k) is defined by Equation 5.21.

ry (k) = E{s[n]x"[n—k]}
= E{x[n+c] x*[n—k]} (5.21)
=r.(k+c)

The Wiener-Hopf equations for the multistep predictor are consequently defined by
Equation 5.22.

Optimum Wiener Filter 167

R w= rsx(c) =r (c)

r.(0) rr() . r(g=D| wo] r(c)
r (1) r(0) . ri(g-2)| wll _| nletD (5.22)
r.(g=1) r.(g-2) . r.(0) wlg—1] r.(c+g-1)

The corresponding minimum mean square error for the multistep predictor is
defined by Equation 5.23.

-1
Enin =1 (0) = qZ wlmlr, (m+¢) =r.(0)—rj,w (5.23)

m=0

5.3 Discrete-time Causal IIR Wiener Filter

The problem formulation for a discrete-time causal filter design is the same for both
the FIR and IIR Wiener filters except that the FIR has a finite number of filter
coefficients, whereas the IIR has an infinite number of unknowns. If no constraints
are placed on the solution the optimum IIR filter has a simple closed form
expression for the frequency response, but it will usually be noncausal. It is
possible to design a realisable causal IIR filter by forcing the filter’s unit sample
response h[n] to be zero for n < 0. However, for the causal filter, it is only possible
to specify the system function in terms of a spectral factorisation.

The estimate of the desired signal s[n] for a causal filter with a unit sample
response h[n] takes the form as defined by Equation 5.24.

S[nl= yln]=x[n] *h{n]= i hlk]x[n—k] (5.24)
k=0

To find the filter coefficients h[k] the mean square error £, as defined by Equation
5.4, is minimised by differentiating with respect to h'[n, setting it to zero and
solving it for k = 0. By a similar process to the FIR Wiener solution this results in

the Wiener-Hopf equations for the causal IIR Wiener filter as defined by Equation
5.25.

S himlr,(k—m)=r,(k), 0<k<oo (5.25)
m=0
The equations for the noncausal IIR Wiener filter are the same as Equation 5.25
except that the lower limit for & is -co instead of 0.
To solve Equation 5.25 it is necessary to study the special case where the input
to a Wiener filter g[n] is unit variance white noise &[n], resulting in the Wiener-

Hopf Equations 5.26 (Hayes 1996).

168 Principles of Adaptive Filters and Self-learning Systems

ig[m]rg(k—m) =r,(k), 0<k<oo

m=0

since, r,(k)=d(k)and g[n]=0, forn<0 (5.26)
glnl=ry(muln]

The solution to Equations 5.26 in the z-domain is G(z) = [Psg(z)] , » where the “+”

denotes the positive-time part of the sequence whose z-Transform is contained
inside the brackets.

In a real filtering problem the input is unlikely to be white noise. For a random
process input x[z] having a rational power spectrum with no poles or zeros on the
unit circle it is possible to perform a spectral factorisation of P,(z) as defined by
Equation 5.27.

w1
P(2)=030(2)Q" (=) (5.27)
Z
Q(z) is a minimum phase rational function composed of a minimum phase
numerator N(z) and denominator D(z), which is a monic (the coefficient of the
highest power is unity) polynomial as defined by Equation 5.28.

N(2)

0(z)= DC2)

=1+q[llz”" +¢[2]z 7 +.... (5.28)

If x[n] is filtered by a whitening filter F(z) =1/070(z) the power spectrum of the

resulting white noise output process £[n] is Pe(z) = P(2)F(2)F *(l/z*) =1. As

0O(z) is minimum phase F(z) is casual and stable having a causal inverse. Therefore,
x[n] may be fully recovered from &£[n] by filtering with the inverse filter.

When x[n] has a rational power spectrum the optimum causal Wiener filter H(z)
can be derived by the following argument. Suppose that x[n] is filtered with a
cascade of the three filters, F(z), F~1(z), and H(z) as shown in Figure 5.5.

White Noise

x[n] &lnl, x[n]

—N F@ N FT() Hz)

Figure 5.5. A Causal Wiener Filtering Model

The cascade causal filter G(z) = F ' (2)H(z) = [Psg(z)] , is the causal Wiener filter

that produces the minimum mean square estimate of the desired signal s[n] from the
white noise process &[n]. The cross-correlation between s[n] and &£[n] is defined

by Equation 5.29.

Optimum Wiener Filter 169

ro (k) = E{s[n]& [n—k]}

m=—oo m=—oo

= E{s[n][if[m]x[n—k—m]} }: if*[m] r. (k +m) (5.29)

The cross-power spectral density P (z) is defined by Equation 5.30.

s 1 P,
Pss (Z) = PM(Z)F (T) = sx(Z)

s 1 5.30
¢ 000" () -30)
z
Therefore, the required Wiener filter solution is defined by Equation 5.31.
1 P,
H(= FG) =—— 2| ang,
0,0(2) Q* (—)
721 (5.31)

1 { P,(2)
)=—]
0,0()| 0(z7)

} , for real processess.
+

The minimum mean square error for the causal I[IR Wiener filter is defined by
Equation 5.32.

Enin =7,(0)— ih[m] o (m) (5.32)

m=0

5.3.1 Causal IIR Wiener Filtering

The system function for causal IIR Wiener filtering of s[n] given x[n] = s[n] + v[n]
(where v[n] is noise that is uncorrelated with s[n]) is defined by Equation 5.28.
Given that the noise v[n] is uncorrelated with the desired signal s[n] then P_(z) =
P (z) and the causal filter can be defined by Equation 5.33.

1 P ()

H(z)=—;]
202@)| 0" ()
Z

(5.33)

+

where:

|
P.(2)=P,(2)+P,(2) =0,0(2)Q (—)
Z

Equation 5.33 may be simplified further based on having more specific statistical
information about the signal and noise.

170 Principles of Adaptive Filters and Self-learning Systems

5.3.2 Wiener Deconvolution

Deconvolution is concerned with the recovery of a signal s[n] that has been
convolved with a filter g[n], i.e., x[n]=s[n]* g[n] and s[n]zx[n]*g_l[n],

S(e?%) = X (e7%)/G(e?®) . This is a rather difficult problem that arises in many
applications, especially those associated with signal recording. The difficulty is due
to two possible reasons. Firstly, the filter may not be precisely known in practice.
Secondly, even if it is known the filter’s frequency response G(ej 9) is often zero
at one or more frequencies or, at least, it is very small over parts of the frequency

band. The second problem is quite serious because G(ejg) is consequently

nonivertible or at least ill-conditioned. A further difficulty is introduced when the
measurement process x[n] includes additive white noise w[n] uncorrelated with

s[n], i.e., x[n]=s[n]* g[n]+w[n]. In this case, when the inverse filter exists and is

well-behaved, it turns out that the signal estimate is the sum of original signal and a
residual filter noise term as defined by Equation 5.34.

A . i . .
$e1) = 5(e1)+) _ 5014y (o1 (5.34)
G(e’%)

The difficulty with this is that if G(ej 9) =(0 over any frequencies the noise

component V(ej 9) becomes large and may dominate the signal estimate.

A way to avoid these types of difficulties is to frame the estimation in the form
of a Wiener filtering problem. That is, design a linear shift-invariant IIR filter h[n]
that produces the minimum mean square estimate of s[n] from x[n] as defined by
Equation 5.35.

§[nl= yln]=x[n] * h{n]= ih[k][n—k] (5.35)

k=—co

The noncausal filter coefficients that minimise the mean square error defined by
Equation 5.4 are the solutions to the Wiener-Hopf equations, which can be
represented in the frequency domain by Equation 5.36.

. je
H(e'%) = Le.g) (5.36)
P.(e’?)

Since s[n] is assumed to be uncorrelated with w[n] it is also uncorrelated with
s[n] * g[n], therefore the power spectrum of x[n] is equal to the power spectrum of

s[n] * g[n] plus the power spectrum of w[n], i.e.,

Optimum Wiener Filter 171

. . 2 .
Px(e-’g) = Rg(e]‘g)‘G(e]e)‘ + Pw(efg) , and also the cross-power spectrum of s[n]

and x[n], P, (ejg) = Ps(eje)G*(ejg) . Consequently, it follows that the Wiener
filter for deconvolution is defined by Equation 5.37.

H(eI?) = PG)

(5.37)

P|6e | + B,)

5.4 Exercises
The following Exercises identify some of the basic ideas presented in this Chapter.

5.4.1 Problems

5.1. Find the optimum first-order FIR Wiener filter for estimating a signal s[#]
from a noisy real signal x[n]=s[n]+v[n], where v[n] is a white noise

process with a variance 0'3 that is uncorrelated with s[n]. Assume that
s[n] is a first-order AR process having an autocorrelation sequence
defined by r, (k) = ol

5.2. In Problem 5.1 the optimum first-order FIR Wiener filter for 0'3 =1 and

a=08 is, W(z) = O.4O48+O.2381z_1 . What is the signal to noise ratio
(S/N) improvement, computed in dB, achieved by the Wiener filtering?

5.3. Find the optimum first-order linear predictor having the form
x[n+1]=w[0]x[n]+ w{l]x{n—1], for a first-order AR process x[n] that has

an autocorrelation sequence defined by r (k) = a‘k‘ .

5.4. Reconsider Problem 5.3 when the measurement of x[n] is contaminated
with zero-mean white noise having a variance of GVZ, ie.,
y[n]=x[n]+v[n]. Find the optimum first-order linear predictor in this
case.

5.5. Show that the solution to Problem 5.4 approaches the solution to Problem
53as 062 —0.

5.6. Consider a random process whose autocorrelation sequence is defined by,

172 Principles of Adaptive Filters and Self-learning Systems

5.7.

5.8.

r.(k) = (k) +(0.9)¥ cos(zk /4) . The first six autocorrelation values are,

r,=[20 06364 0 —05155 -06561 —04175]".

Solve the equations for a first-order three step linear predictor and
compute the mean square error.

Compute the minimum mean square error for Problem 5.6 for 1 to 5 step
predictors. What do you find odd about the sequence of errors from step 1
through to step 5?

Find the optimum causal and noncausal IIR Wiener filters for estimating a
zero-mean signal s[n] from a noisy real zero-mean signal
x[n] = s[n]+v[n], where v[n] is a unit variance white noise zero-mean

process uncorrelated with s[n] and s[n] is a first-order AR process defined
by,

s[n]=0.8s[n—-1]+w[n],

w[n] is white noise with variance O'%V =036,

ry(k) = (08)% .

6. Optimum Kalman Filter

The discrete-time Kalman filter can be described as a linear model based finite
dimensional processor that aims to provide an estimate of a system’s state as it
develops dynamically in time. It is an optimum linear estimator if the stochastic
distributions are Gaussian and the best linear estimator if they are only symmetrical.

6.1 Background to The Kalman Filter

The Kalman filter is used for estimating or predicting the next stage of a system
based on a moving average of measurements driven by white noise, which is
completely unpredictable. It needs a model of the relationship between inputs and
outputs to provide feedback signals but it can follow changing noise statistics quite
well. The development and serious application of Kalman filters began in the 1960s
following Kalman’s publication (Kalman 1960) on discrete-time, recursive mean
square filtering. Kalman filters were first used for control applications in aerospace
and they are still used primarily for control and tracking applications related to
vessels, spacecraft, radar, and target trajectories. Other applications include
adaptive equalisation of telephone lines, fading dispersive communications
channels, and adaptive antenna arrays. The Kalman filter represents the most
widely applied and useful result to emerge from the state variable approach of
“modern control theory.”

The Kalman filter is an optimum estimator that estimates the state a of linear
system developing dynamically through time. An optimum estimator can be defined
as an algorithm that processes all the available data to yield an estimate of the
“state” of a system whilst at the same time estimating some predefined optimality
criterion. The Kalman filter uses a recursive algorithm whereby the parameters
required at each time step are computed from the corresponding parameters at the
previous time step. This means that it is not necessary to retain and operate on all
the past data values. Since this process is inherently discrete it can be readily
applied to vector valued processes.

174 Principles of Adaptive Filters and Self-learning Systems

6.2 The Kalman Filter

In the design of a causal Wiener filter to estimate a signal process s[n] from a set of
noisy observations x[n] = s[n] + v[n] it is necessary that s[n] and x[n] be jointly
wide-sense stationary processes. This is a problem that limits the usefulness of
Wiener filters in practical applications since most real processes tend to be
nonstationary. The Kalman filter can dispense with the stationarity requirement,
thereby making it much more useful for filtering nonstationary processes.

The Kalman filter, according to (Hayes 1996), can be anticipated from a special
case of the causal IIR Wiener filter for estimating a process x[n] from noisy
measurements, i.e., y[n]=x[n]+v[n], where v[n] is a zero mean white noise

process. The special case is that of estimating an AR(1) process of the form defined
by Equation 6.1, where w[n] is a zero mean white noise process uncorrelated with
v[n].

x[n]=a;x[n—1]+w[n] (6.1)
The optimum Wiener solution to this problem that minimises the mean square error

between x[n] and x[n] can be shown to have the recursive form defined by
Equation 6.2. Refer to Example 1 in Section 6.2.1.

X[n]=a;x[n-1]1+K[y[n]-a;x{n-1]] (6.2)

where:
K is a constant.

The constant K is known as the Kalman gain (that minimises the mean square error,
E{|x[n] —fc[n]|2}). The part of Equation 6.2 that is multiplied by K is referred to as

the innovations process, which is an estimate correction factor. This solution shows
that all the observations of y[k] for k < n are used to compute the estimate of x[n].
There are two problems with this optimum solution. Firstly, Equation 6.2 is the
optimum solution only if x[n] and y[n] are jointly wide-sense stationary processes.
However, it will later be shown that modified Equation 6.3 can be made to
represent the optimum estimate if K(n) is a suitably chosen time-varying gain.

xnl = ay,yX[n =11+ K(m)[yln]-ay,_, X[n—1]] (6.3)

where:
The a subscript “1(n-1) ,” represents coefficienta, from the previous iteration

[n-1].

The second problem with the Wiener solution Equation 6.2 is that it does not allow
the filter to begin at time n = 0 because it assumes that all observations of y[k] for k
< n are available. On the other hand, Equation 6.3 can be shown to deal with this
problem well.

Optimum Kalman Filter 175

It is possible to extend the problem of the estimation of an AR(1) process to the
more general problem of estimation of an AR(p) process by using state variables.
Assume that there is an AR(p) process generating a signal x[n] according to the
difference Equation 6.4, and that x[n] is measured in the presence of additive noise
in accordance with Equation 6.5.

x[n]= f:akx[n—k]+w[n] (6.4)
k=1
yln] = x[n]+v[n] (6.5)

In this case the vector x[n]= [x[n],x[n—l],...,x[n— p+1]]T, can be defined to be a

p-dimensional state vector and consequently Equations 6.4 and 6.5 may be
reformulated in appropriate matrix form as defined by Equations 6.6 and 6.7
respectively

a a p-1
1 0 0
x[n]=|0 1 0 x[n—1]+| 0 (w[n]
) (6.6)
|10 0 1
= Ax[n—1]+w[n]
where:
A is a p X p state transition matrix.
wln]= [w[n],O,...,O]T is a vector zero-mean white noise process.
y[n]=[L0,..,0]x[n]+v[n]
(6.7)

=c’x[n)+v[n]

where:
¢ is a unit vector of length p.

A new equation for the optimum estimate of the state vector X[n], similar to
Equation 6.3 for an AR(1), process can now be formulated for the AR(p) process as
defined by Equation 6.8.

K[n] = AX[n—1]+K[y[n]-c’ AX[n—1]] (6.8)

where:
K is the Kalman gain vector.
¢ is a unit vector of length p.

176 Principles of Adaptive Filters and Self-learning Systems

Equation 6.8 is still only applicable to stationary processes but it may easily be
generalised to nonstationary processes by making the following modifications.
Make the state variable x[n] evolve according to the difference Equation 6.9.

x[n]=An—-Dx[n-1]+w[n] (6.9)

where:
A(n-1) is a time-varying p X p state transition matrix.

The zero mean white noise process represented by vector w[n] has an expectation
E{w[n]wH [k]} as defined by Equation 6.10.

Q,(m) 1 k=n

0 ck#n (6.10)

EhﬂMWHMH={

Let y[n] be a g length vector of observations that are defined by Equation 6.11,
where C(n) is a time-varying g X p matrix, and v[n] represents a zero mean white

noise processes independent of w[n] and having an expectation E{v[n]vH [k]} as
defined by Equation 6.12.

yln]=C(n)x[n]+v[n] (6.11)

Q,(n) :k=n

0 ck#n (6.12)

Ewmewn={

If the result defined by Equation 6.8 is generalised the optimum linear estimator, or
the discrete Kalman filter, may now be defined by Equation 6.13.

X[n]=A(n—-Dx[n—1]+K®)[yln]- C(mAn-Dx[n-1]] (6.13)

where:
K(n) is the appropriate Kalman gain matrix. It remains to be shown that the
optimum linear recursive estimate of x[n] has this form and the optimum
Kalman gain K(n) that minimises the mean square estimation needs yet to be
derived. To do this it must be assumed that the matrices A(n), C(n) Q,,(n) and
Q,(n) are all known.

IfX[nln] denotes the best linear estimate of x[n] at time n given all the
observations y[i] for i =1,2,....,n and X[n|n—1] denotes the best estimate given all

the observations up to and including time n-1 then the corresponding state
estimation errors are,

e[nln]=x[n]-Xx[nln]

enln—-1]1=x[n]-x[nln-1]

Optimum Kalman Filter 177

The corresponding covariance errors are consequently defined by Equations 6.14a
and 16.4b.
P(nln) = E{e[n|nle” [n1n]) (6.14)
P(nln—1)=E{e[nIn—1le" [n1n-1]} (6.14b)

Given an estimate X[010] of the state X[0], and if the error covariance matrix for

this estimate P(0l0) is known, when the measurement y[1] becomes available the
goal is then to update X[010] and find the estimate X[1/1] that minimises the mean

square error defined by Equation 6.15.
p-1
E(1) = E{|lell 1]||2} =tr{PID}= Y E{fe;[11 1]|2} (6.15)
i=0

The estimation is repeated for the next observation y[2] and so on. For each n>0,
given X[n—1ln—1] and P(n-1ln-1), when a new observation y[n] becomes

available, the problem is to find the minimum mean square estimate X[n|n] of the

state vector x[n]. This problem is solved in the following two steps. Firstly, given
X[n—1In-1] find X[nln—1], which is the best estimate of x[n] without the

observation y[n]. Secondly, given y[n] and X[n|n—1] estimate x[n].

Step 1

In the first step all that is known is the evolution of x[n] according to the state
Equation 6.9. Since w[n] is an unknown zero mean white noise process then x[n] is
predicted according to Equation 6.16.

X(nln—-11=An-DxX[n-11n-1] (6.16)
Equation 6.16 has an unbiased (E{e[nln—1]}=0) estimation error e[nln—1]
defined by Equation 6.17.

enln-11=x[n]-X[nln-1]

=Am-Dx[n—-11+w[n]l-An-DX[n—-11n-1] (6.17)
=A(n-De[n—11n-1]+w[n]
The estimation errors e[n—11n—1] and e[nln—1] are uncorrelated with w[n] and
therefore P(n|n—1) is defined by Equation 6.18.

P(nln-1)=An-DPn-11n-DA" (n-1)+Q, (n) (6.18)
Step 2

In the second step the new measurement y[n] is incorporated into the estimate
X[nln—1]. A linear estimate of x[n], which is based on X[n|n—1] and y[n], can

be formulated as defined by Equation 6.19.

178 Principles of Adaptive Filters and Self-learning Systems

k(nln)=K (mx[n!n-11+K(n)yln] (6.19)

where:
K (n) and K(n) are matrices yet to be specified.

X[n|n] must be unbiased (E{e[n|n]}=0) and it must minimise the mean square

error (E{||e[n|n]||2} =& .., (n). Using Equation 6.19 the error e[nln] can be

expressed in terms of error e[n|n—1] as defined by Equation 6.20.

e[nln]=x[n]-K (m)x[nln-1]1-K(n)yln]
=x[n]-K (n)[x{n]—e[n | n—1]]-K®)[C(n)x[n]+ v(n]] (6.20)
= [1 -K (n) —K(n)C(n)]x[n]+ K (n)e[n|n—11-K(n)v[n]
Since E{v[n]}=0 and E{e[nIn—1]}=0, it can be seen from Equation 6.20 that
the estimate X[nln] will be unbiased for any x[rn] only if
I—K'(n) —K(n)C(n)] =0 or K'(n)=I-Kn)C(n). Equation 6.19 can now be
expressed as Equation 6.21 or alternatively 6.22.

K[n1n]=[1-Km)Cm)Rnln-1]1+K(n)yln] 6.21)

x[nln]=X[nln-11+Kn)[y[n]-Cn)X[nln-1]] (6.22)

The error for the estimate X[n|n] is defined by Equation 6.23.

enln]= K'(n)e[n |n—1]-K(n)v[n]

2
=[I-Km)Cm)le[n| n-11-Kn)vin] (6:23)

Since v[n] is uncorrelated with w[n] then v[n] is uncorrelated with x[n] and
X[nln—1]. Also, since e[nln—1]=x[n]—X[n|n—1] then v[n] is uncorrelated with
e[nln—1], i.e., E{e[nln—1]v[n]}=0. The error covariance matrix for e[nl|n] is

now as defined by Equation 6.24.

P(nln)=E{e[n|nle" [nIn]}

6.24
=[I-Km)Cm) Pl n-D[I-Kmn)Cnm)]" +Kn)Q, ()K" (n) (624

The Kalman gain K(n), which minimises the mean square error
En) = tr[P(n | n)], can be found by different means but the most expedient is to

differentiate with respect to K(n) and set the differentials to zero to solve for K(n).
This is done according to Equation 6.25.

Optimum Kalman Filter 179

diKtr[P(n In)]=-2[[-Kn)Cm)P(n1n-1)CH (n) + 2K(n)Q, (n)
= 0,using the matrix differential formulas, (6.25)

4 u[kA]=A”, and L u]KAK" |- 2KA
dK dK
Solving for K(n) the result is as defined by Equation 6.26.

K(n)=Pnln-1CH (n)[C(n)P(n In-1)C" (n)+Q, (n)f1 (6.26)

The expression given in Equation 6.24 for the error covariance can now be
simplified as defined by Equation 6.27.
P(nln) =[1-Km)Cm)P(nln-1)
{I-K@CcmP@1n-1CH 1)+ KmQ, (K (n),
and from equation (6.25) it follows that, (6.27)
P(nln)=[I-Km)Cm)|PnIn-1)

This completes the derivation of the recursion equations for the Kalman filter. The
recursion must be initialised at time n = 0 but the value of the initial state is
unknown. Therefore the initial estimate is chosen to be X[010]= E{x[0]} and the
initial value for the covariance matrix is P(010) = E{X[O]XH [0]}. This choice of
initial values ensures that X[010] is an unbiased estimate of x[0] and it ensures
that X[n|n] will be unbiased for all n. The Kalman gain K(n) and error covariance

matrix P(nln) can be computed off-line prior to filtering as they are not dependent
on x[n].

A summary of the Kalman filter is as follows,

Given

State vector: x[n]
Observation vector: y[n]
Covariance matrix of process noise: Q,, (m)=Q(n)
Covariance matrix of measurement noise: Q,(n)=R(n)
State transition matrix from n-1 to n: A(n—1n)
Measurement matrix: C(n)

State Equation:

x[n]=Am-1,n)x[n—1]+w[n] (6.9)

Observation Equation:

180 Principles of Adaptive Filters and Self-learning Systems

ylnl=C(n)x[n]+ vin] 6.11)
Initialisation
Initial estimate: x[010]= E{x[0]}
Error covariance matrix for estimate X[010]: PO10) = E{x[O]xH [0]}

Computation: For n = 1, 2,...., compute all the following equations in sequence,

X[nln—-11=A(n-1Ln)X[n-11n-1] (6.16)

P(nln—1)=A(n-1,n)P(n—11n-DA" (n-1,n)+Q,, (n) (6.18)
Filter gain:

K(n)=Pnln-1CH (n)[C(n)P(n ln-1)C" (n)+Q, (n)F (6.26)
Estimator: (best estimate at n given all observations up to n-1)

X[nln]=X[nln-1]+ K(n)[y[n] —C(m)x[nln- 1]] (6.22)
Error covariance matrix:

P(nln) =[I-K(n)C(n)|P(nln—1) (6.27)

Following similar arguments the Kalman predictor can also be derived.

A summary of the Kalman predictor is as follows,

State Equation:
x[n]=An—-1,n)x[n—1]+w[n] (6.9)

Observation Equation:

yln]=C(n)x[n]+ v[n] (6.11)
Initialisation
Initial estimate: x[010]= E{x[0]}
Error covariance matrix for estimate X[010]: PO10) = E{X[O]XH [01}

Computation: For n = 1, 2,...., compute all the following equations in sequence,

X[nln-11=An-1,nX[n-11n-1]
P(nln—1)=A(n-Ln)Pn-11n-DA (n-1,n)+Q,, (n)

Optimum Kalman Filter 181

Predictor gain:
G(n)=A(n-1L,nPxnIn-1C" (n)[C(n)P(n In-1)C" (n)+Q, (n)f1

Predictor: (best prediction at n+1 given all observations up to n)
K[n+11n]=A(m-1,n)&n!n—-1+Gm)|yln]- C)X[nln—-1]]
Error covariance matrix:

P(n+11n)=[A(n-1,n)-Gm)C)PnIn-DAY (n-1,n)+Q, (n)

6.2.1 Kalman Filter Examples
Example 1: Use the Kalman filter to estimate the following AR(1) process,

x[n] =0.8x[n—1]+ w[n]
yln] = x[n]+v[n]
where w[n] and v[n] are uncorrelated white noise processes with respective

variances of 0'3,, =0.36 and 63 =1.
Here, A(n)=0.8 and C(n)=1, and the Kalman state equation is,
i[n]=0.8%(n—1]+ K (n)[y[n]—0.83(n —1]]

Since the state vector is scalar, the equations for computing the Kalman gain are
also scalar equations,

Equation 6.18 is, P(nln—1)=(0.8)>P(n—11n—-1)+0.36
Equation 6.26 is, K(n)=P(nln—D[P(nln—-1)+1]"
Equation 6.27 is, P(nln)=[1-Km)|P(n1n-1)

With 1[0]= E{x[0]}=0, and P(OIO)=E{|x[O]|2}=1, the Kalman gain and the

error covariances for the first few values of n are as follows,

P(nln-1) K(m) P(nln)

1.0000 0.5000 0.5000
0.6800 0.4048 0.4048
0.6190 0.3824 0.3824

W =3

182 Principles of Adaptive Filters and Self-learning Systems

4 0.6047
5 0.6012
6 0.6003
oo 0.6000

0.3768
0.3755
0.3751

0.3750

0.3768
0.3755
0.3751

0.3750

After a few iterations the Kalman filter settles down into its steady-state solution,
Equation 6.22, i.e., x[n]=0.8x[n—1]+ 0.375[y[n] -0.8x[n— 1]], and final mean

square error of £ =0.375. Notice that this result is the same as the causal Wiener

filter solution.

Example 2: From (Bozic 1994) is an example for the radar tracking of a plane.
Assume the following states and system (or state) equations to describe the

problem,

x;[n]= p(n) , aircraft radial range.

Xy[n]= p(n), aircraft radial velocity.

x3[n]=6(n) , aircraft bearing.

xy[n]= 8(n) , aircraft bearing rate or angular velocity.

x(n]l=Am-1Ln)x[n—-1]+w[n—1]

xi[n
x5[n

x;3[n

T
1
0
0

[

1
1
K
]

xy[n

o~ o o
- N © o

x[n—1] 0
Xy[n—1] u[n—1]
x3[n—1] 0

xy[n—1] uy[n—1]

The noise terms u;[n—1] and u,[n—1] represent the change in radial velocity and

bearing rate respectively over the time interval 7. They are each T times the radial
and angular acceleration, are random with zero means, and uncorrelated with each
other from time interval to time interval. The radar sensors provide noisy estimates
of the range x,[n]= p(n) and bearing x;[n]=6(n) at time intervals 7. At time n

these two sensors produce respective outputs,

vi[n]l=x[n]+v[n]
yoln] = x,[n]+v,[n]

That is,

Optimum Kalman Filter 183

ylnl=C(m)x(n]+ v(n]
xl[n]
{yl[n]}z{l 00 0} x,[n] _{vl[n]}
Yolnl 0 0 1 0fxs[n] v,y [n]
x4[n]

The additive noise components v[n] are assumed to be Gaussian with zero means
and respective component variances O',,z) (n) and 0'3 (n). Next, the covariance

matrices R(n)=Q,(n) for the system, and Q(n)=Q,,(n) for the measurement
models are needed. These are derived as follows,

2
Q, (n)=R(n) = E{v[n]v' [n]} = {O(_)p 02}

Oy

0 0 0 O
2
Q. (n)=Q(n) = E{ W[n]WT[n])= 0 of 0 O
0 0 0 O
0 0 O 0'22

where 0'12 (n)= E{ulz[n]}, and 0'22 (n)= E{u%[n]} are the variances of T times the
radial and angular acceleration respectively. Assuming that the probability density
function of the acceleration in either direction (p or o) is uniform and equal to
2

1 . . . M
p(u)=——, between limits *M , the variance is therefore 0'3 =—— More
2M 3
62
realistic variances are 0'12 :TZO',E , and O'% :—12.
R

To start the Kalman processing the gain Matrix K(k) is initialised by specifying
the error covariance matrix P(klk) in some way. An ad hoc way to do this is to use
two measurements of range and bearing at times k = 1 and k = 2. Take the
following estimates,

%[21=p(2) = y[2]
B[21=p2) = %[yl[Z] -yl
3[2]1=6(2) = y,[2]
x4[21= 002)= %[)’2[2] = (1]

2] =

184 Principles of Adaptive Filters and Self-learning Systems

P(212) = E{[x[2] - %[2]]x[2] - %[2]" }

Therefore,
-vi(2]
A 11— W [2]=v, 1D
x(2]-%(2] = _Vz[ﬁ
1] - (V2[2];V2[1])

Noise sources u and v are independent therefore,

2
o
2 P
O'p 7 0 0
2 2
o 20
- —Liof 0 0
peiy=| I T)
2 Og
0 0 o =4
T
2 2
o 20
0 0 =0 20 453
L r T]

For a numerical example assume R = 160 km, T = 15 seconds and the maximum
acceleration M = 2.1 ms’, LetO'p =1000 m, and oy =0.017 radians, which

define the covariance matrix R. The noise variances in the Q matrix are computed

as 0'12 =330, and 035 =1.3x107®. From these values,

10° 6.7x10* 0 0
4 4
p2i2)=| 67X10% 09x10 0) 0 5
0 29x107* 1.9x10~
0 0 1.9x107 2.6x107°

The predictor gain G(3) is,
-1
G(3)=A@23)P3I12)cH (3)[C(3)P(3 12)C 3)+R@3)
P(312) can be calculated as,

P312)= [A(1,2) - G(Z)C(Z)]P(Z | l)AH 1,2)+Q(n)

Optimum Kalman Filter 185

However, G(2) and P(211) are still not known, but P(312) can still be computed

as,

P(312)=AR3HPR2I2DAT (23)+Qn) . ie.,

5%10° 2x10° 0 0
5 3
P12 =| 2X107 9310 0) 0 5
0 14.5x107% 5.8x10™
0 0 58x107° 2.6x107°

The diagonal values of P(312) give the prediction errors. The first and third

elements are the mean square range and bearing prediction errors for k = 3
respectively.

The predictor gain G(3) is now,

1.33 0
3.3x1072 0
G@3)=
0 1.33

0 33%1072

This process can now be repeated indefinitely to keep estimating the prediction
values for the state estimate X(k +1).

6.3 Kalman Filter for Ship Motion

A ship tracking example is a good one to use to develop and further demonstrate
the ideas of a Kalman filter because it is an easy to comprehend two-dimensional
problem. The ship’s state vector X in its simplest form contains easting and northing
E, N]T position coordinates. It can also include and contain the ship’s velocity,
acceleration and quantities that describe the interaction between the ship and its
environment. The optimum estimator includes all the available observations made
to “fix” the ship’s position e.g., ranges to shore or seabed stations, satellite
observations, gyrocompass heading and Doppler sonar velocities. It also includes
the manner in which the ship might be expected to move through the water (ship’s
dynamics) bearing in mind the various forces (such as wind, current, rudders,
thrusters etc.) acting on it. Thus, according to (Cross 1987) the Kalman filter
combines information related to both observations and dynamics to produce some
smooth optimal track of the ship using LSE as the optimality criterion. The entire
LSE minimisation problem can be defined generally by Equation 6.28.

186 Principles of Adaptive Filters and Self-learning Systems

LSE minimises W (x[n}-x°[n]) 2+W (x[n]-x?[n]) 2 (6.28)
where:
x[n]=estimate of the state at some timet = nT.
x’[n]=estimate given by the observations at ¢ =nT.
x?[n]=estimate given by the modelled dynamics att =nT.
X[n]=LSE of x[n].
W’ =weights attached to the observations.

wH =weights attached to the dynamics.

T =observation time interval.

The optimal LSE minimises the quantity &, as defined by Equation 6.29.
0=v Rv+w’ Qw (6.29)
where:
v = residual vector for observations
(amount by which the estimate fails to satisfy the observations).
w = amount by which final estimate diverges from prediction by the dynamics.

R = weight matrix for observations

.]] inverse of covariance matrix, usually diagonal.
Q = weight matrix for dynamics

The choice of least squares as the optimum estimator for this problem is justified by
the following properties of least squares (Cross 1983),

1. They are unbiased, i.e., true or average.

2. They have the smallest variance.

3. [If the errors are Gaussian distributed (or have any continuous symmetrical
distribution) they satisfy the maximum likelihood criterion (most probable

solution).

Least squares estimates are often called the best linear unbiased estimates and are
used almost exclusively for both land and sea surveying.

6.3.1 Kalman Tracking Filter Proper

The general Kalman ship tracking filter can be developed as follows. Firstly,
assume that the following information is available,

Optimum Kalman Filter 187

n =some time where t = nT.
X[n] =optimal estimate of ship's vector at time 7 = nT.
P(n) =covariance matrix of X(n).

f(n)=measurements made at time r = nT, which are related to the state vector.

The functional relationship F (x[n]) between the state vector x[n] and the
measurements ¢(n), made at time ¢ = n7, is defined by Equation 6.30. Also, assume

that a dynamic ship motion model of the form F(x,7)=0 is available.
F(x[n]) = ((n) (6.30)

The problem is to combine all this information to find X[n|n]and P(nln), which
the Kalman filter does in two main steps as follows,

1. Predict the state vector and its covariance matrix using the dynamic model
and its associated statistics.

2. Alter this prediction using the observation model and the statistics of both
the observation and dynamic models.

The model F(x,1)=0 must be reduced by some means to the discrete form
Equation 6.31.

X(nln—-1]=Am-1,n)x[n—11n—-1] + w[n] (6.31)

where:
A(n—1,n) is the transition matrix or dynamics matrix (square matrix), which

multiplies the state vector at time n —1 to produce the state vector
at n.
X[nln—1] means the value of x at time n using observational data up to only

time n —1.

Since the random component w[n] in Equation 6.31 is unknown the prediction
process X[n|n—1] would be done by Equation 6.32.

X[nln—-1=An-1,n)xXn-11n-1] (6.32)

In practical problems the transition matrix A(rn—1,n) can often be extremely

complicated to determine. In simple cases, as will be exemplified in the next
Section, the model F(x,7)=0 can be expressed directly in the form of Equation

6.32. In the more general case the real physical process of ship motion might be
described by a linear differential of the form x = F(x,w) . In some special cases the

transitional matrix A(n—1,n) in Equation 6.32 can be derived analytically via

188 Principles of Adaptive Filters and Self-learning Systems

Laplace transforms but usually a numerical integration process is necessary, as
defined by Equation 6.33.

A(n-1,n)=MA(n—1,n) (6.33)

where:
M is a square Jacobian matrix J F/d x obtained by differentiating each
row of F(x, f) = 0 with respect to each element of the state vector.

The covariance matrix P(nln—1) of the optimum estimate is defined and
computed by Equation 6.34 once the transitional matrix A(n—1,n) is determined.

Pnln-1)=An-1,nPnr-11n-DAY (n-1, n)+Q,, (n) (6.34)

where:
Qyw is the covariance of w, which usually requires a complicated numerical

integration to compute. In certain dynamic models as will investigated
later Q,, is a constant and explicitly known.

The next step is to linearize Equation 6.30, F (x[n]) = /(n), to the form defined by
Equation 6.35.

J(m)x[n]=b[n]+v[n] (6.35)

where:
J(n) = Jacobian matrix JF (x[n])/Jdx.

b[n] = [Observed— Computed quantities], b[n]=F(x°[n])—((n).

x’[n] = provisional values of x[n].
The form of Equation 6.35 has been seen before in the standard LSE problem but in
this case it would not be solved by the usual LSE process because there are more

parameters than observations. Observation information enters the Kalman filter
process along with a gain matrix K(n) as defined by Equation 6.36.

K(n) = P(nln—-DJ" m)[I@Pn1n-DI" (m)+Q,(n)]! (6.36)

where:
Q, =Q, , the covariance matrix of the observations.

The gain matrix K(n) correctly combines dynamic model and observation
information, consequently Equations 6.37 and 6.38 may be defined accordingly.

K[nln)=xn1n-1+Km)bnl-Jm)x(nln-1]] (6.37)

P(nln)=[I-Kn)J(n))P(nln-1) (6.38)

Optimum Kalman Filter 189

Now, there is enough information to define the Kalman filtering process as follows.
Given X[n—1] and P(n—1) initially, then,

1. Compute the predicted state by Equation 6.32,
X[nln-11=A(n-1Ln)Xn-11n-1]

2. Compute the predicted state covariance matrix by Equation 6.34,
P(nln—1)=A(n-1,n)Pn—-11n-1DA" (n-1,n)+Q,, (n)

3. Compute the gain matrix K(n) by Equation 6.36,
K(n) = P(nln-DJ" () J(m)P(n1 n-DI" (n)+Q, (m]™

4. Estimate the new filtered state X[n|n] by Equation 6.37,
K[nln]=&[n|n-1+K®n)bnl-J()x(n|n-1]]

5. Increment n and go to Step 1.

6.3.2 Simple Example of a Dynamic Ship Model

An example of a possible dynamic ship model F(x,/)=0 suitable for navigation at

sea can be formed by employing a simple universally useful polynomial model.
Assume some unknown process x(f) = x(nT) is continuous and a function of
position as defined by Equation 6.39.

x(t) = [E.N]T (6.39)

Also, assume for purposes of analysis, that & =T . Now, expand x(¢) by Taylor’s
series as defined by Equation 6.40.

. . 2 e 3
X(t+5t)=X(t)+x(t)§t+x(t)%+x(t)% etc. (6.40)

If the time derivatives x(f) and X (f) are assumed to be continuous and all

differentials higher than .;(.(t) are assumed to be negligible Equations 6.41 and
6.42 follow.

. . . 5t2
x(++61) = x(t)+x(t)5t+x(t)T (6.41)

190 Principles of Adaptive Filters and Self-learning Systems

x(1+61) = X+ x (1)1 (6.42)

Let t = nT and r = (n+1)T be two time epochs separated by time & = T then
Equation 6.43 can be defined accordingly.

_&3 _
2 hadil

X LS i X 6

. 2 . &2 e

X =0 1 & ||x| + > {x] (6.43)

. 0 0 1 |. &

Xt X

Specifically for ship positioning define the position, velocity and acceleration
vector as follows,

T T
|:X,X,X:| = {E,N,E,N,E,N}

Substituting this vector in Equation 6.43 results in Equation 6.44.

(E] . [ET o1

N or’ N o
1 0 6t 0 — O 3

. 2 . 0 O

E o | E 6 [
01 0 & 0 —

] _ 2 | . | o 0 E

N 00 1 0 o 0y E | (644)
00 0 1 0 6t 52 LN

.. .. 0 - -

E 000 0 1 0|E 2

S I (I S O S or 0

| N & (Nlotv | 0 ot

n n—1

Allowing for index adjustments Equation 6.44 is the realisation of Equation 6.31
for the current polynomial based dynamic ship model, i.e.,

x[nln]l=AMm-1,n)x[n—-1]+w[n].

For the ship tracking problem the last part of Equations 6.44 and 6.31 can be
equated by defining w = Xg, where,

g =random driving noise vector,
and,

Optimum Kalman Filter 191

Y=|—0 |,a matrix from Equation 6.44.

2
08
2

ot 0
10 ot |

The random noise vector g is the rate of change of the ship’s acceleration, which
can be assumed to be random and having a covariance matrix of Qg. Its standard
deviation o depends on sea conditions and could be estimated from the Kalman
filtering process itself. The dynamics covariance matrix Qy, needed to compute the
covariance matrix of the predicted state vector, Equation 6.34, is defined by the
Equation 6.45.

Qw = X Qg xH (6.45)

where:
0. - o0
¢ oo
In detail expression Equation 6.45 is defined by Equation 6.46.

-
L
6
o
07 PR
, Lol 0610
Q. = ﬁo {GO} 6 2
w 2 3 2
) 097 0% o &
0 91” 6 2
2

(6.46)

ot 0
10 ot |

Some typical error and parameter values for this type of ship tracking problem that
may be used are as follows,

1. 10 m standard error for each of 3 range positioning systems.

192 Principles of Adaptive Filters and Self-learning Systems

2. 0.1 degrees gyrocompass error of heading.
3. 1% error of velocity of dual axis Doppler velocity sonar systems.
4. 0t=T=10 seconds between fixes.

There are other more accurate dynamically models utilising the general
hydrodynamic equations of a ship’s motion that could have been used but this was
the simplest case to consider.

6.3.3 Stochastic Models

It is important to assign correct covariance matrices to both the dynamic model and
observations. If they are over optimistic, results appear to be of a higher quality
than they really are. This is the most serious situation. Overall sizes of covariance
matrices can usually be checked by performing statistical tests on v Q,! v and

wl Q,, w. The relative sizes of Q, and Q,, are also most important.
If Q, is too optimistic, vis a vis Q,, , then “under-filtering” occurs and the

final answer will fit the observations extremely well at the expense of the dynamic
model. The result will be an uneven track that will often be seen to be wrong, even
though it will never drift from the true track for long. If the opposite is true then
“over-filtering” occurs and a very smooth track is produced that may contain rather
large position errors. It is feasible to alter covariance matrices manually to, at
times, induce soft and hard filtering.

Unless the functional (dynamic and observational) models are known to be
correct in practice it is difficult to determine these covariance matrices
automatically. A guide to the proper operation of the process is through the
prediction of residuals defined by Equation 6.47.

t[n]=b[n]-J(n)X[nln-1] (6.47)

If r(n) is unexpectedly large then either gross observational errors are present or

the dynamic model is incorrectly predicting the state vector. Usually the former
case causes spasmodic errors whereas the later case will result in a gradual increase
in the size of the predicted residuals. If observations and dynamic errors are
Gaussian then r(n) should also be Gaussian, where

Qi =Qny+I@PInJ" (n), and the quadratic form {n]=r" ()Qy(, r(n)

has a Chi-squared distribution, which can be tested in the usual way.

6.3.4 Alternate Solution Methods

The Kalman filter is not the only way to combine observational and dynamic ship
model information. It can be done with the general LSE method by writing
“pseudo” observation equations for motion and following the standard procedure

Optimum Kalman Filter 193

(Cross 1982). Bayes filtering can also be used for ship tracking. There is however,
only one optimum estimate for the state vector, and proper application of a Kalman,
Bayes or LSE filter must lead to identical results for this type of ship tracking
problem. What is significant about using a Kalman filter is that it has less
computational complexity. Kalman filtering requires only one matrix inversion per
recursion, a matrix inversion that is smaller than the required matrix inversions in
the other methods.

6.3.5 Advantages of Kalman Filtering
Some advantages of Kalman filtering are,

1. It enables the convenient combination of a variety of observables in order
to solve continuously for a number of state vector elements.

2. The method can accept measurements in real-time and does not need to
wait until enough, for a “fix,” have been collected. In fact, it is possible to
apply the filter every time a signal observation is made.

3. The combination of a variety of data and the introduction of a dynamics
model greatly increases the reliability of the measurements and for
offshore work this is usually more critical than precision. Even completely
unreliable data can be made, to some extent, reliable by the inclusion of a
dynamics model.

6.3.6 Disadvantage of Kalman Filtering
The main disadvantage of Kalman filtering is,

1. Its practical application is fraught with dangers and great care must be
taken to select the appropriate functional and stochastic models. The
modelling errors may cause the filter to diverge. It should not be used
blindly without understanding its limitations.

The Kalman filter does not function correctly and may diverge when the Kalman
gain K(n) becomes small. However, the measurements still contain information for
the estimates. For small K(n), the estimator believes the model and for large K(n) it

Ow

believes the measurements. The gain K(n) is proportional to —-. As
v

Q,, increases, or Q, decreases, K(n) increases, and the filter bandwidth increases.

194 Principles of Adaptive Filters and Self-learning Systems

6.4 Extended Kalman Filter

The Kalman ship track filtering problem described above is involved with the
estimation of a state vector in a linear model of a dynamical system. For nonlinear
dynamical models it is possible to extend the Kalman filter through an appropriate
linearization procedure since the Kalman filter is described in terms of differential
(continuous-time) or difference (discrete-time) equations (Haykin 1996). The
Extended Kalman Filter (EKF) is actually an approximation that allows the
standard Kalman filter to be extended in application to nonlinear state-space
models. The basic idea of the EKF is to linearize the state-space model at each time
instant around the most recent state estimate. Once each linear model is determined
the standard Kalman filter equations are applied.

The Decoupled Extended Kalman Filter (DEKF) can be used to perform the
supervised training of a recurrent network, e.g. a recurrent Multi-Layer Perceptron
(MLP) neural network structure (Haykin 1999). This is achieved by evolving the
system via adaptive filtering to change the recurrent network’s weights through
training. The DEKF has a superior learning performance over the Backpropagation-
of-error learning algorithm (see Chapter 12) because of its information preserving

property.

6.5 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

6.5.1 Problems

6.1. Is the Kalman filter useful for filtering nonstationary and nonlinear
processes?
6.2. Develop a Kalman filter to estimate the value of an unknown scalar

constant x given measurements that are corrupted by an uncorrelated, zero

mean white noise v[n] that has a variance of 0'% .

6.3. Use a Kalman filter to estimate the first-order AR process defined by,
x[n]=0.5x[n—-1]+w[n],
where w[n] is zero mean white noise with a variance 0'3, =0.64.

The noisy measurements of x[n] are defined by the equation,

yln] = x[n]+v[n],

6.4.

Optimum Kalman Filter 195

where v[n] is unit variance zero mean white noise that is uncorrelated with
2
wln] (o) =1).

Can the exponentially weighted RLS algorithm (refer to Chapter 8) be
considered to be a special case of the Kalman filter?

7. Power Spectral Density Analysis

The Power Spectral Density (PSD) is the Fourier transform of the autocorrelation
sequence, therefore the problem of estimating the power spectrum is
mathematically equivalent to estimating the autocorrelation function. In general
power spectral estimation is performed on wide-sense stationary random processes.
However, most practical interest is actually in ergodic processes, which are more
amenable to analysis. Since there are number of different conventions found in the
literature for the definition and normalisation of the PSD special attention must be
given to the precise terms used in the development of the power spectral theory to
follow.

If x(r) is an ergodic random nonperiodic stationary process for which the

oo
condition I|x(t)|dt<oo is not satisfied it is not possible to apply a Fourier
Transform to it. However the autocorrelation function of such a process can be
estimated if it is normalised to have a mean of zero. In that case it can be assumed

400
that the autocorrelation function r (7 —)=0 and _ﬂrx (T)|dT< oo, thereby
making it possible to apply a Fourier Transform to the autocorrelation function in
order to compute the power spectrum.

The two-sided spectral density function of x(¢) is a real valued function P (f)
defined by Equation 7.1.

+o0)
P.(f) =FT[r,(®]= [r(2)e*" dz (7.1)
where:
. 1 T
r.(7) = ITH_?&F _fx(t)x(t +7)dt , converges as T — oo.
0

rx(_T) = VX(T)
r(0) = |r,(7)], forallz.

% = /1, (e°), mean of x(¢).

MS(x(t)) =r,(0), mean square of x().

198 Principles of Adaptive Filters and Self-learning Systems

The autocorrelation r,(k) of an ergodic discrete-time process {x[n]} can be
computed as defined by Equation 7.2.

(0= tim {ﬁ S n+klx [n]} 72)

However, the problem with Equation 7.2 is that in practice there is never unlimited
data available and often it can be very short, especially over periods of stationarity.
Another general problem with spectral estimation is that the process data is usually
corrupted by noise or an interfering signal. Consequently in practice, the spectrum
estimation often involves estimating the Fourier transform of the autocorrelation
sequence, theoretically defined by Equation 7.3, from a finite number of noisy
discrete measurements x[z].

(%)= Xrk)e (73)
k=—o0
If knowledge is available about the process this can help produce a much better
power spectral estimate. For example, if it is known that the process consists of one
or more sinusoids in Gaussian noise it would be possible to parametrically estimate
the power spectrum. Otherwise, it may be possible to extrapolate the data or its
autocorrelation in order to improve the estimation algorithm.

Spectral estimation has application in a variety of fields. For example, the
Wiener filter is made up from the power spectrums of the signal and noise, which in
practice must often be estimated. The power spectrum must also be estimated in
signal detection, signal tracking, harmonic analysis, prediction, time series
extrapolation and interpolation, spectral smoothing, bandwidth compression,
beamforming and direction finding problems (Hayes 1996).

7.1 Power Spectral Density Estimation Techniques

There are two main approaches to spectral estimation, the classical or
nonparametric and the nonclassical or parametric approaches. The classical
approaches involve taking the Fourier transform of the estimate of the
autocorrelation sequence made from a given data set. On the other hand, the
nonclassical parametric approaches are based on using a process model either
known or guessed a priori. Some important classical nonparametric spectral
estimation methods include the,

1. Periodogram method.
2. Modified periodogram method - windowing.

3. Bartlett’s method - periodogram averaging.

Power Spectral Density Analysis 199

4. Welch’s method.

5. Blackman-Tukey method.
The Blackman-Tukey method is the most popular of the classical methods as it
generally gives the best overall performance. Some other nonparametric spectral
estimation methods include the,

1. Minimum variance method.

2. Maximum entropy (all poles) method.

Some high-resolution nonclassical parametric spectral estimation approaches
include,

1. Autoregressive methods.

2. Moving average methods.

3. Autoregressive moving average methods.
4. Harmonic methods.

All of these methods for spectral estimation are briefly described and summarised
in this Chapter, emulating the general development from (Hayes 1996) but with a
slightly different nomenclature, style and emphasis adopted for this book.

7.2 Nonparametric Spectral Density Estimation

The periodogram method was first introduced by Schuster in 1898. It is very easy
to compute but it is very limited in its ability to estimate accurate power spectral
densities, especially for short data records. Fortunately there are a number of
modifications to the basis periodogram method that can improve its statistical
properties. These include the modified periodogram method, Bartlett’s method,
Welch’s method, and the Blackman-Tukey method.

7.2.1 Periodogram Power Spectral Density Estimation

The power spectral density of a wide-sense stationary random process is defined as
the Fourier transform of its autocorrelation function as given by Equation 7.3. For
an ergodic process and an unlimited amount of data the autocorrelation sequence
may, in theory, be determined using the time-average defined by Equation 7.2.
However, since the process x[n] is actually measured over a finite interval, n = 0, 1,

200 Principles of Adaptive Filters and Self-learning Systems

2 ,...., N — 1, then the autocorrelation can only be adequately estimated using the
finite sum defined by Equation 7.4.

N-1-k .
fx(k)=% > x[n+klx'[nl, k=0l1.,N-1 (7.4)
n=0

The values of 7.(k) for k < 0 can be defined by the conjugate symmetry

Fo(—k) = f; (k), and the values of 7 (k) for |k| > N are simply set to zero. The

periodogram defined by Equation 7.5 is the estimate of the power spectrum by
taking the Fourier transform of the finite sum autocorrelation estimate defined by
Equation 7.4.

P (&)= 3 F(k)e (15)
k=—N+

where:
@1is an angle in radians.

In practice it is more convenient to express the periodogram directly in terms of
the sequence x[n] itself. If xp[n] is the finite length sequence of length N that is
equal to x[n] over the interval [0, N-1] and zero elsewhere then xy[n]=wg[n]x[n],

where wpy[n] is a rectangular window of length N. Therefore, the estimated
autocorrelation sequence may be defined by Equation 7.6 in terms of x[n].

. 1 & 1 .
rx(k)=ﬁ > xN[n+k]xN[n]=NxN[k]*xN[—k] (7.6)

n=—oo0

The periodogram is then the Fourier transform of Equation 7.6 as defined by
Equation 7.7.

n . 1 A . 1 2

P (e7)=— X, (1) X}y (%) = —‘XN(e-’g)‘ 1.7)
N N

Here, X (e 79Y is the discrete-time Fourier transform of the N-point data sequence

xyln] as defined by Equation 7.8.

o - no _ NG jn6
Xy(E?)y= Y xylnle™” =3 x[nle™ (7.8)
n=—oco n=0
From this it can be seen that the periodogram is proportional to the squared
magnitude of the discrete-time Fourier transform of xp[n], which can easily be
computed as defined by Equation 7.9.

DFT 1 2 _ 5 27/ N
xN[n]—>XN(k)—>ﬁ|XN(k)| =P, (e/7™) (7.9)

er_x

Power Spectral Density Analysis 201

The periodogram has a convenient interpretation in terms of parallel filter
banks. It is as though there are N bandpass filters in parallel as defined by
Equations 7.10 and 7.11.

. L 6 0<n<N
hl.[n]=ief"9in[n]= ST (7.10)
N 0 otherwise
PN = Zin _i6-6.)(N-1y/2 SIN|N(6—6,)/2
Hi(ejg)= 3 hy[nle™ 0 — pJ(0-0)N 1)/2M (7.11)

n=0 Nsin(6-6;)/2

One single ith bandpass filter centred at frequency &, with a bandwidth of
A@=2x/ N is illustrated in Figure 7.1.

/N
H,(j6)|

i
|
|
—| |&— AH:% |
|
|
|
|

|

|
V.4 2 6

0 o,

1

Figure 7.1. Magnitude of one Bandpass filter in the Periodogram’s Filter Bank

If the wide-sense stationary process x[n] is filtered with the bandpass filter 4; the
filter output is defined by Equation 7.12.

Vilnl= x[nl#hinl == 3 x[kle/04 (7.12)

k=n—N+1

However, this filter introduces a small leakage error because it accumulates small
amounts of energy from overlap with other filter frequency band tails. The

magnitude of the filter at 8, is equal to unity, i.e., ‘H ; (e’ 6)‘0 5 1, therefore the

power spectrums of signals x[r] and y[n] are equal at &,. Also, since the bandwidth

of each filter is narrow the power spectrum of x[n] may be assumed to be
approximately constant over the passband of the filter. The periodogram, defined
by Equation 7.13, can therefore be viewed as the estimate of the power spectrum
that is formed by using a parallel filter bank of these filters, and being derived from
a one point sample average of the power in the filtered process y;[n].

NI 2

> x[k]e ko
k=0

~

7 1
P, (%) =N|yIN-1] = (7.13)

For the periodogram to be a consistent estimate of the power spectrum it is
necessary that it be mean square convergent as defined by Equation 7.14.

202 Principles of Adaptive Filters and Self-learning Systems

6 6
Jim = E{[er_x (') =Py (e)] } 0 (7.14)
To be mean square convergent it must be asymptotically unbiased as defined by
Equation 7.15 and have a variance that goes to zero as N goes to infinity, as defined
by Equation 7.16.

lim = E(F,,, (")} =P, (") (7.15)
lim =Var(F,,_.(e'")}=0 (7.16)

Unfortunately, it turns out that the periodogram is not a consistent estimate of the
power spectrum because, although it is asymptotically unbiased, the variance does
not go to zero as the record length increases to infinity. The variance depends on
the process, but for white Gaussian noise it is proportional to the square of the

power spectrum, i.e., Var{P per_x (€ je)}:PXZ(ejg), and it therefore does not

decrease as the amount of the data increases.

A summary of the properties of the periodogram is as follows,

2

N-1 .
z x[n]e—]nﬂ

n=0

. 1
Spectral Estimate: P,,, (e’ 0y =—

Bias: E(P,, (e "’)}— P (/%) xWy(e’?)

where:
Wp (ejw)is the frequency response of the Bartlett

(triangular) window wp[k].

o
Ikl
walk]= N A
0, k| >N

. 27
Resolution: AG=089—
N

Variance: Var{P er (€ e’y = P2 (e’?)

Power Spectral Density Analysis 203

7.2.2 Modified Periodogram - Data Windowing

The periodogram is proportional to the squared magnitude of the Fourier transform
of the rectangular windowed signal x [n] = w,[n]x[n] as defined by Equation 7.17.

2

. A 1 2 1] e .
6y VN —jné 7.17

P 1 (e77) N‘XN(E)‘ N > x[nlwg[nle (7.17)

k=—oco

Since the rectangular window has relatively high side lobes they contribute to the
leakage error and this limits the dynamic range of the power spectral estimate by
masking weak spectral components. This problem can be alleviated by replacing
the rectangular window with other windows having better leakage characteristics.
Ideally a window spectrum should approximate an impulse function. The window’s
main lobe should be as narrow as possible and the maximum sidelobe should be as
small as possible relative to the main lobe. The problem is that in practice these
cannot be optimised simultaneously. A reduction in sidelobes results in a
broadening of the window’s mainlobe in the frequency domain and vice versa. The
mainlobe is directly related to the filter bank bandwidth, which therefore affects the
frequency resolution.

There are many different types of suitable windows. Some common ones
expressed in a form compatible with the present windowing requirements for
spectral estimation based on sample sequence lengths of N are,

Hamming : w[n] = 0.54—0.46cos(zn/N)
Hanning : w[n]=0.50-0.50 cos(7rn / N)
Blackman: w[n]=0.42-0.50cos(zn/N)+0.08cos(2zn/N)
where :
N is the sample sequence length.

w[n] =0 outside of the sequence length internal [0, N -1].
Two of the most often used windows for PSD estimation are,

N =

Bartlett: w[n]=

=)
Welch: win]=| ———
N

The Bartett window is easy to implement but the Welch window is recommended
for PSD estimation because it produces one of the best periodogram based
methods.

The modified periodogram is the periodogram of a process that is windowed
using an arbitrary window w[n] as defined by Equation 7.18.

204 Principles of Adaptive Filters and Self-learning Systems

2

=

f’M (e’ = ﬁ Zx[n]w[n]e_jng

(7.18)
k=—co
where:
N is the length of the window.
U is a constant chosen to make f’M (e’?) asymptotically unbiased.
The constant U is defined by Equation 7.19.
1 X 2
U=—>|nin] (7.19)
N n=0

The variance of f’M (e’?) s approximately the same as that for the
periodogram, i.e., Var{f’M (e-ig)}szz(e-ig). Although the window provides no

benefit in respect to variance reduction it does provide a trade-off between spectral
resolution (mainlobe width) and spectral masking (sidelobe amplitude). The

spectral resolution of f’M (e-i ‘9) is defined to be the 3 dB bandwidth of the window,

i.e., Resolution [13M (e-i ‘9)] = (A0)3 4p - Table 7.1 compares the side-lobe levels and
resolutions for a number of common windows.

Table 7.1
Window Side-lobe Level (dB) 3dB BW (A0)3dB
Rectangular -13 0.89 (271'/N)
Bartlett =27 1.28 (271-/1\/)
Hanning -32 1.44 (271'/N)
Hamming -43 1.30 (2”/1\/)
Blackman -58 1.68 (2”/1\/)
A summary of the properties of the modified periodogram is as follows,
R A 1 | = 2 1 N= 2
Spectral Estimate: Py, (e’?)=——| S winlx[nle | , U =— l‘w[n]
P (=N, 2 v
Bias: E(By (7)) = —— P (%) W(ef""’)‘2
' M 2ZNU
Resolution: Window dependent.

Variance: Var{ﬁM (eje)} = sz (eje)

Power Spectral Density Analysis 205

7.2.3 Bartlett’s Method - Periodogram Averaging

Bartlett’s method of spectral estimation involves periodogram averaging which,
unlike the periodogram on its own, produces a consistent power spectrum. The
periodogram is asymptotically unbiased so the expected value of the periodogram

converges to P, (e’?) as the data record of length N goes to infinity. A consistent

estimate of the mean E{ (e’?)} can be found by averaging periodograms

per_x

since each periodogram is uncorrelated with the others. Let x;[n] for i = 1,2,...., K,
be K uncorrelated records of a random process x[n] over the interval 0<n < L. If
the periodogram of x;[n] is defined by Equation 7.20 then the average of K
periodograms is defined by Equation 7.21.

2
A 6\ _
Pl (/)=) Zx[n]e (7.20)
N K ; 9
Pper X Z per _ X(j (721)

Since the data records are uncorrelated the variance can be defined by Equation
7.22 as simply the average of the K periodogram variances.

. 1 ", . 1 .

Var(P,,, (e = VartF (€)== P2 (7.22)
Clearly, the variance goes to zero as K — oo, therefore it can be said that
ﬁperix(ejg) is a consistent estimate of the power spectrum as K and L go to

infinity. Since in practice there is only a single record of length N Bartlett proposed
that x[n] be partitioned into K nonoverlapping subsequences of length L where N =
KL (Refer to Figure 7.2). The Bartlett power spectral density estimate is therefore
defined by Equation 7.23.

K-1{L-1 R
S dn+iLlw[nle™"? (7.23)

ey =L
B Nl= n=0

(=]

]
| |
2L 3L 4L =N

=]
~—1

K =4, and N =4L

Figure 7.2. Nonoverlapping Subsequences

A summary of the properties of Bartlett’s method is as follows,

206 Principles of Adaptive Filters and Self-learning Systems

R SIS no
Spectral Estimate: Py (e’)_N > Zx[n+zL winle”
Bias: E{PB(M)}_ e P.(e/%)xWy(e'?)
. 27
Resolution: AG=0.89K—
N
Variance: Var{PB(eja)}~ KP))

7.2.4 Welch’s Method

Welch’s contribution to the problem is two fold. Firstly, he proposed that the
subsequences in the Bartlett method be overlapped and secondly he suggested that
a data window be applied to each sequence. In effect, this is averaging of
overlapping modified periodograms. If the successive sequences of length L are
offset by D points then the ith subsequence is defined by Equation 7.24.

x;[n]=x[n+iD], n=0,1L-1 (7.24)

The amount of overlap between successive sequences is L — D points. If K
sequences cover all the N data points then N = L + (K — 1) D. Refer to Figure 7.3
for an example of K = 8§..

8

0 D L 2L 3L 4L N=L+TD
K=8

Figure 7.3. Overlapping Subsequences

An important case is when there is a 50% overlap, i.e., D = L/2. In this case K =
2(N/L) — 1 sections of length L. This maintains the same resolution as Bartlett’s
method while doubling the number of averaged modified periodograms, and
thereby reducing the variance. With a 50% overlap it is also possible to form K =
(N/L) — 1 subsequences of length 2L. This increases the resolution while

Power Spectral Density Analysis 207

maintaining the same variance as Bartlett’s method. By allowing the subsequences
to overlap it is possible to increase the number and/or length of the sequences that
are averaged. However, this does trade a reduction in variance for a reduction in
resolution.

Welch’s method may be written in two ways as defined by Equation 7.25.

2

A 1 K-l|L-1 o
Py (e’”y=——3"|> x[n+iD]w[nle”"
KLU i |n=0

(7.25)

1 Kb,
=EZ(:)PM(6“9)

It follows that the expected value of Welch’s estimate is defined by Equation 7.26.

E{By (7)) = EBy () =o—— Py s Wy e (7.26)

2 LU

The variance is more difficult to compute because the overlapping subsequences
cannot be assumed to be uncorrelated. It has been shown that with a Bartlett
window and 50% overlap the variance is approximately as defined by Equation
7.27.

Var(By (e7)) = —P2(e) (7.27)
8K
Although the variance according to Welch’s method is 9/8 times larger than for
Bartlett’s method, for a fixed amount of data N and a given resolution (sequence
length L), twice as many sections may be averaged with a 50% overlap. The
variance for Welch’s method is therefore approximately 9/16 times lower than for
Bartlett’s method.

A summary of the properties of Welch’s method is as follows,

Ay ey =SS st s it |
e = X|n—+1 winile
v KLU 2o |n=0

Spectral Estimate:

_lL—l b
U= . §)|w[n]|

Bias: E(Py (/%)) = Px(ejg)*‘WB(ejg)‘z

2r LU

Resolution: Window dependent.

208 Principles of Adaptive Filters and Self-learning Systems

n 9L .
Variance: Var{P, (e/%)} =~ == P*(e'?),
{By (")} 16N e (e’”)

assuming a Bartlett window and 50% overlap.

7.2.5 Blackman-Tukey Method

The Blackman-Tukey method of spectral estimation reduces the statistical
variability of the periodogram by smoothing. This is done by applying a window to
the autocorrelation estimate 7, (k) to reduce the error variance caused by having a
finite data record. The variance of the autocorrelation estimate is greatest close to
the ends so the window serves to reduce this effect by tapering the values close to
the ends. The Blackman-Tukey power spectrum estimate is defined by Equation
7.28.

M .
> 7 (kywlkle e,
-—M (7.28)

for window extending — M to M, where |M | <N-1

Py (e7?) =
k

For M < N and a rectangular window the power spectrum will have a smaller
variance but at the expense of resolution since a smaller number of autocorrelation
estimates are used. The Blackman-Tukey estimate smooths the periodogram by

convolving with the Fourier transform of the autocorrelation window W(ej ‘9), i.e.,

f’BT (e-’ﬂ) = %f’ (e-“g) *W(e ja) . To ensure that f’BT (e-’ﬂ) is guaranteed to be
v4

per_x

nonnegative W(e’?) must also be nonnegative and real-valued, which therefore

requires w[k] to be conjugate symmetric.

A summary of the properties of the Blackman-Tukey method is as follows,

~) M X
Spectral Estimate: Py, (e’?)= Y7 (k)wlk]*?
k=—M

. R , 1 ‘ ‘
Bias: E{PBT(ejg)}z—Px(eje)*W(eje)
27
Resolution: Window dependent.
. 5 o NN
Variance: Var{Pgr(e’”)} = P (e’7)— Y w[k]
N ="m

Power Spectral Density Analysis 209

7.2.6 Performance Comparisons of Nonparametric Methods

In each nonparametric method there is trade-off between variance and resolution.
The methods can therefore be compared by looking at their normalised variance v
and figure of merit ¢ computed as the product of the normalised variance and the
resolution, i.e., 4 = vA460. The figure of merit for each is approximately similar and
it is inversely proportional to the length of the sequence N. It is clear that the
performance of the nonparametric methods is limited by the availability of data.
Table 7.2 shows the comparisons amongst the four nonparametric methods
described in the preceding Sections.

Table 7.2
Method Normalised Resolution A Figure of Merit
Variance v M= VAO

Periodogram 1 0.89 (277/N) 0.89 (27/N)
Bartlett 1K 0.89K (27/N) 0.89 (27/N)
Welch 9/(8K) 1.28K (27/L) 0.72 (27z/N)
Blackman- 2MI(3N) 0.64K (27;/M) 0.43 (27[/N)
Tukey

7.2.7 Minimum Variance Method

In the Minimum Variance method of spectral estimation the power spectrum is
estimated by filtering the process with a bank of narrowband bandpass filters. If
x[n] is taken to be zero mean wide-sense stationary having a power spectrum of

Px(ej YY) this signal can be filtered with a bank of ideal bandpass filters /,[n] where
the filters are defined by Equation 7.29.

e |1 le-6]<a/2
‘Hl(e)‘ {O, otherwise (7.29)

. : 12
The power spectrum of the filtered signal y,[n] is Py,- (ef‘9) = Px(ej‘g)‘H ,-(ej'g)‘ .
The power in this output y;[n] is computed by Equation 7.30.
P 1 +7 . 1 +7 . . 2
Elly, 0]’} == [P(e’)d6=— IPx(ejg)‘Hi(ejg)‘ e
27 2z
1 6,+A/2)
- I Px(e'lg)de (7.30)

27 6 ap

0. A
~ P.(e’%)—, if Aissmall enough.
x T g

210 Principles of Adaptive Filters and Self-learning Systems

Since ideal bandpass filters cannot be designed it is necessary to try to design an
optimum bandpass filter for each bank that will reject as much of the out of band
signal power as possible. The minimum variance technique is based on this
approach and involves the following three steps,

1. Design a bank of filters A,[n] centred at &; such that each filter passes the
signal component at &, with no distortion and rejects the maximum amount
of out of band signal power.

2. Filter the signal x[n] with each filter in the bank and estimate the amount
of power passing through each bank.

3. Set the estimate of the power spectrum of x[n], f’x(ej bi), to be equal to
the power estimate in Step 2 and divide it by the filter bandwidth.

For Step 1 a complex valued linear phase FIR bandpass filter design is chosen,
centred at frequency €. and having a unity gain at &, as defined by Equation 7.31.

H.(e/?) = ih[n]e‘f""f =1 (7.31)
n=0

If vectors h; and e; are designed to represent the filter coefficients and complex

exponentials e Ik0i respectively then they are defined as follows,

h, = [, [01, 4,111, 2 [2]...... b 1],
and,

e. :I:I /0 20 equq]T
;= [Le’™, yeenes
Equation 7.31 can now be written more compactly in vector form as defined by
Equation 7.32.
hi'e; =e/'h, =1 (1.32)

The power in the filter output y,[n] can be expressed in the terms of the
autocorrelation matrix R, as defined by Equation 7.33.

E{ly;[n]’} =h!R h, (7.33)

Now, the filter design problem becomes one of minimising Equation 7.33 subject to
the linear constraint defined by Equation 7.32. The solution to this is the required
optimum filter as defined by Equation 7.34.

-1
Rx ei
el/Re.

i X i

h. =

l

(7.34)

Power Spectral Density Analysis 211

The minimum value of E{| yi[n]|2} that gives the power in y,[n] is used as the

power estimate OA'f (6;) and is defined by Equation 7.35.

1

= 7.35
ef’R;lei ()

63(6,)=min E{y;[n]’} =

Although these equations were derived for a specific frequency &, they are valid
for all frequencies since the originally chosen frequency was arbitrary. Therefore,
the optimum filter h for estimating the power in x[n] at frequency € and the power

estimate 6‘5 (6) are defined by Equations 7.36 and 7.37 respectively.

R_l
h=—s (7.36)
e’'Rie
6.(6)= Hl 1 (1.37)
.

where:

e= [l,ejg,ejz'g,....,e”'g]r

The next thing to do is to estimate the power spectrum by dividing the power
estimate by the bandwidth of the bandpass filter. The bandwidth A is defined as the
value that produces the correct power spectral density for white noise. The

minimum variance of the power in white noise is E{|y,-[n]|2}=6f (g+1).

Therefore, from Equation 7.30 the power spectral estimate can be defined by
Equation 7.38.

E{|y;(n) _ o 2 (7.38)

P(e’®) =
Al2r (g+D) A

From this, it is evident that A = 27[/ (g+1) because that makes ﬁ’x (ej o)= O'f, as
required. Therefore the general minimum variance power spectrum estimate

ﬁMV (e’?) becomes as defined by Equation 7.39.

S ; +1
By (%) =quTje (7.39)
The minimum variance method requires the inversion of the autocorrelation matrix
R,. Since R, is Toeplitz the inversion may be easily found using either the
Levinson recursion or the Cholesky decomposition.
The last remaining issue is to decide what the FIR filter order ¢ should be. In
theory the higher order the better but in practice the order must be ¢ < N , where N

212 Principles of Adaptive Filters and Self-learning Systems

is the data record length. For a fixed data record the autocorrelation matrix must be
estimated by computing r, (k) forlags k=0,1,...,N —1. Since the autocorrelation

estimates close to N have a large variance then ¢ has to be chosen to be much
smaller than N.

7.2.8 Maximum Entropy (All Poles) Method

One of the limitations with the classical approach to spectrum estimation is that the
autocorrelation sequence can only be estimated for lags |k| < N, where N is the

available data record length. There are many processes of interest, including
narrowband processes, that have autocorrelations that decay slowly with k.
Consequently, autocorrelation estimates of these types of processes will suffer if it

is necessary to set r,(k) =0, for |k| > N . What is needed is an effective method of
extrapolating the autocorrelation sequence for |k| > N . One way to achieve this

extrapolation is by the maximum entropy method.
Given the autocorrelation sequence r, (k) for a wide-sense stationary process

for lags |k| < p the problem is how to extrapolate the values of r (k) for lags

|k| > p . This modified power spectrum can be defined by Equation 7.40.

P.(e'%) = ﬁrx (K)e %0 + 3 r, (k)e /¢ (7.40)

k==p [k>p

where:
r,(k) are the extrapolated values of r, (k).

With the addition of the extrapolation the power spectrum IA’x(e-’ﬂ) must

correspond to a valid power spectrum that is real valued and nonnegative for all 6.
To achieve a unique extrapolation it is necessary to impose additional constraints.
Burg developed the maximum entropy method by imposing the constraint on the
extrapolation to be a maximum entropy (a measure of randomness) extrapolation.
This is equivalent to finding the sequence r,(k) that makes x[n] as white or as

random as possible and thus introduces the least amount of structure on x[#], i.e.,
f’x(ejg) is “as flat as possible.”

The entropy H(x) for a random Gaussian process with a power spectrum of
P, (e’?) is defined by Equation 7.41.

H(x) =L+f1n P.(e')d6 (7.41)
2

Given the autocorrelation sequence r,(k) for a wide-sense stationary random

Gaussian process for lags |k| < p the maximum entropy power spectrum is the one

Power Spectral Density Analysis 213

that maximises Equation 7.41 subject to the constraint that the inverse discrete-time
Fourier transform of P, (e’?) equals r.(k) for lags |k| < p as defined by Equation
7.42.

1 +7 . .
E [P(e’)e™do=r k), |K<p (7.42)
-

The values of r,(k) that maximise the entropy Equation 7.41 can be found by

differentiating H(x) with respect to r: (k) and setting it equal to zero as defined by
Equation 7.43.

+7 jé
OH) L1 _IRE") 4y
dr, (k) 27 7 P.(e’”) or, (k)
+7 ejkﬁ
=— ——d6=0, [k>p
ZE_”Px(gj)

(7.43)

Defining Q, (ej 9) = 1/ P, (ej 9) and substituting it into Equation 7.43 reveals that

the inverse discrete-time Fourier transform of Q, (ej ‘9) is a finite length sequence

that is equal to zero for |k| > p, as defined by Equation 7.44.

1 % .)
g,[k)=— [0,(e"")e’?de =0, |k|>p (7.44)
27,

Notice that Q, (e’?) can be defined by Equation 7.45 and that the maximum
entropy power spectrum estimate for a Gaussian process is an all-pole power
spectrum ﬁME (¢’?) defined by Equation 7.46.

. 1 .
0= = Tadkie (1.45)
x ==p
ﬁME (e?)= B 1
> g, [kle ¢ (7.40)

k=—p

Equation 7.46 can be re-expressed as Equation 7.47 by using the spectral
factorisation theorem.

N R
P (€)= A’ A () 27

|2

2 b
k

k=1

214 Principles of Adaptive Filters and Self-learning Systems

where:
e= [l,ejg,..,e”’g}r

a= [l,ao,..,ap]T

The required coefficients b, and a; must be chosen in such a way that the inverse
discrete-time Fourier transform of ﬁME (e'%) produces an autocorrelation
sequence that matches the given values for r.(k) for lags |k| <p. If the

coefficients a; are the solution to the autocorrelation normal Equations 7.48 re-
. 2 D * .
expressed as 7.49 and if €, :|b0| =r,(0)+ Y a,r, (k), then the autocorrelation
k=1

constraint set in Equation 7.42 will be satisfied.

@ @ @ . o | ! 1]
r.() 1. (0)) . or(p=-D|@ 0
re(2 r.(1 7. (0 . r(p=2) a2 |=€,|0
_rx(P) rx(p_l) Vx(p—Z) .. rx(o) __a[’_ _O_
Rpazé‘pul
i.e.,
a=¢,R ', (7.49)
Thus, the final Py (e/9) is defined by Equation 7.50.
N . £
jé~ _)4
PME(e)_‘ o ‘2 (750)
e a

where:
e= [1,6"0,..,6-"”9]T

a= [l,ao,..,ap]T

Since I3ME (ej 9) is an all-pole power spectrum, then r (k) satisfies the Yule-
Walker equations defined by Equation 7.51.

P
r.(m)y==>a,r.(k—m), for m>0 (7.51)
k=1

Consequently, the maximum entropy method extrapolates the autocorrelation
sequence according to the recursion defined by Equation 7.51.

Power Spectral Density Analysis 215

7.3 Parametric Spectral Density Estimation

Parametric spectral density methods potentially offer high-resolution with small
variance given shorter data records. However to achieve this it is necessary to have
some knowledge about the process that can be incorporated into the spectrum
estimation algorithm design. The knowledge may be some a priori knowledge
about the process or it may be knowledge of how it was generated or it may be
experimental knowledge indicating that a particular model works well for that type
of process. The most common types of models that are used include autoregressive,
moving average, autoregressive moving average and harmonic (complex
exponentials in noise) models. It is, however, important when choosing the model
that it is appropriate for the process, otherwise it could give very misleading results.
If the model is inappropriate it may well be the case that a nonparametric estimate
will be more accurate and correct.

The forms of the spectrums for autoregressive, moving average, and
autoregressive moving average processes are represented by Equations 7.52, 7.53
and 7.54 respectively.

2
P (eja) — |b0|
* p o 2 (7.52)
1+ ae™”’
k=1
q 2 q
P (e’ =Y be % = r (ke 't (7.53)
k=0 k=0

where:
Through the Yule-Walker equations,

q-=k N *
(k)= Y.by by k=0.1,...q,with, 7, (k) = r, (k),and r,(k) =0, for |k|>¢
m=0

. 2
—jk@

2 be

k=0

Px(eja) — 5 (7.54)

p .
1+ Y a e *?
k=1

7.3.1 Autoregressive Methods

The autoregressive power spectrum estimate of an autoregressive process
represented by an all-pole filter driven by unit variance white noise is defined by
Equation 7.55.

216 Principles of Adaptive Filters and Self-learning Systems

2

A

by

P, (/%)=

o bl (7.55)
1+ Y ae”’

k=1

Some autoregressive approaches to spectrum estimation include the Yule-Walker,
Covariance, Burg, and Least Squares approaches. Each one uses a different
technique to estimate the all-pole model parameters but once they are estimated the
power spectrum is generated in the same way.

7.3.1.1 Yule-Walker Approach
The Yule-Walker method is actually equivalent to the maximum entropy method
with the only difference being in the assumption made about the process x[z]. In the
Yule-Walker method it is assumed that the process is autoregressive, whereas in the
maximum entropy method the process is assume to be Gaussian.

In the autocorrelation method of all-pole modelling, the autoregressive

coefficient estimates a; and by are computed by solving the autocorrelation
normal Equations 7.56 and 7.57.

PO RO R . Egp] 1]
) 70 0D IR A 3 N 0
P2 R FO) . R(p-2)| 4 |=£,/0 (7.56)
A(p) F(p=D) RA(p-2) . A0 |a,| [0]
~ 12 P .
&, =by| =F.(0)+ X a7 (k) (7.57)
k=1

The biased autocorrelation estimate is computed by Equation 7.58.

. 1 N-l-k .
F(k)=— > xln+klx [k], k=0l..,p (7.58)
N =

The autocorrelation matrix is Toelplitz, therefore it is possible to solve these
equations efficiently by using the Levinson-Durbin recursion. When the
autoregressive coefficients, computed from the autocorrelation normal equations,
are incorporated into Equation 7.55 to estimate to the spectrum, this is called the
Yule-Walker method.

The autocorrelation method applies a rectangular window to the data in the
autocorrelation sequence estimation. For small data records this results in a lower
resolution spectrum estimate than provided by other approaches such as the
covariance and Burg methods. If the autocovariance method includes over
modelling, i.e., p is too large, the spectral line splitting artefact can occur. Spectral
line splitting is when a single spectral peak is modelled by two and distinct peaks.

Power Spectral Density Analysis 217

7.3.1.2 Covariance, Least Squares and Burg Methods
In the covariance method of all-pole modelling, the autoregressive coefficient
estimates @, are computed by solving Equations 7.59.

D A AGD . Apbal [AROD]
A2 P2 AB2 . F(p2)]|a 7.(0,2)
£.3) A3 F(GB3) 7o (p3) | s |=—{ 7.(0.3) (7.59)
_fx(Lp) ;x(zap) ;x(37p) . ;x(p7p)__aAP_ _;X(O’p)_
where:
A N-1 N
Fok,Dy= 3 xln—1x [n—k] (7.60)
n=p

Unlike the equations in the autocorrelation method these covariance Equations 7.59
and 7.60 are not Toeplitz. However, they do have the advantage that no windowing
is necessary to form the autocorrelation sequence estimate 7, (k,/). This means

that, for short data records the covariance method produces higher resolution
spectrum estimates than the autocorrelation method, but when N >>p the

differences are negligible.
The modified covariance method, also known as the forward-backward method and
the least squares method, is similar to the covariance method. The covariance
method finds the autoregressive model that minimises the sum of the squares of the
forward prediction error, whereas the modified covariance method finds the
autoregressive model that minimises the sum of the squares of both the forward and
backward prediction errors. In the modified covariance method the autocovariance
estimation Equation 7.60 is simply replaced by Equation 7.61.This autocorrelation
matrix is not Toeplitz either.
N-1 ; ;
Folk,m)y= Y [x[n—mlx [n—k]+x[n— p+mlx [n— p+k]] (7.61)
n=p

The modified covariance method gives statistically stable spectrum estimates
with high resolution. Due to additive noise the modified covariance method tends to
shift spectral peaks away from their true locations for sinusoids in white noise.
However, the shift appears to be less severe and less sensitive to phase than with
other autoregressive estimation methods. Also, the modified covariance method is
not subject to the spectral line splitting artefact of the autocovariance method.

The Burg algorithm, like the modified covariance method, finds a set of all-pole
model parameters that minimise the sum of the squares of the forward and
backward prediction errors. However, it is less accurate than the modified
covariance method because, for the sake of stability, it performs the minimisation
sequentially with respect to the reflection coefficients. The Burg algorithm is more
accurate than the autocorrelation method. However for sinusoids in white noise it

218 Principles of Adaptive Filters and Self-learning Systems

does suffer spectral line splitting and the peak locations are highly dependent on the
sinusoid phases.

7.3.1.3 Model Order Selection for the Autoregressive Methods

The selection of the model order p of an autoregressive process is very important to
the success of the method. If the order is too small the estimated spectrum will be
smoothed, resulting in poor resolution. If the order is too large the spectrum
estimate may include spurious peaks and may also lead to line splitting. It is
tempting to simply increase the order progressively until the modelling error is a
minimum. However, the model error is a monotonically nonincreasing function of
the model order so this will not be reliable. Still, it is possible to overcome this
problem by incorporating a penalty function that increases with the model order.

7.3.2 Moving Average Method

A moving average process is generated by filtering unit variance white noise w[n]
with a FIR filter as defined by Equation 7.62 having a power spectrum defined by
Equation 7.63.

q
xn]= D bwln—k] (7.62)
k=0
Because the autocorrelation sequence of a moving average process is of finite
length then the moving average spectrum estimate f’MA (e’?) may be conveniently
defined by Equation 7.63.

A 6y _ L. _jkeo
Pys(e?)= Y7 (k)e (7.63)
k=0
where:
7. (k) is a suitable estimate.

Equation 7.63 is equivalent to the Blackman-Tukey spectrum estimate using a
rectangular window. However the difference is that Equation 7.63 assumes that the
process actually is a moving average process of order ¢, in which case the true

autocorrelation is zero for |k| >g and f’MA (¢7?) is therefore unbiased.
Another approach to moving average spectrum estimation is to estimate the

parameters b, from x[n] and then substitute the estimates into Equation 7.53 as
defined by Equation 7.64.

. 2
N _jke

2.bie

k=0

Py (e’?) = (7.64)

Power Spectral Density Analysis 219

7.3.3 Autoregressive Moving Average Method

An autoregressive moving average process has a power spectrum defined by
Equation 7.54. The autoregressive parameters of the model may be estimated from
the modified Yule-Walker equations either directly or by using a least squares
approach. Then, the moving average parameters can be estimated using a moving
average modelling technique such as Durbin’s method.

7.3.4 Harmonic Methods

When the process can be modelled by a sum of complex exponentials represented
as the signal s[n] in white noise w[n] defined by Equation 7.65, then it is possible to
use harmonic methods of spectrum estimation that take this model into account.

sln) = slnl+ wlnl = 3 A +win] (7.65)
i=1

where:
A = |Ai|e”” ,i.e., complex.

¢ are uncorrelated random variables over [— T, 71'].

In this case the power spectrum of x[#n] is composed of a set of p impulses with area
271'|Ai| at frequencies 6;,fori=12,.., p plus the power spectrum of the white noise

w[n]. Consequently, it is possible to perform an eigendecomposition of the
autocorrelation matrix of x[x] into a sinusoidal signal subspace and noise subspace.
A frequency estimation function can then be used to estimate the frequencies from
the signal subspace.

7.3.4.1 Eigendecomposition of the Autocorrelation Matrix

A wide-sense stationary process consisting of p complex exponentials in white
noise is defined by Equation 7.65 and has a M X M autocorrelation sequence
defined by Equation 7.66.

D ke, 2
r.(k)=Y. Pe’" +0,0(k) (7.66)
i=1
where:

P = |Ai|2, o = variance of the white noise.
The autocorrelation matrix is defined by Equation 7.67.
P
R, =R, +R, =Y Pee +c.1=EPE” +5.1 (7.67)
i=l

where:

220 Principles of Adaptive Filters and Self-learning Systems

e = [l,ejgf ,ejwf ,..,ej(M_l)a"]T, i=12,.,p.
E=[e1,..,ep], M X p matrix.

P =diag{R....P,}, pX pdiagonal matrix.

2

w?

The eigenvalues of R are A, =4 + 0, , where 4; are the eigenvalues of R_. R,

is a matrix of rank p, therefore the first p eigenvalues of R will be greater than

2

., and the last M-p eigenvalues will be equal to O'v%. Consequently, the

o
eigenvalues and eigenvectors of R, may be divided into two groups, the signal

eigenvectors v,,..,v, that have eigenvalues greater than o;zv and the noise

p
eigenvectors v v,, that have eigenvalues equal to o>. If the eigenvectors
g pHlo Y M g q w* g

have been normalised the spectral theorem can be used to decompose R, according
to Equation 7.68.

P M
R, =R, +R, =Y (L +o2)v,vi + YolvvH
i=1 i=p+l (7.68)
=V, Viiv, VH

ww T w

where:
V; =[vy,..,v,], M X p matrix.

Vo =lVioVyl, M X(M —p)matrix.
V,, =diag{(4} +0})....(4, +0,)}, p X p matrix.

Vi =diag{0'2 O'i},(M -p)X (M —p)matrix.

Wi

The signal and white noise spaces are orthogonal as defined by Equation 7.69.

e’v, =0, i=1.,p,and k=p+1,..M (7.69)
Therefore, the frequencies can be estimated using various techniques based on the
frequency estimation function defined by Equation 7.70.

n 1

P(e?) =

M 2
3 ai‘eHVi‘ (7.70)

i=p+l1
where:

«; are appropriately chosen constants.

Two methods that use Equation 7.70 are the Pisarenko Harmonic Decomposition
(PHD) and the Multiple SIgnal Classification (MUSIC) methods.

Power Spectral Density Analysis 221

7.3.4.1.1 Pisarenko’s Method

Pisarenko’s method is mainly of theoretical interest only because it is sensitive to
noise. This method assumes that the number of complex exponentials p is known
and that p+1 values of the autocorrelation sequence are either known or have been
estimated. For a (p+1) X (p+1) autocorrelation matrix the dimension of the white
noise subspace is one and is spanned by the eigenvector v;, corresponding to the

minimum eigenvalue, A, = va . The eigenvector v, is orthogonal to each of

the signal vectors e; as defined by Equation 7.71.

)4 .
' Vi = YV [Kle % =0, i=1.,p (7.71)
k=0

A P .
Therefore V (e'?) = D Vinin [kle™*® is equal to zero at each of the p complex
k=0

frequencies. This means that the z-Transform of the white noise eigenvector (the
eigenfilter), Equation 7.72, has p zeros on the unit circle from which the complex
exponentials can be extracted.

Vo (@)= Sy [kl = rp[(1—ef"kz“) (7.72)
k=0 k=1

The frequency estimation function is defined by Equation 7.73.

1

P (7.73)

N 9
Ppyp(e’”) =
e

Equation 7.73 is called a pseudospectrum since it does not contain any information
about the power in the complex exponentials nor a component due to noise. To
complete the power spectrum estimation it is necessary to find the powers P; from
the eigenvalues of R,. The signal subspace vi,..,v p vectors have been normalised,

therefore V,-H v, =1 and eigenvalues are defined by Equation 7.74.
R,v,=4v,,i=12.,p (7.74)
Multiplying on the left of Equation 7.74 with le gives Equation 7.75.

VIR v, =Avv, =4, i=12,.p

1

Substituting the expression for R, defined in Equation 7.67 into Equation 7.75
results in Equation 7.76.

222 Principles of Adaptive Filters and Self-learning Systems

P

ViR, v, = v,.H{ZPkekef +a§1}vi =4, i=12,.p,ie.,
k=1

(7.76)

P 2

H 2 .
Y Pleflv| =4-0l, i=12..p
k=1

where:

2 . 2
‘elljvi‘ :‘Vi(ejﬁk)

Vi) = $v,[mle

m=0

Equation 7.76 can be redefined as Equation 7.77, which is a set of p linear
equations in p unknowns P,. This can then be solved for the required powers P;.

d ITNE 2.
ZPk“/i(e k)‘ =4 -0, i=12..p (1.77)
k=1

7.3.4.1.2 MUSIC

MUSIC is an improvement to the Pisarenko Harmonic Decomposition. The
autocorrelation matrix R, is a M X M matrix of x[n] with M > p+1. If the
eigenvalues of R are arranged in decreasing order, 4, 24, > 4; 2...2 4, , their

corresponding eigenvectors, V;,V,,Vs,..,V,, , can be divided into two groups, the
p signal eigenvectors and the M-p white noise eigenvectors. The white noise
eigenvalues will only be approximately equal to o%v if an inexact autocorrelation is

used. Since the smallest M — p eigenvalues should all be the same it is possible to
derive a better estimate for them by taking the average of these smallest M — p
eigenvalues.

To estimate the frequencies of the complex exponentials is a little more
involved. The eigenvectors of R have a length of M and the white noise subspace
eigenfilters defined by Equation 7.78 will therefore have M — 1 roots (zeros).

M-1
V)= Y vlklz ¥, i=p+l..M (7.78)
k=0

Ideally only p of these roots would be expected to lie on the unit circle at the
frequencies of the complex exponentials. The eigenspectrum is defined by Equation
7.79 and it will exhibit sharp peaks at the p frequencies of the complex
exponentials.

“/i(eja)‘z ot : 2

>, [k]e ¢

k=0

(7.79)

Power Spectral Density Analysis 223

The remaining M — p — 1 zeros may lie anywhere including close to the unit circle,
which would give rise to spurious peaks. In the MUSIC algorithm the effects of
these spurious peaks are reduced by averaging, using the frequency estimation
function defined by Equation 7.80.

A A 1
6
Pyysic(e””) = I

)

i=p+l1

2
ey ‘ (7.80)

The frequencies of the complex exponentials are taken as the locations of the p
largest peaks in Equation 7.80. Once the peaks have been found the energy in each
peak is found by solving Equation 7.77 as before.

7.4 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

7.4.1 Problems

7.1. What are the two main approaches to spectral estimation and in what way
do they differ?

7.2. What is the power spectrum of white noise having a variance of O.)ZC ?

7.3. Assume that a random process can be described by two equal amplitude
sinusoids in unit random variance white noise as defined by the following
equation,

x[n] = Asin(n, + @)+ Asin(n8, + @,) +v[n]

Also assume that A@ = |61 —02| =0.027 radians and F; = 1000 Hz. What

is the minimum value of data length N such that the two sinusoids can be
resolved via the nonparametric periodogram spectral estimation method?
Compute the frequency resolution for this problem?

7.4. Does the variance of the periodogram spectral estimate of white noise
reduce as the data length N increases?

7.5. For a total data length N what can you say about the relationship between
the resolution and variance as function of K, the number of
nonoverlapping data sections, for Bartlett’s spectral estimation method?

224 Principles of Adaptive Filters and Self-learning Systems

7.6.

7.7.

7.8.

7.9.

By looking at the performance comparisons of the various nonparametric
spectral estimation methods what general conclusions can be drawn?

Compute the optimum filter for estimating the Minimum Variance (MV)

power spectrum of white noise having a variance of O'f .

Compute the MV spectral estimate of a random phase complex
exponential process in white noise, defined by,

x[n] =|A1|ej¢ej'“91 +wn]
where :

¢1is a random variable uniformly distributed over [— T, 71'1

w[n] has a variance of O'&,.

Use Woodbury’s identity to find the required inverse of the
autocorrelation matrix.

Compute the gth order Maximum Entropy (ME) spectral estimate for
Problem 7.8.

PART IV. ADAPTIVE FILTER THEORY

The optimum Wiener solution for an adaptive FIR filter is represented by the
Wiener-Hopf solution. This solution is strictly only applicable for stationary
processes and it requires knowledge of the input autocorrelation matrix and the
crosscorrelation between the input and desired response. In real applications the
processes are more likely to be nonstationary and it may therefore not be possible
to know the autocorrelation and crosscorrelation functions explicitly. Since the
Wiener-Hopf solution is not practicable in many situations other solution methods
must be used for adaptive filters. One of those methods is the iterative method
called the method of steepest gradient descent (Principe et al 2000). A most
popular one is the Least Mean Squares (LMS) algorithm which is actually a robust
simplification of the steepest gradient descent method. It is also possible to solve
the adaptive FIR filter problem using Recursive Least Squares (RLS) estimation,
which is a special case of the Kalman filter. An adaptive linear shift-invariant filter
model can be usefully viewed as a dynamical system that continually tries to
converge to the Wiener solution as data flows through it.

The FIR or transversal filter structure is a good one to use for adaptive filters
for a number of reasons. Firstly, the mean square error for this filter is a quadratic
function of the tap-weights. This means that the error surface is a paraboloid, which
has a single minimum that is easy to find. Secondly, the transversal filter is
guaranteed to be stable. Adaptive Infinite Impulse Response (IIR) filters can often
provide better performance for a given filter order. However, they have potential
instability problems that may affect both the convergence time as well as the
general numerical sensitivity of the filter. Despite their problems there are many
applications where adaptive IIR filters may nevertheless be preferred, for example
in echo cancellation, where the IIR filter structure offers the best system model.

FIR filters have the drawback that they often require many, perhaps thousands,
of filter coefficients (tap-weights) to achieve desired levels of performance in real
applications. One method of reducing the large amounts of computation required
for these types of adaptive systems is to perform the computations in the frequency
domain. Here, a block updating strategy is introduced where the filter coefficients
are updated every so many samples and Fast Fourier Transform (FFT) routines are
used to reduce the amount of computation required to implement convolutions and
correlations.

Many adaptive engineering problems are inherently nonlinear and therefore are
better addressed by nonlinear solutions. One approach is to use adaptive

226 Principles of Adaptive Filters and Self-learning Systems

polynomial filters like the adaptive Volterra filters, which are a generalisation of
adaptive linear FIR filters. The Volterra filter is a nonlinear filter but it depends
linearly on the coefficients of the filter itself, and its behaviour can be described in
the frequency domain by means of a type of multi-dimensional convolution.
Because of this linear coefficient dependence “optimum linear filter theory” can be
easily extended to “optimum nonlinear Volterra filter theory.”

Theoretical approaches related to adaptive filters are also relevant to adaptive
control systems as they incorporate many of the same ideas. The main difference
between the two is mostly a matter of configuration and application rather than
underlying theory and principles of operation. Adaptive control systems and
adaptive filters are usually treated as separate fields so a review of adaptive control
principles is provided to show some of the connections and similarities between
them.

From a pragmatic view point adaptive control can be seen as a special type of
nonlinear feedback control in which the states of the process are separated into two
categories related to the rate of change involved. In this view the slowly changing
states are seen as the parameters and the fast ones are the ordinary feedback states.
The two main methods for adaptive control are the direct and indirect methods
depending on how the parameters are adjusted. The direct methods have adjustment
rules which tell how the regulator parameters should be updated. Indirect methods
on the other hand update the process parameters and then the regulator parameters
are obtained from the solution of a design problem. One most important direct
method is the Model-Reference Adaptive System (MRAS) and one important
indirect method is the Self-Tuning Regulator (STR). Although different in detail
these two methods are nevertheless closely related in principle.

8. Adaptive Finite Impulse Response Filters

Adaptive signal processing has undergone a large increase in interest, especially
over more recent years, due mainly to the advancing developments in VLSI circuit
design. These advances have allowed for much faster real-time digital signal
processing. Seismic signals (102 Hz), speech and acoustic signals (102 - 105 Hz)
and electromagnetic signals (at 10° Hz and above) are now all reasonable
candidates for real-time adaptive signal processing. Adaptive signal processing
systems are mainly time-varying digital systems. The adaptive notion derives from
the desire to emulate living systems, which adapt to their changing environments.
Adaptive signal processing has its roots in adaptive control and the mathematics of
iterative processes. Early developments in adaptive control occurred in the 1940s
and 1950s. More recently the work of Bernard Widrow and his colleagues
beginning around 1960 has given us the most popular adaptive algorithm called the
Widrow-Hoff LMS algorithm (Widrow and Hoff 1960, Widrow and Sterns 1985,
Widrow et al 1975, Widrow and Winter 1988), most commonly applied to the
Adaptive Linear Combiner (ALC) structure.

ylk] Discrete Output Signal

Adaptive Weights w;

o060 W”DZ

Unit Delays in Delay Line

Akl —> — <
Discrete o0
Signal Input
Sequence | Adaptation Algorithm

_ T

Figure 8.1. Adaptive Linear Combiner

Error between desired and actual output

The ALC as shown in Figure 8.1 is also known by the following names,

1. ADALINE - with the addition of a threshold element on the output.

228 Principles of Adaptive Filters and Self-learning Systems

2. Adaptive transversal filter.
3. Adaptive Finite Impulse Response (FIR) filter.

Adaptive linear filters are useful in situations where the measured input
conditions are uncertain, or where they change with time. Under these
circumstances the system achieves good performance by altering the filter
parameters (coefficients or tap-weights) {wj}based on real valued input data {x[k]}
or the estimated statistical properties of the data. A system that searches for
improved performance guided by a computational algorithm for adjustment of the
parameters or weights is called an adaptive system, which by nature is therefore
time-varying. An adaptive process can be open-loop or closed-loop as defined
below,

1. An open-loop process first makes measurements on the input data, learns
the statistics of the data, and then applies this knowledge to solve for {wj}
to optimise performance.

2. A closed-loop operates in an iterative manner and updates w; with the
arrival of new data and current signal processor performance feedback.
The optimum set of values of {wj} is approached sequentially.

The ALC shown in Figure 8.1 is a closed-loop process, which is a simple, robust,
and commonly used adaptive filter structure that is typically adapted by the LMS
algorithm. The FIR filter structure realises only zeros whereas other structures
realise both poles and zeros. The more complex filters based on lattice structures
can achieve more rapid convergence under certain conditions, but at the expense of
longer processing time. However these types of lattice filters can also suffer
instability and may not be very robust under certain conditions.

Adaptive interference cancelling is a classical application of adaptive filters that
can be used as a convenient example to demonstrate the important features of
adaptive FIR filters and to show the development of the associated LMS adaptation
algorithm. Interference or noise cancelling is commonly used in applications where
there is a broadband signal corrupted by some periodic inband noise, e.g., speech
communication with background engine noise or a medical signal corrupted by
mains hum.

8.1 Adaptive Interference Cancelling

Separating a real valued signal from additive real valued noise is a common
problem in signal processing. Figure 8.2 shows a classical approach to this problem
using optimum filtering. The optimum filter tries to pass the discrete signal s[k]
without distortion while trying to stop the noise n[k]. In general this cannot be done
perfectly. Even the best filter distorts the signal somewhat, and some noise still gets
through.

Adaptive Finite Impulse Response Filters 229

Signal + Noise

sTk]+ n[k] ylk]=3[k]

Optimum Filter %

Figure 8.2. Optimum Noise Filter

Desired Signal + Noise
d[k]= s[k]+n[k] v elk]=d[k] - ylk] = §[k]

’\ N Error
ylkl=nlk]
k) ——y AL
Correlated with n[k]
After convergence elk] = d[k]— y[k] = s[k]+n[k]—nlk] = 5[k]

Figure 8.3. Adaptive Noise Cancelling System

Figure 8.3 shows the adaptive filter solution, which is viable when there is an
additional reference noise input x[k] available that is correlated with the original
corrupting noise n[k]. The filter filters the reference noise x[k] and produces an
estimate of the actual noise n[k] (y[k] = n[k]) and subtracts it from the primary
input s[k] + n[k] to compute an estimate of the signal s[k]. Here the signal d[k] =
s[k] + n[k] acts as the desired response and the system output e[k] acts as the error
for the adaptive filter algorithm. When the adaptive filter converges the error e[k]
becomes the estimate of the signal S[k]. Adaptive noise cancelling generally
performs much better than the classical filtering approach since the noise is
subtracted rather than filtered as such. Furthermore, little or no prior knowledge of
s[k], n[k] and x[k] or their interrelationship is needed.

In order to show how the adaptive noise canceller works the assumptions must
be made that s[k], n[k], x[k] and y[k] are statistically stationary and have zero
means; that s[k] is uncorrelated with n[k] and x[k], and that x[k] is correlated with
n[k]. In this case, dropping the time index k, the output is defined by Equation 8.1.

e=s+n-y (8.1)

The power or energy of this signal is computed by squaring it as defined by
Equation 8.2.

=52+ m-y2+2smn-y) (8.2)

Taking expectations of both sides results in the reduction defined by Equation 8.3.

230 Principles of Adaptive Filters and Self-learning Systems

E{e’} = E{s*}+ E{(n—y)*}+2E{s(n- y))
={s>}+E{(n—y)*}

(Note: the expectation of a signal squared is the same as the variance for a zero
mean signal)

(8.3)

Adapting the filter to minimise the error energy E{e?} will not affect the signal
energy E{s2} therefore the minimum error energy is defined by Equation 8.4.

Epinte’}= E{s*}+ Epu {(n—)%} (8.4)

The signal y consequently becomes the best least squares estimate of the primary
noise n. Ef{(e — s)?} is also minimised since, (¢ — s) = (n — y). Therefore,
minimising the total output energy is the same as minimising the noise energy.

8.2 Least Mean Squares Adaptation

The adaptive FIR filter weights for the interference cancelling system can be
adapted using the LMS algorithm. The LMS algorithm is actually a modified form
of the so called Wiener-Hopf equations used to adapt the FIR filter weights toward
the minimum by gradient descent. The Wiener-Hopf equations define the optimum
Wiener solution, economically expressed in matrix form. The LMS algorithm
simplifies the computation by estimating the gradient from instantaneous values of
the correlation matrix of the tap inputs and the cross-correlation vector between the
desired response and the tap-weights.

Figure 8.4 shows a more practical interference cancelling model, which
includes a delay in the desired signal path. The delay is not required to show the
theoretical development of the LMS algorithm but it is needed in practical
implementations, as will be discussed later. The optimum Wiener solution is
developed first, followed by the practical LMS algorithm modification.

Desired Signal + Noise
dlk] = s[k]+ n[k]) e[k]=d[k — 61— ylk]

Delay, ¢ +

Adaptive
FIR Filter

Error

ylk]=nlk]
x[k]

Correlated with n[k]

Figure 8.4. Adaptive Noise Cancelling System with Delay

Adaptive Finite Impulse Response Filters 231

8.2.1 Optimum Wiener Solution

The input to the adaptive FIR filter is the p-dimensional vector x[k]=[x[k], x[k-1],
...y X[k-p+111T. This vector x[k] can be easily formed by passing the discrete signal
x[k] through a delay line having p taps and then feeding the output of each tap into
a summing junction as shown in Figure 8.5. Since all the signals in this application
are zero mean there is no need to introduce a Direct Current (DC) offset in the
system to remove their means but this can be easily done if needed (refer to Chapter
10 on “Adaptive Volterra Filters” for details).

Discrete Output Signal
k]

Akl
Discrete
Signal Input
Sequence

Adaptation Algorithm Writnew) = Wk(ola) T 2elk]X,

/|\

Error between desired and actual output e[k] = d[k]— y[k]

T
Input Vector — x =[xg x;,Xp,0...,X 1]

Figure 8.5. LMS Adaptive FIR Filter

The two important system vectors are the input vector x and the tap-weight vector
w as follows,

Xo x[k] Wy

X x[k—1] Wi
X = . = . R W=

Xy x[k—p+1] Wy

Assume that the delay d =0 for the time being. The system matrix equations are
then defined by Equations 8.5.

232 Principles of Adaptive Filters and Self-learning Systems

p-1
ykl= Swxlk—ml=x"w=w'x
m=0

e[k] = d[k]- y[k] = d[k]-x"w = d[k]-w’x (8.5
e’ [k1=d’k1-2d[kIx"w+w!xxw

The mean square error (expectation of the error power or energy) is defined by
Equation 8.6.

E{e’[k1} = E{d°[k1}—2E(d[kIx(k]"} wik]+w [K]E{x(k]x" [k]}w[k] (8.6)

Let 1), = E{d[kIx"[k]} and R, = E{x[k]x" [k]}. Since the correlation matrix R
is a symmetric positive definite matrix then the expectation of the error energy is
defined by Equation 8.7.

E{e’[k]} = E{d’[k]}-2ri w+wW R w (8.7)

Equation 8.7 is a quadratic function of the weights w, a concave hyperparaboloid,
which has a single minimum solution known as the optimum Wiener solution. Refer
to Figure 8.6 for a two weight example depiction of this function. The Wiener
solution is said to be optimum in the mean square sense, and it can be said to be
truly optimum for second-order stationary noise statistics. To find this optimum
solution the error Equation 8.7 is differentiated and equated to zero as defined by
Equation 8.8.

E{e’[k1}

W

|

|

|

|

|

|

|

|

- |

A d
-1

Rx Ly

Optimum Solution

Wo

Figure 8.6. Concave Hyperparaboloid Error Function

Adaptive Finite Impulse Response Filters 233

_ JE{e’[k]} _ B
E{e[k]) _T__zrdx+2Rxw_O (88)

\%
This is the gradient of the mean square error function. The optimum solution to
Equation 8.8 is defined by the Wiener-Hopf Equation 8.9.

w,=R'r, (8.9)

where:
W, is the optimum weight vector, also called the Wiener weight vector.

8.2.2 The Method of Steepest Gradient Descent Solution

Often the solution of the Wiener-Hopf equations is not practicable and other
solutions must be used. One of those methods is the method of steepest gradient
descent. It is an iterative method in which an initial estimate of w[k] is
progressively refined until the minimum is reached. The iterative equation for the
estimate W[k +1] is defined by Equation 8.10.

Wik +11=WK1=1V 20, (8.10)

where:
n is a small positive gain factor that controls stability and rate of convergence.

The weights are updated progressively a little at a time in the opposite direction to
the steepest gradient of the error function. The true gradient of the mean square

error functionV 11k €0 be estimated by substituting the current estimate of w[k]

into the gradient equation as defined by Equation 8.11. This process is iterated until
the gradient goes to zero, where the minimum solution is found.

A

Ve =-2r, +2R W[k] (8.11)

If u=2n the iteration Equation 8.10 is more economically expressed as Equation
8.12.

wlk +1]= wlk]+ u(r, —R W[k]) (8.12)

The stability and convergence rate of the steepest descent algorithm are
determined by the value of u and the eigenvalues of the correlation matrix R,.
Since R, is a correlation matrix it is positive definite and symmetric, which means
there is an orthogonal matrix Q and a diagonal matrix A such that Equation 8.13
holds.

RX=QAAT (8.13)

A new zero mean variable v[k] can be introduced to make an affine change of
coordinates to that defined by Equation 8.14.

234 Principles of Adaptive Filters and Self-learning Systems

v[k]=Q" (W[k]-w,) (8.14)
where:

W, is the Wiener weight vector, i.e., w, = R;lrdx, r;, =R, w,.

The iteration process now becomes as defined by Equations 8.15 or 8.16.

Qvlk +1]+w, = Qv[k]+w, + u(r, —QAAk]-R w() (8.15)

vk +1]=I- uA)vlk] (8.16)
For vector v[k],
Vo[k]
k
v =| "

v, alk]

a set of linear difference equations can be developed as defined by Equation 8.17.
v lk+11=(1-ud, v, [k] (8.17)

where:
A, is the mth element along the diagonal of A.

The solution to the set of Equations 8.17 is defined by the set of Equations 8.18.
v, [k]1=(1-ui,) v, [0] (8.18)

These solution Equations 8.18 represent a geometric sequence that is bounded if

1< (1-p4,) <1, orif 0<,u<}b2 .

max

Here ﬂmax is the maximum eigenvalue of R,, which sets the condition for stability.
Since R, is positive definite all the eigenvalues are positive. When the stability
condition is satisfied, the Equations 8.18 imply that the approach to the limit takes
place exponentially.

The time constant 7, represents the number of iterations required for v,, to
decay to 1/e (= 0.3679) of its initial value of v,,(0), i.e., the convergence rate 7,

must satisfy Equation 8.19.

Adaptive Finite Impulse Response Filters 235

1-ud,, = exp(—ij

m

! (8.19)
Tp=—""——
In(1- uA,,)

For the case of £ << 1 the convergence rate 7, can be simplified to Equation 8.20,
where it can be seen that the rate of steepest descent is limited by the smallest
eigenvalue of R,, 4, =A..

o~ L (8.20)

8.2.3 The LMS Algorithm Solution

The LMS adaptive algorithm is a practical method for finding close approximate
solutions to the Wiener-Hopf equations which is not dependent on a priori
knowledge of the autocorrelation of the input process and the crosscorrelation
between the input and the desired output. It is an implementation of the method of
steepest gradient descent as defined by Equation 8.21.

wik+11= wikl=79 200 (8.21)

where:
n is a small positive gain factor that controls stability and rate of convergence.

The true gradient of the mean square error function V can be estimated by

E{e’[k])
an instantaneous gradient by assuming that e[k, the square of a single error
sample, is an adequate estimate of the mean square error. The estimate of V 11k
is then defined by Equation 8.22.

: _ Ok _ o Pelkl _, o O(dIk] - ylk])
VE(eZ[kJ] = ow =2elk] I —Ze[k]T
r (8.22)
TP L i L3l
gt = 2€k] Jw
Equation 8.22 can be simplified to Equation 8.23 by differentiation.
V ety = ~2elkIxik] (8.23)

From this the Widrow-Hoff LMS algorithm can be defined by Equation 8.24.

236 Principles of Adaptive Filters and Self-learning Systems

wlk+1] = wlk] + 27 e[k] x[k] (8.24)
where:
n = learning rate parameter.
e[k] = error (desired output - actual output).
x[k] =[x xq5enes xp_l]T, the tap vector at instance k.
wlkl = [wowy,e, Wy 17, the tap-weight vector at instance k.

The LMS algorithm uses gradients of the mean square error function but it does
not require squaring, averaging or differentiation and the expected value of w
converges to the Wiener weight vector. Starting with an arbitrary (random) initial
weight vector the algorithm will converge in the mean as new vectors x[k] are
progressively presented to it in turn. It will stay stable as long as 77 is greater than
zero but less than the reciprocal of the largest eigenvalue A, of the correlation
matrix R, as defined by Equation 8.25.

>1>0 (8.25)
The largest eigenvalue A, is less than or equal to the trace of R as defined by
Equation 8.26.

Ao < f/lk =tu[R,]=r. () +r, () +..+r.(p) (8.26)

k=0
In practice the step size 77 should be at least 10 times smaller than the maximum to
achieve an adequate convergence. Learning or convergence occurs in an
approximately exponential manner.
The derivation above strictly assumes an infinite two sided (noncasual) tapped
delay line. This can be closely approximated with a finite delay line with a suitable
delay o for casual signals as shown in Figure 8.4. The value for Jis not overly

critical but a value of approximately g produces best results.

A summary of the LMS Adaptive Algorithm for a pth-order FIR Adaptive Filter is,
Parameters: p — 1 =FIR filter order (p is the vector size).
M =21 = step size.
x[k] = real valued input vector.
w|k] = filter coefficient vector.

Initialisation: w[0] = 0 or very small random values.

Computation: Fork=0,1,2,.....

i ylkl=wTx[k]

Adaptive Finite Impulse Response Filters 237

ii. e[k]=d[k]—y[k]
iii. wlk+1] = wlk] + 2 e[k] x[k]

8.2.4 Stability of the LMS Algorithm

The method of steepest gradient descent and the LMS algorithm use gradient
descent to try to minimise the mean square error in different ways. The method of
steepest descent attempts to minimise the error at each step by repeatedly stepping
in the negative direction of the gradient until the gradient goes to zero. The LMS
algorithm takes single steps in the negative direction of the gradient at each step
and depends on long-term averaging behaviour for eventual minimisation of the
mean square error.

The proper choice of the step size £ = 27 is critical to the performance of the
LMS algorithm. There are two forms of convergence which must be achieved,

1. Convergence in the mean - the expected value of w[k] should approach the
Wiener solution as the k tends to infinity.

2. Convergence in the mean square - the final, steady-state value of the mean
square error is finite.

The sequence of input vectors X[k] are assumed to be statistically independent.
Both the input vector x[k] and the desired response d[k] are assumed to have
Gaussian distributions and to be statistically independent of all previous desired
responses. The filter weights at time k+1, w[k+1], depend only on the previous
input vectors, x[k], x[k-1]....., X[1], the previous desired responses, d[k], d[k-1],....,
d[1], and the initial value of the filter weights w[0]. It therefore follows that w[k+1]
is independent of both x[k+1] and d[k+1].

Convergence in the mean requires that w[k] tends to the optimum Wiener vector
w. If it is assumed that,

elk]=wlk]-w,
equivalent to,

klirn Ele[k]}=0

then Equation 8.27 can be shown to hold.
Efe[k+1]} = (I- 4R) E{e[k]} (8.27)

This is similar to the condition for stability of the method of steepest descent. It can
be shown by a similar argument previously developed that the condition for
convergence in the mean is defined by Equation 8.26.

238 Principles of Adaptive Filters and Self-learning Systems

1
O<p< (8.28)

max
where:

Aimax 18 largest eigenvalue of matrix R .

Convergence in the mean square can be investigated by looking at the correlation
matrix of the error e[k] as defined by Equation 8.29.

K[k]= E{e[k]" e[k]} (8.29)

It is possible to derive a difference equation for the change in this matrix from one
time step to the next as defined by Equation 8.30.
K(k+1) = K(k) - #(R K(k)+ K (KR) + £ *tr[R K (k)] +
R KR, +u°J ;R

min v x

(8.30)

where:
u=2n
tr[] denotes the trace of the matrix.
Jin 18 the value of the mean square error given by the Wiener solution w,.

It can be also be shown that the error function J(k) can de defined by Equation
8.31.

J(k)=J,. +t[R K(K)] (8.31)

The trace is always positive, since the matrices in the brackets are positive definite,
so the mean square error at time k is always greater than the mean square of the
Wiener solution. The limiting value of the mean square error J(eo) is defined by
Equation 8.32.
J..
J(o0) = %
> (8.32)
1— i=0
2—ul,

where:
A; are the eigenvalues of R,..

From these equations it can be shown that J(k) converges to a steady-state value
J(e0) if and only if,

2
O<u< ,

max
. . . P ud;
where A, . is the maximum eigenvalue of R,, and, > —"—
i=02— 44,

<l1.

Adaptive Finite Impulse Response Filters 239

Although the assumption that the sequence of input vectors is statistically
independent is strictly false, in practical problems the equations above are
nevertheless usually reliable. Also, when g is small the LMS algorithm can track
changes in the optimum set of filter weights in nonstationary situations if the
changes take place slowly enough.

8.2.5 The Normalised LMS Algorithm

The filter weight update equation for the LMS algorithm is defined by Equation
8.33.

wlk+1] = wlk] + 277 e x[k] (8.33)

However, the problem with this update equation is that if the input vector
magnitude is large the filter weights also change by a larger amount. Consequently,
it could be desirable to normalise this vector in some way. The normalised LMS
algorithm can be reformulated in terms of a constrained optimisation problem as
follows. Given the input vector x[k], the desired response d[k] and the current filter
weights w[k], find the updated filter weights w[k+1] that minimise the squared
Euclidean norm of the difference w[k+1] — w[k] subject to the constraint d[k] =
w[k+1]x[k]. This problem can be solved using Lagrange multipliers and thus
providing the weight update Equation 8.34.

2nelk
wik +17 = wik]+ 22 (8.34)

[xix]|?

This is the update equation for the normalised LMS algorithm. It is convergent in
the mean square sense if 0 < 77 < 1. However, this update equation can still lead to
numerical problems if lIx[£]ll is small, so the alternative form defined by Equation
8.35 can be used in practice to avoid this.

2pelk]

wik +1]= w[k]+ .
(a+[xtk]|"

(8.35)

where:
a>0

8.3 Recursive Least Squares Estimation

Recursive Least Squares (RLS) estimation can be seen as a special case of Kalman
filtering. It is actually an extension of LSE where the estimate of the coefficients of
an optimum filter are updated using a combination of the previous set of
coefficients and a new observation. In effect this uses all the past values of the time
series to construct the filter as in the Wiener filter. When the statistical information
related to the process is unknown it must be estimated from the data. One effective

240 Principles of Adaptive Filters and Self-learning Systems

way to do this without having knowledge of ensemble averages (expectations) is to
use error measures like the least squares error that do not depend on expectations,
and that may be computed directly from the data. One important thing to note about
LSE methods is that they produce solutions that are dependent on the data
themselves rather than the data’s statistics. In contrast to LSE, minimising the mean
square error produces the same solution for data having the same statistics.

RLS estimation can be used in conjunction with any ARMA filter model but it
is commonly applied to the MA or FIR filter model in the adaptive filtering context.
In this case the pth-order FIR filter coefficients are time-varying and are adapted
using a least squares recursive algorithm. Consider a zero mean complex valued
time series x[k], i = 1, 2,...., and a corresponding set of desired filter responses
d[k]. Vector samples from the time series are denoted as,

xX[k] = [x{k], x{k —11,....x[k — p+1]]"

and the coefficients of a time-varying FIR filter at time n are denoted as,
win] = [wolnl, wy[nl,..oow, [n]]

The error between the desired response at time k and the filter output for an input of
x[k] with the filter coefficients at time # is defined by Equation 8.36

e[n, k1= d[k]-w’ [n)x[k] (8.36)

The quality of the filter coefficients at time » may be measured by considering the
weighted sum of the differences between the desired output at all earlier times and
the output that would have been produced by filtering the time series with the
current values of the filter coefficients. The error term &(n) for this can be defined

by Equation 8.37 (Widrow and Sterns 1985).

n 2 n 2
Emy= Y. Bn.bleln.k]| = zﬁ(n,k)\d[k]—wT[n]x[k] (8.37)
k=0 k=0

Weighting factors, 0< f(n,k) <1, for k=0,1,2,..,n, are used to discount the

effects of earlier errors so as to enable the filter to track changes in nonstationary
time series.

8.3.1 The Exponentially Weighted Recursive Least Squares
Algorithm

Exponential weighting (or forgetting) factors of the form A(n,k)= A" are
commonly used, where A is less than but close to 1 (in the special case when A=1
this is referred to as a growing window). In the general exponential weighting case
the error function &n) is defined by Equation 838.

Adaptive Finite Impulse Response Filters 241

n 2
£ = 3 A *|atk1-w [alxik] (8.38)

k=0

The prewindowed autocorrelation ®(n) of the input vector x[k] at time n can be

specified by a recursive function as defined by Equation 8.39.

()= 3 2K kKT k]
k=0

= [rffln_kX*[k]XT [k]} + A7"x [n]x" [n]

k=0 (8.39)

= ﬂ[gﬂ"_l_kx*[k]xT [k]} +x [n)x"[n]
k=0
= AP(n-1)+x [nx! [n]

The prewindowed crosscorrelation @(n) between the input vector and the desired

series at time n can in a similar fashion be specified by a recursive function as
defined by Equation 8.40.

0y = 3 A dkIx [k]
P (8.40)

=6(n-1)+d[n]x [n]

The optimum filter coefficients that minimise the weighted error &(n) can be
determined by setting the derivative of &n) with respect to wfn[n] to zero for m =

0,1,...., p-1, resulting in Equation 8.41.
D (n)Wln] = 6(n) (8.41)

To solve Equation 8.41 for the estimate of the filter coefficients w[n] it is
necessary to find the inverse of ®(n). This can be done recursively using the

Matrix Inversion Lemma, also known as Woodbury’s identity. Let A and B be
positive definite M X M matrices, let C be a M x N matrix, and let D be a positive

definite N X N matrix. If it is true that A =B~ +CD~'C”T then Equation 8.42
follows.

A'=B-BCMD+C'BC)"'C™B (8.42)

The recursive expression for the exponentially weighted correlation matrix is in the
form to which the Matrix Inversion Lemma can be applied if the following
equivalences are made,

A =d(n)
B! = 1®(n-1)

242 Principles of Adaptive Filters and Self-learning Systems

C =x[n]
D=1

The recursive expression for the inverse of the correlation matrix is therefore
defined by Equation 8.43.

A (n-Dx [[(n-1)
1+ A7 [n]® (n-1D)x"[n]

' =1"d ' (n-1) (8.43)
AP(n-1)x"[n]
1+ 27X [nP(n-1)x"[n]

is called the gain vector, it is possible to write a recursive expression for P(n) as
defined by Equation 8.44.

If P(n) is substituted for dD_l(n) and k(n) =

, where k(n)

P(n) = A"P(n-1)- A k(n)x" [n]P(n-1) (8.44)

Equation 8.44 is a form of the Riccati equation. With some algebraic manipulation
of Equation 8.44 it can be shown that the gain vector k(n) is defined by Equation
8.45.

k(n) =P(n)x [n]=® ' (n)x [n] (8.45)

Given all these equations it is now possible to develop the recursive expression for
the update of the filter weights as defined by Equations 8.46 and 8.47.
w(n) =@ {(n)én)
=P(n)d(n)
= AP(n)8(n 1)+ d[n]P(n)x [n]

’ . (8.46)
=Pn-1)0(n-1)-kn)x" [n]P(n—-1)8(n—-1)+d[n]P(n)x [n]
=d (-0 -1) k()X [n]®(n-1)0(n-1) +
d[nIP(n)x [n]
Winl= wln—11-k(n)x [nlWw[n-1]+d[n]P(n)x [n]
=wln-1]1-k(n)x [n]w[n—1]+d[n]k(n) (8.47)

n—11+(d[n]-x" [nIW[n—-1]Dk(n)
n—1]+a(n)k(n)

w(
w(

where:
a(n) =d[n]-x"[nW[n-1]=d[n]-w'[n—-1]x"[n] is the innovation or a

priori estimation error at time 7.

Adaptive Finite Impulse Response Filters 243

When the innovation error ¢(n) is small, the current set of filter weights are close
to their optimum values (in the least squares sense), and only a small correction
needs to be applied to the weights, and vice versa. The recursion begins by setting
the filter coefficients to zero and setting P(0) to a multiple of the identity matrix to
ensure that the correlation remains nonsingular.

A summary of the RLS algorithm for a FIR Adaptive Filter is as follows,

i Set wlln-1]=0,

P(0) = 571, where Jis a small positive constant.

AP(n-Dx"[n]
1+ 27T [n]P(n—Dx"[n]
a(n) =d[n]-wT [n-1]x"[n]
wn]=w[n—1]+a(n)k(n)

P(n) =1 [P(n—=1)—k(n)x" [n]P(n—-1)]

ii. Compute: k(n)=

iii. Repeat: Step ii until W[n] converges or continue indefinitely.

8.3.2 Recursive Least Squares Algorithm Convergence

The convergence of W[n]in the mean, in the mean square, and the convergence of

the a priori estimation error a(n) is of interest to us. Assume that the desired

response and the input vector are related by a multiple linear regression model of
T A . .

the form d[n]=e,[n]+w,[n]x[n], where W, [n] is the regression parameter

vector and e,[n] is the measurement error at time n. W,[n] is a constant vector,

and the measurement error e,[n] is assumed to be white zero mean noise with

variance O'%V . For the purpose of the following general derivations A is assumed to

be equal to unity, which is close enough to typical values that are chosen in
practice.

8.3.2.1 Convergence of the Filter Coefficients in the Mean
Initialising the RLS recursion by setting ®(0) =01 introduces a bias into the

estimate of the filter coefficients that it produces. If b(n) is a bias at time n, then
E{w[n]}=w, +b(n). It can be shown that b(n) = —5<I>_1(n)w, , and this tends to

zero as n tends to infinity, provided that the data sequence x[n] is ergodic. This
shows convergence in the mean.

244 Principles of Adaptive Filters and Self-learning Systems

8.3.2.2 Convergence of the Filter Coefficients in the Mean Square
If e,[n]=w[n]-w,, it can be shown that the correlation matrix of this error

ro

sequence is K(n):E{ew[n]evTv[n]}:o'vzv,CI)_l(n). It can also be shown that
||K(n)||z0'a, /’Mmin , where A.;, is the smallest eigenvalue of the ensemble-

averaged correlation matrix of the x[n]. This means that the convergence properties
depend on the conditioning of this matrix. Since the norm ||K(n)|| is inversely

proportional to time then there is convergence of the filter coefficients in the mean
square to the regression parameter.

8.3.2.3 Convergence of the RLS Algorithm in the Mean Square

The a priori estimation error at time n, a(n) =d[n]— WT[n —1]x[n] , can be used to
define the mean square error of the RLS algorithm at time n, £(n) = E{ |a'(n)|2} It

can be shown that &(n) = O'%V+MO'%V /n for large n, so the mean square error

approaches the variance of the measurement error as n tends to infinity.

8.3.3 The RLS Algorithm as a Kalman Filter

The exponentially weighted RLS algorithm is actually a special case of the Kalman
filter. The state space model for the set of filter coefficients is a random walk. Let
w[n] be a vector of filter coefficients at time n and set w[n+1]=w[n]+ v[n],

where v[n], the process noise vector, is assumed to have zero mean and
autocorrelation matrix Q(n). Here the state transition matrix is the identity matrix.

The measurement model is taken to be d[n]=xT[n]w[n]+e[n], where the

measurement error e[n] is assumed to have a mean of zero and a mean square
valued &, - In this case the Kalman gain is defined by Equation 8.48, and the

estimate of the filter coefficients at time »n is defined by Equation 8.49.

K(n) = P(n)x[n][x" [n]P(n)x[n]+ &, 17! (8.48)

W[n] = W[n]+K(n)(d[n]-x" [n]W[n]) (8.49)

The error covariance matrix for the estimate is defined by Equation 8.50, and the
prior estimate and its covariance are defined by Equations 8.50 and 8.51
respectively.

P(n) =[1-K(n)x" [n][P(n) (8.50)

Wln+1]=w[n], and P(n+1)=P(n)+Q(n) (8.51)

Adaptive Finite Impulse Response Filters 245

Note that symbol P(n) here is not the same as the P(n) in the description of the RLS
recursion formula. If Q(n) = (/7._l —1)P(n) then the Kalman filter is the same as the

RLS recursion formula.

8.4 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

8.4.1 Problems

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

Assume x[n] is a second-order autoregressive process defined by the
difference equation,

x[n]=1.2728x[n—1]-0.81x[n—-2]+v[n],

where v[n] is unit variance white noise the optimum causal predictor for
x[n] is given by, x[n]=1.2728x[n—1]-0.81x[n—2].

Show how you could go about computing the predictor coefficients 1.2728
and -0.81 using the LMS algorithm.

In Problem 8.1 if the autocorrelation sequence r. (k) is given as
r,(0)=57523 and r,(1) =4.0450 find the maximum bound for the step
size in the LMS algorithm.

Use the normalised LMS algorithm to derive the FIR filter coefficient
update equations for the second-order AR(2) linear prediction equation of
Problem 8.1.

If the process and the FIR filter coefficients are complex valued show that
the adaptive LMS update equation is w[k+1] = w[k] + u e[k] x[k].

Compute and sketch a graph of the expectation of the squared error as a
function of the single real-valued filter coefficient for a simple zero-order
MA(0) process .

For the exponentially weighted RLS algorithm prove that
@d(n)wln]=6(n) by setting the derivative of the weighted error &n) with

respect to w *[n] to zero, given that,

®(n) = fﬂ""‘x*[k]xf[k] and, 8(n) = fﬂ""‘d[k]x*[k]
k=0 k=0

9. Frequency Domain Adaptive Filters

All filter equations can be solved either in the time or frequency domains. However
time domain solutions for real-time filter operation require the convolution
function, which can be very computationally intensive for large impulse response
sequences. One way to reduce this computational burden is to perform the
convolution computation in the frequency domain, where the convolution function
becomes a much simpler complex multiplication function. All that is needed to
exploit this fact is the existence of an efficient means of transforming to the
frequency domain and back again. Fortunately, the Fast Fourier Transform (FFT)
provides such a transform that can be used to dramatically reduce the overall
computational burden, especially for large data block samples. The advent of the
FFT has made it possible to produce very efficient adaptive filters. The only
drawback is that there are inevitable errors introduced due to the fact that
continuous signals must be broken up into finite blocks to be able to apply the FFT
to them. Nevertheless, with judicious design these errors can be kept to a minimum
and fortunately they have few detrimental effects for many practical problems. The
main way to achieve continuous linear convolutions (required by real filters) from
circular convolutions (typical of digital processing algorithms) is by a process of
overlapping and selection. Two main ways of doing this are by the overlap-save
and the overlap-add methods.

9.1 Frequency Domain Processing

Many of the adaptive filtering methods for FIR filters have the drawback that they
often require many, perhaps thousands, of filter coefficients to achieve desired
levels of performance in real applications. One method of reducing the large
amounts of computation required for these algorithms is to use a block updating
strategy, where the filter coefficients are updated at each time block of points
instead of at each successive time n. Then Fast Fourier Transform (FFT) routines
are used to reduce the amount of computation required to implement convolutions
by doing them in the frequency domain. Figure 9.1 shows a representative general
frequency domain processing arrangement. The input sequences x[n] and d[n] can
be acquired at any time from the input delay lines and transformed from the time
domain to the frequency domain, where the processing is performed and then the

248 Principles of Adaptive Filters and Self-learning Systems

result y[n] is transformed back to the time domain when it is needed. Often all the
processing can be done and the results taken directly in the frequency domain,
thereby obviating the need even for the final time domain transformation.

x[n]

\l/ x[n]

x[n-1] 3

FFT

Output Buffer

Input Buffers Domain IFET

din] Processing

B R !
:

\l/ Sample, then process blocks of points

yln]
Frequency 3 yin—1]

Figure 9.1. Frequency Domain Processing

9.1.1 Time Domain Block Adaptive Filtering

Before looking at the frequency domain adaptive filtering approach it is instructive
to review the standard and block LMS algorithms in the time domain. The notation
for the time domain is as follows. The real input signal vector at time 7 is defined
as,
x[n]
x[n] = x[n-1]

x[n-p+1]
The filter coefficient vector at time 7 is defined as,

wyln]

-1
win] = wi[n-1]

wpfl[n -p+1]

Frequency Domain Adaptive Filters 249

The filter output at time 7 is defined as,
yln]=x"[nlwln]

If the desired response at time n is d[n] the error e[n] is e[n]=d[n]- y[n]. The

coefficient update formula for the standard LMS algorithm is
wln +1]= w[n]+ 2ne[n]x[n], where 7 is the step size parameter, which controls the

convergence rate. These computations are computed continuously at every
successive time n.

If L > 1 is the block size the update formula for the Block LMS (BLMS)
algorithm is updated on the basis of a block of input data at a time as defined by
Equation 9.1.

L-1
wln+ L] =wlnl+2n > e[n+mlx[n+m] 9.1)

m=0

where:
e[n+m]=d[n+m]- x [n+ m]w[n] is now the error for the BLMS.

A new time index k for the filter coefficient update representing L increments in #,
allows the BLMS update formula to be defined by Equation 9.2.

wlk +1] = wlk]+2n Lz_:le[kL +m]x[kL + m] 9.2)

m=0

Using the BLMS requires that the maximum value of the step size be scaled down
by a factor of L as compared to the LMS algorithm in order to preserve stability.
However, this scaling can make the BLMS algorithm converge more slowly than
the simpler LMS algorithm.

9.1.2 Frequency Domain Adaptive Filtering

Adaptive algorithms, where the filtering is done in the frequency domain, have a
recursion similar to the block update of the BLMS. Filtering in the frequency
domain is made possible by the fact that time domain filtering operations of linear
convolution (and linear correlation) can be done simply by complex multiplication
in the frequency domain by the Convolution Theorem for the Discrete Fourier
Transform (DFT). This Convolution theorem actually gives circular convolutions.
Therefore to perform the required linear convolutions some simple corrections are
needed. However, by moving the computations into the frequency domain a
computational gain can be achieved if a FFT algorithm is used to implement the
DFT more efficiently.

The Frequency Domain Adaptive Filter (FDAF) is formed by taking discrete
Fourier transforms of time domain lengths of M points (Shynk 1992). Once
converted to the frequency domain real variables are transformed to complex

250 Principles of Adaptive Filters and Self-learning Systems

variables, which means that complex matrix arithmetic must be used. The time
domain coefficients become complex variables in the frequency domain and are
denoted by uppercase nonbolded letters. The notation for the frequency domain is
as follows. The input signal matrix at time k£, X(k) , is defined as,

Xok) 0 .. 0
X(k) = 0 X{(k) 0
0 0 . X,k

The FIR filter coefficient vector at time k, W(k) , is defined as,

Wo (k)
W, (k
W(k) = 1_()

Wp—] (k)

The adaptive filter output at time k, Y (k) , is then defined by Equation 9.3.
Y (k) = X(k)W (k) 9.3)
where:

The desired response vector at time k is D(k).

The error vector at time k is E(k).

The error vector is defined as the difference between a desired response vector,

D, (k)
D, (k
D(k) = 1F)

>

Dp—] (k)

and the corresponding filter output vector Y(k). D(k) can be defined directly in the
frequency domain, or it may be alternatively computed from a block sequence of
desired values in the time domain.

The filter coefficient update formula for the FDAF can now defined by
Equation 9.4.

W(k +1) = W(k) + 2GM (k)X " (k)E(k) 9.4)

Frequency Domain Adaptive Filters 251

The G matrix in Equation 9.4 is the matrix that contains the gradient
x# (k)E(k) in order to convert from circular to linear convolutions, and the matrix

M(k), the diagonal matrix of scalar step sizes is,

k) 0 .0
mo=| M0
0 0 .y

The step sizes may be chosen to vary inversely with the signal power in the band,
corresponding to a block frequency parameter m as defined below for Equation 9.5.
If this is done it is necessary to estimate these power values on an ongoing basis.

To compute the required frequency domain vectors a M X M DFT matrix F,
with inverse F-! = FH/M is required. This matrix F is defined by Equation 9.5.

Foo Fop Fo(m-n)
F = F.IO Fjll FI(A.’!—I) ©.5)
Fooro - Far-y Flar-1\ar1)
where:
—j2mml
F,=e ™ | ml=0l.,M-1

Premultiplying a time domain vector by F will compute its DFT and premultiplying
a frequency domain vector by F-! will compute a vector of time domain samples. In
practice the DFT is implemented with a FFT algorithm in order to achieve the
desired computational advantage, but here it is shown in full for equation clarity.

By the Convolution Theorem for the DFT, the product of two DFT sequences is
actually the DFT of their circular convolution, where the linear and circular
convolutions have terms in common. Nevertheless, it is still possible to derive
linear convolutions from circular convolutions by a process of overlapping and
selection. There are two methods of doing this known as the overlap-save and the
overlap-add methods. In order to generate p correct output samples the DFT length
must be greater that 2p - 1. Therefore DFTs with length M = 2p can be used where
the optimal block size is L = p.

9.1.2.1 The Overlap-save Method
In the overlap-save method, vectors W(k) and x[k] have dimensions of 2p. This is
achieved by defining vectors as follows,

252 Principles of Adaptive Filters and Self-learning Systems

_ wolk] _
W1[k]

W(k)=F w,_[k]
0

X(k) is a frequency domain diagonal vector matrix whose elements are components
of vector,

[Akp—p] |
xkp—p+1]

F{x(kp - p)} _g| kel
x(kp) xlkp]
xlkp +1]

| x[kp+ p—11]

The frequency domain filter output Y (k) is defined by Equation 9.6 and in the time
domain the output is the vector,

ylkp]

kp+1
k=]

s

ylkp+p-1]

whose elements are the last components of F'lY(k) .
Y(k) = X())W(k) 9.6)
If the desired output in the time domain at time k is the vector d[k] as follows,

d(kp)

a6 - d(k;?+1)

s

d(kp+p-1)

Frequency Domain Adaptive Filters 253

then the error in the time domain is e(k) =d(k)—y(k), and the transform of this

vector with p zeros prepended provides the error in the frequency domain as
follows,

Ek)=F
e(k)

If Aw[k] is a vector consisting of the first p components of the vector

F'x# (k)E(k) , it can be shown that the update formula for the BLMS algorithm
in the frequency domain is defined by Equation 9.7

Awl[k]
W(k+1)=W(k)+2nF O 9.7

0

I 0
Now, if a 2p X 2p matrix g is setto g = [0 0} with four p X p submatrices then the
update formula can be defined by Equation 9.8.
Wk +1) = W(k) +2nFgF ' X" (k)E(k) (9.8)

If Equation 9.8 is compared with the general form of the FDATF,
W(k +1) = W(k) +2GMX" (k)E(k), it can be seen that G =FgF ' . If k=[0 1]
is defined then y[k]=KkF'Y(k) and E(k) =Fk”e[k].

The overlap-save algorithm can therefore be summarised as follows,

0
0
Set W(0)=| |, and £, (0) = 6, m=01..2p-1, where &, are small

0
positive random numbers that are the first estimates of P, (0), the

measures of power used to set the step sizes.

For each block of p input samples, the input matrix X(k) is made to be a
diagonal matrix whose elements are the Fourier transform of the 2p time
domain points x[kp-p],...., X[kp+p-1]. Compute the following in sequence,

254 Principles of Adaptive Filters and Self-learning Systems

Y (k) = X(k)W (k)

ylk1=kF 'Y (k)

e[k]=d[k]-ylk]

E(k) =Fke[k]

P, (k)= AP, (k-D+(1-2)|X,, (k)|2, m=0,.2p-1

ek 0 . 0

0 /P, (k . 0

M= o MOt
0 0 . WPy ()

W(k +1) = W(k) + 2FgF "M(k) X" (k)E(k)
where:
A =1is a weighting parameter and 77 is the step size parameter.

For efficiency sake, as indicated previously, the multiplications by F and F-! should
be carried out using FFT routines and not by using straight matrix multiplication as
shown in the derivation.

9.1.2.2 The Overlap-add Method

The overlap-add method is an alternative way of partitioning the data and
reassembling the results to obtain a linear convolution. There are two differences
between the overlap-save and the overlap-add methods. Firstly, in the overlap-add
method, the frequency domain data vector is defined as X(k)=X'(k)+JX'(k-1),

where X’ (k) is the diagonal matrix whose elements are components of the Fourier
transform of the 2p points, x[kp],...., X[kp+p-1], O,...., 0 and J is the 2p X 2p
diagonal matrix with J, = (-1)" for m = 0,...., 2p-1. Secondly, instead of
k=[0 1], k=[I 0]isused.

The overlap-add algorithm can therefore be summarised as follows,

0

0
Set W(O)=| | and, P, (0)=5, ~m=0l..2p-1

For each block of p input samples, the input matrix X’(k) is made to be a
diagonal matrix whose elements are the Fourier transform of the 2p time
domain points x[kp]....., X[kp+p-1], O,...., 0. Compute the following in
sequence,

X(k)=X'(k)+JX'(k-1)

Frequency Domain Adaptive Filters 255

Y (k) = X(k)W (k)

ylk1=kF'Y (k)

e[k]=d[k]-ylk]

E(k) =Fk Te[k]

P,(k)=AP, (k—1)+ (1—/1)|Xm(k)|2, m=0,.2p-1

k) 0 . 0

0 /P (k) .. 0

M) = n 1.() ; .
0 0 . Py, k)

W(k +1) = W(k) + 2FgF "M(k)X " (k)E(k)
where:
A = 1is a weighting parameter and 7 is the step size parameter.

9.1.2.3 The Circular Convolution Method

The overlap-save and the overlap-add methods are designed to compensate for the
fact that using the DFT to compute convolutions gives circular convolution in a
situation where linear convolutions are required. It is possible to reduce the
computational complexity at the expense of degraded performance by omitting this
compensation. This is equivalent to making G = I in the weight update formula and
making certain other simplifications.

For circular convolutions the F matrix can be a p X p matrix of a p-point DFT.
The p-point DFTs are computed once for each block of p samples, with no overlap.
The weight vector is W(k) = Fw[k] and X(k) is the diagonal matrix whose elements
are the components of the Fourier transform of the p-points, x[kp]....., X[kp+p-1].
As before, Y(k) = X(k)W(k) and the time domain output vector is y[k] = F-lY(k).
The error is computed in the frequency domain as the difference between Y(k) and
the Fourier transform of the vector of desired time domain output values d[k].

The circular convolution algorithm can therefore be summarised as follows,

0

0
Set W(0)=| | and P, (0)=8, m=0l...p

For each block of p input samples, the input matrix X(k) is made to be a
diagonal matrix whose elements are the Fourier transform of the p time
domain points x[kp],...., X[kp+p-1]. Compute the following in sequence,

D(k) = Fd[k]

256 Principles of Adaptive Filters and Self-learning Systems

Y (k) = X(k)W(k)
E(k) = D(k)- Y (k)

P, (k)= AP, (k=) + (1= D|X,, k)[’, m=0..p-1

m

()P, (k) 0 . 0
0 KPRk .. 0
M) = . n()- 1 (k) ; |
0 0 . P, (k)

W(k+1)=W(k)+ 2M(k)XH (k)E(k)

9.1.2.4 Computational Complexity

The time domain LMS algorithm requires 2p2 real multiplications for every p
output samples. On the other hand computational savings are made with the
overlap-save and overlap-add methods, where both have the same computational
complexity, each requiring 10plog,(2p) + 16p real multiplications. More efficiency
is gained through use of the circular convolution method, which requires only
3plog,(p) + 8p multiplications.

9.2 Exercises

The following Exercises identify some of the basic ideas presented in this Chapter.

9.2.1 Problems

9.1.

9.2.

9.3.

9.4.

9.5.

9.6

Compute how many multiplication operations are saved in the coefficient
update equation for a time domain BLMS algorithm per block of L input
points. Is it worth the trouble?

Show how linear convolutions on sequences can be done by using
frequency domain operations.

What computational savings can be had by using a radix-2 decimation-in-
time FFT to perform the DFTs required in Problem 9.27

For frequency domain filtering define the inverse of the p X p DFT matrix
F.

What is the main purpose of the so called overlap-save and the overlap-
add methods in frequency domain filtering?

What is the disadvantage of the circular convolution method?

10. Adaptive Volterra Filters

Adaptive Polynomial filters are a nonlinear generalisation of adaptive linear filters
that are based on nonrecursive or recursive linear difference equations. Polynomial
filters are often referred to as Volterra filters when are based on the Volterra series
that was first studied by Vito Volterra in 1880. However, the first use of the
Volterra series to model the input-output relationship of a nonlinear system was by
Norbert Wiener (Wiener 1958). The nonlinear Volterra filter has the property that
it depends linearly on the coefficients of the filter itself, therefore the principles of
“optimum linear filter theory” can be naturally extended to “optimum nonlinear
Volterra filter theory.”

10.1 Nonlinear Filters

While linear filters have been used widely in engineering, many problems are
inherently nonlinear and may better be addressed by nonlinear solutions. Nonlinear
filters are particularly useful for applications with signal dependent or
multiplicative noises and for non-Gaussian signal statistics. There are many types
of nonlinear filters including,

1. Homomorphic Filters.

2. Morphological Filters.

3. Order Statistics Filters.

4. Nonlinear Median Filters.

5. Artificial Neural Networks.

6. Polynomial and Volterra Filters.

Homomorphic filters are often used in image enhancement, seismic signal

processing, models of human visual systems, and for the removal of multiplicative
noise and are amongst the oldest nonlinear filters. In morphological filters the

258 Principles of Adaptive Filters and Self-learning Systems

geometric features of signals are used in such applications as edge detection and
shape recognition. Order statistics filters are based on the order of the data samples
in the signal and are computationally simple and robust. The median filter is a
common example of an order statistics filter often used in image processing for the
removal of impulse noise without destroying edge detail. Artificial Neural Network
(ANN) filters represent a general nonlinear filtering model that can be applied to a
very wide range of nonlinear problems. Polynomial filters based the on a truncated
Volterra series expansion represent one of the most important methods of approach
to nonlinear problems. They, like ANNs, are more general than the other models
mentioned above. Polynomial filters can arise from a nonlinear generalisation of
linear FIR filters. They can also be based on recursive nonlinear difference
equations (Mathews 1991). Polynomial filters that are based on the truncated
Volterra series are referred to as Volterra filters. Volterra filters, like neural
network based filters, have found application in many problems including,

1. Modelling of nonlinear systems.

2. Noise and echo cancellation.

3. Nonlinear communication channel equalisation.

4. Signal detection and estimation.

5. Texture discrimination.

6. Spatial and temporal prediction.

7. Nonlinear interpolation of image sequences.

8. Edge preserving smoothing enhancement of noisy images.

9. Removal of impulse noise in images without edge blurring.

Volterra filters are based on the Volterra series, which can be described as a
Taylor series with memory. The Volterra filter depends linearly on the coefficients
of the filter itself and its behaviour can be described in the frequency domain by
means of a type of multi-dimensional convolution. Because of this linear coefficient
dependence “optimum linear filter theory” can be routinely extended to “optimum
nonlinear Volterra filter theory.” Some of the main adaptation principles used for
adaptive Volterra filters are,

1. Least Means Squares (LMS).
2. Recursive Least Squares (RLS).

3. Fast Kalman.

Adaptive Volterra Filters 259

10.2 The Volterra Series Expansion

If x[n] is a real input sequence to a discrete-time causal nonlinear system that
produces the real output sequence y[n] the Volterra series expansion for y[n] in
terms of x[n] is defined by Equation 10.1 (Mathews 1991).

ylnl=hy+
ihl[ml]x[n —my]+
m; =0

S S ol my Jxln — my Jx{n — my] ...+ (10.1)

my=0m,=0
o oo

S D hymy,my,.omy 1x[n—myIx[n—m, .. x[n—my 1+ ...,
m=0my=0 my=0

where:
hylmy, m,,...., my] are the elements of the N-th order kernel of the system.

There is no loss of generality in assuming that the kernels are symmetric, i.e., the
value of hplmy, m,,...., my] is left unchanged by all the possible permutations of
the indices my, m,,...., my.

In practice the full Volterra series cannot be used because it is strictly infinite.
However, it can be applied by truncating it in two ways: limiting the order N of the
series, and limiting the number of terms in each summation to some finite number

P
DC Offset Part %(+ F——>)in

x[n] Linear Part

Quadratic Part

Figure 10.1. A Second-order Volterra Filter

10.3 A LMS Adaptive Second-order Volterra Filter

A most common and useful subset of the Volterra filter is the second-order Volterra
filter (Lau et al 1992, Leung et al 1992), shown in Figure 10.1. It uses the first
three terms of the Volterra series and embodies only a quadratic nonlinear part.

260 Principles of Adaptive Filters and Self-learning Systems

This second-order Volterra filter consists of a Direct Current (DC) offset part, a
linear part and a quadratic part as defined by Equation 10.2.

p—1 p-1 p-1
yinl=hy+ D hlmIxdn—ml+ >, > hlmy,mylxin—mlxln—m,]
m; =0 m;=0m,=0
or simply, (10.2)
Ynl= hy +a’ [n]x[n] +x" [n]B[n]x[n]
where:
hy is the scalar constant to make y[n] an unbiased estimate (removes the DC
component), while a[n] and B[n] are the linear and quadratic kernels,
respectively.

The input vector x[n] is the p-dimensional input vector,

x(n]
x[n] = x[n—1]

x[n—p+1]
The weight vector a = a[n] of the linear part is,

) m[0;n]

ay hl [L;n]
a= . =)

a, hlp—1;n]

The weight matrix B =B[n] of the quadratic part is,

7b00 by byp
B b|'0 b!1 b”?_1
_bp—IO bp—ll bp—lp—l
[1,[0,0;n] hy,[0,1;n] . [0, p—1Ln]
B hy[1,0;n] h1,1;n] . 1, p—1;n]
| p—10;n] Wlp-1Ln] .. hlp-1,p-Ln]

In the nonlinear equalisation problem, the Volterra filter is designed to
optimally minimise the difference between the desired signal d[n] and the Volterra

Adaptive Volterra Filters 261

filter output y[n]. Using the LMS algorithm the filter parameters are initially chosen
arbitrarily and subsequently updated per each input sample as follows,

holn+1]= hy[nl+pyeln]
a[ln+1]=a[n+uy, e[nlx[n]
B[n+1]=B[nl]+y, e[n]x[n]xT [n]

e[n]=d[n}-hy[n]-a” [n]x[n]-x" [n]B[n]x[n]
where:
Mo, U, 1y, are chosen small positive step sizes (DC, linear, quadratic parts).

e[n] = d[n]- y[n]is the estimation error and d[n]is the desired output value.

The constants g, &, and y, are small positive values that control the speed of
convergence and the steady-state and tracking properties of the filter. The gradients
of the mean square error function E{e*[n]} with respect to A, a and B for real
data are respectively,

V. =-2E{eln]}

V, = —2E{e[n]x[n]}

Vg = —2E{e[nIx[n]x" [n]}

The computational complexity of the LMS algorithm is approximately of the order
O{(3p? + 9p)/2}, where O{.} denotes “order of.”

10.4 A LMS Adaptive Quadratic Filter

For many applications the input signal is assumed to be zero mean, which allows
for the removal of the DC offset part that its associated with the update equation. In
this case an alternative more compact matrix notation for the second-order Volterra
or quadratic filter is often used as defined by Equation 10.3.

y[nl=h" [n]x[n] (10.3)

The vectors h[n] and x[n] in Equation 10.3 are defined as follows,

262 Principles of Adaptive Filters and Self-learning Systems

x[n]
Iy[0;n] x[n—1]
hl[P.—l;n] x[n_zpﬂl
m,[0,0;n] x[n]
h[n] = : ,and, x[n] = x[n]x-[n ~1]
hzf[t(g)[ll?O_,;i’]n] x[n] x[n-— p+1]
: x[n—1]x[n]
hz[P—l;p—l;n] -1
| *ln _ p+1] |

Given that the error is e[n] = d[n]—hT[n]X[n] , the LMS update equation for this
form is as defined by Equation 10.4.

h[n+1] =h[n]+e[n]Mx[n] (10.4)

where:
M is a diagonal gain matrix with 4, in the first p diagonal places and 4, in the

remaining diagonal places.

In Equation 10.4 x, and 4, are chosen to satisfy 0 < g, , 4y, < % ,where A,

is the maximum eigenvalue of the autocorrelation matrix of the vector x[n], i.e.,
E{x[n]x[n]"}.

10.5 A RLS Adaptive Quadratic Filter

It is possible to derive a compact exponentially weighted RLS algorithm for the
quadratic Volterra filter in a way that is similar to the derivation of the compact
linear case. Taking the compact notation used in Equation 10.3 the weighted error
function &(n) is defined by Equation 10.5.

Em) = 3 A (dk]-h" [n]x[k]) (10.5)
k=0

where:
A = 1is the weight factor.

&(n) is minimised via Equation 10.6.

Adaptive Volterra Filters 263

h[n]=C"' (n)P(n) (10.6)
where:

C(n) = iﬂ""‘x[k]xT[k]

k=0

P(n) = 3 A d[kIx[k]

k=0

Matrices C(n) and P(n) can be updated recursively by using Equations 10.7 and
10.8 respectively.

C(n) = AC(n—1)+x[n]x" [n] (10.7)

P(n) = AP(n—-1)+d[nlx[n] (10.8)

The explicit inversion of the matrix C(n) is avoided by using the matrix inversion

lemma as follows. Initialise h[0] to be the zero vector and set C-1(0) = 5_11,

where J is a small positive value. For n=1,2,...., compute the following in
sequence,

AC (n=1xn]

k(n) =
" 1+ 27X [(n1C 7 (= 1)x[n]

eln]=d[n]-h" [n-1]x[n]
h(n]=h[n—-1]+¢&[nlk(n)
Cl'm)=A"C ' (n-1)-k()x [n]IC (n-1)]

e[n] = d[n]-h'[n]x[n]

In both the compact LMS and RLS algorithms described above it is possible to
reduce the size of the vectors represented by Equation 10.3. There is a redundancy
in the Equation 10.3 due to the fact that the Volterra kernels are symmetric.
Consequently, it is possible to ignore the quadratic kernels either above or below
the diagonal of the quadratic kernel matrix without serious consequences. The
vectors h[n] and x[n] in Equation 10.3 can therefore be redefined as follows,

264 Principles of Adaptive Filters and Self-learning Systems
M [0;n]

h[p—1Ln]

h,[0,0;n]

h[n]= :

0, p—1;n]
hy (1,1;1]
hy(2,1;n]

| lp—1,p—1n]|
and,

x[n]
x[n—1]

x[n—p+1]
x*[n]

x[n]x(n—1]

x[n]x[n—p+1]
x*[n—1]

x[n—1]x[n—-2]

L x2[n—p+1]]

All the remaining equations for the LMS and RLS algorithms are as before.

10.6 Exercises
The following Exercises identify some of the basic ideas presented in this Chapter.
10.6.1 Problems

10.1. What is a key feature of the Volterra filter that allows for the use of
optimum filter theory?

10.2. What is the main disadvantage of the adaptive Volterra filter?

Adaptive Volterra Filters 265

10.3. Compute the gradients of the mean square error function, E{e’[n]}, with

respect to A, a and B, for the second-order Volterra filter in the case when
the data are complex.

10.4. What would the LMS weight update equations be for Problem 10.3?

11. Adaptive Control Systems

Classical control theory has mostly been concerned with the design of feedback
systems for time-invariant plants with known transfer functions (Levine 1996).
However, the assumptions of known mathematical models and time-invariance are
not valid for many modern control problems. For example, in robotics the dynamic
models vary with robot attitude and load variations. Chemical reactor transfer
functions vary as a function of reagent mix, catalyst and time. These types of
problems might be solved using a classical approach by designing a robust fixed
controller that ensures stability for all possible plant dynamics. However, this
approach may often be at the expense of suboptimal control behaviour. The other
approach is to use adaptive control algorithms that can learn from the plant input-
output behaviour and thereby develop on-line self-tuning controllers to improve the
closed loop performance. There are typically two main themes found in relation to
learning, or adaptive controllers. Systems may have unknown but constant
dynamics or the dynamics may be time-varying.

Many of the past algorithms and approaches in adaptive control have often been
somewhat ad hoc, lacking good systematic methods. They used and applied
methods gathered from a wide range of areas including nonlinear system theory,
stability theory, singular perturbations and averaging theory, stochastic control
theory, parameter estimation theory, and optimisation theory. Nevertheless, useful
adaptive control techniques are beginning to emerge after a long period of research
and experimentation. There is still much more work required on stability issues but
some important theoretical results have already been established. The field is now
sufficiently mature to have a number of adaptive regulator products appearing in
the market place.

In adaptive systems design it is desirable to find the simplest possible parameter
adjustment rules. However, these rules must generally be nonlinear rules. There are
two main methods for adaptive control depending on the parameter adjustment
rules, the direct and indirect methods. The direct methods have adjustment rules
that tell how the regulator parameters should be updated. Indirect methods, on the
other hand, update the process parameters and then the regulator parameters are
obtained from the solution of a design problem. One most important direct method
is the Model-Reference Adaptive System (MRAS) and one important indirect
method is the Self-Tuning Regulator (STR). Although different in detail these two
methods are closely related in principle.

268 Principles of Adaptive Filters and Self-learning Systems

11.1 Main Theoretical Issues

Because adaptive control systems are inherently nonlinear in their operation they
are complex and difficult to analyse. Because of this complexity it is necessary to
invoke various theories to achieve adequate design and analysis. These theories
include nonlinear systems, stability, recursive parameter estimation, system
identification, optimal control, and stochastic control theories.

Although it is possible to establish that a particular nonlinear system solution is
stable the same solution applied to other cases may not be stable. Since an adaptive
system is seeking and finding new solutions on an ongoing basis it is only in very
special cases that it is possible to speak of a “stable adaptive system” in a global
sense. Often the best that can be done is to find the stable equilibrium solutions and
then determining the local behaviours by linearization techniques.

A typical problem in adaptive control is to design a parameter adjustment rule
that is guaranteed to result in a stable closed loop system using a range of
theoretical considerations. There are two separate problems to consider. In a tuning
problem it is assumed that the process to be controlled is constant but with
unknown parameters. In an adaptation problem the parameters are changing. The
tuning problem is much easier to deal with since the parameter convergence has a
final endpoint, while the adaptation problem has not. The estimation algorithms for
tuning and adaptation are similar in form but they are applied differently. A
common parameter estimation algorithm form is defined by Equation 11.1.

6(1+1) = 6(r) + P()p(1)(y(t +1)— 9" (1)0(1)) (11.1)

where:
é(t) = estimate of the parameter vector at time .
@(t) = vector of functions of measured signals in the system (regressors).
y(t +1) = measurement signal at time (#+1).
P(t) = gain matrix (also governed by a difference equation).

In the tuning case the gain matrix P(f) goes to zero as t increases, whereas in the
adaptation case it is not allowed to converge to zero.

An important theoretical consideration for parameter convergence is to establish
the conditions under which the recursive parameter estimation process will work.
The conditions must provide a persistent excitation or sufficient richness in the
input signal to ensure that the process dynamics can be captured.

Many adaptive algorithms rely on the fact that the parameters change more
slowly than the state variables of the system. When investigating the behaviour of
the states the parameters are seen as constants. Therefore they are often replaced
with their mean values. In Equation 11.1, this is the same as replacing the term

P(z)qo(t)(y(z+1)—qu (l)é(t)) with its mean value. The rate of adaptation of the

parameters can be controlled by the selection of a gain constant. The averaging
method works best when a small adaptation gain is used. In many cases the

Adaptive Control Systems 269

difference between the true and averaged equations is proportional to the
adaptation gain. It is believed that these types of averaging methods may eventually
lead to a unification of analysis of adaptive systems.

It is possible to consider a unified theoretical structure for adaptive systems by
using nonlinear stochastic theory in which the system and its environment are
described by a stochastic model. In this structure the parameters are introduced as
state variables and their uncertainty is modelled by stochastic models. According to
this model an unknown parameter constant can be modelled by the differential
equation d@/dt=0 or the equivalent difference equation &(¢+1)=6(t) with an

initial probability distribution that models the parameter uncertainty. Parameter
drift is described by simply adding random variables to the right sides of these two
equations. Next, a rule is developed to minimise the expected value of a loss
function, which is made to be a scalar function of the states and controls.

It is difficult to find a control that minimises the expected loss function. If it can
be assumed that a solution exists it is possible to formulate the optimal loss
function by using dynamic programming. Dynamic programming involves solving a
functional equation called the Bellman equation. The optimal regulator formed
from stochastic control theory can be represented by Figure 11.1 (Astrém and
Wittenmark 1995).

Hyperstate
Calculation of
Hyperstate
Estimator
", —— Nonlinear | g\ Nonlinear —e——> Output y
Control Law u Process

Regulator

Figure 11.1. Adaptive Regulator

The controller is composed of a nonlinear estimator and a feedback regulator. The
conditional probability distribution of the state (the hyperstate) is generated from
the measurements by the estimator. The nonlinear feedback regulator maps the
hyperstate into the space of control variables. The regulator’s nonlinear function
can be computed off-line because it changes more slowly, whereas the hyperstate
must be up-dated on-line. The hyperstate is usually a high dimensional quantity,
which allows a structurally simple control solution. However the disadvantage is
that updating of the hyperspace can require the solution of a complex nonlinear
filtering problem. The advantage of this approach is that there is no distinction
between parameters and the other state variables, which means that the regulator
can handle very rapid parameter changes. The control attempts to drive the output
to its desired value and it also introduces probing perturbations when the
parameters are uncertain. Thus, the optimal control automatically gives a good

270 Principles of Adaptive Filters and Self-learning Systems

balance between maintaining adequate control and small control errors. This
control property is called dual control, which inherently improves the quality of the
estimates and the future controls.

Most work on stability has been done in relation to the MRAS. A typical system
may be composed of a linear system with a nonlinear feedback because this is a
classical configuration for which stability results are available. Here, it can be said
that the closed loop system is stable if the linear part is strictly positive real and the
nonlinear part is passive.

11.2 Introduction to Model-reference Adaptive Systems

The MRAS is one of the main adaptive control approaches. When the system
specifications are given in terms of a reference model that tells how the process
output should ideally respond to command signals it is then possible to use the
MRAS. Figure 11.2 shows the block diagram of Whitaker’s original MRAS
(Whitaker et al 1958). The original MRAS was derived for the servo problem in
deterministically continuous-time systems. Since then the theory has been extended
to discrete-time systems and systems with stochastic disturbances.

Model

Ym is the Model Output

Adjustments

Outer Control Loop

Regulator
Parameters

% Regulator Plant —.% Output y
u

Inner Control Loop

Figure 11.2. Model-Reference Adaptive System

The MRAS regulator has an inner and outer loop. The inner loop is an ordinary
feedback loop composed of the process and the regulator. The outer loop is also a
regulator loop, it adjusts the parameters in such a way as to make the error e
between the process output y and the model output y, small. It is a nontrivial
problem to formulate a stable adjustment mechanism for the MRAS that is
guaranteed to reduce the error to zero.

There are three basic approaches to the analysis and design of a MRAS. These
are the gradient method, Lyapunov functions and passivity theory. Whitaker’s

Adaptive Control Systems 271

original MRAS was based on the gradient approach and the assumption that the
parameters change more slowly than the other wvariables in the system.
Unfortunately, this gradient approach will not necessarily guarantee a stable closed
loop system for models based on both poles and zeros. It was because of this that
Lyapunov’s stability theory and the passivity theory was introduced to modify the
adaptation mechanism to ensure stability (Whitaker ef al 1958).

The general MRAS problem is called the model following problem and it can
be stated as follows. Given a system with adjustable parameters as shown in Figure
11.2 the model-reference adaptive method provides a method for the adjustment of
the parameters such that the closed loop transfer function will be close to some
prescribed model. Perfect model following occurs only when the error is zero for
all command signals. In practice the issue becomes one of how small the error can
be made.

11.2.1 The Gradient Approach

In the original MRAS idea the so called MIT adjustment rule was used. The MIT
rule is so called because it was originally developed at the Massachusetts Institute
of Technology (MIT) and it is based on a gradient approach as defined by Equation
11.2.

e _ _ 95(9)=_ eﬁ
dt 20 4 20

(11.2)

where:
6(t) = the parameter vector at time .

e = model error.
y= adaptation rate parameter (step size).

1 .
£O)= Eez = error criterion.

The parameter adjustments are a function of the derivatives of the error with
respect to the adjustable parameters 6. The parameters are incrementally adjusted
. TP . 1

in the opposite direction to the gradient of half the error squared, £(8) =Eez. In
this way the error between the process outputs and the reference model slowly
approaches zero. If it can be assumed that the parameters € change more slowly
than the other variables in the system, then it can be assumed that @ is constant
when computing the derivative de/d@. The MIT rule, Equation 11.2, can be
interpreted as a linear filter for computing the sensitivity derivatives of the error
with respect to the adjustable parameters. This filter is derived from the process

inputs and outputs and includes a multiplier and an integrator as represented in
Figure 11.3 (Astrom and Wittenmark 1995).

272 Principles of Adaptive Filters and Self-learning Systems

Integrator

/4

N

Figure 11.3. MRAS Error Model

A simple example can be used to illustrate how the MRAS attempts to adjust
the parameters so that the correlation between the error e and the sensitivity
derivative becomes zero. Assume that it is desired to adjust a simple feedforward
gain for a system that has a model transfer function G,,(s) = 6,G(s), where 6, is a

known constant and G(s) is a known transfer function. The MRAS setup for this
example is shown in Figure 11.4 (Astrom and Wittenmark 1995).

Model

Ym

6,G(s)

Integrator

e

N

Process

G(s)

Figure 11.4. MRAS Feedforward Gain Adjustment using the MIT Rule

The error e is defined by Equation 11.3.
e=y=y, =[G(PO-G, (p)u. =G(pI6-6 u,

where:

u, = the command signal.
¥,, = the model output.

y = the process output.

d . .
p= T the differential operator.
t

The sensitivity derivative is defined by Equation 11.4.

(11.3)

Adaptive Control Systems 273

2o =Gphu, =1t (11.4)

For this example the MIT rule reduces down to Equation 11.5.

do(t) Ve

% —
dr 4, YeYm (11.5)

The fixed constant &, in Equation 11.5 has been included in the variable . The rate

of parameter change must be made proportional to the product of the error and the
model output as shown in Figure 11.4. In this very simple example the sensitivity
derivatives can be computed exactly. In more complex problems it is often
necessary to use approximations for the sensitivity derivatives.

11.2.2 Least Squares Estimation

Equation 11.2 represents a simple estimator in which the parameters are adjusted
by following the negative gradient of 2. The ultimate purpose of this is to reduce
the squared error and consequently the error which indicates that the system has
converged to a solution. This approach stems from the Least Squares Estimation
(LSE) method, which along with its variants forms much of the basis to adaptive
learning rules. In the context of the adaptive control problems the LSE method can
be illustrated as follows. Assume that a process can be described by the difference
equation defined by Equation 11.6.

y+D)=6y@)+u() (11.6)

where:
6, is an unknown parameter.

The predicted output y at time #+1 can be estimated based on the estimate & of 6,
and the current output y(#) via the model defined by Equation 11.7.

YE+1)=0y(t)+u() (11.7)

The least squares error or loss function is based on data up to and including ¢ and is
defined by Equation 11.8.

£ =L 3 ek (11.8)
2 k=0
where:

e(t) = y(1)-5(t) = 6, y(t 1) =Byt =1) = y(O) —u(t =) - &t - 1)
If Equation 11.8 is differentiated with respect to 6 and then set to equal zero the

least squares estimate of the unknown parameter é(t) is determined, as defined by
Equation 11.9.

274 Principles of Adaptive Filters and Self-learning Systems

iy[k (ylk + 11— ulk])

o) = . (11.9)
Zy (k]
k=0

Equation 11.9 represents the best estimate in the least squares sense of the unknown
parameter given that the process is described by Equation 11.6.

11.2.3 A General Single-input-single-output MRAS

A model reference control law based on the gradient approach can be derived for a
general Single-Input-Single-Output (SISO) system. The system model is described
by Equation 11.10 and the desired system is characterised by Equation 11.11.
Ay(t) = Bu(t)
or (11.10)
Ay[n]= Bul[n]
where:
u = the control signal as a function of time.
= the output signal as a function of time.
A and B are polynomials in terms of differential or shift operators.

The order of A is greater than or equal to the order of B.
A is monic.

AnYm = B, (11.11)

where:
=the command signal as a function of time.

¥, = the model output as a function of time.

The appropriate linear closed loop control structure for this model is shown in
Figure 11.5. Here, the general control law can be described by Equation 11.12.

Ru="Tu.—Sy (11.12)
where:
u, =the command signal.
y =the model output.

R, S and T are polynomials in terms of differential or shift operators.

Adaptive Control Systems 275

Regulator Process

¢ Ru = Tuc - Sy E y

x :

Figure 11.5. Closed Loop with Linear Controller

u

This control law represents a negative feedback with transfer operator —S/R and a
feedforward with the transfer operator 7/R. Combining Equations 11.10 and 11.12
gives Equation 11.13 for the closed loop system.

(AR+BS)y = BTu, (11.13)

In order to obtain the desired closed loop response, A,, must divide AR+BS. The
process zeros, given by B = 0, will also be closed loop zeros unless they are
cancelled by corresponding closed loop poles. Unstable or poorly damped zeros
cannot be cancelled, therefore the polynomial B is factored as B = B B~ where B
is monic and contains those factors that can be cancelled, and B~ the remaining
factors of B. The zeros of BT must be stable and well damped. The Diophantine
equation is the characteristic polynomial of the closed loop and is defined by
Equation 11.14.

AR+BS =B*A)A, (11.14)

It follows that B¥ divides R hence R = B*R,. Dividing Equation 11.14 by B gives
Equation 11.15.

AR +B S =A)A, (11.15)

The relation, in Equation 11.13, between the command signal u,. and the process
output y should be equal to the desired closed loop response given by Equation
11.11. The specifications must also be such that B~ divides B,, hence B,, = B_B;”
and T = AOBm In order that there exist solutions to Equation 11.15 that give a

proper or causal control law it is necessary that,

order Ay =2 order A —order A,, — order Bt -1,

and,
order A, — order B = order A —order B

The closed loop control system is described by Equations 11.16.

BT AT

=———u,, and, u=——-—u, (11.16)
AR+ BS AR+ BS

y

The error between the system and the model output is defined by Equation 11.17.

276 Principles of Adaptive Filters and Self-learning Systems

€=y~ Ym (11.17)

The parameter adjustment law is determined from the sensitivity derivatives. The
sensitivity parameters are the partial derivatives of the error with respect to the
regulator parameters R, S, and T as defined by Equations 11.18 to 11.20.

P) BTAp*™ Bp* .
ez—PZ ==y =1k (11.18)
dr; (AR+BS) AR+BS

de BTBp”™ Bp™! ,
— = U=, l=1,...., 11.19
ds; (AR+BS) AR+BS” ! L
& B m—i

) 4 =1,...,m (11.20)

—=—U,, I
dt; AR+BS

where:
r;,s;,t; = coefficients of polynomials R, S, and T respectively.

127

k,q,m = order of polynomials R, S, and T respectively.
d . .
p= d—, the differential operator.
t
Once these sensitivity derivatives are computed for specific polynomials A, B, R, S,

and T the parameter adjustment equations are defined by Equations 11.21 to
(11.23).

dt 4 r at.zb
d5®) __, % 11.22
dt s; (11.22)
AW __ 0 11.23
dt ¥ t; (11.23)

i

.. . 1 .. .
The MIT rule optimises the loss function, £(8) = 5(32, however it is possible to

extend it to optimise a more general loss function. This can be done by firstly
specifying a model and a regulator with adjustable parameters. Then a parameter
adjustment law is formed by computing the gradient of the loss function with
respect to the parameters making the rate of change of parameters in the opposite
direction to the gradient. Although this is straightforward in principle, in practice it
may be complicated to do. One problem is that to compute the sensitivity
derivatives it is necessary to know the model parameters. As this is not realistic it is

Adaptive Control Systems 277

necessary to make some approximations such as replacing the process parameters
with their estimates.

The MIT rule is basically a gradient procedure whose rate of descent is
determined by the user chosen parameter ¥ and the magnitude of the command
signal. Modified gradient rules can be formed that do not depend on the magnitude
of the command signal. One way to do this is to introduce a normalisation as
defined by Equation 11.24.

%
de(r) ——y 0
dt N ﬁ T & (11.24)
20) \ 06
where:
a>0

The parameter a is arbitrarily introduced to avoid a possible division by zero.

In control problems with significant measurement noise it may be desirable to
have the parameter adjustment rate depend on the magnitude of the command
signal for small levels but not for higher ones. This effect can be achieved by
introducing a saturation function f{.) as defined by Equations 11.25 and 11.26.

7€
de) 00
=rfl—————F8 (11.25)
dt . &T&
20) | 96
-B. x<-pB
feB)=1 x. |1<p (11.26)
B, x>p

11.2.4 Lyapunov’s Stability Theory

In the gradient methods of parameter adjustment rules the outer loop of the MRAS
is first designed and then shown to make the model error go to zero. Another
approach to the problem is to develop a rule where the error is guaranteed to go to
zero by invoking stability theory, and in particular Lyapunov’s stability theory.

Lyapunov stability theory is a direct method of investigating the stability of a
solution to a nonlinear differential equation. The key idea is that the equilibrium
will be stable if a real function can be found on the state space whose equal level
curves enclose the equilibrium such that the derivative of the state variables along
the curves always points toward the interior of the curves.

278 Principles of Adaptive Filters and Self-learning Systems

Xy /N

&

V(x) = Constant

N
/
X

Figure 11.6. Lyapunov’s Stability Method

For a state vector x of dimension n let the differential equation be defined by
Equation 11.27.

x=fx0, f0,0)=0 (11.27)

Lyapunov’s stability theorem applied to Equation 11.27 is as follows. Let the

Rn+1

function V: — R satisfy the conditions,

1. V(,)=0forall teR.

2. Vis differentiable in x and ¢.

3. Vis positive definite, i.e., V(X,t) = g("x") > (0 where,

g:R — R is continuous and increasing with lim g(Xx) = oo
X—>o0

A sufficient condition for uniform asymptotic stability of the system defined by

Equation 11.27 is that the function V(x,t) is negative definite, as defined by
Equation 11.28.

V(X,t)=fT(X,t)gradV+i)—‘t/<0,for x#0 (11.28)

If it is assumed that all state variables of a system are measured, the Lyapunov
stability theorem can be used to design adaptive control laws that guarantee the
stability of the closed loop system. A simple example to illustrate the basic idea is a
first order MRAS where the parameters are known. The model equation is defined
by Equation 11.29 and the desired system is characterised by Equation 11.30.

dy

— =—ay+bu (11.29)
dt

Adaptive Control Systems 279

7_ QY + byt (11.30)

If the parameters are known, perfect model-following can be achieved with the
controller defined by Equation 11.31.

u(r) =tou, (1) —soy(t) (11.31)
where:
bm
tg =——
07
s = amb—a

The feedback is positive if a,, < a, i.e., if the desired model is slower than the
process.

A procedure to find the appropriate parameter gains f, and s, for a model-
reference system when the parameters a and b are not known is as follows. The
error is as before, e =y—y,,. Taking derivatives of the error equation and using

Equations 11.29 and 11.30 and some other considerations to eliminate the
derivatives of y and y,,, results in Equation 11.32 (Astrdm and Wittenmark 1995).

de
—=-a,e+(a

7 n—a—bsy)y+(bty—b,)u, (11.32)

To construct the parameter adjustment rules that will drive the parameters #; and s,
to the desired values it is necessary to first identify a suitable Lyapunov equation,
which surrounds the equilibrium point, as defined by Equation 11.33.

Vie,ty,sy) =l e’ +L(bs0 +a—am)2 +L(bt0 —bm)2 (11.33)
2 vb vb

The Lyapunov Equation 11.30 is zero when e is zero and the controller parameters
are equal to the optimal values. The derivative of Equation 11.33 is defined by
Equation 11.34.

d_V:g£+l(bso+a—am)ﬂ+l(bfo_bm)%
dt dt y ey dt
ca P+ sy ra—a | L0y |+ (11.34)
m y 0 " dt .
1 dt,
=(bty-b)| =2+ yu_ e
7(0 m)(dt 7 [4]

If the parameters are updated as defined by Equations 11.35 to 11.36 then Equation
11.37 follows.

280 Principles of Adaptive Filters and Self-learning Systems

iy =—yu_e

dt ¢ (11.35)
d
o — _yye (11.36)
dt
av)
av e 11.37
5 m ()

Therefore, since the function V will decrease so long as the error is not zero it can
be concluded that the error will go to zero. This does not mean that parameter £
and s, will necessarily converge to the equilibrium values. To achieve parameter
convergence more conditions need to be imposed. This rule is therefore similar to
the MIT rule except that the sensitivity derivatives are replaced with other
functions. The adjustment rules defined by Equations 11.35 to 11.36 are very
similar to the MIT rule equations and they can both be represented by Equation
11.38.

%{9: ype (11.38)

For the Lyapunov rule (p:[—uc y]T and for the MIT rule

1
= [—uc y]T, which is the negative value of the gradient of the loss

ptay
function .
This example demonstrates that stable parameter adjustment rules can be
obtained for systems in which all the state variables are measured.

11.3 Introduction to Self-tuning Regulators

A Self-Tuning Regulator (STR) is a little different to the MRAS in that the
regulator parameters are obtained from the solution of a design problem after the
process parameters are updated. Figure 11.7 (Astrom and Wittenmark 1995) shows
a typical block diagram of a STR. The STR is based on the idea of separating the
task of estimating unknown parameters from the design of the controller. A
recursive estimation method is used to estimate the unknown parameters on-line
and then these are used to design the control signal. The estimated parameters are
taken as true with no account taken of their uncertainties.

There are two loops in the STR, an inner and an outer loop. The inner loop
consists of the process and an ordinary linear feedback regulator. The outer loop
consists of a recursive parameter estimator and a design calculation. To produce
good estimates it is often necessary to introduce perturbation signals. For the sake
of simplicity this mechanism is not shown in Figure 11.7. The system in Figure

Adaptive Control Systems 281

11.7 can be seen as an automation of process modelling and design in which the
process model and control design are updated during each sampling interval. STRs
were originally developed for sampled data systems, but continuous time and
hybrid systems have also been developed. The STR is so called because the
controller automatically tunes its parameters to obtain the desired properties of the

closed loop system.
Process Parameters

Slow Update Loop

Design Estimation

Regulator
Parameters

.
¢ Regulator o Process ®—> Output y

u
P Fast Control Loop

Figure 11.7. Self-tuning Regulator

The block in Figure 11.7 labelled “Design” performs an on-line solution to a
design problem for a system with known parameters once they are estimated. When
the parameters of the transfer function of the process and the disturbances are
estimated first, before the design, this leads to what is called an indirect adaptive
algorithm. It is often possible to reparameterize the process so that the model can
be expressed in terms of the regulator parameters directly, therefore obviating the
need for the “Design” block. This is then called a direct adaptive algorithm.

Many different estimation methods, including stochastic approximation, least
squares, extended and generalised least squares, instrumental variable, and
maximum likelihood methods, can be used for the parameter estimation. Given the
parameters, many different control design methods can be used, including minimum
variance, linear quadratic, pole placement, and model-following methods. Different
combinations of estimation and design methods will lead to STRs with different
properties. The methods chosen really depend on the specifications of the closed
loop system.

The design of indirect and direct self-tuning regulators can be illustrated by
using a SISO model for a known system. The single-input-single-output process can
be described by Equation 11.39.

A(2)y() = B(2)u(®)+ C(z)e(r)
A"y =B @ Hu®+C (27 e) (11.39)
A"(2)=7"A(z™"), n=orderof polynomial A.

282 Principles of Adaptive Filters and Self-learning Systems

where:
u = the input signal.

y = the output signal.
{e(t)} = sequence of independent, equally distributed Gaussian variables.

A, B, and C are polynomials in terms of forward shift operator z.
Order of A =order of C.

Order of A—orderof B=d,.

11.3.1 Indirect Self-tuning Regulators

The most straightforward way to build a self-tuning regulator for a SISO process is
to estimate the parameters of the polynomials A, B, and C and then use the
estimates to design the regulator. For the process model described by Equation
11.36 let the desired closed loop response be defined by Equation 11.40.

A, (2)y@) = B, (2u, (1) (11.40)
The controller is defined by Equation 11.41.
R(2u(t) =T (2)u. ()= S(2) y(?) (11.41)

The solution to the Diophantine equation is R and S as defined by Equation 11.42,
where the conditions defined by Equations 11.43 to 11.45 hold.

AR, +B~S = AyA,, (11.42)
B=B'B", and, B, =B B,, (11.43)
R=B'R, (11.44)
T= AOB"n (11.45)

Given the specifications in the form of a desired closed loop pulse transfer operator
B,, / A,, and a desired observer polynomial A, proceed with the following design

steps (Astrdm and Wittenmark 1995).

1. Estimate the coefficients of the polynomials A, B, and C in Equation 11.39
recursively using the least squares method or some other method.

2. Replace A, B, and C with the estimates obtained in Step 1 and solve
Equation 11.42 to obtain Ry and S. Calculate R by Equation 11.44 and T
by Equation 11.45.

3) Calculate the control signal from Equation 11.41

Adaptive Control Systems 283

This algorithm has some problems, which include,

1. Either the orders or at least upper bounds of the orders of the polynomials
in Equation 11.39 must be known.

2. Stability of the closed loop system must be guaranteed.

3. The signals need to be persistently exciting the system to ensure parameter
convergence.

11.3.2 Direct Self-tuning Regulators

The design calculations for indirect self-tuning regulators may often be time-
consuming and their stability properties may be difficult to analyse. However, if the
specifications are made in terms of the desired locations of the poles and the zeros
the design step becomes trivial and the model is effectively reparameterized. If the
Diophantine Equation 11.42 is multiplied by y(¢) and the model of Equation 11.39
is used the result is Equation 11.46.

AOAmy(t) = RlAy(t)+B_Sy(t)
=R Bu(t)+ B Sy(t)+ R,Ce(t) (11.46)
= B~ (Ru(r) + Sy(t))+ R,Ce(r)
Equation 11.46 is now a process model that is parameterized in terms of B~, R, and
S. Clearly, the estimation of these parameters gives the solution to the regulator
polynomials R and S directly. The control signal is computed from Equation 11.41
together with Equation 11.45. Equation 11.46 is problematic if B~ is not constant
because it then becomes nonlinear.

The problem can be parameterized another way by writing Equation 11.46 as
defined in Equation 11.47.

ApAny (1) = Ru(t) + Sy(t) + R Ce(1) (11.47)
where:
R = B™R, polynomial R is monic but R is not.
S=BS.
Rand S have a common factor representing damped zeros, which should be
cancelled before calculating the control law.

An algorithm for a direct self-tuning regulator based on Equation 11.47 and the
analysis above is as follows (Astrom and Wittenmark 1995),

1. Estimate the coefficients of the polynomials Rand S in the Equation
11.47.

284 Principles of Adaptive Filters and Self-learning Systems

2. Cancel possible common factors in Rand S to obtain R and S.

3. Calculate the control signal by using Equation 11.41 and the results of
Step 2.

4. Repeat Steps 1, 2, and 3 for each sample interval.

This algorithm based on the rearranged Equation 11.47 avoids the nonlinear
estimation problem, but it does involve the estimation of more parameters
compared to using Equation 11.46. This means that Step 2 may be difficult since it
involves the estimation of the parameters of polynomial B~ twice.

In the special case where B~ is constant the calculations are simpler. If all the
zeros can be cancelled and B~ = b, Equation 11.46 can be written as Equation
11.48 and the desired response as Equation 11.49.

AyA, y(t) = by (Ru(t) + Sy(1))+ R,Ce(t) (11.48)
A, v, (t) =byTu,(t) (11.49)
where:
Order A =n.

Ag divides T.

The error is then defined by Equation 11.50.

EB)=y®)—y,,®)

RC (11.50)

__b (Ru(t) + Sy(t) = Tu (1)) +

= e(t
AOAm ()

m

Suffice it to say that there are a number of different cases based on these new
equations that may be considered.

11.4 Relations between MRAS and STR

MRAS theory was spawned from a deterministic servo problem and the STR from
a stochastic regulation problem. Although the MRAS and STR originated from
different problems they are nevertheless closely related. They both have an inner
and out control loop where the inner loop is an ordinary regulator feedback loop in
both cases. This process regulator has adjustable parameters set by the outer loop,
which bases its operation on feedback from the process inputs and outputs. The
differences are in the methods used for the design of the inner loop and the
techniques used to adjust the parameters in the outer loop. In the MRAS in Figure
11.2 the regulator parameters are updated directly and in the STR in Figure 11.7
they are updated indirectly via parameter estimation and design calculations. This is
not really a fundamental difference because the STR may be modified to make the

Adaptive Control Systems 285

regulator parameters be updated directly by a reparameterization of the process
parameters to the regulator parameters.

11.5 Applications

Since the mid 1950s there have been a number of applications of adaptive feedback
control. Initially the implementations were analogue but since the 1970s and the
advent of the minicomputer, and subsequently microprocessors, applications have
increased significantly. Adaptive control techniques only started to have real impact
in industry since the 1980s. The areas of application include military missiles and
aircraft, aerospace, process control, ship steering, robotics, and many other
industrial control systems. In many applications adaptive control has been found to
be useful whereas in others the benefits are minimal. Quite often a constant-gain
feedback system can do just as well as an adaptive regulator without the added
complexity of the adaptive structure. It is not possible to judge the need for
adaptive control from the variations of the open loop dynamics over the operating
range. It is necessary to test and compare solutions. This is quite easy to check as it
often requires minimal effort to apply a general-purpose adaptive regulator to a
problem to see if some advantage may be possible. Nevertheless, it is worthwhile
evaluating a constant-gain feedback solution first before spending time trying an
adaptive solution.

Adaptive control is not a completely mature technology. Adaptive control
systems are not panaceas to difficult control problems but are still used in
combination with other more established and proven control methods. Real
applications still require many fixes to ensure adequate operation under all possible
operating conditions even though the main principles are straightforward. It is
necessary to introduce adequate stability mechanisms and often quite complex
supervision logic to mitigate any possible disastrous conditions.

PART V. NONCLASSICAL ADAPTIVE
SYSTEMS

There are at least three main types of nonclassical processing systems which do not
rely on linear modelling techniques. These are Artificial Neural Networks (ANN),
so called Fuzzy Logic (FL) and Genetic Algorithms (GA). Some forms of ANNs
are similar to the classical adaptive systems in that they have a set of parameters
which are optimised based on the minimisation of a scalar error function. Fuzzy
logic systems on their own are not strictly adaptive but they can be integrated with
ANNS to produce hybrid adaptive systems. Genetic algorithms are a little different
in their form and function nevertheless they have various types of adaptive
mechanisms, based on analogy with evolutionary processes, designed to search for
optimal solutions to learning or optimisation problems.

ANNSs are characterised by their massively parallel computing architecture
based on brain-like information encoding and processing models. They come as
supervised and unsupervised training or learning types. The supervised types have a
desired output behaviour that the ANN tries to learn as it is exposed to input
training data. The ANN then tries to generalise that behaviour after training, not
completely unlike classical adaptive filters do. The network learning is inherent in
the weights (analogous to adaptive filter coefficients), which continue to change as
training or adaptation proceeds. Although the ANN does learn automatically and
directly from the training data there are issues related to network size and structure
that need to be considered by a designer to avoid over training and under training
due to inadequate interpolation between training samples. However, there are some
principles based on Statistical Learning Theory (SLT) and other similar theories
that can help estimate suitable network size and structure based on finite training
data for some types of ANNs (Cherkassky and Mulier 1998, Vapnik 1998, 2001).

FL effectively mimics human control logic but was initially conceived as a
better method for sorting and handling data. Its main application has been for
complex control applications since it uses an imprecise (fuzzy) but very descriptive
language to deal with input data more like a human operator does and it is very
robust and forgiving of operator and data input. FL is based on the idea that people
do not require precise, numerical information input, yet they are still capable of
highly adaptive control functionality. Therefore, it is reasonable to assume that if
feedback controllers could be programmed to accept noisy, imprecise input, they
may be much more effective and perhaps even easier to implement. A FL model is

288 Principles of Adaptive Filters and Self-learning Systems

empirically-based on a designer’s experience rather than on his/her technical
understanding of the system and therefore the FL design process fills in the
required control structure and refinements to ensure stability and satisfactory
operation.

Genetic programming (GP) is a systematic machine learning method
for directing computers to automatically solve algorithmic problems. It starts from
a high-level statement of what needs to be achieved and from that automatically
creates a computer program to solve the problem via a complex search in the
solution space. GP is a derivative of Genetic Algorithms (GAs), which represent a
learning or adaptation method that is analogous to biological evolution and can be
described as a kind of simulated evolution. The Darwinian principle of natural
selection is used to breed a population of improving solutions over many
generations. Starting with a collection or initial population of say computer
programs, the search for an acceptable program solution proceeds from one
generation to the next by means of operations inspired by biological processes such
as mutation and sexual recombination. GAs are often used to solve complex
optimization problems, which are either very difficult or completely impractical to
solve, using other methods. As GP requires a minimal input by a designer to
produce very good automated solutions it offers a possible way of identifying and
investigating what might be the crucial aspects of “intelligence” in
design. Although the GP design intelligence is mostly inherent in the human
designer’s contribution to the problem setup it may also have something to do with
the way the GP search proceeds toward the solution.

12. Introduction to Neural Networks

The material in this Chapter has been summarised from the book “Neural Networks
for Intelligent Signal Processing” (Zaknich 2003a), which has a general
introduction to Artificial Neural Networks (ANN). Most emphasis is placed on the
Multi-Layer Perceptron (MLP), as the generic ANN, because it has strong
similarities with the other adaptive filters described in this book in relation to
general structure, principles of operation and adaptation rules.

12.1 Artificial Neural Networks

The human brain computes in an entirely different way to the highly successful
conventional digital computer, yet it can perform very complex tasks relatively
quickly and very efficiently. The brain is a highly complex, nonlinear and parallel
computer that consists of approximately 10!0 neurons having over 6 x 1013
interconnections. Neural events occur at millisecond speeds whereas events in
conventional computers occur in fractions of nanoseconds. The brain however, can
make up for this slow speed through its massive number of neurons and
interconnectivity between them as compared to the computer’s. The computer has
fewer elements by about five orders of magnitude and very much less
interconnectivity between them. This number is growing quickly with new
technology, and it is estimated that by about the year 2030 the numbers of elements
might be comparable to that of the brain (Kurzweil 1999). However, it is not yet
clear how these elements might be exploited to achieve similar processing power to
that of the brain. This is still a very open research question.

The brain, for example, can recognise a familiar face embedded in an
unfamiliar scene in approximately 100-200 ms, whereas a conventional computer
can take much longer to compute less difficult tasks. This recognition of the brain’s
power has led to the interest in the development of ANN technology. If it is
possible to eventually build ANN based machines with as little as only 0.1% of the
performance of the human brain they will be extraordinary information processing
and controlling machines. Current ANN machines much less powerful than this can
still perform useful engineering tasks which are difficult to achieve with other
technologies.

290 Principles of Adaptive Filters and Self-learning Systems

12.1.1 Definitions

ANNs represent an engineering discipline concerned with nonprogrammed
adaptive information processing systems that develop associations (transforms or
mappings) between objects in response to their environment. That is, they learn
from examples. ANNs are a type of massively parallel computing architecture
based on brain-like information encoding and processing models and as such they
can exhibit brain-like behaviours such as,

1. Learning.

2. Association.

3. Categorisation.

4. Generalisation.

5. Feature Extraction.

6. Optimisation.
Given noisy sensory inputs, they build up their internal computational structures
through experience rather than preprogramming according to a known algorithm. A
more formal definition of an ANN according to Simon Haykin (Haykin 1999) is,

“A neural network is a massively parallel distributed processor that has a

natural propensity for storing experiential knowledge and making it available

for use. It resembles the brain in two respects,

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to

store knowledge.”

Usually the neurons or Processing Elements (PEs) that make up the ANN are all
similar and may be interconnected in various ways. The ANN achieves its ability to
learn and then recall that learning through the weighted interconnections of those
PEs. The interconnection architecture can be very different for different networks.

Architectures can vary from feedforward, and recurrent structures to lattice and
many other more complex and novel structures.

12.1.2 Three Main Types

Broadly speaking there are three main types of ANN based on the learning
approach,

1. Supervised learning type.

Introduction to Neural Networks 291

2. Reinforcement learning type.
3. Self-organising (unsupervised learning) type.

There are also other types, and even within these three main types there are
numerous variants. Supervised learning ANNs are trained to perform a task by a
“teacher” repeatedly showing them representative examples of the inputs that they
will receive, paired with the desired outputs. During each learning or training
iteration the magnitude of the error between the desired and the actual network
response is computed and used to make adjustments to the internal network
parameters or weights according to some learning algorithm. As the learning
proceeds the average error is gradually reduced until it achieves a minimum or at
least an acceptably small value. This is very similar to the way that some of the
linear and nonlinear adaptive filters previously covered in this book work, and they
share the same framework as shown in Figure 12.1.

Desired Response Error
dy (x) r
Vi (%)
X; — ANN
Input ANN Response

e (X)=dp (%) -y (%)

Figure 12.1. A Supervised Learning Scheme

ANNSs that learn by reinforcement do not need to compute the exact error
between the desired and the actual network response; rather for each training
example the network is given a pass/fail signal by the “teacher.” If a fail is assigned
the network continues to readjust its parameters until it achieves a pass or continues
for a predetermined number of tries, whichever comes first. A new training
example is then presented to the ANN and so on until a satisfactory general
learning has been achieved. Reinforcement learning is sometimes thought of as a
special type of supervised learning (Sutton and Barto 1999) and it has some loose
similarities with Genetic Algorithms (GAs).

Self-organising ANNs take examples of the inputs and form automatic inter-
groupings or clusterings of the input data based on some measure of closeness or
similarity. It is then sometimes possible to assign some meaning to those clusters in
proper context with the nature of the data and problem involved. The input data is
usually represented in vector form so that the measures of closeness can be
computed using a vector norm such as the Euclidean norm, defined previously by
Equation 2.35. A good overview of up to date advances in unsupervised learning
can be found in (Hinton and Sejnowski 1999).

292 Principles of Adaptive Filters and Self-learning Systems

12.1.3 Specific Artificial Neural Network Paradigms

An ANN’s learning recall mechanism can vary based on the design; it can have
either a feedforward recall or feedback recall mechanism. Examples of these
supervised and unsupervised ANNs categorised according to their learning recall
mechanism are listed in Table 12.1. Some of the more historically prominent ANN
paradigms with the names of their inventors and dates of development are as
follows,

PERCEPTRON, (1957-Rosenblatt).

MADALINE, (1960-62-Widrow).

AVALANCHE, (1967-Grossberg).

CEREBELLATION, (1969-Marr, Albus & Pellionez).

BACKPROPAGATION (BPN), (1974-85-Werbos, Parker, Rumelhart),

more commonly referred to as MULTI-LAYER PERCEPTRON (MLP).

BRAIN STATE IN A BOX, (1977-Anderson).

NEOCOGNITRON, (1978-84-Fukushima).

8. ADAPTIVE RESONANCE THEORY (ART), (1976-86-Carpenter,
Grossberg).

9. SELF-ORGANISING MAP, (1982-Kohonen).

10. HOPFIELD, (1982-Hopfield).

11. BI-DIRECTIONAL ASSOCIATIVE MEMORY, (1985-Kosko).

12. BOLTZMANN/CAUCHY MACHINE, (1985-86-Hinton, Sejnowsky,
Szu).

13. COUNTERPROPAGATION, (1986-Hecht-Nielsen).

14. RADIAL BASIS FUNCTION, (1988-Broomhead, Lowe).

15. PROBABILISTIC (PNN), (1988-Specht).

16. GENERAL REGRESSION NEURAL NETWORK (GRNN), (1991-

Nk WD =

N

Specht).
Table 12.1
Feedback Recall Feedforward Recall
Supervised Brain-state-in-a-box Perceptron
Learning Fuzzy Cognitive Map Multi-layer Perceptron
ADALINE, MADALINE
Boltzman Machine
CMAC
Radial Basis Function Network
Probabilistic Neural Network
General Regression Neural
Network
Unsupervised Adaptive Resonance Theory Kohonen
Learning Hopfield Neural Network Couterpropagation
Bidirectional Associative Fuzzy Associative Memory
Memory

Introduction to Neural Networks 293

There are many more ANNs than these. The most common and popular ANN in
use today is MLP neural network (previously known as the Backpropagation neural
network) because it is simple to understand and it generally works well. It can be
used as a classifier or for nonlinear continuous multivariate function mapping or
filtering. However, its disadvantages are that it can only be used with supervised
training, it needs abundant examples to train and the training can be slow.
Nevertheless, researchers have discovered ways of improving the training speed by
new learning laws and by putting constraints on some of the weights during
learning.

Radial Basis Function Neural Networks are now becoming popular. They can
be trained faster than the MLP neural network and have many other desirable
features for engineering applications.

12.1.4 Artificial Neural Networks as Black Boxes

From an engineering perspective many ANNs can often be thought of as “black
box” devices for information processing that accept inputs and produce outputs.
Figure 12.2 shows the ANN as a black box, which accepts a set of N input vectors
paired with a corresponding set of N output vectors. The input vector dimension is
p and the output vector dimension is K where p, K = 1. The output vector set may
represent the actual network outputs given the corresponding input vector set or it
may represent the desired outputs.

Set of Input Vectors Set of Output Vectors
X; =[x, X s x,]T v =0y yel”
! NONLINEAR P T2 K
Xy =[x % e, 17 TRANSFER Yo =31 Yoreyi 1"
FUNCTION

Y®=Fx | &)

Yy =01 ypeeyi 1

Figure 12.2. An Artificial Neural Network as a Black Box

This “black box” model is not the only model for ANNs. ANNs exist that are fully
interconnected where the outputs are connected back to the inputs and also have
various dynamic mechanisms which add and subtract neurons and interconnections
as they operate. There are many possible model forms but these are usually
dependent on the requirements of the problem being solved.

Artificial neural networks in their many forms can be used for a number of
different purposes including,

1. Probability function estimation.

294 Principles of Adaptive Filters and Self-learning Systems

2. Classification or pattern recognition.

3. Association or pattern matching.

4. Multivariate function mapping.

5. Time series analysis.

6. Nonlinear filtering or signal processing.

7. Nonlinear system modelling or inverse modelling.
8. Optimisation.

9. Intelligent or nonlinear control.

12.1.5 Implementation of Artificial Neural Networks

ANNs can be implemented either as software simulations on conventional
computers or in hardware, known as neurocomputers. The two types of
neurocomputer are the fully implemented type and the virtual type. The fully
implemented type has a dedicated processor for each neuron (PE) and has the
advantage of high speed but the disadvantages of being expensive and inflexible.
The virtual type uses a single controlling micro-computer surrounded by fictitious
or virtual neurons, which are implemented as a series of look-up tables. The tables
maintain lists of interconnections, weights and variables for the neural network’s
differential equations. Software simulations on conventional computers are most
useful after the more time consuming task of network training has been performed
on a neurocomputer. Usually the time required to run many useful ANN
developments on a conventional computer is acceptably fast, especially now as
processing speed is increasing with technological advances.

ANN technology is still too young to be able to identify the best general
hardware realisations to perform network calculations for any given application.
VLSI technology has advanced to the point where it is possible to make chips with
millions of silicon-based connections. However, there is still no clear consensus on
how best to exploit VLSI capabilities for massively parallel ANN applications. The
basic operations in neural networks are quite different to the more common
multiply-accumulate used in classical digital signal processing algorithms. Also,
neural network learning algorithms continue to be developed as there are no really
ideal ones for large networks.

In the past most ANN implementations used analogue or continuous hardware,
in deference to the nervous system design. Analogue circuits are widely used for
high speed processing in television systems. They are frequently more efficient than
digital implementations when the required computational operation can be
performed by natural physical processes. There is also the question of noise in high
frequency circuits to consider but the question of analogue versus digital cannot be

Introduction to Neural Networks 295

fully determined until the algorithms and their required accuracies are known.
Extremely high throughput can be achieved with either analogue or digital
technologies if the functionality of the design can be sufficiently restricted.

Optoelectronic implementations of ANNs were first introduced in 1985 and
they remain a very promising approach. Optical systems offer the massive
interconnectivity and parallelism required by neural networks that even VLSI
methods cannot equal. Ultimately it is desirable that entire ANNs be implemented
with optics but fully optical decision devices are not yet available. Instead, it is
necessary to convert signals from optical to electronic form for the decision making
stages. Previous research in this area has been limited to relatively small hybrid
optoelectronic systems. To achieve the full potential of optoelectronics for larger
and faster networks integrated optoelectronic technology needs to be developed
beyond that for current high speed optical communication.

12.1.6 When to Use an Artificial Neural Network

There are three general types of problems in which an ANN may be used (Eberhart
and Dobbins 1990), where,

1. An ANN provides the only practical solution.

2. Other solutions exist but an ANN gives an easier or better solution.

3. An ANN solution is equal to others.
ANNSs should only be used for type 1 and 2 problems. There is no sensible reason
to use an ANN where there already exists a well established and efficient problem
solution method. ANNs can provide suitable solutions for problems which
generally are characterised by,

1. Nonlinearities.

2. High dimensionality.

3. Noisy, complex, imprecise, imperfect and/or error prone sensor data.

4. A lack of a clearly stated mathematical solution or algorithm.

12.1.7 How to Use an Artificial Neural Network

The specification and design of an ANN application should aim to produce the best
system and performance overall. This means that conventional methods should be
used if and where possible and ANNSs used to supplement them or only if they can
add some benefit. The heart of a neural network design involves at least five main
tasks,

296 Principles of Adaptive Filters and Self-learning Systems

1. Data collection.
2. Raw data preprocessing.
3. Feature extraction and input vector formation from preprocessed data.

4. Selection of an ANN type and topology (architecture).

5. ANN training, testing and validation.

After suitable data is collected and preprocessed the features are chosen by the
designer based on his/her knowledge and experience with the problem. Features
should be chosen because they are believed to have some correlation with the
desired output. It can be useful to eliminate or prune redundant or ineffective
features. It is also possible to determine which sets of features are the most
significant by comparative analysis. An ANN design should incorporate a minimum
of three sets of independent input-output feature vector pairs that are representative
of the process. There should be a training, testing and validation vector set. The
training set is used to do the network training. Either during training and/or after
training the testing set is used to check, or cross-validate, that the trained network is
able to adequately generalise its learning to new data. Finally, when the training

and testing has been done the validation set is used as a check on the ANN’s
generalisation and accuracy.

12.1.8 Artificial Neural Network General Applications
ANNSs have application in wide ranging areas of human interests including finance,
engineering and medicine. They are no longer just scientific curiosities as they have
already been applied in many and various real products. They have been used to,

1. Perform optical character recognition for reading cheques.

2. Score bank loan applications.

3. Forecast stock market performance.

4. Detect credit card fraud.

5. Plan optimal routes for intelligent vehicles.

6. Recognise speech and fingerprints in security systems.

7. Control robotic motion and manipulators.

8. Stabilise stealth aircraft (stealth technology is aerodynamically unsound).

Introduction to Neural Networks

9. Predict fatigue life and failure of mechanical components.

10. Filter, equalise, echo cancel communication channels.

11. Control traffic flow and switching in communication channels.

12. Classify radar and sonar signals.

13. Classify blood cell reactions and blood analysis.

14. Detect cancer; diagnose heart attacks.

15. Perform brain modelling.

297

ANNs are still in their infancy as far as their full design and application
potential is concerned. It is very likely that they will eventually have at least some
application in almost all real systems. This is because real systems are actually
nonlinear although many have been adequately modelled and solved previously by
using well established classical linear theory.

Radio RF Radio
Microphone Receiver # 1 4 Channel
onsheep'shead | —=—— % Lowpass
:: Filters
A} —
Digitise signals. ANN RESTING
Detect chews. | EATING
Extract features. CLASSIFIER
_T% RUMINATING
L J
L > Supervised : i
Training

Figure 12.3. Sheep Eating Phase Monitor

12.1.9 Simple Application Examples

Some simple ANN examples of classification, function mapping, nonlinear filtering
and control are presented here to provide some introductory exposure of how they

can be used.

298 Principles of Adaptive Filters and Self-learning Systems

12.1.9.1 Sheep Eating Phase Identification from Jaw Sounds

When sheep are in the field they are likely to be doing one of three things, resting,
eating or ruminating. These activities can be determined quite accurately by
monitoring their jaw sounds with a radio microphone attached to their skulls
(Zaknich and Baker 1998). An ANN can be trained to distinguish these three
phases by extracting suitable frequency spectral features from the jaw sound signals
to feed into the ANN classifier as shown in Figure 12.3.

12.1.9.2 Hydrate Particle Isolation in SEM Images

Automatically isolating alumina hydrate particles in Scanning Electron Microscope
images is very difficult because the region between touching particles can often
look like a particle surface feature. It is possible to use an ANN classifier to help
discriminate between boundaries of touching particles and other features to effect a
suitable particle separation (Zaknich 1997). Figure 12.4 shows an image sequence
in the process of particles isolation.

i'!

i’-a

Original Background Cut Neural Net Filtered Thresholded

f 3 i‘ ® .. O

SN S
i ’ @ L
Border Cleared Obijects Filled Silhouettes Isolated

Figure 12.4. Particle Isolation (Compliments of Alcoa World Alumina Australia)

Needles in a background of hydrate particles ~ The 3 oxalate needles identified

Figure 12.5. Oxalate Detection (Compliments of Alcoa World Alumina Australia)

Introduction to Neural Networks 299

12.1.9.3 Oxalate Needle Detection in Microscope Images

In the Alumina production process it is very important to identify and count
relatively small numbers of oxalate needles in microscope images dominated by
hydrate particles. Once again an ANN classifier can be trained to distinguish
between the needle shaped oxalate and blob shaped hydrate by using suitable shape
features (Zaknich and Attikiouzel 1995a). The original image with oxalate needles
and hydrate blobs is shown in Figure 12.5 along with the resulting needle detection
image.

12.1.9.4 Water Level Determination from Resonant Sound Analysis

It is possible to use an ANN to determine the water level in a glass by creating a
multivariate functional map from features extracted from resonant sounds to water
level. Although the resonant sounds of a water filled glass are complex and
dependent on how they are excited there is a definite functional relationship
between them and the associated water level that the ANN can capture from
training data. Figure 12.6 shows the system block diagram.

Glass Sound %

Data acquistion

of resonant sound

)
Extract 48 ANN Water Level Output
spectral | |
features FUNCTION MAP | T 9
o

3

Supervised

|
-

Training

Figure 12.6. Water Level Measurement

12.1.9.5 Nonlinear Signal Filtering

Short wave radio signals are broadcasted over long distances at relatively low
power outputs. Consequently they are very susceptible to various nonlinear and
linear effects such as fading and various types of noises such as white noise from
receiving equipment and impulse noise from local electricity power systems. For
radio transmission of simple sinusoidal tone burst signals as used in international
time signals, Morse code and telemetry signals, a nonlinear ANN filter can be
effectively used to solve this problem and recover the original tone bursts (Zaknich

300 Principles of Adaptive Filters and Self-learning Systems

and Attikiouzel 1995b). Figure 12.7 compares the results achieved with a linear
filter against an ANN filter.

I|I III.. . [.
|'."J_I“"'I:."I..'Llu"".'-"’l'-"{ﬁf"'.' ...-.-.......'.....‘___'.,- :....M..-.-._-...., R T
N 1.t ',
Input Signal ! Linear Filtered ! !
e LI TR T o o
[|
e - crde memememerememn - i e em
Ie A .||Desired Signal 1, 1, I I+ 1l + ANNFiltered [T

Figure 12.7. Short Wave Signal Filtering

12.1.9.6 A Motor Control Example

In the case where a motor is driving a variable nonlinear load it is possible to use a
MLP ANN controller in a self-tuning mode as shown in Figure 12.8 to control the
system. As the load characteristics change the MLP controller is able to adapt itself
to provide the required control given only the speed error signal. In real
applications it would be necessary to add fixes to ensure adequate operation under
all possible operating conditions even though the main principles are
straightforward. It is necessary to introduce adequate stability mechanisms and
often quite complex supervision logic to mitigate any possible disastrous
conditions. Bernard Widrow has used the MLP in various clever configurations to
solve these types of problems that might have been previously solved by using the
adaptive linear filter with the Least Mean Squares (LMS) adaptive algorithm.

ANN ﬂ Control Signal Speed
Setpoint c Motor H
Sooed L @— Controller Output
pee

e

Figure 12.8. Self-tuning ANN Motor Controller

12.2 A Three-layer Multi-layer Perceptron Model

The three-layer feedforward Multi-layer Perceptron has a parallel input, one
parallel hidden layer and a parallel output layer. The input layer is only a “fan-out”
layer, where the input vector is distributed to all the hidden layer PEs. There is no
real processing done in this layer. The hidden layer is the key to the operation of

Introduction to Neural Networks 301

the MLP. Each of the hidden nodes is a single PE, which implements its own
decision surface. The output layer is a set of decision surfaces in which each of its
PEs has decided what part of the decision space the input vector lays. The role of
the output layer is essentially to combine all of the “votes” of the hidden layer PEs
and decide upon the overall classification of the vector. The nonlinearity provided
is by the nonlinear activation functions of the hidden and output PEs and this
allows this network to solve complex classification problems that are not linearly
separable. This is done by forming complex decision surfaces by a nonlinear
combination of the hidden layer’s decision surfaces.

Internal Biases,

Input Layer Hidden Layer Output Layer
Figure 12.9. Three-layer Feedforward MLP

Figure 12.9 represents a three-layer feedfoward MLP model. After training the
feedforward equations relating the inputs to the outputs are described by the general
matrix Equation 12.1.

y=f(Uf((Wx))) (12.1)

where:
X =[1, Xy, Xgpers Xpesy xp]Tinput vector (p+1) X 1.
W = matrix of weights w; between input-hidden nodes (M+1) X (p+1)).
U = matrix of weights Uy between hidden-output nodes (K X (M+1)).
y =output vector (M X 1I).
f (.) = multivariate activation function.
p = number of real input nodes.
M = number of real hidden nodes.
K = number of output nodes.

Equation 12.1 can be expressed in detail by Equations 12.2, 12.3 and 12.4.

302 Principles of Adaptive Filters and Self-learning Systems
p .
hj = fj(.z(:)wj,xl-), for J= 1,2,...,M (122)
i=

M
Vi =fk(zukjhj)a fork:lszs"wK (123)
j=0

The so called activation function f(z) that is often used in Equations 12.2 and

12.3 is defined by Equation 12.4. It is this type of nonlinear activation function
applied to hidden and output nodes that introduces the nonlinearity into the ANN.

1
f(Z)=fj(Z)=fk(Z)=l (12.4)

+e*t

The derivative of this particular nonlinear activation function, based on the natural
exponential function, is a function of itself as defined by Equation 12.5. This useful
property will be used later in the MLP learning algorithm development.

d - ! !
df@ e - (1- —)=/0-f) (12.5)

dz A+eH? 1+e? l+e

Iz

The outputs y, are a function of hidden outputs hj and the weights u;; between the
hidden layer and the output. The outputs hj are a function of the inputs x; and the
weights between the inputs and the hidden layer. Note that the weights between the
inputs and the internal bias node &y, are zero and that the bias inputs x;, and & are
set to equal 1. For classification problems the desired outputs are chosen to have
values of about 0.9 to signify a class membership and about 0.1 for non-class
membership. The number of output nodes are made to be equal to the number of
classes, therefore the desired output vector for say the first class of three classes
would be [0.9, 0.1, 0.1]". Input values may be any positive or negative real number
but often they are normalised to range between —1 and +1 for convenience. Of
course after training the output vector for a given class input vector will not be
exactly like the desired output vector, it may for example be something like [0.83,
0.23, 0.008]". Here, this example vector would be recognised as a class one vector
because the value in the first class position is obviously larger than the other two.
Various strategies are used to select the class, either simply take the highest value
or the highest value only if it is greater than any of the others by a certain margin,
else it can just be specified as unclassified.

12.2.1 MLP Backpropagation-of-error Learning

The MLP stores its knowledge in the weights. The problem is to adjust these
weights in such a way that will produce the required knowledge and solutions to
required classification problems. Because the type of classification problems of
general interest are too complex to solve a priori by analytic techniques it is
necessary to develop an adaptive training algorithm that is driven by example data.
The hope is that if there are adequate features, number of PEs and sufficient

Introduction to Neural Networks 303

representative training data samples the weights will slowly adjust correctly through
training. They should adjust in such a way as to end up with a set of network
weights that will give a satisfactory classification performance for other inputs that
the network has not seen during training. This optimisation can be achieved most
effectively by adjusting the weights to minimise the Mean Square Error (MSE) of
the network outputs compared with desired responses. This can be very time
consuming if it is necessary to compute the MSE of all the training pairs before the
weights can be incrementally adjusted once. Alternatively, it is possible to use
Backpropagation-of-error learning which is based on the gradient descent
optimisation technique. The main idea behind Backpropagation-of-error learning is
to adjust the weights a little each time as a new random training input-output vector
pair is presented to the network. This is done repeatedly until a satisfactory
convergence occurs. The local gradient of the error function, Equation 12.6, for
each given input vector x is computed for K output nodes and used to adjust the
weights in the opposite direction to the gradient. This Backpropagation-of-error
learning based on the local gradient is basically the same idea as the LMS
algorithm except in this case it is propagated back to hidden layers, whereas in the
LMS algorithm it is only applied to the output layer of the linear combiner.

| K
Ex==% (d-y)* (12.6)
2 k=1

Moving in the opposite direction to the gradient is the direction that on the
whole makes the overall network error smaller. The main problem with gradient
descent optimisation is that it can be prone to converging to a local minimum
instead of the global minimum. There are a number of techniques including so
called “simulated annealing” that have been developed to try to solve this problem.
For more comprehensive details on the Backpropagation-of-error algorithm refer to
the works of the three co-inventors, (Parker 1985), (Werbos 1974, Werbos 1990)
and (Rumelhart 1986), and also (Haykin 1999).

12.2.2 Derivation of Backpropagation-of-error Learning

After training it is required that the MSE be minimal for the whole training set of
input-output vector pairs. To achieve this it is necessary to adjust the two sets of
network weights, the output layer weights Uy and the hidden layer weights w; in
concert. The gradient of the error needs to be calculated in the whole weight space.
This can be done using partial derivatives and the chain rule to calculate the
contribution that each of the weights makes on the total error as developed in the
following Sections.

12.2.2.1 Change in Error due to Output Layer Weights
The partial derivative of the error Equation 12.6 with respect to the output layer
weights Uy is defined by Equation 12.7.

304 Principles of Adaptive Filters and Self-learning Systems

OE, JE, dy,

X

dug Iy uy (12.7)

Equation 12.7 is made up from the partial derivative of the error function E;
multiplied by the derivative of the output generating function y,. If The error

function Equation 12.6 is substituted into Equation 12.7 then Equations 12.8 to
12.11 result.

JE, 9 1K »o 9 M
X =—[— d,-y,) 1 [)] .
Juy I 2;:,1(Ya) Jug fk(h§0ukb b (12.8)

JE M
= (g -dp)- S (X ugy -y,)by
duy b=0 (12.9)
=k -dk)-yk(l-yk)-hj
JE
X =0y, .h;
I, Yie-hj (12.10)
Oy, = (v -dp).y (- y,) (12.11)

Equation 12.11 represents the backpropagating error related to the hidden layer
output.

12.2.2.2 Change in Error due to Hidden Layer Weights

The calculation of the change in error as a function of the hidden layer weights Wi;
is more difficult because there is no way of getting “desired y, outputs” for the
hidden layer PEs. It is only known what the network outputs should be. The partial
derivative is similar to before but just a little more complex. The required equations
are the Equations 12.12 to 12.17.

JE Jd 1K s

IEx _ 2y (d -

I, (9Wﬁ[2a§(e Ya)'l (12.12)
JE, XK 9 1 s

OEx _ (. -

T, Elawﬂ[z(¢ Ya)l (12.13)
%y 19 L, -y, D 12.14
dwy =y, 2 on (1219
IE

K M p
X = gl[(ya -d,)-fa'(bgouab-hb)-uaj]~fj'(b¥()wjb'xb)-X; (12.15)

Ji

aw

Introduction to Neural Networks 305

JE,
R (12.16)

Ji

K M
5]’!1 Z [(yu _du)'fa'(Z Mab'hb)Maj]fj'(f th'xb)
a=1 b=0 b=0 (12.17)

K
Yy, -dy)-yaA-y,)uglh;(1-hy)

a=1

Equation 12.17 represents the backpropagation of the error from the output layer to
the hidden layer.

12.2.2.3 The Weight Adjustments

In order to minimise the error it is necessary to adjust all the weights in the opposite
direction to the error gradient each time a training input-output vector pair is
presented to the network as defined by Equations 12.18 to 12.21.

JE
Auyg =155 = .8y, b, (12.18)
duy;
new _ old
ukj = ukj + A ukj (1219)
JE
Aw; =—p—=2=—u.0h; x;
Ji 'udwji HON;.X; (12.20)
new _ old A
WiV 2w A, (12.21)

where:
M and 7 are positive valued scalar gains or learning rate constants.

The learning rate is controlled by the scalar constants ¢ and 7. These should be
made relatively small, i.e., £ and 1 < 1. If they are too small the rate of
convergence is slow, but if they are too large it may be difficult to converge once in
the vicinity of a minimum since the estimate of the gradient is only valid locally. If
the weight change is too great then it may be in a direction not reflected by the
gradient. The ideal learning strategy may be to use relatively high values of
learning rates to start with and then reduce them as the training progresses. When
there is only a finite training vector set it is advisable to continually select the
individual training vector input-output pairs at random from the set rather than
sequence through the set repeatedly. The training may require many 100,000s or
even 1,000,000s of these iterations, especially for very complex problems.

For these equations to work an activation function is required that is
differentiable and if possible one whose derivative is easy to compute. The sigmoid

306 Principles of Adaptive Filters and Self-learning Systems

function of Equation 12.5 is a suitable function because not only is it continuously
differentiable its derivative is a simple function of itself, as seen in Equation 12.6.
Therefore, the weight adjustment Equations 12.18 and 12.20 can be rewritten
simply as Equations 12.22 and 12.24 respectively.

Auy; =10y, -h;

. 12.22)
=_77'[(yk _dk)'yk'(l_yk)]'hj’ fork = 1,..,K, and J= 0,..,M (
where:
fo= Fu(i hy) !
Vi = = Zu . -
AR i (S) (12.23)
1+e 0
Aw;; =—p.6h;.x;
y d 1 h.(1-h
__lu'agl[(ya_ a)ya(_ya)'uaj]' J(- j)"xi (1224)
K
=¥ [0y, u,lh;.(1=h;).x;, for j=1,..,M,and i=0,.,p
= . .
where:
hi=fy= 1,5 Wiy) 1
=)= Wib-Xp) = P
b=0 CE wipp) (12.25)
1+ e b=0

The weight adjustment Equations 12.22 and 12.24 are now in terms of the actual
input, output and desired values and can therefore be computed by simple
arithmetic.

A summary of the three-layer MLP Backpropagation-of-error learning is,

Parameters: p = number of real input nodes, plus one hidden.
K = number of output nodes, plus one hidden.
M = number of real hidden nodes.
n, i = step sizes.
W = (M+1) X (p+1)) weight matrix between input and
hidden nodes.
U= (K x (M+1)) weight matrix between hidden and output

nodes.
Initialisation: xo=1.
hO =]

W = a set of very small random values.
U = a set of very small random values.

Introduction to Neural Networks 307

Weight updates: For each new training vector pair compute,

new

"™ =™ =1y -dy).y (1=).k,
fork=1,..,K,and j=0,..M

- K
wi™ = w - Zl[(ya ~d)y, (1= y g Lh (1= h)).x;,
=
for j=1,.,M,and i=0,.,p
1
where: y, = m , and,
(X ugyhy)
1+e =0
1
h~ =
J p
(X wjp-xp)
1 +e b=0

12.2.2.4 Additional Momentum Factor
When the network weights approach a minimum solution the gradient becomes
small and the step size diminishes too, giving very slow convergence. If a so called
momentum factor is added to the weight update equations the weights can be
updated with some component of past updates. This can reduce the decay in
learning updates and cause the learning to proceed through the weight space in a
fairly constant direction. The benefits of this, apart from faster convergence toward
the minimum, is that it may even be possible to sometimes escape a local minimum
if there is enough momentum to travel through it and over the following hill in the
error function.

Adding a momentum factor to the gradient descent learning equations results in
Equations 12.26 and 12.27 respectively.

W(k+1) = W(k) - u JEJIW + AW (k)-W(k-1)) (12.26)

U(k+1) = U(k) - JE/IU + B (UK)-U(k-1)) (12.27)

where:
U, 1, aand B are positive valued scalar gain or learning rate constants, all less
than 1.

When the gradient has the same algebraic sign on consecutive iterations the weight
change grows in magnitude. Therefore, momentum tends to accelerate descent in
steady downhill directions. When the gradient has alternating algebraic signs on
consecutive iterations the weight changes become smaller, thus stabilising the
learning by preventing oscillations.

308 Principles of Adaptive Filters and Self-learning Systems

12.2.3 Notes on Classification and Function Mapping

The three-layer feedforward MLP developed above is specifically crafted for
pattern classification. It has the same nonlinear activation functions on both the
hidden and output PEs. More layers can be added by simply adding more parallel
sets of PEs and the associated weights coming from the previous layer. More layers
provide a more complex ANN model but in practice it is rarely needed, or
advisable, to go beyond about four or five layers. The design equations for four or
five layer networks, although a little more complex, can be derived in a similar
manner to that of the three-layer model developed above.

The activation functions associated with the hidden layers are sigmoids whereas
the activation functions associated with the outputs are usually sigmoidal for
classification applications, and linear (or no activation function) for function
mapping applications. When developing a network for function mapping it may
then be necessary to add at least another hidden layer with activation functions to
increase the nonlinear model complexity. For classification problems it is common
to assign one output node for each separate class, with a training output value of 0.9
representing class selection and 0.1 class rejection. Normally values of 1.0 and 0.0
would be used, but for MLP systems using sigmoidal activation functions this may
introduce unnecessary training time due to saturation effects. This is because the
sigmoidal function defined by Equation 12.4 ranges between saturation levels of 0
for a -co input and 1 for a +eo input to it.

For function mapping the sigmoidal function defined by Equation 12.28 is often
used in preference to Equation 12.4 because it ranges between values of —1 and +1,
and therefore can more conveniently represent positive and negative excursions.

Fly= (12.28)

l+e

12.2.4 MLP Application and Training Issues

The key issues involved with the practical application of the MLP include the
following,

1. Design of training, testing and validation data sets.
2. Determination of the network structure.
3. Selection of the learning rate.
4. Problems with under-training and over-training.
The typical MLP design needs to have a minimum of three sets of independent

vectors taken at random from the process. There should be a training, a testing and
a validation vector set of approximately equal proportions. The training set is used

Introduction to Neural Networks 309

to train the network weights. At regular intervals during training the mean square
error between the desired and network response for the entire training and testing
sets is calculated and plotted on a graph as shown in Figure 12.10. The MSE should
on average get progressively smaller as the network learns. If the network is
complex enough, eventually there will be a point where the testing set error will
begin to increase while the training set error will continue to get smaller or remain
constant. The training should then be stopped and the network weights fixed. At
that point the validation data set should be run through the network and the MSE
checked to see that it is acceptably low and that the network accuracy is acceptably
high. If so, then the network design has been completed and the network can be put
into service. If not, it may be necessary to alter the number of hidden nodes and
repeat the process. If it is still not acceptable it may be necessary to improve the
pre-processing and feature extraction from the raw data or increase the training data
set size.

MSE N\

Testing Set

Stop Training Over Trained

Training Set

Number of Iterations
Figure 12.10. MLP Typical Learning Curves

If the MSE of the training set begins to increase while the MSE of the testing set
continues to reduce (refer to Figure 12.10) this can also signify that the complexity
or size of the network is probably too large for the problem. Another way to deal
with this is to reduce the network a bit and retrain it until the training and testing
MSEs reduce down to approximately the same values as the number of training
iterations increase.

MLP training is facilitated by making sure that there are approximately equal
numbers of training vectors for each class irrespective of the actual a priori
probability of occurrence for the classes when in operation. This does not
necessarily apply to all neural networks. Once the training vector set has been
selected, the training involves taking vectors one at a time, on a completely random
basis from the whole set. Feeding the training set into the network sequentially over
and over will probably result in dismal failure.

The MLP divides up the vector space of each layer with hyperplanes.
Unfortunately, there are no general rules for arbitrary problems to help decide
exactly how many hyperplanes, hidden layers and hidden nodes are needed. This is

310 Principles of Adaptive Filters and Self-learning Systems

a function of the data and the problem. HNC incorporated, a neurocomputing
company, has implemented many commercial MLP solutions. As a result of this
HNC has developed some rules of thumb about this (Hecht-Nielson 1990),

1. Start with no hidden layers and input nodes connected to outputs.

2. Next, try one hidden layer, having one fourth the number of nodes in it as
the number of the input dimension plus the number of output categories.
Again, connect the inputs to the outputs.

3. Try decreasing the number of hidden nodes.

4. Try increasing the number of hidden nodes

5. Try adding a second hidden layer with one or two nodes.

6. Try no input-to-output connections.

7. Generally only very unusual applications find success with three hidden
layers. Try this only as a last resort.

After implementing any of the above Steps, if good results are achieved during
training, try the next Step. Stick with those changes which seem to improve the
results.

The initial values of the network weights should be fairly small and set to
random values. Depending on the exact learning law used, the learning rate and
other factors such as the momentum factor need to be chosen by the designer. The
larger these values are set to the larger the weight adjustments per iteration. Initially
these could be large enough to allow the network to quickly get close to the right
general solution. They could then be reduced to allow slower more uniform
convergence toward the optimum solution.

12.3 Exercises
The following Exercises identify some of the basic ideas presented in this Chapter.
12.3.1 Problems

12.1. What are two most important aspects of artificial neural network
technology?

12.2. Name some general characteristics of ANNS.

12.3. What are the main types of ANN?

Introduction to Neural Networks 311

12.4. Can ANNSs be seen as magic boxes which can be applied to virtually any
problem?

12.5. Specify some possible applications for ANNs.

12.6.

Input Layer Hidden Layer Output Layer
Figure 12.11. Three-layer Feedforward Perceptron

The three-layer Perceptron network shown in Figure 12.11, when properly
trained, should respond with a desired output 4 = 0.9 at y; to the
augmented input vector x = [1,x;,x,]7 = [1,1,3]7. The network weights
have been initialised as shown in Figure 12.11. Assume sigmoidal
activation functions at the outputs of the hidden and output nodes and
learning gains of 7 = g = 0.1 and no momentum term. Analyse a single
feedforward and backpropagation step for the initialised network by doing
the following,

Give the weight matrices W (input-hidden) and U (hidden-output).
Calculate the output of hidden layer, h =[1, A, h2]T and output y;.
Compute the error signals 0y, dh and h,.

Compute all the nine weight updates, Awij and Auij.

po o

Use the activation function f (z) =

13. Introduction to Fuzzy Logic Systems

Fuzzy logic systems on their own are not strictly adaptive but they can be integrated
with ANNs to produce hybrid adaptive systems. The resulting adaptive hybrid
system is called a Fuzzy Artificial Neural Network (FANN). The principles of
artificial neural networks have been covered in the previous Chapter. This Chapter
introduces the principles of basic fuzzy logic and fuzzy logic control followed by a
short description of FANNSs and their basic applications.

Basic fuzzy logic can be classified into time-independent and time-dependent
categories. Time-independent fuzzy logic can be described as a generalised
combinatorial or sequential logic, where the passage of time is not directly relevant.
Time-dependent fuzzy logic is called Temporal Fuzzy Logic (TFL) and it is an
extension of basic time-independent fuzzy logic with the inclusion of time-
dependent membership functions (Kartalpoulos 1996). Only time-independent
fuzzy logic is considered in this Chapter.

Fuzzy logic can be used for control applications, in which case it is referred to
as Fuzzy Logic Control (FLC). FLC is used in applications involving complex
systems where mathematical models are not available but where the system is
controllable by human experts using situation-action control rules and policies.
Approximately half the applications are used to enhance conventional control
systems and the remainder to enable a non-conventional control approach.
Advantages of FLC are that it implements expert knowledge, it can provide robust
nonlinear control, and the system development and maintenance time is reduced.
One disadvantage has previously been the lack of FLC stability theory. However,
this problem has now been formally addressed post 1992. Other disadvantages are
that problem domain knowledge must exist and this knowledge needs to be
explicitly expressed in FLC terms.

A suitable introductory book on FL for beginners is (Mukaidono 2001).

13.1 Basic Fuzzy Logic

Fuzzy logic is a logic that is used to infer a crisp outcome from so called fuzzy
input values. An example of crisp logic is binary logic where variables have only
one of two possible exact values “1” or “0” (true or false). Binary logic can be
extended to multivalue logic, where the variables can have one of many possible

314 Principles of Adaptive Filters and Self-learning Systems

crisp values. In contrast to crisp logic there is propositional logic where the
variables are defined by meaningful but uncertain terms such as “fast,” “moderate,”
“slow,” “very hot,” “hot,” “cool,” “cold” etc.. Propositional logic can be
represented by a fuzzy logic, which can be seen as a generalised logic that includes
crisp variable values as well as all the possible values in between them. For
example, the crisp binary variables “1” and “0” may each be represented by a
number in the range [0, ¢], indicating the degree to which the variable is said to
have the attribute represented by the crisp value. Thus a relationship is defined to
express the distribution or degree of truth of a variable. For example, a
propositional variable “slow” may be defined as a distribution around some value
whereby any value within the distribution may be interpreted as “slow” but with
different degrees of slowness.

13.1.1 Fuzzy Logic Membership Functions

A fuzzy set F of a universe of discourse X = {x} is defined as the mapping defined
by Relation 13.1, i.e., the membership function fg(x) e [O, a] .

Up(x):X = [0,a] (13.1)

Each x is assigned a number in the range [0,] indicating the extent to which x has
the attribute F. When o = 1 the membership function is normalised and the fuzzy
logic is called normal. Only normal logic will be used from here on in. In the
special case when the distribution is of zero width the membership function is
reduced to singularities or simply to crisp logic. Crisp binary logic has two possible
singularities and n-variable crisp logic has n possible singularities.

Given that X is a time-invariant set of objects x then a fuzzy set FinX may be
expressed as a set of ordered pairs (x, #;(x)) defined by Equation 13.2.

F=luz00ixe x| (132)

where:
M is the membership function that maps X to a membership space M = [0,1].

H (x) e [O,l] is the grade of membership of x in F.

For example, take a set of temperatures X =1{10,20,30,40,50,60,70,80,90,100 },
where x is the temperature. Temperatures around 10 are considered cool (/Z),

around 40 hot (§) and around 70 very hot (5) . The attributes cool, hot and very

hot are not crisply defined. Normalised fuzzy sets can be defined for cool, hot and
very hot in pairs (x, u 7 (x)) as follows,

A ={(0,1).(10,1),(30,0)}

Introduction to Fuzzy Logic Systems 315

{(20.0).(30.1).(50.1).(70.0)}
{(50.0).(70.1).(100.1)}

o T,
1l

The normalised membership functions for cool (u b (x)), hot (u 7 (x)), and very

hot (1 (x)), can now be represented as exemplified in Figure 13.1.

(,U A (x)) (,U 5 (x)) (,Ug (X))

Very Hot

0 10 20 30 40 50 60 70 80 90 100
Temperature

Figure 13.1. Normalised Membership Functions for Cool, Hot and Very Hot

Figure 13.1 represents the fuzzification of the three variables, which spreads the
variables into relevant distribution profiles that include all temperatures between 0
and 100. A temperature of 60 belongs to the variable hot with a confidence of 0.5
and to variable very hot with a confidence of 0.5. This type of overlap of variables
is typically used in fuzzy logic problems.

In a given problem it may be difficult to choose suitable membership function
structures. Questions related to function type, shape, number and aggregations must
be answered. Often these are arrived at by some measure of trial and error guided
by the adequacy of the final design performance. In any event, it is strongly
recommended that the crossover points between adjoining functions should be at
greater than or equal to the maximum possible function output (sum of overlapping
variables).

13.1.2 Fuzzy Logic Operations

In fuzzy logic operations, unlike Boolean logic operations, the results are not crisp.
The output of fuzzy logic operations exhibit a distribution described by the
membership function. The operations are analogous to Boolean union (OR) and
intersection (AND) and are described by min-max logic. The fuzzy output of the
union of a set of fuzzy variables is the maximum membership function value of any
of the variables. The fuzzy output of the intersection of a set of fuzzy variables is
the minimum membership function value of any of the variables. The complement
operation (equivalent to NOT) is the complement of 1, i.e., 1 minus the
membership function value. For example given fuzzy inputs, A =0.2, B=0.7 and C
= 0.5, then,

316 Principles of Adaptive Filters and Self-learning Systems

AOR BOR C =max(A,B,C)=0.7
AAND B AND C = min(A, B,C) =0.2
NOTA=(1-4)=0.8

13.1.3 Fuzzy Logic Rules

Fuzzy logic rules are developed based on a priori knowledge and the designer’s
past experience. In a given problem all the possible input-output relations must be
known. These can then be expressed in terms of a complete set of IF-THEN rules,

e.g.,
IF A, AND/OR B,, THEN H,,¢lse.......

IF A, AND/OR B,,THEN H,,,e¢lse......
IF A AND/OR B,,THEN H,,else......
IF A, AND/OR B|,THEN H, ,else......
if A, AND/OR B,,then H,,,else......

where:
A; and B; are fuzzy inputs and H;; are the actions for each rule.

The set of rules for two variables can be economically tabulated as shown in Table
13.1.

Table 13.1. Tabulation of Fuzzy Rules having Two Variables

A Hyy Hy,
A Hy | Hy
B, B,

Rules can often have more than two variables, in which case statement
decomposition can be used to simplify the tabulation. For example, Table 13.2
shows the tabulation for three variables based on the following rule decomposition,

rule, IF A, AND/OR B; AND/OR C;,THEN H ; ,is decomposed to,
IF A, AND/OR B;, THEN H
IF H; AND/OR C,,THEN H

Table 13.2. Tabulation of Fuzzy Rules having Three Variables

A Hy, Hi, C, | Hin Hyy, Hy; Hy,,
Ay Hy, Hy, G, | Hipp Hip Hyy Hyyy

Introduction to Fuzzy Logic Systems 317

A fuzzy system having N inputs, one output and M membership functions at each
input can have a total of MV rules. This can be a very large number of possible
rules, some of which may not contribute significantly to the problem solution.
Therefore good judgement must be used to eliminate the unnecessary rules.

13.1.4 Fuzzy Logic Defuzzification

Defuzzification is the process where the relevant membership functions are
sampled to determine the grade of memberships. There may be more than one
output variable membership function chosen for a given set of inputs based on the
results of the fuzzy logic rules. It is often the case that two adjoining membership
functions for the output variable are chosen. The grade of memberships is used in
the fuzzy logic equations and an outcome region is defined from which a crisp
output is computed. There are at least three main techniques that can be used to
produce the crisp output. These include taking the maximum of the chosen
membership functions, a weighted average of possible outputs (chosen membership
function centres of mass), or computing the centre of mass under a portion of the
chosen membership function region. However, there are many other possible
methods as well.

For example, let the membership functions in Figure 13.1 represent the fuzzy
input variable and let the membership functions in Figure 13.2 represent the output
variable for a very simple air blower controller. Figure 13.2 shows two possible
output membership functions for the blower speed, “low fan speed” and “high fan
speed.”

Low fan speed High fan Speed
/N membership function membership function
| Output Output
0 | | AN
| | | | | I/ x

30 50 70 90 120 150

Figure 13.2. Membership Functions for Output to Airblower

If the input temperature was measured to be 58 degrees Celsius and the fuzzy logic
rules were such that the selected input membership function was “hot” and the
corresponding output membership function was selected to be “high fan speed” the
defuzzified output is computed through the use of Figure 13.3. In this example
there are two possible outputs, the output projected down from the “high fan speed”
curve at the level projected across from the “hot” input membership function for an

318 Principles of Adaptive Filters and Self-learning Systems

input temperature of 58 degrees, and the output projected down from the centre of
mass of the portion of the “high fan speed” function below the projected line.

Selected Temperature
/I\ membership function

Input

High fan Speed
membership function
Output

Centre of Mass

| N\
| I 1T/ x
|
90 120 : 150
Possible Output Value

Figure 13.3. Defuzzification Example

In general a fuzzy logic problem is solved by applying the following sequence

of Steps (Kartalpoulos 1996),

1. Define the details of the problem to be solved.

2. Determine all the relevant input and output variables and their ranges.

3. Establish the membership profiles for each variable range

4. Establish the fuzzy rules including required actions.

5. Determine the method for defuzzification.

6. Test the system for correct performance and finish if it is satisfactory, else

go back to Step 3.

13.2 Fuzzy Logic Control Design

The FL control rules or fuzzy IF-THEN rules are often based on the knowledge and
experience of human operators that have been involved in the operation of the
system to be controlled. Given the control rules the control strategy is realised
using fuzzy reasoning, which becomes the very structure of the FL controller. Each
different possible method of fuzzy reasoning produces its own fuzzy controller.
Fuzzy reasoning methods can be classified as direct or indirect but the most popular
methods are the direct ones because they employ simple structures often based on
min- and max- operations as described above. Indirect methods conduct reasoning

Introduction to Fuzzy Logic Systems 319

by truth-value space but they are fairly complex. The most popular of the direct
methods is Mamdani’s direct method (Tanaka 1997).
Direct methods uses inference rules such as,

IF xis A AND yisé THEN zis C

where:

A, B and C are fuzzy sets.

This says that given the premise (x is A AND yis B) then the consequence is
(zis C), where x and y are premise variables and z is a consequence variable. A
practical example of this might be IF the temperature x is a “little high” AND the
humidity y is “quite high” THEN increase airconditioner setting z to “high.” The
fuzzy sets A =“little high,” B =“quite high” and c =“high” can be replaced with
more explicitly fuzzy numbers such as, A =“about 20 degrees,” B =“about 80%
humidity”” and C =“about setting 9.”

13.2.1 Fuzzy Logic Controllers

For Single-Input-Single-Output (SISO) fuzzy logic control it is necessary to
construct the control rules by first writing down the operator’s actions in the IF-
THEN format and then it is also possible to add more from the response
characteristics of the system. The procedure may go as follows (Tanaka 1997),

1. Construction of initial control rules and fuzzy sets.

2. Parameter tuning to determine the fuzzy sets.

3. Validation of the system.

4. If not satisfactory revise control rules and go to Step 2, else stop.

The choice of control rules also includes the identification of the parameters for the
fuzzy sets, which sometimes may not be optimal. Parameter tuning involves tuning
the parameters for the fuzzy sets used in the control rules to try to improve
performance. If this process is unable to achieve satisfactory performance then it
may require control rule revision.

13.2.1.1 Control Rule Construction

To construct the fuzzy control rules it is first necessary to select the input variables
associated with required operating targets, which in turn determine the outputs.
Conventional linear Proportional-Integral-Derivative (PID) controllers use
deviation from a setpoint to construct input variables, i.e., variation (derivative)

over a derivative time 7, and accumulation (integral) over an integral time 7; of

320 Principles of Adaptive Filters and Self-learning Systems

this deviation. It is possible to construct a PD, PI and P, as well as the full PID
controller depending on the design equation. For example a PD controller can be
defined by Equation 13.3.

u=K,(e+T,e) (13.3)

where:
u is the position output.
e is the deviation from the setpoint.
e is the time derivative of e.

K, is the proportional gain.

T, is the differential time.
A PI controller can be defined by Equation 13.4.

. |
u=Kp(e+;e) (13.4)

1

where:
u is the speed output.
e is the deviation from the setpoint.
e is the time derivative of e.

K , is the proportional gain.

T; is the integral time.

The general fuzzy rule for a fuzzy PI controller is a follows,
IF eisA AND ¢ isB THEN u isC

For such a fuzzy PI controller the fuzzy input variables e and ¢ are typically made
to have about three positive sets, three negative sets and a zero as indicated in
Figure 13.4

/N
NB NM NS Z PS PM PB

I I I [I I I A
Figure 13.4. Membership Functions for Inputs e and ¢ of Fuzzy PI Controller

The fuzzy PI controller may have a set of simple rules as follows,

Introduction to Fuzzy Logic Systems 321

IF eis NB AND ¢ isZ THEN u isNB
IF eis NM AND ¢isZ THEN u isNM
IF eis NS AND ¢ isZ THEN u isNS
IF eisZ AND ¢é¢isZ THEN u isZ
IF eis PB AND ¢isZ THEN u isPB
IF eis PM AND ¢isZ THEN u isPM
IF eis PS AND ¢isZ THEN u isPS
IF eisNB AND ¢ isNB THEN u is NB
IF eisNM AND ¢ isNM THEN u is NM
IF eis NS AND ¢ isNS THEN u isNS
IF eis PB AND ¢ isPB THEN u is PB
IF eis PM AND ¢ isPM THEN u is PM
IF eis PS AND ¢ isPS THEN u isPS

However, to make a better controller it may be useful to add more rules. Although,
more rules may provide a better chance of achieving the control target, it is not
recommended to have anymore rules than necessary. This is because fewer rules
result in simpler parameter tuning. The extra following rules,

IF eisPB AND ¢é isNS THEN u is PM
IF eisNB AND ¢ isPS THEN u is NM

will improve the initial response. On the other hand, the extra following rules,

IF eisPS AND ¢ isNB THEN u is NM
IF eis NS AND ¢ isPB THEN u is PM

will dampen the overshoot.

13.2.1.2 Parameter Tuning

Once the control rules are determined then it is necessary to tune them. Parameter
tuning affects the shape of the fuzzy sets, which are typically triangular, as shown
in Figure 13.4, or exponential or trapezoidal. Triangular sets are much easier to
work with and are therefore more popular. There are three progressively simpler
ways that tuning may be performed as follows (Tanaka 1997),

1. Tuning of three parameters of each fuzzy set.
2. Tuning of only one parameter of each fuzzy set.
3. Tuning of scale factor for the total set.
Triangular sets are each described by three parameters, the two base points and the

peak, which may each be moved left or right. Only the peak of the zero set stays
fixed at zero but its base points may be moved. Type 1 tuning in Figure 13.4 would

322 Principles of Adaptive Filters and Self-learning Systems

involve adjusting 18 of these points. Notice that the end sets NB and PB only
have two parameters each since they are not really triangles. In the type 2 tuning
there are only six parameters, the peak points for all except the zero set. For type 3
tuning there is only a single scale factor to adjust and is quite effective when there
are a large number of variables to be tuned.

The performance of the example fuzzy PD controller can be assessed by applying a
step response. The ideal response requires a fast rise time to the new setpoint with
minimal overshoot. For such a controller, type 3 tuning, or adjusting the fuzzy set
scale factor, can regulate its gain to some extent.

13.2.1.3 Control Rule Revision

If the fuzzy control rules are wrong or inappropriate then parameter tuning will
have virtually no effect on performance. This may be remedied by adding necessary
rules or deleting deleterious ones. However, if more rules are added than necessary
there will be no further performance gain. Rules that are affecting the performance
can be identified on-line by observing the control effect when they are called into

play.

13.3 Fuzzy Artificial Neural Networks

Fuzzy systems and artificial neural networks, although very different in their basic
principles of operation, are related in that they can both work with imprecise and
noisy data spaces. Fuzzy systems are capable of taking fuzzy input data and
providing crisp outputs according to a set of a priori fuzzy rules. This approach
does not involve any learning as such. Artificial neural networks can also take
fuzzy inputs and produce crisp outputs by training with known input-output pairs
and there is no need to know the underlying rules. Both approaches have their
benefits and shortcomings. Designing with fuzzy systems requires a thorough
understanding of the fuzzy variables and membership functions of the desired
input-output relationships as well as experience and knowledge of how to select the
most significant fuzzy rules. On the other hand designing with artificial neural
networks requires the development of a good sense for the problem through a large
degree of experimentation and practice with the network complexity, learning
algorithms, acceptable specifications and data collection and preprocessing. These
shortcomings of both approaches can to some degree be reduced or even overcome
by merging the two approaches. This can be done by either incorporating the
learning and classification of neural networks into fuzzy systems or the logic
operations of fuzzy systems into neural networks. The resulting hybrid system may
be called a Fuzzy Artificial Neural Network (FANN).

In the FANN the neural network part is mainly used to automatically generate
the fuzzy logic rules during the training period and for subsequent rule adaptation
as the process changes. The fuzzy logic part is used to infer and provide the crisp or
defuzzified output. Figure 13.5 shows a possible general structure for a FANN.
The forward network is fuzzy and the feedback is a neural network. The neural
network accepts both inputs and outputs from which it creates new classifications

Introduction to Fuzzy Logic Systems 323

and input-output associations and thereby generates new rules. The new rules are
transferred to the forward network at the appropriate times. There are many other
possible FANN structures that may be used based on the designer’s creativity.

Neural Network

R
T

Fuzzy Network
or
Fuzzy Neural Network

~——

Input Output

@
—

Figure 13.5. A Closed-loop FANN Control System

Pressure Deviation

+ Heat Speed

Fuzzy Logic
Setpoints y o9 Steam Engine

Controller

Throttle Pressure

+

Speed Deviation

Figure 13.6. Fuzzy Controller for a Steam Engine

13.4 Fuzzy Applications

Although the application areas for fuzzy logic are still growing it has already been
successfully applied in many commercial products. These include control systems
related to trains, washing machines, cameras, televisions, vacuum cleaners,
automobiles and communications systems. They have also been used for pattern
recognition related to financial and commercial transactions, speech recognition,
optical character recognition, person recognition via fingerprints, voice and face
recognition, robotics, and many others. Fuzzy logic systems generally have
application in the same type of areas as neural networks. Of course, the FANN is a
useful hybrid of fuzzy logic and neural networks for application in the same areas.
Fuzzy logic control was first used to control a steam engine (Mamdani 1974).
Mamdani regulated the outlet pressure and engine speed to constant values using

324 Principles of Adaptive Filters and Self-learning Systems

the control setup shown in Figure 13.6. The input to the steam engine was the
supplied heat to the boiler and the throttle of the engine. A linear PID controller
was also developed to control the engine but it was less effective than the fuzzy
controller because a steam engine has a nonlinear characteristic. Another problem
with steam engines is that their characteristics change over time requiring control
parameter tuning. The FLC system required less frequent parameter tuning to
maintain good performance.

14. Introduction to Genetic Algorithms

Genetic Algorithms (GAs) represent a learning or adaptation method that is
analogous to biological evolution according to Darwin’s theory of evolution
(Darwin 1859) and can be described as a kind of simulated evolution. Evolution
based computational approaches have been investigated ever since the early days of
computing in the 1950s. GAs can be seen as general optimisation methods.
Although they are not guaranteed to find “optimum” solutions in the classical sense
they often succeed in finding solutions meeting a high measure of fitness or
acceptability. GAs have been applied successfully, not only to machine learning
problems including function approximation and learning network topologies, but
also to problems such as printed circuit board layout, work scheduling and many
others.

GAs are often used to solve complex optimisation problems that are either very
difficult or completely impractical to solve using other methods. In their most
common form GAs work with hypotheses described by bit strings whose
interpretation relates to the application. However, hypotheses may also be
described by symbolic expressions, computer programs, specific model parameters,
collections of rules etc. When the hypotheses are computer programs the
evolutionary computing process is called Genetic Programming (GP).

GP is a method for automatically creating computer programs. It starts from a
high-level statement of what needs to be done and uses the Darwinian principle of
natural selection to breed a population of improving programs over many
generations (Koza et al 2003). Given a collection or population of initial
hypotheses the search for an acceptable hypothesis proceeds from one generation to
the next by means of operations inspired by processes in biological evolution such
as random mutation and crossover. A measure of “fitness” is required to evaluate
the relative worth of the hypotheses in each generation. For each generation the
most “fit” hypotheses are selected probabilistically as seeds for producing the next
generation by mutating and then recombining their components. Thanks to John
Holland’s seminal work in 1975 (Holland 1995) the very powerful ideas of having
populations and sexual recombination were introduced at that time.

The interest in GAs lies in the fact that evolution is known to be a successful
and robust method for biological adaptation. However, evolutionary process tends
to be very slow, due to the random mutations required, so there needs to be more
justification for its use than just the fact that it works. However, as computer
processing capacity increases this becomes much less of a concern since many

326 Principles of Adaptive Filters and Self-learning Systems

generations can be progressed much more quickly. GAs using evolutionary process
have been found to be very useful in applications where hypotheses contain
complex interacting parts, where the impact of each part on overall hypothesis
fitness may be difficult to understand or model. GAs can also take advantage of
parallel computer hardware since they lend themselves to computational
subdivision into parallel subparts.

A suitable introductory book on GAs is (Coley 1999).

14.1 A General Genetic Algorithm

Given a predefined qualitative fitness measure and a space of candidate hypotheses
GAs are ultimately used to discover the best hypothesis according to that fitness
measure. This process of discovery is actually an iterative process of choosing a
set of the best current population of hypotheses, using this set to create another
population of hypotheses to choose from, and so on for generation after generation
until a sufficiently suitable hypothesis is arrived at. In an artificial neural network
learning problem a set of hypotheses may be a set of artificial neural network
models and the fitness measure may be the overall accuracy of a model in relating
the input and output values of a given training data set. The problem may be one of
choosing a suitable hypothesis that can play tic-tac-to. In this case the fitness factor
may be the number of games won by an individual hypothesis when it plays many
games against the others.

Implementations of GAs are of necessity different in detail depending on the
problem, however, they do typically follow a similar overall structure. A population
of hypotheses are iteratively updated generation after generation by
probabilistically selecting the most fit individuals. Some of these most fit
individuals are carried over into the next generation intact while the others are used
as a basis for creating new offspring by applying genetic operations such as
crossover and mutation. This structure is demonstrated in the following prototypical
GA (Mitchell 1997).

Given the following variables,
1. Fitness: the fitness measure.
2. Acceptable_Fitness: the fitness termination threshold.
3. n: the number of hypotheses in the population.
4. r: the fraction of hypotheses to be replaced by crossover at each Step.
5. m: the mutation rate as a percentage.

Then,

4)

Introduction to Genetic Algorithms 327

Initialise a population P of hypotheses h;, for i = 1,...., n, by random
selection.

Evaluate the fitness function Fitness(h;) for each of the n hypotheses #;.

While the maximum Fitness(h;) < Acceptable_Fitness create new
generations P by repeating the Steps i. to v. below,

i.

ii.

iil.

iv.

V.

Select: Probabilistically select (1 - 7)n members of P to add to P,.
The probability of selecting hypothesis #; from P is Pr(h;),

Pr(h) = pFltness(h[)

2. Fitness(h;)
=

The probability of selection of a hypothesis is directly proportional
to its fitness.

Crossover: Probabilistically select (r.n)/2 pairs of hypotheses

from P, according to Pr(h;,). For each pair <hy, h,>, produce two
offspring by applying the crossover operator. Add all the offspring to
P,.
Mutate: Choose m percent of the members of P with uniform
probability. For each, invert one randomly selected bit in its
representation.

Update: Update the population P to be P..

Evaluate: Compute Fitness(k) for every 4 in P.

Return from P the hypothesis with the highest fitness.

14.2 The Common Hypothesis Representation

The hypotheses in GAs can be complex and of many forms. They may be sets of
IF-THEN statements or they may be symbolic descriptions representing specific
models, model parameters or even computer programs. These hypotheses are
commonly reduced down to suitable bit string representations so that they can be
conveniently manipulated by the genetic operators, which include the mutation and
crossover operators.

328 Principles of Adaptive Filters and Self-learning Systems

IF-THEN rules can be represented by strings of bits by simply designing a
logical rule encoding structure that allocates substrings for each rule precondition
and postcondition. An IF-THEN rule is structured as follows,

IF (precondition) THEN (postcondition)
For example, if there is a rule structure related to controlling the temperature in a
room temperature preconditions can be selected such as temperature hot or cold.
The postconditions are, turn the air conditioning on or turn the air conditioning off.

Therefore, the following IF-THEN rules apply,

IF (temp=hot) THEN (air on)
IF (temp=cold) THEN (air off)

These two IF-THEN rules can be represented with bits, respectively, as follows,

preconditions postcondition
10 1
01 0

A logic bit sequence 10 represents the precondition temperature = hot and logic
sequence 01 represents the precondition femperature = cold. A logic bit 1
represents the postcondition furn air conditioner on and logic bit 0 represents the
postcondition turn air conditioner off. A precondition bit sequence of 00 would
indicate that the temperature was neither hot nor cold and a precondition sequence
of 11 would indicate that it did not matter whether it was hot or cold.

To make a more effective temperature control system it is necessary to
introduce a heating element control and an extra precondition related to how hot or
cold the temperature is before control is applied. To achieve this the IF-THEN
rules can be modified as follows,

IF(temp=hot) A (I(temp)-(desired temp)=threshold) THEN (air on) A (heat off)
IF(temp=hot) A (I(temp)-(desired temp)l<threshold) THEN (air off) A (heat off)
IF(temp=cold) A (I(temp)-(desired temp)l<threshold) THEN (air off) A (heat off)
IF(temp=cold) A (I(temp)-(desired temp)=threshold) THEN (air off) A (heat on)

If a logic bit 1 represents the precondition I(femperature)-(desired temperature)l >
threshold and a logic bit O represents the precondition |(temperature)-(point)l <
threshold these new rules can be represented by concatenating the extra
precondition bit to the previous ones. An extra postconditioning bit related to the
control of the heater element can also be concatenated. The four new If-THEN
rules can again be represented with bits, respectively, as follows,

preconditions postconditions
10 1 1 0
10 0 0 O

Introduction to Genetic Algorithms 329

01 0

0 0
01 1 0 1
If symbols are used, to represent hypotheses instead of bits, it is possible to have
more generic encoding of hypotheses that are separate computer algorithms or even

models etc..

14.3 Genetic Algorithm Operators

Given the hypotheses bit or symbol sequence encodings they are manipulated via
genetic operators to produce successor generations. The genetic operators are
idealised versions of biological genetic operations, including crossover and
mutation.

The crossover operator produces two new offspring from two parent sequences
by copying selected bits or symbols from each parent. The selected bits or symbols
for crossover are identified by the use of a binary mask string. Some crossover
operators include the single-point crossover, the two-point crossover, and the
uniform crossover as illustrated in Figure 14.1.

Parents Crossover Mask Offspring
11110000
Single-Point Crossover abcd efgh > < abcd mnop
ijkl mnop i jkl efgh
00111100
Two-Point Crossover 20 ¢def gh > < ab kimn gh
ij klmn op ij cdef op
10001011

Unifirm Crossover a bed ¢ fgn>—<e_1jﬂ e ngh
i [kl m n op i bcd mf op

Figure 14.1. Cross-over Operators

The single-point crossover takes the first n symbols or bits from the first parent and
the remaining symbols or bits from the second parent, according to the mask bits, to
form the first offspring. The second offspring is formed using the same crossover
mask but with a switch of parental roles. This results in the second offspring being
formed from the remaining symbols or bits not used by the first offspring. In Figure
14.1 a single-point crossover is illustrated for n = 4. Every time the single-point
crossover is used n is chosen at random, the mask is created and then applied as
before.

In the two-point crossover, offspring are formed by substituting intermediate
segments of one parent into the middle of the second parent. The crossover mask in
this case is made up of n zeros, followed by n; contiguous ones, followed by
enough zeros to complete the mask string. The values for ny and n; are chosen
randomly each time the operation is performed. In the example in Figure 14.1 n, =
2andn; =4.

330 Principles of Adaptive Filters and Self-learning Systems

Uniform crossover combines symbols or bits sampled uniformly from the two
parents. The crossover mask in this case is generated by independent and random
selection of each bit in the mask string.

The mutation operator, with point mutation, produces an offspring from a single
parent. For example, in Figure 14.2, a single bit in the parent is chosen at random
and negated to produce the offspring, or in the case of a symbol, changed to another
randomly selected symbol.

Parents Crossover Mask Offspring

1011 0100 1010 0100
Point Mutations
abcd efgh ______ abcm efgh

Figure 14.2. Mutation Operator

14.4 Fitness Functions

Potential hypotheses in each generation are ranked and probabilistically chosen for
propagation to the next generation using the fitness function. In the case of simple
classification functions or rules the fitness function typically has a component that
evaluates the classification accuracy of each rule for a given set of known training
samples. In the case of more complex system models, such as control systems, the
fitness function may also include criteria related to the overall performance of the
system model. Here, the symbol or bit strings may represent a sequence of IF-
THEN rules or mathematical operations that are chained together to produce a
more complex system.

There are a number of ways of using the fitness function for hypothesis
selection. In the general genetic algorithm described above the probability that a
hypothesis will be selected is given by the ratio of its fitness to the sum of the
fitness of other hypotheses. This is fitness proportionate selection, which is
sometimes called roulette wheel selection. A more diverse population selection is
achieved with what is called tournament selection. Here, two hypotheses are first
selected at random from the population. The more fit of the two is selected
according to some predefined probability p and the less fit according to probability
(1-p). Rank selection is another method. Here, the hypotheses are first sorted by
fitness and then the probability of selection is based on the rank in the sorted list
rather than on the fitness ratio.

14.5 Hypothesis Searching

The hypothesis search method used in GAs is a randomised beam search method to
seek out a maximally fit hypothesis. It is a randomised, parallel, hill-climbing
search for hypotheses that optimise a predefined fitness function. The method is not

Introduction to Genetic Algorithms 331

a smooth steady movement toward an optimum solution, but rather, one where
offspring from generation to generation can be quite abrupt and different from the
parents. Although this method is not prone to falling into something like local
minima, characteristic of the gradient descent optimisation method, it does have
other potential difficulties. One of these is called crowding.

Crowding is a problem that may occur when an individual is found that is much
more highly fit than the others in the population. If fitness proportionate selection is
used, then this individual may quickly reproduce such that copies of the individual
and similar individuals take over a large fraction of the population. The effect of
this is that population diversity is reduced, thus possibly slowing GA progress. This
problem can be reduced by replacing fitness proportionate selection by tournament
selection or rank selection. Another way to reduce crowding is to reduce the fitness
of an individual by the presence of other similar individuals. A third way is to
restrict the kinds of individuals allowed to recombine to form offspring. Allowing
only the most similar individuals to recombine will encourage the formation of
multiple clusters of similar individuals. If individuals are spatially distributed and
only nearby individuals are allowed to recombine this will also produce multiple
clusters.

14.6 Genetic Programming

Genetic programming is used to find optimal computer programs or engineering
solutions that can be expressed in algorithmic form. This is a most significant form
of GAs that has some relation to the adaptive and other computational intelligent
systems. It is possible to use GP to optimise these types of systems and find
engineering solutions that employ them. There are two main parts to GP, as for the
other adaptive and computational intelligent systems, the human produced
preparatory part that is specific to the problem to be solved and the problem
independent executional steps. The real intelligent part of any of our current
Artificial Intelligent (AI) solution processes is actually in the preparatory part. The
special feature of GP is that it typically requires no more of a designer’s
intelligence, preparatory steps, than other methods, but it can produce remarkable
and often surprising results. It can produce good solutions to problems on a routine
basis that are sometimes a revelation to the designer and that entitles it to be called
a systematic problem-solving method..

According to (Koza er al 2003) the five preparatory steps required of a human
designer in GP are to establish the following things.

1. The set of independent variables of the problem, zero-argument functions
and random constants for each branch of the required program.

2. The set of primitive functions for each branch of the required program.

3. The fitness measure needed to evaluate each program candidate.

332 Principles of Adaptive Filters and Self-learning Systems

4. Certain parameters for controlling the GP run.
5. A termination criterion and final program selection.

Doing the first two Steps essentially establishes the search space of the problem by
specifying the primitive components that are used to create the programs and the
ways they can be combined. Often this requires very little high level knowledge,
only what components may be relevant to the required solution. For example to
produce a solution for an electronic circuit it is only necessary to specify what
range of elemental electronic components are relevant to the required solution and
all the ways that they can be interconnected. The third Step embodies the high-level
problem statement, what is to be achieved, by providing a criterion to guide the
solution search in the desired direction and a way to rank potential candidates.
Candidates are chosen, using the fitness measure, to participate in the various
genetic operations such as, crossover, reproduction, mutation, and the architecture
altering operations. The fitness measure may be multiobjective, in which case it is
necessary to prioritise the different tradeoffs that may be relevant due to conflicting
requirements. It is often convenient to blend the components of the fitness measure
into a weighted single numerical value, like the Mean Square Error (MSE) that is
used for tuning adaptive filters and ANNs. The major run control parameters of the
fourth Step are population size and the number of generations to be run. Although
theses can be analytically determined they are usually selected on a basis of how
much computer time can be spent on the problem. Minor control parameters are
usually selected based on experience with other similar problems. The final fifth
Step simply requires a selection of what is an acceptable solution or failing that
when to stop the process.

Although the preparatory steps change from one problem to another the main
GP execution steps remain the same. Furthermore, it is often not a major transition
from problem to problem in the same domain or even from domain to domain. The
GP problem-solving approach is not based on a logically sound procedure yet it
works so well, as well as being a general problem-solving method. It is interesting
to note that neither logic nor determinism govern either the human inventive
process or natural evolution yet they both produce logically consistent results. Of
course, GP does require logical processes in the preparatory stages as does human
inventiveness, but often the breakthrough happens when a seemingly illogical step
is taken at some point in the process. The active maintenance of inconsistent and
contradictory alternatives is a key to the success of GP as well as to natural
evolution on which it is based. Furthermore, neither process is aware of established
wisdom, which allows it to freely investigate possibilities that a human following
convention may never consider.

14.7 Applications of Genetic Programming

According to (Koza et al 2003) genetic programming is now capable of routine
human-competitive machine intelligence. In their book they show how GP is

Introduction to Genetic Algorithms 333

applied to a variety of problems. Examples are given where GP have created results
that either infringe or duplicate the functionality of previously patented inventions
such as the reinvention of negative feedback. The book describes fifteen instances
where GP developments either infringe or duplicate the functionality of a
previously patented 20th-century invention, six instances where it has done the
same with respect to post-2000 patented inventions, two instances where GP has
created a patentable new invention, and thirteen other human-competitive results.

In their book (Koza e al 2003) demonstrate the power and generality of genetic
programming by solving problems from various fields including,

1. Control.

2. Analogue electric circuits.

3. Placement and routing of circuits.

4. Antennas.

5. Genetic networks.

6. Metabolic pathways.

7. Synthesis of networks of chemical reactions.

In previous publications by Koza and other researchers GP is shown to solve
many other problems in diverse and numerous areas including robotics. It is
accurate to describe GP as a generic systematic problem solving method. In (Bréaunl
2003) GP is applied to the solution of a walking gait for a legged robot, a problem
for which there is no known deterministic algorithm.

14.7.1 Filter Circuit Design Application of GAs and GP

Koza et al (Koza et al 1996) developed a GA approach to designing electronic
filter circuits. They developed a system which transform a simple fixed seed circuit
into a final circuit design. The primitive functions used by the GP to construct its
programs were functions that edit the seed circuit by inserting or deleting circuit
components and wiring connections. The fitness of each offspring circuit was tested
at 101 different input frequencies to determine how closely it conformed to the
desired filter specification. The fitness measure was the sum of the 101 magnitudes
of errors between the desired and actual filter outputs. A population size of 640,000
was maintained at each generation where offspring were produced in the proportion
of 10% by selection, 89% by crossover, and 1% by mutation. The initial circuit
selections were so unreasonable that it was not even possible to simulate the
behaviour of 98% of the circuits produced. The percentage of unreasonable circuits
dropped to 84.9% in the second generation, 75% in the third generation and to an
average of 9.6% in the remaining generations. A very good final circuit, producing

334 Principles of Adaptive Filters and Self-learning Systems

an output very similar to the desired response, was produced after only 137
generations.

14.7.2 Tic-tac-to Game Playing Application of GAs

Another application involves optimising a Multi-Layer Perceptron (MLP) artificial
neural network to play tic-tac-to (Burns 1996). A MLP structure having nine inputs
and one output was found that evaluates the best next move from any board
position by presenting to it all the next possible moves from that position. The input
vector X to the MLP had a dimension of nine and the elements were ether “-1,”
“+1,” or “0” signifying a cross, a nought or an empty space respectively. The input
vector elements were defined according to the vector

r . -
X= [xl,x2,x3,x4,x5,x6,x-,,x8,x9] and the scheme depicted in Figure 14.3.

X X X3
X7 X3 X9

Figure 14.3. Input Vector for Tic-Tac-To

For example, the board position specified by Figure 14.4 is represented by the
vector X = [— 1,+1,—1,0,+1,0,0,+1,—1]T .

X 0 X
0
0 X

Figure 14.4. Example Tic-Tac-To Board Position

There are three next possible moves for crosses from the position depicted in
Figure 14.4 and these may be represented by the three vectors as follows,

X, = [~ 1,+1,-1,-1,4+1,0,0,+1,~1]

Introduction to Genetic Algorithms 335

X, =[-14+1,-104+1,-1,0,+1,-1]
X; = [-14+1,-1,0,41,0.-1+1-1]"

If these three input vectors are presented, one at a time, to a MLP having nine input
nodes and one output node the next move is signified by the vector that gives the
highest network output value.

The GA used in this application used a basic evolutionary strategy process as
follows,

1. Create an initial population.

2. Repeat until satisfied Steps i, ii, and iii below,
i. Evaluate population performance.
ii. Select the best individuals to form a new population.
iii. Mutate to form the new population.

Mutation is normally seen as a method of compensating for the decrease in
genetic material caused by selection and crossover. However, in this application it
has been used as the primary search technique. Each generation is made similar to
the previous one with only a small perturbation on average. A Gaussian mutation
operator with a zero mean was used to ensure that large perturbations occurred less
often than small ones. The mutation was performed by adding a random zero mean
vector to the MLP weight vector (a vector which included all the network’s weight
values). The standard deviation of the Gaussian mutation operator was stored from
generation to generation and itself mutated by a global Gaussian mutation operator.
The global mutation operator standard deviation was set to 0.1.

The fitness function was based on the number of wins and losses of each MLP
network at each generation playing against a random player. Network A was
considered a better player than network B if A had more wins than B and A had
fewer losses than B, accounting for draws. The GA system sorted the networks into
three categories according to the degree of fitness: two copies, one copy, or no
copy for the next generation. Within this restriction the numbers of individuals
chosen for each new generation were kept approximately constant at twenty. From
a population of twenty networks the top five had two offspring, ten had one
offspring, and the remaining five had no offspring. Networks played a total of ten
games against a random player per generation for a fixed total of 800 generations.

The result was that the GA improved MLP networks, from winning on average
only 56.4% (+4.98%) of tic-tac-to games to an average of 93.6% (+1.57%) games.
This application demonstrates that the GA approach is able to train feedforward
networks without having training data available so long as the overall system
performance can be measured in some way. A GA can be applied to optimise any

336 Principles of Adaptive Filters and Self-learning Systems

set of model parameters as long as the fitness function of a given solution can be
measured and it is “relatively” smooth.

PART VI. ADAPTIVE FILTER APPLICATION

This Part IV is involved with issues to do with the practical application of adaptive
filters. The theory of adaptive filters is based on ideal notions, which in practice are
often difficult to comply with. The main one being that of having access to the
desired filter response signal. Consequently it is essential to show how adaptive
filters can be applied in various ways that demonstrate how to either avoid strict
theoretical necessities or how to achieve them in specific application contexts. A
range of common adaptive filter applications are investigated to this end followed
by descriptions of two generic adaptive filter structures that utilise multiple
individual adaptive filters in their make up.

There are two generic adaptive filter structures, the Sub-Band Adaptive Filter
(SBAF) and the Sub-Space Adaptive Filter (SSAF) that have considerable utility
for solving practical problems by virtue of how they subdivide the data space. In
the SBAF the data space is subdivided in the frequency domain and the SSAF
subdivides the data vector space itself. The SBAF splits wide-band input signal
spaces into independent equal bandwidth frequency sub-bands via a set of parallel
band-pass filters. Each sub-band can then be down sampled without any
information loss and processed separately by an adaptive FIR filter. Then it is
transformed back up to its normal frequency range before reconstructing the total
signal output as the sum of all the processed sub-bands. The main advantage of
doing this is that the overall effective adaptive FIR filter length can be reduced with
a consequential gain in speed of convergence.

The SSAF model (Zaknich 2003b) is derived from the Modified Probabilistic
Neural Network (MPNN) (Zaknich 1998) and is similar to the MPNN extension
called the Tuneable Approximate Piecewise Linear Regression (TAPLR) model
(Zaknich and Attikiouzel 2000). The TAPLR model can be adjusted by a single
smoothing parameter continuously from the best piecewise linear model in each
vector sub-space to the best approximately piecewise linear model over the whole
data space. A suitable value in between ensures that all neighbouring piecewise
linear models merge together smoothly at their boundaries. The SSAF model was
developed by altering the form of the MPNN, a radial basis function network
initially developed for general nonlinear regression. The MPNN’s special structure
allows it to be used to model a process by appropriately weighting piecewise linear
models associated with each of the network’s radial basis functions as is done in the
TAPLR. The SSAF extends this idea by allowing each piecewise linear model
section to be adapted separately (separate parallel adaptive filters) as new data

338 Principles of Adaptive Filters and Self-learning Systems

flows through it, thereby reducing a single complex nonlinear adaptation problem
down to set of simpler ones in parallel with each other. The SSAF model represents
a learning/filtering method for nonlinear processes that provides one solution to the
stability-plasticity dilemma associated with nonlinear adaptive learning systems and
standard adaptive filters.

15. Applications of Adaptive Signal Processing

The standard adaptive filter needs three fundamental signals, an input x[k], an
output signal y[k] and the desired signal d[k]. In this standard context, the desired
signal is used like a training signal to drive the filter to convergence, much like is
done for feedforward neural network training. However, if the desired response is
known, why then is the adaptive filter needed at all? In practice the desired signal
is not usually known explicitly but it is often possible to derive or find a suitable
signal to use which is strongly correlated to the desired signal. Furthermore, this
correlated signal can usually be supplied to the adaptive filter in real-time along
with the input signal, allowing it to function in a practically useful way. Since there
is no general solution to this problem of determining a suitable desired signal it is
necessary to study specific examples to gain insight into adaptive filtering practice.
Seven common adaptive filtering applications worthy of consideration are,

1. Adaptive prediction.
2. Adaptive modelling and inverse modelling.
3. Adaptive echo cancelling.
4. Adaptive equalisation of communication channels.
5. Adaptive self-tuning filters.
6. Adaptive noise cancelling.
7. Adaptive array processing.
These seven applications are described in the following Sections, in turn, to show

some of the main ways of configuring and solving important classical adaptive
filtering problems.

340 Principles of Adaptive Filters and Self-learning Systems

15.1 Adaptive Prediction

Adaptive prediction is the process of estimating future signal samples x[k+ J] based
on having a set of most recent samples {x[k], x[k-1]....., x[k-N]}. Wiener developed
optimum linear least squares filtering techniques for signal linear prediction. When
the signal’s autocorrelation function is known, Wiener’s theory yield’s the impulse
response of the optimum filter. The autocorrelation function can be determined
using a correlator. Otherwise, the optimum prediction filter can be determined
directly by adaptive filtering.

Slave Network Prediction
(copy weights) of Input

T Desired Response

€

N
Input Delay | *«-s Adaptive Y
X

‘ s Network

Error

Network
Response

Figure 15.1. Adaptive Prediction

Figure 15.1 shows a typical adaptive prediction system arrangement. The input
signal is delayed by J time units and fed to an adaptive filter, where the undelayed
input serves as the desired response. The filter weights continually adapt and
maintain convergence to produce a best least squares estimate of the present input
signal, given an input that is this very signal delayed by J. These optimum weights
are then periodically copied into a duplicate “slave filter” whose input is undelayed
and whose output is therefore a best least squares prediction of the input & time
units into the future. Some important areas of application of adaptive prediction are
in,

1. Speech encoding.

2. Data and image compression.
3. Spectral estimation.

4. Event detection.

5. Line enhancement.

6. Data transmission.

Applications of Adaptive Signal Processing 341

Often the purpose for prediction is not driven by an interest in knowing the next
sample but rather it is way to achieve data compression. For example, short
segments of human speech can be modelled as an autoregressive process. The vocal
tract is like a concatenation of concentric uniform lossless tubes of varying width.
This vocal tract model fits very well into a lattice filter structure. The reflection
coefficients of the lattice filter and the pitch of the signal can be estimated from
voiced speech segments by using a method based on linear prediction. Having a
small collection of parameters including the reflection coefficients, pitch period and
gain parameters the speech can be stored or transmitted very efficiently. The speech
can then be reconstructed by exciting the appropriate all-pole lattice filter with
white noise or a periodic impulse train, depending on whether the speech was
voiced or unvoiced. This technique of speech processing is called Linear Predictive
Coding (LPC)

Adaptive prediction is also used in real-time spectral estimation, based on
fitting an autoregressive model to the data sequence. The optimum linear predictor
coefficients are used to estimate the autoregressive model parameters by using an
adaptive predictor. The adaptive predictor has the ability to track the time-varying
statistics of nonstationary signals and thus produce better real-time spectral
estimates.

e[k]

x[k]@% Olelk]] F——@> ¢,lk] k]
) k]
xlk] | Predictor .
o——| + Predictor
A(z) k]

Figure 15.2. DPCM Encoder and Decoder

Differential Pulse Code Modulation (DPCM) is used to efficiently compress
and transmit Pulse Code Modulated (PCM) speech signals. Because there is a
strong correlation between successive samples it is possible to reduce the signal
size by the DPCM system shown in Figure 15.2 (Zelniker and Taylor 1994). The
encoder consists of a quantizer Q and a predictor, which is a feedback loop around
the quantizer. The prediction signal x[k] is generated as a linear combination of
the N previous samples of the signal X[k], and the prediction error e[k] is defined

by Equation 15.1.
N
elk]= x[k]—x[k] = x[k]— . a, X[k —m] (15.1)
m=1

The signal X[k] is defined by X[k]= x[k] +e, [k], where eq[k] is the quantization

prediction error. This error differs from the true prediction error by the quantization
error, i.e., eq[k] = Q[e[k]] =elk] —nq[k] , Where n, [£] is the quantization error.

342 Principles of Adaptive Filters and Self-learning Systems

The quantization prediction error e, [k] is then the signal that is transmitted. The

predictor is in a loop around the quantizer to avoid accumulation of quantization
errors in the decoder, i.e., n, [k]= e, [k]1—e[k], where e[k]= x[k]—X[k], therefore

nq[k]=eq[k]+fc[k]—x[k]. From the decoder system it is evident that
eq[k]+5c[k]=5c'[k], thus it follows that)%[k]—x[k]=nq[k]. The difference

between the predictor input and the input sample is due only to the instantaneous
quantization error and does not accumulate. At the receiver end the signal x[k] is

reconstructed by the decoder, which has a predictor that is identical to the predictor
in the encoder. If the encoder and decoder predictors are started from the same
initial conditions the only error in the reconstructed signal will be the unavoidable
quantization error.

The data compression of DPCM results from the fact that if the speech signal is
highly correlated, the prediction error will have a smaller dynamic range than the
signal itself. Consequently, the prediction error can be coded with fewer bits per
sample. Adaptive Differential Pulse Code Modulation (ADPCM) replaces the fixed
predictor in the DPCM system with an adaptive predictor that is capable of
adapting to time-varying input signal statistics.

15.2 Adaptive Modelling

In cases when a system of unknown structure has observable input and output
signals an adaptive filter could be used to model the system’s impulse response as
shown in Figure 15.3. If the input signal is robust in frequency content and if the
internal plant noise is small, the adaptive filter will adapt to become a good model
of the unknown system. This is known as forward modelling, or system
identification, and has applications in,

1. Biological, social, economic sciences.
2. Adaptive control systems.
3. Digital filter design.
4. Coherence estimation.
5. Geophysics.
Inverse modelling involves developing a filter that is the inverse of the
unknown system, as shown in Figure 15.4. The delay block is usually included to

account for the propagation delay through the plant and the adaptive processor,
assuming that both are casual systems. Inverse modelling is used in,

1. Adaptive control.

2. Speech analysis.

3. Channel equalisation.

4. Deconvolution.

5. Digital filter design.

Applications of Adaptive Signal Processing 343

Input

u

System

nknown

d, Desired Response

N

X

Adaptive
Network

System Output

Error
Yi

Network
Response

Figure 15.3. System Modelling

Delay

of ¢

s,.s Desired Response

N

Input

Sk

Unknown
System

Xk

Adaptive
Network

dk
C
€
Error
Y
Network
Response

Figure 15.4. Inverse System Modelling

15.3 Adaptive Telephone Echo Cancelling

In long distance telephone circuits echo is natural because of amplification in both
directions and series coupling of telephone transmitters and receivers at both ends.
Previously, echo suppressors were used to prevent this by giving one-way
communication to the party speaking first. To avoid the resulting switching effects
and to permit simultaneous two-way transmission of voice and data, adaptive echo
cancellers are now used instead of suppressors. Separate circuits are used in each

344 Principles of Adaptive Filters and Self-learning Systems

transmission direction. Often hybrid transformers are used to prevent incoming
signals from coupling through the telephone set and passing as outgoing signals.
However, the hybrid transformers are routinely balanced for the average local
circuit so they cannot do their job perfectly for any specific circuit with its own
unique path length and electrical characteristics. An adaptive filter is therefore used
to cancel any incoming signal that might leak through the hybrid transformer,
causing echo. Figure 15.5 shows a typical arrangement. The adaptive filters at each
end adapt to the outgoing signal so that any incoming echo signal that is similar to
the original outgoing signal is subtracted from the transmitted signal.

Transmission

Delay
Phone N Phone

Adaptive Adaptive
O@ Hybrid P Error Error g Hybrid @O
Filter Filter

T Transmission

Delay

Figure 15.5. Adaptive Echo Cancelling System

15.4 Adaptive Equalisation of Communication
Channels

Communication channels can have nonflat frequency responses and nonlinear phase
responses in the signal passband. Consequently, a communication channel is often
modelled as a linear and time-varying filter whose characteristics are not explicitly
known. Sending digital data at high speed through physical communication
channels can result in Intersymbol Interference (ISI) caused by channel noise and
signal pulse smearing in the dispersive channel medium. An equaliser is a system
that essentially reverses the effects of the ISI and therefore aids in the detection
process at the receiver. For channels that are stationary or slowly varying in time,
the equaliser is implemented as a linear filter. The equaliser is often an integral part
of a modem system, which includes a linear adaptive filter. A modem’s adaptive
filter can adapt itself to become the channel’s inverse by using decision-directed
learning as shown in Figure 15.6 (Widrow and Winter 1988). Since without
equalisation telephone channels can still provide Bit Error Rates (BERs) of 10-! or
less, the quantized binary output can therefore be used as the effective desired
response for training. When the adaptive channel equalisation filter eventually
converges the bit error rate will typically reduce to 1070 or less.

Applications of Adaptive Signal Processing 345

T\d[k] Equalised Output

Quantiser

elk]=d[k]—alk]

0¥
Input X

k] ——8—

e[k]

Adaptation Algorithm

Figure 15.6. Adaptive Channel Equaliser with Decision-directed Learning

Another equaliser arrangement for noisy communication channels is described
by Figure 15.7. The equaliser E(z) must reverse the effects of the channel distortion
represented by the channel transfer function H(z) and the additive noise n[k]. The
purpose of the equaliser is to process the receiver signal y[k] and produce as good
an estimate of the transmitted signal x[k] as possible. To adapt the equaliser E(z) it
is fed with regular sequences of a known (training) input signal for a short period of
time every so often.

xlk] 5 i
| m—> k]
H(z) N
| e ||
ko
n + ‘ :
w ! ylk])

Figure 15.7. Adaptive Equaliser

When the noise is white with a variance of 0'% the Wiener solution of the
equalisation problem is defined by Equation 15.2 (Zelniker and Taylor 1994).

346 Principles of Adaptive Filters and Self-learning Systems

olH(z")
H(Z)H(Z_l)O'f + O',%

E(z) = (15.2)

[
Broadband ~A*, At Broadband
Signal ! Signal
N
|
Dela ! .
Periodic Y ! Adaptive
Signal | Filter
Interference |
| Adaptive Noise
Reference Signal N Canceller
Periodic + " +
+ | _
Signal ! /S
BN Periodic
Dela [. Signal
Broadband d ' | Adaptive
Signal ! Filter
Interference |
: Adaptive Noise
Reference Signal ~ ~________ _/ Canceller

Figure 15.8. Self-tuning Adaptive Filter Arrangements

15.5 Adaptive Self-tuning Filters

Where there is a broadband signal corrupted by periodic interference or a periodic
signal corrupted by a broadband signal and no external reference input free of the
signal it is still possible to apply an adaptive filtering solution (Widrow et al 1975).
It can be done by applying an adaptive noise canceller in arrangements shown in
Figure 15.8 to solve these types of problems. If it is assumed that the broadband
noise is random it is possible to use the broadband plus the periodic signal as the
reference signal for the noise canceller’s reference input. This is possible because
only the periodic signal content will provide a sustained signal that is correlated
with the noise (the periodic signal) that is to be filtered out. The removal of
narrowband noise from a broadband signal is sometimes called line enhancement.

15.6 Adaptive Noise Cancelling

A major problem in ECG measurement is the appearance of mains hum at a
frequency 50 or 60Hz, i.e., power-line interference due to magnetic induction,

Applications of Adaptive Signal Processing 347

displacement currents in leads or in the body of the patient and equipment
interconnections and imperfections. This problem can be minimised through use of
proper equipment grounding and use of twisted pair leads. Another method is to use
adaptive noise cancellation as shown in Figure 15.9 (Widrow et al 1975).

Mains hum contaminated ECG Signal d=s+n

—> Filtered

3 | 3 | Output
N B |
| Adaptive | | | Adaptive |||
'| Filter ; '| Filter ;
Mains Signal | N ! _ |
900 ‘ ! | |
Reference Delay N ! R IR

Figure 15.9. Adaptive Mains Cancelling System

Abdominal ECG Signal

d=s+n
{/ 77777777 N T T T T T T T \Y/ 77777777 A \\‘
| \C\ | \C\ H Filtered
| 4 | + ' 7 Foetal ECG
N) " A
BN IS N EL A S LA [
| | !
| | Adaptive Adaptive : Adaptive Adaptive |
: Filter Filter : Filter Filter |
| \ N— AN N
| | !
| | |

Four ECG Chest Signals
Reference inputs of mothers ECG

Figure 15.10. Adaptive Maternal Heartbeat Cancelling System

Another ECG measurement problem involves the cancellation of the maternal
heartbeat in the measurement of the foetal ECG. This is a difficult filtering problem
because the mother’s heartbeat is correlated with the foetal heartbeat. The second
harmonic frequency of the maternal ECG is close to the fundamental of the foetal
ECG. However, the interference of the mother’s heartbeat can still be cancelled
from the foetal heartbeat through the use of adaptive filtering as shown in Figure
15.10. The abdominal signal has the foetal plus the mother’s ECG signals, where
the mother’s signal is considerably stronger. Consequently, a number of ECG
signals are taken from different locations on the chest to act as reference signals for
the adaptive filters.

348 Principles of Adaptive Filters and Self-learning Systems

Elliptical Uncertainty Region

Acoustic Source

Range: R

M Receiving Sensors / Bearing: B

0@ 0@

Array Axis
|% Array Length: L %|

Figure 15.11. Receiver Array Uncertainty Region

15.7 Focused Time Delay Estimation for Ranging

An underwater acoustic point source radiating energy to several collinear receivers
(Figure 15.11) can be located in two-dimensional space by a range R and a bearing
B with respect to a frame of reference. There is an approximately elliptical
uncertainty in source location due to uncoupled range and bearing errors.
Assuming there are M sensors separated over a total of L metres and observed for T
seconds, then each sensor i receives the signal voltage V,(f) defined by Equation
15.3.

Vi) = st + D) +nt), i=1..,MO<t<T (15.3)

Sensor Output #1$| Prefilter #1

Sensor Output #29| Prefilter #2 H Delay #2

Square Maximise
and 9 ouput by
Average adjusting

R and B

Sensor Output #M P Prefilter #M
M-1 Variable Delays

Select ~
delays e k
fNor Adjustable hypothesised range and bearing
R and B N
K— B

Figure 15.12. Beam Array Focusing System

The signal and noises are uncorrelated and the noises are mutually uncorrelated.
For a spatially stationary nonmoving source the signal can be viewed as an

Applications of Adaptive Signal Processing 349

attenuated and delayed source signal. Figure 15.12 shows how, by focusing all the
time-delay elements at many (hypothesised) range and bearing pairs and watching
for the peak output of the Maximum Likelihood (ML) time-delay vector system, the
ML position estimate is observed. This is a focused beamformer, which maximises
a quantity by adjusting a number of delay parameters such that all delays must
intersect in a single hypothesised position. Each receiver input is prefiltered to
accentuate a high SNR then delayed and summed. The summed signal is fed to a
filter, squared and averaged over the observation time. After an initial input of
range and bearing estimate the system can then track the source automatically.

The variances of the range and bearing estimates, 0'3‘(1%) and 0'/2,(3), for high
SNR are defined by Equations 15.4 and 15.5 respectively.

. KR
Oi(R) =—— rads’ (15.4)
TMVL,
2 A Kg 2
oi(B) = rads 15.5
A TMVI> (15.5)

e

where:
L, = L sin(B) the effective array length.
Kp , Kp are array type constants.
M is the minimum number of sensors.

Main Response Axis

Sidelobe Region‘ |

|
; ' 348 \g Wavefront Angle

Beamwidth

‘ Sidelobe Region

Figure 15.13. Array Beampattern

Array length is a more important factor in bearing estimation than either integration
time or the number of sensors. Variance of the range is limited by the range relative
to the baseline. The general beamformer response pattern is shown in Figure 15.13,
where there is a main response lobe flanked by diminishing side lobes as a function
of the wavefront angle.

15.7.1 Adaptive Array Processing

The delay-and-sum beamformer shown in Figure 15.12 is really a primitive type of
spatial filtering that is unable to deal with sources of interference (Stergiopoulos

350 Principles of Adaptive Filters and Self-learning Systems

2001). This can be remedied by making the system adaptive in such a way that it
places nulls in the directions of the interfering sources. By doing this the system’s
output Signal to Noise Ratio (SNR) is increased, thereby improving the directional
response of the beamformer.

Array Steering Delays d=s+n

Fixed-target

Sensor—y pelay + 1 \C\
2,7 Signal Filter ﬁ(
INIES

|
|
!
Sensor% Delay 3
|
|
|
|

|

|

|

!

|
Adaptive !
Filter |
|

|

|

|

|

|

|

Sensor% Delay

Reference Signals -

Figure 15.14. Adaptive Array Filter

The adaptive array processor shown in Figure 15.14 is now a type of multiple
input interference canceller. The steering delays are used to form a beam and
produce a peak array gain in a desired look direction. The noisy target signal s;, +
ny is obtained through a fixed filter. An estimate of the noise 7, is obtained

through the multiple-input adaptive processor and is used to cancel n;. Before the
first summing junction the noise signals from each transducer are likely to be high
in relation to the desired signal and therefore can be used as noise reference signals.

15.8 Other Adaptive Filter Applications

There are a number of good books that have been published of late that cover a
range of typical applications of adaptive filtering. These include (Garas 2000) on
“Adaptive 3D sound systems,” (Brandstein and Ward 2001) on “Microphone
arrays,” (Benesty et al 2001) on “Advances in network and acoustic echo
cancellation” and (Benesty and Huang 2003) on “Adaptive signal processing:
Applications to real-world problems.” Following are short overviews of these four
books with emphasis on special features.

15.8.1 Adaptive 3-D Sound Systems

The book (Garas 2000) is an initial investigation into the application of adaptive
filters in creating robust virtual sound images through loudspeakers in real-time. A
virtual three-dimensional sound image is one that is made to apparently appear to
be at a certain point in three-dimensional space where no loudspeaker exists. This is
achieved by processing a monophonic sound signal by a matrix of digital filters

Applications of Adaptive Signal Processing 351

containing directional cues, which the ears interpret in such a way as to give the
impression that the signal is emanating from a specific location. Adaptive filters are
most suited for this type of application because they have two significant
properties. Firstly, they have a tracking capability that can be used to track moving
listeners by the appropriate adjustment of their coefficients. The second property is
related to in-situ design of filters, which allows the possibility of including the
listeners’ own Head-Related Transfer Functions (HRTF) in the filter design.

Whereas stereo and conventional 3-D sound systems are designed to be optimal
for a specific area of the listening space, the multichannel systems developed in the
book make no assumptions regarding the number of listeners nor their positions in
standard reverberant listening spaces. This makes the work generally applicable to
many applications related to the listening of multiple listeners to multiple audio
signals through multiple speakers. Instead of using a fixed matrix filter design, as
typical of modern 3-D systems, to invert the matrix of acoustic transfer functions
between the loudspeakers and listener’s ears and produce the directional
information, the fixed filters are replace by adaptive filters. Peoples HRTFs vary
significantly among individuals so the average HRTF designed for general use is
not optimal for all listeners. Furthermore the HRTF is only valid for a single
listening position anyway. However, if microphones are placed near the entrance
of the listener’s ear canals adaptive filters can deal with their HRTFs directly in
real-time independent of head movement and location.

The real-time 3-D systems described in the book are implemented in the
frequency domain to reduce the inevitably huge computational burden. The
standard LMS adaptation algorithm is replaced with the more efficient adjoint LMS
algorithm. Still, for practical application, measures need to be taken to improve the
adaptive filter convergence speeds to keep up with listener head movements.
Because of the complexity of this application most of the analysis results are
gathered from simulation experiments, but this does not detract from value of the
work as a good introduction and identification of the important issues toward
practical implementations.

A fairy good up-to-date introduction to speech and audio processing is (Gold
and Morgan 2000). It covers many aspects of processing and perception of both
speech and music and as such offers significant information to the designer of real-
time adaptive 3-D audio systems.

15.8.2 Microphone arrays

Although the study and implementation of microphone arrays began over 20 years
ago the book (Brandstein and Ward 2001) is one of the first to attempt to provide a
single complete reference on this now relatively mature field. It is broken up into
four parts; theory of speech enhancement, theory of source localisation, array-based
technology applications, and discussion of open questions and future issues.

If speech is acquired by an array of microphones the speaker can freely roam
within a room environment and it is still possible to maintain the speech quality
against background noise, interference sources and reverberation effects. This
arrangement is superficially similar to narrow band conventional array processing

352 Principles of Adaptive Filters and Self-learning Systems

as used for radar and sonar, since in both cases the sources and noises are spatially
separated. However, in the speech application the signal has an extremely wide
bandwidth relative to its centre frequency and there is very significant multipath
interference due to room resonance. The most important difference is that in the
speech case the speech source and noise signals are located much closer to the
array, invalidating conventional far-field assumptions. These significant differences
have required the development of new array techniques for such microphone array
applications. Some of these new methods incorporate adaptive techniques.

The localisation and tracking of a speech source is the fundamental requirement
of microphone array systems. An important application for this is for camera
aiming in video-conferencing systems as well as for speech source enhancement
against a background of random and coherent noise and other interfering talkers. A
number of practical approaches are reviewed and developed on ways to solve this
problem, including combining audio and video information to track the motion of a
talker.

Some specific microphone array systems available today include the two-
dimensional harmonic array installed in the main auditorium of Bell Laboratories,
Murry Hill and the 512-element Huge Microphone Array (HMA) developed at
Brown University. Large arrays are very effective but arrays consisting of only two
to eight microphones over a space of centimetres are much more common and
affordable. These smaller systems are used more for close-talking under low to
moderate noise conditions for dictating at a workstation or using hands-free
telephones. Array techniques for background noise and interference cancelling are
also used very effectively to aid the hearing impaired as well as for sound capture
in automobiles. A new application for microphone arrays that is fundamentally
different to spatial filtering approaches, is the separation of blind mixtures of
acoustic signals recorded at a microphone array.

The book has summaries of currently open problems in the field and personal
expert views on future trends, offered from both academic research as well as
industry perspectives. Specific issues are related to hands-free communication,
automotive, desktop, hearing aids teleconferencing, very large arrays and signal
sub-space approaches.

15.8.3 Network and Acoustic Echo Cancellation

The hybrid devices used, for many decades, to connect two-wire local and four-
wire long distance telephone lines have contributed to the echo problems of the
past. This problem was first addressed in the 1960s by using an adaptive filter for
echo cancellation. In more recent times of hands-free teleconferencing other echoes
appeared due to the coupling between loudspeaker and microphone, which were
solved using adaptive echo cancelling. This has also led to multichannel echo
cancellation in more recent times.

The book (Benesty et al 2001) covers the subject of adaptive echo cancelling
with an emphasis on new ideas to what might be considered an old problem. It is
aimed at researchers and developers as well as students. A history of echo
cancellation is provided to give the relevant background to the problem followed

Applications of Adaptive Signal Processing 353

by more recent developments. These include the class Normalised Least Mean
Squares (NLMS) adaptive algorithms, a robust fast recursive least-squares adaptive
algorithm, efficient implementation of echo cancellers for a large number of
simultaneous channels, telecommunication applications, a Fast Normalised Cross-
Correlation (FNCC) method for double-talk detection, a practical stereo
conferencing system, a new frequency domain adaptive filtering theory, a frequency
domain system for double-talk and echo cancellation, and a theory for the
development of a generalised least mean squares algorithm and generalised affine
projection algorithm.

15.8.4 Real-world Adaptive Filtering Applications

The book (Benesty and Huang 2003) offers a reference to the latest real-world
applications where adaptive filtering techniques play an important role. The subject
matter covers applications in acoustics, speech, wireless, and the currently open
area of networking.

The specific topics covered are, new directions in adaptive filtering for sparse
impulse responses, approaches to feedback cancellation, introduction to single
channel acoustic echo cancellation, a new general class of algorithms for
multichannel adaptive filtering, noise filtering in speech communications, adaptive
beamforming for speech and audio signal acquisition, blind source separation of
convolved mixtures of acoustic signals, multichannel time delay estimation, classic
adaptive equaliser techniques, adaptive space-time processing for wireless receivers
in CDMA networks, an IEEE 802.11 wireless local area network system with
multiple receive antennas, and a least square estimate of the difference between the
sender and receiver clock frequencies and the fixed delay in the Internet network.

16. Generic Adaptive Filter Structures

This Chapter describes two generic adaptive filter structures, the Sub-Band
Adaptive Filter (SBAF) and the Sub-Space Adaptive Filter (SSAF) (Zaknich
2003b). The SBAF is a method of breaking a wide-band input signal into equal
bandwidth frequency sub-bands via a set of parallel band-pass filters. By doing this
a reduction of the effective FIR filter length can be achieved with a consequential
gain in speed of convergence. Breaking the input signal into separate frequency
bands allows the complex problem to be broken down into parallel simpler sub-
problems that together still solve the problem but with less overall computational
burden.

The same general idea can be applied to the input signal space, for nonlinear
problems, by breaking the problem into a set of simpler parallel linear problems
with consequential processing gains. The SSAF does this by applying a set of
decoupled smoothly merged parallel linear adaptive filters that each cover separate
regions of the input space. At any given time only one or a small set of
neighbouring adaptive filters are active in a part of the overall data space. The
region sizes are each made to be small enough for adequate coverage by a single
linear adaptive filter. In this way it obviates the need to cover the whole input data
space with a single more complex nonlinear adaptive filter.

16.1 Sub-band Adaptive Filters

There are two main problems with LMS type adaptive FIR acoustic echo
cancellation systems that work with wide bandwidth signals. Firstly, whether within
rooms or underwater acoustic environments the echo delays are relatively long
requiring a very large number of FIR adaptive filter coefficients. The long impulse
response of the resulting FIR filter and the large eigenvalues of signals (in
particular speech signals) result in a fairly slow and uneven rate of adaptive
convergence. These problems can be minimised through the use of a sub-band echo
cancellation system (Vaseghi 1996).

A sub-band system splits the wide-band input signal into say N equal bandwidth
frequency sub-bands via a set of parallel band-pass filters. Each sub-band can then
be down sampled without any information loss. For example, if the current
sampling rate is F; samples per second and there are N equal sub-bands it is

356 Principles of Adaptive Filters and Self-learning Systems

possible to down sample each sub-band to a sampling rate of D samples per second,

F
where, WY < D < F;. This is done by frequency shifting each sub-band down to the

base band by a factor of R :% and resampling at rate D. Each sub-band is then
processed separately (or in parallel) in the baseband at a sampling rate of D and
finally transformed back to its normal frequency range and back to the original
sampling rate F, before reconstructing the total signal output as the sum of all N
processed sub-bands. The main advantage of doing this is that the FIR filter length
is reduced, along with a consequential gain in speed of convergence.

An outline of the sub-band acoustic echo cancellation system is shown in Figure
16.1. The input signal x[k] and the echo path output signal y[k] are passed through
the same analysis filter designs to produce N separate sub-band signals, each down
sampled by a factor or R. The wide lines in Figure 16.1 show the signal paths for
the N multiple sub-band signals. The sub-band filter outputs can be contained in the
N-dimensional vector §[k] which forms an estimate of the sub-band echo signals
vector y[k] producing the resulting sub-band error signals vector e[k]. These vector
signals are used by the adaptation algorithm to adjust each set of sub-band filter
coefficients. The echo cancellation progresses in the usual way as the system
attempts to continuously drive the sub-band error signals e[k] to zero.

x[k] l

Analysis BPF Bank B
| I
x[k] ,/ Echo
b . Paths//
Adaptation D Sub-band Filters O
Algorithm
ylk1 ylk]
olk] e Synthesis etk (- JIA] Analysis
BPF Bank BPF Bank

Figure 16.1. Sub-band Adaptive Filter

The impulse response of each sub-band FIR filter can have the same time
duration as the original full band filter but the tap length of each sub-band filter is

%? of the full band filter. Obviously, each LMS sub-band FIR adaptive filter will

Generic Adaptive Filter Structures 357

require much less computation because it will have a much smaller product of the
filter length and sampling rate. The computational complexity of the sub-band

filters will be }é , of the full band filter. Hence, the overall computational

complexity of the total sub-band system will be % , of the full band system.

Convergence speed is inversely proportional to both filter length and the eigenvalue
spread of the autocorrelation of the input signal. However, the eigenvalue spread is
the more significant factor so it is desirable to have a more flat frequency spectrum
(small eigenvalue spread) for fast convergence. The signal within each sub-band is
likely to have a flatter spectrum than the full band signal and so this would in
theory tend to help convergence. However, in practice the eigenvalue spread is
actually larger for sub-band signals than for full band signals. This is because the
slopes of the band edges of the analysis bandpass filters cause spectra notches
there, thus creating some very small eigenvalues. Nevertheless, the improvement
provided by the sub-band structure as a whole is due to the fact that the errors at the
band edges get little weight due to the attenuating filter characteristics.

The benefit of the sub-band approach is that a more complex problem is broken
down into a set of smaller much less complex problems. This gives an overall
computational and speed of convergence gain with only a relatively small
administrative overhead of splitting and recombining parts through analysis and
synthesis parallel bandpass filter banks respectively. These extra filtering
operations do introduce an extra delay in the signal path that can sometimes be
problematic (Benesty and Huang 2003). However one way of eliminating the delay
is to compute the adaptive weights in the sub-bands and then transform them to an
equivalent full band FIR filter (Morgan and Thi 1995). The reduction in
computational complexity can be exploited in a number of ways (Benesty et al
2001). Either the overall system bandwidth or the duration of the impulse response
to be modelled can be increased. Computational hardware can be reduced to save
costs or alternatively a more complex adaptive algorithm can be employed. The
sub-band structure also allows for a more efficient parallel processing.

To ensure that sub-band processing will work correctly it is necessary to use
bandpass filters for the analysis and synthesis parts with very good pass and stop
band characteristics (Bremaud 2002). Obviously since it is not possible to design
bandpass filters with perfect zero stopband characteristics, misalignment errors are
inevitable. There is misalignment due to the residual aliasing within the sub-band
signals and misalignment due to the inevitable truncation of the sub-band filter’s
impulse responses by the required sharp bandpass filter characteristics. Another
requirement for satisfactory operation is that the down sampling factor R must be
chosen such that the passband and transition region of the modulated versions of
the analysis bandpass filters do not overlap in the frequency domain after down
sampling.

The echo canceller in each sub-band is essentially independent of the others so
it is possible to use any of the usual adaptive algorithms in each. The most common
algorithm used is the Normalised LMS algorithm because it has been determined
that its convergence is faster in the sub-band canceller than in the full band

358 Principles of Adaptive Filters and Self-learning Systems

implementation. Each canceller is not only independent in its operation but it also
acts on separate frequency regions.

A generic extension of this basic structure could be to define sub-spaces rather
than frequency sub-bands and have separate adaptive algorithms operating in each.
This can be an especially useful thing to do for a nonlinear process, where the
process can be broken up into independent approximately linear sub-space regions.
This new structure could then weld the sub-spaces together seamlessly as does the
sub-band structure. Using a set of linear adaptive algorithms to cover a processing
space may provide a processing advantage over trying to deal with the whole
process with a single less efficient nonlinear adaptive filter like a high order
Volterra filter. This structure might be called a sub-space adaptive filter.
Furthermore, if necessary, it would also be possible to create a separate sub-band
structure within each sub-space to gain even further processing advantage for such
a nonlinear process problem.

16.2 Sub-space Adaptive Filters

Single standard linear or nonlinear adaptive filters have no specific mechanism
built into them that prevents old learning to be progressively lost as new data flows
through them. If fact, these standard adaptive filters are deliberately designed to
readapt to new operating states as they occur. However this can pose a problem if
on occasions large state changes are occurring faster than the system can adequately
readapt to them. For these special circumstances, it would be very desirable to have
an efficient adaptive learning system that retains all the features and benefits of the
standard more flexible adaptive system but that is also able to retain a useful degree
of old learning. In a learning context this is known as the stability-plasticity
dilemma. As the process switches to a new distant state very quickly the system can
immediately start adapting from the closest learned state available from previous
experiences and continue tracking as quickly as possible. For stationary processes
the system would eventually build a complete model of the whole process as it
experiences the full range of operating states. Continued adaptation would then
only occur as a result of noise fluctuations. For nonstationary processes the system
would eventually build up a set of learned starting points available for each major
adaptation state change, which may be better than an initial zero or random start.
Any learned states that are not revisited for a long time may be removed routinely
to save memory or simply retained if memory is not a problem.

A system as described above can be achieved by making a suitable extension to
the Tuneable Approximate Piecewise Linear Regression (TAPLR) model (Zaknich
and Attikiouzel 2000), which is based on the Modified Probabilistic Neural
Network (MPNN) structure (Zaknich 1998) that is typically used for nonlinear
regression. The MPNN structure has a set of amplitude weighted Radial Basis
Functions (RBFs), each having a common bandwidth, that cover the input data
space. It is possible to associate a separate adaptive linear filter model with each
RBF and to only adapt the respective filter within the sphere of influence of that
RBF at any given point in time. In the standard MPNN, used for regression, the

Generic Adaptive Filter Structures 359

centres of each RBF in the input space are typically computed as the mean of all the
input training vectors within a local vicinity of the RBF. Each RBF in the network
has a scalar amplitude weight Z; associated with it that typically represents the
density of training points (points used to compute its centre) within each RBFs
sphere of influence. Each RBF centre vector is then associated with a suitable
desired output scalar and the whole structure builds up a generalisation between the
vector input space and scalar outputs. In the proposed multiple Sub-Space Adaptive
Filter (SSAF) model vector points used to develop the RBFs are not necessarily
directly related to the filter’s input vectors and their associated desired filter
outputs. The adaptation mechanism can be controlled by any measurable state
vector meaningful to the filtering process. Also, the weighting factor Z; can be used
for a number of different possible purposes depending on the needs of the design. It
can represent training density as before or represent a priori probability of
occurrence of data in its RBFs region for filter operation. In the present adaptive
filtering context, the most useful thing to do is to set Z; to be proportional to the
distance of separation between neighbouring RBFs, in order to provide an
appropriate weighting between neighbouring linear adaptive filter models in the
data space.

Other multiple model approaches similar to the proposed method have been
developed in recent years. One of these is based on a combination of piecewise
polynomials (Heredia and Arce 2000). This method also uses an additive
combination of multiple kernels, which constitute localised models to cover the
data space. The main difference is related to kernel shape parameter selection. In
the proposed SSAF model the kernels are all RBFs having a common bandwidth.
Whereas, Heredia and Arce’s method finds appropriate parameters for its more
complex kernels via linear optimisation. Another somewhat similar approach is the
off-line multiple model approach used by (Simani, Fantuzzi, Rovatti and Beghelli
2000). Although they don’t use local kernels, they do combine multiple affine
models to cover the data space and force continuity constraints among local affine
models by solving an optimisation problem. Their parameter estimation algorithm
is based on the well established Frisch scheme (Frisch 1934).

An on-line approach that arranges linear filters and thresholds in a tree structure
was previously proposed by (Gelfand and Ravishankar 1993). They developed a
stochastic gradient based training algorithm to adapt both filter coefficients and
thresholds at the nodes of the tree as well as to prune the tree. Their method
performs a sequential, hierarchical partitioning of the input vector space into
polygonal domains and a pruning procedure selects a suitable tree size. Although
this method does offer robust estimation and fast adaptation of linear filters it
suffers from the problem that training at parent nodes is not completed prior to
training at offspring nodes. Therefore data at non-root node filters have a
complicated nonstationary and dependent character, and consequently stabilisation
with penalty methods is required. Nevertheless it is a conceptually simple and
computationally efficient method (Gelfand, Krogmeier and Balasubramanian
1995).

The SSAF model has many applications but its application to audio and
underwater acoustic signal modelling, equalisation and filtering systems is of

360 Principles of Adaptive Filters and Self-learning Systems

particular interest. This is because SSAF model can be used to provide a
convenient and practical model of system responses, a sound propagation medium
model or a model of signal propagation through either a changing homogeneous or
nonhomogeneous three-dimensional medium based on measured data. In these
types of applications it is likely that only the properties of arbitrary locales of the
medium change at any time, in which case adaptation or training processes and
filters in other locales need not be affected. Consequently, these types of
environments can be very difficult to analytically model throughout, especially
when their properties are changing over space as well as in time in quite complex
ways due to varying thermal and other environmental conditions.

The main offering of the SSAF is a practical and conceptually simple method
for smoothly coupling and selecting multiple linear (or affine) or nonlinear adaptive
filter models using common bandwidth RBFs to cover the operating data space.
Although the method is strictly not optimal in any sense it does have a convenient
way of fine tuning through adjustment of a single smoothing parameter, being the
common bandwidth parameter of the RBFs, based on representative training data.

In the following Sections reviews of the MPNN and APLR models are provided
as a background to the subsequent development of the SSAF model. Also, some
hints for suitable applications are provided with some discussion and description of
some representative problem developments. Suitable training strategies as well as
possible extensions of the idea are discussed in the later Sections of the Chapter.

16.2.1 MPNN Model

The Modified Probabilistic Neural Network was originally developed for general
regression and application to nonlinear signal processing problems (Zaknich 1998).
It is effectively a generalisation of Specht’s General Regression Neural Network
(GRNN) (Specht 1991) and is related to his Probabilistic Neural Network (PNN)
classifier (Specht 1990). Both the MPNN and GRNN have fundamental similarities
with the method of (Moody & Darken 1989); the method of radial basis functions
(Powell 1985); and a number of other nonparametric kernel based regression
techniques inspired by the work of (Nadaraya 1964) and (Watson 1964).

If it can be assumed that for each local region in the input vector space,
represented by the centre vector ¢;, there is a corresponding scalar output y; that it
maps into, then a convenient general model to use for all forms of the general
MPNN and its subset the GRNN is Equation 16.1.

M
27y fi ("X —ci||70')
F(x) == (16.1)
azifi("x—ci",a)

where:
fi ("x —ci”, o) is a common bandwidth RBF.

¢; is the network trained centre vector i in the input space.

o is the single learning parameter chosen during training.

Generic Adaptive Filter Structures 361

y; is the scalar training output i related to c;.
M is the number of RBF centre vectors c;.
Z; is the number of training vectors x; associated with each ¢;.

M
L is the total number of training vectors x;, L=) Z,.
i=1

Equation 16.1 represents the GRNN if all the Z; = 1, the y; are real valued, the
centre vectors ¢; are replaced with individual training vectors x; and M = L. A
Gaussian RBF, with a bandwidth parameter of o (typically modelling the signal
noise standard deviation), is often used for f;(x) as defined by Equation 16.2. There
are many other RBFs that can be used but the Gaussian RBF is often adequate,
although not very computationally efficient.

(16.2)

(x-cV (x-c.
fi(”x_ci",g)zexpw

0_2

The RBF Equation 16.2 can be represented more economically by Equation 16.3.

-d?
. d.’ = L .
fi(d;,0) exr{wz] (16.3)

where:

d; =[x-¢ | = x-¢)" x-¢).

One simple way that the MPNN set of network vector pairs {(c;y,) | i=1,...., M}
can be formed is through a form of vector quantization, where the input space is
firstly partitioned into uniform hypercubes (Zaknich 2003a). Then, ¢; is made to be
the mean of all training input vectors X; in each hypercube that map to each y,. The
value y; is usually computed as the mean of the outputs y; associated with their
corresponding inputs x;. These corresponding outputs y; must be sufficiently close
to each other to be adequately represented by their mean. In this way a local group
of vectors in the input space can be replaced with a single centre vector that maps
to a single mean scalar output value. The value Z; is simply the number of
associated input vectors X; that are averaged to make centre vector ¢;. If training
samples are taken randomly from the process, Z; could be interpreted as being
proportional to their a priori probability of occurrences. A number of different
hypercube sizes can be systematically tested to choose the best one, else a
reasonable guess often suffices. There are various strategies for constructing the
network based on Equation 16.1 depending on the application and its requirements
(Zaknich 1998) and these must be considered in the context of the problem.

Training then simply involves finding the single optimal learning parameter o
giving the minimum Mean Square Error (MSE) of the network output minus the
desired output for a representative testing set of known sample vector pairs
{(Xpyp) | k=1,...., NUM}. In typical applications there is often a unique © value

362 Principles of Adaptive Filters and Self-learning Systems

that produces the minimum MSE between the network output and the desired
output for the testing set (independent of the training set) and it can be found quite
easily by trial and error. Alternatively, since the relationship between ¢ and MSE is
usually smooth with a broad minimal MSE vs. ¢ section o can often be found very
quickly by a convergent optimisation algorithm based on recurrent parabolic curve
fitting (Zaknich and Attikiouzel 1993). Also, because the relation between o and
MSE is usually smooth with a broad minimal MSE section the value of ¢ is often
not overly critical for adequate performance anyway.

The MPNN model can best be described as a semiparametric model, which
produces more efficient networks than the nonparametric GRNN model, but it can
still be quite large and inefficient compared to the Multi-Layer Perceptron (MLP).
A way to make the MPNN smaller without compromising accuracy is to convert it
to the Approximate Piecewise Linear Regression (APLR) model as described in the
next Section.

16.2.2 Approximately Piecewise Linear Regression Model

The APLR model defined by Equation 16.4 can be formed by first partitioning the
input space into uniform hypercubes as is done for the MPNN. When the centre
vectors ¢; are found the Z; number of corresponding input vectors x; are also used to
create a set of best fit least squares linear regression models [;(x) associated with
each of the centres. The outputs y; in Equation (16.1) are then replaced with the
outputs of the subsequent linear models /,(x) for all input vectors during operation.
When this is done the linear model outputs provide more accurate mappings from
the input to the output space within each hypercube than to the fixed averaged
means y; of the MPNN. Consequently, the input space hypercubes can be made
much larger and fewer, resulting in a much smaller network size (smaller M) for
comparable regression accuracy.

In the APLR model the adjustment of o during training controls the degree of
weighting of each linear model associated with each centre or RBF. Input vectors
closest to a centre will activate the associated linear model more than for those
further away. For very small o the linear model associated with the centre closest
to the current input point will dominate, resulting in a linear response in the local
space of that centre. For very large o the network output will approach an
unweighted biased average of all the linear models. Somewhere in between an
optimal model will result that provides approximately linear operation close to each
centre, and possibly deviating significantly from linearity close to boundaries
regions between centres. With an appropriate choice of o a sufficiently smooth
merging of neighbouring linear models occurs at the boundaries.

M
Y70 f;(x—¢;].)
Fx) = (16.4)
EZifi("x—ci",O')

where:

Generic Adaptive Filter Structures 363

/i (||x -c [", 0) is a common bandwidth RBF.

X is an arbitrary input space vector.

¢; 1is the trained centre vector i in the input space.

o is the single learning parameter chosen during training.
1,(x) is the trained linear output model related to centre c;.
M is the number of RBF centre vectors c;.

Z; is the number of training vectors X; associated with each c;.

M
L is the total number of original training vectors x;, L= Y Z;.
i=1

g(x)
¢ ¢y C3 Cy Cs X
yo P
RBF, RBF, RBF,RBF, RBF
l ; \ /) l
| | | | |
| | | | |
o o o/ o -
| | | | |
¢ ¢y 5 Cy Cs x
Figure 16.2. Illustrative 1-D Example of the APLR Model
y(x) AN

Figure 16.3. APLR Model Regression Result

A simple one-dimensional illustration of an APLR model, typical of what might
approximate a loudspeaker amplitude frequency response, is illustrated by Figure
16.2 and Figure 16.3. Figure 16.2 shows an arbitrary continuous and differentiable
scalar function g(x), which is modelled by five (M = 5) scalar linear (actually
affine) sections (i = 1,...., 5) each associated with its own RBF; and scalar centre c;
in the scalar input space x. Figure 16.3 shows what the resulting APLR model
might look like after selection of suitable o and Z; values. In this example the Z;

364 Principles of Adaptive Filters and Self-learning Systems

values would be proportional to the distances of separation between RBFs. For
example, Z; would be larger than say, Z, because RBF, needs to span more space
that RBF, in order to provide appropriate weighting between respective linear
models /;(x) and /,(x) and their respective neighbouring models. For such a model
to work well the relative spans between RBFs should not be too great, say the
smallest to the largest span should not exceed a ratio of about 2 to 10 (Zaknich
2004).

Linear model /,(x) in Figure 16.2 provides more smoothing than the others and
consequently contributes more overall regression error to the total result. This may
still be acceptable for a given design specification, but if not it is just a matter of
adding more linear (or affine) models within region two to improve regression
accuracy. Another quite acceptable solution may be to make model /,(x) a suitable
order of polynomial or even a MLP. There is nothing in the APLR structure that
prevents the mixing of linear and nonlinear models in appropriate sections.
However, retaining a set of linear models throughout may provide a simpler design
at the expense of model efficiency. It can be easily appreciated that each of the
models /,(x) may either be computed off-line and fixed and/or simply adapted as
new training data becomes available.

16.2.3 The Sub-space Adaptive Filter Model

A slight modification to the APLR model (Zaknich and Attikiouzel 2000) in
conjunction with an adaptive mechanism forms the basis to the proposed SSAF
model (Zaknich 2003b). The linear models /(x) in the SSAF Equation 16.5 can
now be defined as adaptive filter models. Refer to Figure 16.4 for a diagrammatic
representation of Equation 16.5. The main difference between Equation 16.4 and
Equation 16.5 is that in Equation 16.5 the RBFs are formed in a process state space
z, which is not necessarily the same as the input space x, but in practice often is.
The process state space z represents some aspect of the process that can be
measured, monitored and used to determine when a particular filter model /,(x)
should take operational effect. Z; becomes a filter model weight that can be
arbitrarily adjusted or set independently of training vector numbers as required by
the problem.

M
> ZL,(x) f; (”z —czi“,O')
I(x,z) ==

M (16.5)
glz,. fi(z—cz;|.0)

where:
fi (||x —cz l-||, o) is a common bandwidth RBF.

X is an arbitrary filter input space vector.

Z is an arbitrary process state vector associated with z. Often z = x.
cz, is the trained RBF centre vector i in the process state space.

o is the single learning parameter chosen during tuning.

[,(x) is the adaptive linear filter model output related to centre cz;.

Generic Adaptive Filter Structures 365

M is the number of RBF centre vectors cz;.
Z; is the weight associated with adaptive linear model /,(x) and centre cz;.

X Input Signal Vector
z Input State Vector

Input Unit

Pattern Units

fi (z-cz P

Output Units 7@ z

° Output Units

Summing Unit Summing Unit
Division Unit w
;Zili(x)fi(Hz—cziH,O')

Output $(x,z)=

M
Eutieo
Figure 16.4. SSAF Model

The complete SSAF model is established from Equation 16.5 by adding a
suitable adaptation mechanism similar to that of the MPNN (Zaknich and deSilva
1997). In MPNN the network parameters associated with a particular RBF; were
adapted, for a given input-output pair, only if,

Zifi(x=¢ o) 2 Z, fi(x—¢i|. o), ¥ k=i

For the SSAF model the adaptation condition, for a given input-output pair and
process state vector z, is now defined by Equation 16.6. (This equation was
incompletely written in (Zaknich 2003b), where the Z; and Z, factors were

incorrectly omitted.) The SSAF model is basically the adaptive version of the
Integrated Sensory Intelligent System (ISIS) model described in (Zaknich 2003c).
In (Zaknich 2003c) the ISIS model is nonadaptive and used to implement a fixed
nonlinear detector to solve an underwater Doppler shifted chirp signal detection
problem.

366 Principles of Adaptive Filters and Self-learning Systems

Z fi(z—cz,|.0)2 Z, fi (e —cz.] 0), V k#i (16.6)

In most designs it would be expected that ¢ is determined and fixed before
adaptation begins, else it can be periodically or continually adjusted as the data
flows through the system. The range of o value for acceptable performance is
often quite broad and as such is not necessarily an overly critical parameter. Its
main purpose is to ensure a sufficiently smooth interconnection between
neighbouring linear filter models.

There are many possible standard linear adaptive filters and associated
adaptation mechanisms that may be used on the models /;(x) (Stergiopoulos 2001,
Garas 2000, Haykin 1999, Diniz 1997, Haykin 1996, Hayes 1996), depending on
design requirements. Most applications may be adequately served by using Finite
Impulse Response (FIR) filters with a suitable variant of the Least Mean Squares
(LMS) adaptation algorithm. For applications that may require more efficient filter
models and a faster adaptation capability the Recursive Least Squares (RLS)
adaptation algorithm, or one of its variants, used in conjunction with linear
recursive filters may provide a better solution. The use of adaptive versions of time-
frequency filters (Hlawatsch 1998) would also add a very useful dimension to
design possibilities but that is the subject of ongoing research.

The SSAF model, as indicated previously, is actually somewhat similar in form
to an adaptive multiple FIR filter used for sub-band echo cancellation (Vaseghi
1996). Such a filter splits the input signal into a parallel frequency sub-bands
having equal bandwidths. Each sub-band can be down sampled without loss of
information, and assigned a separate smaller FIR filter. The main advantage of
doing this is that the set of reduced length filters operating in parallel can now
converge much faster than a single long FIR filter would. The SSAF is really a kind
of more general form of this, where the chosen sub-space is not restricted to
frequency bands but can be any definable and appropriate sub-division of the
operation space that can be somehow related to the filter’s operating domain.

16.2.4 Example Applications of the SSAF Model

The SSAF model was originally developed with its application to three-dimensional
audio and underwater acoustic signal modelling, equalisation and filtering firmly in
mind. These processes are very difficult to model analytically, especially when the
properties of the acoustic medium can and do vary nonlinearly with position and
time. Consequently, problems such as these are characterised by the need to
develop and adapt practical models from data measurements in real-time. The two
simple example problems of loudspeaker modelling and adaptive equalisation, and
acoustic signal propagation through the ocean can serve to illustrate SSAF
applicability and utility. In both these applications the state space vector z
represents the three spatial dimensions and is used to segment and identify three-
dimensional spatial sub-spaces of operation. Also, any model adjustments are
restricted to local RBF sub-spaces based on updating local measurements while still
maintaining good interpolation between the other sub-models.

Generic Adaptive Filter Structures 367

16.2.4.1 Loudspeaker 3-D Frequency Response Model

A loudspeaker three-dimensional frequency response model can be built up by
initially measuring the frequency responses at a number of suitable points in space
in front of the loudspeaker. The SSAF model can then be used to both smoothly
interpolate the response between measured responses over both the frequency and
physical space of interest and then be adapted with respect to the whole model
according to any dynamic equalisation requirements. Although loudspeaker
amplitude vs. frequency contours can vary at a single spot in three-dimensional
space as well as over space in front of the speaker they change relatively smoothly
over frequency and space. This means that relatively few spots in front of the
speaker need to be initially measured to build an effective and smooth three-
dimensional loudspeaker response model.

The shape of Figure 16.3 is similar to a typical loudspeaker amplitude response
at one spot in front. Equation 16.5 can be used to very easily model and smooth this
type of shape using standard one-twelfth octave frequency amplitude measurements
taken at one meter distances from the loudspeaker around it. An interpolation
model of the frequency response at a single spot has been developed that is based
on centres placed at one-twelfth octave frequencies (Zaknich 2004). In this model
each linear model //(x) is placed at each one-twelfth octave frequency is taken to be
a constant equal to the respective scalar measurement. This is a little simpler than
that implied in Figure 16.2 where the [;(x) models are arbitrary lines with slopes
other than zero (constant line). Weighting factors Z; were set to values defined by
Equation 16.7, to span the exponentially increasing gaps between centres. The
smoothing factor o was then be used for final tuning and smoothing of the overall
frequency response curve.

| i—1
zl.{(z)n] L i=1L..M (16.7)

It was noted in (Zaknich 2004) that due to the exponentially increasing span
between one-twelfth octave frequencies a single SSAF model, using constant
valued [;(x), designed to cover the whole frequency range of 20 Hz to 20 KHz was
not adequate. The reason for the problem is due to using Gaussian RBFs, whose
tails approach zero very quickly. Therefore, the interpolation between RBFs
implied in SSAF Equation 16.5 is inadequate over the large span frequency regions
when o is reduced to be optimal for smaller span regions. Of course, if ¢ is made
larger to accommodate the larger spans then there is far too much smoothing in the
model over the lower span frequency regions of the model. This problem can easily
be seen in Figure 16.5, where the single SSAF model appears staircased
(inadequate interpolation/smoothing) at the high frequency end and very smoothed
at the lower frequency end. This was solved by making four separate SSAF models
to cover the whole frequency range such that the smallest to largest frequency span
in any one model was less than about 10.

368 Principles of Adaptive Filters and Self-learning Systems

T
(AR | [N

4bllfesporisk !

T
[RRR |

Figure 16.5. Single SSAF Frequency Response Model for =20

Another way to solve this problem is to modify the SSAF model Equation 16.5
to a new more flexible Equation 16.8 by introducing another weight §; to adjust

the o weighting.

M
X740 f; (2 -ez;].5.0)
y(x.z)="

M
glz,.ﬂ(||z—cz,.||,s,.a)

where:
fi ("x —czi”, o) is a common bandwidth RBF.

X is an arbitrary filter input space vector.

z is an arbitrary process state vector associated with z. Often z = x.

cz; is the trained RBF centre vector 7 in the process state space.

o is the single learning parameter chosen during tuning.

[,(x) is the adaptive linear filter model output related to centre cz;.

M is the number of RBF centre vectors ¢z;.

Z; is a weight associated with adaptive linear model /,(x) and centre cz;.
S; is a weight associated with adaptive linear model /,(x) and centre cz;.

(16.8)

Now, instead of weighting the spans according to Equation 16.7 it is done
according to Equation 16.9, while setting all Zi =1. By doing this it can be seen

that a much more adequate model will result because the required RBF bandwidths

Generic Adaptive Filter Structures 369

will be in exact proportion to the frequency spans, allowing a better ¢ tuning
control.

i1
S;=|@®*| ,i=L.M (16.9)

Equation 16.8 has more weighting parameters to set, which can help it
accommodate to the needs of specific applications. Consequently, Equation 16.8
can be seen as a more generic form of the SSAF model. However more care must
be exercised in its application to ensure that proper benefits result without
introducing unnecessary complications with final tuning. Nevertheless, one of the
virtues of the model is that once it is set the final fine tuning can be done by simply
adjusting the single parameter o.

This loudspeaker frequency response model can form the basis of an adaptive
room equalisation system that can make separate filter adaptations within each one-
twelfth octave frequency sub-band. Loudspeakers are typically minimum phase
systems and consequently their phase characteristics can be computed directly from
the magnitude of the amplitude response (Poularikas 1996) obviating the need for
extra data memory. However, a similar companion interpolation model can also be
defined for the phase values if desired. In like manner it is possible to design a
separate SSAF interpolation model to do the spatial interpolation or it is also
possible to build the spatial interpolation into the single model. This is the subject
of ongoing research and will be reported on in future publications.

16.2.4.2 Velocity of Sound in Water 3-D Model

The timely maintenance of an accurate velocity of sound model to cover a three-
dimensional region of sonar operation in the ocean is important in order to calculate
good subsequent signal propagation models. The main variation of sound velocity
occurs with depth due to thermal variations occurring during the course of the day
(Urick 1983). In this case the SSAF model can be used to maintain a good three-
dimensional velocity of sound model and keep it adapted during the course of
system operation. Often it is sufficient to have a sound velocity model only as a
function of depth to achieve good first order results. Measurements of sound
velocity may be made at various depths and locations by various means and used to
adapt the main model in the sections delineated by the RBFs. These measurements
can be done periodically using depth probes or preferably by a sub-ocean vehicle
and acoustically transmitted back to the system.

Figure 16.6 Shows a typical ocean sound velocity vs. depth profile (Urick
1983). If depth is divided up into an appropriate number of layers an affine
adaptive model can be associated with each layer using Equations 16.5 and 16.6.
Weighting for each depth span can be controlled by setting factors Z; proportional
to the respective depth spans between model/layer centres. As new velocity values
are measured at any depth the appropriate model is adapted to maintain accuracy
while an appropriate value of o keeps joins at the model boundaries sufficiently
smooth. Furthermore, there would be no special problem with even changing the

370 Principles of Adaptive Filters and Self-learning Systems

number of layers/models by simply adjusting the number of centres to the number
required to keep the overall model accurate if the thermal conditions change
dramatically, especially near the surface. At depth the sound velocity is dominated
by water pressure and is less affected by any temperature variations.

1480 ms ™! . 1520 ms”
!] N
- | 7/

Sound Velocity

1000 m ——

2000 m ——

3000 m ——

Depth

vV
Figure 16.6. Ocean Sound Velocity vs. Depth Profile

In Figure 16.6 are drawn a number of dotted lines that may form the basis of the
relatively few linear models /,(x) required to form a suitable SSAF model. Any
sound velocity measurements made within any layer is sure to improve the adaptive
local interpolation model without affecting the other layer models until they can be
adapted by appropriate remeasurements, if warranted.

16.3 Discussion and Overview of the SSAF

This Chapter has introduced the SSAF model, based on the MPNN and APLR
regression models. The SSAF provides some significant benefits for practical
design of complex adaptive filtering systems. It can be seen as a development that
provides a simple and practical means of solving some important complex
nonlinear adaptive filtering problems. However, in order to apply it successfully it
still requires intelligent design decisions made by a human designer. The designer
must decide on the role and set the values for the Z;, and also §; in Equation 16.8,

decide on how many RBFs to use and where to place them to adequately cover a
chosen process state space.

These decisions can be automated in a similar way as is typically done for the
MPNN (Zaknich 2003a). However, a more efficient mechanism needs yet to be
developed that may begin to approach some optimal solution, within specified
design constraints. For example, such a mechanism must be able to automatically
reduce the SSAF down to a single RBF and linear adaptive filter model when

Generic Adaptive Filter Structures 371

solving a linear problem. For nonlinear problems it needs to be able to reduce down
to a minimal set of RBFs and adaptive filter models /,(x) that adequately cover the
whole operating space for a given design specification and acceptable error margin.
The methods of (Verselinovic and Leenaerts 1996) and (Mattavelli, Amaldi and
Gruter 1996) can offer some useful insights as they both deal with the automatic
generation of piecewise linear models. The method of (Verselinovic and Leenaerts
1996) is intended for the modelling of nonlinear multivariable scalar functions and
uses a specified relative error to guide model generation in a way that trades off
between model size and accuracy. A simple combinatorial optimisation approach is
used in (Mattavelli, Amaldi and Gruter 1996) that provides natural partitions of
time series state-spaces for a given error tolerance. The partitioning of the data
space and allocation of centres can also be done using methods related to Vector
Quantization and unsupervised artificial neural networks (Kohonen 1990). An
unsupervised on-line clustering method (Young, Zaknich and Attikiouzel 2001)
previously applied to the MPNN may also provide useful solutions.

In the SSAF model linear filter models are preferred but there is no reason why
quadratic or higher order Volterra filters can not also be used in any required
combination. The only drawback may be that many more piecewise model
parameters must be stored for each RBF. This may not really be much of a
drawback if it allows a process to be better approximated with fewer RBF regions,
i.e., smaller M. Anyway, memory is relatively cheap and processing power is
increasing significantly with advancing technologies to make this less of an issue
with time.

A further very useful way to exploit this SSAF structure is to use it to smoothly
piece together and merge a set of adaptive MLP filters or models throughout a
nonlinear data space. This provides a method of decoupling MLP models such that,
as data statistics change in a local region only the MLP related to that region needs
to be adapted. Not only does this allow the total model to adapt much faster but it
also preserves the training of each of the now much less complex and unaffected
local MLPs, which helps with the stability-plasticity dilemma that MLPs are limited
by.

Another interesting development may be to consider using Support Vector
Machines (SVMs) (Cherkassky and Mulier 1998, Vapnik 2000) to replace models
[(x). SVMs are able to turn nonlinear problems into optimal linear ones by
projection of the problem into a very high dimensional space. This could mean that
each RBF can more adequately cover a greater space since the filtering process
need not be approximately linear in the vicinity of each RBF to produce an accurate
enough overall model. Using the SVM approach may then obviate the need for
more complex nonlinear optimisation solutions for nonlinear sections.

References

Applebaum SP, Chapman DJ (1976) Adaptive arrays with main beam constraints.
IEEE Transactions on Antennas and Propagation. Vol. AP-24, 650-662.

Astrom KJ, Wittenmark B (1995) Adaptive control. Addison-Wesley.

Bendat JS, Piersol AG (1971) Random data: Analysis and measurement
procedures. Wiley-Interscience.

Benesty J, Gansler T, Morgan DR, Sondhi MM, Gay SL (2001) Advances in
network and acoustic echo cancellation. Springer.

Benesty J, Huang Y, Editors (2003) Adaptive signal processing: Applications to
real-world problems. Springer.

Bishop CS (1995) Neural networks for pattern recognition. Clarendon Press.

Box GEP, Jenkins GM (1970) Time series analysis forecasting and control.
Holden-Day, San Francisco, 423-428.

Bozic SM (1994) Digital and Kalman Filtering. E. Arnold.

Brandstein M, Ward D, Editors (2001) Microphone arrays. Springer.

Bréaunl T (2003) Embedded Robotics: Mobile robotic design and applications with
embedded systems. Springer.

Bremaud P (2002), Mathematical principles of signal processing. Springer.

Broomhead DS, Lowe D (1988) Radial basis-functions, multi-variable functional

interpolation and adaptive networks, Royal Signals and Radar Establishment
Memorandum 4148, 28" March.

Burns B (1996) Training artificial neural networks with genetic algorithms to play
games. Honour Thesis, The Department of Electrical and Electronic
Engineering, The University of Western Australia.

Capon J (1969) High-resolution frequency-wavenumber spectrum analysis.
Proceedings of the IEEE, 57:1408-1418.

Chen CH (1988) Signal processing handbook. Marcel Dekker Inc.

Cherkassky V, Mulier F. (1998) Learning from data. John Wiley and Sons, Inc.

Coley DA (1999) An introduction to genetic algorithms for scientists and
engineers. World Scientific Publishing.

Cooley JW, Tukey J W (1965) An algorithm for the machine computation of

complex Fourier series. Math. Comput., 19" April, 297-301.

Cross PA (1981) The computation of position at sea. The Hydrographic Journal,
20:7-16.

Cross PA (1982) Prediction, filtering and smoothing of offshore navigation data.
The Hydrographic Journal, 25:5-16.

374 References

Cross PA (1983) Advanced least squares applied to position fixing. Department of
Land Surveying, North East London Polytechnic, Working paper No. 6, 205pp.

Cross PA (1987) Kalman filtering and its application to offshore position-fixing.
The Hydrographic Journal, 44:19-25.

Darwin C (1859) On the origin of species by means of natural selection, or
preservation of favoured races in the struggle for life. John Murray, London
Diniz PSR (1997) Adaptive filtering: Algorithms and practical implementation.

Kluwer Academic Publishers.

Durbin J (1960) The fitting of time-series models. Rev. Inst. Statist., 28:233-243.

Eberhart R, Dobbins B (1990) Neural network PC tools: A practical guide.
Academic Press.

Falconer DD, Ljung L (1978) Application of fast Kalman estimation to adaptive
equalization. IEEE Transactions on Communications, COM-26:1439-1446.

Fogel LR, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution. John Wiley & Sons, New York.

Frisch R (1934) Statistical confluence analysis by means of complete regression
systems. University of Oslo, Economic Institute, Publication n. 5 ed.

Gabel R, Roberts R (1987) Signals and linear systems. Third Edition, John Wiley
and Sons.

Garas J (2000) Adaptive 3D sound systems. Kluwer Academic.

Gelfand SB, Krogmeier JV, Balasubramanian R (1995) A tree-structured piecewise
linear filter with recursive least-squares adaptation. Proceedings of the 29"
Asilomar Conference on Signals Systems and Computers, 1:673-675.

Gelfand SB, Ravishankar CS (1993) A tree-structured piecewise linear adaptive
filter. IEEE Transactions on Information Theory, 39:6:1907-1922.

Gershenfeld N (1999) The Nature of mathematically modelling. Cambridge
University Press.

Godard DN (1974) Channel equalization using a Kalman filter for fast data
transmission. IBM J. Res. Dev. 18:267-273.

Gold B, Morgan N (2000) Speech and audio signal processing: Processing and
perception of speech and music. John Wiley & Sons Inc..

Golub GH, Van Loan CF (1983) Matrix computations. John Hopkins University
Press.

Gupta MM, Rao DH, Editors (1994) Neuro-control systems. IEEE Press.

Hassibi B, Sayed AH, Kailath T (1996) H* optimality of the LMS algorithm. IEEE
Transactions on Signal Processing, 44:267-280.

Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press.

Hayes MH (1996) Statistical digital signal processing and modelling. John Wiley &
Sons, Inc.

Haykin S (1994) Neural networks, a comprehensive foundation. Macmillan College
Publishing Co. Inc.

Haykin S (1996) Adaptive filter theory. Prentice-Hall.

Haykin S (1999) Neural networks, a comprehensive foundation. Second Edition,
Upper Saddle River, NJ, Prentice-Hall Inc.

Haykin S, Kosko B, Editors (2001), Intelligent Signal Processing. Wiley-IEEE
Press, First Edition.

References 375

Haykin S, Van Veen B (1999) Signals and systems. John Wiley and Sons, Inc..

Hebb DO (1949) The organization of behaviour. Wiley.

Hecht-Nielson R (1990) Neurocomputing. Addison-Wesley Pub. Co.

Heredia A, Arce GR (2000) Nonlinear filters based on combinations of piecewise
polynomials with compact support. IEEE Transactions on Signal Processing,
48:10:2850-2863.

Hinton G, Sejnowski TJ, Editors (1999) Unsupervised learning: Foundations of
neural computation. The MIT Press.

Hlawatsch F (1998) Time-frequency analysis and synthesis of linear signal spaces.
Kluwer Academic Publishers.

Holland JH (1962) Outline for a logical theory of adaptive systems. Journal of the
Association for Commuting Machinery.

Holland JH (1995) Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. The
MIT Press (First Edition 1975).

Hopfield JJ (1982) Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences,
79:2554-2558.

Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those of two state neurons. Proceedings of the National Academy
of Sciences, 81:3088-3092.

James W (1890) Psychology (Briefer Course). Holt.

Kailath T, Editor, (1977) Linear least-squares estimation. Benchmark Papers in
Electrical Engineering and Computer Science, Prentice-Hall, Englewood Cliffs,
NJ.

Kalman RE (1960) A new approach to linear filtering and prediction problems.
Transactions of the ASME, Journal of Basic Engineering, 82: 35-45.

Kalman RE, Bucy RS (1961) New results in linear filtering and prediction theory.
Transactions of ASME, J. Basic Eng., 83:95-108.

Kammler DW (2000) A first course in Fourier analysis. Prentice Hall.

Kartalpoulos SV (1996) Understanding neural Networks and Fuzzy Logic. IEEE
Press.

Kohonen T (1990) Self-organising map. Proceedings of the IEEE, 78:1464-1480.
Kolmogorov AN (1939) Sur 1’interpolation et extrapolation des suites stationaries.
C. R. Acad. Sci. Paris 208:2043-2045. (English translation in (Kailath 1977))
Koza JR (1992) Genetic programming: On the programming of computers by

means of natural selection. MIT Press, Cambridge, MA.

Koza JR, Bennett III FH, Andre D, M A (1996) Four problems for which a
computer program evolved by genetic programming is competitive with human
performance. Proceedings of the 1996 IEEE International Conference on
Evolutionary Computing, 20-22 May:1-10.

Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003) Genetic
programming: Routine human-competitive machine intelligence. Kluwer
Academic Publishers.

Krein MG (1945) On a problem of extrapolation of A. N. Kolmogorov. C. R.
(Dokl.) Akad. Nauk SSSR, 46:306-309. (Reproduced in (Kailath 1977))

376 References

Kurzweil R (1999) The age of spiritual machines: When computers exceed human
intelligence. Allen and Unwin.

Lau SM, Leung SH, Chan BL (1992) A reduced rank second-order adaptive
Volterra filter. ISSPA 92, Signal Processing and its Applications, Gold Coast,
Australia, 16-21% August:561-563.

Lawson CL, Hanson RJ (1974) Solving least squares problems. Prentice-Hall.

Leung SH, Chan B L, Lau SM (1992) A second-order adaptive Volterra filter using
three level sign algorithm. ISSPA 92, Signal Processing and its Applications,
Gold Coast, Australia, 16-21* August:569-572.

Levine WS, Editor (1996) The control handbook. CRC Press and IEEE Press, 847-
857, Petros I, Model reference adaptive control.

Levinson N (1947) The Wiener RMS (root mean square) error criterion in filter
design and prediction. Journal of Math. Phys, 25:261-278.

Lim JS, Oppenheim AV (1988) Advanced topics in signal processing. Prentice Hall
Signal Processing Series.

Loy NJ (1988), An engineer’s guide to FIR digital filters. Prentice-Hall.

Lucky RW (1965) Automatic equalization for digital communications. Bell Syst.
Tech. J., 44:547-588.

Makhoul J (1977) Stable and efficient methods for linear prediction. IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-25:423-428.

Mamdani (1974) Applications of fuzzy logic algorithms for control of a simple
dynamic plant. Proceedings of the IEE, 121:12:1585-1588.

Marks II RJ, Editor (1994) Fuzzy logic technology and applications. IEEE TAB.

Mathews JJ (1991) Adaptive polynomial filters. IEEE Signal Processing Magazine,
8:3:10-26.

Mattavelli M, Vesin JM, Amaldi E, Gruter R, (1996) A new approach to piecewise
linear modelling of time series. IEEE Digital Signal Processing Workshop
Proceedings, 502-505.

McCulloch JL, Pitts WA (1943) A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematics and Biophysics, 5:115-133.

McWhirter JG (1983) Recursive least-squares minimization using a systolic array.
Proceedings of SPIE, Real-Time Signal Processing VI, Vol. 1152, San Diego,
California.

Miller AR (1981) Pascal programs, for scientists and engineers. Sybex.

Mitchell TM (1997) Machine learning. McGraw-Hill.

Moody J, Darken C (1989) Fast learning in networks of locally-tuned processing
units. Neural Computation, 1:2:281-294.

Morgan DR, Thi J (1995) A delayless subband filter. IEEE Transactions on Signal
Processing, 43:1819-1830.

Mukaidono M (2001) Fuzzy logic for beginners. World Scientific Publishing.

Nadaraya EA (1964) On estimating regression. Theory Probability Applications, 9:
141-142.

Oppenheim AV, Schafer RW (1975) Digital signal processing. Prentice-Hall.

Parker DB (1985) Learning-logic. M.I.T. Cen. Computational Res. Economics
Management Sci., Cambridge, MA, TR-47.

Plackett RL (1950) Some theorems in least squares. Biometrika, 37:149.

References 377

Poularikas A, Editor in Chief (1996) The transforms and applications handbook.
CRC and IEEE Press.

Powell MJD (1985) Radial basis functions for multivariate interpolation: A review.
Technical Report DAMPT 1985/NA12, Department of Applied Mathematics
and Theoretical Physics, Cambridge University, England.

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes:
The art of scientific computing. Cambridge University Press.

Principe JC, Euliano NR, Lefebvre WC (1999) Neural and adaptive systems:
Fundamentals through simulations. John Wiley and Sons, Inc.

Proakis JG, Manolakis DG (1996) Digital signal processing. Prentice-Hall.

Rabiner LR, Gold B (1975) Theory and application of digital signal processing.
Prentice-Hall.

Robbins H, Munro S (1951) A stochastic approximation method. Ann. Math. Stat.,
22:400-407.

Robinson EA. (1964) Wavelet composition of time series, in econometric model
building. Edited by H. O. Wold. North-Holland, Amsterdam, 37-106.

Rosenblatt F (1958) The perceptron: A probabilistic model for information storage
and organization in the brain. Psychoanalytic Review, 65:386-408.

Rumelhart DE, Hinton DE, Williams RJ (1986) Learning representation by
backpropagating errors. Nature 323(9), 533-536.

Sayed AH, Kailath T (1994) A state-space approach to adaptive digital filters.
IEEE Signal Processing Magazine 11:18-60.

Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill.

Shynk JJ (1992) Frequency-domain and multirate adaptive filtering. IEEE Signal
Processing Magazine, 9:1:14-37.

Simani S, Fantuzzi C, Rovatti R, Beghelli S (2000) Non-linear dynamic modelling
in noisy environment using multiple model approach. Proceedings of the
American Control Conference, 4:2332-2336.

Special issue on fuzzy and neural networks. IEEE Communications Magazine,
September, 1992.

Specht DF (1988) Probabilistic neural networks for classification, mapping, or
associative memory, IEEE Conference on Neural Networks, San Diego, July,
1:525-532.

Specht DF (1990) Probabilistic neural networks. International Neural Network
Society, Neural Networks, 3:109-118.

Specht DF (1991) A general regression neural network. IEEE Transactions on

Neural Networks, 2:6:568-576.

Stanley WD, Dougherty GR, Dougherty R (1984) Digital signal processing. Reston
Publishing Company.

Stergiopoulos S (2001) Advanced signal processing handbook — Theory and
implementation for radar, sonar, and medical imaging real-time systems. CRC
Press.

Sutton RS, Barto AG (1999) Reinforcement learning: An introduction. The MIT
Press.

Tanaka K (1997) An introduction to fuzzy logic for practical applications.
Springer.

378 References

Turing AM (1950) Computing machinery and intelligence. Mind, LIX:433-460.

Urick RJ (1983) Principles of underwater sound. Third Edition, McGraw-Hill Book
Company.

Van Den Boss A (1971) Alternative interpretation of maximum entropy spectral
analysis. IEEE Transactions on Information Theory, IT-17:493-494.

Vapnik VN (1998) Statistical learning theory. Wiley.

Vapnik VN (2000) The nature of statistical learning theory. Springer-Verlag,
Second Edition.

Vaseghi SG (1996) Advanced signal processing and digital noise reduction. Wiley
and Teubner.

Verselinovic P, Leenaerts D (1996) A method for automatic generation of
piecewise linear models. Proceedings of the 1996 IEEE International
Symposium on Circuits and Systems “Connecting the World,” 3:24-27.

Watson GS (1964) Smooth regression analysis. Sankhya Series A, 26:359-372.

Werbos PJ (1974) Beyond regression: new tools for prediction and analysis in the
behavioural sciences. PhD dissertation, Committee on Appl. Math., Harvard
Univ., Cambridge, M. A., November.

Werbos PJ (1990) Backpropagation through time: What it does and how it to do it.
Proceedings of the IEEE, Vol. 78, No. 10.

Whitaker HP, Yamron J, Kezer A (1958) A design of model reference adaptive
control systems for aircraft. Report R-164, Instrument Laboratory,
Massachusetts Institute of Technology, Cambridge.

Widrow B, Hoff ME (1960) Adaptive switching circuits. WESTCON Convention,
Record Part IV, 96-104.

Widrow B, er al. (1967) Adaptive antenna systems. Proceedings of the IEEE,
55:2143-2159.

Widrow B, Glover, McCook, Hauritz, Williams, Hearn, et al. (1975) Adaptive
noise cancelling: Principles and applications. Proceedings of the IEEE,
63:12:1692-1716.

Widrow B, Stearns S (1985) Adaptive signal processing. Englewood Cliffs, NJ:
Prentice Hall.

Widrow B, Winter R (1988) Neural networks for adaptive filtering and adaptive
pattern recognition. IEEE Computer, March:25-39.

Wiener N (1949) Extrapolation, interpolation, and smoothing of stationary time
series, with engineering applications. MIT Press, Cambridge, Mass.

Wiener N (1958) Nonlinear problems in random theory. Wiley, New York.

Yen J, Langari R, Zadeh LA (1995) Industrial applications of fuzzy logic and
intelligent systems. IEEE Press.

Young J, Zaknich A, Attikiouzel Y (2001) Center reduction algorithm for the
Modified Probabilistic Neural Network equalizer. IEEE International Joint
Conference on Neural Networks (IJCNN), Washington, DC, USA, 1966-1970.

Yule GU (1927) On a method of investigating periodicities in disturbed series, with
special reference to Wolfer’s sunspot numbers. Philos. Trans. Royal Soc.
London, A226:267-298.

Zadeh L (1965) Fuzzy sets. Inform. Control, 8:338-353.

References 379

Zaknich, A, Attikiouzel, Y., (1993) Automatic optimisation of the modified
probabilistic neural network for pattern recognition and time series analysis.
Proceedings of the First Australian and New Zealand Conference on Intelligent
Information Systems, Perth, Western Australia, 1-3¢ December, 152-156.

Zaknich A, Attikiouzel Y (1995a) Detection of oxalate needles in optical images
using neural network classifiers. Proceedings of the First Australian and New
Zealand Conference on Intelligent Information Systems, Perth, Western
Australia, 1-3" December, 1699-1702.

Zaknich A, Attikiouzel Y (1995b) Application of the modified probabilistic neural
network to the enhancement of noisy short wave radio time and Morse code
signals. Australian Journal of Intelligent Information Processing Systems
(AJIIPS), 2:3:9-14.

Zaknich A (1997) Characterisation of aluminium hydroxide particles from the
Bayer process using neural network and Bayesian classifiers. IEEE
Transactions on Neural Networks, 8:4:919-931.

Zaknich A, deSilva CJ (1997) Adaptive learning schemes for the modified
probabilistic neural network. Proceedings of the IEEE Third International
Conference on Algorithms and Architectures for Parallel Processing,
Melbourne, Australia, 597-610.

Zaknich A, Baker SK (1998) A real-time system for the characterisation of sheep
feeding phases from acoustic signals of jaw sounds. Australian Journal of
Intelligent Information Processing Systems (AJIIPS), 5:2:103-110.

Zaknich, A (1998) Introduction to the modified probabilistic neural network for
general signal processing applications. IEEE Transactions on Signal Processing,
46:7:1980-1990.

Zaknich A, Attikiouzel Y (2000) A tuneable approximate piecewise linear model
derived from the modified probabilistic neural network. IEEE Signal Processing
Workshop on Neural Networks for Signal Processing (NNSP), Sydney,
Australia, 1:45-53.

Zaknich A (2003a) Neural networks for intelligent signal processing. World
Scientific Publishing, Series on Advanced Biology and Logic-Based
Intelligence, Vol. 4.

Zaknich A (2003b) A practical sub-space adaptive filter. Neural Networks,
16:5/6:833-839.

Zaknich A (2003c) An integrated sensory-intelligent system for underwater
acoustic signal-processing applications. IEEE Journal of Oceanic Engineering,
28:4:750-759.

Zaknich A (2004) A loudspeaker response model using tuneable approximate
piecewise linear regression. Proceedings of the International Joint Conference
on Neural Networks (IJICNN), Budapest, Hungary, 4:2711-2716.

Zames G (1981) Feedback and optimal sensitivity: model reference
transformations, multiplicative seminorms, and approximate inverses. IEEE
Trans. Autom. Control, AC-26:301-320.

Zeidler JR (1990) Performance analysis of LMS adaption filters. Proceedings of the
IEEE, 78:12:1781-1806.

380 References

Zelniker G, Taylor F (1994) Advanced digital signal processing: Theory and
applications. Marcel Dekker.

Index

activation function, 302, 305

ADALINE, 13, 17, 227

adaptive array processor, 350

adaptive control, 16, 226, 268

Adaptive Differential Pulse Code
Modulation (ADPCM), 342

adaptive echo canceller, 343

adaptive interference cancelling, 228

Adaptive Linear Combiner (ALC), 227

adaptive linear filter, 228

adaptive noise canceller, 229, 346

adaptive polynomial filter, 257

adaptive prediction, 340

adjoint LMS algorithm, 351

Alexander, 14

allpass filter, 48

all-pole autocorrelation normal
equations, 135

all-pole covariance normal equations,
136

all-pole filter, 29

all-pole model, 130

all-pole modelling, 133

all-pole power spectrum, 214

all-zero filer, 29

analogue interpolation formula, 37

Anderson, 17

ANN filter, 300

anti-causal signal, 44

anti-Hermitian, 49

APLR model, 362

Applebaum, 15

Applebaum and Chapman, 15

Artificial Intelligent (AI), 331

Artificial Neural Network (ANN), 10,
287

Artificial Neural Network (ANN) filter,
258

asymptotically unbiased, 202

Atal, 14

autocorrelation function, 69, 74, 197,
199

autocorrelation matrix, 76

autocorrelation method, 133

AutoCorrelation ~ Normal Equations
(ACNE), 135

autocovariance function, 70, 74

autocovariance matrix, 76

Autoregressive (AR) model, 29, 120

Autoregressive Moving-Average
(ARMA) model, 29, 120

autoregressive power spectrum, 215

backpropagation-of-error, 95, 194, 303,
306

Bartlett’s method, 205

Bayes filter, 193

Bellman equation, 269

bilateral Laplace transform, 40

bilateral z-Transform, 40, 41

binary logic, 313

black box, 293

Blackman-Tukey method, 208

block diagonal matrix, 56

block LMS (BLMS) algorithm, 249

block updating, 247

Bounded-Input-Bounded-Output
(BIBO), 30

Box and Jenkins, 121

Bucy, 13

Burg, 15

Burg algorithm, 217

Capon, 15

causal filter design, 167

causal signal, 43

causal system, 27

centrosymmetric matrix, 58

382 Index

chain rule, 303

chaotic, 26

Chi-square metric, 98

Cholesky decomposition, 142, 149

Cholesky factorisation, 151

circular convolution, 33, 247, 255

coherence function, 73

conjugate antisymmetric, 49

conjugate symmetric, 49

consistent estimate, 201

continuous linear convolution, 247

continuous-time system, 27

convex, 89

convolution, 27

convolution theorem, 249, 251

covariance matrix, 67

covariance method, 133, 217

crisp logic, 313

cross-correlation function, 70, 74

cross-covariance function, 74

cross-diagonal, 56

crossover, 325, 326

crowding, 331

cumulative probability distribution, 66

Darwin’s theory of evolution, 325

Darwinian, 288

decimation in time, 40

deconvolution, 4, 170

Decoupled Extended Kalman Filter
(DEKF), 194

defuzzification, 317

delay-and-sum beamformer, 349

deterministic, 26

deterministic signal, 63

deterministic system, 25

DFT properties, 45

diagonal matrix, 56

difference equation, 29

Differential Pulse Code Modulation
(DPCM), 341

Diophantine equation, 275, 282, 283

Dirac impulse function, 33

direct signal modelling, 122

Discrete Fourier Transform (DFT), 31

Discrete-time Fourier Transform
(DTFT), 32

discrete-time LSI system summary, 46

discrete-time system, 27

distributed parameter, 25

dot product, 52

Durbin, 13

Durbin’s method, 140, 141

dynamic programming, 269

dynamic ship model, 189

echo cancellation, 352, 355

eigenvalue, 59

eigenvalue spread, 357

eigenvector, 59

ensemble, 61

entropy, 212

equaliser, 344

ergodic, 61, 197

estimation problem, 120

Euclidean norm, 51, 92

Euler’s identity, 30

exchange matrix, 56

expectation, 69

exponentially weighted RLS algorithm,
244

Extended Kalman Filter (EKF), 194

Falconer and Ljung, 14

Fast Fourier Transform (FFT), 37, 247

Fast Normalised Cross-Correlation
(FNCC), 353

feature extraction, 296

filter banks, 357

filtering, 3

Finite Impulse Response (FIR) system,
29

fitness function, 330

fitness measure, 326, 332

focused beamformer, 349

foetal ECG, 347

Fogel, Owens and Walsh, 19

forward modelling, 342

Fourier transform, 31

Frequency Domain Adaptive Filter
(FDAF), 249

Fukushima, 17

full rank, 54

function mapping, 308

fuzzification, 315

Fuzzy Artificial Neural Network
(FANN), 313, 322

fuzzy control rules, 319

fuzzy controller, 318

fuzzy IF-THEN, 318

fuzzy input values, 313

Fuzzy Logic (FL), 11, 18, 287

Fuzzy Logic Control (FLC), 313

fuzzy logic control rules, 318

fuzzy logic operations, 315

fuzzy logic rules, 316

fuzzy parameter tuning, 321

Galileo Galilei, 12

Gauss, 12

Gaussian noise, 80

Gaussian PDF, 66, 67

Gauss-Markov process, 81

General Regression Neural Network
(GRNN), 360

Genetic Algorithm (GA), 11, 287, 325

genetic operators, 329

Genetic programming (GP), 288

Genetic Programming (GP), 11, 19, 325,
331

Gerosho, 14

global minimum, 89

Godard, 14

gradient approach, 271

gradient descent, 89, 230, 303

gradient method, 23, 270

gradient vector, 90

Griffiths, 13

GRNN equation, 360

Grossberg, 17

Hanauer, 14

Hankel matrix, 57

harmonic methods, 219

Hassibi, 13

Head-Related Transfer Functions
(HRTF), 351

Hebb, 17

Hermitian, 49

Hermitian form, 59

Hermitian matrix, 76

Hermitian transpose, 51, 53

Hessian matrix, 90

hidden layer, 300

Hilbert transform, 50

hill-climbing, 330

Hoff, 13

Holland, 19

homomorphic filter, 257

Hopfield, 18

Householder matrix, 115

Howells, 15

Huge Microphone Array (HMA), 352

hybrid transformer, 344

hyperplanes, 309

identity matrix, 56

IF-THEN, 316, 327, 330

ill-conditioned, 61

Index 383

impulse response, 27

inconsistent, 55

indirect signal modelling, 122

Infinite Impulse Response (IIR), 30

inner product, 52

innovation vector, 8

input layer, 300

Integrated Sensory Intelligent System
(ISIS), 365

Intersymbol Interference (ISI), 344

inverse modelling, 342

inverse z-Transform, 40

invertibility, 30

invertible, 54

Itakura, 14

Jacobi algorithm, 112

James, William, 17

joint probability density, 68

Kailath, 13

Kalman, 13

Kalman filter, 4, 8, 173, 174, 179, 244

Kalman gain, 175, 176, 178

Kalman predictor, 180

Kalman tracking filter, 186

Kelly, 15

Kohonen, 17

Kolmogorov, 12, 159

Koza, 19

Krein, 12

Lagrange multiplier, 90

Laplace transform, 40, 41

lattice filter, 142, 146, 341

Least Mean Squares (LMS), 7, 13, 225,
227, 366

least squares error norm, 128

least squares error rule, 19

Least Squares Estimation (LSE), 7, 89,
95,273

least squares method of signal
modelling, 122

left handed signal, 44

Legendre, 12

Levinson, 13

Levinson recursion, 152, 153

Levinson-Durbin recursion, 131, 133,
142, 144, 149, 151, 216

line enhancement, 346

linear association, 67

linear convolution, 33

linear equations, 55

linear phase filter, 48

384 Index

linear prediction, 131, 165

Linear Predictive Coding (LPC), 14, 341

linear regression, 98

Linear Shift-Invariant (LSI), 29

Linear Time-Invariant (LTI), 29

linear transformation, 28

linear vector space, 53

linearly independent, 52, 60, 68

LMS adaptive algorithm, 235

LMS algorithm, 261, 303

local minima, 89, 331

look-up tables, 294

loudspeaker response model, 367

lower triangle matrix, 57

L, norm, 92

LSE filter, 193

LSE precision, 108

LSE reliability, 109

Lucky, 13

lumped parameter, 25

Lyapunov, 16

Lyapunov functions, 270

Lyapunov’s stability theorem, 278

Lyapunov’s stability theory, 277

Machine Intelligence (MI), 18

Magnitude-Squared Coherence (MSC)
function, 73

Mamdani, 18

Mamdani’s direct method, 319

Massachusetts Institute of Technology
(MIT), 271

matrix, 53

Matrix Inversion Lemma, 241

maximum entropy method, 212, 216

maximum entropy power spectrum, 212

maximum likelihood estimator, 97

maximum phase filter, 49

McCulloch, 17

McWhirter, 15

mean square, 64

mean square convergent, 201

Mean Square Error (MSE), 303, 332,
361

membership function, 314

Miller, 14

minimum phase filter, 48

minimum variance method, 209

Minsky and Papert, 17

MIT adjustment rule, 271

Model-Reference Adaptive System
(MRAS), 267, 270

modem, 344

modified covariance method, 217

modified periodogram, 203, 204

Modified Probabilistic Neural Network
(MPNN), 337, 358

momentum factor, 307

morphological filter, 257

Moving Average (MA) model, 29, 120

MPNN equation, 360

Multi-Layer Perceptron (MLP), 17, 289,
293, 300, 364

Multiple SIgnal Classification (MUSIC),
220, 222

mutation, 325, 326

mutation operator, 330

natural selection, 11, 288, 325

negative definite, 59

neurocomputer, 294

neurons, 290

Newton's method, 23, 124

noncausal system, 28

nonergodic, 61

noninvertible, 54

nonlinear filters, 257

nonparametric, 3

nonparametric spectral estimation, 198,
209

nonsingular, 54, 126

nonstationary, 61

nonunique solution, 126

normal equations, 56, 96, 100

Normalised Least Mean Squares
(NLMS), 353

normalised LMS algorithm, 239

Nyquist sampling rate, 31, 33

Occam’s Razor, 87

one-sided PSD, 72

optimisation, 89

optimum, 4

optimum bandpass filter, 210

optimum estimator, 173

optimum filter, 161

optimum Wiener solution, 230, 232

order statistics filter, 258

orthogonal, 52, 58

orthonormal, 52, 58

output layer, 301

overdetermined, 55

overlap-add, 251, 254

overlap-save, 251, 253

Pack, 14

Padé approximation, 124

Parallel Distributed Processing (PDP),
18

parallel filter banks, 201

parameter adjustment rule, 268

parametric, 3

parametric spectral density, 215

parametric spectral estimation, 199

Parseval’s theorem, 32, 123

partial derivatives, 303

passivity theory, 270

Perceptron, 17

periodic interference, 346

periodogram, 15, 199, 202

persymmetric matrix, 58

phase equalisation, 49

Pisarenko Harmonic Decomposition
(PHD), 220

Pitts, 17

pole-zero filter, 29

positive definite, 59

power spectral density, 199

Power Spectral Density (PSD), 72, 197

power spectrum, 76

prediction, 4

Proakis, 14

Probabilistic Neural Network (PNN),
360

Probability Density Function (PDF), 65

Processing Elements (PE’s), 290

Prony normal equations, 129

Prony’s method, 127

Proportional-Integral-Derivative (PID),
319

propositional logic, 314

pseudoinverse, 55, 112

pseudoinverse matrix, 111

pseudospectrum, 221

Pulse Code Modulated (PCM), 341

QR algorithm, 115

quadratic filter, 261

quadratic form, 59

quadratic kernel matrix, 263

quadratic Volterra filter, 262

radar tracking, 182

Radial Basis Functions (RBF’s), 18, 358

random, 26

random signal, 63

random telegraph wave, 81

rank, 53

rank selection, 330

Index 385

rectangular PDF, 67

recurrent parabolic curve fitting, 362

Recursive Least Squares (RLS), 8, 225,
239, 366

Region of Convergence (ROC), 42

reinforcement learning, 291

residuals, 100

right handed signal, 43

Robins and Monro, 13

Rosenblatt, 17

roulette wheel selection, 330

Saito, 14

sample capture time, 34

sample correlation, 71

sample function, 61

sample record, 61

sampling theorem, 33

Satorius, 14

Sayed and Kailath, 14

Schuster, 15, 199

second-order Volterra filter, 259

Self-organising, 291

Self-Tuning Regulator (STR), 267, 280

sensitivity derivatives, 271, 276

sexual recombination, 325

ship position at sea, 100

ship tracking, 185

sigmoid function, 306

sigmoidal function, 308

signal, 26

simulated evolution, 11, 325

Single-Input-Single-Output (SISO), 274

single-point crossover, 329

singular, 54, 61, 126

Singular Value Decomposition (SVD),
111

slave filter, 340

Smidth, 18

smoothing, 4

spatial filtering, 349

spectral density, 72

spectral estimation, 341

spectral factorisation, 77

spectral line splitting, 216, 217

spectral theorem, 60

square identity matrix, 54

SSAF model, 364

stability, 30

stability-plasticity dilemma, 358

stationary, 61

stationary point, 90

386 Index

statistical averages, 61

statistical dependence, 68

statistical functions, 64

Statistical Learning Theory (SLT), 18

statistical moments, 69

statistically independent, 68

statistical-time-invariance, 62

steepest gradient descent, 233

stochastic gradient approach, 7

stochastic process, 61

stochastic signal modelling, 137

sub-band, 355

sub-band acoustic echo cancellation, 356

Sub-Band Adaptive Filter (SBAF), 337,
355

sub-space adaptive filter, 358

Sub-Space Adaptive Filter (SSAF), 337,
355

supervised learning, 290

Support Vector Machines (SVM’s), 371

supposition, 28

switching control, 19

symmetric matrix, 53

system, 25

system identification, 342

system model, 27

tap, 6

Taylor’s series, 189

Temporal Fuzzy Logic (TFL), 313

testing set, 296, 309

three-layer feedfoward MLP, 301

tic-tac-to, 334

Toeplitz, 13, 57

tournament selection, 330

training set, 296, 308

transition matrix, 175, 187

transpose, 53

transversal structure, 5

Tuneable Approximate Piecewise Linear
Regression (TAPLR), 337, 358

Turing, 18

two-point crossover, 329

two-port network, 148

two-side signal, 44

two-sided PSD, 72

two-sided spectral density, 197

underdetermined, 55

uniform crossover, 329

unilateral z-Transform, 42

unique solution, 126

unitary, 59

unsupervised learning, 291

upper triangular matrix, 57

validation set, 296, 309

Van den Bos, 15

Vapnik, 18

variance, 64

vector, 28, 51

velocity of sound model, 369

virtual neurons, 294

vocal tract model, 341

Volterra filter, 9, 257

Volterra series, 257, 259

weakly stationary, 62

weight adjustment equations, 306

weight matrix, 96, 103

weighted interconnections, 290

Welch’s method, 207

Whitaker, 16

white noise, 80

white sequence, 81

whitening filter, 78

wide-sense stationary, 62, 64, 159, 197

Widrow, 13, 15

Widrow and Hoff, 13, 17

Wiener, 12, 22, 159

Wiener filter, 4, 132, 159, 160, 162

Wiener solution, 345

Wiener-Hopf equations, 7, 164, 165,
166, 167, 170, 230, 235

Wiener-Hopf solution, 163

Wiener-Khinchine theorem, 72

Woodbury’s identity, 54, 241

Yule, 15

Yule-Walker equations, 138, 139, 214

Zadeh, 18

Zames, 13

z-Transform, 40, 41

z-Transform properties, 45

	cover-image-large
	front-matter
	fulltext_1
	fulltext_2
	fulltext_3
	fulltext_4
	fulltext_5
	fulltext_6
	fulltext_7
	fulltext_8
	fulltext_9
	fulltext_10
	fulltext_11
	fulltext_12
	fulltext_13
	fulltext_14
	fulltext_15
	fulltext_16
	back-matter

