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Preface

The problem of learning in dynamic environments is important and challeng-
ing. In the 1960s, learning from control of dynamical systems was studied ex-
tensively. At that time, learning was similar in meaning to other terms such as
adaptation and self-organizing. Since the 1970s, learning theory has become a
research discipline in the context of machine learning, and more recently as
computational or statistical learning. As a result, learning is considered as
a problem of function estimation on the basis of empirical data, and learn-
ing theory has been studied mainly by using statistical principles. Although
many problems in learning static nonlinear mappings have been handled
successfully via statistical learning, a learning theory for dynamic systems,
for example, learning of the functional system dynamics from a dynamical
process, has received much less investigation.

This book emphasizes learning in uncertain dynamic environments, in
which many aspects remain largely unexplored. The main subject of the
monograph is knowledge acquisition, representation, and utilization in un-
known dynamic processes. A deterministic framework is regarded as suit-
able for the intended purposes. Furthermore, this view comes naturally from
deterministic algorithms in identification and adaptive control of nonlinear
systems which motivate some of our work. Referred to as deterministic learn-
ing (DL), the learning theory presented gives promise of systematic design
approaches for nonlinear system identification, dynamic pattern recognition,
and intelligent control of nonlinear systems.

Deterministic Learning

The most important problem in deterministic learning is how to acquire
knowledge from unknown dynamical processes. This problem is closely re-
lated to the areas of system identification and adaptive control. To achieve
accurate identification of a system model, it is essential to satisfy the persis-
tent excitation (PE) condition, which then guarantees parameter convergence
in the dynamical process. Nevertheless, for identification of general nonlin-
ear dynamical systems, the PE condition is very difficult to characterize and
usually cannot be verified a priori.

Deterministic learning theory is mainly developed using concepts and
theories of system identification, adaptive control, and dynamical systems.

xiii



xiv Preface

Elements of the deterministic learning theory include (i) employment of the
localized radial basis function network (RBEN), (ii) satisfaction of a partial
PE condition along a periodic or periodic-like orbit, (iii) guaranteed expo-
nential stability of a class of linear time-varying (LTV) adaptive systems, and
(iv) locally accurate RBFN approximation of a partial system model in a local
region along the periodic or periodic-like orbit. With deterministic learning,
fundamental knowledge on system dynamics can be accumulated, stored, and
represented by constant RBF networks in a deterministic manner. Moreover,
in a scenario whereby an adaptive neural network (NN) controller achieves
tracking of a periodic or periodic-like reference orbit, the deterministic learn-
ing mechanism is shown to be capable of achieving closed-loop identification
of partial system dynamics during tracking control. This process implements
knowledge acquisition from a closed-loop control task in uncertain dynamic
environments. Different tasks will provide different knowledge (partial mod-
els of control system dynamics).

Dynamical Pattern Recognition

The problem of learning from dynamic environments is also related to the
area of temporal pattern recognition. Humans generally excel in dealing with
temporal patterns. Human recognition of such patterns is an integrated pro-
cess in which patterns of information distributed over time can be effectively
identified, represented, recognized, and classified. These recognition mech-
anisms, although not fully understood, are quite different from the existing
conventional neural network and statistical approaches for pattern recog-
nition. A fundamental problem in temporal pattern recognition is how to
appropriately represent the time-varying patterns. This problem is difficult
if a temporal pattern is to be represented in a time-independent manner.
Another important problem is the characterization of similarity between
two temporal patterns. As temporal patterns evolve with time, the existing
similarity measures developed for static patterns do appear to be of limited
usefulness.

In this book, we investigate the recognition of a class of temporal pat-
terns generated from nonlinear dynamical systems, which are referred to as
dynamical patterns. Based on the deterministic learning mechanism, a time-
varying dynamical pattern can be effectively represented in a time-invariant
and spatially distributed manner by using the locally accurate RBFN approx-
imation of system dynamics underlying the dynamical pattern. Similarity of
dynamical patterns is characterized by comparison of the system dynamics
inherent within these dynamical patterns. A mechanism for rapid recogni-
tion of dynamical patterns is presented, by which a test dynamical pattern
is recognized as similar to a training dynamical pattern if state estimation
or synchronization is achieved according to a kind of internal and dynamical
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matching on system dynamics. Thus, rapid recognition of dynamical patterns
is implemented due to the effective utilization of the learned knowledge in
dynamic environments.

Pattern-Based Intelligent Control

Concerning the problem of knowledge acquisition and utilization in dynamic
environments with feedback control, we investigate the topic of pattern-based
intelligent control. This was studied tentatively in the 1960s, but not further
developed to its potential. It has been a natural idea to combine pattern recog-
nition with automatic control, which is intuitively motivated by the capabili-
ties of human learning and control. A human can learn many highly compli-
cated control tasks, and these tasks can then be performed repeatedly with
little effort. The implementation of this idea in control technology, however,
has been a big challenge. Difficulties include representation, similarity mea-
sures, and rapid recognition and classification of different control situations
which are here referred to as dynamical patterns. It is obvious that conven-
tional pattern recognition methods are not suitable to solve these problems.

In this book, we propose a framework for pattern-based intelligent control.
Fundamental knowledge concerning different control situations is identified
via deterministic learning. A set of training dynamical patterns is defined
based on the identification. For a test control situation, if it is classified as sim-
ilar to one previous training pattern, then the neural network (NN) controller
corresponding to the training pattern is selected and used. This effectively ex-
ploits the learned knowledge to achieve guaranteed stability and improved
control performance. The proposed pattern-based intelligent control bears
similarity to proficient human learning and control. It will be useful in areas
such as motion control of robotics and security assessment and control of
power systems.

Organization of the Book

This book is aimed at researchers in broad areas of systems and control, such
as nonlinear system identification, adaptive control, neural networks control,
and temporal pattern recognition. It is also intended to be used for advanced
study as the text for a graduate-level course. The results on which the book
is based were reported in the literature only recently (the main ones from
2006). The book aims to expand on these and further develop the subject.
Nevertheless, the results are presented at a level accessible to audiences with
a standard background in concepts and theorems of dynamical systems and
control.
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The first chapter provides an introduction to the principal concepts of deter-
ministic learning theory. It introduces many of the central ideas, such as satis-
faction of a partial PE condition, parameter convergence, and locally accurate
approximation. These are discussed at greater length in later chapters of the
book. Chapter 2 is devoted to the establishment of the property of persistence
of excitation (PE) for RBF networks. Chapter 3 describes the basic theory of de-
terministic learning processes. This includes partial parameter convergence
and locally accurate approximation of nonlinear system dynamics. Chapter 4
deals with the problem of deterministic learning in closed-loop feedback
control processes. Chapter 5 presents a unified framework for effective rep-
resentation, similarity characterization, and rapid recognition of dynamical
patterns. Chapter 6 describes pattern-based intelligent control. Chapter 7 is
devoted to the practical problem of deterministic learning, where only a single
output measurement is available, and to the problem of representation and
rapid recognition of single-variable dynamical patterns. Chapter 8 gives con-
clusions and discusses some problems in deterministic learning theory for
further research.
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Introduction

The objective of this book is to present a recently developed framework for
learning from uncertain dynamic environments, which allows further devel-
opments in the area of knowledge acquisition, representation, and utilization
in dynamical processes. Referred to as deterministic learning (DL), the learning
mechanism that underpins the framework provides systematic approaches
for identification, recognition, and control of nonlinear dynamical systems.
The book is justified by the aim to collect and expand the basic ideas and re-
sults, although there appears to be much more research needed for the topic
to be fully developed.

The problem of learning in dynamical or non-stationary environments so
far has received minor attention compared to the problem of learning in static
or stationary environments. In thisbook, we investigate two types of uncertain
dynamic environments: (i) feedback control of uncertain nonlinear systems,
and (ii) recognition and classification of temporal /dynamical patterns. These
topics are closely connected in that they are both parts of decision and control
for complex situations. In this chapter, we start by revisiting different areas of
feedback control concerning the problem of learning in dynamic processes.
Specifically, Section 1.1 discusses the learning issues in related areas such as
adaptive control, learning control, intelligent control, and adaptive neural
network (NN) control. The learning issues in temporal pattern recognition
are included in Section 1.2. Difficulties concerning the occurrence of learning
in these dynamical processes are analyzed, respectively, in the two sections.
In Section 1.3, we briefly introduce the main topics of this book, including a
more detailed introduction to the above-mentioned learning issues and the
basic ideas leading to the development of the deterministic learning theory.

1.1 Learning Issues in Feedback Control
1.1.1 Adaptive and Learning Control

Adaptive control has been the subject of active research for more than a half
century; see some history in the well-known text by Astrom and Wittenmark
[13]. According to Webster’s Dictionary, to adapt means “to change (oneself)
so that one’s behavior will conform to new or changed circumstances.”

1



2 Deterministic Learning Theory for Identification, Recognition, and Control

The words “adaptive system” and “adaptive control” have come to refer to sit-
uations where the controller has adjustable parameters and some process for
changing them as new conditions are encountered. The motivation of adap-
tive control was originally to design autopilots for high-performance aircraft
undergoing drastic changes in their dynamics when they fly from one oper-
ating point to another. These changes could not be handled by constant-gain
feedback control. However, in the 1950s there was a lack of rigorous analysis
for the stability of the proposed adaptive flight control schemes. The intro-
duction of state-space techniques and Lyapunov stability theory [103] made
the 1960s an important period for the development of adaptive control the-
ory [17]. The advances in the 1960s improved the understanding of adaptive
systems and contributed to a strong renewed interest in the field in the 1970s.
Since then, there have been many theoretical successes and some applications.
There are too many important works to refer to here; see the surveys and
books, including [5,12,13,78,92,119,125,152,159,161,199,226] for more details.

The objective of adaptive control is clearly defined and compelling: to con-
trol linear or nonlinear systems with uncertain parameters [119]. Adaptive
control has as a key feature the ability to adapt to, or “learn,” the unknown
parameters during online adjustment of controller parameters in order to
achieve a desired level of control performance. The emphasis of adaptive
control theory is on the stability of adaptive systems. However, the learning
ability of conventional adaptive control is actually very limited. To be specific,
in the process whereby an adaptive control algorithm adjusts the controller
parameters online so that closed-loop stability is maintained, one may argue
that learning is achieved in the sense that the adaptive system learns enough
about the system to deal with uncertain parameters. However, even for repeat-
ing exactly the same control task, the adaptive control algorithm still needs to
recalculate the controller parameters because nothing was kept in memory.
In this sense, the adaptive system does not have a learning capability.

Learning control also started to receive increased attention in the 1960s
[15,55]. At that time, adaptation, learning, self-organizing systems, and con-
trol were competing terms having similar but somewhat undeveloped mean-
ings. The basic idea of learning control is as follows. When information about
the controlled process (plant and environment) is unknown, a controller
is designed that is capable of estimating the unknown information during
its operation. If the estimated information gradually approaches the true in-
formation as time proceeds, then the performance of the designed controller
will eventually be as good as in the case where all the information required is
known. This class of control systems may be called learning control systems
because the gradual improvement of performance is due to the improvement
of the estimated unknown information [56]. Here the learned information
is considered as an experience of the controller, and the experience will be
used to improve the quality of control whenever similar control situations
recur.

From the concepts introduced, the problem of learning may be viewed
as estimation or successive approximation of the unknown quantities that
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represent the controlled process under study. The unknown quantities to be
estimated or learned by the controller may be either the parameters only,
or structure of a deterministic or stochastic function. The term “learning” is
unambiguously explained in terms of the appropriate utilization of past expe-
rience and the gradual improvement of performance. The difference between
basic adaptive control and learning control lies in that an adaptive control
system recalculates the controller parameters repeatedly without any knowl-
edge learned and kept in memory; a learning control system requires not
only the adaptive capability to cope with system uncertainties, but also other
capabilities beyond that of adaptation, for example, knowledge acquisition,
storage, and reuse for another similar control task [44].

Learning is clearly a very desirable characteristic of advanced control sys-
tems. For instance, in the trend toward control for more complex systems, it
offers the opportunity of reduced computational burden as past experiences
are exploited in similar new situations. According to Webster’s Dictionary,
to learn means “to acquire or gain knowledge or skills.” A learning control
system captures this idea and is one that has the following capabilities: (i) to
acquire knowledge through closed-loop interactions with the plant and its en-
vironment, (ii) to store the knowledge in memory, and (iii) to reuse the learned
knowledge (also called past experience) when similar control situations recur
toward improved control performance. However, just to gain knowledge in
a dynamical closed-loop control process, that is, learning in a nonstationary
environment for nonlinear systems, is a very difficult problem [56], which has
remained incompletely solved for a long period of time.

Nowadays it is interesting to notice that, although the similarities and dif-
ferences between adaptive control and learning control have been clarified,
the developments of the two research areas are quite different. Adaptive con-
trol has received continuing popularity since the 1970s, with a rich literature
on different techniques for design, analysis, performance, and applications.
Throughout the 1980s, robust adaptive control was studied intensively [92].
The objective was to understand the mechanisms of instabilities for adaptive
control algorithms in the presence of unmodeled dynamics or bounded distur-
bances and to propose various robustness modifications. Since the late 1980s,
with the publication of several breakthrough results, adaptive control of cer-
tain classes of nonlinear plants with unknown parameters has been the focus
of research, and this led to a further strong interest in the field, with some suc-
cessful industrial applications [119]. On the other hand, since the 1970s learn-
ing control has been merged into a more general area called intelligent control
[57], which in turn is influenced by control theory and artificial intelligence.
Intelligent control has since become one of the most active research areas in the
field of control; however, the precise learning capabilities of intelligent control
in the sense referred to above have been somewhat lightly investigated.

Another development related to learning control is learning theory. Since
the 1970s, learning theory has gradually become a research discipline in the
context of machine learning, and more recently has featured computational
or statistical learning using stochastic principles [229]. Although statistical
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learning theory could provide efficient learning algorithms for a wide variety
of problems in the robust analysis and synthesis of control systems (e.g.,
see [234]), it is difficult to apply to practical control systems, for the models
are mostly dynamical and deterministic by nature. Thus, for control systems
design, it is preferred to have a learning capability that can be implemented
in a deterministic manner.

1.1.2 Intelligent Control and Neural Network Control

Intelligent control was originally developed to motivate discussion of several
areas related to learning control, with the emphases on problem solving or
high-level decision capability [57]. Compared with learning control, intelli-
gent control is a more general term describing the intersection of the fields
of automatic control systems and artificial intelligence. The motivation of in-
telligent control lies in the attempt by control engineers to design more and
more human-like controllers with adaptation and learning capabilities. On
the other hand, many research activities in artificial intelligence, including
machine learning and pattern recognition, might usefully be applied to solve
learning control problems. This overlap of interest between the two areas
has created many points of interest for control engineers. Furthermore, it
was proposed that intelligent control should analytically investigate control
systems with cognitive capabilities that could successfully interact with the
environment. Therefore, in the early 1980s intelligent control was considered
as a fusion of research areas in systems and control, computer science, and
operations research, among others [197,198].

Intelligent control systems are typically able to perform one or more of
the following functions: learning from past experiences, identifying changes
that threaten the system behavior, such as failures, and reacting appropriately
with planning actions at different levels of detail. This identifies the areas of
machine learning, neural networks (NN), fuzzy systems, failure diagnosis,
and planning and expert systems, to mention but a few, as existing research
areas that are related and important to intelligent control. We do not consider
this further here and so do not make any attempt to relate all those areas to
learning. Only one area, namely, neural networks, features strongly in the
sequel.

NN control was originally inspired by the learning and control abilities of
human beings, which enable them to perform with ease many complicated
tasks within uncertain environments. Since the mid-1980s, control of uncer-
tain nonlinear dynamical systems using NNs has attracted tremendous inter-
est in the control community [82]. NNs have many features that cope with the
increasing demand for controlling complex, highly uncertain, nonlinear sys-
tems in industrial applications, including highly parallel structure, learning
ability, nonlinear function approximation, fault tolerance, and efficient analog
VLSI implementation for real-time applications. The use of neural networks
in principle makes it unnecessary to spend much effort on system modeling
in cases where such modeling is difficult.
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In NN control of nonlinear systems, the unknown nonlinear system dy-
namics are approximated by linearly or nonlinearly parameterized neural
networks, such as radial basis function (RBF) networks and multilayer neu-
ral networks (MNNSs) (see [64]). In the earlier NN control schemes, opti-
mization techniques were used mainly to derive parameter adaptation laws.
The NN control design was demonstrated mostly through simulation or by
particular experimental examples [82]. The disadvantage of optimization-
based NN controllers is that it is generally difficult to derive analytical re-
sults for stability analysis and performance evaluation of the closed-loop
system [64].

To overcome these problems, adaptive NN control approaches (e.g.,
[26,27,65,162,163,179,181,190,191,195,216,262,266,269]) were proposed based
on robust adaptive control techniques [92]. The features of adaptive NN con-
trol include: (i) the design and analysis is based on Lyapunov stability theory;
(ii) stability and performance of the closed-loop control system can be readily
determined; and (iii) NN weights are tuned online, using a Lyapunov syn-
thesis method, rather than optimization techniques. It has been found that
adaptive NN control is suitable for controlling highly uncertain, nonlinear,
and complex systems. A great deal of progress has been made both in theory
and practical applications; however, there still remain some (fundamental)
issues and even criticisms to be further investigated and addressed:

1. Most of the work in the NN control literature only requires the uni-
versal function approximation capability of neural networks, which
is also possessed by many other function approximators, such as
polynomial, rational and spline functions, wavelets, and fuzzy logic
systems. As one of the online approximation-based control meth-
ods [181], it is perhaps of concern that “neural control can be ac-
complished without specific references to neural networks” [163].
Therefore, a question naturally arose as to what other properties
particular to neural networks should be exploited to make NN con-
trol distinct from the other control methods.

2. Because NN control, as well as other online approximation-based
controls, has been developed along the lines of well-established ro-
bust adaptive control theory [92], it was soon indicated that there
had been no theoretical results in the adaptive neuro—fuzzy liter-
ature that would in any way use properties particular to neural
networks or fuzzy systems [214]. Furthermore, it was reasonably
questioned [171] whether the works of neural /fuzzy control have
contributed to the understanding of adaptive systems in general.
These critical comments need to be addressed.

3. Adaptive NN control has as a main feature the ability to adapt to,
or “learn” the unknown system dynamics through online adjust-
ment of controller parameters in order to achieve a desired level
for control performance. However, the learning ability of adaptive
NN controlis actually very limited. As described above for adaptive
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control generally, it needs to recalculate (or readapt) the controller
parameters even for repeating exactly the same control task [44].

As both intelligent control and NN control were initially motivated by the
learning and control abilities of human beings, intelligent control including
NN control should at least possess the following two properties: (1) be capa-
ble of learning “good” knowledge online through a stable closed-loop control
process, and (2) be capable of exploiting the learned knowledge in the same
or similar control tasks with closed-loop stability and improved control per-
formance. Properties (1) and (2) are two basic features of advanced intelligent
control systems [6,44], in which the ability to learn autonomously is one of
the fundamental attributes. However, these two properties in general have
not been fully implemented together in the control literature.

1.2 Learning Issues in Temporal Pattern Recognition

Humans generally excel in dealing with temporal patterns, including sounds,
vision, motion, and so on. Human recognition of such patterns is an inte-
grated process, in which patterns of information distributed over time can be
effectively obtained, represented, recognized, and classified. A distinguish-
ing feature of the human recognition process is that it takes place immedi-
ately from the beginning of sensing temporal patterns, and these patterns
are directly processed on the input space for feature extraction and pattern
matching [34]. So far, a great deal of progress has been made for recognition
of static patterns (e.g., [19,85,95,229,254,261]); however, only limited success
has been reported in the literature for rapid recognition of temporal patterns.
This is probably due to the lack of investigation on learning issues in temporal
pattern recognition.

1.2.1 Pattern Recognition in Feedback Control

It is interesting to notice that the term pattern recognition appeared in the
control literature in the 1960s together with adaptive, learning, and self-
organizing systems; see, for instance, [15,55,56,226]. In the process of learning
control of an uncertain linear or nonlinear system, the learned information is
considered as an experience of the controller, and the experience can be used
to improve the quality of control whenever similar control situations recur.
Different experiences are obtained from the information extracted from dif-
ferent control situations. Similar control situations may be grouped to form a
class of control situations. The control situations are generally referred to as
patterns. Therefore, a pattern in control was represented by a set of measure-
ments or observations of state variables [57].

The idea of using patterns to determine control actions has been employed
in limited ways in specific applications. For instance, power systems are large
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complex systems subjected to various disturbances, which require prompt
responses called emergency controls. The amount of data available is pro-
hibitive for online computation of feedback or manual controls. It is natural
to attempt to record and classify experiences as patterns defined in terms
of higher-level behaviors such as recorded in operating conditions, stabil-
ity indices, and trajectory trends, for example, Lissajous figures for two-
dimensional projections [25,208]. Now situations can be compared to those in
the database and the control action is chosen according to the similarity with
past experiences. This is similar to how human body control deals with com-
plicated tasks by storing information about past experiences in the central
nervous system [166].

The problem of classifying different control situations (i.e., patterns) is im-
portant in learning control system design. Once different classes of control
situations can be classified quickly and correctly, a corresponding (optimal)
controller can be selected for the various classes of control situations. How-
ever, the classification might be very difficult to be implemented. For instance,
consider the measurements (called features) designated as x1, xy, ..., xt. They
can be represented by a k-dimensional vector X in the (feature) space Qx. Sup-
pose there exist m possible pattern classes (or m classes of control situations).
The function of a pattern classifier is to assign (or to make a decision about) the
correct class membership to each given feature vector X. Such an operation
can be interpreted as a partition of the k-dimensional space Qx into m mu-
tually exclusive regions (or a mapping from the space to the decision space).
One problem with such a method is that the creation of a uniform partition
may yield a large number of different control situations. For the partition of a
multidimensional system, there will be an exponential growth with the num-
ber of subdivisions in each dimension, so that even a modest problem can
yield a huge number of control situations and require a prohibitively large
amount of memory.

The above problem is due to the representation of nonstationary state vari-
ables by using a finite number of different stationary patterns, and then the
utilization of conventional pattern recognition techniques to identify and clas-
sify the stationary patterns. It is obvious that conventional methods for static
or stationary pattern recognition have limited capability to cope with the
problem. Novel methods of pattern recognition are required for classifying
nonstationary patterns in feedback control systems.

1.2.2 Representation, Similarity, and Rapid Recognition

In static pattern recognition, a pattern is usually a set of time-invariant mea-
surements or observations represented in vector or matrix notation [19,95].
The dimensionality of the vector or matrix representation is generally kept as
small as possible by using a limited yet salient feature set for purposes such as
removing redundant information and improving classification performance.
For example, in statistical pattern recognition, a pattern is represented by a set
of d features, or a d-dimensional feature vector which yields a d-dimensional
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feature space. Subsequently, the task of recognition or classification is accom-
plished when the d-dimensional feature space is partitioned into compact and
disjoint regions, and decision boundaries are constructed in the feature space
that separate patterns from different classes into different regions [95,254].

For representation of temporal patterns, a popular approach is to con-
struct short-term memory (STM) models, such as delay lines [236], decay
traces [101,251], and exponential kernels [217]. These STM models are then
embedded into different neural network architectures. For example, the time
delay neural network (TDNN) is constructed by combining multilayer per-
ceptrons (MLPs) with the delay line model [236]. With STM models, a tem-
poral pattern is represented as a sequence of pattern states, and recognition
of temporal patterns is quite similar to the recognition of static patterns.

Because the measurements of state variables are mostly time-varying in
nature, the above framework for static patterns is not very suitable for repre-
sentation of temporal patterns. A very difficult problem in temporal pattern
processing is how to appropriately represent the time-varying patterns. The
topic of temporal coding, and particularly using neural representations, re-
cently has also become an important topic in neuroscience and related fields
(see, e.g., [249]). Among the unresolved problems in this field, one of the most
fundamental questions is how temporal patterns can be represented in a time-
independent manner [34]. As indicated in [34], if the time attribute could not
be appropriately dealt with, the problem of time-independent representation
without loss of discrimination power and classification accuracy would be a
very difficult task for temporal /dynamical pattern recognition.

Another important problem in temporal pattern recognition is the defini-
tion of similarity between two temporal patterns. In the literature of pattern
recognition, there are many definitions for similarity of static patterns, most
of which are based on distances, for example, Euclidean distance, Manhattan
distance, and cosine distance [254]. To define the similarity of two dynam-
ical patterns, the existing similarity measures developed for static patterns
might become inappropriate, because when considering parameter varia-
tions, noise, and disturbances, it is of course unlikely that two temporal pat-
terns will occur identically. For the aforementioned reasons, it appears that
in the current literature there are no results on efficient representation and
standard similarity definitions of temporal patterns.

Considering the general recognition process for a temporal pattern,
two phases exist: the identification phase and the recognition phase. The
“identification” phase involves working out the essential features of a pat-
tern one does not recognize, whereas “recognition” means looking at a pattern
and realizing that it is the same or a similar pattern to one seen earlier. The
recognition phase involves the utilization of knowledge or past experiences
obtained from the identification phase, and is expected to be processed at a
rapid speed. Note that the human recognition process appears to take place
immediately and continuously from the beginning of sensing temporal patterns,
and temporal patterns are processed directly on the input space for feature
extraction and pattern matching [34]. The rapid recognition process implies
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that, compared with the identification phase, there is a different mechanism
in this phase in which past experiences will be utilized to achieve the rapid
recognition.

1.3 Preview of the Main Topics

The subject of the monograph is knowledge acquisition, representation, and
utilization in uncertain dynamical processes. In this section we briefly pre-
view the main topics to be developed. The results are based on our recently
published papers [238]-[248], with many extensions.

1.3.1 RBF Networks and the PE Condition

Ithas been shown in system identification and adaptive control that to achieve
accurate parameter convergence and the corresponding identification of sys-
tem dynamics, the persistent excitation (PE) condition is normally required
to be satisfied [139,161,199]. Defined as an intrinsic property of certain signals
(called “regressor” vectors) in the system, the PE condition plays a central role
in adaptive system theory. Nevertheless, for identification of general nonlin-
ear systems as well as identification in closed-loop control, the PE condition
is very difficult to characterize and usually cannot be verified a priori [140].
The difficulties concerning the PE condition lead to the question of whether
there exists a special class of nonlinear regressor vectors for which these can
be overcome.

In the literature of identification and control of nonlinear systems using
neural networks, various types of NN architectures have been employed. In
fact, the research on neural networks has led to a proliferation of architectures,
structures, and algorithms. The first question to be answered is which type
of neural network is most suitable for learning from dynamic environments
concerning NN identification/control. More specifically, we are interested
in the problem of whether there exist certain types of neural network that
can lead to the satisfaction of the PE condition. A natural idea to arise is
that any property of neural networks leading to the satisfaction of the PE
condition would be beneficial for NN identification/control. For this book,
after comparison of alternatives, we come to the conclusion that the local-
ized radial basis function (RBF) network is very suitable to implement pre-
specified learning and control capabilities due to its associated properties,
including the linear-in-parameter form, the function approximation ability,
the spatially localized structure, and an important property concerning the
PE condition.

The investigation of the PE property of RBF networks has attracted con-
tinued efforts during the past decade [80,123,143,194]. RBF networks have
been widely used in identification and adaptive control of nonlinear systems
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[65,114,195], thanks to the universal function approximation ability. An RBF
network can be represented in the form of a linear parametric regression, as
a product of a neural weight vector and a regressor vector. The components
of the regressor vector are nonlinear functions of inputs to the RBF network.
In [194], it was shown that if the inputs to an RBF network coincide with the
network neuron centers, then the corresponding regressor vector satisfies the
PE condition. This requirement is very restrictive, because a random input
in most cases will not coincide with the network neuron centers. For RBF
networks with neuron centers fixed on a regular lattice, it was shown that
the corresponding regressor vector is persistently exciting provided that the
input variables to the RBF networks belong to certain neighborhoods of
the neuron centers [80,143]. Nevertheless, theoretical analysis of the size of
the neighborhoods was not given. In [123], it was proven that if the size
of the neighborhoods is less than one half of the minimal distance of any two
neuron centers, then the corresponding regressor vector might be persistently
exciting. In addition, a class of ideal input orbits, which ensure the satisfaction
of the PE condition, is characterized as periodic or ergodic trajectories visiting
the limited neighborhoods of all neuron centers of the RBF network [123,143].
These results, although achieving substantial improvement compared with
[194], are not yet applicable to the knowledge acquisition problem at hand,
because it is possible that a random input sequence or orbit does not visit the
specified neighborhood of any neuron center of the RBF network.

In Chapter 2, we investigate the PE property of RBF networks. To make the
result applicable to NN identification and control, it is of interest to explore
whether any periodic orbit can lead to the satisfaction of the PE condition.
We prove (following [123,243]) that almost any periodic or periodic-like (re-
current) NN input trajectory, as long as it stays within the domain lattice, can
lead to the desired PE property of a regressor subvector consisting of RBFs
whose centers are located in a neighborhood of the input trajectory. Our proof
proceeds by removing the restriction on the size of the neighborhood (as done
in [123]). The PE condition obtained is referred to as a “partial” PE condition,
because it is not necessary for the NN input trajectory to visit every center of
the entire regular lattice upon which the RBF networks are constructed.

1.3.2 The Deterministic Learning Mechanism

The employment of neural networks for learning complex input-output map-
pings has stimulated many studies within the context of nonlinear systems
identification (see, e.g., [162,209]). In particular, design and analysis of iden-
tification algorithms based on Lyapunov stability theory provide a general
formulation for modeling, identifying, and controlling nonlinear dynami-
cal systems using NN [46,65,97,115,143,179]. Lyapunov-based NN identifi-
cation is very attractive; however, it cannot achieve accurate identification/
modeling of the underlying system dynamics without the satisfaction of the
(PE) condition [115,143,195].
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In Chapter 3, we study a deterministic mechanism for accurate NN iden-
tification of unknown nonlinear dynamical systems undergoing periodic or
periodic-like (recurrent) motions. We have from Chapter 2 that with RBF net-
works and periodic or periodic-like NN input orbit, a partial PE condition
can be satisfied. With the partial PE property, by using a dynamical version
of the localized RBF network, and a Lyapunov-based adaptation law for the
neural weights of the RBF network, the identification error system consisting
of the state estimation error subsystem and weight estimation error subsys-
tem can be proved to be exponentially stable along the recurrent trajectory.
For neurons whose centers are close to the trajectories, the neural weights will
converge to small neighborhoods of a set of optimal values, whereas for the
other neurons with centers far away from the trajectories, the neural weights
are not activated and almost unchanged. Thus, sufficiently accurate identifi-
cation of the unknown dynamics can be achieved within a local region along
the recurrent trajectory. The knowledge gained from deterministic learning
can be represented as an accurate NN approximation with constant neural
weights. This knowledge can be conveniently interpreted as a partial model
that models the system in the neighborhood of the task trajectory. These par-
tial models, assembled from many previous tasks, can be very valuable to call
upon in future situations.

1.3.3 Learning from Adaptive Neural Network Control

As already mentioned, to guarantee accurate parameter convergence (i.e.,
learning) in closed-loop adaptive control, it is required that the PE condition
of some internal closed-loop signals be satisfied [161]. This is often very diffi-
cult to express in terms of the external reference signals. Although interesting
results on stable neural control were obtained in [43,45,46,181,195], conditions
for the satisfaction of the PE condition of internal closed-loop signals have not
been fully established. The recent result of the authors [243] is used in Chap-
ter 4 to show that the difficulty of satisfying PE in a feedback closed-loop is
overcome in two steps. To demonstrate the idea, we consider tracking control
of the states of a simple second-order nonlinear system to the recurrent states
of a reference model. In the first step, we use adaptive NN control to achieve
tracking convergence of the plant states to the recurrent reference states, so
that the internal plant states become recurrent signals. In the second step,
thanks to the obtained tracking convergence and the associated properties
of localized RBF networks, partial PE conditions are subsequently satisfied
by the regression subvector constructed out of the RBFs along the recurrent
tracking orbit. With the partial PE condition satisfied, it is shown that ac-
curate NN approximation of closed-loop system dynamics can be achieved
in a neighborhood of the recurrent trajectory. Further, for more general non-
linear systems in strict-feedback form and Brunovsky form, it is shown that
closed-loop identification of control system dynamics can be achieved in a lo-
cal region along the recurrent tracking orbit. The locally accurate closed-loop
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identification is achieved via direct adaptive NN control rather than indirect
adaptive NN control. Thus, a true learning ability is implemented during
closed-loop control processes, and this is what we mean by “learning from
direct adaptive NN control”; learning is in fact a natural capability inher-
ent in the direct adaptive NN controllers. The learned knowledge can be
utilized in another similar control task to achieve stability and improved
performance.

1.3.4 Dynamical Pattern Recognition

A dynamical pattern is defined as a recurrent system trajectory generated from
the following dynamical system:

% = F(x;p), x(fo) = x0 (1.1)

where F(x; p) = [fi(x; p), ..., fu(x; p)]T represents the system dynamics that
is unknown. The class of recurrent trajectories includes periodic, quasi-
periodic, almost-periodic, and even chaotic trajectories; see [206] for a rig-
orous definition of recurrent trajectory. The dynamical pattern defined above
covers a wide class of temporal patterns studied in the literature.

For identification of dynamical patterns generated from nonlinear dynami-
cal systems, the deterministic learning mechanism proposed in Chapter 3 can
be used to achieve a locally accurate NN approximation of the underlying
system dynamics F (x; p) within a dynamical pattern. Through deterministic
learning, fundamental information about dynamical patterns is obtained and
stored as sets of constant RBF neural weights.

In Chapter 5, based on the deterministic learning mechanism, a unified,
deterministic framework is presented for effective representation, similarity
definition, and rapid recognition of dynamical patterns. This follows from
the recent paper [244]. We show first that dynamical patterns can be effec-
tively represented in a time-invariant manner using the locally accurate NN
approximations of system dynamics F (x; p). The representation is also spa-
tially distributed, because fundamental information is stored in a large num-
ber of neurons distributed along the state trajectory of a dynamical pattern.
Therefore, a dynamical pattern is represented by using complete information
of both the pattern state and the underlying system dynamics. This differs
markedly from statistical pattern recognition, where a pattern is represented
asa pointin ad-dimensional feature space using a limited number of extracted
features [95,254],

Concerning the similarity definition for dynamical patterns, we look to the
ideas in the qualitative analysis of nonlinear dynamical systems. The simi-
larity between two dynamical behaviors lies in the topological equivalence and
structural stability of two dynamical systems (see [206] for more discussions).
This implies that the similarity of dynamical patterns is determined by the
similarity of the system dynamics inherently within these dynamical patterns.
Thus, we propose a similarity definition for dynamical patterns based on in-
formation from both system dynamics and pattern states: dynamical pattern
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A is similar to dynamic pattern B if (i) the state of pattern A stays within a
local region of the state of pattern 3, and (ii) the difference between the cor-
responding system dynamics along the state trajectory of pattern 4 is small.
It is seen that the time attribute of dynamical patterns is excluded from the
similarity definition.

With pattern representation and similarity definitions established, we in-
vestigate the mechanism for rapid recognition of dynamical patterns. We
propose an approach for rapid recognition of dynamical patterns as follows.
A set of dynamical models is constructed as dynamic representations of the
training dynamical patterns, in which the constant RBF networks obtained
from the identification phase are embedded. The constant RBF networks can
quickly recall the learned knowledge by providing accurate approximations
to the previously learned system dynamics of a training dynamical pattern.
When a test pattern is presented to one of the dynamical models, a recognition
error system is formed, which consists of the system generating the test pat-
tern and the dynamical model corresponding to one of the training patterns.
Without identifying the system dynamics of the test pattern, an internal and
dynamical matching of system dynamics of the test and training pattern pro-
ceeds in the recognition error system. The state synchronization errors will
be proven to be (approximately) proportional to the differences of system
dynamics. Thus, the synchronization errors can be taken as similarity mea-
sures between the test and the training dynamical patterns. The process can
be rapid because it does not require numerical computation associated with
identifying the test pattern dynamics and comparison of system dynamics of
the two dynamical patterns.

1.3.5 Pattern-Based Intelligent Control

The study of human movement and motor behavior, in the context of motor
learning and control, has emerged as an important discipline in kinesiology,
psychology and neuroscience (see, e.g., [205]). A recent interesting develop-
ment in this field is to study human movement via a dynamic systems ap-
proach, which exhibits features of pattern-forming dynamical systems [108].
It is shown by experiments [108] that the control and coordination of human
movements at all levels is associated with dynamic patterns.

It is thus suggested that mechanisms of pattern-based learning and control
may be responsible for the proficiency of complicated human control skills.
In this book, we intend to use the term “pattern-based intelligent control”
to convey such human-like capabilities of acquiring information of dynamic
patterns for current and later use and making decisions to achieve goals all in
a dynamic process. These pattern-based intelligent control abilities, however,
have been less studied by the control community. Such abilities require a
rigorous definition of dynamic patterns, and solutions to problems of effective
representation, rapid recognition and classification of dynamical patterns.
These problems, nevertheless, are difficult to solve in the pattern recognition
area.
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Based on the aforementioned results on deterministic learning, in Chapter 6
we propose a framework for pattern-based control as follows. First, for dif-
ferent training control tasks, the closed-loop system dynamics corresponding
to the training control tasks are identified via deterministic learning. A set of
training dynamical patterns is defined based on the identification. The repre-
sentation and similarity of closed-loop dynamical patterns are also presented.
A set of pattern-based NN controllers is constructed accordingly. Second, a
dynamical pattern classification system is introduced that can rapidly recog-
nize dynamical patterns and switch quickly among the set of pattern-based
NN controllers. For a test control task, if the corresponding dynamical pat-
tern is recognized as very similar to one previous training pattern, then the
NN controller corresponding to the training pattern is selected and activated.
The learned knowledge in training periods, also called past experiences, and
stored as a set of constant neural weights, is embedded in the NN container.
By appropriately choosing the initial conditions, the selected NN controller
control scheme can achieve small tracking errors and a fast convergence rate
with small control gains. In this way, we achieve improved control perfor-
mance using the past experiences. Furthermore, the NN controller does not
need adaptation of neural weights; the neural learning controller is a low-
order static controller that can be easily implemented. Thus, not only stability
of the closed-loop system is guaranteed, better performance is also achieved
in terms of saving time and energy.

Note that if the control task corresponds to a dynamical pattern not experi-
enced before, the identification process (as in the first step) will be restarted.
The learned knowledge will yield a new NN controller which will be added
to the set of pattern-based NN controllers. Of course, the time available for
such extra identification is an issue and might limit what can be achieved. The
proposed pattern-based intelligent control framework will be useful to many
areas, including the analysis of proficient human control with little cognitive
effort.

1.3.6 Deterministic Learning Using Output Measurements

In Chapters 2 to 6, the deterministic learning mechanism is revealed under
full-state measurements. Chapter 7 considers deterministic learning using
only partial-state or output measurements.

First, for a class of nonlinear systems undergoing recurrent motions with
only output measurements, we show that identification of the underlying
system dynamics can still be achieved. Specifically, by using a high-gain ob-
server, accurate state estimation of the recurrent system states is achieved. A
partial PE condition of a regression subvector constructed out of the radial
basis functions (RBFs) along the recurrent estimated state trajectory is sat-
isfied, and accurate identification of system dynamics is achieved in a local
region along the estimated state trajectory.

Second, we show that the knowledge obtained through deterministic learn-
ing can be reused in another state observation process. As high gains may
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yield large oscillations/variations in the presence of noise, the aim is to avoid
high-gain design when possible. Because the learned knowledge stored in the
constant RBF networks (RFBN) actually provides locally accurately known
system dynamics, we construct an RBFN-based nonlinear observer, in which
the constant RBF networks are embedded as NN approximations for system
dynamics. For state estimation of the same nonlinear system as previously
observed, it is shown that correct state estimation can be achieved according
to the internal matching of the underlying system dynamics without using
high-gain domination.

Third, the result of deterministic learning with output measurements is
applicable to identification, representation, and rapid recognition of single-
variable dynamical patterns. For single-variable dynamical patterns, difficul-
ties arise not only because dynamical patterns evolve with time, but also due
to the highly incomplete information available. We show that the system dy-
namics of a set of training single-variable dynamical patterns can be locally
accurately identified through high-gain observation and deterministic learn-
ing. A single-variable dynamical pattern is represented in a time-invariant
and spatially distributed manner by using information on both its estimated
pattern states and its underlying system dynamics. This kind of representa-
tion is taken as a static representation. A series of RBFN-based observers is
constructed within which the constant RBF networks are embedded. These
RBEN-based observers are taken as dynamic representations for the corre-
sponding training dynamical patterns.

Based on the dynamic representations, rapid recognition of a test single-
variable dynamical pattern can be implemented when non-high-gain
observation is achieved according to a similar internal and dynamical match-
ing process described for rapid recognition of the full state test dynamical
pattern. The non-high-gain observation errors are taken again as the measure
of similarity between the test and training single-variable dynamical patterns.
Nonetheless, it is noticed that most state variables of the test single-variable
pattern are not available from measurement. To solve this problem, a high-
gain observer is employed again to provide an accurate estimate of these state
variables, so that the non-high-gain observation errors can still be computed.
Thus, the role of non-high-gain observation in rapid recognition of dynami-
cal patterns, that is, to measure the similarity on system dynamics between
the test and training dynamical patterns, is more clearly revealed. The non-

high-gain observation makes the differences on system dynamics explicitly
unfolded.

1.3.7 Nature of Deterministic Learning

The deterministic learning theory for identification, recognition, and control
is presented in Chapters 2 to 7. In Chapter 8, we further investigate the nature
of deterministic learning.

Key elements of deterministic learning concerning knowledge acquisition
include (i) employment of the localized radial basis function network, (ii) sat-
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isfaction of a partial PE condition along a periodic or recurrent orbit, and (iii)
accurate RBFN approximation of unknown nonlinear dynamics achieved in
a local region along a recurrent orbit. The nature of deterministic learning
concerning knowledge acquisition is related to the exponential stability of a
certain class of linear time-varying (LTV) adaptive systems. With determin-
istic learning, fundamental knowledge of uncertain dynamic environments
can be obtained.

Apart from knowledge acquisition, another phase of deterministic learn-
ing is knowledge utilization, which is of the same importance as knowledge
acquisition. The value of the acquired knowledge is manifested only through
utilization of the knowledge in dynamic processes, for example, in rapid
recognition of dynamical patterns, pattern-based intelligent control, and non-
high-gain state observation. In these dynamical processes, the learned knowl-
edgeis utilized in a completely dynamical manner via a mechanism of internal
and dynamical matching of system dynamics. This presents a new model of
information processing, which we refer to as dynamical parallel distributed
processing (DPDP). The nature of deterministic learning concerning knowl-
edge utilization is related to the stability and convergence of certain classes
of linear time-invariant (LTI) systems.

Although deterministic learning theory was not developed using statistical
principles, the physiology of deterministic learning is similar to that of statis-
tical learning. The physiology of statistical learning is revealed by the goal of
not solving the problem of estimating the values of a function at given points
by estimating the entire function [229]. Similarly in deterministic learning,
accurate identification of a system model is achieved only in a local region
along the experienced trajectory. This physiology coincides with the essence
of human intelligence. Moreover, because “intelligence” means “the capac-
ity to acquire and apply knowledge” (according to Webster’s Dictionary), it
is seen that the deterministic learning theory presents a unified framework
for knowledge acquisition and knowledge utilization in dynamical processes,
and thus provides a promising new direction to implement more advanced
intelligence in uncertain dynamic environments.



2

RBF Network Approximation and Persistence
of Excitation

The learning issues discussed in Chapter 1 are challenging problems. In the ar-
eas of identification and adaptive control of nonlinear systems, the persistant
excitation (PE) condition is normally difficult to be verified a priori. Although
various types of neural networks have been employed to exploit the uni-
versal function approximation ability, the learning capability (i.e., accurate
convergence of neural weights) in the process of closed-loop identification
and control has not typically been a close consideration. Accurate parameter
convergence of neural weights relies on the satisfaction of the PE condition.
A question naturally arises as to whether there exist certain types of neural
network that can more easily enable satisfaction of the PE condition and turn
out to be more suitable for learning from dynamical environments.

In this chapter, we study the property of persistence of excitation for local-
ized radial basis function (RBF) networks. RBF networks have received much
attention during the past two decades and been widely used in identifica-
tion and adaptive control of nonlinear systems due to the universal function
approximation ability. It is noticed that the investigation of the PE property
of RBF networks also has attracted continued efforts [80,123,143,194]. These
results have achieved considerable progress; however, they are not yet appli-
cable in practice. Therefore, it is necessary to investigate further whether RBF
approximators have useful PE properties that are applicable to practical NN
identification and control.

Radjial basis functions have their origins in the study of multivariate ap-
proximation theory, particularly in the area of strict multivariate interpola-
tion. In Section 2.1, we briefly introduce the concepts and theorems on RBF
approximation and RBF networks. The concepts of persistence of excitation
and theorems of exponential stability are included in Section 2.2. In Section
2.3, based on previous results on the PE property of RBF networks [123], we
show that for almost every periodic orbit, there always exists an RBF subvector
consisting of RBFs centered in a certain neighborhood of the orbit such that
a partial PE condition is satisfied. This result is then extended to periodic-
like trajectories generated from general nonlinear systems, which include
quasi-periodic, almost-periodic, and chaotic trajectories. Therefore, almost
any periodic or periodic-like orbit will lead to the satisfaction of a partial
PE condition of the corresponding RBF subvector. This property makes the

17
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localized RBF network most suitable for learning in dynamic environments
among the various neural network (NN) architectures.

21 RBF Approximation and RBF Networks
2.1.1 RBF Approximation

Approximation theory has undergone major advances during the past
two decades. Fundamental approximation theory includes interpolation,
least squares, and Chebyshev approximation by polynomials, splines, and
orthogonal-polynomials, which are still important and interesting topics.
Nonetheless, some significant developments have emerged, which include
new approximating tools, nonlinear approximation, and multivariate approx-
imation [31]. RBF approximation is one of the most often applied approaches
for multivariate approximation in modern approximation theory and has
been considered in many applications [23].

The problem of multivariate function approximation is: given data in n
dimensions consisting of data sites E € R” and function values fz = f(E) €
R, seek an approximant g: R"” — R to the function f:R" — R [23]. The
function f is usually unknown, but the existence and some smoothness of f
normally have to be required for the purpose of analysis.

In the literature, there are various ways to find approximant g € G (where
G is a linear space of approximants) to approximate f. By using radial basis
functions, the approximation can take place by means of interpolation.
An interpolation problem is: given a set of data pairs {(&;, yi)|& € R", yi €
R,i =1, ..., m}where; are distinct points, find a suitable function g(x): R" —
R such that for each 7, g(&) = yi.

For RBF approximation, the approximant g is usually a finite linear combi-
nation of translates of a radially symmetric basis function ¢ (|| - ||):

gx) =) wip(lx—&l), xeR 2.1)
i=1

where || - || is the Euclidean norm and w; are real coefficients. Radial symmetry
means that the value of the function only depends on the Euclidean distance
|l - I, and any rotation will not change the function value.

Substituting the condition for interpolation yields ¥ = Aw where y, w are
vectors of y;, w;, respectively, and the interpolation matrix is given by

d(& =&l - oI5 —&nll)
A= : : 2.2)

O(1gm — &) -+ dUEm — Eml)

One of the main results in RBF approximation is that the interpolation
matrix A is nonsingular (sometimes even positive definite) for certain types
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of radial basis functions provided &; are distinct points. The principal concepts
that are useful to show nonsingularity of the interpolation matrix are positive
definite functions and completely monotone functions [23].

DEFINITION 2.1

A function f: R" — Ris said to be semi-positive definite if for any set of points
&1, &, ..., &y in R" the m x m matrix A;; = f(& — &) is nonnegative definite,
that is, cTAc = Y 1", 27‘1:1 cicjAijj = 0forallc = [c1,...,cu]” € R If
¢T Ac > 0 whenever the points &; are distinct and ¢ # 0, then f is positive
definite.

DEFINITION 2.2

A function is said to be completely monotone on [0, oo) if, i) f € C[0, c0),
(ii) f € C>(0, 00), and (iii) (=1)¥f¥(t) > 0 for all + > 0 and for all k =
012,....

The Bernstein—-Widder theorem gives a characterization of the class of com-
pletely monotone functions. This theorem states that a function is completely
monotone if and only if it is the Laplace transform of a nonnegative bounded
Borel measure [256].

THEOREM 2.1 (Bernstein—~-Widder Representation)
A function f : [0,00) — [0, co) is completely monotone, iff it is given in the
following form,

f(t) = /0 e dp(p) 2.3)

where dB(p) is a finite, nonnegative Borel measure on [0, 00).

With the results on positive definite functions and completely monotone
functions, the Schoenberg theorem was established in [201].

THEOREM 2.2 (Schoenberg Theorem)

If ¢ is completely monotone but not constant on [0, co), then the function & +—
(I€11%) is a radial, positive function on any inner product space. Thus, for any m
distinct points &, &, ..., &y in such a space, the matrix A;; = ¢(||& — $j||2) is
positive definite (and therefore nonsingular).

Commonly used RBFs satisfying the Schoenberg theorem include the
Gaussian function, and Hardy’s inverse multiquadric function [83,84]. The
Gaussian function is

—(X—Ei)T(X—Si)} (2.4)

$(llx —&1) =e><p[ -

where &, ..., & are distinct centers and 7 is the width of the receptive field.
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The inverse Hardy’s multiquadric function [151] is
1
P(x) = (2.5)
\/01-2 +(x = &) (x - &)

Both the Gaussian function and inverse multiquadric function are localized
radial basis functions in the sense that ¢ (||x — &||) — 0 as ||x|| — oc.

There are other functions that are not included in Schoenberg’s Theorem,
for example, Hardy’s multiquadric function [83,84]:

$(x) = o +(x - &)T(x — &) (2.6)

which are also useful for interpolation in geophysics. For this case, the Mic-
chelli theorem [151] was established as follows.

THEOREM 2.3 (Micchelli Theorem)

Let ¢: [0, co) — [0, 00). If the derivative of ¢ is completely monotone but not constant
on [0, 00), then, for any n distinct points &1, &, ..., &y, in a real inner-product space,
the matrix Ajj = ¢([1& — &, 12) is nonsingular.

The above theorems provide a rich source of RBFs that are suitable for
interpolation of data in Euclidean spaces [23,31]. From our point of view,
the results on the nonsingularity property of the RBF interpolation matrix
A are interesting, because they provide insights into the establishment of
the conditional nonsingularity of another RBF interpolation matrix (given
in Equation [2.24]). This conditional nonsingularity, in turn, is essential in
proving the partial PE property of RBF networks in Section 2.3.

2.1.2 RBF Networks

From the 1980s, neural networks were constructed and empirically demon-
strated (using simulation studies) to approximate quite well nearly all func-
tions encountered in practical applications. The results by Funahashi [58],
Cybenko [35], and Hornik, Stinchcombe, and White [91] proved that neu-
ral networks are capable of universal approximation in a very precise and
satisfactory sense. These results lead the study of neural networks from its
empirical origins to a mathematical discipline. The NN approximation prob-
lem can be stated following the definition of function approximation [189].

DEFINITION 2.3 (Function Approximation)

If f(x):R" — R is a continuous function defined on a compact set €, and
fun(W, x): R" x R" — R is an approximating function that depends continu-
ously on W and x, then the approximation problem is to determine the optimal
parameters W*, for some metric (or distance function) d, such that

d(fun(W", x), f(x)) < € (2.7)

for an acceptably small €.
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To approximate the unknown function f(x) by using neural networks, the
approximating function f,,,(W, x) is first chosen. The neural network weights
W are then adjusted by a training set. Thus, there are two distinct problems
in NN approximation [85], namely, the representation problem, which deals
with the selection of the approximating function f,,(W, x), and the learning
problem, which is to find the training method to ensure that the optimal neural
network weights W* are obtained.

RBF network models were developed by Broomhead and Lowe [22] and
Poggio and Girosi [178] in the late 1980s. They were motivated by the locally
tuned response observed in biological neurons, for example, in the visual or
auditory systems, and developed by introducing a number of modifications
to overcome the restrictions in exact RBF interpolation. Now the RBF net-
work model has become one of the most often used NN models in the neural
network literature.

The RBF networks can be considered as two-layer networks in which the
hidden layer performs a fixed nonlinear transformation with no adjustable
parameters; that is, the input space is mapped into a new space. The output
layer then combines the outputs in the latter space linearly. Therefore, they
belong to a class of linearly parameterized networks, and can be described in
the following form:

N
fun(Z) = " wisi(Z) = W'S(2) (2.8)
i=1

where Z € Q7 C RY is the input vector, W = [wy, wy, ..., wn]T € RN is
the weight vector, N > 1 is the NN node number, and S(Z) = [si(]|Z —
&ll), ..., sn(1Z—&nID]T, is the regressor vector, with s;(-) being a radial basis
function, and & (i = 1, ..., N) being distinct points in state space (termed
centers).

It has been proven in [174] that an RBF network (2.8), with sufficiently
large node number N and appropriately placed node centers and variances,
can approximate any continuous function f(Z) : Q7 — R over a compact set
Q7 C RY to arbitrary accuracy according to

f(Z)=WTS(Z) +€(2), VZ € Q7 (2.9)

where W* are the ideal constant weights, €(Z) is the approximation error (e(Z)
is denoted sometimes as € to simplify the notation). It is normally assumed
that the ideal weight vector W* exists such that [e(Z)| < €* (with €* > 0) for
all Z € Qz. The ideal weight vector W* is an “artificial” quantity required
for analytical purposes, and is defined as the value of W that minimizes |¢|
forall Z € Q7 C RY; that s,

W* 2 arg min { sup ‘ f(2) - WTS(Z))] (2.10)
WERN ZEQZ

An important class of RBF networks for our purpose is localized RBF net-
works, where each basis function can only locally affect the network output.
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The localized representation means that for any point Z, in the compact set
Qz, we have:

f(Zy) =WiTS,(Z,) + ¢ (2.11)

where €, is the approximation error, and can be expressed in an order term
as O(¢), where O(-) denotes the large order function S,(Z,) = [s(I1Z, — &;,1I),
.., 5(1Z,—&;,)]" € RN is a subvector of S(Z) in (2.8), with [s(| Z, —&;,[1)| >
holding for those neurons centered in an e-neighborhood of the point Z,; that
is, 1Zy —&jl <& (ji = j1,--., jp), where & > 0, ¢ is a small positive constant,
and W;; = [w;fl, e w;‘ ]” is a subvector of the neural weights. Equation (2.11)
means that at a specific point Z,, the smooth function f(-) can be approxi-
mated by using neurons located at the e-neighborhood of this point.

Similarly, for any bounded trajectory Z(t) (V¢ > 0) within the compact
set Qz, f(Z) can be approximated using neurons located in a local region
(i.e., an e-neighborhood) along this trajectory:

f(Z) =W TS(2) + & (2.12)

where €, = O(e) is the approximation error, O(e), W = [w}fl, e, w}fN: T e
RN, with N; < N, S.(Z) = [s(I1Z = &;,11), ..., s(I1Z — Ejy, NIT € R, with the
integers j; defined by [s([|Z, —&;[1)| > ¢ hold for some Z, € Z(t), where tis a
small positive constant. This is trueif || Z(t) —§;, || < ¢ forsomet > 0and ¢ > 0.

We show that localized RBF networks have the spatially localized learning
capabilities of representation, storage, and adaptation. For the localized re-
gressor functions S(-) used in the adaptive law (to be designed), only neurons
with centers close to the input trajectory Z(t) will be activated. The adaptation
in one part of the input space does not significantly affect learning and stor-
age in a different area. The two issues are discussed further in the following
sections.

Among the localized RBF networks, we use the Gaussian RBF network
in the following theoretical analysis and simulations. For the Gaussian RBF
network, an interesting result from [123, Corollary 4.2] provides an upper
bound on the Euclidean norm of vector S(Z). It states the following.

LEMMA 2.1

[123] Consider the Gaussian RBF network (Equations [2.8] and [2.4]). Let h =
% min;; |& —&;ll, and let q and n be as in Equations (2.8) and (2.4). Then we may
take an upper bound of ||S(Z)|| as

IS(Z2)I1? =Y 3q(k +2)1 7 e 2K/ = g (2.13)
k=0



RBF Network Approximation and Persistence of Excitation 23

REMARK 2.1

It can be easily proven that the sum Y 3> 3¢ (k + 2)7~'e~?"*/7" has a limited
value, because the infinite series {3q(k + 2)9 - le=2**/7} (k = 0,..., 00) is
convergent by the Ratio Test Theorem [39].

Apart from the above properties, the most important reason we use the
localized RBF network is due to an essential property concerning the satis-
faction of the PE condition.

2.2 Persistence of Excitation and Exponential Stability

Persistence of excitation is of great importance in adaptive systems. The con-
cept was first introduced in the context of system identification by Astrom
and Bohlin [9] to express the idea that the input signal to the plant should
be sufficiently rich such that all the modes of the plant are excited [263], and
convergence of the model parameters is achieved. Later on in the research on
adaptive control in the 1970s, it was realized that the concept of PE also played
an important role in the convergence of the controller parameters to their de-
sired values [1,153]. However, there came the question of establishing PE of
some internal signals rather than external signals of adaptive control systems.

The properties related to PE have been studied in depth (see, for instance,
[20,160,161,199] and the references therein). The definitions of the PE condi-
tion are as follows [161,199].

DEFINITION 2.4

A piecewise-continuous, uniformly bounded, vector-valued function S :
[0, 00) — R™ is said to satisfy the persistent excitation condition, if there
exist positive constants a4, az, and Ty such that

to+To
ol < / S()S()Tdr < aal, Vi =0 (2.14)

fo
where I € R™*™ is the identity matrix.

According to this definition, the PE condition requires that the integral of
the semidefinite matrix S(t) S(t)T be positive definite over an interval of length
To. It is noted that if S is persistently exciting for the time interval [, fo + To],
it is PE for any interval of length T; > Tj [161]. The PE condition can also be
defined and expressed in a scalar form as follows [199].

DEFINITION 2.5
A piecewise-continuous, uniformly bounded, vector-valued function S:
[0, c0) — R™ is said to satisfy the persistent excitation condition, if there
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exist positive constants o1, a, and Ty such that

to+To
o < / S() TPt <aws, V=0, =1  (215)

fo

holds for all unit vectors ¢ € R™.

The condition above implies that the vector S(t) has a finite projection along
any unit vector c over a finite interval of time.

The following definition of the PE condition is presented in [123], which is
suitable for RBF network identification in continuous and discrete time cases.

DEFINITION 2.6

Let i be a positive, X-finite Borel measure on [0, c0). A continuous, uniformly
bounded, vector-valued function S: [0, co) — R™ is persistently exciting, if
there exist positive constants a1, oz, and Tj such that

to+To
arllelP < / ST ePdu(z) < aliel’, V=0  (216)

fo

holds for every constant vector ¢ € R™.

The definitions above reveal that PE can be defined as an intrinsic property
of a class of signals. This property is closely related to the exponential stability
of a class of linear time-varying systems. We first summarize some well-
known stability definitions [111].

DEFINITION 2.7
Consider the system

x=f(xt), x(to) = xo (2.17)

where f : [0, 00) x D — R" is piecewise continuous in t and locally Lipschitz
in x on [0, 00) x D where D € R". The solution of system (2.17) starting from
initial condition (y, xg) is denoted as x(t; ¢y, xg).

The equilibrium point x = 0 of system (2.17) is stable if for every ¢ > 0,
there exists a d(¢, tp) > 0 such that ||xo|| < § implies that [x(t; fy, x0)|| < €
Vt > ty. It is uniformly stable (u.s.) if 6 is independent of f,.

The equilibrium point x = 0 is uniformly asymptotically stable (UAS) if
it is uniformly stable and for some ¢; > 0 and every ¢, > 0, there exists
T(e1, €2) > 0 such thatif ||xg|| < €1, then ||x(¢;ty, x0)|| < € forall £ >ty + T.

The equilibrium point x = 0 is exponentially stable if there exist constants
a,b and ¢ > 0 such that ||x(¢;ty, x0)|| < ae P¢=1)| x|, for all t+ > f; and
Ix (ol < c.

The equilibrium point x = 0 is uniformly exponentially stable (UES) if
there exist constants a, b > 0 and r > 0 such that for all (¢, xo) € [0, o©) x B,
where B, = {x € R"| |lx|| < r}, |x(t;to, x0)|| < ae b0 || x| for all + > t.
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It is uniformly globally exponentially stable (UGES) if there exist constants
a,b > 0 such that for all (fy, xg) € [0, 00) x R", ||lx(t; ty, x0)|| < ae t¢=0) || x|
for all t > .

The solution of system (2.17) is uniformly bounded if there exists a constant
¢ > 0, and for every a € (0, ¢), there is a constant b > 0, independent of f,,
such that || x(f)|| <a = ||x(t)|| < b, Vt > t.

As an indication of the usefulness of PE to system identification and adap-
tive control of linear or nonlinear systems, we state the following result on
exponential stability of a class of linear time-varying (LTV) systems. This
problem was studied simultaneously in [1,153,263] and nicely summarized
in [5,92,161,199]. The LTV system arises as the equations describing the whole
adaptive system where S(t) refers to the so-called regressor vector.

THEOREM 2.4
Consider the LTV system

% A BS(HT || x
-l W] e

where x; € R", x; € R", x = [x], x] |7 € R"™™ is the system state. If (i) the triple
(A, B, C) is strictly positive real, that is, if there exist symmetric positive definite
matrices P, Q, such that PA+ ATP = —Q, PB = C hold,' and (ii) S(t) is
continuous and bounded and S(t) is bounded, and S(t) is persistently exciting, then
x = 0 of system (2.18) is uniformly globally exponentially stable.

For more general LTV systems in the following form:

x A(t) BT(t x
1= ® B} (2.19)
X2 —C(t) 0 X2

where x; € R", x;, € R", A(t) € R™", B(t) € R™", and C(t) € R™*", suffi-

cient and necessary conditions for exponential stability of system (2.19) were
studied in [173,268].

ASSUMPTION 2.1
[173] There exists a ¢pp; > O such that, for all t > 0, the following bound is satisfied

dB(t)

max {IIB(f)II, T

”} < u (220)

! This is referred to as the Kalman-Yakubovich-Popov (KYP) lemma; see [111] and the references
therein.
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ASSUMPTION 2.2
[173] The system x = A(t)x is uniformly globally exponentially stable.

ASSUMPTION 2.3

[173] There exist symmetric matrices P(t) and Q(t) such that AT (t) P(t)+ P(t) A(t)
+ P(t) = —Q(t) and P(t)B(t) = C(t). Furthermore, 3 Pms G, Py and gy > 0
such that p,, < P(t) < pmand g, < Q(t) < gm.

THEOREM 2.5

[173] The system (2.19) under Assumption (2.1), Assumption (2.2) and Assumption
(2.3) is uniformly globally exponentially stable if and only if B(t) satisfies the PE
condition.

REMARK 2.2

The above two theorems establish the relationship between the PE condition
and the exponential stability of two classes of LTV systems. The exponen-
tial stability of LTV systems can lead to accurate parameter convergence and
system identification, which are elements of the deterministic learning mech-
anism introduced in the following chapters. Thus, it will be revealed that the
nature of this deterministic learning mechanism is related to the exponen-
tial stability of LTV systems, which is caused by the satisfaction of the PE
condition.

The following result states the robustness property of nominal systems with
exponential stability (see [111] and the references therein). It shows that if the
nominal system is perturbed by an arbitrarily small (or uniformly bounded)
disturbance, the solution of the perturbed system will be ultimately bounded
by a small bound.

THEOREM 2.6
Consider the system

i=f(x, 1) +g(x, ) (2.21)

where f: D x [0, 00) = R"and g : D x [0, c0) — R" are piecewise continuous in
t and locally Lipschitz in x on [0, co) x D where D € R".

Let x = 0 be an exponentially stable equilibrium point of the normal system
(2.17). Suppose the term g(x, t) is uniformly bounded by a positive constant §; that
is, lg(x, t)Il < & for all t > 0 and all x € D. Then, the solution of system (2.21)
is uniformly bounded, that is, ||x(t)|| < b for all t > T, where T is finite, and b is
proportional to §.

REMARK 2.3

This result enables statements of stability for systems such as Equations (2.18)
and (2.19) to hold robustly, that s, in the presence of model imperfections [92].
Again, this facility is important in the sequel.
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2.3 PE Property for RBF Networks

The PE property of RBF networks has been studied over the past decade
[80,123,143,194]. One of the early attempts shows that if the inputs to an RBF
network coincide with the network neuron centers, then the corresponding
regressor vector satisfies the PE condition [194]. This requirement is very re-
strictive, because a random input in most cases will not coincide with the
network neuron centers. For RBF networks with neuron centers fixed on a
regular lattice, it was shown that the corresponding regressor vector is per-
sistently exciting provided that the input variables to the RBF networks be-
long to certain neighborhoods of the neuron centers [80,143]. Nevertheless,
theoretical analysis of the size of the neighborhoods was not provided.

An interesting result on the PE property of RBF approximants was given
by Kurdila, Narcowich, and Ward [123], which shows that the regressor vec-
tor constructed out of RBF approximants is persistently exciting provided
a kind of “ergodic” condition is satisfied. The size of the neighborhoods is
restricted to be less than one half of the minimal distance between any two
neuron centers, and a class of ideal input trajectories, which ensure the sat-
isfaction of the PE condition, are characterized as periodic or ergodic trajec-
tories visiting the limited neighborhoods of all neuron centers of the RBF
network.

These results have achieved significant progress compared with [194], nev-
ertheless, they are not yet applicable in practice, because it is possible that a
random input sequence or orbit does not visit the specified neighborhood of
all neuron centers of the RBF network. Therefore, it is necessary to investigate
whether any periodic orbit can lead to the satisfaction of the PE condition.

In this section, we establish a property of persistence of excitation that is
applicable for NN identification and control design. Some results presented
in this section are based on the authors’ papers [242,243].

When RBF networks are employed in NN identification and control, the
regressor vector S(Z(t)) has the form

S(Z(1) = [s(NZ() = &), ..., s(NZ(t) = &nIDT (2.22)

where s(-) is a radial basis function, §; (i =1, ..., N) are distinct points in the
state space and are termed as centers, and Z(t) is the state trajectory which is
taken as the NN input. The function Z(t) is a continuous map from [0, co) to
R", and it is normally assumed to be bounded in a subset of R".

In the following, we revisit the results on the PE property in [123]. Two
interesting lemmas are given first.
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LEMMA 2.2
[123] Let ¢ € R" and let Z € R" be fixed. For localized RBFs, s(-) satisfying (2.3),

N 2 N
D s(1Z(t) = &jl)ej| < (Zs(nZ(t) —s]-||)2> llel? < s(0)*Nlle|* (2.23)
j=1 j=1

LEMMA 2.3

[123] Let Z; € R" fori =1,..., N. If

A= AZi, ..., Zx)

s(NZy = &l) - s(1Z1—é&nl)
_ : : (2.24)
s(lZn —=&ll) -+ s(Zn —énll)

where s(-) is an RBF of the form (2.8), then there exist a number ¢ > 0 and a number
0 =0(s &, ...,&EN) > 0such that

[ Acll = Ollc]| (2.25)
holds for all ¢ € RN and for all sets of Z; satisfying || Z; — &l < efori=1,..., N.

The proof of Lemma 23 is included below for completeness of
representation.

PROOF Let A(Zi, ..., Zy) be the smallest eigenvalue of A(Zi, ..., Z)T
A(Zy, ..., Zn), whose components are real continuous functions of Z, ...,
Zn. It is clear that 62 is a lower estimate of A(Zj, ..., Zy). It is also seen
that A(Z;, ..., Zy) is a continuous function of Zj, ..., Zy. As A(&, ..., EN)
is nonsingular, A(&;, ..., &) > 0. Therefore, one may choose ¢ > 0 so that
MZi, ..., ZN) > %A(El, ..., &N) > 0 holds for Z; satisfying ||Z; — & < &,

i=1,..., N.Choosing 6 =,/ %)»(5;'1, ..., &N) completes the proof. H

Lemma 2.3 introduces an interesting form of interpolation matrix (2.24)
which is different from the interpolation matrix (2.2). The proof of the lemma
isimportant in the sense that it reveals that the interpolation matrix A(Zy, ...,
Zy) is nonsingular for all Z; in a certain neighborhood of &. However,
Lemma 2.3 does not give any estimate on the sizes of ¢ or 6.

In [123, Theorem 3.5], by choosing ¢ to satisfy Lemma 2.3 and

1
0 h:= - min|& —&; 2.26
<e< 7 minlié — &l (2.26)
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it is shown that the regressor vector S(Z(t)) (2.22) is persistently exciting if
Z(t) satisfies a kind of ergodic condition. This theorem is stated as follows.

PROPOSITION 2.1
Let I be a bounded p-measurable subset of [0, oo) (take I = [ty, ty + Tol), and let
sets I; be given by

L={tel: |Z(t)—¢&ll<e}, i=1,...,N (2.27)

where ¢ is as in Lemma 2.3, subject to restriction (2.26).
For every ty > 0and Ty > 0, if u(l;) > v (i =1, ..., N), where 1y is a positive
constant independent of ty, then S(Z(t)) is persistently exciting in the sense of (2.16).

PROOF With the restriction (2.26), the balls with centers &; and radius ¢ are
nonintersecting, so that the subsets I; given by (2.27) are disjoint, and con-
sequently, the following inequality (Equation 3.4 in [123]) holds for every
constant vector ¢ € RV,

N
[15@"cPaum =Y [ 15z clantr) (2.28)
i=1 Y4
Since
N 2
IS(Z() el = | Y sUIZ(E) - &l)e; (229)
j=1

and t € I; implies that || Z(¢) — & || < ¢, the following inequality is obtained

2
}ﬁdmw

N

Y s(1Z = &jl)e

=1

max
IZ(h—é&il<e

zﬂ]ﬂﬂﬂf&mAﬂz

N

> s(1Z = &jl)e

2
min du(r 2.30
1Z() &l <e { = } /1 uir) (2.30)
where the maximum and minimum are taken over theball | Z(t) —&;|| < e(j =
1,..., N). Due to the continuity of | le\]:l s(1Z - §; ||)c]-|2 over this compact
and connected ball, by using the Intermediate Value Theorem (see [110]), it is
deduced that there exist Z; € R7 such that || Z; — &;|| < ¢ and

2
(i) (2.31)

N

> s(1Zi = &l)e;

j=1

| 1szTerdut) -

holds for the nonintersecting subset I;.
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With u(l;) > o fori =1,..., N, we have

N 2

[ 1s@Terdne = 3

i=1

N

> s(1Zi = &l)e;

=1
2
= | Acll"o

)

holds for every constant vector ¢ € RN, where A is the N x N matrix given
by Equation (2.24). Because inequality || Ac||?> > 62||c||? holds according to
Lemma 2.3, the following inequality is obtained:

to+To
/ IS(Z() T ePAu(z) > mlicl?, = 6%m

fo

On the other hand, Lemma 2.2 implies that

to+To
/ IS(Z() T ePdu(z) < alicl?,  az = s(O)NT,

fo

Since both «; and oy are independent of ty, it is therefore concluded that
S(Z(t)) is persistently exciting in the sense of (2.16). W

Proposition 2.1 states that for the regressor vector S(Z(t)) to be persistently
exciting, the orbit Z(t) must be ergodic in the sense that it visits in each time
interval [fy, fy + To] a sufficiently small e-ball about each neuron center &; for
a minimum amount of time that is independent of #. A simple example is a
periodic orbit Z(t) with period Ty visiting the small e-neighborhood of each
neuron center for a minimum amount of time 7y > 0 [123]. However, there
are two related issues that need to be further addressed:

1. With the restriction on ¢ by Lemma 2.3 and Equation (2.26), it is
possible that a particular periodic orbit does not visit the specified
neighborhood of many neuron centers of the RBF network. Thus,
Proposition 2.1 may not be applicable to practical RBF network
identification and control of nonlinear systems.

2. To make the result applicable in practice, it is required to extend the
restrictions on ¢ such that any periodic orbit will yield a regressor
subvector consisting of every nearby neuron center. Note that in
Lemma 2.3, the size of ¢ is not analyzed, only the existence of an
e > (0 is obtained. It is clear that when the restriction on ¢ is larger,
Lemma 2.3, as well as Proposition 2.1, may not be valid.

To make Proposition 2.1 applicable to practical NN identification and con-
trol, it is necessary to remove the restrictions on ¢, so that almost any periodic
or periodic-like trajectory Z(t) can lead to the satisfaction of the PE condition.
As mentioned above, the restriction (2.26) was made to guarantee that the
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balls with centers &; and radius ¢ are non-intersecting so that inequality (2.28)
holds. This restriction, however, is actually unnecessary and can be enlarged.

For the regular lattice upon which the RBF network (2.8) is constructed, we
choose

£z /qh = 4n;m 5 — &l >0 (2.32)
7]

Then, a periodic trajectory Z(t) staying within the regular lattice will always
yield a regression subvector S;(Z) consisting of RBFs centered in an &-
neighborhood of the periodic trajectory Z(t)

$:(2) = [sU1Z1 = &jlD), -, s(I Zn, = &, IN]T € R (2.33)

where §;,, ..., &, are distinctive centers. Moreover, since radial basis func-
tions s(-) decay quickly and are small far from the centers, it is reasonable to
choose

JIh<e<é (2.34)

such that forall Z; (i =1, ..., N;) satisfying || Z; — &; || < &’ we have [s(|| Z; —
&)l > ¢ where ¢ is a small positive constant.

We present the following theorem characterizing the PE property of the
regression subvector S;(Z(t)). This result is based on our papers [242,243]
with further extensions.

THEOREM 2.7

Consider a periodic trajectory Z(t) with period Ty. Assume that Z(t) is a continuous
map from [0, oo) into a compact set @ C R7, and Z(t) is bounded within Q. Then,
for the localized RBF network W' S(Z) (2.8) with centers placed on a regular lattice
(large enough to cover the compact set ), the regressor subvector S, (Z(t)) as defined
by (2.33) and (2.34), is persistently exciting in the sense of (2.16) almost always.

PROOF The proof of the theorem is done in two parts to overcome the two
aforementioned issues.
(i) Take I = [ty, ty + To]. Define subsets I; in the same way as (2.27):

L={tel:|Z()—¢&ll<e), i=1..N (2.35)

For an arbitrary periodic trajectory Z(t) with period Ty, we have u(I;) > 1.

When ¢ > ,/gh > 0, it is true that the sets I; given in Equation (2.35) may
be overlapping. To solve this problem, our idea is to divide the time that the
orbit Z(t) stays within the intersecting balls. Specifically, we describe ; (2.35)
in the following form:

I, = Iio =+ Iil + -4 IiQ (236)

where 1 < Q < N; — 1, I;, represents the time that orbit Z(t) visits and
only visits the ball centered at £;, and I;, (k =1, ..., Q) is the subset of I;,
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representing the time that orbit Z(t) simultaneously visits and only visits k
other intersecting balls.

Note that I;, (k =1, ..., Q) being non-empty means that the trajectory Z(t)
will simultaneously visit the ¢ neighborhoods of k 4+ 1 neuron centers. Denote

1
=T+ =L+ + I

> (2.37)

1
Q+17
where ﬁ Ii, (k =1,..., Q) represents the divided piece of time that trajectory
Z(t) visits the intersecting k + 1 balls. Note that if u(I;) > 7o, then u(I) > ¢,
with 7y > ) > 0.

Thus, the jointed sets I; are turned into non-intersecting sets I/, from which
we have

N,
‘Kﬁdﬂﬂfﬂﬁuh)=§:ﬁjiﬂﬂﬂﬁd%uﬁ) (238)
i=1 Y4

holds for every constant vector ¢ = [cj, ..., ¢ g 1" € RN (with a little abuse
of notation).

(ii) As we study the PE property of S5;,(Z) = [s([|Z1 — & 1l), ..., s(l1Zn, —
Ejn, DT € R™M, it is necessary to investigate the nonsingularity property of
the following interpolation matrix:

A; = A{(Zl, ceey ZN:)

sUZ =&l s(1Z1 = &, )
= : o : (2.39)
S1Zx, —&,1) -+ s(1Zx, — &) 1)

It is clear that when ¢ is given by Equation (2.34), A; is not always non-
singular for all Z; satisfying [|Z; — &} || < e. Thus, we need to investigate the
following question: in the case when the interpolation matrix A;(Zy, ..., Zx,)
is singular for some Z = [Z;, ..., ZN{]T, does there always exist a Zy =
[Z10, ..., ZNKO]T in the neighborhood of Z (and also satisfying || Zjo — & || < ¢),
such that A;(Zo, ..., Zn,0) is nonsingular?

The answer to the question is given as follows. Because det(A;(Z)) is a
composite function of radial basis functions (-), it is an analytic function of
Z1, ..., Zn, (see, e.g., [255]). According to Lemma 2.3, det( A;(Z)) is not iden-
tically zero, which means that the analytic function det( A, (Z)) is generically
non-zero; that is,

Vz = (Z|det(A(Z)) # 0) (2.40)
is open and dense. Equivalently,
7 = (Z|det(A.(Z)) = 0} (2.41)

is nowhere dense.
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Thus, if Z; (i = 1,..., N;) are such that det(A;(Z)) = 0 and € is an
open neighborhood of Z, then there always exists Zy € o, such that
det(A;(Zp)) # 0 which means that A;(Zio, ..., Zn,0) is nonsingular.

Moreover, as shown in the proof of Lemma 2.3, because A( Z) is a continuous
functionof Z; (i =1, ..., N;), there still exist 8’ > 0 such that

I A; (Zao, - - -, Zno)ell = 6'lc]| (2.42)

holds for all ¢ € RM.

Note that although the set (2.41) is nowhere dense, it may still form certain
kinds of periodic trajectories. On the other hand, the open and dense set (2.40)
implies that almost every periodic trajectory Z(t) (except those described by
Equation [2.41]) can ensure that (2.42) holds and the PE condition is satisfied.
Specifically, we define I, C I/ as the largest connected subset satisfying (2.40).
It is clear that

[ 1sezenter dute) = [ 182 eanc)

From Equation (2.38), because

. 2
]N;

Y sUZ) —&lej,

Jji=h

1S (Z(t) e = (2.43)

and t € [ still implies that || Z(t) — & || < &, we still have the following

inequality:
2
[ an
I

JNg
> se(1Z(h) = &ilDe

maxX
tel;” —
Ji=h

i

= [ ISz e

JNe
> sUIZ(t) = € lDej

> min
L7 | |~
ji=h

i

/1 () (2.44)

holds for all Z(¢) within the compact and connected region Q" = {z||z(t) —
&jill < e, t € I"}. By using the Intermediate Value Theorem (see [110]), there
exist Z; € @' (i =1, ..., N) such that

N 2
> s(1Zi = € l)e

Ji=h

/I 1) e P () = W) (245)

holds for the non-intersecting subset I;".
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With u(1") > tj fori =1, ..., Ny(10 = 7j = 7 > 0), we have

Ny
/I 1S(Z() TelPdp(r) > 3 fI IS Z() el ()
i=1 i

. 2
N, INg

> 313 sz - g es| 7

i=1 j!:jl

2 2 2
= | Accll*rg = 0”1y llcl]

= aflicl?, o} =077

holds for every constant vector ¢ € R™M.
Therefore, similar to the other steps in the proof of Proposition 2.1, we have
that for every constant vector ¢ € R

to+To
olelP < / 15:(Z(B) T ePdu(r) < anlic]?

fo

which means that for almost any periodic trajectory Z(t), the correspond-
ing regressor subvector S;(Z(t)) consisting of RBFs centered within the -
neighborhood of the trajectory Z(t) is persistently exciting. This ends the
proof. W

REMARK 2.4

In the literature, satisfying the PE condition a priori has been considered as
a difficult problem for identification and control of nonlinear systems. From
the above analysis, we show that almost any periodic orbit can lead to the
satisfaction of the (partial) PE condition. The significance of this result lies
in that, with the partial PE condition satisfied, locally accurate NN approxi-
mation of unknown system dynamics can be achieved in identification and
adaptive control of nonlinear systems using localized RBF networks.

What is shown in the above proof is that for almost any bounded trajectory
Z(t), as long as it stays within the regular lattice within which the RBF net-
work is constructed, and passes through certain neurons centered within a
neighborhood of trajectory Z(t) at least once in a finite period of time, it will
lead to the satisfaction of PE of a corresponding regressor subvector S;(Z).
This is actually the property of the class of recurrent trajectories in dynamical
systems theory [206]. A recurrent trajectory represents a large set of periodic
and periodic-like trajectories generated from nonlinear dynamical systems.
Roughly speaking, a recurrent trajectory is characterized as: given £ > 0, there
exists T(£) > 0, such that the trajectory returns to the £&-neighborhood of any
point on the trajectory within a time not greater than T(£). A remarkable
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feature of a recurrent trajectory is that regardless of the choice of the ini-
tial condition, given &, the whole trajectory lies in the &-neighborhood of
the segment of the trajectory corresponding to a time interval T(¢) which is
bounded [206]. Note that in contrast to periodic trajectories, whose return
times are fixed, the return time for a recurrent trajectory is not fixed but is
finite.

Recurrent trajectories frequently arise from nonlinear dynamical systems,
including not only periodic trajectories, but also quasi-periodic, almost-
periodic, and even some chaotic trajectories [206]. The following result is
to establish a relationship between the recurrent trajectory and the PE con-
dition, that is, to characterize the partial PE property of the corresponding
regressor subvector for a recurrent trajectory.

COROLLARY 2.1

Consider a recurrent trajectory Z(t) with “period” T (&) in the sense defined above.
Assume that Z(t) is a continuous map from [0, oo) into a compact set Q@ C RI,
and Z(t) is bounded within Q. Then, for the localized RBF network W' S(Z) (2.8)
with centers placed on a reqular lattice (large enough to cover the compact set 2), the
regressor subvector S, (Z(t)) as defined by (2.33) and (2.34), is persistently exciting
in the sense of (2.16) almost always.

PROOF For a recurrent trajectory Z(t) as described above, the whole tra-
jectory lies in the &-neighborhood of a segment of the recurrent trajectory
corresponding to a time interval T (&) which is bounded.

Consider the regressor subvector S;(Z(t)) (as defined in Equation [2.33]),
which consists of RBF neurons centered within an e-neighborhood of the
segment of the trajectory Z(t). Then, the whole trajectory Z(t) will visit an
(¢ + &)-neighborhood of those neurons on each time interval [ty, to + T(£)]
for a minimum amount of time. Because it is the nonsingularity property
of the corresponding interpolation matrix that plays an important role, by
following the other steps in the proofs of Theorem 2.7 and [123, Theorem
3.5], it is concluded that for almost any recurrent trajectory Z(t), a corre-
sponding regressor subvector S;(Z(t)) of the trajectory Z(t) is persistently
exciting. W

REMARK 2.5

The essential feature distinguishing periodic, quasi-periodic, and almost-
periodic trajectories from recurrent chaotic trajectories lies in that, although
the former ones have the property of uniform stability in the sense of Lya-
punov, a recurrent chaotic trajectory is Lyapunov unstable (see [206] for more
discussions). The instability of recurrent chaotic trajectories leads to the prop-
erties of divergence of nearby trajectories and sensitivity to initial conditions.
Such properties yield the long-term unpredictable behaviors of nonlinear
chaotic systems. In the above, it is shown that the satisfaction of the partial
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PE condition does not require the trajectory Z(t) to be Lyapunov stable. Thus,
even an unpredictable chaotic trajectory, as long as it is recurrent, can satisfy
the partial PE condition.

24 Summary

In this chapter, basic results about RBF network approximation and persis-
tence of excitation have been presented. The main result is an improved char-
acterization of the PE property of localized RBF networks driven by a periodic
or recurrent trajectory.

With the partial PE condition satisfied for recurrent trajectories, we will
show in the following chapters that the system dynamics of nonlinear dynam-
ical systems undergoing recurrent motions (including the complex chaotic
motions) can be accurately identified.



3

The Deterministic Learning Mechanism

In this chapter, we study the fundamental problem of how to achieve learning
(i.e., knowledge acquisition) from unknown dynamical environments using
neural networks (NN). This problem is related to system identification, the
objective of which is to build mathematical models for dynamical systems
based on observed data from the system. In system identification, the two
mainstream approaches that dominate the field are subspace identification
(see, e.g., [105]) and prediction error identification (see, e.g., [140]). Although
the two approaches have been successful in identification of single-input
single-output (SISO) and multi-input multi-output (MIMO) linear systems,
identification of nonlinear dynamical systems still needs further research.

In identification of nonlinear dynamical systems, the neural network para-
digm has been used due to its power for learning complex input-output
mappings [162]. Since the 1990s, design and analysis of NN identification
algorithms based on Lyapunov stability theory has attracted considerable
interest from the adaptive control community [114,115,143,179]. Lyapunov-
based identification is very attractive because it can provide a general formu-
lation for modeling, identifying, and controlling nonlinear dynamical sys-
tems using neural networks. Analytical results concerning the stability of all
the signals in the closed-loop system can be obtained, and convergence of
the state estimation error to a small neighborhood of zero can be achieved.
However, accurate estimation of system states does not necessarily lead to
an accurate modeling or identification for system dynamics. In other words,
the NN weight estimates normally are not guaranteed to converge to their
optimal values. Without an effective identification for system dynamics, this
kind of Lyapunov-based NN identification (via state estimation) may be use-
less, because nothing useful can be learned by the neural networks, and no
constant information can be stored and reused for further recognition of the
same or similar dynamical systems and their dynamical behaviors.

In this chapter, we investigate the problem of identification of nonlinear
dynamical systems undergoing periodic or periodic-like motions. We have
shown in the preceding chapter that the localized RBF network has the de-
sired properties of function approximation and especially of satisfaction of
a partial PE condition for periodic or periodic-like orbits. With the partial
PE condition satisfied, by using a dynamical version of the localized radius
basis function (RBF) network and a Lyapunov-based adaptation law for the
RBF neural weights, the identification error system consisting of the state

37
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estimation error subsystem and weight estimation error subsystem can be
proved to be exponentially stable along the periodic or periodic-like orbit.
For neurons whose centers are close to the orbit, the neural weights will
converge to small neighborhoods of a set of optimal values; whereas for the
other neurons with centers far away from the orbit, the neural weights are not
activated and are almost unchanged. Thus, accurate identification of the un-
known dynamics can be achieved within a local region along the recurrent
orbit. This means that a partial true system model can be accurately identified.

We refer to the above Lyapunov-based NN identification with the a priori
verified partial PE condition as the deterministic learning mechanism. A com-
parison of the deterministic learning mechanism with conventional results
of system identification is included in Section 3.4. Based on the deterministic
learning mechanism, a learning theory is developed in the following chapters
to constitute a new deterministic framework for knowledge acquisition, re-
presentation, and knowledge utilization in dynamical environments.

The results presented in this chapter are based on the authors’ papers
[238,244].

3.1 Problem Formulation

Consider a general nonlinear dynamical system in the following form:
x=F(x;p), x(to) = xo 3.1)

wherex =[xy, ..., x,]7 € R"is the state of the system, which is measurable, p
is a constant vector of system parameters (different p will in general produce
different dynamical behaviors), and F(x; p) = [fi(x;p), ..., fa(x; p)]! is a
smooth but unknown nonlinear vector field.

ASSUMPTION 3.1

Assume that the state x remains uniformly bounded; that is, x(t) € @ C R",Vt > t,
where Q2 is a compact set. Moreover, the system trajectory starting from xo, denoted
as ¢ (xo), is in either a periodic or periodic-like (recurrent) motion.

The following dynamical model using the RBF network is employed:
£=—A® —x) + WTSu(x) (3.2)

where £ = [£1, ..., £,]7 is the state vector of the dynamical model, x is the state
of system (3.1), A = diag{as, ..., a,}is a diagonal matrix, witha; > 0 being de-
sign constants, localized RBF networks W' Su(x) = [W] Si(x), ..., WIS, (x)]"
are used to approximate the unknown F(x;p) = [fi(x;p), ..., fulx; p)I"
in Equation (3.1) within the compact set 2, with each RBF network W S;(x)
given by Equation (2.8) and Sa(x) = diag{Si(x), ..., Su(x)}.
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The problem is to identify the unknown system dynamics F(x; p) using
only the information of system state x(t). Specifically, the objective is to de-
velop an adaptive NN identifier

W=H(x, % W, 1) (3.3)

such that along the trajectory ¢;(xp), a locally-accurate approximation of the
unknown vector field F(x; p) can be obtained by the RBF network WT S(x)
and W7 S(x), where W is a constant vector obtained from W according to some
averaging procedure.

REMARK 3.1

It can be seen that the objective is not so ambitious, in the sense that ac-
curate identification of F(x, p) is not to be achieved in the whole space of
interest, but only in a local region along the periodic or periodic-like system
trajectory.

In the literature of Lyapunov-based identification, convergence of the state
estimation error ¥ = £ — x to a small neighborhood of zero and the bounded-
ness of the NN weight estimates W can be achieved. However, convergence
of the NN weight estimates W to the optimal values W* and accurate identi-
fication of system dynamics F (x; p) normally cannot be achieved by WT S(x)
unless a certain PE condition is satisfied. This actually implies that nothing
can be learned in such an identification process without PE. Because the NN
weight estimates W are updated online and will continuously evolve accord-
ing to the adaptation law (Equation [3.3]), the resulting W are time-varying
in nature. To identify F(x;p), even a time-varying weight vector W may
be good enough for obtaining a sufficiently good approximation of the un-
known system dynamics; the time-varying nature of W (without converging
to a constant vector) makes it very difficult to store and to reuse for further
recognition tasks. Therefore, it is very important to ensure the convergence
of W to a constant vector W.

3.2 Locally Accurate Identification of Systems Dynamics

In this section, we present a deterministic mechanism for learning (identify-
ing) the unknown dynamics F (x; p) in the nonlinear dynamical system (3.1).

One problem in using neural networks for identifying dynamical systems
is that the existence of NN approximation errors and external noises may
cause the estimates of neural weights to drift to infinity. This instability phe-
nomenon, known as parameter drift in the robust adaptive control litera-
ture [92], can be dealt with by a Lyapunov-based design using robustification
techniques (such as projection, deadzone, o-modification) to keep the neural
weights estimates ultimately bounded [92]. In the next subsection, we first
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consider an identification scheme using o-modification, in which the stabil-
ity of all the signals in the closed-loop identification system are guaranteed,
and accurate learning is obtained. In Subsection 3.2.2, we show that even
without any robustification technique, it is still possible to achieve accurate
identification with the satisfaction of a partial PE condition.

3.2.1 Identification with o-Modification

The dynamical RBF network (Equation [3.2]) constitutes the state estimation
system, which has the same order as the identified system (3.1). From Equa-
tions (3.1) and (3.2), the derivative of the state estimation error ¥; = %; — x;
satisfies

% = —a;% + W Si(x) — fi(x; p)
= —a;% + WISi(x) — ¢ (3.4)

where V~V, = W, - W, W, is the estimate of W, and ¢; = fi(x; p) — Wi*T Si(x) is
the ideal approximation error, as described in Chapter 2. The weight estimates
W, are updated by the Lyapunov-based learning law:

A

W, = W; = —T:5(0)% — o: T Wi (3.5)

where I'; = F > 0, and o; > 01is a small value. The term —o;T; Wl, which is
referred to as the o-modification technique [92], is used to keep the bound-
edness of W; as well as W; in the case where it tends to drift to infinity due to
the existence of the NN approximation ;.

The following theorem indicates that learning of the unknown f;(x; p) can
be achieved along the recurrent trajectory ¢, (xp).

THEOREM 3.1

Consider the adaptive system consisting of the nonlinear dynamical system (3.1), the
dynamical RBF network (3.2), and the NN weight updating law (3.5). For almost any
recurrent trajectory @ (xo) starting from an initial condition xo = x(0) € €, and
with initial values W;(0) = 0, we have: (i) all signals in the adaptive system remain
bounded; (ii) the state estimation error %; = %(t) — x;(t) converges exponentially
to a small neighborhood around zero, and the neural-weight estimates Wy; (as given
in [3.111) converge to small neighborhoods of their optimal values W;;; and (iii) a
locally accurate approximation for the unknown f;(x; p) to the desired error level €;
is obtained along the trajectory ¢, (xo) by either WTS (x) or W S;(x) (as given in
[3.15]).

PROOF (i) For the adaptive system, consider the following Lyapunov func-
tion candidate:

S WTTR (3.6)
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The derivative of V along solutions of (3.4) is

V= %% + WI-TF;lWI-
= —a;% — % —oi W W,

Leta; = a;, + a;, with a;,, a;, > 0. Because

e €2

—a, % — K€ < Y
1n 15)
aillWilI2 o |WF|2

< —
= 2 + 2

IA

o ~ -
—oiWj Wi = —oi [Will” + oi [ Wi I Il W

it follows that

: o GllWIE ol W2 P
A P - — 3.7
= Tk 2 T3 +4a,2 (3.7)

From the above, it is clear that V is negative definite whenever

o; ~
WSl or Wl >
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i
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This leads to the ultimate uniform boundedness of both ¥; and 17\/1 as
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From the boundedness of x; and W;*, we see that both £; and Wl are ultimately
uniformly bounded. Thus, all the signals in the closed-loop system remain
bounded. It is seen from Equation (3.8) that although ¥; can be made arbitrar-
ily small with a; large enough, no convergence result of || ;|| can be concluded
from Equation (3.9), no matter how the design parameters are chosen.

(if) Equations (3.4) and (3.5) constitute an adaptive system described in the
following form:

o —a; ST || —€ 310
|:Wii|_ —TI';5(x) 0 Wi * —ai W, (3.10)

According to Theorem 2.4, for the adaptive systems (3.10), when S;(x(t)) is
PE, the equilibrium point (%, W;) = 0 of the nominal part of system (3.10)
is exponentially stable. However, PE of S;(x) requires the state x(t) to visit
every center of the whole RBF network “persistently,” which is generally not
feasible in practice.



42 Deterministic Learning Theory for Identification, Recognition, and Control

By using the localization property of RBF networks, as shown in
Equation (2.12), Equation (3.4) can be expressed in the following form along
the trajectory ¢;(xo):

i = —ai% + WESi(x) + WESi(x) — fi(x); p)
= —a;% + W[ Si(x) — €}, (3.11)
in which (-);; and ()7 stand for terms related to the regions close to and
away from the trajectory (p;\(xo) respectively; S;i(x) is a subvector of S;(x)

. defined in Section 2.1; W;; is the corresponding weight subvector; and
€ = €i + ng Sei(x) = 0(e;;) is the approximation error along the trajectory

@ (x0).
The adaptive system (3.10) is now described by

X —a; Sri(0)T be —€);
- 4 A I B i (3.12)
W, —T¢; S;i(x) 0 W —0;Tyi Wi

W;-‘,' = W:’l = —FEZSC‘I(X)JZ — a,-ng WC_I (313)

and

Based on the properties of RBF networks (as stated in Section 2.3), al-
most any periodic or recurrent trajectory ¢.(xo) ensures PE of the regressor
subvector S;;(x). According to Theorem 2.4, when S;;(x) is PE, the origin
(%, VNV;,) = 0 of the nominal part of system (3.12) is exponentially stable. Be-
cause e = O(e;i) = O(€i), and oT';; W;; can be made small by choosing o
small enough by using Theorem 2.6, both the state error ¥;(t) and the pa-
rameter error W;;(t) converge exponentially to some small neighborhoods of
zero, with the sizes of the neighborhoods being determined, respectively, by
€/ and o; | U'e; W 1.

(iii) The convergence of W;; to be in a small neighborhood of W J; implies
that along the trajectory ¢, (xo),

filoes p) = Wi Sei(pe) + eci = WESei(wr) — Wi Sci(oe) + e
= W Si(er) + e (3.14)

where €, = €;i — ng Sci(@) = O(€i) = O(g;) is the practical approximation
error for using W/;S;;, which is small due to the exponential convergence
of W{i.

Again, by the convergence result, we can obtain a constant vector of neural
weights according to

W = meanyey, 1,1 Wi () (3.15)

where “mean” is the arithmetic mean [39],and &, > £, > 0, represents a piece
of time segment after the transient process. Thus, using W;Ti S¢i(@;), where
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Wi = [@j,, ..., @;,]" is the subvector of W, we have
filwe p) = WiiSeile) + eciy = Wi Seilee) + eciy (3.16)

where ¢, is the practical approximation error for using V_V; Sei- It is clear
that after the transient process, €;;, = O(e;1) = O(e;). This implies that a
certain part of the RBF network, represented by either W; S;:(x) or W; 5;:(x),
is indeed capable of approximating the unknown nonlinearity f;(x; p) to the
desired error level ¢; along the trajectory ¢, (xo).

On the other hand, from the adaptation law (3.13), it can be seen that for the
neurons with centers far away from the trajectory ¢, (xo), |S;(x)| will become
very small due to the localization property of RBFs. In this case, the neural
weights I/\Q will only be slightly updated. Both W, and W, 1 Si(x), as well as
W, and W, Wi L.S:i(x), will remain very small. This means that the entire RBF
network W/ §;(x) can approximate the unknown f;(x; p) along the trajectory
@ (xp) as following using Equation (3.14):

filge; p) = W;Tisgi(fp;) + €
= W} Sci(0c) + WL Sei(ee) + €ci, — Wi Seilee)
= W Si(¢) + €, (8.17)

where €;, = €, — ng Sei(@:) = O(erin) = O(e;). Similarly, using Equation
(3.14) we have

filge; p) =W/ Sii(er) + eciy
= W/:Sei(ee) + WS Sei@e) + €ci, — W Scigr)
=WSi(¢;) + €, (3.18)

where €;, = €, — WL S{-l((pg) = O(€i,) = O(e;). Equations (3.17) and (3.18)
mean that locally accurate identification of the system dynamics to the desired
error level ¢; can be achieved by using the entire RBF network, either WT Si(x)
or W' S;(x), in a local region along the trajectory. H

It is seen that the employment of localized RBF networks in Equation (3.2),
under periodic or periodic-like (recurrent) inputs, yields a guaranteed, partial
PE condition. This condition, with the localization property of RBF networks,
leads to the exponential stability of a localized adaptive system. In this way,
parameter convergence and accurate local identification of system dynamics
take place naturally in the dynamical process.

REMARK 3.2
For the (possibly large) region where the trajectory does not explore, no learn-
ing occurs, as represented by the slightly updated W;l ,W;;,and small W - Sei(x)

and WTZ Szi(x). In fact, Equations (3.17) and (3.18) imply another advantage
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obtained from the localization property of RBF networks. Accurate learning in
alocal region along the trajectory is achieved by using the entire RBF network
W Si(x) or WT Si(x), as well as using the partial RBF network W, Sz,(x) or

S;l (x).In other words, although useful knowledge is obtained only in W,;,
it 1s not necessary to specify which neural weights belonging to W;, need to
be updated. For this reason, with the RBF network constructed on a regu-
lar lattice, we can update all the neural weights according to Equation (3.5),
which makes the algorithm easily implementable.

REMARK 3.3

In the above, we did not give an explicit expression for the convergence rates
of X; and W,. This requires the estimation of the excitation levels o; and o,
in Equation (2.16) for RBF networks, and the establishment of a relationship
between the PE condition and the exponential convergence rates, both of
which are very complicated [123,199]. Nevertheless, it is possible for us to
provide a brief discussion here on the parameter convergence rate, that is, the
learning rate. As discussed in Section 2.3, we have

o1 X Ty, Oy X T (3.19)

where 19 is the minimum amount of time that Z(f) stays within a small neigh-
borhood of the involved center, and T is the period by which the trajectory
passes through each center of the RBF network. With PE of S;i(¢,) being
satisfied by system (3.12), a larger «; or a smaller a, will normally lead to a
faster parameter convergence rate (see [199, Chapter 2]). Thus, it is concluded,
and is verified by simulations, that a larger 7y and a smaller T will make the
learning proceed at a faster rate. On the other hand, due to the existence of
the NN approximation errors ¢;, it can be concluded from [110, Lemma 5.2]
and [199, Chapter 2], that the actual parameter estimation errors (the learning
error) are inversely proportional to oy and so to 7g. Thus, a larger 7y will make
learning more accurate.

3.2.2 Identification without Robustification

In the above, we used o-modification [92] as one robustification technique to
cope with the effect of NN approximation errors. Note that the boundedness
results in step (i) of the above proof are obtained without the PE condition. The
concern in this subsectionis to investigate with a partial PE condition satisfied,
whether it is possible to achieve accurate identification without using any
robustification technique. In this case, the neural weights are updated by the
following adaptation law:

Wi = Wi =—I;5(x)x; (3.20)

where the o-modification term —o; F,VV,- used in Equation (3.5) does not
appear.

Previous analysis has shown that without robustification, the adaptation
law (3.20) alone cannot guarantee the boundedness of W; when % becomes
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small. The existence of NN approximation errors ¢; may cause both W and W
to drift to infinity, a well-known instability phenomenon in robust adaptive
control theory [92]. It is also shown that in the case where a complete PE
condition of 5;(x) is satisfied, it is not necessary to employ any robustifica-
tion technique for the boundedness of the signals in the closed-loop system.
However, what we have is not the PE of the entire regressor vector, but only
a partial PE condition of a regressor subvector S;;(x). The following corollary
indicates that with this partial PE condition, accurate learning of the unknown
dynamics F (x; p) can still be achieved, even without robustification.

COROLLARY 3.1

Consider the adaptive system, consisting of the nonlinear dynamical system (3.1), the
dynamical RBF network (3.2), and the NN weight updating law (3.20). For almost
any recurrent trajectory ¢ (xo) starting from initial condition xo = x(0) € Q, and
with initial values W;(0) = 0, both the state estimation errors %; = £;(t) — x;(t) and
the NN weight estimation errors W;; converge exponentially to small neighborhoods
around zero, and a locally accurate approximation of the unknown f;(x; p) to the
desired error level ¢; is achieved along the recurrent trajectory ¢, (xo).

PROOF Consider the following Lyapunov function:

1< ~ ~
= > @7+ WITTW) (3.21)
i=1

By combining Equations (3.4) and (3.20), the derivative of V is

V= Z(f(ﬁ?l + WTFflwi)

n
=Y (—ai%] — Xi€i)
i=1
n ET{:Z
- (__aixf + 1—) (3.22)
p a;

It is clear that V is negative whenever |¥;| > ;— This means that ¥; (i =
1, ..., n) will remain bounded for all tlme, and will eventually converge to a

small neighborhood of zero bounded by
From the adaptation law (3.20), we have

WU‘ = W;i = —F;isg,-(x)iq (3.23)
Wﬁ' = W{,‘ = —F;’i Sg—’,‘(X)JNCi (324)

With the boundedness of ¥;, since Sg;(x) is very small due to the localization
property of RBF, it is concluded that each element of W;l will be kept small
in a time interval [fy, Tp), where Ty > ty could be very large.
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Thus, within this time interval [fy, Tp), the state-estimation subsystem (3.4)
can still be described by:

X = —a;% + W(Tl Sei(x) + WT 1 5¢i(x) — fi(x)
= —a;i% + WES.i(x) — € + WS Szi(x) (3.25)

The adaptive system (3.10) is now described by

[’*"l i o L]
< | = ~ |+ (3.26)
W{i _FUSU(‘X) 0 W{-; 0

wheree;; = € — I//\VCTI Sei(@;) = O(ei) = O(e;). To this end, with the partial PE
of the regressor subvector S;;(x), exponential convergence of (¥;, I/NV; ;) to small
neighborhoods of zero can be achieved within the time interval [#, 7:9). The
sizes of the neighborhoods are determined by |¢|. This implies that W;; will
converge to small neighborhoods of their optimal values Wy;, that is, converge
to constant values, and W;z will remain small within the time interval [£, Tp).

Therefore, using steps similar to those in Theorem 3.1, it can be concluded
that within the time interval [ty, Tp), partial parameter convergence (deter-
ministic learning) can be obtained, and locally accurate approximation of the
unknown dynamics f;(x; p) to the desired error level ¢; can be achieved along
the trajectory ¢;(xp). H

REMARK 3.4

Compared to Theorem 3.1, the adaptive law (3.20) does not guarantee bound-
edness of all signals. However, it is seen that thanks to the properties of local-
ization and partial PE of RBF networks, learning can take place within a finite
time interval. Therefore, it is unnecessary to conduct stability analysis when
time goes to infinity. Compared with the NN identification methods with
robustification, an advantage without using robustification is that more accu-
rate parameter convergence may be achieved, and improved approximation
of system dynamics can be obtained.

3.3 Comparison with System Identification

In this section, we briefly discuss the connection between the deterministic
learning mechanism and existing results on system identification.

System identification theory was developed around 1960 based on the in-
troduction of the state-space representation by Kalman and Bartram [103]
for model-based control design. In 1965, Astrom and Bohlin [9] introduced
into the control community the ARMA (autoregressive moving average) or
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ARMAX model (autoregressive moving average with exogenous inputs),
which gave rise to the prediction error identification framework that has
dominated identification theory and applications [10,11,139,212]. The objec-
tive of the prediction error method was to find conditions on the parameter-
ization and the experimental conditions under which the estimated model
would converge to the true system. For example, an input-output model
structure is chosen as follows [136]:

v = G(z, 0)us + H(z, 0)e; (3.27)

where G(z, 6) and H(z, 0) are parameterized rational transfer functions and
e; is white noise. All commonly used prediction error model structures in
linear system identification are special cases of the generic structure (3.27).
Moreover, identification of nonlinear systems with known model structures
but unknown parameters parallels the analysis and solution of linear identi-
fication problems. By introducing special classes of nonlinear black-box mod-
els such as Wiener, Hammerstein, splines, neural networks, and wavelets, a
collective effort set a similar framework for identifying nonlinear black-box
models [102,209].

To estimate 6 from (3.27), the one-step-ahead prediction error is derived as
e(0) = ¥ — H1—1(0), where f;_1(0) is the one-step-ahead prediction. Then,
given a set of ZV of N data, one can define an identification criterion as a
nonnegative function of the prediction errors,

N
Vn(o, ZV) = % > " le(9)) (3.28)
t=1

where [(-) is a nonnegative scalar-valued function. Minimizing Vi(6, ZN)
with respect to 6 over a domain D then yields the parameter estimate

On = argmingep, Vn(0, ZN) (3.29)

This is the well-known prediction error approach [139,212]. The convergence
to the true parameters and the identification of the true system model relies
on the satisfaction of the PE condition. It was soon realized that for linear
system identification the PE condition can be satisfied only when the input
u is informative enough or sufficiently rich in frequency domain. However,
for nonlinear identification there is no relationship established between the
frequencies of the input # and the parameters to be estimated. Consequently,
the idea of identification of a true nonlinear system model was progressively
abandoned [2,135,137].

When identification of a true system model is not the objective, identifica-
tion then is considered as a design problem such that the estimated model
is used for a specific purpose, for example, for the purpose of model-based
control design, as control is often the main motivation for system identifi-
cation in the systems and control community. Identification for control has
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also triggered new research activity on the identification of systems operating
in closed loop [48]. In identification for model-based control, the basic idea
is that as long as the control performance is achieved, the acceptance of the
estimated models is justified by the “usefulness” rather than “truth” [70].

On the other hand, in conventional adaptive control (which also contains
studies on system identification) [79,160], a significant question was appar-
ently left incompletely resolved. Using state-space or the ARMAX-type input-
output model, PE could be invoked to guarantee parameter convergence,
and in this sense, accurate identification. However, the control task could be
achieved without imposing PE. It was not clear what kind of PE is actually
necessary for control.

From the above, it is seen that identification of a true nonlinear system
model is too difficult to be achieved in conventional system identification,
and identifying the true system model is considered unnecessary for model-
based control. From our point of view, the difficulties for identification of
a true nonlinear system model lie in the selection of the parametric model
structure, which leads to the difficulty in satisfying the PE condition. With
this difficulty, the problems of closed-loop identification and nonlinear sys-
tem identification may not be easily resolved within the framework of the
prediction error approach.

The deterministic learning mechanism presented in this chapter apparently
provides a new viewpoint for system identification. By selecting the localized
RBF networks as the parameterized model structure, parameters appear in a
network in the form of the neural weights. When a periodic or periodic-like
orbit is taken as the NN input, a direct connection is established between the
periodic or periodic-like orbit and the estimated weights (parameters) of neu-
rons centered in a local region along the periodic or periodic-like orbit. This
leads naturally to the satisfaction of a partial PE condition. Consequently, ex-
ponential stability of the estimation systems is guaranteed, and convergence
of neural weight estimates to small neighborhoods of their optimal values is
obtained. Compared with existing system identification approaches, the main
feature of the deterministic learning approach is that locally accurate identi-
fication of a partial true nonlinear system model is achieved in a local region
along the periodic or periodic-like orbit. In this way, the problem of nonlinear
system identification is partly resolved. Closed-loop identification of control
system dynamics can be implemented in a similar way, as is described in
Chapter 4. Furthermore, the obtained knowledge on identified partial system
models can be stored and represented by constant RBF networks, and can
be readily used for another similar control task toward guaranteed stability
and improved control performance. For a number of model-based control
tasks, the identifier produces a set of partial models or a multimodel that
is connected to the tasks. Moreover, accurate identification of partial system
models makes it possible to measure the similarity of control situations or
dynamical patterns, to implement rapid recognition of dynamical patterns,
and to establish the framework of pattern-based control. These aspects are
dealt with in later chapters.
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3.4 Numerical Experiments

To verify the deterministic learning approach described above, we take the
following Rossler system [186] as an example:

5(1 = —Xp — X3
X =x1+ pix2

X3 = p2 + x3(x1 — p3) (3.30)

where x = [x1, 2, x3]7 € R3 is the state vector which is available from
measurement, p = [p1, p2, p3]T is a constant vector of system parameters,
and the system dynamics fi(x; p) = —x — x3, fo(x;p) = x1 + p1x2, and
fa(x; p) = p2 + x3(x1 — p3) are assumed mostly unknown to the identifier.
For convenience of presentation, we assume that the state variables of each
function are known: for example, f>(x; p) is a function of (x1, x2), and f3(x; p)
is a function of (x1, x3).

According to [28], by fixing p1 = p, = 0.2, and varying p3, the Rossler
system (3.30) can generate a sequence of period-doubling bifurcations leading
to chaos. For example, it exhibits a period-1 orbit when p3 = 2.5 (Figure 3.1a),
aperiod-2 orbit when p3 = 3.3 (Figure 3.3 a), and a chaotic orbit when p3 = 4.5
(Figure 3.5a).

The dynamical RBF networks (3.2) are used to identify the unknown system
dynamics fi(x; p) (i =1, 2, 3) in Equation (3.30). We construct RBF network
WI Si(x) (i = 1,2, 3) with the centers y; evenly placed on [—12, 12] x [-2, 16],
[—12,12] x [-12,12], and [-12, 12] x [-2, 16], respectively, and the widths
ni =05 =1,...,1). It is obvious that the three mentioned system orbits
will not explore every center of the RBF networks.

The weights of the RBF networks are updated online according to
Equation (3.20), that is, using the adaptation law without any robustifica-
tion. The design parameters of the above controller are ¢; = 6, I'; = diag
{3,3,3},1 = 1,2, 3. The initial weights are W(O) = 0.0, and the initial con-
ditions [xl(O) x2(0), x(3)]" = [0.5,0.2,0.3]" and [£1(0), £2(0), £3(0)]T = [0.2,
0.3,0.0]T.

First, system (3.30) (with p3 = 2.5) in period-1 orbit is to be identified.
Figures 3.1a and b show the period-1 orbit in space and in the time domain.
The convergence of the neural weights is shown in Figures 3.1c and d. Espe-
cially, Figure 3.1d demonstrates partial parameter convergence; that is, only
the weight estimates of some neurons whose centers are close to the orbit
are being activated and updated. These weight estimates converge to their
optimal values W;. Other neuron centers far away from the trajectory are not
activated and updated, thus, their weight estimates, with the initial conditions
being set to zero, are almost unchanged.

Since the optimal values W;; are generally unknown, it is difficult to verify
whether sz have indeed converged to W;. Fortunately, we can show the NN
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approximations of f;(x; p) bothin the time domain and in the phase space. For
conciseness of presentation, only the NN approximations of the linear dynam-
ics fo(x; p) and nonlinear dynamics f3(x; p) are presented in the sequel. From
Figures 3.1e and f, we can see that good NN approximations of the unknown
dynamics f>(x; p) and f3(x; p) are obtained. In Figures 3.2c and d, we show
that accurate approximations of linear dynamics f,(x; p) and nonlinear dy-
namics f3(x; p) are indeed achieved along the period-1 orbit. Compared with
the true system dynamics as shown in Figures 3.2a and b, the locally accu-
rate NN approximations can be considered as partially true system dynamics
f2(x; p) and f3(x; p) stored in constant RBF networks W S;(x) (i = 2, 3), as
shown in Figures 3.2e and f. For the space where the orbit does not explore,
no learning occurs, as represented by the zero-plane in Figures 3.2e and f, due
to the small values of W' S;(x) in that space.

Second, similar results are obtained in Figures 3.3 and 3.4 for identification
of system (3.30) (with p3 = 3.3) exhibiting a period-2 orbit. It is noticed from
Figure 3.3c that the parameter convergence rates are slower as compared with
those in Figure 3.1c. This is because, (i) as seen from Figures 3.1b and 3.3b, the
period-2 trajectory has a larger T as compared with the period-1 trajectory;
(ii) as the speed of the period-2 orbit appears to be faster in certain areas and
more neurons are involved, the minimum amount of time t for the orbit to
pass through the neuron center in certain areas might be reduced. Thus, as
discussed in Remark 3.3, in the period-2 case the excitation level «; becomes
smaller and o, becomes larger. Consequently, the parameter convergence
rates, as well as the rate of learning, are slower. However, it is seen from
Figures 3.3 and 3.4 that good NN approximations can still be achieved within
a longer time interval [0, 800] seconds.

Third, we consider the chaotic orbit when p; = 4.5. As seen in Figure 3.5a,
the chaotic orbit explores much larger areas in space, which implies that
many more neurons are involved and activated, and the “period” T of the
orbit becomes much larger compared with the above periodic orbits. The
states x;(f) (i =1, 2, 3) of the chaotic orbit are random-like signals, as shown
in Figure 3.5a. Moreover, the state x3(t) has many spikes, which means that
the speed of the chaotic orbit becomes much faster in certain areas in phase
space.

According to Corollary 2.1, recurrent trajectories, including chaotic ones,
can satisfy the PE condition. In Figure 3.5¢, it is seen that within the time
interval [0, 800] seconds, ||W2|| nearly converges to a constant value. Partial
parameter convergence is shown in Figure 3.5d. The NN approximation of
linear dynamics f,(x; p) along the chaotic orbit is shown in Figures 3.5e and
3.6c and e. It can be seen from Figure 3.6¢ that with (x;, x2) as NN inputs to
W Sy(x), the linear dynamics_ fz(x p) of the chaotic Rossler system can be
accurately identified by both W) S;(x) and WJ S,(x).

In Figure 3.5¢, it is also seen that within the time interval t = [0, 800] sec-
onds, |[Wi|land || W3 [ have not yet converged to constant values. This is mainly
because both the NN inputs (x2, x3) to WY $;(x) and (x1, x3) to WJ S3(x) include
x3(t), which makes the trajectory move very quickly in certain areas in phase
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space. The fast-moving trajectory leads to a much smaller 7j, the minimum
amount of time that the chaotic trajectory stays within certain neighborhoods
of the involved centers. According to Remark 3.3, the smaller g, plus a much
larger T of the chaotic trajectory, yields much slower convergence rates of NN
weight estimates || Wl | and ||Ws]|. Moreover, this also leads to a much larger
NN approximation error, as observed in Figures 3.5f and 3.6d.

We notice, however, that the slow parameter convergence rates donot mean
that the nonlinear dynamics underlying chaotic trajectories cannot be identi-
fied. In Figure 3.7a, it is seen that within the time interval [0, 1800] seconds, all
of the || W;|| (i =1, 2, 3) nearly converge to constant values. In Figure 3.7b, the
improved NN approximation of the nonlinear dynamics f3(x; p) is shown,
which yields a smaller NN approximation error compared with Figure 3.6d.

REMARK 3.5

The result clearly demonstrates that although a random-like chaotic trajectory
is sensitive to initial conditions, which leads to the divergence with nearby
trajectories and long-term unpredictability (called deterministic chaos), the
system dynamics of a nonlinear chaotic system can still be identified along
the chaotic trajectory in a deterministic way. The system dynamics underlying
the chaotic trajectory is topologically similar to the dynamics underlying the
two periodic trajectories. Moreover, it can be seen that identification of the
system dynamics is independent of initial conditions of the periodic or chaotic
trajectories. In other words, the sensitivity to initial conditions of a chaotic
trajectory does not affect the identification of its underlying system dynamics.
Thus, it is shown that deterministic chaos can be accurately identified via the
deterministic learning approach.

REMARK 3.6

The simulations, along with the analysis in Remark 3.3, show that the slower
the recurrent motions, the faster the learning speed is, and the better the
accuracy of learning. On the contrary, a fast-moving trajectory may lead to a
slow learning rate and a poor accuracy of learning. This is compatible with
our understanding of human learning in a dynamical environment.

REMARK 3.7

Concerning the generalization issue, it is seen that NN approximation of
system dynamics is valid in a local region along the recurrent trajectory. Thus,
a certain ability of generalization is obtained automatically; that is, whenever
the NN input comes close again to the vicinity of the experienced recurrent
trajectory, the localized RBF network will provide accurate approximation to
the previously learned system dynamics.

On the other hand, because NN approximation of system dynamics is in-
valid outside the specified trajectory, to obtain good approximations over a
larger region of the space it is necessary for the NN inputs to explore a larger
input space. Compared with the simple periodic trajectories, quasi-periodic
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FIGURE 3.7
Approximation of system dynamics underlying a chaotic orbit.

and chaotic trajectories are more complicated ones, because they are generally
more spatially extended, which means that more neurons are involved in the
regressor subvector along these trajectories. Therefore, when the nonlinear
dynamical system exhibits a chaotic trajectory, the RBF networks might be
better trained in the sense that better generalization ability may be obtained.

3.5 Summary

In this chapter, a “deterministic learning” mechanism has been presented,
which achieves locally accurate neural network approximation of the under-
lying system dynamics in the local region along the recurrent trajectories.
In the deterministic learning mechanism, four properties of RBF networks
(linear-in-parameter, function approximation, spatially localized learning,
and satisfaction of the PE condition) work together to achieve both parameter
convergence and system identification in a dynamic environment. The local-
ized RBF network is thus considered as most suitable for NN identification
of nonlinear dynamical systems.

The learning is not achieved by algorithms from statistic learning theory,
but is accomplished in a dynamical, deterministic manner, using results from
adaptive systems theory. Specifically, with the employment of localized RBF
neural networks, the recurrent trajectories of nonlinear dynamical systems
lead to the satisfaction of a partial PE condition. This a priori verified PE condi-
tion, along with the localization property of RBF networks, yields guaranteed
exponential stability of the LTV adaptive system along the recurrent trajec-
tory. Thus, accurate learning is achieved when the corresponding NN weight
estimates converge exponentially to small neighborhoods of their optimal
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values. The knowledge learned from deterministic learning is represented as
an accurate NN approximation with constant neural weights, which is valid
only in a local region along the “experienced” trajectory.

The nature of this deterministic learning is related to the exponential stabil-
ity of the linear time-varying (LTV) adaptive system. It has been shown that
the recurrent trajectories, which represent a large class of dynamical behaviors
(or dynamical patterns) generated from nonlinear dynamical systems, includ-
ing even the “unstable” chaotic ones, can all be learned and understood by
deterministic learning. In other words, even for a random-like chaotic orbit
that is extremely sensitive to initial conditions and is long-term unpredictable,
the system dynamics can still be identified along the chaotic trajectory in a
deterministic way. The proposed “deterministic learning” methodology pro-
vides an effective way for identification or modeling of nonlinear dynamical
systems.






4

Deterministic Learning
from Closed-Loop Control

4.1 Introduction

In Chapter 1, we have discussed the learning issues in different areas of feed-
back control, including adaptive control, learning control, intelligent control,
and NN control. In the discussions, the key point is that true learning ability
is not typically implemented in closed-loop control systems especially in a
dynamic sense. For example, although much progress has been achieved in
the area of adaptive NN control (ANC), which mainly emphasizes stability
and convergence of closed-loop control systems, true learning capability is
actually very limited, because it still needs to recalculate (or readapt) the pa-
rameters (neural weights) even for repeating exactly the same control task.
Most of the work in the ANC literature utilizes only the universal function
approximation capability of neural networks to parameterize the unknown
system dynamics, and is developed along the lines of well-established robust
adaptive control theory [92]. ANC has only been shown to have the ability
to adapt to the unknown system dynamics through online adjustment of the
neural weights but does not have the ability to learn true models of system
dynamics in stable closed-loop control processes.

The capability of learning knowledge online through a stable closed-loop
control process requires not only the ability of adaptation to cope with system
uncertainties, but also ability beyond adaptation, e.g., knowledge acquisition
in dynamic environments. This kind of learning ability is related to the prob-
lem of closed-loop identification of unknown system dynamics, which has
been a challenging problem in the areas of system identification and adap-
tive control [48]. To achieve accurate parameter convergence in closed-loop
adaptive control, the persistent excitation (PE) condition of some internal
closed-loop signals (rather than that of the external reference signals) is nor-
mally required to be satisfied. This is not an easy task in the control litera-
ture. Although interesting results on ANC were obtained in [46,181,195], the
satisfaction of the PE condition of internal closed-loop signals has not been
established.

In the preceding chapter, a deterministic mechanism is presented for learn-
ing from dynamical processes. Particularly, for nonlinear dynamical systems
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undergoing recurrent motions including periodic, quasi-periodic, almost-
periodic, and even chaotic ones, a “deterministic learning” approach is pre-
sented that achieves locally accurate identification of the underlying system
dynamics in a local region along the trajectory. In this chapter, we investigate
deterministic learning in closed-loop NN control processes. We show that an
appropriately designed adaptive NN controller is capable of learning closed-
loop system dynamics during tracking control to a recurrent reference orbit.
By using the deterministic learning mechanism, the difficulty of satisfying PE
of internal closed-loop signals is overcome in two steps. In the first step, we
use ANC to achieve tracking convergence of the plant states to the periodic
reference states, so that the internal plant states become recurrent signals. In
the second step, thanks to the tracking convergence obtained and the associ-
ated properties of localized RBF networks, a partial PE condition of internal
closed-loop signals (rather than that of the external reference signals) is sat-
isfied. Consequently, accurate identification for a partial closed-loop system
dynamics is achieved in a local region along the recurrent state trajectory, and
thus a true learning ability is implemented during a closed-loop feedback
control process.

In the following, we start from deterministic learning for ANC of a sim-
ple second-order nonlinear system, as shown in Section 4.2. In Section 4.3,
we consider learning from direct ANC of a class of strict-feedback systems.
Section 4.4 investigates the learning issues in direct ANC of a class of non-
linear systems in Brunovsky form with unknown affine terms. The results of
this chapter draw substantially on the recent papers [133,240,243].

4.2 Learning from Adaptive NN Control

To demonstrate the basic idea, we consider NN tracking control of the states
of a second-order nonlinear system to the periodic states of a reference
model.

4.2.1 Problem Formulation

Consider a second-order nonlinear system with unity control gain:

561 = X7

X = f(x)+u @D

where x = [x;, x2]" € R?, u € R are the state variables and system input, re-
spectively, f(x) is an unknown smooth nonlinear function, and is to be ap-
proximated by RBF network W S(Z) (as given in Equation [2.8]), with NN
input Z = [x1, x]7.
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Consider a second-order reference model

!xdl = M (4.2)

Xa, = fa(xa)

where x; = [x4,, X3,]" € R? is the system state and f4(-) is a known smooth
nonlinear function. We denote the system orbit starting from the initial con-
dition x,4(0) as ¢4(x4(0)) (also as ¢4 for concise presentation).

ASSUMPTION 4.1

The states of the reference model remain uniformly bounded; that is, x;(t) € Qq,
Vt > 0. Moreover, the system orbit ¢4 is a recurrent motion.

Our objective is to develop an adaptive NN controller using a localized
RBF network such that:

1. Allthesignalsin the closed-loop system remain uniformly bounded.

2. For a desired periodic orbit ¢;(x;(0)), generated from reference
model (4.2), the state tracking error ¥ = x — x; converges expo-
nentially to an arbitrarily small neighborhood of zero in a finite
time T, so that the tracking orbit ¢, (x(T)) [denoted as the orbit of
system (4.1) starting from x(T), also as ¢, for conciseness] follows
closely to ¢ (x4(T)).

3. After the tracking convergence is obtained, a locally accurate ap-
proximation of f(x) is achieved along the tracking orbit ¢, (x(T))
by localized RBF network WTS(Z), as well as by W™ S(Z), where
Z = x = [x1, 2], W is the vector of neural weights updated by the
adaptation law given below, and W is a constant vector obtained
from W(t) lt=T (given later).

REMARK 4.1

Simple as plant (4.1) is, it is noted that there appears to be no result in the
NN control literature to achieve learning objective 3 above. For adaptive NN
control of system (4.1), interesting results have been obtained (e.g., in [45,46]),
which indicate that with locally supported basis function approximators, only
PE of a reduced dimension regressor subvector will lead to the exponential
stability of the closed-loop system. However, the PE condition of closed-loop
signals is not shown to be satisfied, and there is not a rigorous analysis show-
ing that accurate approximation of system dynamics can be achieved.

4.2.2 Learning from Closed-Loop Control

We present an adaptive NN controller (similar to [65]) using a Gaussian RBF
network as

U=—2z1 —crzp — WT S(Z) + o (4.3)
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where
Z] = X1 — X4 (4.4)
Zy) = Xp — 01 (45)
a1 = —C0121 + X4, = —C121 + X4, (4.6)
o1 = —c121 + X, = —c1(—c1z1 + 22) + fa(xq) (4.7)

and c1, ¢, > 0 are control gains. The Gaussian RBF network WT 5(Z), defined
in Equations (2.8) and (2.4), is used to approximate the unknown function
f(x), where Z = x =[x, x]7 is the NN input, W is the estimate of W*, and
is updated by

W =W =T(52)z — o W) 4.8)

where W = W — W5, T =TT >0isa design matrix, and ¢ > 0 is of small
value.

The following theorem indicates how both control and learning can be
implemented simultaneously in the stable control process [243].

THEOREM 4.1

Consider the closed-loop system consisting of the plant (4.1), the reference model
(4.2), the controller (4.3), and the NN weight updating law (4.8). For almost any
recurrent orbit g4 (x4(0)), starting from initial condition x4(0) € Qq, and with initial
conditions x(0) € Qo (where Qq is a compact set) and W(O) = 0, we have: (i) all
signals in the closed-loop system remain uniformly bounded; (ii) the state tracking
error X(t) = x(t) — x4(t) converges exponentially to a small neighborhood around
zero by appropriately choosing design parameters, and a partial persistent excitation
(PE) condition of internal closed-loop signals is satisfied; and (iii) along the tracking
orbit ¢, (x(T)), the neural-weight estimates W, converge to small neighborhoods of
their optimal values W, and an accurate approximation for the unknown f(x) is
obtained by WT S(Z) to the error level e (defined in Section 2.1.2), as well as by WT
S(Z), where

W = meanyeyy, 5, W(t) (4.9)
with [t,, t], ty > t, > T representing a time segment after the transient process.

PROOF (i) Boundedness of all the signals in the closed loop can be proved
similarly to results in [46,65,195]. The proof is included here for completeness.

The derivatives of z; and z, are given as below:

Z] = X1 — Xg, = X2 — Xg, = —C121 + 22 (4.10)

H=f) tu—d=-z1—czm— W'S(Z) +e (4.11)
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Combined with Equation (4.8), the overall closed-loop system is described by
21 = —C1Z1 + 22
Zy=—z1— 20— WIS(Z) + € (4.12)
W=W=TI(52)z — c W)

Consider the following Lyapunov function candidate:

1
V=224

1 1~ ~
5 —z§+§wTr*1w (4.13)

2
The derivative of V is
V=22 +n%H+ W W
=012 — 2k +me—ocWIIW (4.14)
Letcy = ¢p1 + ¢ with cp1 =¢1 > 0, ¢ > 0. Since

E2 *2

€
—szzz + zpe < FZZ < 4C22

a|WIZ  ol|W*|2
+

—oWIW < —o | W + o | WIIW| < —— 5

then Equation (4.14) becomes

O’WZ O,w*z 6*2
2 2 Wi n | W] n

V< —C12] — €125 — > > i (4.15)
2

From the above, it is clear that V is negative definite whenever

€* o e* o
|z1] > +. 5 IWHL 22l > o—F——=+ /5 — W]
24/C1C22 2C1 24/C21€22 2C21

6*
+ [WH.
e W=

This leads to UUB of both z = [z1, z,]T and w according to
€* o
< [ — |W* 4.16
|z1] < NG + 2 W= (4.16)

|22|_2 m + /5 i (4.17)

W) <

or ||I7V|| >

+ [WH| := W (4.18)
20 Co2

Because z; = x1 — x4, and x4, are bounded, we have that x; is bounded. From

Zp = xp — &1, and the boundedness of «; from Equation (4.6), we have that

x, remains bounded. Using Equation (4.3), in which ¢; is bounded because
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every term in Equation (4.7) is bounded, and S(Z) is bounded for all values
of Z, we conclude that control u is also bounded. Thus, all the signals in the
closed-loop system remain ultimately uniformly bounded.

(ii) In objective 2, we require that without the PE condition, x converges arbi-
trarily close to x4 in a finite time T'. This finite-time convergence, rather than
the asymptotic convergence as usually obtained in the literature, is impor-
tant because it prevents the case that learning occurs only when time goes to
infinity.

Consider the following Lyapunov function

V, = %z% + %z% (4.19)
The derivative of V, is
Vo =212 + 22,
= —12 — 273 + ;€ — 2, W' S(Z)
Let ¢y = ¢y1 + 2C2 with €31, 2 > 0, and let ¢; = ¢»1. Since
2 %2

€
—52225 + z26 < — < —
42y T 4T

”WHZSZ(Z) W*ZS*Z
< <

—52225 — Z2WTS(Z) < T = ity

where s* and W* are given in Equations (2.13) and (4.18), respectively. Then,
Equation (4.15) becomes

. W*ZS*Z €2
Vo < —122 —tmZ2 + ——— 4.20
2 < —C1z] — Cn1Z; + 1, 1 ( )
Denote
W*Z *2 %2
P AL R 4.21)

42y 4ty

It is clear that § can be made arbitrarily small using large enough ¢5,, that is,
c>. From Equation (4.20) we have the following inequality:

VZ < —clz% - 521Z% +4
<20,V +5 (4.22)

Let p 2 §/2c; > 0; then (4.22) satisfies

0 = Vi(t) < p + (V(0) — p)exp(—2cit) (4.23)
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From (4.23), we have

2
> %Zi < p + (Vz(0) — p)exp(—2cit)

k=1
< p + Vz(0)exp(—2c1t) (4.24)
That is,
2
>z < 2p +2V.(0)exp(—2c1t) (4.25)
k=1

which implies that given u > +/2p = \/8/c1, there exists a finite time T, deter-
mined by ¢; and §, such that for all t > T, both z; and z, satisfy

zi(H)] < n, i=12 (4.26)

where p is the size of a small residual set that can be made arbitrarily small
by appropriate ¢; and c;.

Since z; = x1 —xy,, weknow that x; will closely track x4, . From zp = x,—a =
X2 + €121 — Xg4,, We get

Xp —Xg, =2p —C121 S L+ C11 (4.27)

which is also a small value when p is small. Therefore, both x; and x, will
converge closely to xz and x,, in finite time T. Because NN inputs Z(t) =
x(t) = [x1, 2]7 is made as periodic as x4(t) for all + > T, the persistent
excitation (PE) condition of internal closed-loop signals, that is, the PE of a
regression subvector S;(Z(t)) (for t > T), is proved to be satisfied according
to Theorem 2.7 and Corollary 2.1. This ends the proof of (ii).

(iii) The periodicity of Z(t) leads to PE of S;(Z), but usually not the PE of the
whole regression vector S(Z). From the error system (4.11) and the adaptation
law (4.8), the overall closed-loop system can be summarized in the following

form:
] A -bS@)T 1 = be 428
Wl | Ts@pT 0 Wl —orw (4.28)

where z = [z1, 22]7, W = W — W* are the states, Ais expressed as

o
A= (4.29)

-1 —C2

b=1[0,1]7,I =T > 0isa constant matrix, o is as small positive constant, € is
the NN approximation error bounded by €*, and Wis also bounded according
to the analysis in (i).

According to the exponential convergence results as shown by Theorem 2.4,
for the adaptive system (4.28), when S(Z) is PE, the origin (z, W) = 0 of the
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nominal system (4.28) (i.e., without the perturbation term) is exponentially
stable. However, PE of S(Z) requires the NN input Z(t) = x = [x1, x]T to visit
every center of the whole RBF network “persistently.” This is not feasible in
practical applications.

By using the localization property of the Gaussian RBF network, after time
T, Equation (4.11) can be expressed in the following form along the tracking
orbit ¢, (x(T)) as:

Z1 = X1 — J'Cdl =Xy — X3, = —C1Z1 + 22 (430)
=f(x)+u—ou
= W S(2) + & — 21 — oz — W' S,(2) — WI S:(2)
= —Z1 — CZp — W;TS;(Z) + E; (4-31)
where S;(Z) is a subvector of 5(Z), I’/\V; is the corresponding weight subvector,
the subscript f stands for the reglon far away from the trajectory ¢ (x(T)),
with |WTS;(Z)| being small, and €, = € — W S:(Z) = O(e;) is the NN

approx1mat10n error along the tra]ectory ¢¢. The closed- -loop adaptive system
(4.28) is now described by

z | A —bS;(2)T z be; 13
W, | | TeS (27 0 W, * —o T W, (4.32)

Wz = W; = T¢(S¢(2)z2 — o W) (4.33)

and

With PE of S;(¢;), that is, S;(Z) satisfied as obtained in step (ii), according to
the exponential convergence results given in Theorem 2.4, PE of S;(Z) leads to
the exponentlal stability of (z, W;) = 0 for the nominal part of system (4.65).
Since €, = O(&;) = O(¢), and oI, W; can be made small by choosing ¢ small
enough, using Theorem 2.6, both the state error z(f) and the parameter error
W (t) converge exponentially to small nelghborhoods of zero, with the sizes
of the neighborhoods being determined by ¢* and o |I'; W* Il

The convergence of W, to a small neighborhood of W} 1mplies that along
the trajectory ¢, (x(T)), we have

f(x) = WiTS(2) + e, = W' S(Z2) — W S(2) +
= WI'S,(2) + e (4.34)

where €, = €, — Wg S:(Z) = O(e,) due to the convergence of W;.
Choosing W according to Equation (4.9), Equation (4.34) can be expressed as

f(x) = W;TS;(Z) + €y

=W/ 5.(2) + e, (4.35)
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where W; = [Wj,, ..., W; ] is the subvector of W, and ¢,, is an error using
Wg S; as the system approximation. It is clear that after the transient process,
we have €, = O(e,).

On the other hand, for the neurons with centers far away from the trajec-
tory ¢, |S¢(Z)| will become very small due to the localization property of
Gaussian RBFs. From the adaptation law (4.33) and W(O) = 0, it can be seen
that the small values of Sz(¢;) will make the neural weights W; activated
and updated only slightly. Both W; and W St(x), as well as W; and W Se(x),
will remain very small. This means that along trajectory ¢, the entlre RBF
network W'S S(Z) and WT S(Z) can approximate the unknown f(x) as

f(x) =WTS(Z) +

=W/ S(2) + W/ Si(2) + &1 = W'S(2) + &1 (4.36)
=W S{(2) +W! S:(2) + &2 =TW'S(Z) + & (4.37)

where ¢; = ¢, — W/ S;(2) = O(ey,), &2 = €;, — W[ S;(2) = O(e,). As we also
have e, = O(¢) and €;, = O(¢), it is seen that both the RBF networks WT S(Z)
and W' 5(Z) are capable of approximating the unknown nonlinearity f(x) to
the desired accuracy € along the tracking orbit ¢, (x(T)). This concludes the
proof. W

REMARK 4.2

Atthe end of the proof of part (i), it is clear from Equation (4.18) that no matter
how we choose the design parameters, we cannot conclude any convergence
result for || W|| Such convergence to a small ne1ghborhood of zero is estab-
lished in part (iii). In the proof of part (iii), o I'; W; can be made small since o is
chosen as a small value, and W(— W+ W*) and W are bounded as seen from
Equation (4.18). It is important to have small ¢; and o T, W; in Equation (4.65),

so that the convergence of W, (t) can be guaranteed.

REMARK 4.3

In deterministic learning, the difficult problem of satisfying PE in feedback
closed-loop has been overcome in two steps: (i) tracking convergence of x(t)
to the recurrent x;(t) in finite time T by adaptive NN control without the PE
condition; and (ii) satisfaction of PE for a regression subvector S;(Z) thanks
to the employed RBF network, and the state tracking. In this way, the main
difficulty in closed-loop identification is resolved.

REMARK 4.4

It is seen that an appropriately designed adaptive NN controller is capable
of learning autonomously the system dynamics during tracking control to
a recurrent reference orbit. In contrast to conventional adaptive NN control
in which stability and tracking control are achieved without establishing pa-
rameter convergence, we show in this chapter that learning (i.e., parameter
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convergence) can be achieved from tracking control in a deterministic and
autonomous way. The parameter convergence is trajectory-dependent, and
the NN approximation of the closed-loop system dynamics is locally accurate
along the tracking orbit. This kind of learning capability is very desirable for
advanced intelligent control systems.

REMARK 4.5
From Equations (4.36) and (4.37), it is seen that although useful knowledge
is obtained only in W;, it is not necessary to specify which neural weights
belong to W; and need to be updated. It is clear that the locally accurate
NN approximation is achieved by using the entire RBF network WT S(Z) and
stored in the constant RBF network W' S(Z) for the system’s uncertain non-
linearity f(x). This NN approximation is not valid within the entire regular
lattice upon which the RBF network is constructed, but only applies in the
local region along the tracking orbit ¢, (x(T)). For the (possibly large) area
where the tracking orbit does not explore, no learning occurs, as represented
by the slightly updated W; (4.33). Because S(Z) is of small value when Z(t) is
far away from the tracking orbit ¢, (x(T)), together with the small values of
Wc and W;, we have WTs (Z) and W' $(Z) remain small in the unexplored area.
This means that nothing can be learned without sufficient “experiences.”
Therefore, the learned knowledge can be interpreted as: for the experienced
recurrent orbit ¢4 (x4(0)), there exist constants d, €; > 0, which describe alocal
region €2, along ¢;(x;(0)), such that

dist(x, gg) <d = [W'S(x) — f(x)| < € (4.38)

where €3 is close to €*.

For anew control task, the knowledge represented in Equation (4.38) can be
recalled in such a way that whenever the NN input Z = x =[x, x]T comes
close again to the vicinity of the experienced tracking orbit ¢;(x;(0)), the RBF
network W' S(x) will provide an accurate approximation to the uncertain
nonlinearity.

REMARK 4.6

The system considered in this chapter is simple. It is chosen as adequate
to demonstrate the proposed deterministic learning mechanism. Continued
efforts are being made to investigate learning from direct adaptive NN control
of more general nonlinear systems in the following sections.

4.2.3 Simulation Studies
To verify and test the proposed NN control and learning approach, the fol-
lowing van der Pol oscillator [28,227] is taken as the plant for control:

5(1 = X2
=-x+p1l—x)n+u (4.39)
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FIGURE 4.1
System nonlinearity: f(x).

where g > 0 is a system parameter (8 = 0.7 here); the smooth function
f(x, x) = —x1 4+ B(1 — x12)x2 is assumed to be unknown to the controller u.
The nonlinearity of f(x1, x2) is shown in Figure 4.1.
The desired trajectory y; is generated from the following Duffing oscillator
[28,40]:
Xg

1 = Xd,

Xg, = —Paxg, — P?,Xgl — p1X4, + q cos(wt) (4.40)

where x4, and x4, are system states; p1, p2, ps are system parameters. Asshown
in [28], for p1 = 0.4, p» = —1.1, p3 = 1.0, w = 1.8, the phase-plane trajectory
of the Duffing oscillator approaches a period-1 limit cycle when g4 = 0.620
(as seen in Figure 4.2a). The phase-plane trajectory becomes a period-2 limit
cycle when p; = 0.55 and g = 1.498 (as seen in Figure 4.3a). It becomes a
chaotic orbit when p; = 0.35 and g = 1.498 (as seen in Figure 4.4a).

The Gaussian RBF network W' S(Z) contains 441 nodes (i.e., N = 441). The
centers u; (i =1, ..., N) are evenly spaced on [-3.0, 3.0] x [-3.0, 3.0], with
widths n; = 0.3 (i = 1, ..., N). The adaptive NN controller (4.3) is used to
control the uncertain system (4.39). The weights of the NN are updated online
according to Equation (4.8). The design parameters of the above controller
are c; = 3, ¢, = 10, I' = diag{5.0}, and o = 0.001. The initial weights W(0) =
0.0, the initial conditions [x1(0), x2(0)]T = [0.5,0.2]7, and [x4(0), x4,(0)]" =
[0.2,0.3]".

First, the period-1 signal is employed as the reference signal for training the
RBF network. From Figure 4.2a, we can see that tracking of the system states to
a small neighborhood of the period-1 reference orbit is achieved. The partial
parameter convergence is shown in Figure 4.2b, which reveals that only part
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of the neural weights converges; many other neural weights remain zero or
small values. Because the oRtimal values Wg‘ are generally unknown, it is
difficult to verify whether W, have indeed converged to W;. Fortunately,
we can show the NN approximation of system dynamics f(x) both in time
domain and in phase space, as in Figures 4.2c and d. In Figure 4.2e, we
plot the system dynamics and the tracking orbit together. Corresponding to
Figures 4.2d and e, it is seen from Figure 4.2f that good NN approximation of
the unknown f(x) is achieved by using constant RBF network W S(x) along
the period-1 tracking trajectory.

To obtain good approximation over a larger space, it is necessary for the
NN inputs to explore a larger input space. We demonstrate such exploration
using a period-2 reference orbit in Figure 4.3, and using a chaotic reference
orbit in Figure 4.4. As shown in Figures 4.3a and b and Figures 4.4a and b,
both tracking control and partial parameter convergence are achieved. In
comparison with Figure 4.2b, it can be seen in Figures 4.3b and 4.4b that more
neurons are being activated and updated. It is clearly seen from Figures 4.3d
and f and Figures 4.4d and f that fairly good NN approximation of the system
dynamics f(x) (shown in Figures 4.3e and 4.4e) can still be obtained along
the period-2 and chaotic orbits.

Figures 4.2f, 4.3f, and 4.4f clearly illustrate the knowledge representation. It
is shown in Figure 4.2d that the NN approximation by W S(x) is only accurate
in the vicinity of the period-1 orbit, rather than within the entire space of
interest. For the large region where the tracking orbit does not explore, no
learning occurs, corresponding to the zero-plane in Figure 4.2f, due to the
small values of WT S(x) in that area.

In the case of tracking to the period-2 and chaotic orbits, the local knowl-
edge represented by W S(x) is more clearly demonstrated. As seen from
Figures 4.3f and 4.4f, what is actually learned and stored in W' S(x) is the ap-
proximation of system dynamics f(x) in a local region along the period-2 and
chaotic orbits. It is interesting to notice that the learned knowledge consists
of “hills and valleys” outlined by the tracking orbits.

4.3 Learning from Direct Adaptive NN
Control of Strict-Feedback Systems

As system (4.1) is so simple, it is necessary to extend this learning result to
more general nonlinear systems. In this section, we investigate the learning is-
sues in direct adaptive NN control of nonlinear systems in the strict-feedback
form [119]. Direct ANC (e.g., [65,124,195,269]) refers to the approach in which
NNs are employed to approximate the unknown dynamics in certain desired
controllers, whereas in the indirect ANC approach (e.g., [46,181]), NNs are
used to approximate the unknown system dynamics in the plant. Note that
due to the simplicity of system (4.1), both the direct and indirect ANC ap-
proaches are applicable to achieve learning from neural control. For more
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general nonlinear systems, we investigate whether the deterministic learning
ability can be achieved by direct adaptive NN control.

To implement learning from adaptive NN control, a requirement here is
that all of the NN inputs become a periodic or periodic-like (recurrent) orbit
such that a partial PE condition is satisfied. In direct ANC of general nonlinear
systems, intermediate variables are usually introduced as NN inputs for the
purpose of keeping the dimension of NN inputs minimal [65,266]. However,
the introduction of intermediate variables will yield a problem concerning
learning; that is, these intermediate variables are required to become periodic
or periodic-like to satisfy the PE condition. This is a new requirement, and
its satisfaction is the key to deterministic learning. For direct ANC of a class
of general nonlinear systems in the strict-feedback form, we show that all
the internal system states and the intermediate variables can still be made
periodic or periodic-like along with the reference system states. Therefore,
the PE condition can still be satisfied by using localized RBF networks, and
accurate learning of control system dynamics can be achieved from a direct
ANC process.

4.3.1 Problem Formulation

Consider the following nonlinear system in the strict-feedback form [119]

o= fi(x) +x

. (4.41)
o = fo(x1, x2) +u

where x = [x1, %]T € R%, u € R are the state variables and system input,
respectively, and fi(x1) and f,(x1, x2) are both unknown but smooth non-
linear functions.

Consider the following smooth, bounded reference model

Xai = fai(xq), 1<i<?

e (4.42)

where x4 =[x4,, x4,]7 € R? are the states, y; € R is the system output, and
fai(:), i = 1, 2 are unknown smooth nonlinear functions. Assume that both
X4, (= ya) and xy, are periodic signals or periodic-like recurrent and the refer-
ence orbit [denoted as ¢4 (x4(0)) or ¢4] is a periodic motion.

The objective is to develop a direct adaptive NN controller using localized
RBF networks such that:

1. Allthesignalsin the closed-loop system remain uniformly bounded.

2. The output y of system (4.41) converges exponentially to a desired
trajectory y; generated from Equation (4.42), such that the output
tracking error y — 1; converges to a small neighborhood of zero in
a finite time T

3. Theunknown control system dynamics are accurately approximated
by localized RBF networks along trajectories of NN inputs.
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REMARK 4.7

For adaptive NN control (ANC) of system (4.41), the direct ANC approach
(e.g., [65]) employs NNs to approximate the unknown nonlinearity /(x, v) in
the desired control u*, where h(-) is the unknown control system dynamics;
v is a vector of some intermediate variables. The indirect ANC approach, on
the other hand, uses NNs to identify the system nonlinearities fi(x;) and
fo(x1, x2) (e.g., see [181]). For ANC of general nonlinear systems, it is nor-
mally considered that the direct approach provides a better solution than the
indirect approach [269]. However, the learning issue in both approaches, that
is, accurate learning of either hi(x, v) or f;(-) (i =1, 2), has not previously been
fully studied.

4.3.2 Direct ANC Design

For the control of strict-feedback system (4.41), the direct ANC approach de-
veloped in [65] is applicable. At each recursive step i (i = 1, 2), a desired feed-
back control o is first shown to exist. Then, a stabilizing function «; (1 = a»)
is designed, where a localized RBF network is employed to approximate the
unknown nonlinearity in o] (i =1, 2).

STEP 4.1
Define z; = x1 — xy,. Its derivative is z; = f1(x1) + % — &4. By viewing x,
as aAVirtual control input, it is clear that there exists a desired virtual control
ai =x,

o] = —c1z1 — fi(x) + xg
wherec; > Oisa design constant.

Denote h1(Z1) = fl(xl) where Z; = [xl]T € Q1 C R. By employing an RBF
neural network WT 51(Z1) to approximate h1(Z;) in a compact set 21, we have

hi(Zy) = WiTS((Zy) + e, VZ € (4.43)

where W} denotes the ideal constant weights, and |e1| < €] is the approxima-
tion error w1th constante] > 0.Let W1 be the estimate of W} and W1 W1 Wy
Define z, = x, — a7 and let

o = —c1z1 — W $i(Z1) + 4, (4.44)
where W, is updated by
Wi = Wy = I1851(Z1)z1 — o1 T W, (4.45)

with T; =I'{ > 0and o1 > 0 being a small constant.
Then, the dynamics of z; are governed by

z1 = fi(x1) + (22 + 1) — g
=—cz1+2-WS(Z) +a (4.46)



78 Deterministic Learning Theory for Identification, Recognition, and Control

STEP 4.2
The derivative of z, = xp — a1 i8 2o = fo(x1, X2) + U — &1.
To stabilize the (z1, z2)-system, there exists a desired feedback control

*

u* = —z1 — 222 — (fa(x1, X2) — 1) (4.47)

where ¢, > 0 is a design constant. From Equation (4.44), it can be seen that aq
is a function of x1, x4, and Wi. Thus, &; is given by

) day | day | day A
o =—x1+—x+—=—W
! axq ! X4 d oW !
Jo
= L (filx) + 1) + ¢ (4.48)
aX1
where
E)ozl . aoel A~
= —X +—,\F S Z Z —O'FW
1 Iy 8W1[ 1(S1(Z1)z1 — 011 Wh)]
is computable.
Let
A dor
ha(Z2) = | f2(x1, x2) — g(fl(xl) + x) (4.49)
1
where
A Jda T
7,2 |:x1, X, —1} eWCR (4.50)
ax1

By employing an RBF network W) S,(Z,) to approximate h,(Z,) within Q,,
we have

ho(Zy) = Wi Sy(Zp) + €2, VZ, € (4.51)

where W; denotes the ideal constant weights, and |e;| < € is the approxima-
tion error with constant €5 > 0.
Choose the practical control

U= —2] —CaZp — WZT S2(Zp) + ¢ (4.52)
where W, is updated by
W = Wy = T'25(Z2)z2 — 02l Ws (4.53)

with ', = FZT > 0 and 0, > 0 being a small constant.
Then, we have

Zy = folx1, x0) +u—on

= —Z] —Cp2Zp — VV2T S:(Zp) + e (4.54)
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REMARK 4.8

By defining intermediate variable —, which is available through the com-
putation of x1, x; and Wl, the NN approx1mat10n WT 5,(Z;) of the unknown
function h;(Z;) can be computed by using the mlmmal number of NN inputs

ZZ = [xll X2, g_(;l]T'

THEOREM 4.2 (Stability and Tracking)

Consider the closed-loop system consisting of the plant (4.41), the reference model
(4.42), the controller (4.52), and the NN weight updating laws (4.45) and (4.53).
For sufficiently large compact sets Q1 and S, with initial conditions appropriately
chosen, and with W(0) = 0, we have that: (i) all the signals in the closed-loop
system remain bounded, and (ii) the output tracking error y(t) — yu(t) converges
to a small neighborhood around zero for all t > T by appropriately choosing design
parameters.

PROOF The system (4.41) is a simple case of the class of strict-feedback sys-
tems considered in [65]. Thus, the stability of all the signals in the closed-loop
system, including zi, zp, x1, x2, Wi, Wa, o1, a1, and u, can be easily concluded
as in [65].

Similar to the proof of Theorem 4.1, it can be derived that by choosing
large cq and ¢y, both z; and z, will converge exponentially to a small neigh-
borhood of zero. Therefore, there exists a time T > 0, such that forallt > T,
the output tracking error y(t) — ys(t) converges to a small neighborhood of
zero. M

4.3.3 Learning from Direct ANC

To achieve the learrung objective (iii), that is, accurate NN approximation of
hi(Z) using W S5i(Z;) along the trajectories of NN inputs Z;(t), it is required
that the PE condition of regression subvectors along the trajectory Z;(t), that
is, PE of S1;(Z1) and S,;(Z»), be satisfied.

In Section 4.2, PE of S;(Z) is satisfied thanks to (a) the associated properties
of the localized RBF networks and (b) the obtained tracking convergence
which makes the internal system states x(t) (and the NN inputs Z = [x1, x2])
follow a desired recurrent trajectory x,;(t). For direct ANC of system (4.41),
apart from the tracking convergence of x; to x4, it is required to make both
X, and a"” recurrent, as is the system state x;.

In the followmg, we will show that accurate learning of control system

dynamics k;(Z;) can still be achieved, and it is indeed possible to implement
learning from direct ANC of strict-feedback systems.

THEOREM 4.3 (Learning)

Consider the closed-loop system consisting of the plant (4.41), the reference model
(4.42), the controller (4.52), and the NN weight updating laws (4.45) and (4.53).
For almost any recurrent orbit ¢,(x4(0)), and with initial conditions x(0) €
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(where Qq is an appropriately chosen compact set) and Wi(0) = 0, we have that
(i) along the NN input orbit Z1(t) (t > T), neural-weight estimates I,/\Vlg converge
to small neighborhoods of their optimal values Wy, and accurate approximation for
the control dymzmlcs h1(Z,) is obtained by WT 51(Zy) and WT S1(Zy), where W, is
obtained from Wi according to Equation (4.9). (ii) Along the NN input orbit Z,(t)
(t > Th > T), neural-weight estimates WQ{ converge to small neighborhoods of their
optimal values W5, and accurate approximation for the control dynamics hy(Z,)
is obtazned by WT S2(Zp) and WT S:(Z»), where Wy is a constant vector obtained
from .

PROOF (i) With the boundedness of all the signals in the closed-loop system,
and with the exponential convergence of both z; = x1 —x4, and z, = x»—a, (as
established in Theorem 4.2), we have that x; converges closely to the recurrent
x4, for all t > T. Therefore, the NN input Z; = [x1]" will follow a recurrent
orbit for all t > T, and consequently, a partial PE condition of S;,(Z;) will be
satisfied.

By using the localized RBF network, along the tracking orbit Z;(t) (t > T),
the closed-loop adaptive subsystem, including Equations (4.45), and (4.46),
can be expressed as:

51 = —c1z — W S1:(Z1) + 22 + €, (4.55)
Wi = Wie = D1 Sie(Z1)z1 — on TG, (4.56)

and
Wi = Wiy = I S (Z1)z1 — o1 T Wi (4.57)

where 51,(Z;) is a subvector of S1(Z;) as defined in Equation (2.12), I’/\VM is
the corresponding weight subvector, the subscript (-)1; stands for the region
far away from the trajectory Z;(t), with |W11; S51z(Z)] being small, and €;, =

Slg(Zl) = O(e;) is the NN approximation error along the trajectory
Zl(f)

With PE of S1,(Z,), it is concluded according to Theorem 2.4 that exponen-
tial stability of (z1, Wi;) = 0 for thenominal part of system (4.55) and (4.56) can
be achieved. Then, z;(t), and especially ng (t) will converge exponentially to
small nelghborhoods of zero, with the sizes of the neighborhoods being de-
termined by €7, z,, and o T'y, W1 o where |z;| has been shown to converge to a
small neighborhood of zero.

The convergence of W, together with the localization property of RBFs,
implies that along Z;(t) (t > T), the control system dynamics h1(Z;) can
be accurately approximated by WlT; S51¢(Z1) and the entire RBF network

WlT S ( Zl) as

hi(Z1) = Wi, Sic(Z1) + e, (4.58)
=W/ S1(Z1) + en (4.59)

where €,, = O(¢1) and €13 = O(e) due to the convergence of V~V1{.
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Choosing W; according to Equation (4.9), along the trajectory Z;(t) accurate
approximation for the unknown h1(Z;) is also obtained by using WlT{ 51:(2)

and W $(Z,); that is,
h(Z1) = W $1.(2) + &, (4.60)
=WS1(Z) +é&n (4.61)
where €, = O(€1) and €1, = O(e1), respectively, after the transient process.

(ii) To achieve learning of h1>( Z,), we require both x, and a"’l tobecome per10d1c
X1

or periodic-like signals. Since x, = z, to, and a; = —c1(x1 Xq,)+ W $1(Zy),
with the exponential convergence of ng to Wi, there exists a constant Ty > T
such that

= —c1(v — x4) + W SiI(Z1) + 22 + en (4.62)

holds for all ¢ > Tj, where &1 = W[ $(Z;) — W/ $1(Z1), and both |z| and
|e11] are small values. Thus, x, becomes a periodic-like signal, with the same
period as x; and xg1.

Furthermore, the intermediate variable

% _ WT asl(zl)
ax1 a.'Xf1
—r0951(Z
= —C +]/V1T ;i ) + €12, vVt > Th (4.63)
1

where g1 = WT 95(2) —Wf 9321 js small, will become a periodic-like signal

with the same perlod as xq for all t > T;. Therefore, the NN inputs Z, =
[x1, xo, %]T will follow a periodic-like orbit for all ¢ > T;, and consequently,
1
from Corollary 2.1, a partial PE condition of S;(Z,) will be satisfied.
By using the localization property of RBF networks, along the tracking orbit
Zy(t) (t > T1 > T), the closed-loop adaptive subsystem, including (4.53) and

(4.54), can be expressed as:

5 =—0z — Wi, S (Z0) — 21+ €); (4.64)
Wz; = ]7\72; = T2 50 (22)z0 — 0212 W2¢ (4.65)
and
Wy = Wy = Tz S5:(Zo) 7 — 0oz W (4.66)
where eég = — WL Szz(Zz) = O(ey) is the NN approximation error along

the trajectory Z(t).
With PE of S,,(Zy), it is concluded that exponential stability of (z;, Wh,) = 0
for the nominal part of system (4.64) and (4.65) can be achieved [161]. Then,
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V~V2;(t) will converge exponentially to small neighborhoods of zero, with the
sizes of the neighborhoods being determined by €3, |z1], and 0,2, I’/\Vz*g, where
z1 has been shown to converge to a small neighborhood of zero.

Similarly to step (i), it can be concluded that along Z»(t) (t > T;), the control
system dynamics /»(Z) can be accurately approximated by W S;(Z,) and

W) S,(Z,) as

ho(Zs) = Wi $x(Zs) + en (4.67)
= WZT S5:(Zp) + € (4.68)

where W, is chosen according to (4.9), and €21 = O(e2), €22 = O(e2). This ends
the proof. ®W

REMARK 4.9

Following the principle of making the NN inputs become a periodic or
periodic-like orbit in the NN input space, we achieve deterministic learn-
ing from direct ANC of a more general nonlinear system (4.41) than treated
in Section 4.2. In parallel with the recursive backstepping design, learning of
hi(Z;) is also implemented in a recursive procedure. This result can be sim-
ilarly extended to an nth-order nonlinear strict-feedback system. Note that
although learning from direct ANC of system (4.41) appears to be a simple
extension of the result in Section 4.2, when considering the indirect ANC
approach, learning of system dynamics may not be easy to achieve. This sit-
uation is analyzed in the following subsection for a more general class of
systems.

4.4 Learning from Direct ANC of Nonlinear Systems
in Brunovsky Form

The systems considered in Sections 4.2 and 4.3 have unity control gains that
multiply the control term. In this section, we investigate deterministic learning
from direct ANC of a more general nonlinear system with unknown affine
terms. In many control systems, affine terms often exist in system models
(e.g., industrial robots [124]). In the literature of nonlinear control, it is well
known that systems with affine terms are more difficult to derive control
for and much effort has been devoted to dealing with these terms. From
the perspective of learning, the existence of affine terms will also lead to
difficulties that prevent accurate parameter convergence (i.e., the occurrence
of learning) in the adaptive neural control process. Therefore, to make the
deterministic learning control more practical, it is necessary to investigate
how to achieve deterministic learning for nonlinear systems in the so-called
Brunovsky form [93] with affine terms unknown.
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For demonstration of the basicidea, we consider the following second-order
nonlinear system in Brunovsky form:

{5“ i (4.69)

i = f(x) +g(x)u

where x = [x1, ] € R? u € R are the state variables and system input,
respectively, and f(x) and g(x) are unknown smooth nonlinear functions.

As the nature of deterministic learning is related to the exponential sta-
bility of a certain class of linear time-varying (LTV) adaptive systems for
nonlinear systems in Brunovsky form, the exponential stability of the cor-
responding LTV adaptive systems will need to be studied first. The diffi-
culty lies in that the unknown affine term g(x) will appear in the closed-loop
adaptive system thus causing a special perturbed LTV form. The stability
analysis of such LTV systems cannot be handled by existing results of adap-
tive systems [92,161,173,199]. Another difficulty is that the presence of the
affine term g(x) in the closed-loop adaptive system may amplify the NN
approximation error and prevent the occurrence of learning even when the
exponential stability of the nominal part of the closed-loop adaptive system
is achieved. Moreover, the existence of g(x) also leads to more complexity
for analyzing the periodicity of NN inputs and the satisfaction of the PE
condition.

In this section, we first study the exponential stability of this new class of
LTV systems. An extension of the result in [173] is presented which shows that
with the satisfaction of a partial PE condition and with some mild conditions,
exponential stability of this class of LTV systems can be achieved. Second, to
overcome the difficulty caused by the affine term g(x), we introduce a state
transformation, by which the closed-loop adaptive system can be turned into
the form of perturbed LTV systems with small perturbation terms. Exponen-
tial convergence of partial neural weights can be achieved, and deterministic
learning from adaptive NN control of nonlinear systems in Brunovsky form
can still be implemented. The result will be useful for further research on
learning for more general nonlinear systems (such as strict-feedback systems
and pure-feedback systems with unknown affine terms [119]), and so be ap-
plicable to many industrial applications.

4.4.1 Stability of a Class of Linear Time-Varying Systems

For learning from adaptive NN control of nonlinear systems in Brunovsky
form (4.69), the associated LTV system is in the following form:

é1 At 0 e
6 | = (*) st | | e (4.70)

0 0 -TS(HGH)] 0 0
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with e; € R ¢, € R1,0 € RP, A(+) : [0, 00) — R™", 5(-) : [0, c0) — RP*1,
G(:):[0,00) — R1*4,and T = I'T > 0. For ease of description, we define

e:=[ef ezT]T e R" (4.71)
n=[eT 6T] e ROP 4.72)
B(t) := [0 S(t)] e RP*" (4.73)
P(t) == diag {I, G(t)} € R™" (4.74)
C(t):=[0 TS(HG(H)]e R (4.75)

where diag here refers to block diagonal form.
It follows that

C(t) = T B(t) P(t) (4.76)

There is no specific result for exponential stability of system (4.70). Existing
results on LTV systems (e.g., Theorems 2.4 and 2.5) are useful, but they cannot
be applied directly for stability analysis of system (4.70). In Theorem 2.4,
the matrix A in system (2.18) is time-invariant, whereas the matrix A(¢) in
system (4.70) is time-varying. On the other hand, although the LTV system
(2.19) considered in Theorem 2.5 contains a time-varying matrix A(t), we still
cannot apply Theorem 2.5 directly because B(t) = [0  S(t)]” in system (4.70)
implies that PE of B(t) cannot be satisfied.

Based on Theorems 2.4 and 2.5, we give the following lemma on the expo-
nential stability of system (4.70), in which B(t) = [0 S(t) ]" does not satisfy
the PE condition. We introduce a weaker version of Assumption 2.3.

ASSUMPTION 4.2

There exist symmetric matrices P(t) and Q(t) such that AT(t)P(t) + P(t) A(t) +
P(t) = —Q(t). Furthermore, 3 Pms Gm, P, and gy > 0 such that p, I < P(t) <
pml and g, 1 < Q(t) < qml.

LEMMA 4.1

The system (4.70) with Assumptions 2.1 and 2.2 and Assumption 4.2 satisfied
in a compact set Q is uniformly exponentially stable in @ if S(t) satisfies the PE
condition.

PROOF Our proof is motivated by the proof of Theorem 2.5 given in [173].
Consider the Lyapunov function candidate

1 1
Vi = EeTP(t)e + EeTr*19 (4.77)
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Then, the derivative of V] is

o1 1 1 ... .
Vi = EeTPe' + Ee‘TPe + EeTPe +60Tr-19

1 .
= EeT(PA + ATP 4+ P)e

1 1
= —5¢ Qe < —5qu el (4.78)
Thus, system (4.70) is uniformly stable.
Leta > 0, and define

7\ T
B(t) = [_F‘; " B O(t)} 4.79)
. [A(t) — Ale
W (te) = |:FB(t) - P(t)]e] (4.80)
where A= —al; then system (4.70) can be rewritten as
n=EH)n+Wv(,e) (4.81)

From Assumptions 2.1, 2.2, and 4.2, there exists a k, > 0, such that
[W(t, e)ll < kglle]l. From Theorem 2.4, when S(t) satisfies the PE condition, the
system 1 = E(t)n is exponentially stable. From Theorem 4.12 in [111], there
exists a Lyapunov function

Vo =" Po(t)n (4.82)
for = E(t)n, such that V, satisfies

cilnl® < Va < ca Imll? (4.83)
Vo < —cslinll® (4.84)

Along the trajectory of system (4.70), the derivative of V5 satisfies

Vo =n"Poip+ 7" Pon +n" Pon

=" Po()E(t)n +n" BT (t) Po(t)n + " Pon + 21" PyW(t)

< —c3 Inll* + 2c2kg llell {17l (4.85)

For system (4.70), we define the following Lyapunov function candidate
V=aVi+V, (4.86)

with 7 a positive constant.
Then, the derivative of V3 satisfies

Vs < —7qm llell* — ¢z Inll* + 2cakg llell lIn]l (4.87)
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If we choose

2k2 2
T > g2
qmC3
then
. C
Vs < —73||n||2 (4.88)

This ends the proof. ®

Lemma 4.1 implies that for system (4.70), even though B(t) = [0 S()]*
cannot satisfy the PE condition, the PE of 5(¢) can still lead to the exponential
stability of the LTV system. On the other hand, to use Lemma 4.1, itis necessary
to transform the adaptive NN control system into a perturbed LTV system
with a small perturbation term.

4.4.2 Learning from Direct ANC

For nonlinear systems in Brunovsky form (4.69), we make the following as-
sumptions.

ASSUMPTION 4.3

The sign of g(x) is known, and there exist constants g1 > go > 0 such that g1 >
12(-)| > g0, Vx € @ C R Without losing generality, we assume g1 > g(x) > go,
Vx e QC R%.

ASSUMPTION 4.4

There exists a constant gg > 0 such that |g(x)| < g4, Vx € Q C R2, where the
derivative is with respect to time.

The reference model is the same system expressed by Equation (4.2) with
Assumption 4.1:

Xdl = X4,
{J'Cdz = fa(xa) (4.89)

Our objective is to develop an ANC using localized RBF networks such
that (i) all the signals in the closed-loop system are uniformly bounded, and
(ii) accurate NN approximation (learning) of the closed-loop control system
dynamics can be achieved in a local region along an orbit of recurrent closed-
loop signals as previously achieved in Theorems 4.1 and 4.2.

For system (4.69) and reference model (4.89), an ANC similar to one in [65])
is designed using a Gaussian RBEN as follows:

U=—z1 —crzp — WI'S(Z) (4.90)
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where
Z] = X1 — X4, (4.91)
Z) = Xp — ] (4.92)
a1 = —C121 + 5Cd1 = —C121 + X2 (493)
01 = —C121 + &g, = —c1(—c1z1 + 22) + fa(xa) (4.94)

and cq, c; > 0 are control gains. The Gaussian RBFN WT S(Z) is used to
approximate the unknown function

WZ) = (f(x) —a1)/g(x) (4.95)

where Z = [x1, x2, @1]7 € Q C R® is the NN input, and W is the estimate of
its optimal value W¥, and is updated by

W=W=r(52)z - oW) (4.96)
where W = W — W*,and T = T'T > 0 is a design matrix in diagonal form.

REMARK 4.10

The controller design [64, Section 7.2] uses the controller function h(Z) to
achieve partial feedback linearization. Note, however, that Equation (4.95)
does not reduce to the unknown function in the g(x) = 1 case—see Section
4.2—due to the presence of ¢; as the input to the NN.

The overall closed-loop system can be summarized in the following form:

Z1 = —C121 + 2o
=—8() [z1 + c222 + WTS(Z) — €(2)] 4.97)
W=W=r(52)z —oW)

which has a similar form to Equation (4.12), except that the affine term g(x)
now appears in Equation (4.97).

THEOREM 4.4 (Stability and Tracking)

Consider the closed-loop system (4.97) consisting of the plant (4.69), the reference
model (4.89), the controller (4.90), and the NN adaptation law (4.96). For a suffi-

ciently large compact set Q, with initial conditions appropriately chosen, and with
W(0) = 0, we have that: (i) all the signals in the closed-loop system remain umformly
bounded; (ii) there exists a time Yy such that the NN input Z = [x1, xa, a1]" con-
verges to a small neighborhood of periodic signal Z(t) = [xa,(t), xa,(t), fa(xa(t))]”
for all t > Yy by appropriately choosing design parameters.

PROOF (i) Boundedness of all signals in the closed-loop can be proved sim-
ilarly to [65]. The details are omitted here.



88 Deterministic Learning Theory for Identification, Recognition, and Control

(ii) To achieve objective (ii), we require that without the PE condition, x
converges arbitrarily close to x; in a finite time Y;.

Following the analysis of adaptive neural control (see Section 4.2 for de-
tails), by appropriately choosing the controller parameters, there exist a small
constant u and a finite time Y, such that both z; and z; satisfy

Izl <p, i=12 (4.98)

Since z; = x1 —x;4,, we know that x; will converge to x4, . Fromz; = xp—oy =
Xo + €121 — Xg,, We get

lx2 — X4, = |22 — c12z1] < |z2| + c1]z1| < (L + ) (4.99)
which is a small value when p is small. Because & — f;(xy) = —c1(—c1z1 + 22),
we have
lay — fa(xq)l = | — c1(—c1z1 + 22)|
< cflzil + c1lz2|
<c(l1+c)u (4.100)

which is also small when p is small, and c; is appropriately chosen.

Thus, x1, xp, and &; converge closely to x;,, x4,, and fi(x4) in finite time
Y1. Therefore, the NN input Z = [x1, x2, &1]” is made as recurrent as Z; =
[x4,, X4, fd(xd)]T for all t > Y. This ends the proof. M

To achieve deterministic learning for closed-loop system (4.97), two difficul-
ties arise: (i) the satisfaction of the PE condition of S(Z); and (ii) exponential
stability of the closed-loop control system. In Sections 4.2 and 4.3, the first
difficulty has been successfully overcome in two steps: (1) state tracking con-
vergence in finite time by adaptive neural control without the PE condition,
and (2) satisfaction of the PE condition for a regression subvector S, (Z) thanks
to the properties of RBF networks and the state tracking.

For the second difficulty, because of the existence of affine term g(x), expo-
nential stability of closed-loop control system (4.97) cannot be guaranteed
directly using existing stability theorems of adaptive control [92,161,199].
Compared with the results discussed in Section 4.2, (4.97) represents a more
general adaptive system. To overcome this difficulty, we introduce a state
transformation, such that system (4.97) is described in the form of LTV sys-
tem (4.70), and exponential stability of the closed-loop system is achieved by
using Lemma 4.1.

By using the local property of the Gaussian RBF network, after time Yy,
system (4.97) can be expressed in the following form along the tracking orbit
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@ (Z(1))li= as:

Zl —C121 + 22

= _g(x) [Zl + 222 + W S;(Z) ] (4.101)
Wc W, =Te(S:(2)z — UW;)

We = Wr = Te(S:(2)z — o ) (4.102)

where 5;(Z) is a subvector of S(Z), W; is the corresponding weight subvector,
the subscrlpt ¢ stands for the region far away from the trajectory ¢, (Z(t))i=,,
and €, =€, — W Se(z) = O(e;).

THEOREM 4.5 (Learning)

Consider the closed-loop system (4.97) consisting of the plant (4.69), the reference
model (4.89), the controller (4.90), and the NN adaptation law (4.96). For a suffi-
ciently large compact set Q, with initial conditions and control parameters appro-
priately chosen, and with W(0) = 0, we have that the neural-weight estimates W;
converge to small neighborhoods of their optimal values W}, and the locally accurate
approximation of controller dynamics h(Z) = (f(x) — &1)/g(x) along the tracking
orbit @ (z(t))|e>~ is obtained by WT S(Z) to the error level €, as well as by W' S(Z),
where

W = meanqs, 5, W(t) (4.103)
with [t,, t], t, > t, > Y representing a time segment after the transient process.

PROOF The closed-loop system can be represented in the following LTV

form:
2 —C1 1 0 21
o= -g® —cg(x) —gS(2) || 2
W, 0 I:S5(2) 0 W
0
+1 g(x)e (4.104)

We introduce a state transformation to modify the influence of the pertur-
bation term caused by the NN approximation error. Then the parameter con-
vergence can be guaranteed by exponential stability of the nominal system.

Lete; = z1, 60 = 20/g(x), and 6 = W (with a little abuse of notation), then
system (4.101) is transformed into

e1 = —cie1 + g(x)ez

by = —eq — [Qg(x) +49 ]ez —07ST(Z) + ¢ (4.105)
0 =Tg(x)S:(Z)es — o T W,
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that is,
e1 A) 0 e1
ér | = —S[(Z) || ez
6 0 TegS@) [ 0 0
0
+ € (4.106)
with
At) - 8 (4.107)
1) = ; .
-1 - [ng(x) + gfg%]

Because |eé| and |lo Fgf/\\/{ | are small, system (4.106) can be considered a
perturbed system [111].
Consider the nominal part of perturbed system (4.106); that is,

1 A 0 el

6 | = ® ') || e (4.108)

0 0 T:5@3gkx) | 0 0

Let
T e
BT(t) = [ S{T(Z(t)):| (4.109)
P(t) = 1 0 (4.110)
S0 g(x(®) ‘

Then from the definitions of A(t) and P(t) in (4.107) and (4.110), we have
R T —2C1 0
P+PA+AP= 5 . (4.111)
0 —208%(x) — §(x)

The satisfaction of Assumption 2.1 can be easily checked. From Assump-
tions 4.3 and 4.4, ¢, can be found such that
gz(x) -
§%(x)
and the negative definiteness of P + PA + AT P is guaranteed with P positive
definite. Thus, Assumption 4.2 is satisfied.

0

2c¢y +
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From Theorem 4.4, after time Y4, the NN input can follow a recurrent orbit,
and the partial PE condition [242] can be satisfied by the regression subvector
S¢(Z), which consists of RBFs with centers located in a neighborhood of the
tracking orbit ¢, (Z(t))|i>, -

Then, for the nominal system (4.108), uniform exponential stability is guar-
anteed by Lemma 4.1. For the perturbed system (4.106), by using Theorem
2.6, the parameter error § = W, converges exponentially to a small neigh-
borhood of zero in a finite time Y, with the sizes of the neighborhoods being
determined by €* and o ||F; W* Il

The convergence of W; to a small neighborhood of W; implies that along
the trajectory ¢ (Z(t))|t>y, we have

hZ) = W;TS.(Z) + e
= W/'S:(2) - W] S:(2) + ¢,

= W/ S:(2) + ¢, (4.112)

where ¢, = ¢, — VNV{T S5:(Z) = 0(e;) is close to €, due to the convergence of
Wg 5:(2).
Choosing W according to Equations (4.103) and (4.112) can be expressed as

WZ) = W] S;(2) + ¢,

=W/S(Z) + e, (4.113)

where W = [W;,, ..., Wj;]" is the subvector of W, and ¢, is an error arising
from using Wg S¢(Z) as the system approximation. It is clear that after the
transient process, €;, = O(e,).

On the other hand, due to the localization property of Gaussian RBFs, both
S¢(Z) and WT Sg(Z) are very small. This means thatalong trajectory ¢, (z(t)) s>
the entire RBF network WT $(Z) and W 5(Z) can approximate the unknown
h(Z) as

WZ) = W;TS(Z) +
= WTS(Z) + &
=WTS(2) + & (4.114)
where €1 = O(€;) = O(¢), €2 = O(er2) = O(e). It is seen that WTS(Z) and
WT S(Z) are capable of approximating the unknown nonlinearity #(Z) along

the tracking orbit ¢, (Z(t))|:>r [and the reference orbit ¢;(Z,(t))] to the error
level €. This ends the proof. W
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REMARK 4.11

In the above analysis, it is seen that for nonlinear systems in Brunovsky form,
closed-loop identification of i(Z) is achieved. Note that the closed-loop dy-
namics /(Z) is not simply a nonlinear function of the plant, but the con-
trol system dynamics determined by the plant, the reference model, and the
controller. Thus, from the viewpoint of system identification, deterministic
learning provides a simple and effective approach for identification of closed-
loop dynamics.

REMARK 4.12

For indirect adaptive NN control, in which neural networks are used to ap-
proximate the system dynamics of the plant, for example, f(x) and g(x) in
Equation (4.69), or fi(x1) and f2(x1, x2) in Equation (4.41), the stability proof
tends to be much more algebraically involved than the proof of the direct
ANC approach [269]. Concerning the issues of learning from indirect ANC,
it is analyzed in [240] that the indirect ANC approach may not lead to ac-
curate approximations of system dynamics f(x) and g(x) in Equation (4.69)
even when the PE condition is satisfied. From the perspective of learning, it
appears that the direct ANC approach is simpler to guarantee learning than
the indirect approach. Although there are difficulties in establishing learning
from the indirect ANC of nonlinear systems, a detailed comparison requires
more study.

4.4.3 Simulation Studies

To verify the neural learning and control approach presented in this section,
the following plant is taken:

5Cl = X2
X = —x1 +0.7(1 — xf)x, + (2 + 0.5sin x;)u (4.115)
where the smooth functions f(x1, x2) = —x; + 0.7(1 — xlz)xz and g(x1) =

2 4 0.5sin x; are considered as unknown in the controller design.

The reference trajectory is generated from the Duffing oscillator (4.40), with
parameters p; = 0.4, pp = —1.1, p3 = 1.0, w = 1.8, and g = 1.498. The initial
states of the reference model are [x4 (0), xdz(O)]T = [0.2,0.3]" as shown in
Figure 4.5.

We construct the Gaussian RBF network W' S(Z) using 243 nodes (i.e.,
N = 243), with the centers u; evenly spaced on [-3.0, 3.0] x [-3.0,3.0] x
[-3.0,3.0], and the widths n; = 1.5. The design parameters are ¢c; = 10,
c; =15, T = 10, and o = 0.01. The initial weights W(0) = 0, and the initial
states [x1(0), x2(0)]" =0, 0].

The state tracking performance is shown in Figure 4.5. The control input
is shown in Figure 4.6. In Figure 4.7, the parameter convergence is shown,
and it is clear that the L, norm of the NN weights W converges to a value.
From Figure 4.8, it can be seen more intuitively that just part of the neural
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FIGURE 4.5
Tracking convergence: x (“—"), xa (“--").

weights converge to relatively larger values, while many other neural weights
remain 0 or a small values. This is consistent with satisfaction of the par-
tial PE condition. Figure 4.9 shows the approximation of the control system
dynamics h(Z).
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FIGURE 4.6
The control u of adaptive neural control.
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Partial parameter convergence w.
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FIGURE 4.9
Function approximation: #(Z)(“~"), huu(Z)(“- -").

4.5 Summary

As control is often the main motivation for system identification in the sys-
tems and control community, identification for model-based control has led
to a challenging problem of closed-loop identification [48]. The basic idea
of closed-loop identification is that the estimated models are acceptable as
long as the control performance is achieved [48]. In other words, because
identification of a true nonlinear system model is too difficult to be achieved,
identification of a true closed-loop system model is not the objective in the
literature of system identification, and so is considered unnecessary.

In this chapter, we have presented methods for deterministic learning from
closed-loop control of several classes of nonlinear systems. It has been shown
that locally accurate closed-loop identification of the unknown system dy-
namics can be achieved during tracking control to recurrent reference orbits
via direct adaptive NN control. Specifically, the partial PE condition of the
internal closed-loop signals has been shown to be satisfied when the system
states closely track the recurrent states of the reference model, and locally
accurate NN approximation of closed-loop system dynamics is achieved in a
region along the recurrent tracking orbit. For the neurons centered close to the
tracking orbit, their neural weights converge to a small neighborhood of a set
of optimal values, while for the other neurons far away from the tracking or-
bit, the neural weights are updated only slightly. Thus, it has been shown that
deterministic learning is capable of obtaining knowledge of control system
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dynamics from closed-loop control processes. The knowledge obtained can
be utilized in another similar control task to achieve guaranteed stability and
improved control performance. As we will see later, the capabilities of de-
terministic learning control systems for obtaining and utilizing knowledge
reveal a higher level of intelligence and a higher degree of autonomy com-
pared with conventional adaptive control systems.



5

Dynamical Pattern Recognition

5.1 Introduction

Recognition of temporal or dynamical patterns is among the most difficult
tasks in the pattern recognition area. Nonetheless, it is noticed that humans
generally excel in dealing with such patterns as they do in speech recogni-
tion, high performance sports, and rescue operations. Human recognition of
temporal patterns is an integrated process, in which patterns of information
distributed over time can be effectively identified, represented, recognized,
and classified. A distinguishing feature of the human recognition process is
that it takes place quickly from the beginning of sensing temporal patterns,
and runs directly on the input space for feature extraction and pattern match-
ing. These recognition mechanisms, although not fully understood, appear to
be quite different from the existing neural network and statistical approaches
for pattern recognition. Although a great deal of progress has been made in the
area of recognition of static patterns, only limited success has been reported
in the literature for rapid recognition of temporal patterns.

One early result for classification of spatio-temporal patterns is Grossberg’s
formal avalanche structure [72]. A popular approach for temporal pattern
processing is to construct short-term memory (STM) models, such as delay
lines [236], decay traces [101,251], and exponential kernels [217]. These STM
models are then embedded into different neural network architectures. For
example, the time delay neural network (TDNN) is proposed by combining
multilayer perceptrons (MLPs) with the delay line model [236]. With STM
models, a temporal pattern is represented as a sequence of pattern states, and
recognition of temporal patterns is made quite similar to the recognition of
static patterns. From our point of view, it appears a limited approach to treat
temporal patterns as multiple static patterns.

In temporal pattern recognition, there are some fundamental issues that
need to be addressed. Among the numerous unresolved problems in this
field, one of the most fundamental issues is how to appropriately represent
the time-varying patterns in a time-independent manner [34]. Another im-
portant problem currently studied in this area is the definition of similar-
ity between two temporal patterns. As temporal patterns evolve with time,
the existing similarity measures developed for static patterns do not seem
appropriate.

97
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In this chapter, we investigate the recognition of a class of temporal patterns,
which are generated from a general nonlinear dynamical system:

F=F(xp),  x(h)=x (5.1)

where x = [xy, ..., x,]T € R" is the state of the system, p is a vector of sys-
tem parameters, and F (x; p) = [ fi(x; p), ..., fu(x; p)]T represents the system
dynamics, in which each f;(x; p) is an unknown, continuous nonlinear func-
tion.

A dynamical pattern is defined as a recurrent system trajectory generated
from the above dynamical system. The class of recurrent trajectories includes
periodic, quasi-periodic, almost-periodic, and even chaotic trajectories, which
are some of the most important types of trajectories generated from nonlinear
dynamical systems. Nonlinear dynamical system theory has been found use-
ful for explanation of the formation of numerous dynamical patterns in areas
such as hydrodynamics, oceanography, meteorology, biological morphody-
namics, and semiconductors [14,75,187]. In other words, nonlinear dynam-
ical systems are capable of exhibiting various types of dynamical patterns.
Therefore, the definition of a dynamical pattern above covers a wide class of
temporal patterns studied in the literature.

The general recognition process for a dynamical pattern usually consists of
two phases: the identification phase and the recognition phase. Here, “identi-
fication” involves working out the essential features of a pattern one does not
recognize, whereas “recognition” means looking at a pattern and realizing
that it is the same or a similar pattern to one seen earlier. For identification of
dynamical patterns, we can use deterministic learning for nonlinear dynami-
cal systems as described in Chapter 3. Locally accurate NN approximation of
the underlying system dynamics F (x; p) within a dynamical pattern can be
achieved by using localized RBF networks. Through deterministic learning,
fundamental knowledge of dynamical patterns is obtained in the identifica-
tion phase and is stored as constant RBF neural weights.

In this chapter, based on the deterministic learning mechanism presented in
Chapter 3, a unified framework is proposed for effective representation, sim-
ilarity characterization, and rapid recognition of dynamical patterns. First
in Section 5.2, it is shown that a time-varying dynamical pattern can be
effectively represented in a time-invariant and spatially distributed manner
through deterministic learning. Second, a definition for characterizing simi-
larity of dynamical patterns is given in Section 5.3 based on system dynam-
ics inherently within dynamical patterns. Third, in Section 5.4, a mechanism
for rapid recognition of dynamical patterns is presented, which reveals how
the learned knowledge is utilized in the recognition phase. A test dynami-
cal pattern is recognized as similar to a training dynamical pattern if state
synchronization is achieved according to a kind of internal and dynamical
matching on system dynamics. The synchronization errors can be taken as the
measure of similarity between the test and training patterns. It is shown that
due to knowledge utilization, the problem of dynamical pattern recognition is
converted into one of the stability and convergence of a linear time-invariant
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(LTI) recognition error system. Finally in Section 5.5, the construction of recog-
nition systems for dynamical pattern classification is investigated. The work
of this chapter draws substantially on the papers [239,244].

5.2 Time-Invariant Representation

In static pattern recognition, a pattern is usually a set of time-invariant mea-
surements or observations represented in vector or matrix notation [19,95].
The dimensionality of the vector or matrix representation is generally kept
as small as possible by using a limited yet salient feature set for purposes
such as removing redundant information and improving classification per-
formance. For example, in statistical pattern recognition, a pattern is repre-
sented by a set of d features, or a d-dimensional feature vector which yields a
d-dimensional feature space. Subsequently, the task of recognition or classi-
fication is accomplished when the d-dimensional feature space is partitioned
into compact and disjoint regions, and decision boundaries are constructed
in the feature space that separate patterns from different classes into different
regions [95,254].

For dynamical patterns, because the measurements are mostly time-varying
in nature, the above framework for static patterns may not be suitable for
representation of dynamical patterns. As indicated in [34], if the time at-
tribute could not be appropriately dealt with, the problem of time-independent
representation without loss of discrimination power and classification accu-
racy would be a very difficult task for temporal /dynamical pattern recog-
nition. Furthermore, without a proper representation of dynamical patterns,
the problem of how to define the similarity between two dynamical patterns
will become another difficulty.

In this section, based on deterministic learning theory, we show that by
using the constant RBF networks obtained through deterministic learning,
time-varying dynamical patterns can be effectively represented by the locally
accurate NN approximations of system dynamics F (x; p). The information
is stored by a large number of neurons distributed along the state trajectory
of a dynamical pattern. It is shown that the representation is essential for
similarity definition and rapid recognition of dynamical patterns.

5.2.1 Static Representation

As introduced in Chapter 3, the system dynamics F(x; p) = [fi(x;p), ...,
fa(x; p)]T of adynamical pattern ¢, canbe accurately approximated by W S(x)
(i =1,...,n) in a local region along the recurrent orbit of the dynamical
pattern ¢,. The constant RBF network W S(x) consists of two types of neural
weights: (i) for neurons whose centers are close to the orbit ¢, (x), their neural
weights W;; converge exponentially to a small neighborhood of their optimal
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values W;;; and (ii) for the neurons with centers far away from the orbit ¢, (xo),
the neural weights Wy; will remain almost 0. Thus, constant neural weights are
obtained for all neurons of the entire RBF network W/ S(x). Accordingly, from
Theorem 3.1 and Corollary 3.1, we have the following statements concerning

the representation of a dynamical pattern:

1. A dynamical pattern ¢, can be represented by using the constant
RBF network W' Si(x) (i = 1,...,n), which provides an NN ap-
proximation of the time-invariant system dynamics fi(x;p) (i =
1,..., n). This representation, based on the fundamental informa-
tion extracted from the dynamical pattern ¢,, is independent of
time. The NN approximation W/ S;(x) is accurate only in a local re-
gion (denoted as ,,) along the orbit ¢,(xo). The locally accurate
NN approximation provides an efficient solution to the problem of
representation of time-varying dynamical patterns.

2. The representation by W S;(x) is spatially distributed in the sense
that relevant information is stored in a large number of neurons
distributed along the state trajectory of a dynamical pattern. It shows
that for appropriate representation of a dynamical pattern, complete
information on both the pattern state and the underlying system dy-
namics is utilized. Specifically, a dynamical pattern is represented
by using information on its state trajectory (starting from an initial
condition), plus its underlying system dynamics along the state tra-
jectory. Intuitively, the spatially distributed information implies that
a representation using a limited number of extracted features (as in
static pattern recognition) is probably incomplete for representation
of dynamical patterns in many situations.

Concerning the locally accurate NN approximation, the local region 2, is
described by

Q= {x | dist(x, ¢;) <d =
W'Si(x) — filx; p)| <&, i=1,...,n} (5.2)
where d, & > 0 are constants; él-*_ = O(¢/") is the approximation error within
Q,,. This knowledge stored in W 5;(x) can be recalled in such a way that

whenever the NN input Z(= x) enters the region Q, , the RBF network
W S;(x) will provide accurate approximation to the dynamics f;(x; p).

5.2.2 Dynamic Representation

Note that the representation by W S;(x) is not used directly for recognition,
that is, recognition by direct comparison of the corresponding neural weights.
Instead, for a training dynamical pattern ¢,, we construct a dynamical model
using W Si(x) (i =1, ..., n)as:

%= —B(% —x) + W Sa(x) (5.3)
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where X = [y, ..., %,]T is the state of the dynamical model, x is the state of
an input pattern generated from system (5.1), W' Sx(x) = [W[ Si(x), ..., W
Su(x)]" are constant RBF networks obtained through deterministic learning,
B = diag{b, ..., b,} is a diagonal matrix, with b; > 0 normally smaller than
a; (a; is given in Equation [3.2]) and Sa(x) = diag{Si(x), ..., Su.(x)}.

Itis clearly seen that the representation of dynamical patterns is quite differ-
ent from the representation used in static pattern recognition. As detailed in
Section 5.4, the dynamical model (5.3) is used as a representative of the train-
ing dynamical pattern ¢, for rapid recognition of test dynamical patterns.

5.2.3 Simulations

Consider the two dynamical patterns generated again from the Duffing os-
cillator [28,40]

X1 =X
Xo = —paxy — p3xf — p1x2 + q cos(wt) (5.4)

where x = [x1, %]7 is the state, p1, P2, p3, w, and g are constant parameters,
the system dynamics fo(x; p) = —pax1 — p3x] — p1x2 is an unknown, smooth
nonlinear function, and g cos(wt) is a known periodic term which makes the
behaviors of the Duffing oscillator more interesting [28].

The Duffing oscillator has been used in Chapter 4 as the reference model
generating the recurrent reference trajectories. It is used here again because it
can generate many types of dynamical behaviors, including periodic, quasi-
periodic, and chaotic dynamical patterns. The periodic pattern and the chaotic
pattern (shown in Figure 5.1, denoted as ¢; and ¢, respectively), are used
to demonstrate the result of this section. Pattern (p; is generated from system
(5.4), with initial condition x(0) = [x1(0), x2(0)]T =[0.0, —1.8]” and system pa-
rameters p; = 0.55, p, = —1.1, p3 = 1.0, w = 1.8, and g = 1.498. Pattern go? is
generated with the same system parameters except p; = 0.35.

The following dynamical RBF network, which is slightly modified from
Equation (3.2), is employed to identify the unknown dynamics f,(x; p) of the
two training dynamical patterns ¢; and ¢,

£y = —ax( — x2) + WI S(x) — g cos(wt) (5.5)

The RBF network VVZT Sy(x) is constructed in a regular lattice, with nodes
N =441, the centers u; evenly spaced on [-3.0,3.0] x [-3.0,3.0], and the
widths 7; =0.3. The weights of the RBF networks are updated according to
Equation (3.5). The design parameters for Equations (5.5) and (3.5) area, = 5,
I’ = 2, and oy = 0.001. The initial weights 17\/2(0) =0.0.
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Periodic and chaotic dynamical patterns.

The phase portrait of dynamical pattern gog is shown in Figure 5.2a. Its
corresponding system dynamics f>(x; p) is shown in Figure 5.2b. Through
deterministic learning, the system dynamics f,(x; p) of dynamical pattern <p§
can be locally accurately identified. According to Theorem 3.1, exponential
convergence of a closed-loop identification system, as well as the convergence
of W;» (a subvector of Wz) is obtained. In Figure 5.2¢, it is seen that some
weight estimates (of the neurons whose centers are close to the orbit of the
pattern) converge to constant values, whereas some other weight estimates
(of neurons centered far away from the orbit) are almost zero. The locally
accurate NN approximation of f>(x; p) along the orbit of the periodic pattern
<p§ is clearly shown in Figures 5.2d and e. In Figure 5.2f, dynamical pattern
¢, is represented by the constant RBF network W, S(x). This representation is
definitely time-invariant, based on the fundamental information of the system
dynamics. It is also spatially distributed, involving a large number of neurons
distributed along the orbit of the dynamical pattern. The NN approximation is
accurate only in the vicinity of the periodic pattern. For the other region where
the orbit of the pattern does not explore, no learning occurs, corresponding
to the zero-plane in Figure 5.2f, that is, the small values of W) S,(x) in the
unexplored area.
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Identification of periodic pattern w}.
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Similarly, consider the chaotic pattern 90?. Pattern (p? is generated from sys-
tem (5.4), with initial condition x(0) = [x1(0), x2(0)]" =[0.3, —1.2]" and sys-
tem parameters p1 =0.35,p» = —1.1, p3 = 1.0,w = 1.8, and g = 1.498.
From Figures 5.3a and b, we can see the phase portrait and the system dy-
namics f>(x; p) of the chaotic pattern go?. The locally accurate NN approxi-
mation of system dynamics f>(x; p) along the orbit of the pattern is shown
in Figures 5.3d and e. Figure 5.3f shows the time-invariant representation
of chaotic pattern 7. It reveals that although the chaotic pattern ¢} looks
more complicated than the periodic pattern go}, the representation of a chaotic
dynamical pattern can be processed in a similar way as that of a periodic
dynamical pattern.

5.3 A Fundamental Similarity Measure

In temporal pattern recognition, the problem of characterizing the similarity
between temporal or dynamical patterns is another important and difficult
problem. In the literature of pattern recognition, there are many definitions
for similarity of static patterns, most of which are based on distances, for
example, Euclidean distance, Manhattan distance, and cosine distance [254].
To define the similarity of two dynamical patterns, the existing similarity
measures developed for static patterns might become inappropriate. As dy-
namical patterns are defined as recurrent trajectories generated from nonlin-
ear dynamical systems, it is known that small changes in initial states of the
trajectory or system parameters may yield very different dynamical behav-
iors. This implies that it is rather difficult to characterize the similarity of two
dynamical patterns via computing certain distances obtained simply from the
time-varying states of the recurrent trajectories.

From the qualitative analysis of nonlinear dynamical systems [206,207], it
is understood that the similarity between two dynamical behaviors lies in the
topological equivalence and structural stability of two dynamical systems. Thus,
the similarity of dynamical patterns is determined by the similarity of the sys-
tem dynamics inherently within these dynamical patterns. In this chapter, we
propose a similarity definition for dynamical patterns based on information
from both system dynamics and pattern states: dynamical pattern A is similar
to dynamical pattern B if (i) the state of pattern A stays within a local region of
the state of pattern B, and (ii) the difference between the corresponding system
dynamics along the state trajectory of pattern A is small. Itis seen that the time
dependence of dynamical patterns is excluded from the similarity definition.

Tobe specific, consider the dynamical pattern ¢, (as givenby Equation [5.1]),
and another dynamical pattern (denoted as ¢.(x.o, p’) or ¢.) generated from
the following nonlinear dynamical system:

X =F'(x;p), x(fo) = xc0 (5.6)
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where the initial condition x, the system parameter vector p’, and sub-
sequently the nonlinear vector field F'(x; p') = [f{(x; p'), ..., fu(x; p)]7, are
possibly different from those for dynamical pattern ¢, . Because small changes
in x(fy) or p’ (or p in Equation [5.1]) may lead to large change of x(t), itis clear
that the similarity of dynamical patterns ¢, and ¢, cannot be established by
using only the time-varying states x(¢) of the patterns, or by some nonfunda-
mental feature extracted from x(t).
We propose the following definition of similarity for dynamical patterns.

DEFINITION 5.1

For two dynamical patterns ¢. (given by Equation [5.6]) and ¢, (given by
Equation [5.1]) consider the differences between the corresponding system
dynamics along the orbit of pattern ¢, i.e., Afi = |fi(x; p) — f/(x; p')| < &f
(i =1,...,n), where ¢ is a finite positive constant. Dynamical pattern ¢ is
said to be similar to dynamical pattern g, if the state of pattern ¢ stays within
a neighborhood region of the state of pattern ¢, and ¢, called the similarity
measure, is small.

In the above definition, no assumption is made about whether f;(x; p)
or f/(x;p’) is available from measurement for characterizing the similar-
ity. Suppose that through deterministic learning, system dynamics f;(x; p)
(i = 1,...,n) of pattern ¢, has been accurately identified and effectively
represented by constant RBF network I/_VI-T Si(x) 1 =1,...,n). Based on the
identification, we give the following definition characterizing how pattern ¢.
is recognized to be similar to pattern ¢,.

DEFINITION 5.2

For two dynamical patterns ¢. (given by Equation [5.6]) and ¢, (given by
Equation [5.1]) consider the approximate differences between the correspond-
ing system dynamics along the orbit of pattern ¢; thatis, A fx; = [WI S;(x) —
fllop)l <& +& (i =1,...,n), where ¢f is a finite positive constant, and
& is the approximation error given in Equation (5.2). Dynamical pattern ¢,
is recognized to be similar to dynamical pattern ¢, if the state of pattern ¢,
stays within a neighborhood region of the state of pattern ¢,, and & + £,
called the approximate similarity measure, is small.

Note that the differences A f; and A fy; are given along the periodic or
recurrent state of pattern ¢.. Thus, they are functions of pattern state x(t),
and can be described simply using the L, function norm

IAfilllo = max |fit;p)— fi(xp)|, i=1...,n (57)
Xe (xg[)/P)

Pe

12 frillioo = _max WSi(x) — f{(x; p)

x€pc(xc0, p

. i=1,...,n (58)
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Another more appropriate description of A f; and A fy; is to use the average
L, function norm:

1/p

1 to+t
1A filley = (;/t ]ﬁ(x;p)—ﬂ(x;p’)]%t) , i=1,...,n (59)

1/p

1 to+t _ ]
IA filly = <?/ W Si(x) — fl(x; p/)|’”dt> : i=1,...,n (5.10)
fo

where j represents the initial time after a transient process. The most useful
valuesof parep =1, 2.

REMARK 5.1

It is seen that the above similarity definitions are related to both the states
and system dynamics of the two dynamical patterns. They are based on the
time-invariant information of the system dynamics f;(x; p) and f/(x; p’) [or
W S(x)], which naturally include the information of system parameters. The
state information (including initial states of dynamical patterns) is also in-
volved. The above two definitions provide a reasonable way of measuring
similarity between dynamical patterns.

REMARK 5.2

In contrast to the similarity definitions for static patterns, it is seen from
Definitions 5.1 and 5.2 that pattern ¢. being similar (or being recognized
as similar) to pattern ¢, does not necessarily imply that the reverse is true.
Moreover, in Definition 5.2, pattern ¢, being recognized as similar to pattern
¢, refers to the case that correct recognition is based on accurate identification
of pattern ¢, .

Note that in Definition 5.2, system dynamics f/(x; p’) of pattern ¢ is still
unavailable. We show in Section 5.4 that Definition 5.2 will be useful in pro-
viding an explicit measure of similarity in rapid recognition of pattern ¢..

5.4 Rapid Recognition of Dynamical Patterns

In this section, we investigate the mechanism for rapid recognition of dynam-
ical patterns. To achieve recognition of a test pattern from a set of training pat-
terns, one possible method is to identify the system dynamics and represent
the test pattern by a constant RBF network (as done for training dynamical
patterns through deterministic learning), and then compare the correspond-
ing NN approximations with those of training dynamical patterns. One prob-
lem with such a method is that a direct comparison of NN approximations
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of system dynamics may be computationally demanding for the time avail-
able. For rapid recognition of a test dynamical pattern, it is preferred not to
identify the system dynamics again, and complicated computations should
be avoided as much as possible for easy and fast recognition.

Based on the time-invariant representation and the similarity measure, we
propose a mechanism for rapid recognition of dynamical patterns. Using the
constant RBF networks obtained in the identification phase, we construct a
dynamical model for each training dynamical pattern. The constant RBF net-
works can quickly recall the learned knowledge by providing accurate ap-
proximations to the previously learned system dynamics of a training pattern.
When a test pattern is presented to a dynamical model, a recognition error
system is formed, which consists of the system generating the test pattern and
the dynamical model corresponding to one of the training patterns. The recog-
nition error system is in the simple form of a disturbed linear time-invariant
(LTT) system, in which the differences of corresponding system dynamics are
taken as bounded disturbances. Without identifying the system dynamics of
the test pattern, and so without comparing system dynamics of corresponding
dynamical patterns via numerical computation, a kind of internal and dynam-
ical matching of system dynamics of the test and training pattern proceeds
in the recognition error system. The state synchronization errors are proven
to be approximately proportional to the differences of corresponding system
dynamics. The test dynamical pattern is thus being recognized as similar to a
training pattern if the state of the dynamical model synchronizes closely with
the state of the test pattern. Thus, the synchronization errors can be taken as
similarity measures between the test and the training dynamical patterns.

The recognition of a test dynamical pattern is achieved rapidly because the
recognition process takes place from the beginning of measuring the state
of the test pattern, without feature extraction from the test pattern (which
is normally required in existing neural networks and statistical approaches
for static pattern recognition [19,254]). The recognition process is automat-
ically implemented with the evolution of the recognition error system. The
significance of this approach is that the recognition process is a completely
dynamical process with knowledge utilization. In other words, the problem
of dynamical pattern recognition is turned into a problem of stability and
convergence of a recognition error system.

5.4.1 Problem Formulation
Consider a training set containing dynamical patterns <p’g, k=1,..., M,with
the kth training pattern (p’g generated from

i=Fix, ph), x(t) = (5.11)

where pF is the system parameter vector. As shown in Section 5.2, the system
dynamics F¥(x, p*) = [fF(x, p), ..., fK(x, p*)]T can be accurately identified
and stored in constant RBF networks WK' Sx(x) = [WF' S (x), ..., WE' S, (x)]T.
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Consider dynamical pattern ¢, (as given by Equation [5.6]) as a test pattern.
Without identifying the system dynamics of the test pattern ¢, the recogni-
tion problem is to search rapidly from the training dynamical patterns <p’£
(k =1,..., M) for those similar to the given test pattern ¢. in the sense of
Definition 5.2.

5.4.2 Rapid Recognition via Synchronization

In the following, we present how rapid recognition of dynamical patterns is
achieved. For the kth (k = 1, ..., M) training pattern <p’§ ,a d;marnical model
. . . . . . _k

is constructed by using the time-invariant representation W*' 5S(x) as:

i = —B(@ — x) + WK Sa(x) (5.12)

where xt = [zF, ..., %X]7 is the state of the dynamical (template) model, x
is the state of an input test pattern ¢. generated from Equation (5.6), and
B =diag{b, ..., by} is a diagonal matrix that is kept the same for all training
patterns. Note that b; (1 < i < n) is not chosen as a large value. Then, corre-
sponding to the test pattern ¢. and the dynamical model (5.12) (for training
pattern go’g), we obtain the following recognition error system:

&= bR W S(x) — fl(x, p),  i=1,...,n (5.13)

where #f = ¥ — x; is the state tracking (or synchronization) error. It is clear
that system (5.13) is in the simple form of a linear time-invariant system with
bounded disturbance.

Note that without identifying the system dynamics of the test pattern ¢,
the difference on system dynamics of the test and training patterns, that is,
|WikT Si(x) — f/(x, p')I,is not available from direct computation. Nevertheless,
it will be shown that the difference between system dynamics can be explicitly
measured by |J?i~< |. Thus, if the state Xlk of the dynamical model (5.12) tracks
closely to (or synchronizes with) the state x of dynamical pattern ¢, that
is, |¥¥| is small, then the test pattern ¢, can be recognized as similar to the
training pattern <p’§‘ in the sense of Definition 5.2.

THEOREM 5.1

Consider the recognition error system (5.13) corresponding to test pattern ¢ and
the dynamical model (5.12) for training pattern <p’{‘. Then, the synchronization errors
% (i =1,...,n) converge exponentially to a neighborhood of zero. Furthermore, for
finite T, |%¥|;=7 is approximately proportional to the difference between the system
dynamics of test pattern ¢  and the identified system dynamics of training pattern <p’g .

PROOF To simplify the notion, we remove the superscript (-)* in the follow-
ing derivations.
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For the recognition error system (5.13), consider Lyapunov function V; =
132

3% Its derivative is
‘7i = fl'x;l‘ = —blflz - Xi (V_\/iTSi(x) - .fl'/(x" p/))
Note
1 -2 ~ (thT ’ ’
—5bifi = %W Si(x) = fi(xp)
1 ) ~ 1ioT / /
< =5 b} +1%I[WSi(x) — fi(x; p)]

_ W si@) - fie

14
2, (5.14)
Then, we have
L o (TS0~ flesp))
Vis gt 2,
_ Asz
b;Vi + 2, (5.15)
Denote p; := HAf N‘”’w . Then, Equation (5.15) gives
0 < Vi(t) < pi + (Vi(0) — p;)exp(—bit) (5.16)
From (5.16), we have
%2 <2p; + 2Vi(0)exp(—b;t) (5.17)

whichimplies that given v; > +/2p;i, there exists a finite time T, such that for all
t > T, the state tracking error %;(¢) will converge exponentially to a neighbor-
hood of zero, that s, |%;|;>1 < v;, with the size of the neighborhood v; approxi-
mately proportional to —AM , thatis, approximately proportional to & + €7,
and inversely proport1onal to b Thus, we have that |%;|;>7 (for finite T) is
approximately proportional to the difference between the system dynamics
fi{(x, p) of test pattern ¢. and the identified system dynamics V_V,-kT Si(x) of
training pattern (p’g. u

We noted that the difference between system dynamics of the test and
training patterns is not available from direct computation. From the above
analysis, it is seen that the difference between the system dynamics of the test
and training patterns can be explicitly measured by |%;|;>1. Thus, we take the
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following method to rapidly recognize a test dynamical pattern from a set of
training dynamical patterns:

1. Identify the system dynamics of a set of training dynamical patterns
gik=1,..., M

2. Construct a set of dynamical models (5.12) for the training dynam-
ical patterns <,o’;C .

3. Take the state x(t) of a test pattern ¢. as the RBFN input to the
dynamical models (5.12), and compute the average L, norm of the
state estimation error JZf-‘(t), for example, for p =1,

s = 2 .
1% O)lla = ; | %5 (t)|dt, i=1,...,n (5.18)
fo

4. Take the training dynamical pattern whose corresponding dynam-
ical model yields the smallest ||J?i~( ll;1 as the one most similar to the
test dynamical pattern ¢, in the sense of Definition 5.2.

REMARK 5.3

It is seen that the recognition is achieved due to the internal matching of
system dynamics according to |V_VikT Si(x) — fi(x, p")|, by utilizing the time-
invariant and spatially distributed representation and the similarity defini-
tion, which contain complete information on both states and system dynamics
of dynamical patterns. Recognition of a dynamical pattern is converted into
a problem of stability and convergence of a disturbed linear time-invariant
recognition error system (5.13). The recognition is automatically implemented
with the convergence of the recognition error system (5.13), and the outcome
of the process; that is, the synchronization error |%;|, is naturally taken as
the measure of similarity between the test and training patterns. The repre-
sentation, the similarity definition, and the recognition mechanism are three
important elements to the proposed recognition approach for dynamical
patterns.

REMARK 5.4

The recognition of a test pattern ¢. from a set of training patterns go’{‘ k =
1,..., M) is achieved in a parallel, rapid, and dynamic manner: (i) a recogni-
tion system is built up by using a set of dynamical models, each of them repre-
senting one training dynamical pattern, and recognition of the test pattern ¢,
from the set of training patterns <p’§< will proceed in a parallel way. (ii) Recog-
nition of the test pattern ¢, occurs rapidly, because the recognition process
takes place from the beginning of measuring the state x of the test pattern,
and ends within one period T of the recurrent trajectory of the test pattern;
moreover, because the recognition proceeds in a parallel manner, the time
of recognizing the test pattern from a large number of training patterns will
be the same as from a few (e.g., two) training patterns. (iii) The recognition
process does not need any feature extraction procedure for the test dynamical



112 Deterministic Learning Theory for Identification, Recognition, and Control

pattern. It also does not need to compare the states or system dynamics of
the test pattern with those of the set of training patterns by any form of static
numerical computation. Recognition of a dynamical pattern is achieved in a
completely dynamic manner.

5.4.3 Simulations

To verify the rapid recognition approach, we take dynamical patterns <p} and
@7 used in Section 5.2 as two training dynamical patterns. Using the time-
invariant representations V_\ffr Sy(x) (k = 1,2) obtained in Section 5.2, two
dynamical models are constructed according to (5.12) for the two training
patterns as

2= —by(xk — 1) + WE S (x) — g cos(wt);  k=1,2 (5.19)

where %} is the state of the dynamical model for training pattern <p’§, x is
the state of the test pattern described below, and b, > 0 is a design constant,
which should not be a large value (b, = 2 in this section).

Two periodic patterns and one chaotic pattern, as shown in Figure 5.4, are
used as the test patterns ¢!, ¢2; and ¢?. Test pattern ¢! is generated from
system (5.4), with initial condition x(0) = [x1(0), x2(0)]" =[0.0, —1.8]" and
system parameters p; = 0.6, p» = —1.1, p3 = 1.0, w = 1.8,and g = 1.498. Test
patterns (p? and (p? are also generated from system (5.4). The initial condition
and system parameters of test patterns ¢Z and ¢ are the same as those of test
pattern 1, except that p; = 0.4 and p; = 0.33, respectively.

First, consider the recognition of test pattern ¢ by training patterns ¢; and
¢7. Figures 5.5a and b show the system dynamics f>(x; p) = —pax1 — p3xd —
p1x; along the orbit of test pattern ¢!, together with the RBFN approxima-
tions of the system dynamics of the training patterns ¢} and (p?, respectively.
The state synchronization or estimation errors X’E(t) (k =1, 2), are shown in
Figure 5.5¢ and d. The average /1 norms of the synchronization errors, that
is, ||9Z’§(t)||t1 (k = 1, 2), are shown in Figures 5.5e and f. It is clearly seen in
Figure 5.5f that from the beginning stage of the recognition process, ||%3(t)ll:1
is smaller than ||%5(t)[l;1. Thus, the test pattern <p51. is rapidly recognized as
more similar to training pattern gpg than to training pattern gp?.

Similarly, in recognition of test dynamical pattern ¢Z2, it is seen from Figure
5.6 that the test pattern (pf. is more similar to the chaotic training pattern (p?
than to the periodic training pattern ¢;. It is also seen from Figure 5.7 that
the test chaotic pattern ¢2 is more similar to the chaotic training pattern w?
than to the periodic training pattern ¢;. From Figures 5.5 to 5.7, we can see
that the recognition of the test dynamical patterns occurs quickly within a
very short period of time. Figures 5.5 through 5.7 also reveal that the chaotic
training pattern <p? is more representative than the periodic training pattern

¢; in rapid recognition of test dynamical patterns.
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(a) System dynamics f”(x; p”) along the (b) System dynamics f”(z; p”) along the
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5.5 Dynamical Pattern Classification

With the results on identification, representation, and recognition of dynam-
ical patterns, in this section we further investigate the construction of the
recognition systems for classification [239]. The problem is to assign a test dy-
namical pattern, ¢., to one of N classes ¥y, ..., ¥y, based on the predefined
similarity measure.

The recognition system is constructed as consisting of many dynamical
(template) models, as described in Equation (5.12). Each of the dynamical mod-
els is a dynamical RBF network representing one training dynamical pattern.
Moreover, each class of dynamical patterns is represented by a set of cho-
sen dynamical pattern templates or (prototypes), and is described by the
corresponding template dynamical models. As the similarity between two
dynamical patterns lies in the topological similarity of their underlying system
dynamics, and the similarity distances between various dynamical patterns
can be accurately measured by using the synchronization errors, the recogni-
tion system can be built up according to how the template dynamical models
are arranged, that is, in a specific order according to the qualitative analysis
of nonlinear dynamical systems [206] and the principle of minimal distance
or nearest-neighbor classification [95]. We show that a hierarchical structured
knowledge representation is set up based on the similarity of system dynam-
ics, in which the concepts of topological equivalence, structural stability, bi-
furcation, and chaos all together provide an inclusive classification of various
types of dynamic patterns.

The recognition system presented in this section can not only classify into
different classes of dynamical patterns but can also distinguish a set of dy-
namical patterns generated from the same class. It can also be designed to
identify bifurcation points, which actually form the boundaries between dif-
ferent subclasses of a set of dynamical patterns. The result of this chapter
provides mathematical insight into some recent hypotheses on the roles of
synchronization and chaos in brain science [54,210]. It also shows that the
mechanism for the human recognition process, although not fully understood,
is seemingly consistent with the mechanisms for deterministic learning and
dynamical pattern recognition studied here.

5.5.1 Nearest-Neighbor Decision

The nearest-neighbor decision rule is a commonly used classification algo-
rithm in pattern recognition [95], in which each class is represented by a set
of chosen templates (or prototypes). When an unknown pattern is to be clas-
sified, its closest neighbor (with minimum distance) is found from among
all the templates, and the class label is decided accordingly. If the number of
preclassified prototypes is large, it makes good sense to use, instead of the sin-
gle nearest neighbor, the majority vote of the nearest k neighbors. This method
is referred to as the k-nearest-neighbor rule [95]. (The value of k should be
odd to avoid ties on class-overlap regions.)
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For dynamical pattern recognition, we propose that the nearest-neighbor
classification, among many existing classification algorithms [95], is particu-
larly suitable due to the following reasons:

1. Through deterministic learning, each training dynamical pattern
can be accurately identified and correctly classified into categories.
This situation is in accordance with the principle of nearest-neighbor
classification, which normally does not assume any statistical
knowledge of the distribution of the test pattern and categories,
and depends only on a collection of correctly classified training
samples [95].

2. According to the recognition mechanism, the similarity distance
between the test and training dynamical patterns can be measured
by their synchronization errors, for example, ||%;];1. Note that by
deterministic learning, the fundamental information extracted from
a dynamical pattern is described in a spatially distributed manner.
Therefore, it is difficult to represent a dynamical pattern by a feature
vector in a d-dimensional pattern space as in traditional pattern
recognition. Nevertheless, the availability of the similarity distance
makes it natural to use the minimal distance or nearest-neighbor
decision rule for dynamical pattern classification.

3. The main problem with using the nearest-neighbor classification
is the computational complexity caused by the large number of
distance computations, in which all the distances between the in-
put pattern and the prototype patterns are computed. For realistic
pattern space dimensions, it is hard to find any variation of the
rule that would be significantly lighter than the brute force method
[95]. This major problem can be easily solved when the dynamical
models within the recognition system are disposed in a parallel
structure, such that by using the recognition mechanism described
in Section 5.4, the similarity distances between the test pattern and
all the training patterns are generated automatically and simulta-
neously in a dynamical recognition process.

5.5.2 Qualitative Analysis of Dynamical Patterns

As mentioned above, the recognition system is to be constructed with the
dynamical models being arranged in some specific order. This specific order
can be designed according to the qualitative analysis of nonlinear dynami-
cal systems [120,206,207], in which the concepts of topological equivalence
of dynamical systems, structural stability, bifurcation, and chaos together
provide an inclusive classification of various types of dynamic patterns. In
particular:

1. The concept of topological equivalence of dynamical systems is
proposed for the purpose of studying qualitative features of the
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behavior of different dynamical systems. Two dynamical systems
are considered as topologically equivalent if their phase portraits are
qualitatively similar, namely, if one portrait can be obtained from
another by a continuous transformation [120,206]. The concept of
topological equivalence can be used to define structural stability,
which describes dynamical behaviors whose phase portraits do not
change qualitatively under sufficiently small perturbations on sys-
tem dynamics. More specifically, for a dynamical system to be struc-
turally stable, it means that any system with sufficiently close system
dynamics is topologically equivalent to the given one [207]. Thus,
recurrent trajectories generated from structurally stable systems are
similar in the sense of Definition 5.1, and it is reasonable to say that
structurally stable dynamical patterns belong to the same subclass.

2. Whereas topological equivalence is related to structural stability, the
concept of topological nonequivalence yields bifurcation. When the
parameters of a dynamical system change, the appearance of a topo-
logically nonequivalent phase portrait is called a bifurcation. Thus,
a bifurcation is a change of the topological type of dynamical behav-
iors as a parameter-dependent dynamical system varies its param-
eters across a critical value referred to as a bifurcation point [120].
Bifurcation points form the bifurcation boundaries where structural
instability occurs. From our point of view, the bifurcation bound-
aries can be taken as the boundaries between different subclasses
of dynamical patterns.

3. A bifurcation diagram is a stratification of its parameter space in-
duced by the topological equivalence, together with representative
phase portraits for each stratum. A bifurcation diagram classifies in
a very condensed way all possible modes of behavior of dynamical
systems and transitions between them under parameter variations.
The bifurcation diagram of even a simple dynamical system may be
very complicated, composing an infinite number of strata. Nonethe-
less, only partial knowledge of the bifurcation diagram still provides
essential information on the dynamical behaviors of the dynamical
system [120]. Therefore, the bifurcation diagram can be naturally
taken as a classification diagram for dynamical behaviors and for
dynamical patterns.

Thus, all these elegant concepts from qualitative analysis of dynamical
systems can be useful to arrange the dynamical models into a specific order
in the recognition system construction.

5.5.3 A Hierarchical Structure

Assuming that the nearest-neighbor decision rule is used, each class is repre-
sented by a set of chosen templates (or prototypes). To save memory space,
it is desirable not to store all the identified training patterns as templates.
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Subsequently, an important question is how to choose the most representa-
tive patterns as appropriate templates, such that the number of templates
may be decreased without losing accuracy.

As stated in Chapter 3, all the dynamical patterns undergoing recurrent
motions, including quasi-periodic and chaotic ones, can be accurately identi-
fied by deterministic learning. Compared with the periodic patterns, quasi-
periodic and chaotic patterns are more spatially expanded, and usually occur
under a slight parameter variation. This means that the dynamical models cor-
responding to quasi-periodic and chaotic patterns are very suitable for use
as template models in the recognition system. Specifically, at the first level
of the hierarchical structure, a few chaotic patterns are chosen as templates,
according to the bifurcation diagrams, to represent classes of dynamical pat-
terns in a broad sense. In the subsequent levels, quasi-periodic and periodic
patterns are used to represent classes and subclasses of dynamical patterns. In
this way, the recognition system is constructed with the dynamical template
models being arranged according to a hierarchical structured knowledge rep-
resentation based on the similarity of system dynamics.

For demonstration, it is seen from Figures 5.6 and 5.7 that the test patterns
2 and 3 are being recognized as more similar to the chaotic training pattern
2, rather than similar to the periodic training pattern 1. From Figure 5.5, it is
seen that the test pattern 1 is being recognized as more similar to the periodic
training pattern 1, and also similar to the chaotic training pattern 2 (because
the difference is small). Thus, it is revealed that the chaotic training pattern 2
is more representative than the periodic one, and the corresponding (chaotic)
dynamical model can be taken as the template model and be arranged in the
first level in the recognition system construction. On the other hand, the pe-
riodic and quasi-periodic training patterns are also useful, because the corre-
sponding dynamical models can be used in the subsequent levels to improve
the classification accuracy and the discrimination capability.

REMARK 5.5

The results may provide support to the “dynamical hypothesis” in cogni-
tive science [228]: Natural cognitive systems are certain kinds of dynam-
ical systems, and are best understood from the perspective of dynamics.
In the proposed approach, it has been shown that identification, recogni-
tion, and classification of dynamical patterns are indeed best understood
from a viewpoint of stability analysis of linear time-varying or linear time-
invariant systems, using concepts and theories from system identification,
adaptive control, and dynamical systems. The result may also provide math-
ematical insight into the hypotheses on the roles of synchronization and
chaos in brain science. For example, it is stated in [54] that “The brain trans-
forms sensory messages into conscious perceptions almost instantly. Chaotic
collective activity involving millions of neurons seems essential for such
rapid recognition.” These hypotheses can be reasonably interpreted by our
results on the representation, recognition, and classification of dynamical
patterns.



Dynamical Pattern Recognition 121

REMARK 5.6
It is clear that the implementation of a comprehensive recognition system
requires the ability to integrate a large number of dynamical models, and
very large-scale circuits in silicon. This is becoming less of an issue than pre-
viously with the rapid development of microelectronics, especially on VLSI
technologies.

5.6 Summary

In this chapter, we have proposed an approach for rapid recognition of dy-
namical patterns. The elements of the recognition approach include: (i) a time-
invariant and spatially distributed representation for dynamical patterns; (ii)
a similarity measure based on system dynamics; and (iii) a mechanism in
which rapid recognition of dynamical patterns is achieved by state synchro-
nization. It has been shown that a time-varying dynamical pattern can be
effectively represented by using complete information on its state trajectory
and its underlying system dynamics along the state trajectory. Based on the
proposed similarity measure for dynamical patterns, a mechanism for rapid
recognition of dynamical patterns has been presented. Rapid recognition can
be automatically implemented in a dynamical recognition process without
conventional feature extraction. The outcome of the recognition process, that
is, the synchronization error, is naturally taken as the measure of similarity
between the test and training patterns. The dynamical recognition process
does not need to compare directly the states or system dynamics of the test
and training patterns by any form of numerical computation.

The proposed recognition approach can facilitate construction of recogni-
tion systems for dynamical pattern classification. The constructed recognition
system promises to be able to classify different classes of dynamical patterns,
and distinguish a set of dynamical patterns generated from the same class.
It can also be designed to detect bifurcation, which is an important task for
many industrial applications. Moreover, the proposed approach appears to
be consistent with mechanisms of human recognition of temporal patterns,
and may provide insight to natural cognitive systems from the perspective of
dynamics. It presents a new model for information processing, thatis, dynam-
ical parallel distributed processing (DPDP). When implemented in a hybrid
analog—digital manner, DPDP will increase significantly the computational
efficiency for information processing in uncertain dynamic environments.
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Pattern-Based Intelligent Control

6.1 Introduction

Pattern recognition was studied in the control literature in the 1960s together
with adaptive, learning, and self-organizing systems; see, for instance, [226].
In that time, a pattern in control was defined as a control situation that was
represented by a set of state variables. Information on a control situation
learned during the process of closed-loop control was taken as a control ex-
perience. Pattern recognition techniques were proposed to classify different
control situations. Based on the classification result, an experienced controller
corresponding to the specific control situation was selected to control the
system [56].

The idea of using pattern recognition to achieve an advanced intelligent
control mightbe motivated naturally by human learning and control, in which
pattern identification, recognition, and control together play important roles.
It has been observed that with sufficient practice a human can learn many
highly complicated control tasks, and these tasks can be performed again
and again by a proficient individual with little effort. The implementation of
the idea in technology, however, is very difficult. One problem, which was in-
dicated as early as in 1970 by Fu [56], is learning in nonstationary or dynamic
environments. This might be the most difficult problem in the area of adap-
tive and learning control systems. Other problems include representation,
rapid recognition, and classification of different patterns in control, that is,
control situations. It is obvious that conventional pattern recognition meth-
ods, for example, representation of nonstationary state variables by using
a finite number of different stationary patterns, and recognition techniques
for identification and classification of stationary patterns, are not suitable to
cope with these problems. A new framework is required to implement pattern
identification, recognition, and control in a unified way.

The deterministic learning (DL) theory presented in Chapters 3 to 5 pro-
vides elements toward a new framework for pattern-based learning control.
Through deterministic learning, the system dynamics of nonlinear dynami-
cal systems can be locally accurately identified. An appropriately designed
adaptive NN controller is shown capable of learning the closed-loop system

123
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dynamics during tracking control to recurrent reference trajectory. The
learned knowledge is represented as a time-invariant NN approximation
and is stored in a constant RBF network. Moreover, a DL-based approach
is proposed for representation, similarity definition, and rapid recognition of
dynamical patterns. It is shown that dynamical patterns can be effectively
represented and stored in a time-invariant manner using a locally accurate
NN approximation of system dynamics. A similarity definition for dynam-
ical patterns is also given based on system dynamics. Based on the time-
invariant representation and the similarity definition, a scheme is proposed
in which rapid recognition of dynamical patterns can be implemented via
state estimation.

In this chapter, based on the aforementioned results, we propose a frame-
work for pattern-based intelligent control as follows. First, for different train-
ing control tasks, the system dynamics corresponding to the training control
tasks are identified via deterministic learning. A set of training dynamical
patterns is defined based on the identification. The representation and sim-
ilarity of dynamical patterns are also presented. A set of pattern-based NN
controllers is constructed accordingly. Second, a dynamical pattern classifi-
cation system is introduced that can rapidly recognize dynamical patterns
and switch quickly among the set of pattern-based NN controllers. For a test
control task, if the corresponding dynamical pattern is recognized as very
similar to one previous training pattern, then the NN controller correspond-
ing to the training pattern is selected and activated. Third, the selected NN
learning controller is used which can effectively exploit the learned knowl-
edge to achieve improved control performance without readapting to the
uncertainties in the closed-loop control process. This can be regarded as the
advantage of knowledge utilization in dynamical environments. Note that if
the control task corresponds to a dynamical pattern not experienced before,
the identification process (as in the first step) will be restarted. Time permit-
ting, the learned knowledge will yield a new NN controller which will be
added to the set of pattern-based NN controllers.

This chapter extends some earlier work by the authors in [243,247].

6.2 Pattern-Based Control

6.2.1 Definitions and Problem Formulation

Consider the system model

5(1:3(2

B o= ffx) +u ©61)
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where x = [x;, x2]T € R?, u € R are the state variables and system input, re-
spectively, f k(x) (k = 0,1,..., K) are the unknown smooth nonlinearities,
corresponding to different operating environments such as a normal state
(k = 0) and changes in system dynamics (or system parameters), faults in the
system, sensor failures, and external disturbances (k =1, ..., K). The control
task is tracking control of the system state x(¢) in all the environments to a set
of periodic or periodic-like reference orbits x,;(t) generated from the following
reference models:

(6.2)

{ 5(,;11 Xd,

o, = fi'(xa)

where x; = [x4,, X3,]" € R? is the system state and fJ(-) (m =1,..., M)isa

smooth nonlinear function. There are different reference tracking orbits x}'

corresponding to changes in initial conditions or system parameters.
Obviously, two types of dynamical patterns exist in the tracking control

process. They are referred to as reference dynamical patterns and closed-loop

dynamical patterns. The definitions of the two types of dynamical patterns are
as follows.

DEFINITION 6.1

A reference dynamical pattern is defined as a recurrent reference system trajec-
tory x4 (t)(Vt > 0) generated from the reference model. It is started from initial
condition x,4(0) and is denoted as ¢, for concise presentation.

DEFINITION 6.2

A closed-loop dynamical pattern is defined as a recurrent system state trajec-
tory x(t) generated from closed-loop tracking control to a recurrent reference
trajectory. It is started from initial condition x, and is denoted as ¢;.

REMARK 6.1

The reference dynamical pattern is related to the control task, but not related to
the plant and the controller. The closed-loop dynamical patternisrelated to the
control task, that is, tracking to a recurrent reference orbit, the corresponding
controller, and the closed-loop system dynamics.

The pattern-based control structure consists of a phase of identification and
another phase of recognition and control. More specifically, the objective of
pattern-based control is twofold: (i) to identify the system dynamics of dy-
namical patterns as well as the corresponding control dynamics, and construct
a set of pattern-based NN controllers by using the obtained control system
dynamics; and (ii) to rapidly recognize and classify dynamical patterns, and
select a pattern-based NN controller based on the classification to achieve
guaranteed stability and performance.
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6.2.2 Control Based on Reference Dynamical Patterns

Assume that there exist m reference dynamical patterns generated from ref-
erence model (6.2) in the control process, and the system dynamics f*(x) of
the plant (6.1) remains unchanged; that is, f¥(x) = f(x) for all k.

In this case, the pattern-based control process consists of the following
steps:

1. Identify the local system dynamics f;"(x4) of the reference dynami-
cal patterns. This can be conducted in the same way as in Chapter 3.
The identified reference patterns are represented as shown in
Chapter 5 by the locally accurate NN approximation f;" (xa)
achieved in a local region along the recurrent orbit xJ'(t).

2. Identify the local controlled system dynamics f(x) correspond-
ing to each reference dynamical pattern. This can be conducted
in the same way as in Chapter 4. The identified results are rep-
resented by the locally accurate NN approximation f,(x) achieved
in a local region along the recurrent orbit x(t) when x(t) — x;(f).
A set of pattern-based NN controllers is constructed accordingly
by using the obtained control system dynamics as follows (see
Equation [4.3]);

U = —z1 —cpzp — fr(x) +on (6.3)

wherem =1, ..., M.

3. Construct dynamic models using f;" (x4) and rapidly recognize a
test reference dynamical pattern via state synchronization or esti-
mation. This can be conducted in the same way as in Chapter 5.
The estimator with the smallest estimation error corresponds to the
training reference dynamical pattern which is most similar to the
test reference dynamical pattern.

4. Select the corresponding NN controller based on rapid recognition
and classification. The selected NN controller will be able to achieve
guaranteed stability and improved control performance.

Different tracking control tasks for the same system, that is, different refer-
ence orbits, will give many control system dynamics f,(x) as local models.
These local models can be merged to form a unified model f,,(x) valid for a
larger region, which implies that past experiences can be combined to make
up an “overall” experience. The overall experience clearly demonstrates the
“learning from experience” paradigm in AI [257]: the more experiences we
derive from some specific region, the better we would learn the system in that
region.

This result can be extended to pattern-based control of more general non-
linear systems as studied in Chapter 4.
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6.2.3 Control Based on Closed-Loop Dynamical Patterns

Assume that there exist k closed-loop dynamical patterns <pé‘ generated from
control of the plant (6.1) with different operating conditions and so with dif-
ferent system dynamics f*(x), while the reference orbit remains unchanged,
ie., fi"(x4) = fa(xs) for all m.

In this case, the pattern-based control process consists of the following
steps:

1. When the controlled system is operated under the normal con-
dition, identify the normal system dynamics f kx) (k = 0) [or
£9(x)] via adaptive NN control design, and construct a normal NN
controller by using the obtained control system dynamics £ (x) as
follows:

W= —2; —crzp — f,?n(x) + aq (6.4)
This can be conducted in the same way as in Chapter 4. The above
controller (6.4) will then be employed as the normal controller which
can achieve specified stability and performance.

2. When the plant is controlled by the normal NN controller 10, but the
system is operated under an unusual or abnormal condition (k # 0),
that is, the system dynamics is changed to f*(x) (k=1,..., N),
identify the underlying system dynamics g*(x, u°) = f¥(x) + u®
(k=1,..., N) of training closed-loop dynamical patterns go’;‘. Note
that in this case, the system is still controlled by the normal NN
controller 1%, which may not achieve the specified performance.
The identification of g*(x, u%) (k = 1, ..., N) can be conducted in
the same way as in Chapter 3. The identified training closed-loop
patterns are represented by the locally accurate NN approximation
Bk (x,u’) (k=1,..., N).

3. In the case of an abnormal condition, restart adaptive NN control
design to identify the abnormal system dynamics f*(x) (k =1, ...,
N) with guaranteed stability and tracking performance. This can be
conducted in the same way as in Chapter 4. We construct a set of
pattern-based NN controllers by using the obtained control system
dynamics as follows:

= —2y —cpzp — fr’fn(x) + day (6.5)

wherek =1,..., N.

4. Inthe recognition phase, construct dynamic models using %, (x, u°)
(k =1,..., N) and rapidly recognize a test closed-loop dynamical
pattern. This can be conducted in the same way as in Chapter 5.
The estimator with the smallest estimation error corresponds to the
training closed-loop dynamical pattern which is most similar to the
test closed-loop dynamical pattern.
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5. Select the corresponding NN controller #* based on the result of
rapid recognition. This NN controller will be able to achieve guar-
anteed stability and improved control performance.

REMARK 6.2

It is seen that due to the presence of control u, identification and recognition
of closed-loop dynamical patterns are more involved. The difficulty lies in
how to deal with the control input u and how to construct estimators as in
Chapter 5. In the above steps 2 and 4, identification and rapid recognition of
closed-loop dynamical patterns are processed under normal control #° which
is designed for normal system dynamics f?(x). Extension of this work to more
general systems requires more study.

6.3 Learning Control Using Experiences

In this section, we show that when the control situation (or dynamical pattern)
is correctly classified, the selected NN learning controller with knowledge
or experience is able to achieve guaranteed stability and improved control
performance. It is shown that with appropriate initial conditions, the NN
learning controller can achieve small tracking errors and fast convergence
rate with small control gains. Furthermore, the NN learning controller does
not need adaptation of neural weights; the NN controller is a low-order static
controller that can be more easily implemented. Thus, not only stability of
the closed-loop system is guaranteed, better performance is also achieved in
the aspects of time saving or energy saving. This demonstrates the benefits
of knowledge utilization in control processes.

6.3.1 Problem Formulation

Consider the following nonlinear system:

{ f= (6.6)

Xy = f'(x)+u

where f'(x) is the unknown smooth nonlinearity. Assume that system (6.6)
is similar to system (6.1) in the sense that max,cq_|f'(x) — FR(x)| < &, where
Q. is a compact set of interest.

Consider the following reference model:

Xdl = X4,
{m Fix) ©.7)
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which generates a reference dynamical pattern ¢;_ similar to one reference
dynamical pattern ¢’ generated from the reference model (6.2).

The control situations (either the reference dynamical pattern or the closed-
loop dynamical pattern) can be recognized and classified as in Section 6.2. The
objective of this section is to select an NN learning controller

U=—21 —Crzp —WLS(x) + (6.8)

where z3, 25, @1; and & are given in Equations (4.4) to (4.7); WT S(x) is the RBF
approximation to the control system dynamics f¥(x) obtained from the iden-
tification phases as in Section 6.2, such that (i) all the signals in the closed-loop
system remain bounded, and the state tracking error ¥ = x —x; converges ex-
ponentially to an arbitrarily small neighborhood of zero. (ii) Improved control
performance is obtained with smaller control gains, compared with the adap-
tive NN control approach (4.3) and (4.8). The performance is also compared
with that for a controller without using NN; that is,

U= —21 —CrZ + 0 (6.9)

REMARK 6.3

For the control objective (i), we do not try to achieve global or semiglobal
stability of the closed-loop system. Instead, the state tracking can only be
achieved for initial conditions started from the local region (as stated in Equa-
tion [4.38]), within which the NN approximation of f(x) can be guaranteed.

6.3.2 Neural Network Learning Control

The following theorem shows the stability and control performance of the
closed-loop system.

THEOREM 6.1

Consider the closed-loop system consisting of the plant (6.6), the reference model
(6.7), and the neural learning controller (6.8) with the neural weights W being given
by Equation (4.9). For initial condition x;(0) which generates the recurrent refer-
ence orbit (or the reference dynamical pattern) ¢q_, and with corresponding initial
condition x(0) in a close vicinity of ga_, we have that all signals in the closed-loop
system remain bounded, and the state tracking error X(t) = x(t) — x4(t) converges
exponentially to a small neighborhood around zero.

PROOF The derivatives of z; and z, are given as below.

Z] =X1—Xg, = X2 — Xg, = —C1Z1 + 2 (6.10)

Z=fl(x)+u—d =—2z; —cazp — WL S(x) + f'(x) (6.11)
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Consider the following Lyapunov function candidate:

1 1
V, = Ez% + Ezﬁ (6.12)

The derivative of V, is
Vz =2z121 + 222

= —128 — 275 — (W' S(x) — f'(x))

Because
1 — , WTS(x) — (%)
Lz n@ s - i) < VI =S (6.13)
2 262
we have
. 1 VVY‘S g 2
V., < —c128 — —cz5 + | @) - fl (6.14)

) 2,

Because x1 — x4, = z1, X2 — X4, = 2o — ¢121, for all ||x(t) — x4(t)|| < d, there

exists d; > 0 (with ||d| — |d1]|| small) such tha_t llzll < d1, where z = [z1, 0]
Using (i) the local knowledge stored in W corresponding to the training

reference dynamical pattern ¢/ and the control system dynamics f*(x), thatis,

dist(x, @) < dp = WTS(x) — f5(x)| < & (6.15)

(i) the test reference dynamical pattern ¢;_ is similar with one training ref-
erence dynamical pattern ¢’ which implies dist(¢s_, ¢}') < dcm and dist(x,
@4.) < d,and (iii) the test control system dynamics is similar with one training
control system dynamics f*(x) in the sense that

max | f'(x) — f5(x)| < &f (6.16)
xeQ,
we have
. 1 6*2 + 8*2
V. < —c123 — 5czzg + % (6.17)
holds in a local region when ||z|| < d;. Choose ¢ < %cz. Denote
*2 *2
5= & TE 6.18)
2C2
*2 *2
p = 8/2c; = eﬂlﬂ (6.19)
C1Cp

Then Equation (6.17) satisfies

0 = Vi(t) < p + (V(0) — p)exp(—2cit) (6.20)
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From Equation (6.20), we have

2
1
> 5% < P+ (V(0) = p)exp(—2c1t)
k=1
< p + Vz(0)exp(—2c1t) (6.21)
That is,
2
>z < 2p +2V.(0)exp(—2c1t) (6.22)
k=1

Since €; is a small value thanks to the previous accurate learning as de-
scribed in Section 4.2, &} is small by definition; p = % can be made very
small without high control gains c; and c,. Thus, for initial condition x,;(0)
which generates the test reference pattern ¢;_, and with initial condition x(0)

satisfying
2(0) = [x(0) — x4(0)] € 2z, := {zwz < %d% - p} (6.23)
we have
Z(t) € Q, == {Z|Vz < %d%} (6.24)

which guarantees that ||z(¢)]| < di and thus [x(t) — x4(t) < d. Thus, the
state x will remain bounded in the local region described by Equation (6.15),
in which the past experience is valid for use. Using Equation (6.8), in which
&1 is bounded because every term in Equation (4.7) is bounded, and S(x)
is bounded for all values of the NN input Z = x, we conclude that control
u is also bounded. Thus, all the signals in the closed-loop system remain
bounded.
Moreover, from Equation (6.22), given

*2 *2
€.+ &

6.25
2C1C2 ( )

n>2p0=

there exists a finite time T, determined by ¢, ¢y, €}, and ¢, such that for all
t>T, z(t) will converge to ||z(t)|| < . Then, both z; and z; satisfy |z (f)| < i,
i =1, 2. Because z; = x1 — x4, we know that x; will track closely to x4 . From
Zp = Xp — a1 = X2 + €121 — X4, We get

Xo —Xg, =22 — €121 <+ (6.26)

which is also a small value because 11 can be made small without choosing
large cq and c;. Therefore, both x; and x, will exponentially converge to x,
and x4, in finite time T. This ends the proof. =
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REMARK 6.4

From Equatlon (6.23), it is required that dz — p > 0, that is, c1cp > %.
Because ¢;? and ¢} are small, cic, does not need to be very large with an
appropriate di. As d; (and d in Equation [4.38]) represents the valid region of
accurate approximation, it is seen from Equation (6.23) that the larger the d;

(and d), the easier the selection of initial conditions.

REMARK 6.5

The larger region of operation also means better generalization ability, which
is an important characteristic of neural networks, but is seldom considered
in conventional NN control design [46,237]. Generalization is referred to as
the ability of neural networks to provide meaningful outputs when the NN
inputs are not necessarily in the training set. When using NNs in closed-loop
control systems, the training examples are actually constrained by the system
dynamics of both the plant and the reference model [44]. Therefore, the train-
ing set cannot be selected freely, and it often remains within a small region of
the entire state space.

To expand the operation region and to improve the NN generalization, it is
feasible, in the learning (or training) stage, to either inject bounded artificial
noise (called jitter) [89], or track to quasi-periodic or even chaotic reference
trajectories [237]. For using artificial noise, the amount of jitter needs to be
carefully determined, as too much of it will obviously produce garbage, and
too little of it will not have much effect [89]. Moreover, training with jitter
might also damage the stability of the closed-loop system, if it is not appro-
priately handled. On the other hand, when using chaotic trajectories [237]
to improve NN generalization, the partial PE condition and locally accurate
learning can still be achieved. Further investigation will be conducted on
these topics.

6.3.3 Improved Control Performance

We now compare the control performances of (i) the adaptive NN control ap-
proach (4.3), (4.8); (ii) the controller without using NN (6.9); and (iii) the neural
learning control scheme (6.8). In the adaptive NN control approach (4.3), the
term corresponding to § in the above proof (see Equation [4.21]) becomes

W*ZS *2 6*2
8= 6.27
4c2 4ty (6.27)
when the Lyapunov function candidate is chosen as V. = 323 + 323. Alterna-
tively, § is in the form (see, e.g., [64])
W+ 2 *2
PR LA (6.28)

+
2 4c 22

when the Lyapunov functionis V = 122 + 123 + 1 WT -1,
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In the first case, when no result on the convergence of W = W — W is ob-
tained (as in conventional adaptive NN control), § in Equation (6.27) may be
a very large value due to the possibly large @*. To keep the tracking conver-
gence of ¥ = x — x4 to a small neighborhood of zero, the control gains c; and
especially ¢, need to be chosen large enough to make § small. In the second
case, § in Equation (6.28) can be made small by choosing a small o and a large
c22; however, we cannot obtain an exponential convergence result from the
chosen Lyapunov function V. In this case, only convergence of ¥ = x — x4 can
be guaranteed as time goes to infinity.

For a controller without using NN, that is, Equation (6.9), by using the
Lyapunov function candidate V, = 1z2 + 122, the derivative of V is

V, =215 + 2%
=122 — 0z + 2 f(%)

< —¢ 2 L2 f 6.29
< —az 2C222+2C2 (6.29)

where f* denotes the upper bound of f’(x) in a local region. As with the
case in Equation (6.27), very high control gains are required to achieve local
stability.

By comparison, using the neural learning controller (6.8), we achieved bet-
ter control performance. Specifically, it can be noted: (i) smaller control gains
are employed, because § in Equation (6.18) is only related to the small con-
stants € and ¢; (ii) faster tracking convergence rate is obtained, because ex-
ponential convergence is guaranteed as shown from (6.20); and (iii) smaller
tracking errors can be achieved because the tracking error ¥ = x —x; is related
to  which can be made very small without using high gains.

From the point of view of practical implementations, the adaptive NN con-
trol approach (4.3), (4.8) actually requires a large number of neural weights to
be updated simultaneously. This makes the algorithm either energy consum-
ing with analog hardware implementation, or time consuming with digital
implementation. On the contrary, the neural learning control scheme (6.8)
does not need any parameter adaptation, and can be more easily designed
with both analog and digital implementations. Therefore, better performance
is also achieved in the aspects of time saving or energy saving, which might
be important for particular practical applications.

6.4 Simulation Studies

To demonstrate the pattern-based control approach, we again take the van
der Pol oscillator (4.39) as the plant, and the Duffing oscillator (4.40) as the
reference model. In Chapter 4, the van der Pol oscillator system dynamics is



134 Deterministic Learning Theory for Identification, Recognition, and Control

f(x1, %) = —x1 + B(1 — x3)x, where the system parameter is 8 = 0.7. The
system dynamics of the van der Pol oscillator can be accurately approximated
along the tracking trajectories. The learned system dynamics are stored in the
Gaussian RBF network W' $(Z), which can provide locally accurate NN ap-
proximation of the unknown system dynamics f(x), as seen from Figures 4.2f,
4.3f, and 4.4f. Using the learning system dynamics, the corresponding NN
learning controller can be constructed as (6.8).

The Duffing oscillator has been used in Chapter 4 to generate the peri-
odic and chaotic reference orbits (as shown in Figures 4.3a and 4.4a). These
reference orbits are referred to as training dynamical patterns in Chapter 5.
Particularly, training pattern ¢} is generated with initial condition x(0) =
[x1(0), x2(0)]" = [0.0, —1.8]%, and system parameters p; = 0.55, p, = —1.1,
p3 = 1.0,w = 1.8, and g = 1.498. Training pattern <p? is generated with the
same system parameters except p; = 0.35. The locally accurate NN approxi-
mation of the underlying system dynamics along the orbit of the two training
patterns ¢ and ¢} is shown in Figures 5.2d and e and 5.3d and e. Figures 5.2f
and 5.3f show the time-invariant representations of the two training patterns
¢} and ¢7.

Moreover, we have shown in Chapter 5 that rapid recognition of test dy-
namical patterns can be achieved via state synchronization. Two periodic
patterns, as shown in Figure 5.4, are used as the test reference dynamical
patterns ¢! and ¢Z. Test pattern ¢! is generated from the Duffing oscillator
(5.4), with initial condition x(0) = [x1(0), x2(0)]" = [0.0, —1.8]" and system
parameters p; = 0.6, pp = —1.1, p3 =10, w = 1.8, and g = 1.498. The initial
condition and system parameters of test pattern ¢Z are the same as those of
test pattern @1, except that p; = 0.4. From Flgure 5.5, we show that test pat-
tern @l is very smular to training pattern ¢; and similar to tralmng pattern

;. Test pattern ¢? is similar to the chaotlc training pattern 7 and not very
snmlar to the periodic training pattern ¢;, as shown in Figure 5.6.

In this section, we again use the van del Pol oscillator (4.39) and the Duffing
oscillator (4.40). For the van del Pol oscillator, the system parameter § in
system dynamics f(x1, x;) = —x1 + B(1 — x?)x, is changed from B = 0.7 in
Chapter 4 to 8 = 0.65 in this chapter. The Duffing oscillator (4.40) is used to
generate reference orbits, that is, the two test dynamical patterns (psl_ and go?
as in Chapter 5. The van del Pol oscillator is controlled to track the reference
orbits of the Duffing oscillator by using the NN learning controller (6.8). The
design parameters are c; = 2, ¢; = 3, which are much smaller compared with
those used in Section 4.2. The initial conditions are [x1(0), x2(0)]" = [0.1, 0.2]7
and [x4 (0), x4,(0)]" =[0.2,0.3]".

First, as test pattern <p; is recognized as very similar to training periodic
pattern go}, we select the NN controller (6.8) based on this recognition. The NN
controller (6.8) contains the learned system dynamics as experience (shown
in Figure 4.3f). This experience is obtained in Chapter 4 from tracking control
to the periodic orbit of the training dynamical pattern gog. From Figures 6.1a
and b, we can see that the selected NN controller (6.8) achieves good tracking
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FIGURE 6.1
Pattern-based learning control.

to the periodic orbit of the test pattern ¢!. Similarly, as test pattern ¢Z is
recognized as similar to training chaotic pattern ¢7, we select the NN con-
troller (6.8) which contains thelearned system dynamics as experience (shown
in Figure 4.4f). From Figures 6.1c and d, we can see that the selected NN
controller (6.8) achieves good tracking to the periodic orbit of the test
pattern ¢Z.

Second, as test pattern ¢! is also recognized as similar to training chaotic
pattern (p?, we select the NN controller (6.8) which contains the learned system
dynamics as experience (shown in Figure 4.4f). From Figures 6.2a and b, we
can see that the selected NN controller (6.8) can still achieve good tracking
to the periodic orbit of the test pattern ¢!. However, when we use the NN
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controller (6.8) corresponding to the training periodic pattern (pg to track to
the periodic orbit of the test pattern ¢2, the control performance becomes
worse, as shown in Figures 6.2c and d. This implies that an NN controller
trained using a chaotic dynamical pattern may be more “experienced” than
one training with a periodic dynamical pattern.

If there is completely no experience, the controller without NN (6.9) is used
as a comparison, which achieves much worse control performance, as shown
in Figure 6.3. The simulation results clearly demonstrate how past experi-
ences can be effectively used in pattern-based control to achieve improved
performance.
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6.5 Summary

The combination of pattern recognition with control is attractive and inter-
esting. The implementation of the idea, however, is challenging. Problems
involved include: (i) learning in nonstationary or dynamic environments,
(ii) representation and similarity of control situations, (iii) rapid recognition
and classification of different control situations, and so on. Conventional pat-
tern recognition methods, especially those developed for static patterns, are
not suitable to cope with these problems.

In this chapter, based on the aforementioned results, we propose a new
framework to implement pattern-based identification, recognition, and con-
trol in a unified way. Different control situations are defined as reference or
closed-loop dynamical patterns and are identified via deterministic learning.
Similar control situations can be rapidly classified, and the outcome can be
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used to select the suitable NN controller to achieve easy control. The proposed
framework of pattern-based control bears an analogy to proficient human
control with little cognitive effort. It will be useful in areas such as motion
learning and control of humanoid robotics, and security assessment and con-
trol of power systems.



7

Deterministic Learning with
Output Measurements

7.1 Introduction

In the preceding chapters, deterministic learning is presented for identifica-
tion, recognition, and control of nonlinear systems under full-state measure-
ments. In practice, usually there are only partial or output measurements
available. It is therefore necessary to extend deterministic learning theory to
such cases. The main focus of this chapter is to study knowledge acquisition,
representation, and knowledge utilization in dynamic processes with output
measurements.

When there are only partial or output measurements available for identifi-
cation and control, it is normally required to estimate the other states of the
systems. This leads to the development of linear and nonlinear observer tech-
niques. Over the past decades, nonlinear observer design has been an active
and challenging research area in the control community (see [71,169] for a sur-
vey of recent development). Early results on nonlinear observers include the
Thau observer [116,220], the extended Kalman filter (EKF), and the extended
Luenberger observer (ELO) [18,264]. Many attempts have been made for im-
provement and generalization of the ELO (see, e.g., [33,37,107,224,225,259]).
One problem with the ELO is that the system dynamics are required to be
(almost) exactly known. If the system dynamics are unknown, the ELO will
fail to provide correct state estimation.

Another approach for nonlinear observer design is usually gathered under
the category of “high-gain” observers (see, e.g., [36,61,109,111]. The design of
high-gain observers aims to split the nonlinear dynamics into a linear part
and a nonlinear part, and to choose the gain of the observer so that the linear
partdominates the nonlinear one. By choosing the observer gain large enough,
the observation error can be made arbitrarily small. However, high gains may
yield large oscillations/variations in the presence of noise. It is therefore of
interest to investigate how to achieve accurate state estimation in the presence
of unknown system dynamics without using high gains.

Also, there are other approaches such as adaptive observers and neural net-
works (NN)-based observers. When the nonlinear systems contain unknown
parameters, adaptive observers entail simultaneous estimation of both state

139
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variables and system parameters (see, e.g., [146,148]) provided that the PE
condition is satisfied. Combined with the function approximation ability of
neural networks, NN-based adaptive observers are proposed [112,192], in
which neural networks are used to approximate the underlying system dy-
namics. Arbitrarily small state estimation error can be achieved for a class of
nonlinear systems with unknown dynamics, by choosing appropriately the
observer gain (usually large enough).

Although much progress has been achieved for accurate state estimation,
the problem of accurate identification of the underlying system dynamics in
nonlinear observer design has not been investigated in the literature. In this
chapter, first, for a class of nonlinear systems undergoing periodic or recur-
rent motions with only output measurements, we show that locally accurate
identification of nonlinear system dynamics can still be achieved. Specifically,
by using a high-gain observer and a dynamical RBF network (RBFN), when
state estimation is achieved by the high-gain observer, along the estimated
state trajectory, a partial persistence of excitation (PE) condition is satisfied,
and locally accurate identification of system dynamics is achieved in a local
region along the estimated state trajectory.

Second, we show that the knowledge obtained through deterministic learn-
ing can be reused in another state observation process to achieve non-high-
gain design. As high gains may yield large oscillations/variations in the pres-
ence of noise, it is not appropriate to rely on high-gain design in all situations.
To achieve state estimation without using high gains, the knowledge on sys-
tem dynamics is normally required to be known. Because the learned knowl-
edge stored in the constant RBF networks actually provides locally accurate
system dynamics, we naturally use the knowledge to construct an RBFN-
based nonlinear observer, in which the constant RBF networks are embedded
as NN approximations for system dynamics. For state estimation of the same
nonlinear system as previously observed, it is shown that correct state esti-
mation can be achieved according to the internal matching of the underlying
system dynamics without using high-gain domination.

Third, we show that the results on deterministic learning with output
measurements and non-high-gain observer design are applicable to effec-
tive representation and rapid recognition of single-variable dynamical pat-
terns. Specifically, a single-variable dynamical pattern can be represented in
a time-invariant and spatially distributed manner via deterministic learn-
ing and state observation. This representation is a kind of static represen-
tation. Moreover, for a set of training single-variable dynamical patterns,
a set of RBFN-based observers is constructed within which the constant
RBF networks are embedded. These RBFEN-based observers are taken as dy-
namic representations for the corresponding training single-variable dynam-
ical patterns.

For rapid recognition of a test single-variable dynamical pattern from a set
of training single-variable dynamical patterns, we take the test pattern as an
input to each RBFN-based observer for the corresponding training pattern.
A state observation error system is yielded corresponding to the nonlinear
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system generating the test pattern and the RBFN-based observer. The non-
high-gain observation errors are proven to be approximately proportional
to the differences on system dynamics of the test and training dynamical
patterns, thus they can be taken as the measure of similarity between the test
and training dynamical patterns. Note that although most state variables of
the test pattern are not available from measurement, a high-gain observer can
be employed again to provide accurate estimates of these state variables, so
that the non-high-gain observation errors can still be computed. For similar
test and training dynamical patterns, the non-high-gain observation errors
converge to small neighborhoods of zero due to a kind of internal matching
of system dynamics of the test and training patterns. The training single-
variable dynamical pattern whose corresponding observer yields the smallest
observation error will be recognized as most similar to the given test single-
variable dynamical pattern.
The results of this chapter draw on the recent papers [241,246,248].

7.2 Learning from State Observation

In this section, we investigate how to achieve deterministic learning from state
observation for a class of nonlinear systems undergoing recurrent motions.
The problem formulation is as follows.

Consider a class of nonlinear systems in the following observable form

X1 = X2
5(2 = X3
7.1)
Xn—1 = Xn
Xy = f(x)
y=x

where x = [x1, ..., x,]T € R"is the system state, y is the system output which
is measurable, and f(x) is a smooth, unknown nonlinear function.

ASSUMPTION 7.1

Assume that system state x(t) remains uniformly bounded; that is, x(t) € @ C R",
Vt > ty, where Q is a compact set. Moreover, the system trajectory starting from initial
condition xy, denoted as ¢, (t, xo) (or ¢, for conciseness), is a recurrent trajectory.

The objective is to identify the unknown dynamics f(x) along the trajectory
@ (t, x0), by using only output measurement y = x;.
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The objective can be implemented in two steps. First, we use the following
high-gain observer [61] to estimate the state variables x,, ..., x,:

Jél =%+ hlk(y — ]7)
X = %3+ hok*(y — )
(7.2)
;Cnfl = + hnflkn_l(y - ?/)

Ln
J’én = hnk”(y - ]7)
=1

where h;(i = 1,...,n) and k are design constants, £ = [£1, ..., £,]7 is the
estimate of the state x, and § denotes the estimate of system output y. If h;
is chosen such that s” + >"_, hjs"~/ is a Hurwitz polynomial with distinct
roots, then for all 4 and all times t’ there exists a finite observer gain k' such
that for all k > k’, the observer error satisfies ||X(tf) — x(¢)|| < d, Vt > t' [61].
For convenience of presentation, this is denoted as £ — x, which means that
the estimates £(t) converge to a sufficiently small neighborhood of the state
x(t) in a finite time.

REMARK 7.1

Note that the employment of the above high-gain observer requires that f(x)
in Equation (7.1) be global Lipschitz [61]. Because x(t) is assumed to be uni-
formly bounded, x(t) € @ C R", Vt > t, the global Lipschitz condition on
f(x) [61] is actually satisfied within the compact set €2.

Second, we employ the following dynamical RBF network to identify the
dynamics f(x):

% = —a(x — £,) + WTS(2) (7.3)

where y is the state of the dynamical RBF network, £, is a state variable
of observer (7.2), a > 0 is a design constant, and a localized RBF network
WT S(%) is used to approximate the unknown f(x). The neural weights W are
updated by

W=W=-TS2)3x, —oTW (7.4)

whereI' =T'T > 0,0 > 0is a small value, and %, is defined as %, := x — %,.
We also define %, := x — x;,.

It is seen that only the estimated information £, as well as y, is used in
Equations (7.3) and (7.4). The state x of system (7.1), because it is mostly not
available from measurement, does not appear. Note also that ¥, = x — £, is
computable, whereas ¥, = x — x, is not. However, it is seen that as £, — x,
X, — X,.

The following theorem indicates that identification of the unknown f(x)
can be achieved along the trajectory ¢, (x) when £ — x.
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THEOREM 7.1

Consider the adaptive system consisting of the nonlinear dynamical system (7.1),
the high-gain observer (7.2), the dynamical RBF network (7.3), and the NN weight
adaptation law (7.4). For a periodic or recurrent trajectory ¢ (xo), with initial values
W(0) = 0, we have: (i) all signals in the adaptive system remain uniformly bounded;
and (ii) locally accurate approximation for the unknown f(x) to the error level €* is
obtained along the trajectory ¢, (xo) when £ — x.

PROOF (i) Boundedness of all the signals in the adaptive system is first ana-
lyzed. With high-gain observer (7.2), £ — xand %, — X,. From Equations (7.1)
and (7.3), the derivative of X, = x — x,, satisfies

Xy =X — %
= —a(x — %) + WTS(%) — f(x)
—ax, + WT S5(%) — f(x)
= —ax, + WTS(®) — f(R) + f(®) — f(x)
—a%, 4+ a(%, — %) + WIS(®) — WTS(8) — e+ f(R) — f(x)
= —ax, + W'S(®) + ¢ (7.5)

where W = W — W, and (by combining Equation [7.3] and using the Inter-
mediate Value Theorem [110])

e=a(¥ — X)) —e+ f(%) — f(x)
+ a— T_f/(i’ — X)
H df (x)

ox

=a(X, —X,) — ¢

<alX, — X, +

|12 — x|| + €* (7.6)
x=%'

in which ¥’ € [x x) or £ € (x, £]. It is seen that when £ — xj, & = O(e)
because a and |I—% |lx=# are bounded, %, — X, is small when £ — x, and ¢*

can be chosen to be small.
Again, with £, — x, and ¥, — %,, adaptation law (7.4) is expressed by

W=W=-TS2)7 —oTW—ep (7.7

where |ew| = [['S(®)(X, — X,,)| is small when £, — x;,.
Consider the following Lyapunov function candidate:

1 1~
V=3 n+2WT r'w (7.8)

The derivative of V along solutions of Equation (7.5) is

V = %, + WITIW
= —a® — %,e — o W W — WTS(2)(%, — %)
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Leta =ay +a, withaq, a, > 0. Since

82

—azx — X6 < —
402

—oWTW — WTS(2)(%, — %)

< —a|[WI? + o | W | W*|| + | W]s*d
_aIWIE o (Wl +57d/0)?
- 2 2
it follows that
: L OlWIE o(IW*] +s*d/o)? &
V< —a1%2 — —
< —aiXx, 5 + 5 +4a2

From the above, it is clear that V is negative definite whenever |%,| > zjﬂ’ﬁ +

[ Z(IW*|| + s*d /o), or [[W]| > sz772~+ (|W*|| + s*d /o). This leads to the
uniform boundedness of both ¥, and W as

- £ o « %
AR ZW + /E(IIW | +s*d/o) (7.9)
W) < + (IW*|| +s*d /o) (7.10)

J—

From the boundedness of ¥, and 17\/, we see that both x and W are uni-
formly bounded. Thus, all the signals in the adaptive system remain uni-
formly bounded.

(ii) By using the spatially localized learning property of RBF networks,
as shown in Equation (2.12), along the estimated system trajectory £(t), the
derivative of ¥ , that is, Equation (7.5), is described by

Ry = —a%, + WIS (2) + W] Sp(%)
— WS (%) — e + f(2) — f(0)
= —a%, + W] 5(2) + e (7.11)
where S;(%) is a subvector of 5(£), I’/\V{ is the corresponding weight subvec-

tor, the subscript ¢ stands for the region far away from the estimated state
trajectory £, with |W S¢(£)| being small, and

£r = a(% — ) — € + f(2) — f(x) + W] (%)
af(x)

=a(X, — %) — € + (x—x)+W Se(%)

—¢— (e —€)+ WETSg(x) (7.12)

is the NN approximation error along the trajectory £, which can be expressed
as O(e) since ¢ = O(¢), e, = O(¢), W is bounded and each element of Sz(%)
is small.
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Equation (7.7) is described by

W{ = W; = TS ()% — oT W, — ey, (7.13)
and

‘7\’2 = ‘7‘/2 = T3S ()% — o T: W — ew, (7.14)
where [lew, || = [[T'¢ 5 (£)(Xx — Xu) || and [lew, || = [Tz S(£)(%n — %) || are small

when £, — x,.
Thus, Equations (7.11) and (7.13) are described by

X B —a oulE? e,
[ch} - [—F;S;(f) 0 } [Wg} + [—OFW{ _SWJ (7.15)

Since the system state x(t) is in recurrent motion, the convergence of £ to x
makes £ also become recurrent. Then, according to Theorem 2.7, 5,(%) is PE
almost always. With PE of S;(%), according to Theorem 2.4, the exponential
stability of (%, W;) = 0 for the nominal part of system (7.15) is achieved.
Since &, = O(€), ew, issmall, and o ||T; W; || can be made small by choosing o
small enough, by using Theorem 2.6, the parameter error W;(t) = W; W
converges exponentially to a small nelghborhood of zero, with the size of the
neighborhood being determined by €*, ||ew, || and o ||T; W; [l

The convergence of W; to a small neighborhood of W; implies that along
the trajectory £(t), we have

f(2) = WiTS(2) +
= W/ S.(2) — W] S:(2) + &

= WIS (2) + ¢ (7.16)
= WTS(%) + (7.17)

where €, = ¢, — W S:(Z). 1t is clear that ;, = O(e;) = O(¢), €1 = O(ey) =
OC(e). Thus, it can be concluded that the entire RBF network W7 S(%) can
approximate the unknown f (%) along the trajectory £(t).

Moreover, by choosing W asin (3.15), i.e.,

W = mean, 1, W(t) (7.18)

where “mean” is the arithmetic mean [39], and #, > f; > O represents a time
segment after the transient process, the system dynamics f(£) can be des-
cribed using constant RBF networks as

f(2) =W'S(%) + e (7.19)

where €, = O(e1) = O(e). Thus, with only output measurement y = x;,
locally accurate identification of system dynamics f(x) to the error level € is
achieved along the trajectory ¢, (xp) whent — x. ®
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The local region (denoted by €, ) can be described by:
Q,, = |z | dist(Z, ¢,,) < dy = [W'S(Z) — f(Z; p)| < e;} (7.20)

where d is a constant representing the size of the local region (d, can be made
larger via appropriate training), and the maximum approximation error €; is
close to €*.

REMARK 7.2

The system (7.1) is very simple in form, but there appears to be few results in
the literature that achieve the identification of system dynamics in a nonlinear
observer problem. The result in this section can be extended to more general
nonlinear systems with disturbances/noise for which high-gain observers
have been successfully designed.

7.3 Non-High-Gain Observer Design

In this section, we show that the knowledge obtained through deterministic
learning can be reused in another state observation process to achieve non-
high-gain design.

In the literature on observer design, it is known that high gains may yield
large oscillations/variations in the presence of noise. Therefore, it is useful
if non-high-gain state observation can be achieved in as many situations as
possible. To achieve non-high-gain estimation of state variables x», ..., x,
using the output y = x; of system (7.1), knowledge of system dynamics f(x)
is normally required. We notice that the learned knowledge (7.20) stored in
the constant RBF network actually provides locally accurately known system
dynamics. For state observation of the same nonlinear system (7.27), an RBFN-
based nonlinear observer is constructed as follows:

£ =% +k(y— 1)

%2 = %3+ ka(y — )
(7.21)
-7;511—1 = J?n + kn—l(y - 9)
3én = V_VTS(Q?:) + kn(y - 9)
=%
where K = [ky, ..., k,]" are observer gains, £ = [£1, ..., £,]7 are estimates of

the state x, # denote the estimate of system output y, and the constant RBF
network WTS(2) provides a locally-accurate approximation of the system
dynamics f(x).
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Define e = x — £ and ¥ = y — #. The error dynamics of state observation is
derived from Equations (7.1) and (7.21):

¢ =(A—KCT)e + B[ f(x) —WTS(2)]
= (A—KC"e + Bf(x) — f(&)]+ B[f(£) —W'S(2)] (7.22)

where
[ 0 0] 0] 1]
0 0 0
A= : , B=1|:], C=]:
0 1 0 0 0
i 0 --- 0] | 1] | 0]

Since x(t) is bounded, the stability and convergence analysis for the RBFN-
based observer (7.22) can be conducted in a similar way to the analysis for
Lipschitz nonlinear observers, for example, [188]. Specifically, necessary and
sufficient conditions on the stability matrix that ensure asymptotic stability
of the Lipschitz nonlinear observer are presented [188]. These conditions are
then reformulated to obtain a sufficient condition for stability in terms of the
eigenvalues and the eigenvectors of the linear stability matrix.

The following theorem shows that the RBFN-based nonlinear observer
(7.21) can achieve non-high-gain state observation.

THEOREM 7.2
Assume that £(0) € Q. If the observer gain K is chosen such that the matrix (A —
KCT) is stable and all the eigenvalues . of (A — KC") satisfy

Re(—x) > Ko(T)y (7.23)

where (A— KCT) = TAT 1, Ky(T) is the condition number (I, norm) of the matrix
T, and y = maXyeq, ||—% |l. Then, the state estimation error will asymptotically
converge to a small neighborhood of zero without using high-gain domination.

PROOF For the error dynamics (7.22), consider Lyapunov function V = e Pe.
Its derivative satisfies

V=eT[(A—KC")TP + P(A—KCT)]e
+2¢" P[B(f(x) — f(£))] + 2¢" P[B(f(£) — W' S(%))]

Since (A — KCT) is stable and Equation (7.23) holds, then according to [188,
Theorem 5], the following inequality holds [188]:

min oy(A—KC — jol) > y (7.24)
w€eRt
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According to [188, Theorem 3], there exists a symmetric positive definite ma-
trix P and a constant & > 0 such that

(A—KCHTP 4+ P(A—KCT) +y*PP+1 +wI =0 (7.25)
Then, we have

V <eT[(A—KCTP + P(A—KCT) + y2PP + I]e + 2||PB|||le||e2

IA

—alell* + 2||PB|lllelle;
2(|IPBlle3)?

IA

1
—§w||e||2 + (7.26)

If |le]| > 2”1;&, then V < 0. Thus, boundedness of ¢ can be guaranteed.
Since x(t) isbounded, it follows that £ is bounded. As €5 is the approximation
error given in Equation (7.19), which can be made small, it is concluded that

the estimation error will asymptotically converge to a small neighborhood of
2|PBll
—=.

zero, that is, |le]| < em = ~—

REMARK 7.3

It is clear that the size of the neighborhood can be made small not by us-
ing high-gain domination, but by choosing the observer gain K such that
(A—KC") is stable and the eigenvectors are well-conditioned. A systematic
computational algorithm for choosing the observer gain is given in [188].

The results for deterministic learning (DL) applied to state observation and
the RBFN-based observer together provide a new approach to observer de-
sign for uncertain nonlinear systems. The whole DL-based approach makes
use of different observer design techniques: first, with the employment of
a high-gain observer and an adaptive NN adaptation law, locally accurate
identification of the unknown system dynamics is achieved. Second, by us-
ing the Lipschitz nonlinear observer design, the RBFN-based observer can
achieve correct state estimation for the same (and also similar) nonlinear sys-
tem without using high gains. The DL-based approach does not require that
the system dynamics f(x) is given a priori. Instead, knowledge learned on
system dynamics from previous state observation is reused to provide an
approximation to f(x), such that the RBFN-based observer does not require
high-gain domination. Therefore, fundamental knowledge is acquired and
utilized in the state observation processes, and the disadvantages caused by
high-gain design can be finally overcome, which can be regarded as the benefit
of knowledge utilization in observer design.
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7.4 Rapid Recognition of Single-Variable Dynamical Patterns

In this section, we consider the problem of representation, similarity defini-
tion, and rapid recognition of single-variable dynamical patterns.
The definition of a single-variable dynamical pattern is given as follows.

DEFINITION 7.1
A single-variable dynamical pattern is defined as a recurrent system output
trajectory v, (t) generated from the following nonlinear dynamical system:

5({1 = X;2

5(;2 = X{-3

o (7.27)
Xen—1 = X¢n

Xon = fo(x;)

Ye = X1

where x; = [x;1, ..., X;s]T € R" is the system state, f;(x;) is a smooth, un-
known nonlinear function, and v, (¢) is the measurable system output tra-
jectory. The single-variable dynamical pattern is denoted as ¢, for concise
presentation.

The general recognition process for single-variable dynamical patterns still
consists of the identification phase and the recognition phase as described in
Chapter 5. By using deterministic learning theory and state observation tech-
niques, the identification of a single-variable dynamical pattern is conducted
in the same way as in Section 7.2. Accordingly, the dynamics of single-variable
dynamical patterns can be accurately identified and stored in constant RBF
networks.

For representation, similarity definition, and rapid recognition of single-
variable dynamical patterns, difficulties arise not only because dynamical
patterns evolve with time, but also due to the incomplete information avail-
able. In Subsections 7.4.1 and 7.4.2, we address the problems of how to appro-
priately represent the single-variable dynamical patterns and how to measure
the similarity between two single-variable dynamical patterns, respectively.
Rapid recognition of single-variable dynamical patterns via non-high-gain
observation will be studied in Subsection 7.4.3.

7.4.1 Representation Using Estimated States

For representation of a single-variable dynamical pattern, complete infor-
mation on both its estimated pattern states and its underlying system dy-
namics is used. The representation in the form of constant RBF networks
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can be taken as a static representation for a single-variable dynamical pat-
tern. An RBFN-based observer with the constant RBF networks embedded is
taken as a dynamic representation for the corresponding training dynamical
pattern.

We have the following statements concerning the representation of a single-
variable dynamical pattern:

1. A single-variable dynamical pattern ¢, can be represented via de-
terministic learning by using the constant RBF network W' 5(Z),
which provides a locally accurate NN approximation of the under-
lying system dynamics f;(x;). The knowledge represented in RBF
network W' §(Z) is valid in a local region €, , which can be de-
scribed as: for the pattern state trajectory ¢, there exist constants
dy, E; > 0, such that

dist(Z, g;,) < dy = |[W'S(Z) — fe(x)| < & (7.28)

where &7 is the approximation error within Q, which s also small.

2. The representation of a single-variable dynamical pattern is time-
invariant because in W' 5(Z) the time attribute is eliminated. The
representation is also spatially distributed in the sense that relevant
information is stored in a large number of neurons distributed along
the estimated state trajectory. Thus, a single-variable dynamical
pattern is represented in a time-invariant and spatially distributed
manner by using information regarding both its estimated pattern
states £, and its underlying system dynamics f;(x,) along the es-
timated state trajectory £,(¢). The time-invariant and spatially dis-
tributed representation can be considered as a kind of graph-based
representation. It may not be appropriate to represent a single-
variable dynamical pattern by using only a limited number of fea-
tures extracted from the time-varying dynamical patterns.

3. After a training single-variable dynamical pattern ¢, is represented
using the constant RBF network W' §(Z), an RBFN-based dynamical
model is constructed within which the constant RBF network is em-
bedded. This RBEN-based dynamical model, as introduced later, isa
nonlinear observer and is taken as a dynamical representative for the
corresponding training dynamical pattern ¢, . Thus, the complete
representation of a single-variable dynamical pattern consists of two
parts, the static part described by constant RBF network W' 5(Z),
and the dynamical part described by the RBFN-based nonlinear
observer. The static representation is suitable for storage of a time-
varying dynamical pattern, however, it will not be used for rapid
recognition of other dynamical patterns. Instead, the dynamical
model will be used to achieve rapid recognition of dynamical pat-
terns via non-high-gain state observation.
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7.4.2 Similarity Definition

We extend the similarity definitions for full-state dynamical patterns as pro-
posed in Chapter 5 to single-variable dynamical patterns.

Consider the dynamical pattern ¢, (as given by Equation [7.27]), and
another dynamical pattern (denoted as ¢, ) generated from the following
nonlinear dynamical system:

56;1 = X¢2

X2 = X3

. (7.29)
Xen—-1 = Xen

Xen = fe(xc)

Ys = Xa1

where x. = [x.1,..., Xxcn]T € R" is the state variable of the test dynamical
pattern, f.(x.) is a smooth, unknown nonlinear function, and y.(t) is the
measurable output variable of the test dynamical pattern. It is assumed that
x(t) remains bounded for all time; that is, x.(t) € Qa, Vt > 0.

Since the state variables are mostly unknown, it is inconvenient to char-
acterize the similarity of single-variable dynamical patterns using the dif-
ference between system dynamics along the orbit of the test pattern, as in
Definitions (5.1) and (5.2). Instead, we rely on the difference between corre-
sponding system dynamics within a local region €2 along the orbit of the test
pattern

Qg = {x| diSt(X, @gy) < dy}

where d, > 01is a constant.
We have the following definitions for similarity of single-variable dynam-
ical patterns.

DEFINITION 7.2

Dynamical pattern ¢, (given by Equation [7.29]) is said to be similar to dy-
namical pattern ¢, (given by Equation [7.27]), if the state of pattern ¢, stays
within a neighborhood region of the state of pattern ¢, and the difference
between the corresponding system dynamics within a local region ., that
is, Afy =1fe(x) = fe(X)lvxeq, < &), where g} > 0 is the similarity measure, is
small.

Since only a single-variable state of a dynamical pattern is available, the
above definition cannot be used directly for recognition. Based on determinis-
tic learning and state observation, the following similarity definition is given
for practical use.
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DEFINITION 7.3

Dynamical pattern ¢, (given by Equation [7.29]) is recognized to be similar
to dynamical pattern ¢, (given by Equation [7.27]), if the state of pattern ¢,
stays within a neighborhood region of the state of pattern ¢, and the dif-
ference between the corresponding system dynamics within a local region
Q, that is, Afny = [WTS(x) — fo(x)lvxea, < ey + &5, where ¢ is the simi-
larity measure and &, is the approximation error given in Equation (7.28), is
small.

7.4.3 Rapid Recognition via Non-High-Gain State Observation

In this subsection, we present how to achieve rapid recognition of single-
variable dynamical patterns via non-high-gain state observation.

Consider a single-variable dynamical pattern ¢, (as given by Equation
(7.29)) as a test dynamical pattern Consider again a set of single-variable
tralnlng dynamical patterns (pC ,k =1,..., M, with the kth training pattern
<pc generated from

x5 = FF(xf) (7.30)

i = x5 (7.31)

where x{ =[xk, .. ]T are the state variables of the kth training pattern

goc , yg is the output Varlable that is available from measurement, F*(x;) =
[x§2, e w, f[ (xk) with f; (xk ) being an unknown smooth nonlinear
functlon.

To achieve recognition of the test dynamical pattern from a set of training
dynamical patterns, one possible method is to identify the system dynamics
of the test dynamical pattern (as done for training dynamical patterns), and
then compare the static, graph-based representations corresponding to the test
and training dynamical patterns. It is known that to search for a match for the
graph-based representations is the intractable isomorphism problem which
is likely to be too computationally demanding for the time available [193].

The problem formulation is: without identifying the system dynamics of
the test pattern @, search rapidly from the training single-variable dynamical
patterns 90: (k =1, ..., M) for those similar to the given test single-variable
dynamical pattern gog in the sense of Definition 7.2 or 7.3.

For rapid recognition of a test single-variable dynamical pattern from a
set of training single-variable dynamical patterns, another method is to first
observe the states of the test pattern using a high-gain observer, and then
achieve rapid recognition as in Chapter 5. This method is simple and feasible.
Here we propose an approach using non-high-gain state observation Since
the system dynamics fg xk ;) of a training dynamical pattern (p; can be accu-
rately identified and stored in constant RBF network W' S(Z), we construct
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a set of RBFN-based nonlinear observers as follows:
f =8 +kye -1
25 = 25+ ka(ye — )
: (7.32)
Bpq =2+ kaa(ye — 99
£ = WE S + ka(ys — )
¥ =15

where k = 1, ..., M, the superscript () denotes the component for the kth

training pattern, K = [ky, ..., k,]T are observer gains, gk = [3?’{, ..., Xk ] are

estimates of the state x., §¥ denotes the estimate of system output v, of the
test pattern, and the constant RBF network W' S(#¥) is embedded to provide
a locally accurate approximation of system dynamics f*(x*) of the training
dynamical pattern (plgy. These observers are taken as dynamic representations
for the corresponding training single-variable dynamical patterns.

When a test single-variable dynamical pattern ¢, is presented to one RBFN-
based observer (i.e., the dynamical model for training pattern (pz ), a state

observation error system (i.e., recognition error system) is yielded as follows:

ek = (A— KCT)ek + B(f.(x;) — WK S(£4)) (7.33)
where ef = Xe — £ is the state estimation error, and (A, B, C) are the same as
in (7.22).

REMARK 7.4

Note that in Section 7.3, the difference in the error system (7.22) contains
the system dynamics f(x) and its approximation W' 5(%). In the above state
observation error system (7.33), the difference is expressed in terms of the sys-
tem dynarmcs f<(x¢) of the test dynamical pattern ¢, and the approximated
dynamics W' $(£%) of one training dynamical pattern. This implies that the
analysis of stability and convergence of the above error system (7.33) will be
more involved.

The problem formulation now becomes: among the set of RBFN-based ob-
servers (7.32), find the one that yields the smallest observation error. The cor-
responding training single-variable dynamical pattern <p’§fv will be considered
as most similar to the test single-variable dynamical pattern ¢,.

Without identifying the system dynamics of the test pattern ¢, the differ-
ence of system dynamics between the testand training patternsis not available
from computation. Nevertheless, by conducting stability and convergence
analysis for the recognition error system (7.33) using results from the nonlin-
ear Lipschitz observer [188], it is proven that the state observation errors lle |l
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(k =1,..., M) are approximately proportional to the differences of system
dynamics between the test and training dynamical patterns. This difference
can be explicitly measured by the state observation error lle].

Using the result of non-high-gain state observation in Section 7.3, the fol-
lowing theorem describes how to achieve rapid recognition of a test single-
variable dynamical pattern.

THEOREM 7.3

Consider the recognition error system (7.33) corresponding to the test pattern ¢,
and the dynamical model (RBFN observer) for the training pattern <p§ fthe observer
gain K is chosen such that the matrix (A — KCT) is stable and all the ezgenvalues A
of (A— KC") satisfy (7.23), and so the estimated state £* stays with a local region
Q. along the orbit of the test pattern ¢, then the observation error lle¥ || will be
approximately proportional to the difference between system dynamics of test pattern

@c, and training pattern <plgy.

PROOF By conducting stability and convergence analysis of the RBFN-based
observer using nonlinear Lipschitz observer design [188], the problem of rapid
recognition of the test single-variable dynamical pattern is turned into a prob-
lem of non-high-gain state observation, that is, to observe the full states of the
test pattern ¢ by using the set of RBFN-based observers, where the observer
gains K are képt thesame fork =1, ..., M.

Note that when K is chosen as high gain, the estimated state £* of the RBFN-
based observers will converge closely to the state of the test pattern ¢, . If the
observer gain K is not so high but appropriately chosen, the estimated state
£F will stay with a local region Q. along the orbit of the test pattern ¢, ; that
is, dist(£F, ¢c,) < dy whered, isa posmve constant.

From Equatlons (7 27) and (7.32), we have

= (A= KCT)e! + Bl fo(xs) — fo(£)] + BLfo(2") — WK S()]  (7.34)

For the error dynamics (7.34), consider Lyapunov function V¥ = ¢* " pek,
Its derivative satisfies

Vk = e [(A— KCT)TP + P(A— KCT)Je* + 26" P[B(f.(x;) — fo(£9))]
+2¢*" PIB(f.(85) — W' 5(2)]

Since x(t) is bounded, the stability and convergence analysis of the RBFN-
based observer (7.34) can be conducted by borrowing the results of nonlinear
Lipschitz observers [188]. Specifically, if the observer gain K is chosen such
that the matrix (A—KCT) is stable and all the eigenvalues  of (A—KC" ) satisfy
Equation (7.23), then, according to [188, Theorem 5], inequality (7.24) holds.
According to [188, Theorem 3], there exists a symmetric positive definite
matrix P and a constant @ > 0 such that

(A—KCHTP 4+ P(A—KCT) +y*PP+ 1+ @I =0 (7.35)
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Then, we have
V< e [(A— KCT)TP + P(A— KCT) + y2PP + I]e*

+2¢" P[B(f.(£5) — WK S(£5))]
—ar[le" |12 + 21|l PBII| £ (£5) — WK S(25)|

IA

2(IPBII| £ (£5) — WK S(29) )
w

2|PBI|(e} + ££°)
w

1
—~ae"? +

IA

< @ A
- 2)\‘maX(P) e
2/ k* k)2

(P)[le*|1* +

S —
Z)Vmax(P) (2]
< —aVF+35 (7.36)
where
w
o= —
Z)Vmax(P)
* x\ 2
_ 20PBIP(ef +£)
w
5 4|IPBI2 (e + &)
pi=—= max( P
w

Then, Equation (7.36) gives

hmin(P) 111> < VE(8) < p + (V(0) — p)exp(—at) (7.37)
That is,
dmin(P)[l€¥]1% < p + (V(0) — p)exp(—at)
< p + Vi(O)exp(—at) (7.38)
and
le¥1? < (p + Va(0)exp(—at))/Amin(P) (7.39)

which implies that given v > ’;:‘;‘:((g; : Z”PBHZ(;}E*) there exists a finite time

T, such that for all + > T, the state observation error [le¥|| will converge
exponentially to a neighborhood of zero; that is, [le¥|| < v, with the size of
the neighborhood v approximately proportional to 81; +&,, K, and inversely

proportional to . Thus, the state observation error || || will be approximately




156  Deterministic Learning Theory for Identification, Recognition, and Control

proportional to the difference between the system dynamics of test pattern
¢¢, and training pattern (p’gy. u

REMARK 7.5

Note that the state variables x.y, ..., x., of the system (7.27) generating the
test pattern ¢, are not measurable, so they cannot be used to compute the
observation errors ||e||. To solve this problem, a high-gain observer needs to
be employed again to provide an accurate estimate of these state variables,
so that the observation errors ||eX|| can be obtained. To achieve recognition
using completely non-high-gain observation, a possible method is to make a
decision based only on |eX(#)|. A detailed analysis of the method requires more
study.

From the above analysis, it is seen that the difference between system dy-
namics of the test and training single-variable dynamical patterns can be
explicitly measured by |le¥||;=1, (for short Ty). Thus, we take the following
method to rapidly recognize a test single-variable dynamical pattern from a
set of training single-variable dynamical patterns:

1. Identify the system dynamics of a set of training single-variable

dynamical patterns (plgv k =1,..., M using deterministic learning
and high-gain observation.

2. Construct a set of RBFN-based observers (7.32) as dynamic repre-

sentations for the training single-variable dynamical patterns go’gy.

3. Take the state y. of a test single-variable pattern ¢, as the RBFN
input to the dynamical models (7.32), and compute the average I;
norm of the state observation error [e*(¢) ||

P 1 to+t ‘ )
e lly, = n lle® ||dt, i=1,...,n (7.40)
fo

4. Take the training single-variable dynamical pattern whose corre-
sponding RBFN observer yields the smallest [le* I+, as the one most
similar to the test single-variable dynamical pattern ¢, in the sense
of Definition 7.3.

7.5 Simulation Studies
Consider the well-known van der Pol oscillator [28,227] already considered
in Chapters 4 and 6:

5(1 = X7

B =—x1+B(1—x)x

y=x (7.41)
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where x = [x1, x2]7 is the state, 8 is a constant parameter, and the system
dynamics f(x) = —x;+B(1—x%)x; isan unknown, smooth nonlinear function.
The van der Pol oscillator is presented in the form of system (7.27) by choosing
x1 to be the output. For initial states starting from points other than [0, 0], the
van der Pol oscillator can yield a limit cycle trajectory when g > 0.

Identification and representation: A single-variable dynamical pattern is the
periodic or periodic-like (recurrent) system output trajectory y(t). We
consider two single-variable dynamical patterns generated from system
(7.41), as shown in Figures 7.1a and b. Denoted as <p}v and (p?v, the two single-
variable periodic dynamical patterns are started from initial states x(0) =
[x1(0), x2(0)]T = [0.5, —1.0]7, with system parameters 8 = 0.2 and 8 = 0.8,
respectively.

By using the high-gain observer (7.2) (n = 2), with design parameters
chosen as 1 = hy = 1 and k = 40, accurate state observation of the state
x, of the van der Pol oscillator is achieved for both dynamical patterns <p§y
and <p?y, as shown in Figures 7.1c and d. The observation errors are shown in
Figures 7.1e and f.

To identify the unknown dynamics f(x) of the two patterns ¢; and ¢,
the dynamical RBF network (7.3) is employed. The RBF network W7 S(x)
is constructed in a regular lattice, with nodes N = 441, the centers u; evenly
spaced on [—3.0,3.0] x [—3.0,3.0], and the widths n; = 0.3. The weights
of the RBF networks are updated according to Equation (7.4). The design
parameters for Equations (7.3) and (7.4) area = 5,T =2, and ¢ = 0.001. The
initial weights W(0) = 0.

The phase portrait of dynamical pattern (pg is shown in Figure 7.2a. Its cor-
responding system dynamics f(x) is shown in Figure 7.2b. In Figure 7.2¢, it
is seen that some weight estimates (of the neurons whose centers are close
to the orbit of the pattern) converge to constant values, whereas some other
weight estimates (of neurons centered far away from the orbit) remain almost
zero. The locally accurate NN approximation of f(x; p) along the orbit of
the periodic pattern (pg is clearly shown in Figures 7.2d and e. In Figure 7.2f,
dynamical pattern (p}v is represented by the constant RBF network W' S(Z).
This representation is time-invariant, based on the fundamental information
of the system dynamics. It is also spatially distributed, involving a large num-
ber of neurons distributed along the orbit of the dynamical pattern. The NN
approximation is accurate only in the vicinity of the periodic pattern. Away
from this region, where the orbit of the pattern does not explore, no learning
occurs, as shown by the zero-plane in Figure 7.2f, that is, the small values of
WT S(Z) in the unexplored area.

Similarly, from Figures 7.3a and b, we can see the phase portrait and the
system dynamics f(x) of pattern (p?v. Figure 7.3c shows the partial parameter
convergence. The locally accurate NN approximation of system dynamics
f(x) along the orbit of the pattern is shown in Figures 7.3d and e. Figure 7.3f
shows the time-invariant representation of pattern go?y.
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Rapid recognition: two periodic patterns (as shown in Figure 7.4) are used
as the test single-variable dynarnical patterns and are denoted as (pgv and
> 5, respectively. Test pattern ¢l is generated from system (7.41), with initial
states x(0) = [xl(O) x(0)]F = [0 0, —1.8]7, and system parameters 8 = 0.1.
The test pattern ¢? ¢, is generated from system (7.41), with initial states x(0) =
[x1(0), x2(0)]" = [0.1, —1.7]7, and system parameters 8 = 0.7.

As single-variable dynamical patterns go}v and <p§y have been locally
accurately identified via high-gain observation and deterministic learning,
they are taken as two training dynamical patterns. Two RBFN-based non-
linear observers (observers 1 and 2) are constructed according to (7.32) as
dynamical representatlves for the two training patterns. The time-invariant
representations Wk S(Z) (k = 1, 2) obtained above are embedded into the
two RBEN-based nonlinear observers (7.32). The observer gains are chosen
as k; = 2, ko = 20, which are much smaller than h:k = 40, hyk?* = 1600 used
above.

Flrst consider the recognition of test pattern (pl by training patterns <p§
and (pg . Figures 7.5a and b show the system dynarmcs flx;p)=—x1+8(1—
x7) X along the estimated orbit of test pattern ¢} 5, together with the RBFN
approximations of the system dynamics of the training patterns <p£ and gog
respectively. The observation errors ||le*(t) || (k = 1, 2) are shown in Flgures 7.5¢
and d. The average /1 norms of the observation errors, that is, lek(t)lly, (k =
1, 2), are shown in Figures 7.5e and 7.5f. It is clearly seen in Figure 7.5f that
from the beginning stage of the recognition process, [le!(t) || is smaller than
lle?(t) ||y, . Because the same observer gains are used for observers 1 and 2,itis
concluded that test pattern (p is more similar to training pattern gog than to
training pattern ¢? X

Similarly, in recognition of test dynamical pattern @2 , Figures 7.6a and b
show the system dynarnlcs flp) =—x1+ (1 — x5 )xz along the estimated
orbit of test pattern ¢2 5, together w1th the RBFN approxunatlons of the system
dynamics of the training patterns (p{ and ‘/’z , respectively. The observation

errors ||lef(t)|| (k = 1, 2) are shown in Figures7.6c and d. It is seen in Figure 7.6f
that from the beginning stage of the recognition process, [le*(t)|l;, is smaller
than ||e? (t) ll,- Thus, test pattern ¢? 5 1s recognized as more similar to training
pattern (p{ than to training pattern <p§

From Figures 7.5f to 7.6f, it is also seen that comparison of state observation
can be achieved within a very short period of time, which means that the
test single-variable patterns are rapidly recognized as similar or dissimilar to
training single-variable patterns.
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7.6 Summary

In this chapter, we have shown that the deterministic learning mechanism
can be utilized to improve nonlinear observer design in the sense of allow-
ing both accurate state estimation and system identification. For a class of
nonlinear systems undergoing periodic or recurrent motions with only out-
put measurements, first, by using a high-gain observer and the deterministic
learning mechanism, locally accurate identification of system dynamics has
been achieved along the estimated system states. Second, the learned knowl-
edge of system dynamics has been reused in an RBFN-based nonlinear ob-
server to achieve non-high-gain design. In this way, the difficult problem of
nonlinear observer design can be successfully resolved by incorporating the
deterministic learning mechanisms.

The improved nonlinear observer technique can be further used in other
related areas such as dynamic fault diagnosis and dynamical pattern recog-
nition. By learning the underlying system dynamics of a set of training dy-
namical patterns first, and then constructing a set of nonlinear observers as
representatives of the training patterns, rapid recognition of a test dynamical
pattern has been implemented. Moreover, the recognition is achieved not by
using high gains, but according to a kind of internal and dynamical match-
ing of system dynamics. The observation errors are taken as the measure of
similarity between the test and training dynamical patterns.

Note that the internal and dynamical matching of system dynamics is what
we refer to in Chapter 5 as the dynamical parallel distributed processing
(DPDP), which is also implemented in a continuous and analog manner.
The non-high-gain observation makes the differences of system dynamics
explicitly unfolded in time. The significance of this research lies in that an
observation-based approach has been proposed for dynamical pattern pro-
cessing in which the problem of rapid recognition of single-variable dynam-
ical patterns is turned into the problem of non-high-gain state observation.






8

Toward Human-Like Learning
and Control

In the preceding chapters, it has been shown that the proposed determinis-
tic learning (DL) theory is closely related to many areas in the discipline of
systems and control, such as system identification, adaptive control, intelli-
gent control, and nonlinear observer design. It is developed using concepts
and tools from these areas. The significance of determanistic learning lies in
providing a unified conceptual framework for knowledge acquisition, rep-
resentation, and utilization in uncertain dynamic environments. Moreover,
improved understanding of the employed concepts (e.g., persistence of exci-
tation [PE]) in systems and control has occurred, and approaches of systematic
design for system identification, pattern recognition, and intelligent control
of nonlinear systems have been suggested, which potentially advance sub-
stantially the above-mentioned systems and control areas.

Of particular interest is that the overall framework has many characteristics
of human-like learning and control capabilities. The further development
needed can usefully explore this aspect. With this in mind, this final chapter
draws conclusions and makes suggestions for further work.

8.1 Knowledge Acquisition

First, deterministic learning theory implements knowledge acquisition in pro-
cesses of nonlinear system identification, closed-loop NN control of nonlinear
systems, and state observation of nonlinear systems. Key elements to achieve
knowledge acquisition include: (i) employment of the localized radial basis
function network (RBFN), (ii) satisfaction of a partial PE condition along a
periodic or recurrent orbit, (iii) guaranteed exponential stability of the linear
time-varying (LTV) adaptive systems, and (iv) accurate RBFN approximation
of unknown nonlinear dynamics achieved in a local region along the recurrent
orbit.

In conventional system identification, the convergence to true parame-
ters and the identification of the corresponding system model relies on the

167
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satisfaction of the PE condition. However, it was found that while for linear
system identification the PE condition can be satisfied when the input signal
is sufficiently rich in the frequency domain, there is no general relationship
established between the frequencies of the input signals and the parameters to
be estimated for nonlinear system identification. Consequently, identification
for a true nonlinear system model is very difficult to be achieved. Closed-
loop identification is then studied for the purpose of model-based control, in
which the acceptance of the identified models is justified by the “usefulness”
rather than “truth.” In other words, identification of true closed-loop system
models is also a very difficult problem.

In DL-based identification for nonlinear systems, the difficulty of identi-
fying the true system model is handled by selecting localized RBF networks
as the parameterized model structure. When a recurrent orbit is taken as
the input to the RBF network, a direct connection between the recurrent
NN input to the estimated weights of neurons centered in a local region
along the periodic or periodic-like orbit is established. This leads naturally
to the satisfaction of a partial PE condition and subsequently exponential
stability of the LTV adaptive systems. Consequently, partial parameter
convergence and locally accurate identification of a partial true system
model are achieved in a local region along the periodic or periodic-like
orbit.

In DL-based NN control of nonlinear systems, it has been shown that
an appropriately designed adaptive NN controller is capable of identify-
ing closed-loop system dynamics during tracking control to a periodic or
periodic-like reference orbit. Accurate NN approximation for closed-loop
system dynamics can be achieved in a local region along the periodic or
periodic-like state trajectory. Therefore, even for closed-loop identification for
model-based control, the partial true closed-loop system model can be locally
accurately identified via deterministic learning. Furthermore, for identifica-
tion and control of nonlinear systems with output measurements, by combin-
ing deterministic learning with a nonlinear high-gain observer technique, the
estimated state information can be used to accurately identify the underlying
system dynamics in a nonlinear observer problem. Accurate identification
of system dynamics is achieved in a local region along the estimated state
trajectory.

In summary, DL theory is capable of obtaining fundamental knowledge
about system dynamics from uncertain dynamic processes. The nature of
knowledge acquisition is related to the exponential stability of a certain class
of LTV adaptive systems, which is ensured by the satisfaction of a partial
PE condition. The learned knowledge about system dynamics can be stored
and represented by constant RBF networks, and can be reused to imple-
ment rapid recognition of dynamical patterns, or to achieve improved control
performance.
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8.2 Representation and Similarity

In dynamical processes such as dynamical pattern recognition and feedback
control, one important issue is how to appropriately represent the time-
varying patterns or control situations. This issue becomes more difficult when
the representation is to be presented in a time-independent manner. Instead
of using a limited number of features extracted from measurements or ob-
servations as in static pattern recognition, a dynamical pattern or control
situation can be effectively represented in a time-invariant and spatially dis-
tributed manner using the knowledge obtained from deterministic learning.
Complete information on both the pattern state and the underlying system
dynamics is utilized for representation of a dynamical pattern. The time-
invariant representation is a kind of static representation stored in constant
RBF networks. Using these constant RBF networks, a set of nonlinear dynamic
models is constructed as dynamic representations of the training dynamical
patterns.

Another important issue in dynamical environments is the characteriza-
tion of similarity between two dynamical patterns or control situations. The
existing similarity measures based on distances for static patterns might be
inappropriate to define the similarity of dynamical patterns. We propose a
similarity definition based on the qualitative analysis of nonlinear dynamical
systems. Specifically, similarity of two dynamical patterns or control situa-
tions is characterized based on the difference between the system dynam-
ics inherently within the dynamical patterns. This definition is in accordance
with the concepts of topological equivalence and structural stability in dynamical
system theory.

8.3 Knowledge Utilization

Deterministic learning consists of the phases of knowledge acquisition and
knowledge utilization. The value of the acquired knowledge can be mani-
fested only through utilization of the knowledge in dynamic processes, for
example, rapid recognition of dynamical patterns, pattern-based learning
control, and non-high-gain state observation.

In rapid recognition of a test dynamical pattern from a set of training dy-
namical patterns, use is made of the knowledge of system dynamics of training
dynamical patterns being represented in the form of constant RBF networks.
The constant RBF networks are then embedded into a set of state estimators.
For a test dynamical pattern, if its underlying system dynamics is topologi-
cally similar to that of one training dynamical pattern, state estimation or syn-
chronization will be achieved according to a kind of internal and dynamical
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matching on system dynamics, and the test pattern is recognized as similar to
the training dynamical pattern. The estimation or synchronization errors can
be taken as the measure of similarity between the test and training patterns.

In pattern-based learning control, a pattern-based NN controller can ef-
fectively recall and reuse the learned knowledge to conduct an internal and
dynamical matching of system dynamics underlying similar control situa-
tions. Stability and improved control performance can be achieved without
readapting to the uncertainties in the closed-loop control process. In nonlinear
observer design, the learned knowledge on system dynamics can be reused
so that correct state estimation can be achieved without using high gains.
Moreover, the improved nonlinear observer technique can be applied to re-
solve the problem of rapid recognition of single-variable dynamical patterns
via non-high-gain state observation achieved again according to dynamical
matching on system dynamics.

It is seen that the previously learned knowledge can be utilized to compare
the similarity of dynamical patterns or control situations via the so-called in-
ternal and dynamical matching of system dynamics. This actually represents
a new model of information processing, which we refer to as dynamical par-
allel distributed processing (DPDP). It is seen that the learned knowledge is
utilized in completely dynamical processes. The nature of the knowledge uti-
lization in dynamic environments is related to the stability and convergence
of certain classes of perturbed linear time-invariant (LTT) systems.

8.4 Toward Human-Like Learning and Control

Deterministic learning theory provides a unified approach to human-like
learning and control. Humans are generally good at temporal /dynamical
pattern recognition in that the information distributed over time underly-
ing dynamical patterns can be effectively identified, represented, recognized,
and classified. The recognition process takes place quickly from the beginning
of sensing temporal patterns, and runs directly on the input space for feature
extraction and pattern matching. Humans can also learn many highly com-
plicated control tasks with sufficient practice, and perform these tasks again
and again with little effort. Experiments demonstrate that humans learn the
dynamics of reaching movements through a flexible combination of prim-
itives that have Gaussian-like tuning functions [222]. Moreover, the motor
control system builds a model (called the internal model) of the environ-
ment as a map between the experienced somatosensory input and the output
forces needed to counterbalance the external perturbations. In addition, re-
sults indicate that this internal model is valid locally near the experienced
motion trajectory; it smoothly decays with distance from the perturbed loca-
tions [60]. These human learning and control mechanisms, although not fully
understood, appear to be quite different from the conventional approaches
in the literature for learning and control.
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With the development of deterministic learning theory, the pattern-based
learning and control framework appears to be consistent with mechanisms of
human learning and control. In the process of tracking control to a recurrent
reference trajectory, an appropriately designed adaptive NN controller using
Gaussian RBF networks can develop internal models of the external force
fields. The learned internal models are locally accurate along the recurrent
trajectory. They can be stored as knowledge and recalled to compute the
required torques for similar control tasks. The DL-based framework bears
similarity to proficient human control with little cognitive effort. It would
be useful to explore further in areas such as motion learning and control of
humanoid robotics.

8.5 Cognition and Computation

Deterministic learning theory may even provide insight to natural cognitive
systems from the perspective of dynamics. Cognition and computation have
been deeply linked for at least fifty years. The origin of the electronic digital
computer lies in Turing’s attempt to formalize the kinds of symbolic logical
manipulations that human mathematicians can perform. Digital computa-
tion was later viewed as the correct conceptual framework for understanding
cognition in general [168]. Another tradition for understanding cognition is
rooted in dynamical systems theory. Dynamical approaches to cognition go
back to the cybernetics era in the 1940s. Information theory, dynamics, and
computation were brought together in studying the brain. Ashby made the
startling proposal that all of cognition might be accounted for with dynam-
ical system models [8]. However, with the dominance of symbolic Al in the
1960s and 1970s, dynamical systems-based approaches were not extensively
pursued.

Recently, many proponents of dynamical approaches argue that compu-
tation is a misleading notion to use in understanding cognition. Van Gelder
and Port [228] seek to show that the “computational approach” (“cognitive
operations are transformations from one static symbol structure to the next”)
is false, and propose the “dynamical hypothesis” (“cognition is best under-
stood in the language of dynamical systems theory”). However, little work
directly followed from the speculation due to a lack of appropriate mathe-
matical methods and tools to implement practical models.

Deterministic learning theory provides strong support to the dynamical
systems hypotheses in cognitive science. Identification and recognition of
dynamical patterns are indeed best understood from a viewpoint of stability
analysis of LTV or LTI systems. The dynamical versions of localized RBF net-
works can be considered as reasonable models for natural cognitive systems
due to their capabilities of knowledge acquisition, representation, and utiliza-
tion in dynamic environments. Furthermore, the new model for information
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processing, that is, dynamical parallel distributed processing will probably
lead to a renewed era of analog computation.

8.6 Comparison with Statistical Learning

Over the past decade, statistical learning has become the mainstream in the
area of machine learning. Many problems in learning of static nonlinear map-
pings have been successfully resolved via statistical learning. For example,
research on pattern recognition and even neural networks has been mainly
conducted via the statistical approach [19,95,254]. In statistical learning, the
learning problem is considered as function estimation on the basis of em-
pirical data. The nature of statistical learning is revealed by considering the
problem of estimating the values of an unknown function at given points of
interest. Originally, this problem was attacked by first estimating the entire
function at all points of the domain and second, estimating the function at
the given points. It is obvious that one may not have enough information to
estimate the function at all points. The physiology of statistical learning is
then revealed by the goal “NOT to solve the problem of estimating the values
of a function at given points by estimating the entire function” [229]. This
physiology is related to the essence of human intelligence.

The deterministic learning theory is not developed using statistical prin-
ciples. Assumptions on probability distributions are not necessary. Nonethe-
less, DL theory has some physiological similarities to statistical learning, in
the sense that instead of achieving identification of a system model in the en-
tire state space, accurate identification of a partial system model is achieved
only in local regions. For the space where the recurrent orbit does not explore,
no learning occurs, as represented by the slightly updated neural weights for
neurons far away from the orbit and the small values of RBEN approxima-
tion in the unexplored area. This can be compared with not estimating all
points of the nonlinear function in statistical learning and so coincides with
the physiology of statistical learning in nature.

8.7 Applications of the Deterministic Learning Theory

The content of this monograph is justified by the objective to collect and
expand the basic ideas and results. It is clearly seen that there is much more
research needed in this new area. It should be acknowledged that there are nu-
merous directions for further theoretical work. Extensions of the basic results
to nonrecurrent orbits (i.e., patterns or tasks), other approximation networks,
and more general dynamical systems should be given priority.
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The power of the deterministic learning methodology for resolving dif-
ficult problems as well as for opening new directions indicates that it has
the potential to become a new direction in areas of machine learning, sys-
tem identification/modeling, pattern recognition, intelligent control, cogni-
tive science, fault diagnosis, and so on. For instance, in the literature of fault
diagnosis, although the problem of fault detection has been extensively in-
vestigated [50,130,223,231,232], the fault isolation (classification) problem has
received less attention [267]. There have not been many analytical results on
faultisolation and prediction, especially in the case of uncertain nonlinear sys-
tems. The presented deterministic learning theory, especially the approach for
identification and rapid recognition of dynamical patterns, provides a solu-
tion for the problem of rapid isolation of oscillation faults generated from
uncertain nonlinear systems [30]. The result may be further applied to recog-
nition and analysis of ECG/EEG signals, prediction of epileptic seizures, and
security assessment and pattern-based control of power systems.
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