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Correlation is a robust and general technique for pattern recognition and is used
in many applications, such as automatic target recognition, biometric recognition
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pattern recognition algorithms require background information, including linear
systems theory, random variables and processes, matrix/vector methods, detection
and estimation theory, digital signal processing, and optical processing.
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develops the signal processing theory, the pattern recognition metrics, and the prac-
tical application know-how from basic premises. It shows both digital and optical
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that developed it and includes case studies of significant current interest, such as face
and target recognition.
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Preface

Mathematically, correlation is quite simply expressed. One begins with two

functions f(*) and g(*), and determines their correlation as a third function

c(*) :

cðtÞ ¼�
Z1

�1

f ð�Þg*ðtþ �Þ d�

This simplicity is at the core of a rich technology in practical pattern recogni-

tion. For unit-energy signals (and images or higher-dimensional signals), the

correlation output c(t) achieves its maximum of 1 if and only if the signal f(�)

matches the signal g(tþ �) exactly for some t value. Thus, correlation is an

important tool in determining whether the input signal or image matches a

stored signal or image. However, the straightforward correlation operation

(defined by the above equation) does not prove satisfactory in practical situa-

tions where the signals are not ideal and suffer any of the many distortions

such as image rotations, scale changes, and noise. Over the last 20 years, the

basic correlation operation has been improved to deal with these real-world

challenges. The resulting body of concept, designmethods, and algorithms can

be aptly summarized as correlation pattern recognition (CPR).

Correlation pattern recognition, a subset of statistical pattern recognition, is

based on selecting or creating a reference signal and then determining the

degree to which the object under examination resembles the reference signal.

The degree of resemblance is a simple statistic onwhich to base decisions about

the object. We might be satisfied with deciding which class the object belongs

to, or beyond that we might want more sophisticated information about which

side we are viewing the object from – or conversely we might wish our pattern

recognition to be quite independent of the aspect from which the object is

viewed. Often it is critical to discriminate an object from classes that differ only
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subtly from the interesting class. Finally, the object may be embedded in

(or surrounded by) clutter, some of whose characteristics may be similar to

the interesting class. These considerations are at quite different levels, but the

correlation algorithms create reference signals such that their correlation against

the object produce statistics with direct information for those questions.

One of the principal strengths of CPR is the inherent robustness that results

from its evaluating the whole signal at once. The signal is treated in a gestalt –

CPR does not sweat the individual details. In contrast, feature-based techni-

ques tend minutely to extract information from piecewise examination of the

signal, and then compare the relationships among the features. By comparing

the whole image against the template, CPR is less sensitive to small mismatches

and obstructions.

For many years, the testing grounds for CPR have mainly been automatic

target recognition (ATR) applications where correlation filters were developed

to locate multiple occurrences of targets of interest (e.g., images of tanks,

trucks, etc.) in input scenes. Clearly, processing speed is of interest in such

applications, which has led to much interest in coherent optical correlators

because of their ability to yield two-dimensional Fourier transforms (FTs) at

the speed of light. However, the input and output devices in optical correlators

have not progressed as fast as one would like and it is reasonable to say that

todaymost image correlations are calculated digitally. Over the past few years,

there has been a growing interest in the use of correlation filters for biometrics

applications such as face recognition, fingerprint recognition, and iris recogni-

tion. In general, correlation filters should prove valuable in many image

recognition applications.

Correlation can be implemented either in the time domain (space domain for

images) or in the frequency domain. Because diffraction and propagation of

coherent light naturally and conveniently produce the two-dimensional FT –

and do so ‘‘at the speed of light’’ – early applications of coherent optical

processing focused on correlation. This frequency domain approach is the

reason for the use of the phrase ‘‘correlation filters.’’ With the availability of

the fast Fourier transform (FFT) algorithm and very high-speed digital pro-

cessors, nowadays image correlations can be carried out routinely using digital

implementations. In this book, we present both digital and optical processing

approaches to correlation and have tried to indicate the differences and

similarities. For example, in digital correlators, filter values may range more

widely than in optical correlators where the optical devices impose constraints

(e.g., that transmittance has to be a real value between 0 and 1). Another

example is that the optical detectors detect only intensity (a real, positive

value) whereas digital methods can freely produce and manipulate complex
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values. These differences have led to vigorous debates of the comparative

advantages of digital and optical correlators and we hope that this energy

has carried through to the book itself. We have enjoyed writing it.

Readers who are new to the correlation field may regard the superficial

simplicity of the correlation paradigm to be anti-climactic andmake no further

attempt to grasp the versatility of the correlation pattern recognition techni-

ques. Because the output from a matched filter is the cross-correlation of the

received signal with the stored template, often correlation is simply misinter-

preted as just matched filtering. We have sought to dispel this myth with a

complete treatment of the diverse techniques for designing correlation filters

that are anything but simple matched filters. It is well known that the filter

theory finds widespread applications in controls, communications, adaptive

signal processing, and audio and video applications. From a pattern recogni-

tion viewpoint, the same filtering concepts offer substantial benefits such as

shift-invariance, graceful degradation, and avoidance of segmentation, not to

mention computational simplicity (digitally or optically), and analytical

closed-form solutions that yield optimal performance.

In putting together this book, our vision was to provide the reader with a

single source that touches on all aspects of CPR. This field is a unique synthesis

of techniques from probability and statistics, signals and systems, detection

and estimation theory, and Fourier optics. As a result, the subject of CPR is

rarely covered in traditional pattern recognition and computer vision books,

and has remained elusive to the interested outsider.

The book begins with a practical introduction to CPR, and it ends with the

current state of the art in computer-generated correlation filters. It discusses

the sometimes seemingly abstract theories (e.g., detection theory, linear alge-

bra, etc.) at the foundation of CPR, and it proceeds to applications. It presents

the material necessary for a student to operate a first optical or digital corre-

lator (aiming the level of the material at first-year graduate students in elec-

trical engineering or optics programs). The book is intended to summarize

recently published research and to put a usefully current overview of the

discipline into the hands of the seasoned worker. In short, to take a line

from Stuart L. Meyer, we are writing the book we would like to have owned

as we began working in the field.

We believe that one of the main reasons that CPR is not used in more

applications is that its practitioner must become familiar with some basic

concepts in several fields: linear algebra, probability theory, linear systems

theory, Fourier optics, and detection/estimation theory. Most students would

not be exposed to such amix of courses. Thus, Chapters 2, 3, and 4 in this book

are devoted to providing the necessary background.
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Chapter 2 reviews basic concepts in matrix/vector theory, simple quadratic

optimization and probability theory, and random variables. Quadratic opti-

mization will prove to be of importance in many correlation filter designs; e.g.,

when minimizing the output noise variance that is a quadratic function of the

filter being designed. Similarly, basic results from probability theory, random

variables, and random processes help us to determine how a filter affects the

noise in the input.

As discussed before, correlation is implemented efficiently via the frequency

domain. This shift-invariant implementation is based on ideas and results from

the theory of linear systems, which is summarized in Chapter 3. This chapter

reviews basic filtering concepts as well as the concept of sampling, an impor-

tant link between continuous images and pixelated images. This chapter also

introduces random signal processing, where a random signal is input to a

deterministic linear, shift-invariant system.

The usual task of a pattern recognition system is to classify an input pattern

into one of a finite number of classes (or hypotheses) and, if underlying

statistics are known or can be modeled, we can use the results from detection

theory to achieve goals such as minimizing classifier error rates or average

cost. Another related topic is estimation theory, where the goal is to estimate

an unknown parameter from the observations. One application of estimation

is the estimation of a classifier error rate. Chapter 4 summarizes some basic

concepts from detection and estimation theory.

Chapters 5 and 6 are aimed at introducing the various correlation filter

designs. Chapter 5 introduces the basic correlation filters, which are aimed at

recognizing a single image. It starts with the basic notion ofmatched filters and

shows how its output is nothing but a correlation. But then the limitations of

the matched filter are discussed and other alternatives such as optimal tradeoff

filters (that tradeoff noise tolerance and correlation peak sharpness) are intro-

duced. Performance metrics useful for characterizing correlation filters

are introduced. Chapter 5 also introduces some correlation filter variants

(e.g., binary phase-only filter) that were introduced because of optical device

limitations.

Chapter 6 presents many advanced correlation filters (also called synthetic

discriminant function or SDF filters), which are the correlation filters being

used in many ATR and biometrics applications. In most of these advanced

correlation filter designs, the main idea is to synthesize a filter from training

images that exhibit the range of image distortions that the filter is supposed to

accommodate. One breakthrough filter is the minimum average correlation

energy (MACE) filter, which produces sharp correlation peaks and high dis-

crimination. The MACE filter has been used with good success in ATR and
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biometrics applications. This and other advanced correlation filters are dis-

cussed in Chapter 6.

Chapters 7 and 8 are devoted to optical correlator implementations.

Chapter 7 is aimed at introducing some basic optics concepts such as diffrac-

tion, propagation, interference, coherence, and polarization. This chapter also

introduces the important topic of spatial light modulators (SLMs), which are

the optical devices that convert electrical signals to optical signals.

Historically, SLMs have been the limiting factors in the speed and capabilities

of optical correlators. Nowadays, SLMs originally intended for the display

industry are fueling a growth of small laboratory tinkering. For less than

$4000, a single color television projector provides three high quality (though

slow) modulators of several hundred pixels on a side, along with their neces-

sary drive electronics. Other SLMs and architectures are becoming available

whose speeds are substantially higher than the 30 frames per second for

conventional broadcast television. Conventional wisdom in optical filter com-

putation does not make appropriate use of these modulators, as is now

possible using the recent algorithmic advances. Many of these SLMs are

potentially very powerful but are often improperly used. The algorithms now

allow us to make productive use of SLM behavior that until very recently

would have been regarded as difficult and inferior. These concepts are

discussed in Chapter 7.

Chapter 8 provides the mathematical details as well as the algorithms for

designing correlation filters that can be implemented on limited-modulation

SLMs. Unlike digital designs, these designs must carefully consider the SLM

constraints right from the start. Over the past few years, significant mathematical

advances (in particular, applying the minimal Euclidean distance [MED]

principle) have beenmade in the design of such limited modulation correlation

filters, the topic of Chapter 8.

Finally, Chapter 9 provides a quick review of two correlation filter applica-

tions. First is the automatic recognition of targets in synthetic aperture radar

(SAR) scenes and the second is the verification of face images. Some

MATLAB1 code is provided to illustrate the design and application of the

correlation filters.

This book would not have been possible without the help of many. At the

risk of offending many others who have helped, we would like to acknowledge

a few in particular. B. V.K. Vijaya Kumar (BVKVK) acknowledges Professor

David Casasent of Carnegie Mellon University (CMU) for introducing him to

the topic of optical computers, various colleagues and students for the many

advances summarized in this book, the Electrical and Computer Engineering

Department at CMU for supporting this effort through a sabbatical leave, and
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the Carnegie Institute of Technology for the Phil Dowd Fellowship that has

accelerated the completion of this book. BVKVK also acknowledges the

profound positive influences of his late parents (Ramamurthy Bhagavatula

and Saradamba Bhagavatula) and the immense patience and love of his wife

Latha Bhagavatula. AbhijitMahalanobis (AM)would like to acknowledge his

mother and late father for their guiding hand, and his wife for her patience in

not ceasing to believe in the fact that all good things must come to an end

(although this book nearly proved her wrong). Richard Juday wishes to

acknowledge the support that NASA’s Johnson Space Center provided

through a decade and a half of his work in this field, and also the contributions

of literally dozens of students, visiting faculty, post-doctoral fellows, and

external colleagues. Dr. Stanley E. Monroe has been a particularly steadfast

contributor, advisor, critic, and friend to all whose work has touched the

Hybrid Vision Laboratory.

The MathWorks, Inc., very kindly provided their state-of-the-art software,

MATLAB1, which we have found very useful in developing algorithms

and graphics for this book. MATLAB1 is a trademark of The MathWorks,

Inc., and is used with permission. The MathWorks does not warrant the

accuracy of the text in this book. This book’s use or discussion of

MATLAB1 software or related products does not constitute endorsement

or sponsership by The MathWorks of a particular pedagogical approach, or

particular use of the MATLAB1 software.
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1

Introduction

There are many daily pattern recognition tasks that humans routinely carry

out without thinking twice. For example, we can recognize those that we know

by looking at their face or hearing their voice. You can recognize the letters

and words you are reading now because you have trained yourself to recognize

English letters andwords.We can understandwhat someone is saying even if it

is slightly distorted (e.g., spoken too fast). However, human pattern recogni-

tion suffers from three main drawbacks: poor speed, difficulty in scaling, and

inability to handle some recognition tasks. Not surprisingly, humans can’t

match machine speeds on pattern recognition tasks where good pattern recog-

nition algorithms exist. Also, human pattern recognition ability gets over-

whelmed if the number of classes to recognize becomes very large. Although

humans have evolved to performwell on some recognition tasks such as face or

voice recognition, except for a few trained experts, most humans cannot tell

whose fingerprint they are looking at. Thus, there are many interesting pattern

recognition tasks for which we need machines.

The field of machine learning or pattern recognition is rich with many

elegant concepts and results. One set of pattern recognition methods that we

feel has not been explained in sufficient detail is that of correlation filters. One

reason why correlation filters have not been employed more for pattern

recognition applications is that their use requires background in and famil-

iarity with different disciplines such as linear systems, random processes,

matrix/vector methods, statistical decision theory, pattern recognition, optical

processing, and digital signal processing. This book is aimed at providing such

background as well as introducing the reader to state-of-the-art in design and

analysis of correlation filters for pattern recognition. The next two sections in

this chapter will provide a brief introduction to pattern recognition and

correlation, and in the last section we provide a brief outline of the rest of

this book.

1



1.1 Pattern recognition

In pattern recognition, the main goal is to assign an observation into one of

multiple classes. The observation can be a signal (e.g., speech signal), an image

(e.g., an aerial view of a ground scene) or a higher-dimensional object (e.g.,

video sequence, hyperspectral signature, etc.) although we will use an image as

the default object in this book. The classes depend on the application at hand.

In automatic target recognition (ATR) applications, the goal may be to

classify the input observation as either natural or man-made, and follow this

up with finer classification such as vehicle vs. non-vehicle, tanks vs. trucks, one

type of tank vs. another type.

Another important class of pattern recognition applications is the use of

biometric signatures (e.g., face image, fingerprint image, iris image, and voice

signals) for person identification. In some biometric recognition applications

(e.g., accessing the automatic teller machine), we may be looking at a verifica-

tion application where the goal is to see whether a stored template matches the

live template in order to accept the subject as an authorized user. In other

biometric recognition scenarios (e.g., deciding whether a particular person is in

a database), we may want to match the live biometric to several stored

biometric signatures.

One standard paradigm for pattern recognition is shown in Figure 1.1. The

observed input image is first preprocessed. The goals of preprocessing depend

very much on the details of the application at hand, but can include: reducing

the noise, improving the contrast or dynamic range of the image, enhancing the

edge information in the image, registering the image, and other application-

specific processes.

A feature extraction module next extracts features from the preprocessed

image. The goal of feature extraction is to produce a few descriptors to capture

the essence of an input image. The number of features is usually much smaller

than the number of pixels in that input image. For example, a 64� 64 image

contains 4096 numbers (namely the pixel values), yet wemay be able to capture

the essence of this image using only 10 or 20 features. Coming up with good

features depends very much on the designer’s experience in an application

domain. For example, for fingerprint recognition, it is well known that

features such as ridge endings and bifurcations called minutiae (shown in

Pre- 
processing Input

pattern

Feature 
extraction Classification

Class

Figure 1.1 Block diagram showing themajor steps in image pattern recognition
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Figure 1.2) are useful for distinguishing one fingerprint from another. In other

pattern recognition applications, different features may be used. For example,

in face recognition, one may use geometric features such as the distance

between the eyes or intensity features such as the average gray scale in the

image, etc. There is no set of features that is a universal set in that it is good for

all pattern recognition problems. Almost always, it is the designer’s experi-

ence, insight, and intuition that help in the identification of good features.

The features are next input to a classifier module. Its goal is to assign the

features derived from the input observation to one of the classes. The classi-

fiers are designed to optimize some metric such as probability of classification

error (if underlying probability densities are known), or empirical error count

(if a validation set of data with known ground truth1 is available). Classifiers

come in a variety of flavors including statistical classifiers, artificial neural-

network-based classifiers and fuzzy logic-based classifiers. The suitability of a

classifier scheme depends very much on the performance metric of interest,

and on what a-priori information is available about how features appear for

different classes. If we have probability density functions for various features

for different classes, we can design statistical classification schemes.

Sometimes, such probability density information may not be available and,

instead, we may have sample feature vectors from different classes. In such a

Ridge ending Ridge bifurcation

Figure 1.2 Some features used for fingerprint recognition: ridge ending (left)
and ridge bifurcation (right)

1 A term from remote sensing to denote the correct class of the object being tested.
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situation, we may want to use trainable classifiers such as neural networks. In

this book, we will not discuss these different pattern recognition paradigms.

Interested readers are encouraged to consult some of the many excellent

references [1, 2] discussing general pattern recognition methods.

Another important pattern recognition paradigm is to use the training data

directly instead of first determining some features and performing classifica-

tion based on those features. While feature extraction works well in many

applications, it is not always easy for humans to identify what the good

features may be. This is particularly difficult when we are facing classification

problems such as the one shown in Figure 1.3, where the images were acquired

using a synthetic aperture radar (SAR) and the goal is to assign the SAR

images to one of two classes (tank vs. truck). Humans are ill equipped to come

upwith the ‘‘best’’ features for this classification problem.Wemay be better off

letting the images speak for themselves, rather than imposing our judgments of

what parts of SAR images are important and consistent in the way a target

appears in the SAR imagery. Correlation pattern recognition (CPR) is an

excellent paradigm for using training images to design a classifier and to

classify a test image.

1.2 Correlation

Most readers are probably familiar with the basic concept of correlation as it

arises in probability theory. We say that two random variables (RVs, the

(a) (b)

20 40 60 20 40 60

10

20

30

40

50

60

10

20

30

40

50

60

Figure 1.3 Synthetic aperture radar (SAR) images of two vehicles, (a) T72 and
(b) BTR70, from the public MSTAR database [3]
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concept to be explained more precisely in Chapter 2) are correlated if knowing

something about one tells you something about the other RV. There are

degrees of correlation and correlation can be positive or negative. The role

of correlation for pattern recognition is not much different in that it tries to

capture how similar or different a test object is from training objects. However,

straightforward correlation works well only when the test object matches well

with the training set and, in this book, we will provide many methods to

improve the basic correlation and to achieve attributes such as tolerance to

real-world differences or distortions (such as image rotations, scale changes,

illumination variations, etc.), and discrimination from other classes.

We will introduce the concept of CPR using Figure 1.4. In this figure, we

have two images: a reference image of the pattern we are looking for and a test

image that contains many patterns. In this example, we are looking for the

letter ‘‘C.’’ But in other image recognition applications, the reference r[m, n]

can be an (optical, infrared, or SAR) image of a tank and the test image t[m, n]

can be an aerial view of the battlefield scene. In a biometric application, the

reference may be a client’s face image stored on a smart card, and the test

image may be the one he is presenting live to a camera. For the particular case

in Figure 1.4, let us assume that the images are binary with black regions

taking on the value 1 and white regions taking on the value 0.

The correlation of the reference image r[m, n] and the test image t[m, n]

proceeds as follows. Imagine overlaying the smaller reference image on top of

the upper left corner portion of the test image. The two images are multiplied

(pixel-wise) and the values in the resulting product array are summed to obtain

the correlation value of the reference image with the test image for that relative

location between the two. This calculation of correlation values is then

repeated by shifting the reference image to all possible centerings of the

reference image with respect to the test image. As indicated in the idealized

C

Reference
image

Ideal 
correlation 
output

Test 
imageNASA

CMU-ECE
LOCKHEED

Figure 1.4 Schematic of the image correlation: reference image, test image,
and ideal correlation output
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correlation output in Figure 1.4, large correlation values should be obtained at

the three locations where the reference matches the test image. Thus, we can

locate the targets of interest by examining the correlation output for peaks and

determining if those correlation peaks are sufficiently large to indicate the

presence of a reference object. Thus, when we refer to CPR in this book, we

are not referring to just one correlation value (i.e., one inner product of two

arrays), but rather to a correlation output c[m, n] that can have as many pixels

as the test image. The following equation captures the cross-correlation process

c m; n½ � ¼
X

k

X

l

t k; l½ �r kþm; l þ n½ � (1:1)

From Eq. (1.1), we see that correlation output c[m, n] is the result of adding

many values, or we can say that the correlation operation is an integrative

operation. The advantage of such an integrative operation is that no single

pixel in the test image by itself is critical to forming the correlation output. This

results in the desired property that correlation offers graceful degradation.We

illustrate the graceful degradation property in Figure 1.5. Part (a) of this figure

shows a full face image from the Carnegie Mellon University (CMU) Pose,

Illumination, and Expression (PIE) face database [4] and part (b) shows the

correlation output (in an isometric view) from a CPR system designed to

search for the image in part (a). As expected, the correlation output exhibits

a large value indicating that the test image indeedmatches the reference image.

Part (c) shows the same face except that a portion of the face image is occluded.

Although the resulting correlation output in part (d) exhibits correlation

peaks smaller than in part (b), it is clear that a correlation peak is still present

indicating that the test image does indeed match the reference object. Some

other face recognition methods (that rely on locating both eyes to start the

feature extraction process) will not exhibit similar graceful degradation

properties.

Another important benefit of CPR is the in-built shift-invariance. As we will

show in later chapters, correlation operation can be implemented as a linear,

shift-invariant filter (this shift-invariance concept will be made more precise

in Chapter 3 on linear systems), which means that if the test image contains

the reference object at a shifted location, the correlation output is also shifted

by exactly the same amount. This shift-invariance property is illustrated

in parts (e) and (f) of Figure 1.5. Part (e) shows a shifted and occluded version

of the reference image and the resulting correlation output in part (f) is shifted

by the same amount, but the correlation peak is still very discernible. Thus,

there is no need to go through the trouble of centering the input image prior to

recognizing it.
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Figure 1.5 Illustration of the graceful degradation property of correlation
operation, (a) a full face image from the CMUPIE database [4], (b) correlation
output for test image in part (a), (c) occluded face image, (d) correlation output
for image in part (c), (e) shifted and occluded face image, and (f) correlation
output for image in part (e)
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A reasonable question to ask at this stage is why one needs to read the rest of

this book when we have already explained using Figure 1.4 and Figure 1.5 the

basic concept of correlation and advantages of using correlation.

We need to discuss more advanced correlation filters because the simple

scheme in Figure 1.4 works well only if the test scene contains exact replicas of

the reference images, and if there are no other objects whose appearance is

similar to that of the reference image. For example, in Figure 1.4, the letter ‘‘O’’

will be highly correlated with letter ‘‘C’’ and the simple cross-correlation will

lead to a large correlation output for the letter ‘‘O’’ also, which is undesirable.

Thus, we need to, and we will, discuss the design of correlation templates that

not only recognize the selected reference image, but also reject impostors from

other classes. Also the book discusses practical issues of computing correlation

using digital methods and optical methods. One way to summarize the con-

tents of this book is that it contains much of the material we wish had been

available when starting into CPR.

Another deficiency of the straightforward correlation operation in Eq. (1.1)

is that it can be overly sensitive to noise. Most test scenes will contain all types

of noise causing randomness in the correlation output. If this randomness is

not explicitly dealt with, correlation outputs can lead to erroneous decisions.

Also, as illustrated in Figure 1.5, sharp correlation peaks are important in

estimating the location of a reference image in the test scene. It is easier to

locate the targets in a scene if the correlation template is designed to produce

sharp peaks. Unfortunately, noise tolerance and peak sharpness are typically

conflicting criteria, and we will need design techniques that optimally trade off

between the two conflicting criteria.

The straightforward correlation scheme of Figure 1.4 does not work well if

the reference image appears in the target scene with significant changes in

appearance (often called distortions), perhaps owing to illumination changes,

viewing geometry changes (e.g., rotations, scale changes, etc.). For example, a

face may be presented to a face verification system in a different pose from the

one used at the time of enrolment. In an ATR example based on infrared

images, a vehicle of interest may look different when compared to the reference

image because the vehicle may have been driven around (and as a result, the

engine has become hot leading to a brighter infrared image). A good recogni-

tion system must be able to cope with such expected variability. In this book,

we will discuss various ways to increase the capabilities of correlation methods

to provide distortion-tolerant pattern recognition.

Another important question in connection with the correlation method is

how it should be implemented. As we will show later in this book, straightfor-

ward implementations (e.g., image–domain correlations as in Figure 1.4) are
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inefficient, and more efficient methods based on fast Fourier transforms

(FFTs) exist. Such efficiency is not just a theoretical curiosity; this efficiency

of FFT-based correlations is what allows us to use CPR for demanding

applications such as real-time ATR and real-time biometric recognition.

This book will provide the theory and details to achieve such efficiencies.

It is fair to say that the interest in CPR is mainly due to the pioneering work

by VanderLugt [5] that showed how the correlation operation can be imple-

mented using a coherent optical system. Such an optical implementation

carries out image correlations ‘‘at the speed of light.’’ However, in practice,

we don’t achieve such speed owing to a variety of factors. For example,

bringing the test images and reference images into the optical correlators and

transferring the correlation outputs from the optical correlators for post-

processing prove to be bottlenecks, as these steps involve conversion from

electrons to photons and vice versa. Another challenge is that the optical

devices used to represent the correlation templates cannot accommodate

arbitrary complex values as digital computers can. Some optical devices may

be phase-only (i.e., magnitude must equal 1), binary phase-only (i.e., onlyþ1

and�1 values are allowed), or cross-coupled where the device can accommo-

date only a curvilinear subset of magnitude and phase values from the complex

plane. It is necessary to design CPR schemes that take into account such

implementation constraints if we want to achieve the best possible perfor-

mance. This book will provide sufficient information for designing optical

CPR schemes.

1.3 Organization

As discussed in the previous section, CPR is a rather broad topic requiring

background in many subjects including linear systems, matrix and vector

methods, RVs and processes, statistical hypothesis testing, optical processing,

digital signal processing, and, of course, pattern recognition theory. Not

surprisingly, it is difficult to find all these in one source. It is our goal to

provide the necessary background in these areas and to illustrate how to

synthesize that knowledge to design CPR systems. In what follows, we will

provide brief summaries of what to expect in the following chapters.

Chapter 2, Mathematical background In this chapter, we provide brief reviews

of several relevant topics from mathematics. We first review matrices and

vectors, as the correlation templates (also known as correlation filters) are

designed using linear algebra methods and it is important to know concepts

such as matrix inverse, determinant, rank, eigenvectors, diagonalization, etc.

This chapter also introduces some vector calculus (e.g., gradient) and
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illustrates its use in optimization problems that we will need to solve for CPR.

As we mentioned earlier, randomness is inevitable in input patterns, and a

short review of probability theory and RVs is provided in this chapter. This

review includes the case of two RVs as well as more RVs (equivalently, more

compactly represented as a random vector).

Chapter 3, Linear systems and filtering theory In this chapter, we review the

basic concepts of linear shift-invariant systems and filters. These are important

for CPR since most implementations of correlation are in the form of filters,

which is why we refer to the correlation templates also as correlation filters

(strictly speaking, templates refer to image domain quantities whereas filters

are in the frequency domain). In addition to standard one-dimensional (1-D)

signals and systems topics, we review some two-dimensional (2-D) topics of

relevance when dealing with images. This is the chapter where we will see that

the correlation operation is implemented more efficiently via the frequency

domain rather than directly in the image domain. Both optical and digital

correlation implementations originate from this frequency domain version.

This chapter reviews sampling theory, which is important to understand

the connections between digital simulations and optical implementations.

Since digital correlators are heavily dependent on the FFT, this chapter

reviews the basics of both 1-D and 2-D FFTs. Finally, we review random

signal processing, as the randomness in the test images is not limited to just one

value or pixel. The randomness in the images may be correlated from pixel to

pixel necessitating concepts from random processes, which are reviewed in

this chapter.

Chapter 4, Detection and estimation The goal of this relatively short chapter is

to provide the statistical basis for some commonly used CPR approaches.

First, we derive the optimal methods for classifying an observation into one of

two classes. Then, we show that the optimummethod is indeed a correlator, if

we can assume some conditions about the noise. Another topic of importance

is estimation, which deals with the best ways to extract unknown information

from noisy observations. This is of particular importance when we need to

estimate the error rates from a correlator.

Chapter 5, Correlation filter basics In some ways, this is the core of this book.

It starts by showing how correlation is optimum for detecting a known

reference signal in additive white Gaussian noise (AWGN). This theory owes

its origins to the matched filter (MF) [6], introduced during World War II for

radar applications. Next, we show howMFs can be implemented digitally and

optically using Fourier transforms (FTs). As MFs cannot be implemented (as

they are) on limited-modulation optical devices, we next discuss several vari-

ants of the MF including phase-only filters, binary phase-only filters and
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cross-coupled filters. The focus of this chapter is on correlation filters designed

for single images and not for multiple appearances of a target image.

Chapter 6, Advanced correlation filters Matched filters, the main topic of

Chapter 5, work well if the test image contains an exact replica of the reference

image except possibly for a shift and AWGN. However, in practice the

appearance of a target can vary significantly because of illumination changes,

changes in the viewing geometries, occlusions, etc. It is desirable that the

correlation filters still recognize the target of interest and discriminate it

from other objects in the scene. One of the first methods to address this

problem is the synthetic discriminant function (SDF) filter [7] approach. In

the basic SDF filter method, the correlation filter is designed from a linear

combination of training images of the target, where the training images are

chosen to reflect anticipated appearances of the target. This chapter starts with

the basic SDF, but quickly moves on to more advanced correlation filter

designs aimed at achieving excellent distortion tolerance, without overly sacri-

ficing discrimination. In this chapter, we discuss selected advanced correlation

filters, rather than trying to cover all the correlation filter design methods that

have appeared in the literature. More detailed treatments of the correlation

filter designs and applications are available elsewhere [8, 9].

Chapter 7, Optical considerations The main catalyst for CPR is the pioneering

work by VanderLugt [5], that shows that correlation can be implemented in

coherent optical processors by using holographicmethods to record the complex-

valued matched filters. The goal of this chapter is to provide the back-

ground needed for implementing correlation optically. This chapter introduces

fundamental concepts in optics such as diffraction, propagation, interference,

and polarization. Jones’ calculus approach is presented to facilitate the repre-

sentation as well as manipulation of polarized light. This is then followed by a

discussion of the use of spatial light modulators (SLMs) to represent both

image domain and frequency domain quantities in optical correlators.

Chapter 8, Limited-modulation filters The matched-filter optical correlator

introduced by VanderLugt [5] uses a hologram to represent the filter, which

takes on complex values. The use of holograms is not attractive in practical

applications, as we may have to change the correlation filters rapidly to match

the test image against many different reference images. The input scene can

also change quickly needing an SLM,which can be controlled externally.Most

SLMs cannot accommodate arbitrary complex values, and in that sense are

limited-modulation devices. This chapter is aimed at describing how correlation

filters can be implemented on limited-modulation SLMs. The output devices

in optical correlators are usually intensity detectors, and in that sense differ

from digital implementations where the output can be complex. Thus, blindly
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applying digital designs in optical correlators is not advised, and this chapter

provides optimal methods for designing correlation filters that take into

account optical system constraints.

Chapter 9, Application of correlation filtersThis chapter is aimed at providing a

couple of application studies for CPR. First is the use of correlation filters for

classification of two different types of vehicles from their SAR images of the

type shown in Figure 1.3. What makes this problem particularly challenging is

that these vehicles must be discriminated from each other and from clutter,

although they may be viewed at different aspect angles and probably at

different elevations. Another application considered in this chapter is face

verification. One way to improve the security of access to physical spaces

(e.g., buildings) or virtual spaces (e.g., computers) is to match the live bio-

metric (e.g., face image, fingerprint, or iris image) to a stored biometric of an

authorized user. Correlation pattern recognition is proving to be an attractive

candidate for this application and this chapter briefly reviews the face verifica-

tion application.

Our intent in writing this book on CPR is to provide in one place much of

the diverse background needed, as well as to provide some discussion of its

advantages and limitations. However, our bias is towards the underlying

theory and we may not be covering the applications in the detail they deserve.

However, we refer the reader to various journals [10, 11] and conferences [12]

for application examples.
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2

Mathematical background

Correlation filter theory relies heavily on concepts and tools from the fields of

linear algebra and probability theory. Matrices and vectors provide succinct

ways of expressing operations on discrete (i.e., pixelated) images, manipulat-

ing multiple variables and optimizing criteria that depend on multiple para-

meters. A vector representation also facilitates parallel operations on a set of

constants or variables. Thus linear algebra provides powerful tools for digi-

tally synthesizing and analyzing correlation filters.

If the world of interest contained only deterministic (i.e., non-random)

signals and images, there would be no need for advanced pattern recognition

methods in general and for correlation techniques in particular. In practice,

reference images suffer from unpredictable disturbances such as noise, occlu-

sion, illumination changes, rotation, and scale changes. Such unpredictability

leads to randomness that can be characterized only by probabilistic models.

We also need to understand what happens to such input randomness as it

passes through signal processing systems such as correlation filters. Such

knowledge will enable us to analyze the response of signal/image processing

systems to noisy inputs, and to design systems that will preserve or enhance the

desired signals while suppressing unwanted noise. This chapter aims to provide

a quick review of the basics of matrix/vector techniques as well as the basics of

probability theory and RVs.

While a comprehensive coverage of these fields is beyond the scope of this

book, some topics relevant to correlation methods are discussed here for ease

of reference. We begin in Section 2.1 with a review of some definitions of

matrix algebra, followed by a discussion in Section 2.2 of several useful

fundamental properties. Section 2.3 introduces the important concept of

eigen-analysis, which is used in Section 2.4 to illustrate optimization methods

for quadratic criteria (e.g., minimizing the output noise variance) of utility in

correlation filter design. Finally, Section 2.5 provides a brief summary of
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relevant concepts from probability theory and RVs, including the concept of a

random vector containing multiple RVs.

2.1 Matrix–vector notation and basic definitions

A vector is an ordered collection of real or complex scalars arranged either as a

column or as a row. We will use a column vector as the default vector. Thus, x

is a column vector containing N scalars xi, 1� i �N, which are referred to as

its elements or components. Lower-case, bold roman letters will usually indi-

cate vectors. However, we may occasionally find it convenient to represent a

vector compactly in terms of its elements as {xi}, i.e.,

x ¼ xif g ¼

x1
x2
..
.

xN

2
6664

3
7775 (2:1)

The transpose operation, generally denoted by the superscript T, converts a

row vector to a column vector and vice versa. Thus, xT (pronounced ‘‘x

transpose’’) is the row vector [x1 x2 . . . xN]. The conjugate transpose, or

Hermitian, denoted by the superscriptþ (pronounced ‘‘x Hermitian’’ or ‘‘x

conjugate transpose’’) leads to x+¼ [x�1 x�2 . . . x�N ], where the superscript �
denotes the complex conjugate operation.

An M�N matrix A has elements arranged in M rows and N columns, i.e.,

A ¼

a11 a12 � � � a1N
a21 a22 � � � a2N

..

. ..
. . .

. ..
.

aM1 aM2 � � � aMN

2
6664

3
7775 (2:2)

Here aij, 1� i �M, 1� j �N, represents the element in the ith row and jth

column. Upper-case, bold roman letters will be used to denote matrices. For

the sake of convenience, we may express a matrix more compactly asA¼ {aij},

1� i�M, 1� j�N. A matrix is said to be square whenM¼N. The transpose

A
T is obtained by interchanging the rows and columns of A. A matrix A is

symmetric ifA¼A
T. The conjugate transposeA+ is obtained by conjugating all

elements of AT.

Let us now consider some matrices with special structures. A diagonal

matrix has non-zero entries only along its main diagonal. A special case of

the diagonal matrix is the identity matrix (denoted by I), which is a square

matrix with 1s along the main diagonal and 0s elsewhere, i.e.,
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I ¼

1 0 � � � 0
0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

2
664

3
775 (2:3)

Another special structure is a Toeplitz matrix T, which contains identical

elements along any of its diagonals; e.g.,

T ¼

t0 t1 t2 t3
t�1 t0 t1 t2
t�2 t�1 t0 t1
t�3 t�2 t�1 t0

2
664

3
775 (2:4)

Another square matrix of some interest is the Vandermonde structure shown

below:

V ¼

1 1 � � � 1
u0 u1 � � � un�1

..

. ..
. . .

. ..
.

un�1
0 un�1

1 � � � un�1
n�1

2
6664

3
7775 (2:5)

For uk¼ exp(� j 2pk/N), the N�N Vandermonde matrix in Eq. (2.5) is the

N-point discrete Fourier transform (DFT) matrix of importance in digital

signal processing in general, and digital correlation in particular.

In a sense, a discrete image is a matrix with the pixel values as its elements.

However in the pattern recognition context, an image is a spatially varying

two-dimensional function whereas a matrix is just an array of numbers. The

distinction becomes important when we purposefully represent an image

as a vector or matrix to facilitate desired manipulations. As an example,

consider the 4� 4 image shown in Figure 2.1(a) in the form of an array

and in the form of a gray-scale image in (b). The same data can be arranged

as a diagonal matrix or as a column vector as shown in (c) and (d),

respectively.

2.2 Basic matrix–vector operations

We now review some basic vector and matrix operations of use in correlation

pattern recognition. The sum of a and b, two column vectors of length N, is

obtained by adding their elements, i.e., aþ b¼ {aiþ bi}. There are at least two
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types of vector multiplication. The inner product aþb (also referred to as the

dot product) yields a scalar result and is defined as

aþb ¼
XN
i¼1

a�i bi (2:6)

The outer product abþ results in an N�N matrix given by

1
2
2
1
3
1
0
3
3
1
1
3
1
2
2
1

x =

(b)

1
2

2
1

3
1

0
3

3
1

1
3

1
2

2
1

x =

(c) (d)

1 2 2 1

3 1 0 3

3 1 1 3

1 2 2 1

(a)

Figure 2.1 Representation of a 4� 4 image as (a) an array of numbers, (b)
gray value pixels, (c) a diagonal matrix, and (d) a column vector
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abþ ¼

a1b
�
1 a1b

�
2 � � � a1b

�
N

a2b
�
1 a2b

�
2 � � � a2b

�
N

..

. ..
. . .

. ..
.

aNb
�
1 aNb

�
2 � � � aNb

�
N

2
6664

3
7775 (2:7)

A third product operation, available in MATLAB,1 is the array product oper-

ation defined as follows. The result of an array product of two vectors with N

elements is another vector with N elements.

a� �b ¼ a1b1 a2b2 � � � aNbN½ �T (2:8)

If A and B are two matrices of the same size, then AþB¼ {aijþ bij}. If A is

an L�M matrix and B is an M�N matrix, then their L�N matrix product

C¼ AB has elements given by

cij ¼
XM
k¼1

aikbkj

( )
; 1 � i � L; 1 � j � N (2:9)

The number of columns in A must be equal to the number of rows in B

for the matrix multiplication AB to be valid. The product matrix C will

have the same number of rows as A and same number of columns as B.

Since a vector can be treated as a matrix with only one column (or row), the

multiplication of a matrix with a vector is a special case of Eq. (2.9). In

general, matrix multiplication does not commute (i.e., AB and BA are not

usually equal). In fact, BA may not even be defined even though AB is

defined.

Just as in the case of vectors, we can define an array product between two

matricesA and B of the same dimensions. The resulting matrixCwill be of the

same dimensions, but the elements of C will be the products of corresponding

elements of A and B. Another matrix–matrix product is the Kronecker pro-

duct where multiplying an M�N matrix by a K�L matrix results in an

MK�NL matrix. We will not discuss that product any further as we will not

need it.

2.2.1 Vector norms and the Cauchy–Schwarz inequality

The norm serves as a generalized measure of length of a vector. In general, the

p-norm of a vector x is defined as

1 MATLAB is a registered trademark of MathWorks Inc.
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xk kp ¼
XN
i¼1

xij jp
" #1

p

; p � 1 (2:10)

where p is an integer, and | � | indicates the absolute value of the scalar

elements. For p ¼ 1, the norm is the sum of absolute values for p¼ 2, it is

the well-known Euclidean distance; and for p approaching infinity, it is

the maximum value. The unit vector is one that satisfies ||x||p¼ 1. The

Cauchy–Schwarz inequality states that for two vectors x and y

xþyk k � xk k2 yk k2 (2:11)

with equality holding if and only if x¼�y where � is any complex constant.

The Cauchy–Schwarz inequality also leads to the following inequality [13]

where x and y areN-dimensional column vectors andR is anN�NGrammian

matrix, i.e., R¼A
TA for some matrix A.

xTRy
� �2� xTRx

� �
yTRy
� �

with equality if x ¼ �y (2:12)

and

xTy
� �2� xTRx

� �
yTR�1y
� �

with equality if x ¼ �R�1y (2:13)

The Cauchy–Schwarz inequality is a special case of theHölder inequality [13],

which states that if x and y contain real, positive elements, then

X
i

xiyi � xk kp yk kq
1

p
þ 1

q
¼ 1; p > 1 (2:14)

with equality if and only if yi / x
p�1
i . The figures of merit frequently used in

this book are based on quadratic performance criteria such as the mean

squared error, and correspond to the case where p¼ 2. Therefore, unless

indicated otherwise, we will assume the 2-norm for the rest of this book and

drop the subscript p for the sake of simplicity.

2.2.2 Linear independence, rank, matrix inverse and determinant

Two vectors a and b are said to be linearly independent if the only solution

to �aþ�b¼ 0 is �¼�¼ 0. In general, n vectors {x1, x2, . . . , xn} are

said to be linearly independent if the only solution to
Pn

k¼1 �kxk ¼ 0 is

�1¼�2¼ . . . �n¼ 0. If at least one �k is non-zero, then the n vectors are

linearly dependent. The rank of a matrix is the number of linearly independent

rows (or equivalently, the number of linearly independent columns). Thus a
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matrix and its transpose have the same rank. IfA and B are square matrices of

size n� n with ranks rA and rB respectively, then the rank of their product AB

can be bounded as follows:

min rA; rBð Þ � rank ABð Þ � rA þ rB � n (2:15)

A square matrix is said to be of full rank if its rank is equal to the number of its

rows (or columns). IfA is a squarematrix of full rank, thenA is also called non-

singular, and a unique matrix A�1 (known as its inverse) exists such that

A�1A ¼ AA�1 ¼ I (2:16)

The matrix inverse can be used to express the solutions to a set of linear

equations. Consider the following system of N variables xj and M linear

equations:

yi ¼ a11x1 þ a12x2 þ � � � þ a1NxN

y2 ¼ a21x1 þ a22x2 þ � � � þ a2NxN

..

.

yM ¼ aM1x1 þ aM2x2 þ � � � þ aMNxN

(2:17)

where aij, 1� i�M, 1� j�N are scalars. In matrix–vector notation this is

equivalent to y¼Ax, where y¼ {yi}, x¼ {xi}, and A¼ {aij}. Matrix A and

vector y are usually known or measurable, and we desire to solve the system of

equations in Eq. (2.17) to obtain x. For the case when M¼N and A is a full-

rank matrix, the solution is simply given by x¼A
�1
y. We will discuss more

about finding solutions to a system of equations in Section 2.4.2.

One way to determine A�1 requires the determinant of A. For a one-by-one

matrix (i.e., a scalar) the determinant is simply that scalar. For matrices larger

than one-by-one, the definition for the determinant is as follows:

det Að Þ ¼
XN
j¼1

�1ð Þ jþ1a1j det A1j

� �
(2:18)

whereA1j is the (N� 1)� (N� 1) matrix obtained by deleting the first row and

jth column of A. The determinant for the Vandermonde matrix in Eq. (2.5) is

given by
Q

i5j
ui � uj

� �
.

Another useful parameter for a square matrix is its trace, which is nothing

but the sum of all its diagonal elements. Some useful rules concerning matrix

transpose, trace, and inverse operations are as follows:
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ABð ÞT¼ BTAT (2:19)

det ABð Þ ¼ det Að Þ det Bð Þ (2:20)

det AT
� �

¼ det Að Þ (2:21)

A�1ÞT ¼ AT
� ��1

�
(2:22)

trðABÞ ¼ trðBAÞ (2:23)

tr S�1AS
� �

¼ tr Að Þ (2:24)

xTAx ¼ tr AxxT
� �

(2:25)

The matrix A is called unitary if its conjugate transpose is equal to its

inverse, i.e.,

A�1 ¼ Aþ ) AAþ ¼ AþA ¼ I (2:26)

A is called idempotent if A2¼A.

The matrix A is orthogonal if the inverse is equal to its transpose, i.e.,

A�1 ¼ AT ) AAT ¼ ATA ¼ I (2:27)

2.2.3 Partitioned matrices

Often, we may find it convenient to express a large matrix in terms of its

submatrices. Suppose that matrix A is partitioned as A ¼ P Q

R S

� �
, where P

and S are square matrices and P is non-singular. Then the determinant of A

can be obtained from the determinant of smaller matrices as follows:

Aj j ¼ P Q

R S

����
���� ¼ Pj j S� RP�1Q

�� �� (2:28)

Similarly, we can express the inverse of a partitioned symmetric matrix A as

follows [13]:

A�1 ¼ P Q

QT S

� ��1

¼ P�1 þ FE�1FT �FE�1

�E�1FT E�1

� �
(2:29)
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where P and S are obviously symmetric matrices and where E¼S�QTP�1Q

and F¼P
�1
Q. Equation (2.29) shows how to determine the inverse of a larger

matrixA in terms of the inverses of smaller matrices, namelyP andE. A special

case of interest is when A is an n� n matrix and P is of size (n� 1)� (n� 1).

Then,Q in Eq. (2.29) is actually a column vector q, and S is actually a scalar s.

Then E will equal the scalar e¼ s�q
TP�1q, and F becomes column vector

f¼P
�1
q. Then the matrix inverse in Eq. (2.29) can be written as follows:

A�1 ¼ P q

qT s

� ��1

¼ P�1 þ1=e ffT �1=e f
�1=e fT 1=e

� �
¼ P�1 0

0T 0

� �
þ 1

e

ffT �f

�fT 1

� �
(2:30)

Sometimes, a non-singular matrix A of interest (e.g., a correlation matrix to

be defined later) is the sum of outer products of n column vectors and we may

have determined its inverse A
�1. Suppose we get one more observation of

vector x and want to determine the inverse (Aþ xx
T)�1. The following lemma

[13] enables us to determine (Aþ xx
T)�1 from A

�1:

Aþ xxT
� ��1¼ A�1 �

A�1x
� �

xTA�1
� �

1þ xTA�1x
(2:31)

Another matrix inversion lemma of potential use is the following, where A, B,

C, and D are real matrices of size n� n, n�m, m�m and m� n, respectively:

Aþ BCDð Þ�1¼ A�1 � A�1B C�1 þDA�1B
� ��1

DA�1 (2:32)

2.3 Eigenvalues and eigenvectors

An eigenvector q of a matrixA is such that it changes only in length, but not in

direction, when multiplied by the matrix A. Thus if q and l are an eigenvector

and corresponding eigenvalue of A, respectively, then

Aq ¼ lq (2:33)

which can also be expressed as

A� lIð Þq ¼ 0 (2:34)

where 0 is a vector with all zeros. If matrix (A� lI) was invertible, then the

only solution to Eq. (2.34) would be q=0. For a non-trivial solution of

Eq. (2.34) to exist, (A� lI) must be singular, i.e.,

A� lIj j ¼ 0 (2:35)

2.3 Eigenvalues and eigenvectors 21



Expanding the determinant in Eq. (2.35) yields a polynomial (of degree less

than or equal to N when A is an N�N matrix) in l, and that polynomial is

known as the characteristic polynomial of A. The roots of the characteristic

polynomial are the eigenvalues li, which can be back-substituted into Eq. (2.34)

to obtain the corresponding eigenvectors qi. Note from Eq. (2.33) that if q is an

eigenvector of A, then �q is also an eigenvector of A when � is a scalar. Thus,

eigenvectors are not unique. But unless specifically stated otherwise, we will

assume that the eigenvectors are normalized to have unit norm, i.e., q+q¼ 1.

The number of non-zero eigenvalues equals the rank of the matrix.

2.3.1 Some properties of eigenvalues and eigenvectors

of real, symmetric matrices

In general, the eigenvalues of a matrix may be complex. The trace of a square

matrix equals the sum of its eigenvalues, and its determinant is equal to the

product of its eigenvalues; i.e.

tr Að Þ ¼
XN
i¼1

aii ¼
XN
i¼1

li (2:36)

det Að Þ ¼ Aj j ¼
YN
i¼1

li (2:37)

The eigenvalues of A�1 are the reciprocals of the eigenvalues of A, but the

eigenvectors are the same. Similarly, the eigenvalues of A2 are the squares of

the eigenvalues of A, while the eigenvectors are the same.

We will often be using covariance matrices which are real and symmetric.

Real symmetric matrices have several properties that are of use in some

correlation filter designs. If A is real and symmetric, then its eigenvalues li
and eigenvectors qi can be chosen to be real, i.e., the imaginary part of the

eigenvectors of a real symmetric matrix can be chosen to be zero. When

normalized to unit length (as is typically done), the eigenvectors form an

orthonormal set such that

qTi qj ¼
1 i ¼ j
0 i 6¼ j

�
(2:38)

AnN�N orthogonal matrixQ can be obtained by using the eigenvectors as

its columns, i.e., Q¼ [q1 q2 . . . qN]. It follows that Q
T
Q¼ I and, since Q has

N linearly independent columns, it is invertible and thus Q
� 1¼Q

T. Also,

Eq. (2.33) can be expressed as follows:
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AQ ¼ QL (2:39)

where L is the diagonal matrix with eigenvalues along its diagonal, i.e.,

L ¼

l1 0
l2

. .
.

0 lN

2
6664

3
7775 (2:40)

Pre-multiplying Eq. (2.39) by QT leads to the following diagonalization

result:

QTAQ ¼ L (2:41)

Eq. (2.41) shows a method to diagonalize a real, symmetric matrix. Post-

multiplying Eq. (2.39) byQT leads to the following result known as the spectral

decomposition theorem:

A ¼ QLQT ¼
XN
i¼1

liqiq
T
i (2:42)

Spectral decomposition theory applies only if the eigenvectors are linearly

independent, which is the case for real symmetric matrices. If the eigenvalues

of a symmetric matrixA are zero or positive, then xTAx� 0 for all x 6¼ 0, andA

is called a positive semi-definite matrix. If the eigenvalues are strictly positive,

then x
TAx> 0 for all x 6¼ 0, and A is called a positive definite matrix. We can

similarly define negative definite and negative semi-definite matrices.

2.3.2 Relationship between the eigenvalues and eigenvectors of the inner

product matrices and outer product matrices

ConsiderN real, linearly independent column vectors x1, x2, . . . , xN each with

d elements. The inner product and outer product matrices of this set of vectors

are real and symmetric, and the special properties discussed in Section 2.3.1

hold. For special cases where an inner product or outer product matrix may

contain complex elements, we will have to deal with its real part and imaginary

part separately. When d � N, it may be more convenient to estimate the

eigenvalues and eigenvectors of the large d� d outer product matrix using

the smaller N�N inner product matrix. This result is useful in an image

recognition approach known as the principal component analysis (PCA)

method [14, 15].
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The d� d outer product matrix of rank N is given by M¼XXT where

X¼ [x1 x2 . . . xN] is a matrix of size d�N. For example, columns of X may

represent N images, with each image of d pixels in it. Clearly, M is not a

full-rank matrix since N is smaller than d. In fact, M has at most N non-zero

and remaining (i.e., at least d�N) zero eigenvalues. On the other hand, the

smaller full-rank inner product matrix of size N�N is given by V¼X
TX and

can be factored as follows:

V ¼ XTX ¼ QLQT (2:43)

where Q is the matrix of eigenvectors and the diagonal elements of L are the

associated eigenvalues of V. BothQ and L are of size N�N and can be easily

determined.

To obtain the eigenvectors and eigenvalues of M, we square both sides of

Eq. (2.43) and use the fact that QTQ¼QQT¼ I to obtain

XTX
� �

XTX
� �

¼ QL2
QT (2:44)

Pre-multiplying by L�1/2QT and post-multiplying byQL�1/2 both sides of Eq.

(2.44) (where L�1/2 denotes a diagonal matrix with 1=
ffiffiffiffi
li

p
as the ith diagonal

element, which is valid since li is real and positive for positive definitematrices)

yields

L�1=2
QTXT Mð ÞXQL�1=2 ¼ L (2:45)

Setting

�Q ¼ XQL�1=2 (2:46)

we see that �Q
T
M �Q ¼ L. Using Eq. (2.46), it can be shown that �Q

T �Q ¼ I and

that the columns of �Q form an orthonormal set. Thus, �QTM �Q ¼ L is equiva-

lent to

M ¼ �QL �Q
T

(2:47)

This allows Eq. (2.47) to be expressed as follows:

M �Q ¼ �QL (2:48)

proving that �Q is the eigenvector matrix for M. It also follows that the

eigenvalues of M are the diagonal elements of L, and hence the same as the

eigenvalues of V. The eigenvector matrix �Q of the larger outer product matrix

M can be obtained from the eigenvector matrixQ of the smaller inner product

matrix V using Eq. (2.46) [15].
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In this section, we provided a brief summary of some properties and results

from matrix-vector theory relevant to correlation pattern recognition. More

detailed treatments on this subject are available [16–18].

2.4 Quadratic criterion optimization

It is often convenient to express the gradient of a function of many variables

using vector notation. Consider a scalar function y¼ f(x1, x2, . . . , xN) of N

independent variables. This may be also expressed as y¼ f(x) where x is a vector

of size N with elements xi. The first order total differential of y is given by

dy ¼ f1dx1 þ f2dx2 þ � � � þ fNdxN (2:49)

where dxi is the incremental change (differential) in xi, and fi ¼ qy=qxi is the
partial derivative of y with respect to xi. Denoting the vector of partial

derivatives by

f ¼ qy
qx

¼

f1
f2

..

.

fN

2
6664

3
7775 (2:50)

and the vector of differentials by

dx ¼

dx1
dx2
..
.

dxN

2
6664

3
7775 (2:51)

the differential of y can be expressed as dy¼ fTdx, or dy=dx ¼ f. The maxima

or minima of y occur when all the partial derivatives are zero, i.e., f¼ 0.

2.4.1 Derivatives of linear and quadratic functions

If y is a weighted sum of variables, y¼ a
T
x, dy=dx ¼ a. The general quadratic

form for y is y ¼
PN

i¼1

PN
j¼1 aij xi xj, where aij are real scalars. This can also be

expressed in matrix vector notation as y¼ x
TAx where A¼ {aij} is an N�N

matrix of weights. Again, by determining partial derivatives of y with respect

to each variable, it can be shown that dy=dx ¼ Aþ AT
� �

x.2 If A is symmetric,

dy=dx ¼ 2Ax.

2 It is assumed that x is a real vector.
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2.4.2 System of linear equations and least squares

If the number of equations in the system Ax¼ y is less than the number of

unknowns (i.e., M<N) we have an under-determined system for which there

are an infinite number of solutions of the form

x ¼ AT AAT
� ��1

yþ I� AT AAT
� ��1

A
h i

z (2:52)

where z is any vector of length N. The expression for x in Eq. (2.52) is

analogous to the solution for differential equations. The term A
T(AAT)�1y is

the particular solution and
	
I� AT AAT

� ��1

z is the homogeneous solution. Pre-

multiplying both sides of Eq. (2.52) by A shows that the particular solution

yields the desired result (Ax¼ y), while the contribution of the homogeneous

solution is always 0 for any z. Thus, an infinite number of solutions are

possible.

The system is said to be over-determinedwhen there are more equations than

variables, i.e.,M>N. In general, a unique solution does not exist for this case.

However, a minimum mean square error (MMSE) solution can be obtained by

minimizing the MSE.

MSE ¼ y� Axj j2¼ xTATAx� 2xTATyþ yTy (2:53)

where A is assumed to be real and symmetric, and where x and y are assumed

to be real. Setting the gradient of the MSE with respect to x to 0 yields

2ATAx� 2ATy ¼ 0 (2:54)

or

x ¼ ATA
� ��1

ATy (2:55)

The solution in Eq. (2.55) is sometimes denoted as x¼A
y
y where the pseudo-

inverseAy ¼ (AT
A)�1

A
T satisfiesAy

A¼ I, butAAy is not necessarily equal to I.

2.4.3 Constrained optimization with Lagrange multipliers

The method of Lagrange multipliers is useful for minimizing a quadratic

function subject to a set of linear constraints. Suppose that B¼ [b1 b2 . . . bM]

is an N�M matrix with vectors bi of length N as its columns, and

c ¼ c1 c2 . . . cM½ �T is a vector of M constants. We wish to determine the

real vector x which minimizes the quadratic term x
TAx while satisfying the

linear equations BT
x¼ c. Towards this end, we form the functional
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� ¼ xTAx� 2l1 bT1x� c1
� �

� 2l2 bT2x� c2
� �

� � � � � 2lM bTMx� cM
� �

(2:56)

where the scalar parameters l1, l2, . . . , lM are known as the Lagrange multi-

pliers. These multipliers allow us to convert a constrained extremum problem

into an unconstrained extremum problem. Setting the gradient of � with

respect to x to zero yields

2Ax� 2 l1b1 þ l2b2 þ � � � þ lMbMð Þ ¼ 0 (2:57)

Defining m ¼ l1 l2 � � � lM½ �T, Eq. (2.57) can be expressed as

Ax� Bm ¼ 0 (2:58)

or

x ¼ A�1Bm (2:59)

Substituting Eq. (2.59) for x into the constraint equation B
T
x¼ c yields

BTA�1Bm ¼ c (2:60)

The Lagrange multiplier vector m can now be obtained as

m ¼ BTA�1B
� ��1

c (2:61)

Using Eqs. (2.59) and (2.61), we obtain the following solution to the con-

strained optimization problem.

x ¼ A�1B BTA�1B
� ��1

c (2:62)

2.4.4 Maximizing a ratio of two quadratic terms

Another useful figure of merit is the ratio of two quadratic criteria in which

we want the numerator to be large while the denominator should be small.

For example, the numerator may represent signal power whereas the denomi-

nator may characterize the noise power. Suppose we wish to find h maximiz-

ing the following ratio where matrices A and B are assumed to be real and

symmetric:

J hð Þ ¼ hþAh

hþBh
(2:63)

The ratio in Eq. (2.63) is known as the Rayleigh quotient, and to maximize

J(h) with respect to h, we set the gradient rhJ(h) to zero as shown below:
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rhJ hð Þ¼rh

hþAh

hþBh

� �

¼ 2 hþBhð ÞAh� 2 hþAhð ÞBh
hþBhð Þ2

¼ 0
(2:64)

Simple manipulations yield

B�1Ah ¼ hþAh

hþBh

� �
h (2:65)

where B is assumed to be invertible. Since JðhÞ ¼ hþAh=hþBh, we see from

Eq. (2.65) that h must be the eigenvector of B�1A with the largest eigenvalue.

Strictly speaking, the above derivation works only if h is assumed to be real.

If h¼ hRþ jhI, then we must set the gradients with respect to both hR and hI to

zero separately. However, assuming that Cauchy–Riemann conditions hold

[19], we can set the gradient with respect to h to zero by treating h as real and

still get the same answer for the solution vector.

2.5 Probability and random variables

Probability is used to describe uncertain events. There is no need to use

probabilistic models to characterize events that are certain (e.g., the fact that

the Sun will rise in the east). On the other hand, if we roll a die, we do not know

a priori (i.e., beforehand) which of the six faces will show up. All we can say is

that it is equally likely that any of the six sides will show up. Probability theory

is an attempt to quantify such randomness. In this section, we will provide a

brief review of probability theory concepts and results that we will find useful

in correlation pattern recognition.

2.5.1 Basics of probability theory

Let us go back to the example of the six-sided die. This experiment has a

random outcome in that the output can be any one of the six numbers. We

define an event as a set containing some of these outcomes. For example, event

A can be defined as {1, 5}, and event Bmight denote {even numbered outputs}

(i.e., {2, 4, 6}). Event S (also known as the sample set) denotes the set of all

possible outcomes (in this example, the set {1, 2, 3, 4, 5, 6}) and the null event

1 denotes the null set, i.e., the set with no elements in it.

Probability theory provides a framework to define probabilities of such

events. Probability is defined as a real, non-negative number associated with
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every event. The probability of null event1 is zero and the probability of the

sample set S is one, because the set S includes all possible outcomes. We also

need a method to determine the probabilities of more complicated events such

as {A\B}.

Probability theory axioms Wewill denote the probability of an eventA byP(A).

Probability theory is based on the following three axioms.

P(A) is a real number in the closed interval [0, 1]

P(S)¼ 1, the probability of the sample set S is 1.

For mutually exclusive sets A and B, P(A[B)¼P(A)þP(B)

In the example of a six-sided die, all six faces have equal probability of

appearing in a single roll, i.e., P({k})¼ 1/6 for k¼ 1, 2, 3, 4, 5, 6. Thus, eventA

(i.e., {1, 5}) has probability 2/6 and event B (i.e., {even numbers 2, 4, and 6})

has probability 3/6. Since these two events are mutually exclusive, the third

axiom tells us that the probability of {A[B} is 1/2þ 1/3¼ 5/6.

We will use the easier notation {AþB} to denote {A[B} and {AB} to

denote {A\B}. Also, { �A} is used to denote the complement of the event {A}.

Using the above three axioms, the following useful properties can be derived:

P �Að Þ ¼ 1� P Að Þ;P Aþ Bð Þ ¼ P Að Þ þ P Bð Þ � P ABð Þ (2:66)

The above properties can be extended to more than two events by applying

them repeatedly.

Conditional probabilities We can define probabilities of events conditioned on

other events. Conditioning an event A on another event B reduces the uncer-

tainty and hence increases our knowledge of the event A. We use P(AjB) to
denote the probability of event A conditioned on event B. The conditional

probability satisfies all the probability properties.

P A Bjð Þ ¼ P ABð Þ
P Bð Þ (2:67)

In the six-sided die example, consider the event C (number greater than or

equal to 3, i.e., 3, 4, 5, or 6) as the conditioning event. ThenP(AjC) refers to the
probability of event A (i.e., {1, 5}) conditioned on event C (i.e., {3, 4, 5, 6}).

From Eq. (2.67), P(AjC)¼ P ACð Þ
P Cð Þ ¼ P 5f gð Þ

P 3; 4; 5; 6f gð Þ ¼
1=6

4=6
¼ 1

4
, which agrees

with our intuitive notion that P(AjC) should be 1/4 since only one of the four

outcomes in event C corresponds to eventA. The basic conditional probability

definition in Eq. (2.67) can be used to derive the following other identities.
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P ABð Þ ¼ P Að Þ � P B Ajð Þ ¼ P Bð Þ � P A Bjð Þ

P Að Þ ¼ P ABð Þ þ P A �Bð Þ ¼ P Bð Þ � P A Bjð Þ þ P �Bð Þ � P A �Bjð Þ

P A Bjð Þ ¼ P B Ajð Þ � P Að Þ
P Bð Þ P B Ajð Þ ¼ P A Bjð Þ � P Bð Þ

P Að Þ

(2:68)

The last line of equalities in Eq. (2.68) is known as Bayes’ rule and allows us

to connect P(AjB) to P(BjA). Bayes’ rule finds significant use in pattern

recognition and parameter estimation, among other applications.

TwoeventsAandBare said tobe statistically independent ifP(AB)¼P(A)P(B).

For the three events (A={1,5}, B¼ {2,4,6}, and C¼ {3,4,5,6}) we defined

for the six-sided die, P(A)¼ 1/3, P(B)¼ 1/2, P(C)¼ 2/3, and P(AB)¼ 0,

P(AC)¼ 1/6, P(BC)¼ 1/3. Based on these probabilities, only the pair of events

B andC are statistically independent among the three pairs considered. IfA and

B are statistically independent, then P(AjB)¼P(A) and P(BjA)¼P(B).

2.5.2 Random variables

While probabilities are easy to understand, they are not so easy to apply in

many situations. Suppose we want tomodel the noise present in an image. This

noise can take on a continuum of values at each pixel, and we need a more

compact representation than enumerating the probabilities for all possible

noise values. RVs provide such a compact description.

A random variable (RV) X is defined as a mapping from the events in the

random experiment to the real line. For example, we can define an RV X as

taking on the real value k in our six-sided die experiment where k is the

outcome. This RV takes on only discrete values (namely 1, 2, 3, 4, 5, and 6)

and is thus called a discreteRV.Wewill use continuousRVs tomodel outcomes

such as noise where we can have a continuum of values. Continuous RVs take

on real values in an interval or in sets of intervals.

Cumulative distribution functions The probabilities associated with an RV can

be expressed using the cumulative distribution function (CDF).

F xð Þ ¼ Pr X � xf g (2:69)

where x denotes the value that the RVX is taking on. Often, a subscript is used

to indicate explicitly a particular RV. Such subscripts will be omitted when the

RV is obvious from the context. Since we assume that all six faces of the die are

equally likely, the CDF of this RV is as shown in Figure 2.2.
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Because of the discrete nature of this RV, its CDF exhibits jumps indicating

that those outcomes have a non-zero probability associated with them. In this

example, the jumps are of size 1/6 indicating that the probability of each of

these outcomes is 1/6. A continuous RV will have a CDF that is continuous,

i.e., it has no jumps. The probability that the RV X takes on values in an

interval can be easily obtained as

PrfxL5x � xRg ¼ F xRð Þ � F xLð Þ (2:70)

A few other features of a CDF are worth noting. It is non-decreasing, since

otherwise we will get negative probabilities. CDF is zero at the left extreme

(corresponding to null event 1), and equals 1 at the right extreme (corre-

sponding to the sample set S).

2.5.3 Probability density functions

While we can use a CDF to characterize completely an RV, we will find it more

convenient to work with the probability density function (PDF), which is the

derivative of the CDF, i.e.,

f xð Þ ¼ dF xð Þ
dx

(2:71)

While the PDF of a continuous RV is well defined, the PDF of a discrete RV

contains delta functions owing to the discontinuities in its CDF. Since the PDF is

the derivative of theCDF, we can integrate the PDFover an interval to determine

the probability that the RV takes on values in an interval, i.e.,

PrfxL5x � xRg ¼ F xRð Þ � F xLð Þ ¼
ZxR
xL

f xð Þdx (2:72)

A few other features of PDFs are worth noting. Since the CDF is a non-

decreasing function, its derivative (namely the PDF) is never negative. The

1 6

1

1/6

Figure 2.2 Cumulative distribution function (CDF) of the discrete RV
modeling the outcome of the rolling of a fair six-sided die
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total area under any PDF must be 1, since this is the probability that the real-

valued RV takes on a value between negative infinity and positive infinity.

Let us look at a few useful PDFs, although there are many more probability

density functions that we are not considering. Interested readers should consult

some of the excellent probability theory and RVs references [20, 21].

Binomial Consider the tossing of a coinN times. Define the RVX as the number

of times heads shows up in theseN trials. Clearly, this is a discrete RV taking on

values 0, 1, 2, all the way to N. If the probability that heads shows up in a single

trial is p and if all the trials are statistically independent, then the probability that

X takes on value n is defined by the following binomial distribution:

Pr nf g ¼ N
n

� �
pð Þn 1� pð Þ N�nð Þ n ¼ 0; 1; 2; : : : ;N (2:73)

where
N
n

� �
¼ N!

n! N � nð Þ!

Poisson This is a discrete RV that takes on all non-negative integer values.

Consider events that occur at random time instants, such as the arrival of

customers at a teller window or the arrival of photons at a photo-detector

surface. Letm denote the average number of these events per unit time and let

X denote the number of events in a particular unit time. We say that X follows

a Poisson distribution provided

Pr X ¼ nf g ¼ mn

n!
e�m n ¼ 0; 1; 2; : : : (2:74)

Uniform Often, all we can say about an RV is that any value in an interval is

equally likely. This situation can be modeled by a continuous RV X whose

PDF is constant in an interval, and zero outside that interval.

f xð Þ ¼ 1= xR � xLð Þ for xL � x � xR
0 otherwise

�
(2:75)

We show the uniform PDF in Figure 2.3(a).

Gaussian A continuous RV X is distributed according to a Gaussian or normal

distribution if its PDF is as follows:

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp � x�mð Þ2

2�2

" #
(2:76)
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Eq. (2.76) shows that a Gaussian PDF is characterized by two parameters,

m (known as its mean) and �2 (known as its variance). The square root of

the variance is called the standard deviation. We show a Gaussian PDF in

Figure 2.3(b). From this figure, we can see that the Gaussian PDF is even

symmetric around its mean.While aGaussianRV can take on any real value, it

is more likely to take on values close to its mean m. The smaller the variance,

the more narrowly distributed is this set of values around the mean.

We will use Gaussian random variables in several places. The probabi-

lity of a Gaussian RV taking on values in an interval is obtained by integra-

ting the PDF Eq. (2.76) over that interval. As the needed integral cannot

be evaluated in a closed-form manner, it is evaluated numerically and tabu-

lated. The integral of a unit Gaussian (a Gaussian PDF with zero mean

and unit variance) is known as the error function and many software packages

(e.g., MATLAB) contain built-in commands to evaluate the error

function (erf).

erf xð Þ ¼ 2ffiffiffi
p

p
Zx
0

e�y2dy; x � 0; erf 1ð Þ ¼ 1; erf �xð Þ ¼ �erf xð Þ;

erfc xð Þ ¼ 1� erf xð Þ

(2:77)

where erfc denotes the complementary error function. Other variations of the

error function as well as other functions (e.g., Q xð Þ ¼� 1ffiffiffiffi
2p

p
R1
x e�u2=2du is the

(a) (b)
x x 

Figure 2.3 (a) Uniform probability density function and (b) Gaussian
probability density function
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integral of the unit Gaussian from x to infinity) can be found in the literature,

but they can all be related to the error function defined in Eq. (2.77).

Transformation of random variables If we transform the RV X into a new RV

Y according to Y¼ g(X), then the PDF of Y depends on the PDF of X as well

as the mapping g(�). We can find the PDF of Y by first finding connection

between the CDFs and then taking the derivatives to determine the relation

between the two PDFs. Let us first consider the case when the mapping g(�)
is one-to-one. Then, the probability that the RV X takes on a value in

an elemental interval dx centered at x is the same as the probability that the

RV Y takes on a value in an elemental interval dy centered at y, i.e.,

fX(x)jdxj ¼ fY(y)jdyj, given that the sizes of dx and dy are as related through

g(.), i.e., dy¼ jdg/dxjdx. From this, the relationship between the two PDFs can

be seen to be as follows:

fY yð Þ ¼ fX xð Þ
dg xð Þ
dx

��� ���
������
x¼g�1 yð Þ

(2:78)

We can use this method for other mappings also. For example, ifY¼X2, the

PDF of Y for negative y values is zero, since the mapping Y¼X2 prevents Y

from taking on negative values. On the other hand, there are two x values that

result in the same positive value of y. Whenmultiple x values lead to the same y

value, we add the contributions from each of the x solutions to obtain the

complete PDF as follows:

Y ¼ X2 ) fY yð Þ ¼
fX

ffiffi
y

pð ÞþfX � ffiffi
y

pð Þ
2
ffiffi
y

p for y � 0

0 otherwise

(
(2:79)

Affine transformation Let us consider the affine transformation Y¼ aXþ b

where a and b are constants. Using Eq. (2.78) we see that the PDF of Y is

related to the PDF of X as follows. (Note: an affine transformation is a linear

transform if and only if b=0.)

fY yð Þ ¼ 1

aj j fX
y� b

a

� �
(2:80)

If X is a Gaussian RV with the PDF given in Eq. (2.76), then Y is also a

GaussianRV as shown below. This is an important result since we will often be

interested in what happens to an RV as it passes through a linear system. We
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now know that Gaussian RVs going into a linear system will come out as

Gaussian RVs with perhaps a change in their mean and variance values.

fY yð Þ ¼ 1

aj j fX
y� b

a

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2�2
x

p exp �
y�b
a

� 

�mx

� 
2
2�2

x

2
64

3
75

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2�2

x

p exp � y� amx þ b½ �ð Þ2

2a2�2x

" # (2:81)

As can be seen from Eq. (2.81), random variable Y is also a Gaussian, but has

meanmY¼ amXþ b and variance �2
Y ¼ a2�2

X . Thus any Gaussian RVX can be

mapped into a unit Gaussian (i.e., mean is 0 and variance is 1) RV Y using

Y¼ aXþ b, with a¼ 1/�X, and b¼�mX/�X. Thus the probability of a

Gaussian RV with arbitrary mean and variance taking on values in an interval

can be obtained from the error function (which describes probabilities for the

unit Gaussian).

2.5.4 Expectation

Often, we are interested in the average value of anRVX. Such an average value

(also known as themean m of the RV) is obtained by multiplying each possible

value of the RV by its probability and summing up the results, i.e.,

mX ¼
Z1
�1

xfX xð Þdx ¼ E Xf g (2:82)

where E{X} is known as the expectation of X. Expectation can also be defined

for functions ofX. Thus, we can obtain the expectation ofY¼ g(X) as follows.

mY ¼ E Yf g ¼
Z1
�1

fY yð Þdy ¼ E g Xð Þf g ¼
Z1
�1

g xð ÞfX xð Þdx (2:83)

Eq. (2.83) shows that we don’t need to go through the trouble of first perform-

ing a transformation of anRV (i.e.,Y¼ g(X)) and determining the new PDFof

Y to find the average of the RVY. Instead, we can find the expectation of g(X)

using only the PDF of X as in Eq. (2.83).

Moments We earlier definedE{X} as themean of anRV.Higher-ordermoments

are defined as the expectation of higher powers of the RV, i.e., the nthmoment of

the RV X is defined as follows:
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mn ¼ E Xnf g ¼
Z1
�1

xnf xð Þdx (2:84)

A smooth PDF can be reconstructed if we know all its moments. But some-

times, all we need are the first two moments (namely the mean and the

variance) of the RV. They tell us where the PDF is centered and how broad

it is. Also, the popular Gaussian PDF in Eq. (2.76) is completely characterized

by its mean m and variance �2.

The variance �2 of an RV is defined as follows:

�2 ¼ E X �mð Þ2
n o

¼
Z

x�mð Þ2f xð Þdx

¼
Z

x2f xð Þdx� 2m

Z
xf xð Þdxþm2

Z
f xð Þdx

¼ E X2
� �

� 2m2 þm2 ¼ E X2
� �

�m2

(2:85)

We have omitted the integration limits in the above expression since they are

from �1 to þ1, as should be obvious from the context. Often, mean and

variance prove to be adequate descriptors for an RV, although they do not

necessarily provide a complete description.

Moments for Gaussian PDF For the Gaussian PDF in Eq. (2.76), we can show

that E{X}¼m and Ef X �mð Þ2g ¼ �2. AGaussian PDF is one of the few RVs

that are completely characterized by their first two moments (namely mean

and variance). The Poisson distribution is characterized by a single moment.

Moments for uniform PDF For the uniform PDF in Eq. (2.75), the mean can

be easily shown to be (xLþ xR)/2, the mid-point of the interval of support. Its

variance can be shown to be ðxR � xLÞ2=12. Thus, if we need to simulate a

uniform RV with zero mean and unit variance, we must subtract 0.5 from

the random numbers uniformly distributed over [0,1] and multiply the results

by
ffiffiffiffiffi
12

p
.

So far, we have concentrated on a single RV. In practice, we need to consider

more than one RV. The next section is devoted to two RVs.

2.5.5 Two random variables

In pattern recognition applications we will encounter more than one RV

and thus will need tools that can describe and handle multiple RVs. In this
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sub-section, we will first look at the case of two RVs and introduce the

important second-order characterizations such as covariance and correlation

coefficient. In Section 2.5.6 we consider multiple random variables, which are

best described using a vector formulation. We will review results associated

with Gaussian random vectors in some detail as we will be relying on these

results. Finally, we will investigate the effects of linear transformations on

random vectors.

Suppose we roll two six-sided dice as part of a single random experiment.

We can associate two RVs X and Y with that one experiment. X is the number

on the first die and Y is the number on the second die. To characterize these

two random variables jointly (i.e., together), we can use the joint CDF defined

below.

F x; yð Þ ¼ Pr X � x;Y � yf g (2:86)

The joint CDF describes the joint random behavior of the two RVs, not just of

each RV by itself, and in that sense is more informative. The joint CDF is non-

negative, non-decreasing and must approach 1 as both x and y approach

infinity. Similarly, the CDF is zero if either x or y approaches negative infinity.

Joint PDF RVs X and Y can be described using a joint PDF that is related to

the joint CDF as below.

f x; yð Þ ¼ q2F x; yð Þ
qxqy

(2:87)

Since the joint CDF is non-decreasing, the joint PDF must be non-negative. The

probability that the twoRVs takeon values in anarea in the (x, y) plane is obtained

by integrating the joint PDF (which we will simply refer to as a PDF) over that

region. If we integrate the PDF over the entire (x, y) plane, we get 1.

Marginal PDFs We can determine the PDF of just X from knowing the joint

PDF. This is done by integrating out the randomness in Y. Resulting density

functions are called marginal PDFs and we will use subscripts to distinguish

marginal PDFs from joint PDFs. Marginal PDFs can be obtained from joint

PDFs as below.

fX xð Þ ¼
Z1
�1

fX;Y x; yð Þdy fY yð Þ ¼
Z1
�1

fX;Y x; yð Þdx (2:88)

Marginal PDFs describe only what happens to one RV without worrying

about the other and in that sense are incomplete. Thus knowing the twomarginal
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PDFs fX(x) and fY(y) is not same as knowing the joint PDF fX,Y (x, y). An

exception however, is when the joint PDF is product separable (often just

called separable), i.e.,

fX ;Y x; yð Þ ¼ fX xð Þ � fY yð Þ (2:89)

When the joint PDF is separable as above, the twoRVsX andY are said to be

statistically independent. Statistical independence is beneficial in many ways.

Instead of needing a 2-D joint PDF to describe the associated randomness, all

we need are two 1-Dmarginal PDFs. It also allows us to separate out computa-

tions in X and Y. For example, we can determine E{X3Y4} as the product of

E{X3}, the thirdmoment inX, and ofE{Y4}, the fourthmoment inY. IfX andY

are statistically independent, then E{ f(X)g(Y)} is equal to E{ f(X)}�E{g(Y)}.

Sum of random variables We are often interested in finding the PDF of

Z¼ (XþY). The CDF of Z is related to the joint PDF of X and Y as follows.

By taking the derivative of the CDF of Z with respect to z, we can determine

the PDF of Z.

FZ zð Þ ¼ Pr X þ Yð Þ � zf g ¼
Z1
�1

dy

Zz�yð Þ

�1

dx fX;Y x; yð Þ

) fZ zð Þ ¼ dFZ zð Þ
dz

¼
Z1
�1

dy fX;Y z� y; yð Þ

(2:90)

For the special case when X and Y are statistically independent, the PDF of

their sum is the convolution of the PDFs of X and Y as seen below.

fZ zð Þ ¼
Z1
�1

dy fX ;Y z� y; yð Þ ¼
Z1
�1

dy fX z� yð Þ fY yð Þ ¼ fX zð Þ � fY zð Þ (2:91)

where the asterisk denotes the convolution operation, to be discussed in

Chapter 3. Thus the PDF of the sum of independent RVs is the convolution

of the original PDFs.

Central limit theorem One application of the result in Eq. (2.91) is of particular

interest. Suppose Z is the sum of N independent and identically distributed

(IID) RVs. By applying Eq. (2.91) repeatedly, we see that the PDF of Z is the

N-fold auto-convolution of the PDF of the original RVs. Since convolution is

a broadening operation, the result of theN-fold auto-convolution approaches a
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Gaussian shape asN increases. The central limit theorem (CLT) states that the

CDF of the sum ofN IID random variables approaches that of a Gaussian RV

as N increases.

The central limit theorem is useful in that it lets us approximate the sums of

statistically independent RVs by Gaussian RVs, as long as the number of RVs

being summed is large. However, there is no need to invoke CLT if the original

RVs themselves were Gaussian RVs. Summing is a linear operation and linear

operations on Gaussian RVs lead to Gaussian RVs.

Second-order measures Earlier we defined variance of an RV as its second

central (i.e., mean-subtracted) moment. For the case of two RVs X and Y, we

can compute the variance for X and Y separately using their marginal PDFs.

Unless the two RVs are statistically independent, the two variances do not

provide a complete (i.e., joint) second-order characterization. In addition, we

need the covariance (cov) defined below.

cov X ;Yf g ¼ E X �mXð Þ Y �mYð Þf g ¼ E XYf g �mXmY (2:92)

The covariance describes the joint second-order behavior of the two

random variables. If X and Y are statistically independent, we know that

E{XY}¼E{X}E{Y}¼mXmY and, from Eq. (2.92), the covariance is zero.

When the covariance of two RVs is zero, they are said to be uncorrelated.

Thus, statistical independence implies uncorrelatedness. However, uncorrelated-

ness does not necessarily imply statistical independence as uncorrelatedness

deals only with second-order moments whereas statistical independence refers

to probability density functions.

A related measure is the correlation coefficient (�) defined as follows:

�X;Y ¼ cov X ;Yf g
�X�Y

(2:93)

One can prove that the correlation coefficient can take on values only between�1

and+1. If it is zero, the twoRVs are uncorrelated. If the correlation coefficient is

close to +1, then the two RVs track each other closely. If the correlation

coefficient is close to �1, the two RVs track each other closely but one is the

negative of the other. The larger the absolute value of the correlation coefficient,

the more we can tell about one RV from our knowledge of the other RV.

Bivariate Gaussian Two RVs are said to be jointly Gaussian provided that

their joint PDF takes on the following form:
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fX ;Y x; yð Þ ¼ 1

2p�X�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� exp � 1

2 1� �2ð Þ
x�mXð Þ2

�2X
þ y�mYð Þ2

�2Y
� 2�

x�mXð Þ y�mYð Þ
�X�Y

( )" #

(2:94)

where � is the correlation coefficient of X and Y. The bivariate Gaussian

requires five parameters (two means, two variances and one correlation coeffi-

cient). The marginal PDFs for X and Y can be shown to be univariate

Gaussians with the corresponding means and variances.

When the correlation coefficient is zero, the joint PDF in Eq. (2.94) becomes

separable indicating that the RVs are statistically independent. Thus, here is an

exception to the previous statement that uncorrelatedness does not necessarily

imply statistical independence. For jointly Gaussian RVs, statistical indepen-

dence implies uncorrelatedness, and vice versa. We will later discuss linear

transformations that convert correlated RVs into uncorrelated RVs. If we

start with Gaussian RVs, such linear transformations will allow us to obtain

uncorrelated Gaussian RVs that are also statistically independent.

Conditional PDFs When dealing with two RVs, we can define a conditional

PDF as follows, just as we defined a conditional probability before. The

symbol fXjY(xjy) means the PDF of the RV X conditioned on the RV Y,

evaluated at x and given that Y took on the value y. Another terminology is

that fXjY(xjy) is the a-posteriori likelihood of X taking on the value x, given

that Y was found to have the value y. That is to say, following the measure-

ment of Y we have information on what values of X are likely to occur. Before

Y is measured, the PDF for X is said to be the a-priori likelihood.

fX Yj x yjð Þ ¼ fX ;Y x; yð Þ
fY yð Þ (2:95)

Not surprisingly, when X and Y are statistically independent

fXjY(xjy)¼ fX(x) and fYjX(yjx)¼ fY(y). The conditional PDF in Eq. (2.95) is

just like any other PDF in that it is non-negative with an area of 1 under the

PDF curve, and we can define conditional mean, conditional variance and

conditional moments. If X and Y are jointly Gaussian, then their conditional

PDFs are also Gaussian.

Bayes’ rule Often we wish to reverse the direction of inference afforded by the

conditional PDF, and Bayes’ rule tells us how to do that. The definition in
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Eq. (2.95) allows us to connect conditional PDFs tomarginal PDFs as follows.

The set of relationships given below are various forms of Bayes’ rule that find

use in pattern recognition theory.

fX;Y x; yð Þ ¼ fY yð ÞfX Yj x yjð Þ ¼ fX xð ÞfY Xj y xjð Þ

) fY Xj y xjð Þ ¼
fY yð ÞfX Yj x yjð Þ

fX xð Þ ¼
fY yð ÞfX Yj x yjð ÞR
fY y0ð ÞfX Yj x y0jð Þdy0

(2:96)

SupposeX denotes the received signal and Y denotes the transmitted signal.

An estimation method known as the maximum a-posteriori method selects the

y value that maximizes the a-posteriori PDF fYjX (yjx) for a given received

value y. Bayes’ rule lets us express this a-posteriori PDF fYjX (yjx) in terms of

the known conditional PDF fXjY (xjy) and the marginal a-priori PDF fY(y).

Complex random variables Strictly speaking, RVs are real-valued. However,

we can construct complex RVs by using one RV for the real part and another

for the imaginary part. In particular, a complex RV of specific interest is

Z¼Xþ jY, where X and Y are statistically independent, zero-mean,

Gaussian RVs with the same standard deviation �. One can show that if the

complex Gaussian RV Z is represented by magnitude M and angle �, (i.e.,

Z¼Mej�), then M is characterized by a Rayleigh PDF and � is characterized

by a uniform PDF in the interval from �p to þp and the RVs M and � are

statistically independent. It is also easy to see that the joint PDF fX,Y (x, y)

depends only on magnitude M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
and not on angle �¼ arctan (Y/

X ), i.e., the complex Gaussian RV Z is circularly symmetric. In fact, if

independent RVs X and Y are circularly symmetric (i.e., their joint

PDF is a function only of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
), then they are Gaussian with zero

means and equal variances. It is easy to verify that

E Zj j2
n o

¼ E X2 þ Y2
� �

¼ 2�2 whereas E{Z2}¼E{X2�Y2}¼ 0. Finally, it

is useful to realize that the central limit theorem applies to complex RVs also,

in the sense that adding many identical and independent complex RVs results

in Gaussian complex RVs. This can be seen by applying the central limit

theorem to the real part and imaginary part separately. More detailed dis-

cussions about complex RVs and complex random processes can be found

elsewhere [22].

2.5.6 Random vectors

When we want to describe multiple RVs, we will find it more convenient to

use vectors. Thus, we can define a random column vector to represent
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N RVs by defining x¼ [X1 X2 . . . XN]
T where the superscript T denotes the

transpose operation. We denote the joint PDF of the random vector, f(x) and

this has all the PDF properties such as being non-negative, and that the total

volume under the PDF surface is equal to 1. From this joint PDF, we can

derive the marginal PDFs of not only the N component RVs, but also other

partial characterizations such as bivariate and trivariate PDFs. We obtain

these partial PDFs by integrating out unwanted variables from the joint PDF.

These N RVs are statistically independent, provided that we can express the

N-variate PDF as the product of N marginal PDFs; i.e.,

f xð Þ ¼
YN
i¼1

fXi
xið Þ (2:97)

Statistical independence will greatly simplify matters by requiring N 1-D

functions instead of one N-dimensional function. To see the advantage of

independence, suppose we describe each 1-D function by 100 samples and

N¼ 2. Then two 1-D PDFs require 200 samples, whereas one 2-D PDF

requires 1002¼ 10 000 samples. This difference is more dramatic for larger

values of N.

Second-order statistics The means of the N RVs can be compactly expressed

using the mean vector m defined as:

m ¼ E xf g ¼ E X1f g E X2f g � � � E XNf g½ �T (2:98)

The second-order statistics include variances and covariances of the N RVs,

which can be captured by the following N�N covariance matrix C.

C ¼ E x�mð Þ x�mð ÞT
n o

¼

�21 cov X1;X2f g � � � cov X1;XNf g
cov X2;X1f g �2

2 � � � cov X2;XNf g
..
. ..

. . .
. ..

.

cov XN ;X1f g cov XN ;X2f g � � � �2
N

2
666664

3
777775

(2:99)

where we see that the N by N covariance matrix possesses certain attributes.

Diagonal entries of the covariance matrix are indeed the variances of the N

RVs, and the off-diagonal entries are the covariances of pairs of RVs. We can

see from Eq. (2.99) that the covariance matrix is symmetric since the covari-

ance of X and Y is the same as the covariance of Y and X. If all pair-wise
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covariances are zero (i.e., all pairs of RVs are uncorrelated), the covariance

matrix C is diagonal with variances as the diagonal elements.

Covariance matrix is positive definite Another important property of the covari-

ance matrix is that it is positive definite; i.e., aTCa> 0 for any a 6¼ 0. To prove

this, let us define a new scalar RV Y as a weighted sum of the N RVs; i.e.,

Y¼ a
T
x¼ a1X1þ a2X2þ � � � þ aNXN. The first twomoments of this newRVY

can be computed as follows:

mY ¼ E Yf g ¼ a1m1 þ a2m2 þ � � � þ aNmN ¼ aTmX

�2Y ¼ E Y �mYð Þ2
n o

¼ E
XN
i¼1

ai Xi �mið Þ
 !2

8<
:

9=
;

¼
XN
i¼1

XN
k¼1

aiakcov Xi;Xkf g ¼ aTCXa

(2:100)

where we have used subscripts for clarity. Since the variance of any random

variable (including that of Y) must be positive, from Eq. (2.100) we see that

a
T
Ca> 0 for any non-zero vector a. This is indeed the requirement for the positive

definiteness of matrix C. Since the covariance matrix C is guaranteed to be sym-

metric and positive definite, its eigenvalues are guaranteed to be real and positive.

Gaussian random vectors N RVs are said to be jointly Gaussian when their

joint PDF is of the following form:

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞN Cj j

q exp � 1

2
x�mð ÞTC�1 x�mð Þ

� �
(2:101)

where jCj is the determinant of the covariance matrix C. From the above

equation, we see that a Gaussian PDF is completely characterized by its

mean vector m with N elements in it, and the symmetric covariance matrix C

with N(Nþ 1)/2 distinct entries in it.

When the covariance matrix C is diagonal, its inverse C�1 is also diagonal

and the N-variate PDF in Eq. (2.101) can be decomposed as the product of N

marginal PDFs (each a univariate Gaussian), proving once again that for

jointly Gaussian RVs, uncorrelatedness and statistical independence are

equivalent.

For jointly Gaussian RVs, we can express higher-order moments in terms of

variances and covariances. For example, for four zero-mean, jointly Gaussian

RVs, we can show the following.
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E X1X2X3X4f g ¼E X1X2f gE X3X4f g þ E X1X3f gE X2X4f g

þ E X1X4f gE X2X3f g (2.102)

2.5.7 Linear transformations

We have already provided our motivation for wanting to look at affine

transformations (sometimes we may refer to them as linear transformations,

although strictly speaking linear transformations are a special case of affine

transformations) of random vectors. As we will show soon, affine transform-

ations of Gaussian random vectors lead to Gaussian random vectors. We will

also show that we can select the affine transformation so that the transformed

covariance matrix is diagonal. Thus a properly designed linear transformation

can convert a set of correlated Gaussian RVs to a set of uncorrelated (and

hence statistically independent) Gaussian RVs.

Suppose that a linear transformation convertsNRVs {X1, X2, . . . ,XN} into

M new RVs {Y1, Y2, . . . ,YM} according to the following relationship:

Y1 ¼ a11X1 þ a12X2 þ � � � þ a1NXM

Y2 ¼ a21X1 þ a22X2 þ � � � þ a2NXM

..

. ..
. ..

.

YM ¼ aM1X1 þ aM2X2 þ � � � þ aMNXM

(2:103)

The linear transformation in Eq. (2.103) can be compactly expressed as

y¼Ax where A is a matrix with M rows and N columns. The (i, j)th entry of

A is aij.

Let us first consider the case of M¼N where the transformation matrix A

is invertible. The Jacobian (defined as the determinant of the matrix containing

qyi
qxj

as its (i, j) element) of this transformation is jAj, the determinant of the

transformation matrix. Thus the PDF of y can be related to the PDF of x as

follows:

fY yð Þ ¼ 1

Aj j fX A�1y
� �

(2:104)

Applying the above result and the N-variate Gaussian PDF in Eq. (2.101),

we can see that the transformed random vector is also Gaussian, but with a

new mean vector and new covariance matrix.
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fY yð Þ ¼ 1

Aj j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð ÞN CXj j
q exp � 1

2
A�1y�mX

� �T
C�1

X A�1y�mX

� �� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞN CYj j

q exp � 1

2
y�mYð ÞTC�1

Y y�mYð Þ
� �

where mY ¼ AmX and CY ¼ ACXA
T

(2:105)

The above result clearly shows that the result of an invertible affine

transformation is also a Gaussian vector. If M is smaller than N, all we need

is to integrate out the (N�M) unwanted RVs. The resultant PDF will be

Gaussian since marginal PDFs of a jointly Gaussian PDF are themselves

Gaussian. The new mean vector and the covariance matrix are related to the

original mean vector and covariance matrix as in Eq. (2.105).

Whitening transformation A particular linear transformation of interest is the

whitening transform, which converts a set of RVs with a non-diagonal covari-

ance matrix Cx to a new set of RVs with a diagonal covariance matrix (and, in

fact, the identity matrix). This transformation is based on the property that for

symmetric, positive definite matrices such as covariance matrices, the eigen-

values li are real and positive and corresponding eigenvectors ei can be selected
to be orthonormal, i.e.,

Cxei ¼ liei; i ¼ 1; 2; . . . ;N li > 0 eTi ej ¼
1 for i ¼ j
0 for i 6¼ j

�
(2:106)

If all eigenvalues are distinct, corresponding eigenvectors are orthogonal

and can be normalized to have unit norm so that the set of eigenvectors is

orthonormal. If two eigenvalues are equal, then corresponding eigenvectors

can be chosen from a plane and do not have to be orthogonal. However, they

can be selected to be orthogonal. One example of the case of repeated eigen-

values is the identity matrix whose eigenvalues are all equal to 1. Clearly, any

vector is an eigenvector for the identity matrix, but we can always choose N

elemental vectors (e.g., [000100 . . . 0]) as the eigenvectors.

Let E denote a square matrix whose columns are ei, the normalized eigen-

vectors, and let L denote a diagonal matrix whose diagonal entries are the N

eigenvalues. Then Eq. (2.106) can be written more compactly as follows:

CXE ¼ EL and ETE ¼ I ) ETCXE ¼ L and ELET ¼ CX (2:107)
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Let us consider a transformation matrix A whose rows are the normalized

eigenvectors ei of the covariancematrixCx; i.e.,A¼E
T. If y¼Ax, then the new

covariance is a diagonal matrix as shown below.

CY ¼ ACXA
T ¼ ETCXE ¼ ETEL ¼ L ¼ Diag l1; l2; : : : ; lNf g (2:108)

Thus, using A¼E
T results in new RVs y that are uncorrelated since the new

covariance matrix is diagonal. If the random vector x is Gaussian, then

A¼E
T
x is also Gaussian since the transformation is linear. Thus, A¼E

T
x

results in statistically independent Gaussian RVs whose variances are nothing

but the eigenvalues of the covariance matrix Cx.

We can also create newRVs that are of unit variance by dividing each newRV

by the square root of the ith eigenvalue. Thus, we can obtain statistically

independent, Gaussian RVs with unit variance by using the linear transform-

ation A¼L(�1/2)ETx, where L(�1/2) denotes a diagonal matrix whose ith diag-

onal entry is 1=
ffiffiffiffi
li

p
. This transformation is called a whitening transformation

since it creates new uncorrelated RVs with equal variances similar to white light,

which has all wavelengths in it. The whitening transform allows us to evaluate

the probabilities associated with N-variate Gaussians using univariate

Gaussians and hence error functions.

2.6 Chapter summary

In this chapter, we reviewed relevant concepts and results from matrix–vector

theory and probability theory and RVs. In this section, we will try to capture

the main points of the chapter.

* Images can be represented as full matrices, diagonal matrices, or vectors. Thus

many matrix–vector operations such as multiplication, inner product, inverse, etc.

will prove useful in correlation pattern recognition.

* The inner product of two vectors is particularly relevant to correlation pattern

recognition. The normalized inner product measures the similarity between two

vectors. The Cauchy–Schwarz inequality states that the square of the inner product

between two vectors is less than or equal to the product of their auto inner products.

* Matrix partitioning can simplify computations such as matrix determinant and

matrix inverse, and can also enable recursive updating of matrix inverses.

* Eigenvalues and eigenvectors play a very important role in correlation filter design.

For real, symmetric matrices of much interest in CPR, eigenvalues are real and

orthonormal eigenvectors can be found. This enables the diagonalization of sym-

metric matrices.

* For images with N�N pixels, we are often interested in finding eigenimages, i.e.,

eigenvectors of the corresponding N2�N2 outer product matrices. As these outer
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product matrices are usually determined using d images where d 	 N2, we can find

the eigenimages of interest (corresponding to the non-zero eigenvalues) using the

d� d inner product matrix. These eigenimages will depend on the centration of the

images being used to estimate the outer product matrix. Thus, care must be taken to

register the images prior to extracting eigenimages.

* Correlation filter design often requires the optimization of ratios of quadratic

criteria and this optimization leads to solutions in terms of eigenvectors.

Similarly, constrained optimization problems can be converted to unconstrained

optimization problems using the Lagrange multipliers method.

* Random variables can be characterized by PDFs. Probability density functions of

continuous RVs exhibit no jumps whereas PDFs of discrete RVs contain discontinu-

ities. All PDFs are non-negative and must have a total volume under the surface

equal to 1.

* Often, we are satisfied with partial characterizations of RVs, such as knowing only

their mean and variance. The mean indicates the average value of the RV, whereas

the variance tells us how broadly the PDF is spread around this mean value.

* The simultaneous behavior of twoRVs requires the specification of a two-dimensional

joint PDF. By integrating out the unwanted random variables, we can find the

marginal PDFs. If the joint PDF is the product of marginal PDFs, then the RVs are

said to be statistically independent.

* The joint second-order behavior of two RVs is captured by their covariance. Two

RVs are said to be uncorrelated if their covariance is zero. Statistical independence

implies uncorrelatedness, but the converse is not in general true. An exception,

however, is the case of jointly Gaussian RVs, where statistical independence and

uncorrelatedness are equivalent.

* When dealing with two RVs, we can define a conditional PDF of one RV condi-

tioned on the other RV. A conditional PDF is just like any other PDF in that it is

non-negative and has a total volume of 1 under the surface. Bayes’ rule allows us to

express the a-posteriori PDFs in terms of the a-priori PDFs and to invert the

direction of condition.

* It is convenient to use vectors to denote more than two RVs. For random vectors,

the second-order statistics are captured by the covariance matrix. The covariance

matrix is symmetric and positive-definite.

* Gaussian random vectors can be completely characterized by their mean vectors

and covariance matrices. Affine transformations ofGaussian random vectors result

in Gaussian random vectors, albeit with newmean vectors and covariance matrices.

By using an affine transformation matrix obtained from the orthonormal eigen-

vectors of the original covariance matrix, we can transform the RVs to become

uncorrelated. Since uncorrelatedness implies statistical independence for Gaussian

RVs, this affine transformation allows us to convert statistically dependent

Gaussian RVs into statistically independent Gaussian RVs.
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3

Linear systems and filtering theory

Correlation involves two signals or images. A reference image is correlated

with a test image (also called a scene) to detect and locate the reference image in

the scene. Thus the correlator can be considered as a system with an input (the

scene), a stored template or filter (derived from the reference image), and an

output (correlation). As we will see in this chapter, such a system is linear in the

sense that a new input that is a weighted sum of original inputs results in an

output that is an identically weighted sum of the original outputs. Thus a

correlator can take advantage of the many properties of linear systems. The

most important property is that a linear, time-invariant system can be char-

acterized in terms of its frequency response. We use this and other related

properties for the synthesis and use of correlation filters with attractive fea-

tures such as distortion-tolerance and discrimination. In this chapter, we

provide a review of some of the useful properties of signals and linear systems.

3.1 Basic systems

Strictly speaking, the signal is denoted s(�), and s(x) is the value of s(�)
when the argument value is x. We will occasionally require the strict notation,

but usually there is no confusion from writing s(x) to mean ‘‘s(�) with x being

used as a general value for the argument.’’ Figure 3.1 is a simple block diagram

of a system. A system can be characterized as producing an output signal o(x)

in response to an input signal i(x). We are using the space variable, x (as

opposed to themore commonly used time variable, t) to emphasize our interest

in images which are intensities that are functions of two space variables, x and y.

A signal can be thought of as the variation of an independent variable (e.g.,

voltage, gray level of an image) as a function of a dependent variable (e.g.,

time, spatial coordinates in an image). While signals are usually thought of as

one-dimensional (1-D) functions, we can use the theory presented in this
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chapter with higher-dimensional signals such as images, which can be thought of

as 2-D signals (e.g., gray scale as a function of spatial coordinates x and y). In

that sense, the input to the system is i(x, y) and the output is o(x, y). For

notational brevity, we will refer to these as i(x) and o(x) from now on and

show explicitly the two independent variables only where needed. An important

sub-class of systems known as linear, shift-invariant (LSI) systems can be com-

pletely characterized by the system’s output for just one particular input, namely

a point input at the origin. The resulting output is known as the point spread

function (PSF) in 2-D systems, and the impulse response in 1-D systems.

The independent variable used with a signal or an image can be either

continuous (e.g., time) or discrete (e.g., pixel number). When the independent

variable is continuously varying, we will loosely refer to it as a continuous-time

(CT) signal and as a discrete-time (DT) signal if the independent variable is

discrete. Thus, a CT signal i(x) is defined for all possible values of its conti-

nuous argument x. On the other hand, a DT signal i[n] is defined only for

discrete values n of the independent variable. A DT example is the signal

representing the Dow Jones daily closing index. This sequence of numbers is

defined for only one instant every day and there is no meaning for the closing

index for any other time of the day. Similarly, the music signal stored on an

audio CD is obtained by taking 44 100 samples for every second of the music

signal and only these samples are stored on a CD. Thus, a CD contains a DT

signal. The process of converting a CT signal to a DT signal is known as

analog-to-digital conversion (ADC), or sampling. We will discuss sampling

theory in some detail later in this chapter. Most input devices in optical

correlators are pixelated and employ sampling. The DT signal stored on the

CD is converted to a CT music signal before it is played through the speakers.

This process of converting DT signals to CT signals is known as digital-to-analog

conversion (DAC).

In the next section, we will establish the notation for some special signals we

will be encountering. This will be followed by Section 3.3 which reviews the

basics of LSI systems, and discusses the convolution operation that allows us to

determine the output of an LSI system for any arbitrary input. Section 3.4

reviews the important concept of Fourier analysis of CT signals, and this is

followed by Section 3.5 which reviews the sampling theory. Sampling theory is

o (x )i (x )

OutputInput 
System

Figure 3.1 Block diagram of a system
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important to understand well since, althoughmost signals are CT to begin with,

anytime we use a digital computer to process them, we have to convert them to

DT signals via sampling. Fourier analysis of these DT signals is reviewed in

Section 3.6. Finally, Section 3.7 provides a brief review of how to characterize

random signals and what happens to them as they pass through linear systems.

Knowing what happens to random signals through linear systems enables us to

analyze and design correlation filters with the required noise tolerance.

3.2 Signal representation

Physical inputs to physical systems, the systems themselves, and the physical

outputs, are all decidedly real. However, the mathematics of the LSI system

and the signals – particularly for sinusoidal or nearly sinusoidal signals –

is often very conveniently shortened with complex notation. We will often use

A exp[ j(2pfxþ�)] to representA cos(2pfxþ�). The complex exponential is the

phasor representing the signal.

We will use x to represent continuous time and n for discrete time. Thus, CT

system signals are i(x) and o(x), whereas DT system signals are denoted by i[n]

and o[n]. Note the notational difference between parentheses and square

brackets used for CT and DT signals, although it should normally be obvious

from the context whether we are dealing with CT or DT signals. Several basic

signal operations are defined in Table 3.1 in terms of a 1-D CT signal i(x). The

focus of this book being image correlation, we need to deal with 2-D signals

i(x, y). DT images are denoted by i [n,m]. Basic signal operations such as shift,

scaling, and reflection are applied to 2-D signals in the sameway as 1-D signals,

except that both x and y must be taken into consideration. Some commonly

encountered 1-DCT andDT signals are summarized in Table 3.2 andTable 3.3,

respectively. However, it is worth highlighting some special 2-D signals.

Separable signals Often, a 2-D signal can be written as the product of two 1-D

signals as below. Such 2-D signals are known as product-separable, or com-

monly, just separable, signals.

i x; yð Þ ¼ ixðxÞiyðyÞ i½n;m� ¼ in½n�im½m� (3:1)

Separable signals are easier to handle than non-separable, as they require only two

1-D signals or two vectors, instead of one 2-D signal or one matrix. Real images

are rarely separable and, even worse, rarely allow compact analytical representa-

tions. As a result, we will mostly denote an image as i(x, y) or i[n,m] without any

further simplification.
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Coordinate transformation An image i(x, y) can be mapped to another image

î (x, y) by transforming the coordinate system. A particular coordinate trans-

form of interest is the polar transform (PT) fromCartesian coordinates x and y

to polar coordinates, namely radius r and angle �.

i x; yð Þ ! î r; �ð Þ where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and � ¼ tan�1 y

x

� �

i x; yð Þ ! î r; �ð Þ where x ¼ r cos � and y ¼ r sin �

(3:2)

If the PT of an image is independent of angle �, then that image is circularly

symmetric. If the PT is independent of radius r, it is a radially constant image.

Figure 3.2(a) shows a circularly symmetric image and Figure 3.2(b) indicates

its PT. The PT in Figure 3.2(d) is of the radially constant image in Figure 3.2(c).

While we have only discussed the polar transform here, there exist other

useful coordinate transformations such as the Mellin transform [23] and the

log-polar transform [24].

Table 3.1. Basic signal operations

Operation Description

Time shift Signal i(x� x0) is i(x) shifted to the right by x0. If x0 is positive, then the
shift is to the right, and if it is negative, the shift is to the left. For a
DT signal i[n] , the shift must always be an integer. A signal is periodic
with period T, if i(xþ nT )¼ i(x) for any integer value of n.

Time scaling Signal i(ax) denotes the original signal i(x) scaled by a factor a. If a> 1,
the signal is compressed, whereas if 0< a< 1, the signal is dilated.

Reflection Signal i(�x) denotes a time-reversed or reflected signal. A signal is
considered to be an even signal when its reflection equals itself, i.e.,
i(�x)¼ i(x). A signal is considered to be an odd signal if its reflection
equals the negative of itself, i.e., i(�x)¼ i(x). Not every signal has to
be either even or odd, though every signal can be expressed as the
sum of unique even and odd parts.

Even–odd
parts

An arbitrary signal i(x) can be decomposed as the sum of an even part
ie(x) and an odd part io(x), as i(x)¼ ie(x)þ io(x). The component

ie xð Þ ¼ i xð Þþi �xð Þ
2

is even, and io xð Þ ¼ i xð Þ�i �xð Þ
2

is odd.

Energy The energy of a signal defined as E ¼
R1
�1 i xð Þj j2dx. For periodic

signals i(x) with period T, we define an average energy

Ep ¼ 1
T

R T=2
�T=2 i xð Þj j2dx. Similar energy and average energy definitions

exist for DT signals.
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Table 3.2. Special one-dimensional CT signals

Signal Definition Comments

CT impulse
(delta
function)

�(x) Loosely speaking, this function is
zero everywhere except at the
origin where it is infinitely large.
Multiplying a smooth function by
a delta function forces the product
to become zero everywhere except
at the location of the delta
function, i.e.,R1
�1 i xð Þ� x� x0ð Þdx ¼ i x0ð Þ,
provided i(x) is continuous at
x¼ x0. This is known as the sifting
property since it picks out the value
of i(�) at x0.

unit step
uðxÞ ¼ 1 for x � 0

0 for x50

�
The unit step is the integral of a delta

function, i.e., uðxÞ ¼
R x

�1 � �ð Þd� .
It can be used for representing
switching systems.

comb function combT xð Þ ¼
P1

k¼�1
� x� kTð Þ The comb function is an infinite

train of delta functions spaced at
uniform intervals of T.
Multiplying any signal i(x) by the
comb function combT(x) results in
a sampled signal that is non-zero
only at the sampling instants.

rect function rðxÞ ¼ u xþ 1=2ð Þ � u x� 1=2ð Þ

¼ 1 for xj j � 1=2
0 otherwise

� The rectangle function r(x), also
known as the box function,
equals 1 in the interval [�1/2, 1/2]
and zero outside. It is easy to
verify that the unit rectangle has
energy 1.

Sinusoids iðxÞ ¼ A cos 2pfxþ �ð Þ A is the amplitude, f is the
frequency, and � is the phase
(indicates the relative position of
the signal with respect to the
origin) of the sinusoid. The
period T is related to the
frequency as f¼ 1/T. A sinusoid
of a particular frequency input
to a linear, shift-invariant (LSI)
system must lead to an output
sinusoid of the same frequency.
Thus, sinusoids are
eigenfunctions of LSI systems.

52 Linear systems and filtering theory



Table 3.2. (cont.)

Signal Definition Comments

The amplitude and phase, but
not the frequency, of an input
sinusoid are altered by an LSI
system.

Complex
exponentials

iðxÞ ¼ A exp j2pfxð Þ
¼ A cos 2pfxð Þ½

þ j sin 2pfxð Þ�

Because of their close connection
with sinusoids, complex
exponentials are eigenfunctions of
LSI systems. Complex
exponentials are periodic signals.

Unit Gaussian Gaus xð Þ ¼ 1=
ffiffiffiffiffiffi
2p

p
exp �x2=2

� �
Often used to describe smoothly

tapering apertures and windows.
This is the same shape as that of a
Gaussian PDF, with zero mean
and unit variance.

Table 3.3. Special one-dimensional DT signals

Signal Definition Comments

Unit DT step
u n½ � ¼ 1 for n � 0

0 for n50

�
Takes on a value of 1 at the origin
and at all positive integer values
of n, and a value of 0 at all
negative integer values of n.

Unit DT
impulse � n½ �¼

1 for n ¼ 0

0 for n 6¼ 0

�
¼ u n½ � � u n� 1½ �

Also known as the DT delta
function, or Kronecker delta
function. TheDT delta function is
1 when n¼ 0, but 0 everywhere
else. A DT delta function is the
difference between the DT unit
step and the DT unit step shifted
by 1 to the right.

Sinusoids i n½ � ¼ A cos 2pfnþ �ð Þ Unlike the CT sinusoid the DT
sinusoid is not always periodic.
In fact, the DT sinusoid is
periodic if and only if 2pfmN is
an integers multiple of 2p for
some integers m and N, which
means that f must be a ratio of
integers (e.g., if f is 1/2, 3/8, 5/2,
etc., the DT sinusoid is periodic.
On the other hand, if f is

ffiffiffi
2

p
, it

is not periodic).
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Rectangle function The 2-D rectangle function is 1 inside a rectangular region

centered at the origin and 0 outside. It is useful in truncating images and to

describe the region of support of images. It is a separable function as shown

below:

rect x; yð Þ ¼ rðxÞrðyÞ ¼ 1 if xj j � 1=2 and yj j � 1=2

0 otherwise

�
(3:3)

Circ function For 2-D signals, circular apertures may be more natural than

rectangular apertures. The circ function is 1 inside a circle of radius 1 centered

at the origin, and 0 outside. It is not a separable function in Cartesian

coordinates.

circ x; yð Þ ¼ 1 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p
� 1

0 otherwise

�
(3:4)

Unit Gaussian function Both the rect(�) function and the circ(�) function are

binary in that they take on values of 1 and 0. A useful, circularly symmetric,

2-D function that takes on a continuum of amplitude values is the unit

Gaussian centered at the origin. It is separable as shown below:

(d)(c)

(b)

rx

y

r

y

x

(a)

θ

θ

Figure 3.2 (a) A circularly symmetric image, and (b) its polar transform;
(c) a radially constant image, and (d) its polar transform
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Gaus x; yð Þ ¼ 1

2p
exp � x2 þ y2

2

� �
¼ 1ffiffiffiffiffiffi

2p
p exp � x2

2

� �
� 1ffiffiffiffiffiffi

2p
p exp � y2

2

� �
¼ Gaus xð Þ � Gaus yð Þ

(3.5)

The above definition considers a unit Gaussian (also known as standard

Gaussian) that is centered at the origin and has a standard deviation of 1

along both x and y. More general Gaussian functions can be obtained by

changing the variables.

3.3 Linear shift-invariant systems

In Section 3.1, we defined a system as producing the output o(x) in response to

the input i(x). If both signals are CT, we will refer to that system as a CT

system, and if both signals are DT, we consider it to be a DT system. There can

be occasions where the input signal is of one type and the output of a different

type. We will refer to such systems as hybrid or mixed systems.

Linear, shift-invariant systems offer much in terms of their properties. We

will first define what linearity is and what shift-invariance means. This will be

followed by a look at the properties of LSI systems. One property of an LSI

system of particular interest is that its output can be obtained by convolving the

input signal and its impulse response (impulse response is the output of the LSI

system when the input is a delta function). We will see that the correlation

operation is similar to the convolution operation.We will demonstrate the fact

that sinusoids are eigenfunctions of LSI systems.1 While we will use 1-D CT

signals, our discussion is easily extended to higher dimensions and to DT

systems. We will point out any differences only when they are significant.

Linearity In simple words, linearity requires that weighted summation of

inputs should lead to an identically weighted sum of output signals. More

rigorously, a linear system must satisfy the following:

If i1(x) ! o1(x) and i2(x) ! o2(x); then ai1(x)þ bi2(x) ! ao1(x)þ bo2(x)

for any scalars a; b and any inputs i1(x) and i2(x) (3:6)

1 The term eigenfunction derives from linear algebra, in which an eigenvector (discussed in Chapter 2) of
a matrix is one changed by only a complex factor when multiplied by the matrix. An LSI system may
change the phase and magnitude of an input sinusoid, but not the sinusoid’s frequency.
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If the condition in Eq. (3.6) is not satisfied for even one set of weights or for

even one particular signal, then the system is nonlinear. If a¼ b¼ 1, the above

requirement in Eq. (3.6) means that a new input that is the sum of two old

inputs results in a new output that is the sum of the corresponding two old

outputs. This property is also known as homogeneity or the principle of super-

position. For a linear system, it is easy to show that an all-zero input signal

must lead to an all-zero output signal. What this does not mean is that if an

input signal is zero over a certain time interval (let us say from t1 to t2), then the

resulting output signal is also zero over that time interval.

The advantage of linearity is that we can find the output of a system for an

input signal by knowing the outputs for some basic signals. We will show in

Section 3.4 that we can represent arbitrary signals as a weighted sum of

sinusoids. Thus, knowing the outputs of a linear system to input sinusoids

is very attractive. Instead of documenting every possible input–output pair

for a linear system, we only have to know the outputs for sinusoids. Since

sinusoids are eigenfunctions for LSI systems, we need to document only the

magnitude and phase response of that system as a function of input

frequency.

Shift invariance If shifting the input signal by x0 results in an output that is

shifted by the same amount, then we have a shift-invariant system. In 1-D

systems, these are more commonly referred to as time-invariant systems

as the independent variable is time. More precisely, if i(x)! o(x), then

i(x� x0)! o(x� x0) for any i(x) and any x0.

Shift-invariance tells us that if we know the output for a particular input,

then we know the outputs for every shifted version of that input signal.

We will see in the next section that this shift-invariance, coupled with linear-

ity, enables us to characterize an LSI system completely by its impulse

response.

3.3.1 Impulse response, convolution, and correlation

Consider a unit impulse function �(t) or �[n] (depending on whether the

system is CT or DT, respectively) input signal. Irrespective of whether the

system is LSI or not, we will refer to the corresponding output as its impulse

response (h(t) or h[n]). Let us now look at a DT LSI system with impulse

response h[n]. An example impulse response is shown in Figure 3.3(a). Suppose

the input signal to this system is the sequence i[n] shown in Figure 3.3(b). What

is the resulting output? This signal comprises three DT delta functions, each

weighted by different amounts and each shifted by different amounts as shown
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in Figure 3.3(c). In general, a DT signal can always be expressed as a weighted

sum of shifted delta functions as follows:

i½n� ¼
X1

k¼�1
i½k� � �½n� k� (3:7)

Since the system is shift-invariant, the input � [n� k] should lead to the output

h [n� k]. Since the system is linear, weighting that input signal � [n� k] by

weight i[k] results in the output i [k] � h [n� k]. These output signals are shown

in Figure 3.3(d) for the example being considered. Equation (3.7) tells us that

the input signal is a sum over k of these weighted, shifted delta function inputs,

and, by linearity of the system, the output must be an identical sum over k, i.e.,
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Figure 3.3 (a) The impulse response of a DT system, (b) an example input DT
signal, (c) expressed as a sum of weighted, shifted delta functions, (d) output
signals for the input-weighted, shifted delta functions, and (e) output signal
for the input signal in (b)
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o½n� ¼
X1

k¼�1
i½k� � h½n� k� ¼ i½n� � h½n� (3:8)

where i½n� � h½n� is used as a shorthand notation for the summation operation

in Eq. (3.8). This operation, called the convolution between i[n] and h[n], is at

the core of LSI systems. We have used both linearity and shift-invariance in

obtaining the above result, that the output of the LSI system is the convolution

of the input with the impulse response. Figure 3.3(e) shows the output of the

LSI system.

It is important to note that in the convolution sum in Eq. (3.8), the sign on k

is different in i [k] and h [n� k]. If we use the same sign for k, we get a

correlation c [n], i.e.,

c½n� ¼
X1

k¼�1
i½k� � h½nþ k� ¼ i½n� � h½n� (3:9)

where we use the symbol � to denote the correlation operation. The convolu-

tion in Eq. (3.8) and the correlation in Eq. (3.9) look similar, but produce

entirely different results.

Region of support Suppose the two functions being convolved are of finite

support. (More precisely, this means i(x) is zero outside Li� x�Ui, and h(x)

is zero outside Lh� x�Uh, with all of Li, Ui, Lh, and Uh being finite numbers.)

Then the convolution of the two, oðxÞ ¼ iðxÞ � hðxÞ is zero outside Lo� x�Uo

where:

Lo ¼ Li þ Lh and Uo ¼ Ui þUh (3:10)

Denoting the lengths of the two signals by Ai¼ (Ui�Li) and Ah¼ (Uh�Lh),

we see that the output convolution length is at most Ao¼ (Uo�Lo)¼AiþAh.

The results are slightly different for DT convolution. Assuming that i [n]

is zero outside Li� n�Ui, and h[n] is zero outside Lh� n�Uh, the DT

convolution o½n� ¼ i½n� � h½n� is zero outside Lo� n�Uo, where Lo and Uo

are as in Eq. (3.10). But for discrete signals, the length of a signal is given by

Ai¼Ui�Liþ 1. Thus, the result for DT convolution length is at most

Ao¼ (AiþAh� 1). As an example, convolving a DT sequence of length 64

points with itself would result in an output signal length of at most 127 points.

For 2-D CT convolution (which is discussed in the next section), these region-

of-support results hold for each axis. The region-of-support results are the

same for correlation.
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3.3.2 Two-dimensional LSI systems

We can define something similar to the impulse response for 2-D systems. The

2-D counterpart of a 1-D delta function is a 2-D delta function – namely, a

point. Let h [n, m] denote the 2-D output signal from a 2-D DT system in

response to the input signal � [n,m]¼ � [n] � � [m]. This h [n,m] is also known as

the point spread function (PSF). Once the PSF is known, the output o [n, m]

from an LSI system for any arbitrary input i [n, m] can be obtained as the

following 2-D convolution:

o½n;m� ¼
X1

k¼�1

X1
l¼�1

i½k; l� � h½n� k;m� l� ¼ i½n;m� �� h½n;m� (3:11)

where �� is used to indicate the 2-D convolution.

If both the input image and the PSF are separable, then the resulting output

is also separable as shown below. In such separable cases, the 2-D convolution

in Eq. (3.11) can be replaced by two 1-D convolutions:

o½n;m� ¼
X1

k¼�1

X1
l¼�1

i½k; l� � h½n� k;m� l�

¼
X1

k¼�1

X1
l¼�1

in½k� � im½l�f g � hn½n� k� � hm½m� l�f g

¼
X1

k¼�1
in½k� � hn½n� k�f g �

X1
l¼�1

im½l� � hm½m� l�f g ¼ on½n� � om½m�

(3:12)

where

on½n� ¼
X1

k¼�1
fin½k� � hn½n� k�g ¼ in½n� � hn½n�

om½m� ¼
X1
l¼�1

fim½l� � hm½m� l�g ¼ im½m� � hm½m�
(3:13)

Similarly, we can define the 2-D correlation as follows:

c½n;m� ¼
X1

k¼�1

X1
l¼�1

i½k; l� � h½kþ n; l þm� ¼ i½n;m� � � r½n;m� (3:14)

where �� is used to indicate 2-D correlation. For separable functions, we

show below that the 2-D correlation is equivalent to two 1-D correlations that
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are much easier to compute compared to the one 2-D correlation using the

double sum in Eq. (3.14). If i [k, l ] and h [k, l ] are separable, then

c½n;m� ¼
X1

k¼�1

X1
l¼�1

i½k; l� � h½kþ n; l þm�

¼
X1

k¼�1

X1
l¼�1

fin½k� � im½l�g � fhn½kþ n� � hm½l þm�g

¼
X1

k¼�1
fin½k� � hn½kþ n�g �

X1
l¼�1

fim½l� � hm½l þm�g

¼ cn½n� � cm½m�

(3:15)

where

cn½n� ¼
X1

k¼�1
fin½k� � hn½kþ n�g ¼ in½n� � hn½n�

cm½m� ¼
X1
l¼�1

fim½l� � hm½l þm�g ¼ im½m� � hm½m�
(3:16)

For CT systems, the convolution involves 2-D integration and the output is

obtained by convolving the input with the PSF h(x, y).

oðx; yÞ ¼
Z1
�1

d�

Z1
�1

d� ið�; �Þhðx � �; y� �Þ ¼ iðx; yÞ �� hðx; yÞ (3:17)

In this section, we have shown that the convolution of the input signal with its

impulse response yields the output signal for an LSI system. We have defined

the convolution and the correlation operations. Some selected properties of

convolution are shown in Table 3.4.

Table 3.4. Selected properties of convolution

Property Description

Linearity h(x) � [ai1(x)þ bi2(x)]¼ {ah(x) � i1(x)þ bh(x) � i2(x)}
where a and b are scalars

Shift invariance o(x)¼ i(x) � h(x) ) i(x� x0) � h(x)¼ o(x� x0)
Commutativity o(x)¼ i(x) � h(x)¼

R
i(�) � h(x� �)d� ¼

R
i(x� u) � h(u)du

¼ h(x) � i(x)
Convolution with a shifted

delta function
�(x� x0) � h(x)¼ h(x� x0)
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3.4 Continuous-time Fourier analysis

In this section, we will consider the Fourier analysis of both 1-D and 2-D CT

signals, and Section 3.6 will be devoted to Fourier analysis ofDT signals.Wewill

first consider Fourier analysis of periodic CT signals and then we will generalize

that to non-periodic CT signals. This will be followed by a discussion of the 1-D

CT Fourier transform (CTFT). Finally, we will generalize the CTFT to 2-D.

3.4.1 Fourier series of a periodic signal

Consider a periodic signal i(x) with period T; i.e., i(xþ kT)¼ i(x) for any

integer k. Fourier showed that, under somewhat general conditions, i(x) can

be expressed as a weighted sum of complex exponentials whose frequencies are

integer multiples of the fundamental frequency f0 ¼ 1=T , i.e.,

iðxÞ ¼
X1

k¼�1
cike

j2pkf0x (3:18)

where the kth Fourier series coefficient cik (with the superscript referring to the

signal) can be evaluated from one period of the signal as follows:

cik ¼
1

T

Z
Th i

iðxÞe�j2pkf0xdx for k ¼ 0; �1; �2; . . . (3:19)

where hT i indicates any contiguous interval of length T.

Sometimes, we can determine the Fourier series (FS) coefficients just by

inspection. For example, the sinusoid i(x)¼A cos(2pfsx) has a fundamental

frequency f0¼ fs, the frequency of the sinusoid. Using Euler’s relation, the

sinusoid can be expressed in terms of complex exponentials as

iðxÞ ¼ A=2 e j2pf0x þ e�j2pf0x
	 


, and comparing this expression to the FS expan-

sion in Eq. (3.18), we see that ci1 ¼ ci�1 ¼ A=2 and cik ¼ 0 for k 6¼ �1

Equation (3.18) states that a periodic signal is a weighted sum (with weights

cik) of complex exponentials at frequencies kf0¼ k/T where k is an integer. The

complex exponential for k¼ 0 is a constant and is called the DC term.2 The

term for k¼ 1 corresponds to the fundamental frequency, the term for k¼ 2

corresponds to the second harmonic, and other k values refer to higher-order

harmonics. Thus the FS coefficients characterize the periodic signal in terms of

2 It is interesting to see what is really an electrical engineering term from the very early days show up in
image processing! The abbreviation DC means direct current, of course. An unvarying current is equal to
its average, and so the average value of a function has become known as its DC value.
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its constituent frequencies. Note that while i(x) is in CT and is periodic, its

frequency domain description cik is discrete-indexed. Periodicity in one domain

(e.g., time) leads to discreteness in the other domain (e.g., frequency).

3.4.2 One-dimensional CTFT

The Fourier series represents periodic signals (with period T) in terms of

frequencies that are integer multiples of f0¼ 1/T. As the period T increases,

the fundamental frequency f0, and hence the spacing between the harmonics,

decreases. In the limit as T!1, the signal becomes non-periodic and the

spacing between harmonics goes to zero, causing the frequency domain char-

acterization to become continuous. This leads to the CTFT given below:

Iðf Þ ¼
Z1
�1

iðxÞe�j2pfxdx (3:20)

where f denotes the frequency. As can be seen in Eq. (3.20), we use lower case

to denote signals in time domain and upper case to represent frequency

domain functions. The FT relation in Eq. (3.20) is also indicated by

i(x)$ I(f ). We can find the signal i(x) from its FT I(f ) through the inverse

Fourier transform (IFT).

iðxÞ ¼
Z1
�1

Ið f Þe j2pfxdf (3:21)

Note the similarity between the FT and the IFT in Eq. (3.20) and Eq. (3.21),

respectively. The only difference is in the sign of the exponent. Thus, from

a computational perspective, there is no significant difference between FT

and IFT.

Occasionally, we use the radial frequency !¼ 2pf rather than the natural

frequency f and the resulting FT relations are as follows:

Ið!Þ ¼
Z1
�1

iðxÞe�j!xdx; iðxÞ ¼ 1

2p

Z1
�1

Ið!Þe j!xd! (3:22)

Continuous-time Fourier-transform of a periodic signal Strictly speaking, we

cannot define the FT of a periodic signal as it has infinite energy. However,

periodic signals lend themselves to a Fourier series expansion as in Eq. (3.18).

Since a complex exponential in time has an FT that is a shifted delta function in

frequency, we can obtain the FT of a periodic signal as follows:

62 Linear systems and filtering theory



FT iðxÞf g ¼ FT
X1

k¼�1
cike

j2pkf0x

( )
¼

X1
k¼�1

cik�ð f � kf0Þ (3:23)

Thus, we can use the FT even with periodic signals as long as we allow delta

functions. Periodic signals in time lead to delta functions, or line spectra, in

frequency. The CTFTs of some special CT signals we will encounter frequently

are shown in Table 3.5.

3.4.3 Continuous-time Fourier transform properties

In this subsection,wewill look at someof the important properties of 1-DCTFTs.

A few of the more obvious ones are listed in Table 3.6 for reference while those

requiring clarification are discussed here in more detail. While we did not

discuss in detail the properties of the Fourier series, the CTFT properties can

be applied to periodic signals by using delta functions in the frequency domain.

Even and odd symmetry When a signal is real and even (i.e., i(x)¼ i(�x)¼ i*(x)),

its FT is also real and even, i.e., I( f )¼ I(�f )¼ I*( f ). For real, even signals the

CTFT can be simplified as follows:

Ið f Þ ¼
Z1
�1

iðxÞe�j2pfxdx ¼
Z1
�1

iðxÞ � cosð2pfxÞ � j sinð2pfxÞ½ �dx

¼ 2

Z1
0

iðxÞ � cosð2pfxÞdx ¼ Ið�f Þ
(3:24)

Table 3.5. Continuous-time Fourier-transforms of some commonly encountered

CT signals

CT signal (time domain) CTFT (frequency domain)

�(x) (delta function) 1 (constant in frequency)
�(x� xo) (shifted delta function) e�j2pfxo ðlinear phase funtionÞ
1 (constant in time) �( f ) (delta function)

e j2pfox (complex exponential) �( f� fo) (shifted delta function)

combT xð Þ ¼
P1

k¼�1
�ðx� kTÞ 1=T comb1=T ð f Þ ¼ 1

T

P1
k¼�1

�ð f � k=TÞ

rect
x

T

� �
T

sin pf Tð Þ
pf T

¼ T � sincð f T Þ

sincðxÞ ¼� sinðpxÞ=px and sincð0Þ ¼ 1
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where we use the fact that i(x) � sin(2pfx) is an odd function of x, and

i(x) � cos(2pfx) is an even function since i(x) is even.

On the other hand, if the signal i(x) is an odd function of x, the FT simplifies

as follows:

Ið f Þ ¼
Z1
�1

iðxÞe�j2pfxdx ¼
Z1
�1

iðxÞ � cosð2pfxÞ � j sinð2pfxÞ½ �dx

¼� j2

Z1
0

iðxÞ � sinð2pfxÞdx ¼ �Ið�f Þ

(3:25)

Thus real, odd signals have an FT that is odd and purely imaginary.

Hartley transform A related transform is the Hartley transform (HT) defined

below. We reproduce the FT definition to highlight the difference between the

HT and the FT.

HT iðxÞf g ¼
Z1
�1

iðxÞ cosð2pfxÞ þ sinð2pfxÞ½ �dx

FT iðxÞf g ¼
Z1
�1

iðxÞ cos 2pfxð Þ � j sinð2pfxÞ½ �dx

(3:26)

The FT of a real signal can be complex, but the HT of a real signal is real. This

can be an advantage in some applications. The HT appears to be of limited

Table 3.6. Some useful properties of the CTFT

Property Description

Duality i(x)$ I( f )) I(�x)$ i( f )
Linearity FT {ai1(x)+ bi2(x)}¼ aI1( f )+ bI2( f )
Time shifts iðx� x0Þ $ Ið f Þ � e�j2pfx0

Time derivative dið _xÞ=dx $ j2pfIð f Þð Þ and dniðxÞ=dxn $ ð j2pf ÞnIð f Þ
Conjugate symmetry i(x) is real) I( f )¼ I�(�f )) |I( f )|¼ |I(�f )| and �( f )¼��(�f )
Time reversal FT{i(�x)}¼ I(�f )

\ for real i(x), FT{i(�x)}¼ I(�f )¼ I�( f )
Modulation t(x)¼ i(x) � h(x)$ I( f ) � H( f )¼T( f )
Convolution i(x) � h(x)$ I(f ) � H( f ) (See Section 3.4.4)
Correlation i(x)� h(x)$ I( f ) � H�( f ) (See Section 3.4.4)
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benefit. Perhaps the following two useful properties of FT are the reason for

preference for the FT.

Direct current value From the CTFT definition, we can see that

Ið0Þ ¼
R1
�1 i(x)dx, which equals the total area under the signal. Since this

total area is related to the average value of the signal, I(0) is known as the

DC value. Similarly, the value i(0) of the signal at origin (i.e., x¼ 0) is equal toR1
�1 I( f )df , the total area of the FT. We will use this property in relating

correlation values at the origin (also called correlation peaks, presuming that,

as is common, the LSI system has been designed to produce large output values

there) to the correlation filter.

Parseval’s theorem The energy in the time domain is equal to the energy in the

frequency domain as proved below. This is a property we will need when

relating the correlation output energy to the correlation filter.

Z1
�1

jIð f Þj2df ¼
Z1
�1

df

Z1
�1

iðxÞe�j2pfxdx

2
4

3
5 Z1

�1

i� pð Þej2pfpdp

2
4

3
5

¼
Z1
�1

Z1
�1

iðxÞi� pð Þ
Z1
�1

ej2pf ðp�xÞdf

2
4

3
5dxdp

¼
Z1
�1

Z1
�1

iðxÞi� pð Þ�ðp� xÞdxdp¼
Z1
�1

jiðxÞj2dx

(3:27)

where we use the fact that the IFT of a linear phase function is a shifted delta

function (see Table 3.5).

3.4.4 Convolution and correlation using the CTFT

As shown in the following, convolution in the x domain is equivalent to

multiplication in the frequency domain.

iðxÞ $ Iðf Þ; hðxÞ $ Hðf Þ; and oðxÞ ¼ iðxÞ � hðxÞ $ Oðf Þ

Oðf Þ ¼
Z
oðxÞe�j2pfxdx ¼

Z Z
ið�Þhðx� �Þd�

� �
e�j2pfxdx

¼
Z Z

ið�Þe�j2pftd�

� �
hð�Þe�j2pf �d� ¼ Iðf Þ �Hðf Þ

; iðxÞ � hðxÞ $ Iðf Þ �Hð f Þ

(3:28)
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where in Eq. (3.28) �¼ (x� �). We can similarly derive the following property

for correlations:

cðxÞ ¼ iðxÞ � hðxÞ $ Iðf Þ �H�ðf Þ (3:29)

Correlations and convolutions of two signals can be obtained by performing

Fourier transforms on the two signals, multiplying the FTs and then perform-

ing an IFT on that product.

Figure 3.4 contains block diagrams that show how convolutions and corre-

lations can be computed using FTs. Note that the only difference between the

convolution and the correlation is the complex conjugation step in computing

the correlation. If we are not careful in this complex conjugation step (for

example, when using MATLAB, you should remember that x 0 refers to the

conjugate transpose of x), we may end up getting a convolution instead of a

correlation. If the function h(x) is real and even, thenH( f ) is real and even, in

which case there is no difference between convolution and correlation. Thus

while the two may be identical in some special situations, in general convolu-

tion and correlation are very different.

o (x)

h (x)

i(x)
FT X

FT

IFT

(a)

c (x)

h (x)

i (x)
FT X

FT

IFT 

(b)CONJ

Figure 3.4 Block diagrams showing (a) the computation of convolution using
Fourier transforms, and (b) the computation of correlation using Fourier
transforms
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While using the FT to determine convolution and correlation appears to be

a rather roundabout process, it turns out to be attractive in two different ways.

First, we will see in a later chapter that optical processors can provide FTs (in

fact 2-D FTs) rapidly, and this property enables us to compute convolutions

and correlations rapidly by taking advantage of the speed of optical FT

processors. Secondly, digital computers can compute the FT rapidly using

the fast Fourier transform (FFT), and we can compute convolutions and

correlations efficiently using this property.

3.4.5 Auto-correlation function peak

When a signal is correlated with itself, the resulting output is called its auto-

correlation function (ACF). We will prove here that an ACF always peaks at

the origin. Let cii (x) denote the correlation of i(x) with itself. From Eq. (3.29),

we see that cii (x) and jIð f Þj2 form an FT pair. Therefore,

jciiðxÞj ¼
Z1
�1

jIðf Þj2ej2pfxdf

������
������ �

Z1
�1

Iðf Þj j2jej2pfxjdf ¼
Z1
�1

jIðf Þj2df

) jciiðxÞj � ciið0Þ

(3:30)

This property that the ACF always peaks at the origin, coupled with its shift-

invariant nature, makes the correlation very useful for locating known

reference signals in received signals. For example, consider a simple radar

scenario in which a reference signal r(x) is transmitted. This signal is

reflected off a target and is returned to the receiver after a time delay of x0
in the form of a received or input signal i(x)¼ r(x� x0). For now, we will

ignore problems such as noise, attenuation and interference and concern

ourselves only with the time delay. The goal is to determine the time delay

(and hence the range) of the target from our knowledge of the reference

signal r(x) and the input signal i(x). To determine the time delay, we perform

the cross-correlation between i(x) and r(x). Since i(x)¼ r(x� x0) and the

correlation is a shift-invariant operation, the cross-correlation output will

equal crr(x� x0), a shifted ACF. Thus, the peak of the output will appear at

x¼ x0 and we can determine the target range by locating the peak of the

correlation output. Of course noise and other impairments present in the

received signal affect how accurately we will be able to locate this correlation

peak.

One word of caution is in order here. Among correlations, only the ACF is

guaranteed to have its peak at the origin. There is no such guarantee with cross-

correlations unless, as we have done above, we can relate the cross-correlations
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to auto-correlations. Thus, we cannot blindly assume that all correlation

operations will result in peaks at exactly the origin of the input object. When

we consider composite correlation filters in later chapters, we will mostly be

carrying out cross-correlations and we should be careful not to assume that the

peaks automatically correspond to the target location.

3.4.6 Periodic or circular convolution

How can we use FTs to compute convolutions and correlations of periodic

signals? If only one of the two signals is periodic, the resulting output will also

be periodic. If both signals are periodic, the convolution and correlation

operations in Eqs. (3.8) and (3.9) cannot be computed since the infinite sum

of periodic functions leads to infinity. This is because the convolution or the

correlation sum includes infinite periods of the product of the two periodic

signals. When both i[x] and h[x] are periodic with period T, we use their

circular or periodic convolution defined as follows:

~o½x� ¼ i½x� ~� h½x� ¼
X
k2 Th i

i½k� � h½n� k� (3:31)

where we use the tilde (	) to indicate the circular nature of the operations and

results, and we use hTi to denote one contiguous period. The circular correla-

tion is similarly defined as

c½n� ¼ i½n� ~� h½n� ¼
X
k2 Th i

i½k� � h½nþ k� (3:32)

The main difference between linear and circular convolution is that linear

convolution uses the summation from �1 to þ1 whereas circular convolu-

tion uses a summation interval of just one period. Circular convolution and

correlation can be similarly defined for CT signals. This difference between

circular and linear operations is not just a theoretical curiosity. When we use

efficient algorithms such as the FFT to compute convolutions and correla-

tions on a digital computer, we are effectively computing circular convolu-

tions and correlations. It is critical to understand the similarities and

differences between the linear and circular operations, and we will look at

these differences more closely in Section 3.6 after we introduce the FFT.

3.4.7 Two-dimensional CTFT

So far, we have considered the 1-D CTFT and its properties in detail. When

dealing with image correlations, what we need is the 2-D CTFT.We will see in
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Chapter 5 that we can assemble coherent optical processors (comprising lasers,

spatial light modulators, lenses, and detectors) that can provide the 2-DCTFT

at very high speeds. This sub-section is devoted to defining 2-D transforms and

examining some sample FT pairs.

The 2-D FT and IFT are defined as follows. Here x and y denote the spatial

coordinates whereas u and v denote the corresponding spatial frequencies. We

also use , to denote 2-D Fourier transform.

FT : Iðu; vÞ ¼
Z1
�1

Z1
�1

iðx; yÞe�j2pðuxþvyÞdxdy

IFT : iðx; yÞ ¼
Z1
�1

Z1
�1

Iðu; vÞe j2pðuxþvyÞdudv

(3:33)

These 2-D transforms involve double integrals and in general are more

complicated than carrying out two 1-D integrals. If the signal is separable

(i.e., i(x, y)¼ ix(x) � iy(y)), then its 2-D FT is also separable and can be com-

puted using only two 1-D transforms.

Iðu; vÞ ¼
ZZ

ixðxÞiyðyÞe�j2pðuxþvyÞdxdy

¼
Z
ixðxÞe�j2puxdx

� � Z
iyðyÞe�j2pvydy

� �
¼ IuðuÞ � IvðvÞ

(3:34)

There are a few separable signals of interest. However, most 2-D signals are not

separable. As we shall see later, even a non-separable 2-D signal is efficiently

transformed by the ‘‘fast’’ method, so not all is lost by non-separability.

Two-dimensional CT delta function The 2-D delta function is separable, i.e.,

�(x, y)¼ �(x)�(y). Thus, its 2-D CTFT is also separable, i.e., I(u,v)¼ 1 for all u

and v.

Two-dimensional comb function A 2-D comb function is the product of 1-D

comb functions and leads to the following separable CTFT:

combTx
ðxÞ � combTy

ðyÞ
	 


, fxcombfxðuÞ
� �

� fycombfyðvÞ
� �	 


(3:35)

where fx¼ 1/Tx and fy¼ 1/Ty.

Line functions It is easy to verify the following 2-D CTFT pairs.

�ðxÞ , �ðvÞ �ðyÞ , �ðuÞ (3:36)
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We see that a line along the x-axis results in a 2-D CTFT that is a line along

the v-axis, whereas a line along the y-axis leads to a CTFT that is a line along the

u-axis. A non-separable function of interest is a tilted line going through the

origin. Its 2-D CTFT is a tilted line in the (u, v) plane that is at right angles to

the line in the (x, y) plane, i.e.,

�ðy�mxÞ , �ðuþ vmÞ (3:37)

(Incidentally, this is an example where a coordinate transform can give a

desirable property for a particular image quality. Another that we have seen

is that the circ(�) function becomes separable under the polar transform.)

Two-dimensional rect functions A rectangular window in space centered at the

origin is the product of 1-D rect(�) functions. Thus the resulting 2-D CTFT is a

product of sinc(�) functions in u and v.

rect
x

Tx

� 

� rect y

Ty

� 
� �
, TxsincðuTxÞ � TysincðvTyÞ

	 

(3:38)

Another 2-D function of interest is the circ(�) function in Eq. (3.4). As the circ

function is not separable, its 2-D CTFT requires a double integral. Because of

its circular symmetry, we will find it more convenient to determine the 2-D

CTFT of the circ function using the 2-D CTFT properties to be discussed in

the next sub-section.

3.4.8 Two-dimensional CTFT properties

Many properties of the 2-D CTFT are obvious extensions of 1-D CTFT

properties. For example, shifting the 2-D signal i(x, y) by (x0, y0) results in

the 2-D CTFT I(u, v) being multiplied by the complex exponential

e�j2p ux0þvy0ð Þ. Other properties such as derivatives and Parseval’s relation can

be similarly extended. However, there are a few properties that are unique to

the 2-D CTFT and we will consider these in this sub-section.

Two-dimensional CTFT in polar coordinates Sometimes, it is more convenient

to use polar coordinates rather than Cartesian coordinates. After PT, (x, y)

becomes (r, �) and (u, v) becomes (�, �). Also, the PTs in the space domain

and in the frequency domain have Jacobians r and �. We will denote the polar

transformed functions with a hat.
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Îð�; �Þ ¼ Ið� cosð�Þ; � sinð�ÞÞ

¼
Z1
�1

Z1
�1

iðx; yÞe�j2p�ðx cosð�Þþ y sinð�ÞÞdxdy

¼
Z1
0

rdr

Z2p
0

d�îðr; �Þe�j2p�rðcosð�Þ cosð�Þþ sinð�Þ sinð�ÞÞ

¼
Z1
0

rdr

Z2p
0

d�îðr; �Þe�j2p�r cosð���Þ

(3:39)

Circular symmetry The 2-D CTFT of a circularly symmetric image is itself

circularly symmetric as shown below. To take advantage of the circular symme-

try, it is better to deal with the image and its FT in polar coordinates than in

Cartesian coordinates.

Îð�; �Þ ¼
Z1
0

îðrÞrdr
Z2p
0

d�e�j2pr� cosð���Þ ¼ 2p
Z1
0

îðrÞJ0ð2pr�Þrdr ¼ Îð�Þ

(3:40)

where we use the result that
R 2p
0 e�j� cosð�Þd� ¼ 2pJ0ð�Þ and J0(�) is the Bessel

function of first kind and zeroth order. The 1-D integral relation

2p
R1
0 îðrÞJ0ð2pr�Þrdr ¼ Îð�Þ between a circularly symmetric image ı̂(r) and its

circular symmetric 2-D CTFT, Î(�) is known as the Hankel transform or

Fourier–Bessel transform. The inverse Hankel transform relation is the same, i.e.,

îðrÞ ¼ 2p
Z1
0

Îð�ÞJ0ð2pr�Þ�d� (3:41)

Two-dimensional CTFT of circ function As an illustration of the use of the

Hankel transform, let us consider the 2-D CTFT of the circ function.

FT circ
r

R

� �n o
¼ 2p

ZR
0

J0ð2pr�Þrdr

¼ 1

2p�

Z2p�R
0

�

�

� 

J0ð�Þd� ¼ R

�
J1ð2p�RÞ

(3:42)

3.4 Continuous-time Fourier analysis 71



where we use the result that
R x

0 yJ0ðyÞdy ¼ xJ1ðxÞ with J1(�) denoting the

Bessel function of first kind and first order. As stated before, the 2-D CTFT

of the circularly symmetric circ(�) function is also circularly symmetric. The

function J1(x) / x is known as an Airy function and it shows up in the diffrac-

tion patterns of circular apertures.We show a circular aperture in Figure 3.5(a)

and its 2-D CTFT in Figure 3.5(b).

Two-dimensional CTFT of a circular Gaussian Consider a circularly symmetric

2-D Gaussian iðx; yÞ ¼ 1
2p�2 exp � x2þy2

2�2

� �
¼ 1

2p�2 exp � r2

2�2

� �
with a width para-

meter �. This 2-D Gaussian is separable and can be expressed as a product of

two 1-D Gaussians. We will show below that the 1-D FT of a Gaussian with

width parameter � is a Gaussian with width parameter 1 /�.

FT
1ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp � x2

2�2

� �� �
¼ 1ffiffiffiffiffiffiffiffiffiffi

2p�2
p

Z1
�1

exp � x2

2�2
� j2pux

� �
dx

¼ e�2p2�2u2 1ffiffiffiffiffiffiffiffiffiffi
2p�2

p
Z1
�1

exp �
xþ j2p�2u
� �2

2�2

" #
dx

8<
:

9=
;

¼ e�2p2�2u2

(3:43)

Figure 3.5 (a) A circular aperture, and (b) its 2-D continuous-time Fourier
transform
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where the integral within the { } brackets is the area under a Gaussian prob-

ability density function (PDF) and therefore equals 1. Thus, the 2-D CTFT of

a 2-D Gaussian is also a 2-D Gaussian, i.e.,

1

2p�2
exp � x2 þ y2

2�2

� �
, exp �2p2�2ðu2 þ v2Þ

	 

¼ exp �2p2�2�2

	 

(3:44)

Central slice theorem Another property that is unique to 2-D CTFT is the

relation between image projections and their FT cross-sections and vice versa.

The u¼ 0 and v¼ 0 cross-sections (or slices) in I(u, v) are related to projections

onto the y-axis and the x-axis in the image as shown below.

Ið0; vÞ ¼
Z1
�1

Z1
�1

iðx; yÞdx

2
4

3
5 � e�j2pvydy ¼

Z1
�1

�iyðyÞ � e�j2pvydy ¼ FT �iyðyÞ
� �

Iðu; 0Þ ¼
Z1
�1

Z1
�1

iðx; yÞdy

2
4

3
5 � e�j2puxdx ¼

Z1
�1

�ixðxÞ � e�j2puxdx ¼ FT �ixðxÞf g

(3:45)

where ix(x) and iy(y) denote the projections of i(x, y) onto the x-axis and y-axis,
respectively, and are defined implicitly in the equations. Thus the v¼ 0 cross-

section in the 2-D FT can be obtained by performing a 1-D FT on the

projection of i(x, y) onto the x-axis. Such a result can be generalized for any

cross-section through the origin at angle � with respect to the u-axis; i.e.,

Iða cosð�Þ; a sinð�ÞÞ ¼
Z1
�1

Z1
�1

iðx; yÞe�j2pa½x cosð�Þþy sinð�Þ�dxdy

¼
Z1
�1

Z1
�1

iðx0; y0Þe�j2pax0dx0dy0

ðwhere x0 ¼ x cosð�Þ þ y sinð�Þ & y0 ¼ �x sinð�Þ þ y cosð�ÞÞ

¼
Z1
�1

�ix0 ðx0Þe�j2pax0dx0 ¼ FTf�ix0 ðx0Þg

ð3:46Þ

While the above derivations dealt with projections in the image and cross-

sections in its 2-D FT, similar relations can be derived for image cross-sections

and 2-D FT projections.
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The central slice theorem (CST) has found use in at least two applications.

In computer-aided tomography, 1-D projections through a 2-D signal are

obtained at various angles. The CST tells us that the 1-D FTs of these

projections are nothing but cross-sections of the 2-D FT. By interpolation,

we can obtain a ‘‘full’’ 2-D FT from these cross-sections and we can obtain

the original 2-D function via a 2-D inverse FT. The same principle can be

used in reconstructing three-dimensional volumes from two-dimensional

projections.

The second application is in the correlation of an image with a shifted

version of itself in order to estimate the shifts. In such an application, we can

perform the 1-D correlation of x-projections to determine the shift in x and the

1-D correlation of y-projections to determine the shift in y. Such 1-D correla-

tions of projections can be obtained using cross-sections in the 2-D FT.

Similarly, the CST can be used to obtain the 2-DFTwhen only 1-D FT devices

are available. Such 1-D FT devices can be used to provide various cross-

sections of the 2-D FT and eventually produce the full 2-D FT.

3.5 Sampling theory

Sampling allows us to convert at least some of the content of a CT signal into a

DT signal, which allows simulation and processing of signals using digital

computers. The trick is to do this conversion so that there is no signal loss; i.e.,

we should be able to reproduce the original CT signal faithfully from the DT

signal (i.e., samples).

Before digging too deeply into the underlying mathematics, it is important

to realize the basic idea of sampling. If a signal is varying slowly in time (e.g., a

constant in time), we need only a few samples to describe it. On the other hand,

if the signal is varying rapidly, we need many more samples to describe it. We

will prove that sampling frequency must exceed twice the highest signal

frequency.

Let i(x) be an analog signal with amaximum frequency fmax, i.e., I( f )¼ 0 for

|f |> fmax. An example spectrum is shown in Figure 3.6(a). The CT signal is

sampled at uniform intervals of Ts to obtain the sampled signal id[n], i.e.,

id[n]¼ i(nTs). Then fs¼ 1 /Ts is the sampling frequency. To understand the

effects of sampling, we need to see what happens in the frequency domain.

Since the sampled signal is equal to the original CT signal at the sampling

instants and zero everywhere else, we can consider î(x) ¼ i(x) � combTs
(x) in

place of id[n]. Using the modulation property in Table 3.6, and the FT of the

comb function in Table 3.5, we obtain the following relation between the FTs

of the sampled signal and the original signal:
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FT îðxÞ
� �

¼ FT iðxÞ � combTs
ðxÞf g ¼ Ið f Þ � FT combTðxÞf g½ �

¼ Ið f Þ � 1

Ts

X1
k¼�1

� f � k

Ts

� 
" #
¼ 1

Ts

X1
k¼�1

I f � k

Ts

� 


¼ fs
X1

k¼�1
I f � kfsð Þ

(3:47)

where we use the property that convolving a function with a shifted delta

function will simply shift that function to the position of the delta function.

Equation. (3.47) states that the FT of the sampled signal consists of infinite

replicas of the original FT, each shifted by integer multiples of fs¼ 1 /Ts and

each multiplied by the constant 1 /Ts. If, within the bandlimit of the original

signal i(x), FT{i(x)} and FT{ı̂(x)} are not identical, the signal is said to be

aliased. That is, the sampled signal cannot be used to reconstruct faithfully the

original signal. (If they are identical, then the original can be reconstructed

from information within the band limit. This is because the information in

spatial and spectral domains is the same, and we can retrieve the spectral
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Figure 3.6 (a) An example band-limited signal spectrum, (b) the spectrum of
an exactly sampled signal, (c) the spectrum of an over-sampled signal, and (d)
the spectrum of an under-sampled signal
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information from the sampled data if the signal is not aliased by the sampling.)

If I( f ) is not band-limited (i.e., it is not zero for all frequencies above some

maximum frequency), then these replicas, each being of infinite width, cer-

tainly overlap and the FT of the sampled signal will be different from the

original spectrum. Even if the signal is band-limited, aliasing can occur and fs
says how far the replicas are shifted before being added to produce FT{ı̂(x)}. If

the sampling does not shift the copies of the spectrum by at least the total

bandwidth, the copies will ‘‘step on each other’s toes’’ in the summation. In

such a case, we will not be able to reconstruct the original signal from the

sampled signal. Thus, sampling makes sense only when we are dealing with

band-limited signals (e.g., see Figure 3.6(a)). If the original CT signal is not

band-limited, it should be first passed through a band-limiting filter (more

commonly known as an anti-aliasing filter) before sampling. Even though such

a band-limiting filter may destroy some of the original CT signal information

(at frequencies beyond the filter cut-off), we will see later in this sub-section

that in practice anti-aliasing filtering is essential prior to sampling.

If the replicas in Eq. (3.47) do not overlap, we can obtain the original CT

signal FT bymultiplying the sampled signal FT by a suitably designed frequency

response. Thus, inputting the properly sampled signal into a reconstruction filter

with the selected frequency response should result in the original CT signal as its

output. Let us now consider three choices for sampling frequency.

Exact sampling Here fs¼ 2fmax.We show the resulting sampled signal spectrum

in Figure 3.6(b). As we can see, the edges of the replicas touch and could result in

slightly corrupted information. In this sense, fs¼ 2fmax does not provide an

adequate sampling frequency. To appreciate the potential problem in using

exactly fs¼ 2fmax, let us consider the sampling of a sinusoid of frequency fmax.

Sampling at fs¼ 2fmax implies that we have two samples per cycle of sinusoid. If

these two samples happen to be at the peaks (þ1 and �1) of the sinusoid, the

reconstruction filter will be able to bring back the original CT sinusoids from the

samples. On the other hand, if the two samples per cycle happen to be exactly at

the zero crossings, the reconstruction filter would simply yield an all zero output

that, of course, is not acceptable. Thus using fs¼ 2fmax is not advisable in practice.

A sampling frequency of fs should allow us to represent signals with fre-

quencies up to half the sampling frequency, also known as the folding fre-

quency ff¼ fs / 2. This folding frequency will prove important when

considering under-sampling.

Over-sampling When over-sampling, fs> 2fmax. We show in Figure 3.6(c) the

FT of the sampled signal when fs¼ 3fmax. As we can see from this figure, the
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replicas of the original FT do not overlap and thus the original spectrum

within the original bandlimits, � fmax� f � fmax, is preserved. In fact, as long

as fs> 2fmax, the replicas do not overlap and original information is preserved.

This sampling frequency requirement is known as the Nyquist sampling theo-

rem. The original CT spectrum can be obtained by multiplying the spectrum of

the sampled signal by any low-pass filter with the following frequency response:

Hð f Þ ¼
1=fs for j f j � fmax

“Don’t care” for fmax 5 j f j5 ðfs � fmaxÞ
0 for j f j � ðfs � fmaxÞ

8<
: (3:48)

Using any filter with frequency response as in Eq. (3.48), we can reconstruct

the original CT signal from the sampled signal as follows:

iðxÞ ¼ IFTfÎð f Þ �Hð f Þg

¼ îðxÞ � hðxÞ ¼
X1

k¼�1
iðkTsÞ�ðx� kTsÞ

" #
� hðxÞ

¼
X1

k¼�1
iðkTsÞhðx� kTsÞ

(3:49)

where h(x) is the impulse response of the reconstruction filter. In deriving

Eq. (3.49), we use the result that convolving a function with a shifted delta function

simply shifts the original function to the position of the delta function. From

Eq. (3.48),we see that the reconstruction low-pass filter has apass-band (| f |� fmax),

a transition band [ fmax< | f |< ( fs� fmax)], and a stop-band [| f |� ( fs� fmax)]. The

larger the transition band, the easier it is to implement this low-pass filter in

the sense that it requires a lower order (i.e., less complicated) filter. Thus making

the sampling frequency fs larger than the minimum required (i.e., 2fmax), i.e., over-

sampling, makes the reconstruction filter simpler. In practice, we use a sampling

frequency that is at least 10% higher than twice the maximum signal frequency.

As an example, audio CDs use a sampling frequency of 44.1kHz, whereas the

maximum audio frequency of interest is about 20kHz.

Equation (3.49) can be thought of as an interpolation formula in that it

shows how to obtain the CT signal from its samples at uniform intervals. If the

reconstruction filter is a ‘‘brick-wall’’ low-pass filter with a cut-off frequency

fs / 2, it satisfies the requirements in Eq. (3.48) and can be used as an inter-

polation filter. Since the IFT of a rect( � ) function is a sinc( � ) function, we get
the following interpolation formula:

iðxÞ ¼
X1

k¼�1
iðkTsÞsincðx� kTsÞ (3:50)
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This sinc interpolation formula is illustrated in Figure 3.7. The sinc( � )
function is 1 at the origin and 0 for all other integer arguments. Thus, the

kth term in the summation in Eq. (3.50) leads to a sinc( � ) function that has a

value of i(kTs) at the kth sampling instant, i.e., x¼ kTs, and zero at all other

sampling instants. Summation of all these sinc( � ) functions reproduces the

original CT signals. Remember, however, that this interpolation formula is

valid only if fs> 2fmax. Also, the sinc interpolation formula is not attractive in

practice as it suffers from two problems. The first is that it requires an infinite

summation, and truncating it to a finite summation leads to unacceptably

large errors in reconstruction. The second problem is that the samples must be

precisely at x¼ kTs and the interpolation is unacceptably sensitive to sampling

location errors. As a result, practical interpolation methods use more robust

kernels such as spline functions. Sinc interpolation is not the only kernel we

can use in building a CT signal from sampled data. All that is required to be a

resampling kernel is that a function should be continuous, unity at zero, and

zero at all other integers. Sinc( � ) is unique among interpolation kernels in

having the most compact transform. Nearest-neighbor, sample-and-hold, and

triangular interpolation are interpolation kernels, each of which has wide

bandwidth in comparison with sinc( � ); they are illustrated in Figure 3.8.

The reconstructions that these kernels yield for the signal samples of

Figure 3.7 are shown in Figure 3.9. Several things are clear. They produce

0  1 2 3  4 5 6 7 8 9 10
–1

0

1

2

3
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5

Figure 3.7 An illustration of the sinc interpolation method. In this example,
there are only three non-zero signal samples whose contribution to the
reconstruction is the three dashed curves. The interpolation result is the
solid curve
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–1 1 2
Nearest neighbor

Sample-and-hold 

Triangular (or linear)

0

–1 1 20
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Figure 3.8 Example interpolation kernels

Figure 3.9 Reconstruction from the samples in Figure 3.7 using kernels in
Figure 3.8
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different reconstructions of the signal from the same sample values, each

depends critically on where the samples were drawn, the reconstruction is

computationally much simpler than that of the sinc( � ), and their reconstruction’s

spectrum is wider than that of the sinc( � ) interpolation.

Under-sampling What happens when the sampling frequency is less than twice

the maximum signal frequency? We show in Figure 3.6(d) the spectrum of a

sampled signal when fs¼ 1.5fmax. As we can see from this figure, the replicas

overlap. In fact, the central replica is corrupted for ( fs� fmax)< | f |< fmax in

general and (0.5fmax)< | f |< fmax for this particular choice of fs¼ 1.5fmax.

A sampling frequency of fs¼ 1.5fmax could have preserved signal frequencies

up to the folding frequency, i.e., ff¼ 0.75fmax. However, we have seen from

Figure 3.6(d) that all signal frequencies above 0.5fmax are in fact corrupted.

This is because under-sampling causes a frequency ffþ� (� higher than the

folding frequency) to appear (i.e., alias) as a signal frequency ff�� (� lower

than the folding frequency).

We can prevent aliasing by removing signal frequencies above folding

frequency before sampling. Thus, if we pass the original CT signal through

a CT low-pass filter (usually called an anti-aliasing filter) with a cut-off of

ff¼ fs/2, then two things happen. Firstly this filter will eliminate all signal

frequencies above the folding frequency and thus some signal frequencies

will be irrevocably destroyed. On the other hand, the sampling frequency

being used will be adequate to sample the low-pass filtered signal and thus no

aliasing will occur. The bottom line is that we are able to preserve more signal

frequencies (| f |< ff) for the under-sampling case by using the anti-aliasing filter

than we would otherwise (| f |< 2ff� fmax).

3.5.1 Sampling in two dimensions

When processing images using a digital computer, the images must be digi-

tized. Even with an optical processor, we use digitized images because digital

cameras provide digitized images, and because the electronically addressable

spatial light modulators (SLMs) that represent the images have a grid struc-

ture. Thus, we need to use sampling in 2-D.

The most obvious 2-D sampling strategy is to use a uniform rectangular

sampling lattice, i.e., îðx, yÞ ¼ iðx, yÞ � combTx
ðxÞ � combTy

ðyÞ, where Tx and

Ty denote the sampling intervals in x and y, respectively. Because of the

separable nature of the rectangular lattice, the spectrum of the sampled signal

is related to the original spectrum as follows:
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Îðu; vÞ ¼ 1

TxTy

X1
k¼�1

X1
l¼�1

I u� k

Tx
; v� l

Ty

� 

(3:51)

This relation is illustrated pictorially in Figure 3.10. Figure 3.10(a) shows the

original spectrum that is band-limited in the (u, v) plane. Figure 3.10(b) shows the

spectrum of the sampled signal assuming (1/Tx)> 2umax and (1/Ty)> 2vmax,

where umax and vmax denote the maximal u and v frequencies in the signal,

respectively.

As long as the sampling intervals in the x and y directions satisfy the above

conditions, the spectral replicas do not overlap and the original 2-DCT signal

can be reconstructed faithfully using a 2-D low-pass filter. The variety of

low-pass filters that can be used for reconstruction in this 2-D case is larger

than the set of reconstruction filters for the 1-D sampling case. Of course,

we can use a rectangular low-pass filter that is constant when |u|� (1 / 2Tx)

and |v|� (1/2Ty) and is zero outside. Such a 2-D brick-wall low-pass filter

will result in an interpolation method that uses sinc functions in both

v

(b)

v

u

u

(a)

Figure 3.10 (a) An example 2-D band-limited spectrum, (b) spectrum of
sampled signal based on rectangular sampling
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x and y directions. If either of the sampling intervals is larger than the

maximum allowed, the spectral replicas will overlap leading to aliasing. To

avoid the effects of aliasing, it is advisable to pass the original signal through

a 2-D anti-aliasing filter with a cut-off of 1/(2Tx) along the u-axis and 1/(2Ty)

along the v-axis. From Figure 3.10(b), we can see that more efficient

sampling is possible by using sampling geometries such as a hexagonal

lattice.

3.6 Fourier transform of DT signals

While analog processors such as optical computers can handle CT signals and

images, digital computers can accommodate only DT signals. In this section,

we consider the Fourier transform of DT signals. As mentioned earlier,

discreteness in one domain implies periodicity in the other domain. Since

digital computers represent both space and time domain signals and their

FTs by discrete arrays, both the DT signals and their FTs are implicitly

periodic. This implicit periodicity produces circular correlations instead of

linear correlations if we are not careful.

3.6.1 Discrete Fourier transform

TheN-point discrete Fourier transform (DFT) of a sequence {i [n], 0� n�N� 1}

results in an array {I [k], 0� k�N� 1} related to the DT signal as follows:

DFT : I k½ � ¼
XN�1

n¼0

i n½ �e�j2pnkN k ¼ 0; 1; 2; . . . ; N � 1ð Þ (3:52)

An N-point DFT produces an N-point discrete sequence I [k] in the transform

domain from an N-point sequence i[n] in the time domain. As we will show

below, increasingN leads to denser sampling in the frequency domain. We can

always use a DFT size larger than the number of points in the DT signal by

simply concatenating zeros (called zero-padding) to the original DT signal.

From Eq. (3.52), we can see that I [k] is periodic with period N, i.e.,

I [k]¼ I [kþN]. This is because e�j2pnk
N ¼ e�j2p nkþN

N . As we cautioned earlier,

using N-point DFTs imposes an implied periodicity of N in the frequency

domain as well as in the time domain.

Let us compare the DFT results to the CTFT of the CT signal

i(x) ¼
PN�1

n¼0 i n½ ��(x� n). This CT signal i(x) contains the same information

as the DT signal i[n]. Since the signal i(x) contains delta functions at intervals
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of 1, its CTFT Ic( f ) is periodic with a period of 1 and can be expressed as

follows (we use a subscript to distinguish the CTFT Ic( f ) from its DT

counterpart):

Ic fð Þ ¼
Z1
�1

XN�1

n¼0

i n½ �� x� nð Þ
" #

e�j2pfxdx

¼
XN�1

n¼0

i n½ �
Z1
�1

� x� nð Þe�j2pfxdx

2
4

3
5 ¼

XN�1

n¼0

i n½ �e�j2pfn

(3:53)

Comparing theN-point DFT in Eq. (3.52) and the CTFT in Eq. (3.53), we can

see that theN-pointDFTbasically samples one period of the CTFT at uniform

intervals of (1/N), i.e., I[k]¼ Ic(k/N), k¼ 0, 1, 2, . . . , (N� 1). By increasingN,

we can obtain denser sampling in the frequency domain.

Note that the first DFT sample (i.e., I [0]) corresponds to the zero fre-

quency. Since we are used to spectral plots with zero frequency at the center

rather than at the beginning, we usually plot {I [N/2], I [(N/2)þ 1], . . . ,

I [N� 1], I [0], I [1], . . . , I [(N/2)� 1]}. Many FFT software packages will

contain a command (e.g., FFTSHIFT in MATLAB) that shifts the N-point

FFT results so that the DC value is at (or, in the usual case that N is even,

adjacent to) the center of the array.

Inverse DFT DT signal i[n] can be obtained from I [k] using the N-point

inverse DFT (IDFT) defined below:

IDFT: i n½ � ¼ 1

N

XN�1

k¼0

I k½ �e j2pnkN n ¼ 0; 1; 2; . . . ; ðN � 1Þ (3:54)

Note that the DFT in Eq. (3.52) and the IDFT in Eq. (3.54) differ in only two

ways. One difference is the (1/N) factor in the IDFT definition, and the second

is the sign difference in the exponents. These differences are simple enough for

a system or software program designed to carry out the DFT to be easily

reconfigured to yield the inverse IDFT.

Fourier-transform of 2-D DT signals For 2-D DT signals, we can define DFT

and IDFT as follows (note that we useN andM to denote the extent of the 2-D

DT signal in the n and m directions, respectively):
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2-D DFT: I k; l½ � ¼
XN�1

n¼0

XM�1

m¼0

i n;m½ �e�j2p nk
N þml

Mð Þ;

k ¼ 0; 1; 2; . . . ; N � 1ð Þ and l ¼ 0; 1; 2; . . . ; M � 1ð Þ

2-D IDFT: i n;m½ � ¼ 1

MN

XN�1

k¼0

XM�1

l¼0

I k; l½ �e j2p nk
N þ ml

Mð Þ;

n ¼ 0; 1; 2; . . . ; N � 1ð Þ and m ¼ 0; 1; 2; . . . ; M � 1ð Þ
(3:55)

A 2-D DFT can be carried out using 1-D DFTs. Firstly, we perform N-point

1-DDFTs along each of theM columns withN points. The results of these 1-D

DFTs then replace the original columns. Next, we performM-point 1-DDFTs

along each of theN rows withM points. The resultant DFTs replace the rows.

The resulting array is the (N, M)-point 2-D DFT I [k, l ]. Thus (N, M)-point

2-D DFT can be achieved using N M-point and M N-point 1-D DFTs. With

most memory architectures, accessing columns and rows of an array may not

always be equally fast. In such a case, the first set of column DFTs is followed

by an array transpose operation after which column DFTs are performed.

We will not discuss DFT properties in detail as they are similar to CTFT

properties discussed before, except that we should keep in mind the implied

periodicity in both domains when using the DFT. For example, multiplying

the DFT I [k] by a linear phase factor e�j2pkn0N is equivalent to a circular shift n0
in the time domain.

Circular shift IDFT I k½ � � e�j2pkn0
N

n o
¼ i (n� n0)N½ � where ( � )N denotes modulo

N. In other words, circular shift by n0 is equivalent to creating a periodic DT

signal ~i n½ � by repeating the original DT signal i[n] at intervals of N points,

shifting the resulting ~i n½ � by n0 points to the right, and truncating the result to

the interval 0� n� (N� 1) to obtain i[(n� n0)N]. Circular shift can also be

thought of as reintroducing the shifted signal to the beginning of the interval

as it moves out of the other end. As an example, for N¼ 8, i[(n� 2)8] is the

following sequence:

i n� 2ð Þ8
	 


¼ i 6½ �; i 7½ �; i 0½ �; i 1½ �; i 2½ �; i 3½ �; i 4½ �; i 5½ �f g (3:56)

There are other DFT properties such as the correlation and convolution

properties that involve circular shifts. We will see in a later sub-section how

these circular shifts affect correlation and convolution.
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Symmetry properties TheDFT has symmetry properties similar to those of the

CTFT. For example, real, even time domain signals will have DFTs that are

also real and even. However, the symmetry conditions are with respect to ~i n½ �
(the periodic version of the original DT signal) and thus must be carefully

related to the original DT signal i[n].

If i[n] is real, then I[k] is conjugate symmetric as shown below; i.e., its real

part is even and its imaginary part is odd. Thus for real i[n],

I k½ � ¼ IR k½ � þ jII k½ � ¼
XN�1

n¼0

i n½ �e�j2pnkN ¼
XN�1

n¼0

i n½ �ej2pnkN
( )�

¼
XN�1

n¼0

i n½ �e�j2pn N�kð Þ
N

( )�

¼ I � N � k½ � ¼ IR N � k½ � � jII N � k½ �

; IR k½ � ¼ IR N � k½ � and II k½ � ¼ �II N � k½ �

ð3:57Þ

Other symmetry properties (e.g., the DFT of a real, odd signal is purely

imaginary and odd) can be similarly derived except that we need to keep in

mind DFT’s circular nature.

These symmetry properties can be used to advantage when computing the

DFT of real signals. For example, suppose we are interested in computing the

N-point DFTs of real sequences i1[n] and i2[n] each of length N. Instead of

carrying out two separate N-point DFTs, we can get the desired results using

only one N-point DFT. This is done by carrying out an N-point DFT on the

complex signal i[n]¼ i1[n]þ ji2[n]. Because of the symmetry property of the

DFT, we can obtain the desired DFTs from I[k]¼ I1 [k]þ jI2 [k] as follows:

I1 k½ � ¼ I k½ � þ I� N � k½ �ð Þ=2 I2 k½ � ¼ I k½ � � I� N � k½ �ð Þ=j2 (3:58)

3.6.2 Fast Fourier transform

The fast Fourier transform (FFT), introduced in the late 1960s [25], is an

efficient algorithm to compute the DFT. It is perhaps safe to say that modern

digital signal processing owes its origin to FFT and high-speed digital proces-

sors. The FFT has so penetrated digital signal processing that the term ‘‘FFT’’

is sometimes used (incorrectly, in our opinion) where ‘‘DFT’’ is intended. The

DFT is a transform; the FFT is an algorithm to implement the DFT. In this

sub-section, we discuss the basic principle of the FFT to provide a reasonably

high-level understanding of it. For a more thorough understanding of the FFT

than is provided here, readers should consult some of the digital signal process-

ing references [26, 27].While we will focus on 1-DDFTs, our FFT discussion is
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equally applicable to 2-D DFTs, since we have shown already that a 2-D DFT

can be obtained as a series of 1-D DFTs.

Direct DFT We can compute the DFT in a straightforward manner according

to Eq. (3.52). For each k, the summation involves N complex multiplications

andN additions.We will use the number of multiplications as a measure of the

computational complexity.3 Since we need to determine N DFT samples, the

computational complexity of a direct DFT method is of the order of N2

operations. For short signals, this computational complexity might be accept-

able. But for long signals (e.g., a million-point DT signal or equivalently a

1024
 1024 image), the computational complexity is of the order of 1012

operations which may be prohibitive. The FFT provides a more efficient

solution.

Fast Fourier transform The FFT is an efficient DFT computation algorithm

based on the ‘‘divide and conquer’’ principle. When N is an integer power of 2

(e.g., 4, 8, 16, etc.), we will show that the FFT algorithm requires only

N � log2(N) operations to obtain the N-point DFT. Thus if N¼ 220(about a

million), the FFT requires only about 20million operations, whereas the direct

DFT computation requires about a trillion operations. Thus the FFT provides

a computational advantage by a factor of about 50 000 in this case. For an

N-point DFT, the FFT provides a computational advantage by a factor of

(N2/Nlog2N)¼ (N/log2N). AsN increases, this FFT efficiency ratio increases.

Thus, except for short signals, we should always use the FFT instead of the

direct DFT.

We will explain the basics of the FFT algorithm using a 4-point DFT that

amounts to determining {I[0], I[1], I[2], I[3]} from the 4-point DT signal {i[0],

i[1], i[2], i[3]}. Firstly, we divide the 4-point DT sequence into two 2-point sub-

sequences a[n] and b[n] that are the even-indexed and odd-indexed samples of

the original sequence as follows:

a 0½ � ¼ i 0½ �; a 1½ � ¼ i 2½ � and b 0½ � ¼ i 1½ �; b 1½ � ¼ i 3½ � (3:59)

Let A[k] and B[k] denote the 2-point DFTs of a[n] and b[n], respectively, i.e.,

A 0½ � ¼ a 0½ � þ a 1½ �; A 1½ � ¼ a 0½ � � a 1½ �
B 0½ � ¼ b 0½ � þ b 1½ �; B 1½ � ¼ b 0½ � � b 1½ �

(3:60)

These 2-point DFTs can be used to obtain the 4-point DFT I[k]:

3 With somemodern computer architectures and processors, multiplications are almost as fast as additions,
and considering only multiplications as a measure of complexity may not always be correct.
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I k½ � ¼
X3
n¼0

i n½ �e�j2pnk4 ¼
X
n¼0;2

i n½ �e�j2pnk4 þ
X
m¼1;3

i m½ �e�j2pmk
4

ðchange variables : n ¼ 2p and m ¼ 2qþ 1Þ

¼
X1
p¼0

a p½ �e�j2ppk2 þ e�j2pk4
X1
q¼0

b q½ �e�j2pqk2 ¼ A k½ � þ e�j2pk4B k½ �

(3:61)

Equation (3.61) shows how the 4-point DFT I[k] can be computed from the

two 2-point DFTs A[k] and B[k]. Since A[k] and B[k] are 2-point DFTs, k

takes on only 0 and 1 values for those, whereas we need I[k] for k values of 0,

1, 2, and 3. This apparent difficulty is easily resolved by noting that 2-point

DFTs are periodic with a period of 2 and thus we can express Eq. (3.61) as

follows:

I 0½ � ¼ A 0½ � þ B 0½ �; I 2½ � ¼ A 0½ � � B 0½ �;
I 1½ � ¼ A 1½ � þ e�j2p4B 1½ �; I 3½ � ¼ A 1½ � � e�j2p4B 1½ �

(3:62)

This relation is shown pictorially in Figure 3.11, which shows that the 4-point

DFT can be obtained from the two 2-point DFTs with only two additional

complexmultiplications. To extend the above example toN-point DFTs, let us

form two N/2-point sub-sequences a[n] and b[n] from the even-indexed and

odd-indexed samples of the N-point sequence i[n]. We will assume N is an

integral power of 2. We can relate the N-point DFT I[k] to N/2-point DFTs

A[k] and B[k] as follows:

I k½ � ¼ A k½ � þ e�j2pkN B k½ �; k ¼ 0; 1; 2; . . . ; N � 1ð Þ (3:63)

Thus, going from the two N/2-point DFTs to the N-point DFT requires at

most N additional complex multiplications. When N is an integer power of 2,

each of the N/2-point DFTs can in turn be related to two N/4-point DFTs.

This sub-division can continue until we have 2-point DFTs. It takes log2 N

I [3]

I [2]

I [1]

I [0]

e–j
 
π /2

e–j
 
π /2

–1

–1–1

–1

i [3]

i [1]

i [2]

i [0]

Figure 3.11 A 4-point DFT in terms of two 2-point DFTs
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stages to sub-divide all the way down to 2-point DFTs, and since each stage

requires at most N multiplications, we need at most N � log2 N operations to

obtain the N-point DFT.

We can carry out the 2-D DFT of an N
N image using N N-point DFTs

along rows andNN-point DFTs along columns. Thus a 2-DDFT requires 2N

N-point DFTs and assuming that N is an integer power of 2, this requires 2N2

log2 N multiplications. This is basically the same number of multiplications

we would have had, had we thought of the image as containing N2 points

and performed an N2-point DFT that requires N2 log2(N
2)¼ 2N2 log2(N)

multiplications.

The FFT method we have described so far (known as a decimation-in-time

algorithm) is based on dividing the DT signal into even-indexed and odd-

indexed sub-sequences. We can also derive an FFT algorithm by dividing the

DFT sequence into its even-indexed and odd-indexed sub-sequences. The

resulting FFT algorithm is known as a decimation-in-frequency algorithm.

There exist many other variants of the FFT algorithm that are designed to

satisfy different requirements, such as having identical stages so that the same

hardware can be used for multiple stages, allowing the generation of the

required complex coefficients on line and minimizing the memory access

needed. Our coverage of FFT is rather introductory and the interested reader

is encouraged to look into the references listed [26–28].

Mixed-radix FFT Does N have to be an integer power of 2 for FFT to work?

The answer is yes and no. Yes, because the most efficient form of FFT requires

N to be an integer power of 2, so that we can keep halving the DFT size several

times until we reach 2-point DFTs. No, because we can design an FFT even

when N is not an integer power of 2. For example, a 9-point DFT can be

obtained from three 3-point DFTs. The more N can be decomposed into a

product of primes, the more efficient the resulting FFT will be.

In practice, we usually zero-pad a sequence until its length is an integer

power of 2 before we compute its DFT. For example, it is computationally

more attractive to pad one zero at the end of a 31-point sequence and perform

a 32-point FFT, rather than carry out a 31-point DFT. One must, however,

remember that the two methods yield different frequency samples. A 31-point

DFT yields transform samples at frequencies {0, 1/31, 2/31, . . . , 30/31},

whereas a 32-point DFT yields frequencies {0, 1/32, 2/32, . . . , 31/32}. This

difference in frequencies may not be important if these frequency samples are

generated in an intermediate stage that is not the final goal (e.g., the correlation

output is not affected by the frequency samples used, as long as the FFT size is

sufficiently large).
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3.6.3 Correlation and convolution via FFT

We discussed earlier how CT correlations and convolutions can be computed

using CTFT. Similarly, DT convolutions and correlations can be obtained

using the DFT. In particular, let i[n] and h[n] be three DT sequences that are

zero outside the interval 0 � n� (N� 1), and let I[k] and H[k] denote their

N-point DFTs. Then the convolution and correlation between the DT signals

is related to their DFTs as follows:

IDFT I k½ � �H k½ �f g ¼ ~o n½ � ¼ i n½ �~�h n½ � ¼
XN�1

m¼0

i m½ �h n�mð ÞN
	 


IDFT I k½ � �H� k½ �f g ¼ ~c n½ � ¼ i n½ � ~�h n½ � ¼
XN�1

m¼0

i m½ �h mþ nð ÞN
	 
 (3:64)

We will focus on correlation operation although our statements are easily

generalized to convolution operation. From Eq. (3.64), we can see that the

correlation of the two signals i[n] and h[n] can be obtained as

IDFT{[DFT(i[n])] � [DFT(h[n])]*} and thus requires three N-point DFTs.

Assuming that N is an integer power of 2, the three FFT operations needed

will require about 3N � log2 N operations. A direct correlation operation will

require about N2 operations. Thus computing convolutions and correlations

via FFT is more efficient compared with direct correlation by a factor of about

N/(3 log2 N). Thus, even for small values such as N¼ 128, using FFTs to

compute correlations requires about six times fewer multiplications compared

with direct correlation. As N increases, the advantage of the FFT method

increases. For example, when dealing with a sequence of about one million

points or a 1024
 1024 image, the FFT-based correlations will require about

10,000 times fewer multiplications than the direct expressions.

There are a few other ways to make the convolution and correlation opera-

tion using the FFT even more efficient. If both signals being convolved or

correlated are real, the result will be a real signal. The real nature of the signal

imposes certain symmetries on the frequency domain that can be used to

reduce the amount of computation by a factor of about 2. Also, often we use

the same filter impulse response h[n] with different input signals i[n]. In such a

case, there is no need to recompute H[k] every time. It can be computed once

and reused, reducing the number of FFTs from three to only two.

Circular correlation and convolution Equation (3.64) states clearly that corre-

lations and convolutions obtained via FFT are circular correlations and con-

volutions rather than the linear versions we desire. Is the difference significant?
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As we will show through the following example, circular operations can give

very different results depending on the size of the DFT employed.

Example Consider the auto-convolution of a DT signal i[n]¼ (u[n]� u[n� 4])

with itself. Since i[n] is a rectangle function with support over the interval

0� n� 3, we can show that auto-convolution results in the following triangu-

lar function with support over the interval 0� n� 6:

o n½ � ¼ i n½ � � i n½ � ¼ 4 1� n�3j j
4

� �
for 0 � n � 6

0 otherwise

(
(3:65)

The linear convolution result in Eq. (3.65) is a triangle function. Since i[n] is

of length 4, the auto-convolution is of length 4þ 4� 1¼ 7 points. Thus, wewill

get the linear auto-convolution as long as the DFT size employed is 7 or higher.

We show in Figure 3.12(a) the convolution output when we use 8-point FFTs.

We also show in Figure 3.12(b) the convolution result obtained by using only

4-point FFTs. This 4-point circular convolution is a rectangle function (of

height 4) and not the triangle function expected from a linear convolution.

To understand the result in Figure 3.12(b), let us remember the 4-point DFT

of the rectangle function i[n] is {I[0]¼ 4, I[1]¼ 0, I[2]¼ 0, I[3]¼ 0}. Multiplying

I[k] by itself results in the array {16,0,0,0} whose 4-point inverse DFT is

{4,4,4,4}, a rectangle function of height 4.

The above example shows that if we use a long enoughDFT size and zero-pad

the data (in this example, DFTs of length 7 or higher), the circular convolution

will be the same as the linear convolution. We can obtain linear convolution

as long as the DFT size employed is at least as large as the extent of the

linear convolution. We have shown earlier that if i[n] is zero outside the

interval 0� n� (Ni� 1), and h[n] is zero outside the interval 0� n� (Nh� 1),

0 1 2 3

0 1 2 3

4 5 6 7

1

2

n (a)

3

(b)n

4

4

Figure 3.12 (a) Circular convolution using 8-point FFTs, and (b) circular
convolution using 4-point FFTs
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the resulting linear convolution o[n]¼ i[n] * h[n] is zero outside the interval

0� n� (No� 1), where No¼NiþNh� 1. Thus, circular convolutions will be

the same as linear convolutions as long as we use DFTs of size at least

(NiþNh� 1).

This difference between circular and linear operations is the reason why we

usually need to zero-pad the signals before using FFTs to compute their

convolutions. For example, if we want to convolve a signal of size 128 points

with another of the same size, it is customary to pad both signals with an extra

128 zeros at the end. The resulting 256-point signals are input to 256-point

FFTs to obtain their 256-point DFTs. Their product is then inverse-

transformed using a 256-point inverse FFT to obtain a 256-point circular

convolution of the original two signals. However, as the linear convolution

of the original signals is only of length 255 (i.e., 128þ 128� 1), circular

convolution will be the same as the desired linear convolution.

Another way to understand the relation between the linear and circular

convolutions and correlations is that the circular results are nothing but

aliased versions of the linear results; i.e.,

~o n½ � ¼
X
m

o n�mN½ � and ~c n½ � ¼
X
m

c n�mN½ � (3:66)

whereN is the size of the DFT employed. As long asN is larger than the extent

of the linear convolution or correlation, the central replica in the circular

version will be the same as the linear version and can be used without any

problem. If N is smaller than this minimum DFT size required, circular

versions will equal aliased versions of linear correlations and convolutions.

In principle, both circular convolution and correlation are aliased versions

of their linear counterparts. However, there is an important practical differ-

ence. Convolution of two signals usually results in a broader output, in that

linearly convolving a signal of lengthNwith itself results in an output of length

(2N – 1) points. Thus, when doing convolution, we usually have no choice but

to employ a DFT of sufficiently large size to avoid aliasing.

This is not necessarily the case for correlations, particularly auto-

correlations. Typically, auto-correlations of a signal are very sharp and narrow

functions and aliasing may not be as troublesome as in the convolution case,

since the linear auto-correlations have relatively little energy outside a small

region centered at the peak. In such a case, we may be able to use a smaller-size

DFT than is required for convolutions. We illustrate this difference in

Figure 3.13. Figure 3.13(a) shows a 256-point linear convolution of a pseudo-

random sequence of length 128 with itself and its 256-point auto-correlation is

shown in Figure 3.13(b). The 128-point circular convolution of this random
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sequence is shown in Figure 3.13(c). Note that the linear and circular auto-

convolutions differ significantly. The 128-point circular correlation is shown

in Figure 3.13(d) and note the similarity between the linear and circular

auto-correlations.

3.6.4 Overlap-add and overlap-save methods

Suppose we want to convolve a long sequence with a short sequence. We can

pad the short sequence with a large number of zeros and the long sequence

with a small number of zeros, so that both zero-padded sequences are of the

same length and their FFT can be performed. For example, when we want to

convolve a 900-point sequence i[n] with a 100-point sequence h[n], the con-

volution result o[n] will be of length 999 points and we will need to use 1024-

point FFTs. This requires that i[n] be padded with 124 zeros and h[n] be

padded with 924 zeros. A direct convolution would require about 100 000

multiplications, whereas FFT-based convolution using the three 1024-point

Linear convolution Linear correlation

Circular convolution Circular correlation

(a) (b)

(c) (d)

2

1

0

0

0
0

1

2

3

4

50 100 150 0
0

2

4

6

8

10

50 100 150

0
0

2

4

6

8

10

100 200 300100 200 300

–1

–2

 –3

Figure 3.13 (a) 256-point linear auto-convolution of a 128-point pseudo-
random sequence, (b) its 256-point linear auto-correlation, (c) its 128-point
circular auto-convolution, and (d) its 128-point circular auto-correlation
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FFTs would require about 30,000 multiplications. This can be made even

more efficient by using smaller FFTs and not padding the shorter sequence

with so many zeros. Two ways to achieve this increased efficiency are the

overlap-add and overlap-save methods. While we will introduce these in the

context of 1-D convolution, similar efficiencies can be achieved with correla-

tions as well as 2-D operations.

Overlap-add method Suppose h[n] is zero outside the interval 0� n� (Nh� 1).

In the overlap-add method of convolution, the long input sequence i [n] is

divided into non-overlapping segments of length L¼ (Nþ 1�Nh) as follows:

i k n½ � ¼ i kLþ n½ � for 0 � n � L� 1ð Þ
0 otherwise

�
for k ¼ 0; 1; 2; . . . (3:67)

Linear convolution of h[n] with ik[n] leads to an output of length

(NhþL� 1)¼N points, and thus the N-point circular convolution of h[n]

with ik[n] is the same as the linear convolution h[n] with ik[n]. Since L points

separate adjacent input segments, L points also separate the resulting convo-

lution segments. These overlapping convolution segments can be added to

obtain the complete convolution output:

~ok n½ � ¼ i k n½ �~�h n½ � ) o n½ � ¼
X
k

~ok n� kL½ � (3:68)

The key is to separate the input segments just enough so that each N-point

circular convolution leads to N-point long output convolution segments that

can be added to get the complete output. Since the convolution segments are

separated by L<N points, they overlap and hence the name ‘‘overlap-add’’ for

this method.

For the numerical example considered before, Nh¼ 100, and thus it makes

sense to use either 128-point, 256-point or 512-point FFTs. For a choice of

N¼ 256, we need L¼Nþ 1�Nh¼ 256þ 1� 100¼ 157, and thus we will

segment the 900-point input sequence i[n] into six segments each of length

157 points and separated by 157 points. The last segment will have several

zeros at the end. Each of the 157-point input segments is padded with 99 zeros

to make them of length 256 points, and the 100-point sequence h[n] is padded

with 156 zeros tomake it of length 256 points.We perform a 256-point FFT on

h[n] to obtainH [k]. This FFT needs to be carried out only once. The six input

segments are then input to 256-point FFTs, and the resulting DFTs are multi-

plied byH [k] and inverse-transformed to obtain the six convolution segments.

These segments are properly aligned and summed to obtain the final convolu-

tion output. Thus we need a total of thirteen 256-point FFTs which requires
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about 13(256 [log2 256]) � 26 000 multiplications. This is slightly less than the

30 000 multiplications needed for the implementations using 1024-point FFT.

Thus segmenting the input sequence results in less computational complex-

ity than using a large enough FFT to fully accommodate the long input

sequence. In some situations, the input sequence arrives in real time and the

only possible way of carrying out the needed convolution is to segment the

input into reasonable lengths. Such segmentation enables us to obtain output

segments without waiting for the complete input to become available.

Overlap-save method The overlap-add method is based on dividing the long

input sequence into non-overlapping segments of length L, such that the

resulting N-point circular convolutions can be overlapped and summed to

yield the final convolution result. In the overlap-save method of convolution,

the long input sequence is divided into overlapping segments of length N,

whereN is the size of the FFT being used. Linear convolution of h[n] with each

of these N-point sequences leads to an output of length (NþNh� 1) points.

However, N-point circular convolutions yield outputs that are only N points

long, and in fact will differ from the correct linear convolutions in (Nh� 1)

places. These incorrect circular convolution points are simply discarded and

the rest are used. By making sure that the input segments are overlapping, we

can obtain the convolution points that had to be discarded in the previous

segment. This is the basic idea of the overlap-save method of convolution.

In the overlap-save method, we divide the long input sequence into over-

lapping segments where the separation L between adjacent input segments is

chosen to be L¼ (Nþ 1�Nh). The circular convolution of ik[n] with h[n] of

length Nh differs from their linear convolutions in the first (Nh� 1) points,

leading to L¼ (Nþ 1�Nh) circular convolution points agreeing with the

linear convolution:

~ok½n� ¼ i k½n�~�h½n� ¼
XNh�1

m¼0

h½m�i k½ðn�mÞN �

¼

PNh�1

m¼0

h½m�i k½n�m� for n � ðNh � 1Þ

Pn
m¼0

h½m�i k½n�m� þ
PNh�1

m¼nþ1

h½m�i k½N þ n�m� for n5ðNh � 1Þ

8>>><
>>>:

(3:69)

Equation (3.69) shows that the first (Nh� 1) points in the circular convolution

results differ from linear convolution and thus should be discarded.
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In our example, once againL equals 157 andwewill need six input segments.

(Nh� 1) is 99, adjacent input segments overlap by 99 points. The first input

segment will have 99 starting zeros and the first 157 points of the input

sequence. The resulting convolution output is of length 256 points out of

which the first 99 points are discarded. The second input segment overlaps

with the first segment in the first 99 points, and thus picks the long input

sequence values from point 59 to point 314, inclusive. This second segment is

convolved with h[n] the same way, and once again the first 99 points in the

result are discarded and the remaining 157 are concatenated with the saved 157

from the first convolution result. The third input segment picks points from

216 to 461, inclusive, and this process continues. The computational complex-

ities of the overlap-add and overlap-save methods are essentially the same and

either can be used.

3.7 Random signal processing

The concept of random variables was discussed in Chapter 2. While random

variables model the uncertainty of the outcome of an experiment, they do not

capture the time-varying nature of a signal or image that is random. To model

the noisy nature of a signal, we need not only randomness, but also time

variation. Random processes provide such models. It is also important to

learn how random processes are affected by LSI systems.

We will focus on CT random processes in this section, but our results and

observations can be easily generalized to DT random processes. The main

difference to keep inmind is that, for DT processes, frequency domain descrip-

tions are periodic, whereas they are not necessarily so for CT random

processes.

In a simplistic way, we can think of a random process X(t) as a collection of

temporal signals where the uncertainty arises from the fact that we do not

know beforehand which of these signals will be selected. While we will use 1-D

signals, random processes can be generalized to higher dimensions. There are

at least two ways we can characterize a random process.

The first random process characterization method is by specifying the set of

signals {X(t, �)} where � represents the random outcome of an experiment such

as choice of when to begin a measurement, flip of a coin, decay of a radio-

nuclide, etc. (X is here capitalized as a random variable, not as a frequency

domain variable. We also come close to getting into trouble here with respect

to the functional nomenclature when we write {X(t, �)} instead of {X(� , �)};
pay close attention.) Thus, a different signal in time can be selected depending

on the outcome of the experiment. The entire collectionX(t, �), is known as the
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ensemble. If �¼ �0, then the randomness disappears and X(t, �0) is just a

deterministic signal and is called a sample realization of the random process.

On the other hand, if t¼ t0, then {X(t0, �)} has no time variation associated

with it and is just a random variable, since � still has randomness associated

with it. Finally {X(t0, �0)} is a deterministic constant since it has no time

variation and no randomness.

A more common and more useful random process characterization is by

specifying a functional form for a time signal that has some random para-

meters associated with it. For example, consider a sinusoidal signal with unit

amplitude, fixed frequency, but a random phase that is uniformly distributed

between �p and þp. This randomness in phase results in an ensemble of

sinusoids all with unit amplitude and the same frequency, but with different

phases as shown in Figure 3.14. However, it is more compact to describe this

random process using the analytical expression in Eq. (3.70).

X tð Þ ¼ cos 2pf0tþ �½ � (3:70)

where � is uniformly distributed in [�p, p]. We can see in Figure 3.14 that at a

given time instant, we have a random variable with values between�1 andþ1.

Each sinusoid corresponds to a particular phase and thus a sample realization.

The entire collection of sinusoids is the ensemble.
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Figure 3.14 An example of the ensemble of sample realizations associated
with a sinusoid with unit amplitude, fixed frequency, and uniformly
distributed phase

96 Linear systems and filtering theory



3.7.1 Random process characterization

How do we characterize a random process? At a fixed time instant t0,X(t0) is a

random variable and we can use a PDF to describe its randomness. Thus, we

will need one PDF fx(t)(x(t)) for every time instant t. But that is not a complete

description of the random process, as these first-order PDFs cannot tell us the

joint random behavior of the two random variables at two time instants (e.g.,

t1 and t2). For that, we will need the bivariate PDFs of the two random

variables X(t1) and X(t2) for any possible t1 and t2. Bivariate PDFs do not

provide the complete story either, since we will need trivariate PDFs that

describe the random process at any three time instants. In fact, we need the

n-variate PDFs of the n random variables {X(t1), X(t2), . . . , X(tn)} for any n

and any choice of time instant t1, t2, . . . , tn. As can be easily seen, such a

characterization of a random process using n-variate PDFs is impractical. We

will most often use functional forms (e.g., Eq. (3.70)) with random parameters

to describe random processes. In such cases, we need to characterize only a few

random variables.

Stationarity The ensemble of sample realizations in Figure 3.14 appears to

have a type of shift-invariance associated with it. If we move the time origin to

the right or left, the first-order PDF describing the random process is unaf-

fected by such a shift.More precisely, a randomprocess is said to be strict sense

stationary (SSS) provided the n-variate PDF of the n random variables

{X(t1þ �), X(t2þ �), . . . , X(tnþ �)} is independent of � for any n, any time

instants t1, t2, . . . , tn and any � .

Thus, for n¼ 1, we see that the first-order PDFs of an SSS process are the

same for all time instants. Thus, all the first-order characterizations (e.g.,

mean, variance, third moment, etc.) are independent of the location. For an

SSS process, bivariate PDFs associated with time instants (t1þ �) and (t2þ �)

should not depend on � , which means that the bivariate PDFs depend only on

the difference (t2� t1) between the two time instants. This time instant differ-

ence is also known as the lag.

Strict sense stationarity, while important, is a stringent requirement and

sometimes we will settle for the less demanding weak sense stationarity (WSS),

which we will introduce in the next sub-section.

Ergodicity A random process is an ensemble of sample realizations. However,

in practice, we get to observe only one sample realization. Can we determine

the random process parameters from only one sample realization? Using a

single sample realization, we can compute its time averages (e.g., average of the
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signal, second central moment of the signal in time, etc.). If we had the entire

ensemble available, we could have determined ensemble averages (e.g., means

and variances of random variables at every time instant). We say that a

random process is ergodic if its time averages equal its ensemble averages.

A random process must be stationary if it is to be ergodic. If the process is not

stationary, its ensemble averages change with time and then we have no way of

claiming that fixed-time averages equal time-varying ensemble averages.Wewill

assume that the random processes of interest here are ergodic.

3.7.2 Second-order characterizations

As discussed before, characterizing a random process completely is often

impossible. However, we are often satisfied with just first-order and second-

order characterizations. Accordingly, we define the mean mx(t)¼E{X(t)}

which is the mean of the PDF of the random variable X(t). If a process is

stationary, mx(t) and variance are constant in time since the first-order PDF

does not change with time.

Auto-correlation function When we consider two time instants, t1 and t2, we

have two random variables,X(t1) andX(t2). Each random variable has its own

mean and variance. For complete second-order characterization, we also need

to specify the ACF of the random process defined below:

RX t1; t2ð Þ ¼ E X t1ð Þ � X t2ð Þf g (3:71)

For stationary processes, the ACF depends only on lag¼ (t2� t1), i.e.,

RX �ð Þ ¼ E X tð Þ � X tþ �ð Þf g ¼ E X tþ �ð Þ � X tð Þf g ¼ RX ��ð Þ (3:72)

We proved in Eq. (3.72) that the ACF is even symmetric. By subtracting the

means before forming the product, we get the auto-covariance function. For

zero-mean random processes, auto-correlation and auto-covariance functions

are identical:

CX t1; t2ð Þ ¼ E X t1ð Þ �mX t1ð Þ½ � � X t2ð Þ �mX t2ð Þ½ �f g
¼ RX t1; t2ð Þ �mX t1ð Þ �mX t2ð Þ

(3:73)

If a process is stationary, then CX �ð Þ ¼ RX �ð Þ �m2
X .

Weak sense stationarity A random process is said to be WSS provided its

mean is a constant in time and its ACF is a function of � , the lag. Weak sense

stationarity is also often called wide sense stationarity. It is a much less
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demanding property than SSS. Every SSS process is WSS, but the converse is

not necessarily true. An exception is the Gaussian process to be described in

the next section, where we will see that aWSSGaussian process is also SSS. If a

process is WSS and of zero-mean, the ACF at the origin, i.e.,RX(0), is equal to

the variance of the random process. We will assume from now on that the

random process of interest is WSS unless it is stated to be otherwise.

An example of an appealing WSS process is the white noise process char-

acterized by zero mean and a delta-function ACF, i.e.,

RX �ð Þ ¼ N0� �ð Þ (3:74)

The above ACF implies that the random process X(t) at time instant t and

X(tþ �) at time instant (tþ �) are uncorrelated since RX(�) is zero for � 6¼ 0.

Thus, white noise is the fastest varying random process. The broader the ACF,

the slower will be the temporal variation of the random process. For most zero-

mean random processes, the ACF tapers towards zero as � goes to infinity.

Power spectral density The ACF is a second-order characterization of a random

process. For a WSS process, the power spectral density (PSD) Sx( f ) is another

second-order characterization. The PSD is defined as the FT of the ACF, i.e.,

SX fð Þ ¼
Z1
�1

RX �ð Þe�j2pf �d� RX �ð Þ ¼
Z1
�1

SX fð Þej2pf �df (3:75)

The PSD is a function of frequency f, whereas the ACF of a WSS process is a

function of � , the lag. Since the FT is invertible, ACF and PSD are equivalent

second-order descriptors for a WSS random process.

We established earlier that the ACF of a real random process is real and even.

Using that property in Eq. (3.75), we see that the ACF and the PSD of a real

process can be simplified as follows, indicating that the PSD is also real and even:

SX fð Þ ¼ 2

Z1
0

RX �ð Þ cos 2pf �ð Þd� ¼SX �fð Þ

RX �ð Þ ¼ 2

Z1
0

SX fð Þ cos 2pf �ð Þdf ¼RX ��ð Þ

(3:76)

For the white noise process with the delta functionACF as in Eq. (3.74), the PSD

is equal to the constant N0 at all frequencies. This constant PSD is similar to

white light containing all spectral components, and hence the name white noise.
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In general, PSD is a convenient way to understand the average spectral

content of a random process. If we know the ACF, its FT yields the PSD. On

the other hand, if we have only sample realizations of a random process, we

can estimate its PSD as follows.

Let xT(t) denote a sample realization of the random process truncated to a

time window of length T. Let xT( f ) denote the FT of xT(t). Since the selection

of a sample realization is random, xT( f ) is also random and we can define its

ensemble average. Then the Weiner–Khinchin theorem states that, for many

random processes, the expectation of FT magnitude squared approaches the

PSD as the truncation window T goes to infinity.

lim T!1
E XT fð Þj j2
n o

T

2
4

3
5 ¼ SX fð Þ (3:77)

Equation (3.77) suggests amethod for estimating the PSD of a random process

from one sample realization. We truncate this sample realization to length T,

compute the magnitude squared of its Fourier transform and divide it by T.

In the limit as T goes towards infinity, this time average should approach

the PSD.

Because of the FT relation in Eq. (3.75), the total area under the PSD curve

can be seen to equal R(0), which is the average power of the random process.

For a zero-mean process, this is the same as the variance of the random

process, i.e.,

E X tð Þð Þ2
n o

¼ RX 0ð Þ ¼
Z1
�1

SX fð Þdf ¼ var X tð Þf g þm2 (3:78)

Auto-correlation function properties Can any arbitrary function be an ACF?

No, for a function to be a valid ACF, it is required that the ACF must exhibit

three properties.

1. The ACF must be even symmetric, i.e., Rx(�)¼Rx(� �)

2. The ACF must have its peak at the origin as demonstrated below. We utilize below

the fact that the PSD is real and positive (wewill prove this assertion in Section 3.7.4.)

RX �ð Þj j ¼
Z

SX fð Þe j2pf �df
����

���� �
Z

SX fð Þ e j2pf �
�� ��df

¼
Z

SX fð Þdf ¼ RX 0ð Þ ) RX 0ð Þ � RX �ð Þj j
(3:79)
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3. The ACFmust be such that its FT (i.e., the PSD)must be non-negative. Thus, while

an ACF can be a sinc function (with a non-negative FT), it cannot be a rectangle

function (with a sinc function FT that can be negative).

Typically, ACF peaks at the origin and decays towards zero as we move

away from the origin. However, if the random process is periodic, its ACF is

also periodic. Also, if the random process has a non-zero mean mx, then the

ACF will asymptotically decay to (mx)
2.

3.7.3 Gaussian processes

One random process of particular interest is the Gaussian process. One way to

define a Gaussian random process is by requiring that the set of n random

variables {X(t1),X(t2), . . . ,X(tn)} be jointly Gaussian for any n and any choice

of time instants. We know that a Gaussian random vector is completely

specified by its mean vector and its covariance matrix. Thus, the n-variate

Gaussian PDF corresponding to these n time instants is completely character-

ized by the n-element mean vector:

m ¼ E X t1ð Þf g E X t2ð Þf g � � � E X tnð Þf g½ �T (3:80)

and the following covariance matrix C with n rows and n columns:

C ¼ E x�mð Þ x�mð ÞT
n o

¼ E xxT
� �

�mmT ¼ R�mmT

where

R ¼

E X t1ð ÞX t1ð Þf g E X t1ð ÞX t2ð Þf g � � � E X t1ð ÞX tnð Þf g

E X t2ð ÞX t1ð Þf g E X t2ð ÞX t2ð Þf g � � � E X t2ð ÞX tnð Þf g

..

. ..
. . .

. ..
.

E X tnð ÞX t1ð Þf g � � � � � � E X tnð ÞX tnð Þf g

2
6666664

3
7777775

(3:81)

The covariance matrix C is related easily to the correlation matrix R as shown

in Eq. (3.81). Since aGaussian random vector is completely characterized bym

and C (or equivalently m and R, a Gaussian random process is completely

specified by its mean function mx(t) and its ACF Rx(t1, t2).

Weak sense stationary Gaussian processes If the Gaussian process is WSS,

thenmx(t) is independent of t and Rx(t1, t2) depends only on � ¼ (t1� t2). Thus
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the n-variate Gaussian PDF obtained from such a WSS random process will

be the same whether we use {t1, t2, . . . , tn} or {t1þT), (t2þT), . . . , (tnþT)}

for the n time instants for any T. This is because the mean vector

m¼mx[1 1 . . . 1]T does not depend on the choice of time instants, and the

correlation matrix R does not depend on T, as shown below:

R ¼

RX 0ð Þ RX t2 � t1ð Þ � � � RX tn � t1ð Þ

RX t1 � t2ð Þ RX 0ð Þ � � � RX tn � t2ð Þ

..

. ..
. . .

. ..
.

RX t1 � tnð Þ RX t2 � tnð Þ � � � RX 0ð Þ

2
6666664

3
7777775

(3:82)

where we can see that R does not depend on T. Thus, the n-variate PDF is

unaffected by shifting the origin for any n. This means that a WSS Gaussian

process is also SSS. We also note that because of the even symmetric nature of

the ACF, R is a symmetric matrix.

Linear transformation Linear transformation of a Gaussian random process

X(t) results in another Gaussian process Y(t). Consider the linear transforma-

tion Y(t)¼
R
h(t, p) X(p) dp. This integral can be thought of as the limit (or

generalization) of a weighted sum (where the weights are given by h(t, p)) of the

random process X(t).

Thus each of the random variables in the set {Y (t1), Y(t2), . . . , Y(tn)} can

be thought of as a different weighted sum of the random variables obtained

from the Gaussian random process X( p). Since X( p) is Gaussian, weighted

sums of samples of X( p) are also Gaussian (see Section 2.5.7 where we

showed that affine transformations of Gaussian random vectors must lead

to Gaussian random vectors). Thus, any set of n RVs obtained from Y(t)

must be jointly Gaussian proving that Y(t) must be a Gaussian random

process.

Uniform sampling The correlation matrix R expression in Eq. (3.82) is valid

for any WSS process, not just a Gaussian WSS process. Note that the main

diagonal of R contains the same value, namely Rx(0)¼E{X2(t)}, the average

power of the random process. Suppose the n time instants are at uniform

intervals of T, i.e., ti¼ t0þ iT, 1� i� n. Then the correlation matrix R in

Eq. (3.82) takes on the following:
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R ¼

RX 0ð Þ RX Tð Þ � � � RX n� 1ð ÞTð Þ
RX Tð Þ RX 0ð Þ � � � RX n� 2ð ÞTð Þ

..

. ..
. . .

. ..
.

RX n� 1ð ÞTð Þ RX n� 2ð ÞTð Þ � � � RX 0ð Þ

2
666664

3
777775 (3:83)

The R matrix in Eq. (3.83) is symmetric and Toeplitz, i.e., all entries in a

diagonal are equal. The computational complexity and storage requirement

associated with the symmetric, Toeplitz matrix in Eq. (3.83) is significantly

smaller than those of the symmetric correlation matrix in Eq. (3.82).

3.7.4 Filtering of random processes

We have shown that linear transformation of a Gaussian process leads to a

Gaussian process. Thus, Gaussian processes filtered by LSI systems are also

Gaussian. More important, however, is what happens to the PSD of a random

process as it passes through an LSI system. In this sub-section, we will derive

the important result that the PSD at the output of a filter with frequency

response H( f ) is its input PSD multiplied by |H( f )|2.

Consider the system in Figure 3.1 and let us assume that the system is LSI

with impulse response h(t) and the input signal is a sample realization of the

random process x(t). The resulting output process is Y(t). The input random

process X(t) is an ensemble of sample realizations X(t, � ), where each sample

realization is nothing but a deterministic signal. Each input sample realization

X(t, � ) results in an output signal Y(t, � ) and an ensemble of these output

signals constitutes the output random process Y(t). Let us now see what

happens to the mean and the second-order characteristics as they go through

the LSI system.

Output mean Since the system is LSI, its output signal Y(t, � ), is the convolu-

tion of the input signal X(t, � ) with the impulse response; i.e.,

Y t; �ð Þ ¼ X t; �ð Þ � h tð Þ ¼
Z1
�1

h pð ÞX t� p; �ð Þdp (3:84)

We will drop the variable �, which denotes the sample realization, as this

parameter will be common to all random processes. Then the mean of the

output process y(t) is as follows:
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mY tð Þ ¼ E Y tð Þf g ¼
Z1
�1

h pð ÞE X t� pð Þf gdp

¼
Z1
�1

h pð ÞmX t� pð Þdp ¼ h tð Þ �mX tð Þ

(3:85)

We see that the mean of the output from an LSI system is the convolution of

the input mean with the impulse response of the system. If the input mean is a

constant in time (e.g., the mean of a WSS process), the output mean is also a

constant as shown below:

mY tð Þ ¼ mX

Z
h tð Þdt ¼ mXH 0ð Þ (3:86)

whereH(0) denotes the filter’s frequency response at zero frequency. It should

be no surprise that the output mean is the input mean multiplied by H(0), the

filter’s DC gain.

ACF of the output process: The ACF of y(t) can be related to the ACF of X(t)

and h(t):

RY t1; t2ð Þ ¼ E Y t1ð ÞY t2ð Þf g

¼ E

Z
h pð ÞX t1 � pð Þdp

� � Z
h qð ÞX t2 � qð Þdq

� �� �

¼
Z Z

dpdq h pð Þh qð ÞE X t1 � pð ÞX t2 � qð Þf g

¼
Z Z

dpdq h pð Þh qð ÞRX t1 � p; t2 � qð Þ

(3:87)

If X(t) is WSS, then its ACF depends only on the lag and, as we show below,

the ACF of the corresponding Y(t) is also a function only of the lag:

RY t1; t2ð Þ ¼
Z Z

dpdq h pð Þ h qð ÞRX t1 � p; t2 � qð Þ

¼
Z Z

dpdq h pð Þ h qð ÞRX t2 � t1 þ p� qð Þ ¼ RY t2 � t1ð Þ

) RY �ð Þ ¼
Z Z

dpdq h pð Þ h qð ÞRX � þ p� qð Þ

(3:88)
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Thus, ifX(t), the input to anLSI system isWSS, then its outputY(t) is alsoWSS.

Power spectral density Using Eq. (3.88) and the fact that the PSD is the FT of

the ACF, we can derive the following relation between the input PSD Sx( f ),

filter transfer function H( f ), and the output PSD Sy( f ):

SY fð Þ ¼
Z

RY �ð Þe�j2pf �d�

¼
Z Z Z

dpdqRX � þ p� qð Þh pð Þh qð Þ
� �

e�j2pf �d�

¼
Z Z Z

dpdqd�h pð Þh qð ÞRX �ð Þe�j2pf ��pþqð Þ where � ¼ � þ p� qð Þ

¼
Z

h qð Þe�j2pfqdq

� � Z
h pð Þej2pfpdp

� � Z
RX �ð Þe�j2pf �d�

� �

¼ SX fð ÞH fð ÞH� fð Þ ¼ SX fð Þ H fð Þj j2

(3:89)

where we assume that the impulse response h(t) is real and hence the

frequency response H( f ) is conjugate symmetric. Note that the output

PSD depends on the input PSD and the magnitude (but not the phase) of

the filter frequency response H( f ). In contrast, a filter’s output due to a

deterministic input signal depends both on the magnitude and the phase of

the filter H( f ). This difference in an LSI system’s response to deterministic

signals and random processes allows us to design filters that retain the

signals while suppressing noise. We can select the filter magnitude to sup-

press noise and select the filter phase for the unsuppressed frequencies to

enhance the signal.

We can now prove that Sx( f ) is non-negative and justify its being called a

PSD. Consider a filter whose frequency response H( f ) is 1 in a narrow band-

pass centered at f0 and 0 elsewhere, i.e.,

H fð Þj j ¼ 1 for f0 � �f
2
� fj j � f0 þ �f

2

0 otherwise

(
(3:90)

The average power out of the filter is given as follows:

3.7 Random signal processing 105



E Y tð Þð Þ2
n o

¼ RY 0ð Þ ¼
Z1
�1

SY fð Þdf ¼
Z1
�1

SX fð Þ H fð Þj j2df

¼ 2

Zf0þ�f
2

f0��f
2

SX fð Þdf ffi �fSX f0ð Þ

) SX f0ð Þ ffi
E Y tð Þð Þ2
n o

�f

(3:91)

where we assume that the input PSD Sx( f ) is relatively constant in a narrow

band centered at f0. Equation (3.91) indicates that the PSD at frequency f0 is the

ratio of the filter output power to the filter bandwidth, and that is the reason

why Sx( f ) is known as the power spectral density. Equation (3.91) also proves

that the PSD is proportional to the average power and thus must be non-

negative.

We have established what happens to the first-order and second-order

statistics of a random process as it passes through an LSI system. These results

apply to any random process, not just a Gaussian process. If the process is

indeed Gaussian, all we need are the statistics of the first two orders. If the

process is not Gaussian, the analysis will be more challenging.

3.8 Chapter summary

This chapter has provided a review of signals and systems that is relevant for

designing and implementing correlations. Here, we will summarize some of the

key concepts introduced in this chapter.

* Linear, shift-invariant systems can be completely characterized using impulse

response (in 1-D) and the point spread function (in 2-D). For an arbitrary input,

the output from an LSI system is the convolution of that input with the system’s

impulse response.
* Convolution and correlation operations are very similar and thus a filter can be

used to obtain a correlation by conjugating the filter’s frequency response.

However, the results of correlation and convolution are very different.
* Frequencies of sinusoids and complex exponential inputs remain unaffected by an

LSI system. Thus one way to characterize an LSI system is through its frequency

response,which describes its amplitude and phase response as a function of frequency.
* Fourier series allow us to describe CT periodic signals as a weighted sum of complex

exponentials with frequencies that are integer multiples of the fundamental fre-

quency. The continuous-time Fourier transform is a generalization of the Fourier
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series for non-periodic CT signals. The 2-D FT can be computed using 1-D FTs

sequentially.
* We can sample CT signals at uniform intervals to obtain a DT signal, and we can

reconstruct the original CT signal from these samples provided that the sampling

frequency exceeds twice the maximum signal frequency. When a smaller sampling

frequency than this minimum is used, aliasing occurs. It is important to use analog

anti-aliasing filters prior to such under-sampling.
* Fourier analysis of discrete-time signals can be performed using the discrete Fourier

transform. The DFT is efficiently implemented using the fast Fourier transform

algorithm. When N is a power of 2, the computational complexity of an N-point

FFT is in the order of N log2 N operations.
* Convolution in time or space domain is equivalent to multiplication in the fre-

quency domain, and vice versa. Correlation is the same, except that the FT of the

second function must be conjugated prior to forming the product of the FTs.

Computing convolutions and correlations via the FFT is more efficient than their

direct computation.
* Using FFTs for convolutions and correlations results in circular correlations and

convolutions instead of their linear counterparts. This means that we either need to

zero-pad the signals and use sufficiently large FFT sizes, or we have to segment the

inputs so that we can assemble linear convolutions and correlations from the

obtained circular versions, using overlap-save or overlap-add methods.
* Random processes allow us to combine randomness with time variation.

Characterization of a random process requires that we specify its joint PDFs for

all possible combinations of time instants. If these PDFs are unaffected by a shift in

the time origin, the process is said to be strict sense stationary (SSS). A weaker form

of stationarity is the wide sense stationarity in which only the first-and second-order

characterizations are unaffected by such a shift of the origin. Strict sense stationarity

impliesWSS, but the converse is not true in general. Once again, the exception is the

Gaussian process, for which SSS and WSS are equivalent.
* Second-order statistics of a random process are characterized by its auto-correlation

function, which is the correlation of the two RVs corresponding to the random

process at two time instants. For WSS processes, the ACF depends only on the lag,

i.e., the difference between the two time instants. Not every function can be a valid

ACF. An ACF must be symmetric, must have maximum value at the origin, and its

FTmust be non-negative. A particular random process of special interest is the white

noise process for which the ACF is a delta function centered at the origin.
* The FT of the ACF of a WSS process is known as its power spectral density. The

PSD is non-negative and describes the average power per unit bandwidth as a

function of the frequency. When a WSS process is passed through an LSI system,

the output PSD is the input PSDmultiplied by the magnitude squared of the system

frequency response. Since the filter phase has no effect on the output PSD of the

noise but does affect the output due to a deterministic signal, we can design filters to

suppress the noise while allowing deterministic signals to pass through.
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4

Detection and estimation

In Chapter 2, we discussed the basics of probability theory, which helps us to

model the randomness in signals (called noise) and thus allows us to extract the

desired signal from unwanted noise. An example source of noise is the thermal

noise induced in the voltage across a resistor by the motion of electrons.

Similarly, when light is incident on a photodetector, the number of electrons

released is random (although the mean is proportional to the incident light

intensity), and this randomness leads to noise or uncertainty in the signal.

When a signal is corrupted by such randomnoise, it is often important to extract

or restore the original signal from the noisy version; this is known as signal

restoration. In other instances, our task is to classify the signal as the noisy

version of one of a few possible signals. This task of detecting the signal class is

known as detection (or classification) and it is one of the foci of this chapter. It is

not surprising that detection theory has a bearing on pattern recognition.

A generalization of the notion of detection is estimation, where we try to

estimate a parameter (which can assume a value in an interval rather than in a

discrete set) from a noisy signal. Estimation theory is also relevant in tasks such

as evaluating a correlator; e.g., estimating the error rate from a classifier.

We will first consider in Section 4.1 the case of detecting between two classes

and extend this in Section 4.2 to multiple classes. In Section 4.3, we introduce

the notion of parameter estimation and discuss its application to error prob-

ability estimation. Our coverage in this chapter will be very basic and readers

wanting to learn more about detection and estimation theory are advised to

consult further references [29, 30].

4.1 Binary hypothesis testing

Let us consider the case of distinguishing (signalþ noise) from just noise. Such

an additive noise model is useful in applications such as radar where we have
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two hypotheses:H0 denoting the absence of a target in the radar path, andH1

indicating the presence of a target. Let s denote the reference signal (with N

samples in it) transmitted by the radar and let r denote the received signal.

Ignoring the time delay between the transmitter and the receiver and any

attenuation in the received signal, we can model the relationship between the

transmitted and received signals as follows:

H0 : r ¼ n

H1 : r ¼ sþ n
(4:1)

where n denotes the additive noise vector withN elements. While there are other

noise models (e.g., multiplicative, non-overlapping, etc.) the additive noise

model is useful in many situations. The additive noise model is also simple to

analyze and is thus a good starting point to learn detection theory. The objective

of binary hypothesis testing is to select the hypothesis (i.e., to decide between

whether the target is present or absent) yielding the lowest error probability.

What we know are the reference signal s and the statistics of n.

To determine the minimum probability of error in the detection method, we

first need to characterize the probability density functions (PDFs) of the

received signal vector r for the two hypotheses. Let fn(�) denote the N-variate

PDF of the noise vector n. Then the PDFs of the received vector for the two

hypotheses are as follows:

H0 : f0 rð Þ ¼ fn rð Þ
H1 : f1 rð Þ ¼ fn r� sð Þ

(4:2)

Probability of error Let P0 and P1 denote the a-priori probabilities of the two

hypotheses. To determine the detection method yielding the smallest prob-

ability of error, we first note that a detection error can occur in two different

ways. If hypothesis H0 is true, but H1 gets selected, that error is called a false

alarm, since the detection method falsely indicates the presence of a target. On

the other hand, ifH1 is true, butH0 gets chosen, we have amiss since the detector

missed a target. The probability of error Pe is obtained by weighting the prob-

ability of false alarm (PFA) and the probability of miss (PM) by the correspond-

ing a-priori probabilities P0 and P1 and adding them up, i.e.,

Pe ¼ P0PFA þ P1PM (4.3)

wherePM ¼ P H0 H1jð Þ ¼
Z

� � �
Z
R0

f1 rð Þdr¼
Z

� � �
Z
R0

fn r� sð Þdr

andPFA ¼ P H1 H0jð Þ ¼
Z

� � �
Z
R1

f0 rð Þdr¼
Z

� � �
Z
R1

fn rð Þdr
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where P(H0 jH1) denotes the probability that the detector selects hypothesisH0

whereas hypothesisH1 is true. The detector assigns each received vector r to one

of two hypotheses, i.e., the detector partitions the N-dimensional space of

received vectors into two decision regions, namely R0 (for vectors resulting in

the selection ofH0) andR1 (leading toH1). These two regions partition the space

of received vectors, i.e., the two regions have no common vectors (otherwise, a

received vector would have to be assigned to both hypotheses) and together they

fill up the whole space (otherwise, there would be some received vectors that

cannot be assigned to either hypothesis).

4.1.1 Minimum probability of error detection

Since the detector partitions the signal space into R1 and R0, the integral of

either PDF over one of those regions is equal to (1� the integral of that PDF

over the other region). Using this, we can rewrite the probability of error in

terms of just one of these decision regions as follows:

Pe ¼ P0

Z
R1

f0 rð Þdr

2
64

3
75þ P1

Z
R0

f1 rð Þdr

2
64

3
75

¼ P0

Z
R1

f0 rð Þdr

2
64

3
75þ P1 1�

Z
R1

f1 rð Þdr

2
64

3
75

¼ P1 þ
Z
R1

P0 f0 rð Þ � P1 f1 rð Þ½ �dr

(4:4)

Since we want to minimize the integral in Eq. (4.4), we should assign to region

R1 (i.e., to hypothesisH1) all those vectors r forwhich the term [P0 f0 (r)�P1 f1 (r)]

is negative. Similarly, we should assign to regionR0 (i.e., assign to hypothesisH0)

all those received vectors r for which the term [P0 f0 (r)�P1 f1 (r)] is positive. Such

a detection schemewill yield the smallest probability of error. Thus, theminimum

probability of error is obtained by the following decision scheme:

P0 f0 rð Þ½ �P1 f1 rð Þ� � 0)H0 and P0 f0 rð Þ � P1f1 rð Þ½ �50)H1

; l rð Þ ¼ f1 rð Þ
f0 rð Þ �

P0

P1
¼ �)H1 and l rð Þ5�)H0

(4:5)

where l(r), the ratio of PDFs, is known as the likelihood ratio. Thus the

minimum probability of error is achieved by comparing the likelihood ratio

l(r) to a threshold �, which is the ratio of the a-priori probabilities, P0 and P1.
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The detection scheme in Eq. (4.5) minimizes the probability of error defined

in Eq. (4.3), which treats the two types of errors (namely, false alarms

and misses) as if they are equally costly. In some situations, we may

want to assign different costs or weights to the two types of errors. For

example, if H0 denotes the absence of an aircraft and H1 denotes the

presence of it in an air traffic control situation, a false alarm is

much more acceptable than a miss. In such a case, the metric to be minimized

must weigh the PFA lower than PM, resulting in an optimal detector

different from that in Eq. (4.5), which uses equal costs for the two types

of error. In a biometrics application, H0 may represent an impostor and H1

may denote an authentic. In such a case P(H0jH1) denotes the probability

of false rejection and P(H1jH0) is the probability of false acceptance

and, depending on the security level required, one type of error may be

more costly than the other. We can show that, with the new costs, we will

still have a detector that compares the likelihood ratio to a threshold, but

the new threshold depends not just on the a-priori probabilities, but also on

the relative costs.

We can use any monotone mapping (e.g., logarithm) on both sides of the

inequality in Eq. (4.5) without any loss of optimality. Thus, an equivalent

detection method is to compare the log-likelihood ratio to the logarithm of the

threshold, i.e.,

ln l rð Þ½ � � ln
P0

P1

� �
) H1 and ln l rð Þ½ �5 ln

P0

P1

� �
) H0 (4:6)

In the next sub-section, we use the log-likelihood ratio test in Eq. (4.6) for

the case of Gaussian PDFs to illustrate the trade-offs involved in the detector

design. Although we focus on the case of Gaussian PDFs, the log-likelihood

ratio test in Eq. (4.6) is optimal for any choice of PDF. The attractiveness of

Gaussian PDFs is that they result in closed-form expressions for decision tests

and resulting error probabilities. Thus, sometimes they are invoked even when

it is clear from the context (e.g., when using light intensity) that they may not

be appropriate.

4.1.2 Binary hypotheses testing with Gaussian noise

Let us now consider the special case where the noise vector n in Eq. (4.1) is

a Gaussian random vector with a zero mean vector and covariance matrix

C. For the N-variate Gaussian PDF, the logarithm of the likelihood ratio in

Eq. (4.5) becomes
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ln l rð Þ½ �¼ ln
f1 rð Þ
f0 rð Þ

� �
¼ ln

fn r� sð Þ
fn rð Þ

� �

¼ ln

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞN Cj j

q exp � 1

2
r� sð ÞTC�1 r� sð Þ

� �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞN Cj j

q exp � 1

2
rTC�1r

� �
2
666664

3
777775

¼ sTC�1r� 1

2
sTC�1s ¼ aTr� b; where a ¼ C�1s; and b ¼ 1

2
sTC�1s

(4:7)

where we use the fact that s
TC�1r is a scalar and thus sTC�1r¼ rTC�1 s.

(Also note that C is symmetric.) We see from Eq. (4.7) that the log-likelihood

ratio is a linear function of the received vector r, and since the PDF of r

is Gaussian, the PDFs of the log-likelihood ratio are also Gaussian. Using

Eqs. (4.6) and (4.7), we can simplify the minimum probability of error detec-

tion scheme to be as follows:

 rð Þ ¼ aTr� b � ln
P0

P1

� �
) H1

and  rð Þ ¼ aTr� b5 ln
P0

P1

� �
) H0

(4:8)

Geometric structure The optimal detector structure in Eq. (4.8) lends itself to a

geometric interpretation. Consider the case where the two hypotheses are

equally likely, i.e., P0¼P1¼ 1/2. Then the boundary between the two decision

regions (called the decision boundary) corresponds to the set of r vectors that

satisfy a
Tr� b¼ 0. This means that the decision boundary is normal to the

vector a. From Eq. (4.7), we also see that r ¼ (1/2)s is always a point on

the decision boundary, independent of what C is. Under the assumption of

zero-mean noise, the PDF of r has zero mean under H0, whereas the PDF of

r has mean s under H1. Thus, the decision boundary bisects the vector that

connects the means of the two PDFs.

Suppose that the noise covariance matrix C is proportional to I. Equal

probability contours in this case will be circles centered at the class means.

Then the decision boundary corresponds to r vectors satisfying sTr� (1/2)sTs¼ 0.

From this, we can see that the decision boundary is normal to s, the vector that

connects the two means. In this case, the decision boundary is a perpendicular
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bisector of the line that connects the two means. This is shown in Figure 4.1(a)

for the case where N¼ 2.

When the noise components are not uncorrelated, i.e.,C is not proportional

to the identity matrix I, the decision boundary is normal to a¼C
�1s, not s. As

a result, the decision boundary will be a tilted bisector of the line that connects

the two means. Figure 4.1(b) and (c) show the decision boundaries when the

two noise components have positive and negative correlation coefficients,

respectively. We show in this figure the equal probability contours for the

two PDFs, and it can be seen that the decision boundaries are tilted so as to

minimize the overlap between the two PDFs.

Probability of error In general, it is difficult to obtain a compact expression for

the probability of error of the optimal binary hypothesis detector. However,

Decision
boundary

Decision
boundary

Decision
boundary

(a)

(b)

(c)

Figure 4.1 Minimum probability of error decision boundaries for two classes
with zero-mean Gaussian noise components with a correlation coefficient
that is (a) zero, (b) positive, and (c) negative
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for the special case of a Gaussian noise vector with C¼�2I, the detector

simplifies to the following:

 rð Þ ¼ 1

�2
sTr� 1

2
sTs

� �
� ln

P0

P1

� �
)H1

and rð Þ ¼ 1

�2
sTr� 1

2
sTs

� �
5 ln

P0

P1

� �
)H0

; � ¼ sTr � Es

2
þ �2 ln

P0

P1

� �
¼ T )H1 and �5T )H0

(4:9)

where Es¼ s
T
s is the energy in the signal vector. To determine the error

probabilities, we need the PDFs of the test statistic �¼ s
Tr for the two

hypotheses. Since � is the result of an affine operation (inner product plus a

bias) on r, it too is a Gaussian random variable. Its mean and variance are as

follows for the two hypotheses:

E � H0jf g ¼ sTE r H0jf g ¼ sTE nf g ¼ 0

E � H1jf g ¼ sTE r H1jf g ¼ sTE sþ nð Þf g ¼ sTs ¼ Es

var � H1jf g ¼ var � H0jf g ¼ E sTr
� �

sTr
� �T

H0j
n o

¼ sTE rrT H0j
� 	

s ¼ sTE nnT
� 	

s ¼ �2sTs ¼ �2Es

(4:10)

In Figure 4.2, we show the Gaussian PDFs of the test statistic � for the

two hypotheses. While the variances of the two hypotheses are the same, the

means are different. The optimal threshold T is related to the noise variance as

well as the a-priori probabilities. If the two hypotheses are equally likely,

then the optimal threshold T is Es/2, the mid-point between the two means.

If the a-priori probabilities are unequal, the optimal threshold moves

towards the less likely PDF resulting in a smaller error for the more likely

hypothesis.

We need to determine the shaded areas in order to determine the error

probabilities. For the case of equally likely hypotheses, we can determine the

error probabilities from the shaded areas. We can see from Figure 4.2 that

moving the threshold to either the right or left of the mid-point increases the

total shaded area and thus the Pe when the a-priori probabilities are equal. We

see fromFigure 4.2 that the two types of error probability (namelyPFA andPM)

are equal for the case of equal a-priori probabilities, and that they depend on
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(Es/�
2), the ratio of signal energy to the noise variance, also known as the input

signal-to-noise ratio (SNR).

PFA ¼ Pr � � Es

2
H0j


 �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p�2Es

p Z1
Es=2

exp � �2

2�2Es

� �
d�

¼ 1ffiffiffi
p

p
Z1

ffiffiffiffi
Es

p
= 2

ffiffi
2

p
�ð Þ

exp �x2
� 


dx ¼ 1

2
erfc

ffiffiffiffiffi
Es

p

2
ffiffiffi
2

p
�

� �

Because of symmetry,

PFA ¼ PM )Pe ¼
1

2
PFA þ PMð Þ

¼ 1

2
erfc

ffiffiffiffiffi
Es

p

2
ffiffiffi
2

p
�

� �
¼ 1

2
erfc

ffiffiffiffiffiffiffiffiffiffiffi
SNR

8

r ! (4:11)

where erfc(�), the complementary error function, is defined as follows:

erfcðyÞ ¼� 2ffiffiffi
p

p
Z1
y

exp �x2
� �

dx (4:12)
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Figure 4.2 Error probabilities for the binary hypothesis case with two
Gaussians with equal variances. One shaded area equals the probability of
false alarm and the other equals the probability of a miss
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Since erfc(�) in Eq. (4.12) decreases monotonically from 1 to 0 as its

argument y increases from 0 to infinity, the error probability in Eq. (4.11)

monotonically decreases from 1/2 to 0 as the SNR increases from 0 to infinity.

Figure 4.3 shows this dependence except that SNR is shown in dB (i.e., SNR in

dB is 10 log10 (Es/�
2)).

4.1.3 Receiver operating curves

Supposewe decide to use a threshold other than the one yielding the lowest error

probability. This may be done for a variety of reasons including not knowing

the a-priori probabilities, or wanting to see the tradeoff between PFA and PM.

If the threshold T in Figure 4.2 moves to the right from the mid-point (i.e.,

towards the PDF for H1), then PFA decreases, but PM will increase. If the

threshold moves to the left, PM will decrease, but PFA will increase.

It is more common to use the probability of detection PD¼ 1�PM instead

of PM. The plot of PD versus PFA is known as the receiver operating curve

(ROC) and an example ROC is shown in Figure 4.4. To understand how this

ROC is obtained, we provide below expressions for PD and PFA as a function

of threshold T. By letting T increase from negative infinity to positive infinity,

we decrease PFA monotonically from one to zero. Similarly, PD also decreases

monotonically from one to zero as T is increased. That results in the shape of

the ROC in Figure 4.4.

–20 –10 0 10 20 30
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10–10

10–20

10–30

10–40
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Probability of error as a function of SNR 

SNR

Figure 4.3 Minimum error probability as a function of input SNR (in dB) for
the case of two equally likely hypotheses where noise components have zero
means, constant variance, and are uncorrelated
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PFA ¼ Pr � � T H0jf g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�2Es

p Z1
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exp � �2

2�2Es

� �
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¼ 1ffiffiffi
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T= �
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� �

(4:13)

Eq. (4.13) shows that PD and PFA depend not only on the threshold T, but

also on the signal energy Es and noise variance �2. In Figure 4.4, we show the

ROCs for different input SNR values. We see that for low SNR values, the

ROC approaches thePD¼PFA straight line. In fact, thePD¼PFA straight line
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Figure 4.4 Example receiver operating curves (ROC) for different SNRvalues
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is the worst possible binary detection performance in that it cannot dis-

tinguish one hypothesis from the other at all. For high SNR values, the ROC

approaches a step function that represents the best possible detection

performance, in that we can obtain high PD values for small PFA values. The

area under the ROC, known as the power of the detector, is a good indicator of

how good the test is at distinguishing one hypothesis from the other. We can

see from Figure 4.4 that the power increases with SNR, with the lowest power

being 0.5 and the highest power being 1.0.

4.2 Multiple hypotheses testing

Often, we need to decide to which of the C classes an input pattern belongs.

When C is greater than 2, we will refer to such a problem as the multiple

hypotheses testing problem. In particular, the goal is to determine a scheme

that assigns the received vector r to one of the C hypotheses, such that the

overall probability of error is as small as it can be. The received vector r is

modeled as follows:

Hi : r ¼ si þ n; i ¼ 1; 2; . . . ;C (4:14)

where si denotes the signal for the ith hypothesis and n denotes the additive

noise vector. In this section, we will show how to minimize the probability of

error under the model in Eq. (4.14). The resulting detector structure is known

as the maximum a-posteriori probability (MAP) classifier.

4.2.1 MAP classifier

Let Ri denote the ith decision region, – i.e., the set of received vectors

r that get assigned to hypothesis Hi. Also, let Pi denote the a-priori prob-

ability of hypothesisHi. Then the overall probability of error Pe is the comple-

ment of Pc, the probability of correct classification, and can be expressed as

follows:

Pe ¼ 1� Pc ¼ 1�
XC
i¼1

Pi � Pr r 2 Ri Hijf g
" #

¼ 1�
XC
i¼1

Pi �
Z

� � �
Z
Ri

fi rð Þdr

2
64

3
75

(4:15)

where fi(r) denotes the PDF of the received vector under hypothesisHi. For the

model in Eq. (4.14), this PDF is related to the noise PDF fn(r) as follows:
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fi rð Þ ¼ fn r� sið Þ; i ¼ 1; 2; . . . ;C (4:16)

From Eq. (4.15), minimizing Pe is equivalent to maximizing Pc.

This requires that the decision regions Ri be selected so as to maximize the

sumPc ¼
PC

i¼1 Pi �
R
� � �
R
Ri
fi rð Þdr

h i
. Every received vector rmust be assigned

to one and only one of the C decision regions Ri. As a result, every vector r

contributes to only one term in this sum and we should assign r to that region

Ri which results in the largest contribution to the sum, i.e.,

Pi � fi rð Þ � Pj � fj rð Þ; j ¼ 1; 2; . . . ;C ) r 2 Ri (4:17)

From Bayes’ rule (see Chapter 2) we see that the detection scheme in

Eq. (4.17) is equivalent to assigning a received vector r to the hypothesis that

maximizes the a-posteriori probability Pr Hi rjf g ¼ Pi � fi rð Þ=f rð Þ. Thus a mini-

mum probability of error is achieved by the MAP classifier.

4.2.2 Additive Gaussian noise model

Let us consider the model in Eq. (4.14) with the additive noise being governed

by an N-variate Gaussian PDF with zero-mean vector and covariance matrix

C. We will also assume that all C hypotheses are equally likely. In such a case,

theMAP classifier assigns received vector r to the hypothesisHi corresponding

to maximum fi(r). From Eq. (4.16), fi(r) are all Gaussian PDFs with the same

covariance matrix, but different mean vectors si. By using the logarithm, the

MAP classifier simplifies to assigning the vector r to hypothesis Hi with the

smallest Mahalanobis1 distance di defined as follows:

d 2
i r; sið Þ ¼ r� sið ÞTC�1 r� sið Þ (4:18)

Before we go back to the MAP classifier discussion, a few remarks about

the Mahalanobis distance are in order. For the special case where C¼ I,

the Mahalanobis distance is the same as the Euclidean distance. If the

noise components are uncorrelated (i.e., C is diagonal), but have different

variances, the Mahalanobis distance weights the squared distance in each

component by the inverse of its variance, before summing them to find the

overall distance. Thus unlike the Euclidean distance, Mahalanobis distance

weights the more noisy components less, and in that sense is a more appro-

priate indicator of the separation between two classes.

1 This ‘‘Mahalanobis’’ here refers to Dr. P.C. Mahalanobis, a famous Indian statistician from the early
1900s.
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We have stated that for the case of zero-mean Gaussian noise with equal

a-priori probabilities, the MAP classifier is equivalent to minimizing the

Mahalanobis distance in Eq. (4.18). On the surface, Eq. (4.18) appears to

suggest a quadratic classifier resulting in quadratic (e.g., parabolas, pairs of

parallel lines, hyperbolas, etc.) decision boundaries. However the rTC�1
r term

common to all di(r, si) is independent of i, and thus the MAP classifier (which

minimizes this Mahalanobis distance) is really a linear classifier since it assigns

r to the hypothesis that maximizes the following linear discriminant function

(LDF):

 i rð Þ ¼ aTi r� bi (4.19)

where

ai ¼ C�1si and bi ¼
1

2
sTi C

�1si i ¼ 1; 2; . . . ;C

The decision boundary separating Ri from Rj is a linear one (e.g., line in

2-D, plane in 3-D, hyperplane in higher dimensions) characterized by

(ai� aj)
T
r¼ (bi� bj). It is easy to verify that the mid-point (siþ sj)/2

between the two means is always part of this decision boundary as long

as the a-priori probabilities are equal. If the a-priori probabilities of the

hypotheses were not equal, then the decision boundary would move away

from this bisecting point towards the less likely hypothesis. We can also see

that the decision boundary is normal to the vector (ai� aj)¼C
� 1 (si� sj).

For the special case where C¼ I, the decision boundary can be seen to be

orthogonal to the vector (si� sj) connecting the two means.

4.2.3 Error probability for 2-class case

Let us now consider the case where we have just two classes and the noise is

additive and Gaussian with zero mean and covariance matrix C. Then the

minimum error probability is achieved by the following classifier:

l rð Þ ¼ s1 � s2ð ÞTC�1rþ 1

2
sT2C

�1s2 � sT1C
�1s1

� �
� 0 ) r 2 H1

and (4.20)

l rð Þ50 ) r 2 H2

Since l(r) is a linear function of r, it is a Gaussian RV with the following means

and variances for the two hypotheses:
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E l rð Þ H1jf g ¼ s1 � s2ð ÞTC�1E r H1jf g þ 1

2
sT2C

�1s2 � sT1C
�1s1

� �
¼ s1 � s2ð ÞTC�1s1 þ

1

2
sT2C

�1s2 � sT1C
�1s1

� �
¼ 1

2
sT1C

�1s1 � 2sT2C
�1s1 þ sT2C

�1s2
� 


¼ 1

2
s1 � s2ð ÞTC�1 s1 � s2ð Þ ¼ 1

2
d 2
1;2

E l rð Þ H2jf g ¼ s1 � s2ð ÞTC�1E r H2jf g þ 1

2
sT2C

�1s2 � sT1C
�1s1

� �
¼ s1 � s2ð ÞTC�1s2 þ

1

2
sT2C

�1s2 � sT1C
�1s1

� �
¼ � 1

2
sT1C

�1s1 � 2sT2C
�1s1 þ sT2C

�1s2
� 


¼ � 1

2
s1 � s2ð ÞTC�1 s1 � s2ð Þ ¼ � 1

2
d 2
1;2

var l rð Þ H1jf g ¼ var l rð Þ H2jf g ¼ var s1 � s2ð ÞTC�1r H1j
n o

¼ E s1 � s2ð ÞTC�1 r� s1ð Þ
h i

s1 � s2ð ÞTC�1 r� s1ð Þ
h iT��H1


 �
¼ s1 � s2ð ÞTC�1E r� s1ð Þ r� s1ð ÞT

��H1

� 	
C�1 s1 � s2ð Þ

¼ s1 � s2ð ÞTC�1CC�1 s1 � s2ð Þ ¼ d 2
1;2 (4.21)

where d1,2 denotes the Mahalanobis distance between the PDFs for the two

hypotheses. From Eqs. (4.20) and (4.21), we see that the probability of error is

the probability that a Gaussian PDF with mean ð�d 2
1,2=2Þ and variance d 2

1,2

takes on positive values, i.e.,

Pe ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2pd 2

1;2

q Z1
0

exp �
l þ

d 2
1;2

2

 !2

2d 2
1;2

2
666664

3
777775dl

¼ 1ffiffiffi
p

p
Z1
ffiffiffiffiffiffiffiffiffiffiffiffi
d 2
1;2=8

q exp �p2
� 


dp ¼ 1

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffi
d 2
1;2=8

q� �
(4:22)

Thus, the probability of errorPe is a monotonically decreasing function of d1,2,

the Mahalanobis distance between the two classes.
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In this section, we have deliberately focused on the simple casewhere the PDFs

areGaussian, the covariancematrices for all cases are identical and all classes are

equally likely. Under these assumptions, the minimum error decision boundaries

are linear, making it easy to evaluate the resulting probability of error. However,

in practice, these assumptions may not hold. Even for a 2-class problem using

Gaussian PDFs, minimum error decision boundaries will be nonlinear (in fact,

quadratic) if the covariance matrices are not equal. In such cases, it will not be

easy to evaluate the error probabilities since the decision statistic is not a linear

function of the observation vector. However, using central limit theorem

arguments, we may still be able to approximate the decision statistic as

Gaussian and evaluate approximate error probabilities. Another practical

problem is that we rarely know the PDFs with certainty as they are estimated

from measurements, which themselves may contain errors. Thus model

mismatch (i.e., the difference between assumed PDFs and the actual PDFs) is

a real concern, but such deep topics are beyond the scope of this book, which

is focused on CPR. The interested reader can find detailed treatments elsewhere

[22, 29].

4.3 Estimation theory

Detection deals with the issue of selecting one of a finite number of hypotheses,

and cannot handle issues such as locating a particular target in a given

scene, or determining the error probability of a classification scheme.

In such cases, the parameter of interest (e.g., error rate or target coordinates)

take on either a continuum of values or just too many possible values to

treat the problem as one of a finite number of hypotheses. It is more

convenient to treat it as estimating an unknown value and this section is

aimed at providing a brief look at basic estimation techniques. Good

estimation methods take advantage of the a-priori information as well as

available data.

In this section, we will look at the problem of estimating a parameter � using

the data set X¼ {x1, x2, . . . , xN} consisting of N independent observation

vectors. Since the particular set of N vectors that constitute the observation

set is a randomly drawn sample, the resulting estimate � is also random

and thus has an associated mean, variance and, in fact, a PDF, i.e., � is really

a random variable. Ideally, we want these PDFs to be delta functions centered

at the correct value of the parameter. If this can happen, then the estimator

will always yield the same, correct estimate of the parameter. This is not

practical and instead we must settle for the following attributes for good

estimates.
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Bias For a good estimate, its PDF should have a mean that equals the true

value of the parameter. This attribute of an estimate makes it unbiased and can

be stated mathematically as follows:

E � Xð Þf g ¼ � (4:23)

The difference between the mean of the parameter estimate and the true

parameter is known as the bias.

Variance Just forcing the estimate to be unbiased is not good enough since an

estimate can be unbiased even if it is never close to the true value. For example, an

estimate that takes values of þ1 and �1 with equal probability has a mean of 0

and is unbiased if the true parameter value is 0. However, the estimate never

equals the correct parameter value. This is achieved by demanding that the

varianceof the estimatebe small.An estimate is said tobe consistentprovided that

lim N!1var � Xð Þf g ¼ 0 (4:24)

Efficiency An estimate is said to be efficient if it uses the availableN data vectors

to provide the smallest possible variance in the estimate. In general, it is

difficult to test whether an estimate is efficient or not. However, for maximum

likelihood estimation methods introduced in the next sub-section, there exists

a theorem that helps us answer the efficiency question.

We will consider the case of a single parameter in this section. However,

results presented can be extended to the case of more than one parameter. For

more details and more advanced treatment of this topic, readers are advised to

consult some of the excellent references [13, 30].

4.3.1 Maximum likelihood estimation

Maximum likelihood (ML) estimation is based on the idea that the parameter

to choose is the one that maximizes the likelihood of observing the data set.

More precisely, �ML maximizes f X �jð Þ ¼ f x1, x2, . . . , xN �jð Þ ¼
QN

i¼1 f xi �jð Þ
with respect to �, where we use the assumption that the observation vectors

are statistically independent. Since the PDF is non-negative, we can maximize

the logarithm of the PDF if it is more convenient. Thus, for smooth PDFs, we

can use the following equivalent condition for the ML estimate:

XN
i¼1

q ln f xi �jð Þ
@�

����
�¼�ML

¼ 0 (4:25)
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ML estimate of the mean of a Gaussian To illustrate the use of Eq. (4.25), we

will consider the problem of estimating the mean m of a univariate Gaussian

PDF with known variance �2 from N independent samples {x1, x2, . . . , xN}

drawn from that PDF. Applying Eq. (4.25) leads to the followingML estimate

for the mean:

XN
i¼1

@

@m
� ln �

ffiffiffiffiffiffi
2p

p� �
� 1

2�2
xi �mð Þ2

� �����
m¼mML

¼ 0

)
XN
i¼1

xi �mMLð Þ ¼ 0 ) mML ¼ 1

N

XN
i¼1

xi

(4:26)

Satisfyingly, the ML estimate for the unknown mean is the sample average

of the N observations. However, we must remember that such a nice result is

the consequence of the assumption that the samples are independently drawn

from a Gaussian PDF with known variance.

Sample mean properties Is the ML estimate in Eq. (4.26) a good estimate? As

stated before, we should determine the bias and the variance of the estimate.

Firstly, we will show that this ML estimate is unbiased:

E mMLf g ¼ E
1

N

XN
i¼1

xi

( )
¼ 1

N

XN
i¼1

E xif g

¼ 1

N

XN
i¼1

m ¼ m ) mML is unbiased

(4:27)

Let us now determine the variance of the ML estimate:

var mMLf g ¼ E mML �mð Þ2
n o

¼ E
1

N

XN
i¼1

xi

" #
�m

 !2
8<
:

9=
;

¼ E
1

N

XN
i¼1

xi �mð Þ
 !2

8<
:

9=
; ¼ 1

N 2

XN
i¼1

XN
j¼1

E xi �mð Þ xj �m
� �� 	

¼ 1

N 2

XN
i¼1

E xi �mð Þ2
n o

¼ N�2

N 2
¼ �2

N

(4:28)

where we use the fact that the observations are statistically independent to

remove the cross terms in the double summation. From Eq. (4.28), we see that

the variance goes to zero asN goes to infinity, indicating that theML estimate

is consistent.
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Cramer–Rao bound Wehave shown that the sample average is an unbiased and

consistent estimator of the mean of a Gaussian PDF. Is that estimate efficient?

A bound known as the Cramer–Rao bound [31] helps address this issue. For

unbiased estimators, it can be shown that the variance has the following lower

bound:

var � Xð Þf g � E
@ ln f X �jð Þ

@�

� �2
( )" #�1

¼ �E
@2 ln f X �jð Þ

@�2

� �
 �� ��1

¼ CRLB

(4:29)

where CRLB stands for Cramer–Rao lower bound. Since the sample average is

an unbiased estimate, we know from Eq. (4.29) that its variance cannot be

smaller than the CRLB determined below:

CRLB ¼ �E
@2 ln f X mjð Þ

@m2

� �
 �� ��1

¼ �E
@2

@m2
�N

2
ln 2p�2
� �

� 1

2�2

XN
i¼1

xi �mð Þ2
" # !( )" #�1

¼ �E � 2N

2�2

� �� �
 �� ��1

¼ �2

N

(4:30)

Thus, we see that the variance of the sample average estimate (see Eq. (4.28))

equals the CRLB indicating that the estimate under study is efficient,

i.e., no other estimate can yield smaller variance for the given observation

set. We can show that if an estimate reaches the CRLB, then it must be an

ML estimate [29]. This is one of the main reasons for the popularity of the

ML estimate.

4.3.2 Other estimators

While ML estimation is perhaps the most popular estimation method, it has

one significant drawback. It models the unknown parameter as a deterministic

constant, and thus ML estimates cannot take any advantage of any a-priori

knowledge we may have about the parameters. Suppose we know a-priori that

the unknown mean of a Gaussian PDF is known to lie in the interval [�2, 2].

How do we incorporate this information? There is nothing to prevent

an ML estimate of 3.5, for example. In this section, we will present two
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estimators that model the unknown parameter as random and allow such

a-priori information to be included.

MAP estimation InMAP estimation, we choose the estimate to maximize the

a-posteriori PDF, f � Xjð Þ ¼ f X �jð Þf �ð Þ=f Xð Þ. Thus the ML and MAP esti-

mates differ only through the a-priori PDF f (�) of the parameter. If this a-

priori PDF is relatively constant over the range of interest, then there is no

significant difference between the ML and the MAP estimates. On the other

hand, the inclusion of the a-priori PDF in the maximization enables the MAP

estimate to take advantage of that information.

To appreciate the role that the a-priori information can play, let us revisit

the problem of estimating the mean of a Gaussian PDF (with known variance)

using N independent observations. Suppose our a-priori information is that

the unknownmean itself can be modeled by another Gaussian PDFwith mean

m0 and variance �20. Using this information, one can show (we will omit the

rather tedious derivation and refer the interested readers to references [1, 2])

that the MAP estimate for the mean is as follows:

mMAP ¼ �2=N

�2=Nð Þ þ �20
m0 þ

�20
�2=Nð Þ þ �20

mN wheremN ¼ 1

N

XN
i¼1

xi (4:31)

We see from Eq. (4.31) that the MAP estimate is a weighted average of the

a-priori meanm0 and sample meanmN obtained from theN observations. The

relative emphasis between the two means depends on the a-priori variance �20
as well as the variance �20=N of the mean estimate from the N samples. If �20 is

low, then theMAP estimate weighs the a-priori meanm0 more heavily. On the

other hand, if �2=N is low (because the number of observations N is large or

the observation noise variance �2 is small or both), theMAP estimate depends

more strongly on the sample mean mN.

Minimummean squared error estimation Another estimationmethod that uses

the a-priori information is the minimum mean squared error (MMSE) esti-

mator. In MMSE estimation, we choose the estimate to minimize the average

squared error between the estimate and the true value, i.e., we minimize

E �̂� �
� �2
 �

,where we use the hat to distinguish the estimate from the true

parameter. Setting the derivative of this mean squared error to zero results in

the MMSE estimate as shown below:
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@�̂
E �̂� �
� �2
 �

¼ @

@�̂

Z
�̂� �
� �2

f � Xjð Þd�
� �

¼ 2

Z
�̂� �
� �

f � Xjð Þd� ¼ 0

) �̂

Z
f � Xjð Þd� ¼

Z
�f � Xjð Þd� ) �̂MMSE ¼

Z
�f � Xjð Þd� ¼ E � Xjf g

(4:32)

Thus, the MMSE estimator is nothing but the conditional mean of

the parameter, whereas the MAP estimate is the mode of the conditional

PDF as the MAP estimate maximizes the conditional PDF. For some PDFs

(e.g., Gaussian PDFs), the mean and the mode occur at the same place and

thus the MAP and the MMSE estimates are identical.

4.3.3 Error rate estimation

When a classifier such as a correlation-based recognition system is designed we

would, of course, want to know howwell it works. It would be great if we could

derive analytical expressions for the error probabilities, since such theoretical

expressions allow us to figure out which system parameters would improve the

classification performance. However, deriving theoretical error probability

expressions is often impossible and we may have to resort to Monte Carlo

methods.

We would test the designed classifier using N statistically independent

data vectors whose correct classes are known. The classifier will classify

each of these data vectors either correctly or incorrectly. Let " denote the

unknown probability of error of this classifier. Then the probability of

observing M errors in data vectors can be modeled by the Binomial

distribution, i.e.,

Pr M errors inN vectors "jf g ¼ M
N

� �
"M 1� "ð Þ N�Mð Þ; M ¼ 0; 1; . . . ;N

(4:33)

To obtain the ML estimate of ", we set the derivative of the logarithm of the

likelihood in Eq. (4.33) to zero and obtain the ML estimate as follows:

q
q"

M ln "þ N �Mð Þ ln 1� "ð Þ½ � ¼ M

"
�N �M

1� "
¼ 0 ) "ML ¼ M

N
(4:34)

Thus, the ML estimate of the unknown error probability " is the ratio

of M (the number of errors) to N (the number of data vectors). For the

binomial distribution in Eq. (4.33), the mean is N" and the variance is
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N"(1� "). As a result, the mean and variance of the error rate estimate "ML are

as follows:

E "MLf g ¼E Mf g
N

¼ N"

N
¼ "

var "MLf g ¼ var Mf g
N2

¼ N" 1� "ð Þ
N2

¼ " 1� "ð Þ
N

(4:35)

We see from Eq. (4.35) that "ML is unbiased and consistent. Using this mean

and variance, we can derive confidence bounds on error estimates. Using the

CRLB, we can show that "ML is also efficient.

4.4 Chapter summary

The goal of this chapter was to provide a brief review of tools and techniques

needed to deal with detection of signals and estimation of parameters.

Following is a brief summary of the main observations.

* For the additive Gaussian noise model, minimum error probability is achieved by

using the maximum a-posteriori (MAP) detection scheme. For the case of two

equally likely hypotheses, the resulting minimal probability of error can be seen

to be a monotonic function of the Mahalanobis distance between the two PDFs. If

all of the noise components are uncorrelated and are of equal variance, the

Mahalanobis distance simplifies to the Euclidean distance. Otherwise, the

Mahalanobis distance uses smaller weights for the more noisy components.

* For the case of multiple signals corrupted by additive, zero-mean Gaussian noise, a

minimum probability of error is achieved by assigning the received vector to the

hypothesis that is closest, in the Mahalanobis distance sense. Assuming that all

signals are equally likely, this leads to a linear classifier with decision boundaries

that bisect the lines connecting the various signals. If the noise components are

uncorrelated and are of equal variance, these bisectors are also orthogonal to the

line connecting the two class means.

* For non-Gaussian PDFs, the decision boundaries can be complicated and

estimation of error probabilities can be difficult. Even for Gaussian PDFs, the

decision boundaries are not linear if the covariance matrices for all classes are not

equal. In such cases, one may still be able to use the results based on Gaussian

PDFs, if central limit theorem type arguments can be used to approximate the

detection statistic as a Gaussian random variable.

* Good estimates should be unbiased and consistent. Unbiased estimates require that

the mean of the estimate should equal the true parameter value. Consistent esti-

mates exhibit variance that approaches zero as the number of observations goes to

infinity.
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* Maximum likelihood estimation chooses the estimate that results in the highest

likelihood for the observations. The ML estimate is attractive in that it has the

potential to be efficient, i.e., to provide the smallest variance for the given data. The

Cramer–Rao lower bound is useful in assessing the efficiency of estimators.

* Maximum likelihood estimates model the unknown parameter as deterministic and

thus cannot take advantage of any a-priori information one may have about the

parameter being estimated. Maximum a-posteriori and minimum mean squared

error estimators treat the unknown parameter as an RV and thus can include the

a-priori information.
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5

Correlation filter basics

The basic concept of correlation is illustrated in Figure 1.4 with the help of a

simple character recognition example. In this figure, black pixels take on a value

of 1 and white pixels take on a value of 0. Suppose we are trying to locate all

occurrences of the reference or target image (C in this example) in the test image

(also called the input scene). One way to achieve this is to cross-correlate the

target image with the input scene. The target image is placed in the upper left

corner of the input scene and pixel-wise multiplication is carried out between the

twoarrays; all of the values in the resultant product array are summed toproduce

one correlation output value. This process is repeated by shifting the target

image by various shifts to the right and down, thus producing a two-dimensional

(2-D) output array called the correlation output. Ideally, this correlation output

would have two large values corresponding to the two ‘‘C’’ letters in the input

scene and zeros for other letters. Thus, large cross-correlation values indicate the

presence and location of the character we are looking for. However, this will not

always be achievable because some other lettersmayhave high cross-correlation.

For example, letter ‘‘C’’ and letter ‘‘O’’ have large cross-correlation. One of the

goals of this book is to develop methods that preserve large cross-correlation

with desired targets, while suppressing cross-correlation with undesired images

(sometimes called the clutter), and reducing sensitivity to noise and distortions

such as rotations, scale changes, etc. The goal of this chapter is to provide the

basic ideas underlying the use of correlation as a pattern recognition tool.

Correlation can be thought of as the output from a matched filter (a linear,

shift-invariant (LSI) filter whose impulse response is the reflected version of

the reference signal or image), and it can be shown to be ‘‘optimal’’ for

detecting known signals corrupted by additive white noise. We will start this

chapter by establishing this notion of optimality of correlation. Correlation

can be implemented using either optical or digital processing, and this chapter

will also discuss some basic correlator implementation methods.

130



Amajor milestone in the development of correlation for pattern recognition

was the pioneering work by VanderLugt [5] who represented complex-valued

matched filters using holograms and thus implemented correlation operation

using coherent optical processors [32]. In particular, that work made possible

the use of optical correlators to detect and locate reference images in observed

scenes.While optical correlators will be considered inmore detail in Chapter 8,

we will introduce the VanderLugt correlator briefly in this chapter mainly to

motivate the development of the many variants of the classical matched filter.

We will also consider digital methods for computing the correlations. While

digital implementation of correlations using discrete Fourier transforms

(DFTs) appears rather straightforward, some important issues arise. (The

fast Fourier transform (FFT) is literally just an efficient algorithm for comput-

ing the DFT, but we will often use FFT and DFT synonymously.) Firstly the

use of DFTs results in circular rather than linear correlations and care must be

taken to make the circular correlation match the desired linear correlation.

Another issue is that if a direct (i.e., in time or space domain) digital correl-

ation must be carried out, it is more hardware-efficient (hence faster) if we can

reduce the number of bits used to represent the signals or images. We will

consider the consequences of using binarized (2 levels, or 1 bit per pixel) or

other quantized images (e.g., 4 levels, or 2 bits per pixel) for correlation.

We will use 1-D CT signal notation throughout making only occasional use

of 2-D notation. All results presented using 1-D notation have obvious exten-

sions to 2-D unless specifically indicated otherwise.

Section 5.1 introduces the notion of a matched filter and shows how

the matched filter maximizes the output signal-to-noise ratio (SNR).

Implementations of correlators are discussed in Section 5.2 and performance

metrics to evaluate correlation outputs are presented in Section 5.3.

Generalizations of the matched filter are discussed in Section 5.4, and

Section 5.5 presents our model for the optical correlation process, including

how noise affects the statistics of the measured correlation. This section also

unifies several of the filter-optimizing algorithms under the minimum

Euclidean distance optimal filter (MEDOF) scheme. Finally, Section 5.6

deals with non-overlapping noise which arises when the object obscures the

background. More advanced correlation filter concepts are discussed in

Chapter 6.

5.1 Matched filter

The popularity of correlation methods for pattern recognition owes much to

the role that matched filters play in detecting signals in received radar returns
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corrupted by additive noise. This section will be devoted to reviewing the basic

theory of matched filters. Consider the example where a known signal is

transmitted and the received signal is examined to answer three questions:

1. Is there a target in the path of the transmitted energy?

2. If there is a target, what is its range from the transmitter?

3. If there is a target, what is its velocity?

In this section, we will focus on the first question, detecting the presence of a

target. Once a target is detected, we can use the matched filter output to

estimate the relative time shift between the transmitted and the received

signals. Provided the speed of signal propagation is constant and known,

this time delay yields the range of the target. Even without directional anten-

nas, by using at least three transmitted signals whose transmission locations

are known, we can estimate the range of the target to three known positions

and thus triangulate the position of the target. If the target moves with a

velocity component towards a receiver, it will introduce a Doppler shift in the

received signal thus causing a frequency shift. We can estimate this frequency

shift and hence the target velocity.

5.1.1 Known signal in additive noise

Let s(t) denote the transmitted signal and r(t) denote the received signal

containing effects such as attenuation, time delay, Doppler shift, and noise.

In this simple model, we will consider the effects of additive noise only. As

mentioned earlier, time delay and frequency shifts can be estimated from the

received signal. Attenuation causes a decrease in the SNR, which degrades the

detection performance. However, attenuation does not change the optimality

of the maximal SNR filter we derive in this section.

For this additive noise model, the detection problem simplifies to that of

choosing between the following two hypotheses:

H0 : r tð Þ ¼ n tð Þ

H1 : r tð Þ ¼ s tð Þ þ n tð Þ
(5:1)

where n(t) denotes the noise. This noise is modeled as a wide sense stationary

(WSS) random process with zero mean and power spectral density (PSD)

Pn( f ). Note that we have not yet assumed anything about the noise prob-

ability density function (PDF). Our task is to select between the two hypoth-

eses using r(t) and our knowledge of s(t) and Pn( f ).
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5.1.2 Maximal SNR filter

The basic approach used for this binary signal detection problem is the linear

filter paradigm shown in Figure 5.1. The received signal r(t) is passed through

an LSI system with impulse response h(t) (or equivalently, frequency response

H( f ), the FT of h(t)). The output signal y(t) is searched for its maximal value

ymax and this maximum is compared to a pre-selected threshold T. If ymax

equals or exceeds T, then the received signal is declared to contain the trans-

mitted signal (i.e., H1 is selected), whereas if ymax is less than T, then the

received signal is declared to contain only noise (i.e., H0 is selected). In fact,

the position of this maximal value yields the relative time shift between the

transmitted and received signals and thus the target range. If the threshold T is

low, then the probability of a miss will be small (few H1 cases will be missed),

but the probability of a false alarm (case ofH0 beingmis-detected asH1) will be

large. If T is large, the converse will occur.

Signal-to-noise ratio In this approach, the most important step is the design of

the filter H( f ). A good filter should make the average ymax large (under

hypothesis H1) and make the average noise-induced variance as small as

possible. Thus, it is desirable that the filter H( f ) maximize the SNR defined

as follows:

SNR ¼ E ymax H1jf gj j2

var ymaxf g (5:2)

where E{ �} denotes expectation and ‘‘var’’ denotes the variance. Since the

variance arises strictly as a result of noise in this additive noise model, and

since the noise process has the same characteristics under both hypotheses,

output noise variance is the same for both hypotheses.

Optical and digital correlators have different expressions for SNR, owing

to the processors’ different properties. The digital processor’s output can

be exactly linear with the input; however, the optical processor’s cannot.

The sensed output in optical correlators is the electromagnetic intensity –

the squared magnitude of the field. Different expressions for SNR result.

Having paid this polite nod, we will concentrate on the strictly linear

LTI filter
H(f)Input 

Sample
at peak 

r(t) = s(t) + n(t) 

Compare to
threshold

Decision

Figure 5.1 Linear filter for the binary signal detection problem
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form in this chapter and clarify the optical situation in Section 5.5 and

Chapter 8.

Since the mean of the noise is assumed to be zero,E{ymax|H1} is themaximal

value of the filter output when s(t) is the input signal. For the purposes of

determining the optimal H( f ), we can assume without loss of generality that

the output y(t) has its maximal value at the origin. If a given filter’s output

peak happens to occur somewhere else, it can be brought to the origin

by simply multiplying H( f ) by an appropriate linear-phase function in

frequency. This multiplication of H( f ) by a phase function will not affect

the filter’s noise response since the output noise PSD and the variance it

induces are affected only by the magnitude of the filter frequency response,

and not its phase. Thus, the numerator of Eq. (5.2) can be simplified as follows:

E ymax H1jf gj j2¼ E y 0ð Þ H1jf gj j2

¼
Z

s tð Þh �tð Þdt
� �����

����
2

¼
Z

S fð ÞH fð Þdf
� �����

����
2 (5:3)

where we assume that the signal s(t) and the impulse response h(t) are real. To

express the denominator of Eq. (5.2) similarly in terms of known quantities, we

note that the variance depends only on the noise and is thus independent of the

signal s(t). Since the input noise n(t) is WSS with PSD Pn( f ), the output noise

from this LSI system is also WSS with PSD Pn( f )|H( f )|2. Since the variance

of a zero-mean random process equals the total area under its PSD, we can

express the denominator of Eq. (5.2) as follows:

var ymaxf g ¼
Z
Pn fð Þ H fð Þj j2df (5:4)

Using Eqs. (5.3) and (5.4) in Eq. (5.2), we obtain the following expression for

SNR in terms of S( f ), the FT of the known transmitted signal s(t), Pn( f ), the

PSD of the additive input noise n(t) and H( f ), filter frequency response:

SNR ¼
R
S fð ÞH fð Þdf

�� ��2R
Pn fð Þ H fð Þj j2df

(5:5)

Before determining theH( f ) that maximizes the SNR, a few remarks based

on Eq. (5.5) are in order. Multiplying the filterH( f ) by a complex constant �

does not affect the SNR since it scales both the numerator and the denomi-

nator of Eq. (5.5) identically. Also, the phase of the filter affects the numerator

of this SNR expression, but not its denominator. Finally, if there are any

frequency regions where the noise PSD is zero and the signal FT is not zero, we

can hypothetically achieve infinite SNR simply by setting the filter magnitude
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to be non-zero in only those frequency regions. In practice, this does not occur

and we need a more realistic filter to achieve high SNR.

Signal-to-noise ratio maximization Our goal is to find the filterH( f ) that max-

imizes the SNR in Eq. (5.5). To obtain this filter in the digital instance, we use

the Cauchy–Schwarz inequality (discussed in Chapter 2) rewritten below in

terms of two arbitrary functions A( f ) and B( f ).Z
A fð ÞB fð Þdf

����
����
2

�
Z

A fð Þj j2df
� � Z

B fð Þj j2df
� �

(5:6)

with equality if and only ifA( f )¼�B�( f ), where � is a complex constant. We

can apply Eq. (5.6) to the numerator of Eq. (5.5) to obtain the following upper

bound on the SNR:

SNR ¼
R
S fð ÞH fð Þdf

�� ��2R
Pn fð Þ H fð Þj j2df

¼

Z
S fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p
" #

H fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

ph i
df

�����
�����
2

R
Pn fð Þ H fð Þj j2df

�

Z
S fð Þj j2

Pn fð Þ df

" #
�
R
Pn fð Þ H fð Þj j2df

h i
R
Pn fð Þ H fð Þj j2df

¼
Z

S fð Þj j2

Pn fð Þ df ¼ SNRmax

(5:7)

where we are allowed to take the square root of Pn( f ) since it is real and non-

negative. Equation (5.7) shows that the SNR achievable with any filter must be

less than or equal to SNRmax, which depends only on S( f ), the signal FT and

Pn( f ), the noise PSD, and not on the filter H( f ). The Cauchy–Schwarz

inequality in Eq. (5.6) also tells us when the equality holds. Using the equality

condition, we see that the maximal SNR is obtained if and only if

S fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p
" #

¼ � H fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

ph i�
) H fð Þ ¼ �

S� fð Þ
Pn fð Þ (5:8)

where � is any complex constant. Thus the filter in Eq. (5.8) is optimal in the

sense that it maximizes the SNR.

We will call a filter phase-canceling if its phase and that of S( f ), the signal

FT, sum to a constant. Thus, the maximal-SNR filter is phase-canceling. It is

satisfying to see that the optimal filter has a frequency response magnitude

that is proportional to the ratio of the signal FT magnitude to the noise PSD.
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At those frequencies where the known signal is weak compared to the noise,

the optimal filter has low gain and thus the received signal is attenuated. At

those frequencies where the signal is strong compared to the noise, the filter

gain is high and the received signal is amplified. From Eq. (5.7), we see that

the maximal SNR can be increased by amplifying the signal and/or reducing

the noise level.

Signal-to-noise ratio maximization using vectors Weused the Cauchy–Schwarz

inequality to derive the maximal-SNR filter in the CT domain. We will show

that the same result can be obtained in the DT domain using matrix/vector

results presented in Chapter 2.

Towards that end, let us denote the sampled version of the desired filter by

column vector h; i.e., h¼ [H(�N�f ) . . . H(0) . . . H(N�f )]T where we sample

the CT filter frequency response H( f ) at uniform intervals of �f and where we

truncate the discretized frequency response to (2Nþ 1) samples centered at zero

frequency. Similarly s is a column vector whose (2Nþ 1) elements are the samples

of S( f ), the signal FT. The noise PSD Pn( f ) is sampled at uniform intervals of

�f, and the resulting (2Nþ 1) samples are placed along the diagonal of a (2Nþ 1)

by (2Nþ 1) diagonal matrix P. Assuming that the sampling interval �f is

sufficiently small, the SNR in Eq. (5.5) can be approximated as follows:

SNR ¼
R
S fð ÞH fð Þdf

�� ��2R
Pn fð Þ H fð Þj j2df

ffi
�f
PN

k¼�N S k�fð ÞH k�fð Þ
�� ��2
�f
PN

k¼�N Pn k�fð Þ H k�fð Þj j2

¼ �f
sTh
�� ��2
hþPh

¼ �f
hþs�sTh

hþPh

(5:9)

where superscriptþ denotes the conjugate transpose. Once again, multiplying

vector h by a complex scalar does not affect the SNR. To find the filter vector h

that maximizes the SNR, we set the gradient of SNR with respect to h to zero

as follows. (A similar gradient technique will be developed for optimal optical

filters.)

rhþ SNRð Þ ¼ �f rhþ
hþs�sTh

hþPh

� �

¼ �f
hþPhð Þ s�sTh

	 

� hþs�sTh
	 


Ph

hþPhð Þ2
¼ 0

) Ph ¼
hþPhð Þ sTh

	 

hþs�sThð Þ s� ) h ¼ �P�1s�

(5:10)
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where

� ¼
hþPhð Þ sTh

	 

hþs�sThð Þ

We see that h¼�P�1
s
� yields the maximal SNR, and in Eq. (5.9) we further

observe that � does not affect the SNR, so in fact is arbitrary. Since P is a

diagonal matrix, this is the same as the sampled version of the maximal SNR

filter derived in Eq. (5.8).

5.1.3 White noise case

An important special case occurs when the input noise is white noise. The PSD

for white noise is a constant; i.e., Pn( f )¼N0/2, where the denominator 2 is

included to indicate that the PSD is a two-sided spectrum. For this special case,

the maximal-SNR filter and the resulting maximal SNR simplify as follows:

H fð Þ ¼ �S� fð Þ (5:11)

and

SNRmax ¼
Z

S fð Þj j2

N0=2
df ¼

R
s tð Þj j2dt
N0=2

¼ Es

N0=2

where Es denotes the energy in the transmitted signal.

Matched filter The maximal-SNR filter in Eq. (5.11) is known as the matched

filter (MF) sinceH( f ) is proportional to S*( f ) or equivalently h(t) is propor-

tional to s(�t). Thus, for the white noise case, the filter that maximizes the

output SNR has an impulse response that is the reflected version of the

transmitted signal. For time-domain signals, this time reversal may appear

to be impractical in that h(t) may be non-zero for negative arguments and thus

the filter may be non-causal and thus unrealizable. If the signal s(t) is of finite

length or can be approximated as of some finite length (as all practical signals

can be), one can overcome the non-causality problem by using h(t)¼ s(t�T)

where T represents a sufficiently long delay. For spatial signals, such as images,

the impulse response’s being non-zero for negative arguments is not an issue

since the causality-type concept is not relevant for spatial systems; i.e., there is

no fundamental problem in using image pixels to the left or to the right of (or

above or below) the current pixels. Some sources refer to the maximal-SNR

filter in Eq. (5.8) as theMF evenwhen the noise is not white, but we will reserve

the phrase ‘‘matched filter’’ strictly for the filter in Eq. (5.11).
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The SNR of the MF is seen to equal Es/(N0/2) and thus we can increase the

output SNR by either increasing the energy of the transmitted signal or by

decreasing the input noise level. Another important observation is that the

output SNR of this matched filter is a function of only Es and (N0/2), and does

not depend on the shape of signal. Thus all transmitted signals with the same

energy and same noise level result in the same matched filter output SNR,

independently of their shape.

Cross-correlation When the MF is used, the output is the cross-correlation of

the received signal with the known signal as shown below.

y tð Þ ¼ IFT R fð ÞH fð Þf g ¼ IFT R fð ÞS� fð Þf g

¼ r tð Þ � s tð Þ ¼
Z

r pð Þs p� tð Þdp
(5:12)

where IFT is the inverse Fourier transform and� indicates the cross-correlation

operation. Thus cross-correlation provides the maximal-output SNR when the

input noise is additive and white.

Suppose the received signal contains the reference signal and no noise. Then

the matched filter output is the correlation of s(t) with itself, i.e., the auto-

correlation of s(t). We have shown in Chapter 3 that the auto-correlation

function (ACF) always peaks at the origin. If the received signal r(t) is s(t� t0),

a shifted version of s(t), then the MF output peaks at t0 (because of the shift-

invariance of thematched filter) allowing us to estimate the time delay between

the transmitted and the received signal.

5.1.4 Colored noise

The previous section established the result that the cross-correlator is theoret-

ically optimal (in the sense of maximizing the output SNR) when the input

noise is additive and white. But if the noise is colored (i.e., non-white), we will

show that the maximal-SNR filter can be viewed as a matched filter operating

on the pre-whitened signal. The maximal-SNR filter in Eq. (5.8) can be

expressed as a cascade of two filters Hpre( f ) and HMF( f ); i.e.,

H fð Þ ¼ �
S� fð Þ
Pn fð Þ ¼ Hpre fð Þ �HMF fð Þ (5:13)

where

Hpre fð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p and

138 Correlation filter basics



HMF fð Þ ¼ �
S� fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p
Figure 5.2 represents this cascade of two filters.When the received signal r(t)

is passed through Hpre( f ), the filter output is given by y0(t)¼ s0(t)þ n0(t),

where S 0 fð Þ ¼ S fð ÞHpre fð Þ ¼ S fð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p
, and where the output

noise PSD is Pn 0 fð Þ ¼ Pn fð Þ � Hpre fð Þ
�� ��2¼ Pn fð Þ=Pn fð Þ ¼ 1. Thus, the

noise coming out of the first filter is white and that is why the first filter is

called the pre-whitener. The input to the second filter is the pre-whitened signal

s0(t) corrupted by white noise. The second filter in the cascade is matched

to s0(t) and thus HMF fð Þ ¼ �S 0� fð Þ ¼ �S� fð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn fð Þ

p
, where � is an

arbitrary constant.

5.2 Correlation implementation

As shown in Section 5.1.3, cross-correlation provides the maximal-output

SNR when the input noise is additive and white. In this section, we will

consider the implementation of this cross-correlation. Optical implement-

ations will be discussed in more detail in Chapter 7. We will also use 2-D

signals in this section to emphasize that the MF concept that we introduced

using 1-D signals is applicable to detecting 2-D targets in images.

We mention that the quality of a correlation is considerably dependent on

the set of values (called the domain) from which the filter may be drawn.

Performing digital computation using the huge dynamic range of perhaps

64-bit complex filter values is, essentially, to have a continuum of complex

filter values. For reasons of hardware speed, size, or electrical power draw,

though, one might perform computations using fewer bits. In an optical

correlator the filter domain is physically restricted to a curvilinear or discrete

subset of the complex unit disk, because the spatial light modulators (SLMs)

used to represent the filter values can accommodate only a subset of complex

values. The fastest SLMs (e.g., ferroelectric liquid crystal [33]) might be

Pre-whitener
1/sqrt[Pn(f)]

Matched filter
S*(f)/sqrt[Pn(f)]

Input Output

Figure 5.2 Interpretation of the maximal-SNR filter for colored noise as the
cascade of a pre-whitening filter and amatched filter matched to the output of
the pre-whitener
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restricted to binary values such as {�1,1} or {0,1}. A real-positive SLM (e.g., a

film transparency) might be restricted to the [0,1] continuum. A nematic liquid

crystal SLM [34] will have a continuum locus that is curvilinear in the unit disk.

We seek to optimize a filter’s performance in view of its domain, a point to be

elaborated in Chapter 8.

Consider the problem of detecting the presence of, and locating the position

of, a known target image s(x, y) in an observed scene r(x, y)¼ s(x, y)þ n(x, y),

where n(x, y) denotes the additive noise. Based onwhat we have proved already,

it is easy to see that we can achieve maximal SNR by cross-correlating r(x, y)

with the known target image s(x, y) to produce the correlation output c(x, y).

This correlation output is then searched for its peak and if this peak exceeds a

pre-chosen threshold, then it is declared that the scene contains the desired

target at the location given by the peak coordinates. Because of the shift-

invariance of the correlation operation, this correlation peak will shift by the

same amount as the shift of the target image in the observed scene.

In fact, there is no need to limit our attention to only one target

image in the observed scene. If r x; yð Þ ¼
PN

i¼1 s x� xi; y� yið Þ þ n x; yð Þ,
then the cross-correlation of r(x, y) with s(x, y) will result in the outputPN

i¼1 c x� xi, y� yið Þ þ n x; yð Þ � s x; yð Þ½ �; i.e., the correlation output is a

noisy version of the sum of N correlations centered at the coordinates of the

targets. As long as these correlation outputs do not overlap significantly, their

peaks can be easily located to provide the coordinates of the multiple targets.

This is illustrated in Figure 5.3. This figure contains a target image (the word

‘‘PROFESSOR’’) in part (a) and a larger input image (containing multiple

occurrences of the target) in part (b). Part (c) shows a ‘‘helicopter view’’ of the

cross-correlation output. It can be seen that the three bright peaks in this output

correspond to the three locations of the word ‘‘PROFESSOR’’ in the input

image. We also show in part (d) the same correlation output except using an

isometric view where the three correlation peaks are more visible. Note that the

positions of the three peaks correspond to the three locations where the word

‘‘PROFESSOR’’ occurs in the input scene. In the rest of this section, wewill look

at the basic methods of implementing this cross-correlation operation.

5.2.1 VanderLugt correlator

An efficient way to compute the cross-correlation of the scene with the target

image is in the frequency domain. From Chapter 3, we know that the correl-

ation output can be obtained as follows:

c x; yð Þ ¼ r x; yð Þ � s x; yð Þ ¼ IFT R u; vð Þ �S� u; vð Þf g (5:14)
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Eq. (5.14) provides the basis for efficiently computing the cross-correlation of

two images.

Optical FT We can form the 2-DFTof an image using an optical system shown

schematically in Figure 5.4. The input image r(x, y) is represented by an

(c) (d)

(a) (b)

Figure 5.3 Illustration of the ability of cross-correlation operation to detect
and locate multiple occurrences of a target image in an observed scene, (a) the
target image, (b) a larger input image containing multiple target occurrences,
(c) top–down view of the cross-correlation output of the target in part (a) with
the input in part (b), and (d) an isometric view of the cross-correlation output
in part (c)
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illuminated transparency (e.g., a film negative) placed in plane P1. The illumina-

tion is a uniform plane wave of coherent light (e.g., the single-wavelength light

from a laser spatially filtered through a pinhole). The modulation of the coher-

ent light by the transparency, coupled with the propagation of light, leads to the

formation of a diffraction pattern in the back focal plane of the spherical lens.

This diffraction pattern is proportional to the 2-D FT of the image encoded on

the transparency in plane P1.

In fact, by placing a spherical lens of focal length fL at distance fL from plane

P1, we can obtain the following complex amplitude light distribution in

plane P2:

R x2; y2ð Þ ¼ �

ZZ
r x1; y1ð Þe� j2p x1x2þy1y2ð Þ=lfLdx1dy1

¼ �R u; vð Þju ¼ x2=lfL; v ¼ y2=lfL
(5:15)

where l is the wavelength of the coherent illumination, � is a complex constant

and where (x1, y1) denotes the coordinates in plane P1 and (x2, y2) denotes the

coordinates in plane P2. It is easy to see that the amplitude of the light in plane

P2 is indeed a scaled version of the 2-DFTR(u, v) of the image in plane P1. Since

the 2-D FT is available essentially instantaneously after the input image is

placed, we can claim that the optical system carries out the 2-D FT ‘‘at the

speed of light.’’ Of course, extracting this FT from plane P2 requires the use of

photo-detectors or other sensing systems that usually reduce the process speed

significantly, if the FT is all that we are interested in. Another matter is that the

FT is generally complex and its phase information is lost when detected.

Serial correlator VanderLugt [5] showed how to take advantage of the optical

FTs in computing cross-correlations. The basic idea is presented schematically

in Figure 5.5. The observed scene r(x, y) is placed in plane P1 and is illuminated

by a uniform plane wave of coherent light. With proper placement of the lens

L1, the complex amplitude of the light incident on plane P2 is a scaled version

of the 2-D FT of the image R(u, v). In VanderLugt’s embodiment, plane P2

r (x,y ) R (u,v )

Coherent
light 

fL

P1
P2

F TInput 

fL

Figure 5.4 Schematic of optical two-dimensional Fourier transformation
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contains a fully complex holographic transparency that represents filter

H(u, v)¼S�(u, v), the complex conjugate of the 2-D FT of the target image

s(x, y). Thus the light leaving plane P2 is the product of R(u, v) and S�(u, v).

With the second lens L2 placed at a distance of fL from plane P2, we can obtain

the 2-D FT of this product. But we have deliberately reversed the direction of

the (x3, y3) axes so that the second lens system yields an inverse FT in plane P3.

Thus, the complex amplitude distribution of the light in plane P3 is given by

IFT {R(u, v)S�(u, v)}, which is the desired cross-correlation as can be seen from

Eq. (5.14). Ordinarily we are uninterested in the phase of the cross-correlation

(e.g. see Eq. (5.2)), which is a good thing since the phase is lost during

photodetection. This optical architecture is known by several names including

frequency plane correlator, VanderLugt correlator, serial correlator and 4-f

correlator (to emphasize that the distance from the input plane to the corre-

lator plane is four times the focal length).

Some important distinctions between the processing described so far in this

chapter and the real-world optical implementation are that: (1) we must deal

with the complex nature of light modulators, so much of the real-valued

arithmetic used so far is not strictly appropriate; (2) the optical implement-

ation noisily detects the squared magnitude, with ramifications to the noise

models; and (3) the necessity of physical implementation restricts the set of

values that H( f ) can actually take. Finally, whereas � is usually arbitrary in

digital processing, it has an influence in the optical processing and is usually an

optimizing tool.

The optical correlator in Figure 5.5 is a parallel processor in that the entire

observed scene is compared against the target image in a single step. If the

input scene containsmultiple occurrences of the target, they are all identified in

parallel rather than in a one-after-another manner. This ability to handle

multiple targets in a test scene is true for digital correlation also.

In spite of its parallelism and potential for high speed, the serial correlator

suffers from a few drawbacks. Most important is that the transparency in

Input Filter Output

r (x,y ) H (u,v ) c (x,y )

Coherent
light

P 3P 2P1 L 2L1

Figure 5.5 Schematic of serial optical correlator
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plane P2 represents S�(u, v), ideally a complex function with individually

controllable magnitude and phase variation. VanderLugt’s original work

used holographic methods to record this complex transmittance via interfero-

metric techniques. For practical recognition systems which require that the

observed scene be compared to multiple reference images in rapid succession,

we need to use filter plane devices whose transmittances can be electronically

controlled and quickly changed. Such devices with controllable transmittances

are known as SLMs. A more detailed discussion of SLMs will appear in

Chapter 7, but it is sufficient at this time to realize that current SLMs cannot

accommodate arbitrary complex filter functions. This SLM limitation leads to

the need for designing correlation filters with constraints such as phase-only

(i.e., the magnitude can be only 1), binary (only two values), etc.

There are other difficulties in using the optical serial correlator. The

observed scene must be displayed in plane P1 with enough dynamic range

such that the target details are not lost. Since SLMs used to represent the scene

may have limited gray-scale capability (6 to 8 bits), it is important to under-

stand the consequence of reduced dynamic range representations. In linear

correlation theory, a correlation output can be negative. However, when the

optical correlation output is detected by a photodetector array in plane P3, we

lose all the polarity information and obtain only the squared correlation

magnitude. Finally, although the correlation output may be formed at the

speed of light, we are usually limited by the speed of the modulators and of

available detector arrays that convert this light amplitude distribution to

electronic signals that can be further processed. As we will see later in this

chapter, these practical difficulties have led to the development of a variety of

correlation filter variants.

Other optical architectures to compute cross-correlations exist. These include

the joint transform correlator [35, 36] and acousto-optic (AO) correlator [37, 38].

5.2.2 Digital correlation

The target image and the observed scene are usually in the form of discrete

arrays and are denoted by s[m, n] and r[m, n], respectively. These image arrays

are used to address SLM pixels in an optical correlator, but can also be used in

a digital computer to compute the cross-correlation in one of at least two

different ways. The first method is a direct computation. The second is based

on the use of DFTs.

Direct correlation computation We can determine the cross-correlation of an

Nr by Nr digitized input scene r[m, n] with an Ns by Ns digitized target image
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s[m, n] by a direct summation. Since the target image is usually smaller than the

observed scene, we can express the correlation output c[m, n] as follows:

c m; n½ � ¼ r m; n½ � � s m; n½ � ¼
XNs

k¼1

XNs

l¼1

s k; l½ �r k�m; l � n½ � (5:16)

In Eq. (5.16), s[k, l] and r[k, l ] are zero whenever k and l take on values

outside the support for the images. The resulting correlation output is of size

Nc by Nc, where Nc¼ (NsþNr� 1). Thus, computing the complete cross-

correlation according to Eq. (5.16) requires (NcNs)
2 multiplications. Each of

these multiplications usually involves either floating point representations or

multi-bit fixed point representations, and the complexity of thesemultiplications

can be reduced by using fewer bits to represent these values. In fact, an extreme

example of using a limited number of bits is using just one bit (þ1 for positive

values and �1 for negative values). The resulting binarized correlations can be

computed efficiently and we will consider them in more detail in Section 5.4.5.

Sometimes, wemay not need to determine the entire correlation plane. If it is

known a priori that the target image center is located in anNt byNt area, then

we need only (Nt Ns)
2 multiplications.

Digital correlation via FFT In general, the FFT gives a more efficient method

for computing cross-correlations than the direct method. As discussed before,

we can obtain the desired correlation by performing the following three steps:

* Compute S[k, l] and R[k, l], theN�N 2-D DFTs of the target image s[m, n] and the

observed scene r[m, n], respectively. Obviously N must be larger than both Ns and

Nr and thus requires zero padding; i.e., both images must be padded with zeros to

make them of sizeN byN. If we need to compute the entire correlation plane in one

step, then N must be at least as large as Nc¼ (NsþNr� 1).

* Multiply S [k, l ] by R�[k, l ] to obtain C[k, l ].

* Perform anN�N inverse 2-DDFT ofC[k, l ] to obtain the cross-correlation output

c[m, n].

Thus, computing the cross-correlation involves three 2-D DFTs each of size

and N2 multiplications needed for the array multiplication in the second step

above. Since the 2-D FFT of size N�N requires 2N2log2(N) operations, the

total number of multiplications needed for this method is N2(1+6 log2(N)).

The computational complexity can be reduced by taking advantage of the

symmetries present. If the images are real, then their FTs are conjugate

symmetric, thus reducing the number of points necessary to be computed

by a factor of two.We can either use DFT routines designed to work with real

images or we can compose a complex image from two real images (one as
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the real part and the other as the imaginary part). Also, we may want to

test multiple scenes for the same target in which case there is no need to

re-compute the DFT of the target image every time. Similarly, if we are

checking a scene for different targets, there is no need to re-compute the

DFT of the scene.

Circular correlation As discussed in Chapter 3, using DFTs results in circular

correlation rather than linear correlation. As long as the DFT size is large

enough, the resulting circular correlation will equal the linear correlation. This

is achieved by padding the two images with enough zeros so that the zero-

padded arrays are at least of the size of the linear correlation. This may be

inefficient if we end up padding with too many zeros. Instead, we can use

overlap–save and overlap–add methods as presented in Chapter 3 and avoid

excessive zero-padding. Use of these overlap–add and overlap–save techniques

requires careful identification of which circular correlation outputs equal

linear correlations and which do not.

Circular correlations are aliased versions of linear correlations; i.e., circular

correlation is the sum of linear correlation shifted by integer multiples of N in

both axes when N�N DFTs are used. The correlation with itself of an image

containing energy at high spatial frequencies results in a sharply peaked

correlation output. As a result, the circular correlation of an image with itself

is an aliased version of sharply peaked linear correlation functions, leading to

perhaps only a small amount of aliasing. However, cross-correlations are not

generally so sharply peaked and can result in more aliasing. Thus, circular

correlation may not be a problem in computing auto-correlations, whereas it

may lead to inaccuracies when carrying out cross-correlations.

Correlation using overlap–save method As indicated in Chapter 3, it may be

computationally better to partition the larger image into many smaller images

and carry out smaller sized correlations and assemble them, rather than

carrying out the full correlation. Let us illustrate this with the help of an

example.

Suppose we want to locate a 32� 32 target image in a 256� 256 scene; i.e.,

Ns¼ 32 and Nr¼ 256. Thus, Nc¼ (NsþNr� 1)¼ 256þ 32� 1¼ 287. Direct

computation of the full 287 by 287 cross-correlation requires

((287) �(32))2¼ 84.3 million operations.

If we want to compute the full 287 by 287 correlation using FFT methods,

we can use an FFT of size 512 by 512 since it represents the nearest power-of-2

FFT size larger than 287. Since 287¼ 7� 41, a 287-point DFT can be obtained

in terms of 41 DFTs each of size 7 points. Such a DFT algorithm is known as
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a mixed-radix FFT. While we may be able to use mixed-radix FFTs of a

smaller size, they are not as efficient as power-of-2 FFTs. For the 512 by

512 FFT, the computational complexity of the correlation operation is

N2(1+6 log2(N))¼ (512)2(1+6 log2(512))¼ 14.4 million operations.

We can also use the overlap–save method to obtain the complete correl-

ation. Suppose that we decide to use DFTs of size 64 by 64. Since the target

image is of size 32 by 32, we can use scene segments of size 32 by 32 in order for

the resulting 64 by 64 circular correlations to equal the linear correlations.

Thus wemust partition the observed 256 by 256 scene into 64 segments each of

size 32 by 32. This means that we need to compute 64 partial cross-correlations

that can be assembled to provide the complete cross-correlation. Each

partial cross-correlation involves three DFTs of size 64 by 64 and one array

multiplication of size 64 by 64. However, we need to compute the target

image’s 64 by 64 DFT only once. As a result, we need a total of 129 DFTs of

size 64 by 64, and 64 multiplications of 64 by 64 arrays, leading to a total com-

putational complexity given by (129)(64)2(log2(64)
2)þ 64(64)2¼ 6.6 million

operations.

If we decide to employ 128 by 128 DFTs instead of 64 by 64 DFTs, then we

need to segment the 256 by 256 input scene into nine segments each of size 96

by 96. This means that we need a total of 19DFTs of size 128 by 128 alongwith

nine array multiplications of size 128 by 128, leading to a total complexity of

(19)(128)2(log2(128)
2)þ 9(128)2¼ 4.5 million operations. We summarize the

complexities of these different approaches in Table 5.1.

At least two observations can bemade fromTable 5.1. Firstly all threeDFT-

based methods are superior to the direct method, with the best one requir-

ing about 20 times fewer operations. In fact, unless one of the images to be

correlated is very small (e.g., of size 3 by 3 or 5 by 5), it does not make

computational sense to use the direct correlation method. The second point

is that there is an optimum DFT size to be used. Of the three DFT sizes

considered, 128 by 128 DFTs result in the smallest number of operations.

This is of course a function of the sizes of the two images and needs to be

carefully investigated for each application.

Table 5.1. Computational complexities of different digital correlation approaches to
correlate a 32 by 32 target image with a 256 by 256 input scene

Direct correlation
Correlation using
512 by 512 FFTs

Correlation using
128 by 128 FFTs

Correlation using
64 by 64 FFTs

84.3 million 14.4 million 4.5 million 6.6 million
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5.3 Correlation performance measures

As shown in Section 5.1, the matched filter yields the maximal SNR when

the input noise is additive. SNR is an important metric for designing correla-

tion filters in that it quantifies the filter’s noise sensitivity. But that is not the

only performance criterion of interest. We would also want the correlation

peak to be sharp so that it is easily discriminated from the background. In

a later section, we will also consider more advanced pattern recognition

performance metrics such as the area under the receiver operating curve. In

this section, we will quantify metrics useful for characterizing the correlation

outputs. We will switch back to the 1-D CT notation to keep the mathematics

reader-friendly.

5.3.1 Signal-to-noise ratio

We have already defined the output SNR in Eq. (5.2) as the ratio of the square

of average correlation peak to its variance. While maximizing the SNR is

attractive because of its tractability, what we are really interested in is mini-

mizing the probability of error. For the special case where the noise is additive

and Gaussian, we can relate the SNR to the probability of error, but for non-

Gaussian noise, it is not so straightforward.

Gaussian noise In deriving the maximal SNR filter in Section 5.1.2, we needed

only the noise PSD. Thus, the maximal-SNR filter expression in Eq. (5.8) is

valid for non-Gaussian noise also. The mean and variance of c(0) for the two

hypotheses are as follows:

E c 0ð Þ H0jf g ¼ E

Z
n tð Þh �tð Þdt

� �
¼ 0

E c 0ð Þ H1jf g ¼ E

Z
s tð Þ þ n tð Þ½ �h �tð Þdt

� �

¼
Z

s tð Þh �tð Þdt ¼
Z

S fð ÞH fð Þdf

var c 0ð Þ H0jf g ¼ var c 0ð Þ H1jf g ¼
Z

Pn fð Þ H fð Þj j2df

(5:17)

Themean and variance expressions in Eq. (5.17) are valid for anyWSS noise

process, even if it is not Gaussian. But for now let us assume that noise n(t) is

zero-mean Gaussian with PSD Pn( f ). Without loss of generality we may

assume that r(t) contains the un-shifted signal s(t) and the noise, and thus
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the filter output achieves its maximal value at the origin. Let us denote this

output value by c(0). Since the input noise to the linear filter is Gaussian, c(0) is

also a Gaussian RV.We have shown in Chapter 4 that the probability of error

for a two-class Gaussian problem is a monotonically decreasing function of

the Mahalanobis distance d.

d 2 ¼ E c 0ð Þ H1jf g � E c 0ð Þ H0jf gj j2

var c 0ð Þf g

¼
R
S fð ÞH fð Þdf

�� ��2R
Pn fð Þ H fð Þj j2df

¼ SNR

(5:18)

where we see that the squared Mahalanobis distance d 2 is equal to the SNR.

Thus, for the case of Gaussian noise, maximizing the SNR is equivalent to

minimizing the probability of error.

Non-Gaussian noise Even for non-Gaussian noise, the relationship in Eq. (5.18)

is valid. However, when the input noise is non-Gaussian, we do not necessarily

have a monotonic relationship between the Mahalanobis distance and the

probability of error. Thus maximizing SNR does not necessarily minimize

the probability of error. Unfortunately, it is often impractical to obtain closed-

form expressions for the filters that minimize the probability of error in the

presence of non-Gaussian noise. As a result, we settle for optimizing quadratic

metrics (e.g., SNR).

5.3.2 Peak sharpness measures

Many correlation filter designs are aimed at producing sharp correlation

peaks. Sharp and large peaks easily stand out from the background and they

also typically exhibit good discrimination properties. Maximizing SNR does

not usually produce sharp correlation peaks. In fact, the magnitude frequency

response of theMF is the same as that of the target image and is thus usually of

a low-pass nature since most reference images are of low-pass type. As a result,

MF output correlation peaks tend to be broad. However, sometimes the image

may be dominated by high frequency content and some of our generalizations

(based on the low-pass assumption about images) will not hold.

Peak-to-sidelobe ratio To characterize the sharpness of a correlation peak,

several measures have been introduced. One such measure is the peak-to-

sidelobe ratio (PSR), defined in different ways. According to one definition,

the PSR is the ratio of the correlation peak to the maximal value outside
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a central region surrounding the peak. A second definition, illustrated in

Figure 5.6, is that it is the ratio of the correlation peak to the standard

deviation of correlation values in a region that is centered on the peak, but

excluding a small region around the peak. As shown in Figure 5.6, correlation

output is first searched to locate its maximal value. Then a small region

centered at the peak (in Figure 5.6, a 5� 5 region) is excluded for sidelobe

determination since it may include part of the peak. The mean and standard

deviation in a square annular region (in Figure 5.6, a 20� 20 region centered

at the peak) are computed and PSR is determined as follows:

PSR ¼ peak�meanð Þ
std

(5:19)

Other definitions are possible, but these are essentially similar. These defini-

tions result in large values for sharply peaked correlations and small values for

broad correlations.

PSR is often used to characterize how well a region in the observed scene

matches the target image; i.e., when the correlation output contains multiple

peaks, they are sorted according to their PSR values. Thus PSR is valuable for

correlation-based classification. However, PSR does not lend itself to closed-

formmathematical analysis, as it involves nonlinear steps such as selecting the

peak value and excluding a small region centered at a correlation peak. As a

result, PSR is not very convenient as an optimization criterion, even though it

very well describes the quality of a correlation.

Peak-to-correlation energy Amore tractable measure of the peak sharpness is

the peak-to-correlation energy (PCE), defined below:

PCE ¼ c 0ð Þj j2R
c xð Þj j2dx

¼
R
S fð ÞH fð Þdf

�� ��2R
S fð ÞH fð Þj j2df

(5:20)

where we express the PCE in both space and frequency domains. Note that

the PCE expression completely ignores noise effects. PCE is deliberately

sidelobe region

peak 5 × 5 mask

Figure 5.6 Estimation of peak-to-sidelobe ratio (PSR)
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formulated that way since the SNRmeasure is already available to characterize

the noise sensitivity of the correlation filter. The role of the PCE is to char-

acterize the peak sharpness resulting from a correlation filter. Of course, noise

will affect the peak location and that effect can be captured by another metric

known as the peak location error (PLE) [39]. We will not discuss PLE in this

book because, for most images of interest to us, this can be pretty small and can

mostly be ignored.

One can define a modified PCE by not including the |c(0)|2 value at the

origin in the denominator of Eq. (5.20). For CT signals, this amounts to

eliminating one point in the denominator integral and thus will not make

any difference. For DT signals, the resulting modified PCE is monotonically

related to the PCE and thus maximizing one is equivalent to maximizing the

other. We prefer the simpler form of Eq. (5.20).

It is easy to see that the PCE is maximal when the correlation output is a

delta function, and that it is zero or close to zero when the output is a constant.

The more energy there is in the peak compared to the rest of the correlation

plane, the higher its PCE value. Since maximal PCE is obtained when the

correlation output is a delta function, the filter that maximizes PCE is the

inverse filter; i.e.,H( f )¼ 1/S( f ). Most images of interest have more energy at

lower frequencies than at higher frequencies. As a consequence, the corres-

ponding inverse filter suppresses low frequencies more than the high frequen-

cies. While the inverse filter leads to maximal PCE, its ‘‘other-pass’’ emphasis

results in unacceptably high noise characteristics.

5.3.3 Optimal tradeoff correlation filters

Maximizing SNR leads to the MF whose spectral magnitude shape is that of

the whitened target image, whereas maximizing the PCE results in the inverse

filter whose spectral magnitude is the reciprocal of the target image’s spectral

magnitude. Thus, these two measures are usually conflicting and we cannot

design a single filter that maximizes both SNR and PCE. However, we can

optimally trade off between these two metrics using a multi-criteria optimiz-

ation method.

Multi-criteria optimization The basic idea underlying the optimal tradeoff

approach is to optimize one of the metrics (e.g., SNR) while holding the other

(e.g., PCE) constant at some value. The SNR term in Eq. (5.5) and PCE in Eq.

(5.20) have a common numerator, but differing denominators. Using this and

using the quadratic nature of the two denominators, Réfrégier [40] showed
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that maximizing the SNR while holding the PCE constant is equivalent to the

problem of maximizing the following figure of merit (FOM):

FOM ¼
R
S fð ÞH fð Þdf

�� ��2R
H fð Þj j2 � S fð Þj j2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Pn fð Þ

h i
df

(5:21)

where � is a parameter that varies between 0 and 1 and characterizes the

relative emphasis on the PCE compared to the SNR. For �¼ 0, the FOM is

the same as the SNR whereas FOM equals PCE for �¼ 1. For other � values,

we get an optimal compromise between the two, in the sense that maximizing

the FOM will lead to an optimal tradeoff (OT) correlation filter which yields

SNR and PCE values both of which cannot be simultaneously exceeded by any

other correlation filter. The best � value depends on the distribution of values

for the noise spectrum and the signal spectrum and is usually found through

systematic search. In many applications, �¼ 0 gives poor results whereas a

very small non-zero value of � leads to improved results.

Optimal tradeoff filter The FOM in Eq. (5.21) is similar to the SNR in Eq. (5.5)

except thatPn( f ) is replaced by � S fð Þj j2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Pn fð Þ

h i
which is also real

and non-negative. Thus, we can use the Cauchy–Schwarz inequality to find

the filter that maximizes the FOM just as we maximized the SNR. Just as in

Eq. (5.8), the maximal-FOM filter turns out to be as follows:

H �
FOM fð Þ ¼ �

S� fð Þ
� S fð Þj j2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � 2

p
Pn fð Þ

h i (5:22)

where � is any arbitrary complex constant and where � controls the tradeoff

between the SNR and the PCE maximization. Note that �¼ 0 leads to the MF

and �¼ 1 results in the inverse filter (IF). For other � values, we get anOT filter.

SNR versus PCE tradeoff Let us illustrate this SNR versus PCE tradeoff using

the image shown in Figure 5.7(a).We show the spectral magnitudes of theMF,

the IF and the OT filter for �¼ 10–10 in parts (b), (c), and (d), respectively. This

extremely small value of � results from the fact that the noise spectral density is

assumed to be constant at 1, whereas the signal spectrum takes on a very wide

range of values. The best value of � depends on the range of signal values and

noise values, and is difficult to predict. In practice, several � values are tried

and the one yielding the best results on data (with known ground truth) is used.

We have assumed Pn( f )¼ 1 in this example. The MF magnitude spectrum is
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strong at low frequencies whereas the spectrum of the IF is dominant at high

frequencies. The OT emphasizes intermediate frequencies depending on the

tradeoff parameter � that is selected. The best way to choose � appears to be by

trial and error as it depends on the image size and image values.

There are some features and practical matters that must be explained here.

The Cartesian rays in Figure 5.7 result from the pixelation of the image and

they are usually removed (i.e., set to zero) from a filter. The DC value of the

filter (i.e., filter value at the (0,0) frequency) is suppressed, since the average

illumination is not useful information for classification. Also note that the

ringish structure in the image produces a ringish structure in the filter.

For the maximal-FOM filter in Eq. (5.22), we can see that the resulting SNR

and PCE are functions of �, noise PSD Pn( f ), and signal PSD |S( f )|2. For

illustration purposes, we assume that the input noise is white leading to a noise

PSD of 1 at all frequencies. We also use as the signal PSD the squared

magnitude of the 2-D DFT of the image in Figure 5.7(a). Using these, we

computed the SNR and PCE for various values of � and show in Figure 5.8

SNR versus PCE with � as a parameter. Note that the SNR decreases as the

PCE increases. The ends of this curve refer to the metrics achieved by the MF

and the IF; we will refer to this as the OT curve. We also show on this plot the

SNR and PCE values of the phase-only filter (POF) and the binary phase-only
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Figure 5.7 Illustration of the spectral magnitudes of different filters, (a) the
reference image, (b) matched filter magnitude spectrum, (c) inverse filter
magnitude spectrum, (d) magnitude spectrum of the optimal tradeoff filter
for �¼ 10–10. Whiter regions denote larger filter magnitudes
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filter (BPOF), to be discussed in Sections 5.4.1 and 5.4.2, respectively. Note

that the POF and the BPOF provide SNR and PCE pairs that are below the

OT curve. Thus, OT filters outperform other correlation filters.

Sub-pixel shift estimation Sometimes we are interested in estimating the peak

position to sub-pixel accuracy. Such sub-pixel accuracy may be needed even in

CT correlators such as optical correlators, since the continuous correlation

output is sensed using a discrete array such as a charge-coupled detector

(CCD) array. One way to determine sub-pixel correlation peak location is to

employ a larger size DFT than the image size; i.e., by padding with zeros. Such

a zero-padding requires the use of larger FFTs and we can achieve sub-pixel

accuracy by fitting amodel to the correlation output near the correlation peak.

A simple non-parametric method is tomodel the correlation function c(�) near

the peak by a second-order polynomial, i.e.:

c �ð Þ ¼ aþ b� þ d�2 (5:23)

where a, b, and d are unknown constants. We will once again assume without

any loss of generality that the peak is nominally at the origin and the sampling

interval is 1. Let us denote the correlation peak value by c[0] and its two
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Figure 5.8 SNR versus PCE for the OT filter of the image in Figure 5.7(a)
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neighboring values by c[�1] and c[1]. From these three known correlation

values, constants a, b, and d can be determined.

c �1½ � ¼ a� bþ d c 0½ � ¼ a c 1½ � ¼ aþ bþ d

) a ¼ c 0½ � b ¼ c 1½ � � c �1½ �
2

d ¼ c 1½ � þ c �1½ �
2

� c 0½ �
(5:24)

Setting to zero the derivative of c(�) in Eq. (5.23) with respect to � yields an

expression for the sub-pixel peak shift as follows:

q
q�

aþ b� þ d�2
� �

�¼�p
�� ¼ 0

) bþ 2d�p ¼ 0

) �p ¼ � b

2d
¼ c 1½ � � c �1½ �ð Þ

2 2c 0½ � � c 1½ � � c �1½ �ð Þ

(5:25)

The sub-pixel peak shift estimator in Eq. (5.25) is attractive in that it needs

only three correlation values centered at the peak. One can use higher-order

polynomials by using more correlation samples, but this is usually not recom-

mended for at least two reasons. Firstly as we includemore samples around the

peak, the local structure (which is important for estimating sub-pixel shifts) is

given less emphasis. Also, setting the derivatives of higher-order polynomials

to zero can result in multiple candidate peak positions that will need to be

compared using other methods. In general, the simple sub-pixel shift estimator

in Eq. (5.25) is recommended.

5.4 Correlation filter variants

We have discussed in Section 5.2 the basic theory underlying some optical and

digital implementations of correlators. These implementations impose certain

requirements on the correlation filter. As already shown, the MF is complex

and thus cannot be easily represented by available SLMs used in optical

correlators. We will need correlation filters whose values fall within the set

of values that can be accommodated by an SLM. Similarly, high-speed digital

hardware might be restricted to heavily quantized inputs and filters. Such

deviations from the MF will result in performance degradation. The objective

of this section is to present some of these alternative filter designs. We will

assume white noise unless specified otherwise. We will present some special

cases in this section and then present the more general MEDOF formulation

[41] in the next section.
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5.4.1 Phase-only filters

Consider the serial correlator shown in Figure 5.5. The spatial filter in plane P2

encodes thematched filter, namelyHMF(u, v)¼S�(u, v) where S(u, v) is the 2-D

FT of the target image s(x, y). Although the magnitude of S(u, v) can take on

any value, the spatial filter H(u, v) placed in the frequency plane of the serial

correlator cannot have a magnitude greater than 1 (since a transparency can

only attenuate the incident light). Thus, strictly speaking, the filter used in

plane P2 is given as follows:

HMF u; vð Þ ¼ S� u; vð Þ
Smax

(5:26)

where Smax denotes the maximal magnitude of the 2-D FT of the target image.

For most images, the magnitude spectrum exhibits a large dynamic range,

resulting in the MF magnitude’s being close to zero at many spatial frequen-

cies. This means that the filter blocks the incident light at these frequencies

with low magnitude and thus much of the incident light will not make it to the

output plane. It may be desirable to get as much light into the correlation

output plane as possible when detector noise is present.

Phase-only filter (POF) definition Mainly to improve the light throughput

efficiency and because more advanced optical filtering concepts were not

then available, Horner and Gianino [42] proposed the following POF:

HPOF u; vð Þ ¼ S� u; vð Þ
S u; vð Þj j ¼ e�j� u;vð Þ (5:27)

where �(u, v) denotes the phase of S(u, v). From Eq. (5.27), we can see that the

POF has a magnitude of 1 at all spatial frequencies thus passing all the light

through.

Anothermotivation for the use of the phase-only filter is that it is considered

that the phase of the 2-D FT of an image appears to contain more information

about that image than the FT magnitude [43]. Phase ‘‘carries more inform-

ation’’ because it is a minimum Euclidean distance (MED) mapping, whereas

magnitude is not.

We illustrate this with the help of Figure 5.9. In this figure, the top row

contains two original images, namely kitchen appliances and a cash register.

Below each of these original images are shown the magnitudes of the inverse

DFTs of the combinations of magnitude of the DFT of one of the images and

phase of the DFT of the other. The lower rows combine random phase or
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random magnitude with the phase and magnitude of the original images. It is

clear that the reconstructions look more like the image whose DFT phase is

used for reconstruction.

MED mappings We now introduce MED mappings. The abbreviation MED

stands for minimum Euclidean distance (it should be ‘‘minimal’’ but we will

Figure 5.9 The top row contains two original images: some kitchen appliances
and a cash register. The second row has phase of the appliances and
magnitude of the register on the left, phase of register, magnitude of the
appliances on the right. The third row has phase from the first row, but
pseudo-random magnitude. The fourth row has magnitudes from the first
row, but pseudo-random phase. Phase dominates magnitude in their relative
effects for representing image information
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stick with the published terminology). Many of the filters we discuss are

reduced-information filters, in that a computed filter is altered in some fashion

(binarizing, suppressing magnitude variation, etc.), which reduces the inform-

ation in the result. The question is how to carry out the alteration in a way that

minimizes the adverse effect. We are most often working with complex objects –

images, image transforms, filters, and correlations – and the pervasive ques-

tion is how to represent the original item on the reduced domain. The images

printed in this book are an example; in the previous figure the result of crossing

phase and magnitude spectra is assuredly complex, but the images’ ink density

on the paper is decidedly real and positive. How does one convert a complex

direct-domain quantity into a viewable real positive quantity? Our solution

was to print images whose halftoned ink density is directly related to the

magnitude of the crossed-spectra result – i.e., we suppressed the phase of

the computed result. This method is motivated by our visual experience –

that the phase of light we view is most often unimportant. Figure 5.10 indicates

how we reduced the complex image to a real one for display.

In comparison with visual images, for the optimal representation of filters

we need to stay more engaged in the complex nature of the values being

converted to a reduced domain. The principle of MED mapping is significant

for filter representation, as shall be explained further in Chapter 8. But for

now, we need to know only that the closest member of the representing

domain – the one having minimum Euclidean distance from the computed

value – is the one to be selected. This principle supports the optimization of the

reduced-dimension correlation filters. For now we will look at just the POF

and binary filters in view of the MED principle. Consider the two filter

domains in Figure 5.11. The first is a set of binary values (A and B) and the

second is the unit circle exp (j�), � 2 [0, 2p]. A complex value is mapped to the

x

 jy

z

Figure 5.10 In this example, complex value z¼ xþ jy is converted to the real
positive value m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Complex reconstruction error is the dashed

line, but the magnitude reconstruction error is zero. This is not an MED
mapping
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closer of the binary values, which amounts to the binary value on the same side

of the perpendicular bisector of the line segment between A and B.

Maximizing the correlation peak intensity It seems reasonable that the POF

uses the phase of the MF. We will prove now that the POF in Eq. (5.27) yields

the maximal correlation peak intensity among all unit-magnitude filters. Let

 (u, v) denote the phase of a unit-magnitude filter. The resulting correlation

output is given as follows:

c 0; 0ð Þ ¼ c 0; 0ð Þj je jl ¼
ZZ

S u; vð Þj jej � u;vð Þþ u;vð Þ½ �dudv

) c 0; 0ð Þj j ¼
ZZ

S u; vð Þj jej � u;vð Þþ u;vð Þ�l½ �dudv �
ZZ

S u; vð Þj jdudv
(5:28)

where the equality is satisfied when �(u, v)þ (u, v) equals a constant. Thus

correlation peak intensity is maximized when  (u, v)¼� �(u, v)þ l, where l
can be any constant. Thus, the POF in Eq. (5.27) yields the maximal correl-

ation peak intensity.

Correlation peak position The POF has the same phase as the MF and is thus

phase-canceling. As a result, the POF will lead to a correlation peak at the

origin when the input is the same as the target image and there is no noise.

Since the POF is a shift-invariant filter, this correlation peak will shift by the

same amount as the target shifts in the observed scene. A word of caution is in

x x

jy

B

A

jy

Figure 5.11 On the left, the line between patterns is the perpendicular bisector
of the line segment between the valuesA and B. Minimum Euclidean distance
mappings bring all values in a half-plane to the binary value within it. On the
right, MED mappings bring values radially onto the unit circle so as to
maintain phase. Note that unless A and B are disposed such that their
perpendicular bisector passes through the origin, multiplying a value by a
real scalar factor can take it across the bisector and thus change its MED
binarization. This factor would not change the phase-only representation of a
point, however
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order here. This feature of the MF, the POF, and all other phase-canceling

correlation filters – to guarantee correlation peak at the origin – is only for

input scenes with no noise. As soon as noise is introduced in the input, the

location of the correlation peak becomes random.

Peak sharpness Another perhaps unintended benefit of the POF is that, for

most images which have more energy at low frequencies, the resulting correl-

ation peaks tend to be sharper than those provided by the matched filter. On

the other hand, if an image is dominated by high frequencies, the POF (since its

magnitude is equal to 1 at all frequencies) does not amplify high frequencies as

much as an MF and thus leads to correlation peaks that are not as sharp

as those produced by anMF. We show in Figure 5.12(a) a target image and in

(b) and (c) the correlation outputs resulting from the MF and the POF,

respectively. We also show in part (d) of that figure the correlation output

resulting from the use of a BPOF, to be introduced later. Note that the

correlation output is more sharply peaked for POF compared to the MF.

Such sharp peaks may be easier to locate if the noise is low.

The sharp peak produced by a POF is not a coincidence. The POF in

Eq. (5.27) can be thought of as the cascade of the MF with a filter whose

frequency response is 1/jS(u, v)j. For most images of interest, jS(u, v)j is of

Test image Matched filter output

Phase-only filter output Binary phase-only filter output

(a)

(c) (d)

(b)

Figure 5.12 Correlation outputs for several correlations with one noiseless
image: (a) target image, (b) correlation output using matched filter (MF),
(c) correlation output using phase-only filter (POF), and (d) correlation
output using binary phase-only filter (BPOF)
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low-pass nature, i.e., it is large for low frequencies and small for high

frequencies. As a consequence, 1/jS(u, v)j is small for low spatial frequencies

and large for high frequencies. Such enhancement of high frequencies is

equivalent to increasing the bandwidth and hence narrowing the width of

the correlation peak. Had our reference image been of a high-pass nature

rather than of a low-pass type, its POF would have led to broader peaks than

the MF.

POF noise sensitivity While POF can yield higher light throughput and sharper

correlation peaks compared to the MF, it obviously yields lower output SNR

since MF was expressly designed to maximize the output SNR. How bad is the

SNR loss for POFs?We can see from Eq. (5.27) that POF has a magnitude of 1

at all frequencies; i.e., it is an all-pass filter. Since the noise response of a filter

depends on only the magnitude of its frequency response, the POF (and in fact

any all-pass filter) has no noise suppression ability. Thus, the output noise from

a POFwill bewhite if the input noise is white. In practice, we limit the frequency

support of any correlation filter (including the POF) to the bandwidth of the

signal to avoid the out-of-band noise. Thus, if the target image energy is

reasonably contained in the frequency range juj �Bu/2 and jvj �Bv/2, then

the output noise variance from the POF can be approximated as N0BuBv/2,

where the input white noise PSD is assumed to be N0/2.

POFwith a region of support One way to improve the noise tolerance of a POF

is to set some of the filter frequencies to zero. Strictly speaking, the resultant

filter is not a unit-magnitude filter. Let R denote the set of frequencies for

which the filter magnitude is non-zero. We can select R to maximize the SNR.

Let us denote this optimal region of support (ROS) as R�. For notational

simplicity, we will switch back to 1-D notation. From Eq. (5.18), the resultant

SNR is given as follows:

SNR Rð Þ ¼
R
R S fð ÞH fð Þdf

�� ��2R
R Pn fð Þ H fð Þj j2df

¼
R
R S fð Þj jdf

�� ��2R
R Pn fð Þdf ffi �f

P
k2R Sk

� �2P
k2R Pk

(5:29)

where Sk and Pk are samples of jS( f )j and Pn( f ) sampled at uniform intervals

of�f. Our goal is to find the region R� that maximizes the SNR in Eq. (5.29).

To determine this region, let us re-index the frequencies such that the ratio

Sk/Pk is sorted as follows:

S1

P1
	 S2

P2
	 � � � 	 SN

PN
	 0 (5:30)
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where N is the total number of frequency samples. We can prove that R�

includes all frequencies with an index lower than n if it includes frequency n

from the sorted list in Eq. (5.30) [44]. This means that we don’t have to try the

2N different ways of partitioning the set of N frequencies. Instead, we have to

try only N different partitionings (namely, each partition of interest includes

the first M frequencies indexed according to (5.30), but M can vary from

1 to N).

To determineM, we compute the SNR forM values from 1 to N and select

theM yielding the highest SNR.We assume that the input noise is additive and

white. As a result, the sorting in Eq. (5.30) refers to sorting just the FT

magnitudes of the target image. The SNR as a function of M is given as

follows:

SNR Mð Þ ¼ 2�f

N0M

XM
k¼1

Sk

 !2
(5:31)

For many images, maximal SNR is obtained when M is a small fraction of

the total number of frequencies. When M¼N (i.e., all frequencies are used),

none of the frequencies is excluded and thus we have the POF. We can get

higher SNR by not including all frequencies.

The POF with the optimal ROS is of a low-pass nature and thus the resulting

correlation peak is not as sharp as one would get with the conventional POF.

The advantage of using the optimal ROS becomes clear when the target image is

corrupted by additive white noise. The optimal-ROS POF produces a corre-

lation output that is not as sensitive to input noise as the POF. In the absence of

noise, POF yields a sharp correlation peak. However, the all-pass nature of the

conventional POF allows all of the input noise through, thus making the

detection of the target almost impossible in the presence of noise.

Optimal tradeoff POFs Our discussion regarding the region of support selec-

tion for POFs focused entirely on the SNRmetric since noise sensitivity is one

of the main problems with the use of the POF. However, an ROS can also be

used to maximize the PCE. The PCE and SNR definitions (see Eqs. (5.18) and

(5.20)) differ only in that PCE uses |S( f )|2, whereas the SNR uses Pn( f ). Thus

the optimal ROS selection algorithm discussed for maximizing the SNR can be

used except that we should sort the sequence |Sk|/|Sk|
2¼ 1/|Sk| in descending

order; i.e., the frequency indexes should be sorted so that |Sk| form an ascending

sequence. The maximal-PCE ROS will thus include the M frequencies where

the signal is the weakest. We can compute the PCE as a function of M and

select theM and hence the ROS that results in the highest PCE. It is interesting
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to note that the conventional POF does not necessarily maximize PCE since

PCE-maximizing ROS may not include all frequencies.

It is disappointing to see that the SNR-maximizing ROS includes the

strongest signal frequencies (assuming white noise) whereas the PCE-

maximizing ROS includes the weakest signal frequencies. Obviously, this

suggests the need for an optimal tradeoff between these two metrics. As

discussed in Section 5.3.3, we can optimally tradeoff between SNR and PCE

by using the FOM introduced in Eq. (5.21). Again, the SNR and the FOM

differ only in that the FOM uses � S fð Þj j2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
Pn fð Þ

h i
, with tradeoff

parameter �, whereas the SNR uses Pn( f ), the noise PSD. For a given �, the

maximal-FOM region of supportmust include the firstM frequencies from the

following sorted list:

S1

�S2
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
P1

	 S2

�S2
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
P2

	 � � � 	 SN

�S2
N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
PN

	 0

(5:32)

It is illustrative to see in Figure 5.13 the dependence of the optimal ROS on

the tradeoff parameter �.
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Region of support of the computed filter Region of support of the computed filter
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(c)

(b)

(d)

Figure 5.13 Optimal regions of support for the POF of the target image in
Figure 5.7(a) for (a) �¼ 1, (b), �¼ 0.1, (c) �¼ 0.01, and (d) �¼ 0.White areas
denote the frequencies where the filter is non-zero
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5.4.2 Binary phase-only filters

The POF appears to yield acceptable performance even though it completely

ignores the magnitude information. Can we get adequate performance even if

we use only a few bits of the phase? This is a question of practical significance

since some SLMs can provide reasonably high frame rates, but can accom-

modate only two phase levels (namely 0 and p). Phase-only filters that are

constrained to take on only two phases are termed binary phase-only filters.

Binary phase-only filters (BPOFs) can be obtained from the MF in a variety

of ways, such as binarizing the real part of theMF, binarizing the imaginary part

of theMFor binarizing the sum of the real part and the imaginary part (this sum

is related to the Hartley transform of the image). [45] These different binariza-

tions can be unified into a single methodwith the help of the threshold line angle

(TLA) [46] and insight from Figure 5.11. In Figure 5.11, suppose A and B are of

equal magnitude. Then their perpendicular bisector passes through the origin.

Threshold line angle A BPOF can be defined as follows using the TLA, �, that

can vary between �p/2 and p/2:

HBPOF fð Þ ¼ sgn Re e�j�S fð Þ

 �� �

¼ þ1 if �p=2 � � fð Þ � �ð Þ5p=2

�1 otherwise

(

(5:33)

where

sgn xð Þ ¼ þ1 if x 	 0

�1 if x5 0

�

For �¼ 0, the BPOF is obtained by binarizing the real part of the FT of the

image. If �¼ p/2, then the binarization refers to the imaginary part. Using

�¼ p/4 results in a BPOF that binarizes the Hartley transform of the image. Of

course, we can use other TLA values.

The advantage of using BPOFs is that the filters require a lot less storage

(one bit per frequency pixel), less computation (no need for multiplications in

frequency domain, only additions and subtractions), and they can be repre-

sented on some high frame-rate binary SLMs.

BPOF disadvantages Since the BPOF is also an all-pass filter, it suffers from the

same disadvantage as POFs in that there is no noise suppression and thus the

output SNRcanbe very low.Another drawback is that, unlike POF,BPOF is not

phase-canceling since the BPOFs have only two phase levels (0 and p). Thus, even
if there were no noise and even if the input scene is an un-shifted target image,
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there is no guarantee that the correlation peak will be at the origin. What is more

problematic is that the location of the BPOF correlation peak is a function of the

target image and can vary from one target to another. This causes errors in

estimating the target coordinates from the correlation peak position. In practice,

this correlation peak shift is small in most cases and thus may not be a concern.

SNR of ternary filters The only way to improve the noise behavior of a BPOF

is to set some frequencies to zero value. Strictly speaking, a BPOF should have

a magnitude of 1 at all frequencies, and filters accommodating�1, 0, andþ1

values should be called three-level or ternary filters. Allowing the filter to take

on a zero value helps in improving its noise suppression abilities. It has been

shown that a magneto-optic SLM [47] can be operated such that we can

effectively get a zero transmittance level in addition to its�1 andþ1 levels.

A key design question is the selection of the frequencies that should be set to

zero. Let R denote the ROS for the ternary filter; i.e., for all frequencies in R

the ternary filter is eitherþ1 or�1, whereas for all frequencies outside R, the

filter is zero. From Eq. (5.18), the SNR for the ternary filter is given as follows:

SNR ¼
R
S fð ÞH fð Þdf

�� ��2R
Pn fð Þ H fð Þj j2df

¼
R
R S fð ÞH fð Þdf

�� ��2R
R Pn fð Þdf

¼
R
Rþ S fð Þdf �

R
R� S fð Þdf

�� ��2R
R Pn fð Þdf

(5:34)

where we have further partitioned R into Rþ (the set of frequencies for which

the filter isþ1), and R� (the set of frequencies for which the filter is�1). The

denominator of the SNR expression in Eq. (5.34) depends on the area or the

number of pixels in R, and not on how it is partitioned into Rþ and R�. Thus,

we should partition a given R into Rþ and R� to maximize the numerator of

Eq. (5.34).

Maximal peak intensity BPOF Let c(0)¼ |c(0)|e j� be the correlation output at

the origin due to the use of a BPOF with a region of support R containing Rþ

and R�. Then |c(0)| can be rewritten as follows:

c 0ð Þj j ¼ c 0ð Þe�j� ¼
Z
Rþ

S fð Þe�j�df �
Z
R�

S fð Þe�j�df

2
4

3
5

¼
Z
Rþ

Re S fð Þe�j�

 �

df �
Z
R�

Re S fð Þe�j�

 �

df

2
4

3
5

(5:35)
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where we utilize the fact that |c(0)| is real and, as a result, the imaginary parts of

the integrals in Eq. (5.35) must add up to zero. A closer look at Eq. (5.35)

indicates that |c(0)| will be as large as it can be if we assign all frequencies in R

that yield non-negative Re{S( f )e�j�} toRþ, and toR� all those frequencies that

lead to negative Re{S( f )e�j�}. Of course, angle � of the correlation output

depends on the filter and is thus unknown. But this result establishes that the

correlation peak of a BPOF is maximized by the following filter design:

HBPOF fð Þ ¼ sgn Re S fð Þe�j�

 �� �

(5:36)

where � is an unknown parameter to be determined. The unknown angle � is

usually determined by trying all angles from �p/2 to p/2 and selecting the one

that results in themaximal |c(0)|. By substituting the filter expression in Eq. (5.36)

into the correlation peak intensity expression in Eq. (5.35), we obtain the follow-

ing expression for maximal peak intensity in terms of the unknown angle �:

c 0ð Þj jmax ¼
Z
Rþ

Re S fð Þe�j�

 �

df �
Z
R�

Re S fð Þe�j�

 �

df

2
4

3
5

¼
Z
R

Re S fð Þe�j�

 ��� ��df

(5:37)

For a ROS, the best TLA can be found by determining the integral in

Eq. (5.37) for various TLA values, and choosing the � that results in the

maximal peak intensity.

OptimumROS for ternary filters Ournext task is to choose theROS tomaximize

the SNR. Using Eq. (5.37) in Eq. (5.18), we can get the SNR as a function of R.

SNR R; �ð Þ ¼
R
R S fð ÞH fð Þdf

�� ��2R
R Pn fð Þdf

¼
R
R Re S fð Þe�j�


 ��� ��df� �2R
R Pn fð Þdf ffi �f

P
k2R S�k

� �2P
k2R Pk

(5:38)

where S�k ¼ Re S k�fð Þe�j�

 ��� ��, Pk¼P(k�f ) and �f is the sampling interval

as before. Because of the similarity with the SNR expression in Eq. (5.29) for

the POF with an ROS, we know that the ROS that maximizes the SNR in

Eq. (5.38) must include the first M frequencies in the following sorted list:

S�1
P1

	 S�2
P2

	 � � � 	 S�N
PN

	 0 (5:39)
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Thus, the design of amaximal-SNR ternary filter involves the following steps:

* For a given TLA �, determineRe {S( f )e�j�} and sample it at intervals of�f to obtain

N samples S1, S2, . . . , SN, where we have omitted the superscript � for notational

simplicity. Let P1, P2, . . . , PN denote the corresponding samples of the noise PSD.

* Arrange the ratio Sk/Pk in the descending order as in Eq. (5.39).

* Determine the SNR Mð Þ ¼ �f
PM

k¼1 Sk

h i2. PM
k¼1 Pk

h i
as a function of M for M

values from 1 to N.

* Select the M that maximizes the SNR and note corresponding M and SNR as

Mmax(�) and SNRmax(�), respectively.
* Repeat the above four steps for various � values from �p/2 to p/2 and select

the �max that maximizes SNR. Then the maximal-SNR ternary filter is given as

follows:

Hternary�SNR fð Þ ¼
sgn S fð Þe�j�max
� �

for f 2 Rmax

0 otherwise

(
(5:40)

where Rmax is the set of Mmax frequencies selected for the threshold line angle

�max. This algorithm can be easily adapted for determining the ROS that

maximizes the PCE or the FOM for a given tradeoff parameter �.

BPOF extensions We have focused so far on BPOF and ternary filters. This is

mainly because high frame-rate SLMs can usually accommodate only two or

three levels. However, some SLMs may be capable of accommodating more

phase levels. An interesting question is whether we need more phase levels.

A quad phase-only filter (QPOF) [48] has unit magnitude and four possible

phase values, namely 0, p/2, p, and 3p/2. In its simplest version, QPOF is

obtained from the MF by quantizing the MF phase to four regions each

covering the p/2 phase and centered at 0, p/2, p, and 3p/2. The noise behavior
of the QPOF is the same as that of the POF and BPOF since all three filters are

all-pass filters. However, the average correlation peak achievable using the

QPOF is usually higher than that due to the BPOF resulting in improved SNR.

To improve the noise properties of the QPOF, the complex ternary matched

filter (CTMF) is suggested [49], for which the real part and the imaginary

part of the filter take on values�1, 0, and þ1 separately. While this leads

to a filter taking on nine different complex filter values (namely, 0,

�1,þ1,�j,þj,�1�j,�1þj, 1�j, and 1þj), CTMF can be implemented

optically using an interferometric setup. Numerical experiments with the

CTMF for a real image appear to yield SNR values that are within 2 dB of

the theoretical maximal SNR values.
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We still need to answer the question of how many phase levels are needed.

Let us consider a POF obtained by quantizing the phase of the matched filter

to L uniform levels in the range 0 to 2p. The noise behavior of these filters is
independent of L since they all have unit magnitude. The correlation peak

depends on L as follows:

cL 0ð Þ ¼
Z

S fð ÞH fð Þdf

¼
Z

S fð Þj je j � fð Þ��q fð Þ½ �df ¼
Z

S fð Þj jej" fð Þdf

(5:41)

where �( f ) is the phase of the target signal FT and��q( f ) is the phase of the filter
which is obtained by quantizing ��( f ) to L uniform levels. The difference

"( f )¼ [�( f )��q( f )] is the error due to quantizing the phase to L levels, and this

phase error can be modeled as uniformly distributed in the interval [�p/L, p/L].
For this simplemodel, we can compute the average correlation peak as follows [50]:

E cL 0ð Þf g ¼
Z

S fð Þj jE e j" fð Þ
n o

df ¼
Z

S fð Þj j L

2p

Zp=L
�p=L

e j�d�

2
64

3
75df

¼ sinc
1

L

� �Z
S fð Þj jdf ¼ c 0ð Þsinc 1

L

� � (5:42)

where c(0) is the correlation output due to an unquantized POF. As L

increases, sinc(1/L) approaches 1 indicating that using more phases, as

expected, leads to higher average correlation output values. Thus, the average

correlation peak is sinc(1/L) of the peak from the unquantized POF. This

correlation peak variation as a function ofL is shown in Figure 5.14. Note that

using only four phase levels results in average peak reduction by less than 1 dB,

explaining why the QPOF performs as well as it does.

5.4.3 Saturated filters

The SNR expression in Eq. (5.18) is unaffected when we multiply the filter

frequency responseH( f ) by any complex constant �. This behavior is unreal-

istic for an optical correlator primarily for two reasons. Firstly optical filters

cannot amplify light and thus the filter magnitude must be less than or equal

to 1. The second and perhaps more important reason is that the detector

elements in the correlator output plane introduce noise which affects the

recognizability of a correlation peak. The stronger the detector noise, the

stronger the correlation peak needs to be for it to be discernible. As we will
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show in this section, the inclusion of detector noise has an impact on the

optimal filter form and design strategy. Both aspects are related as seen by

the definition of the SNRd that includes detector noise.

SNRwith detector noise In the presence of detector noise, we can define the

following SNRd where the numerator is still the magnitude squared of the

correlation peak, but the denominator now consists of two variance terms: one

due to detector noise and the other due to input noise that passes through the

correlation filter.Wemake the reasonable assumption that the input noise and

detector noise are statistically independent.

SNRd ¼
R
S fð ÞH fð Þdf

�� ��2
�2d þ

R
Pn fð Þ H fð Þj j2df

ffi

P
k

SkHk

����
����
2

�2d
�f 2

� �
þ
X
k

Pk

�f

� �
Hkj j2

(5:43)

When the detector noise level �2d is small, SNRd approaches the conventional

SNR. On the other hand when �2d is large, the denominator of SNRd can be

approximated as a constant independent of the filter. In such a case, maximiz-

ing SNRd is equivalent to maximizing the numerator of Eq. (5.43) which is the
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Figure 5.14 SNR loss as a function of L, the number of phase quantization
levels
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correlation peak intensity. Note that multiplying the filter by a complex

constant changes SNRd, whereas such a constant gain does not affect the

SNR without detector noise. Thus, gain constants are important in maximiz-

ing SNRd. In the rest of this discussion, we will assume that �f¼ 1 for

notational simplicity.

Maximizing SNRd Let us now determine the filterHk that maximizes SNRd in

Eq. (5.43). Note that the phase of the filter affects only the numerator of the

SNRd, and thus can be chosen to maximize the correlation peak intensity as

was done in the POF case. Thus the filter phase is negative in relation to the

phase of the FT of the target image. It is more challenging to determine the

magnitudeMk of the filter. Let Ak denote the magnitude of the signal FT. For

the optimal filter phase selected, SNRd can be written as follows:

SNRd ffi
P

k AkMk

� �2
�2d þ

P
k PkM

2
k

(5:44)

Our goal is to select the filter magnitudes Mk to maximize the SNRd in

Eq. (5.44). Since the filter will be implemented optically, the filter magnitudes

must be less than or equal to 1. Similarly, we will assume that the filter

magnitudes must be greater than or equal to �, the minimal allowed filter

magnitude; i.e., 0� ��Mk� 1.

Maximizing the SNRd in Eq. (5.44) involves setting to zero its derivatives

with respect to Mk, provided that the resulting Mk values are within the

allowed range, namely ��Mk� 1. If that derivative does not become zero in

that interval, thenMkmust take on one of the boundary values (� and 1 in this

case). Setting the derivative of SNRd with respect to Mm to zero results in the

following condition:

q SNRdð Þ
qMm

ffi q
qMm

P
k AkMk

� �2
�2d þ

P
k PkM

2
k

( )

¼
2Am �2d þ

P
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2
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P
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(5:45)
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whereG is the gain parameter that is independent of frequency k.We can choose

Mm¼ (GAm/Pm) provided that (GAm/Pm) is between � and 1. If (GAm/Pm) is

larger than 1, then the derivative @(SNRd)/@Mm in Eq. (5.45) is positive for all

allowed filter magnitude values (since Mm cannot be larger than 1), and thus

maximal SNRd is obtained by choosingMm to be the largest allowed value (i.e.,

1). Similarly, if (GAm/Pm) is smaller than �, the derivative @(SNRd)/@Mm in Eq.

(5.45) is negative for all allowed filter magnitude values (since Mm must not be

smaller than �), and thus maximal SNRd is obtained by choosingMm to be the

smallest allowed value (i.e., �). Thus SNRd is maximized by the following filter:

Mm ¼ sgn1� G
Am

Pm

� �
where sgn1� x½ � ¼

� if x5�
x if � � x � 1
1 if x > 1

8<
: (5:46)

The filter magnitudes in Eq. (5.46) coupled with the earlier assertion that

filter phase is the negative of the phase of the target image FT produce the

maximal-SNR correlation filter. We call these filters saturated filters [51] since

this filter is identical to the matched filterHk¼ (GAk/Pk), except that the filter

magnitude saturates at the boundary values of 1 and �. The gainG in Eq. (5.46)

is not at all arbitrary. It satisfies conditions that are found to be verified by the

filter when SNR is optimized. You have to know G to compute the filter, and

you have to know the filter to get G. The search method is simply breaking the

impasse. But when all is said and done, the values ofG and the filter must have

the stated compatibility.

Detector noise effect As the detector noise level increases, the gainG in Eq. (5.45)

increases. For larger gains, more filter frequencies will be saturated to value 1

thus making the correlation filter 100% transparent (i.e., filter magnitude is 1)

at more frequencies. This will lead to more light throughput and hence larger

correlation peak value, which is needed to combat the increased detector noise.

In the extreme case of infinite detector noise, all frequencies will saturate to 1

resulting in a phase-only filter. If there is no detector noise, then the SNR is

independent of G. This independence of SNR from the filter gain allows us to

compress the filter values to within the allowed dynamic range as long as the

matched filter is not zero at any frequency. When the unsaturated filter takes

the zero value at a particular frequency, it will be saturated to the value � in the

saturated filter.

We show in Figure 5.15 the magnitude of the maximal-SNRd filter for the

target image in Figure 5.7(a) for differing levels of detector noise. The SLM is

assumed to allow filter magnitudes in the range 0.001 to 1. For small detector

noise levels, the filter preferentially passes those frequencies of higher
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magnitude, just like theMF, whereas for high levels of detector noise, the filter

becomes all-pass like a phase-only filter.

5.4.4 Constrained filters

Many SLMs can accommodate more than two phase levels and at least a few

in magnitude. Phase-only filters and BPOFs are unit-magnitude filters that

cannot take advantage of the SLM ability to represent multiple magnitudes.

Ternary filters and POFs with a region of support can take advantage of the

zero magnitude level, but not the intermediate filter magnitudes. Thus, it

would be better if the filter were designed keeping in mind the filter SLM

constraints. Since the more popular liquid crystal device (LCD) SLMs can be

made to provide a limited set of complex values, the correlation filter must be

designed to take on only this limited set of complex values. What is even more

challenging is that the set of operating points can vary from one SLM to

another even if all of the SLMs are supposed to be same. In this sub-section,
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Figure 5.15 Magnitude of the maximal-SNRd filter for the target image in
Figure 5.7(a) for differing levels of detector noise: (a) �2d ¼ 0, (b) �2d ¼ 1,
(c) �2d ¼ 100, and (d) �2d ¼ 10 000. The filter is allowed to take on values in the
range 0.001 to 1.0. White denotes large magnitudes and black denotes low
magnitudes
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we will consider the design of correlation filters when the SLM is cross-coupled,

i.e., its magnitude and phase values are not independently controllable.

SLM operating curve The transmittance of an electrically addressed SLMpixel

is usually controlled by the drive voltage or current applied to it. For popular

LCD SLMs, the drive voltage causes a change in the polarization of the

transmitted light. By placing polarization analyzers in different orientations,

we can obtain different effective transmittances from the same pixel. Thus, the

same SLM can be made to yield different operating curves by changing the way

it is set up in relation to other polarization-sensitive elements in the optical path.

An SLM operating curve specifies the achieved complex transmittance (or

reflectance if it is a reflecting SLM) as a function of the applied drive voltage.

We show in Figure 5.16 some example operating curves or regimes. This

figure shows complex planes with the solid curves and crosses indicating

achievable transmittances from an SLM pixel. Figure 5.16(a) shows the unit-

disk operating region where any phase is allowed and any magnitude less than

or equal to 1 is allowed. This is the most accommodating operating regime

from any passive SLM in that it covers all the points in the complex plane that

have magnitudes less than or equal to 1. Speaking historically, VanderLugt

envisioned this operating region and that �2d ¼ 0 in the SNR equation. He
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Figure 5.16 Different SLM operating regimes: (a) unit-disk, (b) phase-only,
(c) phase-only with a region of support (ROS), (d) binary phase-only,
(e) ternary, (f) real, positive, and (g) cross-coupled
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would have, in essence, varied G by adjusting the exposure in making his

holographic filters, even though he would not have had the analytical develop-

ment at hand then. The POF can accommodate only magnitudes of 1 and thus

the operating curve in Figure 5.16(b) is a unit circle in the complex plane.

When a phase-only SLM accommodates a zero transmittance option as in

Figure 5.16(c), we can obtain a POF with an ROS. The BPOF can accommo-

date only two transmittance values (namely �1 and þ1) as shown in Figure

5.16(d). When we introduce a zero transmittance capability, we get the ternary

filter in Figure 5.16(e) and obtain some noise suppression ability. The real,

positive constraint requires the filter to take on only real and positive values.

This constraint is a reasonable model when a photographic transparency is

employed in the filter plane. Finally, Figure 5.16(g) shows a more realistic

SLM operating curve where changing the drive voltage leads to changes in

both the magnitude and the phase in a coupled but characterizable and

predictable manner. The locus of the points in the complex plane as a function

of the drive variable leads to an operating curve.

Maximizing the SNRd Let� denote the set of allowed complex transmittances

of the SLM being considered. Our objective is to maximize the SNRd in Eq.

(5.44) while allowing the filter pixelsHk to take on values only from�. We can

see from Eq. (5.44) that the denominator of the SNRd expression is indepen-

dent of the filter phase �k, whereas its numerator is a function of both the filter

phase �k and filter magnitude Mk.

Finding the cross-coupled filter Hk that maximizes SNRd involves setting to

zero the derivatives of the SNRd expression with respect to filter phase �k and

filtermagnitudeMk. If the filter valueHk that yields zero derivatives is one of the

values in the operating region, that filter value is used. On the other hand, ifHk is

not within the operating region, then we need to find an operating point for that

filter pixel that maximizes SNRd, but does not set the derivative to zero.

Instead of presenting the detailed optimal cross-coupled filter design, wewill

first provide an intuitive explanation of the filter design and then summarize

the filter design algorithm.

For the annulus operating region, we have derived the maximal-SNRd filter in

Eq. (5.46), which indicated that the saturated filter is the same as the fully

complex optimal filter whenever that filter value is in the annular operating

regime. On the other hand, when the fully complex optimal filter value is outside

the annular region, the saturated filter takes on the same phase as the complex

filter, but a saturated magnitude (namely 1 or �, depending on which is closer to

the magnitude of the complex filter). We have also shown in [51] that the

saturated filter values are the MED points in the operating regime from the
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fully complex optimal filter. ThisMEDproperty of the optimal correlation filters

was shown by Juday [41] for any arbitrary operating curve including the cross-

coupled curve in Figure 5.16(g). Thus, we can find the maximal-SNRd filter that

takes on values from � by first maximizing the SNRd with no SLM constraints,

and then finding theMED version of this filter within the given operating curve.

However, the SNR of a fully complex filter is unaffected by multiplying the

complex filter by a complex scalar (with gain G and angle l) when the detector

noise is absent. We have stated earlier that gain parameter G needs to be

searched to determine the optimal G value to be used. For circularly symmetric

operating regions such as an annulus operating region, all possible phase values

are accommodated. As a consequence, we do not have to search over the angle

parameter l in the optimal saturated filter design for such circularly symmetric

operating regions. On the other hand, cross-coupled operating curves such as

those in Figure 5.16(g) are not circularly symmetric and thus we have to search

over both parameters, namely gain G and angle l. Based on the above discus-

sion, we can summarize the design of the MEDOF as below.

MEDOF design algorithm Let Sk ¼ Ake
j�k denote the samples of the FT of the

target image and letPk denote the samples of the input additive noise PSD. Let

�2d denote the variance of the detector noise. The filter design goal is to

determine a correlation filter Hk that maximizes the SNRd expression in Eq.

(5.44) while taking values from the operating set �. We will assume without

any loss of generality that �f¼ 1.

* Compute the fully complex optimal filter Zk.

Zk ¼
Ak

Pk
e�j�k

� �
(5:47)

* Initialize the parameters gain G¼ 1 and angle l¼ 0. For the chosen G and l,
determine the minimum Euclidean distance version Hk of Zk i.e.,

Hk G; lð Þ ¼ argminHk2� Hk � Ge jlZk

�� �� k ¼ 1; 2; . . . ;N (5:48)

where N is the number of filter pixels.

* Compute the SNRd resulting from the use of filter Hk in Eq. (5.48) using the

following SNRd expression:

SNRd G; lð Þ ffi

P
k

SkHk G; lð Þ
� �2

�2d þ
P
k

Pk Hk G; lð Þj j2
(5:49)
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where the SNRd is shown explicitly to depend on G and l.
* Repeat the second and third steps for various G and l values. Select the parameter

pair (G�, l�) that results in the maximal SNRd. The optimal cross-coupled filter is

Hk(G
�, l�).

Optimal gain and angle selection The gain and angle parameters can be selected

in at least three different ways. The first is the most straightforward method of

trying all parameter values exhaustively. We can limit the range of gain values

by considering the minimal and maximal values of the ratio Ak/Mk. Filter

angle values must be discretized in the range 0 to 2p. The second method is an

iterative one. We start by assuming the gain G to be 1 and using that to design

an MED cross-coupled filter. This computed filter can in turn be used to

determine the next G value using an expression similar to that in Eq. (5.45).

This process can be iterated until G does not change significantly.

Unfortunately, there is no proof establishing that this iterative search will

converge to G�. Filter angle values once again must be discretized in the

range 0 to 2p. The third method is based on expressing the Euclidean distance

between Hk and Zk for different G and l values in terms of a 2-D cross-

correlation between log-polar transformed versions of two arrays computed

from the fully complex filter and from the operating curve. In this log-polar

version, gain and angle appear as translations which can be identified as the

coordinates of the minimum in the cross-correlation surface. Thus, optimal

parameters can be obtained in a direct manner.

5.4.5 Binarized correlations

The correlation filter variants discussed so far (e.g., POF, BPOF, cross-

coupled filter, etc.) all pertain to constraints imposed in the frequency domain.

Sometimes, DFT hardware may not be available and direct digital comput-

ation of correlation may be too computationally intensive to be feasible. In

such cases, we may have to resort to quantizing the signals to a few bits and

correlating those quantized signals. An example of this is binarizing the images

prior to their direct correlation.

In optical serial correlators, an SLM is used to represent the input scene.

Although the frame-rate requirements for the input SLM are more lenient

compared to that of the filter SLM,many input SLMs can represent only a few

bits with acceptable accuracy. Thus, it makes sense to quantize the input scene

even in optical implementations. One example of such input image quantiza-

tion is the binarization of the input image.
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Modeling the target image as Gaussian In this section, we will discuss the

implications of binarizing (i.e., quantizing to one bit) the signals prior to cross-

correlation. We will use 1-D DT signal notation for notational simplicity. As

quantizing is a nonlinear operation, available theory is somewhat limited andwe

will end up making some assumptions in order to derive some results. For

example, we will assume that the input image r[k] is the unshifted target image

s[k] with no noise. As we will be modeling the target image itself as a random

process, the correlation output will be random even in the absence of any noise.

We will assume that the signal can be modeled as a sample realization from a

stationaryGaussian random process with zero-mean and auto-correlation func-

tion (ACF) Rs[k].

We will investigate what happens to the correlation output as either one or

both signals are binarized. We will use the peak-to-sidelobe ratio (PSR)

defined below as a measure of the quality of the correlation output.

PSR ¼ E c 0½ �f gj j2

var c l½ �f g

�����
l
 0

: (5:50)

where the denominator in Eq. (5.50) refers to the variance of the correlation

output away from its peak assumed to be nominally at the origin. We will

observe the effect of image binarization on the PSR values.

Gray-scale correlation The gray-scale correlation of r[k]¼ s[k] with the target

image s[k] leads to the following correlation output.

cg;g l½ � ¼
XN
k¼1

r k½ �s k� l½ � ¼
XN
k¼1

s k½ �s k� l½ � (5:51)

where the subscript g,g is used to indicate that the observed gray-scale scene is

correlated with the gray-scale target image. Let us now determine the statistics

of this correlation output at the origin.

E cg;g 0½ �

 �

¼
XN
k¼1

E s k½ �s k½ �f g ¼
XN
k¼1

E s k½ �½ �2
n o

¼ NE s k½ �½ �2
n o

¼ NRs 0½ �

(5:52)

For large l, the expectation of correlation cg,g[l ] can be approximated by

zero since most signals have auto-correlation functions that decay to zero for

large lags. Thus the variance of cg,g[l ] for large l can be expressed as follows:
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var cg;g l½ �

 �

¼ var
XN
k¼1

s k½ �s k� l½ �
( )

¼ E
XN
k¼1

s k½ �s k� l½ �
" #28<

:
9=
;

¼ E
XN
k¼1

XN
m¼1

s k½ �s k� l½ �s m½ �s m� l½ �
( )

¼
XN
k¼1

XN
m¼1

E s k½ �s k� l½ �s m½ �s m� l½ �f g

(5:53)

The variance determination in Eq. (5.53) requires a fourth-order moment.

Since we assume that s[k] can be modeled as a Gaussian process, we can

express the fourth moment in terms of its second-order statistics as follows:

var cg;g l½ �

 �

¼
XN
k¼1

XN
m¼1

E s k½ �s k� l½ �s m½ �s m� l½ �f g

¼
XN
k¼1

XN
m¼1

E s k½ �s k� l½ �f gE s m½ �s m� l½ �f g

þE s k½ �s m½ �f gE s k� l½ �s m� l½ �f g

þE s k½ �s m� l½ �f gE s m½ �s k� l½ �f g

2
664

3
775

¼
XN
k¼1

XN
m¼1

Rs l½ �ð Þ2þ Rs k�m½ �ð Þ2þRs k�mþ l½ �Rs k�m� l½ �
n o

ffi
XN
k¼1

XN
m¼1

Rs k�m½ �ð Þ2
n o

¼ N
XN
n¼�N

1� nj j
N

� �
Rs n½ �ð Þ2

(5:54)

where we use the assumption thatRs[l ] is zero for large l. Using Eqs. (5.52) and

(5.54), we can express the PSR of the gray-scale correlation as follows:

PSRg;g ¼
E cg;g 0½ �

 ��� ��2

var cg;g l½ �

 � ¼ NRs 0½ �ð Þ2

N
PN

n¼�N

1� nj j
N

� �
Rs n½ �ð Þ2

¼ N
XN
n¼�N

1� nj j
N

� �
Rs n½ �
Rs 0½ �

� �2
" #�1

(5:55)

A few observations regarding the PSR in Eq. (5.55) are in order. Increasing

the signal length N appears to increase the PSR. The second observation is
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more subtle. Suppose the normalized signal ACF can be approximated as

having significant non-zero values for L�N. Then the summation in

Eq. (5.55) can be approximated by L thus yielding an approximate PSR of

N/L. Since the ACF and the PSD form an FT pair, 1/L is approximately the

signal bandwidth. Thus, the gray-scale correlation yields a PSR that is equal to

N times the signal bandwidth or the space-bandwidth product; i.e., the product

of the signal extent with its bandwidth.

To illustrate the dependence of the PSR of the gray-scale correlation on

signal length and signal bandwidth, let us consider the following exponential

ACF for the signal.

Rs k½ � ¼ Rs 0½ �e�a kj j (5:56)

where a is a measure of the signal bandwidth. We substitute the ACF in

Eq. (5.56) into the PSR expression in Eq. (5.55) to obtain the PSR as a function

of N and a. We show in Figure 5.17 the PSR of the gray-scale correlation as a

function of N and a. Note that the PSR increases with increased signal length

and increased signal bandwidth (i.e., larger a).

Binarizing one image Suppose we binarize one of the two images and let sb[k]

denote the binarized target image.

sb k½ � ¼ sgn s k½ �½ � ¼
þ1 if s k½ � 	 0

�1 if s k½ �50

�
(5:57)

Let us once again assume that the input image r[k] is the unshifted target

image with no noise. The correlation of r[k] with this binarized target image

sb[k] leads to the following correlation output:

cg;b l½ � ¼
XN
k¼1

r k½ �sb k� l½ � ¼
XN
k¼1

s k½ �sb k� l½ �

¼
X
k2Rþ

l

s k½ � �
X
k =2Rþ

l

s k½ �
(5:58)

where the subscript g,b indicates that a gray-scale scene is correlated with a

binarized target image. The region Rþ
l denotes the set of k values for which

sb[k� l] isþ 1. Equation (5.58) shows the main advantage of this method. The

direct cross-correlation cg,b[l] can be obtained without any multiplications,

only additions and subtractions.

We will now look at the statistics of cg,b[0]. Using the same assumptions as

before, the average correlation output at the origin can be seen to be as follows:
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E cg;b 0½ �

 �

¼
XN
k¼1

E s k½ �sb k½ �f g ¼
XN
k¼1

E s k½ �j jf g ¼ NE s k½ �j jf g (5:59)

Since s[k] is a Gaussian RVwith zero mean and varianceRs[0], we can use the

average of its absolute value to determine the average of the correlation output.

E cg;b 0ð Þ

 �

¼ NE s k½ �j jf g

¼ N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pRs 0½ �
p Z 1

�1
sj j exp � s2

2Rs 0½ �

� �
ds

¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rs 0½ �

p

r (5:60)
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For large l, the expectation of cg,b[l ] is zero because the signal ACF decays to

zero quickly. Using this, the variance cg,b[l ] for large l can be approximated as

follows:

var cg;b l½ �

 �

ffi
XN
k¼1

XN
m¼1

E s k½ �sb k� l½ �s m½ �sb m� l½ �f g

ffi
XN
k¼1

E s2 k½ �

 �

þ
XN

k¼1;k 6¼m

XN
m¼1

E s k½ �s m½ �f gE sb k� l½ �sb m� l½ �f g

¼ NRs 0½ � þN
XN

n¼�N;n 6¼0

1� nj j
N

� �
Rs n½ �ð Þ Rs

b n½ �
	 


ð5:61Þ

where Rs
b n½ � ¼ E sb k½ �sb k� n½ �f g can be related to Rs[n] as follows because of

the Gaussian assumption:

Rs
b n½ � ¼ E sb k½ �sb k� n½ �f g

¼ Pr s k½ �s k� n½ � 	 0f g � Pr s k½ �s k� n½ �50
n o

¼ 2

p
sin�1 Rs n½ �

Rs 0½ �

� � (5:62)

where we used the zero-mean Gaussian nature of s[k] and s[k� n] to evaluate

the required probabilities in deriving Eq. (5.62). Note from Eq. (5.62) that

Rs
b½0� equals 1. Using Eqs. (5.62), (5.61), and (5.60), we obtain the following

expression for the PSR of the correlation of a gray-scale image with its

binarized version:

PSRg;b ¼
E cg;b 0½ �

 ��� ��2

var cg;b l½ �

 �

¼
N

2Rs 0½ �
p

2
p

PN
n¼�N

1� nj j
N

� �
Rs n½ �ð Þ sin�1 Rs n½ �

Rs 0½ �

� �

¼ NPN
n¼�N

1� nj j
N

� �
Rs n½ �
Rs 0½ �

� �
sin�1 Rs n½ �

Rs 0½ �

� �
(5:63)

We can compute the PSRg,b in Eq. (5.63) once we know the normalized

signal ACF. Once again, we use the exponential ACF in Eq. (5.56) in the PSR
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expression in Eq. (5.63) and sketch the results in Figure 5.17. Note that the

PSR obtained from binarizing one of the two images is not significantly

different from the gray-scale correlation case.

Binarizing both images Suppose we binarize both images. Let us once again

assume that the input image r[k] is the unshifted target image with no noise.

The correlation of rb[k] (i.e., the binarized version of the input scene) with the

binarized target image sb[k] leads to the following correlation output:

cb;b l½ � ¼
XN
k¼1

rb k½ �sb k� l½ � ¼
XN
k¼1

sb k½ �sb k� l½ �

¼ Nþ �N� ¼ Nþ � N �Nþð Þ ¼ 2Nþ �N

(5:64)

where the subscript b,b indicates that both images are binarized prior to

correlation, and where Nþ(N�) indicates the number of positions in which

s[k] and s[k� l ] have the same (opposite) polarity. Equation (5.64) shows that

the binarized correlation cb,b[l ] can be obtained without any multiplications.

In fact, all we need to do is to find Nþ, the number of positions in which signs

of s[k] and s[k� l ] agree. Using the same assumptions, the average correlation

output at the origin can be seen to be as follows:

E cb;b 0½ �

 �

¼
XN
k¼1

E sb k½ �sb k½ �f g ¼ N (5:65)

Before we determine the variance of the correlation output at l, a position

away from the peak, we should point out that the expectation of cb,b[l ] is

approximately zero. This is because the signal ACF decays to zero quickly for

large l making the Gaussian RVs s[k] and s[k� l ] uncorrelated and hence

statistically independent. Hence their binarized versions sb[k] and sb[k� l ]

are also statistically independent. Using this, the variance cb,b[l] for large l

can be approximated as follows:

var cb;b l½ �

 �

ffi
XN
k¼1

XN
m¼1

E sb k½ �sb k� l½ �sb m½ �sb m� l½ �f g

ffi
XN
k¼1

1ð Þ þ
XN

k¼1;k 6¼m

XN
m¼1

E sb k½ �sb m½ �f gE sb k� l½ �sb m� l½ �f g

¼ N þN
XN

n¼�N;n6¼0

1� nj j
N

� �
Rs

b n½ �
	 
2¼ N

XN
n¼�N

1� nj j
N

� �
Rs

b n½ �
	 
2

(5:66)
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Using Eqs. (5.65) and (5.66), we obtain the following expression for the PSR

of the auto-correlation of a binarized image:

PSRb;b ¼
E cb;b 0½ �

 ��� ��2

var cb;b l½ �

 � ¼ N2

N
PN

n¼�N

1� nj j
N

� �
Rs

b n½ �
	 
2

¼ N

4

p2
XN
n¼�N

1� nj j
N

� �
sin�1 Rs n½ �

Rs 0½ �

� �� �2

(5:67)

We can compute the PSRb,b in Eq. (5.67) once we know the signal ACF. Let

us consider the simple case whereRs[l ] can be approximated as a constant over

a support of length L. Strictly speaking, the signal ACF cannot be a rect[ � ]
function as the corresponding PSD will be a sinc[ � ] function which takes on

negative values and that is unacceptable in a PSD. With this approximation,

PSRb,b simplifies to (Np2/4L), which is higher than the PSR of the gray-scale

correlation by a factor of (p2/4), a PSR gain of about 4 dB.

Once again, we use the exponential ACF in Eq. (5.56) in the PSR expression

in Eq. (5.67) and sketch the results in Figure 5.17. Note that the PSR obtained

frombinarizing both images is slightly higher than the PSR from the gray-scale

correlation.

It is somewhat surprising that the binary correlation is not only easier to

implement, but can also yield better PSRs. The increase in PSR can be under-

stood from the fact that binarizing in the time or space domain is a nonlinear

point mapping which can be thought of as a high-order polynomial mapping

in the input. In the frequency domain, this transformation leads to auto-

convolutions of several orders which increase the effective bandwidth of the

signal. This increased bandwidth leads to increased space-bandwidth product

and higher PSR. However, we should keep in mind that this increase in

bandwidth is artificial in that it cannot generate new information.

Numerical examples We show in Figure 5.18 various correlation outputs for

the target image from Figure 5.7(a). Figures 5.18(a), (b), and (c) show the

correlation outputs obtained with gray-scale correlation, one image binarized

correlation, and both images binarized correlation, respectively when the

images contain no noise. Clearly, binarizing the images does not appear to

degrade correlation peaks significantly. Parts (d), (e), and (f) show the results

when the input contains a large amount of additive noise. Note that the gray-

scale correlation peak in part (d) is more easily discernible than those in parts

(e) and (f). Thus, binarized correlation may be a good computational
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convenience in high SNR situations, but gray-scale correlation is warranted in

low SNR cases.

5.5 Minimum Euclidean distance optimal filter

Let us examine an optical implementation of correlation – its mathematical

model, its filtering limitations, and its optimization of correlation pattern recog-

nition. We are borrowing some results not fully developed until Chapter 8, but

these results fit well with the present chapter’s dealing with limited-domain

filters.

The minimum Euclidean distance optimal filter (MEDOF) approach to

optimal optical filtering has several distinctions from the theory presented so

far in this chapter. Firstly, we recognize that the input objects are encoded on a

wavefront and are complex thereby, not real-valued as is the custom in digital

processing. Secondly, we model the effect of input noise and clutter as being

an RV (it turns out to be a circular Gaussian), that is the sum of many

complex numbers having uniform phase distribution. That complex RV is

Figure 5.18 Illustration of the effect of binarizing the image (in Figure 5.7(a))
prior to correlation: (a) correlation of the gray-scale image with itself,
(b) correlation of the gray-scale image with its binarized version, (c)
correlation of the binarized version with itself, (d) correlation of the gray-
scale image with noisy version of itself, (e) correlation of the noisy gray-scale
image with binarized template, (f) correlation of the binarized version of
noisy image with binarized template
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added to the correlation electromagnetic field, and the result is intensity

detected, whereas in digital processingwe can use distinctions that are not visible

optically (the difference between þ1 and�1, for example). Thirdly, statistics of

the correlation intensity are used, rather than statistics of the magnitude of the

complex correlation field. Finally, the optimization is done explicitly with the

restricted filter domain in mind. That is, although it might seem that a casually

selected fully complex filter is projected onto the restricted filter domain, in fact

the fully complex filter to be projected is well determined, although a few

parameters must be searched in order to find it (and the consequent limited-

domain filter). The filter optimization statement is that no permissible change in

the filter can move the metric being optimized further to an extreme.

The input object is, say, a voltage image v(i, j) that is applied to an SLM

whose (generally complex) encoding of v is e(v), so the input object appears in

the correlator as s(i, j)¼ e[v(i, j)]. It is diffractively Fourier transformed for its

arrival at the filter plane as S( f ), where it is multiplied by the filter H( f ).

Another Fourier transform, evaluated at the center of the correlation plane

(for the known-to-be-centered appearance of the reference object), produces

the central electromagnetic field B exp j�ð Þ ¼
P

k H fkð ÞS fkð Þ. The noise-

induced variance in the value of B has been presented earlier as being

�2mag ¼
P

k Hkj j2Pnk, where Pn is the noise power spectral density from noise

and clutter objects in the input scene, and k indexes spatial frequency. The

resulting intensity variance is �2int ¼ �2mag

� �2
þ 2B2� 2

mag.

Optimization of severalmetrics has been analytically accomplished for optical

correlation as implemented on arbitrary subsets of the complex unit disk. Those

metrics include the simple intensity, the SNR, the area under the receiver

operating characteristic curve, the Bayes’ error, and others [52]. It will be

shown in Chapter 8 that the optimization boils down to the following algorithm

(for a single reference object). Although the metrics being optimized are differ-

ent in the digital portions of this chapter, optimizing those digital metrics is

accomplished by the same algorithm (the optimizing constants � and � will be

different, not only among the statistical pattern recognition metrics based on

optical intensity, but also among the digital versions of the statistical pattern

recognition metrics and the simpler digital metrics introduced in this chapter).

1. For the current values of the search parameters � and �, form the ideal filter value

HI
k ¼ � exp j�ð Þ S�

k

Pnk
(5:68)

which may be regarded as equivalent to exp[ j(��ArgSk)] if Pnk is zero for the

frequency in question.
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2. Choose forHk the realizable filter value closest, by Euclideanmeasure in the complex

plane, to HI
k. For those frequencies for which Pnk is zero, we select the realizable

value with the largest projection in the complex direction exp[ j(��Arg Sk)].

3. Evaluate the metric, which is now a function of only the independent parameters �

and �. Adjust � and � to drive the metric to an extreme.

A critical step is finding the closest realizable value (by Euclideanmeasure in

the complex plane) to the computed ideal filter valueHI
k, and hence the name

MEDOF. Optimization of the digital filters as discussed in Section 5.4 can be

understood according to the MEDOF principle. Consider the phase-only,

binary, ternary, and saturated filters:

Phase-only filter

Hk ¼ exp j � �ArgSkð Þ½ � (5:69)

Binary (�1)

Hk ¼
1; cos � �ArgSkð Þ > 0
coin�flip; cos � �ArgSkð Þ ¼ 0

�1; cos � �ArgSkð Þ50

8<
: (5:70)

Ternary (�1,0)

Hk ¼

�1;Re HI5
k

� �
5 �0:5

coin�flip �1; 0f g;Re HI5
k

� �
¼ �0:5

0; Re HI5
k

� ���� ���50:5

coin�flip 0;þ1f g;Re HI5
k

� �
¼ 0:5

þ1;Re HI5
k

� �
> 0:5

8>>>>>>>>>><
>>>>>>>>>>:

(5:71)

Saturated (in the annulus �� |H|� 1)

Hk ¼
exp j � �ArgSkð Þ½ �; �Ak

Pnk
> 1

HI
k; � � HI

k

�� �� � 1

� exp j � �ArgSkð Þ½ �; �Ak

Pnk

5�

8>>>><
>>>>:

(5:72)

5.6 Non-overlapping noise

Our analysis so far has assumed the standardmodel of additive noise.When an

observed scene is dominated by sensor noise and/or propagation uncertainties,
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the additive noise model is reasonable. But there are occasions when additive

noise may not be an appropriate model. For example, if the target image is

placed in an unknown random background, the scene statistics would be

different in the target region compared with outside that target region.

Recently, optimal detectors have been introduced to cope with this case of

non-overlapping noise. In this section, we will provide a relatively brief intro-

duction to this topic using 1-D signals. Readers interested in more details

should consult some of the references [53–55].

5.6.1 Effect of constant background

Let us consider the problem of designing and using a correlation filter for the

target signal s(t). The additive noise model considered so far assumes that the

received signal r(t) contains the target signal s(t) corrupted at all locations by

additive noise n(t). However, the received signal may contain a background

component in addition to noise. Let us model this background as a constant

value Br. Then the received signal can be modeled as follows:

r tð Þ ¼ s tð Þ þ n tð Þ þ Br 1� ws tð Þð Þ (5:73)

where ws(t) is the target signal support function defined as follows:

ws tð Þ ¼
1 if s tð Þ 6¼ 0
0 if s tð Þ ¼ 0

�
(5:74)

The role of the window ws(t) is to separate the target from the background,

but the window definition in Eq. (5.74) is deficient in that this window function

will be zero even if some interior pixels of a target are legitimately zero. The

correlation output of this received signal with the target signal is made up of

several components as shown below.

r tð Þ � s tð Þ ¼ s tð Þ þ n tð Þ þ Br 1� ws tð Þð Þ½ � � s tð Þ
¼ s tð Þ � s tð Þ þ n tð Þ � s tð Þ þ BrAs � Brws tð Þ � s tð Þ

(5:75)

whereAs is the constant that results from correlating a constant signal of 1 with

the target signal s(t). In addition to the desired auto-correlation function of the

target image with itself and the undesired cross-correlation of the noise with

the target image, we see two other terms in Eq. (5.75): a constant bias and

another that is the cross-correlation of the support function ws(t) with the

target signal s(t). Unless the background Br in the received signal is zero, these

two terms can affect the correlation deleteriously.

One method that was proposed to deal with this background issue is the

deliberate introduction of a constant background Bs in the target image prior
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to forming the correlation filter. The resulting correlation output then contains

even more terms; i.e.,

r tð Þ½ � � s tð Þ þ Bs 1� ws tð Þð Þ½ �

¼ s tð Þ þ n tð Þ þ Br 1� ws tð Þð Þ½ � � s tð Þ þ Bs 1� ws tð Þð Þ½ �

¼ s tð Þ � s tð Þ þ noiseþ bias

(5:76)

where we simply pool all of the random terms together as ‘‘noise’’ and all of the

constant terms as ‘‘bias.’’ While there is no guarantee that we can diminish this

background problem by just introducing a deliberate bias in the target signal,

simulation results [53] have indicated that using a non-zero background in the

target image prior to designing the correlation filter can result in better

correlation output.

For optical correlators, input image background may not be a problem.

When matched spatial filters are constructed by exposing a holographic plate,

the high intensity at the origin in the frequency plane results in a low-frequency

blocking spatial filter whose effect is to remove the average value from the

input scene. When the input scene contains a small target in a background, the

background effect is diminished significantly by this DC block. Even when

SLMs are used instead of holographic plates, we can introduce deliberate DC

blocks to reduce the background effects.

5.6.2 Non-overlapping noise

Often, the background cannot be modeled as a constant and we must use a

random process to describe the background variations. We can use a model

similar to that in Eq. (5.73) except that the constant background Br is replaced

by b(t), a background noise term. The background noise and the target are

non-overlapping or disjointed in that background noise is present only outside

the target region.

The classical matched filter is designed to maximize the output SNR in the

presence of additive input noise and is thus not equipped to handle non-

overlapping scene noise. The relatively poor correlation peaks due to the

classical matched filter provide the motivation for designing optimal detection

strategies to handle non-overlapping noise. However, we must emphasize that

the classical MF was designed to overcome additive noise and thus was not

designed to deal with non-overlapping noise. The desirability of the correl-

ation peak’s being ‘‘visible’’ has more to do with PSR than SNR. The PSR

measures the sharpness of a correlation peak compared to its background. On
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the other hand, SNR measures how large the average of a correlation peak is

compared to its standard deviation as different random noise realizations

appear in the input scene. The standard deviation is arguably shift-invariant

and thus applies to all locations, not just at the center.

In fact, in the absence of additive noise, we can avoid the input non-overlapping

noise altogether if we can use a target segmentation mask that allows only those

pixels in the scene belonging to a target silhouette to pass through. The result

of such a masking contains only the target image and no noise. In such a case,

there is no variability at the output. In the absence of input noise, many

different correlation filter schemes including the inverse filter can be applied

to obtain sharp correlation peaks. In general, the position of the target in the

input scene is unknown and we may not know exactly where to place the

segmentation mask in the input scene. This difficulty can be overcome by

placing the segmentationmask at every possible position in the input scene and

selecting the position that results in the ‘‘best’’ correlation peak. However, such

a method loses the simplicity of correlation operation.

5.6.3 Optimal detection strategy for non-overlapping noise

If the scene contains both non-overlapping noise and additive noise, then the

MF may not provide the best detection strategy. Although this field is still

evolving, recent research [56] in the design of an optimal detection strategy for

this situation is worth mentioning. Our review will be brief. This method is

based on multiple hypotheses decision theory.

Received signal model The received signal can bemodeled as consisting of three

terms: the target signal at location j, background or non-overlapping noise

nb[k], and noise n[k] added to the target. Since the target location j is unknown,

we can define one hypothesis Hj for each unknown location and attempt to

select the most likely hypothesis. Hypothesis Hj can be characterized by the

following model:

Hypothesis Hj : r k½ � ¼ w k� j½ �s k� j½ � þ nb k½ � 1� w k� j½ �f g þ n k½ �
¼ w k� j½ � s k� j½ � þ n k½ �f g þ nj k½ � ¼ rin k½ � þ rout k½ �

where

rin k½ � ¼ w k� j½ � s k� j½ � þ n k½ �f g
and

rout k½ � ¼ nj k½ � ¼ n k½ � þ nb k½ �f g 1� w k� j½ �f g (5:77)
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wherew[k� j] is the support function for the target located at j. We will assume

that the received signal is available at N samples or pixels of which the target

occupiesM samples. Thus, rin[k] denotes theM samples from inside the target

window and rout[k] denotes the (N�M) samples from outside the window.

Note that rin[k] contains the target signal and additive noise whereas rout[k]

contains only additive noise and background noise. We will also use Ij to

denote the set of k values for which s[k� j] is non-zero.

We will assume that the background noise nb[k] and noise n[k] are statistic-

ally independent, whiteGaussian stationary processes with variance �2b and �
2
n,

respectively. Additive noise is assumed to be of zero mean whereas the back-

ground noise is assumed to have mean mb. We will also assume all hypotheses

are equally likely, i.e., the target can be located with equal probability at any of

the candidate positions.

Maximal likelihood detection Since all hypotheses are assumed to be equally

likely, maximal a-posteriori (MAP) detection that yields the minimal prob-

ability of error is the same as the maximal likelihood (ML) detection.Maximal

likelihood detection requires assigning the received signal r[k] to hypothesisHj

that yields the maximal probability f(r[k]|Hj) among all hypotheses. Since the

background noise nb[k] and additive noise n[k] are assumed to beGaussian, the

received signal r[k] is also Gaussian.

FromEq. (5.77), we can see that the randomness in r[k] is different inside the

target window w[k� j] from outside it. Inside this window, we have only

additive noise n[k] whereas we have both n[k] and nb[k] outside the window.

We have already assumed that the background noise and additive noise are

statistically independent, white Gaussians. Thus the noise inside the target

window is statistically independent of the noise outside the target window and

we can express the log-likelihood functions as follows:

ln f r k½ � Hj

��	 

 �
¼ ln f rin k½ � Hj

��	 

 �
þ ln f rout k½ � Hj

��	 

 �
¼ A� 1

2�2n

X
k2Ij

r k½ � � s k� j½ �ð Þ2 � 1

2 �2n þ �2b
	 
X

k=2Ij
r k½ � �mbð Þ2

(5:78)

where A is a constant independent of the hypothesis. Maximal likelihood

detection is achieved by selecting the hypothesis j that results in the maximal

log-likelihood. Let us now consider two special cases.

Low background noise Let us consider the special case where the background

noise variance is sufficiently small to be approximated by zero. Thenmaximizing
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the log-likelihood in Eq. (5.78) can be seen to be equivalent to minimizing the

following ‘‘distance’’ measure between received signal r[k] and a template t[k� j]

centered at k¼ j.

d 2
j ¼�

X
k2Ij

r k½ � � s k� j½ �ð Þ2 þ
X
k=2Ij

r k½ � �mbð Þ2

¼
X
k

r k½ � � t k� j½ �ð Þ2
(5:79)

where

t k½ � ¼ s k½ � if w k½ � ¼ 1
mb if w k½ � ¼ 0

�

Minimizing the squared distance d 2
j in Eq. (5.79) with respect to j is equiva-

lent to maximizing the cross-correlation between the received signal r[k] and

the template t[k] as shown below.

d 2
j ¼

X
k

r k½ � � t k� j½ �ð Þ2 ¼ Er þ Et � 2
X
k

r k½ �t k� j½ � (5:80)

where

Er ¼
X
k

r k½ �ð Þ2 and Et ¼
X
k

t k� j½ �ð Þ2

where the template energy Et is unaffected by shifts in the target signal, as long

as the shifts do not take the target outside the observation window of N

samples.

Note that cross-correlation once again proves to be the optimal solution.

Eq. (5.79) shows that the optimal template should include the mean of the

background. This is consistent with the experimental observations that using a

carefully selected non-zero background in correlation filter design usually

leads to better performance than using zero background. Some investigations

[53] have shown that this background level should equal the average value of

the target.

Low additive noise Let us now consider the special case where the additive

noise variance is negligible compared to the background noise variance. From

Eq. (5.78), we see that maximizing the log-likelihood in this case is equivalent

to minimizing the following distance measure �j.

�2
j
¼�
X
k2Ij

r k½ � � s k� j½ �ð Þ2 ¼ Ej
r þ Es � 2

X
k

r k½ �s k� j½ � (5:81)
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where

E j
r¼
X
k

r2 k½ �w k� j½ �

and

Es¼
X
k

s2 k� j½ �w k� j½ � ¼
X
k

s2 k� j½ �

whereEs is independent of target shift j as long as the target is not shifted out of

the observation window. In contrast, the received signal running energy E j
r

computed over the target window centered at j can change with j. Thus

minimizing the distance measure �j is equivalent to maximizing the correlation

of r[k] with s[k], only if the running energy E j
r of the received signal is relatively

constant with shift j. Also, the template needed for this correlation is zero

outside the target support and is independent of the constant background

level.

This methodology has been extended to other cases including colored noise,

multiplicative noise, combinations of these noises, and target orientation

estimation. Those topics are beyond the scope of this book and references

are provided for the interested reader.

5.7 Chapter summary

The aim of this chapter was to provide an overview of the use of correlation in

detecting and locating a signal in noise. It is desirable that the correlation be

tolerant to input noise and provide sharp correlation peaks that are easily

discernible. We have defined performance measures that quantify these desir-

able attributes. Correlation can be implemented using optical or digital meth-

ods and these implementations impose their own requirements. The optical

correlator peculiarities can result in special correlation filter designs such as

phase-only filters, binary phase-only filters and cross-coupled filters. For

digital implementation, quantizing the input signals to one bit results in

binarized correlations that are easy from a hardware perspective. We also

briefly looked at the case of non-overlapping noise. The major points are as

follows:

* An important metric for quantifying the noise tolerance of a digital correlation

filter is the signal-to-noise ratio (SNR), defined as the ratio of the square of the

average correlation peak to its variance. If the underlying noise is Gaussian, SNR is

monotonically related to the probability of error and maximizing the SNR is

equivalent to minimizing the probability of error. For non-Gaussian noise, there
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may be no such monotonic relationship, but SNR is still a useful metric for

quantifying a correlation filter’s noise tolerance.

* The SNR is maximized by the filter H fð Þ ¼ �S� fð Þ=Pn fð Þ, where � is an

arbitrary complex constant, S�( f ) is the conjugated FT of the known reference

signal, and Pn( f ) is the power spectral density (PSD) of the additive noise. For the

case of white noise, the maximal-SNR filter is the matched filter (MF) given

digitally as H( f )¼S�( f ), but optically must be dimensionally converted from

S ’s units of [V/m] to the dimensionless complex transmittance of the filter SLM.

The MF magnitude is the same as the magnitude of the reference signal Fourier

transform (FT), whereas theMF phase is the negative of the phase of the signal FT.

Use of the MF results in an output signal that is the cross-correlation of the input

signal with the reference signal.

* The MF is phase-canceling in that its phase and the phase of the FT of the signal

sum to a constant. We can show that the correlation peak is guaranteed to be at the

origin when the input contains the unshifted target signal with no noise, and when

the filter is phase-canceling. Some correlation filters such as binary phase-only

filters (BPOFs) are not phase-canceling and cannot guarantee that the peak

will occur at the origin when the input contains the unshifted target signal with

no noise.

* Correlation can be implemented optically or digitally. Digital implementations can

be either direct or the usually more efficient FFT based methods. The DFT based

methods perform circular correlations rather than linear correlations and care must

be taken to ensure that we obtain the desired linear correlations.

* Matched filters of most images are usually of low-pass nature with a large dynamic

range and thus absorb much of the light incident on the frequency plane of a

VanderLugt optical correlator. At the expense of increasing the deleterious effects

of noise, we can achieve higher light throughput by using a phase-only filter (POF)

that has the same phase as the MF, but a unit magnitude. A side benefit of using

the POF is that it usually leads to sharper correlation peaks for low-pass images.

The use of a POF is also somewhat justified by the empirical result that the phase of

the FT of an image appears to contain more information than its magnitude.

However, the POF is an all-pass filter and thus possesses no noise suppression

capabilities.

* The peak sharpness of a correlation output can be quantified using peak-to-

correlation energy (PCE), defined as the ratio of correlation peak intensity to the

total noiseless input image energy that is passed through to the correlation plane.

The PCE is maximized by the inverse filter (IF), but the IF is of little practical value

since it amplifies high frequencies, and hence the input noise, to unacceptably high

levels.

* Correlation peak position is affected by input noise and peak location error (PLE)

quantifies the variance in the correlation peak position. Using the Cauchy–Schwarz

inequality, we can prove that the filter that maximizes the SNR also minimizes the

PLE. An interesting point is that the PLE is affectedmore positively (i.e., it becomes
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smaller) by increasing the SNR at higher frequencies. The peak position in each

direction can be estimated to sub-pixel accuracy using a second-order polynomial

fit for the three pixels centered on a correlation peak.

* A rigorous way of trading off SNR versus PCE is through the design of optimal

tradeoff (OT) correlation filters. The OT filters are obtained by maximizing the

figure of merit (FOM), which is a ratio with the same numerator as that of the SNR

and the PCE. The denominator, however, is a weighted sum of the denominators in

PCE and SNR. Theweighting parameter � can be chosen to emphasize onemeasure

relative to the other. Maximizing FOM results in an OT filter that provides SNR

and PCE values that cannot be simultaneously exceeded by any other correlation

filter.

* The poor noise tolerance of a POF can be improved by allowing certain filter

frequencies to take on zero values thus providing some noise suppression capabil-

ity. The set of frequencies for which the filter has a non-zero magnitude is known as

its region of support (ROS). The ROS that maximizes the output SNR can be

determined by sorting Sk/Pk, the ratio of signal FTmagnitude samples to noise PSD

samples. This algorithm to select maximal SNR can also be used to select the ROS

to maximize PCE or to maximize FOM.

* Some SLMs can accommodate only two phases and, for such SLMs, binary phase-

only filters (BPOFs) may be convenient. The BPOFs, like all other all-pass filters,

have no noise suppression capability. The BPOF that maximizes the correlation

peak intensity can be proven to be of the form that binarizes the real part of

[S( f )e� j�], where � is known as the threshold line angle (TLA). The SNR of BPOFs

can be improved by using ternary filters that take on three values, namely �1, 0,

and þ1. An efficient algorithm is available to determine the ROS for such ternary

filters. It appears that four phases can provide average correlation peak intensities

that are within 1 dB of the peak intensities from the full-phase POFs.

* Including the filter-independent detector noise in the SNR definition, and taking

into account the minimal and maximal SLM magnitudes, results in saturated

correlation filters. Saturated filters are the same as the matched filters except that

the filter magnitude is saturated to either the maximal magnitude or the minimal

magnitude.

* For a general SLM, amplitude and phase transmittances are cross-coupled. The

filter that maximizes the SNRwhile taking on values only from�, the set of allowed

SLM transmittance values, can be shown to be the minimum Euclidean distance

optimal filter (MEDOF) of the matched filter; i.e., the optimal filter is obtained by

mapping each pixel of the fully complex matched filter to the nearest value from set

�. This still leaves two parameters (namely gain G and angle l) to be determined,

either by trying all meaningful values, or by a cross-correlation in a log-polar

transform domain.

* In direct digital correlation, we can use the gray scale for both signals or use

quantized versions of one or both signals for achieving hardware simplicity. The

peak-to-sidelobe ratio (PSR) of gray-scale correlation can be shown to equal the
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space bandwidth product of the reference signal. For signals that can be modeled as

sample realizations from a Gaussian random process, the PSR can be shown to be

about 4 dB higher when both signals are binarized, compared to the gray-scale

correlation. However, the noise behavior of the binarized correlations may be

unsatisfactory in low-SNR situations.

* Additive noise is not a good model for non-overlapping background noise in

observed scenes. Multiple hypotheses testing methods can be employed to locate

the target in the presence of additive and non-overlapping background noise. For

the low additive noise case, the optimal detection strategy is cross-correlation of the

observed scene with the segmented target, except that we need to take into account a

running scene energy. For the low background noise case, the optimal detection

strategy is to cross-correlate the observed scene with the target signal in a constant

background.
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6

Advanced correlation filters

Ever since VanderLugt’s pioneering work [5] on the implementation of matched

filters (MFs) by coherent optical processing, there has been considerable interest

in using correlators for recognizing patterns in images. The MF is of course

optimal for finding a given pattern in the presence of additive white noise,

and, as we have shown in Chapter 5, yields the highest output SNR. In radar

signal processing and digital communications, matched filters have been very

successful in many applications. For image processing, perhaps the greatest

appeal of correlation filtering lies in its ability to produce shift-invariant peaks

(because correlation filters are just a special class of LSI filter) and the resultant

processing simplicity since we can avoid the need for image segmentation and

registration.1 Unfortunately, MFs are not adequate for practical pattern recog-

nition since their response degrades rapidly when the patterns deviate from the

reference [57]. Such pattern variations can be induced by scale changes, rota-

tions or signature differences, all of which are common phenomena associated

with the general pattern recognition problem.

One straightforward approach to this problem would be to apply a large

number of MFs, each tuned to a particular variation. However, the enormous

storage and processing requirements of this approach make it impractical. The

alternative is to design robust correlation filters that can overcome the limitations

of theMFs. Correlation filters are 2-D finite impulse response (FIR) filters whose

output is expected to be stable and predictable in response to a known class of

input patterns, and we can use many of the tools discussed in Chapter 3 for LSI

systems. As in the case of the MF, the discrete time equation describing the

output of the correlation filters is given by:

1 Statistical pattern recognition, model-based techniques, and even neural networks often require the object
to be segmented from the background and registered before matching the edges, dimensions, or other
features.
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g m; nð Þ ¼ f m; nð Þ � h m; nð Þ
¼
X
k

X
l

f ðmþ k; nþ lÞ � hðk; lÞ

¼
X
k

X
l

f ðk; lÞ � hðk�m; l � nÞ
(6:1)

where the symbol� represents two-dimensional correlation, and g(m, n) is the

correlation surface produced by the filter h(m, n) in response to the input image

f(m, n). The analog version of the above equation is

g �x; �y
� �

¼ f x; yð Þ � h x; yð Þ

¼
ZZ

f �x þ x; �y þ y
� �

h x; yð Þdxdy (6:2)

While the analog equation is useful for analysis, it ismore convenient to deal with

the discrete form since the filters are always synthesized using digital computers.

Strictly speaking, the entire correlation surface g(m, n) is the output of the

filter. However, the point g(0, 0) is often referred to as the ‘‘filter output’’

because this is the value usually compared to a preset threshold to determine

whether the input object is a desired pattern or not. In part, the reason for

using this is to remain consistent with the terminology used for theMF. In any

event, the reference imagery is expected to have its highest correlation at the

origin. For this reason, a peak is expected in the correlation surface at g(0, 0).

With this interpretation in mind, the peak filter output is given by

g 0; 0ð Þ ¼
XX

f m; nð Þhðm; nÞ ¼ fTh (6:3)

Of course, the position of the peakwill shift with anymovements of the pattern

within the input image as well as with noise, and may not always be at the

origin in practice.

Correlation filter theory deals with the design of h(m, n) such that the filter

output can be used to achieve the following three objectives:

1. recognize distorted versions of the reference pattern,

2. behave robustly in the presence of clutter and noise, and

3. yield a high probability of correct recognition while maintaining a low error rate.

Thus our goal in this chapter is to go beyond simple correlation filters, such as

the matched filter and the phase-only filter that rely on a single reference

image, and design advanced correlation filters that can build in tolerance to

anticipated variability in the pattern of interest. Much of this chapter deals

with the design of advanced digital correlation filters. Correlation filter designs

for optical implementation are discussed in detail in Chapter 8.
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While a complete treatment of the topic is beyond the scope of this book,

several fundamental and key concepts for making correlation a viable approach

for pattern recognition are covered in this chapter. The rest of the chapter is

organized as follows. Section 6.1 deals with techniques developed to handle

cases that are limited to in-plane distortions such as in-plane rotation and scale

changes. The application of coordinate transform techniques and circular

harmonic functions are discussed in this section. Section 6.2 is devoted to more

general filter synthesis techniques that handle arbitrary distortions. Various

early methods as well as more advanced techniques are reviewed in detail.

A transform-based distance classifier technique using correlation is described

in Section 6.3. This approach yields a quadratic classifier that has proved to be

very useful for discriminating between similar classes of patterns in images.

Section 6.4 introduces polynomial correlation filters (PCFs) that extend the

concept of correlation filters to include nonlinearities. Section 6.5 shows how

statistical methods can be used to predict the performance of simple correlation

filters. In Section 6.6, we briefly introduce a recently developed approach [52] to

optimizing advanced pattern recognition criteria such as the Fisher ratio and

Bayes error rate. More details about advanced pattern recognition metrics can

be found in Chapter 8. Finally, a chapter summary is provided in Section 6.7.

6.1 In-plane distortion invariance

Distortions in an image due to scale changes and in-plane rotations can be

described mathematically in terms of coordinate transforms. To the extent

that in-plane variations do not cause obscurations or changes in the general

shape of an object, the pattern is completely characterized by a single image. It

has been shown that these filters can also be used for estimating the distortion

(scale and orientation) parameters. The image changes can be likened to what

happens as a camera remains centered on, and orthogonal to, a planar object

while being rotated about, or translated along, the line of sight.

6.1.1 A basic coordinate transform method

In this section, we describe a technique [58] to synthesize a correlation filter

from a single image, assuming that the desired response of the filter has been

specified for all possible rotation and scale variations of the reference

pattern. Changes due to scale and rotations in a Cartesian coordinate system

manifest themselves as shifts in a log-polar coordinate system. This property

can be exploited to obtain a filter that behaves in a predictable fashion in
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response to in-plane rotation and scale variations. Consider f(x, y) to be an

image in Cartesian coordinates. Its log-polar transform (LPT) f(�, �)

is computed using mappings � ¼ ln rð Þ ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xoð Þ2þ y� yoð Þ2

q� �
and

�¼ atan2((y� yo), (x� xo)), where atan2(� , �) is the two-argument arctangent

satisfying �¼ atan2 (k sin�, k cos�) with k being any positive number and

0��< 2p. Thus the image is mapped to a new coordinate system measured

by the natural logarithm of the radial distance and angle with respect to the

origin {xo, yo}. Note that we use the two-argument arctangent to resolve the

quadrant into which the point falls. The entire rotational span is captured

within 0� �< 2p. Since log x!�1 as x! 0, we cannot capture the entire

image all the way to (xo, yo). If a is the minimum radius to be represented in

the log-polar image and b is the largest, then an annular region in the

original image is represented in log a� �� log b, 0� �<2p.
It is often necessary to compute the LPT of a discrete image using a digital

computer. If the transformed image is to beN pixels in � andM pixels in �, then

choosing

i ¼ 1þ log �� log a

log
Pffiffiffi
2

p
� �

� log a

N � 1ð Þ

j ¼ 1þ atan2 y; xð Þ
2p

M � 1ð Þ

(6:4)

for an input image that is P pixels square, and a ¼ P expð�2pNMÞ=
ffiffiffi
2

p
, will

result in a conformal version of the input image in the log-polar domain, and

will also assure 1� i�N and 1� j�M.

Although digital considerationsmust bemade in practice, we shall treat images

as continuous functions for the purposes of our discussion here. If the original

image is scaled and rotated, the LPT essentially shifts and can be expressed

as f(�þ ��, �þ ��), where �� is the log of the scale factor, and �� is the angle

of rotation. The coordinates of the equivalent distorted image f(x0, y0) in

the Cartesian system can be obtained by the equation

x0

y0

� 	
¼ A

x
y

� 	
(6:5)

where

A ¼ e��
cos ��ð Þ sin ��ð Þ
� sin ��ð Þ cos ��ð Þ

� 	
(6:6)
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It is true that scaled and rotated patterns may be recognized by first using the

LPT to convert rotation and scale changes to shifts, and then applying anMF in

the transformed coordinate system. This approach may prove cumbersome in

practice since the images need to be centered and the on-line computation of the

LPT is required. Real-time methods for getting the LPT image include (1) using

an imager that samples the input irradiance pattern on the log-polar grid, and

(2) programmed digital transformations exercised on special-purpose image-

processing hardware. The correlation filter technique described here differs in

that the LPT is only used for the design of the filter, but does not require the

on-line use of any coordinate transform (i.e., the implementation involves only a

straightforward correlation in Cartesian coordinates).

Let us now discuss how the LPT may be used to obtain a filter whose

response can be fully controlled in the presence of rotation and scale changes.

Recall that the filter output is the correlation value at the origin, which is the

same as the inner product of the input image and the filter function.

Mathematically, the filter output due to a distorted image is given byZZ
f x0; y0ð Þh x; yð Þdxdy ¼ c ��; ��

� �
(6:7)

where (x0, y0) is related to (x, y) according to Eq. (6.5), and the notation c(��, ��)

is used to emphasize the fact that, in general, the filter output changes with the

distortion of the input image characterized by the parameters �� and ��.

It follows from Eq. (6.7) that when the image is known, the filter can be

uniquely determined if the output c(��, ��) is specified for all values of �� and ��.

We therefore treat c(��, ��) as a free parameter that can be selected by the user,

and refer to it as the signature control function (SCF). In principle, the SCF,

c(��, ��) can be any desired correlation peak signature (as a function of in-plane

rotation) for the filter.

Integrals in Cartesian and log-polar coordinates can be related using the

Jacobian (defined below) of the coordinate transform. If f(x, y) and g(x, y) are

two functions in Cartesian coordinates with f(�, �) and g(�, �) as their respec-

tive LPTs, thenZZ
f x; yð Þg x; yð Þdxdy ¼

ZZ
f �; �ð Þg �; �ð Þ Jj jd�d� (6:8)

where the Jacobian of the transformation jJj is given by

Jj j ¼

dx

d�

dy

d�
dx

d�

dy

d�




















¼

e� cos �ð Þ e� sin �ð Þ

�e� sin �ð Þ e� cos �ð Þ














 ¼ e2� (6:9)
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Using this relation, the left side of Eq. (6.7) can be expressed as an integral in

log-polar coordinates to yieldZZ
f �þ ��; �þ ��
� �

h �; �ð Þe2�d�d� ¼ c ��; ��
� �

(6:10)

Defining ĥ(�, �)¼ h(�, �)e2�, the equation for the filter output becomesZZ
f �þ ��; �þ ��
� �

ĥ �; �ð Þd�d� ¼ c ��; ��
� �

(6:11)

or

f �; �ð Þ � ĥ �; �ð Þ ¼ c �; �ð Þ (6:12)

In other words, given the LPT of the image f(�, �) and the SCF c(�, �) (i.e., the

desired output for every combination of scale and rotation), it is possible to

calculate the filter function using the relation in Eq. (6.11). Equivalently, the

solution for the filter may be expressed as

h �; �ð Þ ¼ e�2�IFT
FT c �; �ð Þf g
FT f �; �ð Þf g

� �
(6:13)

where FT{} and IFT{} denote the forward and inverse Fourier transform

operations respectively. It should be noted that the expression in Eq. (6.13)

cannot be evaluated at frequencies where the denominator is zero. In practice,

it may be sufficient to set the filter response to zero at all such frequencies. The

correlation filter h(x, y) can then be obtained by applying the inverse LPT to

h(�, �).

It is interesting to note that the system of equations in Eq. (6.11) is com-

pletely specified. As a consequence, only one solution for h(�, �) exists that

satisfies the constraints imposed on the output by the SCF. Therefore, the filter

function cannot be further optimized with respect to any other performance

criterion.2 This is a consequence of the fact that the filter’s output is fully

specified over all possible distortions (scale and rotation). In the next section,

we discuss techniques that deal only with rotation tolerance, and hence allow

more degrees of freedom for optimization of the filter’s performance.

6.1.2 Circular harmonic functions

Circular harmonic functions (CHFs) [59, 60] have proved to be an important

concept for the design of in-plane rotation-invariant filters. To define CHFs,

2 Several performance criteria for filters will be described in Section 8.2.
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we transform Cartesian coordinates {x, y} to polar coordinates {r, �} using the

relations

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xoð Þ2þ y� yoð Þ2

q
and � ¼ atan2 y� yoð Þ; x� xoð Þð Þ (6:14)

where {xo, yo} is the center of rotation of the image in the Cartesian coordinate

system. The polar transform f(r, �) of an image is periodic in � with period 2p,
and consequently can be expressed by a Fourier series as follows:

f r; �ð Þ ¼
X1

m¼�1
fk rð Þe jk� (6:15)

The term fk(r) is known as the kth circular harmonic component and is given by

fk rð Þ ¼ 1

2p

Z2p
0

f r; �ð Þe�jk�d� (6:16)

The numerical computation of circular harmonics requires Eq. (6.14) to be

implemented using carefully written polar transform routines. Figure 6.1

shows the image of a tank from a broad-side view, its digitally computed

CHFs and the reconstruction from just the zeroth-order CHF. Note that the

reconstruction from the zeroth-order CHF is circularly symmetric, but loses

much of the detail.

In some applications it may be convenient to apply the CHF expansion to an

image in the frequency domain. In such cases, we let F(r, �) be the polar

transform of F(u, v), the Fourier transform of f(x, y). The corresponding

circular harmonic functions, Fk(r) are given by

Fk rð Þ ¼ 1

2p

Z2p
0

F r; �ð Þe�jk�d� (6:17)

(a) (b) (c)

Figure 6.1 Images of (a) a tank, (b) its CHF expansion, and (c) the image
reconstructed with only the zeroth order harmonic
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so that the image’s Fourier transform (represented in polar coordinates as

F(r, �)) can be expanded in terms of the CHFs as

F r; �ð Þ ¼
X1

k¼�1
Fk rð Þe jk� (6:18)

To see how CHFs can be used to obtain a rotation-invariant filter, let C(��)

represent the filter output when the input image is rotated by �� degrees. When

the image is at nominal orientation and ��¼ 08, the filter’s output can be

expressed in the frequency domain as follows:

C 0ð Þ¼
ZZ

F u; vð ÞH� u; vð Þdudv

¼
ZZ

F r; �ð ÞH� r; �ð Þrdrd�
(6:19)

whereH(u, v) is the Fourier transform of the filter. Using the CHF expansion,

this becomes

C 0ð Þ ¼
Z1
r¼0

Z2p
�¼0

X1
k¼�1

Fk rð Þejk�
 ! X1

l¼�1
H�

l rð Þe�jl�

 !
rdrd� (6:20)

It is now possible to derive the expression for the filter output when the input

image is rotated by �� degrees. The rotation produces a shift along � so that

the Fourier transform of the image is now given in polar coordinates by

F(r, �þ ��) with the CHF expansion

F r; �þ ��ð Þ ¼
X1

k¼�1
Fk rð Þejk �þ��ð Þ (6:21)

The filter output for a rotation of �� degrees is obtained by substituting Eq.

(6.21) into Eq. (6.20) to yield the following:

C ��ð Þ ¼
Z1
r¼0

Z2p
�¼0

X1
k¼�1

Fk rð Þejk �þ��ð Þ

 ! X1
l¼�1

H�
l rð Þe�jl�

 !
rdrd�

¼
Z1
r¼0

X1
k¼�1

X1
l¼�1

Fk rð ÞH�
l rð Þe jk��

Z2p
�¼0

e jðk�lÞ�d�

2
4

3
5rdr

(6:22)
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Since

Z2p
0

ejðk�lÞ�d� ¼
0 if k 6¼ l

2p if k ¼ l

8<
: (6:23)

Eq. (6.22) simplifies as follows:

C ��ð Þ ¼ 2p
Z1
r¼0

X1
k¼�1

Fk rð ÞH�
k rð Þejk��rdr (6:24)

Finally, this can be more compactly written as

C ��ð Þ ¼
X1

k¼�1
Cke

jk�� (6:25)

where

Ck ¼ 2p
Z1
r¼0

Fk rð ÞH�
k rð Þrdr (6:26)

Thus, the filter output C(��) as a function of the image in-plane rotation angle

�� can be expressed in terms of the coefficients Ck, defined in Eq. (6.26). If the

filter is made up of only one CHF, i.e.,

Hk rð Þ ¼
Hko rð Þ k ¼ ko

0 k 6¼ ko

8<
: (6:27)

then there is only one non-zero coefficient Cko and the filter output is given by

C ��ð Þ ¼ Ckoe
jko�� (6:28)

and

C ��ð Þj j ¼ Ckoj j (6:29)

which proves that the magnitude of the filter output is invariant to the angle of

rotation. Without placing any other restrictions on the filter, it is thus possible

to ensure a completely rotation-invariant response by allowing only one non-

zero CHF in the composition of the filter. If, additionally, it is required that the

filter be circularly symmetric, i.e., H(r, �)¼ Ĥ(r), then the circular harmonics

of the filter are
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Hk rð Þ ¼ 1

2p

Z2p
�¼0

H r; �ð Þe�jk�d�

¼ 1

2p

Z2p
�¼0

Ĥ rð Þe�jk�d� ¼
Ĥ rð Þ k ¼ 0

0 k 6¼ 0

8><
>:

(6:30)

which shows that the only non-zero CHF occurs for k¼ 0, and consequently

the filter output is given by

C ��ð Þ ¼ C0 (6:31)

which is always independent of the angle or rotation. It is obvious from the

circular symmetry of the zeroth-order CHF in Figure 6.1(c) that it will always

yield a rotation-invariant response.

In this section, we have seen that a rotationally invariant filter can be

obtained by using only one circular harmonic of the reference image.

However, such filters usually exhibit poor discrimination properties, since a

considerable amount of image information is lost when we ignore the remain-

ing circular harmonics. Advanced techniques make use of all CHF harmonics

to obtain a prescribed filter response. In fact, the theory has been extended to

relate the CHF formulation to well-established techniques in digital signal

processing for the design of finite impulse response (FIR) filters. The interested

reader is referred to the references [58–61] for additional details.

6.2 Composite correlation filters

Composite correlation filters were developed to handle the more general types

of distortions that cannot bemathematically modeled by coordinate transforms

or CHFs. Composite filters are derived from several training images, which are

representative views of the object or pattern to be recognized. In principle,

such filters can be trained to recognize any object or type of distortion as long

as the expected distortion can be captured by the training images. Thus, the

proper selection of training images is an important step in the design of

composite filters.

The objective of all composite filters is to be able to recognize the object on

which they are trained, at any of a suite of viewpoints of the object, while being

able to reject everything else. In other words, the filters should exhibit a

high correct recognition rate while simultaneously keeping the false accept-

ance rate low, a concept later explained inmore detail – the ROC curve. As will
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be shown, the optimization of key performance criteria offers a methodical

approach to achieving these objectives. However, the importance of having a

properly chosen training set cannot be overstated. Generally speaking, the

training set should characterize the expected variations whether such vari-

ations are due to spectral changes in the object’s signature, sensor phenomena,

or imaging geometry. Ideally, the data should be acquired in the relevant

spectral band with the sensor to be used. However this may not always be

feasible in practice and one may resort to synthetic imagery and computer-

generated models. It is also not practical to expect a large number of training

images to capture all possible variations, since such an image set may be too

large to store and use in field applications where storage and computation are

at a premium. Thus, it is desirable that composite filters trained on a limited set

of training images should be able to generalize and find objects under conditions

not explicitly seen in the training process. This is termed the generalization

ability of the composite filter. There are extensive issues relating to the fidelity

and the source of training information, much of which is beyond the scope of

this book. It will be assumed for the purposes of the following discussions that

an adequate training set is available for filter synthesis. The training set, plus

additional information such as the log-polar representation to cover scale

and rotation distortions, must span the range of desired distortion, otherwise

there will be insufficient information to provide to the filter.

6.2.1 Early synthetic discriminant function (SDF) filters: The projection

SDF filter

One of the earliest composite correlation filters is known as the synthetic

discriminant function (SDF) filter [7]. In this approach, the filter is designed

to yield a specific value at the origin of the correlation plane in response to each

training image. For example, in a two-class problem, the correlation values at

the origin may be set to 1 for training images from one class, and to 0 for the

training images from the other class. The hope is that the resulting filter will

yield values close to 1 for all images from class 1 and close to 0 for all images

from class 2, and thus we can tell which class the input belongs to by looking at

the value at the origin.

The above idea works well if all of the images (including non-training

images) are always centered and thus we look only at the correlation value at

the origin. However, one of the main advantages of using a correlation filter is

its shift-invariance so we need not require that the input image be centered.

However, if the image is not centered, we will need to determine to which pixel

location the controlled values (of 1 and 0) have moved. This can be done easily
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if the controlled values stand out (e.g., 1 should be the peak in the correlation

output and 0 should be the minimum in the correlation output). Of course, the

premise was that the training data are adequate for characterizing all expected

variations (including the non-training images).

To develop the framework for SDF filters, we assume that a set ofN training

images is available. Let ui be the value at the origin of the correlation plane

gi(m, n) produced by the filter h(m, n) in response to a training image xi(m, n),

1� i � N. Therefore,

ui ¼ gi 0; 0ð Þ ¼
Xd1
m¼1

Xd2
n¼1

xi m; nð Þh m; nð Þ; 1 � i � N (6:32)

The original SDF filter approach was to design the filter to satisfy hard

constraints on ui. Let xi and h be vector representations (obtained by scanning

a 2-D array from left to right and from top to bottom, and placing the resulting

sequence of numbers into a column vector) of xi(m, n) and h(m, n), respectively.

This permits Eq. (6.32) to be written as

xTi h ¼ ui; 1 � i � N (6:33)

The aboveN linear equations can be written as a single matrix-vector equation:

XTh ¼ u (6:34)

where h is the filter vector containing d values, X¼ [x1, x2, . . . , xN] is a d�N

matrix with the N training image vectors (each with d pixels) as its columns,

and u¼ [u1, u2, . . . , uN]
T is anN� 1 vector containing the desired peak values

for the training images. However, since the number of training images N is

generallymuch smaller than the number of frequencies in the filters, the system

of equations is under-determined and many filters exist that satisfy the con-

straints in Eq. (6.34). To find a unique solution, h is assumed to be a linear

combination of the training images,3 i.e.,

h ¼ Xa (6:35)

where a is the vector of weights for linearly combining the columns of the data

matrix X. To determine a, we substitute for h in Eq. (6.34), which yields

XTXa ¼ u ) a ¼ XTX
� ��1

u (6:36)

3 Another reason for the linear combination requirement is that the resulting filters could be obtained in an
optics lab by exposing a holographic plate to different exposure levels/times of Fourier transforms of
different training images.
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Substituting this solution for a into Eq. (6.35) leads to the following projection

SDF filter solution:

h ¼ X XTX
� ��1

u (6:37)

where h is the d� 1 filter vector expressed in the space (not transform) domain.

As an example, consider the training images of a tank shown in Figure 6.2.

These images are used to synthesize the projection SDF filter shown inFigure 6.3.

The composite nature of the filter is quite evident. Each of the training images

is required to yield a value of 1.0 at the origin of the correlation plane.

The resulting correlation planes are shown in Figure 6.4.

As can be seen in Figure 6.4, the projection SDF filter yields a correlation

peak whose amplitude is guaranteed to be 1.0 by design when the input is a

Figure 6.2 Representative training images of a tank

Figure 6.3 Projection SDF filter synthesized from images shown in Figure 6.2
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training image. The process for determining the class of a test pattern requires

the peaks in the correlation surface to be located. The position of the pattern at

the input is indicated by the location of the peak. The filter is said to ‘‘recog-

nize’’ the pattern when the peak value exceeds a certain threshold. However,

the peak is surrounded by large sidelobes, which can lead to errors if

they exceed the main peak. In fact, this occurs frequently in practice with a

projection SDF filter since the filter design does not control any points in the

correlation plane other than the origin.

6.2.2 Minimum average correlation energy filter

In practice, it is desirable to suppress the sidelobes to ensure a sharp and

distinct correlation peak and reduce the chances of error. One way to achieve

this is to minimize the energy in the correlation plane (which naturally includes

the sidelobes). The average correlation energy (ACE) for theN training images

is defined as follows:

ACE ¼ 1

N

XN
i¼1

Xd1
m

Xd2
n

gi m; nð Þj j2 (6:38)

Using Parseval’s theorem, ACE can be expressed in the frequency domain as

ACE ¼ 1

d �N
XN
i¼1

Xd1
k

Xd2
l

Gi k; lð Þj j2 (6:39)

where Gi(k, l) is the 2-D Fourier transform of gi(m, n). Since

Gi(k, l)¼H(k, l) X�
i(k, l), the frequency domain expression for ACE becomes

(a) (b)

Figure 6.4 Output correlation plane produced by the projection SDF filter in
response to one of the training images, shown as (a) an intensity image, and
(b) as a mesh plot
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ACE ¼ 1

d �N
XN
i¼1

Xd1
k

Xd2
l

H k; lð Þj j2 Xi k; lð Þj j2 (6:40)

The formulation of a frequency domain expression for ACE using Parseval’s

theorem was the cornerstone in the further development of correlation filters.

To facilitate the analysis, we express H(k, l) as a vector, h, and define a

diagonal matrix, Xi, whose elements along the main diagonal are Xi(k, l).

Thus h and Xi represent the filter and the training images in the frequency

domain respectively. The expression for ACE then becomes

ACE ¼ 1

d � N
XN
i¼1

hþXið Þ X�
i h

� �
¼ hþ

1

d �N
XN
i¼1

XiX
�
i

" #
h

¼ hþDh

(6:41)

where D ¼ 1
d�N
PN
i¼1

X�
iXi is a d� d diagonal matrix.

As is the case with the projection SDF, the correlation peak is controlled

using hard constraints. By minimizing ACE, we expect to reduce the sidelobes

and sharpen the peak. To complete the analysis, the constraints on the correla-

tion peak must be expressed in the frequency domain as well. Since inner

products in the space domain are directly proportional to inner products in

the frequency domain, the constraint equation becomes

Xþh ¼ d � u (6:42)

where X is now a matrix whose columns xi are vector representations of the

Fourier transforms of the training images. The minimum average correlation

energy (MACE) filter [62] minimizes ACE in Eq. (6.41) subject to the hard

constraints in Eq. (6.42). This is equivalent to a constrained quadratic optimi-

zation problem where the quadratic function h
þDh is minimized subject to the

linear conditions Xþ
h¼ d � u. As discussed in Chapter 2, this can be achieved

using the method of Lagrange multipliers, which yields the optimum solution

h ¼ D�1X XþD�1X
� ��1

u (6:43)

The solution in Eq. (6.43) is in the frequency domain and h is therefore the

column vector containing the frequency-domain filter array H(k, l).

An example of the output from aMACE filter is shown in Figure 6.5. As can

be seen in the figure, the peak is very sharp with low sidelobes. MACE filters

have been shown to be effective for finding training images in background and

clutter, and they generally produce very sharp correlation peaks. They are the
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first filters that attempted to control the entire correlation plane. However,

there are two main drawbacks. Firstly, there is no in-built immunity to noise.

Secondly, the MACE filters are often excessively sensitive to intra-class vari-

ations. Nevertheless, the MACE filters paved the way for the frequency

domain analysis and development of correlation filters, and set the stage for

subsequent developments which are discussed later in this chapter.

6.2.3 Minimum variance synthetic discriminant function

Noise and clutter can severely affect the performance of a filter. Therefore, it is

important to characterize the behavior of the filter in the presence of noise and

clutter to optimize its response. For now, we assume that all quantities are in

the space domain and purely real. Also for simplicity of discussion, we adopt

the discrete 1-D notation for random processes although the same concepts

apply to 2-D signals and images. The filter’s output in response to a training

vector xi corrupted by the additive noise vector v is given by:

xi þ vð ÞTh ¼ xTi hþ vTh ¼ ui þ � (6:44)

Clearly, fluctuations in the filter output occur because of the noise component �.

In fact, the input noise is often a time-varying process v(n) so that the output

noise is also time-varying and may be denoted as �(n). In the following

discussions, the time-dependent notation is dropped for simplicity (and

because of the stationarity assumption for the input noise) but invoked as

necessary for clarification. Theminimum variance synthetic discriminant function

(MVSDF) [63] minimizes the variance of � in order to minimize the fluctu-

ations in the filter output.

(a) (b)

Figure 6.5 MACE filter correlation outputs: (a) an intensity image, and
(b) mesh plot
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Without loss of generality, let us assume that the noise is a zero-mean

process. In order to derive the expression for the optimum filter, consider the

output noise variance (ONV) given by:

ONV ¼ E �2
� �

¼ E vTh
� �2n o

¼ E hTvvTh
� �

¼ hTE vvT
� �

h ¼ hTCh

(6:45)

where C¼E{vvT} is the input noise covariance matrix. Since ONV does not

depend on the data, its expression is the same for all training vectors. The

MVSDF is designed to minimize the ONV while satisfying the peak constraints

on the training images in Eq. (6.34). This is equivalent to optimizing a quadratic

function subject to linear constraints. The method of Lagrange multipliers

readily yields the following MVSDF filter solution [63]:

h ¼ C�1X XTC�1X
� ��1

u (6:46)

Wewill now discuss some practical considerations forMVSDF filter synthesis.

The projection SDF filter is a special case obtained when the noise is white (i.e.,

C is the identity matrix). Thus, the projection SDF filter is the optimum filter

for recognizing the training images in the presence of additive white noise. In

general, however, one difficulty in using theMVSDF is thatC (a matrix of size

d� d, where d is the number of pixels in a training image and can be rather

large) is difficult to estimate and computationally difficult to invert. In cases

where the noise process is stationary, the covariance matrix is Toeplitz [17, 18]

and its elements can be characterized as

C ¼ ci; j
� �

¼ Cu i � jj jð Þ (6:47)

where Cu(�)¼E{uiuj} is the auto-covariance function of the noise process, ui
and uj are any two elements of the random vector v, and � ¼ |i� j| is a discrete

number representing the separation between the RVs, or the difference

between the row and column location of the covariance matrix element. For

instance, cii (elements on the main diagonal corresponding to the variance) are

all equal to Cu ð0Þ ¼ Efu2
i g. Essentially, all elements along a diagonal of a

Toeplitz matrix are identical. This structure can be exploited to invert the

covariance matrix and synthesize the MVSDF.

For the stationary noise case, a convenient form of the solution can be

formulated in the frequency domain. The power spectral density Su(k) of a

zero-mean, stationary random process is defined as the Fourier transform of

the auto-covariance function, i.e.,
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Su kð Þ ¼
Xd�1

�¼0

Cu �ð Þe�
j2pk�
d (6:48)

and

Cu �ð Þ ¼ 1

d

Xd�1

k¼0

Su kð Þe
j2pk�
d (6:49)

We have shown in Chapter 2 that when a random process with power spectral

density Su(k) passes through an LTI system with frequency responseH(k), the

power spectral density of the output is

S� kð Þ ¼ H kð Þj j2Su kð Þ (6:50)

Hence the variance of the output process can be expressed in the frequency

domain as

ONV ¼ C� 0ð Þ ¼ 1

d

Xd�1

k¼0

S� kð Þ

¼ 1

d

Xd�1

k¼0

H kð Þj j2Su kð Þ ¼ hþPh

(6:51)

where P is a diagonal matrix with samples of the noise power spectral density

Su(k) along its main diagonal, and h is the filter represented as a vector in the

frequency domain. There are many techniques to estimate the power spectral

density of a stationary random process and the inversion of the diagonal

matrix P is trivial.

The frequency domain version of theMVSDF can now be readily derived by

defining the columns of the data matrixXwith columns that are the vectorized

versions of the 2-D Fourier transforms of the training images. We minimize the

ONV in Eq. (6.51) subject to the frequency domain constraints in Eq. (6.42).

Again, using the method of Lagrange multipliers we find that

h ¼ P�1X XþP�1X
� ��1

u (6:52)

The MACE filter yields sharp peaks that are easy to detect while the MVSDF

filter is designed to provide robustness to noise. When there is only one

training image, the MACE filter becomes the inverse filter, whereas the

MVSDF filter becomes the matched filter. Since both attributes are important

in practice, it is desirable to formulate a filter that possesses the ability to
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produce sharp peaks and behaves robustly in the presence of noise. It was

realized early on [64] that both characteristics may be incorporated into a filter

of the following type:

h ¼ Dþ Cð Þ�1
X X Dþ Cð Þ�1

X
h i�1

u (6:53)

and that the properties of such a filter would provide an optimal tradeoff

between theMACE filter at one extreme and theMVSDF at the other. Amore

systematic development of this concept, and techniques for optimally trading

off between various performance criteria will be discussed in Section 6.2.6.

6.2.4 Designing distortion tolerant filters without hard constraints

The SDF filters discussed up to now have assumed that the distortion toler-

ance of a filter could be controlled by explicitly specifying desired correlation

peak values for training images. For example, we use correlation peak values

of 1 for true class and 0 for false class. Another approach is to remove the hard

constraints altogether. There are several observations that motivate this

approach. Firstly, non-training images always yield different values from

those specified and achieved for the training images. Secondly, no formal

relationship exists between the constraints imposed on the filter output and

its ability to tolerate distortions. In fact, it is unclear that even intuitively

satisfying choices of constraints (such as the equal correlation peak [ECP]

filter condition whereby the training images from the desired class give values

of 1 and training images from the other class yield values of 0) have any

significant impact on a filter’s performance. In this section, we describe an

approach that addresses the distortion tolerance problem without imposing

such hard constraints on the filter.

The key idea is to treat the correlation plane as a new pattern generated by

the filter in response to the input image. We start with the notion that the

correlation planes are linearly transformed versions of the input image,

obtained by applying the filter. Thus, attention should be paid not only to

the correlation peak, but also to the entire correlation surface.

With the above discussion in mind, a metric for distortion is defined as the

average variation in images after filtering. If gi(m, n) is the correlation surface

produced in response to the i th training image, the average variation between

the training image correlation surfaces in a mean square error (MSE) sense is

distortion metric ¼ 1

NðN � 1Þ
XN
i¼1

XN
j¼1

X
m

X
n

gi m; nð Þ � gj m; nð Þ

 �2

(6:54)

214 Advanced correlation filters



We are using squared values rather than magnitude squared since our training

images are assumed to be real and the resulting correlation outputs would be

real (if we ensure proper symmetry for the filter). This metric is also referred to

as the average similarity measure (ASM) [65], since it is a measure of the

average similarity (or more correctly dissimilarity) between the filtered images.

We now show that a simpler expression for ASM is

ASM ¼ 1

N

XN
i¼1

X
m

X
n

gi m; nð Þ � �g m; nð Þ½ �2 (6:55)

where �g m; nð Þ ¼ 1
N

PN
j¼1 gj m; nð Þ is the average of the training image correla-

tion surfaces, and Eq. (6.54) and Eq. (6.55) are mathematically equivalent. The

benefit of the form in Eq. (6.55) is that it requires fewer calculations and is

easier to compute.

To show that the metrics in Eq. (6.54) and Eq. (6.55) are the same, we first

switch to vector notation and rewrite Eq. (6.55) as follows:

ASM ¼ 1

N

XN
i¼1

gi � �gj j2 ¼ 1

N

XN
i¼1

gTi gi � �gT�g (6:56)

where gi and �g are the vector representations of gi(m, n) and �g(m, n) respec-

tively. Similarly in vector notation Eq. (6.54) becomes

distortion metric ¼ 1

N N � 1ð Þ
XN
i¼1

XN
j¼1

gi � gj


 

2

¼ 1

N N � 1ð Þ
XN
i¼1

XN
j¼1

gTi gi þ gTj gj � 2gTi gj

h i

¼ 1

N N � 1ð Þ
XN
i¼1

NgTi gi þ
XN
j¼1

gTj gj � 2NgTi �g

" #
(6:57)

This can be further simplified to obtain

distortion metric ¼ 1

N � 1ð Þ
XN
i¼1

gTi gi þ
XN
j¼1

gTj gj � 2N�gT�g

" #

¼ 2

N � 1ð Þ
XN
i¼1

gTi gi �N�gT�g

" #

¼ 2N

N � 1ð Þ
1

N

XN
i¼1

gTi gi � �gT�g

" #
(6:58)
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The right-hand sides of Eqs.(6.56) and (6.58) are identical except for a scale

factor. Hence the pair-wise MSE distortion metric in Eq. (6.54) and the ASM

in Eq. (6.55) are equivalent.

Thus, theASM is anMSEmeasure of distortions (variations) in the correlation

surfaces relative to an average shape. In an ideal situation, all correlation

surfaces produced by a distortion-invariant filter (in response to a valid

input pattern) would be the same, and the ASM would be zero. In practice,

minimizing the ASM improves the stability of the filter’s output in response to

distorted input images.

We will now discuss how to formulate the ASM as a performance criterion

for filter synthesis. This discussion is best developed in the frequency domain

using matrix-vector notation for convenience. Using Parseval’s theorem, the

ASM can be expressed in the frequency domain as

ASM ¼ 1

N � d
XN
i¼1

X
k

X
l

Gi k; lð Þ � �G k; lð Þ


 

2 (6:59)

where Gi(k, l) and �G(k, l) are Fourier transforms of gi(m, n) and �g(m, n)

respectively, and d is the total number of pixels in each image. Then, in

matrix-vector notation, Eq. (6.59) can be expressed as

ASM ¼ 1

N � d
XN
i¼1

gi � �gj j2 (6:60)

with gi and �g now as vector representations of theGi(k, l) and �G(k, l) respectively.

Let xi be a vector that represents the Fourier transform of the ith training

image, and m ¼ 1
N

PN
i¼1xi be the average of the training images. We define the

diagonal matrices M and Xi with the elements of m and xi along the main

diagonal. The Fourier transform of the correlation plane produced in response

to the ith training image can be obtained as

g ¼ X�h (6:61)

where h is the filter vector in the frequency domain. Thus, multiplying the filter

vector h by the diagonal matrix X
� to obtain g achieves the same result as the

equation Gi(k, l)¼X*
i (k, l)H(k, l). Similarly, �g is given by

�g ¼ M�h (6:62)

which is equivalent to �G(k, l)¼M�(k, l)H(k, l), with M(k, l) being the average

training image Fourier transform. The expression for the ASM in Eq. (6.60)

can now be written using the relations in Eqs. (6.61) and (6.62) as
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ASM ¼ 1

N � d
XN
i¼1

X�
i h�M�h



 

2 ¼ 1

N � d
XN
i¼1

hþ Xi �Mð Þ Xi �Mð Þ�h

¼ hþ
1

N � d
XN
i¼1

Xi �Mð Þ Xi �Mð Þ�
" #

h ¼ hþSh

(6:63)

The matrix S ¼ 1=N � d
PN

i¼1 Xi �Mð Þ Xi �Mð Þ� is also diagonal, and there-

fore its ‘‘inversion’’ is trivial.

In addition to being distortion-tolerant, a correlation filter must yield large

peak values to facilitate detection of the pattern and to locate its position.

Towards this end, we maximize the filter’s average response to the training

images. However, unlike the SDF filters discussed in Section 6.2.1, no hard

constraints are imposed on the filter’s response to training images at the origin.

Rather, we simply desire that the filter should yield a high peak on average

over the entire training set. This condition is met by maximizing the average

correlation height (ACH) criterion defined as follows:

ACH ¼ 1

N

XN
i¼1

gi 0; 0ð Þ

¼ 1

N � d
XN
i¼1

Xd1
k

Xd2
l

Gi k; lð Þ

¼ 1

N � d
XN
i¼1

Xd1
k

Xd2
l

X�
i k; lð ÞH k; lð Þ

(6:64)

Again, using matrix-vector notation to represent quantities in the frequency

domain, Eq. (6.64) can be succinctly written as

ACH ¼ 1

N

XN
i¼1

xþh ¼ mþh (6:65)

Finally, it is of course desirable to reduce the effect of noise and clutter on the

filter’s output by reducing the ONV. To make ACH large while reducing the

ASM and ONV, the filter is designed to maximize

J hð Þ ¼ ACHj j2

ASMþONV
¼ mþhj j2

hþShþ hþCh
¼ hþmmþh

hþ Sþ Cð Þh (6:66)

As discussed in Chapter 2, the optimum filter that maximizes the ratio of

quadratics (also called the Rayleigh quotient) is the dominant eigenvector of

(SþC)�1
mm

þ, or
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h ¼ � Sþ Cð Þ�1
m (6:67)

where � is a normalizing scale factor. The filter in Eq. (6.67) is referred to as the

maximum average correlation height (MACH) filter [65].

At this point, it is appropriate to make a few comments about the optimality

of the MACH filter from a statistical point of view. Based on the central limit

theorem (CLT), it can be argued that the correlation filter output can be

approximated by a Gaussian random process. The ‘‘randomness’’ arises from

the unknown background and clutter, as well as from variations in the target’s

signature caused by sensor and viewing geometry among other factors. While

the ‘‘real world’’ may give rise to more complex cases, correlation over large

areas often tends to satisfy the requirements of the CLT and, consequently, the

distribution of a correlation plane is usually well approximated by a Gaussian

model. The Gaussian approximation requires statistical independence among

contributing RVs; and thus our Gaussian assumption becomes more valid for

higher space–bandwidth product images.4 Even so, it should be noted that the

behavior of real correlation planes may be non-stationary and that simplifying

assumptions are being made for the purpose of an insightful discussion.

As shown in Figure 6.6, the distribution of the correlation peak which is

nominally at the origin for centered training images may be considered to be

bimodal (with two Gaussian components): one component representing the

clutter correlation (including noise and background) and the other the target’s

response. Assuming that the input noise/clutter is a zero-mean process, the

distribution of the clutter correlation is also centered at zero. The variance of

the output due to clutter with power spectral density matrix C is h
þ
Ch.

Similarly, if m is the mean of the Fourier transform of the target’s signature,

then the target component of the correlation has a mean ofmþ
h. Its variance is

a measure of the variation in the correlation patterns produced by the target

after filtering, and is measured by ASM which is given by h
þSh. When the

mean of the noise and clutter is not zero, both distributions in Figure 6.6 will be

shifted by the same amount resulting in no change in their relative separation.

The ideal correlation filter should separate output noise and signal distribu-

tions as much as possible to reduce the probability of error. Then, a threshold

can be used to easily separate correlation values produced in response to the

target from those produced by the background and clutter. Hence the objec-

tive for a minimum-probability-of-error scheme should be to find the filter h

that maximizes the separation between the distributions of the correlation

4 The space–bandwidth product is the product of the spatial support of an image and its 2-D bandwidth.
A larger space–bandwidth product usually provides an image with more detail.
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values produced in response to the background and the target. For Gaussian

distributions, this is equivalent to maximizing the separation between the

means while minimizing the net variance. Since the distance between the

distribution means is simply A(h)¼ |mþ
h� 0|2 and the net variance is

B(h)¼ h
þ
Chþ h

þ
Sh, the objective function to maximize is J(h)= (|mþ

h|2)/

(hþ(cþ s)h), which is identical to the criterion in Eq. (6.66) maximized by the

MACH filter. This interpretation of theMACH filter suggests that it should be

statistically optimum and fairly robust for finding targets in clutter, at least

when the Gaussian assumption holds [66].

Let us now discuss a strategy for analyzing the output of the MACH filter.

We refer to this process as post-processing, i.e. the process for detecting

correlation peaks and the criteria for making decisions. The amplitude of the

correlation peak is often a poormetric because variations in the intensity of the

input pattern will result in corresponding variations in the peak value. The

correlation peak amplitude may be normalized with respect to the energy of

the input pattern. Often however, the patterns of interest are embedded in the

background making it difficult to estimate the energy. Another approach is to

use the metric optimized by the MACH filter as the post-processing criterion.

The statistical interpretation can be extended to show that, for valid targets,

the MACH filter maximizes the peak to sidelobe ratio (PSR) defined as

PSR ¼ N ¼ peak� �

�
(6:68)

where � and � are the mean and standard deviation of the correlation values in

some neighborhood of the peak. The distribution of PSR values across the

correlation plane may be treated as normal (Gaussian) with unit standard

deviation and zero mean. From the analysis presented in Figure 6.6, the

MACH filter separates the distributions of the PSR for the object of interest

from that of the clutter. Therefore, the PSR is frequently used as a metric for

post processing the output of the MACH filter.

 

Output noise distribution
Signal distribution

Variance = h+Ch
Variance = h+Sh

0 
noise/clutter mean

m+h 
signal mean

Figure 6.6 Gaussian distribution models for the output of a correlation filter
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The improved distortion tolerance of the MACH filter is illustrated in

Figure 6.7. AMACH filter and aMACE filter were synthesized using training

images selected every 128 over a range of broad-side views between 368 and
1208, similar to those shown in Figure 6.2. The filters were then tested with

images selected at 38 intervals over the same range of aspect angles, including

both training and non-training views. The resulting correlation values are

shown in Figure 6.7 for both cases. While the MACE filter yields an exact

output of 1.0 for training images, its performance degrades considerably for

the non-training images. On the other hand, the MACH filter maintains a

more uniform performance over both training and test images, implying better

distortion tolerance. Quantitatively speaking, the standard deviation of the

MACE filter peak output over all of the images is �mace¼ 0.19, whereas the

standard deviation for the peak output of theMACH filter is �mach¼ 0.05. The

smaller standard deviation implies greater distortion tolerance. Another per-

formance measurement (or ‘‘goodness’’) criterion is the ratio of the mean and

standard deviation of the peak values. Higher values of this ratio indicate

greater distortion tolerance. The mean peak value for the MACH filter is

�mach¼ 0.32. The MACE filter yields a mean peak value of �mace¼ 0.72. The

corresponding ratio for the MACH filter is �mach=�mach ¼ 5:93, whereas for

the MACE filter the ratio is �mace=�mace ¼ 3:81, which again supports the

contention that the MACH filter exhibits greater distortion tolerance.
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Figure 6.7 Comparison of the distortion tolerance capabilities of the MACH
filter and the MACE filter
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6.2.5 Relationship between the MACH filter and SDF filters

As discussed in Section 6.2.1, the SDF filter’s performance is controlled by

imposing hard constraints on the filter output. In Section 6.2.4, we observed

that the methodology for selecting constraint values for designing SDF filters

has remained largely unaddressed. The MACH filter avoids this issue by

merely requiring a large average peak without specifying exact constraints

for every training image. However, an interesting relationship can be estab-

lished between the MACH filter and SDF filters by showing that the two

formulations can be equivalent if the SDF constraints are judiciously chosen

to also minimize the performance criterion.

The SDF filter that minimizes the performance criterion

J hð Þ ¼ hþ Sþ Cð Þh (6:69)

subject to the linear constraints Xþ
h¼ u, is given by:

h ¼ Sþ Cð Þ�1
X X Sþ Cð Þ�1

X
h i�1

u (6:70)

Substituting this solution for h in Eq. (6.69), the expression for the performance

criterion becomes

J hð Þ ¼ uþ Xþ Sþ Cð Þ�1
X

h i�1

u (6:71)

We can now choose the constraint vector u to minimize J(h) as well. However,

in the absence of any other condition, this leads to a trivial solution. To avoid

this trivial solution,5 we simply require that the sum of the elements in u be

non-zero. Let z be a vector of all 1s, the same length as u. The sum of the

elements of u is then given by s¼ u
þ
z. We may now find u by minimizing the

quadratic term in Eq. (6.71) subject to this linear constraint. It is easy to show

that the optimum choice u is given by

u ¼ 	 Xþ Sþ Cð Þ�1
X

h i
z (6:72)

where 	 is a scale factor. The exact value of s is unimportant (as long as it is

non-zero) since it merely scales the solution and is absorbed into 	.

Substituting the solution for u from Eq. (6.72) into Eq. (6.70) yields

5 Other conditions such as maximizing the norm of u or minimizing the covariance of its elements are
possible, and lead to somewhat different solutions.
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h ¼ Sþ Cð Þ�1
X X Sþ Cð Þ�1

X
h i�1

u

¼ 	 Sþ Cð Þ�1
X X Sþ Cð Þ�1

X
h i�1

X Sþ Cð Þ�1
X

h i
z

¼ 	 Sþ Cð Þ�1
Xz

(6:73)

Recognizing that, except for a scale factor, the term Xz is identical to the

average training image m, the SDF expression may be re-written as

h ¼ � � Sþ Cð Þ�1
m (6:74)

which is identical to the MACH filter in Eq. (6.67). Thus, the SDF filter is the

same as the MACH filter in the special case when the correlation peak con-

straints (specified in the u vector) are optimally selected to minimize the

combination of ASM and ONV performance criteria.

6.2.6 Optimal tradeoff filters

The prevalent correlation filter design techniques use several performance

criteria such as ACE, ONV, and ASM as measures of goodness that relate to

different properties of the filter. It is desirable to obtain a filter that achieves a

good balance between these multi-criteria objectives. For example, a filter

designed to minimize ACE (i.e., the MACE filter) would yield sharp peaks

but is likely to have poor noise properties. On the other hand, the MVSDF

filter, designed to minimize ONV, is robust to noise but does not yield sharp

peaks. An intermediate filter that makes an acceptable compromise between

the sharpness of the peak and the noise tolerance criteriamight be preferable to

either the MACE or MVSDF filter. Such a filter could be obtained by opti-

mizing a weighted sum of the ACE and ONV metrics, and the resulting filter

would have the following form:

h ¼ 	Dþ 
Cð Þ�1
X Xþ 	Dþ 
Cð Þ�1

X
h i�1

u (6:75)

The non-negative constants 	 and 
 can be chosen to tailor the filter’s perform-

ance under noisy conditions. However, the question arises as to what is the

optimum mix of the terms, and how does one prove the optimality.

The theory of optimal tradeoff (OT) filters [64] has shown that the best

compromise between multiple quadratic performance criteria is obtained by

optimizing their weighted sum. The weights are selected to make tradeoffs

between different criteria. To understand the proof, consider the design of a

filter that must satisfy a set of linear constraints and reduce two performance
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criteria E1 and E2 (e.g., ACE and ONV). Since it is not possible to minimize

both criteria, it is desirable to minimize E2 for every possible choice of E1. This

can be done by forming the Lagrangian

� �ð Þ ¼ E2 � �E1 � hþX‘ (6:76)

where � is a single Lagrange multiplier that constrains E1 to a fixed value, and

‘ is the vector ofNLagrangemultipliers, corresponding to the linear constraints

on the correlation peaks in response to N training images. It is easy to see that

minimizing�(�) minimizes E2 whenE1 is fixed to any value. Further, as � varies

from 0 (corresponding to where E2 dominates E1) to �1 (where E1 dominates

E2), E2 varies from its best (smallest) value to its worst (largest) value. By

defining � ¼ ð�� 1Þ=ð�Þ; � 2 0; 1½ �, the Lagrangian becomes

� �ð Þ ¼ �� �ð Þ ¼ �E2 þ 1� �ð ÞE1 � hþXp (6:77)

where p¼�‘. Thus, the performance criterion to be minimized is a weighted

linear combination of E1 andE2. In fact, as � varies from 0 to 1.0, the emphasis

shifts from minimizing E1 to minimizing E2.

To further understand the optimal tradeoff between E1 and E2, consider

Figure 6.8. The solid line is generated by varying � from 0 to 1.0 and plotting

the resulting E1 versus E2. For every value of E1, the most efficient filter is that

which yields the smallest value ofE2. All points on the solid line are considered

optimum in this sense. The filters represented by points above the line are sub-

optimal, since we can find a filter with a smaller value for one of the twometrics

and the same value for the other metric. The curve in Figure 6.8 can be used to

select an operating point where the greatest reduction is obtained in one

criterion for the least increase in the other. Typically, this occurs at the knee

of the curve. The parameter � thus provides a way to optimally trade the

properties of the correlation filter to achieve an acceptable compromise

between the two performance criteria. This approach is easily generalized to

more than two performance criteria as well as other unconstrained correlation

E2

E1

A
C
E

ONV

 

Figure 6.8 Optimal tradeoff between E1 and E2
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filters such as the MACH filter. In fact, the optimal tradeoff variant of the

MACH filter has the form

h ¼ 	Dþ 
Sþ �Cð Þ�1
m (6:78)

where 	, 
, and � are the optimal tradeoff parameters associated with the

ACE, ASM and ONV performance criteria. Once again, each parameter is

varied until its best value is found while all others are held constant. This

achieves the best balance between the filter’s tolerance to noise, sharpness of

the correlation peak, and distortion tolerance. Thus, the theory of OT filters

provides a key technique for achieving the desired tradeoffs in designing

robust correlation filters.

6.2.7 Lock-and-tumbler filters

Another interesting approach to correlation filters is the lock-and-tumbler

approach pioneered by Schils and Sweeney [67]. Their initial idea was to design

the filter so that any filter array obtained by rotating the original filter array in

frequency domain around its center (namely, the (0,0) frequency point) would

yield the same inner product with the target image. An input image is placed in

the plane P1, of the optical serial correlator (see Figure 5.5), the above filter is

placed in plane P2 and a correlation output is produced in plane P3. Next, the

filter in plane P2 is rotated. If the filter is properly designed, the correlation

output at the correct location (corresponding to the target’s position in the

input scene) will remain constant as the filter is rotated. All other points in the

correlation plane will fluctuate. Then the target can be located by examining

all locations in multiple correlation planes for points of constancy. Schils and

Sweeney show that these points of constancy can be located using two buffers,

each containing one output array. They have demonstrated the filter’s success-

ful optical implementation and have shown that it can successfully reject

deterministic clutter.

This idea of looking for points of constancy is fundamentally different from

seeking points of maximal magnitude. Schils and Sweeney generalized the

notion of rotating filters by introducing lock-and-tumbler filters [68]. In the

lock-and-tumbler approach, they designM filters so that they all give the same

output (cross-correlation at the origin) magnitude value when the input image

is a desired target. This constant value can be different for different training

images. The presence of the training images is indicated by points of constancy

in theM correlation planes. It is highly unlikely that an image from some other

class will produce points of constancy in the M correlation outputs. The M

filters are constructed by using an eigen-analysis of the training set. The
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training set is analyzed for its eigen-images, and the filters are assumed to be

linear combinations of these eigen-images with complex weights. It is desirable

to keep these weights of unit magnitude so that all filters have a similar number

of eigen-images. These filters will provide complex cross-correlation outputs.

Because we want all filters to give the same output magnitude, the phases are

unconstrained. A spectral iteration algorithm is set up to iterate between

complex weight domain (magnitudes unity, phases variable) and output-

constraint domain (magnitudes constant, phases variable). Although there is

no theoretical guarantee that this algorithm converges, good simulation results

have been demonstrated by Schils and Sweeney [68].

A few other comments about the lock-and-tumbler approach are in order. It

is an elegant procedure for filter design. To the best of our knowledge, it is the

first attempt to break away from the traditional concept of pattern classification

using correlation peaks. However, this approach uses multiple correlations and

one needs a systematic way of figuring out how many filters are needed. The

multiple filters in the approach are obtained by using different random starting

points in the spectral iteration method, and thus are not necessarily orthogonal

(i.e., they do not necessarily bring in completely new information). The compu-

tational complexity associated with the processing of multiple-correlation out-

puts in looking for points of constancy can be overwhelming.

6.3 Distance classifier correlation filters

The correlation filters described in the previous sections are linear systems

whose response to patterns of interest is carefully controlled by the various

optimization techniques. In this section, we present and use a somewhat differ-

ent interpretation of correlation filters – as a means of applying transformations

to the input data. It is well known that the correlation (or convolution) oper-

ation can be viewed as a linear transformation. Specifically, the filtering process

can be mathematically expressed in the space domain as a transformation of the

input data vector by a matrix. To see this, consider the correlation of two

discrete sequences x(n) and h(n), each of length L. As we know, the result is a

sequence of length 2L� 1 given by:

g nð Þ ¼ x nð Þ � h nð Þ ¼
XL
k¼1

x nþ kð Þh kð Þ; �Lþ 1 � n � L� 1 (6:79)

The input sequence is x ¼ x 1ð Þ; x 2ð Þ; . . . ; x Lð Þ½ �T and the correlation output

sequence is g ¼ g �Lþ 1ð Þ; g �Lþ 2ð Þ; . . . ; g 0ð Þ; . . . ; g L� 2ð Þ; g L� 1ð Þ½ �T.
Then, the operation in Eq. (6.79) can be written in matrix–vector notation as
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g �Lþ 1ð Þ
g �Lþ 2ð Þ

..

.

g 0ð Þ
..
.

g L� 2ð Þ
g L� 1ð Þ

2
66666666664

3
77777777775
¼

h Lð Þ
h L� 1ð Þ h Lð Þ 0

..

. ..
. . .

.

h 1ð Þ h 2ð Þ � � � h L� 1ð Þ h Lð Þ
. .
. ..

.

0 h 1ð Þ h 2ð Þ
h 1ð Þ

2
66666666664

3
77777777775

x 1ð Þ
x 2ð Þ
..
.

..

.

..

.

x L� 1ð Þ
x Lð Þ

2
66666666664

3
77777777775

(6:80)

or

g ¼ Hx (6:81)

where H is a matrix whose rows are shifted versions of the sequence h(n) as

shown in Eq. (6.80). Thus the structure of H is such that its multiplication by

the input data vector x implements the shift, multiply, and add operations of

the correlation (or convolution) equation to yield the output vector g. Matrix

H is a Toeplitz matrix since all elements along any of its diagonals have the

same value. The 2-D correlation equation can be similarly formulated as a

matrix-vector equation. The input and output vectors are obtained by lexico-

graphic re-ordering of the rows or columns, while the corresponding matrixH

is block-Toeplitz (i.e., blocks of the matrix are arranged in the Toeplitz struc-

ture and each block is itself a Toeplitz matrix). Thus, the correlation operation

(or filtering) can be interpreted as a linear tranformation of the data where the

transform matrix is restricted to being Toeplitz.

The equivalent frequency domain relation is easily derived by defining

~g=[G(1), . . . , G(L� 1), G(L)]T, and ~x¼ [X(1), X(2), . . . , X(L)]T, and

~H ¼

H 1ð Þ
H 2ð Þ 0

. .
.

0 H L� 1ð Þ
H Lð Þ

2
666664

3
777775 (6:82)

where the tilde is used to denote that the vectors and matrices refer to frequency

domain quantities, and where G(k), X(k), H(k) are the discrete Fourier trans-

forms of g(n), x(n), and h(n), respectively. Then the equation ~g¼ ~H*~x is

equivalent toG(k)¼H�(k)X(k). For the 2-D case, ~g and ~x are lexicographically

re-ordered versions of the 2-D Fourier transformsG(k, l) andX(k, l), while the

diagonal elements of ~H are the elements ofH(k, l). Thus, the frequency domain

interpretation of the correlation process is a linear transformation of the data
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vector by a diagonal matrix. We will now use the transform interpretation of

correlation to develop a distance-based classifier [69].

Transform-based distance classifiers are well known in the pattern recogni-

tion literature. From now on, we will drop the tilde as we will be using only

frequency domain quantities. Generally speaking, the distance of a test vector

x to a reference mk under a linear transform H is given by

dk ¼ H�x�H�mkj j2¼ x�mkð ÞþHH� x�mkð Þ (6:83)

For instance, using the Mahalanobis distance applies a whitening transform

(equal to the inverse square-root of the class covariance matrix) to normalize

the feature space. Then, given an unknown input, its distance to all the class

centers in the transformed space is computed. The input is assigned to the class

to which the distance from the target is the smallest. For Gaussian distribu-

tions, this scheme yields the minimum probability of error.

However, the Mahalanobis distance and other transform domain techni-

ques found in statistical pattern recognition are difficult to apply to images

since they often require feature extraction or dimensionality reduction, image

segmentation, and registration. The size of common images is usually so large

that we cannot accurately estimate the required statistics. The needed inver-

sion of large matrices is also impractical in most cases.

In this section, we concern ourselves with finding an expression forH suitable

for processing images by assuming that the transform will be implemented as a

linear system. This interpretation immediately affords us several benefits. Firstly,

it imposes the Toeplitz structure on the transform matrix in the space domain

and equivalently (but more importantly), it imposes the diagonal structure in the

frequency domain. This alleviates matrix inversion problems. Secondly, the

inherent shift invariance property eliminates the need for segmentation and

image registration. Yet, the power of transform domain distance calculations

can be obtained by suitably optimizing the properties of the linear transform

matrix, in a similar manner to those used for designing correlation filters.

In other words, the filtering process transforms the input image to create

new images. For the filter to be useful as a transform, we require that the

images of the different classes become as different as possible after filtering,

and that images from the same class be as similar as possible after the trans-

form. Then, distances can be computed between the filtered input image and

the references of the different classes that have also been transformed in

the same manner. The input is assigned to the class to which the distance in

the transformed domain is the smallest. One benefit of treating the filter as a

transform for distance computations is that the resulting decision boundaries

are quadratic (unlike conventional filters which produce linear decision
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boundaries).6 Quadratic decision boundaries allow more ‘‘pickiness’’ in select-

ing portions of feature space to assign to the various classes. Secondly, the

emphasis is shifted from just one point in the correlation output (i.e., the

correlation peak) to comparison of the entire shape of the correlation plane.

These facts along with the simplifying properties of linear systems lead to an

interesting realization of a distance classifier with a correlation filter twist.

6.3.1 Designing the classifier transform

In this section, we concern ourselves with finding a solution for the transform

matrix H in Eq. (6.82) using the properties of linear systems and correlation

filter design techniques. It is assumed that the training images are segmented

and appropriately centered (although test images are expected to contain

background and not necessarily to be centered). An image x(m, n) with d pixels

can be expressed as a d-dimensional column vector x, or as a d� d diagonal

matrix xwith the elements of x as its diagonal elements, i.e., diagonal {X}¼ x.

Sometimes, the same quantity may be expressed both as a vector, say mx, and

as a diagonal matrix Mx. This implies that H�mx and M�
xh are equivalent.

All analysis presented in this section is carried out in the frequency domain.

As noted at the beginning of this section, the distance classifier uses a global

transformH to separate the classesmaximally while making them as compact as

possible. In general, image vectors of length d can be considered as points in a

d-dimensional hyperspace. For simplicity of illustration, consider signals of

length d¼ 2 (i.e., data vectors with only two elements). In this notional signal

space, Figure 6.9 depicts schematically the basic idea using a three-class example,

where m1, m2, and m3 represent the class centers (obtained by averaging the

Fourier transforms of the corresponding training images), and z represents an

unknown input to be classified. The transformationmatrixH is designed tomake

6 Decision boundary refers to the boundary that separates different classes in a feature space. When these
boundaries are hyperplanes, they are called linear decision boundaries.
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Figure 6.9 Transformation by H increases inter-class distance while making
each class more compact, to improve both distortion tolerance and
discrimination simultaneously
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the classes distinct by moving the class centers apart, while shrinking the bound-

aries around each class so that z can bemore accurately identified with its correct

class (class 3 in the figure, since d3 is the smallest distance).

Although Figure 6.9 represents the concept in the d¼ 2 hyperspace, the

same arguments can be used for arbitrary hyperspaces. The general C-class

distance classifier problem is formulated by stating that we require the trans-

formed images to be as different as possible for each of the classes. At the same

time, the classes should become as compact as possible under the transform-

ation. Let xik be the d-dimensional column vector (which represents a point in

a d-dimensional hyperspace) containing the Fourier transform of the ith image

of the kth class, 1� i�N, and 1� k�C. We assume without loss of generality

that each class hasN training images. Letmk be the mean FT of class k so that

mk ¼
1

N

XN
i¼1

xik; 1 � k � C (6:84)

Under the transformH, the difference between the means of any two classes is

vkl ¼ H� mk �mlð Þ (6:85)

Taking the expectation of the elements of vk over all frequencies yields

�ukl ¼ E
over i

vk ið Þf g ffi 1

d
hþ mk �mlð Þ (6:86)

The quantity in Eq. (6.86) is a measure of the spectral separation between

classes k and l, over all frequencies. The sign of �ukl is not important for the

classes to be separated, but it should be as large as possible. Therefore, we want

to make |�ukl|2 large. Taking all possible pairs of classes into consideration, we

define the average spectral separation (ASS) criterion as

A hð Þ ¼ 1

C2

XC
k¼1

XC
l¼1

�uklj j2 ¼ 1

C2

XC
k¼1

XC
l¼1

mþ
k h�mþ

l h


 

2

¼ 1

C2

XC
k¼1

XC
l¼1

hþ ml �mkð Þ ml �mkð Þþh

(6:87)

It should be noted that the terms corresponding to l¼ k do not contribute to the

sum. After algebraic manipulations, the expression for A(h) can be simplified to

A hð Þ ¼ hþ
1

C

XC
k¼1

m�mkð Þ m�mkð Þþ
" #

h ¼ hþTh (6:88)
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whereT ¼ 1
C

PC
k¼1 m�mkð Þ m�mkð Þþ is a d� d full (i.e., non-diagonal) matrix

of rank� (C� 1), andm ¼ 1
C

PC
k¼1 mk is the mean of the entire data set. IfA(h)

in Eq. (6.88) is maximized by appropriate choice of h, the average spectral

content of the classes will differ greatly and they will becomewell separated. At

the same time, to improve distortion tolerance within a class, we want to

minimize the criterion for compactness given by

B hð Þ ¼ 1

C

XC
k¼1

1

N

XN
i¼1

hþ Xik �Mk½ � Xik �Mk½ ��h ¼ hþSh (6:89)

We recognize that the term hþSh is the same asASMcalculated over all classes,

and therefore B(h) is a measure of average class compactness after transform-

ation byH. Our objectives of maximizingA(h) andminimizing B(h) are met by

maximizing the ratio of A(h) and B(h), i.e., we maximize

J hð Þ ¼ A hð Þ
B hð Þ ¼

hþTh

hþSh
(6:90)

with respect to h. As shown in Chapter 2, the optimum solution to Eq. (6.90) is

the dominant eigenvector of S�1T. We refer to the optimum h as the distance

classifier correlation filter (DCCF).

6.3.2 Calculating distances with DCCFs

For testing purposes, the distance to be computed between the transformed

input and the ideal reference for class k is

dk ¼ H�z�H�mkj j2¼ pþ bk � zþhk þ hþk z
� �

; 1 � k � C (6:91)

where z is the input image, p¼ |H�z|2 is the transformed input image energy,

bk¼ |H�
mk|

2 is the energy of the transformed kth class mean, and hk¼HH
�
mk

is viewed as the effective filter for class k. For images that are real in the space

domain, the expression for dk simplifies to

dk ¼ H�z�H�mkj j2¼ pþ bk � 2zþhk (6:92)

In general, the target may be anywhere in the input image. For shift-invariant

distance calculation, we are interested in the smallest value of dk over all possible

shifts of the target with respect to the class references (i.e., the best possible

match between the input and the reference for class k). In Eq. (6.92), since p and

bk are both positive and independent of the position of the target, the smallest

value of dk over all shifts is obtained when the third term (i.e., zþhk) is as large as

possible. Therefore, this term is chosen as the peak value in the full space domain
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cross-correlation of z and hk. Since there are only C classes to which distances

must be computed, we require only C such filters. It should be noted that for a

given transform H, all dk, 1� k�C, have the same term p, which could be

dropped if the only objective was to find the class to which the distance is the

smallest, but this would yield only linear decision boundaries.

6.4 Polynomial correlation filters

In this section, we will discuss a generalization of the traditional correlation

filtering approach known as the polynomial correlation filter (PCF) approach

[70]. The fundamental difference between the PCF approach and traditional

methods for correlation filters is that the correlation output from a PCF is a

nonlinear function of the input. For a scalar input x, consider an output form

given by

gðxÞ ¼ ao þ a1xþ a2x
2 þ � � � þ aNx

N (6:93)

The polynomial g(x) is a general form that can be used to represent any

nonlinear function of x. For vector inputs (such as images), the most general

nonlinear expression is more complicated. However, for reasons of analytical

simplicity we assume point nonlinearities. The corresponding form of the

output is then given by

gx ¼ A1x
1 þ A2x

2 þ � � � þ ANx
N (6:94)

where xi represents the vector x with each of its elements raised to the power i,

andAi is amatrix of coefficients associated with the ith term of the polynomial.

It should be noted that the output gx is also a vector.

We refer to the form in Eq. (6.94) as the PCF. Thus if x represents the input

image in vector notation, then gx is a vector which represents the output

correlation plane as a polynomial function of x. To ensure that the output is

shift-invariant, all the coefficient matrices are required to be Toeplitz. Then, it

can be shown that each term in the polynomial can be computed as a linear

shift-invariant filtering operation, i.e.,

Aix
i 	 hi m; nð Þ � xi m; nð Þ (6:95)

or that filtering xi(m, n) by hi(m, n) is equivalent to multiplying xi by Ai. The

output of the polynomial correlation filter can be mathematically expressed as

gx m; nð Þ ¼
XN
i¼1

hi m; nð Þ � xi m; nð Þ (6:96)
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The corresponding filter structure is shown in Figure 6.10.

6.4.1 Derivation of the solution

The objective is to find the filters hi(m, n) such that structure shown inFigure 6.10

optimizes a performance criterion of interest. We have shown earlier that, for

correlation purposes, a useful approach is to maximize the OT performance

criterion

J hð Þ ¼ mþhj j2

hþBh
(6:97)

where h is the filter vector in the frequency domain, B is a diagonal matrix

related to a spectral quantity, and m is the mean image vector, also in the

frequency domain. For example, MACH filter design involves maximizing the

metric in Eq. (6.66). The polynomial correlation filter can also be designed in a

similar way. Of course, the premise is that a higher-order (nonlinear) solution

will yield higher values of J(h) than the corresponding linear solutions.

For simplicity, we will firstly discuss the derivation of a second-order filter.

In this case, the polynomial has only two terms and the output is given by

g m; nð Þ ¼ x m; nð Þ � h1 m; nð Þ þ x2 m; nð Þ � h2 m; nð Þ (6:98)

The expression for J(h) is obtained by deriving the numerator and the denomi-

nator of Eq. (6.97). In vector notation, the average intensity of the correlation

peak for a second-order filter is given as follows:

average peakj j2¼ hþ1 m
1



 

2þ hþ2 m
2



 

2 þ 2 hþ1 m
1m2þh2 (6:99)

where h1 and h2 are vector versions of the filters associated with the first and

second terms of the polynomial, and m
k is the mean of the training images xi,

1� i�L, raised to the kth power. For illustration purposes, the denominator

h1

h2

h3

hN

Input
image

Point
nonlinearities

x1
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x3

xN

x gx

Nonlinear
filter output

Figure 6.10 Nth-order polynomial correlation filter
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of the performance criterion in Eq. (6.97) is chosen to be theASMmetric, but it

could easily be any other quadratic metric, such as the ONV, the ACE, or

any combination thereof. The ASM for the second-order nonlinear filter is

given by

ASM ¼ 1

L

XL
i¼1

h�1X
1
i þ h�2X

2
i � h�1M

1 � hM2


 

2 (6:100)

whereXk
i ; 1 � i � L, is the ith training image raised to the kth power expressed

as a diagonal matrix, andMk is their average. After algebraic manipulations, it

can be shown that the expression for ASM is as follows:

ASM ¼ hþ1 S11h1 þ hþ2 S22h2 þ hþ1 S12h2 þ hþ2 S21h1 (6:101)

where

Skl ¼
1

L

XL
i¼1

Xk
i Xl

i

� �� �Mk Ml
� ��

; 1 � k; l � 2 (6:102)

are diagonal matrices. Defining the block vectors and matrices,

h ¼ h1
h2

� 	
; m ¼ m1

m2

� 	
; and S ¼ S11 S12

S21 S22

� 	
(6:103)

the expression for J(h) for the second-order filter can be succinctly expressed as

J hð Þ ¼ average peakj j2

ASM
¼

hþ1 m
1



 

2þ hþ2 m
2



 

2 þ 2 hþ1 m
1m2þh2

hþ1 S11h1 þ hþ2 S22h2 þ hþ1 S12h2 þ hþ2 S21h1
¼ mþhj j2

hþSh

(6:104)

By now, we know that the solution thatmaximizes J(h) in Eq. (6.104) is given by:

h ¼ S�1m (6:105)

Using the definitions in Eq. (6.103), the solutions for the two filters of the

second-order polynomial are

h1
h2

� 	
¼ S11 S12

S21 S11

� 	�1
m1

m2

� 	
(6:106)

The inverse of the block matrix can be determined using matrix inversion

lemmas (discussed in Chapter 2) to obtain the following explicit solutions for

the two filter vectors:
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h1

h2

� 	
¼

S12m
2 � S22m

1

S12j j2 �S11S22

S21m
1 � S11m

2

S12j j2 �S11S22

2
66664

3
77775 (6:107)

The solution in Eq. (6.107) can be easily extended to the general Nth order

case. The Nth order solution is given by:

h1
h2

..

.

hN

2
6664

3
7775 ¼

S11 S12 � � � S1N

S21 S22 � � � S2N

..

. ..
. . .

. ..
.

SN1 SN2 � � � SNN

2
6664

3
7775
�1

m1

m2

..

.

mN

2
664

3
775 (6:108)

The block matrix to be inverted in Eq. (6.108) can be large depending on the size

of the images. However, because all Skl are diagonal, and Skl¼ (Slk)
�, the inverse

can be efficiently computed using a recursive formula for inverting blockmatrices.

6.4.2 PCF extensions

While the power series representation of the polynomial correlation filter is

initially used for deriving the solution in Eq. (6.108), there is no fundamental

reason to limit ourselves to power nonlinearities. The analysis and the form of

the solution remain the same irrespective of the nonlinearities used. Thus, we

can use the more general form:

gN ¼
XN
i¼1

Ai fi xð Þ (6:109)

where f ( �) is any nonlinear function of x. For instance, possible choices for the
nonlinearities include absolute magnitude and sigmoid functions. Clearly,

guidelines must be established for choosing the most beneficial nonlinearities

for specific applications. As a simple example, it may be detrimental to use

logarithms when bipolar noise is present, since the log of a negative number is

not defined.

The proposed algorithm can be used to correlate data from different sensors

simultaneously. In this case, we may view the sensor imaging process and its

transfer function itself as the nonlinear mapping function. The different terms

of the polynomial do not have to be from the same sensor or versions of the

same data. This is equivalent to data fusion in the algorithm. The concept is

illustrated in Figure 6.11 where it is shown that data from different sensors
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may be directly injected into the architecture, resulting in a fused correlation

output. Again, the analysis and the form of the solution remain the same as

those in Eq. (6.108).

The concept shown in Figure 6.11 can also be extended to multi-resolution

inputs. In other words, the terms of the polynomial can be the data represented

at different resolution levels. It is anticipated that this will result in a mechan-

ism to achieve correlation in wavelet type transform domains.

6.5 Basic performance prediction techniques

There are many methods for designing correlation filters. To a certain extent,

the choice depends on the application. Ultimately, what matters most is the

performance of the filter in terms of the probability of correctly recognizing

the desired pattern, and the probability of rejecting clutter.

The performance of correlation filters can be characterized, as in detection

systems, in terms of the probabilities of correct detection (Pd), and false alarm

(Pfa). Fundamentally, low detection thresholds improve the probability of

correct recognition, while higher thresholds decrease false alarm probabilities

by rejecting erroneous peaks. As discussed in Chapter 4, such a relationship

between Pd and Pfa as the threshold T varies is represented in the form of a

receiver operating characteristic (ROC) curve. These curves are useful for

selecting a desired operating point, and for predicting whether a filter will

achieve the desired performance level. In this section, we will provide a simple

illustration for determining ROC curves for correlation filters.
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IR

h1

Non-
linearities
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correlation
output
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Non-
linearities

Non-
linearities
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Figure 6.11 Polynomial correlation architecture for multi-sensor fusion
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To understand the process of obtaining a ROC curve, consider a set of K

images, x1 (m, n), x2 (m, n), . . . , xK (m, n) of a target. We refer to this as the set

of evaluation images that in general may contain either test or training images.

Let h(m, n) be the impulse response of the filter that produces the correlation

gi(m, n) in response to the ith target image xi(m, n). Assume that the input

is corrupted by zero-mean additive white Gaussian noise with variance �2.

If xi(m, n) is power-normalized (i.e., �i�j x m; nð Þj j2 ¼ 1), the input SNR is

given by

SNR ffi signal energy=pixel

noise variance
¼

P
i

P
j

x m; nð Þj j2

d�2
¼ 1

d�2
(6:110)

where d is the total number of pixels on the target in the image. Equivalently,

the input variance can be expressed in terms of the SNR as

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

d � SNR

r
(6:111)

When the noisy input image is processed by the filter h(m, n), a noisy output

correlation is obtained. Using the central limit theorem arguments made earlier,

the output correlation is assumed to be Gaussian-distributed. Since the input

noise is zero-mean, the mean of the output is gi(m, n). It is easy to show that if

the filter is also power-normalized (i.e., h+h=1), the output noise variance is

equal to the input noise variance, �2. Therefore, the filter output is Gaussian

distributed with mean gi(m, n) and variance �2. Without loss of generality, we

shall assume that the evaluation images are nominally registered with respect to

the training images used to design the filter, and the peak should occur at the

origin. If the evaluation images are not centered at the origin, we simply move

the detection window to the new location. The post-processing strategy is to

declare a detection and accept the correlation peak as indicating the presence of

the desired target if that peak exceeds a threshold T. The decision is said to be

correct if the peak occurs within a detection window W around the origin.

Conversely, the decision is an error if the peak is outside the detection window.

Strictly speaking, the power spectral density of the correlation output is

proportional to jH(k, l)j2 when the input noise is white. Thus, the output

correlation pixels are not uncorrelated. However, for the sake of simplicity

we assume that the points in the correlation plane are independent, so that the

joint distribution is a product of the individual distributions. This approxima-

tion is more valid for high-frequency emphasizing filters such as MACE and

MACH filters than for matched filters. As stated earlier, each point in the

output is normally distributed with mean gi(m, n) and variance �2. The
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probability of correct detection (that at least one point within W exceeds the

threshold T) is then given as

Pd ¼ 1�
Y
m;n
2!

ZT
�1

1ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp
� u� giðm; nÞð Þ2

2�2

" #
du

2
4

3
5 (6:112)

Similarly, the probability of false alarm (that any point outside the detection

window will exceed the threshold) is given by

Pfa ¼ 1�
Y
m;n
=2!

ZT
�1

1ffiffiffiffiffiffiffiffiffiffi
2p�2

p exp
� u� giðm; nÞð Þ2

2�2

" #
du

2
4

3
5 (6:113)

The steps for computing the ROC curves for the ith evaluation image are:

1. For a specified SNR, obtain the corresponding �2 using Eq. (6.111).

2. Correlate the image with the filter and obtain gi(m, n).

3. Vary T over a range of values and calculate Pd and Pfa using Eqs. (6.112) and

(6.113).

Consider the tank images shown in Figure 6.12. We will use these images to

compare the predicted performance of a MACH filter and an MF. The

MACH filter was synthesized using every other broad-side image between

308 and 1508 (the data base has images separated by 38 in aspect). AnMF was

designed for the image at 908 only. While this may sound unfair, the precise

definition of an MF is that it is matched to a single view. For each filter, ROC

curves were generated for all images in the evaluation set and the results were

averaged. The average ROC curves were computed for a square region, W of

size 
1, 2, and 3 pixels on each side of the expected correlation peak position.

348o 0o 12o

150o90o30o

Figure 6.12 Tank images used for performance prediction example
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The results are shown in Figure 6.13. The MACH filter offers a lower Pfa for

any given Pd than that obtained with theMF. The ROC comparisons between

the MACH and MF filters are fair in the sense that we are comparing the

performance of a single correlation filter in each case, against the same set of

input images.

The power of the detector (defined as the area under the ROC curve) offers a

quantitativemeans of comparing theROC curves. The closer the number is to 1.0,

the more efficient the test and the better the filter. Table 6.1 shows the powers of

the tests for the filters being compared. Like theROC curves, these values attest to

the significantly better performance of theMACHfilter over the range of distorted

broad-side tank images. The numbers are consistently higher for theMACH filter

indicating that it outperforms the MF when distortions are taken into account.
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Figure 6.13 Average ROC curves for MACH (þ) and MSF (�) filters for
broad-side views (see Figure 6.12) using detection windows of: (a)W=1, (b)
W=2, and (c) W=3
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Clearly ROC curves may be used to predict the performance of correlation

filters. However, because of the simplifying assumptions it is possible that the

observed values ofPd andPfa may differ from the predicted values. Nevertheless,

the curves provide useful estimates that can be used to gauge the chances of

success. In any event, the ROC curves provide a method for comparing different

correlators under the same set of conditions.

6.6 Advanced pattern recognition criteria

In this section we mention two ways in which correlation pattern recognition

could be improved. One is by addressing the secondary peak problem, and the

other discusses the ad hoc nature of most of the filters and the metrics they

optimize. We describe these situations and their current status.

Among other problems with correlation pattern recognition, we do not

have any guarantee that the presence of exactly the object the filter is set to

detect will actually result in the largest correlation plane’s value being at the

designated center for that object. This fact is principally due to the effects of

noise and clutter at the input plane as they propagate through the filter and

onto the correlation plane, however there is a contribution resulting from the

very nature of the reference object and its filter. Most objects that would be

the subject of CPR have a degree of self-similarity; take an image of a man’s

shirt as an example. The button appears in several locations, and a filter that

will respond to the shirt, including its buttons, will have some response to

each of the buttons as translated to the position of any of the other buttons.

This is an ineluctable consequence of the correlation algorithm, as contrasted

with other pattern recognition algorithms that might search for all button-

like objects and then evaluate the input scene as being shirt-like only if the

detected button-like objects were in an expected orientation relative to each

other. CPR produces a deterministic portion of the correlation surface’s

nature. A supposedly perfect correlation surface, looking like a point-up

Table 6.1. Power of the detector values for the

MF and MACH filters

Detection window MF MACH

1 0.5518 0.9815
2 0.6525 0.9960
3 0.7022 0.9986
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thumbtack, would only result from an object with no self-similarity and an

inverse filter. The former condition is probably not very interesting, and the

latter condition is very noise-sensitive. This is what is simultaneously a

strength and weakness of CPR as compared with feature-based methods.

We have begun to address this situation with filters that we term apodizing –

that is, the filter is designed to reduce the effect of the deterministic

sidelobes in the correlation surface. We do not yet have reportable results

for apodizing filters, but for the moment we simply report this situation as

a known problem that is being worked on. The stochastic nature of the

correlation surface remains a problem, although the whitened matched filter

generally deals well with this.

There are metrics from information theory that correspond to quantitative

information (e.g., Bayes error, power of the test, and others; these

are described in Section 8.5) that have long been used in the statistical pattern

recognition community, and we have also begun to optimize these

metrics within CPR. Section 8.5 will describe these metrics quantitatively

within the correlation model. This material is developed in Chapter 8

(Limited-modulation filters) essentially for historical reasons – it was in the

context of optical implementation that the information metrics were intro-

duced to correlation pattern recognition [52]. For digital processing the

optimization is noticeably easier than for optical processing for the usual

reasons: there is less noise (no scattered light, no misaligned optics, no noisy

detection), and the digital filter may take on a larger range of values than the

optical filter.

Nevertheless, the model of how information flows through the correlation

process and is extracted at the end is quite similar for optical and digital

processing. The objective of pattern recognition is for the filter to cause the

measurement densities to be separate for in-class and out-of-class targets, so

that we can infer the presence or absence of a target from the occurrence of a

given measurement value. Accordingly, we need a model for the density of

measurement values. One critical development in Chapter 8 is that leading to

the Bessel function expression (Eq. (8.8)) for measurement density, taking into

account that for digital processing the detector noise �2d is zero. The optimizing

digital filter can be used directly as computed in Eq. (8.51), without the

projection step of Eq. (8.52) that produces the optimizing optical filter.

Finally, the set of search parameters in Eq. (8.51), {�i exp(j
i)}training set is

simpler in form for digital processing with its unconstrained filter values. We

can, in fact, arbitrarily normalize the search parameters by setting

�1 exp j
1ð Þ 	 1, and conducting a search over the remainder of the set.
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6.7 Chapter summary

In this chapter, we have introduced the following major concepts associated

with advanced correlation filters:

* When the image distortion being considered obeys a mathematical relationship

(e.g., in-plane rotation, radial scale change, etc.), algebraic mapping, such as

Cartesian-to-polar transformations, can be used to design correlation filters with

a specified response to such distortions.

* When images are subject to more general distortions (e.g., 3-D geometric distor-

tions, occlusions, illumination changes, etc.), synthetic discriminant function

(SDF) filters provide an attractive approach for designing correlation filters that

are tolerant to such distortions. SDF filters are based on training images that

contain examples of expected distortions.

* The first SDF filters (known as equal correlation peak SDF filters, or projection

SDF filters) assumed that the correlation filter is a weighted sum of training images,

and the weights are found so that correlation output at the origin takes on pre-

specified values in response to training images.

* Projection SDF filters suffer from two problems. The first is that they do not have

any in-built robustness to noise. The second is that they control only one value of

the correlation output (namely the value at the origin), and thus sidelobes are often

much larger than this value at the origin, making location of the peak difficult.

* Minimum variance SDF (MVSDF) filters minimize the output noise variance

(ONV) while satisfying the hard correlation peak constraints, and thus provide

maximum robustness to noise. If the input noise is white, MVSDF filters are the

same as projection SDF filters.

* The problem of sidelobes can be attacked by the minimum average correlation

energy (MACE) filters, which minimize the average of the correlation energies due

to various training images, while satisfying the constraints of the correlation plane.

MACE filters produce sharp correlation peaks, but exhibit noise sensitivity and

may not provide high correlation peak values in response to non-training images

from the desired class.

* As MVSDF filters typically emphasize low spatial frequencies and MACE filters

emphasize high spatial frequencies, they provide conflicting attributes. Optimal

tradeoff (OT) SDF filters provide a method to minimize one quantity (e.g., ONV)

while holding the other (e.g., average correlation energy) constant.

* Using hard constraints for correlation peak values may be counter-productive in

that these values may not be achievable for non-training images. Using softer

constraints on peak values (e.g., maximizing average correlation height) leads to

maximum average correlation energy (MACH) filters. MACH filters have the

additional benefit that the only matrix inversions needed are of diagonal matrices

and hence are trivial.
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* Another step in the evolution of correlation filters is the use of the entire correlation

output for pattern recognition. An example of this is the distance classifier correla-

tion filter (DCCF), which transforms the training images so that different classes

are better separated from each other, and are more compact in the transformed

space than in the original space. For a test input, distance in the transformed space

between prototypes from different classes is used for classification.

* Most correlation filter approaches are linear. However, the polynomial correlation

filter (PCF) allows point nonlinearities such as power nonlinearity to achieve

improved pattern recognition performance. In the PCF, each power nonlinearity

introduces a new branch in correlation architecture, but all correlation filters are

designed jointly. The PCF approach can be extended for multiple spectral bands

(e.g., infrared, millimeter wave, etc.) and can thus provide automatic fusion in the

multi-sensor case.

* Analytical performance prediction for advanced correlation filters is very difficult.

However, simplifying assumptions such as independence of correlation output pixels

can provide some high-level understanding of the filters’ performance in noise.

The field of correlation filters is diverse and it is beyond the scope of this

chapter to cover the various techniques in full mathematical detail. Over the

years, many outstanding contributions have been made and some of the early

ones have been covered in a tutorial survey [8]. In the field of circular harmonic

function (CHF) filters, Arsenault and others [60] made fundamental contribu-

tions that spurred new research on rotation-invariant filter designs. These

techniques have been extended by others [71, 72]. Optimal tradeoff CHF

techniques [58] have recently been developed which can be used to produce

any desired signature (e.g., ramp, parabola) at the correlation output in

response to image-plane rotation.

In the field of SDF filters, much work has been done by many researchers

andwe have not covered it all in this chapter. Variants of the SDF filter such as

theMACE andMVSDF filters have been extended by many teams. A notable

extension is the introduction of nonlinearMACE filters by Fisher and Principe

[73]. The generalized rotation-invariant MACE (GRI-MACE) filter by

Ravichandran and Casasent [71] combines the MACE concept with CHF

expansion to achieve sharp peaks while being invariant to rotations. Campos

and others have developed rotation-invariant filters for color pattern recogni-

tion [74] and also explored combination with CHFs [72]. To handle in-plane

rotations by using a training set of rotated images, Hassebrook [75] introduced

the concept of the linear phase coefficient composite filters (LPCCF),

which exploit the Toeplitz nature of the vector inner product matrix to

obtain an orthogonal family of rotation-invariant filters. Another important

development in trading off filter noise sensitivity to peak sharpness is the
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minimum noise and average correlation energy (MINACE) filter developed by

Casasent [76].

A significant area of filter design investigated extensively by Javidi and

others [54] deals with filter design for non-overlapping noise. While noise is

commonly treated as an additive process, it is more realistic to model clutter

and background noise as a process that is disjoint from the target.

The area of filter design for limited modulation devices is also very rich.

There have been numerous techniques proposed for the design of filters for

binary and ternary optical devices. Not all of these techniques take distortions

or noise models into account, some are more focused on accommodating the

limited dynamic range of the SLMs. However, with the advent of devices that

are capable of complexmodulation, the need for binary and ternary filters may

diminish. We will discuss in Chapter 8 general filter designs for limited mod-

ulation devices. The minimum Euclidean distance optimal filter (MEDOF) is a

very promising filter design technique that exploits the full range of complex

modulation possible on modern devices. The MEDOF concept has been

extended to implement the optimal correlation filters discussed in this chapter

on limited modulation devices. This has paved the way for implementing the

full-precision optimum filters in finite-precision optical systems.
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7

Optical considerations

7.1 Introduction

In this chapterwewill consider how light is used to carry and process information.

To perform correlation pattern recognition optically, we begin with cohe-

rent light with the right beam characteristics. We impress a signal upon the

beam with one spatial light modulator (SLM), alter the propagation of the

beamwith a second SLM so that information is preferentially passed through

the system and gathered at a location in the output plane, and detect and

identify any information that might have been on the input beam.

Accordingly we shall examine coherent light sources, SLMs, noise, and

detection methods. Polarization of light is a particular point of interest,

since many of the extant SLMs operate by altering the polarization of the

light. Light polarization is a proper subset of statistical optics, and for a more

complete description we refer the reader toGoodman [77] and to O’Neill [78].

Diffraction phenomena are also examined in this chapter, as they are

responsible for the Fourier transforming properties needed for an optical

correlator.

A knowledge of the physics of light and light modulators can be used to

place information onto a beam and to cause its propagation to convert the

information to a usable (i.e., detectable) form. The light typically used in the

correlators discussed in this book has idealized properties. It is almost mono-

chromatic (i.e., of single wavelength), almost fully polarized (this concept will

be explained in later sections), and often enters the processing system as almost

planar waves. In earlier chapters we have seen the power of the Fourier trans-

form in linear systems and correlation pattern recognition (CPR); the central

concept in this chapter is that the diffraction of coherent light produces a

Fourier transform. The diffraction of the coherent light is responsible for the

Fourier transform that occurs, so that an optical correlator can be produced.
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In this chapter we shall develop the necessary electromagnetic theory, includ-

ing propagation, polarization, light modulation, calibrations, and noise. We

shall see how modulators impose information on light beams and how that

information propagates. We shall look at some methods of measuring the

characteristics of the modulators so that they may be controlled to achieve

the desired effect. We shall develop the meanings of these terms and some of

the tools for analyzing departures from these ideal characteristics. Thus we

shall become acquainted, if not fully familiar, with: light propagation and

diffraction in Cartesian coordinates; the coherence matrix; the Jones and

Mueller formalisms for fully and partially polarized light; the Poincaré sphere;

phase, amplitude, and coupled modulation; interference, etc.

Except for some brief discussion on optical correlators in Chapter 5, we have

previously developed correlation filters with essentially no restrictions on the

values that objects, filters, etc. can have. In optical correlator implement-

ations, though, we do not have the luxury of unrestricted filter values. The

three major limitations on the optical implementation of CPR are: the

restricted set of complex values a filter can take on when it is physically

expressed on a modulator, the fact of only the correlation output magnitudes

being observable, and the noise that is present in the optical system. In the next

chapter we shall see the limitations on CPR imposed by optical systems, and

discuss how best to live within these limitations. There are considerations

(speed, volume, and power) that motivate us to use optical correlators, and

we shall develop the best method to do this.

We shall develop sufficient familiarity with light as an electromagnetic wave

phenomenon to grasp the concepts that are significant to performing correl-

ation optically. We begin with light as an electromagnetic phenomenon – what

are the disturbance’s physically observable effects and how do they propagate?

We show how a Fourier transform naturally occurs in the diffraction of light.

Next we develop coherence and interference, since it is the constructive inter-

ference of coherent light originating at all locations in the filter plane that

produces a correlation spot. Polarization is a property of coherent light that is

often used for control by an SLM, so birefringence and polarization are

reviewed in this chapter. We will principally use the Jones calculus to describe

fully polarized light and its propagation, but the coherence matrix and the

relatedMueller and Poincaré formalisms will be mentioned as the most power-

ful description of polarization to include only partially polarized light. We

shall work within the scalar diffraction model, which permits us to use the

analytic signal representation of an electromagnetic wave. A large number of

optical terms will be explained in sufficient, though not exhaustive, detail in

this chapter.
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7.2 Some basic electromagnetics

In this section we present a minimal amount of information on electromag-

netic theory – just enough for the purposes of optical correlation. We use the

analytic signal as developed in Section 7.5.

7.2.1 Description of plane electromagnetic waves

For shorter notation we will often use the angular frequency ! rather than the

number of cycles per second �. They are related by !¼ 2p�, of course, and
sometimes (as when discussing Fourier transforms and related spectral quan-

tities) it is notationally preferable to use 2p� since the 2p shows up in the

normalization of the transformation.

Consider a function f(x, y, z, t)¼ f(kz� 2p�tþ�), where k is a constant,

z is one of the Cartesian coordinates {x, y, z}, � is frequency, t is time, and

� is a phase constant. If we restrict our attention to those places where

kz� 2p�t¼ const., then f is a constant. That is, of course, to say that f

represents a plane wave propagating in the positive z direction, since the stated

condition would have

zðtÞ ¼ 2p�
k

tþ const: (7:1)

and furthermore the function has the same value at all (x, y) for such z. Thewave

propagates at speed 2p�/k. This is for an arbitrary function f. Suppose that we

restrict f to be a purely monochromatic (i.e., single sinusoid) function, then

f ðx; y; z; tÞ ¼ A cosðkz� 2p�tþ �Þ (7:2)

is a fully general expression, with � being the phase of the oscillation at z¼ 0,

t¼ 0. If we pick a fixed value for z we observe f to be a sinusoid oscillating in

time with frequency �. As yet we do not have a physical requirement for k; let

us remedy that.

The phase front of the wave advances at speed c¼ 2p�/k, giving rise to the

definition of k as:

k ¼ 2p�
c

(7:3)

The reader should verify that k, called the wavenumber, is 2p times the

number of wavelengths in a unit distance, whence its name. For light oscillat-

ing at 1014 Hz and propagating at approximately 3� 1010 cm s�1, k is about

20 000 cm�1, so k is seen to be a large number. In fact it is so large
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(i.e., lightwaves are so short) that the small scale of optical diffraction was

largely unobservable to the ancients, a literal shortsightedness that was a

factor in allowing the corpuscular theory of light to hold pre-eminence over

the wave theory until the nineteenth century. Newton himself favored the

corpuscular theory.

Using the analytic signal notation discussed in Section 7.5,

f ðx; y; z; tÞ ¼ A½exp jkz expð�j2p�tÞ exp j�� (7:4)

To obtain a little more generality than a wave propagating in the z direction,

we replace kz by k �r, where k is called the propagation vector and the light is a

plane wave propagating in the direction of r, and r¼ [x y z]T. In the complex

notation we have a monochromatic plane wave f:

f ¼ A exp jðk � r� !tþ �Þ (7:5)

that will be useful in the next section. In one more refinement, we can regard

A to be complex and absorb the phase � into it. Thus

f ¼ A exp jðk � r� !tÞ (7:6)

We emphasize that physically the time-varying phasor notation is actually used

just for the convenience of complex notation, but in much of the discussion with

linear operations it is not necessary to make the distinction between a physical

quantity and its phasor representation. Real fields add, phasor fields add; real

fields interfere, phasor fields interfere; etc. But the physical field is not complex,

even though we speak of it as such. Note that there is not a uniform convention

in the literature as to whether the wave is exp j(!t� kz), or exp j(kz�!t), whose

real parts are equal. Uniformity is not required since those expressions have

the same real part and each propagates in the positive z direction with increasing

time. However, for the Jones representation of polarization (Section 7.2.4),

the convention becomes important. In this book we use exp j(kz�!t) for a

wave propagating in the positive z direction. When reading other material on

polarization, check what convention is used. For example, of the five principal

citations for this chapter, four use expj(kz�!t) and one (Azzam and Bashara

[1979], the most thoroughgoing with respect to polarization) uses exp j(!t� kz).

Typically in a monochromatic (and hence coherent) system we can under-

stand the time-varying term, exp(� j!t), as a factor implicitly present in all

terms, and thus delete it from the notation for simplicity. The justification is

that ! for the light vibrations is far greater than the other temporal changes

that we induce with SLMs and detect using conventional detectors (and
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especially imagers, as are needed to examine the whole spatial region of the

output). Thus exp(�j!t) can be separated out as a common product in all of

the processes, although when performing operations with the real part of the

analytic signal it should be included again.

In using the analytic signal, we will find a couple of operator equivalences to

be useful. Suppose we have a complex signal u¼B exp j(kz�!t). Then we find

qu/qt¼� j!u, from which we make the association that taking the time

derivative of the analytic signal is identical to multiplication by �j!.

q
qt

$ �j! (7:7)

Similarly we find

q 2

qt2
$ �!2 (7:8)

and

q
qz

$ jk (7:9)

Diffraction of light, as discussed in the next section, describes how light energy

propagates.

7.2.2 Diffraction of light and the Fourier transform

In order for an optical correlator to function, we need to understand a little

electromagnetic diffraction theory. Electromagnetic fields propagate quite

differently from the way in which electrostatic and magnetostatic fields extend

from their sources. As an example, compare the electric field strength at a

meter and a kilometer from static and radiating point sources. The static field

has a ratio of 106, since the electrostatic field strength is inversely proportional

to the square of the source-to-destination distance. The electrostatic field is not

depositing energy, since it is static. In contrast, the rate of energy deposition

per unit area is proportional to the square of the time-varying field’s magni-

tude, a condition that we can exploit in contemplating the rate of fall-off of a

radiating field’s amplitude. Consider that the electromagnetic wave is depositing

energy onto the surface of a large centered sphere. If the wave propagates

losslessly to the sphere’s surface then, since the area of the sphere is proportional

to r2, the energy density falls off inversely with r2. Electromagnetic energy

density is proportional to the squared magnitude, so the magnitude of the

electromagnetic field that is carrying energy falls off with r, not with r2. When
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more than one source point is involved, their complex fields are added, not

their independently determined intensities. The resulting intensity is the square

of the magnitude of the sum of the fields, not the sum of the squares of the field

magnitudes. This statement will be clarified later in the discussion of inter-

ference. The ratio of radiating electromagnetic field amplitudes at a meter and

a kilometer is only 103, compared with the 106 for the electrostatic case. If we

have a monochromatic source so that we can meaningfully talk about phase,

then the electromagnetic wave propagates so that it lags the source with a

phase that is directly proportional to the radius. This intuitively based discus-

sion may serve to support the Rayleigh–Sommerfeld diffraction theory [32]

that is the basis of Fourier optics.

The foundation of diffraction theory is that time-varying electromagnetic

fields propagate themselves, with each point on an initial wave surface serving

as a source for the subsequent appearance of the wave. Under the approxima-

tion of linearity – that fields add – we can compute the effect from an arbitrary

element in the source as that effect is observed at a distant point. We then add

together the contributions from each of the source elements. The interested

reader may see Goodman [32], for example, for more detail.

In accordance with a physical arrangement (which we will examine later) of

a spatial light modulator and a laser beam irradiating it, suppose that we have

a planar object of complex transmissivity �(r1) within a surface �, where r1 is

the position of the object that is being irradiated by a uniform plane wavefront

Ein from a fully coherent source, so that the propagated field is

x0

y0

x1

y1

r01

r1

r0
Radiating
aperture ∑0

Figure 7.1 Superposition showing how U(r1) arises by propagation from
U(r0). Each point in �0 radiates into each point in �1 with a propagation
delay that is proportional to the distance r01 between them. The field U(r1) is
the summation integral over all such contributing points in �0. This
diffraction can be made to be a Fourier transform of the pattern in �0

(see text)
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U r1ð Þ ¼ Ein� r1ð Þ (7:10)

The Rayleigh–Sommerfeld diffraction equation specifies that a radiating

source of strength U(r0), at positions r0 on the surface �0, is observed at a

location r1 to have the effect:

U r1ð Þ ¼ 1

jl

Z Z
�0

U r0ð Þ exp jkr01ð Þ
r01

cos n � r01ð Þds (7:11)

where l is the wavelength, k is the wavenumber, r01 is the distance between

points r0 and r1, n is the normal to �, and the cosine is of the angle between

the normal n and r01, the vector from r0 to r1. There are a couple of

differences between the physically motivated discussion of the preceding

paragraph and Eq. (7.11). One is the factor 1=j l ¼ �j=l in front of the

integral, which corresponds essentially to Eq. (7.7); it is the time-varying

behavior of an electromagnetic field that allows it to propagate energy, and

Eq. (7.7) and the definition of k give the connection to the time-varying

aspect of U to create a propagating wave. The other item is the cosine term.

Since it deals with contributions made at oblique angles to the surface

normal it is called the obliquity factor, and it is justified in Green functions

and boundary conditions that need not concern us here. The form of

Eq. (7.11) is clearly indicative of the potential for diffraction’s performing

a Fourier transform, since that transform uses a kernel with nearly the same

complex exponential.

Equation (7.11) is difficult to use as it stands, and approximations are

commonly used to simplify it. The first such assumption is that the cosine

term may be taken as unity and that, in the denominator, the term r01 may be

taken as the distance z along the optical axis (the axis is normal to �). These

approximations (as are the others that follow) are valid if z is much greater

than the size of the aperture �, and if we stay close to the axis (the paraxial

condition).

Two other approximations are commonly used for dealing with the complex

exponential; they are the Fresnel and Fraunhofer approximations. Because the

wavenumber is such a large factor in the complex exponential, and the effect of

phase is so profound in the integral’s accumulating a product, r01 has to be

more closely approximated in the exponential than in the denominator. In the

Fraunhofer approximation the phase is calculated as though the wavefront is

planar. In the Fresnel approximation, which we treat first, the expanding wave

is approximated as a quadratic surface rather than as a true sphere. The center

of the sphere is at x1, y1 on the z¼ 0 surface.
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1

jl
expð jkr01Þ

r01
cos tðn; r01Þ�

expð jkzÞ
jlz

exp
jk

2z
ðx0 � x1Þ2 þ ðy0 � y1Þ2
h i� �

(7:12)

which is valid for

z3 � p
4l

ðx0 � x1Þ2 þ ðy0 � y1Þ2
h i2

max
(7:13)

as a sufficient, but not wholly necessary, condition [78]. Under the Fresnel

approximation, Eq. (7.11) becomes

U r1ð Þ ¼ exp jkzð Þ
jlz

exp
k

2z
x21 þ y21
� �� � Z

�0

Z
U r0ð Þ exp j

k

2z
x20 þ y20
� �� �

� exp �j
2p
lz

x0x1 þ y0y1ð Þ
� �

ds

(7:14)

The Fresnel approximation does not yet allow the use of diffraction to perform

a Fourier transform. If the first exponential within the integral were unity, we

would have a Fourier transform. The next step – the Fraunhofer approxima-

tion – finally gets us there. In this approximation the expanding wave is

considered in its dependence on x0, y0 to be planar as it emits from �, rather

than in the Fresnel approximation where it is a quadratic approximation to a

sphere. The Fraunhofer approximation is expressed as:

1

jl
expð jkr01Þ

r01
cosðn; r01Þ�

expð jkzÞ exp jk
2z

x20 þ y20
� �h i

jlz
exp �j

2p
lz

ðx0x1 þ y0y1Þ
� �

(7:15)

which holds for the far more stringent condition than Eq. 7.13,

z � kðx21 þ y21Þmax

2
(7:16)

in which the maximum is taken over the source aperture.

We digress for amoment for a physically intuitive approach to finding that the

Fourier transform will appear at the focal plane of a lens. Note that the depen-

dence on x0 and y0 is essentially angular, since the exponential term including

them has z in the denominator. We could rewrite the last exponential term in

Eq. (7.15) with angles  and � instead of spatial variables x0 and y0 by using

 ¼ x0=lz; � ¼ y0=ðlzÞ (7:17)
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We observe that  and � are angles (divided by wavelength, a constant for

monochromatic illumination as we have assumed) since the approximation in

Eq. (7.16) applies and we remember that for small �, sin(�)� �� tan(�). Then

we have

1

jl
expð jkr01Þ

r01
cosðn; r01Þ �

expð jkzÞ exp jk
2z

x20 þ y20
� �h i

jlz
expf�j2pðx0 þ y0�Þg

(7:18)

and the portion of the expression involving and � has, for a large distance z, the

kernel that takes the Fourier transform with respect to spatial frequencies in

the x1 and y1 coordinates. (The conditions in Eq. (7.16) would cause the value

of the second exponential term – the only other appearance of x0 and y0 – to be

near unity.) A 2-D Fourier transform occurs for the spatial frequencies given

by: fX¼ x1/lz and fY¼ y1/lz. (For more information see [32], for example,

whose development we have abbreviated here.) In free space the stated condi-

tions inEq. (7.16) occur only at great distances from the diffracting aperture, but

the imposition of a positive lens in essence draws infinity in to the focal distance,

and we can use a lens to warrant using the Fraunhofer approximation in an

optical correlator. Firstly, we consider just the geometric optics situation.

We see that the rays emitting from a point in the focal plane of the lens

(the lens has focal length F ) convert to rays having a single direction, and vice

versa. Angle � corresponds to a point in the focal plane lying at distance x from

the optical axis, where tan �¼ q/F. Following the preceding development we

see that light originally arising in a spatial frequency f at the diffracting

aperture comes to a location q¼Flf in the focal plane. We can develop this

in a more quantitative fashion and also examine a more general location of the

lens that is responsible for the Fourier transform.

Returning to the main development, we say that the electromagnetic fieldU

is expressed as the constant illumination field E0, being influenced by the

complex transmittance �(r1). Under the Fraunhofer approximation

Eq. (7.11) now becomes:

Uðr0Þ ¼ E0

exp jkz exp j k
2z

x20 þ y20
� �	 


jlz

Z
�

Z
�ðr1Þ exp �j

2p
lz

ðx0x1 þ y0y1Þ
� �

ds

(7:19)

and we see that, apart from the terms in front of the integral, we are obtaining

the Fourier transform of the complex transmittance � . We shall see how to use

lenses to take care of these leading terms.

252 Optical considerations



q

θ

F

Figure 7.2 Drawing of a simple lens with three rays: chief (passing through
center of lens, neither deviated nor displaced), top (from a point in focal plane
to lens to parallel with chief ), and bottom (the same). A lens converts angular
behavior in the far field into positional behavior in the focal plane. The
displacement q at the focal plane resulting from the off-axis angle � of
incoming light, is related to the focal length F by tan � ¼ q/F

d = 1/f

θ

Figure 7.3 Relationship between Fourier transform and Bragg diffraction.
The heavy dots are indicative of the Bragg condition, that reinforcement of
light propagating into a given angle � occurs when integer differences of
wavelength correspond to the spatial frequency of periodic lateral
structures. That is, when we move laterally through one cycle and
longitudinally through integer wavelengths, the periodic structure interferes
constructively in the direction �, even though the principal direction
of propagation is towards �¼ 0. Here, if f is the spatial frequency, then
tan �¼ l f. But from Figure 7.2, tan �¼ q/F. So we find that a laterally
coherent periodic light wave with lateral spatial frequency f will come to a
focus not only on the axis, but also at integral steps of F l f, in the lens’s focal
plane. This is a heuristic adjunct to the formal Fresnel–Kirchoff diffraction
integrals that show how a Fourier transform can occur in diffraction

7.2 Some basic electromagnetics 253



A converging lens can be approximated as introducing a quadratic phase

change to the arriving wavefront. To do this we assume that the wavefront is

nearly perpendicular to the optical axis (the paraxial approximation), and that

the lens is ‘‘thin’’ (i.e., a ray passing through it is deviated [in angle] without

being displaced [in position]). Under these conditions the lens has an effect on

an incident wavefront given by the phase change

��ðx; yÞ ¼ exp �j
k

2F
x2 þ y2
� �� �

(7:20)

in which k is the wavenumber as usual, x and y are position coordinates within

the lens, and F is the focal length of the lens. (The value �� is a phase change

measured as an excess over the base phase thickness of the lens.) Let us

examine the consequences of putting such a quadratic lens into the optical

train.We assume that�� extends over the whole interesting extent of � (in our

practical sense, that the lens is larger than the spatial light modulator being

used to affect E0, the incoming wavefront).

Goodman [32] develops three cases of interest in which the electromagnetic

field is computed at a plane one focal distance behind the lens: (1) The

complex object is placed directly against the lens; (2) the complex object is

placed a focal length in front of the lens; and (3) the object is placed a distance

d (0< d<F ) behind the lens.

1. The lens cancels the quadratic term in the integrand of Eq. (7.14), with the result

that within a constant phase factor, the electromagnetic field at xf, yf in the focal

plane of the lens is

U1ðrf Þ ¼ E0

exp j k
2F

x2f þ y2f

� �� �
jlF

Z
�

Z
�ðr1Þ exp �j

2p
lF

xf x1 þ yf y1
� �� �

ds

(7:21)

which differs from being the Fourier transform of �(r) by only the quadratic phase

factor before the integral.

2. Placing the object exactly a focal distance in front of the lens, and relying on no

stronger an approximation than Fresnel to propagate the light from lens to object,

results in cancellation of the quadratic term multiplying the integral in Eq. (7.21):

U2ðrf Þ ¼ E0

Z
�

Z
�ðr1Þ exp �j

2p
lF

xf x1 þ yf y1
� �� �

ds (7:22)

in which a constant phase term has been omitted. We have now achieved a Fourier

transform optically, using the diffractive properties of propagation.
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3. With the object a distance d behind the lens, and again using the Fresnel approxi-

mation for propagating the light – this time from object plane to the focal plane –

we have:

U3ðrf Þ ¼ E0

exp j k
2d

x20 þ y20
� �� �
jld

Z
�

Z
�ðr1Þ exp �j

2p
ld

x0x1 þ y0y1ð Þ
� �

ds

(7:23)

The Fourier transform of � appears again, this time with the useful effect that the

frequency � in the plane of r1 is directed to a location x0¼ lvd. That is, we can use d as
a free parameter to scale the frequencies at the object plane to specified locations in

the focal plane of the lens. (There is the quadratic phase term to be dealt with, but it is

a small penalty for the convenience of being able to enlarge the spatial extent of the

spectrum arbitrarily in its landing on the focal plane of the lens.)

7.2.3 Coherence, interference, and polarized light

With the tools from the previous sections we are able to get more particular

about how light is used in an optical correlator. We shall see that coherence and

polarization are quite intertwined subjects; coherence necessarily implies polar-

ization, though the converse is not true. For further details we refer the reader to

Chapters 8 and 9 of O’Neill [78] and Chapter 1 of Azzam and Bashara [79].

For optical correlation, the coherence of light is particularly important. In fact,

the most frequently cited paper in the optical correlation literature [5] was

published only slightly after the laser, with its notably coherent light, became

available. The laser finally made it possible to have sufficient power in nearly

monochromatic wavelengths for the diffraction integrals of propagation to be

usable approximations of the exact Fourier transform. Interference occurs only

with coherent light,1 and constructive interference is exactly how detectable spots

are created in the output plane of an optical correlator.We are also led to discuss

polarization since it isused tocontrol lightwithmanyof the currentSLMs,andwe

shall see that a completely monochromatic light beam is unavoidably polarized.

1 This would seem to call into question the concept of ‘‘white light interference,’’ a term with which the reader
may be familiar.Whatwemean by ‘‘white light’’ is that there is a breadth to the power spectrumwhen viewed
at a given location as a function of time, and that the field de-correlates when we impose even small time
differences. White light is not coherent but there is a finite bandwidth implicit in the experiment, or in the
sensing and recording method, etc. A narrowing bandwidth implies changing character closer to coherence.
However, if the white light beam is split into two beams, as by a partial reflecting mirror, and the two
beams are brought back together after traversing identical path lengths, then interference can be observed.
Each frequency component of the white light – being coherent with itself by virtue of arising in exactly the
same oscillation – is able to interfere, and so the whole beam interferes. With very nearly identical path
lengths the different frequencies interfere constructively or destructively simultaneously. The existence of
white light interference fringes is a powerful indicator of very nearly equal path lengths in split beams.
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In the two preceding sections we used a scalar electromagnetic wave; there

was no mention of the vector nature of light’s electric field. The equations

related to a given component of the vector field. The vector nature now

becomes significant, and the study of polarization is concerned with how the

orthogonal components of the electromagnetic vector behave together.

‘‘Orthogonal’’ will be seen to have another connotation for polarized light

rather than the familiar Cartesian meaning. It will denote polarization states

that do not interfere (that is, their intensities strictly add).

A light wave for which the phase fronts are planes, perpendicular to the

z axis and of uniform infinite extent in x and y, and propagating in an isotropic

medium, is represented by the field vector:

U ¼ E expð�j!tÞ expð jkzÞ (7:24)

in which we have absorbed the phase � into the now complex E. In isotropic

media (and under some circumstances in anisotropic media) the electric vector

E is perpendicular to the direction of propagation. We remind ourselves of the

following features. The electromagnetic disturbance is sinusoidal both in space

(along the z axis) and in time, with a phase �¼ argE, at time t¼ 0 at the origin.

The disturbance is a constant for kz�!t¼ const. That is, the wave propagates

along z at a speed u¼!/k. The electric fieldE has componentsEx andEy along

x and y, and both Ex and Ey are complex in order to express the phase

difference between them.

Coherence is quantified by how an x or y component behaves at different

locations in space and/or time, and polarization is quantified by how the x and y

components of E behave in combination at one location. For light that is not

purely sinusoidal in its oscillations, Wolf ’s mutual coherence function

[80] describes the correlation between parts of the wave at different times and

locations; for one component, E, of the propagating field it is defined as:

� x1;x2; �ð Þ ¼ Eðx1; tþ �ÞE �ðx2; tÞh i (7:25)

in which h�i indicates the time average taken over so long an interval that the

exact length of the interval does not matter. Equivalently, we may assume a

stationary process – sufficiently accurate for the environment within an optical

correlator. Vectors x1 and x2 are position coordinates, and � is a time differ-

ence that is usually implemented as a path length difference. The notation for�

is shortened to �12(�). Let’s look at some of the simplifications of the mutual

coherence function. The mutual coherence function �11(�) tells us over what

duration the source’s light stays coherent with itself, and �11(�) has its

maximum value at zero. When � is multiplied by the speed of light c, �11(�)
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tells us how the light is coherent with itself at different locations along its path.

The maximum distance c�coh over which � remains near its peak is known as

the coherence length of the beam. (Lasers have coherence lengths of centi-

meters to kilometers. They can conduct their internal electromagnetic vibra-

tions in modes of slightly different frequencies, and the modes are not coherent

with each other. As long as the laser is oscillating in one mode the light stays

coherent, so the coherence length tells us how long the laser typically spends in

one mode before hopping to another. Recent experiments in ‘‘counting light’’

have used molecular oscillations to stabilize light oscillations well enough for

c�coh to be light-weeks.) Similarly, �12(0) tells us over what lateral spatial

extent a light beam remains self-coherent. Clearly, an optical correlator must

be built so that path length differences and beam widths are considered for

their implications on coherence. These considerations lead us to install spatial

filters to ‘‘clean up’’ a beam with respect to lateral spatial variations, and to

select a source (such as a gas tube laser) whose coherence length suits the

purpose. A spatial filter functions by focusing the beam down to a very small

size and passing it through an even smaller aperture. (At this juncture we have

begun to speakwilly-nilly of Fourier domain processing of light, since the focal

plane of a converging lens is where the angular spectrum of the incident light is

displayed. That is, light from different angles focuses at different locations. By

limiting the aperture in the focal plane we limit the set of angles into which the

light will emit after it passes through the aperture.) The higher angular har-

monic content of the beam is blocked by the aperture, and the emerging light,

captured by a lens for its further use in the correlator, has a simpler behavior.

Generalizing from complex scalar to a vector field forE, the mutual coherence

function � becomes the coherence matrixM, defined as

M ¼ EEþh i ¼
ExE

�
x


 �
ExE

�
y

D E
EyE

�
x


 �
EyE

�
y

D E
2
4

3
5 ¼ Mxx Mxy

Myx Myy

� �
(7:26)

For purely monochromatic light (an assumption we shall make for the light in

an optical correlator), the time averaging is simplified. The time-dependent

term exp(�j!t) bears no relevance to the time averaging of the vector compon-

ents, since under the strictly monochromatic assumption all the time variation

occurs in the exp(�j!t) term. The coherence matrix will be used again in

Section 7.2.5.

Let’s look at some examples of specific polarizations. Suppose that the light

is monochromatic and that as we look into the oncoming beam we observe the

electric vector to oscillate in only the x direction. This light is linearly polarized
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in the xdirection, and in the next sectionwe shall develop somemathematics – the

Jones matrix – for describing it and its propagation. At our observation point

then we have

Ea ¼ Ea expð�j!tÞ 1
0

� �
(7:27)

in which we have momentarily retained the time variation just to remind

ourselves that it is always present, usually only implicitly. Light that oscillates

in only the y direction is

Eb ¼ Eb
0
1

� �
(7:28)

Similarly we would have

Ec ¼
Ecffiffiffi
2

p 1
exp jp=2

� �
(7:29)

for light in which the y component lags p/2 radians behind the x component

and the magnitudes are identical. Note that here we divided by a normalizing

factor so that the norm of the vector Eb is the magnitude of the possibly

complex Eb. We shall not always observe the normalizing nicety since the

absolute magnitude (and the absolute phase, for that matter) are not usually of

interest for our purposes. It is easily verified that the coherence matrices for

these fields are

Ma ¼ E2
a

1 0
0 0

� �
(7:30)

Mb ¼ E2
b

0 0
0 1

� �
(7:31)

Mc ¼
E2
c

2

1 exp �jp=2ð Þ
exp jp=2ð Þ 1

� �
(7:32)

Vectors as shown in Eqs. (7.27) to (7.29) are called the Jones vectors for the

light of the described polarizations, and the polarization actions of optical

elements on the Jones vectors are described using Jones matrices. When the

light is not fully polarized, as is assumed in setting up these equations, then the

appropriate vector to describe the state of polarization is the Stokes vector,

and the operation of optical elements is described in the Mueller matrix.

We shall spend the majority of our time on the Jones description.
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We can examine how these components interact in producing the observed

intensity. The intensity is I¼E
þ
E, where the superscript þ indicates the

conjugate transpose. Let’s see what intensity results from adding light vibrating

in the x and y directions.

Etotal ¼
Ex

0

� �
þ 0

Ey

� �
¼ Ex

Ey

� �
(7:33)

Itotal ¼ Eþ
totalEtotal ¼ Exj j2þ Ey

�� ��2¼ Ix þ Iy (7:34)

That is, the intensities add for x- and y-polarized light. In contrast, let’s see

what happens when similarly polarized light is added:

Etotal ¼
Ex

0

� �
þ Ex

0

� �
¼ 2Ex

0

� �
(7:35)

Itotal ¼ Eþ
totalEtotal ¼ 2Exj j2¼ 4Ix (7:36)

This looks like a problem! It appears that there is a net increase in energy

from adding the similarly polarized light. It is true that for those points where

the similarly polarized fields add exactly in phase, the intensity is quadrupled.

However, suppose the fields addwith a phase difference � from being exactly in

phase. It is easily verified that the resulting intensity is (2þ 2 cos �) times the

single-beam intensity. With uniform distribution of phase the cosine term

averages to zero, so the intensity averages to twice the single-beam intensity.

The point remains that for some phases the intensity of the combined beams is

substantially different from the sum of the beams’ individual intensities. This is

the hallmark of interfering light. The x- and y-polarized light beams do not

interfere under any phase relationship.

We say that non-interfering polarizations are orthogonal. It is also easily

verified that more generally than for the x- and y-polarizations, two light

beams having fields E1 and E2 are orthogonal in the present sense if

Eþ
1 E2 ¼ 0: (7:37)

This topic is more fully developed in the next section, which deals with the

Jones calculus for fully polarized light.

7.2.4 Jones calculus for fully polarized light

We begin with fully polarized light and develop the Jones formalism to

describe it. Fully polarized light has the property that knowing one component
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of the field tells you what the other component is. In the simplest example,

suppose that the light’s electromagnetic vector vibrates only along the x¼ y

direction. Then the x and y components are equal. Similarly, if you know that

the light’s electromagnetic vector traces out a circle in a clockwise direction,

you know that the y component leads the x component by p/2 radians. But if

the light is not polarized at all, then knowing one component tells you nothing

about the other. (Because of the definition of polarization this is an almost

tautological statement.) In-between, we have partially polarized light, and the

coherence matrix is the tool for handling this. We remark that if a beam is

exactly coherent it is also fully polarized. This follows from each component’s

being monochromatic, so that if the phase relationship between components is

once determined, it is fixed for all time, implying a state of full polarization.

There are various methods of producing polarized light; in some, like lasers,

the light is initially emitted in fully polarized form, and there are optical devices

(‘‘polarizers’’) that produce polarized light by blocking one polarization state and

passing the orthogonal state. The samephysical device can be employed for either

of two functional intents. The first is simply to provide a source of polarized light,

in which case it is called a polarizer. The second is to determine howmuch light is

in a particular arriving state, or to select only the light in that particular state for

further processing; in either of these uses it is called an analyzer.

We letE0 be the incoming light wave’s vector described in terms of its x and y

Cartesian components. The complex relationship between the x and y

components will describe the polarization of the wave. Suppose we have a

wave propagating in the þz direction:

E ¼ E0 expð jkzÞ (7:38)

Writing E in terms of its Cartesian components,

E ¼ E0x

E0y

� �
expð jkzÞ: (7:39)

The terms E0x and E0y are complex, and if the light is fully polarized they have

a fixed ratio. The phase and relative magnitude between E0x and E0y describe

the polarization state. The terms E0x and E0y are the components of the Jones

vector (with respect to a Cartesian basis). Let’s see how to find the Jones vector

of a polarization state.

Even as a two-component vector can be represented with respect to any

two independent vectors within the span of the vector’s components, the

polarization vector can be represented with respect to any two independent

polarization states (we ordinarily take them to be orthogonal). For nowwewill
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be representing polarized light with respect to the x and y components, but later

we shall represent such light with respect, for example, to left- and right-hand

circular polarizations. That is enough for now, but remember this point for later.

Pick a position along z (0 is handy) and observe the vector E0 as an explicit

function of time. In an isotropic medium the z-propagating electromagnetic

vibration is perpendicular to the z-axis – that is, it has components in only x

and y. (Young’s coming up with the observation that propagating electromag-

netic vibration is transverse saved the day for the wave theory of light, since the

corpuscular ideologues had seized upon the failure of longitudinal vibration wave

theory to explain polarization effects. Prior to Young’s epiphany, the wave

theorists had thought of light as a longitudinal wave similar to that of sound.)

The perspective in Figures 7.4 to 7.8 shows the behavior as we look into the

arriving wave. One cycle of the electric field is shown at the left. The temporal

behavior of the x and y components is in the center. At the right, the complex

phasor for the initial value of the electric field components is given in Jones vector

and graphical form, with the phasor rotation at angular rate ! indicated.

Consistent with the rest of the discussion on polarization, we have not bothered

to normalize the vectors to unit length. InFigures 7.4 to 7.8, we see the significance

of selecting the sign convention in Eq. (7.6); under the other convention, the

phasor labeled ! would be rotating the other way around, and a different phase

relationship between thex and y components ofE (i.e., the real parts)would result.

The Jones vectors in Figures 7.4 to 7.8 are given with respect to the Cartesian

basis. That is, writing E ¼ Ex

Ey

� �
is to say ‘‘I take Exmuch of an E-field having

zero phase at t¼ 0 and polarized to vibrate along the x-axis, and add it to Ey

Linear along x t

t

Ex

Ey

Eo =

1

0

Ex

Ex

Re

Im

Re

Im
Ey

Ey
=

Figure 7.4 Linear polarization along x

7.2 Some basic electromagnetics 261



Linear along x = y t
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Ey

E = =
1

1

t

Ex

Ex
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Im
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Im
Ey
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Figure 7.5 Linear polarization along x¼ y
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Figure 7.6 Right circular polarization
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Figure 7.7 Left circular polarization
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much of anE-field having zero phase at t¼ 0 and polarized to vibrate along the

y-axis. I express phase lag between the x and y components in the argument of

the complex values of Ex and Ey.’’ We can equally well use any pair of

independent polarizations (e.g., non-collinear Jones vectors) as a basis. For

example, if we add right-hand circularly polarized (RHCP) light and left-hand

circularly polarized (LHCP) light together, we have the resulting vector

Etotal ¼
1
j

� �
þ 1

�j

� �
¼ 2

1
0

� �
(7:40)

in which we have, for this instance, kept the normalization in addition to

keeping the complex ratio between components. We see that adding RHCP

light and LHCP light (of equal intensities and zero phase relative to each other)

gives x-polarized light. Similarly to Eq. (7.40) we can formally subtract RHCP

from LHCP and obtain y-polarized light:

Etotal ¼
1
j

� �
� 1

�j

� �
¼ 2

0
j

� �
(7:41)

(Subtraction is physically done by delaying the wave by p radians and then

adding.) From these last two equations we can see the following relationship.

Suppose we have a polarization state S that is expressed in terms of the

t

Ex

Ex
Ey

Ey

t

Re

Im

Re

Im

1

a + jb

a 

2
 + b 

2

Eorthogonal

1
Egeneral

a + jbGeneral polarization 

Orthogonal polarization 

=

–

=

Figure 7.8 General elliptical polarization
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Cartesian x and y states, S¼ [a b]T. We can build S by taking an amount a/2

each of LHCP light and RHCP light (i.e., the x polarization) and adding an

amount b/2 of LHCP light, then subtracting an amount b/2 of RHCP light

(i.e., the y polarization). As a matrix expression, S is given by:

S ¼ a
b

� �
1=2 1=2
�1=2 1=2

� �
light in RHCP
light in LHCP

� �
(7:42)

The matrix in the center expresses a change of basis; we can use a and b to tell

how much RHCP light and LHCP light is needed to express state S, although

we initially expected to have S specified to us in Cartesian-orthogonal polar-

izations. The major point here is that we confirm the statement made earlier,

that we may use independent polarizations as a basis for representing any

polarization. In the next section, the Poincaré sphere description of a polariza-

tion state will be a function of the polarization basis set.

We remark again that orthogonal polarizations do not interfere. To under-

stand this, notice that for the interacting Cartesian-polarized lightwaves, the

Pythagorean theorem, restated, says that the total intensity of the electromagnetic

field is the sum of the intensities in x and y. Interference classically is observed

when the light intensity is other than the sumof the intensities of the two beams in

question. Orthogonality extends to all other states as well as Cartesian polariza-

tion. The statement of orthogonality between general states E1 and E2 is that,

E1
þE2¼ 0. Thus linear polarizations at angles ofp/2with respect to each other are

orthogonal; RHCP and LHCP are orthogonal; and elliptical polarization has an

orthogonal elliptical polarization (see Figure 7.8).

Energy originally in orthogonal polarization states can be made to interfere

by the imposition of optical elements that affect polarization. Suppose we have

mutually coherent co-propagating light beams linearly polarized at 0 and p/2;
they are orthogonal to each other and they might differ in their phase. If they

pass through a linear analyzer aligned at p/4, then light from each beam

emerges at p/4, although each with its magnitude reduced by a factor of
ffiffiffi
2

p
.

Their individual phases are maintained in relation to each other. Each beam

has been analyzed for its linear component at p/4, which is to say that its

orthogonal component has been discarded (absorbed or reflected). An exact

vector analogy is that Cartesian x and y vectors are orthogonal (have zero

projections onto each other), but if we take unit vectors in the x and y

directions and take their projections separately onto a vector at 458, those
projections add directly (are themselves parallel and non-zero).

The analysis occurs so as to retain the individual phases of the originally

orthogonal beams, and the phases of the original beams determine whether the
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light passing through the analyzer interferes constructively or destructively.

Upstream of the analyzer, there is no such interference. A key point here is that

an irreversible action occurs when the light passes through the analyzer, and

some of the light has been lost. In terms of the Jones matrix to be developed

now, we would say that the analyzer’s rank is not full, so light cannot in general

be reversibly propagated through it. Jonesmatrix devices of full rank and unity

determinant are reversible (actually a unity determinant implies full rank), and

states that are originally orthogonal will propagate through the full rank Jones

matrix devices so that they continue to be orthogonal.

Now that we have the Jones vector description of the state of polarized light,

let’s describe how optically active elements change the polarization state of

light. This description is the Jones matrix, which specifies how differing

polarizations are altered and summed in passing through the element.

Inducing, altering, and measuring polarization states requires devices that

block one polarization of light and pass the orthogonal polarization. We will

try to be consistent in the use of ‘‘polarizer’’ and ‘‘analyzer’’ in describing these

optical elements. As mentioned earlier, the differentiation is in the intended

effect: the same physical device can be either a polarizer or an analyzer.

A polarizer by intent delivers light in a particular polarization state. An

analyzer by intent extracts light of a particular polarization state from the

arriving light. Where both meanings are intended, ‘‘polarizer’’ suffices. The

context will indicate which is the correct interpretation.

A linear polarizer blocks one Cartesian direction of electromagnetic vibration

and passes the orthogonal one. Say it blocks the x component and passes the y

component undiminished andundelayed. Then the input–output relationship is:

Ein ¼
Ex

Ey

� �
; Eout ¼

0
Ey

� �
: (7:43)

This action is expressed in a matrix operation as:

Eout ¼
0 0
0 1

� �
Ein (7:44)

and the matrix
0 0
0 1

� �
is the Jones matrix for a y polarizer. Similarly,

1 0
0 0

� �
polarizes linearly along x. A linear polarizer at an angle  counter-

clockwise with respect to the x-axis is expressed as
cos2  sin cos 
sin cos sin2  

� �
as

we see next.
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LetE be the Jones vector in the original (x, y) coordinate system and letE0 be

the Jones vector of that same electromagnetic wave in the Cartesian system

with x0 aligned at angle counterclockwise with respect to x. Then the rotation

matrix R converts Ein to E 0
in:

E0
in ¼ REin ¼

cos sin 
� sin cos 

� �
Ein (7:45)

The x polarizer’s action is
1 0
0 0

� �
in the primed system, so

E0
out ¼

1 0
0 0

� �
cos sin 
� sin cos 

� �
Ein ¼

cos sin 
0 0

� �
Ein (7:46)

which is rotated back to the unprimed (original) coordinate system by R
T:

Eout ¼
cos � sin 

sin cos 

� �
cos sin 

0 0

� �

Ein ¼
cos2  cos sin 

cos sin sin2  

" #
Ein

(7:47)

giving us the claimed form for the Jones matrix. An analyzer that transmits only

RHCP light can be designed by similar concatenation; firstly we use a waveplate

that converts RHCP light into x-polarized light, then we use an x polarizer

(rejecting the y-polarized light that was previously orthogonal to RHCP light –

i.e., LHCP light), and then inverting the action of the first waveplate.

(Although we shall not develop the fact here, you may note that the Jones

matrices for linear polarization are all of rank one, whereas a full-rank Jones

matrix is of rank two; the linear polarizers’ determinant is zero. This is because

when considered as a linear transform, it has a nullspace; the whole of the

orthogonal polarization is mapped to zero by virtue of being blocked.)

Now let’s see how physical optical devices can be assembled to produce

the various Jones matrices. They depend on differential effects on polarizations

of light.

The linear polarizer is perhaps simplest to envisage. A fine array of straight

wires, close together in a grid, forms a polarizer. Somewhat simplistically, the

conductive wires short out the electromagnetic field in the direction of the wires,

so only the electric component perpendicular to the wires makes it through.

In addition to the polarizers, the other principal optical devices for controlling

polarization are retarders (also called waveplates), both variable and fixed. The

defining character of a waveplate is that it differentially retards light of one

polarization compared to another. Retarders affect the state of polarized light
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passing through them by slowing light vibrating in one direction more than that

vibrating in another, thus altering the phase relationship between the compo-

nents as they propagate through the material. Crystallography provides appro-

priate materials for retarders. There are crystals (natural and artificial; solid and

liquid) that have differing indices of refraction depending on the polarization

of the light and the direction of propagation. In any direction of propagation

there are generally two values of the phase velocity, depending on the polariza-

tion, so this property is called birefringence. In fact, in crystals, only those with

cubic symmetry are isotropic; asymmetric stiffness in the binding of the charged

atoms in other crystals causes the speed of light propagation (equivalently, the

index of refraction) to be a function of polarization and propagation direction.

The susceptibility tensor is the mathematical description that relates the material

polarization in the crystal to the impressed electric field. As is manifest in

Maxwell’s equations, the material’s electric polarization affects the propagation

of light. Crystals for which there are three distinct values in the diagonalized

susceptibility tensor are called biaxial; those with two distinct values, uniaxial;

and those with one, isotropic. The names come from the biaxial crystal’s having

two directions in which polarizations propagate with equal phase velocity; and

the uniaxial crystal, just one. This direction of equal phase velocity is called an

optic axis of the crystal. The purpose of this paragraph has not been to fully

elucidate all of these terms, but instead to show them in a logical sequence and

context for further study if it becomes important to the reader (for example, in

reading product literature for variable retarders).

To obtain polarization effects we require optical elements that affect the

polarization states of incident light in different ways. Without going into

greater crystallographic detail than already given in the preceding paragraph,

we mention that it is possible to cut plates from uniaxial crystalline materials

so that they have ‘‘fast’’ and ‘‘slow’’ axes at right angles to each other, and in the

plane of the plate. As light passes through the plate, linear electromagnetic

vibrations that are aligned with the fast axis are retarded less (i.e., travel faster)

than those aligned with the slow axis. The indices of refraction for the two

directions are ne and no, the subscripts o and e standing for ordinary and

extraordinary propagation. The ordinary propagation is that for which the

speed of light is independent of direction in the bulk crystal. In a positive

uniaxial crystal, ne4 no, and conversely ne4 no in a negative uniaxial crystal.

As in the isotropic retarder in monochromatic light, where we were mostly

interested in fractional excess delay above integral wavelengths, we are now

interested in fractional differences in the delay in fast and slow axes.

In the process invented by Edwin Land (US Patent 2,041,138), a mass of

minute polarizing crystals is embedded in a plastic sheet that is then stretched.
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The stretching orientates the small crystals, and the orientated mass together

allows only a single linear polarization state to pass. The extinction ratio is the

factor by which an unpolarized light beam is reduced in intensity by passage

through a polarizer/analyzer pair that is so disposed as to minimize the trans-

mittance. Quite high extinction ratios (intensity ratios in the order of amillion to

one) can be obtained with the stretched plastic polarizers. There are other

methods that use the fact that reflection can cause polarization, a common

example being the Brewster window found in lasers. A glass plate tilted with

respect to an incoming light beam at an angle equal to the arctangent of the

index of refraction of the glass will transmit only a single polarization.

Linear polarization and isotropic retarding are not sufficient to get to arbit-

rary polarization states. Thus we now discuss birefringence and optical activity.

‘‘Optical activity’’ is the property possessed by substances that rotate the plane of

vibration for linearly polarized light passing through them; it is the result of

differing speeds of propagation for right- and left-hand circularly polarized

light, and many common substances are optically active. Crystalline quartz

and certain sugars are examples, dextrose and levulose being sugars named for

their optical rotary powers (the first rotates the plane of linear polarization to

the right, as viewed looking into the beam, the latter to the left). Birefringence

has more common application in optical processing than does optical activity.

Birefringence is the quality of having two distinct indices of refraction. (A prime

example is the calcite crystal, whose birefringence causes a double image that the

adherents to the theory that light is a longitudinal wave were unable to explain.)

An isotropic retarder delays all polarizations of light by the same factor.

Compare two parts of a light wave, one passing through an isotropic retarder

and the other not.We can describe the lag of the first with respect to the second

in three ways: time, distance, or phase. Of these, phase is the most commonly

used. If d is the physical thickness and n is the index of refraction, the optical

thickness is nd. The free-space optical thickness is 1d, so the distance lag is

(n� 1)d. The phase lag � is wavelength dependent and is found from the

proportionality:

�

2p
¼ n� 1ð Þd

l
(7:48)

The Jones matrix for the isotropic retarder is
expð�j�Þ 0

0 expð�j�Þ

� �
.

Typically (n� 1)d/l � 1, but in a monochromatic system with slowly varying

modulation of the carrier, we are interested in only the excess delay over 2mp,
for the largest m, such that m � n� 1ð Þd=l. Because of this, we can build

waveplates that are physically large enough to be robust to handling; we can
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build the bulk of the device to be a multiple of 2p of the phase, and then add

enough extra thickness to get the fractional effect we want. For example, the

differential index between ordinary and extraordinary modes for quartz, a

positive uniaxial crystal, is about 0.01. That is, for 100 wavelengths of propa-

gation through quartz, one of the polarizations will lag behind the other by one

wavelength. For 100N wavelengths, the lag is N wavelengths. To obtain a

quarter-wave of relative lag we need 25 wavelengths of quartz, or about two

and a half micrometers. Such a piece of quartz is unmanageably thin. With

coherent light, a lag of N wavelengths is undetectable. So instead a quarter-

wave quartz plate is made 100Nþ 25 wavelengths thick, with N large enough

such that the optical element can be handled. The coherence length of the light

sources used in optical correlators is far greater than the thickness of the

optical elements, so inducing 2Np of additional phase lag is inconsequential.

Suppose we take a retarder with a slow axis aligned with x and a fast axis

alignedwith y. Let � be the phase by which the x component of the Jones vector

is retarded compared with the y component. Then the effect is:

Eout ¼
expð�j�Þ 0

0 1

� �
Ein (7:49)

which can be written in a balanced form as:

Eout ¼
expð�j�=2Þ 0

0 expðþj�=2Þ

� �
Ein (7:50)

Here, as in other locations, we have implicitly acknowledged that we are not

concerned with absolute phase. We have suppressed a factor exp (�j�/2) on all

components. If we wish to leave the x component unchanged to provide the

reference phase,

Eout ¼
1 0
0 expðþj�Þ

� �
Ein (7:51)

Two common retarders are half- and quarter-wave plates in which � is

respectively p/2 and p/4. By putting �¼ p/4 into Eq. (7.51) we see that a

quarter-wave plate has the Jones matrix

Ml=4 ¼
1 0
0 þj

� �
(7:52)

and converts �¼ p/4 linearly polarized light into LHCP. Similarly,  ¼ 3p/4
leads to RHCP light. For example, suppose that we begin with light polarized

at �¼�458, expressed as [1 �1]T. Then
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Eout ¼
1 0
0 þj

� �
1
�1

� �
¼ 1

�j

� �
(7:53)

which is RHCP light.

The concept that the x and y vibrations are orthogonal to each other extends

to other polarization states as well. We can verify that the given condition

on polarization states expressed in the Jones calculus means that they do

not interfere. An intuitive way to think of this is that an x component of a

wave cannot cancel a y component. Two polarization states do not interfere

if and only if the intensity of their sum is the sum of their intensities. For x- and

y-linearly polarized light, this is easy enough:

Ixþy ¼
1
0

� �
þ 0

1

� �����
����
2

¼ 1
1

� �����
����
2

¼ 1
0

� �����
����
2

þ 0
1

� �����
����
2

¼ Ix þ Iy (7:54)

More generally, suppose state S1 is [a b]
T, and state S2 is [c d ]

T, with complex

elements in each vector. The statement of orthogonality expressed earlier is

that, Sþ
1 S2 ¼ 0, or a�cþ b�d¼ 0. Using this condition we obtain:

I1þ2 ¼
a
b

� �
þ c

d

� �����
����
2

¼ aþ c
bþ d

� �����
����
2

¼ a
b

� �����
����
2

þ c
d

� �����
����
2

¼ I1 þ I2 (7:55)

after expanding the terms and using the statement proposed for orthogonality.

So we see that polarization states meeting the definition of orthogonality do

not interfere. To emphasize: this statement is true for all sorts of completely

polarized light, be it linearly, circularly, or elliptically polarized.

The Jones description of fully polarized light makes it simple to see that any

polarization state (described by its Jones vector) can be converted to a linear

state by an appropriate waveplate.

S1 ¼
A exp j�1

B exp j�2

� �
is an arbitrary polarization

S2 ¼
exp j �2��1

2

� �
0

0 exp �j �2��1
2

� �
" #

A exp j�1

B exp j�2

� �
¼

A exp j �1þ�2
2

� �
B exp j �1þ�2

2

� �
" #

S2 ¼ exp j
�1 þ �2

2

� �
A

B

� �
which is seen to be linear polarization:

It is also easily verified that any waveplate operating on orthogonal states

produces orthogonal states. We leave it to the reader to verify that the

arbitrary waveplate
expð j�Þ 0

0 expð�j�Þ

� �
does not change the orthogonality

of incident polarizations.
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Following Wolf [80], we summarize in Table 7.1 the foregoing development

of the Jones calculus for fully polarized light and linear optical elements.

We do not, however, normalize the entries.

7.2.5 Another formalism for polarized and partially polarized light

There is more than one way to quantify the state of polarization of light, each

methodbeing suited to the purpose forwhich it was developed. In this sectionwe

Table 7.1 Jones matrices for various optical elements

Optical element Jones matrix

Linear polarizer Horizontal 1 0
0 0

� �

Vertical
0 0
0 1

� �

	458
1 	1
	1 1

� �

Quarter-wave plate Fast axis vertical
1 0
0 �j

� �

Fast axis horizontal
1 0
0 j

� �

Fast axis at 	458
1 	j
	j 1

� �

Half-wave plate Fast axis either vertical or horizontal
1 0
0 �1

� �

Isotropic phase retarder
exp j� 0

0 exp j�

� �

Relative phase retarder
exp j�x 0

0 exp j�y

� �

Circular polarizer Right
1 j
�j 1

� �

Left
1 �j
j 1

� �
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briefly discuss the Stokes–Mueller formalism for partially polarized and unpo-

larized light. We shall contrast the Stokes–Mueller formalism with the Jones

calculus, and state why we use the Jones method to describe light in optical

correlation. We will discuss the Poincaré sphere, the Stokes parameters and the

Stokes vector comprising them, the Mueller matrix, and the coherence matrix.

The Jones calculus is the most often used formalism in optical correlators.

We have seen that it is well suited to fully polarized light both with respect to

describing the state of polarization (the Jones vector) and the expression of a

linear optical element’s action on the light (the Jones matrix). Furthermore,

and quite significantly, it describes how phase propagates. Optical correlators

work by restructuring phase and amplitude among the harmonic components

of a signal, with their resulting interference providing the correlation output.

Another primary reason for concentrating somuch attention on coherent light

is that its coherence enables the optical Fourier transform. Fully monochro-

matic light is perforce polarized (why?) and is hence amenable to the Jones

calculus and, in fact, quasi-monochromatic light that is fully polarized is

indistinguishable from monochromatic light, by most instruments. In optical

correlators, coherent light carries the information, and furthermore we often use a

modulatorwhose action is described by a Jonesmatrix to filter the image borne on

the light. As long as it is valid, we prefer using the Jones calculus for its descriptive

economy. We discuss the Poincaré sphere as a graphical adjunct to the Jones

calculus; positions on it describe the polarization state, and linear optical elements

that alter the polarization state simply move the point around on the sphere.

As light becomes other than fully coherent (andmay then become other than

fully polarized, too), statistical methods are necessary to describe it. The

Stokes parameters (and the Stokes vector built from them) characterize coher-

ent, partially coherent, and incoherent polarized light. The Mueller matrix

describes the conversion of the Stokes parameters by optical elements. The

coherence matrix mentioned in Section 7.2.3 relates to the Stokes description.

Again we refer the reader to Chapters 8 and 9 of O’Neill [78], and Chapter 1 of

Azzam and Bashara [79] for details. Chapter 3 ofMandel andWolf [81] gives a

very thorough and readable treatment of the coherence matrix.

Often we do not need to include all of the information in the Jones descrip-

tion of fully polarized light. An example is when the absolute phase or absolute

amplitude of the polarized light is unimportant, which is most often true in

optical correlators. In this case the Poincaré sphere, adapted from complex

function theory, is adequate to depict the state, although quantitative comput-

ations are still most conveniently performed in the Jones calculus. Movements

of a point on the Poincaré sphere describe the action of linear polarizing

elements. Let’s see how to get to the Poincaré representation.
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Firstly, we note that if the absolute phase and amplitude of fully polarized

light are unimportant, we can normalize the Jones vector to the Cartesian x

component, and then all of the information that describes the light’s polariza-

tion is contained in the normalized y component. The result is that a point in

the complex plane describes the polarization state; this is called the Cartesian

complex plane representation:

� ¼ Ey

Ex
(7:56)

Note that the absolute phase and amplitude are lost in this representation.

In the limit as Ex goes to zero, � becomes infinite in a phase direction that

depends on how Ex and Ey behave in that limit. Thus, finite values of the

electric field in polarized light require the entirety of the complex plane to be

sure that all polarization states can be described. This is an unconscionably

thin use of complex real estate, however cheap the land prices might be!

However, in the theory of functions of a complex variable, Riemann has

shown us how to compact the entire complex plane onto a sphere. A sphere of

unit diameter is placed tangential to the complex plane at the origin. The point

of contact we shall call the south pole, and the sphere’s diametrically opposite

point, the north pole or vertex. Zero longitude will be in the direction of the

positive x-axis at the point of tangency at the south pole. A point in the plane is

mapped onto the sphere along the line connecting the point to the vertex, a

process known as a stereographic projection (it is sometimes used in mapping

the Earth’s nearly spherical surface onto a flat map, most commonly in the

polar regions). We note with satisfaction that however Ex approaches infinity,

the representation on the Riemann sphere approaches a single point, the north

pole. When the values of � from Eq. (7.56) are plotted on a Riemann sphere it

is then called a Poincaré sphere.

We remind ourselves that the values of the Jones vector depend on the

polarization basis vectors. In the Cartesian description of �, linear

x

jy

z

w

Figure 7.9 Diagram of Riemann sphere. Complex value z¼ xþ jy is mapped to
point w on the unit-radius sphere tangent to the complex plane at the origin
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polarization along the x-axis has the Jones vector E¼ [Ex Ey]
T¼ [1 0]T, linear

along y is [0 1]T, linear at an angle � to the x-axis is [cos � sin �]T, RHCP is

[1 � j ]T, LHCP is [1 j ]T, and the vector

cos � cos "þ j sin � sin "ð Þ sin � cos "� j cos � sin "ð Þ½ �T

describes the general elliptical state depicted in Figure 7.8. (As an exercise for

the reader, the latter relationship is obtained from noting that for �¼ 0, the

Jones vector is [(cos ") (� j sin ")]T, and then rotating the coordinate system by �.)

Let us depict these conditions graphically. The Cartesian point for light linearly

polarized at � is the ratio of theEy to the Ex component, or tan �. Thus the linear

polarizations occur along the real axis of the complex plane, being linear along x

at the origin and linear along y at the infinities. The real axis in the complex plane

maps onto the great circle passing through the poles at 08 and 1808 of longitude.
Similarly we see that RHCP light is represented at �j and LHCP light at þ j.

Since the diameter of the Poincaré sphere is unity, points in the plane at unit

radius aremapped to the equator, and soRHCP light falls on the equator at 2708
east longitude, and LHCP light falls at 908 east longitude. A quarter-wave plate

aligned with its fast axis parallel to the x-axis has a Jones matrix
1 0
0 j

� �
that

differentially retards the y component by p/2, and so it would convert RHCP

light [1 � j ]T into linearly polarized light [1 þ 1]Tat 458, halfway between the x

and y axes. On the Poincaré sphere, this rotates the representing point along the

equator through 908 of longitude. Other actions that alter the polarization state

amount to similar motions of points on the Poincaré sphere. We trust that this

meager introduction to the Poincaré sphere representation of fully polarized light

and its propagation through optical instruments will whet the reader’s appetite

and encourage them to read further in Section 2.5 of Azzam and Bashara [79].

We remind the reader that the Poincaré representation is a function of the basis

polarization (Azzam and Bashara often use RHCP and LHCP as the basis), and

also that those authors use an alternative sign convention to ours in the analytic

signal (see Section 7.5).

The Jones and Poincaré methods are adapted to fully polarized light. (In fact

if we permit a sphere of smaller radius than unity, the Poincaré sphere is also

sufficiently descriptive of partial polarization, with zero radius corresponding to

entirely unpolarized light.) However, light in the real world is never exactly fully

polarized. The Stokes parameters replace the Jones vector description of the

polarization state, and the Mueller formalism, related to the coherence matrix,

describes the propagation of partially polarized light. We now summarize the

Stokes vector and Mueller matrix for operating with partially polarized light.
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The Stokes parameters are statistical descriptions of the polarization state of

light for light that is not fully polarized – that is, for light that does not have

complete predictability of one component of the light, given perfect knowledge

of the other component. The four Stokes parameters are, S0, S1, S2, and S3.

(They correspond to measurable intensities, if suitable elements are inserted

ε

Ex

 jEν

Figure 7.10 The general polarization ellipse

Figure 7.11 The shapes of polarization ellipses as a function of the complex
value of �, the ratio of y-component to x-component of the light’s electric
vector
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into the beam. However, we do not make measurements within the optical train

of a correlator during its operation, but insteadmathematically describe the light

in terms of its complex amplitude as it propagates. This leads us to favor the

Jones formalism for describing the propagation of light through the correlator.)

These Stokes components, arranged as a vector,S¼ [S0S1S2S3]
T, are called the

Stokes vector; S0 is the total intensity of the light, S1 is the degree to which the

light resembles linear polarization along the x or y axes, S2 is the degree to which

light resembles polarization at �¼ p/4, S3 is the resemblance to circular polar-

ization. As for the coherence matrix briefly introduced earlier, expectation

quantities are time-averaged over sufficiently long periods that the exact value

of the period is unimportant. Table 7.2 gives more information.

For completely polarized light, S2
0 ¼ S2

1 þ S2
2 þ S2

3. For partially polarized

light, the inequality S2
0 > S2

1 þ S2
2 þ S2

3 occurs, and for completely unpolarized

light, S2
1 þ S2

2 þ S2
3 ¼ 0. This leads naturally to the definition of the degree of

polarization as:

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
S0

(7:57)

which is zero when there is no correlation between the Cartesian components

of the electromagnetic field, and unity when there is complete correlation. The

Table 7.2 Stokes parameters

Stokes
parameter

Expression Range of
value

Inference

S0 ExðtÞj j2
D E

þ EyðtÞ
�� ��2D E

Positive Light is present
Zero No light is present
Negative Can’t happen!

S1 ExðtÞj j2
D E

� EyðtÞ
�� ��2D E

Positive More like x polarization
Zero Not more like either x or

y linear polarization
Negative More like y polarization

S2 2 ExðtÞEyðtÞ
�� ��cos �yðtÞ� �xðtÞ	 

 �

Positive More like linear at þ458
Zero Not more like either 	458

linear polarization
Negative More like linear at �458

S3 2 ExðtÞEyðtÞ
�� �� sin �yðtÞ� �xðtÞ

	 

 �
Positive More like RHCP
Zero Not more like either

circular polarization
Negative More like LHCP
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charm of the Stokes parameters is that: they are real quantities unlike the Jones

complex quantities; that their values have a somewhatmore direct and intuitive

connectionwithmental images of polarization behavior, as outlined in Table 7.2;

that they deal with partially polarized light (this is really the big deal here);

and that they are directly calculable from physical measurements. In the latter

connection, suppose we have measurements of intensity without any analyzer

(Ibare), following analyzers that select light in the linear polarizations at 08, 458,
908, and 1358, and also in RHCP and LHCP. Letting these intensities be

subscripted in the obvious manner, the Stokes parameters can be computed as:

S0 ¼ Ibare ¼ I0 þ I90ð Þ ¼ I45 þ I135ð Þ ¼ IR þ ILð Þ
S1 ¼ I0 � I90

S2 ¼ I45 � I135

S3 ¼ IR � IL

(7:58)

The above-described method uses six measurements to obtain the Stokes

parameters in a natural and straightforward manner, easily amenable to

laboratory practice. Mandel and Wolf [81], in Section 6.2 of their book,

show how to obtain the elements of the coherence matrix – and hence the

Stokes parameters – using only four intensity measurements.

Here is the conversion between Stokes parameters and the coherencematrix:

S0 ¼ Mxx þMyy

S1 ¼ Mxx �Myy

S2 ¼ Mxy þMyx

S3 ¼ j Myx �Mxy

� �

9>>>>=
>>>>;

$

Mxx ¼ 1
2
S0 þ S1ð Þ

Myy ¼ 1
2
S0 � S1ð Þ

Mxy ¼ 1
2 S2 þ jS3ð Þ

Myx ¼ 1
2
S2 � jS3ð Þ

8>>>><
>>>>:

(7:59)

The conversion from coherence matrix to Stokes vector is patent here, and the

formulas are also shown inverted to give the coherence matrix in terms of the

Stokes vector. We have shown how to make physical measurements that yield

the Stokes vector, so we can achieve the coherence matrix from the selfsame

physical measurements.

7.2.6 Which formalism to use?

We now have all the elements: Jones vector andmatrix, Stokes vector, Mueller

matrix, and coherence matrix. We use these tools in ascertaining the action of

SLMs to control light and in characterizing the SLMs themselves. For optical

correlators, though, we much prefer to use the Jones calculus. The principal
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reason is that the Jones calculus retains phase information on the propagated

light and does so in easily retrievable form. (Note that the measurements

behind the Mueller–Stokes description are all intensities in which phase is

not immediately evident.) Phase is a very important descriptor in computing

how the spectral components of a lightwave propagating through the optical

correlator will add together.

7.3 Light modulation

The role of an SLM is to encode a desired spatially varying effect (in particular

an input image or a filter) onto a lightwave. In Chapter 8 we shall examine

more of the physics of light propagation, but now we discuss some of the ways

in which light is modulated as a function of position on the face of the SLM.

7.3.1 Architecture and diffraction from a Cartesian SLM

The SLMs that we shall consider are modeled as pixels in a Cartesian (often

square) array. There are two major diffraction effects necessary to understanding

the effect of an SLM. The first is the diffraction pattern of a single pixel, and the

second is the diffraction from the array structure itself. The array of pixels can be

regarded as a convolution of a single pixel with an array of impulse functions.

As is apparent froman earlier sectionwe can compute the diffraction of light from

a single pixel by using the pixel as the aperture and performing the diffraction

integral. (Accurate modeling of this effect from a single pixel is tedious and

fraught with problems that we shall not go into in any depth here.) Earlier in

this chapter we saw that under the Fraunhofer approximation the far-field

diffraction pattern of a radiator is given by the Fourier transform of the field.

The Fourier transformof the convolution between two functions is the product of

the transforms of the two functions. What this means here is that the diffraction

pattern of light coming from an SLM is the product of the Fourier transforms of

light from a single pixel and the transform of an array of impulse functions

corresponding to the pixel locations. The transform of the array of impulses is

another array of impulse functions; the spatial array is transformed into an

angular array by diffraction, and the angular array is the set of diffraction orders.

In this section we shall get quantitative about these concepts.

7.3.2 Birefringence (Jones matrix) SLMs

We have put so much attention into polarization because a large number of

SLMs operate by polarization effects; the liquid crystal SLMs and the
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magneto-optic SLMs are examples. They operate by having a voltage-

dependent Jones matrix, with each pixel having its own drive voltage. These

SLMs are to be operated in a particular pair of polarization states (input and

analyzed), and the SLM’s effect on the light is to be understood in terms

of the polarization states. We shall refer to these SLMs as indirect in their

action; the SLM does not care what the input or analyzed polarization state is,

it simply alters its own Jones matrix according to the applied voltage. The

ultimate operating characteristics of the SLM depend generally on both the

input and analyzed polarization states between which the SLM operates.

Manufacturers of these devices include Boulder Nonlinear Systems,

Displaytech, Kopin, Litton, Sharp, and others. Many of the LCD devices

for the display industry fall into this category.

7.3.3 Direct action SLMs

In addition to the polarization-operated SLMs, there are the direct-action

SLMs, such as the deformable mirror surface devices produced by Texas

Instruments (TI), by Optron, and by Hamamatsu. In the case of the TI

devices, small flat mirrors either tilt or undergo piston (up and down) motion

in response to the control voltage. In the case of the Optron and Hamamatsu

devices, a flat membrane surface is locally dimpled according to a spatially

varying voltage applied to the reverse side. The light diffracts differently

from the dimpled surface than from the flat, and light from the dimples is

ordinarily scattered out of the light path and trapped. The direct action

SLMs do not typically have as strong a polarization-sensitive variation in

their action as the indirect action SLMs. To first order, we can think of the

tilting of a small mirror element as redirecting the beam according to the laws

of reflection from planar surfaces, so if the light is redirected so as to miss the

entrance aperture of subsequent optics, it is observed as a reduction in

amplitude. (A more accurate picture is that the tilted mirror element is

‘‘blazed,’’ in spectroscopic terms, which affects the efficiency with which it

directs light into its various diffraction orders. Pixelated holographic optical

elements in general do not so much steer beams around in a continuous

fashion as simply re-balance the light among the orders. Optical correlators

are usually set up to capture a single diffraction order.) Also to first order,

and with more precision than for the effect of tilting, translation of a pixel

along the optic axis introduces a phase change in the diffracted light. The

optical path, computed in units of distance, is a constant function of wave-

length; hence the phase change, measured in radians, is a varying function of

wavelength.
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7.3.4 Optically addressed and electrically addressed SLMs

In another binary partition of the SLM population, there are optically addressed

SLMs (OASLMs) and electrically addressed SLMs (EASLMs). The OASLMs

are often referred to as light valves, much as vacuum tubes are referred to as

electronic valves. Vacuum tubes amplify the effect of small electronic signals to

control large results. The light values use a low-intensity ‘‘write’’ beam to control

the reflective or transmissive properties of the SLM, and a high-intensity ‘‘read’’

beam is then spatially controlled by the input light image. The development of the

OASLMs is most strongly dictated by the display industry, which uses them for

projecting bright images onto large screens. The EASLM market is also highly

responsive to commercial interests in projection display, but it is more strongly

influenced by optical processing than the OASLM business. An example of

incompatibility between optical processing and projection requirements is that

for display to a human observer you can easily afford to duty-cycle a binary-

intensity display, in order to attain the effect of continuously variable intensity

modulation. Digital circuitry is fast enough to duty-cycle the image faster than

the flicker fusion response of the human eye. Optical processing is not so tolerant,

however; the correlation image is formed in literally nanosecond-scale time, far

faster than the SLMs change state, so if the effect of analog modulation is to be

had, then analog modulation it has to be. Analog modulation is particularly

significant in optical correlation.

7.4 Calibration of SLMs and their drive circuitry

In using an SLM, an image (usually from a television camera, if it is the input

SLM, or digital storage, if it is the filter SLM) is converted to a drive signal and

applied to the SLM’s pixels. Then the coherent light is directed to the SLMand

the SLM alters the light’s local characteristics. The original electronic image is

thereby encoded on the wavefront. The encoding is determined by the beha-

vior of the SLM, and there is no single form of that behavior. The set of

complex values that a pixel takes on as the drive goes through its domain is

called the operating curve, and to ascertain the operating curve is called

characterizing the SLM. The general rule is that the SLM must be character-

ized in the same sort of optical environment in which it will operate. We shall

see several methods of characterization. We start with a case where strong

simplifying assumptions hold, specifically that the SLM is completely uniform

over its face and noise is negligible. We progress to cases in which the fringes

are non-uniform, the SLM varies in its behavior from pixel to pixel, and noise

must be accounted for.
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We emphasize that it is the complex amplitude, not the intensity, of the SLM’s

action that is primary to optical correlation. That is because the complex

amplitude (i.e., the phased magnitude) is what adds linearly inside a correlator,

not the intensity. The things that happen inside a correlator are described by

linear system theory, but not if one were to make the observed intensity

(rather than magnitude) have first-order dependence on the drive signal.

7.4.1 Interference fringe analysis for uniform and non-uniform SLMs

In order to make best use of an SLMwe must know what it does when a given

drive value is applied to it at any point. In the preferred case the SLM is

uniform in its response across its face. We can build spatial interference

patterns and analyze them for the SLM’s action. If the action is different

from location to location, however, the analysis is more difficult and we do

what we call a ‘‘depth’’ analysis. That analysis is done, pixel by pixel, on a set of

interference values collected for a set of reference phases at each pixel.

We earlier discussed the interference of light in terms of effects at a point. In

general when using or characterizing SLMs we have interference over the

spatial extent of a beam, not just at a point. The electromagnetic field of the

kth beam incident at a location may be written as Ek (x, y), the combined

electromagnetic field is E x, yð Þ ¼
P

kEk x, yð Þ, and the observable intensity is

I(x, y)¼ |E(x, y)|2. It will be implicit that we are analyzing for the interference

of light that is in a single polarization state (see the discussion of how different

polarization states do or do not interfere in Section 7.2.3).

The magnitude portion of an SLM’s action is measurable in a very straight-

forward fashion: simply change the drive applied to the SLM and measure the

intensity of the light that passes through. The magnitude is proportional to the

square root of the measured intensity.

Phase is not ordinarily directly visible, and to infer phase we rely on the

analysis of observed intensity. Phase interferometry is quite a broad topic, but

we summarize here some of the essential elements and their application to

optical correlation. We limit our observation and analysis to the interference

of two beams.

Suppose we have a voltage-dependent Jones matrix SLM operating in the

presence of an input polarization state S1, and that the output polarization S2

is analyzed for state S3. The input polarizer (if present – we might instead rely

on the inherent polarization of the coherent source to produce S1), the SLM,

and the output analyzer form a system (as shown schematically in Figure. 7.12)

that delivers an image encoded on the lightwave. The action of the SLM is

regarded as the magnitude and phase changes induced in the light in state S3.
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As an aside, we might choose to operate the SLM without a following

analyzer, and indeed there are laboratories in which that is done. If the input

polarization state is such that the Jones matrix of the SLM produces a single

output polarization, all may be well and good since the light from all pixels will

interfere. If, however, the output polarization state varies with voltage, then

the light from pixels driven at different voltages will not fully interfere, and the

effectiveness of the SLM is reduced. This is because the scalar diffraction

integrals, so manipulated as to produce the Fourier transform of a lightwave,

assume that the light all across the source aperture is able to interfere. The

operating characteristics of a Jones matrix SLM will generally be strongly

dependent on the selected states S1 and S3, and it will be beneficial to examine

the effects of various combinations of those states.

The action of the system is to change all or part of the light in state S1 into S2

with varying amplitude and/or phase in that state, and we model the system as

though there are no other effects. (Other such modulation effects that actually

do occur, and which are sometimes the basis of an SLM, are a change in the

frequency of the light or time-modulation of light.) SLMs are typically linear

in their propagation of light – i.e., they are not like frequency-doubling

crystals – so we will find that the light is little changed in frequency. SLMs

certainly time-modulate the light, but the SLMs used in optical correlators do

not change state quickly in comparison with the optical processing time.We can

regard the SLM as essentially static while the light is bearing the image through

the processor. The retardation and the absorption remain as the significant

modulation effects. As long as we recognize that we are measuring only the

light in state S3, we can proceed as though the sole effect of the SLM is to retard

and absorb the light as a function of local position on the SLM.We can express

the absorption and retardation as a field of complex numbers, one number per

pixel. At a pixel in question, denote the amplitude transmittance as � and the

time delay as � . The phase delay corresponding to � is, � ¼ 2p c�=l, and in fact

Arbitrary
polarization
state

Polarizer SLM Analyzer

S2 S3S1

Figure 7.12 Arbitrary coherent light is polarized into state S1; modulated by
the SLM into state S2; and analyzed for the component of S2 that is in state
S3. The SLM is characterized by the phase andmagnitude of that light in state
S3 according to various drive conditions of the SLM
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the phase delay (or simply ‘‘the phase’’) of the SLM is what we analyze directly

for, rather than � . We construct the complex phasor, s ¼ � exp( j�) as the

encoded signal. It remains only to decide what to use as reference for zero

phase and perhaps also to decide on an amplitude normalization. Otherwise,

once the SLM is characterized, we can proceed just as though all we have is a

field of complex numbers to diffract, or take the DFT of, or whatever.

We will mention four architectures for characterizing an SLM. All depend

on interference with a reference beam to visualize the complex effect, since

phase is an important part of the action of an SLMand the phase is not directly

measurable. The conventional architectures are the Michelson interferometer,

the Mach–Zehnder interferometer, and the dual-beam interferometer. A new

architecture uses the assembled correlator itself as an interferometer, and it is

called an in situ interferometer.

The interferometers are analyzed from their imaged interference patterns.

For the moment, suppose that the action of the SLM is uniform across its face,

which is a common enough assumption in the discipline. We activate the SLM

with a valueV for the drive over its whole face. The illuminated SLM is imaged

onto a pixelated imager having x as its coordinate in the direction perpendi-

cular to the interference fringes. The reference beam and the beam from the

SLM would optimally be uniform, although as we shall see there are compen-

sations for non-uniformities. Ordinarily a slight slant is put between the

reference and object beams so that the reference beam has a spatially affine

phase variation across it when its phase is compared with the object beam from

the SLM. Consider that we arrange the object beam and reference beam so

that they arrive at angles equally disposed from the normal onto an imager’s

surface where we measure the intensity of their combination.

We now examine the in situ characterization setup. The other interferometers

arewell described in the literature but the in situmethod is newer in theway that it

relates to an optical correlator. The fringe analysis is common to all of the setups.

When a periodic disturbance is written onto the input SLM its transform

appears at symmetric locations in the transform (or filter) plane. This is similar to

what is indicated when the incoming beam strikes the grating in the dual-beam

setup in Figure 7.13. The correlator automatically selects the �1, 0, and þ1

orders of the diffracted beam. Optimally the zero order (the DC component of

the input image) is blocked.

To do the in situ characterization of the filter SLM, we begin with the

magnitude. Easily enough, we keep a stable pattern on the input SLM, drive

the whole filter SLM with a uniform value, and observe the light collected at

the correlation plane as the filter drive changes. The magnitude of the filter

SLM’s response is proportional to the square root of the measured correlation
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Figure 7.13 Four interferometric setups: (a) Michelson, (b) Mach–Zehnder, (c) dual-beam, and (d) in situ
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intensity. Similarly, by holding the filter drive steady and varying the input

SLM’s drive we can characterize the input SLM’s magnitude.

Phase is a little more troublesome. We begin by putting a periodic signal onto

the input SLM. In order to minimize the effects of coupled-input SLMbehavior,

we use only two values of the input drive, and we repeat a value a sufficient

number of times so that its doubled-frequency appearance in the correlation

plane will be resolvable. For example, we might use a sequence such as:

[0 0 0 0 255 255 255 255 0 0 0 0 . . . ] as input bars. The periodicity of the input

creates matching transform plane locales (at positive and negative frequencies)

where there is appreciable energy density. The halves of the filter SLM (and

thus the positive and negative frequencies of the bar pattern) are driven with

different values, and the differential effect of the drives is analyzed for the filter

SLM’s phase.

We approximate the input pattern as a sinusoid:

uðxinÞ ¼
1

2
1þ cosðkxinÞ½ � ¼ 1

2
1þ 1

2
exp jkxinð Þ þ exp �jkxinð Þ½ �

� �
(7:60)

The input signal u is decomposed under diffractive Fourier transform into a

DC term, a positive frequency term, and a negative frequency term, at the filter

modulator. We now apply signals to each half of the filter modulator, one of

which (the positive fx side, say) we hold constant (at some convenient value

such as either maximum transmittance or zero voltage) and refer to as unity.

It is the SLM’s action on the other half that we change by altering the applied

drive, V. It multiplies the negative frequencies by the complex factor,

�(V )¼M(V ) exp[ j�(V )], while we also block the DC component with a phys-

ical stop (or minimal-magnitude SLM value) at the filter plane. Variables M

and � are, of course, respectively the magnitude and phase of the SLM action.

In the retransform (correlation) plane, we have the complex amplitude s

derived from u by having its DC component removed and the positive and

negative frequencies differently affected:

sno DCðxÞ ¼ exp þjkxð Þ þM exp j�ð Þ exp �jkxð Þ (7:61)

(We suppress constant factors. Also, k and x refer, as appropriate, to input or

correlation plane quantities without explicit notice of the scale difference when

the correlation plane imager has a different resolution than that of the input

SLM.) We wish to extract the values forM and � by observing the intensity of

sno DC. When sno DC has its intensity Ino DC detected in the CCD imager:

Ino DC xð Þ ¼ exp jkxð Þ þM exp j�� jkxð Þ½ � exp �jkxð Þ þM exp �j�þ jkxð Þ½ �
¼ 1þM2 þ 2M cos �� 2kxð Þ ð7:62Þ
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Note that the phase � of the SLMappears directly in the argument of the cosine

term, and that it appears with a term 2kx that is double the input frequency.

Removing DC light balances the cosine about zero, and detecting it doubles the

frequency. (Remember the trigonometry identity, 2 cos2�¼ (1þ cos 2�).) The

analytical signal is ideally adapted for measuring �. We compute the analytical

signals, sa(V, x), and sa(Vref, x) as a function of position x in the correlation plane,

and of the drive voltages V (the objective) and Vref (the reference). The complex

ratio � is the transmittance of the SLM, and the phase is directly read from � :

� V ;xð Þ ¼ sa V ;xð Þ
sa Vref ;xð Þ (7:63)

At the time of writing, we have had quite good results from this means of

characterizing the filter SLM in place within the correlator.

It has proved more difficult to characterize the input SLM’s phase than the

filter SLM’s and as of this time we have only initial laboratory results. Theory

and simulations, plus preliminary laboratory results, encourage us to describe

the method here.

Input a signal of vertical bars across the whole input SLM. The left half is

driven at frequency f1, and the right half at f2, as in Figure 7.14. The left half

alternates between the base value and the reference value, the right half

alternates between the reference value and the object value. When the filter

SLM blocks all but narrow one-sided passbands around the two fundamental

Objective drive

Base drive

Reference drive

Figure 7.14 The drive pattern for the input SLM when ascertaining its phase.
Left and right halves are driven at differing frequencies and between different
limits. Bandlimiting followed by detection at the correlation plane yields an
analytical signal phase. The objective drive value is changed, and the
difference in analytical signal phase gives the change in SLM phase caused
by the change in objective drive value
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frequencies on one half of the frequency plane, the effect at the correlation plane

is that each of the two resulting complex sinusoids extends across the whole

correlation plane, and interference at the difference frequency results. The inter-

ference is not exactly sinusoidal, because the passbands are inevitably not each

at a pure single frequency and the source patterns are not each sinusoidal

and uniform across the input SLM. The drives produce complex values, zbase,

zref, and zobj. The signal arising from the left side is modeled, with acknowledged

imprecision, as the sinusoid, (zbase� zref ) cos( 2p f1x), and the right-side signal

as (zbase� zobj) cos(2p f2x). If we have set up the filter SLM so as to have a low-

transmittance point on its operating curve, we use that value and a high-

transmittance value to create passbands only in the vicinities of þ f1 and þ f2.

The complex sinusoids, (zbase� zref) exp( j2p f1x), and (zbase� zobj) exp( j2p f2x)

will reach the correlation plane. The detected intensity is then:

intensity ¼ zbase � zobj
�� ��2þ zbase � zrefj j2

þ 2 Re zbase � zobj
� �

zbase � zrefð Þ�exp j2p f1 � f2ð Þx½ �
� �

(7:64)

Just as for the filter SLM,we use digital processing of the intensity pattern to

create the analytical signal from a digital bandpass around the difference

frequency, ( f1� f2).

Sigan ¼ zbase � zobj
� �

zbase � zrefð Þ exp j2p f1 � f2ð Þx½ � (7:65)

We then change the drive for the objective part of the input pattern and

recompute the analytical signal. The ratio of the two analytical signals is

nominally a constant function of position x:

� ¼
Sigan;1

Sigan;2
¼

zbase � zobj;1
� �
zbase � zobj;2
� � (7:66)

The ‘‘cookbook’’ description is this:

1. Write two high-frequency bar patterns at the input. One of these patterns oscillates

between two drives we call ‘‘reference’’ and ‘‘base,’’ the other oscillates between

‘‘reference’’ and ‘‘objective.’’ The reference, base, and objective complex values are

ideally well separated from each other. The high frequencies are so chosen that their

difference frequency is observable at the correlation plane.

2. Use the filter SLM for spectral isolation of the low-frequency difference between the

the two high-frequency input components. That is, except for a window surrounding

the beat frequency, the filter SLM is set to low transmittance. (We assume that the

filter SLM is capable of a low-magnitude transmittance – and if the correlator is not

set up to permit such a low-magnitude filter transmittance, in our opinion it should

have been!)
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3. Use the analytical signal to extract a value for the phase of the interference pattern.

4. Change the ‘‘objective’’ drive value and repeat Steps 1 to 3.

5. Infer the relative phase between the two objective drive values.

6. Repeat Steps 1 to 5 for a sufficient number of objective pairs, to construct the whole

operating curve.

The foregoing analysis assumes that the action of the SLM is uniform over its

face. The display industry is the major financial force in SLM development, and

it places a high value on visual uniformity in the manufacture of display SLMs,

since even a single misbehaving pixel out of millions can attract the attention

of the human visual system (the eye). As previously mentioned, the preferences

for optical signal processing and for display are different. In optical signal

processing we can stand considerably more non-uniformity and errant pixels

than the display application, andwe prefer a different kind of analog behavior as

well (see the later discussion on an SLM’s ‘‘coverage’’ of the unit disk). Practical

experience has shown that SLMs can come with non-uniformities that are

significant problems to optical correlation but of no consequence to display,

so we need a method to deal with them. We call this method a ‘‘depth’’ analysis

of the fringing, as opposed to the ‘‘sideways’’ analysis we just developed. By

depth we imply that measurements at one location are taken at differing times

using differing reference beam values, whereas in sideways analysis we examine

spatial patterns in an image from a single snapshot.

7.4.2 ‘‘Depth’’ fringe analysis for spatially variant SLMs

In the foregoing analysis, fringes that occur simultaneously across the face of

the imaged SLM are captured in a frame grabber and fitted with various

parameters. If the SLMhas significant spatial variability in its action, the fringes

will not be cleanly delineated and the method fails; we then revert to funda-

mentals. What is important later on, when we are computing the drive value for

each pixel in order to assemble a filter, is the set of complex values that are

accessible to the pixel. That is, we fundamentally want to know the action of

each pixel, and we can use this information regardless of whether or not the

SLM is uniform. To obtain this information, we re-order the data set that we

obtain according to the prescription for the uniform SLM given above. There is

one difference, though: we will preferably land the reference beam onto the

imager so as to minimize the number of fringes across its face. The interference

will be present, but we will not wish to have many fringes as they will unneces-

sarily complicate the analysis. In practical use, the filter SLM is ordinarily

positioned perpendicular to the beam (or as nearly perpendicular as the possibly

warped face allows) – i.e., it is mounted in a minimum-fringe orientation.
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Suppose that we image the SLM exactly, pixel for pixel, onto the imager.

We begin this process in the same way as for the uniform SLM; we block in

turn the reference and modulated beams to obtain M(x, y) and A(x, y). For

each value of V we image the interference between the modulated and refer-

ence beams, obtaining the intensity data set, I(x, y,V ).With as near zero fringe

as possible across the modulator, and with the reference and modulated

amplitudes in appropriate ratio (near unity), then at each SLM pixel (x, y)

we have the data set I that we can analyze for � (x, y,V ), just as before. It is just

that the fringe appears as a function ofV at each (x, y), not as a function of x at

each V. There is a much greater amount of data to be handled, since we

potentially have a different operating curve for each pixel. However, those

are the breaks of the game when we deal with non-uniform SLMs. Clustering

of operating curves [82] reduces the mass of data, and it can be tuned to the

problem at hand. A processing problem that requires a high degree of filter

precision (typically the discriminant filters that are trying to tell apart similar

objects) can have its clusters set by criteria that have little variation amongst

the members, although this is at the expense of handling more clusters.

7.4.3 Establishing synchronism of D/A/D mappings

We compute a filter drive based on the set of complex values that the filter

SLM’s pixels can produce, in the hope that the drive value we assign will be

applied to each pixel. This is easiest if a digitally stored filter drive is directly

displayed on the filter SLM. However, when one uses an SLM that is taken

from a projection display system, the electronics that drive the SLM are often

configured to take its signal from an analog video waveform such as RS-170.

In this sort of correlator system, a digital filter drive is stored on a board that

converts its internal discrete array into a string of analog video lines that are

resampled for display on the filter SLM’s pixels. Here we risk being led astray,

with a filter SLM’s drive value being some sort of neighborhood average of

what was intended. The problem is that the display pixel sampling is not likely

to be synchronized with the digitally stored values; this is because in the usual

display of video imagery for visual consumption there is little or no need for

sub-pixel registration precision. We have to provide that for ourselves.

An example of the problem is illustrated in Figure 7.15, where we want the

ith pixel to have a value Vi, but it ends up having a value associated with the

average of Vi� 1 and Viþ 1. This is not a problem where the filter is slowly

changing in value as a function of frequency, but the advanced filters are

ordinarily found to be very busy functions of frequency. This puts strong

demands on both optical and electronic alignment.
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In aiming for a discrete filter drive value to be displayed on a given filter

pixel, wemust pre-compensate for the discrete-to-analog-to-discrete electronic

processing that will follow.

Figure 7.16 illustrates how to learn the spatial mapping between storage

cells from which the filter SLM is driven, and the pixels. We have found a

digital moiré method to be satisfactory. It assumes linearity in the rate of

change of board location with rate of change of position on the SLM. There is

ordinarily not a problem in mapping from lines on the drive board to lines on

the SLM. At the center of the problem, then, is finding the affine mapping

constants k and b (scale and offset) so that

n ¼ kmþ b (7:67)

where n is the pixel number on the SLM, andm is the pixel number on the drive

board. The value of b produces an offset in the analog line so that we can hit

Averaging drive values
produces this filter value
(but it is probably not
the desired effect)

Averaging filter values
would produce this filter
value (but it is not a
possible one) 

Operating curve; the set
of possible SLM values 

Figure 7.15 Illustrating the ill effect of incorrect assumptions in mapping
from digitally stored filter drive values to the affected filter. If the assumed
relationship between storage and filter pixels is wrong, then the incorrect filter
value is likely to result

Measured intensity

Position

Figure 7.16. A very sensitive way of determining the mapping between
storage cells and SLM pixels is to draw storage cell values from a sine wave
with varying phase and spatial frequency, until two-on, two-off pixels are
observed when imaging the filter SLM
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the first pixel on the SLM, and the value of k stretches the analog line so that

we end on the last pixel. For the moment it will be convenient to let x be the

continuously variable version of discrete n, and to let y be the similar version of

m. We wish to apply the drive value u(n) to pixel n, and we have to determine

the set of stored values d(m) in the vicinity ofm¼ (n� b)/k that will produce it,

realizing that the value of m so computed will not generally be an integer.

When we know k and b, we can interpolate storage cell values from, say,

sinc ( �) interpolation on the optimal drive values.

7.5 Analytic signal

It is extremely convenient to use complex numbers to describe quasi-periodic

phenomena (light, in particular). In this section we justify using the complex

Frequency, f

Frequency, f

The set of drive values that are determined as optimal for a given
problem.  The set of frequency indices are those at the filter plane
pixels. 

Here we have drawn a bandlimited video signal that will be
sampled by the SLM circuitry to produce the desired drive values 

Combined indices

Once the relationship is determined between the pixel grid (circles
are data values) and drive storage location (squares are data
values), an interpolation on the circles produces the values to be
stored as filter drives at the storage locations (squares)

Figure 7.17 Interpolating to compute stored drive values that construct
desired drive voltages at the SLM pixels
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description of real time-varying quantities. If the reader is comfortable with

complex descriptions of electromagnetic phenomena the section can be skipped.

The analytic signal depends on the famous Euler’s identity:

e j� ¼ cos �þ j sin � (7:68)

From Euler’s identity we also have

cos � ¼ 1

2
e j� þ e�j�
� �

(7:69)

and

sin � ¼ 1

2j
e j� � e�j�
� �

(7:70)

Many manipulations involving trigonometric functions are made easier by

using this identity. We can use exp j� where we would otherwise use cos �, and

then appropriately take the real part when we are through. As long as we are

careful in performing only linear operations, we can interchange these operations

with taking the real part of the expressions.We frequently find complex notation

to be very convenient in describing optical processes.

Our present objective is to begin with a real nearly periodic signal and deter-

mine the appropriate complex form.We want to regard a nearly monochromatic

oscillation as the real part of a complex time-varying phasor, and we will further

require that the rotation of the phasor be unidirectional. That is, if we look in the

three-dimensional space with time as one axis and the real and imaginary axes as

the other two, the complex phasor describes a spiral about the time axis.

A consequence is that the negative frequency component of the spiral (which

we call the analytic signal) is zero; this condition specifies how to compute the

imaginary part of the analytic signal from the given real part. The clue is to

compare among the previous three equations. The trick is to do the operations in

the frequency domain. Let us replace �with 2pvt to emphasize that we are dealing

with time-varying quantities.

An intuitive view of the analytic signal is that the analytic signal, fa(2p�t) is
to f(2pvt), as exp ( j2pvt) is to cos (2p�t), and we build the analytic signal from

f(2pvt) in the same fashion as we would build exp ( j2p�t) from cos (2p�t) using
the forms above. Suppose we have a strictly monochromatic signal, e.g., the

signal is a pure cosine. We convert cos (2p�t) to exp ( j2p�t) by going through
the frequency domain. The cosine’s transform is two delta functions lying at

	�. We double the coefficient of the positive frequency coefficient and replace

the negative frequency’s value by zero, and then inverse transform– thus

converting cos 2put ¼ 1
2
e j2put þ e�j2put� �

to e j2put. That is, we transform,
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multiply in the frequency domain by 2 sgn(�) (where sgn(�) is �1 for � < 0,

0 for �¼ 0, and þ1 for �4 0), and then inverse transform. (The convention is

that the zero-frequency term is unaltered in ascertaining the analytic signal,

but we most often want to suppress DC in our analyses.) Multiplication in the

transform domain by the sgn (�) term is closely related to taking the Hilbert

2 + cos(2πνt)

s(t )

t

Sa(f )

  f
–ν +ν

–ν +ν

S(f ) 

A. Monochromatic cosine oscillation 

B.  Spectrum of the cosine
oscillation 

C.  Spectrum of the analytical
signal for the cosine oscillation 

D.  Oscillating, non-
monochromatic, but narrow-
spectrum, real-valued
measurement 

E.  Analytical signal for the
measurement shown in D.  The real
part of the analytical signal matches
the values of the measurement.

Figure 7.18 Conversion from a real-valued oscillatory signal to its complex-
valued rotary analytical signal
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transform, f̂ �ð Þ ¼ 1=p
R1
�1 f tð Þ=ðt� �Þ dt of f(�), since taking the Hilbert

transform is seen to be a convolution with 1/pt, whose transform is j sgn �.

Thus the analytic signal, fa(2p�t) is obtained from the real-valued f(2p�t) by:

fað2p�tÞ ¼ f 2p�tð Þ þ FT�1 sgn � FT f 2p�tð Þf gf g (7:71)

This equation displays the computational method of obtaining the analytic

signal.

Now instead of being monochromatic, suppose f(t) is a carrier of constant

frequency 2p�, modulated by a slowly varying envelope A(t), and a slowly

varying phase �(t) according to

f ðtÞ ¼ AðtÞ cos ½2p� tþ �ðtÞ� (7:72)

We invoke the term ‘‘slowly varying’’ tomean, somewhat imprecisely, that the

amplitude spectra of the positive and negative frequencies do not overlap – that

they are confined well away from zero. The transform of the signal (in optical

signals, a comparatively slowly varyingmodulation of a 1014Hz carrier) consists

of narrow bands centered on 	�, and we would like to focus our attention on

just the positive frequency component. The analytic signal in Eq. (7.72) is seen to

be, fa(t)¼A(t)e j�(t), in which expression we have suppressed the carrier fre-

quency, �, as is customary since it is common to all terms and carries no

significance for the optical processing system (any practical modulator or sensor

will average over many cycles of the 1014 Hz carrier). In the mathematical

descriptions of electromagnetic waves and the effects of optical components,

we shall use the analytic signals and functions without further ado.

For a deeper discussion including the analytic function for constants, pairs

of Hilbert transforms, even/odd Hilbert transform characteristics, etc., see the

excellent references by Bracewell [45] and Goodman [32]. We shall use the

complex form for the electromagnetic wave and the optical elements without

further comment.
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8

Limited-modulation filters

In this chapter we shall optimize statistical correlation pattern recognition

under the constraints of being implemented optically. We shall also trace their

genealogy and look at some of their predecessors.

8.1 Introduction

The objective of this chapter is to treat optical correlation pattern recognition

(OCPR) by considering signals, correlation metrics, noise, and limited filter

domains.

Digital correlation is computationally more flexible and less noisy than

optical correlation. On the other hand, optical correlation can be much faster,

and have less weight and volume and power consumption, etc., whichmotivates

us to give it a try. The constraints are very different in the two processes; in

some digital correlation filter designs we have seen the necessity of introducing

constraints (such as that the filter should have unit energy). In optics we are

thoroughly constrained already, without introducing any artificial constraints.

Unfortunately, in contrast to the digital version, the form of the optical

constraint does not usually provide the solution for an optimizing filter. In

this chapter we will nevertheless see how to operate optimally within the

limitations imposed by optical practicalities.

The objective of pattern recognition is to recognize the presence of the

reference object in the input signal or scene. Optical correlation aims to

make a comparatively bright spot of light that is detectable against a notably

dimmer background when the desired object is present in the input image. We

shall work with various criterion functions that measure the optical distinctness.

In Chapter 5 we developed correlation basics, and in Chapter 7 we intro-

duced the basic optics necessary to do the correlation. In this chapter we bring

these two chapters together and show how best to go about the pattern
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recognition in physically realizable systems. We will show that a simple and

attractive mathematical form – a version of the matched filter – optimizes a

large number of the metrics that we would choose to optimize.

In this chapter, we will base our metrics on what we can observe in the

output – the intensity. This will have us using slightly different statistics. For

example, we will need to use the variance of intensity, whereas in previous

chapters we used the variance of magnitude.

There are three principal stages in the historical development of OCPR

discussed in this chapter.

1. The history of OCPR has seen many ad hoc approaches (some of which we

introduced in Chapter 5) to filter optimization, in which generally good ideas are

used to guide the selection of a filter, but not always on the basis of analytical rigor.

2. In the second stage, we compute a fully competent digital filter that is correct

according to the precepts developed earlier, and then find a way to adapt it to the

devices in the optical correlator.

3. In the third stage, we begin by expressing a metric that is motivated by the concepts

already developed, but altered to acknowledge the facts of physical implement-

ation.We then optimize themetric expressly in view of the limited set of filter values

we can make.

Another design philosophy we espouse is the use of every degree of freedomwe

can lay our hands on. A prime example is in the optical phase at the correlation

plane; that phase is unobserved, so it becomes a free parameter that can be

used to good advantage in computing an optimal filter.

A good deal of signal and image processing concerns itself with processing a

transmitted and noisy signal to reconstruct the original signal. One wishes to

reduce error in the reconstruction. We have a similarity and a difference here.

The similarity is that we are trying to minimize an error but, differently, we

are using the signal’s harmonic content to build statistically distinguishable

optical results for in-class and out-of-class objects. We use the statistical

pattern recognition (SPR) metrics to quantify the discriminability, just as the

expected error’s energy quantifies the quality of reconstruction. The recon-

struction error – or, better in our application, the construction error – is

unavoidably larger with limited-modulation filters. The light that passes

through the filter unabsorbed and not contributing favorably to the pattern

recognition problem goes somewhere; it is distributed hither and thither in the

correlation plane. In doing so it is detected and contributes to the background

against which the correlation is to be detected.

Historically there have been a number of approaches to operating a corre-

lator using choice of filter SLM type and method of driving that SLM. The
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historical filters have not typically been tied rigorously to the SPRmetrics, and

with respect to the stated aim of OCPR we shall refer to them as physically

based rather than statistically based. They include the phase-only filter (POF),

maximizing the correlation intensity with a coupled SLM (its phase and

magnitude vary together), binarized filters, etc. Optimizing the SPR metrics

within optical correlation is amore recent development. There are information

metrics by which we might judge (and then optimize) the correlator’s perform-

ance, and they include the Bayes error and cost [1, 2], the area under the ROC

curve [29], the Fisher ratio [1], expected information (averaged log likelihood

ratio) [83], the Kullback–Liebler ‘‘distance’’ [83], the Bhattacharyya and

Chernoff bounds [22], and others.

Our preferred approach to filter optimization is analytical optimization, in

which it is shown that the metric is at an extremum obtained by choice of filter.

Another approach is found in the various ad hoc optimizations in which

justification is by analogy rather than by strict analysis. An example of the

ad hoc approach is choosing to match a signal’s phase on an SLM that has

coupled phase and magnitude behavior. Although phase is a stronger conveyor

of image information than magnitude, just matching the phase may not

necessarily optimize a pattern recognition metric of interest. We shall develop

the conditions for which phase matching is optimal.

It is easy to compute competent digital or optical filters that are not

expressible on extant SLMs, and the challenge becomes to use the optical filter

values at hand to approach the performance of the ideal fully competent SLM.

In this chapter we will see how a correlation metric will help us select an SLM

for a stated purpose, to run amodulator as it stands, or to select from the set of

operating characteristics of the SLM we are using.

There are at least two principal environments for constructing optimal

filters. Firstly, suppose you already have a correlator and you want to operate

it most effectively. You must know the whole system accurately and quantita-

tively. Along with the range of the filter SLM, youmust know the signal that is

presented to the correlator and how it is encoded to appear at the filter SLM.

The noise environment is important information. Your knowledge of all of

these things will guide you to the optimal filter.

Secondly, if you are designing a correlator, you would do well to know the

problem you are trying to work with, and you should quantitatively describe

the metric by which you will judge the result. The system, including the filter

range and the filter itself, limits the achievable value of the metric. The metric

becomes the tool by which a system design is optimized.

A powerful and general method applicable to both of these objectives is to

design a metric that suits your correlator’s pattern recognition problem, and
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then to maximize that metric by filter selection (in the first case), or by system

design plus filter selection (in the second case). For every system design there is

a filter range, and for every filter range and metric there is an optimal filter;

we can see that we do not independently consider correlators, metrics, and

optimal filters.

In comparison with digital processing, OCPR has some serious limitations

to recognize. Most significant among them are:

1. The limited set of filter values that the filter SLM can take on. The physics of light

modulation and convenient architectures admit only certain subsets of the complex

plane – and, more particularly, of the unit disk in the case of passive modulators.

2. Larger amounts of noise in the detection process, including some that is not

filterable. Optical detection is subject to noise, which does not happen in digital

computations. Scattered light in the correlator’s optical path, shot noise in the

detector, etc., are examples of physical noise that are not experienced in comput-

ational pattern recognition methods.

3. Imprecision, including spatial variability of an SLM, non-uniformity of illumina-

tion, incorrect alignment, temporal changes in the behavior of an SLM, etc.

4. The loss of phase in detecting the correlation plane. Optical correlation detects the

intensity of the light field, and distinctions such as +1 versus –1 that are plainly

possible in the digital sense are impossible in optics.

To expand on the first point, there are strong differences between the limit-

ations imposed optically and the limitations apropos digital processing (e.g.,

that a filter should have unit energy). The digital Rayleigh quotient is a clear

example. In order to optimize it digitally we use a degree of freedom: that the

Rayleigh quotient is invariant to a complex factor applied to the filter. Because

of this, filter energy can be restricted to unity to reduce the solution space.

However, the constraints imposed on optical filters are substantially different.

We cannot plan tomultiply all filter values by the same complex factor and still

have a realizable filter. Themost fundamental optical limitation is that all filter

values must be realizable, and this is a very different situation than for the

digital condition.

We are not able to produce optically most of the ideal filters developed in

Chapter 5, because all modulators are limited in the combinations of phase

and magnitude that they can work on the light, whereas the digital values

assumed by the filters of Chapter 5 are limited only by the digital machinery on

which they are computed. Optical filter values are drawn from a limited set of

complex values. In digital processing of an image a vastly larger set of complex

numbers, both in dynamic range (magnitude), phase, and computation preci-

sion is possible. The most competent passive optical filter SLM would be one
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that can take on exactly any desired value in the unit disk of the complex plane,

with no representation error, and with infinite precision. Unless we use a lasing

medium for the filter SLM (and to our knowledge, none do), the complex filter

values are limited to the unit disk, since the processed light necessarily has the

same or smaller magnitude after it leaves the SLM. If we are using a filter

medium driven by a single analog parameter (such as a liquid crystal responding

to a voltage), we are restricted to a curvilinear subset of the unit disk. Some

SLMs have binary or ternary response to the drive and so are even further

restricted. Enlarging the set of complex values is possible by combining SLMs,

but to do so complicates the optical architecture to a degree that may be

unpalatable after considering cost versus benefit.

The second major limitation is that the optical system invariably inserts

noise to the correlation. Some of that noise is affected by the filter (e.g., noise in

the input signal) and some is not (e.g., light that leaks around the active part of

the filter pixels, or arises directly in the detection process). Some is input signal

energy that the filter is not able to direct into the correlation spot. Each can be

accommodated in the optimal filter theory, and demonstrably better results

attain when the noise is kept in mind as a filter is computed.

Regarding the third limitation, both digital and optical correlation methods

have limits to their resolution. The limit may lie in the finite precision with

which a signal will reproduce upon repeated presentations to the system; in the

noise accompanying the input signal as it enters the correlator: in the finite

precision of digital computation; in the optical noise of scattered light; in the

electronic noise of detecting the light at the correlation plane; or elsewhere.

The point is that a proper metric will take into account the physical nature of

the observables upon which it is based. The metrics in this chapter show an

evolution from an ideal system (noiseless, infinite resolution) to more practical

forms.

We make the historical observation that most of the quantitative work to be

found in the OCPR literature as of this writing is performed for statistical

evaluation of the magnitude of the correlation electromagnetic field. We think

it preferable to use statistics of the measurable quantity, the detected optical

intensity. (This intensity is, of course, proportional to the magnitude squared.)

The distinction is not insignificant; as a quick elucidation, note that the mean

of the square of a quantity is not usually the square of themean of the quantity.

Because the perspective of using statistics of themeasured intensity is a relatively

new concept in OCPR, we shall develop methods in both the magnitude and

intensity senses.

Now, one last practical point. The optimal filter value at a given frequency is

a function of every other frequency’s filter value. Optimizing a filter is rather
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like getting a good haircut. There is not an ideal length for a hair considered

alone – the optimal length of each hair depends on the lengths of the other

hairs. Similarly the optimal value of a frequency’s filter value depends simul-

taneously on the values it can take on and the values that are realized at every

other frequency. Fortunately, we can express the effect of the whole set of filter

values in a small set of parameters, and these parameters become a vastly

reduced set of independent variables. The parameter values are not known a

priori, so they become items to search through during the filter optimization.

The ramifications of this point are more difficult to accommodate for physi-

cally realistic filter SLMs than for idealized SLMmodels, and this accounts for

the development of ad hoc methods of filter optimization for OCPRs to use

before moving on to the analytic methods of this chapter. A positive feature of

the algorithms in this chapter is the size of the parameter set which is very small

compared with the number of frequencies in the filter, so the search space is

exceedingly small compared with the number of filter frequencies. (Consider

that the parameter set size is typically one complex scalar per reference image,

compared with tens of thousands of frequencies at which filter values are to be

computed.) Nicely, the parameter values are computable functions of the filter

values once the search has produced the optimal parameter set, so we have a

consistency check built in. The parameter set implies the filter that implies the

parameter set; if a candidate parameter set does not reproduce itself through

the filter, the filter is not optimal.

8.2 History, formulas, and philosophy

A few points on nomenclature: The filter is the whole set of complex values

implemented on the filter SLM, and the domain of the filter is the possible set of

values for the filter SLM. The term spectral means ‘‘as a detailed function of

frequency,’’ and we will employ the term global to connote quantities that have

been assembled from spectral components. Some concepts, such as SNR, that

are ordinarily thought of in their global connotations also have spectral

variants. The filter drive is the control value (often voltage) that we apply to

the SLM in order to evoke the filter. The digital precursor of the actual voltage

sent to the SLM is also referred to as a filter drive, and the calibration of the

SLM is most often done in terms of complex response to a digital control. We

particularly eschew the loose terminology in which the digital control values

would be called a filter.

For historical reasons we distinguish between magnitude-based and

measurement-based quantities. Much of the published OCPR work (including

our own) operates with the expected value and the variance of the correlator’s
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electromagnetic magnitude. Consistent with our increasing interest in apply-

ing SPR theory to optical correlation, we have come to favor an approach in

which measurements – the observable outputs, or intensities – from the corre-

lator are considered rather than the correlation magnitude. But because of the

considerable body of magnitude-based literature, we include discussion of

magnitude-based computations and optimizations.

In relation to linear systems analysis, the optical device is actually a con-

volver, but the result can be cast in the form of a correlation. In earlier

chapters, we discussed convolution and correlations, but we assumed real

signals and images in this discussion. In this chapter, we allow the input signals

and images to be complex-valued. As a reminder, here are the definitions of

correlation and convolution in their complex-form.

Convolution of x and h, both functions of t:

ðx � hÞðtÞ ¼
Z1

�¼�1

xð�Þhðt� �Þd� (8:1)

Correlation of x and r, both functions of t:

ðx� rÞðtÞ ¼
Z1

�¼�1

xð�Þr� ðtþ �Þd� (8:2)

From these definitions we see at a glance that the impulse response function

h(�) and the correlation function r(�) are the reversed and conjugated versions

of each other. This being true, and since we know that we alter the transform

of the reference object to build the filter (whitening, altering phase, scaling,

converting to realizable optical values), we expect that changes are made to the

reference image in the original coordinate system. It is instructive to take the

inverse Fourier transform of the optimal realizable filter and see how different

an object we are actually correlating with, compared to the one we went in with.

Generally it will be a complex object, so a special effort has to be made to

envision the phase of the complex object. One method uses color imagery as

follows. Consider the hue–saturation–intensity (HSI) coordinate system (see

any image-processing text [84] or program). One maps the magnitude of the

inverse transform to the intensity, and the phase of the complex object to hue,

with a constant saturation. The frequency content of the modified reference

image is altered, being of lower intensity where the input noise is higher. The

modified reference object is a result of the entire suite of actions befalling the

original reference image on its way to becoming an optimal filter.
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For OCPR, we define the SPR metrics in terms of intensities and probability

density functions,measured at the center of the correlation plane (for the centered

appearance of the reference object).C is a class (� denotes the accept class,C the

reject class). Function �h iC is the mean of a quantity over class C.

We begin the process with an input u(x) that might be a video signal. It is

encoded onto light by the complex function e(u), transformed optically, fil-

tered, re-transformed, and detected. As has become traditional in the OCPR

community we use a one-dimensional scalar (x or f, in this case) to represent

the two-dimensional vector quantity.

8.2.1 Nomenclature

u is the level (e.g., video voltage) of drive value applied to the (input or filter) SLM.

e( �) is the complex encoding of the (input or filter) SLM.

s(x)¼ e(u(x)) is the optical signal when u is the input drive.

H(u( �))¼ e(u( �))¼M(u( �)) exp( j�(u( �))) is the filter’s phasor when u is the filter

drive.

S( f )¼={s(x)}¼A(f ) exp( j�( f )) is the optically transformed signal.

H( f )¼M( f ) exp(j�( f )) is the filter.

n(x) is the noise that we presume to be additive to s(x), stationary, and known only

as far as its power spectral density Pn( f ).

Pn( f )¼E{|={n(x)}|2} is the additive noise power spectral density.
D ¼ B expð j�Þ ¼

P
k

HkSk is the central correlation field.

� ¼ �2
mag;n ¼

P
k

Hkj j2Pnk ¼
P
k

M2
kPnk is the filtered-noise-induced variance in the

magnitude of the central correlation field.

I¼B2 is the square of the central correlation magnitude with no noise, subscripted

where necessary by the index number of a reference signal.

u is the measurement in its native units (e.g., volts, counts after digitizing, etc.).

Note that I is a digital term for computations, u is an optical term formeasurements.

R is the instrumental responsivity.

u¼ IR is the connection between digital and optical quantities.

pC(u) is the probability density function of measurements, given that the class is C.

PC is the a-priori probability of class C. Note that this is distinct from the noise

power spectral density, Pn( f ).

�2CT¼ �C
2þh�2

niC þ �Id
2 is the total intensity variance over class C, modeled as

having three sources described below.

�2C¼h(I�hIiC)2iC is the component of variance arising in different correlation

intensities for the objects within training class C.

h�2
niC is the variance owing to additive input noise that passes through the filter.

�2mag, n is the magnitude variance owing to noise in the correlation plane detection;

that is, unresponsive to the filter.
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�2I, d is the intensity variance owing to noise in the correlation plane detection; that

is, unresponsive to the filter. ‘I ’ is included in the subscript to distinguish the

intensity variance from the magnitude variance.

For some of the above quantities we may also use vector expressions.

A¼ [Ak exp j’k] is the transform of a reference object.

Pn¼ [Pnk] is the power spectral density of input noise following the input SLM.

H¼ [Mk exp( j�k)] is the filter.

B exp ( j�)¼HTA is the expectation of the central correlation field from A.

M2¼ [|Hk|
2] is the vector of filter power.

�¼ (M2)TPn is the magnitude variance.

Probability density function of measurements u for class C: pC(u) ¼
1

NC

dNC

du
(u), in which dN is the number of measurement values between

u and uþ du.

General form for magnitude-based metrics, to detect objects i or discriminate

them from objects j (the us are somewhat arbitrary non-negative weights):

JðH; �1; �2; �3Þ ¼

P
i

B2
i

�1

P
j

B2
j þ �2

P
k

SjkHk

�� ��2 þ �3�þ �2
mag;d

D E (8:3)

Probability density function of measurements u for class C:

pC uð Þ ¼ 1

NC

dNC

du
uð Þ (8:4)

in which dN is the number of measurement values between u and uþ du.

Chernoff and Bhattacharyya upper bounds [29]:

EBayes � EubðsÞ ¼ Ps
�P

1�s
C

Z
all u

�s� uð Þ�1�s
C uð Þdu

�
ffiffiffiffiffiffiffiffiffiffiffiffi
P�PC

p Z
all u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� uð Þ�C uð Þ

p
du (8:5)

in which 0� s� 1 that minimizes the error’s upper bound gives the Chernoff

upper bound (the first equality), and s¼ 0.5 expresses the Bhattacharyya upper

bound that follows the second inequality.

The relative entropy between two population densities �� and �C, also

known as their Kullback–Liebler distance [83], is denoted D(��||�C).
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D �� k �Cð Þ ¼
Z
all u

�� uð Þ log �� uð Þ
�C uð Þ

� �
du (8:6)

8.2.2 Getting specific to optical correlation

There are different sources of measurement variance for the optical implemen-

tation of correlation pattern recognition than for the digital, so the noise

model is different. In this section we shall describe our measurement variance

model for OCPR.

The within-class variance, �2C, is the scatter in correlation intensity values

resulting from different responses among the members of the training set.

Expanding the definition,

�2
C ¼ 1

NC � 1

X
i2C

Ii � Ih iC
� �2 ¼ 1

Nc � 1

X
i2C

Ii �
1

NC

X
‘2C

I‘

 !2

(8:7)

We model the intensity’s noise variance as resulting from a process in which

the noise’s electromagnetic field – a zero-mean circular Gaussian RV – is

added to the correlation field prior to intensity detection. Under the usual

assumptions that (1) we have no information about the phase of clutter objects’

Figure 8.1 Probability density function of a sum of complex numbers. This is
the density of 8192 sums having 1024 randomly drawn complex numbers per
sum. The original distribution is described by the magnitudes and the phases
being uniformly distributed. That original distribution is peaked with a
singularity at zero
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frequencies, so that (2) the clutter’s individual frequencies pass through the filter

and add as random uncorrelated complex numbers, (3) that there is indepen-

dence of clutter and signal, and (4) that there are a large number of such

frequencies, the electromagnetic field resulting from clutter then has a circular

normal density as plotted in the complex plane. This is because of the Central

Limit Theorem– that regardless of the distribution fromwhich x is drawn, in the

limit of large numbers of samples the sum of the samples has Gaussian distribu-

tion. Figure 8.1, Figure 8.2, and Figure 8.3 demonstrate this effect. In these

Figure 8.2 The same as Figure 8.1, except that the underlying probability
density function is uniform over the unit disk

Figure 8.3 The same as Figures 8.1 and 8.2, except that the underlying
distribution is uniform along the unit circle
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figures we have 8192 samples of averages of 1024 complex numbers drawn

from varying distributions. In Figure 8.1, the magnitude is distributed uni-

formly in [0, 1], and the phase is distributed uniformly in [0, 2p], with phase and
magnitude statistically independent of each other. This results in the density of

the complex numbers being summed having a singularity at the origin. In

Figure 8.2 the complex numbers being summed are distributed uniformly in

the unit disk. In Figure 8.3 the complex numbers being summed are distributed

uniformly around the unit circle.

In spite of the great differences in the original distributions the sums are seen

to approximate a normal distribution. This fact is used in creating a model of

the noise-modified distribution of correlation measurements. The filtered

signal produces an offset in the complex correlation’s electromagnetic field,

and the noise adds randomly, and before detection, as a sum described by a

zero-mean normal. In Figure 8.4, this situation is indicated; the field is the sum

of a static offset and a zero-mean, circular normal RV. The field values in the

differential annulus are detected to yield a measurement in the differential

range shown. The statistics of the measurement process are derived in the

appendix of a paper by Juday [52], and produce the results that are quoted, but

not developed, here.

In Figure 8.4 we detect the intensity of the noisy correlation field in which

the filtered noise is distributed as a circular Gaussian RV. Integrating through

the noise’s density produces the following distribution:

pI u=Rð Þ ¼ 1

�2
mag

exp �
B�

ffiffiffiffiffiffiffiffi
u=R

p� �2
�2
mag

0
B@

1
CA exp � 2B

ffiffiffiffiffiffiffiffi
u=R

p
�2mag

 !
I0

2B
ffiffiffiffiffiffiffiffi
u=R

p
�2
mag

 !

(8:8)

in which I0 �ð Þ is the modified Bessel function of the first kind, order zero, given

by

I0 xð Þ ¼ 1

2p

Z2p
0

exp x cos �ð Þd�: (8:9)

The class average noise-induced intensity variance is

�2
n

	 

C
¼ �2 þ 2� B 2

	 

C

(8:10)

Here,B2 and� are both explicitly functions of the filter, and so therefore is h�2
niC.

The items defined above are digital representations of what happens in the

correlator and are what we manipulate in computationally optimizing a filter.
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The intensity detection variance �2
Id is actually an optical quantity, however,

and we must have a separate discussion on relating computational quantities

to their optical equivalents. If the correlator is operated in a linear regime

(i.e., no saturation), its responsivity R can be converted between the digital

quantities and optical ones. The responsivity is found from:

u ¼ RI ¼ RB2 (8:11)

with u being the observed optical intensity at the center of the correlation plane

for a noise-free correlation signal with digital value I¼B2. In practice �2
Id

comes from noise in the detection process, from light scattered by the optics,

from light that passes through parts of the filter SLM that are not modulating

(‘‘dead’’ areas), etc. To optimize a filter in computations we need a digital

version of the �2Id term that suitably represents the optically observed effect.

Real part of
correlation’s
central value

Imaginary part

Measurement value, u

Detection

Samples of filtered
noise process

Complex field value of
filtered object 

Samples of the noisy
correlation field

Figure 8.4 An offset normal distribution of complex sums is detected. The
resulting probability density function of measurements is described by a
Bessel function
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The digital computations’ value for �2
Id is obtained as follows. For a strongly

correlatable signal sbw, the ratio of B2
bw to Ibw (computed central correlation

intensity to the observation) gives us the conversion units to change the

observed intensity variance into �2Id. For sbw we construct a high-energy object

(e.g., a binary object with a coin-flip determining whether a given pixel is black

or white). By techniques presented in the literature [41] we compute the

maximal intensity filter for that high-energy object. That filter sweeps as

much of the light into the correlation spot as it can so we take the ratio of

large numbers rather than small ones. We use the computed value B2
bw for the

digital correlation intensity, and we measure the corresponding physical cor-

relation intensity Ibw in its native units (it might be volts on a screen trace

through the correlation peak, or it might be counts in a grabbed frame) at the

observed peak. Then �2
optical, the variance in the detected light (and detection

noise that is indistinguishable from such light) scattered around at other

locations in the correlation plane, is what we build the value of �2Id from.

Assuming proportionality between both pairs of related digital and optical

items, we then have:

�2
Id ¼

B2
bw

Ibw

� �2
�2
optical ¼ R2�2

optical (8:12)

as the digital version of the detection contribution to intensity variance.

Having described this quantitative connection between digital and optical

quantities we shall largely let the conversion between them be implicit during

the remainder of this chapter.

8.3 Physical view of the OCPR process

In this section we shall take a very physical view of OCPR and how a correla-

tion spot is formed. The ideas in this section hinge on recognizing that the light

in the correlation plane is nothing more than a reorganization of a coherent

lightwave that begins at the input plane. This viewpoint is important for

several reasons.

* Firstly, in understanding correlation as a linear systems process.

* Secondly, in visualizing the Fourier components in a signal and how phase is

important in understanding some aspects of filter optimization.

* Thirdly, in understanding how limitedmodulation range affects filters, thus making

best use of what complex action one has.

* Fourthly, in understanding that a well designed correlation filter will lead to a correla-

tion that the peak may not be exactly at the desired location, but that it will be close.
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* Finally, in knowing the limits on how sharp a correlation spotmay be produced.We

shall not, for now, consider noise at input and at detection in this process.

OCPR is a subset of Fourier optics. Fourier optics differs from conventional

optics in that the coherence of the light in the system becomes important in the

system analysis. For an example of Fourier optics, the imaging properties of a

convex lens can be shown to be the result of two successive Fourier transforms

that are expressed in a re-statement of the diffraction integrals for coherent

light. In OCPR, an image is encoded into a coherent lightwave, and the physics

of the light propagation is arranged so that the light pattern is converted to a

simpler form – ordinarily a bright spot – if the information that the system is

looking for is present in the input image.

Although the previous paragraph is technically accurate, let’s see if we can

draw some more penetrable descriptions of what happens. The really funda-

mental tools are a laser, some lenses, some modulators driven by computer

control, an input image source (often a television image), and an imager with

which to read the processed light.

8.3.1 Mathematical representation of SLM action

Driving the input SLM with the scene’s electronic signal encodes that scene

onto the wavefront as a complex field. It is important to know the complex

representation of the input scene and to set up that encoding in favor of our-

pattern recognition process. The SLM’s attenuation and retardation are given

as phasors, and the action of the SLM is assumed to be uniform over its face.

Attenuation is given in the magnitude, and retardation in the phase, of the

phasor.

The magnitude linearization of the input SLM – that is, a conversion from u
to |e| – is an interesting item. Suppose for the moment that the input SLM is

analog and real (i.e., continuously variable and its phase does not change with

the applied drive). This is a condition often sought in setting up a correlator

and approximated in modeling it. Typically a correlator has an adjustable

hardware conversion from input drive value to the control parameter actually

applied to the SLM’s pixels. Here is the intuitive but naı̈ve version of how to

map u onto e: u is delivered from the image sensor so that u is proportional to

the intensity of the viewed scene; hence I want the correlator’s output intensity

to be linear with u. That is, if I were to set the filter to a constant value (this

act causes the input image to be reconstructed at the correlation plane), I want

the intensity |e|2 of the captured correlation plane image to faithfully follow

the gray-level presentation u of the viewed scene. This would have |e|2 being

proportional to u.
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The logical version is different, however. Here is the logical version: I want to

use the optical correlator to do linear system processing (filtering) of the input

signal, followed by intensity detection. I note that in the quantum mechanical

sense it is a signal’s (complex) amplitude, not intensity, that adds during the

internal processing before detection. Thus, to achieve the linear processing that

is central to all of the correlation theorywe have developed, I want themagnitude

of the input SLM’s encoding, not its intensity, to be linear with the input drive

value. This would have |e| being proportional to u, as is desired if we want to

correlate u(�) rather than
ffiffiffiffiffiffiffiffi
u �ð Þ

p
. To linearize the input SLM for intensity rather

than magnitude is to do square-root emphasis of the low-magnitude harmonics

over the high-magnitude harmonics in the correlation process. Clearly this

would be an unwanted emphasis, so I reject the intensity linearization.

The mathematics we use depends on linearity in system response. To remind

the reader of the linearity concept introduced in Chapter 3, if input drive value

u1 produces an encoded value e1 (expressed as u1 ! e1 ), and if input u2 is

encoded on the light as e2, then for arbitrary (but real, in the present case) scalars

� and�, linearity of the input process demands that: (�u1+� u2)! (� e1+�e2).

If there is curvature in the complex plane of input encoding values, or if the

straight line of the input encoding domain does not pass through the origin,

then no pre-warping, e(u), of the input is possible to produce general linearity.

The matter of linearity is significant because we need a filter constructed for an

input signal u(x) to work well for real multiples of the input drive. (For example

if the signal being recognized arises in a CCD imager, and the scene illumination

changes, or if the CCD has automatic gain control and something bright

appears in part of the scene and reduces the signal from the object we wish to

see. This magnitude variation has received less attention in the literature on

filter optimization than other variations such as size or aspect changes. We

suppose this is because the linearity of input encoding has not been perceived as

a problem.) Let us illustrate these principles.

In Figure 8.5 we show three versions of an input coding range. Figure 8.5(a)

is representative of a coupled modulator that has been set up for its minimum

phase change. Figure 8.5(b) is a straight line that does not pass through the

origin. Figure 8.5(c) is a straight line through the origin.

We see that Figure 8.5(a) does not permit linear encoding, since the two dots

on the curve (representing encoding e) joined according to (�e1þ�e2) fall on

the straight line joining the points, and in the presence of the curvature these

points are not in the range. So a drive value (�u1þ�u2) cannot produce the
encoding (�e1+ �e2) and linearity fails.

Since the encoding curve in Figure 8.5(b) is straight, the exact argument just

advanced for a curved encoding domain does not apply. However, if the line
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does not pass through the origin, linearity nevertheless fails. (One giveaway

reason is that a linear system includes zero.)

We are not necessarily home free in Figure 8.5(c). If the magnitude of the

encoded signal is not in proportion to the drive, we need a pre-warping

operation to achieve linearity. In Figure 8.6, we plot a sigmoidal magnitude

as a function of drive, as might result from breakaway starting and saturation

at higher drive levels (this is reasonably characteristic of many SLMs). If the

input drive u is put through a pre-warping amplifier whose gain characteristic

is the inverse of the encoding, then the s-to-magnitude relationship is linear-

ized, and Figure 8.5(c) finally results in a linear encoding.

(a)

Imaginary

Real

Imaginary

Real(b)

Real

Imaginary

(c)

Figure 8.5 (a) A curved operating curve. (b) An offset, but straight, operating
curve. (c) A straight line through the origin
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The literature reports work in which an input image is encoded onto the

phase of the lightwave. The modes of SLM operation in which only phase

varies typically have large magnitude, so there is potentially more light energy

present in a phase-encoded image than in a magnitude-encoded one. As is

evident from the preceding discussion, this is at the expense of linearity in the

system response, the more strongly so if a larger phase gain (radians per drive

unit) is used. A quasi-linearity ensues from a small phase gain when the DC

term in the transform of the input object is blocked, in which case one might

just as well have set up the correlator with minimum phase variation anyway.

8.3.2 Bumpy-lens analogy

Examine the formof the central correlation intensityB2 ¼
P

k Mk exp j�kð ÞSk

�� ��2.
The correlation process takes the sinusoids composing s(t), scales each by

magnitude Mk, retards each by phase �k, and detects the intensity of their

sum. Correlation tends to line up the sinusoids so that their maxima align at

the center before summing, thus producing the bright spot. The physical way

inwhich the sinusoids are lined up is by delaying the ones that are ‘‘ahead of the

pack’’ compared with the shifts that build the bright correlation spot. In this

section we’ll draw an analogy to adaptive optics to describe how that is done.

In adaptive optics a phase change is discovered, and implemented, over the

aperture of an optical system in order to flatten a wavefront. Our analogy for

the OCPR process is a bumpy lens.

We start with a conventional lens. A conventional lens focuses collimated

light – the sort of lightwave that originates in a small, bright, far-off source.

Complex distance

Drive, d

Figure 8.6 The SLM’s action occurs on a straight line through the origin, but
the change in action is a variable function of the applied drive
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It puts concave spherical curvature into the arriving flat wavefront and, since

waves propagate normally to their wavefronts, the lightwave collapses to a

point. As the planar wave arrives from different directions the location of the

bright spot moves, but it remains focused.

Now, if instead of a small bright far-off source we have light coming from

holes in a plate, the waveform that forms is more complicated than the plane

wave. If the apertures emit lightwaves that oscillate together because the light

falling on them is coherent, the waveform is stable (and in principle

computable).

The conventional lens does not convert that more detailed wavefront into a

spherically converging shape. However, we can envision an equally highly

figured glass that will retard the wavefront so that it exits the glass with the

wavefront straightened out and flat.

If we add a converging lens behind the bumpy lens (or grind the back side of

the lens with an appropriate curvature), we have a combination lens that

focuses the aperture plate’s wave into a sharp spot. If the aperture plate is a

great distance from the bumpy lens (or if we put its virtual image at infinity by

placing the plate at the focal plane of another lens), then as the plate moves

there is only a linear phase ramp added to the phase pattern that the bumpy

lens straightens out.

Figure 8.7 Conventional lens focusing light from a plane wave

Figure 8.8 Apertures in a plate passing waves that combine to a complicated
wavefront. The three dots indicate propagation over a great distance – or
equivalently, passing through a lens one focal length from the aperture plate.
In the far field, the field is the Fourier transform of the pattern of apertures
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The linear ramp survives passage through the bumpy lens, and the location of

the bright spotmoves aroundbut the spot stays bright. The spot tracks themotion

of the hole pattern in the aperture plate. We have built an optical correlator.

That exquisitely bumpy lens focuses to a point the light originating in the

full detail of its reference object, as embossed into the lightwave upon passing

Figure 8.9 Lightwave and bumpy lens conjugating the wavefront

Figure 8.10 (a) Aperture plate at focus of lens; formation of conjugated and
focused wave. (b) From linear systems theory, a translation at the aperture
plate adds a phase ramp in the transform plane. The result is a movement of
ultimate focus corresponding to the shift at the aperture plate
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the first modulator. The implications and applications for this technology arise

in the speed and parallelism with which this bumpy lens focuses light. It works

in nanoseconds, and in doing so it does not mind how complicated (i.e., how

many pixels) the input image is. A complicated part of the operation is

computing exactly how to set up the second modulator, the one on which

the ‘‘bumpy lens’’ is implemented. A complication is that, to complete the

analogy, we model the material from which the bumpy lens is created as

being absorptive in some relation to the thickness. It is as though we were

building an actual lens from smoky glass, so that there is a relationship

between the phase adjustments and the overall local transmittance of the

lens. (Such an SLM is described as having coupled phase and magnitude

characteristics.) We would seek a compromise between having a thick convex

lens that created exactly spherical converging wavefronts at a reduced inten-

sity, and brighter converging wavefronts that were not exactly spherical. In the

latter case the light at the focal plane would be spread further out, but never-

theless would be brighter. We shall develop the mathematics for building

optimal filters on the coupled SLM. In addition to allowing us to make the

brightest correlation spots using the smoky-glass lens, this mathematics will

allow us to make the lens less transmissive to frequencies that we wish not to

contribute to the correlation plane.

The bright spot in the output plane of the correlator is ameasure of how closely

the input scene resembles the reference object the correlator is looking for. An

attractive feature is that the correlation is a whole-scene-at-a-time operation; you

are not fixating (unless you want to) on corners, or lines, or other individual

locations on the input scene. Thus, if part of the object is obscured, the correlation

pushes right along and shows you how strongly the remaining part continues to

resemble the reference object.We artfully choose or construct reference objects so

that their resemblance to the actual scene conveys information for the task at

hand. Most other vision methods have a great deal of trouble with signal

obscuration. Similarly, other methods are confused by background clutter; but

if the background does not resemble the reference object, the correlation

method is clearly superior to methods that must, for example, segment the

image, find all the edges, etc., in order to understandwhat object they are viewing.

8.4 Model, including circular Gaussian noise

8.4.1 Variance in magnitude, intensity, and measurement

To reiterate the philosophy: in OCPR we make our judgements on things we

can observe. We do not directly observe the complex field amplitude in the
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correlation plane; we observe its squared modulus, the intensity, through the

instrument’s responsivityR and in the presence of detection noise. If there is no

detection noise, the measurement u resulting from a noiseless digital computa-

tional intensity I is

u ¼ RI (8:13)

The physical measurement is inevitably corrupted by noise, and we shall

take it to be additive and of zero mean. We shall try to be consistent in

separating the digitally achieved quantities and the optical ones, and the

responsivity R converts between the computer-modeled quantities and the

things one measures on the optical bench. We will not always carefully

distinguish between the digital intensity and the optical measurement, as they

are linearly related. (There is a slight problem in that following square-law

detection, a zero-mean complex Gaussian noise biases the measurement to a

higher value than in Eq. (8.13), but this statement is heuristically close. The

correct expression is Eq. (8.20).) A point often overlooked in the literature is

that when we compute a filter to implement in the correlator, we need to

know the relationships between the digital elements in the computation and

their optical equivalents on the bench. Only then can we reliably compute

the drive values to apply to the filter SLM, in order to gain the optimal

system performance. (Which drive one puts onto the input SLM is less of a

free variable, ordinarily being an input video signal with all its pixels put

through a common transfer function.) Two relationships are of principal

importance: (1) the complex actions that result from drive values applied to

the SLMs, and (2) the measurable optical effect in the correlation plane as it

relates to its digital simulation. The first we measure during the characterization

of the SLMs. The second is the system responsivity, and it too is determined

by laboratory measurement. One critical use for the responsivity is the correct

representation of instrument noise in the filter computation, and another is

knowing, for example, what digitally computed values may drive the detected

correlation into saturation. We shall have more to say about these points

later, but they are an essential part of the philosophy.

The entirety of this chapter is aimed at reducing the ill effect of measurement

variance as induced from its various sources. To minimize the effect we must

first model it.

The foundation of OCPR and the optimization of SNR have been found

in a classical model for statistical pattern recognition [29]. In that model a

continuous-time one-dimensional real voltage signal is received, having been

corrupted to some degree with additive noise, and our job is to build a filter to
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help us decide whether the target we seek is present amongst the noise.

The radar systems on which statistical pattern recognition was based detected

the received electromagnetic energy turning it into voltage before detection

was done, and the pattern recognition was performed on that voltage.

The voltages that we deal with in OCPR follow from the detection of intensity.

In much of the OCPR in the literature, you will find that the expected signal is

assumed to be the squared value of the expectedmagnitude. In fact, however, the

expectation of the squared magnitude is not the squared expectation of the

magnitude. This becomes significant when noise processes are considered; we

oftenmodel the noise as zeromean and additive in complex amplitude. Evenwith

a zero-mean additive noise, the expectation of squared (noise plus magnitude) is

not the same as noise variance plus the squared expectation of the magnitude.

Similar comments apply in computingmeasurement variance. The noise-induced

distribution of the measurement is described in part, but not entirely, by the

variance of the magnitude. Recently we have begun to model the variance in the

measurement as arising in an intensity variance, not in a magnitude variance.

Let us elucidate the distinctions. First we develop what we shall call the

‘‘magnitude model’’ and then the ‘‘measurement model.’’

In the magnitude model, for input signal s, input noise n, and frequency-

plane filter H, the expectation of the correlation electromagnetic field at the

center of the correlation plane is the DFT of the product of filter and trans-

formed signal, evaluated at the center.

D ¼ B exp j�ð Þ ¼
X
k

HkSk (8:14)

with the sum being taken over all frequencies, indexed by k. The term B is the

magnitude, and � the phase, of the sum. The expected intensity with zero input

noise (in the measurement model we shall see that the noise contributes to the

expected intensity) is

Ih i ¼ Dj j2 (8:15)

and the variance of the field magnitude is

var Dj j ¼ �2
mag;n þ �2mag;det

¼
X
k

Hkj j2Pn;k þ �2
mag;det

¼ �þ �2mag;det

(8:16)

with Pn being the power spectral density of the noise and �mag,det being the

detector noise contribution to magnitude variance which is independent of the
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filter. Equation (8.16) defines the effect of filtered input noise on magnitude

variance,� ¼ �2mag;n. Themagnitude version of SNRhas been optimized in the

OCPR literature and in Chapter 5:

SNRmag ¼
Dj j2

var D
(8:17)

Thismodel has had success, but it is not completely in tune with the philosophy

stated in the Introduction. As stated previously, the squared value of the

expectation of the correlation magnitude is not the same as the expectation

of the squared noisy magnitude. The latter is what is observed and should be

used in metrics of the correlator performance. Ergo, we continue now to the

intensity (or measurement) model.

In themeasurement model, for the SNR to be a dimensionless quantity based

on the optical measurement, we would take either

SNRmeas;1 ¼
Ih iffiffiffiffiffiffiffiffiffiffi
var I

p (8:18)

or equivalently

SNRmeas;2 ¼
Ih i2

var I
(8:19)

(The responsivity R is a common factor in numerator and denominator and

hence cancels out.) In both cases we need to determine the statistics of the

noise- and clutter-influenced observed intensity. These statistics are dependent

on some of the quantities in the magnitude model.

In the unidimensional real-valued signal case, we often assume that the noise

is additive andGaussian, with a power spectral density that is somehowknown

(e.g., from examples of clutter scenes), and that we model the noise as additive.

Without presenting justification here, we shall assume that the input noise and

clutter are additive, circular Gaussian, and of known power spectral density

Pn. In the absence of any other information about the additive input noise, we

shall assume that the variance of I and its statistics have uniform behavior over

the correlation plane, that the input noise’s electromagnetic field is a complex

quantity of zero mean and magnitude variance �, and that the field has

isotropic Gaussian distribution. In statistical optics this is one example of

circular complex Gaussian RVs; see Goodman [32] for details. This model

suffices to convert the variance of the complex correlation electromagnetic

field into variance in the observed intensity, after the expectation of the

correlation electromagnetic field has been computed. If the reader has
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information about their correlator that is different from this model, such

information can be used.

Figure 8.4 indicates the model we use for determining intensity variance.

It can be shown [52] that the effect of (filtered) noise is to increase the expected

intensity from |D|2 to

Ih i ¼ Dj j2þ� (8:20)

with the magnitude variance defined in Eq. (8.16). Under the stated assump-

tions the measurement’s variance, in terms of �, is

�2
meas ¼ �2 þ 2� Dj j2þ�2det (8:21)

That is, the measurement’s expectation value and its variance are different from

those that enter the OCPR magnitude formulations in Eqs. (8.16) or (8.20).

8.4.2 Known problems with the DFT representation

Using the DFT to represent the diffraction integral assumes that all points in

the aperture have even illumination. Using the complex signal s(x) = e(u(x))
assumes that the SLM’s encoding produces a lightwave in proportion to e at

all points. In fact e is a complex factor that multiplies the incoming lightwave.

So if the illumination has complex amplitude a(x) over the aperture, the actual

light signal entering the system is a(x) e(u(x)), and the effect at the transform

plane is the convolution of= a xð Þð Þwith S( f ). Shift invariance is lost, since the

eccentric appearance of the reference object is accompanied by a change in its

appearance as it moves into a different illumination situation. Practical correl-

ators use a compromise between sending all of the source’s light to the input

SLM (this results in variations of a(�) over the aperture) and overfilling the

aperture (this gives more nearly uniform illumination but is less efficient in

light use).

Another physical problemwith this representation is scattered light from the

signal. Optics is not a perfect conveyor of information, and in at least two

ways, imperfections cause a difference between the DFT representation and

what physically happens. One is that light scatters from unmodeled character-

istics of the SLM (namely the sub-pixel structure of the pixels), and another is

the unmodelable scattering from dust and other irregularities in the optics. The

DFT assumes a discrete point-like character of the pixels, as a two-dimensional

array of impulses. To obtain a more nearly correct expression we would

convolve that array of impulses with the detailed spatial structure of an

individual pixel, which we know to be expressed as the product of transforms
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at the next position in the optical transform chain. Limiting the light to a single

diffraction order moderates this effect but does not eliminate it, since the

transform of a pixel’s internal structure can have significant variation within

the single passed order.

8.5 Metrics and metric potential

In order to optimize the performance of an optical correlator we must quantify

its performance. The metrics we develop in this section are of various types. We

might judge the correlator by its central correlation magnitude or the central

correlation intensity. We might ask the correlator to detect a single reference

object in a noisy background, or to detect and/or discriminate several reference

objects. The metrics are in some cases ad hoc, in others they are grounded in

statistical pattern recognition. We currently have to judge a filter on the basis of

its performance at the center of the correlation plane (if the input object is

centered), but we hope to develop metrics that regard the whole of the correla-

tion plane and also provide an analytic means to optimize the filter.

Table 8.1 describes what sort of filter is applicable in several noise environ-

ments and to several detection and discrimination tasks. The less demanding

applications are up and left within this table.

A general form of the tradeoff metrics was given in Eq. (8.3).

8.5.1 The statistical pattern recognition metrics

Wewill hardly ever take the luxury of using an optical correlator to detect only

a single object, or a single appearance of the object if there is indeed only one

object (we won’t distinguish between multiple objects and multiple views of a

single object any more). The point of an optical correlator is that a set of filters

Table 8.1. Filter applicability (filter type in bold)

Noise environment

Task

Low noise

Detection noise,

white input noise Colored input noise

Detect and/or
track

Single object Intensity Magnitude SNR

Any of a class Statistical pattern recognition (Bayes error, AROC, etc.)

Discriminate
Between pairs Rayleigh quotient

Between classes Statistical pattern recognition (Bayes error, AROC, etc.)
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can rapidly be run against a single input image. Fast SLMs and correlation

detection mean that OCPR can be a rapid process. One method of running a

correlator is to have a single filter per object. However, the correlator can run

even faster, functionally speaking, if a filter is designed so that it responds to

several objects. The optical filters described in this section are designed to

promote detection of any of a set of desired objects. Using the measurement

basis, we shall introduce the optical versions of several standard SPR metrics

and show how to optimize each one. In increasing degrees of competence, we

shall examine the Rayleigh quotient, the Fisher ratio, the area under the

receiver operating characteristic (ROC) curve, the average information, and

the Bayes error.

8.5.2 Rayleigh quotient

The Rayleigh quotient’s digital optimization was shown in Chapter 2 by using

Lagrange multipliers and eigenvalue–eigenvector arguments. In the notation of

Chapter 5, the digital Rayleigh quotient for a single pair of filtered images is:

JðhÞ ¼ hþAh

hþBh
(8:22)

In the digital form, the value of h that maximizes J is the eigenvector for the

dominant eigenvalue of (B�1 A), presuming that B has an inverse

Let’s extend the Rayleigh quotient to apply to optical correlation. The

optical Rayleigh quotient is the ratio of two intensities – one for the reference

object we want to accept, and the other for the one we want to reject. Added to

the correlation intensity of the object we wish to reject will be filtered noise and

detector noise. The (weighted) inner product formed in Eq. (8.22) is the same

as the correlation evaluated at the center, or

JRayleigh ¼
B2
1 þ �2

n;1

D E
B2
2 þ �2

n;2

D E (8:23)

The expected correlation magnitudes and the input-noise-induced variances

are functions of the filter and so, too, is the Rayleigh quotient.

8.5.3 Fisher ratio

A statistical pattern recognition metric of long standing is the Fisher ratio,

JFisher. It is the squared difference between class means divided by the average

of the classes’ variances. In our optical terms,
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JFisher ¼
Ih i�� Ih iC

� �2
�2
�T þ �2

CT

(8:24)

The intent is that the members of the classes to be distinguished shall be well

separated, when the length of the yardstick used in reporting their separation is

proportional to the average width of the classes’ distributions. The means and

variances of measurements are functions of the filter, and so too is the Fisher

ratio, which can be maximized by choice of filter. However well intentioned,

the Fisher ratio does not generally give us a direct measure of the classification

error.

8.5.4 Area under ROC curve

The ‘‘receiver operating characteristic curve’’ (ROC curve) is historically based

on electrical processing of radar signals. The area under the ROC curve (called

the power of the test in statistical decision theory), AROC, is quite a useful gauge

of a filter’s practical utility.

We let C represent the class of sheep and � represent the class of wolves,

where we wish to set the correlator’s threshold at T to detect wolves but be

blind to sheep. The probability density function of correlation intensities for

class C we denote by pC. Then the false alarm probability Pf is given by:

Pf Tð Þ ¼ 1�
ZT
�1

pC mð Þdm ¼
Z1
T

pC mð Þdm (8:25)

and the probability of detection pd is

Pd Tð Þ ¼
Z1
T

p� mð Þdm (8:26)

Given these definitions, it is straightforward that the area under the ROC

curve is:

area ¼
Z1

T¼�1

Z1
m¼T

p� mð ÞpC Tð ÞdmdT (8:27)

Maximizing the power of the test by choice of filter is far more complicated

than, say, creating the brightest correlation spot for given wolf and a filter

domain.
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8.5.5 Expected information

Suppose a measurement returns a value m and that we must choose between

deciding � andC on the basis of the measurement. The a-posteriori likelihood

ratio of � and C is:

ratio mð Þ ¼ P� p� mð Þ
PC pC mð Þ (8:28)

The definition of information arises from the fact that the probability of

independent outcomes is given by the product of the individual events. But we

would like information to be a quantity that adds, notmultiplies, as independent

events are considered. For this reason ‘‘information’’ is taken as the logarithm of

likelihood ratios. Then the information that the value m provides in favor of

deciding that we have class � instead ofC is log((P� p� (m))/(PCpC (m))). For

example, if the likelihood ratio is unity, we have no information resulting from

the appearance of m as the measurement, and taking the logarithm of the

likelihood ratio indeed returns zero.

This is for a single value that m might take on. But note that not all

measurement values are equally likely. A value of m that is very informative

but almost never occurs will, in the long run, return less information on

average than a much more-likely-to-occur value of m even it if yields less

information per occurrence. We can extend the concept of information at a

given value of m to all values of m by taking the expectation of information,

using the PDF of the considered class to weight the information. The result

tells us how well the populations separate when all values of the measurement

are considered (given that we have equal priors). In a slight generalization of

the Kullback–Liebler distance (the generalization includes unequal a-priori

probabilities), the expected information that the process will provide is:

D�h i ¼
Z

all m

p� mð Þ log P�p� mð Þ
PCpC mð Þ

� �
dm (8:29)

Since the measurement densities are functions of the filter, so too is the

expected information. We can analytically maximize {D� } by choice of filter,

although, as may be apparent, it is another messy problem.

8.5.6 Bayes error

Suppose in the following discussion that we have a filter in hand, and can

thus compute the measurement PDFs for the two classes we wish to separate.

8.5 Metrics and metric potential 323



Given ameasurement valuem, Eq. (8.28) gives the a-posteriori likelihood ratio

that the measurement arose in either of the two classes.

If the ratio is greater than unity the a-posteriori likelihood is greater that the

class is �, and vice versa. If we minimize ‘‘Bayes error’’ by choosing the more

likely class, then for measurement m the likelihood of error is:

P errorð Þ mj ¼ min P�p� mð Þ;PCpC mð Þf g (8:30)

We find the entire likelihood of making an error by integrating over all

values of m:

EBayes ¼
Z1

m¼�1

min P�p� mð Þ;PCpC mð Þf gdm (8:31)

By letting RC be the set of values of m assigned to class C, we can also express

the Bayes error as follows:

EBayes ¼ PC

Z
R�

�C mð Þdmþ P�

Z
RC

�� mð Þdm (8:32)

Bayes error is a function of the measurement densities and, hence, of the filter.

Again, in this case we can analytically optimize the Bayes error by choice of

filter.

8.5.7 Nonlinearities in filter design and in metrics

The MED projection process that is fundamental to our optimization scheme

induces nonlinearities in filter computation. Our form is evoked by an algo-

rithm based on a detection and decision scheme. In addition to including only

physically observable quantities, a metric should represent the utility of the

observable in the application for the correlator. Consider the case in which we

have made so bright a correlation spot that it saturates the imaging detector;

the utility of that spot clearly includes an essential nonlinearity in the composite

response to a frequency’s filter value. For another example, it does little good to

carry a correlation response much further beyond the detection threshold even

if the measurement does remain linear. One should also keep in mind that the

digital version of the correlation intensity (e.g., B2) may or may not have a

linear relationship with the optically measured intensity; we have referred to

this relationship as the instrument’s responsivity. Even if, as usual, the imager

collecting light at the correlation plane is linear over a great range, it can still be

driven into saturation, which is prototypical nonlinear behavior.
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8.6 Gradient concepts

We typically discuss filters in terms of their magnitude and phase (M, �), rather

than their real and imaginary parts (x, y). The reasons should be apparent in

the forms of the metrics; you do not see the real part of a filter expressed in the

metrics, but you do see its magnitude. Also, absolute phase does not matter in

the non-interferometric measurement of intensity in the correlation plane.

Phase affects the value of the real and imaginary parts of an electromagnetic

field, but it does not affect the magnitude.

In this section we’ll find how J varies as a function of an arbitrary value of

Hm, and use that information to optimize J by a suitable choice of a realizable

filter. Increment �J(Hm) is the contribution to J that Hm would make if

realized, and it is built up from gradient expressions rJ(Hm). We will use

magnitude (radial) and phase (azimuthal) components of rJ.

Now we describe our method of optimizing filters for analytic metrics.

Strictly speaking the complex derivative of J does not exist. (Note that some

of the components of J are squared magnitudes of complex quantities that

would be given as z*z, and z* does not have a derivative.) However, J certainly

is a function ofHm, and we can plot the contours of J as wemoveHm around in

the plane of its complex values. To optimize the metric we use the realizable

value of Hm that is at the highest (or lowest, as appropriate) contour. Rather

than implement exactly that process, however, it is easier to find the gradient of

J in the plane of Hm and use some of the gradient’s properties. Although the

background just developed is adequate for our purposes, the matter of taking

derivatives of scalar functions of complex variables is developed in Kreyszig

[19] or Therrien [22].

The metric J is a function of the filter h. Suppose h is optimal; then no

allowed small adjustment of h can improve J. (By ‘‘allowed adjustment’’ we

mean a change to another member of the limited set of values the filter SLM

can take on.) Presuming that the elements of the optimal h can be independ-

ently chosen, then either (1) the partial derivative of the metric with respect to

the allowed variation of each element is zero, or (2) the optimal value of the

mth filter value is at an end or discrete point of the operating curve. (Suppose

to the contrary that we are not at an extremum, and the mth partial derivative

is not zero. Then we can slightly readjust Hm and improve the value of the

metric, so we did not begin with the optimizing h.) From that necessary

condition of optimality we can infer how to construct an optimal filter that

is restricted to the filter SLM’s range. To do this we take the partial derivative

of J with respect to the magnitude of the mth frequency’s filter value, infer the

whole gradient of the metric and, finally, from the set of realizable values,
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deduce where the optimal filter value lies. The partial derivative method is

more thoroughly developed by Juday [41, 52].

The quality of the metric that is critically important is that it is a continuous

and differentiable function of the spectral filter values. Then putting a metric

to an extremum is as conceptually simple as maximizing a quadratic. If we

have the coefficients of the powers of x in y¼ ax2þ bxþ c, we know that y is an

extreme value when we use x0¼�b/(2a). We find x0 by setting dy/dx¼ 0 and

examining the consequences. It is possible to optimize the very much more

complicated forms of the optical pattern recognition metrics similarly.

In this section we shall assume that for all k 6¼m the filter components are at

their optimal values. Although we know J is a function of the set of all

frequencies’ filter values, this perspective allows us efficiently to optimize the

whole filter, one frequency at a time.

To be strictly correct we would say we are computing the contribution

(� J )m to the metric from the mth frequency’s filter value Hm. Instead, we

shall use the looser terminology, J¼ J(Hm), since the partial derivative expres-

sion of optimality must hold at each frequency. To make the equations more

easily readable we shall occasionally use ‘‘Num’’ for the numerator of the

metric, and ‘‘Den’’ for its denominator. We shall be examining several differ-

ential equations to infer an optimal filter value, and we shall get an integration

constant for the differential equations from assuming that a zero filter value

contributes nothing to the metric; thus J(0)¼ 0.

Let’s lay some groundwork. Suppose we have a real scalar field F(z), with z

being a complex number, and that F is continuous and differentiable – at least

in the sense that there is a derivative of F in any selected direction. Then it has a

gradient in the plane of z, and F can be obtained from the gradient and a

boundary condition. Our boundary condition will be that a zero filter value

contributes nothing to the metric. The partial derivative of F radially in the �

direction is:

qF
qM

¼ rF � ½dM expð j�Þ�
dM

(8:33)

with the dot product for complex numbers being defined as:

w � u � wj j uj j cos argw� arg uð Þ: (8:34)

As a particular example that will be useful later, suppose we find

qF
qM

¼ �k1M þ k2 cos �þ k3 sin � (8:35)
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with the k terms being constant. The term k1 will usually be associated with an

input noise power spectral density term. The composite of k2 and k3 will

usually be associated with the signal’s complex spectrum. Using the function

atan2 (�,�) as the two-argument arctangent satisfying �¼ atan2(a sin�, a cos�)

for any a> 0 and for 0� �< 2p, we see Eq. (8.35) as the form for the gradient’s

being:

rF ¼ �k1M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

q
exp jatan2ðk3; k2Þ½ � (8:36)

and for F ’s being:

FðzÞ ¼ �k1
zj j2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

q� �
z � exp jatan2ðk3; k2Þ½ � (8:37)

after we apply the boundary condition F(0)¼ 0. The first term on the right

in Eq. (8.37) is a quadratic circular component of F centered at the origin,

and the other term on the right is a planar ramp rising in the direction of

�0¼ atan2(k3, k2). The net behavior is that F has a maximum in the direction

�0 from the origin, and there is circular behavior about that maximum. The

location of themaximumdepends on the balance among the k terms, including

that F increases without bound with just the ramp behavior if k1=0, but not if

both k2 and k3 are zero. Otherwise, if k1 6¼ 0 the maximum is found at a

distance rmax from the origin, where

rmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ k23

q
k1

(8:38)

so the maximum of F is found at

zmax ¼ rmax exp j�0ð Þ (8:39)

If we are searching in the z plane for the best filter value (i.e., to maximize F )

and not all locations z are available, then we select the one closest to zmax. The

behavior of F resulting from the quality of its radial partial derivative stated in

Eq. (8.35) will be found time and again as we look at the metrics optimized in

this chapter. The values of the k terms are functions of the selected metric, the

spectral values of the signal(s), the noise in the input, and the noise added

during the correlation detection. The partial derivative statement – that the

change in metric for differential allowed change of filter value is zero – is

consonant with this groundwork; the direction of allowed change is parallel to

the isometric contours, and since those contours are concentric circles we
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choose the closest realizable filter value to the location of the maximum. That

is the necessary groundwork.

There are some partial derivatives that will come up repeatedly as we

compute metric gradients. Two in particular are the derivative of the expected

value of central correlation intensity, and that of �, with respect to the mth

filter’s magnitude Mm. We develop them now. Firstly we obtain the partial

derivative of the correlation intensity:

I ¼B2 ¼ B exp j�ð Þj j2¼
X
k

HkSk

�����
�����
2

¼
X
k

Mk exp j�kð ÞAk exp j�kð Þ
�����

�����
2

¼
X
k

MkAk exp þ j �k þ �k½ �ð Þ
 ! X

k

MkAk exp � j �k þ �k½ �ð Þ
 ! (8:40)

From this follows:

qI
qMm

¼
X
k

MkAk exp j �k þ �kð Þ½ �
 !

q
qMm

X
k

MkAk exp �j �k þ �kð Þ½ �
 !

þ
X
k

MkAk exp �j �k þ �kð Þ½ �
 !

q
qMm

X
k

MkAk exp j �k þ �kð Þ½ �
 !

¼B exp j�ð ÞAm exp �j �k þ �kð Þ½ � þ B exp �j�ð ÞAm exp j �k þ �kð Þ½ �
¼ 2BAm cos � � �m þ �mð Þ½ �

(8:41)

The partial derivative of � is easier:

q�
qMm

¼ q
qMm

X
k

Hkj j2Pn; k ¼
q

qMm

X
k

M2
kPn; k ¼ 2MmPn;m (8:42)

8.7 Optimization of the metrics

In some cases we shall see that the ad hoc methods (e.g., matching phase on a

POSLM) were optimal even though an analytic basis was not available when

they were developed; in other cases we shall see that they were not quite right

(e.g., matching phase on a coupled SLM).

Now we present the differential equation from which we shall derive the

optimal realizable filters for a variety of optical correlator metrics. If J is the

metric, and um is the control value applied to the mth frequency’s pixel (e.g.,

the voltage across a liquid crystal cell), then the necessary condition of optim-

ality is either that
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qJ
qum

¼ 0 (8:43)

or that we are at an appropriate extreme value of the SLM’s operating curve. The

condition is justified by consideing that if at some frequency the partial derivative

is not zero, at that frequency the filter can be adjusted to beneficial effect

(improving the value of the metric), and the proffered filter was not optimal.

We remark that this formula as written applies to univariate control (as

having one voltage to apply to each pixel). This is the case for many SLMs,

such as those using liquid crystals or deformable structures. If two controls are

available for a pixel, then two partial derivative statements identical to

Eq. (8.43) apply, with little consequence to the analysis that follows. Spatial

light modulator architectures that use two control values have been proposed,

such as passing light through two SLMs in series so that their effects multiply

[85], or by spatially averaging the effect of multiple sub-pixels [86], or by

splitting and recombining a beam so that the effects of two SLMs add in the

quantum mechanical sense [87].

In this section we optimize the filter’s performance while explicitly taking

into account the limitations of the correlator. We find the gradient of the

metric in the plane of complex values for the mth frequency, and that gradient

tells us which realizable filter value to use. In a comparatively unguided

approach such as simulated annealing, applied to filter values at the entire

ensemble of frequencies, the dimensionality of the search is as large as the

number of frequencies. We can reduce that huge dimensionality of the opti-

mizing search to a very few parameters. We work out two examples – intensity

and SNR.Of those examples, intensity is amaximal-projectionmetric (as is the

Rayleigh quotient), and SNR requires taking the closest value to a finite ideal

filter value (as do the rest of the entire suite of SPR metrics).

8.7.1 Intensity

JðHÞ ¼ B2

�2h i (8:44)

Equivalently, J¼B2 is to be maximized. Eq. (8.41) is seen to be the inner

product of BAm expj(� ��m) and exp j�m, indicating that J has a uniform

gradient in the direction of exp j(���m). So we choose for Hm the realizable

value with the largest projection in the direction of exp j(���m). We do not

know � as we begin; it is a parameter to be searched over and tested for

consistency. (Note that in this case, the parameter suite to be searched over
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reduces to a single real quantity.) Some value, �}, produces the optimal filter,

H
}. Via the definition of �, the optimal value ofHwill produce the same value

�} as was used to compute H}, but this is not true of values of � and H for

which the necessary condition does not hold, that the partial derivative of J be

zero for all frequencies. The value � is a constant for all m, of course.

The intensity metric points up the difference in the optimal filters under the

digital filtration situation, when all values in the complex plane are available,

and the optical situation, in which only a limited subset within the unit disk is

accessible. In the latter case the algorithm directs us to take the filter value with

the largest realizable projection, reflecting a physical limitation on the achiev-

able intensity.

8.7.2 Magnitude SNR

J ¼ B2

�þ �2h i (8:45)

At the best possible filter value (whether realizable or not), the total gradient is

zero. First we find those locations where the azimuthal component is zero:

qJ
q�m

¼ 0

� �
) �þ �2

	 
� � qB2

q�m
¼ B2 q�

q�m
¼ 0 (8:46)

with the final equality since � does not depend on �m. Thus,

qB2

q�m
¼ 2BMmAm sinð� � �m � �mÞ (8:47)

which is to be zero by choice of �m (the Mm¼ 0 solution is uninteresting).

Setting �Im¼���m will assure the equation. In looking for where the total

gradient is zero, we next set qJ/qMm¼ 0, and after some manipulation our

choice of �Im produces:

MI
m ¼

�þ �2
	 

B

� �
Am

Pn;m
(8:48)

So the location where the total gradient of J is zero is:

HI
m ¼ � exp j�ð Þ Am

Pn;m
expð�j�mÞ (8:49)

in which the filter gain � is defined by reference to Eq. (8.48), and correlation

phase � by reference to Eq. (8.14). The optimal realizable value of Hm is the
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one closest by Euclidean measure [41, 52] to HI
m. In the optimization process,

the complex quantity 	=� exp (j�) is to be searched over, and the algorithm

produces J(	). We have one reference image in the filtering objective, and

we have one complex number to search over in the parameter set. The value of

	 that maximizes J will be found to satisfy the consistency requirements

constituted by its definitions.

8.7.3 Statistical pattern recognition metrics

This is going to seem anticlimactic, but a generalization of the basic algorithm

given in Eq. (8.49) optimizes the Fisher ratio, AROC, Bayes error, etc. The

generalization is:

HI
m ¼

X
i

�i exp j�ið ÞAi;m

Pn;m
exp �j�i;m

� �
(8:50)

where i indexes the objects in the training set and, as usual,

Hm ¼ MED HI
m

� �
(8:51)

Here MED refers to the minimum Euclidean distance mapping which maps a

point to the nearest point in the operating region of the SLM. The set of complex

parameters {�i, �i} is the search space for optimizing the filter. Experimentally

we find that the optimizing parameters are different among the SPRmetrics, and

so, of course, are the filters. The demonstration of the optimization is roughly

the same as the process for optimizing magnitude SNR, but it is too tedious to

include here. See Juday [52] for the details. Some remarks are in order. There is

not a royal road to ascertaining the optimizing values of the parameters, and,

hence, of the metric-optimizing filter. The reader must numerically evaluate the

metric according to its definition, and they must do so for each trial set of search

parameters. Optimizing the SPR filters is substantially more complicated for an

optical filter and its restricted values than for digital filtering, but at least we are

assured that we can optimize the optical filter on the basis of the SPR metrics.

8.7.4 Peak-to-correlation energy (PCE)

This metric is defined as:

PCE ¼

P
k

HkSk

����
����
2

P
k

HkSkj j2
(8:52)
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Similar manipulations as those for optimizing SNR produce:

HI
m ¼ � exp j�ð Þ ¼ � exp j�ð Þ 1

Sm
(8:53)

which is an inverse filter. The parameters � and � are to be searched over.

8.8 SLMs and their limited range

The metric-optimizing algorithms depend on knowledge of the values that the

SLM can take on, so we shall discuss some realistic and some ideal character-

istics of SMLs.

A modulator is the tool with which we control the light. A simple example

is the liquid crystal display (LCD) on your wrist; it modulates the light

landing on it so that the pattern is readable by eye. The modulators in

OCPR are hardly more complicated than those LCDs, although they are

much faster and finely detailed. The individual elements in the modulator

are about 5 to 40 mm on a side, which is about 25 to 200mm�1 – smaller than

you can see without a microscope. A wristwatch ordinarily changes its

display once or twice per second; the fastest 2-D analog modulators in

common use can change some thousands of times per second. A significant

difference between a modulator’s use in a watch and in OCPR is that OCPR

productively uses them to delay the light in addition to changing its

intensity. The necessary delay is not large: being able to retard the red

light of a helium–neon laser by a wavelength – just more than half a

millionth of a meter – is quite sufficient for our purposes. This ability to

delay the light lets Fourier optics do some far more powerful things than the

LCD on your wrist is used for. It lets us process light by the ‘‘bumpy lens’’

analogy developed earlier.

We have seen that (1) the metric-optimizing algorithms specify an ideal filter

value and (2) its optimal representation is the closest realizable value on the

SLM (by Euclidean measure – hence the ‘‘MED,’’ or minimum Euclidean

distance, filter value). In the remainder of this section we shall look at some

SLM operating curves that are mathematically tractable, in that the conver-

sion from an ideal filter value to the MED representation is simple. Then we

will show a lookup table method for working with an SLM that is uniform

across its face, but does not have a simple analytic expression for the closest

realizable value to the ideal value. Finally, we shall give a method of working

with an SLM that is non-uniform across its face, in addition to having no easy

analytic MED conversion.
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8.8.1 Continuous mode

The most tractable and capable of SLMs would express any filter value within

the unit disk. It would be able to express any phase in 0� � < 2p, and

independently it would express any magnitude in 0�M� 1. If the ideal filter

HI has magnitude MI and phase �I, the MED value of HI is:

HMED ¼
HI ; MI � 1

exp j�I
� �

; MI > 1

(
(8:54)

No single SLM is currently available that can express the unit disk. There

are costs associated with obtaining full regional coverage (whether all of the

unit disk or a subset area). If you average the effects of adjacent pixels [86, 88],

you reduce the count of independent pixels and thus perhaps the information-

bearing capacity of the SLM. If you get the areal coverage by affecting the light

sequentially with two SLMs [85, 89], your correlator architecture becomes

longer and the drive circuitry becomes more complicated. One can arrange

beamsplitters and SLMs so that the virtual image of one SLM is at the physical

location of the other, or so that their virtual locations are together. Either of

these conditions we will call putting the SLMs into virtual register. Further, we

will want the path lengths to and from the position of register to be well within

the coherence length of the processing light beam, and for the relative longi-

tudinal positions to be stable well within a wavelength of light. If you split and

recombine a light beam so that it is simultaneously affected by two SLMs in

virtual register [87], the drive circuitry must be provided for the second SLM

and the SLM alignment is very exacting. If you give a pixel a random value so

that its statistical expectation is the desired value, the filter you create is never

exactly the one you want, but some interesting results have been shown [90].

This is a little like having one hand in hot water and the other in an ice bath,

and then claiming that on average you are comfortable, or going to Las Vegas

and betting that a rolled die will come up 3.5, since that is the average value of

MED mappings for unit disk.

Ideal but unrealizable

Ideal is realizable

MED to ideal

Figure 8.11 MED mappings for unit disk
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the number of spots on the sides of the die. A correlator uses light to process

information and does it so fast that its response is to the instantaneous value

on the SLM, not to its average value.

When optimized on the unit-disk SLM, the maximum-projection filters

(i.e., those that maximize correlation intensity) reduce to unit-magnitude

filters with matched phase. It is the filters that do noise rejection (e.g., opti-

mized for SNR, or tradeoff involving the noise PSD) that make use of interior

points of the unit-disk SLM.

Phase-only (1-DOF)

In the common parlance a phase-only (SLM POSLM) has unit (or constant)

magnitude and (usually) any phase in 0� �< 2p. On the POSLM, phase

matching is equivalent to MED mapping of both varieties (HI is finite or

infinite). The ideal filter valueHI¼MI exp ( j�I) is represented by a unit vector

with its same phase:

HMED ¼ exp j�I
� �

(8:55)

A filter written on a POSLM is an all-pass filter; each frequency arrives in the

correlation plane with its original magnitude but with its phase possibly

shifted. If the POSLM is not able to express the full range of 2p radians,

then Eq. (8.55) is not correct, but the filter for the incomplete POSLM is

nevertheless an MED filter.

Magnitude-only (1-DOF)

Again in the common parlance, a magnitude-only SLM; in this chapter we

reserve ‘‘amplitude’’ for the possibly complex version of magnitude, but histori-

cally this SLM has been described as ‘‘amplitude-only’’ and we leave the ‘‘A’’ as

the first letter. Another reason is that a type of SLM known as a magneto-optic

SLMhas primacy rights to ‘‘MOSLM.’’ (AnAOSLM) can produce amagnitude

anywhere in 0�M� 1 at a constant phase (taken as zero). The MEDmapping

is simple: the real part ofHI is truncated to the interval from zero to one:

HMED ¼
0; ReðHIÞ50

ReðHIÞ; 0 � ReðHIÞ � 1

1; 15ReðHIÞ

8><
>: (8:56)
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We remark that although there is a strong urge to map the magnitude ofHI

into the magnitude of the AOSLM, this is not an MED mapping and it gives

sub-optimal filters. Since maintaining the phase of HI in mapping it onto a

POSLM is so successful one wonders why maintaining the magnitude ofHI in

mapping it onto an AOSLM is not equally successful. The answer is that

maintaining phase is an MED process, whereas maintaining magnitude is

not. Compare the twomappings in Figure 8.14, a considerably greater average

distance betweenHI and its mapped value is evoked bymaintainingmagnitude

than by the mapping specified in Eq. (8.56).

Coupled SLMs

Even though we may find analytic expressions for the optimal mapping from

ideal to the best realizable filter, using the lookup-table method for the

operating curves in this sub-section would probably be preferable for oper-

ational purposes.

None of the SLMs we have looked at in this section have yet had coupled

behavior. In a 1-DOF SLM, the operating curve typically runs along neither

constant-magnitude circles nor exactly along constant-phase lines. There is

Ideal value

MED realizable value

Figure 8.12 Phase-only operating curves

1

Figure 8.13 MED mapping for amplitude only SLM (AOSLM)
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coupling between the magnitude and phase. Such an SLM has more compli-

cated algorithms for finding the optimal realizable value than the SLMs we

have looked at so far.

We remark that although a strongly coupled SLM is somewhat more

complicated to compute the optimal realizable filter for than the AOSLM or

POSLM, its character (in our opinion) can be better suited to correlation

pattern recognition than the AOSLM or POSLM. The reason is that many

(often most) frequencies have less signal energy than the noise/clutter objects’

spectral energy. Whitening the transformed and conjugated training object

then causes a large population of ideal filter values near zero magnitude.

Having a set of available filters valued near the origin permits the SLM to

come close to realizing these small magnitudes, so the noise in these frequen-

cies is suppressed.

The details of a coupled SLM’s realizable range are highly variable with

the optical environment in which it is operated, so we don’t give an equation

for the values as is possible for a true AOSLM or POSLM. Figure 8.15 gives

an example typical of the realizable range for a nematic liquid crystal SLM.

The 8-bit drive value runs from 0 to 255 as the filter value moves along the

spiral curve.

Since a coupled SLM usually does not admit an analytic expression for its

values, then it also does not admit an analytic expression for the MED value

for arbitraryHI, either. Our approach is tomake a two-dimensional tabulation

of the MED value. In Figure 8.16 we have plotted a filter drive value for each

point in the complex plane of ideal filter values. The drive value is that of the

closest point on the operating curve. The axes and the curve itself have been set

off in contrast so that they can be seen. An interesting feature is that near the

center of curvature of the operating curve, there is a strong variation in the

MED value.

1

?

Figure 8.14 Magnitude-preserving mapping for AOSLM. Note that an ideal
filter value with magnitude greater than unity is not well specified in its
realizable mapping. Preserving magnitude is not an MED process
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Figure 8.15 A spiral operating curve. The complex value begins at (1,0) with
zero drive, passes near the origin at mid-level drive, and continues to wind
through the unit disk’s first and fourth quadrants as drive increases to its
maximum

Figure 8.16 MED filter drive values for the spiral operating curve in Figure
8.15. Lightness corresponds to the drive value of the closest point on the
operating curve, but the axes and the curve itself are set in contrast to make
them visible. Black is zero drive value, white is the largest drive value, gray is
in-between
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8.8.2 Discrete mode

Certain SLMs operate in discrete modes. These include the ferro-electric SLM

and themagneto-electric SLM (MOSLM), both having speed of operation as a

positive consideration in their use. They are essentially binary in their opera-

tion and ‘‘snap’’ from one state to another. The MOSLM has been caused to

operate in a ternary fashion as well, with the third state resulting from an

interdigitation of the other two states within the pixels of the SLM. The

discrete SLMs are often operated in states of polarization that cause balanced

values of the two states (referred to as þ1 and �1, although in fact their light

efficiency is much closer to zero than to unity). They can also be set to have one

polarization blocked and the other transmitted, in which case the SLMs’ states

are referred to as 0 and 1. The ternary SLMs are said to operate at þ1, 0,

and �1. If we properly normalize the noise levels in the filter computations

we can just as well use the unity-sized transmittances, and so we shall do just

that. For the balanced binary SLM(Figure 8.17), theMEDmapping is given by:

HMED ¼ �1; ReðHIÞ50
þ1; ReðHIÞ � 0



(8:57)

This mapping is shown in Figure 8.17. For the ternary SLM,

HMED ¼
�1; �0:55ReðHIÞ
0; �0:5 � ReðHIÞ � þ0:5

þ1; þ0:55ReðHIÞ

8>><
>>: (8:58)

as is shown in Figure 8.18.

In many filtering operations it is advantageous to be able to write an opaque

value at selected spatial frequencies. We think it is almost without exception

1

–1

Figure 8.17 Binary phase-only operating curve
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desirable to block the DC component of a filtered scene, for one example. In

cases where a set of frequencies is always found to contribute more to noise

than it contributes to the construction of the correlation peak, it would be

preferable to put black paint on the SLM at those frequencies. A filter’s region

of support (ROS) is that set of frequencies at which the value of the filter may

be non-zero, and the black paint is the complement of the ROS. One quantifies

the advantage of painting the SLM by adding zero as a value that the filter

computations may choose. For the POSLM this would be expressed as:

HMED ¼ 0; HI
�� ��50:5

exp j �Ið Þ; otherwise



(8:59)

If the computations suggest that a significant gain will result from adding a

complementary ROS to the SLM, then those places where HMED is zero

indicate where to paint the filter SLM.

8.8.3 Unit disk

Of all passive filter SLMs, one that can realize any location in the unit disk is

the most useful. Rather than simply being a tautology, this statement is the

basis for quantifying the performance of an SLM. Choose a pattern recogni-

tion problem, a candidate SLM, a noise environment, and ametric by which to

evaluate a filter. In general, when the metric is optimized the result will be

poorer for the candidate SLM than for the unit-disk SLM. The ratio of metric

performance quantifies how well the candidate SLM works in the stated

conditions. Since the unit-disk SLM is the most competent we shall use it as

the reference for even the less detailed evaluation of an SLM. The more like a

unit-disk SLM our candidate SLM looks, the better it is, the benefit being

that it can reach any point in the unit-disk. We have seen that minimizing

distance in the complex plane is a good thing to do, so we could judge the

candidate by the average of how closely it approaches points in the unit disk.

1

–1

Figure 8.18 Ternary operating curve
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This is a modification of the ‘‘coverage’’ defined by Zeile and Lüder [91]. For

any point 	 in the unit disk, the SLM has a closest realizable point, z0(	). They

integrate |	 �z0|
2 over the unit disk and obtain the mean-squared distance to

the closest realizable point, calling the result the SLM’s coverage of the unit disk.

We propose a more informative method of quantifying the property that Zeile

and Lüder intended their coverage to show; it conforms to the exact problem

to which we are applying the SLM. For any given pattern recognition problem

(i.e., the set of reference objects, the specification of the noise environment,

and a choice of metric) we can compare the performance of a candidate SLM

with that of the unit-disk SLM. The value of the metric achieved by the

candidate SLM, normalized to the performance of the unit-disk SLM, is a

direct and meaningful measure of the candidate SLM’s performance.

Jnorm ¼ J actual SLMð Þ
J unit disk SLMð Þ (8:60)

Perhaps unfortunately, Jnorm varies from problem to problem with a single

SLM, whereas Zeile and Lüder’s coverage by the SLM is an absolute measure

of its performance. Nevertheless, the ratiometric method is more directly an

answer to the long-standing question, ‘‘How good is this SLM for my job?’’

For example, the ratiometric method accounts for the nonlinear effects of the

MED mapping, which is not the case with Zeile and Lüder’s coverage.

8.9 Algorithm for optical correlation filter design

The filters described in this chapter refer to the performance of the correlator

as measured at the center of the correlation plane. We can refer to them as

‘‘inner product filters,’’ since the central correlation performance is principally

determined by the inner product of the reference object (as limited in its

representation by the filter SLM’s operating curve) and the input object. In

summary of the development in this chapter, the general algorithm for com-

puting such optically implemented filters is the following.

* Select initial complex scalars, the search parameters.

* Weight the training images with the search parameters.

* Whiten the weighted sum of the transformed and conjugated training images by

normalizing to the power spectral density of noise.

We now have an ideal filter value HI
m for each frequency.

* Having these HI
m in hand as being the locations where the gradient of the metric is

zero, realize each if you can; if you cannot, then use the realizable value that is

closest by Euclidean measure in the complex plane.
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* Repeat this process for each spectral component, indexed by m.

* Evaluate J. It is a function of the search parameters.

* Do a gradient search in the space of those parameters, plotting the value of the

metric J as a function of the parameters andmoving through the parameter space so

as to take J to its extremum.

In our experience there does not seem to be much difficulty arising from

hanging J up on local extrema, but the reader should remain alert to the

possibility. For all of the metrics and SLMs mentioned in this chapter there

is a maximum of one complex scalar factor per training object – fewer, in

degenerate conditions such as the POSLM, in which only phase is considered

during the filter optimization. In all of this chapter’s metrics and filter SLMs,

the complex scalars that optimize a metric are not computable before starting

the optimization, but there exist confirming formulas that a putatively optimi-

zing set of scalars must meet.

Since we are dealing with optics rather than digits here, the gain � and phase

� have physical significance. Indeed they are crucial factors in optimizing a

filter on a physical modulator. They are not arbitrary; the optimal filter will

produce values for them that are physically consonant with their definitions.

Consider now the following equation:

H¼? S�

Pn
(8:61)

The signal S in an optical processor is an electric field with dimensions of

[V/m], andPn is a noise power spectral density. But the filter simply converts an

incoming electric field into an outgoing one, so it is dimensionless, although

probably complex. On the very face of it, this supposed equation is physically

incorrect since the dimensions do not match. That this sort of dimensional

mismatch permeates the OCPR literature indicates that the physical consi-

derations we use have not been widely taken into account. The factors such as

the � in this section provide the necessary dimensional matching. In addition

they bolster confidence that the optimal filter has been computed, by exhibit-

ing a loop-closure for � and � from their definitions that follow from the

gradient expression. Consider Eq. (8.48), repeated here:

MI
m ¼

�þ �2
	 

B

� �
Am

Pn;m
(8:62)

All of the terms within the parentheses are functions of the filter, and when the

optimizing value of � is found in the search, the indicated mathematical

operations within the parentheses will reproduce �. Similarly, the optimizing
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value of � from the search parameters will replicate as the phase of the

expression
P

k HkSk.

8.10 Some practical points

8.10.1 Storage and representation of filters

We may artificially decrease the domain of filter values for practical reasons.

The prime example is that we can store more filter drives in a given amount of

memory if we use fewer bits per frequency. A lookup table is very often used in

optical correlators to convert the index values for a smaller set of discrete filter

values into the control actually applied to a pixel. More control is generally

better, but there is a diminishing additional return for every bit of added

control. Intuitively, we know that there will be a limit to the return on invest-

ment as we add bits. It is our experience that 16 to 32 well chosen filter values

give nearly as good a performance as the common 8 bits (256 levels) of voltage

resolution in addressing liquid crystal SLMs. The term Jnorm is a measure of

performance loss in response to fewer realizable filter values, as well as being a

guide to which values to drop and which to retain.

8.10.2 Specifying lot uniformity

Let us consider how to write specifications for intra-lot variability of an SLM.

If we are to build a substantial number of correlators and wish to have

interchangeable SLMs, then we have to specify how nearly identical their

performance is. If we are unreasonably tight in the specification we needlessly

run up the cost, but if we are not tight enough we will not achieve functional

interchangeability. SLM performance tolerance should be tied to system

performance. We propose two tools to specify the SLM’s performance toler-

ance, although we have not put them into practice.

The first tolerance tool, NE�H, is more complicated than Jnorm. It is similar

to the characterization of a thermal radiometer in its noise-equivalent random

temperature change (NE�T). To compute NE�T for a radiometer, one

observes the noise level in the output and determines, by knowing the calibra-

tion of the instrument, the level of random temperature fluctuation that

would itself produce the same level of variation in the output. Such a level

of temperature fluctuation is then called the noise-equivalent change in tem-

perature, NE�T. The dynamic range of the radiometer is the total range

of measurable temperatures divided by NE�T. We can similarly compute

the effect of a noise-equivalent random change of an SLM’s operating
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curve, NE�H. The method is straightforward and gives a direct system-

based specification on SLM performance tolerance, but it would be tedious

in practice.

Characterizing the noise figure of a radiometric thermometer begins with

observing the noise-induced variance, �2n, in the output, and knowing the

instrumental responsivity, R, in terms of, for example, (change in volts)/

(change in temperature) at the temperature of interest. Then the noise-

equivalent change in temperature is:

NE�T ¼
ffiffiffiffiffi
�2n

p
R

(8:63)

Physically we can think of NE�T as the random variation in temperature

which, if viewed by a noiseless but otherwise identical system, would have the

observed output variance. The temperature change NE�T is a measure of the

smallest temperature difference the radiometer can distinguish.

We can adapt the idea ofNE�T to our situation. The simulation and analysis

method for NE�H is rather more complicated than finding NE�T. Below we

lay out the method for determining NE�H, which is then a system-based and

reasonable way to specify the uniformity of behavior for a lot of SLMs.

1. Construct an optimal filter under the circumstances appropriate to the correlator’s

task.

2. Note the peak correlation intensity predicted by the digital model of the correlator;

denote this Cdigital.

3. Run the filter and image in your optical correlator. Note the peak intensity and

denote this Coptical.

4. Observe the noise variance in the correlation peak and denote this �2
optical; compute

the optical signal to noise ratio 
2optical ¼ C2
optical

.
�2
optical.

5. Return to the digital simulation of the correlator. Disturb the list of the SLM’s

values as follows, noting that all filter frequencies using a common filter value have

that value changed by the same amount. Construct a set of complex disturbances

{�H} to add to the optimal realized filter values, each filter value being displaced

by its own �H. Their phase should be distributed uniformly in [0, 2p), and inde-

pendently of the magnitude. It is a mere detail of implementation whether they

have a common magnitude d, or are drawn from a Gaussian population with

standard deviation d.

6. Ascertain the value of Cdigital with the disturbed optimal filter.

7. Repeat Steps 5 and 6 a sufficient number of times, using a new set {�H } each time,

to estimate the variance �2
digital inCdigital. Compute 
2digital ¼ C2

digital

.
�2
digital, and note

that 
2digital ¼ 
2digital dð Þ.
8. Adjust d to find the value NE�H such that 
2optical ¼ 
2digital NE�Hð Þ.
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8.10.3 Choosing a finite subset of filter SLM values

Nowwe have NE�H in hand, fully particularized to the situation in which the

SLM has been designated to work. This quantity is a direct measure of how

distant two SLM values must be in order to be functionally distinct from each

other.We can use that separation to count the distinct number of values on the

SLM and to choose a finite subset to work with. We count how many disks of

radius NE�H will just fit along the SLM’s operating curve, if we require that

the center of the diskmust occupy an operating value and that the disks cannot

overlap. The operation is like stringing beads onto a necklace, and the bead

count is how many distinctly different values the SLM can make, given the

whole environment of the correlator. In the example shown in Figure 8.19, we

reckon we can make about 15 usefully distinct values of the filter, so we would

probably choose 16 values, as a close power of 2, and store filter drives with a

4-bit representation.

NE�u is a related concept that is one step more particularized to a given

system than NE�H. We use noise-equivalent change in the filter drive (mea-

sured in bits) to ascertain the useful number of filter drive bits to employ.

8.10.4 MED maps

The algorithms for optimizing a filter on a limited set of realizable values call

for repeatedly finding the spectral filter value that either is the closest to a

1
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Figure 8.19 A bunch of ‘‘beads’’ corresponding to NE�H, perching along a
string of realizable values
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computed filter value, or has the greatest projection in a computed direction.

We have found it efficient to compute a map from locations in the complex

plane to their closest realizable filter values. These are minimum Euclidean

distance (MED) maps, so named because they find the realizable value that is

the minimum Euclidean distance from the arbitrary filter value; using the map

is efficient because it needs to be computed only once.We treat the two cases of

a spatially uniform SLM, and a non-uniform one. The user can determine the

advantage of using the more complicated non-uniform method by using

computer simulation to check the benefits of the more accurate description.

In Chapter 7 we described methods of characterizing the SLMs and we assume

here that those data are in hand.

8.10.5 MED map for a uniform SLM

Wewish to build a lookup table – a map – of an SLM’s closest realizable value

to an arbitrary HI. Our practical method as described in text is shown in

Figures 8.20 and 8.21. The easiest condition arises if the SLM is sufficiently

nearly uniform over its surface such that all pointsmay be treated as having the

same operating characteristics. Under the pressures of commerce and driven

by the human eye’s sensitivity to local abnormalities, a great deal of effort has

gone towards exactly this point in the case of SLMs that are adapted from

the display industry. In particular, the magnitude characteristics of the dis-

plays are often uniform in such cases, although there is less incentive for phase

uniformity since phase is not ordinarily important to visual display.

We begin with a list of the realizable values R¼ {zk}, and the drive values

V¼ {vk} that produce them. Three statistics are most important to the MED

map. First is the largest magnitude dmax ¼ max
k

zkj j, second is the average

spacing davg¼h|zk� zkþ 1|i between successive members of R, and third is

the minimum spacing dmin between members of R. Two quantities determine

the map – its expanse in the complex plane and the resolution with which we

view that area. We let the map extend through 	E in both real and imaginary

axes, dividing the space withNmarks per axis. (We likeN be odd so that there

is a mark at zero.) Two rules of thumb are that E is at least twice the maximum

magnitude, and that the resolution 2E/(N� 1) is no larger than the average

spacing in R. Nothing is gained by making the resolution smaller than the

minimum spacing in R.

Having sized this array, we proceed to fill it. Let 0 � n<N index the real

values, and 0�m<N index the imaginary values. For each element in the

array we compute its complex value z¼ xþ jy from setting the real part to
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x ¼ E
2n�N þ 1

N þ 1
(8:64)

and the imaginary part to

y ¼ E
2m�N þ 1

N þ 1
(8:65)

These invert to

n ¼
x

E
N þ 1ð Þ þN

2

6664
7775 (8:66)

and a similar equation form, in which the symbol b�c indicates rounding down
(towards negative infinity) to the next integer. For every member of the array

we compute z¼ xþ jy and find the member ofR that is closest to it, designated

MED{z}. Whether this is a drive value, or the realizable filter value itself,

depends on the application. What we store in the array itself depends on how

we will later use the information. If we are to create a set of drive values to

apply to the SLM, we would store the drive value of that closest member of R;

but if we are to simulate the effect of a computed filter, we might store the

complex value of that closest member. We use the map by converting a

computed ideal filter value to indices m and n and reading the stored informa-

tion from the array.

+E–E

+jE

 –jE

Figure 8.20 Coordinates for the MED map. The magnitude runs from –E
to þE on each axis, and there are (in this example) N¼ 21 marks per axis
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We also have the question of how to deal with computed ideal filter values

that lie outside the (	E, 	jE ) region of the complex plane. This becomes

important especially when maximum-projection filters are being built, such as

to optimize intensity or in some forms of the Rayleigh quotient. It is con-

venient to reserve the outer ring of cells in the square array for these values.

In that outer ring of map cells we place the representation of the realizable

filter value having the largest projection in the direction of each cell. It is

for this reason that we recommend E to be at least twice as large as the

largest realizable magnitude. A computed ideal filter value lying outside the

(	E, 	jE) region is brought back along a ray towards the origin and assigned

to the boundary cell it passes through. If E is sufficiently large, there is little

difference between the largest projected value as stated, and a strictly com-

puted MED representation for a filter value that falls outside the map.

8.10.6 MED maps for a spatially variant SLM

The previous section assumes that the SLM is uniform throughout. The

calibration methods described in Chapter 7 include a way of characterizing

the SLM for each pixel’s operation. If the SLM’s action varies over its surface,

we are faced with having a differentMEDmap for each pixel. This is a difficult

situation with no really good way out, but it is a situation to be lived with. The

set of all pixels’ operating curves is usually too much data to use in raw form

when building a filter. One economy is to cluster the pixels according to

+E–E 

+jE

– jE

1

2

Figure 8.21 (1) Filling cells in the plane of Hm with MED values from the
operating curve. (2) Filling a ring of Hm’s phase values with maximum-
projection values from the operating curve. The indicated value on the
SLM operating curve is found along the perpendicular to the curve, and in
the peripheral cell in the direction of that perpendicular from the origin
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similarity in their operating curves, and then use one MED map per cluster.

This requires that the cluster’s members show behavior that is ‘‘close enough’’

to each other. We let �i, j be the distance measure between the ith and jth

operating curves, computed by:

�i;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
d

ziðuÞ � zjðuÞ
�� ��2s

(8:67)

where u is the drive value indexing the set of complex operating values.

(In practice we do not bother with the square root, and instead threshold on

�2.) Then, we cluster the set of operating curves by setting a threshold value �t,

picking a first pixel’s curve as a prototype, and finding all of the pixels whose

operating curves fall within �t of the prototype. If not all pixels are assigned to

clusters yet, we choose an unassigned pixel’s operating curve as the next

prototype, find its neighbors, and assign those neighbors to the cluster.

When all pixels have been assigned, we have a set of clusters that is dependent

on the size of �t. If there are inoperably many clusters we must adjust �t,

making it larger to admit more members per cluster, but at the expense of

reduced accuracy in representing an operating curve by its cluster.

We can employ another economy: using transformations under which the

MED mapping is invariant. On average this will put more pixels in each

cluster, meaning that fewer MED maps can handle the whole SLM.

Cartesian translations, scale changes, and rotations do not alter the MED

relationship between an SLM’s operating curve and an off-the-curve point z.

In Figure 8.22 we illustrate an operating curve, and an MED mapping that

is unchanged, if the curve and a point we wish to represent on it are both

modified by the same complex scale factor and complex translation. Letting b

be a bias vector, and k a complex scalar that expresses the rotation and scale,

we now compute the distance between the ith cluster and the jth candidate

pixel’s operating curve according to:

�i;j ¼ min
k;b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
d

ziðuÞ � kzjðuÞ � b
� ��� ��2s8<

:
9=
;: (8:68)

When assigning the jth pixel to the ith cluster, we make note of not only the

cluster index i, but also the minimizing values bj and kj, for later use.

At this point we build an MED map for each prototype as described in the

preceding section. When building a filter drive, at the jth pixel we are given an

ideal filter value HI( j) to represent some point on the pixel’s operating curve.

We choose
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z ¼
bj þMEDi kjH

I � bj
� �
kj

(8:69)

as the representative ofHI, where the subscript i indicates we are using theMED

map for the ith cluster. The equation indicates that we begin withHI; convert it

by the translation, scale, and rotation that best fitted the pixel to its (the ith)

prototype curve; find the closest prototype value; and rotate, scale, and bias

back to where it came from. This is not exact; if the drive value version of the

MED process is used, we can use the operating curve of the jth pixel to tell us

what filter value will actually be implemented. However, that would imply

storing all the operating curves rather than just those of the prototypes. With

a sufficiently small value of �t we can have asmuch precision as wewish, but this

is at the expense of enlarging the number of prototypes and their MED maps.

8.11 Some heuristic filters

Except to compare the effect of different methods of filtering, one will not

ordinarily implement a filter that does not use all of the ability of the SLM. We

would neither use a suboptimal algorithm for the full SLM behavior, nor restrict

ourselves to less than the full domain of the SLM.We have presented algorithms

that make best use of a filter SLM if we have an analytic form for a metric to

optimize, and know the list of realizable filter values. In Section 8.8 we described

somemathematically tractable SLMs and showed how to create an optimal filter

on them strictly from analysis.We also showed how to deal with departures from

analytically tractable SLMs. In this section we look at some algorithms of

historical interest that in some cases are seen tobeoptimal, and inother cases, not.

Wemention three heuristic algorithms that have been used in mapping from

digitally computed filter values to the values realizable by the SLM, and then

discuss their shortcomings.

H1

H2

 

 

Figure 8.22 Drive v(H1) represents H1 onto the operating curve OC1. If the
operating curve is modified to OC2 ¼ kOC1 þ b, then v(H1) also represents
H2 ¼ kH1 þ b
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* The first is applying phase matching to coupled SLMs,

* the second is mapping a computed filter value’s magnitude onto the magnitude of

an AOSLM, and

* the third is binarizing a filter.

As noted previously, the phase-only filter has been a considerable success,

although for a long time there was not a body of theory to show why it

performed so well. We suggest that the MED principle is one such theory; it

shows that when the SLM’s operating curve is the unit circle, phasematching is

optimal. Further, those metrics demanding a large magnitude of the filter will

cause only the unit circle to be occupied for the most capable of filter domains,

the unit disk. The metrics that demand large magnitude will cause POSLM

behavior from a unit disk filter. However, one should keep in mind that for the

maximum-projection metrics, magnitude is the dominant consideration, not

the maintenance or continuity of phase. In Figure 8.23, we see that if offered

three points that have large magnitude and are appropriately disposed around

a smaller-magnitude complete circle, the maximum-projection algorithms will

choose from the triad of distinct points, in preference to the inner circle having

all phase values.

The success of the matched-phase filter on a POSLM led to some overuse, in

our opinion. As one example, suppose that an SLM has a nearly complete

circle of phase-only operating values. The MED principle would have the

wedge of missing phase split down the middle and ideal filter values in its

halves mapped to one of the end points. See Figure 8.24.

TheMED value is obtained as indicated and is optimal – as opposed, say, to

uniformly compacting the 2p phase range to fit on the available SLM domain.

The success of matching phase on a POSLM should not dissuade us from

exploring other operating curves that may be available on the SLM. (Varying

the input and analyzer polarizations around a liquid crystal SLM produces

such variable operating curves; see Chapter 7.) The more powerful metrics,

Figure 8.23 A set of three points set around a phase-only circle so that their
convex hull falls outside the circle
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such as SNR, that take into account the power spectral density (PSD) of

additive incoming noise and seek finite values of the filter, will respond well

to an operating curve that passes close to the origin. If the PSDof input noise is

known and can be used in the filter optimization, then coupled SLMs should

certainly be considered, rather than setting up the SLM to operate in a phase-

only mode. We discussed metrics of SLMs per se without regard to the total

environment they are in, and we examined a couple of ways of measuring the

utility of the SLM. In the case where we are performing noise rejection, as for

optimizing the SPR metrics, the POSLM is overshadowed by a coupled SLM.

Since mapping the phase of an ideal complex filter HI onto the phase of a

POSLMproduces good results, how about mapping the magnitude ofHI onto

the magnitude of an AOSLM?Well, in short, bad things happen. This point is

made clearly in Chapter 5. New images were constructed by ‘‘crossing’’ the

spectra, and the output images far more strongly resembled the images whose

phase they bore. These results are replicated here, usingMEDprojections onto

the real axis rather than using the magnitude of the transform.

We attribute the predominance of phase fundamentally to its being a lever-

aging quantity; that is, for larger magnitudes a phase difference has a larger

effect than a magnitude difference, since �zj j ¼ 2M sin ��=2ð Þ for a purely

phase difference, whereas �zj j ¼ �M for a purely magnitude difference, with

z being the complex number being altered. Thus, roughly speaking, at large-

magnitude portions of the spectrum the effect of phase is dominant over that

of magnitude.

Figure 8.24 Incomplete ring of PO values. Lines show the missing wedge,
including the dashed one that splits it. Ideal points in the wedge are MED-
mapped to end points. Other points are mapped so as to maintain phase

8.11 Some heuristic filters 351



To illustrate this point, in Figures 8.26 and 8.27, we disturb Figure 8.25

by exactly the same set of �zj j at each frequency, only having the disturb-

ance aligned in the magnitude direction in Figure 8.26, and in the phase

direction in Figure 8.27 so that the phase’s leveraging effect is eliminated.

The images were created by adding a zero-mean RV to the complex value of

the transform of the image of appliances, then inverse transforming, and

displaying the magnitude as intensity. If z¼ xþ jy, and r is an RV dis-

tributed uniformly in [�b,þ b], then for the magnitude-disturbed image we

compute zdisturbed ¼ zþ rx= zj j þ jry= zj j, and for the phase-disturbed image,

zdisturbed ¼ zþ ry= zj j þ jrx= zj j, for every pixel in the transform of the original

image. (Parameter b was chosen to display the effect clearly but without

entirely destroying the image.) Phase error and magnitude error are seen to

have distinctly different kinds of impact, but overall the Figure 8.26 and

Figure 8.27 images are visually degraded to approximately the same degree

from Figure 8.25.

Next, we show the effects of combining the magnitude, MEDmapping onto

magnitude, random, and constant magnitudes; and phase, random phase,

constant phase, from one image and another. For this illustration, we use

the register and appliances images in Figure. 8.28. In Figure. 8.29, we show the

various reconstructions. The degree of resemblance to the image at the head of

Figure 8.25 Appliance image
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Figure 8.26 Magnitude-disturbed appliance image

Figure 8.27 Phase-disturbed appliance image
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Fig. 8.28 Images of register (left) and appliances (right)

Fig. 8.29 Images reconstructed from various combinations ofmagnitudes and
phases of the Fourier transforms of the two images in Figure 8.28
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the columns decreases from top to bottom. First place goes to the phase

using the alternate magnitude, so the phase is seen to carry the most weight,

as shown by Oppenheim and Lim [43]. Second place goes to a constant phase

with anMED-mapped complex amplitude, a mapping they did not examine.

Third place goes to the phase with a constant magnitude, and fourth place to

the phase with a randommagnitude. We are hard pressed to see the image by

the time we get to fifth place, the phase being accompanied by the MED-

mapped complex amplitude of the alternate image; we take this near-

invisibility of images as showing the near-equivalence of the phase and the

MED-mapped complex amplitude for information-bearing capacity. The

final three mappings have essentially no visible information on the leading

image.

Let’s think about binarization as a filtering ploy on a real-valued AOSLM.

Say the AOSLM operates on the range [�1,þ1] with the continuum of values

available. Any of the maximum-projection metrics will pick out only the two

end points of that range. In this case, a binary SLM is just as capable as the

bipolar real-valued SLM we posited. The interior values of the bipolar real

SLM are not used, analogous to how the interior SLM values on the unit disk

are not used by the maximum-projection algorithms. We conclude that for the

maximum-projection metrics (intensity, for example), a binary SLM with

values 	1 is just as useful as an SLM with the continuum of values available

in [�1,þ1]. The finite-value metrics (SNR, for example) will make use of the

interior values on the continuum SLM and produce a greater value of the

metric than the binary SLM.

Our point is this. If one has optimizing filter code that knows the available

filter values, it will select a subset of the available operating curve if that is

appropriate. One is ill advised to restrict the values available to expression on

the SLM without considering the metric to be optimized, and the effect of the

diminution.

8.12 Chapter summary

* No physical device can fully represent complex filters. Therefore we must develop

some method of using only those filter values that our filter SLM can realize.

Implicit in this statement is that the SLMs must be characterized so that their

behavior is known in mathematical terms.

* We recognize two main sorts of filter computation methods. The first is ad hoc,

well-intentioned methods such as phase-matching onto coupled SLMs. The second

is to choose a metric that expresses beneficial effect, and then to determine analy-

tically what realizable value to select at each frequency, so as to optimize the metric.
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* The metrics we divide into two categories. The first category (based on correlation

magnitude statistics) was developed earlier than the second (based on measurement

statistics). Intensity and magnitude SNR are examples of the first category, and the

statistical pattern recognition metrics such as Bayes error and the area under the

receiver operating characteristic curve exemplify the latter.

* A general algorithm is shown to optimize many of the metrics. Reference objects are

transformed, whitened, conjugated, multiplied by complex search parameters,

summed, and projected onto the closest realizable filter value. Different values of

the search parameters optimize different metrics. No general rule is available for

selecting the parameters without searching.

* The chapter shows several practical methods for using filter SLMs that might have

no convenient analytical expression for the closest realizable value, and for using

filter SLMs that might be spatially variant over their surface.
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9

Application of correlation filters

The preceding chapters have described the techniques for designing correlation

filters and their underlying mathematical foundations. The objective of this

chapter is to provide a better understanding of the end-to-end process of

designing and applying correlation filters to solve a pattern recognition problem.

To facilitate this process we discuss two examples. The first is geared towards

the recognition of targets in synthetic aperture radar (SAR) imagery. For this

purpose, we use the public MSTAR SAR data set [3]. Details of a sample

pseudo-code needed to construct and apply the filters to this data set are also

provided. The second example discusses applications of correlation filters for

face verification. Face recognition is just one example of a growing research

field called biometric recognition [92] which includes other biometrics such as

fingerprint, iris, etc. Correlation filters should prove useful in all such image

recognition endeavors.

Correlation filters can be used to recognize patterns in images generated by

many different types of sensors. Once the sensed information is converted into

image pixels, the correlation pattern recognition algorithms can be applied in

a fairly universal fashion. Thus correlation filters can find uses in all areas

of automation including industrial inspection, security, robot vision, space

applications, and defense. For instance, systems have been developed for

fingerprint recognition [93]. Although the choice of sensor depends on the

phenomenology associated with the pattern recognition/machine vision problem

of interest, the approach for designing correlation filters generally remains

the same.

9.1 Recognition of targets in SAR imagery

For many years, one of the focus problems for the image-understanding

research community was the automatic recognition of objects in SAR imagery
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for targeting and surveillance applications. The problem of recognizing

objects in SAR images is characterized by strong variations induced by

changes in orientation of the object, and the squint and grazing angles of

the radar. The benefits of SAR imaging include the fact that it is an active

sensor that produces predictable object signatures, and that it provides

images at long range in almost all weather conditions. Synthetic aperture

radar imaging is fundamentally different from electro-optical imaging

(range, along-track instead of elevation, azimuth image). We are not used

to looking at it.

The application to SAR imagery is chosen for inclusion because of the

availability of a common public database [3], and we do not intend to suggest

that correlation filters are useful only for SAR images or vehicular target

recognition. In the next section, we will discuss the face verification applica-

tion, once again because a large database, known as the Pose, Illumination,

and Expression (PIE) database [4] is available. In this section, we discuss the

fundamentals of designing maximum average correlation height (MACH)

filters, and distance classifier correlation filters (DCCFs), and discuss their

performance using theMSTARdatabase. The techniques are illustrated for a

simplified two-class automatic target recognition (ATR) problem. This sec-

tion also assesses the performance of these algorithms on target and clutter

data, and characterizes the performance of the ATR system in terms of

probabilities of correct recognition and false alarm. The benefits of using a

specialized form of the MACH filter for reducing false alarms are also

discussed.

9.1.1 SAR ATR using MACH and DCCF filters

The public MSTAR database provides a wealth of information that can be

used for algorithm development and evaluation. The 1-foot resolution SAR

data is well calibrated and ground truth is known precisely. In fact, it is an ideal

database for comparing different algorithms with respect to performance and

throughput efficiency. In this chapter, we restrict our attention to two of the

target sets in the public database. Specifically, we formulate a two-class

problem to distinguish between the BTR70, an armored personnel carrier

(APC) and the tank T72. Photographs of each type of vehicle and examples

of these targets as seen in SAR images are shown in Figures 9.1 and 9.2,

respectively. Note the speckle and the shadows in the SAR images. It should

be noted that there are a variety of serial numbers and configurations of these

vehicles, and that the photographs may not show the exact same models of the

targets as in the SAR imagery.
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9.1.2 MACH filter design and performance analysis

The database provides the images of each class of target at various elevations.

The 17o elevation imagery was considered to be the training set, whereas the

test set is at an elevation of 15o. Each set contains several hundred images of

the objects coveringmany different viewing angles. There are images of several

serial numbers of the tank in the database of which the T72 SN_S7 was used

for these experiments. The number of available training images is 228 for the

tank, and 233 for the BTR70.

There is a performance tradeoff between distortion tolerance and discrimi-

nation. Therefore, a filter that generalizes over a wide range of angles is unable

to discriminate effectively between the classes. To mitigate this problem, the

data can be partitioned into several smaller sets, to build filters that generalize
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Figure 9.2 SAR Images of (a) T72 and (b) BTR70

(a) (b)

Figure 9.1 Sample images of the two targets (a) T72 and (b) BTR70
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over limited angular ranges. Depending on the application, these partitions

may be chosen as natural clusters or arbitrarily demarcated, often into uni-

form angular bins or clusters. For illustrative purposes, we partition the data

set by orientation into eight uniform clusters, each spanning a range of 45o.

The images are cropped to size 64� 64 and manually registered so that the

object is at the center. Registration is not necessary during the testing stage

(because of the shift-invariance of correlation filters), but is an important step

for synthesizing the filters. The log-magnitude of the complex SAR images is

used for both training and testing, because the dynamic range of the SAR

image magnitudes is too large to fit into the usual 8-bit representations. Some

of the background pixels are removed by applying a simple threshold and such

background removal helps to make the performance more robust.

The first step in synthesizing either the MACH filter1 or the DCCF, is to

estimate the meanM(k, l), the power spectrumD(k, l), and the spectral variance

S(k, l) for both classes in the frequency domain. It is easier to visualize the space

domain version of the mean images as shown in Figure 9.3. It is also insightful

to visualize the spectral variance in the frequency domain. The log-magnitude

of S(k, l) of the eight clusters for both classes is shown in Figure 9.4. The

frequencies where S(k, l) has a large magnitude are unattractive for in-class

distortion tolerance since these are the frequencies at which the target class

exhibits a large variance. Therefore, the inverse of S(k, l) tends to attenuate

frequencies where the training patterns vary most, which results in theMACH

filter exhibiting the necessary distortion tolerance. The inverse ofD(k, l) tends

to whiten the data and helps to produce sharp correlation peaks. The filters

(a)

(b)

Figure 9.3 Space domain mean images of the eight clusters for (a) the BTR70
and (b) the T72

1 The optimal tradeoff version of the MACH filter is used.
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were synthesized using Eq. (6.75) with �¼ 0.2, �¼ 0.75, a white noise model

with �¼ 0.5.

We now describe the main steps in designing and testing correlation filters

using a software package such as MATLAB. In what follows, we use the syntax of

MATLAB, but it may be possible to use other similar software packages. Typically,

the code is a set of scripts and function calls which implement the process shown

in Figure 9.5. We will now review the pseudo-code for each of these modules.

At the highest level, the code make_sar_atr.m synthesizes a two-class

SARATRsystemusing theMSTARdata set. For convenience, the SAR images

may be cropped to 64� 64 size with d1 and d2 as the image size parameters.

Also, the number of aspect angle clusters in our example is 8, but can be chosen

to be any other number. The following lines accomplish these settings:

d1¼64; d2¼64; d¼d1*d2;
max_cluster¼8;

The MSTAR data will probably be in directories specific to the computer

system. The next few lines are an example of how to set up the path to each of

the classes and to estimate the necessary statistics. The names of the data files for

each class may be read from a list. The program estimate_parameters.m

make_sar_atr

estimate_parameters

make_filters MACH filters

DCCFs

Figure 9.5 Algorithm flow diagram for synthesizing correlation filters

(b)

(a)

Figure 9.4 Spectral variance images of the eight clusters for (a) the BTR70,
and (b) tank T72
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goes through each image and computes the mean images M1 and M2, and the

variance images S1 and S2 for the two classes.

name¼

‘

btr70c71. lst’
loc¼

‘

E:\TARGETS\TRAIN\17_DEG\btr70\sn_c71\’
estimate_parameters

M1¼M;
S1¼S;
name¼

‘

t72sn_s7.lst’
loc¼

‘

E:\TARGETS\TRAIN\17_DEG\t72\sn_s7\’
estimate_parameters

M2¼M;
S2¼S;

Finally, these class statistics are used by themodule, make_filters, to design

the MACH and DCCF filters which are saved to files for use by the test code.

nclass¼2;
M¼[M1 M2];
S¼[S1 S2];
make_filters

save filters Hmach H

Note that the statistics of all the classes are combined into common variables

M and S prior to filter synthesis.

Let us now discuss how the module, estimate_parameters.m, may be

formulated. Firstly the variable spaces for accumulating the mean and the

variance images are initialized using:

M¼zeros (d,max_cluster);
S¼zeros (d,max_cluster);
count¼zeros (max_cluster,1);

The variable countwill be used to keep track of the number of images that fall

into each cluster. Note that these matrices have as many rows as total number

of pixels in the images (i.e. d¼ 4096). Further, the number of columns is equal

to the number of aspect angle clusters so that the estimates for all the clusters

can be stored in the same variable. We also initialize a rectangular image of all

1s called boxwin which represents a support region roughly the same size as

the targets. This is used to mask (remove) the background that is present in the

MSTAR training imagery.

boxwin¼ones (20,45); boxwin¼pad (boxwin,64,64);

The main body of the code which estimates the mean and the variance simply

loops through reading all the images, obtains the logarithm of the magnitude
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of the complex SAR data, masks out the background, performs the FFT and

computes the necessary averaging calculations as follows:

for i¼start:finish

[x,header]¼rd_mstr(filename); %Get input data
aspect¼header (1,1); %Check aspect from header

id¼determine_cluster(aspect) %Determine which cluster
count(id)¼count(id)þ1; %Update cluster count

x¼abs(x); %preprocess image
x¼log10(crop(x,d1,d2));
boxwinmask¼imrotate(boxwin,aspect, ‘crop’);
x¼x.*boxwinmask;

figure(1); imagep(x); pause(0.01);
X¼fft2 (x); %Compute 2-D FFT
M(:,id)¼M(:,id)þX(:); %Compute mean
S(:,id)¼S(:,id)þX(:).*conj(X(:)); %& powerspectrum
count(id)¼count(id)þ1;
end

for i¼1:max_cluster %Accumulate average
M(:,i)¼M(:,i)/count(i);
S(:,i)¼S(:,i)/count(i);
end

At the end of this process, the matricesM and S contain the frequency domain

mean and power spectrum of all clusters of one class of targets. Of course,

this routine is repeated for all classes of targets as shown in the script

make_sar_atr.

We are now ready to make the filters. Recall that make_sar_atr combines

the parameters for all classes as blocks of the matricesM and S. Therefore, the

code make_filters may include a simple set of lines such as:

D¼S; %The Power spectrum ACE
S¼S-M.*conj(M); %The Variance term for ASM

Hmach¼M; %initialize filter with means

%Compute MACH filters for all classes and clusters

for i¼1: max_cluster*nclass
%Optimal Tradeoff MACH Filter expression
Hmach(:,i)¼Hmach(:,i)./(0.2*D(:,i)þ0.7*S(:,i)þ0.1);

end

In this example, the optimal tradeoff parameter values for average correlation

energy (ACE), average similarity measure (ASM), and output noise variance

(ONV) parameters are 0.2, 0.7, and 0.1 respectively. Any other suitable choice
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of these numbers may be made depending on the application. The keyMATLAB

commands that may be used to synthesize the DCCFs are as follows. Most of

the commands are self-explanatory, with functions of these commands

indicated by the comments on the right.

for ii¼1: max_cluster %For each cluster

for j¼1:nclass %index the class parameters
k¼(j-1)*max_clusterþii;
CM(:,j)¼M(:,k);
SM(:,j)¼S(:,k);
end

Mmean¼mean(CM’)’; %Overall mean

Smean¼mean(SM’)’; %Overall variance

H¼zeros(dþ1,3) %initialize filter space
h¼CM(:,1)-CM(:,2))./Smean; %The DCCF transform
H(1:d,1)¼h;

for i¼1:nclass
buf¼conj(h).*CM(:,i); %The transformed class mean
b¼buf’*buf/d; %The class constant
buf¼h.*buf; %The auxiliary filter
H(:,iþ1)¼[buf(:);b]; %Storing filters
end
Hdccf¼[Hdccf H]; %Store DCCF and repeat for all

clusters
end

It should be noted that all of the filters are synthesized and stored in the

frequency domain.

For well-designed filters, the desired class should yield sharp and tall

correlation peaks, and for the clutter class, we should not see sharp and tall

peaks. One way to characterize the peak sharpness is through the peak-to-

sidelobe ratio (PSR) defined as follows:

PSR ¼ peak�meanð Þ
std

(9:1)

Where the ‘‘peak’’ is the largest correlation value, and the ‘‘mean’’ and the ‘‘std’’

are the mean and the standard deviation of the correlation output in an

annular region centered at the peak. Figure 9.6 illustrates how the PSR is

estimated. Firstly, the peak is located (shown as the bright pixel in the center of

the figure). Themean and the standard deviation of the 20� 20 sidelobe region

(excluding a 5� 5 central mask) centered at the peak are computed. The PSR is
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the ratio of (peak�mean) to standard deviation as shown in Eq. (9.1). The

mask sizes should be chosen based on careful experimentation.

For testing, the 15o elevation images of both classes were correlated with all

16 filters (8 filters for each class). In each case, the highest PSR was used for

deciding the class of the object (i.e., the class with the highest PSR over all

aspect angle bins). It was also required that themaximumPSR should exceed a

threshold of 6.0 for the object to be classified, or else the decision was made to

reject the input as ‘‘unknown.’’

Now consider the performance of the algorithm on a typical test image.

Examples of a BTR70 test image, and the output of theMACH filter trained to

recognize the target at this orientation are shown in Figure 9.7. The PSR of the

correlation peak was 6.3, which is above the required threshold. The correla-

tion surface is also shown as a 3-D surface plot in Figure 9.8. It is evident that

the sidelobes are substantially smaller than the main peak. Figure 9.9 shows

the PSR of the peak outputs of all 16 MACH filters in response to the test

image in Figure 9.7(a). Clearly, the highest PSR above threshold is produced

sidelobe region

peak 5 × 5 mask

Figure 9.6 This figure shows how the peak-to-sidelobe ratio (PSR) is
estimated

(a) (b)

Figure 9.7 Example of BTR70 test image and the correlation surface
produced by the MACH filter trained to recognize BTR70 targets at this
orientation
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Figure 9.8 Surface plot of MACH filter correlation plane (peak PSR¼ 6.3)

Figure 9.9 Peak PSRs of all eight MACH filters for both classes produced in
response to the test image in Figure 9.7(a)

366 Application of correlation filters



by the fifth BTR70 filter, indicating that this is the class (and the orientation

bin) of the input image.

The results of processing all test images of both classes are summarized in the

form of a confusion matrix in Table 9.1. The entries in the confusion matrix are

counts of the various decisionsmade by theATR system. The diagonal numbers

represent correct decisions, while off-diagonal numbers are error counts. Of the

196BTR70 test images, 189were correctly classified and only 7weremistaken to

be a tank. For the T72, there were 185 correct classifications while 6 images were

erroneously classified as BTR70. On average, over the set of 387 test images, the

ATR achieved a correct recognition rate of approximately Pc¼ 96.6%, (i.e., an

error rate of Pe¼ 3.4%).

9.1.3 Performance improvements using DCCFs

Clearly, it is possible to achieve reasonable performance using MACH filters.

DCCFs, however, may be used to correct some of the errors made by the

MACH filters and further improve the performance of the ATR system. For

instance, Figure 9.10 shows one of the T72 images incorrectly classified as a

BTR70 by the MACH filters. In this instance, the highest PSR of 6.9 was

produced by a BTR70 filter. The T72 filter for the correct cluster yielded a

somewhat lower PSR of 6.3. Although the similar PSR values for the two

classes suggest a borderline case, the decision must be made to classify the

image as a BTR70 since it has the higher PSR. Such errors can be corrected if

the image is further processed by the DCCFs.

A simplified architecture for a two-class ATR system using MACH filters

and DCCFs is shown in Figure 9.11. The DCCFs were synthesized for each of

the eight clusters. The DCCF of the cluster with the highest MACH filter PSR

is invoked to compute the distances to both classes. The structural symmetry

of the targets gives rise to a 180o orientation ambiguity in SAR images. Thus it

is not uncommon for theMACH filters of diametrically opposing clusters also

to yield high PSRs (e.g., filters trained over front views may correlate well with

rear views). It is therefore prudent to interrogate the DCCF at the most likely

Table 9.1 Confusion matrix for two-class ATR using MACH

Filters

BTR70 T72 Unknown

BTR70 189 7 0
T72 6 185 0
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orientation as well as for the diagonally opposite cluster. Of the two DCCFs,

we must eventually decide on only one for the purpose of making a decision.

A distance ratio is computed for eachDCCF as the ratio of the smaller distance

to the larger one. Smaller ratios indicate better matches (ideally zero if there is

an exact match with one of the classes), while larger ratios imply greater

ambiguity (the ratio is 1.0 when the distances to both classes are equal). The

DCCF class yielding the smallest distance ratio is selected for making a

decision. Finally, the PSR and the distance ratio are tested against thresholds.

In the present case it is required that the PSR be at least 6.0, and the distance

ratio be smaller than 0.90. If these conditions are met, the decision is made in

favor of the class with the smaller distance.

Recall that the T72 image in Figure 9.10 had an acceptable PSR above

threshold, but was misclassified on the basis of a higher PSR with the other

class. On the other hand, the DCCF corresponding to the cluster with the

highest PSR yielded a distance 2.92 to class 1 (BTR70, wrong class) while

the distance to class 2 (T72, correct class) was 2.17. It is comforting to note that

(a)

(c)

(b)

(d )

Figure 9.10 Results of DCCF processing (a) T72 test image, (b) transformed
test pattern, (c) ideal transformed reference for class 1, (d) ideal transformed
reference for class 2
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the input is closer to the correct class. The ratio of the two distances is 0.74,

which is also acceptable. Accordingly, the image is correctly classified as a T72

based on the DCCF measurements. Figure 9.10 shows the ideal transformed

reference patterns for classes 1 and 2, and the pattern produced by the test

image after transformation by the DCCF. Subjectively, the transformed test

pattern in Figure 9.10(b) has more regions (dark and bright areas) that match

with the ideal pattern for class 2 in Figure 9.10(d), than the pattern for class

1 in Figure 9.10(c). It should be noted that this test image is one of the more

challenging cases that could be easily confused as the wrong class but is

correctly recognized by the DCCF.

The results of processing all 387 images of both classes using the MACH

filters and DCCFs are summarized in Table 9.2. It is interesting to note that all

errors associated with class 1 are corrected by theDCCFs and all BTR70 images

are recognized correctly. The performance on class 2 also improves with only

2 remaining errors and 187 correct decisions. TwoT72 images are rejected by the

Table 9.2 Improved results of two-class ATR using DCCFs

BTR70 T72 Unknown

BTR70 196 0 0
T72 2 187 2

BTR70
MACH filters

T72
MACH filters

Input
image Select cluster

with highest
PSR

DCCF
library

Invoke DCCFs
of most likely

pair of opposing
clusters

Select DCCF
results with

smallest ratio

PSR and
distance

ratio meet
threshold?

Yes

No Reject

Decision
Distance Ratio

Figure 9.11 A simplified two-class SAR ATR architecture
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DCCFs as ambiguous (i.e., the distance ratio was not sufficiently small) rather

than incorrectly classified. In many instances, the decision to reject may be

preferable to making an error. The overall performance rates are Pc¼ 99.0%,

Pe¼ 0.5%, and Pr (i.e., probability of reject)¼ 0.5%.

We now discuss the pseudo-code for implementing the algorithm for testing

the SAR ATR. A MATLAB script test_sar_atr.m for testing the two-class

SAR ATR may be set up as follows. We specify parameters such as the size of

the images, the filter file names, the number of aspect clusters, and a space to

accumulate the confusion matrix using the following lines:

d1¼64; d2¼64;
load filters
nclass¼2;
max_cluster¼8;
conf_mtrx¼zeros (nclass, nclassþ1);

The data from each class at 15o depression is tested using code that points to

the location of the appropriate files and a list of their names:

name¼

‘

btr70c71.tst’
true_class¼1;
loc¼

‘
E:\TARGETS\TEST\15_DEG\btr70\sn_c71\’

run_mach_dccf

name¼

‘

t72sn_s7.tst’
true_class¼2;
loc¼

‘

E:\TARGETS\TEST\15_DEG\t72\sn_s7\’
run_mach_dccf

The script run_mach_dccf.m is the main portion of the test code. Some

arrays where results will be stored are initialized as:

count¼0; %Initialize variables
aspects¼[ ];
distances¼[ ];
PSRs¼[ ];

Themain loop that processes each image is given below. The images are read

in one at a time, cropped to the desired size, converted to log-magnitude form

and then Fourier transformed.

for i¼start:finish
count¼countþ1;

file¼[loc name_list(k1:k2)]

[x,header]¼rd_mstr; %Read Image data
true_aspect¼header(1,1);
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mask¼x==0;
x¼xþmean(x(:))*mask;
x¼crop(x,128,128); %Crop and convert to logmag
x¼log10(x(33:96, 33:96));

figure(1); imagep(x); pause(.1);
X¼fft2(x); %Fourier transform

The following lines are used to run all of the MACH filters. Each filter is

retrieved from the storage array and reshaped into image format. Recall that all

the filters are stored in the frequency domain. The correlation is implemented as

usual as a product of frequency domain terms which is inverse transformed and

shifted by a quadrant to move the DC term to the center of the image. The

location and PSR of the peak is computed and accumulated for each correlation.

R¼[ ]; C¼[ ]; PSR¼[ ];
nfilt¼max_cluster*nclass;

%Retrieve filter and correlate:

for i¼1:nfilt
F¼reshape(Hmach(:,i),d1,d2);
g¼real(fftshift (ifft2 (X.*conj (F) ) ) );
[peak,col]¼max(max (g)); [peak,row]¼max(max (g’) );
mu¼mean2(g); stdg¼std(g (:)); psr¼(peak-mu)/stdg;
PSR¼[PSR; psr];
R¼[R; row]; C¼[C; col];

end

The section of the code that computed the distances is shown below. Here, a

pointer is used to first extract the set of DCCFs for each aspect cluster:

distances¼[ ]; ratio¼[ ];

for j¼1:max_cluster
dccf_ptr¼(j-1)*(nclassþ1)þ1; %Pointtoacluster
Hdccf¼H(1:d,dccf_ptr); %Retrieve DCCF set
H1¼reshape(H (1:d,dccf_ptrþ1),d1,d2);
H2¼reshape(H (1:d,dccf_ptrþ2),d1,d2);
b1¼H(dþ1,dccf_ptrþ1);
b2¼H(dþ1,dccf_ptrþ2);

Once theDCCF filters have been retrieved from storage, the distances to the two

classes are calculated as follows. The power term is directly calculated in the

frequency domain, but divided by the number of pixels to obtain the space

domain equivalent. The correlations g1 and g2 are computed to search for the

bestmatch (the smallest distance) over all possible shifts of the image. Of course,

the best (the smallest) distances are then obtained where g1 and g2 exhibit their
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maximum values. The distances and a ratio (defined as the smaller distance

divided by the larger one) are then stored for each cluster.

p¼X(:).*conj(Hdccf); %Compute power term
p¼p’*p/d; %space domain eq.
g1¼real(ifft2 (X.*conj(H1) ) ); %test class 1 shifts
g2¼real (ifft2 (X.*conj(H2) ) ); %test class 2 shifts
dist1¼pþb1-2*max(g1(:) ); %best class 1 match
dist2¼pþb2-2*max(g2(:) ); %best class 2 match

distances¼[distances; [dist1 dist2] ]; %Store distances

ratio¼[ratio; min (dist1,dist2)/max(dist1,dist2)];
end

The next few lines are book keeping to determine whether the maximum PSR

occurs amongst the class 1 or class 2 MACH filters. Depending on the outcome,

the results of the corresponding DCCF will be examined to make the final

decision.

[psr,k]¼max(PSR);
if k > max_cluster %Which DCCF ?

psr_des¼2;
k¼k-max_cluster;

else
psr_des¼1;

end

Since targets in SAR images tend to be symmetric with the 1808 (opposite)
angle, it is a good idea to check DCCF results at both orientations. The

following lines accomplish this:

if k > max_cluster/2 %Determine opposite angle
opp_k¼k-max_cluster/2;

else
opp_k¼kþmax_cluster/2;

end

[r,kk]¼min( [ratio(k), %select the smaller ratio
ratio(opp_k) ] ); between opposite angles

if kk==1
kk¼k;

else
kk¼opp_k;

end

The final decision is made as follows. For the target to be classified in favor of the

classwith the smaller distance, the PSRmust be larger than a threshold of 6.0, and
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the distance ratio must be less than 0.9. If these conditions are not met, the image

is rejected as unrecognizable. The confusionmatrix is updated to reflect the results

of the decision.

if (psr > 6.0) & (r < 0.90)
dist1¼distances(kk,1); dist2¼distances(kk,2);
if dist1 < dist2
des¼1;

else
des¼2;

end
else

des¼3;
end
[psr r des]
conf_mtrx(true_class,des)¼conf_mtrx(true_class,des)þ1
end

9.1.4 Clutter tests of the MACH/DCCF algorithms for SAR ATR

It is not sufficient to test an ATR’s performance on target images alone.

Almost invariably, large areas must be searched for targets, which gives rise

to the opportunity for false alarms. While the two-class ATR in the previous

section demonstrated an extremely low error rate for targets, it is important to

ascertain how its probability of false alarm (Pfa) varies with the probability of

correct detection (Pd). Of course, this is quantified by the receiver operating

characteristic (ROC) curve introduced in Chapter 4.

Fortunately, the public release MSTAR data set contains SAR images of

clutter which can be used to estimate the false alarm rate. For illustrative

purposes, we processed 50 clutter images using the proposed ATR system.

Each file contains a 1478� 1784 1-foot resolution SAR image of natural and

urban areas such as the sample image in Figure 9.12. Each image was divided

into 64� 64 chips for a total of 31 050 clutter samples, which were all processed

by the ATR at the same PSR and distance ratio threshold settings as the target

images. As the PSR is varied, however, there is a tradeoff (represented by an

ROC curve) between the number of targets classified by the ATR (i.e., not

rejected as unknowns) and the number of false alarms caused by clutter. The

PSR threshold was then varied from 4.0 to 9.0 in increments of 0.5. The false

alarm rate is estimated as the percentage of clutter chips that are called targets,

while the probability of target detection is the percentage of targets that pass

the PSR threshold and are correctly classified by the ATR system.
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The ROC curve in Figure 9.13 shows that the simplified two-class ATR can

achieve aPd of around 90%, while rejecting clutter at a modest false alarm rate

of approximately 10%. If, however, a lower false alarm rate is desired, a

specialized screener stage must be used (Figure 9.14). The requirements on

the screener are simply that it should use inexpensive computations to eliminate

most of the clutter from consideration by the ATR system. Several different

types of screeners are in existence.Mahalanobis and Singh [94] have proposed a

variant of a correlation filter as a screener to further improve the performance of

the correlation-based ATR system. Other screeners based on the use of wavelets

and the use of principal component analysis (PCA) have been proposed.

We now discuss the design of a correlation-based screener. The idea is that a

small two-dimensional finite impulse response (FIR) filter (say of size 11� 11 or

smaller) may be designed to enhance target-like textures while suppressing other

textures associated with natural terrain or background clutter. The technique

for designing such a texture-discrimination filter is discussed elsewhere [94].

Essentially, the correlation energy produced by the filter h in response to a

texture to be enhanced (say x) can be expressed as:

Ex ¼ hTRxh (9:2)

where Rx is the autocorrelation matrix for the texture image estimated over a

window the same size as the filter h. Thus, if h is a 5� 5 filter, Rx is a block

Figure 9.12 Sample clutter scene from MSTAR public data set
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Toeplitz matrix of size 25� 25. Similarly, the correlation energy for the texture

to be suppressed (say y) can be expressed as:

Ey ¼ hTRyh (9:3)

whereRy is the autocorrelationmatrix for y. To enhance xwhile attenuating y,

we find the filter h to maximize the Rayleigh quotient given below:

JðhÞ ¼ hTRxh

hTRyh
(9:4)

Of course, the optimum filter is the dominant eigenvector of Ry
�1

Rx. It has

been shown that the resulting filter can discriminate between textures in various

types of imagery, including SAR imagery. To design a screener for targets, we

design h to enhance vehicle textures while suppressing clutter textures. Thus,

we use the target training images to estimateRx (instead of using themdirectly to

synthesize a conventional filter), and estimate Ry from samples of clutter.
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The performance of the screener is shown in Figure 9.15 [95]. Targets were

inserted in a clutter scene to create the image in Figure 9.15(a). Importantly,

the pixels on the targets are not the largest values in this image, and several

clutter objects exist which are stronger than the targets. The results of filtering

(a)

(b)

Figure 9.15 Target texture enhancing filter for screening (a) clutter scene with
nine targets, and (b) results of filtering showing enhanced pixels on targets
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this image are shown in Figure 9.15(b). The nine targets now possess the

largest pixel values so that a simple threshold can isolate their locations and

reject all the clutter.

Using this approach, Mahalanobis et al. [95] obtained false alarm rates as

low as 0.1 false alarms per square kilometer over the entire clutter set, in the

public release version of theMSTAR data set, while maintaining aPd of about

96%. The ROC curve in Figure 9.16 characterizes the performance of an ATR

system using a screener.

In summary, the MACH/DCCF algorithms work well on targets. Given a

target chip to be classified the ATR algorithms can classify the targets very

accurately. A simple screener (a small FIR filter) can be efficiently implemented

to eliminate large areas of clutter (non-target type textures) and enhance regions

of interest for the ATR system to consider. The combination of the two stages

achieves the objective of having a low false alarm rate while maintaining a high

probability for recognizing targets.

9.2 Face verification using correlation filters

Face verification is an important tool for authentication of an individual, and it

can be of significant value in secure access and e-commerce applications. Most

current methods for access control (e.g., automatic teller machines, to secure
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facilities) rely on passwords or personal identification numbers (PINs). Passwords

and PINs can be forgotten or stolen, compromising the security. A better method

would be to use biometrics that are unique to an individual. Examples of

biometrics are face images, fingerprints, iris images, etc. In this section, we will

show a simple example of applying correlation filters for face verification. Of

course, correlation filters can also be applied to other biometrics such as finger-

prints and iris images.

Various techniques have been popularized for face recognition including the

well-known eigenface method [96]. In this section, we will illustrate the use of

correlation filters for recognizing faces. Specifically, the minimum average corre-

lation energy (MACE) filter outlined in Chapter 6 is used for face verification.

The computer simulations described in this section utilize a facial expression

database collected at the Advanced Multimedia Processing Lab [97] at the

Electrical and Computer Engineering Department of Carnegie Mellon

University. The database consists of 13 subjects, whose facial images were

captured with varying expressions. Each subject in the database has 75 images

of varying facial expressions. The faces were captured in a video sequence

where a face tracker [98] tracked the movement of the user’s head based upon

an eye localization routine and extracted registered face images of size 64� 64.

Example images are shown in Figure 9.17.

This facial expression database was used to evaluate the performance of the

MACE filter for face verification. The computer simulation proceeded as follows.

A single MACE filter was synthesized for each of the 13 subjects using a variable

number of training images from that person. In the test stage, for each filter,

cross-correlations were performed with all of the face images from all of the

Figure 9.17 Sample images from the Carnegie Mellon University Advanced
Multimedia Processing Lab’s facial expression database
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people (i.e., 13� 75¼ 975 images). For authentics, the correlation output should

be sharply peaked (i.e., PSR should be large); the correlation output should not

exhibit such strong peaks for impostors (i.e., PSR should be small).

Figure 9.18(a) shows a typical correlation output for an authentic face

image. Note the sharp correlation peak resulting in a large PSR value of 37.

The correlation output in Figure 9.18(b) shows a typical response to an

impostor face image, exhibiting low PSRs (<10).

Initially, only three training images were used for the synthesis of each person’s

MACE filter. These three images were used to capture some of the expression

variations in the data set (e.g., images 1, 21, and 41). To evaluate the performance

of each person’s MACE filter, cross-correlations of all the images in the data set

were computed using that person’s MACE filter resulting in 13� 75¼ 975

correlation outputs (corresponding to 75 true-class images and the 900 false-

class images), and the corresponding PSRs were measured and recorded.

Sample Correlation Plane for a false-class image: PSR = 3.8

Sample Correlation Plane for Test Image from true-class: PSR = 37.0
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Figure 9.18 Correlation outputs when using a MACE filter designed for
Person A. (a): Input is a face image belonging to Person A. (b): Input is a
face image not belonging to Person A
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Figure 9.19 shows the bestMACE filter PSRperformance (plot (a), Person 1),

and theworst PSRperformance (plot (b), Person 2) as a function of image index.

Peak-to-sidelobe ratios of authentics are shown using a solid line (upper curve)

and those of impostors using dotted lines (lower curves).

One very important observation from all 13 PSR plots (we have shown only

two PSR plots in Fig. 9.19) is that all of the false class images (12� 75¼ 900)

yielded PSR values consistently smaller than 10 (these are the dotted lines at the

bottom of the plot) for all 13 subjects. The three ‘�’ symbols indicate the PSRs

for the three training images used to synthesize theMACE filter for that person,

and as expected they yield high PSR values. The plot for Person 2, whose filter

yields the worst performance (exhibiting the smallest margin of separation

between the authentic and the impostor PSR values), suggests that the expected

distortions in the test set were not adequately captured by the training set, and
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Figure 9.19 (a): PSRs for Person 1, and (b): PSRs for Person 2
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indeed a close look at the data set shows that Person 2 exhibits significantly

more variation in facial expressions than others. Thus more training images

may be needed to improve authentication of face images belonging to

Person 2. Nevertheless even Person 2’s filter designed using only three training

images performed reasonably well, yielding a 99.1% verification performance.

Table 9.3 shows the error rates achieved using MACE filters designed from

only three training images. The abbreviations FAR, FRR, and EER, in this

table refer to false acceptance rate, false rejection rate, and equal error rate,

respectively. The setting is EER when FRR equals FAR. Table 9.3 shows that

the overall EER (13 filters each tested on 975 images) is only 0.15% from

MACE filters designed from only three training images per person.

Another numerical experiment was performed by using the first five training

images from each person in the data set to design that person’s filter. These five

images exhibit a different range of variability and have been placed there out of

sequence. Table 9.4 summarizes the results of using the first five training

images of each person. There is some improvement in that Person 5 is now

100% correctly classified. However, class 2 gives 1.3% EER for an overall

EER of 0.1%.

Another simulation was performed where the training data set size was

increased to 25 face images per person sampled at regular intervals of the

75-image video sequence. Figure 9.20 shows the PSR plots for Person 1 and

Person 2 for the MACE filter synthesized from 25 training images. This figure

Table 9.3 Error percentages for all 13MACE filters synthesized using only three

training images

Person 1 2 3 4 5 6 7 8 9 10 11 12 13

FAR, FRR¼ 0 0 1.3 0 0 1 0 0 0 0 0 0 0 0
EER 0 0.9 0 0 1 0 0 0 0 0 0 0 0
FRR, FAR¼ 0 0 0.2 0 0 2.6 0 0 0 0 0 0 0 0

Table 9.4 Error percentages for all 13 MACE filters synthesized using the first

five training images

Person 1 2 3 4 5 6 7 8 9 10 11 12 13

FAR, FRR¼ 0 0 2.4 0 0 0 0 0 0 0 0 0 0 0
EER 0 1.3 0 0 0 0 0 0 0 0 0 0 0
FRR, FAR¼ 0 0 2.6 0 0 0 0 0 0 0 0 0 0 0
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shows a larger margin of separation than in the previous cases. In this case, the

13 MACE filters yielded 100% verification for all people.

Although we have shown that the verification accuracy of theMACE filters

increases as more training images are used for filter synthesis, it is attractive

that this method can work well with as few as three training images per class

for this database.

9.3 Chapter summary

In this chapter, we have provided insights into the application of correlation

filters for automatic target recognition and face verification. The former

example focused on the use of the MACH filter and DCCF algorithms for

processing large regions in SAR imagery, whereas the latter focused mainly on

how MACE correlation filters can be used to verify a person’s face image.

These examples should inspire the reader to try applying correlation filters to

other image pattern recognition problems.

Figure 9.20 PSR plots for Person 1 (a), Person 2 (b) for MACE filters
designed from 25 training images
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[64] J. Figue and P. Réfrégier, ‘‘Optimality of trade-off filters,’’ Applied Optics, 32,
1993, 1933–1935.

[65] A.Mahalanobis, B.V.K. VijayaKumar, S. Song, S.R.F. Sims, and J.F. Epperson,
‘‘Unconstrained correlation filters,’’ Applied Optics, 33, 1994, 3751–3759.

[66] A. Mahalanobis and B. V.K. Vijaya Kumar, ‘‘On the optimality of the MACH
filter for detection of targets in noise,’’ Optical Engineering, 36, 1997, 2642–2648.

[67] G. F. Schils and D.W. Sweeney, ‘‘Rotationally invariant correlation filtering,’’
Journal of the Optical Society of America A., 2, 1985, 1411–1418.

[68] G.F. Schils and D.W. Sweeney, ‘‘Optical processor for recognition of three-
dimensional targets viewed from any direction,’’ Journal of the Optical Society of
America A., 5, 1988, 1309–1321.

[69] A. Mahalanobis, B. V.K. Vijaya Kumar, and S.R. F. Sims, ‘‘Distance classifier
correlation filters for multi-class automatic target recognition,’’ Applied Optics,
35, 1996, 3127–3133.

[70] A. Mahalanobis and B. V.K. Vijaya Kumar, ‘‘Polynomial filters for higher order
correlation and multi-input information fusion,’’ Euro American Workshop on
Optoelectronic Information Processing, Stiges, SPIE, 1997, 221–231.

[71] G. Ravichandran and D. Casasent, ‘‘Advanced in-plane rotation-invariant
correlation filters,’’ IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, 1994, 415–420.

[72] J. Garcia, J. Campos, and C. Ferreira, ‘‘Circular-harmonic minimum average
correlation energy filter for color pattern recognition,’’ Applied Optics, 33, 1994,
2180–2187.

[73] J. Fisher and J. Principe, ‘‘Recent advances to nonlinear MACE filters,’’ Optical
Engineering, 36, 1997, 2697–2709.

[74] O. Gualdrón, J. Nicolás, J. Campos, and M. J. Yzuel, ‘‘Rotation invariant color
pattern recognition by use of a three-dimensional Fourier transform,’’ Applied
Optics, 42, 2003, 1434–1440.

[75] L.Hassebrook, B.V.K.VijayaKumar, and L.Hostetler, ‘‘Linear phase coefficient
composite filter banks for distortion-invariant optical pattern recognition,’’Optical
Engineering, 29, 1990, 1033–1043.

[76] G. Ravichandran, and D. Casasent, ‘‘Minimum noise and correlation energy
optical correlation filter,’’ Applied Optics, 31, 1992, 1823–1833.

[77] J.W. Goodman, Statistical Optics, New York, John Wiley, 1985.
[78] E. L. O’Neill, Introduction to Statistical Optics, New York, Dover, 1992.
[79] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light, New

York, North Holland, 1987.
[80] E. Wolf, Proceedings of the Royal Society of London A 230, 1955, 246.
[81] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, New York,

Cambridge University Press, 1995.

386 References



[82] R. Juday et al., ‘‘Full-face full-complex characterization of a reflective SLM,’’ in
Optical Pattern Recognition XI, ed. D. P. Casasent and T.H. Chao, Proceedings
of SPIE, Bellingham WA, SPIE, 4043, 2000, 80–89.

[83] T. Cover and J. Thomas, Elements of Information Theory, New York, Wiley,
1991.

[84] A. Jain, Fundamentals of Digital Image Processing, Englewood Cliffs, NJ,
Prentice-Hall,1989.

[85] D.A. Gregory, J. C. Kirsch, and E.C. Tam, ‘‘Full complex modulation using
liquid crystal televisions,’’ Applied Optics 31, 1992, 163–165.

[86] J.M. Florence, Spatial Light Modulator with Full Complex Capability, US Patent
Specification 5148157, September 15, 1992.

[87] R.D. Juday, Full Complex Modulation using Two One-Parameter Spatial Light
Modulators, US Patent Specification 5416618, May 16, 1995.

[88] J.M. Florence and R.D. Juday, ‘‘Full complex spatial filtering with a phase
mostly DMD,’’ Proceedings of SPIE, Bellingham, WA, SPIE, 1558, 1991.

[89] R.D. Juday and J.M. Florence, ‘‘Full complex modulation with two one-
parameter SLMs,’’ Proceedings of SPIE, Bellingham, WA, SPIE, 1558, 1991.

[90] R.W. Cohn, ‘‘Pseudo-random encoding of complex-valued functions onto
amplitude-phase coupled modulators,’’ Journal of the Optical Society of America
A., 15, 1998 868–883.
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