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Phase Transitions in Machine Learning

Phase transitions typically occur in combinatorial computational problems and
have important consequences, especially with the current spread of statistical
relational learning and of sequence learning methodologies. In Phase Transi-
tions in Machine Learning the authors begin by describing in detail this phe-
nomenon and the extensive experimental investigation that supports its presence.
They then turn their attention to the possible implications and explore appropri-
ate methods for tackling them.

Weaving together fundamental aspects of computer science, statistical
physics, and machine learning, the book provides sufficient mathematics and
physics background to make the subject intelligible to researchers in the artifi-
cial intelligence and other computer science communities. Open research issues,
suggesting promising directions for future research, are also discussed.
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Singapore, Sã o Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521763912

C© L. Saitta, A. Giordana and A. Cornuéjols 2011
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Preface

From its inception in the 1930s, the rich and vigorous field of computer science
has been concerned with the resources, both in time and in memory, needed to
carry out a computation. A number of fundamental theorems were discovered
that resorted to a worst-case analysis. The central question was whether a given
algorithm could be guaranteed to terminate a computation in finite time what-
ever the inputs, and, if so, in which class of complexity it lay, given the control
parameters: polynomial, exponential, and so on. Therefore, in 1991, a paper by
Cheeseman, Kaneefsky, and Taylor came as a bolt from the blue. Indeed, while
its title, “Where the really hard problems are”, was not altogether disturbing, its
content was. Broadly speaking, the authors argued that even if it was important
to analyze worst cases, it was just as essential to look for the typical complex-
ity of computations, the complexity encountered when solving typical problems.
And there lies a gem: the transition from the region of problems that are hard, in
terms of algorithmic complexity, to the region of problems that are easy can be
quite sharp. Moreover, these regions and transitions are not related to the worst
cases.

We remember that this 1991 paper, presented at the International Joint Con-
ference on Artificial Intelligence (IJCAI), started a commotion, though how pro-
found this would be was not at first apparent. We were among those who felt that
this paper and others that promptly followed, from physicists in particular, were
significant beyond the obvious. However, this event did not alter the course of
machine learning, our field, for many years. In machine learning too the theoret-
ical analysis that was at that time taking shape dealt with a type of worst-case
study; this new statistical theory of learning was sweeping the field and gain-
ing momentum as new learning algorithms, inspired in part by its lessons, were
devised.

Thus, it was only in 1999 that M. Botta and two of us1 finally published
a paper that took in the new perspective opened by Cheeseman and others and

1Attilio Giordana and Lorenza Saitta (Botta et al., 1999).
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examined its impact on machine learning or, to be more specific, on the match-
ing problem that is at the heart of learning. And here again, as with hindsight
could have been suspected, a phase transition came into view. Over the follow-
ing years we, and others, carried out thorough empirical investigations, which
all confirmed and elaborated this finding. Even though the mainstream of ma-
chine learning was still under the spell of the statistical and worst-case-analysis
perspective, it was becoming apparent that these results, which could not be ac-
counted for by the dominant view, had a quite significant potential impact on
the very feasibility of learning. Indeed, some known failures in the learning of
large-scale problems could be explained thanks to this new point of view.

The fact is that, at least for some learning problems, there exists a sharp dis-
continuity between easy and hard matching problems. This severely hinders, at
the very least, the assessment of candidate hypotheses considered during learn-
ing, therefore making the exploration of solutions all but blind. It is no wonder
that the consequences can be quite serious.

While a complete understanding of the phase transition in learning still
eludes us as a community of researchers, we feel that the wealth of results ob-
tained in recent years and their known links with other fields in computer science
and physics are now sufficiently mature to deserve a wide encompassing presen-
tation, one that would describe as large a part as possible of the phase transition
phenomena relevant to machine learning and would stimulate further research
on this important subject. This book is the result of our conviction that the study
of phase transitions in machine learning is important for the future of machine
learning, and it presents us with the opportunity to establish profound connec-
tions with other natural sciences.

The book deals with the border between statistical physics, complex sys-
tems, and machine learning: it explores emergent properties in relational ma-
chine learning using techniques derived from statistical physics. More generally,
the book is concerned with the emergence, in learning, of a phase transition, a
phenomenon typically occurring both in many-body systems and in combinato-
rial problems.

This phenomenon is described in detail, and the extensive experimental in-
vestigation that supports its presence is reported. Then the results and the impli-
cations that the appearance of a phase transition may have on the scalability of
relational learning and on the quality of the acquired knowledge are discussed
in depth. With the current spread of statistical relational learning methodologies
this topic is assuming an increasingly strong relevance.

The idea behind the book is to stimulate synergic research interests in the
fields of both statistical physics and machine learning. Researchers in the former
may find in machine learning a rich, appealing field, where their theories and
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methods can be applied whereas researchers in the latter may find new tools for
investigating and explaining learning processes in depth.

The identification of a phase transition in a computational problem may have
important consequences in practice. In fact, as mentioned above, the standard
notion of the computational complexity of a class of problems is a pessimistic
evaluation based on a worst-case analysis. The investigation of phase transitions
can provide information on single instances of the class, shifting the focus of
the complexity analysis from the maximum complexity to a typical complexity.
Relational learning is a task particularly affected by the problem of high compu-
tational complexity. In this book, we are only concerned with supervised learning
for classification, within the paradigm of learning from examples.

A theoretical approach, inspired by statistical physics, and a supporting set
of experiments have uncovered that, in relational learning, the expected phase
transition occurs inside a range of parameter values that is relevant for practical
learning problems. It is thus sensible to investigate the phenomenon and to try
to propose possible ways around it, since the emergence of a phase transition in
relational learning can have a large negative impact on a task’s feasibility.

In order to underline that the emergence of a phase transition is far from
exceptional, we have widened the scope of the book to include grammar induc-
tion and an overview of related topics in neural networks and other propositional
learning approaches showing the ubiquity of the phenomenon. Moving outside
the machine learning area, we also describe the emergence of phase transitions in
complex networks and in natural systems, including human cognition. Again, the
links between the findings observed in such a variety of systems may stimulate
cross-correlations and convergence.

We hope that the deep interactions that we will discuss between the theoreti-
cal issues and the experimental findings will provide a rather complete landscape
of the field, including both the foundational aspects and the practical implica-
tions. Our intention is that the novelty of the topic, the analysis of foundational
issues in machine learning, and our attention to practical solutions and applica-
tions will make the book appeal to a variety of readers. The detailed explana-
tions of findings should facilitate understanding of the various viewpoints even
for readers not within the field.

Even though the book mainly targets a readership familiar with artificial in-
telligence and machine learning, its foundational aspects will also be of interest
to cognitive scientists, and even philosophers, looking for the emergence and
the epistemological impact of similar phenomena in nature. The book may be of
particular interest to researchers working on complex systems, as we make an
explicit effort to link the phenomena investigated to the theory of these systems.
Likewise, researchers in statistical physics who are interested in its computa-
tional aspects may be attracted by the book.
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The approach taken is primarily quantitative and rigorous. Nevertheless, we
have provided intuitive and qualitative illustrations and explanations of the issues
and results. The idea is that even non-technical readers should be able to under-
stand the main issues. For a qualitative understanding, the basic notions of artifi-
cial intelligence (especially knowledge representation and search) and computer
science (especially computational complexity) are necessary. For a quantitative
understanding, probability theory and advanced calculus are required.

Reading the book should allow a researcher to start work in the field without
searching, reading, and linking many articles found dotted about in a variety of
journals. Also, the book should be of help for those wanting to understand some
of the philosophical problems underlying computation.

Above all else we would be happy to see new research themes originating
from this book.
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Notation

P Probability (for a finite set)
p Probability density
G Graph
G Ensemble of graphs
E[x] Expectation of x
V[x] Variance of x
O(·) “Big O” notation: describes the limiting behavior of a

function when the argument tends towards infinity
R The real numbers
R

n The space of real numbers of dimension n
N The natural numbers
B

n = {0, 1}n Boolean space of dimension n

�x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ A column vector

�x� = (x1 · · ·xn) A row vector

|| �x || L2 norm of the vector x

∂/∂xf(x, y) Partial derivative of function f(x, y) with respect to x

ẋ or dx/dt Total time derivative of x

df (x)
dx Total derivative of function f(x) with respect to x

X Input or description space of the examples
Y Output or label space
SL Learning set
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Notation xv

P Set of positive training examples
N Set of negative training examples
ST Test set
e An example
�xk An example description
�zk = (�xk, yk) A labeled example (description, class)
yk ∈ Y The true label of an example provided by an “oracle”
C Space of possible target concepts
c : X → Y A target concept

H Hypothesis space
h ∈ H A hypothesis considered by the learner
y = h(�x) ∈ Y Prediction of the hypothesis h about example �x
Φ A set of logical formulas
ϕ ∈ Φ A logical formula ϕ belonging to the set Φ
�
(
c(�x), h(�x)

)
The loss incurred when h(�x) is predicted instead of

the true label c(�x)
E Energy
S Entropy
xj:a Variable xj is bound to the constant a
xj:a Variable xj is not bound to the constant a
m Number of literals in a formula to be matched
n Number of variables in a formula to be matched
N Number of goods in each table in an example
L Number of constants occurring in the tables of an example
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Introduction

Learning involves vital functions at different levels of consciousness, starting
with the recognition of sensory stimuli up to the acquisition of complex notions
for sophisticated abstract reasoning. Even though learning escapes precise defi-
nition there is general agreement on Langley’s idea (Langley, 1986) of learning
as a set of “mechanisms through which intelligent agents improve their behavior
over time”, which seems reasonable once a sufficiently broad view of “agent”
is taken. Machine learning has its roots in several disciplines, notably statistics, Machine learning’s

rootspattern recognition, the cognitive sciences, and control theory. Its main goal is to
help humans in constructing programs that cannot be built up manually and pro-
grams that learn from experience. Another goal of machine learning is to provide
computational models for human learning, thus supporting cognitive studies of
learning.

Among the large variety of tasks that constitute the body of machine learn- Classification

ing, one has received attention from the beginning: the acquiring of knowledge
for performing classification. From this perspective machine learning can be de-
scribed roughly as the process of discovering regularities from a set of available
data and extrapolating these regularities to new data.

Over the years, machine learning has been understood in different ways. At Machine learning
as an algorithmfirst it was considered mainly as an algorithmic process. One of the first ap-

proaches to automated learning was proposed by Gold in his “learning in the
limit” paradigm (Gold, 1967). This type of learning provides an infinite sequence Gold’s paradigm

of pieces of data to the learner, who generates a model that explains the data. At
each new input the learner updates its current model (the “hypothesis”), hoping,
but never knowing for sure, that it is closer to the “correct” one.

A fundamental change in machine learning was the recognition of its nature Machine learning
as searchas a search problem (Mitchell, 1982). Given a set of data and some language(s)

for describing the data and the target knowledge, learning consists in the explo-
ration of a hypothesis space, guided by a heuristic, until a specified termination

1
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condition is met; as the search space is usually too large to be explored exhaus-
tively, the learner must have a criterion to evaluate and compare hypotheses. In
order to facilitate the search the hypothesis space is usually internally structured
according to a generality relation.

Just as learning is a fundamental task in any living organism, machine learn-
ing is a fundamental task in artificial intelligence as well. It is impossible to
conceive a truly intelligent agent that is not provided with the ability to extend
its knowledge and improve its performance over time.

Appealing as it may be, machine learning encounters severe difficulties,
which even today hinder its full exploitation. The main obstacle to be overcome
is that most machine learning algorithms are very demanding in terms of compu-Computational

complexity
of learning

tational resources, especially those that are closer to the human process of learn-
ing. This concept of computational complexity in learning is the core around
which this book is constructed.

For hundreds of years the abstract nature of mathematical truths required
advances through proving theorems. Existence or constructive proofs were con-
cerned with the logical soundness of the derived results, without any atten-
tion to their concrete attainability. The same was true for algorithms: the only
relevant aspect was their correctness, not their practical execution. Mathematical
knowledge appeared to scientists as only limited by human skill in discovering
or inventing it.

With the advent of information science, things changed radically. In fact,
logician Kurt Gödel’s work provided clear evidence that the discovery of someGödel’s

incompleteness
theorem

mathematical truths may be intrinsically limited (Gödel, 1931). In fact, with his
famous incompleteness theorem he proved that Hilbert’s belief in the existence
of an effective procedure determining the truth or falsity of any mathematical
proposition was illfounded: thus the notion of undecidability was born. In order
to understand this fundamental notion better we have to be more precise about
the concept of an algorithm. The word “algorithm” derives from the name of
the Persian mathematician Abu Abdullah Muhammad ibn Musa al-Khwarizmi,
whose work introduced Arabic numerals and algebraic concepts to the western
world. He worked in Baghdad in the ninth century, when the city was a centre
of scientific studies. The ancient word algorism originally referred only to the
rules of performing arithmetic using Arabic numerals but evolved via the Latin
translation of al-Khwarizmi’s name into algorithm by the 18th century. In its
more intuitive formulation, an algorithm is a precise and unambiguous sequenceAlgorithm

of steps that, given a problem to be solved and some input data, provides the
solution thereof.1

1Actually, one may clarify the difference between procedures and algorithms by reserving the
latter name for procedures that terminate. As we are concerned only with the halting case, we will
use the two terms interchangeably.



Introduction 3

In general, a particular problem to be solved is a specific instance of a class of
problems. For example, the problem of sorting in ascending order the elements
of a vector �x of n integer numbers belongs to a class Π of similar problems
containing all such vectors, each with a different length n and different content. Decidability

The notion of decidability refers to the class of problems as a whole, not to a
single instance. More precisely, given a class of problems Π, we will say that the
class is decidable if there exists an algorithm that, given as an input any instance
of the problem class, provides a solution. Then, undecidability does not prevent
any single instance from being solved but, rather, it limits the generality of the
algorithm for finding the solution in any instance. In other words, for a decidable
class a single algorithm is able to solve any instance of the class whereas for an
undecidable class every problem instance must be solved with, in principle, a
different algorithm.2

In order to prove that a problem class is undecidable one has to show that
no unique algorithm solves all its instances. This is usually done by reducing
the problem (class) to a known undecidable problem. A basic undecidable prob-
lem is the halting problem, proved undecidable by Alan Turing in 1936 (Turing,
1936). The halting problem consists of writing a general algorithm that, taking Halting problem

as input any algorithm A and some input data, outputs YES or NO, depending
on whether A halts or continues ad infinitum. Clearly, given a specific algorithm
it is usually possible, with more or less ease, to decide whether it will stop for
any specific input. However, there is no general algorithm that is able to provide
this decision for any input algorithm.

Even though undecidability may be interesting from a philosophical point of
view, in that it might be considered as a limiting factor to human knowledge,
this notion is not a subject of this book, in which we are concerned only with
decidable problem classes.

But, even limiting the study to decidable problems, difficulties of another na-
ture come up. These difficulties have been again brought to our attention in recent
times by computer science, which stresses a concept that was not previously con- Efficient algorithms

sidered important in mathematics. As already mentioned, mathematical results
are achieved by proving theorems or by designing abstract algorithms to solve
problems. In computer science this is not sufficient: the algorithm for solving a
problem must be efficient, i.e., it must run on a computer in reasonable time. In
order to define what “reasonable” time means, the concept of the computational
complexity of an algorithm must be introduced.

Given an algorithm A, working on some data, its computational complexity
is related to its run time. However, the run time depends on the programming
language used to implement the algorithm and on the specific machine on which

2In the following we will use, for the sake of simplicity and where no ambiguity may arise, the
terms “class of problems” and “problem” interchangeably.
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the program is run. In order to make its definition more precise, and indepen-
dent of the specific implementation, the complexity is evaluated in terms of the
number of elementary steps performed by the algorithm and not in terms of the
time it takes to execute them. But, even so, there are uncertainties about what has
to be considered an elementary “step” in an algorithm, because this depends on
the granularity of the observation. To overcome this difficulty an ideal, abstract,
computer model is used, for which the notion of a “step” is precisely defined.

There is more than one “ideal” computer, but one of the simplest and bestTuring machine

known is the Turing machine, an abstract computational device introduced by
Alan Turing in the late 1930s (Turing, 1936), long before the first actual com-
puter was built. The simplest version of the Turing machine consists of a tape,
a read−write head, and a control unit. The tape, infinite in both directions, is
divided into squares which contain a “blank” symbol and at least one other sym-
bol belonging to an alphabet Σ. A square numbered 0 separates the left and right
parts of the tape. The head can read or write these symbols onto the tape. The
control unit of the machine specifies a finite set of states in which the machine
can be; at any point in time a Turing machine is in exactly one of these states.
The control unit can be thought of as a finite state automaton. This automaton
encodes the “program”. The computation proceeds in steps: at each step the head
reads the content of the square in which it is positioned and, according to this
content and the current state of the automaton, it writes another symbol on the
same square and then moves one square to the left or to the right. At the be-
ginning the input data are written on the right-hand part of the tape, starting at
position 0, and the rest of the tape is filled with “blanks”. When the computation
is over the machine stops, and the output can be read on the tape.

Notwithstanding the simplicity of its mechanism, the Turing machine is be-
lieved to be able to compute any computable algorithm that one can conceive.
This assertion was hypothesized by Alonzo Church (1936) through the definition
of the λ-calculus and the introduction of the notion of effective calculability: a
function is said to be effectively calculable if its values can be found by some
purely mechanical process. Later, Turing showed that his computation model
(the Turing machine) and the λ-calculus are equivalent, so the assertion is now
known as Church−Turing thesis. This thesis is almost universally accepted now,Church−Turing

thesis even though the extent of its applicability is still a subject of debate.
Implementing an algorithm on a Turing machine allows the notion of com-

putational complexity to be precisely defined. A “step” in an algorithm is a cycle
<read a symbol, write a symbol, move the head> and the execution of any pro-
gram is a sequence of such steps. Given a (decidable) class Π of problems, let T
be the particular Turing machine used to find the solution. If we take an instance
I belonging to Π, let CT (I) be the exact number of steps T uses to solve I.
Clearly, however, CT (I) is too detailed a measure, impossible to evaluate before
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the program is executed. Thus we need a less detailed measure; to this end let n
be an integer characterizing the size of the problem at hand. For instance, coming
back to the sorting problem, n can be the length of the vector to be sorted. We
can partition the class Π into subclasses Πn , each containing only instances In

of length n. Even so, running the algorithm on the In requires different num-
bers of steps, depending on the specific instance. As we want a safe measure of
complexity, we take the pessimistic approach of attributing to the subclass Πn Formal definition

of computational
complexity

the highest complexity found in the In , i.e., the complexity of the worst case.
Formally, we define the complexity as

CT (n) = Max
In ∈Πn

{CT (In)}.

As it can be proved that the complexity CT (n) is independent of the abstract
Turing machine used and that it is the same for any concrete computer, we will
drop the subscript T from the complexity and simply write

CT (n) = C(n).

The complexity C(n) defined above is called the time complexity, because it
refers to the time resource consumption of the algorithm. In a similar way, the
space complexity can be defined as the maximum amount of memory simultane-
ously occupied during the program’s run. In this book, the word “complexity”
will always refer to the time complexity unless otherwise specified.

The introduction of the subclasses Πn is fundamental because the very goal
of computational complexity theory is to estimate how the time complexity of
an algorithm scales up with increasing n. In order to better understand this idea,
let us consider two functions f and g from the integers to the integers:

f : N
+ → N

+, g : N
+ → N

+.

What we are interested in is the relative order of magnitude of the two functions
rather than their actual values. So, let us consider the ratio of f(n) and g(n).
There are three cases:

lim
n→∞

f(n)
g(n)

= ∞; (1.1)

lim
n→∞

f(n)
g(n)

= a �= 0,∞; (1.2)

lim
n→∞

f(n)
g(n)

= 0. (1.3)

In the first case f(n) is of an order of magnitude greater than g(n); in the second
case it is of the same order; and in the third case it is of a lower order of magni-
tude. Introducing the O (“big O”) notation, we will say that f(n) = O(g(n)) in
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the second and third cases, namely:

f(n) = O(g(n)) ↔ lim
n→∞

f(n)
g(n)

= a �= ∞. (1.4)

From definition (1.4) we deduce that in f(n) and g(n) all terms of lower orders
of magnitude can be omitted, as well as multiplicative constants. It is worth not-
ing explicitly that the O notation tells us only that f(n) is of order of magnitudeO notation

not greater than that of g(n), not that f(n) and g(n) have the same order in
the mathematical sense. If f(n) and g(n) have exactly the same order of magni-
tude (case (1.2)), we will say that f(n) = Θ(g(n)). If f(n) has order of magni-
tude strictly greater than g(n), we will write f(n) = Ω(g(n)).

EXAMPLE

We give here some examples of the O notation:

f(n) = 50n2 + 20n + 3 = O(n2)
f(n) = n3 + 30n2 + 100 = O(n3)
f(n) = 3n + 1003 = O(3n )

Given two functions f(n) and g(n), we can provide a formal definition of
f(n) = O(g(n)) as follows:

f(n) = O(g(n)) ↔ ∃n0 ∃c [∀n > n0 : f(n) � cg(n)], (1.5)

where c is a positive constant and n0 is a positive integer. Definition (1.5) tells
that what happens for low values of n (i.e., lower than n0) is not important;
on the contrary, only the asymptotic behavior of f(n) is relevant. A graphical
illustration of definition (1.5) is given in Figure 1.1. We are now in a position
to define precisely what a reasonable complexity is. An algorithm A will be
said to be efficient if it runs with a complexity that is at most polynomial in the
size n of the input. Actually, many problems that are relevant in practice show aPolynomial

complexity much more rapid (exponential) increase in the time required to obtain a solution,
when the size of the problem increases; such problems cannot be solved within
acceptable time spans.

In computer science the study of the computational complexity of algorithms
takes a central place; since its beginnings, scientists have studied problems from
the complexity point of view, categorizing their behavior into a well-known
complexity class hierarchy. According to the needs of this book we show, in
Figure 1.2, an oversimplified version of this hierarchy, including only three types
of problem: P, NP, and NP-complete. The class P contains problems that can
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Figure 1.1 Graphical illustration of the O notation. If f(n) = O(g(h)) then
after a given threshold n0, the function f(n) must be smaller than cg(n), where
c is a positive constant. What happens for n < n0 does not matter.

P

NP-complete

NP

Figure 1.2 Simplified version of the complexity class hierarchy. The class NP
includes both the class P and the class of NP-complete problems.

be solved in polynomial time by a Turing machine like the one described above,
i.e., a deterministic Turing machine. In order to define the class NP the behav-
ior of a deterministic Turing machine must be extended with a nondeterminis-
tic phase, to be executed at the beginning, thus becoming a non-deterministic
Turing machine. In the non-deterministic phase, a potential solution is gener-
ated; this is then verified by the subsequent deterministic phase. The NP class
contains those problems that can be solved in polynomial time by such a non-
deterministic machine. Whereas the deterministic Turing machine captures the
notion of the polynomial solvability of a problem class, the non-deterministic
Turing machine captures the notion of the polynomial verifiability of a problem
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class. In other words, if one is able to suggest a potential solution to a problem,
the non-deterministic Turing machine can verify in polynomial time whether it
is indeed a solution. It should be clear from the definition that P is a subclass of
NP: polynomial solvability implies polynomial verifiability.

Today, the question whether P = NP is still an important open problem
in computer science. On the one hand it has not been possible to prove that
P = NP and on the other hand no polynomial algorithm has been found for
many problems in NP, notwithstanding the amount of effort devoted to the task.P = NP?
Thus, the general opinion is that P �= NP. This opinion is strongly supported
by the existence of the subclass NP-complete. This subclass contains (a large
number of) problems that share the following property: each problem in NP (in-
cluding P) can be reduced in polynomial time to any problem in NP-complete;
as a consequence, it would be sufficient to solve in polynomial time just one
problem in NP-complete to prove that P = NP. Given the amount of work al-
ready devoted to this task, it seems highly unlikely that this will turn out to be
the case. In this book we will assume as an underlying hypothesis that P �= NP.

A class of problems that are particularly prone to a dramatic increase in com-Combinatorial
problems putational complexity with increasing problem size is the class of combinatorial

problems, many among which are NP-complete. Informally, a combinatorial
problem is one that requires combinations of objects belonging to a set to be
explored, with the goal of deciding whether a specified property holds true or of
finding some optimal combination according to a specified criterion. Combinato-
rial problems are well represented in artificial intelligence, operational research,
complex system analysis, and optimization and search. Among the large variety
of existing combinatorial problems, two have received a great deal of attention,
namely the satisfiability (SAT) problem (Cook, 1971) and the constraint satis-
faction problem (CSP) (see for instance Kumar, 1992). In Chapters 3 and 4 these
two problems will be introduced and described in detail, because they are inti-
mately related to machine learning and to the sources of its complexity.

Reconsidering the definition of computational complexity provided earlier,
it is not necessarily a good idea to take the worst-case complexity as that rep-
resentative of an algorithm A. In fact, A might be able to provide a solutionTypical complexity

in reasonable time for the majority of the instances in Πn , running for a very
long time in only a few particular instances; this is the case, for example, for the
branch-and-bound optimization algorithm (Lawler and Wood, 1966). For this
reason a new paradigm has emerged, which uses the typical running behavior of
an algorithm instead of its worst case. The notion of the typical complexity has
a precise meaning. Namely, it requires two conditions:

• The typical complexity is the most probable complexity over the class of
problem instances considered.
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• As each problem instance has its own run time, there is a difference in
complexity between that for the specific instance and the most probable
complexity. When the size of the considered instances grows to infinity,
the difference between their complexity and the most probable complexity
must go to 0 with probability 1.

This new perspective on the complexity of algorithms was suggested by
the discovery of interesting and fruitful links (previously unsuspected) between
combinatorial problems and systems obeying the laws of statistical physics. It
turns out that combinatorial problems share several characteristics with physical
systems composed of a large number of particles and that a precise parallel can
be established between such physical entities on the one hand and combinatorial
functions to be optimized on the other hand.

Among the many parallels that can be drawn from the link between such Phase transitions

many-body physical systems and computational systems, one aspect is particu-
larly relevant for this book, namely, the emergence of a phase transition (see for
instance Hogg, 1996). Some physical systems composed of a large number of
particles may exist in different phases. A phase is a homogeneous (with respect
to some specified physical quantity) state of the system. A well-known case in
everyday life is water, which can exist in solid, liquid, and gaseous phases. The
phase that water is in depends on the values of the macroscopic variables describ-
ing the physical state, for instance, the temperature and pressure. In Figure 1.3 a
qualitative schema of the phases in which water may exist is shown. In a phase
transition we distinguish between the order and control parameters: an order
parameter is a quantity that shows a marked difference in behavior across the
transition line whereas a control parameter is one that determines the location
of the transition. In the case of water, a possible order parameter is the density Order and control

parameterswhereas a possible control parameter is the temperature. The order and control
parameters characterize the phase transition.

According to Ehrenfest’s classification, there are two types of phase transi- Types of phase
transitionstion, namely first-order and second-order. A precise definition of these types will

be given in Chapter 2. We just mention, here, that we are interested in first-order
phase transitions; in this type of transition, in addition to the discontinuity in the
order parameters, there is usually another quantity that goes to infinity when the
size of the system tends to infinity as well. Moreover, at the transition point
the two phases coexist. In the case of water, for example, the specific heat di-
verges at the transition between liquid and vapor, because heat is being supplied
to the system but the temperature remains constant.

In computational problems the order parameters are usually quantities that
characterize aspects of the algorithm’s behavior (for instance, the probability
that a solution exists) and the control parameters describe the internal structure
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Figure 1.3 Qualitative diagrams of the phases in which water can exist. The
temperature T and pressure P are the control parameters of the transition be-
tween phases. Along the separation lines two of the phases coexist. At the triple
point C all three phases are present. Beyond the critical point A the water is said
to be in a supercritical fluid state. In this state the molecules are too energetic and
too close to each other for a clear transition between liquid and vapor to exist.

of the problem, whereas the quantity that diverges at a “phase transition” is the
computational complexity of the algorithm.

There are various motivations for studying the emergence of phase transi-
tions. First, their emergence seems to be an ubiquitous phenomenon in many-
body systems, capturing some essential properties of their nature. They occur not
only in physical and computational systems but also in human perception and so-
cial sciences, as will be described later in this book. Second, systems that show a
phase transition exhibit, at the transition point, interesting singularities in behav-
ior called “critical phenomena”, which elucidate their real essence, in a way not
evident by other means. Third, phase transitions are interesting in themselves, as
they explain ensemble or macroscopic behaviors in terms of short-range micro-
scopic interactions.

For computational systems the discovery of a phase transition in a problem
class has several important consequences. The phase transition region contains
the most difficult problem instances, those for which the computational com-
plexity shows an exponential increase with the problem size. Also, the phase
transition can be used as a source of “difficult” test problems for assessing the
properties and the power of algorithms and for comparing them in meaning-
ful problem instances. Moreover, very small variations in the control parameter
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value may induce very large variations in the algorithm’s behavior and/or in the
types of solution. Thus, a knowledge of the critical value of a control parame-
ter allows the user to roughly predict the behavior of the algorithm. Moreover,
by exploiting further the analogy with physical systems, it is possible to high-
light the very sources of the complexity, which is not possible within classical
complexity theory. In fact, with the techniques derived from statistical physics
it is possible to enter into the deep structure of the problem and of its solutions;
the system’s behavior near the phase transition allows a microscopic view of
the solution space of the problems to be investigated by exploiting the corre-
spondence established by the link. This fact not only offers the possibility of a
deeper understanding of the properties of algorithms but also opens the way to
the introduction of effective new algorithms.

Even though the emergence of phase transitions is a widely diffused phe-
nomenon in many fields, we will limit ourselves in the main to machine learning.
We will then consider different approaches to machine learning and show how
the emergence of phase transitions affects their feasibility in a radical way.



2

Statistical physics and phase
transitions

Contents
2.1 Basic notions of statistical physics 12

2.2 Ensemble of states 19

2.3 Phase transitions 23

2.4 Ising models 26

2.5 Mean field theory 32

2.6 Quenched disorder and self-averaging 33

2.7 Replica method 37

2.8 Cavity method 39

2.9 Comments 42

2.1 Basic notions of statistical physics

In order to make this book self-contained, some basic notions of statistical
physics will be introduced in this chapter. In the main we have followed the
approach of Landau and Lifshitz, to which the interested reader is referred, if he
or she wants to go deeper into the subject (Landau and Lifshitz, 1976, 1980).

In dynamics (Landau and Lifshitz, 1976), a central role is played by the
notion of a point particle, which is a body with a finite mass m whose size can be
neglected when describing its motion, so that it can be geometrically assimilatedPoint particle

to a point. The position of a point particle is given by a vector �r in the Cartesian

12
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coordinate space (x, y, z), and its velocity is the time derivative of �r:

�v =
d�r
dt

.

Let S be a closed dynamical system composed of N particles. In order to de- Degrees of freedom

termine the configuration of the system in Cartesian space, N vectors must
be given, one for each component point. The number of independent values
that together determine the system’s position is its number of degrees of free-
dom, which in this case is 3N because each vector has three components
(x, y, z).

As Cartesian coordinates may not always be the best choice for describing
the motion of a system, a set of s generalized coordinates {q1, q2, . . . , qs} is
used instead. Generalized coordinates are any set of variables able to characterize Generalized

coordinatesprecisely the position of a system at a given time. The number s is the number
of degrees of freedom. However, knowledge of the coordinates qi (1 � i � s)
is not sufficient to predict the future configurations of the system S; for this,
the generalized velocities q̇i (1 � i � s) as functions of time must be known.1

This allows the accelerations of the system to be obtained; then, providing the
values of the generalized coordinates and velocities at a given time determines
the motions in the system for all future times.

EXAMPLE

In order to clarify the notion of generalized coordinates, let us consider the
system shown in Figure 2.1. Clearly the configuration of the whole system
is completely determined if we know the value of xA (the position of A
on the x axis) and the angle θ of the rod with respect to the vertical axis
y. The values xA range in (−∞,∞) whereas θ ranges in the interval [0,
2π). We can define two generalized coordinates, q1 = xA and q2 = θ. The
relation between the Cartesian coordinates of A and B and the generalized
coordinates is as follows:

xA = q1 , yA = 0,
xB = q1 + � sin q2 , yB = � cos q2 .

Analogous relationships hold between the time derivatives:

ẋA = q̇1 , ẏA = 0,
ẋB = q̇1 + (� cos q2)q̇2 , ẏB = (−� sin q2)q̇2 .

1For simplicity we use q to denote the set {q1 , q2 , . . . , qs} and q̇ to denote the set
{q̇1 , q̇2 , . . . , q̇s}.
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Figure 2.1 A small body A of mass m1 moves along the horizontal x-axis.
A point particle B of mass m2 is attached to A by a rigid rod of length � and
negligible mass, hinged at A.

The relationships linking the accelerations to the positions and velocities areLagrangian
function called equations of motion and can be obtained using the Lagrangian function

L(q, q̇, t) of the system, which, if the system is only subject to conservative
fields, can be written as

L(q, q̇, t) =
1
2

s∑
i=1

s∑
j=1

ai,j(q)q̇iq̇j − U(q). (2.1)

In (2.1) the first summation is quadratic in the velocity components and rep-Kinetic energy

resents the kinetic energy K(q, q̇) of the system. If Cartesian coordinates are
used instead of generalized coordinates, this term becomes the better-known
expression

K(�v) =
1
2

N∑
k=1

mk | �vk|2,

where | �vk| is the modulus of the velocity of particle pk .
The second term on the right-hand side of (2.1) captures the potential energy

of the system, which (for conservative fields) is a function of position only. Using
the Lagrangian function, the equations of motion for the system are as follows:

d
dt

∂

∂q̇i
L − ∂

∂qi
L = 0 (1 � i � s). (2.2)

The Euler–Lagrange equations (2.2) are a set of second-order differential equa-Lagrange equations

tions whose general integral contains 2s constants. These constants can be deter-
mined by providing the values of the coordinates and velocities at a given time,
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conventionally t0 = 0. In addition we can define a coordinate conjugate to q̇i:

pi =
∂

∂q̇i
L.

The quantity pi is called a generalized momentum. In Cartesian coordinates the Generalized momentum

momentum of a point particle with respect to the ith coordinate, is simply

pi = mivi.

Another fundamental function describing the dynamics of a system is the Hamil- Hamiltonian

tonian H , which represents the total energy. The Hamiltonian can be expressed
as follows:

H(q, p, t) =
s∑

i=1

piq̇i − L, (2.3)

which, using (2.1), becomes

H(q, q̇, t) = K(q, q̇) + U(q). (2.4)

Moreover, using equations (2.3) it is possible to see that

∂

∂t
H = 0

if ∂L/∂t = 0. In other word, H does not depend explicitly upon time if L does
not. By integrating the equations of motion (2.2) for a closed system,2 it can be
seen that even though the coordinates and the velocities change with time there
are certain quantities, called the first integrals of motion, which remain constant
in time. The one in which we are mostly interested in this book is the energy, Energy

which is the value assumed by the Hamiltonian function for a particular set of
coordinate values.

EXAMPLE

Let us consider again the system depicted in Figure 2.1. Now suppose that
the objects A and B, with masses m1 and m2 , are subject to a conservative
gravitational field, which applies forces | �F1 | = m1g and | �F2 | = m2g to
A and B, respectively. Moreover, A has a translational motion along the
x-axis whereas B has a composite motion, a translation along x and a
rotation around A. Using the two generalized coordinates q1 = xA and
q2 = θ, we can write the Lagrangian of the system as follows:

L(q, q̇, t) =
[
1
2
(m1 + m2)q̇2

1 +
1
2
m2�

2 q̇2
2

]
+ m2g� cos q2 .

2By definition, a closed system is one that does not exchange energy or matter with any body
not contained in the system itself.
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The last term is the potential energy U(q). For a gravitational field we have

U(q) = −m1gyA −m2gyB = −m2g� cos q2 .

In order to obtain the above expression for the potential energy, we set
the level of zero potential energy at y = 0. Then the first term in the
middle expression disappears, and only the potential energy of B remains.
(Notice that the y-axis points downward and so the minus sign is required
in order that U(q) decreases from top to bottom.)

The generalized momenta are then

p1 =
∂

∂q̇1
L = (m1 + m2)q̇1 , p2 =

∂

∂q̇2
L = m2�

2 q̇2 .

We can now write down an expression for the Hamiltonian:

H(q, p, t) = p1 q̇1 + p2 q̇2 − L(q, q̇, t)

=
[
1
2
(m1 + m2)q̇2

1 +
1
2
m2�

2 q̇2
2

]
−m2g� cos q2 .

Finally, the two equations of motion are derived from (2.2):

(m1 + m2)q̈i = 0 → q̈i = 0,

m2�
2 q̈2 + m2g� sin q2 = 0 → q̈2 = −g

�
sin q2 .

If the system S is composed of only a small number of particles, the equa-
tions of motion (2.2) can be solved, at least numerically (an exact solution
in closed form is known only for N < 3). But, when the number of particles
becomes very large (of the order of the Avogadro number NA = 6.022 ×
1023 mol−1), it is impossible to do so. Then the microscopic behavior of the sys-
tem cannot be precisely captured, not even in numerical form. One might think,
then, that the behavior of such a system must be so complex that it is impossible
to describe.

Actually there is a way out of this situation, because the sheer number of
microscopic components, which hinders a deterministic solution of the equations
of motion, lets laws of a different nature emerge, namely, statistical laws. TheseStatistical laws

laws, even though not reducible to purely mechanical ones, allow the value and
behavior of macroscopic quantities of the system to be described and predicted.
The study of these laws is the subject of statistical mechanics or, more generally,
statistical physics, in which the macroscopic behaviors of systems composed of
a large number of particles are explained in terms of statistical ensembles.

In order to understand how this can be done, let us introduce the notion ofPhase space

phase space. The phase space of a system S is a 2s-dimensional space whose
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axes correspond to the s generalized coordinates qi and the s generalized mo-
menta pi (rather than the generalized velocities). Each point in the phase space
is associated with a state of the system S. As time progresses, the point rep-
resenting the state of the system moves around in the phase space and thus its
trajectory describes the time evolution of S.

The fundamental observation underlying statistical physics is that, owing to
the enormous complexity of the trajectories of the component particles, during
a sufficiently long time interval T the system will find itself a large number of
times in every possible state. More precisely, let ΔqΔp be a small volume in
the phase space corresponding to values of the q’s and the p’s situated in small
intervals Δq and Δp with their origin in (q, p). Let Δt be the amount of time the
system spends inside the volume ΔqΔp during T . Then, as T → ∞, the ratio
Δt/T becomes the probability that system S can be found, at a random instant,
in the volume ΔqΔp:

P(S is in ΔqΔp) = lim
T→∞

Δt

T
. (2.5)

Equation (2.5) was derived by following the system S in its evolution in time. Statistical
distributionMore precisely, (2.5) is a consequence of the principle of equiprobability of the

states reachable by a system with energy E.
However, if we look at the volume ΔqΔp in the long term and accumulate

the transits of the system into and out of that volume, we may consider each
transit as a stationary copy of the system and rewrite the probability (2.5) in terms
of the “density” of occupied states within this volume. By letting the volume
become infinitesimal, so that the probability becomes infinitesimal as well, we
can write:

dP = ρ(q, p)dqdp (2.6)

The function ρ(q, p) is the probability density in the phase space and is called the
statistical distribution function of the system under consideration. The function
ρ(q, p) is normalized over the whole phase space. An interesting property of this
distribution function is that it does not depend on the initial state of the system,
provided that sufficient time has passed to allow the system to transit multiple
times to each possible state.

The equivalence between the evolution in time of the single system S in Phase space
averagephase space and the stationary distribution of the state density of “copies” of

the same system has important consequences. Let f(q, p) be a physical quantity
depending on q and p and hence implicitly on the time t. On the one hand, the
mean value f̄ of f(q, p) can be computed as follows:

f̄ =
∫

Ω
f(q, p)ρ(q, p)dqdp, (2.7)
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where the integral is taken over the whole phase space Ω. Averaging in this phaseTemporal average

space avoids the necessity of following the evolution in time of the function
f(t) = f(q(t), p(t)). On the other hand, equation (2.5) tells that the statistical
mean (2.7) is equivalent to the temporal mean and hence

f̄ = lim
T→∞

1
T

∫ T

0
f(t)dt. (2.8)

Systems for which this equivalence holds are called ergodic. Ergodicity is still aErgodicity

debated open problem in physics; its theoretical validity has been questioned but
it is widely assumed to hold in practice because such an assumption gives good
predictions.

Equations (2.7) and (2.8) show that in statistical mechanics it is possible
to make predictions, stochastic in nature, about the behavior of macroscopic
bodies composed of many particles. This is the main difference from classicalStatistical mechanics

makes it possible to
predict the behavior

of macroscopic
bodies composed

of many particles.

mechanics, which produces deterministic, exact, predictions only for one- and
two-body systems. We note that the stochastic character of the results from sta-
tistical physics is not inherent in the nature of the systems considered (as it is
in quantum mechanics) but derives from the fact that such results are obtained
from an amount of data much smaller than that necessary to obtain a precise and
complete mechanical description.

However, when the statistical approach is applied to macroscopic bodies
the stochastic character of the predictions is not apparent. In fact, after a long
time, all physical quantities describing an isolated macroscopic body become
constant and equal to their mean value. In other words, fluctuations around the
mean value are then negligible because the probability distribution for any quan-
tity f will be strongly peaked around the mean. If this is the case, the body is
said to be in thermodynamic equilibrium (or statistical equilibrium). The time
necessary for an isolated system to reach thermodynamic equilibrium is the
relaxation time. To understand this, let us consider a quantity f characterizing a
macroscopic body and let f̄ be its mean value. The values of f oscillate aroundFluctuations

f̄ , generating an instantaneous difference Δf = f−f̄ . The mean value Δf is not
a good measure of fluctuation, however, because it will be zero, being average
of values that are sometimes positive and sometimes negative. A better measure
is the square root of the quadratic difference√

(Δf)2.

If f is additive, i.e., its value for a whole system is the sum of the values for the
component parts, then an important consequence follows, namely√

(Δf)2

f̄
∼ 1√

N
, (2.9)
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where N is the number of components of the system. From (2.9) it is easy to
see why fluctuations are not observed in a macroscopic body: their amplitude
decreases with

√
N and hence tends to zero rapidly.

Another fundamental quantity in statistical physics is the entropy S. The Entropy

entropy of a system is defined in terms of the number of states in which it can
be. For a system with Ω distinct microscopic states, we have

S = −kB ln Ω. (2.10)

Here kB = 8.617 343 × 10−5 eV/◦K is the Boltzman constant. The value Boltzman constant

Ω(E, V, N), which is a mechanical quantity, is a function of the energy E, the
volume V , and the number of particles N of the system. The entropy of a sys-
tem, which is a thermodynamic quantity, is linked to its disorder. Low values of
entropy correspond to more ordered states (the probability of finding the system
in a given state is concentrated in only a few states), whereas high values of en-
tropy correspond to less ordered states (the probability of finding the system in a
given state is distributed among many states).

If external forces are applied to a system, they can produce work. According
to mechanics, the work done is the sum of the scalar products of the forces and
the corresponding displacements. Doing work on a body may set it in motion or
change its volume. The work performed on a body (or received from it) can be
expressed as the change in a new thermodynamic quantity, the free energy, which Free energy

is a function of the state of the body. As the work given or obtained depends on
the thermodynamical conditions of the process, the definition of the free energy
is not unique.

2.2 Ensemble of states

In order to make predictions and to compute interesting properties of many-body
systems, it is necessary to introduce the notion of an ensemble of states. An
ensemble is specified by a set of allowed states for the system and an associated
probability distribution over the states. Three types of ensemble are used: the
canonical, microcanonical, and grand canonical ensembles.

2.2.1 Microcanonical ensemble

In an N -body system we call a microstate a complete description of every par- Microstate

ticle in the system. In other words, each point in the system’s phase space cor-
responds to a configuration, i.e., for systems described by classical mechanics, Configurations

a complete specification of the position and velocity of each particle. In quan-
tum mechanics, however, a microstate or configuration would be specified by
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the complete many-particle wavefunction. There is thus a one-to-one correspon-
dence between points in the phase space and configurations. In the following we
will consider only discrete configurations. Let Γ = {γ1, γ2, . . . , γn} be the set of
such configurations. For an isolated system, in which neither energy nor matter
is exchanged with the surroundings, Γ constitutes a microcanonical ensemble.
Thus a microcanonical ensemble has constant energy.

It is impossible to compute the microstates of a large system exactly. There-
fore, different microstates that lead to the same values of macroscopic prop-
erties such as the volume, temperature or energy are associated with a unique
macrostate. It is then possible to imagine many copies of the system such thatMacrostate

each copy is in a different configuration but is described by the same macrostate.
In order to derive the macroscopic properties of the system, a probability

distribution must be associated with the microcanonical ensemble, i.e., with each
configuration (microstate). Thus, the thermodynamic properties of the system
can be computed as averages over all copies in the ensemble. The fundamental
assumption of thermodynamics is that each configuration (microstate) occurs
with the same probability.

More precisely, in the microcanonical ensemble all copies of the system have
the same number N of particles, the same volume V , and the same energy E. If
Ω is the number of microstates in the ensemble, the probability that a copy of the
system, chosen at random, would be in a given configuration γi is simply

P(γi) =
1
Ω

. (2.11)

For some types of system, for instance for an ideal gas, it is possible to compute
Ω in an approximate way. In a microcanonical ensemble the entropy S is given
by expression (2.10).

Consideration of (2.11) suggests that, for the microcanonical ensemble, Ω
assumes the role played by the partition function in a canonical ensemble. For
this reason, it is sometimes called the microcanonical partition function.

2.2.2 Canonical ensemble and Gibbs distribution

In a canonical ensemble the number N of particles, the system volume V , and
the temperature T are constant, whereas there are no constraints on the particle
momenta. In all states of the ensemble, all N particles lie within the volume V .
The shape of the volume is unspecified, and it is not important as long as the
volume is sufficiently large for surface phenomena to be ignored. The thermody-Canonical

ensemble namic properties do not depend on the shape of V . If a system is in contact with a
thermal bath (i.e., a body with very large thermal inertia, so that its temperature
can be considered constant), the constant temperature T of the system does not



Ensemble of states 21

affect the set of its allowed states, but enters into the calculations only through
the probability of the states.

The canonical ensemble describes such a closed system, in which matter
cannot be exchanged with the environment, but energy is exchanged between
the system and the thermal bath to keep the system’s temperature constant. The
most useful thermodynamic function in this case is the Helmholtz free energy F
(see (2.18)). The microstates si in a canonical ensemble have probabilities given Gibbs distribution

by the Gibbs distribution:

P(si) =
1
Z

e−H (si )/kB T =
1
Z

e−βH (si ), (2.12)

where H(si) is the Hamiltonian of the system in microstate si, kB is
Boltzmann’s constant, and T is the absolute temperature. Gibbs’ law (2.12) as-
serts that the probability of occurrence of a microstate depends only on its en-
ergy. The parameter β = 1/kBT is known as the inverse temperature. The nor-
malization constant Z is the partition function, whose value can be computed The symbol Z for

the partition function
probably derives
from the term
Zustatensummen,
used by Boltzmann

from

Z =
n∑

i=1

e−H (si )/kB T =
n∑

i=1

e−βH (si ), (2.13)

where n is the number of states in the ensemble.
For the distribution (2.12) there are two limiting cases:

• Infinite temperature, T → ∞ In this case all the configurations become
equiprobable and the system is totally “disordered”, i.e., it does not show
any internal structure (like a gas).

• Zero temperature, T → 0 The probability is concentrated around the
configuration with minimum energy, called the ground state. Classically,
the particles assume precise positions, such that the total force on them
vanishes, and the system is in a totally ordered state (like a crystal).

Starting from formula (2.13), the partition function Z can be written in a different Partition function

way. The Hamiltonian function of the system assumes, in the n states, a finite set
of m distinct values Ek ; in fact, several states may have the same energy. Then,
denoting by M(Ek) the number of states with energy Ek , we can write (2.13) as
follows:

Z =
m∑

k=1

M(Ek)e−βEk . (2.14)

The partition function, beyond its role as a normalization factor, has deep links
with the thermodynamic quantities introduced in the previous subsection. First,
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we consider the energy E. The mean value of E with respect to the Gibbs distri-
bution, denoted by 〈E〉, can be computed as follows:

〈E〉 =
m∑

k=1

EkM(Ek)e−βEk . (2.15)

Notice that the average energy 〈E〉 depends on the temperature T , as does Z. Let
us now consider the natural logarithm of Z, namely lnZ, and take its derivative
w.r.t. β:

− ∂

∂β
lnZ = − 1

Z

m∑
k=1

M(Ek)e−βEk (−Ek) = − 1
Z

Z〈E〉 = 〈E〉. (2.16)

Analogously, the variance of E with respect to the Gibbs distribution is the sec-
ond derivative of lnZ with respect to β. More generally, lnZ is the generatingln Z as a generating

function function of the coefficient M(Ek).
Let us now go back to the notions of entropy and free energy. By using

the Gibbs distribution and definition (2.10) we can compute the entropy S as
follows:

S =
〈E〉
T

+ kB lnZ.

The second term on the right-hand side is related to the Helmoltz free energy F
by

F = −kBT lnZ, (2.17)

and hence
F = 〈E〉 − TS. (2.18)

In a canonical ensemble a system tends to minimize its free energy. From a
thermodynamics point of view the entropy is minimal when the free energy is
minimal. As a consequence, according to (2.18) there is a competition between
the entropy and the mean energy. In fact, minimizing F implies (i) minimiz-
ing the mean energy, which, in turns, decreases the entropy, and (ii) maximizing
the entropy (owing to the minus sign), which, in turn, increases the mean energy.
This trade-off between mean energy and entropy leads to a thermodynamic equi-
librium. It may be noted that the mean energy is dominant at low temperatures,
whereas the entropy is dominant at high temperatures.

2.2.3 Grand canonical ensemble

The grand canonical ensemble is an extension of the canonical ensemble, in the
sense that a system described by a grand canonical ensemble is in equilibrium
with a thermal bath with which it can exchange both particles and energy; it is
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said to be an open system. A grand canonical ensemble is useful when the num-
ber of particles in a system cannot be determined easily: as this number is not
known, the partition function of the grand canonical ensemble is evaluated as a
weighted sum of partition functions of canonical ensembles with varying num-
bers of particles. The relevant thermodynamic function is the thermodynamic
potential Ω, also called the Landau potential.3

By denoting as Z(N, V, T ) the partition function of a canonical ensemble Partition function
for grand canonical
ensemble

with the same V and T as a grand canonical ensemble and with N particles, the
partition function of the grand canonical ensemble is defined as follows:

Z(z, V, T ) =
∞∑

N=0

zN Z(N, V, T ) =
∞∑

N=0

n∑
i=1

zN e−H (si )/kB T . (2.19)

In equation (2.19), n is the number of microstates si and the parameter z is the
fugacity, which represents the ease with which a new particle may be added to
the system.

2.3 Phase transitions

Systems whose behavior is governed by statistical physics laws frequently show
emergent phenomena, absent in classical mechanics, such as the appearance of
a phase transition. According to Martin et al. (2001), “From a statistical me-
chanics perspective, a phase transition is nothing but the onset of non-trivial
macroscopic (collective) behavior in a system composed of a large number of el-
ements that follow simple microscopic laws”. More simply, Lee and Yang (1952)
defined a phase transition as a singularity in the partition function of a system
(Blythe and Evans, 2003). If a system has a phase transition then it can be in one
of several phases, depending on the values of certain control parameters. Each
phase is characterized by a different microscopic organization.

In order to introduce the notion of a phase transition, we must first define the Phase transition

notion of a phase. We have already introduced phase space. In this space, a phase
is simply a region including all points corresponding to a homogeneous state of
the system under analysis. As an example, let us consider again Figure 1.3 for a
constant mass of water.

At room temperature and normal pressure, water is liquid; this state may
be represented by the point X1 in the figure. If the pressure is kept constant
and the temperature is increased, it is a matter of everyday experience that
the water will boil, when the temperature reaches 100 ◦C (the point X2 in the
figure), and become vapor. During this transformation, liquid water and vapor

Phase transitions
in water

3Note that here the symbol Ω does not have the same meaning as in expression (2.10).
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coexist; as long as there is still liquid water the temperature of the mixture re-
mains constant even though heat is being supplied; when all the liquid water has
become vapor, the temperature of the latter begins to rise again, if heat continues
to be supplied.

This type of transformation is said to be first-order phase transition, as weFirst-order
phase transition will see later on. From Figure 1.3 one may wonder what happens if the temper-

ature and pressure are changed so as to maintain the mixed phases on the line
from C to A. Point A is a “critical” point, at T = 374 ◦C and P = 220 atm.
When A is reached the system transforms into a single fluid phase (Gitterman
and Halpern, 2004). Point A is the end of the coexistence between the liquid
and vapor phases, and a new type of transformation, namely a second-orderSecond-order

phase transition phase transition occurs at that point. This type of phase transition is a continuous
one.

Similar reasoning applies to the transformation from ice to liquid water and
vice versa.4 The first classification of phase transitions in matter was proposed
by Paul Ehrenfest in 1933 (see for instance Jaeger, 1998), following the discov-
ery, the year before, of the λ-transition in liquid helium by W. H. Keesom and
coworkers (Keesom and van den Ende, 1932). Ehrenfest classified phase transi-
tions in terms of the thermodynamic quantities that present a discontinuity. The
order of the transition is the same as the order of the derivative of the free en-
ergy that shows a discontinuity. New findings emerged in later decades. In order
to accommodate some singularities that did not fit into Ehrenfest’s scheme, this
last was extended, most notably by A. Brian Pippard (1957).

More recently, T. Matolcsi classified phase transitions into three classesTypes of
phase transition (Matolcsi, 1996): zeroth-order, first-order, and second-order. The order corre-

sponds, as in Ehrenfest’s classification, to the lowest-order derivative of the free
energy that shows a singularity across the transition.

• Zeroth-order phase transitions The occurrence of this type of transi-
tion was predicted theoretically, and then experimentally verified, in the
theory of superfluidity and superconductivity, where a discontinuity in the
free energy itself was discovered.

• First-order phase transitions In this type of transition the free energy
is continuous but one of its first derivatives shows a jump across the tran-
sition. Usually a large amount of energy is exchanged between the two
phases but the temperature remains constant (as in the case of, say, boiling

4The transition between ice and water is somewhat different from that between water and vapor
because the former has no critical point. Moreover, at this transition a deep restructuring of the
internal organization of the matter takes place, as on the microscopic level water has a spherical
symmetry, owing to its random structure, that cannot be reached smoothly from the crystalline
structure of ice.
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water). First-order transitions are associated with mixed-phase regimes in
which the two phases coexist. In such a phase transition some other quan-
tity may diverge. As already mentioned, in a liquid–vapor transition the
specific heat diverges, since, even though heat is supplied, the temperature
does not increase. Often the two phases across a first-order transition show
different degrees of symmetry in their internal structure. For instance, the
solid phase of water (ice) is much more symmetric than the liquid phase.
The transition changes the symmetry of the internal structure. A transition
from a more symmetrical phase to a less symmetrical one is said to be a
symmetry-breaking process.

• Second-order phase transitions In this type of transition the free en-
ergy and its first derivatives are continuous, but there is a discontinuity in
a second-order derivative of the free energy. Moreover, there is no coex-
istence of the phases at the transition point. Second-order transitions may
be symmetry-breaking. A phenomenological theory of second-order phase
transitions was presented by Landau (Landau and Lifshitz, 1980).

In modern statistical physics another type of phase transition is also considered,
as follows.

• Infinite-order phase transitions These transitions involve no discon-
tinuities and break no symmetries. There are examples of this kind of
transition in quantum mechanics, for instance in two-dimensional electron
gases.

Phase transitions are far from being limited to physical systems; on the con- Importance
of studying
phase transitions

trary, they are an ubiquitous phenomenon, occurring in many domains including
the computational, social, and biological systems. Phase transitions are strongly
linked to the fundamental properties of many-body systems, and this is one rea-
son to investigate them. Moreover the critical phenomena that occur at the tran-
sition may elucidate the very nature of the system under study. Finally, the study
of phase transitions may provide answers to questions about the way in which
long-range ensemble phenomena arise from local interactions.

An important observation is that a phase transition is an asymptotic phe-
nomenon, i.e., it emerges when the size of the system under analysis goes to
infinity. Strictly speaking, a finite system cannot have a phase transition. The
reason is that, when the partition function Z is a sum of a finite number of terms
(see expression (2.13)), Z itself, as well as the other thermodynamic functions,
are analytic functions of the inverse temperature β and so do not have singulari-
ties at a finite temperature. Thus, the emergence of singularities in the free energy
or one of its derivatives occurs when the size of the system goes to infinity, in
the so-called thermodynamic limit.
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In the study of phase transitions a relevant notion is that of the order pa-Order parameter

rameter. Order parameters were defined by Landau (Landau and Lifshitz, 1980)
and are a measure of the “order” of the system’s state. More precisely, Landau
introduced a new variable, in the expression for the free energy, which is 0 in the
“disordered” phase and different from 0 in the ordered phase. The reason for the
introduction of such a parameter was that in the vicinity of the phase transition
(where the parameter is small) the free energy could be expanded in a Taylor se-
ries. The determination of the order parameters in a phase transition is somewhat
a matter of art.

While the order parameter is a function that describes the changes under-
going in a phase transition, a control parameter is an external variable whoseControl parameter

values determine the location of the critical point. The relevance of the control
parameter is that small changes in its value cause large-scale qualitative changes
in the state of the system. For instance, in the liquid–vapor transition, the den-
sity is an order parameter, whereas the control parameters are temperature and
pressure.

2.4 Ising models

In order to illustrate the notions introduced so far, in this section we will describe
the well-known Ising model (Ising, 1925), which was proposed to describe mag-
netization and was used in early studies on phase transitions in learning. Both
Cipra (1987) and Gitterman and Halpern (2004) present a simple introduction
to the mathematics of the Ising model. It may have dimension d � 1. TheHistory of the

Ising model one-dimensional (1D) model was solved exactly by Ising in his doctoral the-
sis (Ising, 1925); it does not show a phase transition for any temperature strictly
greater than 0 (Gitterman and Halpern, 2004). Probably this negative result dis-
suaded Ising from further study of the model. A decade later, in 1936, interest
was raised again by the proof, offered by Rudolf Peierls (1936), that the two-
dimensional (2D) Ising model was indeed guaranteed to have a phase transition
for some temperature. Later on, Hendrick Kramers and Gregory Wannier (1941)
located exactly the phase transition in the 2D model. But it was only later on
that Lars Onsager (1944) provided a complete solution of the 2D Ising model in
the absence of an external magnetic field. The three-dimensional (3D) model is
yet unsolved, as well as the 2D model with a non-zero external field, but many
partial results are available.

In the Ising model it is assumed that a number N of particles (originally,
magnetic dipoles) are located on the nodes of a lattice in d dimensions, with
d = 1, 2, 3. Each particle has a spin that can be in one of two states, σi = ±1
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(corresponding to spin up or spin down). The particles interact with each other Interaction
between spinsin pairs, according to a specified pattern. If two particles interact, the nodes cor-

responding to them are connected by an arc, called a bond. In particular there
may exist short-range interactions, between pairs of nearest neighbor particles,
or long-range interactions, involving particles that can be far apart. The range of If the lattice is finite,

particles at the
borders have fewer
bonds than those
in the middle

the interactions determines the macroscopic behavior of the ensemble of parti-
cles. In a lattice with interactions between pairs of nearest neighbors only, each
particle has 2d bonds.

Let Z be the partition function of the spin system. The main quantity to be
calculated, from which all the interesting behaviors of the system can be derived,
is the free energy per site, f = F/N , in the thermodynamic limit:

f = − lim
N→∞

kBT

N
lnZ. (2.20)

The main problem in the Ising model is to find a closed-form, analytic, expres-
sion for the function f . Notice that, in principle, the limit in (2.20) may not exist.

Given two spins σi and σj , let Jij be a coefficient determining the strength of
their interaction. The parameter Jij is called the coupling. The potential energy
of the interaction is given by

Eij = −Jijσiσj .

The total energy of the system is the sum of the Eij over all pairs of spins:

E = −1
2

N∑
i=1

N∑
j=1

Jijσiσj .

In the energy expression, Jii = 0 for 1 � i � N , and the factor 1/2 derives from
the fact that each term is counted twice.

2.4.1 One-dimensional Ising model

For the sake of simplicity, let us start with the 1D Ising model, in which N spins
are arranged in a linear lattice. Let us assume that only adjacent spins interact
and that the strength of the interaction, J , is constant for all pairs. Moreover, we
assume that there is no external magnetic field. The total energy of the system Energy of

1D Ising modelcan be computed as:

E(σ1, . . . , σN ) = −
N−1∑
1=1

Jσiσi+1. (2.21)

Sometimes, in order to remove the end effects of a finite-length line of spins, an
artificial bond between the last and the first spin is introduced. In this way, the
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spins form a ring. The energy reaches its minimum value, E0 = −J(N − 1),
when all the spins point in the same direction. Using (2.13), the partition function
of a system with N spins can be written as

ZN =
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN =±1

exp
[
− J

kB T
(σ1σ2 + · · ·+ σN−1σN )

]
. (2.22)

In order to calculate Z we suppose that another spin σN+1, is added at the end of
the chain and compute the new partition function, ZN+1, which can be related
to ZN as follows:

ZN+1 =
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN +1=±1

exp
[
− J

kB T
(σ1σ2 + · · ·+ σN−1σN )

]

× exp
(
− J

kB T
σN σN+1

)
.

By rewriting the preceding expression and setting σN+1 equal first to 1 and then
to −1, we obtain

ZN+1 =
∑

σ1=±1

∑
σ2=±1

. . .
∑

σN =±1

exp
[
− J

kB T
(σ1σ2 + · · ·+ σN−1σN )

]

× exp
(

J

kB T
σN

)

+
∑

σ1=±1

∑
σ2=±1

. . .
∑

σN =±1

exp
[

J

kB T
(σ1σ2 + · · ·+ σN−1σN )

]

× exp
(
− J

kB T
σN

)
.

When σN assumes the values +1 and −1, the two factors eJσN /kB T and
e−JσN /kB T interchange, so their sum can be factorized:

ZN+1 = ZN 2 cosh
(

J

kB T

)
. (2.23)

As the system cannot have just one spin (since then there would be no interac-
tion), we will compute Z for N = 2:

Z2 =
∑

σ1=±1

∑
σ2=±1

exp
(
− J

kBT
σ1σ2

)
= 2 exp

(
J

kBT

)

+ 2 exp
(
− J

kBT

)
= 4 cosh

(
J

kBT

)
.



Ising models 29

By induction, using Z2 as the base step and expression (2.23) as the recursive
step, we finally obtain

Partition function
of 1D Ising modelZ = ZN = 2N

(
cosh

J

kBT

)N−1

. (2.24)

Then the free energy F can be written as follows:

F = −kBT lnZ = −kBT

[
N ln 2 + (N − 1) ln cosh

(
J

kBT

)]
.

As N  1, we can approximately equate N and N − 1, obtaining finally:

F = −kBT lnZ = −kBNT ln
(

2 cosh
J

kBT

)
. (2.25)

The free energy per site f is Free energy per site

f = −kBT ln
(

2 cosh
J

kBT

)
. (2.26)

As f is an analytic function, it cannot exhibit a phase transition for any finite
value of T , except T = 0.

2.4.2 Two-dimensional Ising model

In order to analyse the 2D Ising model, we will consider a square lattice, at each
node (site) of which a spin is located, as in Figure 2.2. We assume that each
spin interacts only with its four nearest neighbors (top, bottom, left, right), and
that there is no external magnetic field. Again, the strength of the interaction is

Energy of
the 2D Ising model

constant and equal to J . Then the energy of the spin located at a point (i, j) will
be

E(i, j) = −Jσi,j(σi−1,j + σi+1,j + σi,j−1 + σi,j+1). (2.27)

To obtain the total energy E we have to sum over all sites of the N ×N grid:

E = −J
∑
i �=j

E(i, j) = −J
∑
i �=j

σi,j(σi−1,j + σi+1,j + σi,j−1 + σi,j+1)

= −J
N∑

i=2

N∑
j=1,j �=i

σi,jσi−1,j − J
N−1∑
i=1

N∑
j=1,j �=i

σi,jσi+1,j

−J
N∑

i=1

N∑
j=2,j �=i

σi,jσi,j−1 − J
N∑

i=1

N−1∑
j=1,j �=i

σi,jσi,j+1.
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j

Figure 2.2 Square lattice of size N . A spin is located at each of the N2 sites.
Each spin can take two values (up, +1, and down, −1) and interacts only with
its four nearest neighbors (except for the spins at the edges of the lattice).

As in the 1D Ising model, the four sums may take into account the border effects.
Using the expression for the energy, after rather long computations the partition
function and the free energy F can be obtained. At all temperatures T the sta-
ble state of the system corresponds to the minimum of F . When T is low, the
energy predominates and F ’s minima correspond to ordered states. When T is
high, the entropy dominates and the minima of F correspond to the minima of S
and, hence, to disordered states. At some intermediate temperature Tcr the twoCritical value of

the temperature effects balance each other; Tcr is the temperature of a critical point correspond-
ing to a phase transition. Onsager (1944) was able to compute the value of Tcr

exactly:

Tcr =
2J

kB ln(1 +
√

2)
. (2.28)

Following an argument put forwad by Svrakic (1980) and further elaborated
by Gitterman and Halpern (2004), the value given by (2.28) can be derived.
To this end let us consider a cell with four sites, as represented in Fig-
ure 2.3. As each site may have up or down spin, there are 16 possible con-
figurations of the cell, whose energy can be easily computed assuming that
there are only nearest neighbor interactions and that all interactions have
strength J :

E = −J(σ1 σ2 + σ2σ3 + σ3σ4 + σ4σ1).
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44 4 4

Figure 2.3 Qualitative argument allowing the value of the critical temperature
Tcr to be computed. There are four spins, connected as described, and hence
16 possible configurations. For the configurations γ1 = (σ1 = 1, σ2 = 1, σ3 =
1, σ4 = 1) and γ2 = (σ1 = −1, σ2 = −1, σ3 = −1, σ4 = −1) the energy equals
−4J , whereas for the configurations γ3 = (σ1 = 1, σ2 = −1, σ3 = 1, σ4 = −1)
and γ4 = (σ1 = −1, σ2 = 1, σ3 = −1, σ4 = 1) the energy equals 4J . In the
other 12 configurations the energy equals zero.

Among these configurations, four correspond to “ordered” states, two with en-
ergy 4J , and two with energy −4J , whereas 12 are “disordered”, with energy
equal to 0. For “ordered” states, it is possible to build an isotropic infinite 2D
Ising lattice by repeatedly placing the basic patterns one adjacent to the other
in both directions, whereas this is not possible with “disordered” states. Assum-
ing that ordered and disordered states compete, it is possible to conjecture that
the phase transition will occur when the partition function of the ordered state,
namely

Zord = 2 exp
(

4J

kBT

)
+ 2 exp

(
− 4J

kBT

)
,

is equal to that of the disordered state:

Zdis = 12.

By defining x = exp
(

4J
kB T

)
, we obtain the equation

x + x−1 = 6,

whose solutions are x = 3± 2
√

2. By taking x = 3 + 2
√

2, it must follow that

exp
(

4J

kBT

)
= 3 + 2

√
2 =⇒ 4J

kBT
= ln(3 + 2

√
2).

Finally, the critical temperature is

Tcr =
4J

kB ln(3 + 2
√

2)
. (2.29)
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Expression (2.29) is equal to the value (2.28) computed by Onsager: equating
the two expressions we obtain

2J

kB ln(1 +
√

2)
=

4J

kB ln(3 + 2
√

2)
=⇒ ln(1 +

√
2) =

1
2

ln(3 + 2
√

2)

=⇒ 1 +
√

2 =
√

(3 +
√

8) =

√
3 +

√
9− 1

2
+

√
3−

√
9− 1

2
= 1 +

√
2.

Unfortunately this argument does not work for the 3D Ising model. Gitterman
and Halpern, however, introduced a modified criterion to find Tcr in the 3D
model using an argument involving a single cubic cell. In this way they found
an estimate of the critical temperature, Tcr = 4.277 J/kB , that is close to the
numerical result Tcr = 4.511 J/kB found by Binder and Luijten (2001) using
Monte Carlo simulations.

2.5 Mean field theory

Computing the behavior of a system of many interacting particles (an N -body
system) is a problem that is difficult to solve except in very simple cases. The
pattern of interaction makes the evaluation of the partition function a hard com-
binatorial task, owing to the need to sum over all the states of the system. A
possible way out of the difficulty is to use a mean field approach. The basic idea
is to replace the N -body system, with all its interactions, by a one-body sys-
tem immersed in an appropriate external field. In this way an approximate, but
feasible, solution can be obtained. The external field replaces the interaction of
all the other particles, for an arbitrary particle. In this way some insight into the
behavior of the system can be obtained at a relatively low cost.

The central idea of mean field theory (MFT) is to neglect the fluctuations ofMean field
theory microscopic quantities around their average. For example, let us consider a set

of N spins σi, in the absence of an external field, and let B be the set of bondsNo external field

between the spins. Moreover, let |B| = NB . Each spin value can be written as
the sum of its average m (over all the spins) and a fluctuation δσi = σi − m
around the average:

σi = m + δσi,

m =
1
N

N∑
i=1

σi.
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In MFT it is assumed that the second-order term in the fluctuation is negligible Hamiltonian

in the computation of the Hamiltonian:

H = −J
∑

(ij)∈B
σiσj = −J

∑
(ij)∈B

(m + δσi)(m + δσj)

= −J
∑

(ij)∈B
[m2 + m(δσi + δσj) + δσiδσj ]

� −Jm2NB − Jm
∑

(ij)∈B
(δσi + δσj).

In order to compute the last sum we notice that each bond occurs just once in The number
of bonds per
site is z.

the sum and that each deviation occurs as many times as the number of bonds
connected to each site. If z is the number of bonds per site then

H = −Jm2NB − Jmz
N∑

i=1

δσi = Jm2NB − Jmz
N∑

i=1

σi. (2.30)

In equation (2.30) the parameter z has been assumed to be independent of
the site; then NB = zN/2. The interactions between the spins are embedded in
the average m. The MFT can be considered as a zeroth-order expansion of the
Hamiltonian in terms of the fluctuations. Starting from it, the analysis of first-
and second-order approximations can be investigated.

The approximate Hamiltonian allows other physical quantities to be com- Approximate
partition functionputed more easily. For instance, the partition function can be expressed as

Z =
N∑

i=1

exp

[
β

(
Jm2NB − Jmz

N∑
i=1

σi

)]

= exp
(
−βNBJm2) [2 cosh(βJmz)]N . (2.31)

An important point in MFT is to estimate whether a mean field approach is a
good approximation for any particular problem. From the statistical perspec-
tive, a system with many interactions is a good candidate for an appropriate
approximation.

2.6 Quenched disorder and self-averaging

In the previous sections we considered systems whose parameters were given, as, A “quench” refers
to a rapid cooling.
In metallurgy, such
a process is
commonly used to
harden steel.

for instance, the coupling J of the spin interaction in equation (2.21). We will
now consider the case in which the system’s parameters, even though constant in
time, are random variables whose values follow a known probability distribution.
In this case the system is said to exibit quenched disorder. The term “quenched”,
here meaning “frozen”, refers to the invariance of the parameters with respect to
time.
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Clearly, the introduction of a further probabilistic aspect in a system makes
the mathematical analysis of its behavior and properties much more complex
than in the purely deterministic case. In the presence of quenched disorder theIn the presence of

quenched disorder
the system’s

parameters are
stochastic variables.

structure of the system becomes random, and the weights in the partition func-
tion are themselves random variables (Martin et al., 2001). Now the partition
function and the other physical quantities depend on two types of randomness,
a thermal randomness, whose distribution could be, for instance, the Gibbs dis-
tribution, and a structural randomness, whose distribution we will denote by ρ.
When computing thermal average values, we keep the quenched variables fixed
and then average the results with respect to ρ. In order to distinguish these two
averages, we will use angle brackets to indicate a thermal average and an overbar
to denote an average over the quenched random variables.

EXAMPLE

Following Martin et al. (2001), we will consider, as an example, a system
of two spins σ1 and σ2 , with energy

E(J) = −Jσ1σ2 .

The system can be in one of four states {s1 , s2 , s3 , s4}, where

s1 = {σ1 = 1, σ2 = 1}, s2 = {σ1 = 1, σ2 = −1},
s3 = {σ1 = −1, σ2 = 1}, s4 = {σ1 = −1, σ2 = −1}.

Correspondingly, the energy assumes the values

E(J, s1) = −J, E(J, s2) = J, E(J, s3) = J, E(J, s4) = −J.

Then, according to formula (2.13), the partition function can be computed
as follows:

Z(J) = 2 exp
(

J

kB T

)
+ 2 exp

(
− J

kB T

)
= 4 cosh

(
J

kB T

)
.

Setting β = 1/kB T as usual, we deduce from (2.16) that

〈E(J)〉 = − ∂

∂β
ln Z = −J tanh βJ.

Let us assume that the coupling J is a random variable that can take on
two values {J0 , J1} according to a probability distribution ρ(J) such that
ρ(J0) = ρ0 and ρ(J1) = 1− ρ0 . By averaging the thermal average energy
with respect to J , we obtain

〈E〉 = −ρ0J0 tanhβJ0 − (1− ρ0)J1 tanh βJ1 .

If we assume that J0 = −1, J1 = 1, and ρ0 = 1/2, we finally obtain

〈E〉 = − tanhβ.



Quenched disorder and self-averaging 35

In order to analyze quenched disorder it is useful to introduce the notion of Frustration

frustration. Considering again a system of spins, let us suppose that the coupling
may assume both positive and negative values. In this case the minimum of the
energy is not reached when all spins point in the same direction, and “conflicts”
between different configurations arise; the system is said to be “frustrated”.

EXAMPLE

Let us consider a set of N spins, located at the vertices of a complete graph
(a graph in which every pair of vertices is connected by a unique edge),
and let {Jij} be the set of couplings, which can assume both positive and
negative values. The Jij are independent random variables following a
known probability distribution. This model is the famous Sherrington–
Kirkpatrick (SK) model (Sherrington and Kirkpatrick, 1975), which is a
stochastic version of Ising’s model. The SK model has energy

ESK = − 1√
N

N −1∑
i=1

N∑
j=i+1

Jijσiσj .

Owing to the conflicts in ESK arising from the presence of both positive
and negative terms, to find the ground state energy for arbitrary Jij is an
NP-complete problem (Cipra, 2000).

Because of the mathematical complexity of handling quenched disorder, ap-
proximate methods such as the replica method (Mézard and Parisi, 1991) and the
cavity method (Mézard and Parisi, 1985) have been developed. These methods
provide results that are very often in agreement with experiment, but they have
not been proved exact in general; they will be illustrated briefly in the following
subsections.

We have seen that in the SK model the Ising model was extended in two
ways: on the one hand by introducing quenched disorder and on the other by
changing the geometry of the underlying interaction topology, so that, rather
than being on a regular lattice, the spins are located at the vertices of a com-
plete graph. It is not surprising, then, that other topologies have been investi-
gated. For instance, instead of a complete graph one may think of using a graph
which is random in respect of the number of edges (Hartmann and Weigt, 2005;
Barré et al., 2009). The topology of the structure is important because it may af-
fect the behavior of the system, in particular the presence and location of phase
transitions.

Along the same line, other topologies have been investigated. For instance, Small-world
network.Jeong et al. (2003) studied the Ising model on a small-world network (Watts and
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Strogatz, 1998). They assumed an interaction of the type

Jij = Jji =

{
Jr−α

ij if i and j are connected,

0 otherwise,

where r is the Euclidean distance between two nodes. The authors found that,
for an interaction ∝ r−α , there is no phase transition for any non-zero positive
value of α.

More recently, Brunson and Boettcher (2009) studied the Ising model on a
new network, with small-world properties, that can be studied exactly using the
renormalization group. The network is non-planar and has a recursive design that
combines a one-dimensional backbone with a hierarchy of long-range bonds.
By varying the relative strength of nearest-neighbor and long-range bonds, the
authors were able to defined a one-parameter family of models that exhibits a
rich variety of critical phenomena quite distinct from those on lattice models.

Finally, systems of spins on scale-free networks (Barabási and Bonabeau,Scale-free network

2003) have also been investigated. For instance, Herrero (2009) studied uncorre-
lated networks using Monte Carlo simulation (Durrett, 2007).

2.6.1 Self-averaging quantities

Even though physical quantities depending on quenched parameters are difficult
to compute, their behavior in the thermodynamic limit (N → ∞) may show the
important self-averaging property. In other words, as the size N of the system
increases, such a quantity shows a decreasing amplitude of fluctuation around its
mean, so that its values become highly concentrated around the mean. More pre-
cisely, in the thermodynamic limit the value of a self-averaging quantity is equalSelf-averaging

quantity to its mean with probability 1. Typical examples of self-averaging quantities are
the free energy, the entropy, and the magnetization; the partition function itself
is generally not self-averaging.

The importance of self-averaging is that in the case of large systems it is not
necessary to compute the whole distribution of values for self-averaging quan-
tities; the mean is sufficient. In fact, self-averaging quantities do not depend on
the particular type of quenched disorder exhibited by the system, but only on theFree energy density

statistical properties of their distribution. In formal terms we can write, for the
free energy density,

f = − 1
β

lim
N→∞

1
N

lnZ(J). (2.32)

Expression (2.32) indicates that it is possible to first calculate the disorder aver-
age for systems of finite size and then take the thermodynamic limit. The self-
averaging property is restricted to intensive quantities, i.e., to quantities whose



Replica method 37

value does not depend on the amount of substance for which they are computed.
For instance, the density of an object is an intensive quantity whereas its mass is
an extensive quantity since it is proportional to the amount of substance.

2.7 Replica method

The replica approach is a heuristic procedure used to simplify the hard computa-
tion involved in obtaining the value of the partition function and other thermody-
namical quantities in the presence of quenched disorder. The method is reported
to have been first proposed by M. Kac in a seminar in the 1950s (Kac and Ward, Kac’s proposal

1952), but its formalization was worked out by Mézard and Parisi (Mézard et al.,
1987; Mézard and Parisi, 1991).

For exemplification purposes, let us consider a system composed of N spins
and let a set J of couplings represent its quenched disorder. Let Z(J) be the
partition function. The replica method starts from the equality

lnZ(J) = lim
r→0

Z(J)r − 1
r

, (2.33)

which holds in a composite system formed by r identical and independent repli-
cas of the system under consideration; in (2.33) an overbar denotes an average
over the replicas. Expression (2.33) derives from the expansion

Z(J)r = 1 + r lnZ(J) +O(r2), (2.34)

valid for any set of couplings J and small r. Remembering that the logarithm of
the partition function is linked to the free energy by F (J) = −kBT lnZ(J), we
obtain lnZ(J) = −F (J)/kBT . Inserting this expression into (2.34) we obtain:

Z(J)r = 1− r
F (J)
kBT

+O(r2).

By taking the average over J , ignoring the term O(r2), letting r go to 0, and
using (2.33) we finally obtain

F (J) = −kBT lim
r→0

(
Z(J)r − 1

r

)
. (2.35)

The intuition behind the preceding derivation can be explained as follows. Let
us suppose that we have not one, but r replicas of the same system, all with the
same quenched disorder. We have now to compute Z(J)r . Then, we apply the
replica trick, i.e., we can compute the partition function of the composite system Replica trick
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as the product of the partition functions of the components:

Z(J)r = Z(J)Z(J)Z(J) · · ·Z(J)

=

⎛
⎝∑

{σ1
i }

exp
[
−βH
({

σ1
i

})]⎞⎠ . . .

⎛
⎝∑

{σr
i }

exp [−βH ({σr
i })]

⎞
⎠

=
∑

{σa
i }a=1,...,r

exp

(
−β

r∑
a=1

H({σa
i })
)

=
∑
{σa

i }
exp

⎛
⎝β
∑
i<j

Jij

r∑
a=1

σa
i σa

j

⎞
⎠ .

If we restrict ourselves to integer r, the rth moment of the partition function Z
can be rewritten as

Z(J)r =
(∑

γ∈Γ

e−
1
T

E(γ,J )
)r

=
∑

γ (1) ,...,γ(r )∈Γr

e−
1
T

∑r
a=1 E(γ (a ) ,J ), (2.36)

where Γ is the configuration set. The idea is that the randomness of the couplings
disappears once the averaging process has been carried out. Considering the r
replicas as a composite system, this last contains N vectors �σj of spins, one for
each original site. Thus each vector has r components, each corresponding to a
replica of the spin at that site:

�σj =
{

σ
(1)
j , . . . , σ

(r)
j

}
(1 � j � N).

We can now compute the partition function for the composite system of N vec-
torial spins using the non-random energy function

E( �σj) = −kBT ln exp

[
− 1

T

r∑
a=1

E
(
γ

(a)
j , J
) ]

, (2.37)

where γj is the configuration that corresponds to the spin vector �σj .
The new partition function can be estimated analytically, in some cases, byAnalytic

continuation means of the saddle-point method. The idea is to compute the right-hand side of
(2.35) and take the limit for r → 0 by using analytic continuation. The prob-
lem is that the analytic continuation is not unique and a heuristic hypothesis,
an ansatz, on the mathematical structure is needed. To solve the problem, Parisi
proposed a complete and internally consistent ansatz scheme, called replica sym-Replica symmetry

ansatz metry (Mézard and Parisi, 1985). This ansatz, although very useful in particular
applications, has not yet been proven to be correct in general.
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Recently, Wästlund proved the soundness of the replica symmetry ansatz
for the minimum-matching and traveling-salesman problems in the pseudo-
dimension-d mean field model for d � 1 (Wästlund, 2009). Also, Krzcakala
used this ansatz in the problem of graph coloring with q colors and argued that
in this case the ansatz gives exact threshold values between the colorable and
uncolorable phases (Krzcakala, 2005).

2.8 Cavity method

The cavity method was proposed by Mézard, Parisi, and Virasoro in 1985 as a
tool for solving mean field models that was particularly well suited to handling
disordered systems (Mézard and Parisi, 1985). Even though it was designed with
the Sherrington–Kirkpatrick model of spin glasses (Sherrington and Kirkpatrick,
1975) in mind, the method has proved to be applicable to a wide range of prob-
lems. In particular, the method has been used in computer science problems,
notably k-SAT (see for instance Mertens et al., 2006) and graph coloring (see
for instance Krzcakala, 2005; Mulet et al., 2002). Even though the cavity ap-
proach is in principle equivalent to the replica method, the former has a more
intuitive interpretation and is easier to apply, so that it is often preferred.

In order to explain how the method works, let us consider a particular system
of Ising spins, defined on a Bethe lattice (Bethe, 1935). A Bethe lattice is a Bethe lattice

random graph with N vertices and fixed connectivity equal to k + 1, i.e., it is a
graph in which there are k + 1 incoming edges at each site. Spins are located at
the vertices of the graph and interact with neighboring spins only. In such a spin
system disorder is due to the presence of loops (see Figure 2.4) and thus occurs
only on large scales. The local structure around each site is tree-like. As usual,
the Hamiltonian is defined as

H(J) = −
∑
i<j

Ji,jσiσj ,

where the Jij are independent identically distributed random variables with prob-
ability distribution ρ(J). Our goal is to find the value of the energy density u of
the ground state in the thermodynamic limit, N →∞. More precisely, we want Ground state

energy densityto compute the ground state energy, averaged both over the distribution of ran-
dom graphs and the values of the couplings. This energy is denoted by E

(N )
0 . We

want to compute:

u = lim
N→∞

E
(N )
0
N

.

The cavity method works iteratively on a spin model with N spins, defined on
a slightly different graph G(N, q), which is derived from the Bethe lattice and
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(a) (b)

1 2 3

4 5 6

Figure 2.4 (a) Example of a part of a Bethe lattice with k = 2 and N vertices.
Each vertex has exactly k +1 = 3 bonds. (b) The cavity graph G(N, 6) obtained
from the Bethe lattice in (a). Here q = 6 and the removed bonds are such that six
spins have now exactly two bonds. Notice that the sites with a bond removed are
randomly selected. In the figure they have been drawn as adjacent for the sake of
simplicity.

called a cavity graph. A cavity graph is obtained by removing some bonds fromCavity graph

the original graph, in such a way that q randomly chosen “cavity” spins have only
k neighbors while the other N − q spins all have k + 1 neighbors, as illustrated
in Figure 2.4. Each removed bond generates a “cavity” in the original graph. The
cavity spins have fixed values σ1, . . . , σq . The global ground state energy of the
corresponding spin model depends on the values of these cavity spins. The basic
operations that one can perform on cavity graphs (illustrated in Figure 2.5) are
the following.

• Iteration This operation consists in adding a new spin σ0 of fixed value
to the cavity, and connecting it to k of the cavity spins, say σ1, . . . , σk .
Thus the graph G(N, q) becomes G(N + 1, q− k + 1). The increments in
the number of vertices and in q are as follows:

δN = 1, δq = −k + 1.

• Link addition This operation consists in adding a new link between
two randomly chosen cavity spins σ1, σ2. The graph G(N, q) becomes
G(N, q − 2). The increments in the number of vertices and in q are as
follows:

δN = 0, δq = −2.
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(a)

(c)

0
2

1

(b)

Figure 2.5 (a) Iteration. A new spin σ0 is added and connected to k = 2 ran-
domly chosen cavity spins. (b) Link addition. A new bond is added between two
randomly chosen cavity spins σ1 and σ2. (c) Site addition. A new spin σ0 is
added and connected to k + 1 = 3 randomly chosen cavity spins.

• Site addition This operation consists in adding a new spin σ0 to the
cavity and connecting it to k + 1 of the cavity spins, say σ1, . . . , σk+1.
The graph G(N, q) now becomes G(N + 1, q− k− 1). The increments in
the number of vertices and in q are as follows:

δN = 1, δq = −k − 1.

Now, if in a cavity graph G(N, 2(k + 1)) a number k + 1 of link additions are
performed then a G(N, 0) graph is obtained; G(N, 0) is nothing other than the
original spin glass problem with N spins. As an alternative, starting from the
same cavity graph G(N, 2(k + 1)) and performing two site additions, a G(N +
2, 0) graph is obtained, which is the original spin glass problem with N + 2
spins. We can express the difference E

(N+2)
0 −E

(N )
0 in the ground state energies

in going from N to N + 2 in terms of the difference in energy due to a site
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addition ΔEs and the difference in energy due to a link addition ΔE�:

E
(N+2)
0 − E

(N )
0 = 2ΔEs − (k + 1) ΔE�. (2.38)

As the energy is an extensive quantity its asymptotic behavior is linear in N , so
that

u = lim
N→∞

E
(N )
0
N

=
E

(N+2)
0 − E

(N )
0

2
= ΔEs −

k + 1
2

ΔE�. (2.39)

If k + 1 is even, the fraction (k + 1)/2 is an integer. Then, formula (2.39) tells
us that in order to increase N by 1 it is necessary to remove (k + 1)/2 links and
then add one site. Notice that the energy required to remove a link is the opposite
of the energy required to add a link.

2.9 Comments

Even though the content of this chapter looks quite far from the main theme
of this book, the methods outlined in it have strong connections with compu-
tational issues, especially with the solving of hard combinatorial problems in
general and with machine learning in particular. Over a long period, connec-
tions between these fields have been occasionally established and have brought
innovative solutions and deep insights into the basic computational aspects of
problem solving. This reason, and also the suggestion coming from statistical
physics approaches of new, very effective, algorithms, has encouraged computer
scientists to look more and more frequently for analogies and parallels with phys-
ical systems. In subsequent chapters, several instances of such connections, not
only with computer science but also with other domains such as the social and
cognitive sciences, will be presented.

From the practical point of view, for a computer scientist wanting to use
the approaches mentioned in this chapter it is not necessary to become deeply
acquainted with statistical physics; some basic notions, complemented by the
mathematical tools sketched in this chapter, will be sufficient to apply these ap-
proaches fruitfully. Useful introductory books include Percus et al. (2006) and
Hartmann and Weigt (2005).
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3.1 General framework

Surprising as it may be, the emergence of phase transitions is not limited to phys-
ical systems: it seems to be a rather ubiquitous phenomenon, existing in biology,
genetics, neural networks, complex systems, and also in combinatorial problems.
For the last, a precise parallel can be established with physical systems composed
of very large numbers of particles. In a combinatorial problem the phase transi-
tion concerns the behavior of some order parameter (usually the expectation
value of a microscopic quantity) characterizing an aspect of the system (often
the probability of existence of a solution). Moreover, in correspondence to the
phase transition (at a critical value of the control parameter), a large increase in
the computational complexity of the algorithm used to find a solution is usually
observed.

The key concept that allows ideas and methods to be transferred from statisti-
cal physics to combinatorial optimization and decision problems is randomness.
If problem instances are taken in isolation, the application of these methods does

43
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not make sense. They are only meaningful if applied to a set, i.e., an ensemble,
of problem instances whose probability of occurrence is governed by a well de-
fined law. Then the results obtained can be considered valid for any randomly
extracted element from the ensemble. It is thus necessary to specify exactly how
the elements of the ensemble are constructed.

The study of random graphs was pioneered by Erdös and Rényi (1959).
Studying the clustering of vertices, they found that, by varying the parametersRandom graphs

that controlled the connectivity of a random graph, in the neighborhood of a
particular value there was a sudden transition from a state in which the graph
had many disconnected components to a state in which it had collapsed into
a single connected component involving most of its nodes. They called this
behavior a zero–one law. This law can be said to describe in modern terms
a phase transition in connectivity. Since then, the subject has raised consider-
able interest in the artificial intelligence (AI) community, and many works have
been published on phase transitions in computer science, notably in graph parti-
tioning (Fu and Anderson, 1986), the characterization of hard instances in CNF
(Purdom and Brown, 1987), the discovery of optimal paths in trees (Karp and
Pearl, 1983), and in graph coloring (Turner, 1988). A great impulse to the inves-
tigation of phase transitions in combinatorial problems was given by Cheeseman
et al. (1991), who noticed that in the proximity of the phase transitions of sev-
eral NP problem classes were located the most difficult instances of the class.
Knowing where the most difficult instances of a problem are located is crucial
in the testing of algorithms. For instance, Goldberg (1979) claimed that the ma-
jority of satisfiability problems could be solved by local search algorithms in
at most O(n2) time, where n is the number of variables. However, Franco and
Paull (1983) showed that the probability distribution used by Goldberg to sample
problem instances favored easy ones to such an extent that random assignments
of truth values to the variables were able to solve the problem with probability 1.

As in physics, in computational problems also phase transitions only actu-
ally occur in systems with infinite size, and corrections to the infinite model are
necessary to predict the properties of finite-size systems.

A domain in which the analogy with statistical physics and the emergence of
phase transitions have received most attention is search, probably because of itsSearch

ubiquity in AI problems. A clear introductory approach to the subject is provided
by Hogg et al. (1996). The problems most studied in both computer scienceSAT and CSP

and statistical physics are SAT (satisfiability) problems and CSPs (constraintSAT problems
and CSPs satisfaction problems).

Such problems are NP-complete. As mentioned in Chapter 1, the notion of
a computational complexity based on worst-case analysis may not be very use-
ful in practice. In fact, many instances of NP-complete problems are easy to
solve (Cheeseman et al., 1991) and thus provide evidence that reasoning based
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on the use of a “typical” complexity in harder cases is correct. The phase transi-
tion framework offers a way to study problems in the “typical” complexity case
which is more representative of real-world applications and also contributes to
the design of efficient algorithms.

As mentioned earlier, the notion of a problem ensemble grounds the link be- Problem ensemble

tween statistical physical systems and combinatorial problems. All the properties
derived from the phase transition framework are valid for sets of random prob-
lems, whose generative model is precisely specified. Thus, an important aspect
to be discussed, within the framework, is what model to use and how the chosen
model can cover problems encountered in the real world.

Before entering into a description of the phase transition in SAT, some pre-
liminary notions need to be introduced.

3.2 Random graphs

Graphs are a natural way of representing the internal structure of complex sys-
tems, and they will be used extensively in the rest of the book. As previously
discussed, we are not interested in single graphs but in graph ensembles, whose
elements have an associated known probability distribution.

Definition 3.1 {Graph} A graph is a pair G = (V,E), where V = Graph

{v1, . . . , vn} is a set of n vertices (or nodes) and E = {(vi1 , vj1 ), . . . , (vir , vjr )}
is a set of r edges connecting pairs of vertices.

A graph is directed if the edges have an orientation and is undirected other-
wise. A graph is weighted if there is a function w : E → R that associates a real
number with every edge in the graph and is unweighted otherwise.

Definition 3.2 {Path} A path in a graph is a sequence of nodes (vi1 , . . . , vik , Path

vik+1 , . . . , vis ) such that each pair (vik , vik+1 ) (1 � k � s − 1) belongs to the
set of edges E. The nodes vi1 and vis are said to be connected. If the graph is
directed then vis is said to be reachable from vi1 .

Definition 3.3 {Connected component} Given an undirected graph G, a con- Connected
componentnected component in G is a maximal subgraph G′ such that any two vertices in

G′ are connected. The subgraph G′ is maximal in the sense that it is not possible
to add any vertex while preserving its connectivity.

Definition 3.4 {Strongly connected component} Given a directed graph G, a Strongly connected
componentstrongly connected component in G is a maximal subgraph G′ such that every

vertex in G′ is reachable from any other vertex. This condition requires that,
given any two vertices vih and vik in G′, vih is reachable from vik and vice
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v1 v2

v3 v4

v5v6

v7

v8

v9

v10

Figure 3.1 Example of an undirected graph G = (V,E), where the set of
vertices is V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and the set of edges is
E = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v7), (v8, v9), (v9, v10)}.
The sequence of vertices (v1, v2, v3, v4, v5, v6) is a path in G, and the subgraph
G′ = (V′,E′), where V′ = {v8, v9, v10} and E′ = {(v8, v9), (v9, v10)}, is a
connected component.

v1 v2

v3 v4

v5v6

v7

v8

v9

v10

Figure 3.2 Example of a directed graph G = (V,E), where the set of
vertices is V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10} and the set of edges
is E = {(v1, v2), (v2, v3), (v3, v4), (v5, v4), (v5, v6), (v6, v7), (v8, v9), (v9, v10),
(v10, v8)}. The sequence of vertices (v1, v2, v3, v4) is a path in G, and the
subgraph G′ = (V′,E′), where V′ = {v8, v9, v10} and E′ = {(v8, v9),
(v9, v10), (v10, v8)}, is a strongly connected component.

versa. Moreover, G′ is maximal in the sense that it is not possible to add any
vertex while preserving its connectivity.

In Figures 3.1 and 3.2 the above definitions are illustrated for an undirected
and a directed graph, respectively. Let us introduce now the notion of a random
graph.
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Definition 3.5 {Random graph} A graph G = (V,E) is random if some el- Random graph

ement of its structure is built up stochastically, according to a known probability
distribution.

The first model of random graphs was proposed independently by Solomonoff
and Rapoport (1951) and by Erdös and Rényi (1959), and it can be formulated
in two slightly different ways.

Definition 3.6 {Model ER1} Let Gn,p be an ensemble of random graphs G, Model ER1

built up as follows. Given n vertices and a probability value p ∈ (0, 1), each pair
of vertices in G is connected with probability p.

Definition 3.7 {Model ER2} Let Gn,r be an ensemble of random graphs G, Model ER2

built up as follows. Given n vertices and an integer number r of edges, select
randomly, without replacement, r pairs of vertices and connect them.

In the following, let M = n(n− 1)/2 be the total number of possible edges
in an undirected graph with n vertices. In model ER1 the ensemble Gn,p has
cardinality (number of elements)

|Gn,p| =
M∑

r=0

(
M

r

)
,

because a graph with r edges can be chosen in
(
M
r

)
different ways from the

M possible graphs with r edges. A graph G with r edges occurs in Gn,p with
probability

P(G has r edges) = pr(1− p)M−r.

In model ER2 the ensemble Gn,r has cardinality |Gn,r | =
(
M
r

)
. All graphs in it

have exactly r edges, and each occurs with uniform probability

P(G) =
1(
M
r

) .
It should be clear that Gn,r ⊂ Gn,p.

Definition 3.8 {Degree} In a graph G the degree of a vertex is the number of Degree

nodes connected to it. The degree of the graph is the maximum degree of the
nodes.

In a graph G ∈ Gn,p the probability that a random node has degree d is given by

pd =
(

n− 1
d

)
pd(1− p)n−d−1 � zde−z

d!
, (3.1)

where z = p(n−1) is the average degree of the nodes. The rightmost expression
is the Poisson approximation of the distribution pd when n →∞with z constant.
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This approximation is valid when n → ∞ while pn is kept constant. Because
of the distribution (3.1) the graphs in Gn,p are called Poisson random graphs.
Analogous properties hold for the ensemble Gn,r .

The ensemble Gn,p shows a second-order phase transition in the connectivity,Phase transition
in connectivity in correspondence with the control parameter z. More precisely, when z < 1,

a random element G of the ensemble is formed by many small disconnected
components, whose size is O(lnn); when z = 1 the mean size of the largest
component becomesO(n2/3); for z > 1 a giant component, whose size isO(n),
appears in the graph. Thus the ensemble shows, at the phase transition, a “double
jump”.

An ensemble of graphs that has close connections with statistical physics was
proposed by Strauss (1986) and is called the ensemble of exponential random
graphs.

Definition 3.9 {Exponential random graph} Given a number n of nodes, letExponential
random graph ε1, ε2, . . . , εs be a set of properties measured on a single graph (such as the num-

ber of edges, number of triangles, . . . ). Moreover, let β1, β2, . . . , βs be a set of
parameters (the inverse temperatures). Then the ensemble of exponential ran-
dom graphs is a collection Gexp of graphs G such that each graph occurs in it
with probability

P(G) =
1
Z

exp

(
−

s∑
i=1

βiεi

)
,

where Z is the partition function.

Particularly important in the study of complex real-world networks are small-
world and scale-free graphs. Small-world networks were introduced by Watts
and Strogatz (1998), whereas scale-free networks were introduced by Barabási
and Albert (1999). Intuitively, a small-world graph is one in which each node
has “short” paths connecting it to all the other ones. Formally:

Definition 3.10 {Small-world graph} Given a graph G with n nodes, theSmall-world graph

graph is a small-world one if its diameter is O(lnn).

Definition 3.11 {Scale-free graph} Given a graph G with n nodes, the graphScale-free graph

is scale-free if the distribution of the degrees d of the vertices is governed by a
power law, namely

pd ∼ d−γ ,

for a given γ.

Power law
distribution

In a scale-free network there are a few nodes with large degrees and many nodes
with very small degrees. The power law distribution is explained by the hypoth-
esis of preferential attachment: if the network is built up by adding one node atPreferential

attachment a time, when adding node vj+1 the probability that it will be connected to an
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existing node vi is proportional to vi’s current degree. The mechanism of prefer-
ential attachment is quite old; it was first proposed by Yule (1925) to explain the
power-law distribution observed in the number of species per genus of flowering
plants. The modern approach to the mechanism was initiated by Simon (1955)
in investigating the distribution of the sizes of cities. In the context of complex
networks it was re-proposed by Barabási and Albert (1999).

After providing this brief reminder of basic graph notions, we now intro-
duce the first NP-complete problem that is central to this book, namely the SAT
problem.

3.3 The SAT problem

The name SAT is an abbreviation of satisfaction: the SAT problem is concerned SAT problem

with the satisfiability of logical formulas in propositional calculus. The SAT
problem was the first to be proved NP-complete, in a famous theorem of Cook
(1971).

Boolean SAT problems play a crucial role in many important practical ap-
plications (Biere et al., 2009). Moreover, such problems are strongly connected
with operational research and artificial intelligence. For this reason, the field has
been deeply investigated and tremendous progress in SAT solver performance
has been observed. Open source implementations are available today that scale
up to extremely large problems, with the number of variables and clauses in the
order of millions.

Definition 3.12 {SAT problem} Let X = {x1, . . . , xn} be a set of n Boolean
variables, which can take values in {1, 0}, where 1 corresponds to true and 0 to
false. Let Γ = {γ1, . . . , γm} be a set of clauses, i.e., disjunctions of variables
or their negations. The SAT problem consists in either finding an assignment
of truth values to the variables in X such that all the clauses in Γ are satisfied
or proving that none exists. The conjunction of all clauses in Γ is a formula
ϕ(x1, . . . , xn) that must be satisfied. The SAT problem is said to be satisfiable
if ϕ can be made true by some choice of the variables, otherwise it is said to be
unsatisfiable.

EXAMPLE

Let X = {x1 , x2 , x3 , x4} be a set of four variables, and let Γs =
{γ1 , γ2 , γ3} and Γu = {γ′

1 , γ
′
2} be two sets of clauses such that

γ1 = x1 ∨ x̄2 , γ2 = x1 ∨ x3 ∨ x̄4 ,

γ3 = x̄1 ∨ x2 ∨ x̄3 ,

γ′
1 = x1 , γ′

2 = x̄1 ,
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where x̄i means the negation of xi . It is easy to see that the set Γs corre-
sponds to a satisfiable problem. In fact x1 = 1, x2 = 1, x3 = ∗, x4 = ∗ isThe symbol *

denotes any value. a family of solutions. On the contrary, the set Γu corresponds to an unsat-
isfiable problem.

We will now illustrate the relationship between the SAT problem and statis-
tical physics. In order to do this, we introduce a subproblem of SAT, namely the
k-SAT problem.

Definition 3.13 {k-SAT problem} A k-SAT problem is a SAT problem ink-SAT problem

which all clauses in Γ have exactly k terms (variables).

EXAMPLE

Let X = {x1 , x2 , x3} be a set of three variables, and let Γ = {γ1 , γ2 , γ3}
be a set of clauses such that

γ1 = x1 ∨ x̄2 , γ2 = x̄1 ∨ x3 ,

γ3 = x2 ∨ x̄3 .

This is an example of a 2-SAT problem. The problem is satisfiable, for
instance by the triple {x1 = x2 = x3 = 1}.

It is well known that the 1- and 2-SAT problems are polynomial, whereas
the k-SAT problem for k � 3 is NP-complete. The 3-SAT problem is the most
studied of the class and is the one for which the most precise results have been
obtained.

A generic k-SAT problem is a member of an ensemble generated as de-
scribed in the following.

Definition 3.14 {Generative model of k-SAT} Given two integers k and mGenerative model
of k-SAT and a set X = {x1, . . . , xn} of variables, each clause γi ∈ Γ (1 � i � m)

is generated independently by selecting randomly, with uniform probability, k
variables from X; then, each selected variable xj is negated with probability
p = 0.5.

Let Πk be the set of all k-SAT problems with m clauses over n variables. The
cardinality of Πk is

|Πk | =
(

2k
(
n
k

)
m

)
.

Each element of Πk is a formula ϕ(x1, . . . , xn), i.e., a set of clauses as stated in
Definition 3.12; these elements occur in Πk with equal probability.
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P(α, k)

α 
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Figure 3.3 Qualitative behavior of the probability P(α, k) of solution of a ran-
dom instance of the 3-SAT problem vs. the parameter α = m/n.

The generative model for a k-SAT problem deserves further comment. Ac-
cording to Definition 3.14 it may happen that in a given problem instance two
clauses turn out to be equal, thus reducing the difficulty of satisfying the prob-
lem. In order to avoid this situation the generation of the clauses should be done
in another way: first, all the possible k-term clauses are constructed and then m
from these are selected without replacement. Even though this model of formula
generation allows the probability of any single problem instance to be computed
exactly, it is impractical in use because the number of possible clauses is

(
n
k

)
2k.

Thus, in practice, in order to generate k-SAT problem instances the procedure of
Definition 3.14 is used. To cope with the above difficulty, there are two possibil-
ities: either duplicated clauses are filtered out (which can be done automatically)
or the problem is ignored, as the probability of duplication is very low. More Duplication

probabilityprecisely, the probability that at least one duplication occurs can be evaluated as
follows:

Pdupl = 1−
[
2k
(
n
k

)]
![

2k
(
n
k

)
−m
]
!
[
2k
(
n
k

)]m . (3.2)

For example, in a small problem instance, with, say, n = 50, k = 3 and m = 10,
we have

Pdupl = 0.000286.

The probability of duplication rapidly decreases when the problem size in-
creases.

Experimental investigation of the k-SAT problem has concentrated on the
probabilityP(α, k) that a randomly chosen formula ϕ(x1, . . . , xn) is satisfiable,
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with α = m/n. In Figure 3.3 a graph qualitatively describing this probability
versus the parameter α is given. From the figure, a remarkable behavior emerges
(Monasson, 2002): for all values α < αcr(k) the probability P(α, k) assumes
values very close to 1, whereas when α > αcr(k) it assumes values very close
to 0. The critical value αcr(k), which is a function of k, defines the bound-Critical value of the

control parameter α ary between two phases, the SAT phase, where a randomly chosen formula
ϕ(x1, . . . , xn) is almost surely satisfiable, and the UNSAT phase, where a ran-
domly chosen formula ϕ(x1, . . . , xn) is almost surely unsatisfiable. The random
choice of formula means that the way in which k-SAT problem instances (the
formulas ϕ(x1, . . . , xn)) are generated produces, in the SAT (UNSAT) region,
very few unsatisfiable (satisfiable) ones, so that a random choice would produce
an unsatisfiable (satisfiable) formula with an extremely low probability. In or-
der to find an unsatisfiable (satisfiable) formula in the SAT (UNSAT) phase,
such a formula must be constructed specifically. This behavior recalls a phase
transition, as in physical systems. In the vocabulary of phase transitions, the
probability P(α, k) is the order parameter and α is the control parameter.

The presence of a boundary between the SAT and the UNSAT phases has2-SAT

been proved rigorously for the polynomial 2-SAT problem, where the critical
value is αcr(2) = 1. For the NP-complete problem k-SAT with k � 3, the loca-
tion of the phase transition has not been calculated precisely, but only estimated.
For instance, αcr(3) � 4.3 and exact lower and upper bounds are known:

αlb = 3.26 < αcr(3) < 4.51 = αub.

Using the cavity equations introduced in Section 2.8, Mertens et al. (2006) de-
rived threshold values for the parameter α of k-SAT. For k = 3 they found
αcr � 4.267. The authors also provided some closed expressions for these3-SAT

thresholds, for large k. The results of their work support the conjecture that this
computation gives the exact satisfiability threshold.

The importance of the critical value is that the most difficult instances are
located in its neighborhood. In fact, in correspondence with the phase transition,
the computational complexity involved in finding a solution (or in proving that
none exists) shows a marked peak, as represented in Figure 3.4. The explanation
of this easy–hard–easy pattern for the algorithms used to solve a k-SAT problem
is that in the SAT phase the problem instances are undersconstrained and there
are many solutions, so that it is easy to find one; in the UNSAT phase the problem
instances are overconstrained and so it is easy to show that no solution exists. In
correspondence with phase transitions, there are few solutions for the solvable
instances and none for the unsolvable instances; thus, it is difficult to separate
SAT from UNSAT instances.

The SAT problem can be described in graphical form by means of a bipartite
graph, called a factor graph.
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Figure 3.4 Qualitative behavior of the computational complexity C(α, k) for
solving a k-SAT problem instance.

Definition 3.15 {Factor graph} Given a SAT problem instance with n vari- Factor graph

ables and m clauses, let us associate with each variable and each clause a node
in a bipartite graph. Variable nodes are represented as circles, and clause nodes
are represented as squares. Edges can connect variable nodes and clause nodes.
An edge connecting a clause node γ and a variable node x is labeled with 1, and
represented by a continuous line, when x occurs in γ as a positive literal; it is la-
beled with −1 and represented by a dotted line when x occurs negated. Variable
nodes have a status which can assume three possible values: 1 (true), 0 (false),
and ∗ (undecided).

An example of such a bipartite graph is provided in Figure 3.5.

3.3.1 SAT problems and the Ising model

We have reached the stage where it is possible to establish a one-to-one corre-
spondence between the SAT problem and the Ising model of spins (Monasson
and Zecchina, 1997). In Table 3.1 this correspondence is summarized. The key
point in creating this correspondence is to introduce an “energy” function that Energy function

counts the number of unsatisfied clauses for a given assignment of the variables.
Clearly, if the problem instance is SAT then this number goes to zero and the SAT as an Ising

modelcorresponding ground state has energy equal to zero; if the problem instance is
UNSAT then this number remains greater than zero and the correspond-
ing ground state has strictly positive energy. A variable xj with value true



54 The satisfiability problem
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Figure 3.5 Example of a bipartite graph corresponding to the SAT formula
ϕ(x1, . . . , x6) = γa ∧γb ∧γc ∧γd ∧γe, where γa = x1 ∨ x̄3, γb = x̄1 ∨x2 ∨x4,
γc = x̄3 ∨ x5, γd = x̄3 ∨ x̄4 ∨ x5, γe = x̄2 ∨ x4 ∨ x6.

corresponds to a spin σj with value +1, whereas a variable xj with value false
corresponds to the spin σj with value −1. As exemplified in Table 3.1, given a
clause

γ = xj1 ∨ xj2 · · · ∨ xjr ∨ x̄h1 ∨ x̄h2 · · · ∨ x̄hs ,

the associated energy can be written as follows:

E(γ) =
1

2r+s

r∏
i=1

(1− xji )
s∏

i=1

(1 + xhi
). (3.3)

Random clauses can be encoded in an m × n matrix C, whose rows correspond
to clauses and columns to variables. An entry cij assumes values in {+1, 0,−1}.
More precisely: cij = +1 if the variable xj occurs in the clause γi as a positive
literal xj ; cij = −1 if the variable xj occurs in the clause γi as a negative lit-
eral x̄j ; cij = 0 if the variable xj does not occur in the clause γi. The matrix
C encodes the quenched disorder of the problem and is a random variable gen-Quenched disorder

erated as in Definition 3.14. Table 3.2 shows the matrix C corresponding to the
problem represented in Figure 3.5. Given the matrix C, the total energy of the
corresponding SAT problem becomes

E(C) =
m∑

i=1

1

2
∑n

j=1 |cij |

n∏
j=1

(1− cijxj). (3.4)
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Table 3.1 Correspondence between the SAT problem and the Ising model
of spins

SAT Ising model

Boolean variable x ∈ {1,−1} Ising spin σ ∈ ±1
Clauses Couplings

Number of clauses violated Energy E of the spin configuration
by a logical configuration

Example
2-Sat x ∨ ȳ E = 1

4 (1− σx)(1 + σy)
(x ∨ ȳ) ∧ (x̄ ∨ z) E = 1

4 (1− σx)(1 + σy)
+1

4 (1 + σx)(1− σz)
3-Sat x ∨ ȳ ∨ z E = 1

8 (1− σx)(1 + σy)(1− σz)
Minimum number of violated clauses Ground state energy

Problem is =

{
satisfiable

unsatisfiable
Ground state energy

{
= 0
> 0

Table 3.2 The matrix C describing the SAT
problem reported in Figure 3.5

x1 x2 x3 x4 x5 x6

γa 1 0 −1 0 0 0
γb −1 1 0 1 0 0
γc 0 0 −1 0 1 0
γd 0 0 −1 −1 1 0
γe 0 −1 0 1 0 1

Knowing the probability distribution of the quenched disorder (the matrix C) the
average value of the energy can be computed.

For each clause (row in C), we have

−
n∑

j=1

cijxj = number of wrong1 literals in clause γi. (3.5)

In order to explain expression (3.5), let us notice that the product cijxj is
equal to 1 iff both cij and xj have the same sign (i.e., they are both equal to 1
or both equal to −1), it is equal to −1 iff cij and xj have different signs (one

1This means that cij and xj have opposite signs.
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equal to −1 and one equal to 1), and it is equal to zero iff cij = 0. If cij = 0, the
variable xj does not occur in clause γi and the product cijxj does not contribute
either to the number of correct literals or to the number of wrong literals. If
cijxj = 1, either the variable xj is positive in γi and so assumes the value 1 (it
is true), or it is negative in γi and so assumes the value −1 (it is false); in both
cases, the value of xj makes the whole clause γi true. On the contrary, if cijxj is
equal to −1 then the variable xj assumes a value that makes the corresponding
literal false. Thus, if we want to count the number of wrong literals in clause γi,
we have to sum the products −cijxj over j.

Given a clause with k terms, if −
∑n

j=1 cijxj = k then the clause has all
literals false and so it is false. For a 3-SAT problem, the condition for which a
clause is false reads

n∑
j=1

cijxj + 3 = 0.

Then, clause γi is not satisfied iff

δ

⎛
⎝ n∑

j=1

cijxj + 3

⎞
⎠ = 1,

where δ(z) is the Krönecker function, which is 1 if z = 0 and 0 otherwise.
Now let S denote a configuration of spins (variables), i.e., an assignment of

truth values to all the n variables. Moreover, let E(C,S) be the total number of
unsatisfied clauses in S:

E(C,S) =
m∑

i=1

δ

⎛
⎝ n∑

j=1

cijxj + 3

⎞
⎠ . (3.6)

The minimum E0(C) (the ground state energy) can be obtained by the optimalGround state energy

logical assignment to the variables. The value E0(C) is a random variable, be-
cause C is a random variable; it becomes highly concentrated around the mean
value E0 = E0(C) in the thermodynamic limit (n → ∞). The mean value
is computed with respect to the probability distribution of the quenched disor-
der (namely, the matrix C). Let us now consider the generating function of the
energy:

G(z, C) =
∑
S

zE(C,S).

The value of E0 is computed from the average logarithm of G(z, C) (Monasson,
2002), obtaining

E0 = lim
z→0

lnG(z, C)
ln z

. (3.7)
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In the SAT region E0 is equal to 0, whereas it is strictly positive in the
UNSAT region. The value E0 as a function of the control parameter α detemines
the critical value αcr(k).

EXAMPLE

For the sake of illustration, we follow the treatment of a toy problem, the
1-SAT, provided by Monasson and Zecchina (1997) and Monasson (2002).
Let X = {x1 , . . . , xn} and Γ = {γ1 , . . . , γm} be the sets of variables and
clauses, respectively. In the 1-SAT case the matrix of quenched disorder
C, introduced above, has only one entry per row, as all clauses are either a
single variable or its negation. Concerning the columns, let us suppose that
the clause γi = xj occurs in Γ. Then, in order to avoid duplication, the
same clause cannot occur further in Γ. However, the clause γh = x̄j may
occur in Γ but in this case the problem instance is unsatisfiable, because
the formula associated with it contains a variable and its regation, yet both
must be true. Thus each column of the matrix C may have at most two
entries different from zero, one equal to +1 and one equal to −1.

In order to generate a 1-SAT problem instance we have to extract m ele-
ments from the set of possible clauses, which is the union of the set X and
the set containing all the negated variables. We have thus

(2n
m

)
different

problem instances. A unique matrix C is associated with each problem in-
stance, and each matrix can be extracted with equal probability. Thus the
probability distribution the quenched disorder is uniform:

P(C) =
1(2n
m

) . (3.8)

For 1-SAT, any matrix C is described simply by the numbers ti and fi of
clauses that require a certain variable xi to be true or false, respectively
(Monasson and Zecchina, 1997). Then the partition function is simply

Z(C) =
n∏

i=1

[exp(−βti(C)) + exp(−βfi(C))] . (3.9)

By using the replica trick with r replicas, it can be derived that the average
of the logarithm of Z, with respect to (3.8), assumes the value

1
r

ln Z(C) = ln 2− αβ

2
+

∞∑
h=−∞

e−αIh(α) ln
(

cosh
βh

2

)
, (3.10)

where Ih is the modified Bessel function of order h and α = m/n. If
expression (3.8) is calculated for vanishing temperature (i.e., for β →∞),
the ground state energy density has the value

E0(α) =
α

2
[
1− e−αI0(α)− e−αI1(α)

]
, (3.11)
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Figure 3.6 The ground state energy E0 for the 1-SAT problem. The energy is
zero only for α = 0.

whereas the ground state entropy density is

S0(α) = e−αI0(α) ln 2.

The graph of the ground state energy for the 1-SAT problem is shown in
Figure 3.6. As can be seen, the ground state energy is zero only for α = 0.
Monasson and Zecchina explain this result by the fact that the entropy is
finite and, hence, the number of minima in the energy is exponentially
large for any α. In turn this is due to the presence of a fraction e−αI0(α)
of unconstrained variables, whose value does not affect the value of the
energy.

3.3.2 Structure of the solution space

An interesting aspect to be investigated is the way in which solutions of k-SAT
problems are organized within their respective spaces. If we consider the critical
value αcr , then just above this threshold the number of solutions is equal to
zero, as we are now in the UNSAT phase;2 however, just below the threshold
the typical number of solutions N0(α) becomes almost surely exponential in the
number of variables n (Boufkhad and Dubois, 1999). The quantity that is relatedEntropy density

to the number of solutions is the entropy density s0(α) of the ground state. In

2See Chapter 14 for an alternative view.
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fact, each alternative assignment of variables can be considered as a “state”, and
so

s0(α) =
1
n

lnN0(α).

For α = 0 we have s0 = ln 2 because, with a number m = 0 of clauses, any
variable assignment is a solution of any problem and so N0(0) = 2n . In order
to compute s0 for any α the replica symmetry method has been applied, but
it turns out that this method does not provide a correct solution in the whole
SAT phase. In fact replica symmetry theory implies that any two assignments
(spin configurations, in the statistical physics view) have almost surely the same
Hamming distance between them, i.e., they show the same fraction of variables
(spins) with a different assignment (orientation). As a consequence, solutions are
grouped into a cluster of diameter dn. However, it has been found that this picture Transition from

one to many
solution clusters

is not always true for the whole SAT phase (Biroli et al., 2000; Monasson, 2002).
More precisely, the SAT phase can be divided into two zones by a new critical
threshold αRSB :

• Below αRSB the solution space is replica symmetric (it satisfies the replica
symmetry theory), and there is just one cluster of solutions. The Hamming
distance d between pairs of solutions is a decreasing function of α.

• At αRSB � 4.0 the solutions become grouped into an exponential (in
n) number of different clusters, each containing, in turn, an exponential
number of solutions. As α increases, the number of clusters decreases.
The satisfiability transition corresponds to the vanishing of the clusters.

The threshold αRSB reveals a “clustering phase transition”. In Figure 3.7 a qual-
itative representation of the clustering process is shown. The region αRSB <
α < αcr is called the hard-SAT region (Mézard et al., 2005). Here the typical Hard-SAT region

Hamming distance d between solutions in different clusters is about 0.3, and re-
mains almost constant up to αcr . Within each cluster, solutions tend to become
more and more similar, with a rapidly decreasing intra-cluster Hamming dis-
tance (Monasson, 2002). Given two solutions in the same cluster, it is possible
to change one into another by flipping only O(1) variable values. If the solu-
tions are in different clusters, to change one into the other it is required that a
number O(n) of variables have their values flipped. The clustered region is the
most difficult one for many local search algorithms (Semerjian and Monasson,
2003). The presence of clusters of solutions has suggested a new, very effective,
algorithm for solving SAT problems, called the survey propagation algorithm. It
will be described in Section 3.5.4.

More recently, Montanari et al. (2008) refined this picture of the solution
space in the SAT phase. They have found, for k � 4, a new condensation phase

Condensation
phase
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α 

Figure 3.7 Qualitative representation of the clustering process. Below the
threshold αRSB solutions are organized into a single cluster, whereas above the
threshold an exponential number of clusters, each with an exponential number
of solutions, appear.

transition at a value αcd ∈ [αRSB, αcr ]. When α ∈ [αRSB, αcd] there are ex-
ponentially many clusters whereas for α ∈ [αcd, αcr ] most solutions are con-
tained in a number of clusters that remains bounded when the number of vari-
ables n → ∞. A further refinement of the solution space has been described
by Zhou and co-workers (Zhou and Ma, 2009; Zhou, 2010), who have found
that, for k = 3 and 4, there is a giant connected component that contains dif-
ferent solution groups even when α < αRSB . Solutions in the same group are
more similar to each other and more densely connected than they are to other
solutions.

3.3.3 Backbone

In the UNSAT phase the number of solutions is almost surely zero, but another in-
teresting phenomenon appears: in the ground state a backbone emerges. A back-
bone is a set of variables each of which takes on its own specific value in all
ground states. It is to be expected that the size of the backbone will beO(n). Fol-Backbone

lowing Monasson (2002), let γ(α, k) be the number of these totally constrained
variables (the size of the backbone). For α < αcr , γ(α, k) = 0. When the crit-
ical value is crossed, two behaviors have been observed: for k = 2, γ(α, 2) is
continuous at the threshold αcr(2) = 1 and then increases as the UNSAT region
is entered further. For k = 3 the function γ(α, 3) shows a discontinuity, jumping
to a finite value γcr just above the threshold αcr(3). In other words, a finite frac-
tion of variables become suddenly overconstrained when the critical value of α
is crossed.

Let N0 be the number of configurations in the ground state of an unsatisfiable
formula, i.e., the number of optimal assignments of truth values to the variables.
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We can define

μi =
1

N0

N0∑
a=1

x
(a)
i

as the average value of the variable xi over all the ground state configurations.
The average μi ranges in [−1, +1]. When μi = +1 (μi = −1), the variable xi

is then equal to +1(−1) in all the configurations. If P(μ) is the distribution of
the values μi, the presence of a backbone is denoted by a concentration of the
probability values around the values +1 and −1. On the contrary, the central
region of the distribution (P(μ) = 0) denotes the presence of variables that are
loosely constrained, as their values across the ground state configurations are
roughly balanced between +1 and −1.

The existence of the backbone has been exploited to design heuristics for
solving k-SAT problems. For instance, Dubois and Dequen (2001) showed that
the backbone can be exploited to design efficient algorithms for solving hard
unsatisfiable 3-SAT formulas (Dequen and Dubois, 2006). Though useful for
heuristics, the backbone in itself is NP-hard to find. More than that, unless
P = NP, finding a sound approximation to it is also intractable in general
(Kilby et al., 2005).

3.3.4 Backdoors

An interesting notion, which parallels that of a backbone and applies to solvable
SAT instances, is that of a backdoor. Backdoors were introduced by Williams
et al. (2003). Informally, a backdoor to a given problem is a subset of variables
such that, once the variables in this subset are assigned values, the polynomial
propagation mechanism of the SAT solver (the “subsolver”) solves the remaining
formula.3 Backdoors correspond to clever shortcuts in the solution process. More
formally, in the case of satisfiable SAT instances a backdoor is defined as follows.

Definition 3.16 {Backdoor} Given a satisfiable SAT problem represented by
a formula ϕ to be satisfied, a backdoor to ϕ with respect to a subsolver A is a
non-empty set of variables S for which there exists an assignment aS : S →
{0, 1}|S | for which A returns a satisfying assignment ϕ(aS).

We may notice that a particular kind of backdoor is provided by a set of
independent variables. Williams et al. (2003) also introduced the notion of strong
backdoor in the case of possibly unsatisfiable instances.

Definition 3.17 {Strong backdoor} Given a SAT problem represented by a
formula ϕ to be satisfied, a strong backdoor to ϕ with respect to a subsolver A

3The formal definition of a subsolver can be found in Williams et al. (2003).
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is a non-empty set of variables S such that, for all assignments aS : S →
{0, 1}|S |, either A returns a satisfying assignment or the unsatisfiability of
ϕ(aS) is established.

While setting a backbone to a given value is a necessary condition, setting
up a (strong) backdoor is a sufficient condition for solving a problem. Knowing
the backdoor of a SAT problem (i.e., the variable set S) may strongly reduce
the complexity of the search. In fact, the exponential part of the search cost is
O(2|S |), the rest of the computation being polynomial. The size of a backdoor
cannot exceed n−1 but the experimental investigation by Williams et al. (2003)
showed that, in practice, backdoors may be quite small. This implies that, even
including in the overall computational cost that for finding a backdoor, a gain in
cost may still be the result, in comparison with searches without backdoors. The
authors also provided a strategy to exploit backdoors formally.

Finding a backdoor to a problem is intractable in general if P �= NP, as
mentioned above. However, Kilby et al. (2005) showed that the problem be-
comes tractable, in certain cases (for instance for 2-CNF polynomial subformu-
las), if the size of the backdoor can be bounded.

3.4 The random (2 + p)-SAT

An interesting approach to studying the differences in the behavior of 2-SAT and
3-SAT problems was proposed by Monasson et al. (1999), who investigated an
intermediate problem, called (2 + p)-SAT, which is a SAT problem with clauses
containing either two or three literals. More precisely, any problem instance con-
tains pm clauses with three literals and (1 − p)m clauses with two literals. The
problem is still NP-complete because any instance contains, for p > 0, a subfor-
mula with at least three clauses. The authors aimed at computing the threshold
αcr(2 + p) for fixed p, knowing that αcr(2) = 1 and αcr(3) � 4.267. By ob-
serving that 2-SAT problem instances (or 3-SAT problem instances) are almost
always unsatisfiable for some number of clauses n (or αcrn), the following rela-
tion holds:

αcr(2 + p) � min
(

1
1− p

,
αcr(3)

p

)
.

Let us now consider the probability distributionP(μ) introduced in Section 3.3.3
and analyze what happens at the threshold of the 2-SAT and 3-SAT cases. Let
f(k, α) be the fraction of variables that become totally constrained at and above
the threshold. The function f(k, α) is identically zero below the threshold for
both cases. For 2-SAT, the function becomes strictly positive above αcr(2) = 1
but is continuous at the transition point, i.e., f(2, 1+) = f(2, 1−) = 0. On the
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contrary, for 3-SAT the function f(3, α) shows a discontinuity, i.e., f(3, α−
cr) =

0 and f(3, α+
cr) = fcr(3) > 0.

For the mixed (2 + p)-SAT model, the key point is understanding how a
discontinuous 3-SAT-like transition may appear when the parameter p is in-
creased from 0 to 1. By applying a previously introduced method (Monasson
and Zecchina, 1997), Monasson et al. (1999) found that the model has a contin-
uous SAT–UNSAT transition below the value pc = 0.413 at an αcr value given
by

αcr(2 + p) =
1

1− p
. (3.12)

Then, below the value α = 1/(1− p) the (2 + p)-SAT problem behaves as 2-SAT versus
3-SAT2-SAT. For p > pc the transition becomes discontinuous and the model behaves

as 3-SAT.
Achlioptas et al. (2001b) studied the (2 + p)-SAT problem in the limit

n → ∞ and found, by combinatorial arguments, that the critical value for p is
pc = 2/5. In response to this new result, Biroli et al. (2000) proved by statistical
physics methods (though not rigorously) that pc indeed equals 2/5.

3.5 Solving the SAT problem

In this section we will briefly review the different approaches used to solve SAT
problems. More specifically, we will be interested in discussing their behavior
when problem instances get close to the phase transition region.

The basic assumption underlying the heuristics exploited by many SAT “Regular” problem
instances versus
random ones, where
no regularities may be
assumed to exist

solvers is that the problem instances occurring in practice are usually easy even
when their size is large. This happens because these instances frequently exhibit
some kind of regularity, which allows specific heuristics to be exploited. How-
ever, problems inside the phase transition region are not of this kind and then the
heuristics fail.

A first family of SAT solvers contains exact (or complete) solvers. They have
been designed to always find a solution when one exists. Nevertheless, in order
to prevent their running for an undetermined time period, they are also provided
with a time-out mechanism. Therefore, they classify a problem as unsatisfiable
either when they prove that a solution does not exist or when they run out of
time.

A second family, developed for practical applications to engineering prob-
lems, is that of incomplete SAT solvers. They use heuristics that are easy to
apply, such as hill climbing, but are incomplete, i.e., large regions of the search
space are disregarded and remain unexplored. If the solution is in such a region,
it will not be found; thus a solvable problem instance is declared unsolvable.
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A third family addresses a generalization of SAT called MaxSAT. Given aMaxSAT problem

Boolean expression in conjunctive normal form (CNF), a MaxSAT problem con-
sists in finding a variable assignment satisfying the maximum possible number
of clauses, i.e., minimizing the number of violated constraints. MaxSAT reduces
to SAT when the problem instance is satisfiable. It has a strong relevance for
practical applications and thus several MaxSAT solvers have been developed. It
should be noted that, as we will discuss later, the SAT solvers mentioned above
are not able to deal with MaxSAT.

Finally, we will give special attention to a new family of algorithms that were
designed for solving random SAT problems located close to the phase transition
region.

3.5.1 Exact SAT solvers

Most exact SAT solvers are based on the well-known Davis–Putnam–DPLL algorithm

Logemann–Loveland (DPLL) algorithm (Davis and Putnam, 1960; Davis et al.,
1962) and include some smart heuristics to avoid the useless exploration of re-
gions of the solution space where solutions are impossible. This is a complete,
backtrack, algorithm; if the heuristic is complete, the SAT solver will find a so-
lution. Usually, the solution first found is returned. There are two key strategies,
which make modern SAT solvers based on DPLL very effective: (i) fast unit
propagation and (ii) clause learning (Marques-Silva and Sakallah, 1996, 1999;
Moskewicz et al., 2001; Eén and Sörensson, 2004; Sörensson and Eén, 2005).

The search strategy of DPLL is conflict driven. It starts with a tentative hy-
pothesis about a possible assignment of the Boolean variables and then checks
every single clause. When a conflict is detected, i.e., a clause is not satisfied by
the current hypothesis, the algorithm backtracks, modifies the hypothesis, and
resumes the computation. The initial hypothesis contains only one variable; then
the hypothesis is extended further to include new variables until all the variables
have been assigned. Unit clauses are those that are not satisfied by the current
hypothesis and have only one more variable to be assigned. Therefore, they set
a deterministic constraint on the value of the unassigned variable. The fast prop-Fast unit-propagation

heuristics agation of unit clause constraints focuses the search dramatically (Moskewicz
et al., 2001).

Clause learning is activated when the current hypothesis cannot be completedClause learning

because it is impossible to find a consistent assignment for the remaining vari-
ables. In order to prevent the algorithm from generating another hypothesis en-
tailing the same contradiction, a clause characterizing the conflicting variable as-
signment is learned (Marques-Silva and Sakallah, 1996). Such clauses are called
nogoods. Nogoods are used by a constraint propagation algorithm to restrict theNogoods

space of assignments that can be generated.
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The most popular SAT solver of this family is MiniSat (Sörensson and Eén,
2005), which is available in an open-source package; it can be customized de-
pending on the needs of the application.

An alternative to conflict-driven approaches is look-ahead (Heule et al., Look-ahead

2004). Both unit propagation and clause learning can be combined with look-
ahead, leading to more complex implementations. Look-ahead solvers are usu-
ally stronger on hard problem instances while conflict-driven ones are faster on
large, but easy, problem instances.

3.5.2 Incomplete SAT solvers

Incomplete SAT solvers use local search strategies, typically hill-climbing or
gradient descent, which explore narrow regions of the hypothesis space. Unit
clause propagation and other heuristics used by complete solvers can be ex-
ploited by incomplete solvers as well (Schuurmans and Southey, 2001; Hirsch
and Kojevnikov, 2005). However, in order to escape the local minima inher-
ent in local search, incomplete algorithms include a stochastic restart. The idea Stochastic restart

consists in choosing another region of the assignment space, not yet explored,
and then repeating another phase of local search. From the theoretical point of
view this strategy reintroduces completeness, in the limit. The many algorithms
of this family differ in their heuristics and in the stochastic components used for
deciding the restart point in the space of possible assignments. Solvers based
on genetic algorithms, simulated annealing, and random walk have also been
proposed.

Among the most popular SAT solvers of this family WalkSAT (Kautz and
Selman, 1996), GSAT (Selman et al., 1992) and UnitWalk (Hirsch and Ko-
jevnikov, 2005) are worth mentioning. The field is being actively investigated be-
cause this approach seems the most promising for solving hard problems, which
are out of the reach of exact solvers.

3.5.3 MaxSAT solvers

MaxSAT solvers do not involve the assumption that the given problem instance
is solvable; they are designed to find the maximally consistent subset of the con-
straints (clauses). This prevents MaxSAT solvers from using the most effective
strategies exploited by SAT solvers, i.e., unit propagation and clause learning.
In fact, a maximum satisfiability solution can be one that violates a unit clause
and so unit propagation would set a misleading bias on the search space. In an
analogous way clause learning is activated when a conflict arises, in order to set
a constraint that prevents parts of the search space being explored again. In this
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case, ignoring the conflict, dropping the violated constraints, and continuing the
search might be the best choice.

For the above reasons, progress in the area of MaxSAT has been much slower
than for SAT and the available solvers are able to deal only with problem in-
stances of a size much smaller than those solved by SAT.

As a matter of fact, MaxSAT solvers are adaptations of the SAT solvers de-
scribed in the previous subsections. One group is again based on the DPLL algo-
rithm (Davis et al., 1962) but does not make use of unit propagation and clause
learning. Currently, the best representatives of this approach are MaxSATZ (Li
et al., 2007a) and MSUF (Marques-Silva and Manquinho, 2008), whose per-
formances are orders of magnitude lower than those of SAT solvers such as
MiniSAT (Sörensson and Eén, 2005). A second group is based on local search
and multiple restarts. Actually, local search seems to be more suitable for this
kind of problem. Even if such a method is incomplete, it can find better ap-
proximations for large problem instances than exhaustive search does. A typical
heuristic used to guide local search is the gradient of the number of satisfied
clauses, which implicitly accepts violated clauses.

State-of-the-art MaxSAT solvers based on local search are SAPS (Hutter
et al., 2002) and ADAPTG2WSAT (Li et al., 2007b). Finally, recent progress
has been made by Kroc and his colleagues, whose paper (Kroc et al., 2009)
informed the brief review presented here.

3.5.4 Survey propagation

The survey propagation algorithm (denoted SP in the following) is a SAT solver
based on heuristics completely different from those discussed so far (Braunstein
et al., 2008). It was designed with the purpose of trying to solve instances close
to the phase transition region, where the solutions are grouped into clusters (see
Section 3.3.2).

The basic ideas come from statistical physics, i.e., the cavity method (see
Section 2.8) and the dynamics of spin glasses. However, a strict analogy between
the basic mechanisms of the algorithm and popular methods, such as belief prop-
agation, in artificial intelligence was acknowledged later.

In its essence, SP is still a backtrack algorithm that tries to find a consis-
tent solution. However, it uses powerful heuristics, so that it quite rarely needs
to backtrack. The basic strategy consists in trying to identify the solution clus-
ters, called covers. Then a specific solution is searched for inside each cluster
using a local search strategy, but discovering solution clusters is per se a taskFactor graph

even more complex than discovering single solutions. Survey propagation cir-
cumvents the problem by computing a statistical approximation to the covers;
thus the covers are just probabilistic guesses, which are much less expensive to
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compute than true solution clusters. The procedure uses the factor graph repre-
sentation of the SAT problem introduced in Definition 3.15 (Frey et al., 1998;
Kschischang et al., 2001) and exemplified in Figure 3.5. The nodes in the factor
graph interact iteratively, exchanging signals along the edges until a stationary
status is reached.

The graph nodes exchange two kinds of signals: (i) warnings and (ii) re- Nodes in the factor
graph interact through
warnings and requests.

quests. Warnings flow from variable nodes to clause nodes and report the status
of the variables, whereas requests flow from clauses to variables. When a clause
γ needs a specific status for a variable x, because it is not satisfied with the status
of the other variables to which it is connected, it sends a request to x asking for
a status change. A variable decides its status on the basis of the requests from
the clauses to which it is connected, using a majority-voting policy, and then up-
dates the warning signal. In principle, one can think of simulating the behavior of
the network and observing what then happens. The algorithm for doing this was
supplied by Braunstein et al. (2008) as a preliminary introduction to SP and has
been called warning propagation (WP). Actually, WP models the undecided sta-
tus. The nodes evolve, changing their status, until the network either converges
to a stable state or does not.

Starting from this basic model there are methods for extracting a problem
solution. However, SP goes beyond it. Instead of explicitly modeling a system’s
evolution, it estimates the probability for a variable to reach a specific status.
Here the undecided status is introduced to model the fact that a variable can float
between 0 and 1. To this end the factor graph is extended by labeling the edges
with real values in the interval [0, 1], representing the probabilities of occurrence
of the signal values (request and warning) flowing through them. In an analogous
way, variable nodes have associated probabilities. The algorithm for estimating
probabilities is based on the cavity method and bears a strong resemblance to the
belief propagation method used in Bayesian networks (Pearl, 1988). Here the Belief propagation

cavity method, originally introduced for infinite systems, is adapted to handle
factor graphs, obtaining the cavity graph introduced in Section 2.8 and exempli- Cavity graph

fied in Figure 2.4(b).
The probabilities of the three possible values {0, 1, ∗} of a variable node xi

are computed on the basis of the probabilities of the values of the requests that
xi will receive from the clause nodes to which it is connected. In turn, the latter
probabilities are computed on the basis of the node status and the warning prob-
abilities received by the clause nodes from the variable nodes to which they are
connected. The probabilities of the values received by xi are computed using the
cavity graph G. Implicitly, this is equivalent to making an independence assump-
tion, that the probability values of the signals received by xi from its neighbors
do not depend on xi itself. This is true only in the case where G is a tree. In the
general case an approximate estimate is the result.
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The probability estimation algorithm is embedded in an iterative procedure,
which is run until convergence to a stable distribution is obtained. Then solution
clusters are identified. A solution cluster (cover) is an assignment where someValues with higher

probability are tried
first in the local

search phase

variable nodes have the value ∗ with high probability. In fact, the cluster extrac-
tion algorithm estimates the probability of the most likely cover. Then, starting
from this cover, a local search procedure (called decimation) is activated; it tries
to find a solution, assigning a Boolean value 0 or 1 to the undecided variables in
the cover. The probability assigned to the values 0 and 1 in the previous step is
used as a heuristic for guiding the search. A clear description of the SP algorithm
was provided by Braunstein et al. (2008).

3.6 Comments

In this chapter we have indicated that surprising links exist between problems in
statistical physics and in combinatorial search (in this chapter, the SAT problem)
and that synergy between the two fields can bring benefits to both. Beyond the
formal translation of an Ising model to a SAT, one may wonder what (if any) are
the deep reasons underlying the links. In fact, the problems handled in statistical
physics typically involve a large number of interacting components (particles),
whose ensemble behavior generates macroscopic properties that we can observe
and measure. In SAT the microscopic and macroscopic levels are not readily
distinguished, nor are their natures immediately apparent. Intuitively, the macro-
scopic level consists of two “phases”, SAT and UNSAT, whereas the microscopic
level is composed of the variables, which interact with each other through the
clauses (the “couplings”) that constrain their possible value assignments.

The pattern of interactions is represented by a factor graph, introduced in
Definition 3.15. Assuming this interpretation, as only variables occurring in the
same clause interact the range of the interaction is determined by the number of
terms in the clauses; for instance, in a 2-SAT problem, variables interact only
in pairs and we say that this is a case of a “short-range” interaction, whereas
a k-SAT problem with large k may be a case where there are “long-range” in-
teractions. A situation in which every pair of variables interacts corresponds to
clauses involving all the variables (n-SAT). Obviously, variables occurring in
different clauses are nevertheless correlated even though not directly. Augment-
ing k, while keeping constant the number n of variables, makes the problem
easier to satisfy; the critical value αcr scales as 2k ln 2. In this whole picture a
central role is played by randomness. In fact, by constructing specific SAT prob-
lems, both solvable and unsolvable problems can be obtained for any value of k
and of the ratio α = m/n. For instance, to build a solvable instance it is sufficient
that all clauses include a given variable xj or that all clauses include its negation
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x̄j . Conversely, any problem including the two clauses ri = xj and r2 = x̄j is
unsolvable. From this observation we may conclude that the generative model
of SAT problems establishes the syntax of the instances and that, for each k, m,
and n, the proportion of satisfiable (unsatisfiable) instances with the above for-
mat in the SAT (UNSAT) region is overwhelming. Thus, in order to precisely
pick a satisfiable or unsatisfiable problem instance at will, extra knowledge is
necessary.
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An important class of NP-complete problems is that of constraint satisfaction
problems (CSPs), which have been widely investigated and where a phase transi-
tion has been found to occur (Williams and Hogg, 1994; Smith and Dyer, 1996;
Prosser, 1996). Constraint satisfaction problems are the analogue of SAT prob-
lems in first-order logic; actually, any finite CSP instance can be transformed into
a SAT problem in an automatic way, as will be described in Section 8.4.

Formally, a finite CSP is a triple (X,R,D). Here X = {xi|1 ≤ i ≤ n}CSP

is a set of variables and R = {Rh, 1 ≤ h ≤ m} is a set of relations, each
defining a constraint on a subset of variables in X; D = {Di|1 ≤ i ≤ n} is a set
of variable domains Di such that every variable xi takes values only in the Di,
whose cardinality |Di| equals di. The constraint satisfaction problem consists in
finding an assignment in Di for each variable xi ∈ X that satisfies all relations
in R.

In principle a relation Rh may involve any proper or improper subset of X.
Nevertheless, most authors restrict investigation to binary constraints, defined as
relations over two variables only. This restriction does not affect the generality
of the results that can be obtained because any relation of arity higher than two
can always be transformed into an equivalent conjunction of binary relations.

A relation Rh involving the variables xi1 , . . . , xij can be represented asTabular
representation a table in which every row contains an admissible assignment (ai1 , . . . , aij )

70
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X = {x1, x2, x3}, R = {R1(x1, x2),R2(x1,x3),R3(x2, x3)},
D1 = D2 = D3 = {a, b, c, d}.

R1 (x1, x2) R2(x1, x3) R (x2, x3)3

1x 2x 1x 2x3x 3x

a b
a d

c b

c c

c d

a b

b d

c b

d c

a a

a d

b b

c a

c b

c d

d a

b d

Figure 4.1 Example of a binary CSP where the constraints are represented in
tabular form.

to (xi1 , . . . , xij ) of constants from Di1 × · · · × Dij . Some examples of rela-
tions are provided in Figure 4.1. Checking a constraint Rh on a variable as-
signment (ai1 , . . . , aij ) to (xi1 , . . . , xij ) reduces to checking whether the tuple
(ai1 , . . . , aij ) is present in the corresponding table.

If all relations are binary, an alternative representation for the constraints
becomes possible. In fact, a binary relation Rh(xi, xj) can be represented as a
Boolean matrix Mi,j of size di × dj , where an entry contains T (true) if the
corresponding tuple is admissible and F (false) otherwise. Entries containing T
are usually called goods whereas entries containing F are called nogoods. The
advantage of this representation is that a constraint can be checked in constant
time by means of a single inspection of the matrix. The disadvantage is that the
matrices can become very large when the size of the domains grows. Examples
of matrix representations are given in Figure 4.2.

Constraint satisfaction problems can be described in some logic language
which, most frequently, is chosen to be a subset of first-order logic. Finite CSPs
can be described in a function-free first-order logic called DATALOG, typically DATALOG

used in relational learning. We will come back to this point in Chapters 6 and 9;
here we will merely introduce the simple transformations necessary to express a
finite CSP in DATALOG.

Relations and variable domains can be immediately associated with predi-
cates in DATALOG. More specifically, a relation Rh(xi1 , . . . , xij ) of arity j can
be associated with a predicate ph(xi1 , . . . , xij ), of arity j having the same vari-
ables as arguments; a domain Di corresponding to variable xi will be associated
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X = {x1, x2, x3}, ,R = {R1(x1, x2), R2(x1, x3), R3(x2, x3)}
.D1 = D2 = D3 = {a, b, c, d}

R3(x2, x3)R2(x1, x3)R1(x1, x2)

F T F T

F F F T

F T T T

T F F F

x2
1x a b c d
a

b
c
d

F T F F

F F F T

F T F F

F F T F

x3
1x a b c d
a

b
c
d

T F F T

F T F F

T T F T

F F F F

x3
2x a b c d
a

b
c
d

Figure 4.2 Examples of the same binary relations as those in Figure 4.1. Here
the constraints are represented as Boolean matrices.

with a unary predicate ui(xi). Relations and domains define the semantic inter-
pretation of the corresponding predicates. Moreover, we notice that, in a CSP,
the set of constraints defined by the relations in R must be satisfied simultane-
ously. This corresponds to a logical AND. Therefore any CSP (X,R,D) can be
translated into a DATALOG formula having the format

CSP (x1, . . . , xn) =
n∧

i=1

ui(xi)
m∧

h=1

ph(xi1 , . . . , xijh
). (4.1)

For the example in Figure 4.1, expression (4.1) becomes

CSP (x1, x2, x3)
= u1(x1) ∧ u2(x2) ∧ u3(x3) ∧ p1(x1, x2) ∧ p2(x1, x3) ∧ p3(x2, x3).

Therefore, solving the CSP defined by this expression means finding a set of
values (substitutions) for the variables x1, x2, x3 that verifies CSP (x1, x2, x3)
in the universe defined by D and R. Artificial intelligence, operational research,
and logic programming offer a number of algorithms potentially eligible for this
task. However, depending on the specific case, not all algorithms are equivalent
from the performance point of view. Globally, the task remains non-polynomial
(unless P = NP). Nevertheless, subclasses of CSPs have been identified that
can be described in restricted fragments of DATALOG and can be solved in
polynomial time using proper algorithms.

For binary CSPs, a graphical representation can also be used; it consists of
an undirected graph G = (V,E), with |V| = n and |E| = m′, called the
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1x

3x2x

R1 R2

R3

Figure 4.3 Graphical representation of the binary CSP described in Figures 4.1
and 4.2. In this case the graph is completely connected, but this is not typical.

constraint graph. A simple example is provided in Figure 4.3. In the graph G, Constraint
graphthe vertices correspond to variables and the edges correspond to binary relations

(constraints). More precisely, an edge connects node xi with node xj iff there
exists a relation Rh(xi, xj) in R whose arguments are the variables xi and xj .
If several relations are allowed to share their arguments then the number m′ of
edges in G will be smaller than the number m of relations. If this is not allowed
then m = m′. Notice that the possible presence of unary relations is ignored
when considering the structure of the graph. They may possibly be associated
with its nodes.

The aspect of CSPs that primarily interests us, however, is the emergence
of a phase transition in sets of randomly generated problem instances. The Experimental

investigation of
phase transition

appearance of a phase transition has been experimentally investigated by sev-
eral authors, mostly in binary CSPs (Prosser, 1996; Smith and Dyer, 1996;
Giordana and Saitta, 2000; Smith, 2001; Xu and Li, 2000). In the following sec-
tions we will briefly recall the main results, and in later chapters the relationship
between CSPs and learning tasks will be illustrated.

4.1 Algorithms for solving CSPs

Constraint satisfaction problems encompass a broad class that includes several
subclasses, each characterized by peculiar features. This has led to different ap-
proaches to find a solution.

A first important subdivision is between “continuous” CSPs and “discrete” Continuous and
discrete CSPsCSPs. Continuous CSPs, where constraints usually take the form of inequalities,

are typically investigated in operational research and are solved with optimiza-
tion techniques such as, for instance, linear programming. Symbolic CSPs are
usually solved using search algorithms developed for artificial intelligence and
logic programming.

In the following we will briefly review algorithms for solving symbolic
CSPs, specifically those that can be described in DATALOG. Not surprisingly,
we will see that most methods we described for solving SAT problems have a
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correspondence in the more general framework of CSPs. However, the values of
variables in CSPs are not simply true or false, as in SAT, but are selected from
their corresponding domains of discrete values.

4.1.1 Generate and test with backtracking

Backtrack search is a general algorithm for solving any kind of search problem,
and it represents the baseline for solving a CSP. However, the well-defined for-
mal structure of a CSP allows task-specific heuristics to be exploited that apply
to the whole class and make the search much more efficient. Good introductions
to CSPs and CSP solvers are provided by Kumar (1992) and Russell and Norvig
(2003).

For illustrating these algorithms we will use a classical graph coloring prob-The minimum
number of colors

required for solving
this CSP is three.

lem as a guide line. Thus, suppose that the problem is to paint the faces of a
cube in such a way that adjacent faces always have different colors. Suppose,
moreover, that three colors are available: red (R), white (W), and green (G).

EXAMPLE

Problem: Assign colors to the six faces of a cube as above.
Available colors: R, W, G.
CSP formulation: Satisfy the logical expression

ϕ(x1 , x2 , x3 , x4 , x5 , x6) = Color(1, x1) ∧ Color(2, x2) ∧ Color(3, x3)
∧ Color(4, x4) ∧ Color(5, x5) ∧ Color(6, x6)

under the constraints

x1 �= x2 ∧ x1 �= x3 ∧ x1 �= x4 ∧ x1 �= x5 ,

x2 �= x3 ∧ x2 �= x5 ∧ x2 �= x6 ,

x3 �= x4 ∧ x3 �= x6 ,

x4 �= x5 ∧ x4 �= x6 ,

x5 �= x6 .

In the above formulas the predicate Color(k, xk ) has the meaning “Face
k has color xk ”. The constraint graph is shown in Figure 4.4(a) and the
search tree generated by the basic backtracking algorithm is given in
Figure 4.4(b). Integers denote the cube faces, whereas the lower-case let-
ters refer to the nodes of the search tree.

The basic search algorithm is very simple. The problem variables {x1, . . . , x6}
and the set of values characterizing the domain of each variable, i.e., D =
(R, W, G), are put into a chosen order a priori. Following this assigned order, the
algorithm tries to find a value, compatible with the problem constraints, for each
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Figure 4.4 Constraint satisfaction problem consisting in coloring the faces of
a cube using three different colors, R, W, G, in such a way that adjacent faces
cannot have the same color. (a) The constraint graph. (b) A search tree of pure
backtracking. Edges tagged with “x” correspond to backtrack actions.

variable. Every time a new assignment is made, the current partial solution is
checked against the constraints. If one (or more) is violated, the algorithm back-
tracks to the previous node and tries again with the next assignment. If a solution
exists, the algorithm is guaranteed to find it. Otherwise it will test all the possi-
ble assignments before reporting failure. This basic algorithm can be made much
more efficient by exploiting heuristics that are applicable to any CSP (Haralick Heuristics

and Elliott, 1980). The following are popular heuristics.

• Variable and value reordering In general, selecting variables and values Variable and value
reorderingaccording to an a priori order is not the most effective strategy. In fact,

the risk of backtracking in subsequent steps can be significantly reduced
by selecting the next action on the basis of results obtained in the previous
steps. A frequently used and easy to implement strategy consists in giv-
ing the preference to the most constrained variables. In our graph-coloring
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example this strategy reduces to selecting the cube face whose set of al-
ready colored neighborhoods is the largest.

• Look-ahead The basic algorithm first expands the tree and then checks
for consistency. Many wrong choices and the consequent backtracks can
be avoided by selecting values that are compatible with those already as-
signed. This can be done by introducing a look-ahead step, which checksLook-ahead

the constraints before expanding the tree (Frost and Dechter, 1995). Con-
sidering the tree in Figure 4.4(b), according to this strategy the nodes
d, e, g, i, l, n will not be generated.

• Intelligent backtracking The backtracking strategy used by the basic
algorithm, previously described, is called chronological backtrack, i.e.,
the algorithm goes back to the last choice made. It goes back further only
when all the choices in the current subtree have failed. An alternative strat-Intelligent

backtracking egy, developed for CSPs, consists in backtracking not to the last choice
point but to an upper-level node, where the search looks more promising,
thus avoiding a sequence of choices with consequent backtracks that can
be predicted to be unsuccessful. This strategy is called intelligent back-
tracking or back-jumping (Gupta, 2000; Prosser, 1995).

4.1.2 Constraint propagation

The most powerful task-specific technique for increasing the efficiency of CSP
solvers is constraint propagation (Tsang, 1993; Caramia and Dell’Olmo, 2002).Constraint

propagation When a value is assigned to a variable it is propagated through the constraint
graph, removing from the domains of the other variables values that are incom-
patible with the assigned value. In this way, in subsequent steps choices cannot
be made that are incompatible with the values already assigned. Of course, it may
happen that the domain of a variable becomes empty, requiring the sequence of
assignments already made to be reconsidered.

In the example of Figure 4.4, propagating the first value (R) assigned to
variable x1 (face 1) through the constraint graph has the effect of eliminating R
from the domains of the cube faces adjacent to face 1. Thus the domains of x2,
x3, x4, and x5 will contain only the values W and G. After the color of x2 has
been selected as W, the domains of x3 and x5 will contain only G, that of x4 still
contains W and G, and that of x6 contains R and G. So, in this simple case, after
a few steps the procedure reduces to a deterministic choice.

In general, constraint propagation is combined with a backtracking algorithm
and has the effect of reducing the need for backtracking to the case where one or
more variables have an empty domain. Notice that, by limiting constraint prop-
agation to the relations directly affecting a variable in the constraint graph, this
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strategy corresponds to a look-ahead step. However, propagation through the full
graph allows long-range interactions between variables to be captured, and this
leads to the detection of constraint violations. A good strategy, usually adopted The most constrained

variables should be
selected first.

in CSP solvers based on constraint propagation, is to select first the most con-
strained variables.

Finally, the constraint propagation technique can be combined with the back-
tracking heuristics previously mentioned, leading to a family of hybrid search
algorithms where techniques such as back-jumping can be made smarter by ex-
ploiting the constraint graph (see, for instance, Prosser, 1993).

4.1.3 Local search

As we have already seen for SAT, local search algorithms are quite popular and
effective for general CSPs also.

Usually, local search starts with a tentative assignment, which may be chosen
randomly or according to some problem-specific heuristic. Then the assignment
is progressively refined by the elimination of constraint violations as far as pos-
sible. The search process often follows a hill-climbing strategy, selecting trans-
formations that minimize the number of violated constraints. When the search
becomes entrapped in a local minimum, from where a consistent solution can-
not be reached, a restart is made by selecting another initial hypothesis. There-
fore, local search is frequently used in conjunction with stochastic algorithms Stochastic

algorithms
and restart

for selecting the restart points. Moreover, local search for CSPs has been widely
exploited in connection with evolutionary algorithms (Michalewicz, 1996) and
simulated annealing (Kirkpatrick et al., 1983).

One popular algorithm, which we have already mentioned for SAT at the
end of Section 3.5.2 and which works very well for CSPs, is WalkSAT (Erenrich
and Selman, 2003). Another algorithm, which is simple to implement and has
performed extremely well on a large number of CSPs, is ChainSAT (Russell and
Norvig, 2003; Alava et al., 2008).

4.1.4 MaxCSP

In the previous chapter we saw a generalization of SAT called MaxSAT, which
finds a partial solution minimizing the number of violated clauses. In an anal-
ogous way, MaxCSP finds a solution satisfying the largest possible subset of
constraints. However, in view of the wider framework set by CSPs, MaxCSP in- As many

clauses
as possible
are satisfied.

cludes a variety of subcases, which differ both in the problem setting and in the
specific techniques developed for addressing the task.

A first remark is that most MaxCSP research has been done in the area
of continuous-valued CSPs and involves linear programming. Here, constraints
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come in the form of inequalities such as xi ≤ xj . As we have already men-
tioned, investigating CSPs in continuous domains is beyond the scope of this
book. Nevertheless, it is worth noticing that this kind of CSP is very important
for approaches to machine learning based on regularization theory and linear
algebra, such as kernel machines (Shawe-Taylor and Cristianini, 2004). Never-
theless, in many cases a continuous CSP can be approximated by a discrete one
(Deineko et al., 2008).

In MaxCSP a fundamental distinction is made between hard constraints and
soft constraints. Hard constraints cannot be violated whereas soft constraintsHard and soft

constraints provide options to be optimized. In other words, a solution to a MaxCSP must
satisfy all hard constraints and, in agreement with them, as large a number of
soft constraints as possible. The number of satisfied soft constraints is usually a
parameter for ranking alternative partial solutions.

As for SAT, many algorithms designed for CSPs can be adapted to MaxCSP.
The best candidates are those based on local search and multiple restart, such as
WalkSAT. Nevertheless, the literature shows that a remarkable number of spe-
cific algorithms have been produced for MaxCSP. In particular, most stochastic
algorithms based on genetic algorithms and simulated annealing are aimed at
solving problems that fit into the MaxCSP framework.

4.1.5 Constraint logic programming

Constraint logic programming is a form of constraint programming in which
logic programming is extended to include techniques from constraint satisfac-
tion (Van Hentenryck, 1989; Jaffar and Maher, 1994). In practice, constraint
logic programming is a good framework for CSPs: logic programming provides
a satisfactory environment for specifying CSPs while constraint programming
algorithms provide the tools for implementing efficient CSP solvers (Apt, 2003;
Dechter, 2003).

The logic programming environment is based on Horn clauses and contains
DATALOG as a special case. The classical logic programming environment is
represented by Prolog. In Prolog, a logic program consists of a set of Horn
clauses that, in principle, can be seen as a statement of the constraints char-
acterizing a CSP. The Prolog interpreter executes a logic program that tries to
solve the CSP it encodes, i.e., it tries to find a value for each variable occurring
in the clauses that satisfies all logical constraints.

The classical interpreter is based on a pure backtracking algorithm, which
operates exactly as described in Section 4.1.1. In constraint logic programming
the interpreter is extended with constraint propagation techniques. However, inBacktrack

algorithms this environment constraints on the variable domains are not explicitly given but
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may occur in the body of a clause together with other literals. The job of dis-
covering and handling them is left to the interpreter. Before assigning a tentative
value to a variable occurring in a clause, the interpreter scans the other clauses
looking for constraints on the variable’s domain. Constraints encountered during
this scan are kept in a set called a constraint store. If this set is found to be unsat-
isfiable, because some variable has an empty domain, the interpreter backtracks
and tries to use other clauses to attain the goal. In practice the constraint set may
be checked using any algorithm used for CSPs.

Constraint logic programming is still an active research area, and the envi-
ronments for constraint logic programming are becoming more and more pow-
erful and sophisticated (Apt and Wallace, 2007).

4.2 Generative models for CSPs

In order to investigate the emergence of a phase transition in CSPs, it is necessary
to analyze a large number of problems, as in the case of k-SAT. However, now
the problem of generating random CSPs is more complex. The problem space is
characterized by a greater number of dimensions, and it becomes more difficult
to explore it systematically. For this reason many authors have proposed gen-
erative models that sample restricted subspaces of the problem space in which
phase transitions are detected but which are still representative of the CSPs en-
countered in the real world.

In the following we will consider only binary CSPs and will mostly follow
Prosser’s approach (Prosser, 1996). In order to generate a random ensemble of
CSPs, the stochastic construction of the problem instances must follow a precise
probability model. Randomly generated (binary) CSPs are characterized by the Generating

models4-tuple (n, d, p1, p2), where n is the number of variables, d is the size of the
domains, which is assumed to be the same for all variables, p1 is the fraction
of existing edges among the n(n − 1)/2 possible edges in the constraint graph,
and p2 is the fraction of value pairs excluded by each relation Rh; again, it is
assumed that each relation prohibits the same number of pairs. The parameter p1,
the constraint density, may be thought of as the density of the constraint graph, Constraint

density
and tightness

whereas p2 is the constraint tightness (Smith and Dyer, 1996; Prosser, 1996). We
may notice that this generative model makes the simplifying assumption that all
the domains in which the variables take values have the same cardinality d and
that each relation Rh rules out the same number of value pairs.

The 4-tuple (n, d, p1, p2) can be interpreted in different ways according to
whether p1 and p2 are treated as probabilities or as parameters specifying exactly
the number of edges in the constraint graph and the cardinality of the relations,
respectively. More precisely, four models were introduced initially in the study
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of phase transitions in CSPs (Smith and Grant, 1997; MacIntyre et al., 1998;
Prosser, 1996; Gent et al., 2001), as follows.

Model A In this model, both p1 and p2 are treated as probabilities. MoreModel A

specifically, given a number n of variables and a probability p1, let the con-
straint graph G be an element of the Erdös and Rényi graph ensemble Gn,p1 ,
as introduced in Definition 3.6. As described in Section 3.2, the number m of
edges in G is a stochastic variable that follows a binomial distribution with mean
m ≡ E[m] = p1n(n − 1)/2 and variance V[m] = p1(1 − p1)n(n − 1)/2. The
relation between m and p1 is then

p1 =
2 E[m]

n(n− 1)
or E[m] = p1

n(n− 1)
2

.

For the second control parameter, p2, we proceed as follows: consider in turn
each edge in G. Let (xi, xj) be an edge. From the Cartesian product D×D, of
cardinality d2, extract without replacement and with probability 1− p2, a number
of variable assignment pairs (ai, aj) and use them to create a table Rh(xi, xj).
This table represents the allowed assignments (ai, aj) to (xi, xj). Then the car-
dinality N of each relation (edge) is a stochastic variable with mean (1− p2)d2

and variance p2(1− p2)d2. More precisely,

p2 = 1− E[N ]
d2 or E[N ] = (1− p2)d2.

In model A, two instances of CSPs having the same control parameters p1 and
p2 will differ in the number of edges in the constraint graphs, in the identity of
these edges, in the number of goods, and in their identity.

Model B In this model both p1 and p2 are treated as proportions (Palmer,Model B

1985). More specifically, given a number n of variables and a number m of
edges, let the constraint graph G be an element of the Erdös and Rényi graph en-
semble Gn,m , as introduced in Definition 3.7. In this case edges are added to G by
extracting without replacement m elements from the possible set of n(n− 1)/2
edges. The relation between m and p1 will then be

p1 =
2m

n(n− 1)
.

For p2, consider in turn each edge in G. Let (xi, xj) be an edge. From the Carte-
sian product D ×D, of cardinality d2, extract without replacement N variable
assignment pairs (ai, aj) and create a table Rh(xi, xj). These pairs represent the
allowed assignments (ai, aj) to (xi, xj). Then the cardinality N of each relation
is linked to p2 via

p2 = 1− N

d2 .
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In model B, two instances of CSPs having the same values of m and N will
differ in the identity of the edges in the constraint graph and in the identity of the
goods (see Section 4.1).

Model C In this model, p1 is considered as a probability and p2 as a proportion; Model C

p1 and N are given. The constraint graph G is built up as in model A and belongs
to Gn,p1 . The relation between m and p1 is

p1 =
2 E[m]

n(n− 1)
or E[m] = p1

n(n− 1)
2

.

The relations corresponding to the constraints, however, are built up as in
model B. Thus

p2 = 1− N

d2 .

In model C, two CSP instances having the same values of p1 and N will differ in
the number of edges in the constraint graphs, in the identity of these edges, and
in the identity of the goods.

Model D In this model, p1 is considered as a proportion and p2 as a probability; Model D

m and p2 are given. The constraint graph G is built up as in model B and belongs
to Gn,m . Then the relation between m and p1 is

p1 =
2m

n(n− 1)
or m = p1

n(n− 1)
2

.

The constraints are built up as in model A, and so

p2 = 1− E[N ]
d2 or E[N ] = (1− p2)d2.

In model D, two CSP instances having the same values of m and p2 will differ
in the identity of edges in the constraint graphs and in the number and identity
of the goods.

4.3 Phase transition in a CSP

Using various control parameters, several studies have been performed on the
emergence of a phase transition in CSPs. In particular, Prosser (1996) system-
atically explored the spaces of the control parameters p1 and p2 experimentally,
using model B. As mentioned in Chapter 3, the resulting CSP corresponds to a
constraint graph belonging to Gn,m and p1 is a parameter controlling the emer-
gence of a phase transition in the connectivity. Thus, for low values of p1 the
resulting graph G may be disconnected. Particular cases occur when p1 and p2
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assume extreme values. For example, if p1 = 1 then G is complete. If p2 = 1
then N = 0, i.e., no pairs of values are allowed and the problem instance is
certainly unsolvable; on the contrary, p2 = 0 denotes a surely solvable problem
instance with no disallowed pairs.

In the experiments Prosser used FC-CBJ-DKC-FP, a complete forward-
checking algorithm with conflict-directed backjumping, extended with directedProsser’s

experiments k-consistency and the fail-first heuristic (Prosser, 1996). He generated sets of
problems (20, 10, p1, p2) with n = 20 variables and uniform domain size
d = 10. The values of p1 ranged from 0.1 to 1 in steps of 0.1, whereas the
values of p2 ranged from 0.01 to 0.99 in steps of 0.01. For each pair of p1 and p2
values, 100 problems were generated. Globally the experiments involved 99 000
problems, with a ratio 1.27 of solvable and unsolvable problems.

The experiments were performed by varying the p2 values for each p1 value.
Prosser measured the complexity of the search by the number of consistency
checks; when p1 = 0.5 he found that the search complexity showed a marked
increase around p2 ≈ 0.30, reached a maximum at p2 ≈ 0.38, and then de-
creased again (see Figure 4.5).

In the region 0.35 < p2 < 0.41 there is a mixture of solvable and unsolv-Mushy region

able problems; Smith (1994) referred to this as the mushy region. It is in this
region that the average search effort is maximal. Unsolvable instances require,
on average, a greater computational complexity at the phase transition because
the whole search tree may need to be explored.

As p2 is varied across the mushy region, the probability of finding a solution
Psol drops from almost 1 to almost 0 (Williams and Hogg, 1994; Smith and
Dyer, 1996; Prosser, 1996). The complexity involved in finding one solution (or
of proving unsolvability) shows a marked peak at Psol = 0.5, which is called the
crossover point (Crawford and Auton, 1996; Smith, 1994).

Prosser (1996) also performed experiments in which he let both p1 and p2
vary at the same time, obtaining the graphs in Figure 4.6.

The p2 value corresponding to the crossover point, p̂2,cr , is called the critical
value; it is conjectured to correspond to an expected number of solutions roughly
equal to 1 (Williams and Hogg, 1994; Smith and Dyer, 1996; Prosser, 1996; Gent
and Walsh, 1996). Its location also depends upon the structure of the constraint
graph. Williams and Hogg (1994), Prosser (1996), and Smith and Dyer (1996)
all derived the same estimate for the critical value of p2:

p̂2,cr = 1− d−2/p1 (n−1) = 1− d−n/m. (4.2)

The estimate p̂2,cr can be used to predict the location of the phase transition.Location of the
phase transition Formula (4.2) was derived by assuming that the average number of solutions

(over the set of problems) at the phase transition is 1. However, the value p̂2,cr

given by (4.2) is a good predictor only for high values of p1 or for large values
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Figure 4.5 Computational search complexity vs. p2 for the (20, 10, 0.5, p2) en-
semble of CSP problems. (a) The mushy region. (b) The complexity is evaluated
as the number of consistency checks made by the FC–CBJ–DKC–FP algorithm.
For p2 < 0.35 all the considered problems were solvable whereas for p2 > 0.41
all were unsolvable. Reprinted from Prosser (1996) with permission.

of n. If p1 is low, typically p1 < 0.3, the constraint graph is sparse and many
alternative configurations may exist, loosening the correspondence between p̂2,cr

and the actual location of the phase transition. In this case the mushy region is
determined by a mixture of alternative constraint graphs, each corresponding
to a different crossover point. An average number of solutions equal to 1 may
then correspond to a large number of unsolvable problems coupled with a small
number of solvable problems with many solutions. The effect is to shift the value
given by (4.2) to the right of the actual phase transition location.

Other authors have used different control parameters to specify the location
of the phase transition. For instance, Williams and Hogg (1994) considered an

Model of Williams
and Hogg
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Figure 4.6 A map of (a) search effort and (b) solubility for the (20, 10,
p1, p2) problems investigated by Prosser. Reprinted from Prosser (1996) with
permission.

ensemble of problems characterized by the 4-tuple (n, d, m, N ′), where n, d,
and m have the same meaning as previously whereas N ′ is the number of no-
goods per constraint, i.e., N ′ = d2 −N . These authors suggested that the phase
transition occurs when the ratio β between the total number of local nogoods
(conflicts between a pair of variables) and the number of variables assumes a
critical value. The parameter β can be expressed in terms of p1 and p2 as

β =
(d2 −N)m

n
=

1
2
p1(n− 1)p2d

2. (4.3)

The critical value βcr was given by Williams and Hogg (1994):

βcr = − ln d

ln(1− d−2)
. (4.4)
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The value βcr can be rewritten in terms of p2 as follows:

βcr = −p2d
2 ln d

ln(1− p2)
, (4.5)

When β = βcr , the value p̂2,cr can be inserted into both (4.3) and (4.5), giving

1
2
p1(n− 1)p̂2,crd

2 = −p̂2,crd
2 ln d

ln(1− p̂2,cr)
. (4.6)

By simplifying (4.6) and solving with respect to p̂2,cr , we obtain

ln(1− p̂2,cr) =
2

p1(n− 1)
ln
(

1
d

)
. (4.7)

and finally
p̂2,cr = d−2/p1 (n−1) = 1− d−n/m. (4.8)

Expression (4.8) is the same as (4.2).
Gent and Walsh (1996) proposed yet another parameter, κ, to quantify the Parameter κ

constrainedness of the search. This parameter is defined in terms of the number
S of search states and the average number of solutions, Nsol:

κ = 1− log2 E[Nsol]
log2 S

, (4.9)

where E[Nsol] is the expected number of solutions existing in a search space
with S states. Assuming that the phase transition occurs for E[Nsol] = 1, the
critical value of κ is κcr = 1. For a CSP of the type considered by Gent and
Walsh, formula (4.9) gives

κ = −m log2(1− p2)
n log2 d

. (4.10)

Setting κcr = 1, expression (4.2) is obtained for the corresponding p̂2,cr .

4.3.1 Asymptotic behavior

In the studies reported above the number of variables was usually kept constant,
whereas the structural parameters were varied. An interesting question is what
happens when the CSP’s size grows, in particular when the number of variables
n →∞.

In some insightful work, Achlioptas et al. (1997, 2001a) investigated the CSP
ensembles generated with model B by assuming that the number of variables, n,
increases. The main result is that when n → ∞ the probability that a random
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instance generated by Model B is unsolvable tends to 1, provided that p2 � 1/d.Asymptotic behavior
for n → ∞ Thus, the authors question the claim that a “true” phase transition exists for such

ensembles (except for a small region in the parameter space where p2 < 1/d).
The condition p2 < 1/d is equivalent to

1− N

d2 <
1
d

⇐⇒ N > d(d− 1).

More specifically, Achlioptas et al. (1997) set p1 = c/n, where c is a sufficiently
large constant. Using the expression p1 = 2m/n(n−1) for model B one obtains

p1 =
c

n
=

2m

n(n− 1)

and thus

np1 =
2m

n− 1
= c = constant.

As a consequence the number of constraints, m, must scale linearly with n.
The asymptotic behavior of CSPs for increasing n was investigated also by

Smith (2001), who proposed a modification of model D in order to obtain a
guaranteed phase transition in CSPs, for a specified range of p2 values. This
was achieved by letting some parameters defining the instances vary with n, as
described in the next subsection.

4.3.2 New models

In order to overcome the problem discussed in the previous subsection, new mod-
els for generating CSP ensembles, which are guaranteed to exhibit a phase tran-
sition even asymptotically, have been proposed. One was defined by Achlioptas
et al. (1997); the authors called it model E.

Model E This model is specified by four parameters n, m, d, k, where n isModel E

the number of variables, m the number of constraints, d the cardinality of the
variables’ domains, and k the arity of the constraints (we will consider the case
k = 2). The CSP instances are generated by selecting uniformly, at random, and
with repetition a total number of nogoods.

The generation of nogoods in model E is similar to that proposed by Williams
and Hogg (1994) except that repetition is allowed in model E. According to
Achlioptas et al. (1997), model E is interesting when the number of constraints is
m = Θ(n). However, a disadvantage of this model is that a complete constraint
graph is easily generated, in which constraints have only a few forbidden pairs
of values. This makes it unrepresentative of the CSPs that arise in real-world
problems.
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Denoting by r the ratio m/n of the number of constraints over the number
of variables, and by Pk(n, r) the probability that a random instance generated by
model E be solvable, the following properties can be proved.

Theorem 4.1 {Achlioptas et al., 1997} For any k there exists a function rk(n) Exact phase
transitionsuch that, for any ε > 0,

lim
n→∞

Pk(n, rk(n)− ε) = 1 and lim
n→∞

Pk(n, rk(n) + ε) = 0.

Then, for all r � 0 and ε > 0,

if lim inf
n→∞

Pk(n, r) � ε then lim
n→∞

Pk(n, r) = 1.

The above theorem can be used to prove that ensembles of CSP instances gen-
erated according to model E indeed exhibit a phase transition. However, Gent
et al. (2001) showed that things are actually more complex than that, as there are
regions where model B does not suffer from the flaws pointed out by Achlioptas
et al. (1997) whereas model E does. In the same paper, the authors noticed also
that in real-world problems it is not unusual to observe structures in a constraint
graph that are very rare in random graphs. These structures may strongly affect
the performances of solving algorithms.

As mentioned in the previous subsection, Smith (2001) proposed a modifica- Modified
model Dtion of model D in which both the number of constraints m and the domain size d

slowly increase with n. More specifically, let us suppose that we have generated
an ensemble of instances having parameter sets (n0, m0, p

(0)
1 , p

(0)
2 ). If n → ∞,

on the one hand the behavior of d(n) is determined by the expression

d = a log n + c,

where a is a constant greater than 1, the log is to the base 2, and c is a constant
depending on n0, m0, and a. On the other hand, m(n) is determined by the
following equation: {

1−
[
1−
(
1− p

(0)
2

)d]m}n−1

=
1
2
. (4.11)

From (4.11) the function m(n) can be derived:

m(n) =
log
(
1− 2−1/(n−1)

)
log
[
1−
(
1− p

(0)
2

)d(n)
] .

With this choice of d(n) and m(n), all instances for which p2 � p
(0)
2 are satisfi-

able with probability at least 0.5. Hence, p
(0)
2 is a lower bound for the transition
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point. In order to guarantee that a phase transition occurs for all values of n, the
upper bound of p2,cr must converge to a value less than 1. This last condition
was verified experimentally by Smith (2001), who also proved that

p2,cr < 1−
(
1− p

(0)
2

)2
.

The above results, obtained by modifying model D, cannot be transferred directly
to the other standard models, A, B, and C.

Starting from the analysis of Achlioptas et al. (1997), Xu and Li (2000, 2006)
proposed a new generative model, model RB, which is guaranteed to show a
phase transition even in the asymptotic case of large n. The model has two
control parameters, r and p; they have critical values rcr and pcr , respectively.
For any fixed value r < rcr or p < pcr , a random CSP instance, generated by
model RB, is satisfiable with probability almost 1, when n → ∞. Conversely,
a random CSP instance is unsatisfiable with probability almost 1 when r > rcr

or p > pcr . The critical values rcr and pcr can be computed exactly. Model RB
assumes that all constraints have arity k � 2. The main departure from previous
models is that the cardinality of the variables’ domains is no longer constant but
depends on n: d = nα . The generation of the CSP instances is achieved in two
steps, as described in the following.

Model RB (Xu and Li, 2000) Step 1: Select with replacement m = rn lnnModel RB

random constraints, each involving a set of k variables extracted without replace-
ment from the set X. Step 2: For each constraint, select uniformly, without re-
placement, a number N = (1− p)dk of compatible tuples (goods) of values.

An instance of model RB is denoted by RB(k, n, α, r, p). The parameter
r > 0 determines the number of constraints m = rn lnn, the parameter p (0 �
p � 1) determines the number N = (1−p)dk of allowed tuples for each relation,
k � 2 is the arity of each relation, n � 2 is the number of variables, and α > 0
determines the domain size d = nα of each variable.

Regarding model RB, the main results of the papers of Xu and Li (Xu and
Li, 2000, 2006) is contained in the theorems that follow.

Theorem 4.2 {Xu and Li, 2000} Let rcr = −α/ ln(1 − p). If α > 1/k andExact location of
the phase transition 0 < p < 1 are two constants, and k and p satisfy the inequality k � 1/(1− p),

then

lim
n→∞

P(SAT ) = 1, r < rcr, (4.12)

lim
n→∞

P(SAT ) = 0, r > rcr. (4.13)
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Theorem 4.3 {Xu and Li, 2000} Let pcr = 1− e−α/r . If α > 1/k and r > 0
are two constants, and k, α, and r satisfy the inequality ke−α/r � 1, then

lim
n→∞

P(SAT ) = 1, p < pcr, (4.14)

lim
n→∞

P(SAT ) = 0, p > pcr. (4.15)

For the problem instances generated by model RB it is possible to compute
an average number of solutions:

E[sol] = dn(1− p)rn ln n = nαn(1− p)rn ln n.

With model RB it is possible to generate provably hard instances in the proximity
of the phase transition location for all values of n (Xu and Li, 2006).

4.4 Comments

Solving CSP is central to the theme of the book; relational learning heavily relies
on it, as will be described in Chapters 9 and 10. Even though any finite CSP can
be translated into an equivalent SAT problem, as will be shown in Section 8.4,
handling CSP instances directly appears more complex than handling SAT in-
stances; in the first place CSPs have more degrees of freedom (two relevant con-
trol parameters, p1 and p2, instead of just one, α, as in SAT). Moreover, several
generative models with different characteristics are available.

An interesting point, not yet fully analyzed,1 is the structure of the con-
straint graph. Basically, in the vast majority of work this structure corresponds,
with small variations, to the Erdös and Rényi ensembles of random graphs (see
Section 3.2), but in principle the differing underlying structures can deeply af-
fect solvability. As in the case of SAT, if we consider CSP instances that are not
random then the consequences may be quite different from the theoretical pre-
dictions, both in terms of solvability and in terms of computational complexity.

Moreover, we have to notice that statistical physics methods have been ap-
plied directly to CSPs much more rarely than to SAT problems, and mainly with
the aim of counting existing models. A paper that makes use of these methods is
Gent et al. (1995). The authors established a (weak) link with a physical system
by associating variables with multi-valued “spins” interacting through the CSP’s
relations and associating the parameter κ (see (4.10)) with a kind of “tempera-
ture”. They used a heuristic method called finite-size scaling to model the phase
transition in CSPs. This method predicts that, at the phase transition, problems

1With some exceptions; see, for instance (Walsh, 1999).
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Figure 4.7 Example of a graph associated with a CSP problem having m = 12
literals and L = 15 constants.

of different sizes cannot be distinguished, except for a change of scale. In other
words, we have

Psol = f
(
(τ − τcr) N (1/ν)

)
, (4.16)

where f is some function, τ is the order parameter under consideration, and N
represents the size of the system.

A closer connection between a CSP and a statistical physics system might
be established by associating goods with the particles in a many-body system.
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Each good corresponds to a node in a graph; the different goods (ai, aj ), sat-
isfying a predicate ϕ(xi, xj) are independent and, hence, not connected; two
goods (ai, aj) and (bh, bk) satisfying predicates ϕ1(xi, xj) and ϕ2(xh, xk), re-
spectively, are connected in the graph if the conjunction ϕ1(ai, aj) ∧ ϕ2(bh, bk)
is true. An example of such a graph is shown in Figure 4.7. Finding a solution
to the CSP corresponds to finding a subgraph in this graph (see Chapter 14 for
more details). The graph obtained may be quite complex and can be analyzed
using statistical physics methods, as described in Chapter 12.
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In this chapter we introduce the main topic of this book, namely machine learn-
ing. In order to make the book self-contained, a brief introduction to the subject
is presented.

The word learning is generally associated with a category of performance,Learning

as in learning to play chess or learning to program computers, or with a corpus
of knowledge, as in learning geometry. It also often comes in association with
some mechanism, as in learning by doing, learning by explanation, learning by
analogy, learning by trial and error, and so on.

Learning appears under seemingly very different guises: from habituation
(the reduction in sensibility or attention with the repetition of a situation or
in problem solving), imitation, rote learning, discrimination (the ability to dis-
tinguish one type of input from others), categorization (constructing categories
from observations of the environment), to learning whole bodies of knowledge
or even discovering theories about the world.

Since learning (throughout evolution or through cultural and individual ac-
quisition) is at the source of all behavioural and cognitive capabilities in naturalUbiquity of learning

systems, as well as in many artificial ones, it is no surprise that it displays such
a wide variety of appearances and mechanisms. There are, however, some com-
mon aspects and ingredients that underlie many of these diverse manifestations

92
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of learning. One can list at least three:

• percepts

• decision and actions

• measure of performance

An agent learns when it interacts with the world, using percepts to make
decisions and take actions, and then measures its performance with the aim of
improving its future decision-making process.

Rote learning is the limiting case, when learning solely involves the storage
of past experience in order to determine future decisions or actions. Actually, Generalization

even rote learning is not possible per se since it implies by necessity some form
of selection in the storage of the “raw percepts”. This in turn means that several
percepts might be stored as the same “experience” even though they are actually
different. Generalization, albeit in an arguably limited form in rote learning, is
thus an intrinsic part of learning. This is even more so when one is considering
learning to discriminate from examples, categorizing, or constructing theories
about the world.

One of the simplest and purest form of learning is concept learning. The
word “concept” may have several meanings and definitions. In the first place Concepts

there are two approaches to defining a concept, the extensional approach and
the intentional approach. In the extensional approach a concept is simply a
set of objects (instances) that share some properties. In the intensional ap-
proach there are at least three different views. In the classical view, which
goes back to Aristotle, a concept is a name corresponding to a set of nec-
essary and sufficient conditions. The instances are not given explicitly but
they are all those objects that satisfy the conditions. This definition, well
suited for mathematical concepts, is inadequate for everyday-life concepts, as
Wittgenstein pointed out with the simple example of the concept of a “lemon”,
for which defining criteria cannot be formulated (Wittgenstein, 1954). Thus
weaker definitions have been introduced. The “heuristic” view of a concept
keeps only sufficient conditions, whereas the “exemplar” view (Rosch, 1973;
Murphy, 2002) considers a concept as a prototype, i.e., a real or virtual example
characterized by the “typical” features occurring in the instances. In machine
learning the heuristic view dominates the field.

5.1 Concept learning

In many learning situations a central task consists in acquiring the ability to dis-

Interesting experiments
on human and animal
classification in regard
to toxic substances
were reported by
Fabre-Thorpe et al. (2001).

tinguish between one class of patterns (a “concept”) and the rest of the world.
Evolution has thus endowed animals with the ability to quickly distinguish
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predators from other living beings and to distinguish edible substances from
potentially toxic substances. In most cases this discrimination capability is ac-
quired through exposure to experiences felt either as positive (e.g., good food)
or as negative (e.g., bringing sickness). This type of learning situation, whereSupervised learning

each supposedly isolated input is associated with a response, is called super-
vised learning because it corresponds to teacher-assisted environments, in which
a teacher helps the learner by tagging each output. The couple (input, tagged
output) is accordingly called a training instance.Training examples

When the responses, or tagged outputs, can only take one of two values (pos-
itive or negative), the learning task is described as concept learning. Training
instances associated with a positive response are called positive examples, or ex-
amples for short, while instances associated with a negative response are called
negative examples or counter-examples.

More formally, concept learning involves the task of inducing a Boolean
function defined over an input space, also called an example space and denoted
by X , onto a set Y = {−1, 1} from a limited training set, denoted by SL , com-
prising m learning examples (�xi, yi) (1 ≤ i ≤ m). Although the term “set”
is conventional, these training examples may be either different examples or re-
peated examples. Furthermore, they can be accessed and considered sequentially
by the learner – in an online setting – or dealt with in a single sweep, as in a batch
setting. One crucial difference lies in the fact that, in the former setting, at any
one time the learner maintains a model of the environment and has to use this
model, instead of a memory of past events, to make decisions and learn further.

5.1.1 A formal view of concept learning

Most studies in inductive learning assume that the patterns that are encountered,
either by the learner or the classifier, are generated according to a random pro-
cess, as follows. Each pattern or object belongs to class −1 or class 1 and is
summarized by a finite number, say n, of measurements (generally real-valued),
called features. Thus the description of a pattern is given by a feature vector
�x ∈ X (where, most often, X = R

n). The uncertainty about the class to which
an object belongs is modeled using a priori probabilities P−1 and P1 for the
two classes (such that P−1 + P1 = 1). To express the relationship between the
class of an object and the feature vector (including the uncertainty and noise in
the measurement process), it is assumed that an object in the class y ∈ {−1, 1}
engenders a random feature vector according to a class-conditional distribution
function PX|Y (see Figure 5.1).

In this setting the learning agent comes across random feature vectors �x
(called “observables”), which are generated according to the following two-stage
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P P
y <x, y>

Y X|Y

Figure 5.1 The two-stage generation of learning examples.

process. First, a random class y ∈ {−1, 1} is selected using the a priori prob-
abilities PY ; then the observed feature vector �x is generated according to the
class-conditional distribution PX|Y . The distribution over labeled patterns is thus
given by PXY(�x, y) = PY(y) PX|Y(�x, y) = PX (�x) PY|X (�x, y).

When acting as a classifier, the agent is facing the following problem: given
a realization of the measured feature vector �x, to decide whether the unknown
object engendering �x belongs to class−1 or class 1. In this setting, a classifier or
decision rule is simply a mapping h : X → Y that determines the class h(�x) to
which an observed feature vector �x should be assigned. In the context of machine In statistics a hypothesis

is known as a model.learning this map is called a hypothesis, hence the notation h. We will denote by
H the space of possible hypotheses.

The performance of a classifier can be defined as the probability of error,
given by

ε(h) = PXY{h(�x) �= y}. (5.1)

In general different costs can be assigned to different types of errors by In medicine it is much
more costly to miss a
tumor diagnosis than to
make a more expensive
analysis only to find out
that it was a false alarm.

specifying a loss function �, defined as

�(h(�x), y) : X × Y → R
+. (5.2)

The performance of a classifier is defined as a risk, which is an expectation over Risk.

the possible events:

R(h) = E[�(h(�x), y)] =
∫

�x∈X ,y∈Y
�(h(�x), y)PXYd(�x, y). (5.3)

If the a priori probability PY and conditional probability PY|X are known Bayes’ decision rule

then the optimal decision rule, in the sense that it gives the minimum probability
of error (or minimum risk), is Bayes’ decision rule,1 denoted h∗ and defined by

h∗(�x) = ArgMin
y∈{−1,1}

(
�(y, 1− y) PYX (�x, y)

)
. (5.4)

In many situations, however, the distribution PXY is unknown or only par-
tially known. It is then generally assumed that, in addition to the observed

1The Bayes error is zero when there are no two examples, belonging to different classes, that
have identical descriptions. When such two examples do exist, it is clearly impossible to discrim-
inate between them.
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vector �x, one is given a training set SL = {(�x1, y1), . . . , (�xm, ym)} ∈ (X×Y)m

that is chosen according to the unknown probability distribution PXY . The basic
assumption underlying learning is that all the data (both observed and unseen)
are generated by the same process, which is formalized by saying that the data is
sampled independently from the same (fixed but unknown) probability distribu-
tion (i.i.d. sampling). The i.i.d. assumption expresses the relationship needed for
the induction task of inferring rules for future unseen data from the data at hand.

The learning problem can be then formulated as follows. Given a training
set consisting of labeled objects, assumed to be drawn i.i.d. from the unknown
distribution PXY , find a function h that assigns labels to objects such that if new
objects are given then this function will label them correctly.

5.1.2 Concept learning in three questions

Short of attaining a perfect identification of the target dependency between the
feature vectors �x and their labels, the performance of a classifier or hypothesis
is measured by the risk R(h) (see (5.3)). A large part of the theory in machine
learning focuses on finding conditions for constructing good classifiers h whose
risk is as close to R∗ = R(h∗) as possible.

Thus the questions that have to be answered for learning to take place are the
following.

1. How should one choose an appropriate hypothesis space?

2. How should one evaluate functions in the hypothesis space?

3. How should one explore the space in order to find a (sub)optimal hypoth-
esis?

The first two questions are intimately related. Let us first tackle the sec-
ond question: on the basis of the information available after the performance
of a training set has been observed, which hypothesis (or hypotheses) should be
preferred?

A natural and simple approach is to consider the class H of hypotheses h :
X → Y and to estimate the performance of each hypothesis on the basis of itsEmpirical risk

empirical performance measured on the learning set. The most obvious choice
to estimate the risk associated with a hypothesis is to measure its empirical risk
on the learning set SL:

Rm(h) =
1
m

m∑
i=1

�(h(�xi), yi), (5.5)
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which, in the case of binary classification with a {0, 1} loss function, gives

Rm(h) =
1
m

m∑
i=1

I(h(�xi ) �=yi ), (5.6)

where one counts the number of prediction errors on the training set. In (5.6), Iα

denotes the indicator function of the condition α:

Iα =
{

1 if α is true,
0 if α is false.

In this framework it is natural to select the hypothesis with the minimal empirical
risk as the most promising one to classify unseen events. This choice criterion
is called the empirical risk minimization principle and stipulates the choice of a
best candidate hypothesis as

ĥ∗ = ArgMin
h∈H

Rm(h). (5.7)

This would seem to answer the question about the so-called inductive crite-
rion, i.e., how to evaluate the candidate hypotheses with respect to the learning
set at hand. However, the statistical theory of learning, developed over three
decades by Vapnik and co-workers (Vapnik, 1999) and flourishing nowadays,
has shown that it is crucial that the hypothesis space from which candidate hy-
potheses are drawn should be limited in terms of its expressive power. Other-
wise, in the limit one can perform rote learning, and not incur any empirical
risk, but obviously without real learning as such. To adapt the classifier to the
training data too closely generates the phenomenon of overfitting, i.e., the clas-
sifier shows good performances on the training set but behaves poorly on future,
unseen, data.

The studies of Vapnik and co-workers thus answer both the first and second
questions, about the choice of an appropriate class of hypotheses and about the
right way to evaluate the hypotheses for inductive purposes, which must take
the hypothesis space into account. Namely, one should concentrate not only on
finding hypotheses that minimize the empirical risk irrespective of the hypothesis
space but also take into account its capacity or expressive power. In fact, the less Capacity of the

hypothesis spacediverse isH, the tighter the link between the measured empirical risk Rm(h) and
the expected risk R(h) for a given sample size m.

Modern inductive techniques automatically search for the best trade-off,
given the training data, following either one of two approaches:
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Figure 5.2 From a training set with examples (labeled +) and counter-examples
(labeled −), the learner tries to find a partition of X that discriminates between
the patterns �x (shaded region) that belong to the target concept and those that do
not belong to it.

• Model selection,2 whereby induction is considered as an alternating two-
step process, in which a hypothesis space Hi is chosen and then a best
hypothesis ĥ∗

i ∈ Hi is found, this procedure being repeated until a hy-
pothesis space with lowest total error (estimation plus approximation) is
found.

• Regularization, where one looks for a hypothesis directly minimizing a
combination of the empirical error and a term depending on the capacity
of H (or sometimes depending on the complexity of h).

We now turn to the third question: how to search effectively for a good hy-
pothesis in the hypothesis space.

5.1.3 Searching the hypothesis space

Recall that concept learning consists of finding, within an example space X , a
region containing all and only the instances of the concept to be learned, using in-
formation provided by the learning set SL = {(�x1, y1), (�x2, y2), . . . , (�xm, ym)}.
The concept to be learned is called the target concept. In the ideal case the ex-
amples are not corrupted by noise and the description language is rich enough
that no example and its counter-example share the same description. In this case
the desired region must include all examples (those with label y = 1) and must
not include any counter-examples (those with label y = −1). One says that the
region must cover the examples and must exclude the counter-examples (see
Figure 5.2).

2In the recent proposal called ensemble learning, hypotheses are not selected but combined.
However, such a method is not considered in this book.
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Figure 5.3 Using a hypothesis space H. Each element h, or hypothesis, of H is
associated with a partition of X .

Of course, except in special cases, one is not interested in learning a concept
defined in extension, that is by enumerating (if indeed this is possible) all its el-
ements. One rather looks for some description of the concept in a representation
language LH that defines a hypothesis space H.

In this case, concept learning becomes the search for an expression in LH,
i.e., for a hypothesis h ∈ H that describes a partition in the example space X
(see Figure 5.3) that best fits the training set. In the case of a {0, 1} loss function,
concept learning corresponds to searching in H for a hypothesis (and hence a
partition ofX ) that, as far as possible, “covers” all positive training examples and
excludes all negative training examples, therefore incurring minimal empirical
risk. A hypothesis associated with a subset of X that includes every positive
example is said to be complete, while it is said to be correct if it excludes every
negative example.

When a hypothesis space is available, the search for a partition in X is per-
formed through an exploration of H. Indeed, by modifying the expression of a
candidate hypothesis, one obtains new hypotheses associated with new partitions
of X . In this way, learning becomes the art of searching the hypothesis space in
order to identify a hypothesis that has a minimal, or near minimal, empirical risk.
Using a hypothesis space has several advantages.

1. First, concepts are handled intensionally rather than extensionally (see the
start of Section 6.1), which is more practical, and more helpful, in inter-
preting the hypothesis if the language is well chosen.

2. Second, since it is usually the case that not every partition of X is express-
ible in the representation language LH, induction comes naturally. Indeed,
one can no longer be satisfied with rote learning of the positive instances;
one must look for the hypothesis associated with the partition closest to the
available data. In a sense the more constrained the hypothesis language,
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the larger the necessary inductive leap. Of course, if the hypothesis space
is not well attuned to the target regularities then induction cannot come up
with satisfactory hypotheses.

3. Finally, the hypothesis space can offer structures that may (or may not) be
of help in conducting a systematic and efficient exploration of H.

To look into the third point in more detail, let us suppose that, at time t, the
learner is not satisfied with its current candidate hypothesis ht; how, then, should
it choose another hypothesis? It is at this point that the existing structures on H
can play a determining role with regard to the efficiency of the learning process.
The richer and the more attuned to induction are these structures, the easier be-
comes an efficient exploration of H. Let us examine three possible cases, each
corresponding to an increasing degree of structure in H.

• The hypothesis space is not endowed with any a priori topology or metric.
In this case only a random exploration is possible. There is nothing to
guide the search. This is the worst-case scenario.

• The hypothesis space is endowed with a neighborhood relationship. It is
then possible to explore H using gradient-like optimization techniques.
The learner explores the neighborhood of the current hypothesis (either by
something akin to differentiation, if H allows for this, or by the enumera-
tion of neighbor hypotheses) and selects the direction of greatest gradient
of a given criterion. This technique is very popular since it can make use of
general optimization procedures. Most hypothesis spaces lend themselves
to the definition of a distance and therefore of a neighborhood. However,
one fundamental problem is to identify a relevant neighborhood relation-
ship. A badly informed choice can mean that the learner goes away from
the best area in the hypothesis space. Furthermore, this is still a weak struc-
ture, which, except in special circumstances (the differentiability, convex-
ity, and other helpful properties ofH) does not yield to a fast and thorough
exploration of the hypothesis space.

• In some cases, it is possible to endow the hypothesis space with a stronger
structure, making it possible to organize its exploration efficiently. This is,
in particular, the case where there are partial orderings of the elements of
H induced by a generality relationship between hypotheses. In this case it
becomes possible, for example, to modify an erroneous hypothesis either
by specializing it just enough that it no longer covers the offending neg-
ative examples or, conversely, by generalizing it just enough that it cov-
ers the positive examples so far excluded. This type of partial ordering,
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Figure 5.4 The inclusion relation in X induces a generality relation in H. Here
ht+1 � ht. The circles denote negative examples and the crosses denote positive
examples.

induced by generality relationships, does not come naturally with every
hypothesis space. For instance, if one uses a hypothesis space induced by
the possible weight values of a neural network then there is no known
way to decide easily whether one hypothesis is more general than another.
However, some hypothesis languages, noticeably those based on logi-
cal representations, lend themselves to such partial ordering. In this case
the exploration of the hypothesis space for inductive purpose is greatly
expedited.

5.1.4 Hypothesis space with generality relationships

Hypothesis h1 is said to be more general than hypothesis h2 (notated h1 � h2)
if and only if the associated subset of h1 in X (called its coverage) includes the
subset associated with h2. More formally, we have the following definitions.

Definition 5.1 {Coverage of a hypothesis} The coverage of a hypothesis h ∈
H, with respect to an example space X , is denoted by cover(h), and is defined
as the subset of X described by h. Hypothesis h is said to cover the elements of
cover(h).

Definition 5.2 {Generality relation in H} A hypothesis h1 is more general
(or less specific) than a hypothesis h2, notated as h1 � h2, if and only if
cover(h2) ⊆ cover(h1).

The relations � and � on H are illustrated in Figures 5.4 and 5.5.
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Figure 5.5 The inclusion relation in X induces a generality relation in H. Here
ht+1 � ht. The circles denote negative examples and the crosses denote positive
examples.

The inclusion relation defined over X induces a generality relation over H,
which is a partial order relation. The partial order relation induces a lattice struc-
ture overH. This means that, for any pair of hypotheses hi and hj , there exists at
least one hypothesis which (a) is more general than both hi and hj and (b) can-
not be made more specific without losing this property. The set of such hypothe-
ses is called the set of maximally specific generalizations of hi and hj , denoted
msg(hi, hj), or the set of least general generalizations, denoted lgg(hi, hj).
Likewise, there exists a non-empty set of hypotheses that are more specific than
hi and hj and that cannot be generalized without losing this property. This set is
called the set of maximally general specializations of hi and hj and is denoted
mgs(hi, hj).

It is easy to extend these definitions to the case of sets of hypotheses
that are larger than pairs, and we then obtain the sets lgg(hi, hj , hk, . . .) and
mgs(hi, hj , hk, . . .).

Finally, we assume3 that there exists in H a hypothesis that is more general
than all others (called the maximal element), denoted �, and a hypothesis that
is more specific than all others (called the minimal element), denoted ⊥ (see
Figure 5.6).

However, one should be aware that the regularities existing in X do not, in
general, translate completely to the hypothesis space H defined by the language
LH. For instance, the least general generalization (lgg) and the most general
specialization (mgs), are not, in general, uniquely defined.

3This assumption is valid in general.
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hi hj

msg (hi, hj)

mgs (hi, hj)

⊥ H

Figure 5.6 A schematic and partial view of the generalization lattice induced on
H by the inclusion relation in X . Each arrow corresponds to a generality relation
� between a pair of hypotheses (crosses).

EXAMPLE

Consider the following two clauses:4

c1: p(X,Y) ← q(a,f(X)),s(t(c),Y).
c2: p(b,Z) ← t(Z),q(Z,f(b)),s(t(c),Z).

Lower-case letters stand for constants and capital letters stand for vari-
ables. The lgg of c1 and c2 is the following clause:

c: p(X,W) ← q(Z,f(X)),s(t(c),W)

The inclusion relation in X and hence the generality relation inH are clearly
of fundamental importance for induction. Indeed, it is natural to want to ex-
tend a subset of X that does not cover a positive instance and, conversely, to
shrink a subset if it erroneously covers a negative instance. In terms of the hy-
pothesis space, one needs either to generalize or to specialize an unsatisfactory
hypothesis.

4The “typewriter” font is often used in the machine learning context for logical formulas and
predicates.
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The inclusion relationship in X induces a generality relation in H, but this
correspondence is actually used in the opposite direction: we work from the gen-
erality relation in H and derive inclusion in X . Indeed, the whole point of using
a hypothesis space is to be able to manipulate expressions in LH directly, to pro-
duce new hypotheses and therefore to explore H. The question then becomes:
what (easily carried out) syntactic manipulations in LH correspond to an inclu-
sion relation in X ? In other words, what kind of syntactic operator on LH is
guaranteed to be associated with an inclusion relation in X when used on an ex-
pression in H? It turns out that this question can become quite tricky, depending
on the hypothesis language that one is using. In the following example we will
illustrate this point in the framework of a hypothesis language based on proposi-
tional logic.

EXAMPLE

Let us suppose that the description language of the hypothesis space is
constructed from conjunctions of attribute values in a Boolean represen-
tation. For instance, red ∧ noisy ∧ fast could be a description of
a car (where the symbol ∧ is to be understood as a logical conjunction).
The expression red ∧ fast, obtained through the operation of drop-
ping a conjunct (here noisy), corresponds to a more general hypothesis,
since its associated coverage in X encompasses the coverage of red ∧
noisy ∧ fast.

In the language of propositional logic it is easy to check that the operator
“drop a conjunct” is a generalization operator. Many other such syntactic op-
erators, that are similarly associated with generalization (or conversely special-
ization) relations, are known in propositional logic. It is important to note that
usually these operators do not allow all existing inclusion relations in X to be
generated. In an analogous way, the language LH does not usually allow one to
describe every subset of X . The hypothesis language and its associated syntactic
operators thus imply a bias on what is expressible within H. As noted before,
this is a necessary limitation if induction is to be possible at all; it may carry the
price of having an ill-tuned language for the universe at hand.

5.1.5 Learning in a hypothesis space with a generality relationship

Once a generality lattice is available on H, induction can be tightly controlled
and therefore made efficient. As was suggested earlier, one approach would be
to start with some hypothesis in H, possibly generated at random, and then to
use operators to produce new, more general (more specific), hypotheses as long
as positive instances (negative instances) are not covered (are covered) by the
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current candidate hypothesis. Indeed, this is what Tom Mitchell considered as a
possibility when he started his Ph.D. in 1976, working on ways to learn in the
framework of expert systems (Mitchell and Schwenzer, 1978). However, he soon
realized that a more systematic method was possible and to be preferred.

Let us start with a hypothesis that is just a maximally specific generalization
of a given example. This can be made very easy if the description language
of the examples is part of the hypothesis language, LX ⊂ LH. In this case
(known as the single representation trick), the maximally specific generaliza- Representation trick

tion of any example is unique and is just this very example. In any other case,
the principle is to consider the other positive instances of the training set and,
each time any example is not covered by a candidate hypothesis, a generaliza-
tion operator is applied so as to produce the maximally specific generalization
msg(ht, �xt+1) of the current hypothesis, ht, and the positive instance currently
considered, �xt+1. In fact, at least in principle one could envision the possibil-
ity of generating in a breadth-first strategy every element of H that is part of
msg(P), where P is the subset of all the positive instances in the training set
SL . Indeed, if the training data is not noisy (i.e., corrupted by description er-
rors), if the language LX is sufficiently complete for the learning task, and if the
hypothesis language LH is adequately biased then one can be certain that the tar-
get concept is at least as general as an element in msg(P) (also called the S-set;
see below).

Indeed, the target concept must at least cover every positive training instance.
Of course, it could be more general than the elements in msg(P) but it should
not, if possible, cover negative instances of the training set. All generalizations
of P must therefore not be so general as to cover any element of the subset N of
all negative training instances. Let us call mgg(P) (also called the G-set) the set
of hypotheses that both cover all positive training instances and are maximally
general without covering any negative training instances. Then all hypotheses
that are both more general than at least one element of msg(P) and more spe- Version space

cific than at least one element of mgg(P) are potential candidate hypotheses to
approximate the unknown target concept. This set is called the version space
V SH(SL) associated with the training set.

Besides being one of the first to point out this view of supervised induc-
tive learning, Tom Mitchell made a further contribution by discovering that the
version space could be bounded by two sets when a generality relationship is
available that guarantees the convexity of H. These are, on one hand, the so-
called S-set, the set of all hypotheses that are maximally specific generalizations
of the positive instances P and do not cover any negative instance and, on the
other hand, the so-called G-set, the set of all maximally general generalizations
of P that do not cover any negative instance. Every hypothesis of the version
space must lie between these two bounds, i.e., it must be more general than at



106 Machine learning

least one element of the S-set and be more specific than at least one element of
the G-set.

Tom Mitchell provided an algorithm, the candidate elimination algorithm,
that was able to maintain the S-set and the G-set while the elements of the train-
ing set were given in an incremental manner to the learner (Mitchell, 1982).
However, even given this ingenious idea, of defining the whole space of solu-Candidate elimina-

tion algorithm tions simply by maintaining the S-set and the G-set, this is not always practical
because of the sheer size these bounding sets sometimes have. One is then con-
demned to explore only a subpart of the hypothesis space at any one time. Still,
it is of interest to organize this search by either moving from the most specific
hypotheses to more general ones, until one must stop in order to avoid covering
negative training instances (the so-called specific-to-general or bottom-up strat-
egy), or by moving from the most general hypotheses and specializing them in
order to exclude negative instances while still covering the positive ones (the
so-called general-to-specific or top-down strategy).

Most learning algorithms that exploit generality relations in the hypothesis
space H are implementations of either of the above strategy or even of a com-
bination of both, such as the candidate elimination algorithm (Mitchell, 1977).

5.2 Representation languages

There are not many representation languages for which generalization and spe-
cialization operators are known. The languages most used in machine learningLanguages for

machine learning are propositional logic, first-order logic, and grammars.
These representation languages are important in machine learning and, more

widely, in artificial intelligence since they have three desirable properties.

1. A generality relation exists that guides the search in the hypothesis space
for supervised learning.

2. They offer a natural interface with prior knowledge. More specifically:

• they produce expressions (hypotheses) that are readable and gener-
ally easy to interpret, in contrast with, for instance, neural networks
or support vector machines (SVMs),

• they allow one to (easily) incorporate domain knowledge to help
learning, for instance under the form of rules.

3. They have an expressive power that allows them (in particular, first-order
logic and grammars) to express complex relationships in the world.
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b c
d

e f
g

h

Attributes of the learning events {a, b, c, d, e, f, g, h, . . .}
Shape : {square, rectangle, triangle, circle, ellipse}
Hatched : {YES, NO}
Length : real
Height : real

P

N

Classes {P,N }

a

Figure 5.7 Examples (a–h) of propositional learning events. Class P is defined
to contain a–d and class N is defined to contain e–h.

There exists a very large literature about these representation languages. This
section just aims at providing the basic notions that are necessary to understand
the rest of the book.

5.2.1 Propositional representation

A language representation offers support for the representation of facts and rules
about the world, as well as for reasoning facilities enabling one to infer new facts
and rules from the current state of knowledge and, possibly, from new infor-
mation gathered from the world. One of the simplest representation languages, Propositional logic

where representation and reasoning can be well defined and be specified with a
truth theory, is propositional logic.

The simplest case considered in concept learning occurs when every learn-
ing event (also known as a learning example or training example), i.e., the arrival
of some perceptual data from the external world, is a single item that is indepen-
dent of other such items. Every event is characterized by a set of properties or
attributes, which can be qualitative, such as shape and color, or quantitative,
such as weight, density, and so on. Some examples of learning events of
this type are provided in Figure 5.7 where a two-class classification problem is
reported.
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Learning
event Shape Hatched Length Height Class

a rectangle 1.5 2.3 P
b circle 1.5 1.5 P
c triangle 3.0 1.5 P
d circle 2.2 2.2 P
e square 3.0 3.0 N
f ellipse 1.5 3.0 N
g rectangle 3.5 1.0 N
h triangle

NO
NO
NO
YES
NO
YES
YES
NO 1.3 2.5 N

Figure 5.8 Tabular representation of the attributes of the learning events illus-
trated in Figure 5.7.

The upper row contains instances of the positive class (P) whereas the lower
row contains negative instances (N ). The induction problem consists in finding
a function discriminating the positive from the negative class, i.e., a function that
can predict the class value when this is unknown.

Representation with 〈attribute, value〉 vectors
The most immediate representation for learning events of the type in Figure 5.7
is the so-called 〈attribute, value〉 representation, i.e., a list of pairs whose first
item is the attribute name and second item is the attribute value. If, as frequently
happens, all objects are characterized by means of the same attribute set then
this representation form leads to a tabular encoding of the learning events, as is
shown in Figure 5.8, which tabulates the learning events in Figure 5.7 according
to their attributes.

This form of tabular representation is found naturally in many data-mining
applications, where data comes from relational databases.

Concept descriptions as and/or Boolean expressions
Let us now consider the problem of selecting a class of functions (hypotheses)
able to discriminate the positive from the negative instances. We can individuate
three major classes of functions:

1. Boolean functionsClasses of
functions

2. continuous functions

3. probability distributions

Boolean functions are typically used together with algorithms for learning rules,
or decision trees, whereas continuous functions are typically encoded using



Representation languages 109

neural networks or other mathematical approximators. Probability distributions
are continuous functions that are explicitly trained in order to approximate prob-
abilities. As continuous functions and probability distributions are outside the
scope of this book, we will restrict the discussion to Boolean functions.

Independently of the way in which they are encoded (by rules or by decision
trees), Boolean functions can always be reduced to a disjunctive normal form (a
disjunction of conjunctions) of conditions on the attribute values.

Referring to Figures 5.7 and 5.8, a possible definition of the class P is

P :: (Hatched = NO) ∧ (Height ≤ 2.3) ∨ (Shape = circle), (5.8)

which perfectly discriminates the positive instances from the negative instances.
In general, a Boolean function is a mapping

A1 ×A2 × . . .×An → Y (5.9)

from the space defined by the attribute set to the space of possible concepts.
It is easy to verify that, in the case of real-valued attributes, the space of

Boolean formulas is infinite, since the set of possible conditions that can be set
on any real attribute is infinite. Nevertheless, even in the case of discrete values
or categoric attributes, the size of the hypothesis space defined by the class of
Boolean functions can be very large. However, effective algorithms exist that are
able to find good approximate hypotheses.

Finally, we observe that the language in expression (5.8) uses notation typical
of propositional logic. In fact, propositional logic provides a formal framework
for handling Boolean functions that has been used by many authors.

Covering test in propositional logic
In Section 5.1.4 the notion of the coverage of a hypothesis h, namely cover(h),
was introduced. Figures 5.4 and 5.5 illustrated its links with the “more general
than” relation (Definition 5.2) between hypotheses. Clearly, this notion is bound
to play a fundamental role in learning; therefore, providing a procedure to com-
pute the coverage of a hypothesis is central to the search for good hypotheses.

The computation of cover(h) can be reduced to the repetition over all avail-
able examples of the following task:

given a hypothesis h and an example e, does e verify h or, con- Matching problem
or covering testversely, is h true on e?

The above task is called the matching problem or covering test.
As it turns out, the matching problem has an efficient solution in propo-

sitional logic. In order to go into more detail let us consider a rather general
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form for representing a concept in propositional logic, namely, disjunctive nor-
mal form (DNF). A propositional formula h in DNF is a disjunction of conjunc-DNF representation

tions γi of assertions cj specifying attribute values of the concept instances:

h = γ1 ∨γ2 ∨ · · ·∨γk , γi = c1 ∧ c2,∧ · · ·∧ cri (1 � i � k).

Any other representation in the propositional framework can be translated into
DNF with a time complexity linear in the number of assertions. Given the con-
cept description h and an object o to be classified, we say that o is recognized
(classified) as a positive instance of the concept if its own description verifies h.
To this end, it is sufficient that the description of the object satisfies at least one
of the conjunctions γi. The process of comparing the assertions in h with those
describing o is called the matching problem.

EXAMPLE

We will consider the instances in Figure 5.7 and their representation as
〈attribute, value〉 vectors tabulated in Figure 5.8. Let h be the formula
h = γ1 ∨ γ2 with

γ1 = (Dashed = NO) ∧ (Height � 2.3),
γ2 = (Shape = circle).

If we consider example a in Figure 5.8, it can be written as
a = (Shape = rectangle) ∧ (Hatched = NO) ∧ (Length = 1.5)
∧ (Height = 2.3).
By comparing the formula h with the example description, we can see that
γ2 is false for a but γ1 is true. Thus h covers a.

Considering example g = (Shape = rectangle) ∧ (Hatched = NO) ∧
(Length = 1.3) ∧ (Height = 2.5), we see that neither γ1 nor γ2 are true.
Thus, h does not cover g.

Now that the example above has given us an intuition of how the covering
test can be effectively computed, we can describe how the matching problem can
be approached, in general, within propositional logic.

Examples in 〈attribute, value〉 form can be translated into a set of ground
assertions, each corresponding to an atomic test, that possibly occur in a hy-
pothesis h. Thus an atomic test consists of checking the value of an attribute.
The hypothesis h, plus the assertions obtained from an example e, represent a
propositional theory. Resolution (see Section 5.2.3) can be used to check the
consistency of the theory. If it derives false then h does not cover e; otherwise, h
covers e.
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We note that atomic tests are nothing other than Boolean variables, which
assume the value true or false depending on the value of the corresponding at-
tribute in e. The covering test for a hypothesis has a complexity that is linear in
the number of attributes and in the number of instances to be classified. However,
if the framework is extended to include full propositional logic, the covering test
complexity may become exponential. For instance, this happens when concepts
are defined not by a single rule but by means of a theory, which is constructed
incrementally. In this case, logical deduction may need to construct a refutation
tree having a size that is exponential in the number of clauses.

For the sake of simplicity, in this book we will always consider the simpler
procedure described earlier (and applied in the example above) when performing
a covering test.

5.2.2 Relational representation

In the previous sections concept learning was defined in the framework provided
by propositional logic, where a concept corresponds to a propositional assertion
on a single object, which may be true or false depending on the values of its
attributes. Here we will discuss how concept learning can be extended to the First-order logic

more general framework of first-order logic (FOL). More specifically, a concept
will be made to correspond to a relation involving several objects, for which
specific requirements must be satisfied. An example of a concept is the relation
x is the boss of y, which, in order to be verified, requires a set of other relations
involving x, y, and possibly other entities to be verified as well. These could
be, for instance, x and y work in department z, x is the director of z, and y is a
programmer.

As we will see in the following, the extension to first-order logic is not trivial:
its impact on the complexity of the learning task can be dramatic.

INDUCE, developed by Michalski (1983), represents the first attempt at de-
veloping a learner in first-order logic. Later, other programs adopting the same The origin of

FOL learningframework as INDUCE appeared; these include ML-SMART (Bergadano et al.,
1988) and FOIL (Quinlan, 1990). Finally, a radical boosting of the field occurred
owing to the birth of the so-called inductive logic programming (ILP) approach
(Muggleton and Feng, 1990; Muggleton, 1991), which was followed by a large
output of publications.

5.2.3 The problem setting

In Section 5.2.1 we saw how, in the propositional setting, learning events can be
represented as 〈attribute, value〉 vectors, collected into tables. Starting from the
propositional framework we will now introduce the relational framework. More
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Figure 5.9 (a) A block-world instance e, composed of four objects, a, b, c,
and d. (b) Tables describing e when the description language contains only two
predicates, namely on(x, y) and left(x, y). (c) Substitutions for x, y, z satisfying
the hypothesis h(x, y, z) = left(x, y) ∧ on(y, z). More precisely, h(a, c, d) =
left(a, c) ∧ on(c, d) is true in e.

specifically, a learning event becomes a complex scenario where many objects
may exist on which relations may be defined. In this framework concept learn-
ing becomes equivalent to learning the definition of a new relation between the
objects in the scenario and the hypothesis space becomes the space of possible
well-formed first-order formulas.

Data representation as multiple 〈attribute, value〉 vectors
A structured object is a set of elementary objects for which interdepen-
dency relations may exist. Consider, for instance, the block-world scenario inStructured objects

Figure 5.9(a), in which there are four elementary objects. Each object is charac-
terized by a vector of attributes describing its specific features. Moreover, two re-
lations (or predicates) between object pairs are defined: left(x, y), and on(x, y).

Extending the framework of Section 5.2.1, this scenario may be represented
as a set of tables, one table for describing the objects and another for every
relation (see Figure 5.9(b)). Notice that in the given example all objects are of
the same type and are described by means of the same attribute vector. In general,
however, the objects may have different types and so be described by different
attribute vectors. Then a table needs to be given for each type.

In this new framework, to extend the notion of a concept (class) introduced
in the propositional framework is immediate.

Definition 5.3 {Concept} A concept is an n-ary relation c(x1, x2, . . . , xn),Concepts

where x1, x2, . . . , xn denote generic objects. Let e be a composite object
(a scenario), containing a set of elementary objects O = {o1, o2, . . . , om}.
Every n-tuple 〈o1, o2, . . . , on〉 built on O for which c(o1, o2, . . . , on) is true is
a positive instance of the concept c.
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The relations on(x, y) and left(x, y) in Figure 5.9 can be considered as ele-
mentary binary concepts. Moreover, new concepts can be defined starting from
them. For instance, h(x, y, z) ≡ on(x, y) ∧ left(y, z) is a new ternary concept
defined in terms of the two basic concepts (see Figure 5.9(c)).

In the same way, other concepts of different arities can be defined. For in-
stance h1(x, y) ≡ ∃z[on(x, y) ∧ left(x, z) ∧ left(y, z)] is a binary concept,
whereas h2(x) ≡ ∃y, z[on(x, y) ∧ left(x, z)] is a unary concept.

It is immediate to verify that the table describing the concept h(x, y, z) de-
fined above can be obtained by means of the natural join between the tables
describing on(x, y) and left(x, y). Moreover, the tables h1(x, y) and h2(x) can
be obtained from the natural join of on(x, y) and left(x, y) followed by projec-
tions onto x, y, and x, respectively. Every row in the new tables corresponds to
a concept instance.

The Horn clause representation language
In order to deal with relations between objects, an adequate language is nec-
essary. As already introduced above, relations may be described in an abstract
way through predicate calculus. As an example, let us consider the expression Restricted

predicate calculuson(x, y). The symbol on(x, y) denotes a predicate with an associated table; x
and y are variables ranging over all the objects existing in the scenario provided
by the learning event. When the values of x and y correspond to two items oc-
curring in the same row in the table associated with predicate, the predicate is
true; otherwise it is false.

Thus predicate calculus provides a powerful tool for describing relational
concepts. However, unrestricted predicate calculus is at the same time too pow-
erful and too complex for this purpose. In practice, Horn clause languages
(Kowalski, 1979) (a restricted predicate calculus) are used (Muggleton, 1992).

Before introducing Horn clauses we need to introduce logical clauses. A log- Clauses

ical clause is a disjunction of atomic assertions, where an atomic assertion, for
which the term literal is used in the following, is a possibly negated predicate of
arity n (n � 0), i.e., it is applied to n arguments. In the more general case an
argument may be a constant (the name of an item), a variable, or a function. An
example of a clause is provided by the logical expression

p(x) ∨ q(x, y) ∨ r̄(y, z) ∨ s̄(z, y). (5.10)

Clauses are implicitly considered as universally quantified, i.e., expression (5.10)
can be rewritten equivalently as

∀x,y,z [p(x) ∨ q(x, y) ∨ r̄(y, z) ∨ s̄(z, y)]. (5.11)

In other words, a clause is true if it is true for any value that can be assumed by
the variables occurring in it.



114 Machine learning

Clausal representation plays a fundamental role in automated deduction.
On the one hand, any set of logical equations in first-order predicate calculusHorn clauses

can be translated into clausal form (see, for instance (Kowalski, 1979)). On the
other hand, there exists a simple and complete deduction rule, namely resolution
(Kowalski, 1979), which is suitable for implementation in automated reasoning
systems. However, the logical languages used in automated reasoning are usu-
ally based on Horn clauses; as mentioned above these are a restricted form of
clausal representation. A Horn clause is a clause in which at most one literal is
not negated. An example of Horn clause is the logical expression:An equivalent notation

for Horn clauses, easier
to compile for an

automated program,
consists in replacing

the symbol ∧ with
a comma, and the

symbol ← with :-.

p(x) ∨ q̄(x, y) ∨ r̄(y, z) ∨ s̄(z, y). (5.12)

By remembering that a logical expression of the type p̄ ∨ q is equivalent to
p → q, where the symbol → denotes a material implication, expression (5.12)
can be rewritten as:

p(x) ← q(x, y) ∧ r(y, z) ∧ s(z, y), (5.13)

which is the most popular format for Horn clauses. For such clauses, the resolu-
tion inference rule can be simplified with respect to its general form, leading to
more tractable implementations. Moreover, the resolution rule can be “inverted”
(inverse resolution, see Muggleton, 1992; Muggleton and Buntine, 1988), pro-
viding an automated induction schema. For the above reasons, Horn clause lan-
guages are those most frequently used in relational learning and inductive logic
programming. An attractive property of Horn clause languages is that they offer a
homogeneous framework for describing learning instances, background knowl-
edge, and concept definitions.

Multiple vector representations are mapped to sets of ground assertions
We have seen how structured objects can be described by means of a set of
relational tables (see Figure 5.9). It is immediate to represent tables as sets ofMultiple vector

representation ground Horn clauses, i.e., clauses whose terms are only constants: every row
in a table is mapped into a ground clause. As an example, the tables headed
on(x, y) and left(x, y) in Figure 5.9 can be described by a set of ground clauses
as follows:

on(a, b) ← true,
on(c, d) ← true,
left(a, c) ← true,
left(a, c) ← true,
left(b, c) ← true,
left(b, d) ← true,

where every table row defines a ground assertion stating that the specific relation
is true for the tuple of objects in the row.
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Figure 5.10 Six relational learning events, each based on a combination of ob-
jects labeled a, b, . . .

Concept definitions are mapped to sets of clauses
In Section 5.2.1 we discussed how concepts can be defined in terms of and/or
Boolean expressions. It is now immediate to verify that any form of Boolean
expression can be rewritten in terms of Horn clauses in propositional logic. For
instance, expression (5.8) can be equivalently written as

P ← (Hatched = NO) ∧ (Height ≤ 2.3),
P ← (Shape = circle).

The same formal structure can be used in first-order logic to provide defini-
tions of relations. A conjunctive definition can be stated through a single clause.
For instance, considering the example in Figure 5.9, a new relation left-on(x)
can be defined by means of the clause

left-on(x) ← on(x, y) ∧ left(y, z). (5.14)

The meaning of (5.14) is that any object x for which there exists another object
y such that x is on y and for which there exists a third object z such that y lies to
the left of z satisfies the relation left-on.

The more powerful framework offered by first-order logic allows different
forms of concepts to be represented, corresponding to learning tasks of different
complexity. We will discuss this point using a more complex example, shown
in Figure 5.10, where six different scenarios are provided. Each scenario is a
specific learning event containing instances of both elementary and composite
concepts.
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The simplest form of a relational concept is one where the concept is a 0-arity
relation, which may be true or false in a given scenario depending on the rela-
tionships between the elementary objects it contains. Referring to Figure 5.10,
an example of 0-arity concept may be the assertion “an arch is present”. To de-
cide whether this assertion is true or false in a specific scenario, we must verify
whether it contains a set of objects realizing an arch. A possible definition for
this concept could be:

“an arch is present”
← grounded(x) ∧ grounded(y) ∧ on(z, x) ∧ on(z, y). (5.15)

We recall that variables occurring in the head (left-hand side) of a Horn clause are
universally quantified, whereas those occurring only in the body are existentially
quantified. Thus definition (5.15) will be true of a given scenario if it contains
at least three objects such that, when substituted to for the variables x, y, and z,
verify the conditions stated in the body. Referring to Figure 5.10, we can see that
in scenarios (a), (b), (c), (f) there is a unique triple of objects satisfying definition
(5.15). In scenario (d), the definition is verified (satisfied) by two different triples
(a, b, d) and (b, c, e), whereas in scenario (e) definition (5.15) is not verified
because no single object is simultaneously on both a and b. In the following we
will return to this point and discuss how to exploit the first-order framework to
deal with the more general arch instance in (e).

In the case of relations with arity greater than 0, concept definitions are more
informative. More specifically, the components that realize the concept instance
can be explicitly identified. For instance, the concept definition

arch(x, y, z) ← grounded(x) ∧ grounded(y) ∧ on(z, x) ∧ on(z, y) (5.16)

explicitly identifies the three components of the arch. The advantage is that, when
a scenario contains more than one instance, all can be identified. As an exam-
ple, in scenario (d) of Figure 5.10, definition (5.16) will fit the two instances
arch(a, b, c) and arch(b, c, e). The consequence is that the implicit assumption
made by many learning algorithms that a scenario either provides a positive or a
negative example of the target concept no longer holds. In principle, a scenarioPositive and

negative examples may provide many positive examples of the target concept. Moreover, the notion
of a negative example is defined in a different way: any substitution of the vari-
ables in the target relation by object names that do not satisfy the body of any
clause of the concept definition is implicitly a negative example. For instance, in
scenario (a) of Figure 5.10 the triples (a, c, d), (b, c, d), (a, b, d), etc., are nega-
tive instances of the concept arch(x, y, z), according to definition (5.16).

Since negative concept instances grow combinatorially with the number of
elementary objects in a scenario, they are implicitly defined making the so-called
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closed-world assumption (Kowalski, 1979): any instance not explicitly declared
positive is to be considered as negative.

Therefore, dealing with n-arity relations requires learners more powerful
than those suitable for 0-arity concepts. In fact, such learners must be able to
deal with the presence of multiple instances in a single scenario and with the
closed-world assumption.

Let us consider again the problem of learning concept definitions involving
a variable number of objects. It can be solved by means of recursive definitions.
Referring to the learning events given in Figure 5.10 and setting a 0-arity target
concept, a suitable definition could be:

“an arch is present” ← grounded(x) ∧ grounded(y)
∧ on(z, x) ∧ on(w, y) ∧ connected(z, w),

connected(x, x) ← T,
connected(x, y) ← adjacent(x, y),
connected(x, y) ← connected(x, w) ∧ adjacent(w, y).

Here the girder of the arch is defined as a sequence of connected objects: two
objects x and y are connected if they are adjacent or if there is a chain of con-
nected objects adjacent to both of them. Moreover, an object is connected to it-
self. It is immediate to verify that this definition will be satisfied in scenario (e) of
Figure 5.10 also. However, learning recursive definitions such as that described
above dramatically increases the size of the hypothesis space and requires
smarter algorithms.

A further requirement is to extend the framework to handle n-ary rela-
tions when the objects involved in a concept are complex and contain a vari-
able number of elementary components. For instance, referring to the concept
arch(x, y, z), we are looking for a definition covering scenario (e) of Figure 5.10
also. Up to now we have considered only clauses in which the terms occurring in
the predicates are variables or constants. In other words, we have used a function-
free description language, i.e., a DATALOG language.

In order to deal with composite objects we will need to use functions, thus
increasing the power of the language. Referring to our simple case study, we will
define a complex object by means of the composition function link(x, y), which
constructs a new object connecting two simpler objects x and y. Therefore a
revisited definition of arch(x, y, z) could be

arch(x, y, z) ← grounded(x) ∧ grounded(y) ∧ on(z, x) ∧ on(z, y)
∧ girder(z),

girder(x) ← object(x),
girder(link(x, y)) ← adjacent(x, y) ∧ object(x) ∧ girder(y).
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Applying this definition to scenario (e) in Figure 5.10 will return the instance
arch(a, b, link(d, link(e, f))).

However, the leap to non-DATALOG languages further increases the com-
plexity of the learning task and, consequently, of the learner. In particular, as
we will discuss below, the most frequently used rule for searching a hypothesis
space, i.e., θ-subsumption, becomes incomplete for non-DATALOG languages.

Covering test in first-order logic
In Section 5.2.1 we saw that the covering test in propositional logic can be de-
fined either as a deduction task in a propositional theory including both the hy-
pothesis and the example description or as a task directly matching the assertions
in the hypothesis and the description of the example.

The deductive view can be immediately extended to the relational (first-order
logic) framework. This was in fact the initial attempt in relational learning (Quin-
lan, 1990). The idea of learning that uses relational theories is very appealing and
the deductive paradigm for implementing the covering test is sound within this
framework. Nevertheless, in general it is too complex and becomes rapidly in-
tractable as the complexity of the theory increases.

Therefore, a restricted form of deduction, called θ-subsumption (Plotkin,
1970), is used in practice (Muggleton and De Raedt, 1994). In the following
we will provide both a formal definition of θ-subsumption and an intuitive ex-
planation of how it works; it was introduced for the first time by Plotkin (1970).
In order to provide a definition of θ-subsumption, we need to recall that a FOL
formula may contain as arguments constants, variables, and/or functions; these
are collectively known as terms. Then, a generic formula can be written as
ϕ(t1, t2, . . . , tn), where the ti (1 � i � n) are terms. Formally:

Definition 5.4 {θ-subsumption} Let ϕ(t1, t2, . . . , tn) and ψ(s1, s2, . . . , sm)
be two first-order logic formulas. We will say that ϕ(t1, t2, . . . , tn) subsumes
ψ(s1, s2, . . . , sm) if there exists a renaming θ of the terms in ϕ and ψ that trans-
forms ϕ into a sub-formula of ψ.

As already mentioned, in this book only the DATALOG subset of first-order
logics will be considered. In DATALOG, which is a function-free language,
terms are only allowed to be either variables or constants. In particular, a hy-
pothesis h is a conjunction of predicates containing variables, whereas an ex-
ample e is a conjunction of ground literals, which are either constants denoting
the names of the components of e or values of the attributes characterizing these
components. Then, the definition of θ-subsumption can be simplified.

Definition 5.5 {θ-subsumption in DATALOG} Let h(x1, x2, . . . , xn) be a
first-order logic hypothesis, with variables xi (1 � i � n) and let e be an
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example. We will say that h subsumes e if there exists a substitution θ for the
variables in h that makes h a subset of e.

Notice that if ϕ(t1, t2, . . . , tn) and ψ(s1, s2, . . . , sm) are two DATALOG Subsumption and
generalityformulas, saying that ϕ subsumes ψ implies that ϕ � ψ, i.e., that ϕ is more

general than ψ. Moreover, if h subsumes e then h can be obtained from e by
dropping some predicates and turning some constants into variables in e.

In general, given two formulas ϕ and ψ, the θ-subsumption between them is
not univocally defined because more than one unification θ such that ϕ subsumes
ψ may exist. Actually, in some cases it may be interesting to count the number
of alternative ways in which θ-subsumption can be instantiated.

The θ-subsumption relation offers a means to perform the covering test be-
tween a hypothesis h and a learning event e or even to test the more-general-than
relation. However, it is per se a combinatorial problem, as we will discuss later
on.

EXAMPLE

Let us consider again the problem illustrated in Figure 5.9. Let
h1(x, y, z) = left(x, y) ∧ on(y, z) and h2(u, v) = on(u, v) be two hy-
potheses. It is immediate to see that the substitution θ = {u/y, v/z}makes
h2 a subset of h1 . By looking at the table in Figure 5.9(c) one can see that
h1 is verified by the two tuples (a, c, d) and (b, c, d). If we project the table
corresponding to h1 onto the last two columns then we obtain a single pair
(c, d), whereas the hypothesis h2 is verified by the two pairs (a, b) and
(c, d). This is a confirmation that h2 � h1 .

Let us now consider again hypothesis h2 and the learning event e defined
in Figure 5.9(a). We would like to test whether h2 covers e. The learning
event e can be written as

e = on(a, b) ∧ on(c, d) ∧ left(a, c) ∧ left(a, d) ∧ left(b, c) ∧ left(b, d).

By applying to h2 the substitution θ = {u/a, v/b} we see that h2 be-
comes a subset of e. However, the substitution θ = {u/c, v/d} has the
same effect. Thus in this case there are two substitutions that prove that h2
covers e.

An informal but intuitive way for testing whether a hypothesis h covers a
learning event e is to consider each predicate in h as a test to be performed
on e. This can be done by binding the variables in h to components of e and
then ascertaining whether the selected bindings verify in e the predicates ap-
pearing in h. The binding procedure should be made for all possible choices of
the objects in e. The procedure will stop as soon as a binding satisfying h is
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found, thus reporting true, or it will stop and report false after all possible bind-
ings have been explored. The procedure is called, as in the propositional case,
“matching h to e”. Matching h to e has the advantage that it avoids the need
to translating the learning event e into a ground logical formula, as, usually,
examples come in tabular form. In practice, several learners use this matchingA procedure

for the matching
problem

approach for testing coverage (Bergadano and Giordana, 1988; Quinlan, 1990;
Botta and Giordana, 1993). Moreover, matching is much more practical when
used in machine learning and data mining algorithms working on databases.
However, matching and θ-subsumption testing are equally computationally de-
manding. Matching h and e will be the subject of Chapter 9.

5.2.4 Sequence or string representation

A very important kind of datum, which is being actively investigated in the areas
of machine learning and data mining, is represented by sequences.

A sequence is probably the most frequent form in which data are obtained
from the environment. Sequences can be seen as the output of a sequential pro-
cess producing item after item according to the logic that controls its behavior.
Thus sequences can also be thought of as structured objects, where a total or-
der is defined between the elementary objects that are output by the generative
process. Therefore, in sequences it is usually assumed that an item depends di-
rectly or indirectly on the previous items and, in turn, can influence the following
items but not vice versa. In this sense a sequence can be seen as a special case of
a structured object. However, sequences can be unlimited whereas the structured
objects considered in relational learning are usually finite.

In many cases the objects in the sequence are each characterized by a sin-
gle attribute, which may be a real value or a symbol. In the first case they
are referred to as temporal series and in the second case as strings. Examples
of temporal series are the stock market index and the continuous signals pro-
duced by an analogic equipment, whereas examples of strings are written texts
and DNA.

In the following we will briefly review the most frequently investigated su-
pervised learning tasks occurring in sequences. More specifically, we will con-
sider three tasks:

1. predicting a property or the value of an item on the basis of the past history;

2. identifying the process generating a sequence;

3. sequence tagging.
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Then we will discuss the classes of functions useful for approaching these kinds
of learning task.

Learning to predict a property of the next item
A typical example of task 1 could be that of learning to forecast the weather to-
morrow on the basis of the weather sequence observed in the recent past. Assum-
ing a limit on the length of the past sequence, defined as the part of the sequence
that could significantly influence the prevision for the future day, this learning
problem can be reduced simply to a problem of relational learning, where the
days in the considered window in the past history are the elementary objects
in an environment, like those considered in relational learning. Moreover, if the
window in the history has a fixed size, it is not difficult to imagine how the prob-
lem could be further reduced to a problem of propositional learning: the window
could be encoded as an attribute-value vector.

Learning to identify the generative process for a sequence
Many important problems related to sequence analysis can be formalized as a the
multi-class classification problem: that of identifying the process that generates
the observed sequence from a set of known processes. However, it is also worth
mentioning a two-class variant of this task, consisting in deciding whether a
sequence belongs to a known process. In this case the negative examples can be
generated by any process different from the known process.

Examples of the multi-class problem are the recognition of isolated words
and the identification of a user navigating on the web. An example of the two-
class problem is the authentication of a user profile in fraud detection.

Depending on the structure of the sequences generated by different pro-
cesses, the problem of discriminating between processes can present quite differ-
ent levels of difficulty. In the simplest cases, discrimination can be made on the
basis of single items or short subsequences specific to the various generative pro-
cesses. In the general case, an abstract characterization of the global generative
process may be necessary.

Learning to accomplish sequence tagging
Given a set Y of labels, the task of sequence tagging consists in assigning a
label y ∈ Y to every item in the sequence. In general the label corresponds
to an abstract category whose meaning depends on the specific application. In
isolated-word recognition it could be a phonetic category, whereas in a DNA
strand it could be the name of a protein. When the label of an item xi can be
assigned on the basis of the items immediately preceding xi, the task can be
reduced to simple prediction. Nevertheless, in the most general case a label may
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correspond to some specific phase of the generative process to be recognized.
Then, sequence tagging may entail a task of process identification.

The hypothesis space
Many different approaches to encoding hypotheses related to sequences have
been proposed; they depend upon the specific task, the sequence format, and the
errors that are possibly present. When the items are characterized as attribute
vectors, prediction or tagging tasks can be undertaken using the approaches de-
scribed for the relational–propositional framework.

However, very different approaches are used when sequences are simply
strings of symbols. Depending on the degree of noise present in the strings, three
main approaches can be distinguished:

1. string matching;

2. formal language;

3. Markov chain.

The string-matching approach has many variants, ranging from dynamic pro-
gramming (Gussfield, 1997) to string kernels (Shawe-Taylor and Cristianini,
2004), which all share the same assumption, that a string s can be attributed
to a specific generative process on the basis of a set of substrings of s.

In the formal language approach (Hopcroft and Ullman, 1969) it is assumed
that a string is a sentence generated by an agent (automaton) speaking a spe-
cific language. Then, any question related to a string can be answered by parsing
the string according to the grammar governing the language of the agent. The
learning task to solve is that of reconstructing this specific grammar, which rep-
resents the concept to be learned. Thus the hypothesis space is that of formal
languages (grammars), whose instances are the observed strings. In the literature
two kinds of space have been actively investigated, those of regular languages
and context-free languages.

Finally, the Markov chain approach can be seen as an extension of the for-
mal language approach in a Bayesian probabilistic framework (Rabiner, 1989;
Durbin et al., 1998) that accounts for the noise present in the data.

In Chapter 11 we will consider the formal language approach, where inter-
esting discontinuous phenomena have been found.

5.3 Comments

In this chapter we aimed to provide the reader with the basic notions of ma-
chine learning, sufficient to understand the rest of the book. Machine learning
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is a field that includes a vast range of approaches, both numerical (neural net-
works, support vector machine, statistical learning methods, etc.) and symbolic
(learning rules, decision trees, logical formulas, grammars, graphs, etc.). Here,
we have concentrated on symbolic learning, in particular on learning rules (both
in propositional and first-order logics) and grammars. Nevertheless, other types
of learning approach will be outlined in Chapter 7, when they have connections
with statistical physics.

Even though most approaches to machine learning, including the learning
of optimal decision trees, involve NP-complete problems, heuristic versions
thereof have been quite successful in solving relevant practical problems. This is
especially true for propositional approaches, where examples are not structured
and can be described via a set of attributes. On the one hand relational learning,
as discussed in Section 5.2.2, is much more complex and advances in this area
have been slower. On the other hand, owing to its very complexity relational
learning (and grammar induction) offers the best opportunities for establishing
links with statistical physics, even though on the surface the two fields may ap-
pear to be very far apart. These links will be illustrated in Chapters 9–11.
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In Chapter 5 we introduced the main notions of machine learning, with particular
regard to hypothesis and data representation, and we saw that concept learning
can be formulated in terms of a search problem in the hypothesis space H. As
H is in general very large, or even infinite, well-designed strategies are required
in order to perform efficiently the search for good hypotheses. In this chapter we
will discuss in more depth these general ideas about search.

When concepts are represented using a symbolic or logical language, algo-
rithms for searching the hypothesis space rely on two basic features:

1. a criterion for checking the quality (performance) of a hypothesis;

2. an algorithm for comparing two hypotheses with respect to the generality
relation.

In this chapter we will discuss the above features in both the propositional and
the relational settings, with specific attention to the covering test.

124
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6.1 Guiding the search in the hypothesis space

If the hypothesis space is endowed with the more-general-than relation (as is
always the case in symbolic learning), hypotheses can be organized into a lattice,
as represented in Figure 5.6. This lattice can be explored by moving from more
general to more specific hypotheses (top-down strategies) or from more specific
to more general ones (bottom-up strategies) or by a combination of the two.
Both directions of search rely on the definition of suitable operators, namely,
generalization operators for moving up in the lattice and specialization operators
for moving down. These operators are very important because they allow the
generality relation between two hypotheses to be checked intensionally (i.e., by
looking at their syntactic structures) rather than extensionally (i.e., by looking at
their coverage).

Once we have selected a particular kind of strategy for the exploration, we
need some criterion to assess the worthiness of the hypotheses encountered. To
this end we may use the loss function (5.2) or some other heuristic criterion. In
general, searching for the optimum of this criterion (be it the loss function or
any other) on the hypothesis lattice is exponential, since the number of nodes
is exponential. Thus most learners use a greedy search, in which moves on the
lattice are guided by some local optimality criterion. A search is then a path
on the lattice connecting nodes that locally look the the most promising. Of
course, greedy search does not guarantee that optimality is reached; usually the
search ends up in some local extremum. However, greediness makes the search
tractable.

We are now in a position to illustrate the main approaches proposed in the
literature for searching a hypothesis space, both in the propositional and in the
relational settings.

6.1.1 Greedy search guided by information gain

A popular method for navigating through the hypothesis space is to go top-
down, starting from the most general hypothesis � of the lattice (induced by
the more-general-than relation) and constructing more-and-more-specific hy-
potheses via specialization operators. In the propositional framework, this is
the approach used for learning decision trees or logical decision rules in DNF
form.

A widely used heuristic for selecting the hypotheses in the lattice is based
on the information gain, which exploits the notion of entropy. The entropy of an
inductive hypothesis h is defined as the uncertainty about the class to be assigned
to an instance �x that satisfies h. Let Y be the set of labels denoting the possible
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classes to which the examples in a set X could belong, and let yi be one of these
labels. The entropy S(h) of hypothesis h is defined by

S(h) =
|Y|∑
i=1

−pi log2(pi), (6.1)

pi being the probability that an example verifying h belongs to class yi. The
pi are usually unknown, but they can be estimated via the empirical frequen-
cies measured on the learning set. Notice that S(h) = 0 when h is true only
for the examples of a single class yk . In this case, pk = 1 and pj = 0 for
any j �= k.

Let us consider now two hypotheses h1, h2 such that h1 is more general than
h2 in the hypothesis lattice. The information gain IG(h1, h2) is defined as the
difference in entropy between h1 and h2:

IG(h1, h2) = S(h1)− S(h2) > 0. (6.2)

Intuitively, (6.2) provides a measure of the decrease in uncertainty between
classes when one moves from a more general to a more specific hypothesis. Usu-
ally the new hypothesis h2 is built up from the current hypothesis h1 by adding
to h1 a single constraint, the one having the maximum information gain with re-
spect to h1. The search stops when a hypothesis with entropy 0 is reached. Then
all examples have been correctly classified.

Under the assumption that the learning set SL is consistent (i.e., there is no
example with multiple classification) and that it does not contain noise (such as,
for instance, some example misclassified by the teacher), the above strategy aims
at finding a consistent hypothesis, i.e., one that covers all positive examples and
does not cover any negative example.

EXAMPLE

Let us consider the construction of a decision tree from the exam-
ples (learning events) given in Figure 5.7. We have the following
descriptions:

d = (Hatched = YES) ∧ (Shape = circle),
a = (Hatched = NO) ∧ (Shape = rectangle),
b = (Hatched = NO) ∧ (Shape = circle),
c = (Hatched = NO) ∧ (Shape = triangle) ∧ (Height < 0.7),
f = (Hatched = YES) ∧ (Shape = ellipse),
g = (Hatched = YES) ∧ (Shape = rectangle),
e = (Hatched = NO) ∧ (Shape = square),
c = (Hatched = NO) ∧ (Shape = triangle) ∧ (Height > 0.7).
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Figure 6.1 Decision tree classifying the examples (learning events) of
Figure 5.7. The bold path corresponds to the hypothesis h = (Hatched =
NO) ∧ (Shape = triangle) ∧ (Height < 0.7). The entropy at the root S(�)
is 1, because there are four positive and four negative examples in the learning
set. The entropy of the right son of the root S(Hatched = NO) is 0.971, because
the hypothesis (Hatched = NO) covers three positive and two negative exam-
ples. Classification occurs by letting an example go down the tree until it reaches
a leaf, where it receives the label associated with it. For instance, example c
follows the bold path in the tree and is classified as positive.

A decision tree is a tree whose nodes correspond to attributes; the edges
outgoing from a node ν are labeled with the values assumed by the at-
tribute associated with ν. A hypothesis h(ν) is associated with each node
ν; h(ν) is built up by concatenating the conditions found along the edges
from the root to the node ν. “Within” each node ν are the examples cov-
ered by h(ν). A node is a leaf when all the examples within it belong to
the same class.

In Figure 6.1 a decision tree perfectly classifying the examples (learning
events) of Figure 5.7 is shown.
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From a decision tree it is easy to compile a set of decision rules: it is suf-
ficient to collect all the paths from the root to the leaves, and form rules that
have the hypothesis on the leaf as body and the label associate to the leaf as head
(classification). From the tree in Figure 6.1 the following rules can be obtained:Decision trees can

be immediately
converted into

propositional rules,
and vice versa.

(Hatched = YES) ∧ (Shape = circle) → P,

(Hatched = NO) ∧ (Shape = rectangle) → P,

(Hatched = NO) ∧ (Shape = circle) → P,

(Hatched = NO) ∧ (Shape = triangle) ∧ (Height < 0.7) → P,

(Hatched = YES) ∧ (Shape = ellipse) → N ,

(Hatched = YES) ∧ (Shape = rectangle) → N ,

(Hatched = NO) ∧ (Shape = square) → N ,

(Hatched = NO) ∧ (Shape = triangle) ∧ (Height > 0.7) → N .

Rules can be learned directly, as well, by using algorithms explicitly designed to
do so (see for instance Dietterich and Michalski, 1983; Cohen, 1995). Rules areRule learning

usually learned one at a time and, each time a rule is accepted by the learner, the
set of examples covered by it is removed from the learning set. The acquisition
of new rules stops when all positive examples are covered.

Unfortunately, this simple strategy alone does not work well in most practical
cases. First, it is not optimal because the greedy search strategy is incomplete;
it does not take into consideration interactions between the constraints. In fact,
it is possible that the conjunction of two or more constraints, which in isolation
do not show the maximum information gain, constitutes a better hypothesis than
that constructed by the above strategy. Second, it is quite rare that a consistentLimits of the

greedy IG heuristic learning set is available. Inconsistencies may arise from errors at the time of data
collection or may be due to an a priori misclassification on the part of the teacher
who labels the examples or may be the effect of a poor choice of attributes, and
so on. As a consequence, the learning set can contain examples that have the
same description but different classifications. Even worse, the effect of noise on
the attribute values can hide this problem, allowing two or more examples having
in reality the same description to appear different only because of the noise. In
these cases, the IG heuristic is likely to generate a disjunction of a number of
very detailed hypotheses, each covering few examples (possibly only one). This
phenomenon, well known in machine learning under the name of overfitting,
produces hypotheses that are very good (if not perfect) on the training set but
which show a poor classification ability on previously unseen instances (poor
generalization power).

In order to combat this problem, the IG heuristic is usually combined withPre-pruning

pre-pruning or post-pruning techniques based on other heuristics suggested by
statistics or information theory. The idea of pre-pruning simply consists in re-
quiring that a new, more specific, hypothesis h2 not only exhibits the maximum
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IG with respect to the current hypothesis h1 but also exhibits a reduction in the
classification error for instances not belonging to the training set SL . To this end
a set of examples, called the pruning set, is kept apart and used for the sole pur-
pose of pre-pruning (Breiman et al., 1984). If this requirement is not satisfied
then the specialization process stops and h1 is added to the global solution.

In the case of post-pruning the greedy search algorithm constructs a detailed Post-pruning

(possibly overfitted) solution guided by the IG heuristic only. Then the solution
undergoes a simplification procedure in which conditions not providing a signif-
icant reduction in the classification error of new learning instances are dropped.

A powerful pruning heuristic is based on the minimum description length Minimum
description
length

(MDL) principle (Rissanen, 1978). The MDL is a measure of complexity which
counts the minimum number of bits necessary for describing a global hypothesis
h that represents regularities in the data, plus the bits necessary to describe the
data not explained by the hypothesis (the exceptions). According to this princi-
ple, a more specific hypothesis h2 replaces the current hypothesis h1 only if the
MDL decreases from h1 to h2. Therefore, a detailed hypothesis covering only
a few examples is likely to be rejected. The MDL principle has the advantage
of not requiring a pruning set, and it is very easy to implement in pre-pruning
techniques (Quinlan, 1986). However, it has two drawbacks. The first is that it
is not computable, in the sense of computability theory; however, several good
approximations of it are available. The second drawback is that the assumption
that minimizing the MDL of a hypothesis also reduces the classification error
on an independent test set ST remains a conjecture to be proved. However, the
method works well with decision trees, providing performances comparable to
those ones obtained using a pruning set.

6.1.2 Lifting information gain to first order

We will now discuss the heuristics frequently used to guide learning algorithms
in the relational framework. In this case also, many heuristics are based on the
concept of information gain. However, in the relational framework, things are
more complex than in the propositional framework, and the IG measure (6.2)
cannot be applied directly as in the previous subsection.

As discussed in Section 5.2.3, a first-order formula can be satisfied in many
different ways in a learning instance. Let us consider again the example of
Figure 5.10 and the 0-arity concept:1

“arch” ← grounded(x) ∧ grounded(y) ∧ on(z, x) ∧ on(w, y)
∧ connected(z, w).

1Here we will make specific reference to 0-arity concepts because the analysis of phase tran-
sitions in relational learning is done using this type of concept.
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Table 6.1 Numbers of alternative tuples satisfying h1 and h2
in the different scenarios of Figure 5.10; P is the class of
positive instances

(a) (b) (c) (d) (e) (f) total P

h1 6 2 6 6 6 6 38 32
h2 2 2 2 4 2 3 13 11

We saw that in scenarios (a), (b), (c), (f) there is a unique triple of objects
satisfying this concept definition whereas in scenario (d) the definition is ver-
ified (satisfied) by two different triples of objects, namely (a, b, d) and (b, e, c).
Finally, scenario (e) is a negative example of this simple definition, because no
single object is simultaneously on both x and y. Suppose that we want to learn
the concept “arch” using a general-to-specific greedy strategy guided by the IG
heuristic. Suppose, moreover, that the hypothesis

h1 ≡ “simple arch” ← grounded(x) ∧ grounded(y)

has already been constructed and that the algorithm is evaluating the IG with
respect to the new formula

h2 ≡ “simple arch” ← grounded(x) ∧ grounded(y) ∧ on(z, x)

obtained by adding the new literal (relation) on(z, x) to h1. Expression (6.2) will
return IG(h1, h2) = 0, because both h1 and h2 cover all the learning scenar-
ios. Nevertheless, this literal is the only possible choice for learning the correct
definition. From this simple example it is clear that the heuristic widely used
in propositional calculus does not work, without modification, in the relational
framework.

Let us consider now the number of possible ways in which h1 and h2 are
satisfied in the different scenarios in Figure 5.10. In Table 6.1 the numbers of
alternative tuples of constants satisfying hypothesis h1 and h2, respectively, is
reported.

We observe that the proportion of tuples in the positive scenarios is slightly
higher for h2 (11/13 = 0.846), than for h1 (32/38 = 0.842). In fact, the lit-
eral on(z, x) captures a pattern that is more frequent in the positive instances
and is a necessary precondition for acquiring the correct definition. There-
fore, new heuristic definitions of the information gain are proposed in rela-
tional learning; for each of h1 and h2 they depend on the ratio of the number
of satisfying tuples in the positive examples and the total number of satisfying
tuples.
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In the remaining of this chapter we will illustrate the basic functioning and
heuristics used by the machine learning algorithms in the experimental study
reported in later chapters.

6.2 FOIL: information gain

The first relational learner proposed in the literature that was guided by a
heuristic based on the information gain was FOIL (Quinlan, 1990; Quinlan and
Cameron-Jones, 1993). This learner exploits a greedy hill-climbing search strat-
egy, which is guided by the IG heuristic (6.2). FOIL was an extension to the
relational case of the corresponding algorithm used in the learning of decision
trees (Quinlan, 1986).

FOIL uses a top-down search strategy for building clauses that describe dif-
ferent modalities of the target concept or relation c(x1, . . . , xn). The basic ver-
sion of the algorithm relies, for learning, on a database of tuples of constants,
some labeled positive (i.e., they are in P) and some negative (i.e., they are in
N ). The algorithm consists of two nested loops. In the outer loop it iteratively
constructs one Horn clause at a time; after a new clause is acquired, the cov-
ered positive learning tuples are removed from the learning set and the search
restarts by looking for new clauses covering the remaining positive learning tu-
ples. In the inner loop FOIL seeks a Prolog clause (see Section 4.15) of the form
c(x1, . . . , xn) ← L1, . . . , Lk , which characterizes some subset of the relation c.
The clause is “grown” by starting with just the left-hand side and adding literals
Li (1 � j � k) one by one to the right-hand side. This inner loop makes use of
a local training set consisting of labeled k-tuples of constants extracted from the
global training set.

The information gain heuristic plays its role in the construction of single
clauses. Let h1 denote the current hypothesis corresponding to a Horn clause
h1 ← L1, . . . , Li. Moreover, let h2 be a more specific Horn clause obtained by
adding a literal Li+1 to L1, . . . , Li. FOIL’s information gain IG(h1, h2) is given
by the following expression:

IG(h1, h2) = t log2

(
P2

P2 + N2

)
− log2

(
P1

P1 + N1

)
, (6.3)

where P1, P2, N1, N2 are the numbers of tuples satisfying h1 and h2 in positive
and in negative instances; t is the number of positive tuples covered by both h1
and h2. If h2 is obtained by adding to h1 a literal containing a new variable, a
tuple covered by h1 is considered to be covered also by h2 if it is contained in a
tuple covered by h2.
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FOIL also includes special heuristics in order to handle the case where no
new hypothesis exists having a positive information gain with respect to the cur-
rent one. In this case, FOIL adds a literal that extends the number of variables in
the body of the clause.

6.3 SMART+: beam search

SMART+ is a multi-strategy learning system which incorporates a set of several
alternative strategies that the user can select and/or combine, depending on the
specific learning problem. Again, we will limit here the description of the system
to its essence. The interested reader is referred to the work by Botta et al. (1993)
for a complete description of the system.

Basically, SMART+ proceeds top-down as FOIL does. A distinctive feature
is the use of beam search instead of pure hill-climbing. The maximum width w
of the beam can be set by the user; for instance, if w = 1, beam search reduces
to hill-climbing. A second feature is that SMART+ can learn multiple concepts
at the same time. However, it is not able to learn relations of arity greater than 0.
Finally, SMART+’s heuristic for guiding the search is more sophisticated than
FOIL’s and combines the information gain criterion with other criteria account-
ing for the completeness and consistency of the hypotheses and, possibly, for the
available domain knowledge.

For the sake of simplicity we will restrict the description of the search heuris-
tic to the case of the learning of only one positive concept (as with FOIL) without
any domain knowledge.

Given a current conjunctive hypothesis h1 (a Horn clause), any new hypoth-
esis h2 obtained by adding a literal to h1’s body (right-hand side) is evaluated by
a function μ(h1, h2) that is the weighted sum of two terms:

μ(h1, h2) = αμ1(h1, h2) + (1− α)μ2(h2) (0 ≤ α ≤ 1). (6.4)

The first term is the information gain of h2 with respect to h1 and is computed
as follows:

μ1(h1, h2) = P2 log2

(
P2

P2 + N2

)
− log2

(
P1

P1 + N1

)
. (6.5)

Expression (6.5) is analogous to (6.3), but with the difference that here the infor-
mation gain is multiplied by the number of positive tuples satisfying h2 instead
of the number of tuples satisfying both h1 and h2. The second term has the fol-
lowing expression:

μ2(h2) =
|cover(h2) ∩ P|

|P|
|cover(h2) ∩ P|

|cover(h2) ∩ P|+ |cover(h2) ∩N|
. (6.6)
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and is the heuristic rule used by a precursor of SMART+ (Bergadano et al.,
1988). More specifically, (6.6) is the product of two factors: the first is the ratio
of the number of positive learning instances covered by h2 and the total number
of positive instances in the learning set, and is a measure of the completeness of
h2. The second factor is the number of positive instances covered by h2 divided
by the total number of instances (both positive and negative) covered by h2, and
is a measure of the consistency of h2.

If α is set to 1, SMART+ uses only the information gain term in (6.4) while
if α is set to 0 it uses the second term only. The default value is α = 0.5.

Let B denote the size of the current hypothesis beam. At each step SMART+
evaluates, with rule (6.4), all the hypotheses that can be derived from those in the
beam by adding one literal and retains the best B chosen from the union of the
old and the new hypotheses. The search stops when all learning instances are
covered or when any new hypothesis has a score lower than the worst in the
beam.

6.4 G-Net: genetic evolution

Genetic algorithms are general purpose biologically inspired tools for perform-
ing a search in optimization problems (Goldberg, 1989). The basic idea consists
in encoding tentative solutions to a problem as DNA chromosomes. Evolving
the DNA according to the Darwinian paradigm of genetic evolution, the solu-
tions tend to approach a global, or local, optimum. The literature of the field is
very rich, and even an introduction to it is outside the scope of this book. The
interested reader can find a good one in the book by Goldberg (1989).

As the task of concept learning can be cast as a search problem, ge-
netic algorithms were proposed for this task very early on (Holland, 1986;
De Jong et al., 1993). Since then, many authors have proposed different evo-
lutionary paradigms specifically tailored to concept learning. Here we will focus
on G-Net (Giordana and Saitta, 1994; Anglano et al., 1998), a task-oriented ge-
netic algorithm that will be used in the following for investigating the emergence
of phase transitions in relational learning. In fact, G-Net differs from other re-
lational learners principally in its search strategy, which is based on a stochas-
tic genetic search guided by the minimum description length (MDL) principle
(Rissanen, 1978). As shown by Giordana and Saitta (1994), the portion of hy-
pothesis space visited by G-Net is different from that visited by other learners;
thus it can find solutions that others cannot find, and vice versa.

Like FOIL and SMART+, G-Net describes a concept as a set {h1, h2, . . . .,
hn} of Horn clauses. Each clause is a partial definition covering a different
modality of the concept. G-Net’s inductive engine exploits a stochastic search
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algorithm organized on two levels. The lower level, named the genetic layer
(G-layer), searches for single Horn clauses hi. The architecture of the G-layer
derives from the diffusion model (Manderik and Spiessens, 1989) and integrates
different ideas originating within the community of evolutionary computation
and tabu search (Rayward-Smith et al., 1989). The upper level, namely the su-
pervisor, builds up a global concept definition ϕ out of the partially defined hi’s
generated inside the G-layer, using a greedy set-covering algorithm.

From a computational point of view, the G-layer consists of a set of (virtual)
elementary processors called G-nodes. Each G-node is associated with a single
concept instance e+ and executes a local evolutionary search aimed at cover-
ing e+ as well as possible according to a fitness function based on the MDL
principle. In more detail, the search starts with a maximally specific clause cov-
ering e+ , constructed by a seeding operator (Giordana and Saitta, 1994). Then
this initial clause is evolved by applying a set of stochastic operators, which per-
form generalization, specialization, and random mutation. Hence, G-Net exploits
a bidirectional data-driven search strategy. According to the MDL principle, a
new clause obtained in this way receives a good evaluation when it is simple and
consistent. Nevertheless, simple hypotheses also tend to be general and to cover
many other examples; then the set of clauses ϕ′ evolved by the G-layer tends to
be highly redundant. As a consequence the basic task of the supervisor consists
in extracting a minimal (according to MDL) set ϕ of clauses from ϕ′. Moreover,
the supervisor interacts with the G-layer, focusing the search towards partial hy-
potheses covering positive examples not yet covered by the current set of clauses
ϕ. This is done by increasing the number of G-nodes, searching the concept in-
stances that are not covered or are poorly covered by the current clauses in ϕ.

6.5 PROGOL: exhaustive search

PROGOL is probably the best-known learning program developed in the ILP
community and is available in two basic implementations, one in C language
(C-PROGOL) and the other in Prolog (P-PROGOL).

The PROGOL algorithm was described in detail by Steve Muggleton (1995);
a good introduction to the theory, implementation, and applications of ILP is
provided by Muggleton and De Raedt (1994). P-PROGOL was intended to be
a prototype for exploring ideas. It started in 1993 as part of a project under-
taken by Ashwin Srinivasan and Rui Camacho at Oxford University. The main
purpose was to understand the idea of inverse entailment, which eventually ap-
peared in (Muggleton, 1995). C-PROGOL is an implementation written in C that
contains its own Prolog interpreter and is aimed at increasing the computational
efficiency. The main differences in implementation (other than language) are in
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the search technique used and in the degree of allowed user interaction. During
routine use PROGOL follows a very simple procedure, which consists of four
steps.

1. Select example Select an example to be generalized. If none exists, stop;
otherwise proceed to the next step.

2. Build most specific clause Construct the most specific clause that entails
the example selected and complies with the language restrictions. This
clause is usually a definite clause with many literals and is called the “bot-
tom clause”. This is sometimes called the saturation step.

3. Search Find a clause more general than the bottom clause. This is done
by searching for some subset of the literals in the bottom clause that has the
“best” score. Two points should be noted here. First, confining the search
to subsets of the bottom clause does not actually produce all the clauses
more general than the bottom clause, but this description is sufficient for a
thumbnail sketch. Second, the exact nature of a clause’s score is not really
important here. This step is sometimes called the reduction step.

4. Remove redundant examples The clause with the best score is added to
the current theory and all examples made redundant are removed. This
step is sometimes called the “cover removal” step. Note here that the best
clause may make clauses other than the examples redundant. Again, this
will be ignored here. Return to step 1.

In other words the search starts bottom-up, as in G-Net, and the second step is
similar to the seeding operator, where a maximally specific clause is constructed.
Afterwards, more general clauses are built up using the inverse entailment oper-
ator. The basic search strategy used in this case is a best-first exhaustive search.
Nevertheless, it can be modified by the user by supplying preference criteria and
pruning techniques to limit the set of clauses generated, which otherwise could
quickly become intractable.

As in the cases of FOIL and SMART+ the positive examples covered by
a clause selected at the end of the third step are removed from the learning set
before a new induction step is started.

6.6 Plateaus

When solving optimization problems, local search algorithms may be faster than
complete search algorithms, but they tend to become trapped in local minima.
An interesting phenomenon may occur during searching, i.e., starting from the
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current search state the algorithm cannot reach, in one step, any state that shows
an improvement of the objective function. In other words, the algorithm has no
guidance about where it should go next. A region in which the objective function
does not change is called a plateau. In a plateau the search goes blind and turns
into a random search until either an exit from the plateau is found or the search
stops for some reason.

Frank et al. (1997) studied this phenomenon and defined different types of
plateaus, as indicated in Figure 6.2. They used, for the experiments, the GSAT
algorithm (Selman et al., 1992) for solving a variety of 3-SAT problems. In the
following description of their work we will assume that the objective function
H is to be minimized. Plateaus are defined as any maximally connected region
of the local search space over which the objective function is constant. They are
divided, by the authors, into two classes: local minima and benches. We will now
explain the difference.

Given a plateau, its border is the set of points in the search space that are
neighbors to some state in the plateau but differ in the value of the objective func-
tion H . If the value of H in the plateau is lower than the value of H at any of its
border points, then the plateau is a (global or local) minimum. If, on the contrary,
the value of H at some point s in the border is lower than the value in the plateau
then the points inside the plateau adjacent to s are called exits; plateaus with
exits are called benches. Intuitively, minima are plateaus surrounded by regions
of the search space where the objective function is greater than in the plateau. A
greedy local searcher cannot escape from a minimum once it enters it. Benches
are plateaus with exits towards regions where the objective function has lower
values than in the plateau. Thus a searcher can escape from them. However, the
experiments of Frank et al. showed that benches are often much larger than local
minima; most have a high number of exits but some have very few. A bench may
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Figure 6.3 Proportion of minima among the plateaus found in 3-SAT by Frank
et al. (1997). The levels correspond to the values of E. Reprinted from Frank
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consist entirely of exits; in this case it is called a contour, and a local searcher
will visit only one point of such a bench before moving away from it.

Using the above definitions and applying the GSAT search algorithm
(Selman et al., 1992), Frank et al. (1997) investigated the behavior of plateaus
in ensembles of 3-SAT problems with variable number n = 100, near the phase
transition (see Chapter 3), for values of α in the interval [3.8, 4.6]. The objective
function to be minimized was the number E of unsatisfied clauses. First, satisfi-
able problem instances were analyzed. In order to find a plateau, GSAT was run
until it found a state with a prespecified level of E (from 0 to 5). Then, using
a breadth-first strategy, all the states with the same value of E were searched
for and recorded. At the same time the nature of the plateau (minimum or bench)
was determined. The proportion of minima and benches in sets of 1000 problems
for each value of E was computed. Figure 6.3 gives the results of this investiga-
tion. Another aspect investigated by the authors was the size distribution of the
local minima and benches. For the same set of problems as before (100 variables
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and 430 clauses) and for E = 1 they found that the majority of local minima
have size less than 300 states (the median was 48 states), but the distribution
has a long tail, reaching to 10 000 states. In addition, by setting E = 0, global
minima are obtained (note that the study was done for satisfiable instances);
the set of global minima consists of several separate minima of widely varying
size.

Analogous results were found for the bench size distributions; these again
show long tails, but the benches are much larger (by a factor 10–30) than the
minima and the size distribution tends to be flatter. As the difficulty of escaping
from a bench depends on the number of exits, a relevant parameter to investigate
is the ratio of the number of exits and the size of the bench. Figure 6.4 gives
the experimental results. Finally, Frank et al. (1997) searched for features that
could distinguish a satisfiable from an unsatisfiable problem instance, so that
a local searcher could exploit this information early on. Unfortunately, nothing
substantial was found.

Interesting results have also been found for the MaxSAT problem (Sutton
et al., 2009), where, in order to manage very large instances, it is fundamental to
be able to navigate and escape plateaus effectively and to find exits where they
exist. The authors modeled the presence of plateaus as a percolation process on
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a hypercube graph and described how lower and upper bounds on a plateau’s
expected size can be estimated (together with their accuracy), given the E value
of the plateau.

As we will see in later chapters, the presence of plateaus plays a fundamental
role in relational learning as well.

6.7 Comments

The difference in complexity existing between representations of hypotheses in
propositional and relational learning, described in Section 5.2, is matched by
an analogous difference in the complexity of the algorithms devoted to acquir-
ing the two kinds of knowledge. Globally, in order to solve a learning problem
the learning algorithm, whatever its search strategy may be, must exploit some
type of evaluation function to guide the search, as the exploration of the whole
hypothesis space is out of question except in trivial cases.

There are basically three types of guidance that a learning algorithm can
receive: a hypothesis evaluation function (e.g., the information gain or the min-
imum description length), training data, and domain knowledge. All three have
advantages and drawbacks. Evaluation functions may be ineffective in some re-
gions of the hypothesis space, owing to the presence of plateaus, but in other
regions they may help the learner to find good hypotheses. Adhering too closely
to training data, however useful, may mislead the search and generate overfitting,
particularly in very noisy domains; on the other hand, training data may allow
large parts of the hypothesis space to be disregarded. Finally, domain knowl-
edge may help considerably in finding human-meaningful hypotheses, but it is
difficult to handle.

Even though learning is a search problem, the machine learning community
has developed specific algorithms rather than trying to use those available in
the search community. One reason for this could be the feeling that learning
is a special type of search, to which ad hoc algorithms will prove to be better
suited than generic searchers. Some experimental studies support this opinion.
Recently, as a consequence of the establishment of links with statistical physics,
new efforts have been devoted to explore the possibility of using and developing
new algorithms.
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The study of the emergence of phase transitions, or, more generally, the applica-
tion of statistical physics methods to automated learning, is not new. For at least
a couple of decades ensemble phenomena have been noticed in artificial neural
networks. In the first part of this chapter we will illustrate these early results and
then move to currently investigated issues.

According to Watkin et al. (1993), statistical physics tools are not only well
suited to analyze existing learning algorithms but also they may suggest new ap-
proaches. In the paradigm of learning from examples (the paradigm considered
in this book), examples are drawn from some unknown but fixed probability dis-
tribution and, once chosen, constitute a static quenched disorder (Watkin et al.,
1993).

7.1 Artificial neural networks

Artificial neural networks (NNs) are graphs consisting of a set of nodes that
correspond to elementary computational units, called “neurons”, connected via

140
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i
i

o

o o

Figure 7.1 A generic structure of a neural network. Nodes labeled “i” are input
nodes, nodes labeled “o” are output nodes, and blank nodes are internal nodes.

links recalling “axons” and “synapses”. Even though the terminology is bor-
rowed from neurology, the analogy between an NN and the brain can well be
ignored. The idea behind the computation in an NN is that inputs from the ex-
ternal world activate a subset of the neurons (the input neurons), which, in turn,
elaborate the input and transmit the results of this local computation to other neu-
rons until some subset of neurons (the output neurons) provide the final results
to the external world. All neurons that are neither input nor output are internal.
In Figure 7.1 an example of a generic NN is given.

Clearly the above definition covers an unlimited number of structures. More-
over, the types of function computed by the elementary units increase the variety
of NNs along another dimension. If no limits are set on the network’s struc-
ture and local computation, it is almost impossible to analyze its behavior. Thus
precisely defined network types have been introduced and studied. For this, a
model of the neuron is needed. A very basic model of a neuron νj , represented
in Figure 7.2, includes the following elements. Formal model

of a neuron

• A set of input links (synapses), which transmit to a neuron νj the signals
(x1, . . . , xr) arriving from r other neurons or from the external world.
Each link xi,j (1 � i � r) has an associated weight wi,j , which multi-
plies the input signal xi. If wi,j > 0 the link is excitatory, whereas it is
inhibitory if wi,j < 0. If wi,j = 0, the link is not present in the network.
An output link yj carries the activation value of the neuron.
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Figure 7.2 A basic model of a neuron in an artificial neuron network. Within
the neuron, (a) an adder computes uj as a weighted sum

∑r
i=1 wi,jxi of the input

signals and (b) the output is then calculated by a limiting activation function f(u)
(in the figure it is logistic).

• An adder, which sums up the input signals weighted by the respective wi,j

values. Thus, the adder computes the sum

uj =
r∑

i=1

wi,jxi.

The quantity uj is known as the post-synaptic potential.

• An activation function yj = f(·), which limits the amplitude of the out-
put signal. Typically, the output range of a neuron is the interval [0, 1] or
[−1, +1]. The output yj is then computed from

yj = f(uj − τj),

where τj is the threshold typical of neuron νj . The activation function
may take a wide variety of formats; two common ones are the threshold
function,

f(u) =

{
1 if v � 0,

0 if v < 0,
(7.1)

and the logistic function,

f(u) =
1

1 + e−au
. (7.2)

The numerical value a in (7.2) is a slope parameter.
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Figure 7.3 The perceptron. All the neurons in the input layer are connected
to the output neuron, with links labeled Ji (1 � i � n). The Ji represent the
quenched disorder.

The first studies on NNs date back to the 1950s, when Rosenblatt (1958)
proposed a very simple network model, which nevertheless aroused considerable
interest: the perceptron. Its structure is simply organized into two layers, one of The perceptron

input neurons (the input layer) and the other constituted by a single output neu-
ron (the output layer), as represented in Figure 7.3.1 The input layer receives the
signals (x1, . . . , xn) from a “retina”; the output neuron elaborates these signals
and provides the result y. Since there is a unique output node, the weights can
simply be defined as Ji (1 � i � n). They represent the quenched disorder
introduced in Chapter 2.

Central to the operation of Rosenblatt’s perceptron is the McCulloch–Pitts
model of the neuron, depicted in Figure 7.2. Given an external threshold τ , the
adder produces the value

u =
n∑

i=1

wixi − τ. (7.3)

The activation function yj is a hard limiter, which outputs 1 if u � 0 and 0
otherwise. The purpose of the perceptron is to distinguish between two classes
of objects, c1 and c2. The decision boundary is the hyperplane

u =
n∑

i=1

wixi − τ = 0. (7.4)

1Nevertheless, this basic construct is regarded as a single-layer perceptron; the output layer is
disregarded in this terminology.
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Figure 7.4 Multi-layer perceptron with a single layer of hidden units.

If u � 0 then the input is assigned to class c1, otherwise to class c2. The interest
in the perceptron was mainly due to the possibility of training it to recognize
inputs and classify them. To this end, a set of labeled training examples is shown
to the perceptron, and the weights are updated each time a new example (or a set
of examples) is seen. Rosenblatt proved that the updating algorithm converges
and correctly separates the two classes by a hyperplane, if the classes are indeed
linearly separable. Notwithstanding Rosenblatt’s optimism about the potential
of the perceptron, the use of a step function for f(u) did not allow effective
training. A critical analysis of the perceptron, published by Minsky and Papert
(1969), pointed out a number of essential weaknesses, as a consequence of which
research on neural networks almost died out.

Interest in neural networks returned following the proposal, by Rumelhart,
Hinton, and Williams (Rumelhart et al., 1986; Rumelhart and McClelland,
1986), of a new network model, the multi-layer perceptron (MLP), with non-Multi-layer

perceptron linear but differentiable functions f(u). The new model overcame the problem
of the original perceptron’s step function, and was also provided with an effec-
tive training method, the error back-propagation algorithm. The MLP, whose
scheme is illustrated in Figure 7.4, is a layered, directed, network, in which neu-
rons are organized into an input layer, an output layer, and one or more hidden
layers. The neurons in the internal layers are called hidden units. Only neurons
in adjacent layers can be connected. The MLP is a feed-forward network, where
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the information flows from input to output. It can potentially realize any kind of
nonlinear separation between classes.

In contrast, even though the simplicity of the perceptron makes it unrealistic
for practical application (it discriminates only between linearly separable classes
of objects), the same simplicity allows for detailed studies of its behaviors. In
particular, early research on the emergence, in learning, of phenomena typical
of statistical physics concentrated on neural networks and, in particular, on the
perceptron (Kinzel, 1998; Engel and Van den Broeck, 2001; Biehl et al., 2000;
Nishimori, 2001).

7.1.1 The perceptron

In order to describe the results obtained by the statistical mechanics approach to
learning in a perceptron, we need to introduce some notions first. Let n be the
number of input units in the network. Given n and the activation function f(·),
a given perceptron P differs from any other only with respect to the synaptic
weights on the links between the input and the output neurons. The net has n de-
grees of freedom. Let �x = (x1, . . . , xn) be the input vector with n components,
�W = (w1, . . . , wn) the corresponding vector of weights, and y the output. The

vector �x belongs to the input space X . Let us denote by W the set of all possible
weight assignments. Then, any network can be identified by its corresponding
weight vector �W.

The network �W, called the “student”, must learn a decision boundary be- The student network

tween two classes c1 (corresponding to an output y = +1) and c2 (correspond-
ing to an output y = −1) by looking at a subset of X , namely the learning set
SL = {�x(i)|1 � i � r}, containing r examples. Let �T be the “teacher”, namely a The teacher network

network with weights that allow perfect discrimination between the two classes,
and let the output be yT . The goal of learning is to exploit SL to let the network
�W become as close as possible to �T. In order to measure the progress of �W, a

performance measure is needed; a suitable one is the following:

d( �W, �T, �x) = 1(−y(�x) · yT ), (7.5)

where �x is a given input vector, and 1(u) is the step function, which assumes the
value 1 if u � 0 and 0 otherwise. Clearly, d = 1 iff �W and �T classify the input
vector �x differently (an error has occurred). Using (7.5) the training error, i.e.,
the error that results when �W performs on the learning set SL , can be computed
as follows:

εt =
1
r

r∑
i=1

d
(

�W, �T, �x(i)
)

. (7.6)

As discussed in Chapter 5, choosing a student with a training error as low as
possible might not be a good idea, as there is a danger of overfitting. We need to
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introduce the generalization error ε( �W, �T), which is defined as the average of
d over all possible inputs �x:Generalization error

ε = ε( �W, �T) =
∑
�x∈X

P(�x) d( �W, �T, �x). (7.7)

The average (7.7) is performed over the quenched disorders (the training exam-
ples). The probability distribution P(�x) is usually fixed but unknown. The error
ε can also be interpreted as the probability that �W is in error on an input vector
�x randomly drawn from P(�x). What we want to obtain is an error ε as low as
possible.

The behavior of an NN in the limit of large n can be rewritten in terms of sta-
tistical physics quantities. More precisely, the weights �W are the couplings �J of
the net (hence, wi = Ji), and they can also be considered as describing quenched
disorder. Actually, the generalization error ε given in (7.7) is still a function of �J.
In order to analyze the behavior of the perceptron quantitatively, we have to make
some assumptions about the range of values assumed by the quantities involved.
If the output y can only assume values ±1 then the perceptron is called binary,
and f(u) is a threshold function. If, on the contrary, f(u) = u, the perceptron
becomes linear. In an analogous way, the vector �W = �J may have continuous
or binary components; in the latter case, the perceptron is called an Ising percep-
tron. For example, an Ising binary perceptron has both the Ji (1 � i � n) and y
equal to ±1. If �J has continuous components, a special case is that in which all
possible �J vectors have the same length,

√
n; this type of perceptron is said to

be spherical.
In the following we will consider the case where

�W2 = �J2 =
n∑

i=1

J2
i = n. (7.8)

Moreover, let

�x2 =
n∑

i=1

x2
i = n. (7.9)

By using the definition of energy introduced in Chapter 1, the Hamiltonian ofHamiltonian of
the perceptron the perceptron can be written as

H(�x) = −
n∑

i=1

Jixiy. (7.10)

If the perceptron’s behavior is governed by a threshold function f(u), it can
be shown that on the one hand the Hamiltonian is upper-bounded. In fact, from
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(7.3) we have that H(�x) = −uf(u), with τ = 0. If u � 0 then f(u) = 1
and H = −u < 0; if u < 0 then f(u) = 0 and H = 0. On the other hand,
the Hamiltonian is also lower-bounded, because |u| � n. As a consequence the
perceptron will reach an attractor state, where it will stay (Engel and Van den
Broeck, 2001). Since in the thermodynamic limit the number of degrees of free-
dom, n, of the perceptron diverges, we may expect that for learning to take place
the number of examples shown to the perceptron must diverge too. As it turns
out, r = |SL| diverges but the ratio α = r/n must remain constant.

Requiring that �J, �T, and �x have length
√

n does not affect the performance
of the perceptron, because only the angle between �J and �x is important, as we
now explain. The boundary between the two classes provided by equation (7.4)
can be written as

n∑
i=1

Jixi = �J · �x = |�J||�x| cos θ = 0, (7.11)

where “·” denotes the scalar product of two vectors. As neither |�J| nor |�x| can
become zero, the only relevant quantity is cos θ, i.e., the cosine of the angle
between the two vectors.

As already mentioned, the goal of learning is to reduce the distance between
the student �J and the teacher �T. In order to evaluate their distance, the overlap
R is introduced: Overlap between

networks
R =

�W · �T
n

=
�J · �T

n
=

1
n

n∑
i=1

wiTi. (7.12)

The overlap R is 0 when �J and �T are orthogonal vectors, whereas it is a maxi-
mum when they coincide. In fact, the generalization error ε of the network can
be written as:

ε =
1
π

arccos R. (7.13)

In Figure 7.5, a circle of unit radius illustrates the relation between �J and �T.
As R = cos θ, the error is equal to the ratio of the total length of the two arcs
defining the hatched regions (2 arccos R) and the whole circumference (2π).

In order to set the weights �J, a simple learning scheme, the Gibbs rule,
can be exploited. Let us consider exactly the set of all couplings �J that classify
the training examples seen so far as the teacher. These couplings are said to be
compatible and they constitute the version space. We want to compute the gen- Version space

eralization error of a vector �J drawn randomly from the version space. When a
new example is shown to the network, the version space can only shrink and the
generalization error decrease; the reason is that some more incompatible cou-
plings are rejected, and the generalization error is given by (7.7), in which the
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T J

uJ = 0

uT = 0

Figure 7.5 Relationship between the student �J and the teacher �T. The hyper-
planes orthogonal to the vectors represent the decision boundaries between the
classes. Above the hyperplane uT = 0 all the objects belongs to class c1, whereas
below the hyperplane all the objects belong to class c2; as �T is the teacher this
is the correct classification. However, the student puts in class c1 objects that are
above the hyperplane uJ = 0 and in class c2 those that are below it. Thus all
objects located in the hatched regions are misclassified by the student.
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Figure 7.6 Computation of the generalization error ε∞(α) as a function of α,
from (7.14).

proportion of compatible couplings now increases. The obtained generalization
error characterizes the typical performance of a compatible student. It is possible
to show (Engel and Van den Broeck, 2001) that, in the thermodynamic limit, the
generalization error is the following function of α:The parameter

α = r/n is the ratio
of the number of

training examples and
the degree of freedom

of the perceptron.

ε∞(α) = argmax
[
1
2

ln sin2(πε) + α ln(1− ε)
]

. (7.14)

For α = 0 we have ε = 0.5, i.e., the student is orthogonal to the teacher and
the learned classifier performs random guesses. For α → ∞ we expect ε → 0.
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Figure 7.7 Phase transition of the generalization error ε as a function of α. The
critical value of the control parameter is αcr

∼= 1.245. The solid curve starting
at 0.5 represents the generalization error and the solid curve starting at 0.7 rep-
resents the entropy. The broken lines correspond to metastable states. Reprinted
from Engel and Van den Broeck (2001).

The computation of ε∞(α) is described in Figure 7.6. For large α, equation (7.7)
gives:

ε ∼ 1
α

. (7.15)

The above simple analysis yields qualitatively correct results. In order to ob-
tain quantitatively correct results, methods from statistical physics must be used,
in particular the annealed approximation and Gardner’s analysis (Engel and
Van den Broeck, 2001). The most difficult part of the computation is handling
the quenched disorder, namely, the training example distribution. The obvious
quantity to use to compute the generalization error would seem to be the volume
of version space but unfortunately this is not a self-averaging quantity (see Sec-
tion 2.6.1). In fact the correct quantity for use in generalization problems is the
entropy, which is the logarithm of the version space volume; its average value
can be computed in the thermodynamic limit, n → ∞, using the replica trick
with the symmetry ansatz (see Section 2.7). The results are given in Figure 7.7.

In Figure 7.6 the generalization error shows a smooth decrease from ε = 0.5
to the asymptotic limit ε = 0. If some network parameters are constrained to
be Boolean, new phenomena emerge. For example, if an Ising perceptron with
Boolean �J and �x that is learning from another Ising perceptron �T is considered,
then statistical physics methods reveal the presence of a first-order phase transi-
tion in the generalization error ε (the order parameter) with respect to the control
parameter α. More precisely, the generalization error drops to 0 at the value Transition to perfect

generalizationαcr
∼= 1.245, showing an abrupt transition to perfect learning. The meaning of
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the phase transition is that if an Ising perceptron classifies 1.245 n random inputs
in the same way as the teacher, it will classify correctly all 2n possible inputs.
This results was obtained by applying the replica symmetry method (Engel and
Van den Broeck, 2001).

These results confirmed that obtained by Seung et al. (1992), who studied
perceptron learning with equilibrium statistical mechanics methods. The exact
quenched disorder analysis was approximated in two cases, the high-temperature
limit and the annealed approximation. The authors assumed realizable target
rules, i.e., perfect decision boundaries between two classes, provided by a
teacher perceptron with the same structure as the learner’s. They studied four
types of perceptron determined by the continuous or discrete nature of the
weights and of the output. If the weights are continuous, the generalization er-Continuous weights

do not generate
discontinuities.

ror varies with continuity and shows the typical inverse-power-law behavior for
increasing number of training examples. When the weights are discrete, a first-
order phase transition appears: if the output is linear, the transition is from a
state of poor generalization to one of good generalization followed by an inverse
power law decay toward zero. If the output is discrete as well then the transi-
tion is to perfect generalization. Monte Carlo simulations demonstrate that the
results are quantitatively correct at high temperatures and qualitatively correct at
low temperatures.

A comprehensive account of phase transition appearances in neural networks
was provided by Watkin et al. (1993), who proposed a general setting for inves-
tigation of the issue and reported results for several types of networks, including
multi-layered ones.

7.1.2 Multi-layer perceptrons

Multi-layer perceptrons were studied by Biehl et al. (2000). The authors consid-
ered the two-layer perceptron shown in Figure 7.8, which has also been called
the soft-committee machine (see also Kinzel, 1998).

Each hidden unit zj (1 � j � K) is connected to all input units xi (1 � i �
n), with weights Jij (1 � i � n, 1 � j � K). By defining as �J(j) (1 � j �
K) a vector whose components are the weights Jij , the activation value of the
hidden units can be given as

zj =
1√
n

�J(j) · �x (1 � j � K),

and the output as

y(�x) =
1√
K

K∑
j=1

erf
(

zj√
2

)
.
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Figure 7.8 Two-layer perceptron studied by Biehl et al. (2000). The input layer
has n neurons, and there are K hidden units and one output unit. The weights of
the connection between the hidden and output neurons are all equal to 1/

√
K.

Learning occurs, as usual, through the provision of a training set SL = {�x(k)|1 �
k � m} containing m labeled examples. The exact rule that the student net-
work is supposed to learn corresponds to an identical two-layer perceptron, with
weights �B(j) between the input and the hidden units and output v(�x). Both y(�x)
and v(�x) being continuous, the empirical error is evaluated as the squared dif-
ference between the true and the learned outputs for the examples belonging to
SL:

εt =
1
m

m∑
k=1

[
y(�x(k))− v(�x(k))

]2
. (7.16)

As already mentioned the examples in SL , extracted from an unknown but fixed
probability distribution D, act as a quenched disorder. Thus, the generalization
error ε can be expressed as follows:

ε = [y(�x)− v(�x)]2, (7.17)

where the overbar denotes the average with respect to the distribution D of the
quenched disorder. The inputs xi are independent identically distributed Gaus-
sian variables with zero mean and unit variance. From a statistical physics per-
spective the product mεt can be considered as the extensive energy of the sys-
tem, which can be used, as in expression (2.12), to assign the probabilities
exp[−(βmεt)] to an ensemble of networks (Kinzel, 1998) each satisfying the
condition (�J(j))2 = n.



152 Statistical physics and machine learning

0.03

0.02

K = 2

K = 5

0.01

0.00
0.0 20.0 40.0 60.0 α

ε

Figure 7.9 Learning curves for small K (reprinted from Biehl et al., 2000). For
K = 2 a second-order phase transition occurs at the critical value αcr(2) � 23.7,
whereas for K = 5 a first-order transition occurs at αcr(5) � 46.6.

To develop the analysis further, Biehl et al. (2000) considered the case of
high temperatures, i.e., β → 0. Under the above conditions the generalization
error shows, as in the case of the perceptron described in Section 7.1.1, a phase
transition for a critical value of the number of training examples. More precisely,
the control parameter is α = βm/(nK). The nature of the transition and the crit-
ical values depend on K. In particular, for K = 2 the transition is second-order
and occurs at αcr(2) � 23.7, whereas the transition is first-order for K � 3.
The main results are given in Figure 7.9.

7.2 Propositional learning approaches

Statistical physics methods have been applied, in the past, not only to analyze
the behavior of neural networks but also in more general settings, including the
learning of Boolean functions, learning with support vector machines, and sym-
bolic learning.

7.2.1 Learning Boolean functions

Haussler et al. (1994) provided rigorous learning curve bounds using methods
derived from statistical physics. More precisely, they showed that the bounds
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are often tighter and more realistic than those provided by the classical Vapnik–
Chervonenkis theory. The learning curves may show discontinuous behaviors,
such as the emergence of phase transitions, as well as power law asymptotic
behaviors that are not explained within that theory.

The Vapnik–Chervonenkis theory of learning a function in a class F , via
minimization of the empirical error on a random sample of m examples, leads
to bounds on the generalization error which decrease at a rate O(d/m), where Generalization error

boundd is the Vapnik–Chervonenkis dimension of the class, if the target function is in
F . If the target function is not in F , the generalization error decreases at the
much lower rate of O(d/

√
m). These bounds are general, in the sense that they

are valid for any class F , any input distribution, and any target function. The
only problem-specific quantity is d, which is typical of F . In addition, these
bounds are the best possible distribution-independent bounds. Nonetheless, vari-
ous workers have pointed out discrepancies between the predictions of the theory
and the experimental results. Statistical physics methods have helped to show
where the Vapnik–Chervonenkis bounds fail to model the true behavior of learn-
ing curves, by revealing unexpected behaviors such as the emergence of phase
transitions or asymptotic power laws whose exponent is neither 1 nor 1/2.

In Haussler et al. (1994), the authors exploited the annealed approximation
and the thermodynamic limit to derive a precise and rigorous theory of learn-
ing curves. The thermodynamic-limit setting allows the notion of a correct scale
to be introduced for describing the learning curves. These last derive from a
competition between an entropy function and an energy function. The entropy
is measured by the logarithm of the number of hypotheses as a function of the
generalization error ε. The energy is measured by the probability of minimiz-
ing the empirical error on a random sample as a function of the generalization
error ε.

Haussler and co-workers started their analysis from a very simple case, in
which a Boolean function over an input space X is learned using a training set
SL of m labeled examples. The target function f(�x) is known to belong to a
class F containing a finite number of {0, 1}-valued functions. Moreover, there
is a probability distribution D(�x) defined over X . If h(�x) is a Boolean function
output of some learning algorithm, the generalization error can be written as

ε(h) = P�x∼D [h(�x) �= f(�x)]. (7.18)

In order to perform their analysis of the generalization error, the version space Version space

(see Section 7.1.1) is used. Formally, the version space is defined by

VS(SL) = {h ∈ F | ∀ [�x, f(�x)] ∈ SL, h(�x) = f(�x)}. (7.19)
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In other words, it contains all the hypotheses (functions) that are consistent with
the training set. Then, an η-ball B(η) is defined around the target function:

B(η) = {h ∈ F | ε(h) � η}. (7.20)

Using a method close to the annealed approximation, the following union bound
can be established:

PSL

[
VS(SL) ⊆ B(η) � 1− δ

]
, (7.21)

where
δ =
∑

h∈B(η)

[1− ε(h)]m .

The main results can be restated as follows.

Theorem 7.1 {Haussler et al., 1994} Let F be any finite class of Boolean func-
tions. For any 0 < δ � 1, with probability at least 1−δ, any function h ∈ F that
is consistent with m random examples of the target function satisfies the relation
ε(h) � η, where η is the smallest value satisfying the condition∑

h∈B(η)

[1− ε(h)]m � δ.

Haussler et al. derived also a standard bound, which they call the cardinality
bound,

ε(h) � 1
m

ln
(
|F|
δ

)
. (7.22)

As acknowledged by the authors themselves, the results they provide have more
theoretical value than practical value. The greater tightness of the bounds com-
pared with those provided by the Vapnik–Chervonenkis theory comes, in fact, at
the expense of a greater amount of information required, namely, knowledge of
the example distribution, as against knowledge of the classF only in the Vapnik–
Chervonenkis theory. In addition, in the method of Haussler et al. the analysis is
limited to function classes of finite cardinality.

7.2.2 Support vector machines

Support vector machines (SVMs) can be considered as a generalization of single-
layer perceptrons (see Section 7.1); they project the initial examples, belonging
to a set of non-linearly separable classes, onto a high-dimensional feature space,
where linear classifiers can be found. Support vector machines were introduced
by Cortes and Vapnik (1995), and have proved to be effective learners for a
variety of tasks.
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Analogously to single and multi-layer perceptrons, SVMs too lend them-
selves to a statistical mechanics analysis, which provides insights into the typical
behavior of the generalization error (Dietrich et al., 1999; Malzahn and Opper,
2005). Let n be the dimension of the input vectors (the examples) to be clas-
sified, N the number of features in the transformed space, and m the number
of training examples. Let us define, as for the perceptron, α = m/n. Dietrich
et al. (1999) took the thermodynamic limit n → ∞ for various scales of in-
crease in m. As the number of learned parameters is N , one may expect that
the decrease to zero in the generalization error ε should occur for m = O(N).
On the contrary, however, ε becomes small even for m = O(n). Thus a reason-
able ansatz is m = αn�. If both the student and the teacher are expressed via
quadratic kernels, these authors found that for � = 1, i.e., m = αn, the student
is able to learn only the linear part of the teacher’s rule; then, for increasing α,
the generalization error reaches a plateau where

ε(α)− ε(∞) ∼ α−1.

If the number of examples increases on the larger scale m = αn2, the well-
known asymptotic behavior ε ∼ α−1 is found. If the kernels are polynomials of
degree p, a sequence of plateaus appears.

A further result obtained by Dietrich et al. (1999) was that SVMs show a
resistance to overfitting. In fact, by letting a quadratic SVM learn a linear rule,
successful learning occurs on the scale m = αn even though the generalization
error decay is ε ∼ α−2/3, somewhat slower than the classical α−1.

Support vector machines have also been investigated by Malzahn and Opper
(2005), whose main goal was to prove that methods from statistical physics can
be easily extended to become applicable to real learning algorithms working on
real data. To achieve their goal, the authors used a combination of the replica
approach and the variational method.

More recently, an extension of SVMs, namely multiple instance support vec-
tor machines (MI-SVMs) were investigated by Gaudel et al. (2008). The MI-
SVMs combine multiple instance learning (Dietterich et al., 1997) with SVMs
and represent an intermediate step between propositional and fully relational
learning. In the MI setting, each example �z(i) is a “bag” of ni propositional in-
stances x

(i)
1 . . . , x

(i)
ni , where �z(i) is positive iff some of its instances satisfy the

(propositional) target concept. For MI problems the kernel K of two bags of
instances is defined as the average of the kernels k of pairs of instances:

K(�z(i),�z(j)) =
1

fn(�z(i))fn(�z(j))

ni∑
k=1

nj∑
h=1

k(x(i)
k , x

(j)
h ). (7.23)
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In (7.23) fn(�z) is a normalization function. The approach is efficient under the
so-called linearity assumption, i.e., an example is positive iff it contains (at least)
one instance satisfying the target concept.

In order to investigate the quality of the propositionalization induced by re-
lational kernels, the authors generated a set of artificial problems, each consist-
ing of a learning set SL = {(�z(1), y1), . . . , (�z(m), ym)} and a test set ST =
{(�z′(1), y′1), . . . , (�z

′(m′), y′m′)}. The training set SL induces a propositionaliza-
tion of the domain space, mapping every MI example�z to the m-dimensional real
vector ΦL(�z) = (K(�z(1),�z), . . . , K(�z(m),�z)). Let RL describe this new repre-
sentation. The novelty of the proposed methodology is that it rewrites an MI-
SVM learning problem (SL,ST ) as a constraint satisfaction problem Q(SL,ST )
in RL. If ε denotes the generalization error of the optimal linear classifier h∗

L
defined on RL then the authors lower-bounded ε’s expectation as follows:

Em [ε] � 1− (τ̂m,m′ + η)1/m′
, (7.24)

where the average is computed over a set of learning problems {(S(r)
L ,S(r)

T )|
1 � r � R}, where η > 0 is any number and τ̂m,m′ is the fraction of CSPs

Q(S(r)
L ,S(r)

T ) that are satisfiable.
For the experiments, 40 learning problems were generated for each assign-

ment of values to a set of 12 control parameters, by choosing independently
the target concept c, the training set SL , and the test set ST . The kernels were
Gaussian and the normalization function f(�z) was set to the number of instances
(Pic, Nic) in the example �z. Looking at the influence of the various parameters
involved, it was noticed that there is a region where all the CSPs Q(S(r)

L ,S(r)
T )

are unsatisfiable; for instance, in the plane (Pic, Nic) this region appears along
the diagonal Pic = Nic, as expected. The size of this region decreases as
the number of training examples increases (left-hand column in Figure 10.1)
but increases as the number of test examples increases (right-hand column in
Figure 10.1). Even though not directly related to the appearance of a phase tran-
sition, the reported results reveal the emergence of discontinuous phenomena in
this type of propositionalization.

7.2.3 Decision tree induction

Work similar in spirit to that described in the previous section was carried out
by Baskiotis and Sebag (2004). Taking inspiration from the phase transition
paradigm, their goal was to attach a principled competence map to a learningCompetence map

algorithm, characterizing the regions (if any) of the problem space where the
algorithm typically succeeds or fails. Such competence maps could then be ex-
ploited as look-up tables for the choice of a learning algorithm. The proposed
approach was applied, as a particular case, to the decision tree learner C4.5
(Quinlan, 1993). The target concept space was set to formulas in disjunctive
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Figure 7.10 Fraction of satisfiable CSPs Q(SL,ST ) in the plane (Pic, Nic) out
of 40 runs. Reprinted from Gaudel et al. (2008) with permission.

normal form and, hence, the Rule learning mode of C4.5 was used. In this mode
a set of decision trees is constructed, pruned, and compiled into rules; the rules
are then filtered and ordered on the training set; finally, the rule set is used as a
decision list on the test examples.

For the experiments, four control parameters were considered: the num-
ber n of Boolean variables representing the problem domain; the number k of
(distinct) terms γi in the target concept, each term being the conjunction of a set
of (distinct) literals yi, each either a variable (xi) or its negation (x̄i); the number

The assumption
of uniform � was
later on relaxed
in the paper.

� of literals in a term; the imbalance ratio r, which is the fraction of positive
learning instances. Assuming that all terms have the same length, the target con-
cept space is actually a restriction of the DNF language, termed (k, �)-term DNF.
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Figure 7.11 Competence map for the C4.5 percentage error for (k, �)-term
DNF, represented in the plane (m, �) with k = 15 and r = 1/2. Reprinted
from Gaudel et al. (2008) with permission.

For each setting (n, k, �, r), 100 learning problems Li(n, k, �, r) were generated.
Each learning problem consisted of a target concept, a training set, and a test set
of examples (globally, 400 examples with different r values). In Figure 7.11 the
C4.5’s competence map is reported.

From Figure 7.11 it appears that the error is, in most regions, very low, con-
firming the known robustness of C4.5. However, a failure region (error equal
or greater than 20%) is observed as the term length � takes on medium values
(� ∈ [5, 10]), whenever the number n of variables is non-negligible (n > 15).
It is no surprise that the learning difficulty increases with the total number n of
variables, since the representativity of the training set (fixed at 200 positive and
200 negative examples, in the case of Figure 7.11) decreases. The relationship
between the error and the term length � is less obvious: for fixed m, r, and k
the error first increases, and then decreases, as � increases. However, it is almost
insensitive to the imbalance ratio r.

The initial increase in the error with � can be attributed to the myopic search
of C4.5, greedily optimizing the information gain ratio criterion. Indeed, as the
term length increases, each literal becomes less discriminant; furthermore, it is
often the case that both a variable and its negation appear in some terms of the
target concept, causing the information gain ratio criterion to miss the variables
that contribute to the target concept. Therefore, a significant amount of look-
ahead would be necessary to prevent the greedy search from becoming trapped
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in local optima owing to erroneous early choices. In other words, the (univariate)
gain ratio becomes a noisy selection criterion as the target concept involves more
specific terms; hence the probability of making no errors along � selections,
based on this criterion, decreases with �.

When the term length � increases again (� > 10), the error decreases. This
empirical finding was unexpected since the learning difficulty is usually seen
as proportional to the target concept complexity, and � is considered a factor in
the complexity. The fact that the failure region does not depend much on the
imbalance ratio r is unexpected too, since imbalanced example distributions are
widely acknowledged as a factor in complexity.

The tentative interpretation offered by the authors for this finding is based on
the observation that rules produced by C4.5 are not arbitrarily long, because they
must cover a significant number of positive training examples; on average, their
size is limited by a maximum value �c. Therefore, the probability p(n, �) for a
leaf in a C4.5 tree to be irrelevant (to differ by at least one irrelevant literal from
a generalization of a true conjunct) when learning a (k, �)-term DNF concept is
bounded by the probability that at least one irrelevant literal will be selected out
of �c choices. However, the probability that an irrelevant feature will be selected
decreases as � increases.

The rise in the error as � increases up to �c is thus explained as due to
the increasing number of choices (hence the probability of error); the error
falls for � > �c because it is the product of �c factors that all decrease as �
increases.

7.2.4 k-term DNF learning

The learning of k-term DNF concepts is an important task in machine learning.
We have already seen, in the previous section, that such learning is mediated
by the learning of decision trees. A direct approach was taken by Rückert et al.
(2002), who showed that phase transitions exist even in this propositional setting.
Moreover, they were able to locate and characterize these phase transitions using
as parameters the number of terms k, the numbers mp = |P| and mn = |N | of
positive and negative training examples, and the number n of Boolean variables.
In the experiments, positive and negative examples of the target concept were
generated by choosing either xi = 1 or xi = 0 with the same probability for
each variable xi (1 � i � n). The search costs were measured by counting the
number of partitionings generated by a complete algorithm.

The probability Psol that a problem instance is soluble and the search costs
were computed for a broad range of problem settings. Some results are given
in Figure 7.12. In this figure the number of positive examples and k were kept
constant, whereas the number of negative examples and of variables were varied.
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Figure 7.12 The probability that a problem instance is soluble, Psol (upper
panel), and the search costs (lower panel), plotted respectively as a three-
dimensional graph and a contour plot for problem settings with k = 3, mp =
15, 1 � mn � 128, and 1 � n � 128. Each data point represents the av-
erage over 100 problem instances. Reprinted from Rückert et al. (2002) with
permission.

As expected, the search costs are especially high in the region of Psol � 0.5. In
order to locate the phase transition, the authors took n as the control parameter,
whose critical value ncr is defined from the following condition:

Psol(ncr) = 0.5.
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The authors also investigated from an algorithmic point of view the use of
stochastic local search (SLS) for k-term DNF learning. They compared several
variants that first reduce k-term DNF to SAT and then apply well-known stochas-
tic local search algorithms such as GSAT and WalkSAT. The experimental results
indicate that WalkSAT is able to solve the largest fraction of hard problem in-
stances (Rückert et al., 2002; Rückert and Kramer, 2003).

7.2.5 Vector quantization

Vector quantization is an effective and frequently applied method for unsuper-
vised learning. It allows a large amount of data to be compressed into just
a few prototypes, thus uncovering the structure underlying the data. Witoelar
et al. (2008) applied methods from statistical mechanics, similar to those used
in the analysis of neural networks, to off-line vector quantization with a rank-
based cost function. The main finding was that phase transitions emerge in the
training process; in fact, a critical number of examples is required to uncover the
underlying structure.

More precisely, the authors considered a set of m vectors S = {�x(i) ∈
R

n| 1 � i � m}, drawn independently from a given probability distribution,
and a set of k prototypes Z = {�z(j) ∈ R

n| 1 � j � k}. Using a squared
Euclidean distance d(�x, �y) = (�x − �y)2, a rank function g(rj) can be defined
such that, for every prototype �z(j) and input vector �x, rj is the rank of �z(j) with
respect to its distance from �x:

rj = k −
k∑

h=1,h �=j

Θh,j , (7.25)

Θh,j = 1[d(�x,�z(h))− d(�x,�z(j))]; (7.26)

here 1(u) is the step function, which is equal to 1 if u � 0 and to 0 otherwise.
The rank function is defined as follows:

g(rj) =
e−rj /λ∑k

j=1 e−rj /λ
, (7.27)

where λ controls a “soft” assignment of the vectors to the prototypes (soft in
that each vector may belong to more than one cluster). If λ → 0, only the clos-
est prototype is taken into account and so each vector is assigned to a unique
prototype.

In the thermodynamic limit (n → ∞) the number of examples is also as-
sumed to increase linearly, namely, m ∼ n. In the statistical physics approach,
training is considered as a minimization process on the data S of the functional
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H(�z(j), . . . ,�z(k)) , where:

H(�z(1), . . . ,�z(k)) =
m∑

i=1

ε(�z(1), . . . ,�z(k), �x(i)), (7.28)

ε(�z(1), . . . ,�z(k), �x) =
1
2

k∑
j=1

d(�z(j), �x)g(rj)−
1
2
�x2. (7.29)

As thermodynamic equilibrium is reached, each configuration (�z(1), . . . ,�z(k))
is observed to have a probability given by the Gibbs distribution (see
Chapter 2):

P(�z(1), . . . ,�z(k)) =
1
Z

e−βH (�z(1) ,...,�z(k ) ); (7.30)

Z is the partition function and β = kBT . As described in Chapter 2, thermal
averages 〈·〉 are evaluated with respect to P(�z(1), . . . ,�z(k)) and can be obtained
from derivatives of the free energy. The quantities introduced so far have been
computed on a specific data set S. In order to obtain generic properties, a new
average, with respect to the data distribution (the quenched disorder), has to be
performed; thus the quenched free energy may be obtained. The complete cal-
culation requires the use of the replica trick. The authors resort to a simplified
situation, one in which β → 0 (the high-temperature limit). In this case, the noise
introduced by the high temperature has to be compensated by the use of a large
number of training examples, namely α̃ = βm/n.

It may be shown (Witoelar et al., 2008) that the generalization error 〈ε〉 can
be expressed as a function of two order parameters,

Rji = �z(j) · �b(i) and Qji = �z(j) · �z(i),

where the �b(i) (1 � i � k) are the centers of the “true” clusters.
The behavior of the order parameter Rj1 is shown in Figure 7.13. If λ = 0

(partitioning clustering) and k = 2, the structure in the data cannot be discov-
ered if α̃ is smaller than a critical value α̃cr . Above α̃cr the structure emerges,
and each prototype overlaps with exactly one cluster (see Figure 7.13(a)). The
corresponding graph for 〈ε〉 is given in Figure 7.13(b). At the critical point, the
graph is not differentiable but it is continuous in value. The finding for k � 3 are
different; then, both Rj1 and the 〈ε〉 graphs show a discontinuity in correspon-
dence with the critical value αcr (see Figures 7.14(a), (b)). The main conclusion
of the work is that, for any k, no optimization strategy, however good, can un-
cover the structure in the data unless a sufficiently large number of examples is
supplied.
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discontinuity in the derivative at α̃cr . Reprinted from Witoelar et al. (2008) with
permission.

7.3 Relational learning

The first results on the emergence of a phase transition in symbolic learning were
reported by Giordana and Saitta and co-workers (Botta et al., 1999; Giordana
and Saitta, 2000; Giordana et al., 2000a, b; Botta et al., 2000, 2003; Serra et al.,
2001). They found that, in relational learning, the probability that an example is
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covered by a hypothesis (the order parameter), expressed in a DATALOG lan-
guage, shows a steep transition from almost 1 (in the YES region) to almost 0 (in
the NO region) with respect to certain control parameters that characterize both
the hypothesis and the example. The analysis performed and the results obtained
will be described in detail in Chapter 9.

Later on, the same authors investigated the impact of the presence of a
phase transition in matching on the very feasibility of relational learning. They
found that, around the phase transition, a wide region exists where learning
proves to be impossible. A detailed description of this work will be reported in
Chapter 10.
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Following the first results, several other research groups have pursued the
issue, extending and/or refining the original results of Giordana and Saitta.
For instance, Wieczorek et al. (2006) replicated the experiments described by
Giordana and Saitta (2000), introducing a partial subsumption test π instead of
θ-subsumption and a subsumption index Iπ .

More precisely, given a hypothesis h and an example e containing distinct
variables, one says that h “π-subsumes” e iff there exists a subexpression h′

in h (h′ ⊆ h) and a substitution θ of the variables in h such that h′θ ⊆ e.
Moreover, given a hypothesis h and an example e such that h θ-subsumes e,
the subsumption index Iπ is a function from (h, e) to the interval [0, 1] that
quantifies the “degree of subsumption” from h to e, i.e., the covering degree of
h relative to h, with h′ ⊆ h. If h′ = h then h θ-subsumes e and Iπ = 1. When
no subexpression h′ θ-subsumes e, we have Iπ = 0.

By using the above notion of partial subsumption, Wieczorek et al. (2006)
found that the probability that a match exists (in a random set of pairs (h, e)) is
still almost 1 on one side of the phase transition and smoothly descends towards
0 on the other side instead of jumping down to 0 abruptly. This finding may be
relevant in designing more effective heuristics to learn long concepts.

An extensive study of phase transition emergence in relational learning
has been made by Alphonse and Osmani (2007, 2008a, b, 2009). These au-
thors started from Giordana and Saitta (2000) and Botta et al. (2003) and no-
ticed that these results were obtained mostly by FOIL, which uses a top-down
(TD) generate-and-test (GT) search strategy where refinements are based on
the structure of the hypothesis space and the learning data is ignored. There-
fore, Alphonse and Osmani (2007) suggested that data-driven (DD) strategies
based on a generalization of a seed example may allow the pruning of irrele-
vant branches by the use of training data without relying on the evaluation func-
tion, thus possibly overcoming the problem of plateaus. Notably, near-miss ex- Near misses are

defined, in this context,
as negative examples
that differ by only
one literal from
the seed example.

amples are particularly effective: a top-down data-driven learner (TD–DD) can
cross plateaus and reach the target concept whenever near misses are supplied in
the training set, whereas these same near misses do not change the plateau pro-
file and hence do not guide a TD–GT learner (Alphonse and Osmani, 2008b).
Actually, substantially similar results to those with FOIL were obtained by
Giordana and Saitta (2000) via G-Net, which is a data driven bidirectional
searcher. Clearly, near misses would greatly ease learning but their availability
may be problematic.

In order to perform a systematic analysis of the impact of plateaus on
heuristic search in relational learning, Alphonse and Osmani designed a consis-
tency problem generator, RLPG (relational learning problem generator) based
on the model RB that was proposed for CSPs (see Chapter 4). In the model
RLPG(k, n, α, N, |P|, |N |), the parameters k, n, α are the same as in model RB
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(Xu and Li, 2000), whereas the definition of N is that of Giordana and Saitta
(2000) (see Chapter 9); |P| and |N | are the numbers of positive and negative
examples in the learning set, respectively. Using RLPG’s properties, Alphonse
and Osmani proved that the current hypothesis size, evaluated during learning,
is a control parameter of the phase transition of the subsumption test. This re-
sult asymptotically guaranties the existence of a plateau for the heuristic search.
Moreover, the size of the plateau is proven to grow sub-quadratically with the
problem size. It was shown that problems of very small size can be generated in
which the existence of plateaus is still guaranteed thus providing a well-suited
benchmark for relational learning. Empirical confirmation was obtained by run-
ning several complete-search learners on problems generated by RLPG that ex-
hibit the pathological case where informed-search learners degenerate into non-
informed-search learners.

Alphonse and Osmani also performed an extensive study of the learning cost
of several learners on inherently easy and hard instances of the corresponding
consistency problem, looking for the typical easy–hard–easy pattern across the
phase transition line. According to Gottlob et al. (1997), the simple bounded
inductive logic programming (ILP) consistency problem is Σ2-complete, i.e., it
belongs to a class higher in the polynomial hierarchy than NP-complete prob-
lems. Since a conjecture has been put forward that a phase transition could be
exhibited further up the polynomial hierarchy, the phase transition framework
could be useful for investigating other PSPACE (see Garey and Johnson, 1979)
problems as well. Actually, Alphonse and Osmani proved that this conjecture is
true for the bounded ILP consistency problem, which is representative of rela-
tional learning.

Using the generator previously mentioned, Alphonse and Osmani (2009)
generated and handled a set of benchmark datasets with controlled complex-
ity, with the number of examples as control parameter. A first outcome of the
work is that all well-known top-down relational algorithms, rooted in either the
generate-and-test or the data-driven paradigm, fail to exhibit the standard “easy–
hard–easy” pattern. Their complexity tends to increase with the number of ex-
amples, and therefore they exhibit an “easy–hard–hard” pattern. An exception is
the depth-first bottom-up data driven (DF-BDD) algorithm, an lgg-based learner,
which does not perform as well as the others on the “solvable” side of the phase
transition but does perform well elsewhere.

7.3.1 Sequence learning

Sequences constitute a type of data that is very relevant in practical applications;
they can be considered as an intermediate case between propositional and re-
lational representation. It is then interesting to ascertain whether discontinuous
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phenomena such as phase transitions also occur when one is inferring sequence
models from data. Cornuéjols and co-workers (Pernot et al., 2005) investigated
learning of a specific type of model, namely grammars, inferred from strings of
symbols. The approach followed by these researchers and the results obtained
will be discussed in detail in Chapter 11.

7.4 Comments

The emergence of a phase transition, a typical phenomenon in many-body sys-
tems, appears in a large variety of learning approaches. Among these, neural
networks are primary candidates for being handled as complex physical systems.
In fact, it is quite natural to let neurons correspond to the elementary objects in
a complex network and synaptic connections to interactions. By exploiting the
notion of distance in a graph we can say that both in the single-layer perceptron
and in the multi-layer perceptron, interactions are short-range, as they connect
only neurons in adjacent layers.

A fundamental control parameter in different learning approaches appears to
be the number of training examples. If the learner sees a critical number of them,
it is as if it has seen them all. The training examples are drawn from a fixed (but
usually unknown) distribution, and they act as a quenched disorder.

Surprising as it might be, analogous phenomena occur in learners that appear
to be quite far from physical systems, such as symbolic learners. In Chapters 9–
11 tentative explanations of why this happens will be suggested.
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An interesting issue, relevant to the main theme of this book, is whether, and if so
how, learning, either propositional or relational, can be linked to the satisfiabil-
ity (SAT) problem or to the constraint satisfaction problem (CSP). Establishing
such a link can have important consequences in practice, because the theoretical
aspects of SAT and CSP could be transferred to learning problems, and so the
very effective algorithms developed for those combinatorial problems could be
applied to learning tasks.

Intuitively, one may expect that propositional learning should be related to
SAT and relational learning to CSPs. This intuition will be substantiated in the
following sections. Moreover, finite CSPs must be reducible to SAT problems.

8.1 Reducing propositional learning to SAT

The formal transformation of a propositional learning problem into a SAT prob-
lem was investigated, for the first time, by Kamath et al. (1992) in relation to the
induction of k-DNF (disjunctive normal form) rules. The same transformation
was then applied by Rückert et al. (2002) to analyze the emergence of a phase
transition in the corresponding SAT problem. Here, we will briefly review the

168
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transformation proposed by Kamath, then we will discuss the implications and
the extension to propositional learning in general.

A k-DNF concept definition consists of a set of k propositional rules with
the format In an equivalent way,

rule (8.1) can be
written as a set of
k Horn clauses:
γ1 → h, . . . , γk → h.

γ1 ∨ γ2 ∨ · · · ∨ γk → h, (8.1)

γ1, γ2, . . . , γk being conjunctions of conditions on the attribute values describing
the instance to be classified.

The problem of learning a k-DNF concept definition from a learning set of
concept instances, classified by a teacher, was formally introduced by Valiant
(1984) as a fundamental problem in computational learning theory. Since then it
has been investigated by many authors. In fact, this form of concept definition is
relevant to many applications but involves a learning problem that is computa-
tionally hard (Kearns and Vazirani, 1994).

Kamath et al. (1992) approached the problem of deriving a k-DNF rule,
complete and consistent with respect to a learning set, by starting from a rule
template defined a priori. The assumption was that the learning instances are
described by Boolean attributes only (i.e., attributes may only have the values
1 or 0). However, this assumption is not limitative because any multiple-valued
attribute can always be transformed into an equivalent set of Boolean attributes.

Let �x denote the n-dimensional vector of Boolean attributes describing a
learning instance. Moreover, let xj (1 � j � n) denote the ith component of �x.
A k-DNF rule can be represented as an expression in Boolean algebra, where the
n binary attributes are the input variables. Rules of this form have an immediate
representation in terms of logical circuits, which provide an intuitive graphical
representation (see Figure 8.1).

The rule template has the structure of a k-DNF rule over the whole set of
variables extended with a set of control variables, which are used to make the
template consistent with the positive and negative learning instances by the se-
lection or exclusion of single components of the input variables in �x. Then, the
problem of learning a k-DNF concept definition is reduced to the problem of
finding a consistent assignment to the control variables, and this, in turn, can be
reduced to a SAT problem.

The rule template (see Figure 8.1) is the OR of k conjunctions, where each
conjunction γi (1 � i � k) is the AND of n variables yij (1 � i � k, 1 � j �
n), each obtained by combining a Boolean attribute xj with a pair of two control
variables 〈sij , s

′
ij〉. Depending on the values of sij and s′ij , either the variable

yij reproduces the value of xj or of xj or it becomes independent of xj . More
specifically, the logical expression defining yij is the following:

yij = (xj ∨ sij) ∧ (xj ∨ s′ij). (8.2)

The truth values of yij are given in Table 8.1.
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Table 8.1 Truth table corresponding to the variable yij defined by (8.2)

sij s′ij y Comment

0 1 yij = xj yij ≡ xj

1 0 yij = xj yij ≡ xj

1 1 1 yij ≡ true, i.e., xj is irrelevant
0 0 0 yij ≡ false, i.e., a contradiction occurs
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Figure 8.1 Logical circuit corresponding to the rule template. The circuit is then
generalized in order that it can learn a k-DNF classification rule.

From this table we note that when sij = 0 and s′ij = 1 the value of yijSetting sij = 1 and
s′ij = 1 is equivalent

to applying the
“dropping condition”

rule widely used in
machine learning

algorithms.

corresponds to the value of xj , while it corresponds to xj when sij = 1 and
s′ij = 0. Moreover, if sij = 1 and s′ij = 1 then yij does not depend on xj as it is
always true (i.e., yij = 1).

Therefore the control variables sij , s′ij provide a tool for selecting a condition
on the corresponding attribute xj or dropping the dependency upon xj . Finally
we notice that by setting sij = 0 and s′ij = 0 we obtain yij = xj ∧ xj , which is
always false, causing γi to be false as well. Thus, this setting must be forbidden
for any pair 〈sij , s

′
ij〉. This can be stated by requiring that the clauses in the
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following set, Γ1, must all be satisfied:

Γ1 = {(si,j ∨ s′ij) | 1 � i � k, 1 � j � n}. (8.3)

Expression (8.3) defines the initial set of nk clauses of the corresponding SAT
problem.

We will now consider the constraints due to the learning set SL . Every pos-
itive or negative learning instance e ∈ SL will impose some constraints on the
output value h of the k-DNF rule to be learned. By propagating these constraints
toward the inputs, new clauses on the control variables are obtained. First let us
consider the negative examples. For any example e−r ∈ N the value of h must

be false (i.e., h = 0). This means that all the conjunctions γ
(r)
i must have the

value 0 for that example. This condition can be satisfied if, for every γ
(r)
i , at

least one variable y
(r)
ij has the value 0, i.e., ∃t|y(r)

it = 1. All these conditions can
be grouped together in the following set Γ′

2 of clauses:

Γ′
2 =

⎧⎨
⎩

n∨
j=1

y
(r)
ij

∣∣∣∣∣ 1 � r � |N |, 1 � i � k

⎫⎬
⎭ , (8.4)

which must be verified on each example e−r ∈ N . According to definition (8.2)
of yij , and assuming a specific value of xj for a learning instance e−r ∈ N ,
the clauses in (8.4) can be modified in order to obtain constraints on the con-
trol variables sij and s′ij . More specifically, if attribute x

(r)
j = 0 in e−r then we

obtain from (8.2) that y
(r)
ij = sij . Thus, in order to have y

(r)
ij = 1 we must

have sij = 0. As a consequence we may substitute the literal y
(r)
ij by the lit-

eral sij in (8.4). Applying analogous reasoning to the case x
(r)
j = 1 in e−r , we

can conclude that in this case the literal y
(r)
ij in (8.4) can be replaced by the literal

s′ij . Thus we obtain the following set of clauses:

Γ2 =

⎧⎨
⎩

n∨
j=1

σij(x
(r)
j )

∣∣∣∣∣ 1 � r � |N |, 1 � i � k

⎫⎬
⎭ , (8.5)

where

σij(x
(r)
j ) =

⎧⎨
⎩

sij if x
(r)
j = 0,

s′ij if x
(r)
j = 1.

(8.6)

We may notice that in (8.4) the y
(r)
ij depend on the example e−r , whereas sij and

sij do not. However, the dependence of the clauses in Γ2 on a specific example
is reflected in the different number of sij and sij occurring in each clause and in
their position. In conclusion, for every e−r ∈ N a set of k clauses can be derived
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from expression (8.4) by applying the above reasoning. Then |Γ2| = k|N |, and
the set Γ2 is added to the SAT problem.

Let us now consider the constraints due to the positive examples e+ ∈ P .
Every e+

r ∈ P must satisfy the k-DNF rule, requiring that h = 1. This condition
is achieved if, for any positive example, at least one conjunction γi (1 � i � k)
is verified. This condition can be stated by defining, for every example e+

r ∈ P ,

a set Zr = {z(r)
i | 1 � i � k} of k variables. The variable z

(r)
i assumes the

value 1 iff the conjunction γi is true in e+
r . Then the requirement that at least

one conjunction is true in each e+
r can be translated into the following set Γ′

3 of
clauses:

Γ′
3 =

{
k∨

i=1

z
(r)
i

∣∣∣∣∣ 1 � r � |P|, 1 � i � k

}
. (8.7)

Again, in order to be operational we must link the variables in Zr to the control
variables, as we did for the negative examples. To this end we observe that re-
quiring z

(r)
i to be 1 entails y

(r)
ij = 1 (1 � j � n). Formally this can be stated as

follows:
z

(r)
i →

(
y

(r)
i1 ∧ y

(r)
i2 ∧ · · · ∧ y

(r)
in

)
. (8.8)

We remember that z
(r)
i → (y(r)

i1 ∧ y
(r)
i2 ∧ · · · ∧ y

(r)
in ) is equivalent to z

(r)
i ∨(

y
(r)
i1 ∧ y

(r)
i2 ∧ · · · ∧ y

(r)
in

)
. Then, by applying the distributive property of the

AND operator, expression (8.8) can be rewritten in the equivalent form

n∧
j=1

(z(r)
i ∨ y

(r)
ij ). (8.9)

Applying reasoning analogous to that for the negative learning instances, the
variables y

(r)
ij can be tied to the control variables sij and s′ij according to

the value of x
(r)
i in any single positive example. In this case, we want y

(r)
ij

to be true; then the variable y
(r)
ij in (8.9) is replaced by sij or by s′ij according

to whether the value of x
(r)
j is 0 or 1. Therefore, the set Γ′

3 becomes the
following:

Γ3 = {(z(r)
i ∨ σij(x

(r)
j )|1 � r � |P|, 1 � i � k , 1 � j � n}, (8.10)

where σij(x
(r)
j ) is the function defined by (8.6). The cardinality of Γ3 is kn|P|.

Then, by collecting the clauses in the three sets Γ1, Γ2, and Γ3, we obtain c
clauses, where

c = nk + k|N |+ kn|P|. (8.11)

The number v of variables is

v = 2nk + k|P| = k(2n + |P|). (8.12)
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Then the parameter α = c/v assumes the value

α(|N |, |P|, n) =
c
v

=
nk + k|N |+ kn|P|

k(2n + |P|) =
|N |+ n(|P|+ 1)

2n + |P| . (8.13)

Notice that the resulting SAT has clauses of varying length: Γ1 and Γ3 contain
clauses of length 2 whereas Γ2 contains clauses of length n. Thus it is not pos-
sible directly to transfer to k-DNF learning the results about the location of the
phase transition. Nonetheless, from equation (8.13) it can be seen that

lim
|N |→∞

α(|N |, |P|, n) = ∞,

lim
|P|→∞

α(|N |, |P|, n) = n.

From the above expressions one can see that increasing only the number of nega-
tive examples makes the SAT problem unsatisfiable. Increasing only the number
of positive examples allows α to converge to the value n; in this case, α scales
linearly with n.

EXAMPLE

Suppose that we want to learn a 2-DNF rule classifying objects described
by three Boolean variables x1 , x2 , and x3 . The learning set SL contains the
six examples, three positive and three negative, shown below in Figure 8.2.
There are eight examples in all, so generalization is still possible because
there are two unclassified examples. In order to find the first set of clauses

x1 x2 x3 h

0 0 0 1

0 1 0 1 Positive example set P
0 0 1 1

1 0 0 0

1 1 0 0 Negative example set N
0 1 1 0

Figure 8.2 Learning set used to acquire a 2-DNF formula.

in the corresponding SAT problem, we must define the following set of 12
variables:

{s11 , s
′
11 , s12 , s

′
12 , s13 , s

′
13 , s21 , s

′
21 , s22 , s

′
22 , s23 , s

′
23}.

The rule template for the 2-DNF rule is then h = γ1 ∨ γ2 , with

γ1 = (x1∨s11)∧(x1∨s′11)∧(x2∨s12)∧(x2∨s′12)∧(x3∨s13)∧(x3∨s′13),

γ2 = (x1∨s21)∧(x1∨s′21)∧(x2∨s22)∧(x2∨s′22)∧(x3∨s23)∧(x3∨s′23).
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The first set of clauses, defined by (8.3), is the following:

Γ1 = {(s11∨s′11), (s12∨s′12), (s13∨s′13), (s21∨s′21), (s22∨s′22), (s23∨s′23)}.

According to (8.5) a second set of clauses is obtained by instantiating the
function (8.6) on the negative examples:

Γ2 = {(s11 ∨ s′12 ∨ s′13), (s21 ∨ s′22 ∨ s′23),
= (s11 ∨ s12 ∨ s′13), (s21 ∨ s22 ∨ s′23),
= (s′11 ∨ s12 ∨ s13), (s′21 ∨ s22 ∨ s23)}.

The clauses in Γ2 are to be added to the SAT problem.

Finally, considering the positive examples, we must introduce the new
variables:

z
(1)
1 , z

(1)
2 , z

(2)
1 , z

(2)
2 , z

(3)
1 , z

(3)
2 .

The last set of clauses is thus

Γ′
3 =
{

(z(1)
1 ∨ z

(1)
2 ), (z(2)

1 ∨ z
(2)
2 ), (z(3)

1 ∨ z
(3)
2 )
}

,

which can be transformed into:

Γ′
3 =
{

(z(1)
1 ∨ y

(1)
11 ), (z(1)

1 ∨ y
(1)
12 ), (z(1)

1 ∨ y
(1)
13 ),

= (z(1)
2 ∨ y

(1)
21 ), (z(1)

2 ∨ y
(1)
22 ), (z(1)

2 ∨ y
(1)
23 ),

= (z(2)
1 ∨ y

(2)
11 ), (z(2)

1 ∨ y
(2)
12 ), (z(2)

1 ∨ y
(2)
13 ),

= (z(2)
2 ∨ y

(2)
21 ), (z(2)

2 ∨ y
(2)
22 ), (z(2)

2 ∨ y
(2)
23 ,

= (z(3)
1 ∨ y

(3)
11 ), (z(3)

1 ∨ y
(3)
12 ), (z(3)

1 ∨ y
(3)
13 ),

= (z(3)
2 ∨ y

(3)
21 ), (z(3)

2 ∨ y
(3)
22 ), (z(3)

2 ∨ y
(3)
23 )
}

.

Substituting the y
(r)
ij by the sij and s′ij , we finally obtain

Γ3 =
{

(z(1)
1 ∨ s′11), (z

(1)
1 ∨ s′12), (z

(1)
1 ∨ s′13),

= (z(1)
2 ∨ s′21), (z

(1)
2 ∨ s′22), (z

(1)
2 ∨ s′23),

= (z(2)
1 ∨ s′11), (z

(2)
1 ∨ s12), (z

(2)
1 ∨ s′13),

= (z(2)
2 ∨ s′21), (z

(2)
2 ∨ s22), (z

(2)
2 ∨ s′23),

= (z(3)
1 ∨ s′11), (z

(3)
1 ∨ s′12), (z

(3)
1 ∨ s13),

= (z(3)
2 ∨ s′21), (z

(3)
2 ∨ s′22), (z

(3)
2 ∨ s23)

}
.

The conjunction of all the clauses in Γ1 ∪ Γ2 ∪ Γ3 defines the CNF for-
mula characterizing the SAT problem. A possible solution to the problem
is illustrated in Figure 8.3, which shows the template, the value for the
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h

x1

x 1

x3

x3

s11

s ′
11

s13

s ′
13

y11

y
13

x1

x1

x

x3

x3

s21

s ′
21

s23

s′
23

y21

y
23

x2

2

s22

s′
22

y22

x2

x2

s12

s′
12

y12

0

0

0

0

1

1

1

1

1

1

1

1

1

2

Figure 8.3 A possible solution of the learning problem described in the Exam-
ple. In the template corresponding to the problem the final values of the control
variables sij , s′ij are stated on the corresponding input; the shaded components
indicate attributes that have been eliminated from the final rule. The learned 2-
DNF formula is h = (x1 ∧ x3) ∨ (x1 ∧ x2).

control variable sij , s′ij , and the rule obtained after the template has been
simplified by the removal of redundant literals. In conclusion, we have
transformed the learning problem into a (2 + p)-SAT with c = 30 clauses,
v = 18 variables and ratio α = 1.667. Of the clauses, 12 are of length 2
and 18 are of length 3; hence p = 0.6 (see Section 3.4).

8.2 Phase transitions and local search in
propositional learning

As already mentioned, k-DNF concept descriptions are highly representative
of propositional learning. In fact, they correspond to the standard output for-
mat of many learners that work in propositional logics, such as, for instance,
RIPPER (Cohen, 1995), PFOIL (Mooney, 1995), and C4.5rules (Quinlan, 1993).
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A commonly employed heuristic consists in trying to find the simplest possi-
ble solution, i.e., the solution with the smallest k. The fundamental difference
between the approach used by classical learners and the problem reformula-
tion described in the previous section is that in the former case k is obtained
as an a posteriori result provided by the learner while in the latter case k is
given a priori. However, from a practical point of view this is not restrictive,
since many values of k can be tried as the learner searches for the smallest
value for which a solution does exist. It is worth noticing (Rückert et al., 2002;
Rückert and Kramer, 2003) the following.

• If k = |P| then the problem always has a trivial solution, because everyk = |P| means no
generalization of

the examples.
positive example can be encoded into a specific disjunct.

• If a solution exists for a given value ks, a solution will exist for any k > ks.
Adding new disjuncts to an already true disjunctive formula does not affect
its truth. Thus it is interesting to find the minimum value km for which a
solution exists.

• Finding a solution for any k > km will be easier than finding a solution
for km , because the problem is less restrictive.

We will now consider two questions.

1. Given that a k-DNF learning problem can be mapped to a SAT problem,
and that SAT problems typically exhibit a phase transition, does k-DNF
learning exhibit a phase transition as well?

2. Apart from the theoretical interest, has the transformation from k-DNF
learning to SAT any practical advantage? For instance, can the very ef-
fective search algorithms developed for SAT be successfully used for
learning?

As mentioned in Chapter 7, the phase transition emergence in k-DNF learning
problems has been throughly investigated by Rückert et al. (2002); they showed
that a phase transition does exist for a critical value of the number n of variables
(Boolean features). Moreover, the critical point ncr of the phase transition was
characterized as a function of k and of the numbers |P| and |N | of positive and
negative training examples, respectively:

ncr ≈ [a(k) log2|N |](b|P|+c). (8.14)

Formula (8.14) is a reasonable conjecture, which was experimentally validated
by these authors. It is worth noticing that the phase transition analysis was done
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using an ad hoc learning algorithm based on set covering, without exploiting the
transformation into SAT.

In the same paper, and in a companion paper (Rückert and Kramer, 2003), an
extensive comparison of different stochastic local search (SLS) algorithms was
made. As none of these algorithms was designed to work directly on the k-DNF
learning problem, this last was reduced to SAT (for which several such searchers
exist) using the transformation of Kamath et al. (1992). The algorithms selected
were GSAT (Selman et al., 1992), GSAT + Random Walk, GSAT + Tabu, and
WalkSAT (Kautz and Selman, 1996). Moreover, these authors designed an effi-
cient native SLS algorithm (Rückert and Kramer, 2003), which is able to solve
hard k-DNF learning problems without transforming them into SAT.

The experiments were performed on three sets each containing 100 hard
solvable problems taken from the phase transition region. Each learning problem
needed to be solved by finding a k-DNF formula. The reported results clearly
show that the native SLS, explicitly designed to solve this specific task, dom-
inates the algorithms designed for SAT; in fact, only WalkSAT reaches perfor-
mances that, though inferior, are comparable with those of the native SLS.

From the machine learning side, three learners have been selected for com-
parison: C5.0 (an improved version of C4.5 (Quinlan, 1993)), RIPPER (Cohen,
1995), and PART (Witten and Frank, 2005). However, these learners are primar-
ily aimed not to minimize the number of disjuncts but to reliably cover the class
instances. Therefore, the solutions they provide typically contain more disjuncts
than the minimum required and exhibit misclassification errors on the learning
set itself because of the covering criterion used to guide the algorithms. Never-
theless they always do provide a solution, but one that has not been tested on an
independent test set to evaluate its real accuracy. The computational complexity
of the search algorithm is much lower for the machine learning algorithms than
for the SAT algorithms.

The above results touch a crucial point. Searching for a concept description Concept learning
and constraint
satisfaction
have different goals.

is not quite a problem of constraint satisfaction. In the former case, as discussed
in Chapter 6, the primary goal is to find a formula that exhibits a low general-
ization error. Therefore, in general, completeness of the learning set is sacrificed
in favor of other criteria related to predictiveness. On the contrary, SAT algo-
rithms aim at finding, when possible, a solution that satisfies all constraints and
is then complete and consistent with regard to the learning set. For this reason it
is impossible to use pure SAT algorithms if there is noise (it is always present in
real-world domains), because noise makes the learning set inconsistent; then, a
pure SAT algorithm cannot find a solution. However, in practice algorithms for
MaxSAT can be used for this task, as was done by Rückert et al. (2002).

Nevertheless, like the other algorithms, MaxSAT has the goal of maximizing
the number of satisfied constraints, without regard for the effect this may have
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on the predictiveness of the formula being constructed. This can lead to solutions
that overfit the data and are poorly predictive when applied to data not belonging
to the learning set. It is not obvious how to modify SAT or MaxSAT solvers’
heuristics in order to fix this problem.

Finally, we note that the same problem remains even when the learning set
is consistent: according to the learning heuristic it may be preferable to leave
uncovered some examples in order to avoid data overfitting, whereas SAT or
MaxSAT solvers would provide a complete and consistent solution.

From the above discussion it follows that, on the one hand, mapping a
k-DNF learning problem to a SAT learning problem is not likely to systemat-
ically yield better practical results. On the other hand, the transformation has
theoretical relevance as it helps one’s understanding of the mechanisms underly-
ing learning.

A more successful transformation from a decision-tree learning problem to
SAT was described by Bessière et al. (2009), who formulated the problem asInduction of

decision trees
as a SAT problem

one of optimization, namely, to find the tree with the minimum number of nodes
that correctly classifies all the examples in the learning set. They investigated
a formulation based on satisfiability and constraint programming and compared
their approach against standard induction algorithms. More precisely, let T =
(X, U, r) be a binary tree, where X is the set of nodes, U is the set of edges,
r ∈ X is the root, and L ⊆ X is the set of leaves. A decision tree based on T
is a labeled tree in which each internal node x is labeled with a feature, taken
from a set F and denoted f(x). Each edge (x, y) ∈ U is labeled with a Boolean
function g(x, y), where g(x, y) = 0 if y is the left child of x and g(x, y) = 1 if y
is the right child of x. The size of the decision tree is the number of nodes of T .
Given a learning set SL = {e1, . . . , em}, the authors exhibited a SAT formula
that is satisfiable iff there exists a decision tree, based on T , that classifies SL

correctly.
The trees obtained through this reformulation were compared by Bessière

et al. with those induced by standard state-of-the-art learners, both pruned and
unpruned, on several publicly available datasets. The results clearly show that
the constraint programming (CP) approach produces very accurate trees, which
are smaller than those found using standard greedy unpruned methods. Even
when compared with pruned trees, the accuracy of the CP approach is often
competitive with, or exceeds, that of pruned trees built using standard methods.

8.3 The FOL covering test as a CSP

As introduced in Section 5.2.3, in most relational (ILP) learners the basic
covering test consists in proving the satisfiability of existentially quantified
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conjunctive formulas such as ∃�x [ϕ(�x)], with n variables (belonging to a given
set X = {x1, . . . , xn}) and m literals (predicates or their negation from a set
P) over a universe U . The universe consists of the set of relations (tables) con-
taining the extensions of the atomic predicates that are true for an example e;
a tabular instance representation was given in Figure 5.9. The formula ϕ(�x) is
satisfiable if there exists at least one model (instance) of it in e. We will call the
pair (ϕ(�x), e) a matching problem.

Recalling the definition of a CSP introduced in Chapter 4, it is clear that a
matching problem can be mapped directly to a CSP: the n variables and their
associated domains play the same role whereas the m relations expressed by
the literals occurring in ϕ(�x) correspond to the set R of relations in a CSP. In
learning relational concepts, each hypothesis (formula) ϕ(�x) generated by the
learner must be matched to all the training examples, each corresponding to a
different universe. Given that a learner may generate thousands of hypotheses
during its work, the complexity of the matching problem may deeply affect the
very feasibility of learning.

The equivalence between a matching problem and a CSP will be formalized
and discussed in detail in Chapter 9.

8.4 Relation between CSP and SAT

In previous chapters we have seen that the classes of SAT problems and CSPs are
characterized by the presence of a phase transition. In this section we will explore
the relations between the two classes. Clearly such relations are guaranteed to
exist, because both SAT and CSP are NP-complete and thus in principle can be
translated one into the other in polynomial time. Before entering into details, we
note that any finite DATALOG theory can always be translated into an equivalent
set of sentences in propositional logic.

Let us now introduce an algorithm for translating a finite CSP into an equiv- Translating CSP
into SATalent SAT problem. The fundamental difference between CSP and SAT is that

variables in a CSP may have values in a large domain, whereas variables in SAT
are Boolean, i.e., they may only assume the two mutually exclusive values {1, 0}.
Thus we need a transformation for converting multi-valued variables in a CSP
into a set of binary variables.

We will consider here only binary CSPs, as the extension to non-binary CSPs
is immediate. Let xi ∈ X be a variable in a CSP with domain Di, with cardinality
|Di| = di. We define a set Bi of Boolean variables associated with the domain
Di. A variable xi:air , belonging to Bi, assumes the value true when xi is bound
to the value air ∈ Di and assumes the value false otherwise. Notice that one and
only one variable in the set Bi must be true. These constraints can be encoded in
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two sets of clauses, S1 and S2. The set S1 contains the clauses stating that each
S1 contains clauses

stating that each
variable must assume

one of its values.

variable must assume at least one value in its domain:

S1 = {αi|1 � i � n}, (8.15)

αi =
di∨

r=1

xi:air. (8.16)

The set S2 contains clauses stating that each variable may assume only oneS2 contains clauses
stating that each

variable must assume
only one of its values.

value from its domain:

S2 = {β(i)
rs |1 � i � n, 1 � r, s � di, r �= s}, (8.17)

β(i)
rs = xi:air ∨ xi:ais. (8.18)

We have now to translate the constraints in the set R (with cardinality m) of
the CSP into clauses in SAT. With this aim, let us consider the matrices M

(h)
ij

introduced at the beginning of Chapter 4, which correspond to the constraints
Rh(xi, xj) (1 � h � m). Each false entry in M

(h)
ij corresponds to nogoods

and must be excluded. In other words, if the entry m
(h)
rs is false in M

(h)
ij then

the pair of assignments (xi = air) and (xj = ajs) is forbidden. By translating
this condition into the notation introduced before, we obtain a third set, S3, ofClauses excluding

the nogoods clauses:

S3 = {γ(h)
rs |1 � h � m, m(h)

rs = F}, (8.19)

γ(h)
rs = xi:air ∨ xj:ajs. (8.20)

Solving the CSP is then equivalent to solving the SAT problem that has the
set of variables

B =
∨n

i=1 Bi

and the set of clauses

S = S1 ∪ S2 ∪ S3.

Globally, the formula to be made true, corresponding to the obtained SAT, is
the following:

ϕ =

(
n∧

i=1

αi

)
∧

⎛
⎝ n∧

i=1

di∧
r,s=1,r �=s

β(i)
rs

⎞
⎠ ∧
⎛
⎜⎝ m∧

h=1

∧
r,s|m(h )

r s =F

γ(h)
rs

⎞
⎟⎠ . (8.21)



Relation between CSP and SAT 181

In order to clarify the translation described above, we will use the small CSP
shown in Figure 5.9.

EXAMPLE

Let X = {x1 , x2 , x3} be a set of variables, all of which take values in the
same domain D = D1 = D2 = D3 = {a, b, c, d}, with cardinality d = 4.
Moreover, let R = {R1 , R2 , R3} be the set of three constraints (relations)
represented in tabular form in Figure 5.9.

The set S1 contains three clauses:

S1 = {α1 , α2 , α3},

where

α1 = x1:a ∨ x1:b ∨ x1:c ∨ x1:d,

α2 = x2:a ∨ x2:b ∨ x2:c ∨ x2:d,

α3 = x3:a ∨ x3:b ∨ x3:c ∨ x3:d.

The set S2 contains 18 clauses, six for each variable:

S2 = {β(i)
rs |1 � i � 3, 1 � r, s � 4, r �= s},

where

β
(1)
1,2 = x1:a ∨ x1:b, β

(1)
1,3 = x1:a ∨ x1:c,

β
(1)
1,4 = x1:a ∨ x1:d, β

(1)
2,3 = x1:b ∨ x1:c,

β
(1)
2,4 = x1:b ∨ x1:d, β

(1)
3,4 = x1:c ∨ x1:d,

β
(2)
1,2 = x2:a ∨ x2:b, . . . , β

(2)
3,4 = x2:c ∨ x1:d,

β
(3)
1,2 = x3:a ∨ x3:b, . . . , β

(3)
3,4 = x3:c ∨ x3:d.

The set S3 contains the clauses representing the nogoods for the three
relations R1 , R2 , and R3 :

S3 = {γ(h)
rs |1 � h � 3, (air , ajs) /∈ Rh}.

For relation R1(x1 , x2) the set of nogoods is the following:

nogoods1 = {(a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (d, b), (d, c), (d, d)}.

Then

γ
(1)
1,1 = x1:a ∨ x2:a,

...
γ

(1)
4,4 = x1:d ∨ x2:d.
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In an analogous way we obtain

γ
(2)
1,1 = x1:a ∨ x3:a,

...
γ

(2)
4,4 = x1:d ∨ x3:d,

γ
(3)
1,2 = x2:a ∨ x3:b,

...
γ

(3)
4,4 = x2:d ∨ x3:d.

The propositional formula to be made true is thus

ϕ(x1:a, x1:b, . . . , x3:d) = (x1:a ∨ x1:b ∨ x1:c ∨ x1:d) ∧ (x2:a ∨ x2:b ∨ x2:c
∨x2:d) ∧ (x3:a ∨ x3:b ∨ x3:c ∨ x3:d) ∧ (x1:a ∨ x1:b)
∧ (x1:a ∨ x1:c) ∧ · · · ∧ (x3:c ∨ x3:d) ∧ (x1:a ∨ x2:a)
∧ · · · ∧ (x2:d ∨ x3:d).

Let us now count how many clauses we have obtained with the preceding
transformation. The set S1 contains as many clauses as there are variables; thus,Number of clauses

in S1 |S1| = n. Each clause αi (1 � i � n) has as many terms as there are values in
the domain Di; hence |αi| = di.

For any variable xi taking values in Di, there are
(
di
2

)
pairs of conflictingNumber of clauses

in S2 assignments. Thus

|S2| =
n∑

i=1

(
di

2

)
. (8.22)

Given a relation Rh(xi, xj), the number of entries in the corresponding ma-

trix M
(h)
ij that take the value false is the difference between |Di × Dj | and

|Rh(xi, xj)|. Then, for each relation there are (didj − |Rh(xi, xj)|) nogoods.Number of clauses
in S3 The set S3 has thus cardinality

|S3| =
m∑

h=1

(didj − |Rh(xi, xj)|). (8.23)

The total number of clauses is thus

T (n, m, d1, . . . , dn) = n +
n∑

i=1

(
di

2

)
+

m∑
h=1

(didj − |Rh(xi, xj)|). (8.24)

We may notice that the clauses in both S2 and S3 have two terms whereas the
clause in S1, corresponding to the variable xi, has di terms.
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If the original CSP was generated by model B, then

|Di| = d ∀i ∈ [1, n],
|Rh| = N ∀h ∈ [1, m].

Hence, the total number of clauses reduces to:

T (n, m, d) = O
[
n + n

(
d

2

)
+ m(d2 −N)

]
.

The ratio of clauses and variables in the corresponding SAT will be, in this case, Value of α in the
corresponding SAT
for a CSP generated
with model B.α =

1
n

[
n + n

(
d

2

)
+ m(d2 −N)

]
= 1 +

d(d− 1)
2

+
m

n
(d2 −N).

Using the expressions p1 = 2m/[n(n − 1)] and p2 = 1 − N/d2, the control
parameter α can be rewritten as

α = 1 +
d(d− 1)

2
+ p1p2

d2(n− 1)
2

. (8.25)

We now have a formal method for converting a CSP into a SAT problem. The
immediate benefit is that we can use an algorithm for solving a SAT problem to
solve a CSP.

8.5 Comments

Even if the transformations between propositional learning and SAT problems
and between CSP and SAT are interesting per se, a question arises about their
practical utility. One would like, on the one hand, to exploit the results found for
SAT in order to predict when the converted problem is in the phase transition
region and, on the other hand, to apply the very effective search algorithms de-
signed for SAT. Unfortunately, both hopes remain to be realized. The classical
models used for predicting the phase-transition location in SAT assume a fixed
size k for all clauses, while the SAT instances obtained by transformation have
clauses with a variable number of terms, leaving aside the fact that most results
have been obtained only for k � 3. In addition, the utility of SAT solvers for
learning and solving CSPs has not received a definite assessment; performances
appear to depend on the specific problem approached.
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In this chapter we will discuss in depth the results that have emerged in re-
cent work on the covering test in first-order logic (Giordana and Saitta, 2000;
Maloberti and Sebag, 2004); this was introduced in Section 5.2.3, with particu-
lar emphasis on the DATALOG language. With this language, the covering test
for a hypothesis ϕ(x1, . . . , xn) reduces to the problem of finding a substitution
θ, for the variables x1, . . . , xn , by a set of constants a1, . . . , an that satisfies the
formula ϕ.

Moreover, in Section 8.3 we showed how a covering test, i.e., the matching
problem (ϕ, e), can be transformed into a CSP. As a consequence, a phase tran-
sition may be expected in the covering test, according to results obtained by sev-
eral authors (Smith and Dyer, 1996; Prosser, 1996). As discussed in Chapter 4,
studies on CSPs have exploited a variety of generative models designed to ran-
domly sample areas of interest in the CSP space. As the CSPs occurring in

184
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practice may have hundreds or thousands of variables and constraints, the in-
vestigations were oriented toward large problems; also, there was much interest
in the asymptotic behavior of CSPs for large n.

In machine learning, even though the equivalence of the matching problem Machine learning
deals with small
CSP problems.

with a CSP suggests the emergence of a phase transition, the range of problem
sizes involved is much smaller, as the typical number of variables and constraints
in relational learning is rarely greater than 10. Thus, the first question we want
to answer is whether a phase transition is present in the region of the CSP space
visited by a relational learner. As uncovered by Botta et al. (1999) and by Gior-
dana and Saitta (2000), a phase transition is indeed detected for problem sizes
relevant to machine learning, even if it is less sharp than in the area explored by
Prosser (1996). In this chapter we will discuss this in detail. A second relevant
question concerns the impact that the presence of a phase transition may have
upon the quality, or even the very feasibility, of relational learning. Chapter 10
answers this question.

Investigating the covering test in first-order logic, Giordana and Saitta (2000)
implicitly proposed a generative model of matching problems of the type en-
countered in machine learning. Thus our starting point will be to revisit this
model, which we will name model RL,1 making explicit its properties and rela-
tionship to the classical models. Then we will review and discuss the experiments
of Giordana and Saitta (2000) and of Maloberti and Sebag (2004). Finally, we
will compare the findings obtained using model RL with those obtained by other
authors.

9.1 Model RL

Generative models used for investigating CSPs are characterized by:

• a set of control parameters describing the CSP space;

• a set of basic assumptions restricting the control parameters;

• an algorithm for the stochastic generation of CSP instances.

An aspect that differentiates model RL from other models is the choice Model RL was
designed to
investigate the
occurrence of a
phase transition in
the matching problem
in relational learning.

of control parameters. Instead of using the classical p1 and p2 directly (see
Section 4.2), four different parameters, two characterizing the example complex-
ity and two characterizing the hypothesis complexity, are chosen, as described
in the following. The generative algorithm is also different, so that problem in-
stances preserve some plausibility with respect to real learning problems.

1The notation RL indicates that the model was designed to investigate CSPs in relational
learning.
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9.1.1 The control parameters

Before entering into the discussion of control parameter selection, we recall that
a matching problem is a pair (ϕ, e), where ϕ is a hypothesis (a DATALOG for-
mula) and e is an example (a set of tables). The example e constitutes the universe
U , where ϕ must be proved true or false by performing the covering test.

Control parameters characterizing learning examples
In relational learning an example e is defined by a set of atomic objects described
by a set of attributes and a set of relations stating their mutual interactions. The
atomic objects occurring in the universe U corresponding to e are given and,
in a logical framework, they are identified by means of a set Λ of L constants
(symbols) ai:

Λ = {a1, a2, . . . , aL}. (9.1)

The first parameter, which naturally appears as a good candidate for characteriz-
ing the complexity of an example, is the number L of its atonic components, i.e.,
the cardinality of the set Λ.

As discussed in Section 5.2.2, relations between objects are represented by
means of tables, as is common in relational databases. Every instance of a rela-
tion Rh involving a group of objects is encoded by a row in the corresponding
table. Let Nh denote the cardinality of the relation Rh (i.e., the number of rows in
the corresponding table) and rh denote its arity (i.e., the number of columns
in the associated table). It is immediate to see that Rh is a subset of the maximal
table Λrh obtained as the Cartesian product of set Λ with itself rh times. If
the tuples that populate the table are sampled from Λrh uniformly and with
replacement, the probability that a tuple 〈a1, a2, . . . , arh

〉 is included at least
once in Rh is given by

Ph = P(〈a1, a2, . . . , arh
〉 ∈ Rh) = 1−

(
1− 1

Lrh

)Nh

, (9.2)

where Nh is the cardinality of Rh. Alternatively, if sampling is performed
without replacement the probability is given by

Ph(〈a1, a2, . . . , arh
〉 ∈ Rh) =

Nh

Lrh
. (9.3)

We note that (9.2) and (9.3) tend to coincide when L → ∞. In fact, for x → 0
we have (1− x)t � 1− tx.

It is of interest to observe how L and Nh interact. From equations (9.2) and
(9.3) we see that, in both cases, increasing Nh means that Ph increases whereas
increasing Lh means that Ph decreases. Thus if Rh is a binary constraint in a
CSP (rh = 2), the probability of obtaining a solution is directly correlated with
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Nh and inversely correlated with L2. Therefore we will use the Nh and L as
parameters to characterize the complexity of e.

Control parameters depending on the hypothesis description
Let ϕ(x1, x2, . . . , xn) be the hypothesis to be verified in e. Both the complexity
of the covering test and the probability of success depend on two features of
ϕ: the number n of variables and the number m of literals (i.e., predicates or
their negation) occurring in ϕ. We recall that in DATALOG the covering test
corresponds to the problem of finding a substitution

θ = (x1/a1, x2/a2, . . . , xn/an), (9.4)

for variables x1, x2, . . . , xn with constants ai from the domain Λ, such that ϕθ
is satisfied. The parameter n defines the tuple length and characterizes the size
of the space Θ from which θ must be selected. More specifically, the size of Θ
is |Θ| = Ln .

The parameter m defines the number of constraints occurring in ϕ. We re-
member that each predicate ph occurring in ϕ is associated with a specific rela-
tion Rh defined in e. Thus ph denotes a constraint defined by Rh, which rules
out a subset of the possible substitutions Θ.

Note that keeping constant the number of variables n and increasing the
number of literals m in a hypothesis ϕ reduces the number of substitutions θ ∈ Θ
that satisfy ϕ, making ϕ more difficult to satisfy. Conversely, increasing n while
m remains constant increases the number of substitutions θ satisfying ϕ, making
ϕ easier to satisfy. In our context, we select the number of predicates m as a
second control parameter.

9.1.2 Model assumptions

In order to obtain a manageable form of the matching problem (ϕ, e), while
preserving the essence of the problem itself, we need to make some assumptions
about the control parameters to be used and the structure of the hypothesis and
of the example.

The parameters n (the number of variables) and m (the number of literals)
have an immediate interpretation in ϕ and can be used as control parameters.
However, the cases of L and Nh need some discussion. Every relation Rh occur-
ring in e may have, in principle, a different size Nh. Moreover, in the real world
every relation Rh can be selected from the space Λrh using a different criterion,
i.e., a different distribution, depending on the specific application. In addition,
not all the L constants may appear in all relations. Thus it is not possible to
obtain Nh and L from an example without making further assumptions.
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Assumption 1 All relations have the same size N , the same arity r and the
same distribution over the space Λr .

The choice in Assumption 1 focuses the attention on specific classes of problems
that are relevant to practical learning applications while potentially containing
very hard instances (Giordana and Saitta, 2000). This class is characterized byAll relations have

the same size. examples containing large numbers of atomic objects of only a few different
types, linked by the same type of relations. Problems of this class are frequently
found, for instance, in chemistry and molecular biology.

Assumption 1 allows the matching problem (ϕ, e) generated by the model
RL to be characterized by a 4-tuple 〈n, m, L, N〉.

Assumption 2 Target relations have 0-arity and conjunctive descriptions.

As discussed in Chapter 5, the simplest case of relational learning consists in
learning 0-arity relations (constants) corresponding to concept descriptions of
the form:

ϕ(x1, x2, . . . , xn) → c, (9.5)

where c is a constant (a concept name), which is true or false in a given ex-
ample e depending on whether ϕ is true or false in e. We also remember that
variables in a clause not occurring in the head (in this case the right-hand
side of the implication) are implicitly existentially quantified. Moreover, the
formula ϕ describing the concept is assumed to be a conjunction of literals.
Thus in this case the covering test reduces to the verification of an existen-Target concepts are

0-arity relations
with conjunctive

descriptions.

tially quantified formula of the type ∃�x [ϕ(�x)], where ϕ(�x) is a conjunction of
literals.

As a matter of fact assumption 2 is not strongly limitative, because in su-
pervised learning the complexity of the covering test depends only on the com-
plexity of verifying the existentially quantified part of the formula. In fact, the
possible bindings for the variables occurring in the head of a hypothesis (the
target relation) are fixed by the a priori knowledge given by the teacher. Apart
from its simplification of the matching problem, this assumption also allows us
to compare, in the next chapter, various relational learners independently of their
ability to learn relations having arity greater than 0.

Assumption 3 Only binary relations are considered in the examples and,
consequently, only binary predicates will occur in the hypotheses.

This third assumption (r = 2) greatly simplifies the model while preserving its
plausibility. In addition, it allows our results to be compared directly with the
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many available in the literature for binary CSPs. In principle, relations of any
arity may occur in a universe e, including unary relations and relations of arity
greater than 2. Nevertheless, a restriction to binary relations is not limitative for Concept descriptions

are built on
binary relations.

two reasons. The first is that most existing relational learners work with unary
and binary relations only. The second is that it is always possible to transform
a universe containing relations of different arity into a universe containing only
binary relations.

Assumption 4 Only connected formulas are considered.

This fourth assumption concerns the structure of the hypothesis. We say that
a formula ϕ is unconnected when there exist two (or more) subsets of vari-
ables �x1 = {x1, x2, . . . , xk} and �x2 = {x′

1, x
′
2, . . . , x

′
r} such that no literal

in ϕ(�x1, �x2) has variables in both �x1 and �x2. In fact, if two such subsets exist
then a hypothesis, under assumption 1, can always be reduced to the conjunction
of two independent existentially quantified subformulas:

∃ �x1, �x2 [ϕ(�x1, �x2)] ≡ ∃�x1[ψ(�x1)] ∧ ∃�x2[ρ(�x2)]. (9.6)

In this case, the original problem is reduced to two simpler problems, consisting
in matching ∃�x1[ψ(�x1)] and ∃�x2[ρ(�x2)] separately on e.

In order to avoid this case, model RL is prevented from generating uncon-
nected hypotheses. This restriction is not limitative. On the one hand, most ex- Only connected

formulas are
considered.

isting relational learners will make assumption 4 and so will not generate un-
connected hypotheses. In fact, allowing a relational learner to construct such
hypotheses entails a tremendous increase in the size of the region of hypothe-
sis space visited by the learner. On the other hand, the complexity of the cov-
ering test for unconnected formulas can be simply obtained as the sum of the
complexity of the unconnected components. Thus investigating the covering test
complexity for connected formulas is sufficient.

Assumption 5 Learning examples contain only relations corresponding to the
literals occurring in ϕ.

This last assumption concerns the structure of the examples. More specifically,
in model RL it is assumed that a positive example only contains relations that
occur in the target concept, namely in examples where there are no irrelevant
predicates. This assumption is a simplification that does not affect the complexity
of the covering test; irrelevant relations, i.e., relations that do not correspond to
any literal in the formula to be verified, are simply disregarded by any theorem
prover. On the contrary, it makes significantly easier the inductive search of the

All relations in an
example are relevant
to the concept
description.
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learner, as we will discuss in the following chapter. In fact, a large number of
irrelevant hypotheses are implicitly ruled out.

Therefore, under the above five assumptions, every pair (ϕ, e) generated by
model RL will correspond to a specific point in the space 〈n, m, N, L〉.

9.1.3 Matching problem generation

We are now ready to describe the algorithm used to construct CSPs belong-
ing to the space characterized by model RL. The input of the algorithm is
a 4-tuple 〈n, m, N, L〉 chosen a priori. The CSP construction occurs in two
steps. The first generates the universe e (the example), while the second con-n variables

m literals
L constants

N rows in relational
tables

structs the hypothesis ϕ to be verified in e. More specifically, the second step
first constructs a “skeleton” of the formula, thus guaranteeing that it is con-
nected; then, other literals are added until the required number m of literals is
reached.

Let X = {x1, x2, . . . , xn} denote the set of n variables, and P =
{p1, . . . , pm} the set of m literals.

Given L and N , e is fully defined by a set R of m relational tables, each one
associated with a predicate in the set P. According to the assumptions made, allAn example is

a universe containing
tables corresponding

to the predicates
defined in the hypothesis

description language.

tables are binary and have the same size N . Every table is populated by sam-
pling at random, without replacement, N pairs from the set Λ × Λ. The table
construction proceeds as in step 1 below.

Step 1 Relational table construction Let R denote the table, initially empty,
to be populated. Let s be the current number of tuples added to R.

1. Construct the universal binary relation Λ× Λ, and set s = 0.

2. While s < N , extract uniformly, without replacement, one pair t from
Λ× Λ and add t to R. Increment s by 1.

3. Add R to example e.

Notice that, as pairs are sampled without replacement, no relation will contain
duplicate tuples.

Step 2 Construction of hypothesis ϕ Starting from X and P, and assuming
that m ≥ n− 1, a formula ϕ(�x) is constructed as follows:

1. Set ϕ(�x) = �, the most general hypothesis.

2. Form the sequence of variables x1, x2, . . . , xn .
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3. For each pair of consecutive variables (xi, xi+1) (1 � i � n− 1) do

• Extract uniformly, without replacement, a predicate from P and ap-
ply it to the variable pair (xi, xi+1).

• Call αi(xi, xi+1) the literal so obtained and add it to the current for-
mula as a conjunct.

4. For each of the remaining m− n + 1 predicates in P, do

• Extract a pair of variables (yj, zj) from X×X such that yi �= zi, call
βj(yj, zj) the literal so obtained, and add it to the current formula as
a conjunct.

In step 2, the third point constructs the “skeleton” of the connected formula and
guarantees that all n variables are chained, so that the matching problem cannot
be reduced to smaller problems (with smaller n values). The fourth point brings
the number of predicates in ϕ(�x) to the desired value m. Note that no predicate
is negated. The formula generated contains exactly n variables and m predicates,
and the same pair of variables may appear in more than one predicate. The final
formula assumes the following format:

ϕ(�x) =
n−1∧
i=1

αi(xi, xi+1) ∧
m−n+1∧

j=1

βj(yj, zj). (9.7)

The above generation procedure is close to model B, introduced by Smith and The procedure for
generating the example
is similar, but not
identical, to that
used in model B.

Dyer (1996) for CSPs. Similarities and differences will be discussed later in this
chapter. The hypothesis space H to be explored contains a number |HRL| of
syntactically different formulas:

|HRL| =
(

m

n− 1

)
(n− 1)!(n2 − n)m−n+1. (9.8)

Expression (9.8) is computed as follows: when constructing the first part of for-
mula (9.7), n − 1 predicates are selected without replacement from a set of m;
this selection gives

(
m

n−1

)
alternatives. Each of the n − 1 selected predicates

can be applied to any pair (xi, xi+1) of variables; each permutation of the as-
signments generates a different formula, because the predicates are all differ-
ent, as well as the variable pairs. Thus there are

(
m

n−1

)
(n − 1)! alternatives for

the first part of formula (9.7). Regarding the second part of the formula, the
predicates are the m − n + 1 not yet used; each can be applied to any combi-
nation of different variable pairs. The total number of variable pairs is n2, but
we have to subtract pairs where the same variable occurs in both places, i.e.,
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x1

x2 x3

x4

x5

p2

p4 p8

p1

p5
p7

p3

Figure 9.1 Example of a constraint graph corresponding to a formula gener-
ated by model RL, starting from a set X = {x1, x2, x3, x4, x5} of five vari-
ables and a set P = {p1(x, y), p2(x, y), p3(x, y), p4(x, y), p5(x, y), p6(x, y),
p7(x, y), p8(x, y)} of eight predicates. The formula is ϕ(x1, . . . , x5) =[
p2(x1, x2) ∧ p4(x2, x3)∧p8(x3, x4)∧p1(x4, x5)

]
∧
[
p3(x2, x3)∧p5(x2, x5)∧

p7(x3, x5)
]
.

n pairs. Thus the number of different alternatives for the third factor in (9.7)
is (n2 − n)m−n+1.

In Figure 9.1 an example of a constraint graph corresponding to a formula
generated by model RL is given.

We can also count the number of different examples that can be constructed
by model RL:

|ERL| =
(

L2

N

)m

(9.9)

Globally, model RL can generate a number of matching problems equal to

|HRL| |ERL| =
m! (n2 − n)m−n+1

(m− n + 1)!

(
L2

N

)m

.

Notice that, according to assumption 3, any ϕ generated in this way contains
binary predicates only. Moreover, according to assumption 5, e contains all and
only the relations corresponding to the literals occurring in ϕ. The natural loga-
rithm of |HRL| is plotted in Figure 9.2 as a function of n and m.

EXAMPLE

Let us consider the variable set X = {x1 , x2 , x3} and the predicate set
P = {on(x, y), left(x, y), adjacent(x, y)}. In this case n = 3 and m = 3.
The predicate on(x, y) states that object x touches object y from above
and the predicate left(x, y) states that object x is to the left of object y
whereas the predicate adjacent(x, y) states that objects x and y touch each
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Figure 9.2 Natural logarithm of the function ln |HRL| vs. n and m.
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(a)                                (b)

Figure 9.3 (a) An instance satisfying the formula ∃�x[ϕ1(�x)]. (b) An instance
satisfying the formula ∃�x[ϕ2(�x)].

other laterally. The predicate adjacent(x, y) is symmetrical. Two possible
formulas are

∃�x[ϕ1(�x)] = left(x1 , x2) ∧ on(x2 , x3) ∧ adjacent(x3 , x1),
∃�x[ϕ2(�x)] = on(x1 , x2) ∧ adjacent(x2 , x3) ∧ left(x1 , x3).

In Figure 9.3 one instance of each formula is provided.

An interesting point to be discussed is the structure of the constraint graph
G. In fact, owing to the fact that predicates may share the same pair of variables,
the number s of edges in G is a stochastic variable whose value depends upon m
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Figure 9.4 Probability distribution qm−n+1(s) as a function of the number of
edges s in the constraint graph. The curves are shown for n = 10 and various
values of m. The curves start at s = n− 1 = 9. (Note that the defining symbols
merge along the s axis.)

10 20 30 40 50

10

15

20

25

30

m

s

Figure 9.5 Average value s̄ of the number of edges in the constraint graph gen-
erated by model RL, as a function of the number m of predicates.
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and n. All the graphs that can possibly be generated belong to an ensemble GRL ,
which can be partitioned according to the number of edges:

GRL =
m⋃

s = n−1

Gs.

All graphs belonging to a particular Gs have the same probability of occurrence,
but the probability that a constraint graph belongs to Gs is not uniform over the
number of edges s. In order to compute this probability, let us consider what
happens in point 4 of step 2 of the above generation algorithm. In the following,
let us define M = n(n− 1)/2. A number m − n + 1 of extractions of pairs of
(different) variables is performed in sequence and with replacement. Then, let us
define by qk(s) (n− 1 � s � min[n+ k− 1, M ]) the probability distribution of
s after the kth extraction. At each extraction the number s may either remain the
same (if the extracted pair already appears in the formula) or may increase by
1 (if the extracted pair does not already appear in the formula). As extraction is
uniform, the probability that an already existing pair is extracted is proportional
to the current number of existing pairs. We can provide a recursive definition of
the probability qk(s):

q0(s) = δ(s, n− 1),

qk(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if s � n− 2,

[(n− 1)/M ]k if s = n− 1,

qk−1(s− 1) [1− (s− 1)/M ]
+ qk−1(s)s/M if n � s � min[M, n + k − 1],
0 if s � min[M, n + k − 1] + 1.

It is easy to prove, using induction over k, that qk(s) is indeed a probability
distribution, as it is normalized for each k ∈ [0, m − n + 1] over the values
s ∈ [n− 1, min[M, n + k − 1]].

Notice that, from the point of view of the graph structure, the pair (xi, xj) is
equivalent to the pair (xj, xi). The final probability distribution is that obtained
for k = m−n+1. In Figure 9.4 the probability distributions obtained for n = 10
and m = 13, 20, 24, 30, 40, 45, 50 are given. In Figure 9.5 the average value of
s is shown for 10 � m � 50.

9.2 The search algorithm

Before addressing the experimental analysis of the covering test complexity for
formulas generated by model RL, we need to select the search algorithm. Given
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left(x1, x2)

ν0

adjacent(x1, x2)

on(x1, x2)

x1/c, x2/b, x3/a

x1/c, x2/b

x1/c x1/a

Figure 9.6 The search tree explored by the covering test for the formula
∃�x [ϕ(�x)] = on(x1, x3) ∧ left(x1, x2).

a formula ϕ, with n variables and the syntactic structure (9.7), and a universe
e, the search for a substitution θ satisfying ϕ in e entails visiting a tree τ , as
indicated in Figure 9.6. A node ν at a level k in τ corresponds to an allowed
substitution θ for the variables x1, . . . , xk , considered in a given sequence.2 The
leaves of τ at the level k = n represent models of ϕ and are solutions to the
matching problem.

Depending upon the strategy used for visiting τ , different algorithms
show different search complexities. However, the primary goal of the inves-
tigation reported in the following was not to reduce the search complex-
ity but to design a generic (unbiased) algorithm to be used as a standard
tool to measure and compare complexity. Smart, sophisticated, search algo-
rithms tend to exhibit performances that are dependent on the specific problem
configuration.

The stochastic
search algorithm that

we propose guarantees
performances more
homogeneous than

those of deterministic
backtracking algorithms.

A natural reference baseline is represented by backtrack search algorithms,
which have been the starting point for most problem-solving methods in artifi-
cial intelligence and are still now at the heart of the inference mechanism in logic
programming environments such as Prolog. However, backtrack algorithms visit

2Different orderings of the variables, both static and dynamic, have been tried with no notice-
able change in the emergence of the phase transition.
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the search tree in a preassigned order and exhibit very different performances
depending on the position of the solutions in the tree. An alternative is repre-
sented by stochastic search algorithms, which show more homogeneous perfor-
mances. A comparison between a backtrack deterministic search algorithm and
a stochastic search algorithm, in the context of the present study, was presented
by Botta et al. (1999). Based on that comparison, the analysis reported here
was done using a stochastic algorithm because it offers the advantage of both a
lower average complexity and a lower complexity variance than a deterministic
algorithm.

The search algorithm consists of the iteration of a one-step stochastic search
function until either a model is found or the whole tree has been explored unsuc-
cessfully. Let MC(τ, n) be a Monte Carlo stochastic algorithm, i.e., an algorithm
that, according to the classification of Brassard and Bratley (1988), always pro-
vides an answer; however, the answer may be incorrect. The parameters τ and
n of the function denote the search tree and the number of variables (the maxi-
mum depth of the tree), respectively. The algorithm MC(τ, n) explores one path
on the search tree (see the example in Figure 9.6), starting from the root ν0 and
ending in a leaf ν, which may or may not be a solution. During the algorithm’s
execution, ν is associated with a sequence of nodes in the tree at increasing
depth, and corresponds to increasingly complete, allowable, partial assignments
of values to the variables x1, . . . , xn . By iterating MC on τ as follows, more
and more paths are explored:

MC(τ, n)
ν = ν0, leaf = false
while(¬leaf ) do3

if ν is a leaf at level k
then leaf = true
else Identify the Selectable children of ν,

and put them into a set C(ν)
Extract a node ν ′ from C(ν) with uniform probability
Set ν = ν ′

endif
end
Label ν is closed
if the level of ν is k = n then answer Y ES else answer NO.

Depending on the semantics of the criterion Selectable, different sets of child
nodes of ν are included in C(ν). In the simplest case, all nodes are always

3The notation ¬leaf means the negation of leaf .
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Selectable, and the stochastic search is made with replacement: any leaf can
be reached repeatedly. In this case the complete exploration of τ may asymp-
totically require an infinite number of repetitions of MC. If a search without
replacement is chosen, the Selectable predicate will not include in C(ν) any
node that either is closed (already explored) or has only closed children. In this
case every iteration of MC ends in a different leaf of τ , and the whole tree is
guaranteed to be completely explored with at most the same complexity as that
of an exhaustive backtrack search algorithm. The experiments reported in this
chapter were done using search without replacement.

9.3 Experimental analysis

In order to locate the phase transition, points in the (m, L) plane were systemati-
cally explored for fixed values of the parameters n and N . More specifically, for
n = 4, 6, 10, 12, 14 and for N = 50, 80, 100, 130 the complete mesh, covering
the region (10 ≤ L ≤ 50, n − 1 ≤ m ≤ 50) in the plane (m, L), was consid-
ered. For each pair (m, L) belonging to the mesh, 100 problems were generated,
giving a total of about 900 000 problems. The range of n was chosen to be con-
sistent with that employed in relational learning, where only a few variables have
been considered so far.

9.3.1 Probability of solution

A three-dimensional plot representing the empirical probability of solution Psol

as a function of m and L is shown in Figure 9.7 for n = 10 and N = 100. For
each point in the mesh, Psol has been computed as the fraction of problems with
a solution among all the generated ones at that point.

The graph in Figure 9.7 is very steep. To the left of the descent it shows a
plateau, where the probability of finding a solution is almost equal to 1 (all the
generated matching problems were solvable); we call this the YES region. To theA sharp transition

from a YES region
to a NO region

appears.

right the graph again shows a plateau, where the probability of finding a solution
is almost equal to 0 (no generated matching problem was solvable); we call this
the NO region. In between, where the graph values rapidly drop from almost 1
to almost 0, is the phase transition region, also called the mushy region (Smith,
1994). The ideal phase transition location coincides with the set of points on the
graph where Psol = 0.5.

An interesting feature of the graph is the regularity of the projection onto
the (m, L) plane of the contour level plot at Psol = 0.5; this projection is a
very smooth curve with a hyperbolic-like behavior. Figure 9.8(a) shows these
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Figure 9.7 Three-dimensional plot of the probability of solution Psol for n =
10 and N = 100. Some contour level plots, corresponding to Psol values in the
range [0.85÷ 0.15],4 have been projected onto the (m, L) plane.
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Figure 9.8 Plots of the 0.5-level contour of the probability of solution Psol.
(a) Graphs corresponding to the numbers of variables n = 6, 10, and 14, with
relation cardinality N = 100. As we must have m � n − 1 for each m value,
the highest acceptable graph is that for n = m + 1. (b) Graphs corresponding to
relation cardinalities N = 50, 80, 100, and 130, with n = 10. As we must have
N � L2 for each value of L, the rightmost acceptable graph is that for N = L2.

4This can also be written as [0.85, 0.15].
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projections for numbers of variables n = 6, 10, and 14, with relation cardinalities
N = 100. Figure 9.8(b) shows an analogous set of contour plots for a constant
number of variables n = 10 and for relation cardinalities N = 50, 80, 100, and
130.

9.3.2 Search complexity

For a quantitative analysis of the complexity, a random search without replace-
ment was performed by repetition of the Monte Carlo algorithm described in
Section 9.2. The cost C of the search was defined as the total number of nodes
explored in the search tree until either a first solution is found or unsatisfiabil-
ity is proved. For unsatisfiable problems it is necessary to explore the whole
tree.

In Figure 9.9(a) the graph of the search complexity C, averaged over 100
repetitions for each point, is shown, for n = 10 and N = 100. The shape
and location of the highest-complexity region roughly matches the transition in
probability seen in Figure 9.7 but it is more irregular and also broader, like a
mountain chain. Within the “mountain” there is a large variability between dif-
ferent problems, witnessed by the variance plot shown in Figure 9.9(b). As oneA complexity peak

appears in
correspondence
with the phase

transition.

might expect, the highest-variance values correspond to the highest peaks. The
maximum-complexity contour coincides with the contour plot at Psol = 0.5,
as found previously by, for instance, Hogg (1996), Hogg et al. (1996), and
Cheeseman et al. (1991).

It is worth noticing that the complexity distributions for solvable and unsolv-
able problems may be very different, as unsolvable problems usually require
much more search. Approximations to the complexity probability distributions
at the phase transition for solvable and unsolvable CSPs were provided by Frost
et al. (1997). They showed that a lognormal distribution is a good approxima-
tion for unsolvable problems. For solvable problems several known distributions
(in particular, the Weibull distribution) were tried with less success. However,
from all the reported experiments it clearly emerges that the complexity distribu-
tions of both solvable and unsolvable problems have a long tail in the region of
extremely hard problem instances. Finally, Figure 9.9(c) shows the dependency
of the CPU time upon the number of nodes explored, for two different imple-
mentations of the stochastic matching algorithm, S1 and S2. Implementation S1
stores the entire search tree, so that the time complexity is linear in the number
of nodes but the memory requirement is very heavy. Conversely, implementa-
tion S2 makes use of implicit indexing to avoid storing the pointers from a node
to its children. Then the memory request is more modest but there is an extra
cost in CPU time, which is quadratic in C. Implementation S2 is a reasonable
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Figure 9.9 (a) Plot of the complexity C of the Monte Carlo stochastic search
algorithm MC without replacement, for n = 10 and N = 100. Each point is
the average over 100 problem instances. (b) Plot of the standard deviation of the
complexity. (c) CPU time in centiseconds vs. the complexity of the search for
two different implementations, S1 and S2, of the stochastic matching algorithm.
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trade-off and was used for most experiments reported here.5 The measures were
obtained using a Pentium II-366.

9.4 Comparing model RL with other models
for CSP generation

We will now provide an interpretation of the experimental findings given in the
previous section for model RL and compare them with other models discussed
in the literature (see Section 4.2). Figure 9.8 shows the hyperbolic-like shape of
the phase transition edge in the plane (m, L), which moves far from the origin
as parameters n and N increase.

9.4.1 Explaining the findings with model RL

An intuitive explanation of the observed hyperbolic behavior is obtained by con-
sidering how the probability value Pα that a substitution {xi/ai, xj/aj} satisfies
a generic relation α(xi, xj) depends upon L (see (9.1)). According to (9.3) the
probability Pα that the pair (ai, aj ) occurs in the table Rα is N/L2, as sampling
is done without replacement in model RL. Thus the effect of increasing L whileIncreasing L for

constant n and N
increases the

constraint tightness.

N remains constant corresponds to a decrease in the value Pα , i.e., an increase
in hardness of the constraint set for each literal occurring in a formula. This ex-
plains why the phase transition edge moves closer and closer to the L axis as L
increases. In fact, if we observe that the larger is m the harder it is to satisfy the
formula (for N constant) then increasing L means that even very small formulas
(with only a few predicates) become unsatisfiable. The opposite is also true: if
L decreases, it is necessary to construct very long formulas (large m values) for
such formulas to be unsatisfiable. However, in this case L cannot decrease down
to 0. In fact, when L =

√
N , the probability Pα that the pair (ai, aj) occurs in

Rα is 1 because, for this value of L, all pairs in Λ2 occur in the table and the
formula ϕ is satisfied for any value of m. Thus the horizontal line L =

√
N

is a limiting curve in the plane (m, L). Another limiting line is the vertical at
m = n− 1.

Let us now consider Figure 9.8(b) and the effect that an increase in the cardi-
nality N of the relations has on the location of the phase transition. For constant

5During the generation of the graph in Figure 9.9(a) (involving 160.000 matching problems),
S2 never exceeded the memory size of 2 Mbytes whereas S1 grew to 12 Mbytes. The time elapsed
was about 215 min for S1 and 280 min for S2 . When formulas with 14 variables were being
processed, several times S1 was unable to finish whereas S2 exhibited a typical size of 2 Mbytes in
the phase transition region and reached a maximum of 56 Mbytes. The time elapsed was 1650 min
for S2 whereas S1 ran for several days due to its intensive use of the virtual memory.
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L, increasing N means increasing Pα . Let us consider in Figure 9.8(b) a particu-
lar curve corresponding to a value N1, and let N2 > N1. For each horizontal line
corresponding to a specific value of L, the intersection of the phase transition
line for N2 with this horizontal line will be located to the right of the intersec-
tion point with the phase-transition line corresponding to N1. In fact, increasing
N will extend the YES region, which is located to the left of the phase transition
boundary. As a consequence the whole phase transition line will be displaced to-
wards the right as N increases. However, for any finite N , Pα → 0 for L →∞.

In order to understand how the phase transition boundary depends on the
number n of variables (see Figures 9.8(a) and 9.10), we need to consider how
the probability Psol = Pϕ that a formula ϕ is satisfied depends upon the struc-
ture of ϕ. In fact, increasing or decreasing n affects the distribution of the literals
over the variables, weakening or hardening the constraints on the edges of the
constraint graph associated with ϕ. Providing an analytic form for Pϕ is a diffi-
cult task, not yet solved in its generality. Nevertheless, a rough estimate can be
obtained for particular cases. Thus we will consider simple formulas as building
blocks of more complex formulas, for example,

ψ(x1, x2) =
k∧

i=1

αi(x1, x2). (9.10)

Under the assumption that all the relations αi contain exactly N tuples indepen-
dently sampled from Λ2, the probability that a constant pair (a1, a2) satisfies ψ
is Pψ = Pk

α . Thus the set of pairs of constants satisfying ψ in a universe e is the
intersection of the k relational tables αi, whose expected size (with respect to
the different constraint graphs having the same parameters) is

Nψ = L2Pk
α = L2

(
N

L2

)k

=
Nk

L2(k−1) . (9.11)

As a particular case, when k = 2 we have

Nψ =
N 2

L2 . (9.12)

Considering model RL, we note that formulas of the type (9.10) emerge as funda-
mental building blocks. In fact, according to the generative algorithm described
in Section 9.1.3, several literals may share the same variable pair; hence, the
global constraint on an edge of the constraint graph associated with ϕ will be a
subformula of the type (9.10).

Another construct worth considering for our purpose is a chain of two pred-
icates through a single shared variable xs:

ϕ(xi, xs, xj) = α1(xi, xs) ∧ α2(xs, xj).
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Figure 9.10 Dependency of the complexity C on the number n of variables:
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If all the relational tables are randomly sampled according to the same dis-
tribution from the set Λ2, the distributions of the values of xs occurring in Rα1

and Rα2 are each multinomial, with equal probabilities of success 1/L for all
ai ∈ Λ:

Pα1 (k1, . . . , kL) =
(

N

k1, . . . , kL

)
1

LN
, (9.13)

Pα2 (h1, . . . , hL) =
(

N

h1, . . . , hL

)
1

LN
, (9.14)

where the first factor on each right-hand side is a multinomial coefficient. The
tuples that satisfy ϕ(xi, xs, xj) are those that occur in the natural join between
the tables Rα1 and Rα2 . The average number of these tuples is given by

Nϕ = E

[
L∑

i=1

ki hi

]
.

The sum is a stochastic variable, where the ki and hi follow the distribution
(9.13) and (9.14), respectively. Then

Nϕ =
L∑

i=1

N

L

N

L
=

N 2

L
. (9.15)

We are now able to explain why increasing the number n of variables allows
the phase transition edge to move far from the origin of the (m, L) plane. First,
considering the generic formula (9.7) generated by model RL, we notice that
subformulas of type (9.10), with k = 2, may include either two β’s or one α and
one β. However, chaining certainly occurs, by construction, between the n − 1
α’s and may additionally occur between the β’s and between the α’s and β’s.
For a given m, increasing n has the effect of reducing the average number of
literals built from the same variable pair and, hence, the exponent k in (9.11) de-
creases. In support of this observation we report, in Figure 9.11, the probability
distributions of s for n = 20.6 As can be seen, the number of edges in the con-
straint graph is much closer to m, meaning that fewer variable-pair duplications
occur.

As chaining is less restrictive than intersection, a hypothesis in which chain-
ing dominates will be easier to verify, other things being equal, than one where
intersection dominates. If the probability of intersection decreases with n then
the probability of chaining increases because all the predicates β generate chain-
ing if they are not intersections (i.e., because all the variables occur anyway in

6Recall that s is the number of edges in the constraint graph.
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Figure 9.11 Probability distributions of the s values for n = 20. All distribu-
tions are shifted toward the right compared with Figure 9.4; thus variable-pair
duplication is less likely. The leftmost acceptable value is s = n− 1 = 19.

the α’s). As a consequence, the YES region is widened and the phase transition
boundary moves toward the right in the (m, L) plane. Recall that, for any n,
only the region to the right of the vertical line m = n − 1 is sampled by
model RL.

9.4.2 Comparison with model B

In the literature, CSPs generated by model B are typically characterized by two
parameters, namely p1 and p2 (see Section 4.2). For the reader’s convenience,
we repeat here their definitions:

p
(B)
1 =

2m

n(n− 1)
, (9.16)

p
(B)
2 = 1− N

L2 . (9.17)

In model RL the value of m does not correspond to the number of edges
in the constraint graph, because several constraints may share the same pair of
variables. Thus p1 is a stochastic variable, because the number of edges in a
CSP instance is s, whose probability distribution was computed in Section 9.1.3.



Comparing model RL with other models for CSP generation 207

So we may expect that all quantities depending on p1 will be, in CSPs derived
from model RL, averaged over s according to the probability distribution qk(s)
introduced in Section 9.1.3. In particular, the value of p1 itself would be

p
(RL)
1 =

2s̄

n(n− 1)
. (9.18)

For a given value of m, p1 assumes smaller values in model RL than in model
B. In machine learning, the parameters p1 and p2 do not have a direct meaning.
On the contrary, in machine learning the complexity of an inductive hypothesis
is frequently measured by m and the complexity of a concept instance can be
related to L, i.e., the number of atomic objects it contains.

In previous work, experiments have usually been done by changing p2 and
keeping p1 constant. In (9.17) the ratio N/L2 represents the fraction of pairs al-
lowed to occur in the corresponding predicates. The fact that model RL allows
multiple arcs on G introduces a further difference between model B and model
RL: as discussed in the previous subsections, edges may be labeled by conjunc-
tions of constraints rather than elementary constraints. Thus, even though the
elementary constraints are generated with the same cardinality N , subformulas
labeling the edges may have different cardinalities (smaller than or equal to the
original ones). Therefore p2 should also take into account this variation:

p
(RL)
2 = 1− N

L2 , (9.19)

where N is the average cardinality. To compute the probability distribution of
the values of N in the composite tables is quite a hard task. Estimates can be
obtained using arguments similar to those in Section 9.4.1. In practice, the em-
pirical mean of the values obtained in the CSP instance under analysis can be
used as an estimate.

To summarize, using the same values for m and N in models B and RL we
obtain

p
(RL)
1 � p

(B)
1 and p

(RL)
2 � p

(B)
1 . (9.20)

The number of “hypotheses” (constraint graphs) generated by model B is

|HB | =
(n(n−1)

2
m

)
,

and the number of “examples” (sets of tables) is

|EB | =
(

L2

N

)m

.
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Figure 9.12 Contour plot of the logarithm to the base 10 of the number of hy-
potheses |HB | generated by model B as a function of n and m. The value of m
is upper-bounded by n(n− 1)/2.

Comparing |HB | and |EB | with the corresponding values, |HRL| in (9.8) and
|ERL| in (9.9), for model RL we note that the number of examples is the same.
In Figures 9.12 and 9.13 the contour graphs of the base-10 logarithms of |HB |
and |HRL| are reported, respectively. As is apparent from the figures, the spaces
of hypotheses generated by the two models are rather different, not only in car-
dinality but also in the sampled regions of (n, m) space.

Starting from a theoretical analysis presented by Williams and Hogg (1994),
Prosser (1996) derived an estimate for the critical value of p2:

p̂
(B)
2,cr = 1− L−2/[p1 (n−1)] = 1− L−n/m. (9.21)

From (9.21) the following value of m̂cr may be derived:

m̂(B)
cr =

n ln L

ln(L2/N)
. (9.22)
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Figure 9.13 Contour plot of the logarithm to the base 10 of the number of hy-
potheses |HRL| generated by model RL as a function of n and m. The value of
m is lower-bounded by n− 1.

The same estimate as (9.21) was obtained by Smith and Dyer (1996) using a
slightly different approach. Moreover, the same expression is also obtained by
using the parameter κ (see (4.10)) introduced by Gent and Walsh (1996), and
setting it to 1.

For model RL, m̂cr must be replaced by the critical value of the average of
s, namely ˆ̄scr :

ˆ̄scr =
n lnL

ln(L2/N)
. (9.23)

Using (9.21) we can also compute the corresponding estimate for the critical
value of L̂cr , keeping all other parameters constant. We have

1− N

L̂2
cr

= 1− L̂−n/ˆ̄scr .

The predicted critical value of Lcr is thus

L̂cr = N
x
, (9.24)
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Figure 9.14 The values predicted for ŝcr by (9.23) and the experimental find-
ings shown in Figure 9.8: (a) N = 50, 80, 100, and 130 and n = 10;
(b) n = 4, 6, 10, and 14 and N = 100. The upper line in each pair cor-
responds to the theoretical prediction of the phase transition edge. The lower
line in each pair corresponds to the experimental findings already reported in
Figure 9.8.

where x = (2 − n/ˆ̄scr)−1. It is of interest to compare the plot of functionTheoretical predictions
obtained from model B

closely resemble
the experimental
findings obtained

with model RL.

(9.22), for different values of N and n, with the experimental results shown
in Figure 9.8. This is done in Figure 9.14, where substantial agreement with
the critical value predicted by model B, as computed by (9.23), can be seen.
However, there are small systematic differences whose explanation is intrigu-
ing. We notice that the YES region found in the empirical analysis is a little
smaller than that predicted by model B. However, the curves overlap when
L is small, in the region close to the m axis. This also occurs for larger m
values.

To find an interpretation of this phenomenon, two aspects have to be con-
sidered. First, owing to the difference between m and s̄, each experimental
curve must be to the left of the theoretical one because it corresponds to the
actual value of s̄; this value is not known in advance (we only know m), but
certainly s̄ � m. Moreover, we need to consider how the structure of a for-
mula may affect the probability of success of the covering test. Model B does
not take into account the structure of the constraint graph, because the tight-
ness of the constraints is the same for all edges. In model RL the latter is not
true because many literals can share the same variable pair. In order to see the
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Table 9.1 Expected number of tuples for subformulas in ϕ1 and ϕ2

Formula Relation Expected number

ϕ1 α1(x1, x2) ∧ β2(x1, x2) Nα1 ,β2 = N 2/L2

ϕ1 α3(x2, x3) ∧ β4(x2, x3) Nα3 ,β4 = N 2/L2

ϕ2 α1(x1, x2) ∧ β2(x1, x2) ∧ β3(x1, x2) Nα1 ,β2 ,β3 = N 3/L4

ϕ2 α4(x2, x3) N

effect of this difference on the phase-transition edge, let us first consider an
example.

EXAMPLE

Let ϕ1 and ϕ2 be the formulas

ϕ1 = α1(x1 , x2) ∧ β2(x1 , x2) ∧ α3(x2 , x3) ∧ β4(x2 , x3) (9.25)

and

ϕ2 = α1(x1 , x2) ∧ β2(x1 , x2) ∧ β3(x1 , x2) ∧ α4(x2 , x3). (9.26)

Both formulas have the same number of literals. However, the literals in ϕ1
are equally distributed over the variable pairs (x1 , x2) and (x2 , x3) while
in ϕ2 three literals share (x1 , x2) and only one is applied to (x2 , x3).

Let us estimate the expected number of solutions in the domain Λ3 for the
formulas ϕ1 and ϕ2 in the above example. The expected numbers of tuples sat-
isfying the subformulas of ϕ1 and ϕ2 are given in Table 9.1. Using expressions
(9.11) and (9.15), we obtain for Nϕ1 and Nϕ2 , the exptected number of tuples
respectively satisfying ϕ1 and ϕ2,

Nϕ1 =
1
L

N 2

L2
N 2

L2 =
N 4

L5 , (9.27)

Nϕ2 =
1
L

N 3

L4 N =
N 4

L5 . (9.28)

Thus the expected numbers of solutions for ϕ1 and for ϕ2 are the same. This Constraints in
model RL are
tighter than
in model B
for large values of L.

means that, on averaging the number of solutions obtained from a large number
of constraint graphs (all having the same parameters), we will obtain approxima-
tively the same value. However, we do not know what happens for every single
graph; the number of solutions could always be close to the average or there
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Figure 9.15 Average number of solutions for ϕ1 and ϕ2 and two of their sub-
formulas, for N = 100.

could be no solution for many graphs and a large number of solutions for a few
graphs. For this reason it is important to consider the variance of the number of
solutions in addition to the average. In fact, this difference in behavior actually
occurs for ϕ1 and ϕ2.

Figure 9.15 shows plots of the expected numbers of solutions Nϕ1 , Nϕ2 ,
Nα1 ,β2 , Nα1 ,β2 ,β3 (see Table 9.1) as functions of L. For L = 50, Nϕ1 = Nϕ2 =
10. However, in the case of ϕ1 this number was obtained from the natural join
of two tables each containing the expected number of 10 tuples while in the case
of ϕ2 the number was obtained by the natural join of a table that contains an
average number of 0.1 tuples and a table with 100 tuples. This means that in the
latter case we can expect that in 90% of cases we will have no solution while in
10% of cases we will have almost 100 solutions. Thus ϕ2 is on the border of the
NO region while ϕ1 is on the border of the YES region. In other words, formulas
where literals are irregularly distributed over the variables (i.e., the number of
literals defined on the same variable pair is highly unpredictable across pairs)
are globally more difficult to satisfy.

As model RL may generate formulas with literals irregularly distributed on
the variables, we can expect a number of cases where the probability of success
is smaller than for model B (given the same m), even if the expected number of
solutions is the same.

In support of this explanation we observe that when n is small the differences
between the theoretical prediction of model B and the experimental findings of
our model are less conspicuous. In fact, when the variables are few the literals
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have less chance of being distributed irregularly on them. Moreover, when L is
small the constraints due to the predicates are more soft, and so the effect of the
difference in structure in the formulas becomes less evident.

9.4.3 Asymptotic behavior and model RB

As discussed in Section 4.3.1, Achlioptas et al. (1997) demonstrated that, when
the number n of variables grows to infinity, the probability that a random instance
of CSP generated by model B is unsatisfiable tends to 1, provided that p2 > 1/L
and that the number of constraints is m = O(n).

In model RL there is a substantial difference from model B, because in model
B we must have m � n(n− 1)/2 whereas in model RL we must have m � n−1,
and, for the number of edges in the constraint graph, s � n(n− 1)/2. Then,
given constant m, N, and L, model B can generate a CSP for n → ∞, whereas
model RL cannot. It is thus necessary that m → ∞ when n → ∞ merely for
the generation procedure of model RL to be applicable. In order to maintain the
basic feature of model RL, namely that the generated formula is connected, we
must have m = Ω(n); if m grows linearly with n, i.e., m = Θ(n), since the
connected part always includes n− 1 literals the graph consists substantially of
this connected part plus some other edges.7 As the expected number of satisfying When both n and m

grow to infinity,
formulas become
always unsatisfiable.

tuples for a chain of k predicates is given by formula (9.15), the probability of
solution for a chain of n − 1 literals is in turn given, on average, by the number
of satisfying tuples divided by the number of possible tuples, namely

Psol =
(

N

L2

)n−1

. (9.29)

When n → ∞, probability (9.29) tends to 0. Clearly adding more constraints
makes the problem even harder. In order to obtain regions of asymptotic satisfi-
ability, the number of constants in the domain must increase with n, as in model
RB (see Section 4.3.2). In this last model it is of interest to note that the critical
value rcr , given by Theorem 4.2, formally coincides with expression (9.22) even
though the parameters have different definitions:

rcr = − α

ln(1− p)
=

lnL

lnn ln(L2/N)
=

m̂cr

n lnn
. (9.30)

Formula (9.22) can be immediately derived from (9.30).

7For Ω and Θ, see the discussion after equation (1.4).
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9.5 Smart algorithms for the covering test

In previous sections we have observed the emergence of phase transitions in
the covering test even for a small number of variables. Consequently, we have
measured the complexity for searching in the phase transition region using a
backtrack stochastic search algorithm. This approach gave us the baseline for
the problem complexity. However, in Chapter 4, we described how modern CSP
solvers exploit efficient heuristics that allow them to solve very large prob-
lems in a relatively short time. We may then wonder whether the complex-
ity shown in Figure 9.9 could possibly be altered using one of these advanced
algorithms.

As an answer we will provide results obtained using two algorithms based
on CSP methods similar to those described in Chapter 4. One is multilevel coor-
dinate search (MCS), from Scheffer et al. (1996) and the other is Django, from
Maloberti and Sebag (2004).

The MCS algorithm exploits a constraint graph to prune the search space us-
ing the techniques of constraint propagation. The constraint graph contains both
clauses with variables and also ground literals. Thus θ-subsumption (the cover-Using smart

heuristics from
the CSP domain,

order-of-magnitude
decreases in the

complexity peak
are observed.

ing test) is transformed into the problem of finding a maximal clique (a complete
graph) in the constraint graph. As this problem is of exponential complexity, the
MCS algorithm searches for cliques of size n for pruning the search space. Af-
terwards, the maximal clique is searched for by starting from the cliques of size
n that have been found already.

The Django algorithm also exploits graph constraint propagation, such as
arc consistency, in order to prune the search space. The major difference from
MCS and other matching algorithms is that Django works on a constraint graph
obtained by transforming the original CSP into a dual binary CSP.

In the following we will briefly review the technique used for this trans-
formation. The binary CSP is defined at a metalevel with respect to the origi-
nal problem. Let ϕ denote the formula to be tested and U the universe whereDjango maps

the original CSP
into a binary CSP.

the test is to be performed. For every literal pi(xi, . . . , xj) occurring in ϕ, a
metavariable Yi is defined whose domain is the relation Ri defining the seman-
tics of pi in U , i.e., tuples in Ri are the values that Yi can assume. Metavariables
corresponding to literals built on the same predicate symbol pi share the do-
main Ri. Metavariables are constrained by metarelations. For each literal pair
pi(. . . , xr, . . .), pk(. . . , xr, . . .) sharing at least one variable xr , a binary con-
straint rj(Yi, Yk) is defined: this states that values for Yi and Yk must correspond
to legal substitutions for the subformula pi(. . . , xr, . . .) ∧ pk(. . . , xr, . . .), i.e.,
variables shared between the two literals must be bound to the same constant.
An example of the metavariables, metaconstraints and constraint graph obtained
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Figure 9.16 Example of the binary CSP constructed by the algorithm Django
before executing the covering test of a formula.

from a formula using four literals is provided in Figure 9.16. In this example,
for the sake of simplicity the original CSP was also binary; however, the same
method can be applied to formulas containing literals of any arity. On the con-
straint graph obtained in this way it is simple to test for arc consistency and for
deterministic matching, i.e., literals for which there exists only one admissible
match.

The performances of MCS and Django are illustrated for comparison in
Figures 9.17 and 9.18, which show the match complexity for the same region
of the space (n, m, N, L) as in Figure 9.9(a). It is surprising how MCS already
exhibits an advantage of several orders of magnitude in the phase-transition re-
gion over the basic backtracking algorithm (it is about 200 times faster). In turn,
Django has an advantage of about one order of magnitude over MCS (it is 2000
times faster than stochastic backtracking). Interestingly, both MCS and Django
yield the same pattern for the probability of solution and for the complexity as
that shown in Figure 9.7. The only difference is that for these algorithms the The phase transition

exists independently
of the search
algorithm.

height of the complexity peak is much lower. One may see, therefore, that the
phase transition exists independently of the search algorithm, as expected.
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Figure 9.17 Three-dimensional plot of the complexity reported by MCS as a
function of the time elapsed in seconds (vertical axis), for n = 10 and N = 100,
vs. m and L.
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Figure 9.18 Three-dimensional plot of the complexity reported by the algo-
rithm Django as a function of the time elapsed in seconds (vertical axis), for
n = 10 and N = 100, vs. m and L.
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9.6 Comments

As relational learning relies heavily on matching candidate hypotheses to train-
ing examples, investigation of the matching problem’s characteristics is of funda-
mental relevance for the success of this type of learning. Owing to the straight-
forward equivalence between a matching problem and a CSP, one may expect
that the former shows the presence of a phase transition in the same way as the
latter. What is relevant, in the context of learning, is the identification of suitable
control parameters and the location of the phase transition within the parameter
space. As we have seen, a simple adoption of the classical parameters p1 and p2
is not well suited to learning because they cannot be associated with recognizable
features, either of the hypothesis (the formula) or the examples. The parameters
selected (the number of variables n and the number of predicates m for the for-
mula, the number of goods N , and the number of constants L for the examples),
beyond being meaningful in learning allow comparisons to be made with other
models, as they can be expressed as functions of p1 and p2.

As the investigation of all four parameters at the same time is computation-
ally prohibitive, we have chosen to focus on two, namely m for the formula and
L for the examples, keeping n and N fixed. However, a limited exploration has
highlighted the fact that analogous results are obtained by choosing any of the
pairs (n, L), (n, N), (m, L), and (m, N) as control parameters. Concerning the
location of the phase transition, it turns out that the set of critical pairs (mcr, Lcr)
is situated in a region of the parameter space well populated by the learning prob-
lems encountered in practice. This aspect will be discussed in more detail in the
next chapter.

Regarding problem generation, model B, used for CSPs, and model RL, used
for matching problems, produce different ensembles of instances, i.e., the hy-
pothesis spaces HB and HRL are not the same whereas the two models generate
the same sets of relational tables. The reason why we have not used model B
directly is that formulas in HB are not realistic in learning problems, where
learned formulas with several predicates on the same variable are quite com-
mon. Moreover, the number m of predicates occurring in a formula of model
RL is not upper-bounded by M = n(n − 1)/2, so that long concepts may also
be considered without the need to increase the number n of variables. As a con-
sequence, there is a region where formulas can be generated only by model B
and another where formulas can be generated only by model RL. These regions
can be clearly seen in Figures 9.12 and 9.13. Even for a pair (n, m) located in
the region where both models can generate instances, the sets of formulas gener-
ated by the two models are different. Both use m predicates, but while model B
cannot produce formulas with predicates defined on the same pair of variables
(whereas model RL can), model RL cannot produce formulas in which not all



218 Phase transition in FOL covering test

variables pairs (x1, x2), . . . , (xn−1, xn) occur (whereas model B can). Using the
probability distribution qk(s), we can see that the probability that model RL will
generate a formula with all pairs of variables different is

qm−n+1(m) =
m−n+1∏

i=1

(
1− n + i− 2

M

)
(n � m � M),

which, for a given n, decreases with increasing m.
We may notice that model RL generates constraint graphs that are the super-

position of a path between node x1 and node xn including n nodes and n − 1
edges and a random graph with the same nodes and s − n + 1 edges. However,
this random graph does not belong to Gn,s−n+1 because the edges are extracted
with replacement in m− n + 1 trials.

A comparison of model RL with model RB is more tricky, because one has
to choose what is kept constant and what may vary. Let us suppose that n and N
are constant, as in model RL, and let k = 2. Then let (mcr, Lcr) be a point on
the phase transition for model RL. The corresponding value of r will be

r =
mcr

n ln n
,

and the corresponding value of α will be lnLcr/ln n. Finally, we obtain p =
1−N/L2

cr . We have to compare the obtained r value with the critical value

rcr = − α

ln(1− p)
.

In order for rcr to be the location of the phase transition, we must have α > 1/2
and p � 1/2, namely: √

n < Lcr �
√

2N.

If the above condition holds then rcr is indeed the location of the phase transition
and the computed value of r has to be compared with it, in order to check the
probability of solution.

EXAMPLE

In order to see how the problems generated by models RB and RL, respec-
tively, are mapped, let us take n = 10 and N = 100. One point on the
phase transition for model RL is given by mcr = 30, Lcr = 14. From
these values we obtain

r = 1.303, α = 1.146, p = 0.490.

The conditions to be verified are α > 1/2, which is true, and p � 1/2,
which is also true. The critical value for r is rcr = 1.45. The actual value
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of r is lower than this. Thus in this case a problem generated by model
RB, with the parameters of a problem generated by model RL at the phase
transition, is located in the solvable part of the plane even though it is
close to the phase transition. This result is not generalizable, and its only
purpose is to show a way of obtaining the mapping. By changing the point
selected on the phase-transition line of model RL or by varying n and N ,
different situations may arise.

Finally, considering the computational cost, we note that, even though the
absolute cost varies according to the search algorithm used, the same behavior
emerges: all tested algorithms show the pattern easy–hard–easy across the phase
transition region.
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In the previous chapter we showed how the covering test in relational learning
exhibits a phase transition associated with a complexity peak, for control param-
eter values typical of the problems investigated by current relational learners. We
also showed that the complexity associated with the phase transition in match-
ing can be partially tamed using smart search algorithms. However, as soon as
the number of variables increases a little (say, from four to five) the complex-
ity is again a strongly limiting factor for learning, because a learner must face
hundreds of thousands of matching problems during its search for hypotheses
(formulas).

Leaving aside the problems caused by the computational complexity of
matching, one may wonder whether the presence of a phase transition has ad-
ditional effects on learning, for instance whether it affects the quality of the
learned knowledge. Another question is whether it is possible to escape from
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the region of the phase transition by suitably manipulating the control parame-
ters. In this chapter we try to provide an answer to these questions, by means of
an experimental analysis and its interpretation.

10.1 The experimental setting

In order to test the independence of the results from the learning algorithm, we
used the learners FOIL (Quinlan and Cameron-Jones, 1993), SMART+ (Botta
and Giordana, 1993), G-Net (Anglano et al., 1997; Anglano and Botta, 2002),
and PROGOL (Muggleton, 1995) described in Chapter 6.

To be more precise, the impact on the quality of learning of the phase transi- The impact of the
phase transition on
relational learning
is analyzed with
respect to the difficulty
in solving the task,
the effectiveness of the
heuristic used to guide
the inductive search,
and the accuracy of
the learned concept
descriptions.

tion in the covering test will be analyzed under three aspects:

• Can “easy” and “difficult” learning regions be distinguished, with respect
to the control parameters of the matching problem? How are these regions
located in relation to the phase transition? Do other phase transitions exist
that are not related to the covering test?

• Where and when are common search criteria, involving for example
the information gain principle (Quinlan, 1990) or the minimum descrip-
tion length principle (Muggleton, 1995), reliable? What is the impact of
plateaus?

• For a learning problem, the generalization error is certainly an important
aspect but it is not the only one. Another is the meaningfulness of the
acquired concept description; this is particularly relevant for automated
knowledge discovery, where the learned knowledge should provide the
domain experts with new, relevant, insights. Thus another question to be
answered is to what extent the acquired concept coincides with the target
concept, beyond its prediction ability.

The above questions have been answered experimentally. The artificial prob-
lem generator described in Section 9.1.3 has been extended to generate fully
relational learning problems with known target concept. A suite of about 500
problems was constructed, sampling the YES, NO, and phase transition regions.
Results were obtained using the three relational learners FOIL 6.4, SMART+,
and G-Net. PROGOL was not able to cope with the computational complexity of
the task. As we will discuss in the following, these systematic experiments shed
some light on the behavior, potentialities, and limitations of existing relational
learners.



222 Phase transitions and relational learning

10.1.1 Generating artificial learning problems

We will now review the procedure used to construct a set of artificial learning
problems (Giordana et al., 2000a; Botta et al., 2003). A relational learning prob-
lem Π is a triple (c, SL , ST ), where c is the target concept and SL and ST are the
learning and test sets, respectively.

For the sake of simplicity, concepts were restricted to be binary, described by
conjunctive formulas, as generated by model RL (see Section 9.1). This means
that a target concept (relation) description has the form

p1(xi1 , xj1 ) ∧ p2(xi2 , xj2 ) ∧ · · · ∧ pm(xim , xjm ) → c, (10.1)

where the target concept c is a constant name and the variables (xik , xjk
)(1 �

k � m) are taken from a set X = {xj | 1 � j � n} and are implicitly existen-
tially quantified. In the target concept there are no repeated predicate names and
no variable pairs made up by two instances of the same variable, i.e., xik �= xjk

.
The procedure for generating a learning problem consists of three steps. InLearning problems

are generated
in three steps.

the first step a concept description is generated, using the algorithm described in
Section 9.1 for sampling the hypothesis space generating covering test problems.
Then each concept description c is stochastically built up, by model RL, using the
variable set X and m literals. All literals are built on distinct predicate symbols.
Complementary experiments (not reported here) show that this restriction does
not affect the results to any significant extent. In order to keep the computational
cost within reasonable limits, the number n of variables is set to 4 (n = 4) in all
target concepts.1

If n = 4, from (9.8) we obtain that the number of formulas that Model RL
can generate is:

|HRL| =
(

m

3

)
12m

288
= O(m312M ).

Next the learning set SL and the test set ST are created, using a variant ofLearning set
and test set the procedure we described for generating the examples for the covering test.

Thus each example e is defined by a set R of relational tables, sampled without
replacement from a set Λ× Λ of pairs of constants. Each relation Ri defines the
semantic (extension) of a corresponding predicate pi occurring in the concept
description. An example e is labeled as positive if it verifies the definition of c,
and as negative otherwise. Again for computational reasons, the size N of each

1Note that most relational learners have similar restrictions. For instance, in the mutagenesis
domain (King et al., 1995), the maximum number of chemical atoms considered in a hypothesis,
corresponding here to the number of distinct variables, varied from 3 to 5.
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Ri is set to 100 for all relations, and the size L of Λ is taken to be the same for
all examples in the same problem Π. As the number of examples generated by
model RL does not depend on n, this last is the same as in (9.9).

A clarification is needed with respect to the generation of the examples. In
each example we have to choose the number of tables to be associated with it.
When we were studying the matching (ϕ, e) between a hypothesis and an ex-
ample, the natural number of tables to be associated with e was the number of
predicates in ϕ. In fact, additional predicates would be ignored by the matching
procedure, and some missing predicate tables would make the hypothesis auto-
matically false (according to the “closed world assumption”, no tuple verifies the
predicate).

When generating a learning problem the target concept c is known, and hence
the number m of its predicates as well. However, during learning the examples
are likely to be matched against hypotheses of different lengths; then the determi-
nation of the number of tables in the example is not obvious. We have chosen to
describe each example by m tables, corresponding to the number of predicates
in c. The reason is that in relational learning the predicates available to con-
struct hypotheses are given, and they constitute the “background knowledge”.
These predicates have for relational learning the same role that attributes have
for propositional learning. Thus, the learner only constructs hypotheses with lit-
erals built upon the given predicates.2

Furthermore, it is worth noticing that sampling the set Λ×Λ does not guaran-
tee that every relational table contains all the constants in Λ. As a consequence,
the L value for each relation Rh, which is the number of constants appearing in
Rh, may be different from relation to relation; the only observed effect is a slight
increase in the apparent width of the phase transition, as discussed later in the
chapter.

In order to visit the YES, NO, and phase transition regions as uniformly A set of 451
artificial relational
learning problems
was generated to
analyze the impact
of the phase transition
on relational learning.

as possible, while avoiding an exhaustive exploration, 451 (m, L) pairs were
uniformly selected without replacement, where m ranged in the [5, 30] interval
and L ranged in the [12, 40] interval.

For each selected pair (m, L) a learning problem Πm,L was constructed, as
explained above. As anticipated, the procedure for constructing the training and
test examples is a variant of that described in Section 9.1. The modification was
made necessary by the following difficulty: if (m, L) lies in the YES region (on
the left of the phase transition) then by construction c will almost surely cover
any stochastically constructed example. In other words, the training and test sets
would contain a huge majority of positive examples (the ratio of positive and

2We do not consider here the case of constructive learning, in which new predicates are intro-
duced during learning.
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———————————————————–
Procedure ProblemGeneration (m,L)

Construct c with m literals using model RL
SL = DataGeneration(m,L, c).
ST = DataGeneration(m,L, c).
Return Π = (c,SL,ST ).

Procedure DataGeneration(m,L, c)

np = 0, ne = 0
Let S = ∅
while ne < 100 or np < 100 do

Generate a random example e with model RL
if e is covered by c

then if np = 100
then ChangeToNegative( c, e)

Set label of e = NEG
else Set label of e = POS

endif
else if ne = 100

then ChangeToPositive( c, e)
Set label of e = POS

else Set label of e = NEG
endif

endif
S = S ∪ {(e, label)}
if label = POS then np = np + 1

else ne = ne + 1
endwhile
Return S

———————————————————–

Figure 10.1 Generation of the training and test sets of examples.

negative examples could be as high as 106). Symmetrically, if (m, L) lies in the
NO region (on the right of the phase transition), the training and test sets would
contain a huge majority of negative examples. The generation of the examplesRandomly generated

examples are modified
in order to obtain
balanced learning

and testing sets.

thus needs to be made according to the procedure given in Figure 10.1.
The procedure ProblemGeneration first constructs the target concept c; then

the training and test sets are built by the procedure DataGeneration. The latter
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Procedure ChangeToPositive( c, e)

Uniformly select four constants in the domain Λ of the variables,
and denote them (without loss of generality) a1, a2, a3, a4

Let θ denote the substitution θ = {x1/a1, x2/a2, x3/a3, x4/a4}
for each literal pk(xi, xj) in c, do

if pair (ai, aj) does not already belong to table Rk

then replace a uniformly selected pair in Rk with (ai, aj)
endif

end
Return e

Figure 10.2 Procedure to turn a negative example of the concept c, generated
stochastically by model RL, into a positive example. It is sufficient to select a
consistent substitution for the four variables and add the corresponding pairs to
the appropriate tables, at the same time removing a randomly selected pair.

accumulates examples constructed with model RL; the examples are labeled pos-
itive or negative, respectively, depending on whether they verify c. When the
maximum number of positive (respectively, negative) examples is reached, fur-
ther examples are prepared using the ChangeToNegative (respectively, Change-
ToPositive) procedure, to ensure that the training and test sets are equally dis-
tributed. The procedure ChangeToPositive turns a negative example e into a
positive one and is given in Figure 10.2. Conversely, the procedure Change-
ToNegative turns a positive example e into a negative one and is given in
Figure 10.3.

10.1.2 The learners

The learners for the experiments were selected from the relational learners that The experimentation
was performed
using three learners,
FOIL, SMART+,
and G-Net.

we briefly reviewed in Chapter 6. Three learning strategies were considered: a
top-down depth-first search, a top-down beam search, and a genetic algorithm-
based search.

The majority of the learning experiments were done using the top-down
learner FOIL (Quinlan and Cameron-Jones, 1993). FOIL starts with the most
general hypothesis and iteratively specializes the current hypothesis ht by adding
as a conjunct the “best” literal pk(xi, xj) according to some statistical criterion,
involving for example the information gain (Quinlan, 1986, 1990) or the mini-
mum description length (MDL) (Rissanen, 1978). When further specializations
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Procedure ChangeToNegative( c, e)

Build up the set Θ of all substitutions
θ = {x1/a1, x2/a2, x3/a3, x4/a4} such that e verifies c

Randomly select a literal pk(xi, xj) in c
Remove from relation Rk in e all pairs (θ(xi), θ(xj)) of constants

belonging to a substitution θ in Θ
Replace them by uniformly selected pairs of constants not belonging

to any substitution θ in Θ
Return e

Figure 10.3 Procedure to turn a positive example of the concept c, generated
stochastically by model RL, into a negative one. It is necessary to disrupt the
concatenation of pairs that satisfies the concept. Taking any literal, all pairs that
belong to a substitution in Θ are removed and replaced by pairs that do not be-
long to any substitution in Θ. This process may occasionally introduce a new
matching tuple; then the new pairs must be checked out. In principle, the trans-
formation of a positive into a negative example may turn out to be impossible; in
this case the example has to be discarded. However, in the experiments that were
performed this case never occurred.

of the current hypothesis do not lead to further improvements ht is selected,
all positive examples covered by ht are removed from the training set, and the
search is restarted unless the training set is empty. The final hypothesis ĉ returned
by FOIL is the disjunction of all selected, conjunctive, partial hypotheses ht.

We must note that the space of hypotheses explored by FOIL does not exactly
coincide with that generated by model RL. Both FOIL and model RL use only
the m predicates provided as background knowledge, but FOIL allows formu-
las with multiple occurrences of the same predicate having different arguments.
Moreover, FOIL allows literals having the same variable as both first and second
argument. However, FOIL’s formulas are connected, as are those generated by
model RL, because a new literal pk(xi, xj) must share at least one variable with
the part of the formula already built up. Thus, for a given m, the set HRL of for-
mulas generated by model RL is a subset of those of the same length generated
by FOIL. More precisely, model RL can generate formulas with a length t such
that n− 1 � t � m (in the specific case considered, 3 � t � m), whereas FOIL
builds up, in principle, formulas with a length t such that 1 � t � mn2 (in the
specific case considered, 1 � t � 16m). Therefore, even for n = 4, FOIL allows
hypotheses with a lesser number n′ of variables (1 � n′ � n).
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Figure 10.4 Location of learning problems in the (m, L) plane. Top-down
learners visit candidate hypotheses from left to right.

In order to make the results of Chapter 9 applicable to the discussion of learn-
ing, we need to consider, in the (m, L) plane, multiple phase-transition curves,
i.e., those corresponding to n′ = 2, 3, 4, and use the curve associated with the
number of variables in FOIL’s current hypothesis (see Figure 10.4). An excep-
tion occurs when m = 1. In this case model RL cannot generate any hypothesis,
because at least two variables are needed to construct the first literal α(x1, x2),
as described in Section 9.1.3; in fact, m = 1 would imply n = 2, as the same
variable cannot occur, in formulas generated via model RL, in both arguments of
a literal. Nevertheless, when FOIL generates its first hypothesis with one literal,
h1(x1, x2) = pk(x1, x2), this hypothesis is certainly verified in all examples,
both positive and negative, as long as the corresponding table in every example
is not empty.

Another top-down learner, SMART+ (Botta and Giordana, 1993), has also SMART+
been used. The main difference between FOIL and SMART+ resides in their
search strategies; FOIL basically performs hill climbing and uses a limited
amount of backtrack, whereas SMART+ uses a beam search with a user-
supplied beam width. The search space visited by FOIL or SMART+ can be FOIL and SMART+

are based on a
top-down learning
strategy. G-Net is
based on a
genetic algorithm.

visualized as a path in the (m, L) plane (see Figure 10.4). Both learners navigate
in the plane by moving from left to right, as the number t of literals in the current
hypothesis is incremented at each step.

When there are only a small number of constants in a variable’s domain Λ,
the relational tables for the examples in the learning set SL are likely to involve
all possible constants. Top-down learners therefore navigate the horizontal line
L = |Λ| in the (m, L) plane. For a large number of constants, it might happen
that not all constants appear in all relational tables. Thus the number of effective
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constants considered in early learning stages might be less than |Λ|; it increases
as the hypothesis size increases. The path visited by the learner goes to the right
(as the current hypothesis is specialized) and upwards (as the effective number
of constants in the examples increases).

A third learner, G-Net (Anglano et al., 1998), based on genetic search, wasG-Net

also considered. G-Net starts with an initial population of candidate hypotheses;
these can be viewed as randomly distributed points on a segment of the hori-
zontal line, L = |Λ| in the (m, L) plane. The learner navigates on this straight
line, moving to the right or to the left, since genetic operators allow candidate
hypotheses to be either specialized or generalized. As usual with evolution-
ary computation-based search, the computational cost of G-Net is significantly
higher than that of the other two learners. A smaller number of experiments have
therefore been performed with G-Net.

Further experiments have also been done with the relational learners
PROGOL (Muggleton, 1995) and STILL (Sebag and Rouveirol, 2000).PROGOL

PROGOL uses background knowledge to tailor the search space and optimize
the learning search. However, its clever heuristics make it ill-suited to dealBottom-up learners

like PROGOL and
STILL ran out

of memory.

with large artificial problems in the absence of background knowledge and it
failed to learn any hypothesis in an acceptable time. As reported by Srini-
vasan and Muggleton (1995), in the mutagenesis domain some 100 000 sec-
onds are needed to learn on a medium-size problem (N = 30, L = 30)
when there is no background knowledge. STILL uses a bottom-up approachSTILL

based on the stochastic (uniform or biased) sampling of the matchings be-
tween hypotheses and examples. It failed to provide any relevant classifier,
owing to the uniform construction of the examples and the lack of any domain
bias.

Summarizing the experimental setting, we list the assumptions that have
been made; some facilitate the search (these are marked with a +) while oth-
ers make relational learning more difficult (these are marked with a −):

+ The training and test sets are equally distributed (100 positive and 100
negative examples), without any noise.

+ All target concepts are conjunctive: a single hypothesis c covers all posi-
tive examples and rejects all negative examples.

+ All predicates in the examples are relevant: they all appear in the target
concept.

− All examples have the same size Nm, i.e., the cardinality of a table times
the number of predicate symbols in the target concept.
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− All predicates have the same number N of tuples (pairs) built on them in
every example.

− All variables (predicate arguments) have the same domain Λ of values.

The last three assumptions make learning more difficult because they tend to
make the positive and negative examples more similar. Note that, even if the
structure of the target concept (m literals involving n = 4 variables) were known
by the learners, which is obviously not the case, the size of the search space
would prevent the solution from being discovered by chance.

10.2 Experimental results

To investigate the global impact on relational learning of the phase transition Performances were
evaluated with
respect to predictive
accuracy, concept
identification, and
computational cost.

in matching, the three learners mentioned in the previous section were run on
the set of selected learning problems. The results were analyzed in the light of
the position of the learning problem with respect to the phase transition. Every
learner was examined using three specific criteria:

• Predictive accuracy The predictive accuracy is commonly measured by
the percentage of test examples correctly classified by the hypothesis ĉ
produced by the learner.3 It is considered satisfactory iff it is greater than
80% (this threshold value will be discussed later).

• Concept identification It must be emphasized that a high predictive ac-
curacy does not imply that the learner has discovered the true target con-
cept. The two issues must therefore be distinguished. Identification is con-
sidered satisfactory iff the structure of ĉ is close to that of the true target
concept c, i.e., if ĉ is conjunctive, with the same size as c.

• Computational cost The computational cost reflects both the total num-
ber of candidate hypotheses considered by the learner and the cost of
matching each hypothesis on the training set. Typically, the more candi-
date hypotheses in the phase-transition region, the higher the computa-
tional cost.

3The predictive accuracy was not evaluated on a test set drawn from the same distribution
as the learning set; if the experiments had been doubled, this would have been equivalent to a
twofold cross-validation (Dietterich, 1998). We did not double the experiments, because of the
huge total computational cost. For the same reason, it was impossible to perform a cross-validation
evaluation. Moreover, even though the learning result obtained for any (m, L) is based on a single
trial, it can be considered significant to the extent that other trials performed in the same area give
similar results.
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m

L

Figure 10.5 FOIL competence map: the success and failure regions, for n = 4
and N = 100;L is the number of constants in the model. Plus signs, success
(predictive accuracy ≥ 80%); dots, failure (predictive accuracy < 80%). The
phase-transition region is indicated by the broken curves, corresponding, bottom
to top, to the contour plots for Psol = 90%, Psol = 50%, and Psol = 10%, as
determined by Giordana and Saitta (2000).

In the following we will review the results obtained by FOIL, SMART+, and
G-Net on the artificial relational learning problems constructed as described in
the previous section.

10.2.1 Predictive accuracy

Figure 10.5 summarizes the results obtained by FOIL with regard to predictive
accuracy. As mentioned earlier, 451 (m, L) pairs were chosen in such a way
as to explore significant parts of the YES, NO, and phase transition regions.
On each problem, FOIL either succeeds (shown by a plus sign, indicating that
the predictive accuracy on the test set is greater than 80%) or fails (shown by
a dot.).

Let us first comment on the significance of these results, with respect to

A large region
emerged, located

across the
phase transition,
where no learner

succeeded. the success threshold and the learning strategy. First, the shape of the failure
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region (the blind spot) is almost independent of the threshold used to define a
failure case (a predictive accuracy on the test set of 80%). In the vast majority
of cases the hypotheses ĉ learned by FOIL are either very accurate (a predic-
tive accuracy close to 100%) or comparable with a random guess (a predictive
accuracy close to 50%). The threshold could thus be any value between 95%
and 60% without making any significant difference in the shape of the blind
spot.

Second, quite similar results are obtained with FOIL and SMART+, except
when SMART+’s beam width is close to the size of the target concept c (mean-
ing that SMART+ performs an almost exhaustive, and much more computation-
ally heavy, search). Complementary experiments with G-Net confirm that the
failures should not be blamed on the top-down strategy embedded in FOIL or
SMART+. Even though G-Net explored a much larger part of the hypothesis
space than FOIL or SMART+ (and was therefore tried for only a few learning
problems, situated mostly in the failure region for FOIL), G-Net failed on these
problems, too.

Regarding just the learning performances, it appears that relational learning Learning succeeds
either when the
target concept is
simple or when
it is very complex.
Failures occur for
concepts of
intermediate complexity.

succeeds in two main cases, either when the target concept is simple (for low
values of m), or when the learning problem is far to the right of the phase-
transition region.

The first case is hardly surprising; the simpler the target concept, the easier
learning should be. Much more unexpected is the fact that learning problems
far from the phase transition appear to be easier to solve. In particular, the fact
that increasing the number of constants in the application domain facilitates re-
lational learning (other things being equal, i.e., for the same target concept size),
is counterintuitive. Along the same lines, it is counterintuitive that increasing the
size m of the target concept might facilitate relational learning (other things be-
ing equal again, i.e., for the same number of constants L). These remarks will be
enlarged upon in Section 10.3.

10.2.2 Concept identification

What really happens when FOIL succeeds or fails? Table 10.1 reports the char-
acteristics of the final hypothesis ĉ produced by FOIL for a few representative
learning problems.

The first column indicates the region to which the learning problem belongs.
The second column gives the identifier of the problem, which will be referred
to in the discussion. Columns 3 and 4 show the “coordinates” of the learning
problem i.e., the size m of the target concept c, and the number L of constants
in the examples. Columns 5 and 6 refer to the hypothesis ĉ learned by FOIL; ĉ

Simple concepts
tend to be
correctly identified.
Complex concepts
are approximated by
descriptions corres-
ponding to generalizations
of the correct one.involves one or several conjunctive hypotheses ht, iteratively produced by FOIL.
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Table 10.1 Hypotheses produced by FOIL for some representative learning
problems

Accuracy (%)

Region Problem m L |ĉ| m(ht ) EL ET CPU time (s)

Π0 5 15 1 3 100 100 10.3
Y Π1 6 20 1 5 100 99.5 21.4
E Π2 7 19 1 7 100 100 52.3
S Π3 8 16 1 8 100 100 106.2

Π4 9 15 1 9 100 100 69.1
r Π5 10 13 1 14 100 99 144.2
e Π6 10 16 8 <10−13> 11.75 88 48.5 783.5
g Π7 11 13 1 11 100 100 92.2
i Π8 11 15 6 <11−16> 13.5 85 53.5 986.2
o Π9 12 13 3 <13−15> 14 98.5 83 516.4
n Π10 13 13 1 13 100 100 455.9

Π11 14 12 1 13 100 98.5 297.0

Π12 13 31 13 <1−8> 4.77 90.5 49.5 1317.3
Π13 15 29 1 6 100 100 185.3
Π14 15 35 2 <5−7> 6 97.5 84.5 894.6

N Π15 15 38 1 6 100 99.5 101.5
O Π16 16 38 3 <5−8> 6.33 97.5 90 1170.6

Π17 18 24 1 10 100 100 196.4
r Π18 18 35 1 6 100 100 201.0
e Π19 19 26 2 <1−8> 4.5 100 98.5 298.4
g Π20 21 18 8 <1−10> 4.13 81.5 58 1394.9
i Π21 24 20 1 10 100 99.5 252.3
o Π22 25 24 1 6 100 99 135.9
n Π23 27 18 10 <1−13> 5.6 94 72.5 1639.6

Π24 29 17 1 12 100 99.5 144.9
Π25 29 23 1 10 100 99.5 720.5
Π26 29 24 1 9 100 99 618.8

Π27 6 26 1 6 100 100 82.5
Π28 6 28 12 <5−11> 8.083 33 91.5 50.5 815.4
Π29 7 27 11 <5−11> 8.272 73 92 53 1237.0
Π30 7 28 11 <1−10> 7.636 36 91.5 60.5 1034.2

P Π31 8 27 1 7 100 100 58.8
T Π32 11 22 5 <1−12> 3.2 71.5 70.5 851.0

Π33 11 27 1 8 99 98.5 250.4
r Π34 13 21 10 <1−11> 4.1 85.5 63 1648.2
e Π35 13 26 1 9 100 99 476.8
g Π36 14 20 5 <1−11> 4.8 94 88 722.7
i Π37 14 24 3 <7−9> 7.666 67 99 92.5 774.0
o Π38 17 14 8 <13−17> 15 93 46 294.6
n Π39 17 15 9 <1−13> 5 78.5 66 916.8

Π40 18 16 8 <1−15> 8.875 91 58.5 404.0
Π41 19 16 7 <1−12> 8.142 86 83.5 60.5 1268.5
Π42 26 12 3 <24−25> 24.3333 80 58 361.4
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The number of such ht, denoted |ĉ|, is given in column 5 (let us recall that the
true target concept c is conjunctive, i.e., a correct identification of c implies that
|ĉ| = 1). Maximum, minimum, and average sizes of the conjunctive hypotheses
ht learned by FOIL are displayed in column 6 under the heading m(ht). These
may be compared with the true size m of the target concept (column 3).

The last three columns list the predictive accuracy of ĉ on the training and
test set and the total CPU time required by FOIL to complete the learning task,
as measured in seconds by Botta et al. (2003), on a Sparc Enterprise 450.

The learning problems in Table 10.1 can be grouped into three categories.

• Easy problems, which are correctly solved. FOIL finds a conjunctive hy-
pothesis ĉ that accurately classifies (almost) all training and test examples.
Furthermore, ĉ is identical to the true concept c or differs by at most one
literal. Problems of this type are Π0–Π5, Π7, Π10, Π11, Π27, and Π31.
Most easy problems lie in the YES region; others lie in the phase transi-
tion for low values of m (m ≈ 6).

• Feasible problems, which are efficiently solved even though the correct
target concept is not found. More precisely, FOIL learns a concept ĉ
which (i) is accurate in prediction (nearly all training and test examples
are correctly classified), (ii) consists of a single conjunctive hypothesis,
as does the original target concept c, and (iii) shares many literals with c.
However, ĉ is significantly shorter than c (e.g., ĉ involves nine literals ver-
sus 29 in c for problem Π26); in many cases, ĉ largely overgeneralizes c.
Most feasible problems lie in the NO region, rather far from the phase tran-
sition. Problems of this kind are Π13, Π15, Π17, Π18, Π21, Π22, Π24–
Π26, Π33, and Π35.

• Hard problems, which are not solved by FOIL. The learned concept ĉ is
the disjunction of many conjunctive hypotheses ht (between six and 15)
of various sizes, and each ht only covers a few training examples. From
a learning perspective, FOIL produces overfitting (each ht behaves well
on the training set but its accuracy on the test set is comparable with that
of random guessing) related to an apparent small disjunct problem (Holte
et al., 1989) even though the true concept is conjunctive. Hard problems
lie in the NO region; as opposed to feasible problems, hard problems are
close to the phase transition.

These results confirm the fact that predictive accuracy may be only loosely
correlated with the discovery of the true concept. Indeed, FOIL succeeds when-
ever it correctly discovers a single conjunctive concept. It is clear that in real-
world problems there is no way of making any difference between feasible and
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Table 10.2 Summary of the experiments. Easy and feasible learning problems
(Solved pbs.) are distinguished from hard problems (Unsolved pbs.)

Average no. of hyps
Avg of solved pbs.No. of Percentage of solved unsolved

Region pbs. solved pbs. pbs. pbs. Test acc. CPU time

YES 46 88.1% (37) 1 6.33 99.61 74.05
NO 195 72.8% (142) 1.27 8.28 99.61 385.43
PT 210 28.1% (59) 1.10 8.18 99.12 238.25

Total 451 52.8% (238) 1.12 7.60 99.45 232.58
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Figure 10.6 Distribution of the number of conjunctive hypotheses ht (vertical
axis) learned by FOIL; they are centered on the phase transition region.

easy problems, since the true concept is unknown. We shall return to this point
later.

A first remark concerns the localization of the learning failures. A summary
of the average results obtained in the YES, NO, and phase transition regions is
reported in Table 10.2. This shows that most hard problems are located near the
phase transition; conversely, most problems in the phase transition region are
hard. A second remark concerns the localization of the hypotheses ht learned
by FOIL. It is observed that for all learning problems, except the easy problems

The hypotheses
learned by FOIL
tend to be in the
phase transition

region.

located in the YES region, all hypotheses ht lie in the phase transition region
(Figure 10.6). This is the case no matter whether FOIL discovers one or several
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conjunctive hypotheses ht or whether the location of the learning problem lies
in the phase transition or in the NO region.

More precisely:

• When the target concept lies in the phase transition region and the problem
is easy, FOIL correctly discovers the true concept.

• For feasible learning problems FOIL discovers a generalization of the true
concept that lies in the phase transition region.

• For hard problems FOIL retains seemingly random ht, most of which be-
long to the phase transition region.

10.2.3 Computational complexity

The computational complexity of the search depends mainly on two factors: the
number of hypotheses ht retained and the average number of their models in an
example e, i.e., the number of substitutions θ such that htθ is satisfied in e. For
easy problems, a single hypothesis ht (ĉ ≈ c) is constructed; the computational
cost remains low though it increases, as expected, when the average number of
models of ht goes to 1. For feasible problems also, a single hypothesis ht (ĉ most
often overgeneralizes c) is constructed. In most cases the computational cost is
very low and the average number of models is very high.4 Finally, in the case
of hard problems many hypotheses ht are constructed and the computational
cost is always very high. This might be explained by the fact that most ht’s lie The learning cost is

higher for problems
in the NO region.

in the phase transition region, and some admit roughly a single model in the
examples.

Other things being equal, the learning cost is higher for problems in the NO
region. A general cause for this higher complexity is the size of the hypothe-
sis space, which increases exponentially with the number m of literals in c; this
causes many more hypotheses to be considered and tested in each learning step.
Another cause is that the NO region includes many hard problems (Figure 10.5);
for such problems the phase transition is visited again and again as more hy-
potheses are learned.

10.3 Result interpretation

We will now provide some interpretation of the results reported in the previous
section. The discussion focuses on three main questions: why is the learning

4A single exception can be seen in Table 10.1: for the learning problem Π25 , the average
number of models is 1 and the computational cost is high.
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search captured by the phase transition region?; when and why does relational
learning miss the true target concept?; when and why does relational learning
fail to find any accurate approximation of the target concept?

10.3.1 Phase transition as an attractor

In Section 10.2.2 we saw that a large part of the search ends up in the phase
transition region, independently of both the location of the true concept and of
the used learner. In other words, the phase transition behaves as an attractor for
the search. Similar results were presented by Botta et al. (1999), who showed
specifically, using a large set of artificial problems, that FOIL systematically
tends to generate concept descriptions located in the phase transition region. In
order to understand why, we will take a closer look at what happens during an
inductive search by the different learners we have considered.

Being a top-down learner using a hypothesize-and-test strategy, FOIL con-
structs a series of candidate hypotheses {h1, . . . , hi, . . . , ht} with increasingLearning strategies

guided by
information gain

and minimum
description length

always end up
with a search in

the phase transition
region.

specificity. The first hypothesis in the series (just one literal) belongs to the YES
region by construction.5 Then FOIL adds new literals one at a time, moving on
the line L = |Λ| toward the right and remaining for a while inside the YES re-
gion. If the most specific hypothesis hi that can be built up in the YES region is
not satisfactory according to its stop criterion (see below), FOIL possibly comes
to visit the phase transition region and so hi+1 belongs to it. It might possibly
happen that the most specific hypothesis hj ( j > i) in the phase transition region
is not satisfactory either; FOIL then comes to visit the NO region.

Let us consider the stop criterion used in FOIL. On the one hand the search
is stopped when the current hypothesis is sufficiently correct, covering no or few
negative examples; on the other hand, at each step the current hypothesis is re-
quired to be sufficiently complete, covering sufficiently many positive examples.
In the following, the implications of these criteria are discussed for various loca-
tions of the target concept c in relation to the phase transition.

Case 1 The target concept c belongs to the phase transition region
By construction, the target concept c covers with probability 0.5 any exampleConcept c belongs

to the phase
transition region.

randomly constructed by model RL; therefore, the repair mechanism ensuring
equidistribution of the dataset is not employed (Section 10.1.1). We may draw
the following conclusions.

5Strictly speaking, one should refer to the location of the learning problem with respect to the
phase transition. A hypothesis with size m does not belong to the phase transition per se; this
depends upon the number L of constants in the examples. However, for the sake of readability and
since L is fixed from the datasets, we shall speak of the location of a hypothesis or of the target
concept.
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• Since any hypothesis in the YES region almost surely covers any randomly
constructed example, it almost surely covers all positive and negative train-
ing examples. Therefore the search cannot stop in the YES region but must
come to visit the phase transition.

• Symmetrically, any hypothesis in the NO region almost surely rejects
(does not cover) any random example and will almost surely cover no
training example at all. Though these hypotheses are correct they are not
admissible since they are insufficiently complete. Therefore the search
must stop before reaching the NO region.

From these remarks, it can be seen that FOIL is bound to produce hypotheses ht

lying in the phase transition region.

Case 2 The target concept c belongs to the NO region
In this case, the examples generated by model RL are almost surely negative
examples (Section 10.1.1), and half must be turned into positive examples using
the ChangeToPositive algorithm. It follows that any hypothesis h in the YES Concept c belongs

to the NO region.region will almost surely cover the negative examples. In addition, it is likely
that it also covers the positive ones, because the latter have been constructed in
such a way that they are easier to verify; moreover, as any hypothesis generated
by the learner uses only the predicates occurring in c, a hypothesis is most likely
to be a generalization of c. In any case, any h in the YES region covers at least all
negative examples and thus it must be specialized. As a consequence the search
cannot stop in the YES region. However, any hypothesis in the NO region will
almost surely be correct (i.e., it will cover no negative examples); therefore there
is no need for FOIL to engage deeply in the NO region. Hence FOIL is bound
to produce hypotheses ht lying in the phase transition or on the verge of the NO
region.

Case 3 The target concept c belongs to the YES region
The situation is different here, since there exist correct hypotheses in the YES re-
gion, namely the target concept itself and possibly many specializations thereof.
Should these hypotheses be discovered (the chances of such a discovery are dis-
cussed in the next subsection), the search can stop immediately. In all cases,
however, the search must stop before reaching the NO region for the following
reason. As c belongs to the YES region, randomly constructed examples are al-
most surely positive examples (Section 10.1.1). This implies that any hypothesis
in the NO region will almost surely reject the positive examples and will there-
fore be considered insufficiently complete. Again in this case, FOIL is bound to
produce hypotheses ht in the YES or phase transition regions.

In conclusion, FOIL is unlikely to produce hypotheses in the NO region,
whatever the location of the target concept c, at least when the negative examples
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are uniformly constructed. Most often FOIL will produce hypotheses belonging
to the phase transition region, though it might produce a hypothesis in the YES
region if c itself belongs to the YES region.

It is worth noting that such a behavior has also been detected in several real-
world learning problems (Giordana and Saitta, 2000).

Analogous considerations hold for SMART+, and, more generally, for all
top-down learners using a hypothesize-and-test strategy: as maximally general
hypotheses are preferred, provided that they are sufficiently discriminant, there
is no benefit in searching the NO region. The above argument explains why
the phase transition constitutes an attractor for top-down hypothesize-and-test
relational learners.

Experiments done with G-Net indicate that the same conclusion also holds
for a data-driven genetic-based learning search, even though it differs signif-
icantly from a top-down search. This finding can be explained as follows.
The starting point in a genetic search (the initial population of solutions) con-
sists of random hypotheses distributed on the horizontal line L = |Λ| (see
Figure 10.4). Then the evolutionary search proceeds by focusing on the fitter
hypotheses, where the fitness function favors the most discriminant and simple
hypotheses. On the one hand, discriminant hypotheses are mostly found close
to the phase transition; on the other hand, since simple hypotheses score higher
than complex ones, other things being equal, a genetic search will favor hy-
potheses in the phase transition or on the verge of the YES region. Like FOIL
and SMART+, G-Net will most often produce hypotheses in the phase transition
region (Giordana and Saitta, 2000).

In order to support the claim that most discriminant hypotheses are located inDiscriminant
hypotheses of

low complexity
lie in the phase

transition region.

the phase transition region, we conducted another set of experiments. Let us now
consider two examples of a given concept c, namely e+ and e−, one positive and
one negative. Let L0 be the average number of constants occurring in the two
examples. Suppose that the goal is to learn a concept definition ϕ that covers
e+ and does not cover e−. Given L0, model RL generates a set of hypotheses
that, paired with e+ and e−, constitute matching problems (ϕ, e+) and (ϕ, e−)
corresponding to points on the horizontal line L = L0 in the (m, L) plane. This
line intersects the mushy region. We know that, in the NO region, the matching
problems (ϕ, e+) and (ϕ, e−) have very little chance of being satisfied. It would
be easy to exclude e−, but finding a definition for c that covers e+ may turn out
to be a very hard search problem indeed. On the contrary, hypotheses generated
in the YES region produce matching problems that are most likely to be verified.
Then it is easy to cover e+ but very difficult to exclude e−. However, a hypothesis
defining a matching problem on the phase transition has probability about 0.5 of
verifying any example, so that it should be easier to discriminate between e+

and e−.
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Figure 10.7 Proportion of hypotheses discriminating between two concept in-
stances. For each m value, 1000 formulas were generated corresponding to 2000
matching problems. The largest fraction of discriminant hypotheses corresponds
to 50% chance that a solution exists.

In order to test the above conjecture we built up two instances, e1 and e2, On the phase
transition edge
every formula has
about a 50% chance
of verifying
an example.

each with L = 16 constants. Moreover, 45 binary predicates were defined, cor-
responding to relations containing N = 100 tuples. Finally, hypotheses with
n = 4 variables were created according to the procedure used in Section 9.1.3.
More precisely, for each value of m ∈ [3, 45], 1000 formulas were generated,
and 86 000 matching problems were defined by pairing each formula with both
e1 and e2. For each m value the proportion of formulas, Pd, covering exactly
one of e1 and e2 (i.e., discriminant formulas) was computed and is shown in
Figure 10.7. For reference, the graph of the probability of solution Psol is also
shown. From the graph for Pd it is clear that the proportion of discriminant for-
mulas reaches its maximum when Psol = 0.5, at the phase transition. Therefore,
independently of the specific distribution of the concept instances, the part of
the hypothesis space that defines matching problems inside the mushy region
has a much higher density of acceptable concept definitions than other parts. In
conclusion, we formulate the conjecture that any coverage-based induction algo-
rithm will most likely search in this region. The behavior described is reinforced
by a search heuristic biased toward simplicity; in fact, a learner guided by such
a heuristic will tend to focus the search where the hypotheses are discriminant
and, at the same time, are as simple as possible, i.e., in the mushy region.

Finally, we analyzed the time evolution of the hypothesis population manip-
ulated by the evolutionary learner G-Net, which was used for the case studies
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Figure 10.8 Evolution of the population of inductive hypotheses manipulated
by G-Net. (a) Distributions of the p2 − p̂2,cr values for the hypotheses belonging
to an initial population (solid line) and to the hypothesis population after 10 000
hypothesis-generation steps (broken line). The concentration of individual hy-
potheses towards the phase transition clearly emerges. (b) Distributions of the
matching complexity for the same populations as in (a). A remarkable increase
in the matching complexity appears in the later distribution.

reported in Appendix A. Given a set of examples, Figure 10.8(a) shows the dis-
tribution of the variable p2 − p̂2,cr for matching problems obtained by pairing
each example with all the hypotheses belonging to an initial (almost random)
population6 and all the hypotheses belonging to the population reached after
10 000 generation steps. Clearly, as time goes on the hypotheses evolved by G-
Net tend to accumulate around the phase transition point, where p2 = p̂2,cr .
Figure 10.8(b) shows the corresponding matching complexity, averaged over all
problems corresponding to the same p2 − p̂2,cr value. In conclusion, we expectExperiments run

with FOIL and
G-Net confirm that
the phase transition

region is an attractor
for inductive search.

that a relational learner will tend to explore the phase transition region, being the
place where it is more likely to find simple and discriminant hypotheses.

10.3.2 Correct identification of the target concept

Given that the selected hypotheses are most often close to the phase transition,
let us examine why and when these hypotheses might differ from the true target
concept c even though c itself belongs to the phase transition.

6G-Net uses a special seeding operator to generate the initial population of hypotheses. Details
of the procedure can be found in Anglano et al. (1998).
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When c belongs to the phase transition, two possibilities have been observed
(see Table 10.1). If c involves few literals (m ≤ 6) then it is correctly identified.
Otherwise, a number of hypotheses ht are retained, in which each ht covers a
few positive training examples, and their disjunction ĉ performs very poorly on
the test set.

The reasons why a top-down learner fails to identify a long target concept
(m > 6) are illustrated with an example. Let us consider the target concept c for
problem Π8,20 (m = 8, and L = 20), which belongs to the phase transition:

c = r0(x1, x2) ∧ r1(x2, x3) ∧ r2(x2, x3),r3(x3, x4)
∧r4(x1, x4) ∧ r5(x1, x4) ∧ r6(x3, x4) ∧ r7(x3, x4).

The top-down search proceeds by greedy optimization of the information gain.
The choice of first literal is indeterminate, since any literal covers all positive
and negative examples, as explained in Section 10.1.2. This does not penalize
the search; in fact, any choice is relevant since all predicates appear in c by
construction. All eight specialization paths, corresponding to all possible choices
for the first literal, are thus considered in parallel (see Figure 10.9).

Given the first selected literal (say h1 = r0(x1, x2)), the information gain
for each literals connected to h1 is computed, and the literal with the maximum
information gain is retained. Unfortunately, it turns out that the best literal ac-
cording to this criterion (i.e., r6(x3, x2), with gain 270.37) is incorrect, i.e., the
hypothesis h2 = r0(x1, x2)∧r6(x3, x2) does not generalize c; the search cannot
recover from this error and it will randomly wander thereafter unless backtrack
is allowed (see below).

For this problem, maximization of the information gain appears to be seri-
ously misleading. In all eight specialization paths but one, the first effective spe-
cialization step (involving the second literal) fails since FOIL selects incorrect
literals (displayed with a broken oblique arrow, together with the corresponding
information gain, in Figure 10.9).

When a specialization choice is incorrect, FOIL must either backtrack or end
up with an erroneous hypothesis ht. In order to see the total amount of backtrack-
ing needed to find the true target concept c, we correct hypothesis h2 manually
and replace the erroneous literal by the best correct literal (the literal with the
maximum information gain such that h2 generalizes the true target concept). The
best correct literal is indicated by a solid vertical arrow in Figure 10.9, together
with the corresponding information gain; clearly, the best correct literal often
does poorly in terms of information gain. Figure 10.9 depicts all specialization
paths.

Unfortunately, it appears that forcing the choice of a correct second literal is
not enough; even though h2 is correct, the selection of the third literal is again
misled by the information gain criterion in all branches but one. To pursue the
investigation, we iteratively force the choice of the best correct ith literal in all
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cases where the optimal literal with respect to information gain is not correct.
All repairs needed are indicated in Figure 10.9.

The above procedure shows that a greedy top-down hypothesize-and-test
search is bound to miss the true target concept, as it will not find any error-free
specialization path for this learning problem.

10.3.3 Backtrack and domain knowledge

According to Figure 10.9, a huge amount of backtracking would be needed
to discover the true target concept from scratch. More precisely, the informa-
tion gain appears to be reliable only in the late stages of induction and pro-
vided that the current hypothesis is correct (the search is “seeded” with four
correct literals). In other words, the information gain criterion can be used to
transform an educated guess (of the first four literals) into an accurate hy-
pothesis, if the educated guess has reached some critical size (in the partic-
ular case of problem Π8,20 the critical size corresponds to half the size of
the true concept). The educated guess to be provided to the learner can be
thought of as domain knowledge. The above remarks thus echo the need for
strong domain knowledge for learning to proceed, as is generally acknowledged
in the inductive logic programming (ILP) literature (Srinivasan et al., 1995;
Muggleton, 1992). In the YES region,

the IG measure
is not reliable for
choosing the literals
to be added to the
current hypothesis.

The amount of background knowledge needed in order for learning to occur
can be evaluated from the critical size mk of the educated guess, defined as
follows. The critical size mk is the minimal number of literals such that, with
probability 0.5, FOIL finds the target concept or a correct generalization thereof
(see Section 10.3.4) by refining a mk-literal guess that generalizes c.

Figure 10.10 shows the critical size mk(m, L) according to an educated
guess for all problems Πm,L within or close to the phase transition, obtained
as for problem Π8,20 by systematic backtracking. Figure 10.10 could be thus in-
terpreted as a reliability map of the information gain: high values of mk(m, L)
indicate poor reliability.

These empirical limitations of the information gain criterion can be ex-
plained within the phase transition paradigm. Let us consider the sequence of
hypotheses explored by FOIL (or SMART+). While the current hypothesis hi

belongs to the YES region, it covers any example; the number of substitutions
or models that satisfy hi increases exponentially with the number of variables in
hi, regardless of the example label. This hinders the distinction between correct
and incorrect literals, as the signal-to-noise ratio is very low. When the search
enters the phase transition region, the information gain criterion becomes effec-
tive and guides the learner towards one among the many existing discriminant
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Figure 10.10 Minimum number mk of correct literals, for all problems Πm,L

within or close to the phase transition, to be provided before the information gain
becomes reliable.

hypotheses. However, the selected discriminant hypothesis may differ signifi-
cantly from the true target concept, owing to earlier erroneous choices.

To back up these considerations, the average number of substitutions θ (mod-
els) such that hθ is verified in e (where h and e are generated by model RL) and
its variance have been measured experimentally. Figure 10.11(a) gives the aver-
age number μ of models, for random h and e, as a function of the number m of
literals in h, in the cases when h respectively involves 2, 3, and 4 variables; it
appears that the number of models decreases very quickly as the phase transition
is approached. Figure 10.11(b) shows the standard deviation σ of the number of
models, which is very high for all hypotheses in the YES region.

10.3.4 Correct approximation of the target concept

According to the above discussion, the target concept c has hardly any chance of
being correctly identified through top-down learning when either its size m or
the number L of constants in the application domain are large, which is the case
for all problems in the NO region.
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μ σ

n = 4
n = 4

n = 3

n = 2

n = 3

n = 2

m m

(a) (b)

Figure 10.11 (a) The average number μ of models (candidate substitutions θ)
such that htθ is verified in e vs. the number m of literals in ht. (b) The standard
deviation σ.

On the contrary, it is observed that FOIL does succeed in finding highly ac-
curate hypotheses (Figure 10.5) for many problems in the NO region, when both
the target concept is large and the examples involve many constants (upper-right
region, where m and L are large). A closer inspection shows that this is the case
when m is more than twice the critical value mcr (where the horizontal line
L = |Λ|, L being the number of constants in the model, meets the phase transi-
tion). A tentative explanation for this goes as follows. Let us consider a learning
problem in the NO region. As the size m of the target concept increases, so does
the amount of modification needed to transform a random example into a positive
one (Section 10.1.1). The underlying distributions for the positive and negative
examples become more and more different as m increases, which intuitively ex-
plains why it becomes easier to separate them.

More formally, let us consider a generalization ϕ of the target concept; by A top-down search,
looking for
discriminant concept
descriptions, will
stop as soon as
it finds one in the
phase transition
region.

construction ϕ is complete, i.e., it covers all positive examples. However, if ϕ
belongs to the NO region then it almost surely rejects all random examples, and
negative examples in particular (the argument closely follows that in Section
10.3.1). All generalizations of c in the NO region are thus almost surely com-
plete and correct. Hence, if the learner discovers a generalization ϕ of the target
concept close to the NO region, the learning search stops because ϕ behaves per-
fectly on the training set; as ϕ behaves perfectly on the test set as well, relational
learning is deemed to have succeeded. From the standpoint of predictive accu-
racy, the success of relational learning thus depends on the probability of finding
a generalization ϕ of c on the edge of the phase transition.

Let m and g denote the number of literals of c and ϕ, respectively. As ex-
pected, the number G(g,m) of generalizations of c reaches its maximum for
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Figure 10.12 The number G(g, 22) of g-literal generalizations of a 22-literal
target concept c vs. g.
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Figure 10.13 The number G(mcr, m) of mcr-literal generalizations of an m-
literal target concept c. The number of all g-literal generalizations of c for g ≤
mcr is S.

g = m/2; Figure 10.12 shows G(g,m) versus g for m = 22. Figure 10.13
shows G(g,m) versus m when g = mcr ; we see that the number of generaliza-
tions starts growing very fast as m increases and that half belong to the phase
transition region when m is more than twice the critical value mcr .
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Both considerations explain why relational learning problems appear to be
easier to solve as the size m of the target concept increases and is greater than
twice the critical value mcr .

10.4 Beyond general-to-specific learning strategies

We have seen that the traditional general-to-specific hypothesize-and-test learn-
ing strategies are “misled” by the presence of the phase transition in the cover-
ing test. In this section we will investigate other possible strategies, in particular
those that are stochastic, knowledge directed, or top-down data-driven. Then we
will show that, even if in essence the limits set by the presence of the phase
transition cannot be eliminated and no general strategy exists for approaching
induction problems of arbitrary complexity, there exist search strategies much
more powerful than those used in FOIL, SMART+, and PROGOL.

In previous sections we saw that heuristics relying on the number of models
that hypotheses have in the examples (Quinlan, 1990; Botta and Giordana, 1993;
Rissanen, 1978) are not reliable in the YES region. The reason is that both in-
correct and correct generalizations of the target concept have similar numbers
of models in the positive and in the negative examples. In support of this claim,
let us consider again Figure 10.11, which shows the average number μ and the
standard deviation σ of the model number versus the number of literals in a hy-
pothesis. It is clear that an increase by 1 in the number n of variables induces a
large increase in μ and an even larger increase in the standard deviation σ; when FOIL fails when the

concept description
cannot be approxi-
mated by a formula
with three variables
only.

n = 4 the standard deviation is larger than the number of positive examples in
the learning set. Thus, even if we assume that generalizations of the target con-
cept c have at least one more model in the positive examples than in the negative
examples, these generalizations cannot be distinguished from a purely random
hypothesis. On the contrary, for hypotheses with two or three variables only, μ
is much smaller and we may expect that, provided that a correct generalization ĉ
of c with only two or three variables exists, it should be easier to find it than any
generalization having four variables.

This conjecture agrees with the fact that many solutions actually gener-
ated by FOIL have only three variables even though the target concept is de-
scribed by a formula with four variables. A more detailed analysis is shown in
Figure 10.14, where the line corresponds to the phase transition edge for n = 4.
In Figure 10.14(a) the plusses indicate the locations of a set of target concepts
c with four variables, whose description learned by FOIL also contains four
variables. Figure 10.15(a) shows the location of the solutions found by FOIL.
Most of these solutions are generalizations of c with four variables, because
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(b)(a)
m m

LL

Figure 10.14 Solutions generated by FOIL for problems in the NO region.
(a) Problems solved with hypotheses containing four variables; (b) problems
solved with hypotheses containing only three variables.

(b)(a)

L

m m

L
n = 4 n = 3

Figure 10.15 Solutions generated by FOIL for problems in the NO region. (a),
(b) Locations in the (m, L) plane of the solutions generated by FOIL correspond-
ing to the problems in Figure 10.14(a), (b), respectively.

no acceptable generalizations with three or fewer variables could be found.
Figure 10.14(b) shows the locations of a set of target concepts with four vari-
ables, whose description as learned by FOIL contains only three variables (see
Figure 10.15(b)).
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The problems in Figure 10.14(b) are easier to solve than problems in Figure
10.14(a): this result corresponds to the fact that problems in the latter are closer
to the phase transition than problems in the former. We observe that the prob-
ability that a problem is correctly approximated by a formula with only three
variables increases with the number of literals in the target concept c. When c
contains more literals, the number of its subformulas that are correct general-
izations of c increases as well; then we may expect that at least some contain a
number of variables smaller than c’s. Moreover, the difficulty of a learning prob-
lem increases when L decreases, whereas the critical value mcr increases. When
L < 20, the only solutions found have three variables.

In conclusion, most learning problems in the NO region have only been
solved because approximations with only three variables were sufficient. When
more than three variables are required, mcr becomes larger and the available
heuristics for top-down search are unable to grow valid inductive hypotheses
starting from the YES region. However, we could not find any bottom-up learn-
ing algorithm capable of coping with the complexity of working directly inside
the NO region.

10.4.1 A stochastic approach

In the absence of a reliable heuristic, stochastic search may be a valid alternative
especially if combined with deterministic search. An example of an effective
combination of a Las Vegas search algorithm with deterministic search in the
n-queens problem was given by Brassard and Bratley (1988). A hybrid approach,

combining stochastic
search and hill-climbing
general-to-specific
search, is proposed.

As described in Section 10.3.3, the information gain heuristic is able to guide
the inductive search towards a good generalization ĉ of a target concept c when
an educated hypothesis hk , containing an appropriate number k of good literals,
is available.

The algorithm proposed here, which is stated in Figure 10.16, is based on a
two-step strategy. The first step creates a hypothesis hk with a complexity (num-
ber of literals) k large enough that hk lies on the border between the YES region
and the mushy region; hk is the result of random sampling of the hypothesis
space. The second step consists in a general-to-specific search, starting from hk

and performing a hill-climbing strategy guided by the information gain heuristic.
If the target concept has a conjunctive description in the hypothesis spaceH,

the Monte Carlo algorithm SFind is very likely in the long run to find a c, or at SFind

least a good generalization ĉ of this c; that is correct on the learning set SL .
We would like to compute the complexity of the algorithm SFind (see Fig-

ure 10.16), assuming that the complexity m and the number of variables n in
the concept c are known. By the complexity of the algorithm we mean the min-
imum number Tε of trials necessary to reach a probability 1 − ε of finding ĉ
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Algorithm SFind
Let ĉcur = ∅
while halt condition does not hold do

1. Randomly generate a hypothesis hk close to the mushy region.

2. Make hk more specific by following a hill-climbing strategy
guided by the information gain. Let ĉt be the locally best
hypothesis found in trial t.

3. if ĉt is better than ĉcur then replace ĉcur with ĉt.

end
Return ĉt

Figure 10.16 Stochastic algorithm for searching the space of hypotheses.

(or c, as a specially lucky case). If we choose k � mcr − 2, there is strong ex-
perimental evidence that a hill-climbing search, guided by the information gain,
will find ĉ almost surely. The reason is that the search explores the region where
the information gain becomes reliable.

Let pk be the probability that hk is a subformula of c; then the probability
p

(t)
ĉ of finding ĉ in no more than t steps is given by the expression

p
(t)
ĉ = 1− (1− pk)t. (10.2)

The dependency of the relation (10.2) upon t and pk is plotted in Figure 10.17.
By setting p

(t)
ĉ = 1− ε in (10.2) and solving with respect to t we obtain

Tε =
log ε

log (1− pk)
. (10.3)

Given m and n, the probability pk can be estimated, for a generic number k of
literals:

pk =
G(m, n, k)
S(m, n, k)

(10.4)

where G(m, n, k) is the number of subformulas of c with k literals and any num-
ber of variables and S(m, n, k) is the total number of formulas in the hypothesis
space with k literals.7 Both G(m, n, k) and S(m, n, k) have been estimated ex-
perimentally with an ad hoc algorithm.

7The values m and n are those referring to the target concept c.
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Figure 10.17 Probability that a random searcher will find any subformula hk of
the target concept c vs. the number of trials t, for various values (10−2–10−7) of

pk . The curve for pk = 0.99 practically concides with the line p
(t)
c = 1.

We note that the value Lcr is known when the learning examples are given, The algorithm
SFind succeeded
in solving many
learning problems
beyond the
reach of FOIL.

because Lcr is the average number of constants occurring in them. Table 10.3
reports the results of a set of experiments using Algorithm SFind, starting with
different values of k until a correct approximation ĉ was obtained. Going left to
right the columns give:

1, 2. the coordinates (m, L) of the target concept c;

3. the number of literals mcr for a target concept supposedly on the edge of
the phase transition;

4. the number k of literals in the stochastically sampled hypothesis;

5. the estimated number of S(m, 4, k) formulas with k literals in units of
103 steps;

6. the estimated number G(m, 4, k) of existing generalizations of the target
concept, computed by an ad hoc algorithm;



Table 10.3 Results obtained by adding a stochastic search step to the
basic hill-climbing strategy. Spaces separate the results obtained for
different problems

S(m, 4, k) G(m, 4, k)
m L mcr k (103 ) (103 ) pk T0 .001 Err %

7 39 6 4 22.82 0.03 0.001 194 7 5778 100%

7 38 6 4 22.82 0.03 0.001 194 7 5778 100%

7 36 6 4 22.82 0.03 0.001 194 7 5778 100%

7 35 6 4 22.82 0.03 0.001 194 7 5778 100%

7 34 6 4 22.82 0.03 0.001 194 7 5778 100%

7 33 6 4 22.82 0.03 0.001 194 7 5778 100%

7 32 6 4 22.82 0.03 0.001 194 7 5778 47%

5 190.68 0.02 0.000 099 6 69 379 100%

8 31 6 4 45.64 0.05 0.001 175 8 5871 53%

5 508.48 0.05 0.000 098 0 70 497 100%

8 30 7 4 45.64 0.05 0.001 175 8 5871 49%

5 508.48 0.05 0.000 098 0 70 497 100%

8 29 7 4 45.64 0.05 0.001 175 8 5871 51%

5 508.48 0.05 0.000 098 0 70 497 100%

8 28 7 4 45.64 0.05 0.001 175 8 5871 50%

5 508.48 0.05 0.000 098 0 70 497 100%

8 27 7 4 45.64 0.05 0.001 175 8 5871 48%

5 508.48 0.05 0.000 098 0 70 497 100%

9 26 7 4 82.15 0.10 0.001 166 5 5918 49%

5 1144.08 0.11 0.000 097 2 71 056 100%

9 24 8 4 82.15 0.10 0.001 166 5 5918 50%

5 1144.08 0.11 0.000 097 2 71 056 100%

10 23 8 4 136.92 0.16 0.001 161 9 5941 51%

5 2288.16 0.22 0.000 096 8 71 336 48%

6 24 497.76 0.20 0.000 008 1 856 074 100%

10 22 8 4 136.92 0.16 0.001 161 9 5941 49%

5 2288.16 0.252 0.000 096 8 71 336 52%

6 24 497.76 0.20 0.000 008 1 856 074 100%

11 21 9 4 215.16 0.25 0.001 159 7 5953 48%

5 4194.96 0.41 0.000 096 6 71 476 50%

6 53 895.07 0.43 0.000 008 1 857 753 100%

12 20 9 4 322.74 0.37 0.001 158 5 5959 51%

5 7191.36 0.69 0.000 096 5 71 581 50%

6 107 790.14 0.87 0.000 008 0 858 592 100%

13 19 10 4 466.18 0.715 0.001 158 0 5961 50%

5 11 685.96 1.13 0.000 096 5 71 581 49%

6 200 181.70 1.61 0.000 008 0 859 012 49%

7 2 481 967.49 1.66 0.000 000 7 10 308 184 100%
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7. the probability pk that hk is a generalization of c;

8. the number of trials T0.001 required for a confidence level of 0.999 that a
correct approximation will be found by starting from hk , if it exists;

9. the error rate Err of the best approximation ĉ of c on the test set.

10.4.2 Improving the stochastic search algorithm

Expression (10.2) allows one to estimate the number Tε of trials required to reach
a confidence level 1 − ε that the algorithm SFind has found an approximation
ĉ, provided that such an approximation exists. The search can be planned as
follows.

1. Assume an initial value n for the number of variables in c.

2. Estimate the number Tε of trials necessary to reach the confidence level
1− ε. If Tε is too high then stop; otherwise go to the next step.

3. Run SFind for Tε trials.

4. If the result returned by SFind is acceptable then stop; otherwise increase
n by 1 and go to Step 2.

We note that the cost for generating and evaluating a hypothesis in the initial
random sampling phase is much lower than the cost for the subsequent hill-
climbing search. More specifically, the number of hypotheses to be generated
and evaluated for the hill-climbing step can be estimated by:

O
(
(1 + ν)mn(n− 1)

)
, (10.5)

ν being an integer that has been observed experimentally to range from 0 to 3.
In expression (10.5) the term 1 + ν is an estimate of the number of literals to be
added to a hypothesis hk in order to cross the phase transition, whereas the term
mn(n − 1) estimates the number of alternative specializations to be considered
at each hill-climbing step. Thus the number of hypotheses to be evaluated in the
hill-climbing phase is one or two orders of magnitude larger than the number of
stochastic trials.

A second point worth noting is that, assuming that the information gain
heuristic is reliable for any hypothesis hk ∧ ψ, it is also likely that hk itself
is scored higher than the average when it is a subformula of c. On the basis of
the previous considerations we introduce a new algorithm, which can be more
effective than the algorithm SFind. Let Tε be the number of trials estimated by
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Algorithm T4

1. Create a set Φ, of cardinality Tε, of hypotheses with k literals.

2. Rank the hypotheses in Φ according to their information gain
with respect to the trivial hypothesis h0 ≡ true (verified on
all positive and negative examples).

3. Starting from the top-ranked hypothesis, apply the hill-climbing
specialization step to the K

4. Return the best description ĉ.

best-ranked hypotheses.

Figure 10.18 Improved stochastic algorithm.

(10.2) in order to reach a confidence level 1−ε in the output of SFind. Moreover,
let K (1 ≤ K ≤ Tε) be a user-defined parameter.

The algorithm T4 tries to limit the number of hill-climbing steps to the moreT4 limits the number of
hill-climbing steps. promising hypotheses, thus reducing the computational complexity. Of course,

the parameter K is an arbitrary choice and the confidence level 1−ε is guaranteed
to be reached only when K = Tε. In practice we have observed that, using values
of K that are relatively small (K = 100 as against Tε = O(105)), T4 tends to
produce the same results as for K = Tε.

This algorithm was tested on the set of learning problems shown in Figure
10.5, with the aim of solving those lying in the NO region by following the
strategy described above. We started with the minimal hypothesis, with n = 3.
The parameter k was set to 4, which approximately corresponds to the edge of
the phase transition for n = 3 and L ≥ 30. Even though for smaller values of
L our strategy predicts larger values of k, it was found that T4 was also able to
find a solution, with the above setting, for many problems where 20 ≤ L ≤ 30.
Afterwards, more expensive hypotheses were progressively considered, first byThe computational

cost of T4 is comparable
with that of FOIL.

increasing k until the value foreseen by the phase transition was reached (or an
excessive cost was foreseen) and then by setting n = 4. The value K = 100 was
used everywhere.

The results are given in Figure 10.19. A comparison with Figure 10.5 shows
that many problems lying in the blind spot have been solved. In practice, almost
all the problems above the phase transition and the line L = 18 have been solved
with a complexity that is larger than FOIL’s but still affordable.

A cluster of 20 Pentium III (800 Mhz) machines was used for the experi-
ments; every problem required a time ranging from few minutes to several hours
(an elapsed time comparable to FOIL on a sequential machine). When a problem
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Figure 10.19 Results obtained by the algorithm T4. The numbers denote the
minimum value that had to be assumed for K in order for the learning problem
to be solved. When a number is prefixed by a plus it means that n = 4 has been
assumed; otherwise n = 3. A dot means that the problem was not solved.

was not solved, we progressively increased the complexity of the hypothesis by
increasing k.

10.5 Comments

Moving from the analysis of the covering test (which is equivalent to a single
CSP) to a whole learning problem widens considerably the range and complex-
ity of the phenomena that have been observed, some of which were expected and
some not. First, the YES region constitutes a plateau for any top-down searcher
exploiting heuristics based on a distinction between the coverage of positive and
of negative examples (typically, the information gain). In fact, random hypothe-
ses generated in the YES region almost surely cover any random instance, so
that they are unable to distinguish between positive and negative examples, thus
making the information gain uninformative. Even when one considers the num-
ber of models instead of the number of examples the situation does not improve,
because the high variance (see Figure 10.11) masks the difference between the
number of models in the positive and negative examples.
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However, the YES region is not a local minimum but a bench (see
Section 6.6), because there are exits towards the phase transition region, where
the information gain has higher values than on the plateau. The leftmost points
marked with numbers in Figure 10.10 represent, in some way, the border of
the plateau. In the NO region the situation would be analogous for a bottom-
up learner, but on the negative side: any randomly chosen hypothesis will not
cover any randomly chosen example, either positive or negative. However, we
have not found any purely bottom-up learning algorithm that is able to attack
such computationally demanding learning problems and, hence, the only plateau
of interest is that in the YES region.

In an interesting paper, Alphonse and Osmani (2007) showed that the plateau
in the YES region may actually be successfully crossed by a top-down searcher
that exploits a data-driven strategy, when near-miss negative examples (Winston,
1975) are provided in the learning set. Their experimental results were obtained
using a generative model (Alphonse and Osmani, 2008b) derived from model
RB (see Section 4.2); this generative model has a guaranteed phase transition for
all problem sizes. However, the observed beneficial effects are due rather to the
special role of the near misses than to the data-driven strategy; even though the
genetic learner G-Net exploits a bidirectional data-driven strategy to learn, it was
unable to solve more problems than FOIL or SMART+. These results confirm
the intuitive feeling that supplying information to the learner, either in the form
of special examples or in the form of the minimum size that the concept should
have (see Figure 10.10) may reduce the negative impact of the presence of the
phase transition.

The partial solvability of complex problems in the NO region comes as a
surprise, as the simplicity of the target concept has always been considered a
factor both facilitating learnability and favoring robustness. However, we have
to be careful in declaring a success in learning such problems in that the “true”
concept was never acquired in these experiments. Not knowing in real learning
settings the true concept, good approximations thereof are all we need as long
as we do not require perfect classification. Actually, a long concept provides a
much larger number of alternative approximations than a short one.

All the investigations presented in this chapter were made with the num-
ber of variables n equal to 4. This is roughly the limit one encounters in
performing experiments such as those reported here. Most learning prob-
lems with five variables could not be handled, owing to the exceedingly high
computational resources required. Even though smart algorithms may suc-
ceed in reducing the complexity of the single covering test, as was shown in
Chapter 9 the sheer number of required in a learning run hinders learning prob-
lems from scaling up in size satisfactorily. As mentioned in Chapter 9, this is one
reason why the asymptotic behavior with respect to the number of variables is
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not of much interest in symbolic machine learning of the type described in this
book. In learning statistical relational models, for instance in learning the struc-
ture of a Markov logical network, the same issue emerges, because only short
clauses (with few variables) can be learned. Only recently some efforts have
been devoted to trying to overcome this limitation (Kok and Domingos, 2010;
Mihalkova and Mooney, 2007).

A last point worth mentioning is that we have limited ourselves to investi-
gating the emergence of a phase transition in the covering test and its effects on
relational learning in general. In all our experiments we kept constant the num-
bers of positive and negative examples (100 positive and 100 negative examples
in both the training and the test set). However, in principle the learning problem
per se may have some control parameter that, reaching a critical value, deter-
mines another phase transition. Actually, this seems to be the case, as Alphonse
and Osmani (2009) have shown in relational learning and Rückert et al. (2002)
have shown in propositional learning. In both cases, the number of negative ex-
amples was involved as a control parameter.
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11.1 Learning grammars

Grammatical inference has been studied since the inception of the theory of for-
mal grammars in the 1960s, in particular to provide a formal framework for lan-
guage acquisition. Since the pioneering paper of Gold (1967), which introduced
the concept of identification in the limit, numerous works have been carried out
in several scientific communities, including those studying machine learning,
pattern recognition, natural language processing, formal language theory, and
electronic circuit design. Their goal was to set a theoretical framework for gram-
matical inference and to design practical learning methods. Recently, these tech-
niques have been used in several application domains such as genomics, natural
language processing, and the testing of computer programs.

258
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This chapter provides the necessary fundamental concepts to understand the
flavor of this field and reports on a study of generic learning algorithms with
regard to the covering test and generalization.

Experimental evidence points again to a phase transition phenomenon, albeit
different from those already encountered in this book.

11.1.1 The task of inferring grammars

While so far we have discussed a learning scenario where the task is to extract
regularities from sets or collections of (labeled) descriptions, this scenario is far
from covering all learning situations. Indeed, much data comes in sequences,
and often what one wants to learn is the trend, tendency, or even the rule gov- Sequential data

erning the sequences. Thus, the important relationship is the sequential or tem-
poral organization of the data. This is the case when a child learns the gram-
mar of its native tongue, when a biologist tries to decipher how DNA strands
command the fabric of some proteins, or when one wants to guess the oil price
next month.

Mathematicians have come up with the concepts of discrete time functions
and differential equations to account for time changes. Computer scientists and
specialists in signal processing have added other tools, most notably Markov
models and grammars, the latter being closely related to abstract machines called
automata. Markov models are versatile and allow one to represent a large variety
of (time) dependencies; however, learning a Markov model from data involves
learning first its structure and then the values of its numerous parameters. Gram-
matical inference is mostly concerned with learning the structure of sequences
and is often used as a first step to decide the type of dependencies that are at play.
This is why it is relevant to start with the study of grammatical inference.

Formal grammars were originally developed to model natural languages.
One key contribution, due to Noam Chomsky (1957), was the definition of a
hierarchy of grammars in terms of their generative power and the claim that
the syntax of well-formed sentences in natural languages, like sentences in
English, could be characterized with respect to one of these grammars (in partic-
ular, context-free grammars). Whereas this claim is still controversial, grammars
have been used extensively in the analysis and design of computer languages and
compilers. Grammars are natural tools for modeling strings of “letters”, and as
such they have been applied to the study of biological sequences and to many
problems in computational molecular biology.

More precisely, Noam Chomsky introduced four types of formal language,
which form the Chomsky hierarchy of formal languages. These types are dis-
tinguished by the types of productions that are permitted in their corresponding
grammars.
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Regular Regular grammars1 are defined by rules of the form A → b orTypes of grammar

of the form A → bC.2

Context-free Context-free grammars are defined by rules of the form
A → α and are therefore unrestricted in the form that the right-hand
side of a rule may take.3

Context-sensitive Context-sensitive grammars are defined by rules of
the form αAβ → αγβ, where γ is not the empty string.

Unrestricted: Unrestricted grammars are identical to context-sensitive
grammars except that γ may be the empty string.

Grammatical inference refers to the search for hidden regularities in gram-
mars expressed in strings. For instance, according to Chomsky, language acqui-
sition is mostly the process of discovering the grammar that underlies it.

Take for instance the problem of, given the sequence “aaabbb”, making a
guess at the next element. It is most useful to find the actual generating function
(e.g., a�b�, meaning a sequence of “a”s followed by a sequence of “b”s). The
questions that concern machine learning specialists are: by which mechanism,
i.e., algorithm, can we process the data to find a candidate generating function?
Can we obtain such a function from any presentation (any string, in any order)?
How fast can we learn? How do we know that we have succeeded? These ques-
tions involve three different metaparameters:

1. the hypothesis space (or class of functions) considered by the learner;

2. the protocol of presentation of the data;

3. the performance criterion used to measure success or distance from suc-
cess.

In grammatical inference the hypothesis space corresponds to grammars
that are able to generate or recognize strings, trees, graphs, and other types
of structured object. However, influenced by its earlier roots in cognitive sci-
ence and linguistics, grammatical inference has long been concerned only with
learning non-probabilistic grammars. It was indeed thought that probabilities
were not fundamentally at play in the learning of languages. Only relatively
recently has the learning of probabilistic grammars become an important sub-
ject of research. This subject is closely related to that of (hidden) Markov chain
models.

1Regular grammars produce languages that can be recognized using finite automata.
2Upper-case and lower-case roman letters stand respectively for non-terminal and terminal

symbols (see Definition 11.5).
3Greek letters stand for strings of terminal and/or non-terminal symbols.
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From the start, grammatical inference and the field of text learning in general
have been much more theoretically oriented than machine learning in its early
days. While the latter was at first mainly the theater of many experimental and
heuristically oriented studies, there were intense debates and reflections about
plausible and controllable protocols in language learning. Again, under the in-
fluence of computational linguistics it was thought that negative examples did
not play any significant role in the learning of languages. Therefore, most proto-
cols did not include negative learning examples, even if some type of interaction Only positive

exampleswith the teacher could be envisioned. In addition, the identification of a language
was thought to be the legitimate goal because the role of probabilities in language
acquisition was not seen as plausible. More precisely, whereas most of machine
learning has yielded to a statistical theory of learning (Vapnik, 1995), in which Identification vs.

approximationlearning is seen as finding a satisfying hypothesis most of the time (the “prob-
ably approximately correct learning” (PAC) setting), grammatical inference has
long retained the goal of exactly identifying the target language.

As a consequence, one requires that candidate hypotheses satisfy the con-
straints associated with positive instances on the one hand and negative instances
on the other hand, i.e., that they “cover”, exactly and not in probability, the pos-
itive instances and reject the negative instances. This makes the covering test a
central component of the learning process, which, at an abstract level, acts as a
generate-and-test mechanism. Of course, there is no reason to believe that a tar-
get grammar actually exists. It might simply be convenient to hypothesize that
the best model of the data, for which one is looking, can be expressed as a gram-
mar. In this case it is possible that no grammar can perfectly label the training
data and that one should settle instead for searching for the best, or a good, ap-
proximation to the target regularities, whatever they are. One should speak then
of grammar induction rather than grammar inference. In any case the covering
test still plays a major role in the inductive process.

In addition, as will be shown below, a generality relationship can be imposed Generality
relationship
in H

upon grammars. This relationship induces a partial ordering in the space of the
hypotheses and thus opens the door for algorithms that exploit this structure to
search for candidate hypotheses satisfying the constraints imposed by the train-
ing examples.

11.1.2 An introductory example

Suppose that some phenomenon in nature or in a man-made device provides us
with strings of observations that can be labeled by “+” or “−”. For example,
instances of nucleotide sequences could correspond either to introns or to exons.
For the sake of simplicity, let us assume that we have received the following sets
of instances: P = {aa, a, bb} and N = {ab, b, ba}.
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Figure 11.1 Two possible solutions (left) and (right) to the learning problem
P = {aa, a, bb} and N = {ab, b, ba}. The double rings indicate states that are
possibly terminal (i.e., if a sequence ends in this state then it is recognized as
belonging to the language).

One could learn a model that would explain the positive instances and reject
the negative ones. This model can take the form of a regular grammar in a natural
way and, as we will see shortly, this type of grammar can be represented by finite
state automata.

There exists an infinity of automata that can explain the above dataset. A
learning algorithm could for instance return either the left automaton or the right
automaton in Figure 11.1. Both produce the correct label for each training in-
stance. So, which automaton is the best?

In Chapter 5, on machine learning, we showed that a reasonable criterion is
that a model should both behave well on the training data and also be “simple”.
The latter requirement aims at preventing overlearning. Furthermore, a simpler
model generally allows for better understanding of the detected underlying reg-
ularities. According to this inductive criterion, the automaton at the right is to be
preferred.

11.1.3 Automata and grammars

Before studying learning algorithms in grammatical inference and their proper-
ties, it is necessary to introduce some notions and terminology that pertain to this
field.

Basic notions
Definition 11.1 {Alphabet} An alphabet Σ is a finite non-empty set of sym-
bols called letters.
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Alphabets can have as few as two letters, as in the Boolean case, or four
letters as in the DNA genetic code or thousands of symbols, as in the Chinese
alphabet.

Definition 11.2 {Strings} A string w over Σ is a finite sequence w =
a1 · · · an of letters. Let |w| denote the length of w. In this case, we have
|w| = |a1 · · · an| = n. The empty string is denoted by λ.

The set of all finite strings over the alphabet Σ will be denoted Σ�. Strings
can be ordered. Suppose that we have a total order relation over the letters of
the alphabet Σ; this is generally called the alphabetical order. Then different
orders can be defined over Σ�. Without entering into the formal details of their
definition, we can single out the hierarchical order. With Σ = {a, b}, the first
few strings according to that order are λ, a, b, aa, ab, bb, aaa, . . .

Given two (possibly empty) strings u and v, we will denote by u · v the
concatenation of strings u and v. When the context allows, we will use the
notation uv.

Given a string w, x is a substring of w if there are two strings l and r such
that w = lxr.4

Definition 11.3 {Prefix} A string u is a prefix of another string w if there
exists v such that uv = w.

EXAMPLE

Given w = abbaabbaabab, then abbaa is prefix of w. By contrast, aabbaa
is a subsequence but not a prefix of w.

Definition 11.4 {Language} A language is any set of strings that is a subset
of Σ�.

The complement of a language L is defined with respect to Σ�: L̄ = {w ∈
Σ� : w /∈ L}.

The representation of a language by enumeration of the subset of the words
of Σ� that belong to it would be at best cumbersome, especially if the language
is not finite. This is why languages are generally represented by grammars of the
types defined by Chomsky.

A grammar is a mathematical object associated with an algorithmic process
that can generate a language.

4With this definition, x is always a substring of itself.
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Definition 11.5 {Grammar} A grammar is a quadruplet G = (N, Σ, P, S),
where:

• N is an alphabet of all the non-terminal symbols of G;5

• Σ is the terminal alphabet of G and is distinct from N . We set V = N∪Σ;

• P ⊆ (V �N+V � × V �) is a finite set of production rules;

• S ∈ N is an axiom of G.

A production rule P is written as α −→ β, with β ∈ V � and α ∈ V �N+V �,
which means that α contains at least one non-terminal symbol.

Definition 11.6 {Word generated by a grammar} A word v ∈ Σ� is said to
be generated by a grammar G when it can be generated from the axiom S of G.

The language generated by the grammar G is the set of all the words in Σ�

that can be generated by G. We denote it by L(G).

Here are two examples. When there is no ambiguity, one can simplify the
description of the grammar by providing its rules only and by writing in a line
all the rules with the same left-hand side.

EXAMPLE

The grammar defined by N = {S}, Σ = {a, b, c} and P = {(S −→
aSb), (S −→ ε)} can be written as

S −→ aSb | ε

This grammar generates the language {anbn | n ≥ 0}. Indeed, one can
see, taking an example, that its axiom S allows the derivation of the word
aaabbb in four steps: three applications of the rule S −→ aSb and one of
the rule S −→ ε, giving successive steps

S aSb aaSbb aaaSbbb aaabbb.

Chomsky noticed that the representation of languages using grammars
allows the definition of language types in terms of the production rules that
generate the languages. This classification introduces a strict hierarchy among
the classes of languages. The regular grammars are the simplest. They are also
called rational languages because they form the smallest family of languages

5Non-terminal symbols are not observed in the strings of a language (see Definition 11.4) but
are used as place-holders or auxiliary symbols in the derivation of sentences.
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Figure 11.2 A finite state automaton accepting strings composed of an even
number of a’s and an even number of b’s.

on Σ� that is closed by the rational functions that are the union, the product of
concatenations, and Kleene’s iteration operation �.

Regular grammars
A regular grammar is defined by A −→ wB or A −→ w, with w ∈ Σ∗, A ∈ N ,
and B ∈ N .

A language that can be generated by a regular grammar is said to be a regular
language. A classical result of the theory of languages is the following.

Theorem 11.1 Any regular language can be generated by a finite automaton.
Conversely, any finite automaton generates a regular language.

Automata can be seen as a kind of graphical representation of regular gram- Graphical representa-
tion of finite state
machines

mars, where the non-terminal states correspond to non-terminal symbols and the
transitions or edges to the derivation rules. By convention, a terminal state is
represented with a double circle and the initial state is indicated by an entering
arrow.

EXAMPLE

The grammar defined by N = {1, 2, 3, 4}, Σ = {a, b} and P = {(1 −→
a2), (1 −→ b3), (1 −→ ε), (2 −→ a1), (2 −→ b4), (3 −→ a4), (3 −→
b1), (4 −→ a3), (4 −→ b2)} is strictly equivalent to the finite state au-
tomaton of Figure 11.2.6 Strings that are accepted are composed of an
even number of a’s and an even number of b’s.

This grammar can be rewritten more simply as:

1 −→ a2 | b3 | ε, 2 −→ a1 | b4,
3 −→ a4 | b1, 4 −→ a3 | b2

6Here, the axiom is not denoted S, but 1.
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The words accepted by the automaton are those for which there exists a pathWords accepted by
an automaton from the initial state to a terminal state through the transitions dictated by the

symbols of the words of the language.

Finite automata
Automata are finite state machines that can recognize strings. They correspond
to a simplified and limited version of Turing machines. A string is provided on
the input tape; it is then read from left to right and, at each step, the next state
of the system is chosen depending on the previous state and the letter or symbol
that is read. The automata is deterministic if only one action is possible at each
step. Deterministic finite automata are usually preferred because they are simpler
to manipulate and lead to more efficient parsing and also because a number of
theoretical results apply only to them. However, nondeterminism may be better
suited for modeling certain phenomena and could also be a partial solution to the
difficulties one has when facing noisy data.

As claimed by Theorem 11.1, finite automata are equivalent to regular gram-
mars. We are now going to define them more precisely.

Definition 11.7 {Finite automata} A finite automaton is a quintuplet
(Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite alphabet, δ is a
transition function, i.e., a function from Q × Σ to 2Q , Q0 ∈ Q is the subset of
initial states and F ∈ Q is the subset of final states, also known as accepting
states.

First, we consider deterministic finite state automata, then the nondetermin-
istic case.

Deterministic finite state automata
Definition 11.8 {Deterministic finite state automata (DFA)} If, for every
state q ∈ Q and for every letter a ∈ Σ, the transition function δ(q, a) contains at
most (respectively exactly) one element and if Q0 contains only one element q0,
the automaton A is said to be deterministic (respectively complete).

In what follows we will use the abbreviations DFA for deterministic finite
state automata and NFA for non-deterministic finite state automata.

EXAMPLE

The automaton of Figure 11.2 is a DFA. Another example of a finite
state automaton is given in Figure 11.3. It contains five states, Q =
{0, 1, 2, 3, 4}. It is defined over the two-letter alphabet Σ = {a, b}. The
initial states are 0 and 5, Q0 = {0, 5}, and the states 3 and 4 are final,
F = {3, 4}.



Learning grammars 267

0

5

1a

2

a

a

a
3

b

4b

b

Figure 11.3 A non deterministic finite state automaton.

This is an NFA since there are two edges labeled with the letter a from
state 0 and since there are two initial states. Here, δ(0, a) = {1, 2}.

Furthermore, this automaton is not complete since the transition function
δ is not everywhere defined. For instance, δ(5, b) is not defined.

Language accepted by a finite automaton
A language L(A) accepted by an automaton A is the set of all strings that
are accepted by A, i.e., for which there exists a sequence of states that are
“excited” from an initial state to a final state when one uses the transition func-
tion on the successive letters of the string. For instance, the sequence of states
(0, 1, 3) is associated with an acceptation of the sequence aab in the automaton of
Figure 11.3.

It is sometime possible to remove some states from an automaton without
changing its accepted language. This leads to the definition of a minimal accept-
ing automaton.

Definition 11.9 {Minimal deterministic finite automata} For any regular lan-
guage L there exists a DFA A(L) that generates L and has a minimal num-
ber of states; A(L) is called the minimal deterministic automaton or canonical
automaton associated with L. It can be proved that this automaton is unique.

EXAMPLE

The automaton of Figure 11.4 accepts a language composed of the strings
that start with an odd number of a’s followed by an odd number of b’s
(which corresponds to the regular expression L = a(aa)�b(bb)� ). This is
the same language as that accepted by the automaton of Figure 11.3.

There exists no automaton that contains fewer states than this and that
accepts the language L. This is therefore the canonical automaton corre-
sponding to language L.
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Figure 11.4 Canonical automaton of the language defined by the regular ex-
pression L = a(aa)∗b(bb)∗.

Nondeterministic finite state Automata
While most published works deal with the implications of deterministic finite
state automata, it is the case that nondeterministic finite state automata (NFA)
have interesting properties also. For instance, they may offer compact represen-
tations of some regular languages. It may thus happen that an NFA needs an
exponentially smaller number of states than its corresponding deterministic fi-
nite state automaton.

In addition, the use of NFA offers different ways of expressing the same
language, thus allowing one to choose the representation most adapted to one’s
needs. This is why, in many domains, for example in genomics, NFA are used to
represent biological regularities of interest even though there are fewer learning
algorithms for NFA.

In the following, we will be looking at both DFA and NFA.

11.1.4 Learning automata

There exists a complete one-to-one mapping between the four types of grammars
in the hierarchy of Chomsky and the four types of automata.

Grammar Regular Context-free Context-sensitive Unrestricted7

Automata Finite state
automata

Pushdown
automata

Bounded-tape
Turing machines

Turing
machines

Theoretical works on grammatical inference show that the class of regular
languages is the most general class of languages that is identifiable in the limit
in polynomial time. In practice this means that regular languages are sufficiently
expressive for a wide range of applications while remaining effectively learnable.

7Also known as recursively enumerable.
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This is the reason why the learning of regular languages has been the subject of
numerous studies.

11.2 Grammatical inference by generalization

We now turn to a hypothesis space consisting of grammars or finite automata.
We will show that there exists a partial ordering that can be defined over such a
space that will allow us to use learning methods that exploit this ordering.

11.2.1 The space of finite automata

In the hypothesis spaces that we have considered so far, the crucial structure that
permits a well-guided search for good hypotheses was induced by the relation
of inclusion in the space of examples. Thus, in Chapter 5, it was said that one
hypothesis, hi, is more general than another, hj , if the set of instances that hy-
pothesis hi labels as positive (i.e., covers) includes the set of instances covered
by hj . While this induced ordering was immediate in the case of propositional
representations, it was more involved in the case of relational concepts and en-
tailed some special care.

In the field of grammatical inference, likewise, one wants to find a descrip-
tion of the target language (or of some language close to it) that is not in ex-
tension, by which we mean not in the form of the set of all accepted sentences.
As we have seen, a favored description takes the form of automata. The ques-
tion is therefore how to induce a partial ordering on the space of finite automata
from the ordering associated with the inclusion relation defined over the space
of sentences.

Derived automata
A central operation over automata is the partitioning of its states. Recall that a
partition π of a set S is a set of subsets of S such that these subsets are not null,
are disjoint by pairs, and their union is equal to S. When defined over the set
of states of an automaton A, a partition determines a quotient automaton A/π
where all states belonging to one subset in the partition are merged together (see
an example of the Figure 11.5).

One fundamental property of the state-merging operation is that if an au-
tomaton A/πj derives from an automaton A/πi through state-merging opera-
tions then the language accepted by A/πi is included in the language accepted State merging

induces a generaliz-
ation in the space
of automata.

by A/πj . In other words, the operation of merging states of a finite state au-
tomaton induces a generalization of the languages accepted.

Thanks to this property it is possible to build all the automata that can be de-
rived from a starting automaton A by enumerating all the partitions of its states.
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Figure 11.5 Left, a nondeterministic finite state automaton A. Right, the quo-
tient automaton A/π1, where π1 = {{0, 1, 5}, {2}, {3, 4}}.
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Figure 11.6 The quotient automaton A/π2 derived from A/π1 with π2 =
{{0, 1, 2, 5}, {3, 4}}.
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Figure 11.7 The universal automaton over the alphabet Σ = {a, b}.

Furthermore, as we have seen, there exists a partial ordering on the space thus
defined that is consistent with the inclusion relationship between languages.

The automaton where all states are merged into a single state is called the
universal automaton (UA). It accepts all strings defined over a given alphabet.

For instance, the universal automaton defined over the alphabet {a, b} is rep-
resented in Figure 11.7.

A lattice over the space of automata
From the above property it can be inferred that the hypothesis space can be en-
dowed with a lattice structure. Indeed, it can be proved that the set of the au-
tomata derived from a given automaton A, partially ordered by the derivation
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Figure 11.8 The lattice for the derived automata built on MCA({a, ab}) (cour-
tesy of Colin de la Higuera).

operation, is a lattice; the automaton A and the universal automaton (UA) are
respectively its minimal and maximal elements. This lattice is denoted Lat(A).
Figure 11.8 shows Lat (A) when the automatonA is the maximum canonical au-
tomaton (MCA) of a set of strings, which is a star-shaped NFA with one branch
per string.
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11.2.2 A structure for the space of finite automata

Up to now we have seen how it is possible to endow the space of finite au-
tomata with a partial order associated with the generality relationship between
automata. An automaton derived from another accepts at least all the strings ac-
cepted by the latter. It therefore recognizes a more general language.

However, we have not yet introduced the notion of a training sample or train-
ing set from which we want an automaton to learn.

Given a sample SL = P ∪ N , where P contains the positive examples and
N contains the negative examples, the empirical risk-minimization principle dic-
tates that an optimal hypothesis is one that minimizes the error on the sample.
Actually, as shown in Chapter 5, we should take into account the complexity
of the hypothesis space in order to obey a regularized inductive principle. In
grammatical inference we usually seek a consistent hypothesis, one that doesThe inductive

criterion not make any error on the training set. Of course, this assumes that the data is
not suspected of being noisy. We will see how regularization is taken care of by
generic learning methods.

Structural completeness
The number of automata consistent with a given (not conflicting8) training sam-
ple is infinite. Additional knowledge or bias must therefore be provided to make
learning possible. For instance, suppose that the alphabet contains the letters a,
b, and c but that only the letters a and b are seen in the positive examples. Then,
unless we are told otherwise, there should be no reason to introduce the letter
c in the candidate automata. In other words, we will assume that the training
sample is sufficiently representative of the language to be learned. In concrete
terms this means that every component of the target automaton is exercised in
the recognition of at least one learning example. Most standard grammatical in-
ference systems that have been devised follow this assumption since it confers
desirable properties on the search space.

Definition 11.10 {Structural completeness} A set P is said to be structurally
complete with respect to a DFA A ifP covers each transition of A and uses every
element of the set of final states of A as an accepting state.

Structural completeness can be extended, with care, to the nondeterministic
setting. We do not detail this here. The interested reader can consult de la Higuera
(2010) with profit.

We will therefore search only for finite automata for which the training sam-
ple is structurally complete.

8That is, where P ∩N = ∅.
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Figure 11.9 PTA({a, ab, bab}).

As we have seen above, the space of automata can be endowed with a
generality-based partial ordering. Furthermore, given a positive training sam-
ple P , the search space, under the structural completeness hypothesis, has the
following properties.

Theorem 11.2 Every DFA in the lattice partition Lat(MCA(P)) is structurally
complete for P . Likewise, every NFA in the lattice partition Lat(MCA(P)) is
structurally complete for P .

Conversely, we have the following.

Theorem 11.3 Every DFA that is structurally complete for P is in the lattice
partition Lat(MCA(P)). Likewise, every NFA that is structurally complete for
P is in the lattice partition Lat(MCA(P)).

If, furthermore, we are interested in finding the smallest deterministic finite
state automaton accepting P , then we can reduce the search space.

First, let us define the prefix tree acceptor (PTA) associated with a positive
training sample.

Definition 11.11 {Prefix tree acceptor (PTA)} A prefix tree acceptor (PTA)
is a tree-like DFA built from the learning sample by taking all the prefixes in
the sample as states and constructing the smallest DFA which is a tree such that
∀q ∈ Q, |{q′ : δ(q′, a) = q}| ≤ 1, i.e., that each state has at most one ancestor.

EXAMPLE

The automaton of Figure 11.9 is the prefix tree acceptor for the positive
sample P = {a, ab, bab}.

Thus, we have the following property.

Theorem 11.4 The smallest DFA consistent with a sample S = P ∪ N is in
Lat(PTA(P)).
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In addition, since it can be shown that PTA(P) derives from MCA(P), we
have Lat(PTA(P)) ⊆ Lat(MCA(P)) and therefore searching a solution in
Lat(PTA(P)) is generally more efficient.

This property immediately suggests a learning approach for a DFA. The prin-The generic
approach ciple is to start the exploration of the search space Lat(PTA(P)) from PTA(P)

and then to explore it using the state-merging operator. Overgeneralization is
prevented by using N . No candidate automaton should accept a string from N .

This strategy is at the core of many learning algorithms, such as RPNI, that
are widely used.

It must be noted that the crucial “more specific than” relationship is unde-
cidable for context-free grammars. This of course precludes the use of learningA difficulty for

context-free grammars algorithms guided by this well-informed relationship and explains, in part, why
so little work has been devoted to learning algorithms for context-free grammars
(see, however, Lehn and Ball (1987)).

11.3 A phase transition in learning automata?

We saw in Chapters 9 and 10 that an important step in the study of learning was
the realization that learning could be cast as a constraint satisfaction problem.
In the case of concept learning, one is often interested in discovering a hypoth-
esis that is consistent with the training data. It should make no errors, which
means that it should predict as positive the positive examples and as negative the
negative examples. At an abstract level the problem amounts to checking that
there exists at least one hypothesis that can satisfy the constraints imposed both
by the positive and by the negative training instances.

While in the SAT domain the question raised was the importance of the value
of k in the k-SAT problem, in machine learning and in artificial intelligence in
general, the focus is rather on the expressiveness of the hypothesis language. It
has been known since the fundamental work of Brachman and Levesque (2004)
that the tractability of deduction and the expressiveness of the supporting lan-
guage are tied by a trade-off: the more expressive is the language, and therefore
its ability to leave things unspecified, the more intractable is deduction using this
language.

In machine learning the pioneering work on the covering test in first-order
logic (see Chapter 9) and the corresponding display of a phase transition phe-Expressiveness

and phase transitions nomenon suggested that languages as expressive as first-order logic were likely
to be conducive to similar abrupt transitions in the covering test. This, in turn, is
indicative of potential severe difficulties for learning concepts expressed using
these languages.
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In the same way that in SAT we raised the question whether there is a bound-
ary between the uneventful 2-SAT problem and the phase-transition-prone 3-
SAT problem, the question whether there is some kind of threshold in the lan-
guage expressiveness between zeroth-order logic (propositional logic) and first-
order logic was, and still is, open in machine learning.

From in this perspective the study of automata learning seemed appropriate.
Indeed, while grammars, and especially regular grammars, are less expressive
than first-order logic they are more expressive than propositional logic. Although
language expressiveness is not just a one-dimensional property, it was felt that it
might be illuminating to study the covering test in the case of automata learning.

Should we then expect a phase transition in learning automata? No theoreti-
cal argument then existed. Cornuéjols, Pernot, and Sebag (Cornuéjols and Sebag,
2008), examined the experimental evidence relating to regular grammars, that is,
to finite automata.

11.4 The covering test: random sampling in H
In order to check the evidence for a phase transition, the standard procedure is
as follows. One defines control parameters that correspond to key characteristics
of the learning problem and then studies, in the space defined by these param-
eters, the probability that hypotheses of the type controlled by the parameter
values can satisfy the constraints of training sets controlled in the same way.
The same overall procedure was used in the study of first-order logic reported in
Chapter 9.

The goal here is to test whether there exists a sharp transition in the coverage
of training samples controlled by certain parameters (e.g., the length � of the
strings) when the characteristics of the hypotheses (e.g., the number of states,
average branching factors, and so on) are varied.

The existence of such a sharp transition would be a strong indication that
there exists some sort of discontinuity, in the “size” of the hypotheses (their cov-
erage in the space of strings Σ�), that is intrinsic to the representation language
associated with finite automata.

11.4.1 The experimental protocol

One key question is how to define a proper model for the random generation
of automata and examples, in order to test the variations in the coverage of the
automata (see the discussion on model RL in Chapter 9 for the case of relational
learning).
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Following the methodology introduced by Giordana and Saitta (2000), the
phase transition phenomenon was investigated by means of control parame-Control parameters

ters chosen in accordance with the parameters used in the Abbadingo challenge
(Lang et al., 1998):9

• the number Q of states in the deterministic finite state automaton;

• the number B of output edges on each state;

• the number L of letters on each edge;

• the fraction a of accepting states, taken in (0, 1);

• the size |Σ| of alphabet considered;

• the length � of the test examples and also the maximal length of the learn-
ing examples in P (as explained below).

The study first focused on the intrinsic properties of the search space without
regard to the learning algorithms, that is, without regard to the lattice structure
induced by state-merging operations. Using the set of control parameters, the
average coverage of automata was studied analytically and empirically.

The sampling mechanism over the whole deterministic finite state au-The experimental
protocol tomata (FSA) space was defined as follows. Given the control parameter values

(Q, B, L, a, |Σ|):
• for every state q, (i) B output edges (q, q′) were created, where q′ was uni-

formly selected with no replacement among the Q states; (ii) LB distinct
letters were uniformly selected in Σ; and (iii) these letters were evenly
distributed among the B edges above;

• every state q was turned with probability a into an accepting state.

The sampling mechanism for nondeterministic finite state automata differed
from the above in a single respect: two edges with the same origin state were
not required to carry distinct letters.

For each setting of the control parameters, 100 independent problem in-
stances were constructed. For each FSA considered (the sampling mechanisms
are detailed below), the coverage rate was measured as the percentage of covered
examples in 1000 examples (strings of length �) uniformly sampled.

9The Abbadingo challenge was proposed in 1997 in order to stimulate and evaluate research
on the induction of target DFA from sets of training strings labeled by that target concept and a
set of unlabeled testing strings. Each problem was to be considered solved by the first person to
demonstrate a test-set error rate of 1% or less. The challenge comprised 16 benchmark problems
of difficulty varying according to the size of the target concept (with 64, 128, 256, or 512 states)
and the sparsity of the training data. The induction of target concepts with 128, 256, or 512 states
remained unsolved for the case when the training data was lowest.



The covering test: random sampling in H 277

1.0

0.4

0.2

0

1

1

0.8

0.6

0.4

0.2

0

1

2

Coverage

NFADFA

Coverage

a

a B

B

Figure 11.10 Coverage landscapes for deterministic and nondeterministic FSA,
for |Σ| = 2, L = 1 and � = 10. The density of accepting states a varies in [0, 1].
The branching factor B varies in {1, 2} for the DFA and in {1, 4} for the NFA.

11.4.2 The findings

Figure 11.10 shows the average coverage in the (a, B) plane, for |Σ| = 2, L = 1
and � = 10, where the accepting rate a varies in [0, 1] and the branching factor
B varies in {1, 2}. Each point indicates the average coverage of a sample string
s by an FSA (averaged over 100 FSA drawn with accepting rate a and branching
factor B, tested on 1000 strings s of length �).

These empirical results are stated analytically in the simple equations below,
which give the probability that a string of length � is accepted by an FSA defined
on an alphabet of size |Σ|, with branching factor B and L letters on each edge,
in the DFA and NFA cases (the number of states Q is irrelevant here).

P (accept) =

{
a(BL/|Σ|)� for a DFA,

a[1− (1− L/|Σ|)B ]� for a NFA.
(11.1)

The coverage of the FSA decreases as a and B decrease. The slope is more abrupt
in the DFA case than in the NFA case; still, there is clearly no phase transition
here. No phase transition

according to this
protocol

While the reported results may seem too limited in their scope to warrant
a definitive conclusion about the absence of a phase transition, in fact many
more experiments with a wider range of parameter values all converge to-
wards the same overall pattern of a gradually varying coverage probability. But
the strongest argument comes from the analytical analysis and its near-perfect
agreement with experimental measures. Clearly, there is no phase transition, with
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respect to the covering test, when one looks at uniform sampling in the whole
space of finite automata.

11.5 Learning, hypothesis sampling, and phase
transitions

The coverage landscape displayed in Figure 11.10 might suggest that grammati-
cal inference takes place in a well-behaved search space. However, grammatical
inference algorithms do not explore the whole FSA space. Rather, as stated in
Section 11.2, the search is restricted to the generalization cone, the set of gen-
eralizations of the prefix tree acceptor (PTA) formed from the set P of positive
examples. The next step is thus to consider the search space actually explored by
generic grammatical inference algorithms.

11.5.1 Evidence for abrupt changes when generalizing

A new sampling mechanism was defined to explore the DFA generalization cone.A new experimental
protocol

1. A number |S+| (200 in the experiments) of examples of length � were
uniformly and independently sampled within the space of all strings of
length � (with varying �), and the corresponding PTA was constructed.

2. A number N (50 in the experiments) of PTAs were constructed in this
way.

3. A number K (20 in the experiments) of generalization paths, leading from
each PTA to the most general FSA or the universal acceptor (UA), were
constructed. In each generalization path (A0 = PTA(P);A1, . . . , At =
UA), the ith FSA Ai was constructed from Ai−1 by merging two uni-
formly selected states in Ai−1 and subsequently applying the determiniza-
tion operator if needed.

4. The generalization-cone sample for each training set P was taken from all
the FSAs in all the generated generalization paths (about 270 000 FSAs in
the experiments).

Regarding the NFA generalization problem, the sampling mechanism on the
nondeterministic generalization cone differed from the above in a single respect:
the determinization operator was never applied.

Figure 11.11 (left) shows the behaviour of the coverage in the DFA gener-
alization cone for |Σ| = 4 and � = 8. Each DFA A is depicted as a point with
coordinates (Q, c), where Q is the number of states of A and c is its coverage.
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Figure 11.11 (Left) Coverage landscape in the DFA generalization cone (|Σ| =
4, � = 8, |S+| = 200). At the far right lie the 50 PTA sampled, with about 1150
states each. The generalization cone of each PTA includes 1000 generalization
paths leading from the PTA to the universal acceptor. Each point indicates the
coverage of a DFA, evaluated over a sample of 1000 strings. The graph shows
the existence of a large gap regarding both the number of states and the coverage
of the DFAs that can be reached by generalization. (Right) Coverage landscape
in the NFA generalization cone, with same control parameters as in the left-hand
panel.

The coverage rate for each FSA in the sample is evaluated from the coverage rate
on 1000 test strings of length �. Typical of all experimental results in the range
of observation (|Σ| = 2, 4, 8, 16, and � = 2, 4, 6, 8, 16, 17), the figure shows a
clear-cut phase transition. Specifically, here, the coverage abruptly jumps from
circa 13% to 54%, and this jump coincides with a gap in the number of states A phase-transition-

like phenomenonof the DFAs in the generalization cone: no DFA with a number of states in the
range [180, 420] was found. The gap becomes even more dramatic as the length
of the training and test sequences � is increased.

Figure 11.11 (right) shows the behaviour of the coverage in the NFA gener-
alisation cone, with |Σ| = 4 and � = 16. Interestingly, a much smoother picture
appears. Although the coverage rapidly increases when the number of states de-
creases from 300 to 200, no gap can be seen either in the number of states or in
the coverage rate itself.

Further experiments with different values for the control parameters confirm
this general pattern (see Figure 11.12).

All the curves obtained in this new setting, where the effective search space
is sampled, show a markedly different behavior from that in Section 11.4. In
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Figure 11.12 Here, coverage landscapes were obtained from 1000 experiments
using an alphabet size |Σ| = 4, learning strings of length � = 16, and a training-
set size |S+| = 100. (Left) DFA; (right) NFA. The test strings are increasingly
long from top to bottom with values 4, 16, and 32.

both the DFA and NFA cases, the covering rate varies rapidly at one point of the
generalization process. This is all the more striking as the length of the strings in
the training and test sets increases (see Figures 11.12 and 11.14).

Furthermore, even without more precise experiments, a large qualitative
difference between the DFA and NFA cases manifests itself. It is easy to
suspect its cause.



Learning, hypothesis sampling, and phase transitions 281
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Determinization

Figure 11.13 (Left) The lattice partition Lat(PTA(S+)) is searched using
merging operations. (Right) In the DFA case, further merging operations to re-
store determinization can cause jumps in the search space. At the top of each
panel the universal algorithm (UA) is indicated.

Indeed, the generalization trajectories differ in the two cases in one respect,
and this difference might be the key for the large observed differences. While, in
both cases, learning uses state-merging operations starting from the PTA, in the
DFA case further merging operations can occur at each step in order to restore
the determinism of the candidate automaton (see Figure 11.13, which shows the
difference between the two search spaces). We will examine later on whether
this dissimilarity can explain the different learning landscapes. First, we will
look more closely at the induction of NFA.

11.5.2 The generalization landscape in the NFA case

To get a more precise view of the evolution of the covering probability during the
learning of a nondeterministic automaton (NFA), an extensive set of experiments
were realized by Raymond Ros.10 In these experiments he varied the following
parameters: Control parameters

10Raymond Ros was a Ph.D. student at L.R.I., University of Paris-Orsay, in 2005–6.
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• the size of the alphabet |Σ| ∈ {2, 4, 8};

• the length of the training and test strings � ∈ {[1, . . . , 8], [1, . . . , 16],
8, 16, 32};

• the size of the training set |P| ∈ {200, 500};

• the size of the test set T ∈ {200, 500, 1000}.

Again, the same pattern of an abrupt transition between hypotheses (au-
tomata) with low coverage and hypotheses with high coverage was observed
(see Figure 11.14). These curves exhibit increasingly steeper transitions as the
length of the learning and test strings increases. One analysis that predicts this
is given in Appendix B. It is not known whether it is a correct explanation but it
is an intriguing one. However, this tendency is a minor concern compared with
the general pattern. Indeed, when one thinks about it, all these data are quite
extraordinary and go exactly contrary to what might have been expected.Seemingly

a complete mystery In fact, grammatical inference sets itself apart in the field of machine learn-
ing. As stated in Chapter 5, a major lesson of the theoretical study of learning
over the last 30 years is that a learning bias is required if one wants to perform in-
duction. Without a bias that limits the expressiveness of the hypothesis space, or
more formally its capacity, one loosens the link between the empirical risk mea-
sured on the training set and the expected risk. Therefore, learning can no longer
be guided and the hypotheses obtained are likely to perform almost randomly on
the unseen examples. Because of this phenomenon, known as overfitting, there is
a focus in machine learning on carefully controlling the so-called capacity or ex-
pressiveness of the hypothesis space, a problem also known as model selection.
Margin-based learning methods, much in fashion nowadays, are a prominent ex-
ample of new methods that seek to control capacity automatically.

Yet there exists no such representation bias in the case of the induction of reg-
ular languages. Regular languages are learned through exploration of the space
of finite automata, and every regular language can be represented by at least one
automaton. Furthermore, the exploration operator, by state-merging, is complete
in the sense that, starting from the prefix tree acceptor PTA(P), every general-
ization of the set of positive examples can be attained by a (well-chosen) succes-
sion of state merges. In formal terms, the capacity of the hypothesis language is
infinite and the exploration operator a priori does not limit the effective search
space. Therefore, if learning can succeed at all, its success must be explained on
other grounds.

If one now turns to the characterization of the hypothesis space by the cov-
erage rate of its elements, a further mystery is lurking around the corner.. . . and even more so!
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Figure 11.14 The coverage landscapes were obtained with the following con-
trol parameter values: |P| = 200, alphabet size |Σ| = 4, and � uniformly
∈ [1, . . . , 8], [1, . . . , 16], [1, . . . , 32], respectively, from top to bottom. The size
of the prefix tree acceptor PTA(P) correspondingly grows from approximately
800 states to approximately 2400 states and finally to approximately 5600 states.
Each figure represents 10 learning trajectories, obtained starting with the same
PTA(P).
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Figure 11.15 The coverage rate of the regular languages with respect to the
strings of a given length �.

Since the hypothesis space has no bias, every partition of the space of strings
(i.e., |Σ�| for a given maximal length �) can be represented. The number of par-
titions that cover n examples (strings) is equal to

( |Σ� |
n

)
. Therefore, the over-

whelming majority of these partitions (languages) cover approximately |Σ�|/2
examples. In consequence, a graph of the coverage rate of the elements of the
language space should look like Figure 11.15, if one measures the coverage with
respect to strings of length �.

If one looks at the space of all generalizations of an automaton representing
a prefix tree acceptor PTA(P) (a generalization cone), the pattern is the same;
almost all possible hypotheses cover approximately half the unseen examples.

Now, since the state-merging operator allows a full exploration of the gener-
alization cone, one would expect that randomly sampled possible generalization
trajectories would predominantly explore languages with a coverage rate close to
1/2. The experiments tell a completely different story. The learning trajectories
first stay for a long time in the region of languages that cover a small fraction
of all possible strings and then suddenly jump upward, rapidly crossing the re-
gion of intermediate coverage, before leveling off in the region of languages that
accept almost all strings.

This surprising behavior points to special properties of the merging oper-
ations. At one point in the exploration, a few state merges suffice to change
radically the coverage rate of the generated automata.

One must realize that, even though this closely resembles the behavior de-
scribed in Chapters 9 and 10, the reason behind it is quite different.

In the case of inductive logic programming (ILP) the phase transition be-
havior is intrinsic to the representation language. When sampled uniformly withTowards solving

the mystery respect to the four control parameters, there is a very narrow, vanishingly small,
region with hypotheses of intermediate coverage. This has nothing to do with the
learning algorithms. By contrast, in grammatical inference, because there is no
a priori representation bias, most potential hypotheses cover approximately half
all possible strings. However, it is the generalization operator which induces an
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abrupt change in the coverage rate of the hypotheses generated during learning
and a fast crossing of the region where most potential hypotheses lie.

In grammatical inference, the phase transition is a property of the learning
approach, not of the space of hypotheses. This fact is even more striking in the
case of DFA learning.

11.5.3 The generalization landscape in the DFA case

In the NFA case we have seen that, the generalization cone starting from a learn-
ing sample is explored by successive generalization steps, i.e., state merging. The
coverage rate always undergoes a sharp transition between a regime where the
induced automata cover a very small fraction of random test strings and a regime
where they cover a large fraction of them. The first experiments reported in
Section 11.5.1 clearly indicate that even though an abrupt transition occurs also
in the case of the inference of DFA, it is of a different nature. Specifically, a gap
appears between the automata with low coverage rate that are produced first and
automata of high coverage rate that are encountered later in the generalization
process.

It is of interest to look again at the Abbadingo challenge presented in Section
11.4.1. One challenge regarding the induction of DFA involved a target automata
of 128 states with a “sparse” learning set of |P| = 4382 strings defined over an
alphabet of size |Σ| = 2. The strings had an average length � = 17. This prob-
lem remained unsolved during the competition. A look at the variations in the
coverage rate in the generalization cone may explain part of the reason for this
(see Figure 11.16). As is strikingly apparent, no DFA of coverage rate between
almost 0% and 95% is ever considered. And this curve is one among hundreds
that exhibit the same pattern. If, indeed, this curve represents the behavior of the
learning algorithms, then it is no wonder that induction fails in this case. A set of
experiments was therefore aimed at a better characterization of this phenomenon
in the DFA case.

It is noticeable that the same shape was found for the variation in the cover-
age rate in a large variety of situations (see Figures 11.12, 11.16, 11.17–11.19).
It is therefore of a generic nature, i.e., independent of the size |Σ| of the alphabet,
the length of the learning and test strings, or the size of the training set.

Since this shape exhibits a large gap in the coverage of the automata that are
considered in the generalization cone, serious consequences can be expected for
the learning algorithms. It is therefore important to understand the reasons for
this typical behavior.

We start by examining some parameters associated with the dynamics of the Why is there a gap?

generalization process. An important characteristic associated with graphs and
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Figure 11.16 Induction of a DFA in the conditions of the Abbadingo challenge.
The alphabet size |Σ| = 2, the average length of the strings � = 17, and the
target automaton has 128 states and is used to label the 4382 learning strings.
The prefix tree acceptor in this case comprised approximately 27 000 states.

with finite state automata in particular is the ratio of the number of exit edges
and the number of (non-terminal) states. We would expect it to increase as states
are merged since at each time the resulting merged state inherits at least as many
edges as the more connected parent state. Indeed, this is what is observed ex-
perimentally. For instance, Figure 11.18, obtained for an alphabet size |Σ| = 4,
a training set size |P| = 500, and strings of length � ∈ (1, . . . , 8), shows a
gradual increase in the ratio #edges/#states. In the PTA the ratio is close
to 1 since the automaton essentially consists of sequences of states associ-
ated with each training string. This is especially true when the training set is
sparse in the space of all possible training strings. Then, for instance, the space
of strings of length � ∈ (1, . . . , 8) defined over an alphabet of size 4 is of
size

8∑
i=1

4i =
4(48 − 1)

4− 1
= 87 380.

A learning set of size 500 is therefore sparse.
The surprising fact is that there is no great jump in the ratio when the gap in

the learning trajectories is crossed. In Figure 11.18, it goes from a value ≈ 1.6
to a value ≈ 2. Only then does it sharply increase, during the last generalization
operations.
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Figure 11.17 Variation in the coverage rate when random samples of automata
are taken within the generalization cone from the DFA. Here the alphabet size
|Σ| = 4 and the learning set size |P| = 500. In both figures the profile is made
up of eight generalization processes, in the top panel with strings of length � ∈
(1, . . . , 8) and in the bottom panel with strings of length � ∈ (1, . . . , 32).

Another key parameter is the ratio of the number of accepting states and the
total number of states. Since each time an accepting state is merged with another
state the resulting state is accepting as well, one would expect this ratio to in-
crease during the generalization process. However, experiments tell a completely
different story (see Figure 11.19). Whereas the ratio does indeed gradually in-
crease during the first part of the generalization, before the gap, it jumps back to
almost 0 after the gap. How should we to understand this?
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Figure 11.18 Evolution of the ratio of the number of exit edges and the number
of (non-terminal) states. Here, the alphabet size is |Σ| = 4, the training set size
is |P| = 500 and the strings have length � ∈ (1, . . . , 8). The curve results from
the aggregation of eight generalization trajectories.

One explanation would be that a small number of accepting states is involved
in all the state-merging operations. In order to test this hypothesis, a lengthy
visual study of the evolution of the automata was undertaken. An example of
an automaton after the gap is given in Figure 11.20. The states have an array
proportional to their connectivity. One can see that one terminal and accepting
state has attracted most links. Therefore, the ratio of accepting states and the
total number of states remains low and can even decrease dramatically.

One fact that differentiates DFA induction from NFA induction is that, in the
former, after each state-merging operation other such operations may be neces-
sary to restore the deterministic character of the automaton. This is illustrated in
Figure 11.21. It is then natural to examine how many of these determinization
operations are carried at each step in a generalization trajectory.

In Figure 11.22, the y-axis reports the number of states merging for deter-
minization after each generalization step starting, as usual, from the PTA. Again,
this figure is a compound profile with eight individual learning trajectories. The
pattern is always the same. Up to the threshold of the gap, the number of deter-
minization operations is very low, limited to less than 10 except in two cases,
one where an “eruption” of approximately 100 operations occurs on one trajec-
tory and another where approximately 160 operations occur on another trajec-
tory. However, at the verge of the gap, for all trajectories there occurs a sudden
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Figure 11.19 Evolution of the ratio of the number of accepting states and the
total number of states. Here, the alphabet size |Σ| = 4 and the training set size
|P| = 200. The curves result from the agglomeration of eight curves. In the
upper panel the strings are of length � ∈ (1, . . . , 8). In the lower panel the strings
are of length � ∈ (1, . . . , 16).

very large cascade of determinization operations of sizes, in these cases, between
1200 and 1500 operations. This is what explains the gap in the exploration of
DFA by generalization from the PTA. After the gap, again each generalization
operation entails very few determinization operations.

Given the apparently universal character of this singular pattern, it is im-
portant to look at models that could predict it. At the elementary level, a

Attempt at a
theoretical model
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Figure 11.20 An example of an automaton just after the gap in the general-
ization trajectory has been crossed. One terminal state has attracted most of the
links.

determinization merging takes place whenever two states are merged that have
at least one output link with the same letter (see Figure 11.21, where the merged
states share “a” as an output letter). Indeed, in this case the output of the state is
no longer determined if a letter is given. This, in turn, entails other state-merging
operations further down on the states reached by the same letter. The expected
number of state-merging operations E[merges] can be computed from a chain-
reaction-like model:

E[merges] = 1 + E[merges]

⎛
⎝ |Σ|∑

i=1

P(k = i) · i

⎞
⎠ (11.2)

where P(k = l) is the probability that a state-merging operation provokes an
intersection of size i of the output letters for the two merged states. The expected
number E[merges] diverges when

∑|Σ|
i=1P(k = i) · i > 1.
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Figure 11.21 Starting from the learning sample S = {〈a, b, c〉, 〈a, b, a, a〉,
〈a, b, a, b〉, 〈b, b, a〉}, the prefix tree acceptor (top automaton) is built. Then, a
pair of states is chosen for merging (shaded oval). This leads to the third automa-
ton from the top. This automaton being non-deterministic, another state-merging
operation is carried out to restore the deterministic character of the automaton
(bottom).

This model is crude in the sense that it assumes that the state-merging op-
erations are independent. As it is, it does not take into account the distribution
of the letters and of the different states with respect to their output connectivity.
However, it is easy to turn this simple model into a simulation tool where one
starts by providing the relative proportion of states with 0, 1, 2, . . . output links
and then running the simulation.

That was done, for instance, for the case of the Abbadingo challenge already
encountered in Figure 11.16. There, the alphabet size is |Σ| = 2, the average
length of the strings is � = 17, the target automaton has 128 states and is used
to label the 4382 learning strings. The prefix tree acceptor in this case com-
prised approximately 27 000 states. The onset of the gap occurs when the con-
sidered automaton has approximately 16 200 states, that is, after approximately
8800 state-merging operations. This is to be compared with the prediction of
the model, which is that a divergence in the expected number of state-merging
operations should arise after 11 716 state-merging operations.
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Figure 11.22 The number of states of the DFA that are produced during an
exploration by generalization from the PTA (going from right to left) is plotted
along the x-axis. The number of state-merging operations required to restore the
deterministic character of the new candidate automaton after each generalization
step is plotted along the y-axis. One large cascade of state-merging operations
occurs at the verge of the gap.

The prediction is in error by only 33%. Given the simplifying assumptionsA quite remarkably
precise prediction that underly the model, the agreement with the actual value is quite remarkable.

The existence of a gap in the coverage rate of the candidate DFA generated
by a generalization process from the PTA can thus be explained in terms of a
chain-reaction-like phenomenon. At one point, one more state-merging opera-
tion leads to a state of the system, i.e., the current candidate automaton, that
cannot be made deterministic without a very large number of determinization
operations. This effectively renders the generalization process blind to a whole
region of the generalization space, since it cannot stop generalizing in this region.
In other words, there is a long sequence of generalization steps, each producing
an NFA, before a DFA is obtained. This, in effect, means that learning meth-
ods based on state-merging operations are unable to produce a DFA in a whole
region of the generalization space.

In the next section we study the consequences of the performances of these
learning algorithms. Are these generalization performances really as bad as
might be expected from the profile of the coverage rate during generalization?

In the following, we focus on the induction of DFAs.
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Figure 11.23 When two states are merged they can have 0, 1, 2 or more out-
put letters in common (k = i). Depending on the size k of this intersection,
0, 1, 2 or more further determinization mergings must take place. This can lead
to a diverging chain reaction of state-merging operations, each new operation
potentially leading to more.

11.6 Consequences of the behavior of the learning
algorithms: how bad is it?

The coverage landscape, for the DFAs, shows a hole in the generalization cone:
for a large coverage range, the density of hypotheses falls abruptly. Therefore, a
random exploration of the generalization cone would face severe difficulties in
finding a hypothesis in this region and would be likely to return hypotheses of
poor performance if the target grammar had a coverage rate in this “no man’s
land” interval. However, the existing learning algorithms do not merge states at Does the

phase-transition-like
phenomenon actually
hamper learning?

random when generalizing. Do their control strategies protect them against the
avalanche phenomenon and allow them somehow to explore the “gap”?

Another concern is related to what has been observed in inductive logic pro-
gramming, namely a discrepancy between the target concept and the learned
hypotheses. In the case of the induction of finite state automata, a first and easy
measure of such discrepancies is the difference in the coverage rate of the target
automaton and the learned one. For instance, given a target automaton with cov-
erage lying in the gap (e.g., 50%), are the learning algorithms able to probe the
associated region of hypotheses having same range of coverage rate and to re-
turn a hypothesis in this region? In other words, are they able to guide the search
toward hypotheses of appropriate coverage rate, especially if this coverage falls
in the gap?
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The performances of two standard algorithms in grammatical inference,
namely the RPNI and the RED–BLUE (on EDSM) algorithms (Oncina and
Garcı́a, 1992; Lang et al., 1998) have thus been studied. We first report the ex-
periments and their outcome. We then look at the control strategies used by these
algorithms.

11.6.1 Experimental setting

The experiments reported in Section 11.5 were for training sets made of positive-
only string sequences. Since the focus was on the generalization cone based on
the PTA, there was no need to consider negative instances.

However, in order to assess the performance of a learning algorithm, the
learned hypothesis must be compared with the target automaton. Therefore, an-
other experimental setting is used in this section: the sampling of target automata
and the construction of training and test sets. These data sets include positive and
negative examples, as most grammatical inference algorithms (and specifically
RPNI and RED–BLUE) use negative examples as a means of stopping the gener-
alization process.

The first experiments tested whether heuristically guided inference algo-
rithms can find good approximations of target automata when these automata
have a coverage rate falling in the gap and when they have the low coverage rate
typical of many applications. Thus, target automata with (i) an approximately
50% coverage rate (as in the influential Abbadingo challenge and in the middle
of the “gap”) and (ii) with a 3% coverage rate were considered.

For each target coverage rate, the same experimental setting as that described
in Lang et al. (1998) was used in order to retain a certain number of target au-
tomata with a mean size of Q states (Q = 50, in these experiments). Then, for
each automaton, N = 20 training sets of size |SL| = 100, labeled according
to the target automaton, were generated, with an equal number of positive and
negative instances (|P| = |N | = 50) of length � = 14. The coverage rate was
computed as before on 1000 uniformly chosen strings having no intersection
with the training set.

11.6.2 The coverage rates of the target and learned automata

Let us first compare the coverage rate of the learned automata with the coverage
rate of the target automata.

In the first set of experiments, target automata were generated having a cover-
age rate close to 56%. Only the graph obtained for the RPNI algorithm is shown
here (see Figure 11.24), with three typical learning trajectories. Similar results
were obtained with the RED–BLUE algorithm.
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Figure 11.24 (Left) Three RPNI learning trajectories for a target automaton of
coverage 56%. Their extremity is outlined in the light gray oval on the left. The
broken horizontal line corresponds to the target automaton coverage. The cloud
of points corresponds to random trajectories. (Right) Same as the left-hand panel
except for the coverage of the target automaton, here 3%.

One immediate finding is that both the RPNI and the EDSM heuristics man-
age to probe the “gap”. The three learning trajectories obtained using the RPNI

algorithm show that candidate automata of all coverage rates are generated up to
approximately 40% coverage rate. This contrasts with the learning trajectories
produced from the same prefix tree acceptors when the state-merging operations
are random; here again, a wide gap appears.

This may explain why the gap phenomenon was not discovered before, and
why the RED–BLUE algorithm, for instance, could solve some cases of the Ab-
badingo challenge where the target automata have a coverage rate of approx-
imately 50%. The RPNI algorithm, however, tends to overspecialize the target
automaton by returning learned automata with coverage in the range (35%, 45%)
when the target automata have 56% coverage rate. Conversely, experiments show
that RED–BLUE tends to overgeneralize by 5% to 10%.

A second set of experiments was carried out in which the target automata
had a coverage rate of approximately 3%. The results (Figure 11.24) show that,
in this case, RPNI ends up with automata of coverage 4–6 times greater than the
target coverage. The effect is even more pronounced with RED–BLUE, which
returns automata having an average coverage rate around 30%!

These results are unexpected, since low-coverage automata seem to be much
more densely probed than medium-coverage ones. An explanation is needed. But
before looking for it, we will examine further the generalization performances
of learned automata in this low-coverage regime.
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11.6.3 Generalization error

A set of experiments analyzed the learning performances of the algorithms with
respect to test errors, differentiating the false positives and the false negatives.

In these experiments, the type of target automaton was chosen by setting the
number of states Q and some predetermined structural properties, as follows.

Deterministic target automata were generated along four parameters:

• the size |Σ| of the alphabet;

• the number of states |Q|;

• the density of the connections;

• the level Trec of recursivity of the connections.

More precisely, for each generated target automaton a tree of |Q| states was
first built randomly. At this stage, the density of connection is minimal, with
value 1. Then density ×|Q|(|Σ| − 1) transitions are added, of which a number
Trec create cycles. The leaves of the tree are taken as accepting states, and the
remaining states are labeled as accepting with a probability of 20%.

A whole set of experiments was carried out by varying the four control pa-
rameters. We report here one typical finding where the number of states of the
target automaton is the key parameter. In these experiments, |Σ| = 4, Trec =
50%, density = 50%. Moreover, the learning set consisted of 1000 strings of
length � ∈ (1, (2 × depth)), where depth is the depth of the target automaton
(the maximal depth of the initial tree).

It is useful to measure the degree of structural completeness achieved by
the learning set, that is, the proportion of all transitions of the target automa-
ton that are excited by the learning strings. The following results were obtained
for training sets of structural completeness Prct ≥ 40%. The uniform cover-
age rates ucovt and ucovf were estimated using 1000 test strings of length
� ∈ (1, (2 × depth)) that were not used in the training set. The positive cov-
erage rate pcovf (the negative coverage rate ncovf ) is estimated using a sample
of 1000 test strings labeled as positive (as negative). The numbers in Table 11.1
were obtained by repeating each experiment 100 times for each setting of the
control parameters.

Table 11.1, obtained for different sizes of the target automaton and for train-
ing sets of structural completeness above 40%, confirms that both RPNI and
RED–BLUE return overgeneralized automata.

Indeed, what is remarkable is that this overgeneralization does not imply that
the learned automata are complete: on the contrary, the coverage of the positive
examples remains below 65% in all but one setting. On the one hand their aver-
age coverage is vastly greater than the coverage of the target automaton; on the
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Table 11.1 Performances of the algorithms RED–BLUE

(RB) and RPNI for target DFA of sizes Q = 15, 25, 50, and
100 states and of (low) coverage rate ucovt. The learned
automata are characterized by Qf , ucovf , pcovf , and ncovf ,
which respectively denote their average size, their average
coverage, the true positive rate, and the false positive rate.

Algorithm Q ucovt Qf ucovf pcovf ncovf

RB 15 5.97 10.38 33.81 60.93 34.69
RB 25 4.88 12.77 40.35 62.68 37.87
RB 50 4.20 14.23 45.38 66.14 42.23
RB 100 3.39 13.13 30.35 42.81 28.69
RPNI 15 5.95 5.14 22.90 57.51 26.99
RPNI 25 4.70 7.56 23.07 56.38 25.98
RPNI 50 3.87 14.08 23.45 51.89 24.42
RPNI 100 3.12 26.41 23.15 50.12 24.40

other hand they tend to cover only part of the positive test instances while they
cover a significant proportion of the negative test instances. Both precision and
recall are therefore poor. This shows that the heuristics used in both RPNI and A poor performance

in the case of targets
with low coverage

RED–BLUE may be inadequate for target automata of low coverage. It is time to
examine these heuristics and why they can lead to such results.

11.6.4 The control strategies and their impact

The RPNI (regular positive and negative grammatical inference) algorithm,
(Oncina and Garcı́a, 1992), starts by building the prefix tree acceptor (PTA) from
the positive instances of the training set. The algorithm then iteratively selects
pairs of states that could be merged, checks whether a candidate-merge would
yield an automaton that covers at least one negative instance, and makes the
merge if it is admissible. The choice of a pair of states to merge is made sys-
tematically and does not depend on the current situation of the search. When the
PTA is built, its states are given labels {q1, q2, . . . , } starting from the root and
increasing in a breath-first manner. The RPNI algorithm considers pairs of can-
didate states according to their lexicographic order, that is, it favors merges that
are close to the root of the current automaton.

If one looks at the size of the generalization steps that this heuristic entails,
one can see that merges of pairs of states close to the root lead to larger gen-
eralization steps than merges of pairs of far-away states. Furthermore, RPNI is
subject to an “avalanche” of determinization operations.
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The heuristic developed for the Red–Blue algorithm, called EDSM (evidence
driven state merging), by contrast chooses at each step the pair of states that will
entail the largest number of determinization operations. The mean generalization
step is therefore generally higher than for RPNI. However, it is less prone to
the avalanche phenomenon. This last quality may also explain its tendency to
overgeneralization.

Indeed, in the case of the RPNI algorithm, during the last steps of the gener-
alization process most attempted merges are pruned because they would lead to
an avalanche of further merging operations and therefore to the covering of neg-
ative instances. Consequently, the generalization process stops short of too much
overgeneralization. This is confirmed by the experimental results. The Red–Blue
algorithm, however, can apply generalization steps further away before the gen-
eralization process stops. At least in the case of target automata having small
coverage rates, this unfortunately steers the learning towards hypotheses of much
larger coverage, that is, to high rates of false positive predictions.

11.7 Comments

We now compare and contrast the cases of learning in first-order logic and in
grammatical inference. In the former the phase-transition-like phenomenon is in-
herent in the language representation: when hypotheses and examples are drawn
randomly according to a uniform distribution within the space of the control
parameters, an abrupt transition is observed between a region where the hy-
potheses cover almost all examples and a region where almost no examples are
covered.

When the same kind of experiment is carried out in grammatical inference,
looking at the probability that random automata recognize random strings, no
such sudden transition is observed. The average branching factor of the states,
i.e., the average number of output links, plays a larger role in the probability
of coverage but, overall, the coverage rate exhibits a well-behaved gradient that
should perfectly inform the learning algorithms.

However, when the modus operandi of the most prevalent learning systems
are taken into account, the findings are quite different. When the exploration of
the hypothesis space starts from the prefix tree acceptor and proceeds by the
merging of states in the candidate automaton then, again, a very steep transition
appears between the beginning of the search where candidate automata cover
almost no test strings and the region reached later where almost every test string
is covered. Actually, the phenomenon is even more dramatic with the induction
of DFAs since then an actual gap usually appears between the two regions.
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In grammatical inference, therefore, the phase transition phenomenon is not
inherent in the language representation: rather, it is due to the generalization A phase transition

due to the learning
algorithm, not
the representation
language.

process used in learning. Somehow the state-merging operations used for gen-
eralization radically increase the gradient in the coverage of the automata that
are considered. In addition, as was seen in the case of DFA induction, a further
phenomenon occurs: an avalanche of state-merging operations needed to ensure
that candidate automata are deterministic.

The nature of the phase transition in grammatical inference is therefore dif-
ferent from that encountered in first-order-logic learning. It is a property of the
learning algorithm rather than a property of the representation language.

Moreover, whereas the covering test is NP–complete in first order logic, it
is of linear complexity in the case of grammatical inference. Consequently, one
does not observe an increase in the search cost around the phase transition.

Grammatical inference does not truly belong to the same class of problems
as SAT or relational-concept learning and thus does not have the same kind of
phase transition. But, in a strange way, the phase transition exhibited in DFA is
a nice example of a physical-like process with a chain reaction mechanism. In
some respects, then, it is a proper example of a phase transition.



12

Phase transitions in complex
systems

Contents
12.1 Complex systems 301

12.2 Statistical physics and the social sciences 304

12.3 Communication and computation networks 309

12.4 Biological networks 310

12.5 Comments 311

Even though this book is focused on learning, we thought it might be useful to
widen its scope to include a brief overview of the emergence of ensemble phe-
nomena (typically phase transitions) in complex networks. Beside their intrinsic
interest as systems amenable to be studied via statistical physics methods, com-
plex networks may well impact relational learning because both examples and
formulas can be represented as networks of tuples, as we have seen in previous
chapters. The same can be said for the constraint graph in CSP and the factor
graph in SAT. In ensemble phenomena, emerging from a network of “micro-
scopic” interactions, it is likely that the underlying graph structure has an impact
on the observed macroscopic properties; thus cross-fertilization might be of mu-
tual benefit.

Complex networks are complex systems, meaning systems composed of a
large number of mutually interacting components. Even though in such systems
it is impossible to describe the behavior of the individual components, the pat-
terns of interactions among them allows macroscopic properties to emerge which
would be missed by a reductionist approach. Thus, the science of complexity
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aims to discover the nature of these emerging behaviors and to link them to the
system’s microscopic level description.

12.1 Complex systems

From its very definition, it is clear that the science of complexity naturally de-
rives from statistical physics. Thus, the emergence of phase transitions and the
behavior of complex systems have strong links. In fact, both derive their proper-
ties from the effects of the interaction patterns among many small components,
and both have at their core the notion of graphs or networks. The nodes of such a
network constitute an ensemble of elements, whose interactions let the network’s
macroscopic behavior emerge.

In Chapter 3 we introduced the notion of graphs and mentioned the best
known classes investigated in mathematics and the most common structures oc-
curring in the real world. As mentioned in that chapter, a first hint as to the ex-
istence of phase transitions in graphs was provided by Erdös and Renyi (1959),
who discovered what amounted to a phase transition in the connectivity during
the process of generating a random graph from the Gn,p ensemble.

Later, the emergence of phase transitions in complex networks was investi-
gated systematically. An overview of early results was given by Newman (2003).
Several authors have studied spin models, such as the Ising model, on networks
of various kinds, for example random graphs (Dorogovtsev et al., 2002; Leone
et al., 2002), small-world networks (Barrat and Weigt, 2000; Pelalski, 2000;
Herrero, 2002), and Barabàsi–Albert networks (Aleksiejuk et al., 2002).

The question behind this body of work is whether (and how) graph structures
that are not random affect the emergence and location of the phase transition.
For instance, Walsh (1999) looked at colorability in Watts–Strogatz small-world
graphs; he found that these graphs are easily colorable for both small and large
values of the shortcut density parameter p but that they are harder to color in in-
termediate regimes. Vàzquez and Weigt (2003) examined the vertex cover prob-
lem, and found that on generalized random graphs solutions are harder to find
for networks with stronger degree correlations.

Given the links between complex networks and statistical physics, there is
no wonder that methods borrowed from the latter are used to investigate prop-
erties of the former. For instance, the continuum theories proposed to predict
the degree distribution can be mapped, often exactly, onto some well-known
problems investigated in statistical physics. Two such cases are the mapping
between evolving networks and Simon’s model (Simon, 1955), on the one
hand, and the equilibrium Bose–Einstein gas (Park and Newman, 2004), on the
other.
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Park and Newman (2004) proposed a method for generating networks that
match the expected properties of a graph ensemble, given a set of measurements
made on a real-world network. As for the Boltzmann distribution in statistical
mechanics, these models offer the best prediction of properties subject to the
constraints imposed by a given set of observations. Using exponential random
graphs, Park and Newman provided for models in this class exact solutions that
show arbitrary degree distributions and arbitrary but independent edge proba-
bilities. They also discussed more complex examples with correlated edges; for
these cases approximate or exact solutions can be found by adapting various
methods from statistical physics.

An interesting approach was proposed by Biely and Thurner (2006). They
used a microscopic Hamiltonian derived from the socio-economically motivated
assumption that individual nodes increase or decrease their utility by linking
to nodes with respectively a higher or lower degree than their own. Utility is
an equivalent of energy in physical systems. Nodes tend to maximize utility as
physical particles minimize energy. From the study of the temperature depen-
dence of the emerging networks, the existence of a critical temperature Tcr was
observed, at which total energy (utility) and network architecture undergo rad-
ical changes. At this topological transition a scale-free network, with complex
hierarchical topology, is obtained.

Another approach explicitly based on statistical physics was proposed by
Vicsek (2007). He investigated topological transitions in the restructuring of net-
works. In his approach energy is associated with the different network topologies
and temperature is used as a measure of the noise level during rewiring of the
edges. A variety of topological phase transitions emerges when the temperature
is varied. These transitions denote changes in the essential features of the global
structure. Then Vicsek addressed the question of network structure modularity.
The global organization can be viewed as the coexistence of structural commu-
nities, associated with highly interconnected parts. The approach he proposed
allows one to analyze the main statistical features of the interwoven sets of over-
lapping communities, so making a step towards the uncovering of the modular
structure of complex systems. The approach is based on defining communities as
clusters of percolating complete subgraphs called k-cliques. A set of new char-
acteristic quantities is defined for the statistics of the communities, and an effi-
cient technique is applied to explore overlapping communities on a large scale.
Significant overlappings among communities were detected, and some universal
features of networks uncovered.

A key concept in complex systems, as well as in statistical physics, is that of
order. Several types of phase transition, occurring in a variety of fields, concernOrder and disorder

a transition between ordered and disordered states. Different statistical mechan-
ics tools have been devised to describe the different levels of organization of
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networks and to measure their degree of order. Among the different measures
used with this aim, entropy (as a measure of disorder) holds a prominent place.
In a recent paper, Bianconi (2009) defined and characterized the notion of struc-
tural entropy, i.e., the entropy of ensembles of undirected, uncorrelated, sim-
ple networks with given degree sequence. She pointed out the apparent paradox
that scale-free degree distributions are characterized by having a small struc-
tural entropy even though they are frequently encountered in the real world.
She explains this finding by noticing that scale-free networks correspond to the
most likely degree distribution given the corresponding value of the structural
entropy.

Random Boolean networks have been recently investigated by Andrecut and Random Boolean
networksKauffman (2010). These networks are non-linear and show a well-understood

transition between ordered and disordered phases. The authors studied their com-
plex dynamics as a function of the connectivity k between the elements of the
network. They have uncovered an order-chaos phase transition for a critical con-
nectivity kcr = 2; moreover, pairwise correlation and complexity measures are
maximized in dynamically critical networks. Their results are in good agreement
with the previously reported studies on random Boolean networks and random
threshold networks.

A phase transition corresponding to explosive percolation has been found by Percolation

Friedman and Nishimura (2010) in several models of random networks, widely
applicable to physical, biological, and social networks. In such networks giant
clusters appear (essentially) without warning, phenomenon that may have im-
portant implications in several fields.

Finally, Komin and Toral (2010) have used ideas from statistical physics to
reduce large systems of coupled differential equations with diverse parameters
to three equations, one for the global mean field variable and two describing the
fluctuations around this mean value. With this tool they analyzed phase tran-
sitions induced by microscopic disorder in three prototypical models of phase
transitions, which have been studied previously in the presence of thermal noise.
Macroscopic order is induced or destroyed by time-independent local disorder.
A finite-size analysis of the numerical results allows the calculation of the corre-
sponding critical exponents.

Transitions in networks from a small-world structure to a fractal structure Small-world
networkshave been investigated by Rozenfeld et al. (2010). By using the renormalization

group they showed that network topologies can be classified into universality
classes in the configuration space. Moreover, they found a trivial stable fixed
point of a complete graph, a non-trivial point of a pure fractal topology (stable
or unstable according to the amount of long-range links in the network), and
another stable point of a fractal with shortcuts that exist exactly at the small-
world to fractal transition. In addition, they were able to explain the coexistence
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of fractal and small-world phases and to extract information on the distribution
of shortcuts in real-world networks.

12.2 Statistical physics and the social sciences

Complex networks have found an increasing number of applications in the so-
cial sciences, where both classical and statistical mechanical methods have been
applied to investigate their properties. A comprehensive overview of statistical
mechanics methods used to model and study social systems was provided by
Castellano et al. (2009). These authors worked on opinion formation, cultural dy-
namics, collective behaviors, and the coevolution of topology. Social networks,
notwithstanding the limited number of interactions that people may have, show
remarkable ensemble behaviors, such as transitions from disorder to order. An
example of this is the spontaneous formation of a common language/culture.
There are also cases of scaling and universality.

The idea of modeling social phenomena using physics tools is not new, as it
was already present in the thought of philosophers such as Laplace and Comte.
However, only in the past few years has the idea moved from a philosophical
possibility to concrete research involving many physicists. This was motivated,
on the one hand, by the availability of large networks for study and, on the other,
by new social phenomena (mostly related to the Internet) observable on a large
scale.

As Castellano et al. (2009) noticed, a conceptual difficulty immediately
arises when one is approaching social dynamics from the point of view of statis-Social dynamics

tical physics. In fact, in physics, elementary constituents of complex systems are
simple objects whose behavior is well known. Thus, the observed macroscopic
phenomena derive substantially from the complexity of the interaction and not
from the complexity of the constituents. With humans, modeling involves strong
simplifications that are not always well grounded; any investigation of models
of social dynamics involves an additional difficulty, namely the very definition
of realistic microscopic models of the entities involved (humans, in particular).
However, many macroscopic properties do not depend on the details of the com-
ponent processes, and qualitative results at least can be obtained that match the
observed reality. Hence, in many cases it is sufficient to include in the model
only the basic properties necessary to describe an individual behavior.

As a general finding, in social models the drive toward order is provided
by the tendency of the agents to become more alike. This effect is termed so-
cial influence and can be seen as an analogue of the ferromagnetic interaction in
magnets. Even though analogies can be drawn between social systems and statis-
tical physics systems, there are concepts that present more difficulty in physical
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interpretation. For instance, in many social dynamic models there is the idea that
only quite similar agents are willing to interact. This concept is not immediately
translatable into statistical physics but can be loosely associated with the con-
cept of the distance between particles. A fundamental aspect of social modeling
is diversification in the topology of interactions whereas, in statistical physics,
patterns of interaction are often regular lattices. On the contrary, more plausible
interaction patterns are those determined by more complex topologies, such as
small-world or scale-free ones.

12.2.1 Opinion dynamics

In opinion dynamics the dynamics of agreement or disagreement between in-
dividuals is complex. In statistical physics approaches, the opinion states of a
population are defined as well as the elementary processes that determine transi-
tions between such states. One of the first pieces of work using statistical physics
methods in opinion dynamics was by Galam et al. (1982), who applied the Ising
model with spin-spin coupling representing the pairwise interaction between
agents and the magnetic field representing the cultural majority. Personal prefer-
ences toward either orientation were modeled as individual fields. Depending on
the strength of the individual fields, the system may reach either total consensus
toward one of two possible opinions or a state where both opinions coexist.

Voter model
One of the main approaches to opinion formation is the voter model. Voter dy-
namics was first discussed by Clifford and Sudbury (1972) as a model for the
competition of species. It reached popularity because it is one of the very few
non-equilibrium stochastic processes that can be solved exactly in any dimen-
sion. In the model, each agent is modeled by a binary variable s = ±1. At each
time step an agent i is selected along with one of its neighbors j and si is set
equal to sj , i.e., the agent takes on the opinion of the neighbor. This updating
rule implies that agents tend to imitate their neighbors. Starting from a disor-
dered initial condition, voter dynamics tends to increase the order of the system.

Recently, more complex models have been proposed. For instance, Castelló
et al. (2006) introduced the AB model with three states. At each time step an
agent i is randomly chosen and its state is updated according to the following
transition probabilities:

PA→AB = 1
2σB, PB→AB = 1

2σA,

PAB→B = 1
2 (1− σA), PAB→A = 1

2 (1− σB).

where σk (k = A, B) is the local density of each state in the neighborhood of
i. The idea here is that in order to go from A to B one has to pass through the
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intermediate state AB. The rate for going from state A to AB is proportional to
the density of neighbors in state B. This implies that consensus on the AB state,
or a frozen mixture of A and B, is not possible, the only two possible absorbing
states being those of consensus of either the A or the B type.

Non-regular topologies have important effects on the dynamics of the voter
model. On a complete graph the one-dimensional diffusion equation, with a
position-dependent diffusion constant, can be solved analytically.

The average time needed to reach consensus in a system of finite size can
be computed exactly for any value of the initial “magnetization” and increases
with the size of the system. When considering disordered topologies different
ways of defining the voter dynamics, which are equivalent on regular lattices,
are nonequivalent generalizations of the voter model. When the degree distribu-
tion is heterogeneous, the order in which a site and the neighbor to be copied
are selected is relevant because high-degree nodes are more easily chosen as
neighbors than low-degree ones.

An interesting effect of the topology occurs on small-world networks. After
an initial regime the system remains trapped in a metastable state with coexisting
domains of opposite opinions (Vilone and Castellano, 2004). The lifetime of the
metastable state is linear with the system size, so that for finite systems consensus
is eventually reached on a temporal scale shorter than that for a regular one-
dimensional lattice. For infinite systems the state with coexisting opinions is
actually stable, leading to the conclusion that long-range connections prevent a
complete ordering of the voter model.

Majority rule model
An alternative approach to opinion dynamics is the majority rule (MR) model. A
population includes N agents, such that a fraction p+ of agents has opinion +1,
while a fraction p− = 1− p+ has opinion −1. For simplicity, it can be assumed
that the interconnection network is a complete graph. At each iteration a group of
r agents is selected at random (a discussion group): they interact and finally all
agents assume the majority opinion inside the group (Galam, 2002). The group
size r is not fixed but is selected at each step from a given distribution. If r is odd,
there is always a majority in favor of either opinion. If r is even and it happens
that either opinion is supported by exactly r/2 agents, bias is introduced in favor
of one of the opinions, say +1, and then that opinion prevails in the group.

Social impact theory
Lewenstein et al. (1992) proposed a model of social impact that can be solved in
the mean-field approximation. A population contains N individuals i, each char-
acterized by an opinion σi = ±1 and by two random parameters, the persuasive-
ness pi and the supportiveness si, which describe the capability to convince an
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individual to change or to keep its opinion, respectively. These two parameters
represent the quenched disorder of the system. Let Ii be the total impact that an
individual i experiences from its social environment; then the opinion dynamics
is expressed by the rule:

σi(t + 1) = −sgn[σi(t)Ii(t) + hi],

where hi is a random field representing all sources other than social impact that
may affect the opinion. According to the above rule, an opinion flips if the pres-
sure in favor of the opinion change overcomes the pressure to keep the current
opinion. In general, in the absence of individual fields, the dynamics leads to
the dominance of one opinion on the other but not to complete consensus. If
the initial “magnetization” is about zero, the system converges to configurations
characterized by a large majority of “spins” in the same opinion state, and by
stable domains of “spins” in the minority opinion state. In the presence of indi-
vidual spin fields these minority domains become metastable: they remain sta-
tionary for a very long time and then suddenly shrink to smaller clusters, which
again persist for a very long time before shrinking again, and so on (“staircase
dynamics”).

12.2.2 Social and cultural dynamics

Cultural dynamics is the multivaried version of opinion dynamics. The basic
question is related to the uncovering of the microscopic mechanisms that drive
the formation of a cultural domain and of its eventual persistence. The work of
Axelrod (1997) has been very influential; he included in the model two mecha-
nisms that are believed to be fundamental in the understanding of the dynamics
of cultural assimilation (and diversity): social influence and homophily. The first
is the tendency of individuals to become more similar when they interact. The
second is the tendency of likes to attract each other, so that they interact more
frequently. These two ingredients were generally expected by social scientists to
generate a self-reinforcing dynamics leading to a global convergence to a single
culture. It turns out instead that the model predicts in some cases the persistence
of diversity.

From the point of view of statistical physics, the Axelrod model is a simple
vectorial generalization of models of opinion dynamics that generates some truly
novel behavior. In the model, individuals are located on the nodes of a network
and are associated with F integer variables (σ1, . . . , σF ) that can assume q values
σf = 0, 1, . . . , q − 1. The variables are called cultural features and q is the
number of the possible traits allowed per feature. They are supposed to model
the different “beliefs, attitudes and behavior” of individuals. In an elementary
dynamic step an individual i and one of its neighbors j are selected, and the
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overlap between them, namely

ωi,j =
1
F

F∑
f=1

δσf (i),σf (j),

is computed. With probability ωi,j a feature for which traits are different
(σf (i) �= σf (j)) is set equal to σf (i). Otherwise there is no change. Clearly
the dynamics tends to make interacting individuals more similar, but interac-
tion is more likely for neighbors already sharing many traits (homophily) and
becomes impossible when no trait is the same. There are two stable configura-
tions for a pair of neighbors: when they are exactly equal, so that they belong
to the same cultural region, or when they are completely different, i.e., they are
on either side of the border between cultural regions. Starting from a disordered
initial condition, the evolution of any finite system leads unavoidably to one of
the many absorbing states, either a state in which all individuals have the same
set of variables or a frozen state with the coexistence of different cultural re-
gions. The state reached depends on the number of possible traits q in the initial
condition. For small q, individuals share many traits with their neighbors and
full consensus is quickly achieved. For large q, very few individuals share traits
and there is the emergence of small cultural domains that are not able to grow,
a disordered frozen state. On regular lattices the two regimes are separated by a
phase transition at a critical value qcr , which depends on F .

Recently, Contucci et al. (2008) applied statistical mechanics models to de-
scribe the cultural interchange between two homogeneous groups of individuals.
The interaction inside a group is imitative whereas across groups it may be ei-
ther imitative or counter-imitative. When two populations come into contact, as
in the case of immigration but also in a more general context through the me-
dia, sometimes cultural traits are evenly mixed and sometimes one population’s
traits dominate. An interesting finding is that, in some cases, the changes vary
smoothly with the relative proportions of the two groups whereas in other cases
the crossing of a critical value triggers a jump in the observed quantity (Michard
and Bouchaud, 2005).

Contucci et al. (2008) built a mean field theory of the two-population prob-
lem, i.e., they assumed that every individual interacted with every other with the
same strength. To build their model, the authors mapped the resident–immigrant
cultural interaction problem onto that of two interacting groups of spins. A bi-
nary spin σi ∈ {+1,−1} is associated with each cultural trait. The interaction
between two individuals i and j is modeled by a potential, which reflects the will
to agree or disagree between the two. The system has two control parameters: α,
the ratio of the number N1 of immigrants and the total cardinality N of the pop-
ulation, and J12, which represents the strength of imitation or counter-imitation
across the two groups. The output is the average magnetization 〈m〉, which, in
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this context, represents the average opinion of the interacting system. The ob-
tained results show that 〈m〉 varies smoothly when the interchange coefficient is
small but abruptly when the coefficient is large. More intriguing is the observed
dependence of the critical percentage on the internal cohesion of each group.
Owing to a fine balance between internal energy and entropy they found that a
strong cohesion penalizes the cohesion of group.

Another study that revealed the presence of a phase transition in a social
system was performed by Woloszyn et al. (2007). Their goal was to investigate
the social ability to become organized, as a function of the topology of a social-
ties network organized into cliques. Again, a spin σi is assigned to each node
and an interaction energy J to each link. The authors’ aim was to discover the
presence of a phase transition; if it exists, it is indeed a sign of the ability of
the network to become organized. The results indicate that if the connections
between the small groups are too sparse then the system as a whole does not
show any collective behavior.

12.3 Communication and computation networks

Another type of complex system for which the methods of statistical physics are
particularly well suited are large networks of communicating devices, such as
telephone networks, computational grids, the Internet, and the World Wide Web.
In recent years, in fact, these networks have reached sizes that justify ensemble
approaches to their analysis. It is to be expected, then, that emerging phenomena
such as phase transitions are found in their behavior.

Ohira and Sawatary (1998) created a simulation model of traffic in a com-
puter network and found the presence of a phase transition. They were particu-
larly interested in the shifting of the phase transition points from a state of low
congestion to one of high congestion when the strategy for selecting paths for the
packets is changed. The order parameter of the transition was the average travel
time of packets and the control parameter was the generation rate of packets in
the network. The interest of the work is that the authors proposed a stochastic
routing strategy that shifts the location of the phase transition. If a parameter,
used to control randomness in the path selection, assumes an appropriate value,
then the onset of the congestion phase (at the phase transition) is delayed, i.e.,
the network can accomodate a higher rate of packet generation before becoming
congested. The authors also changed the number of routers that apply this strat-
egy and found that the model shows a non-linear response as a function of the
proportion of these routers. This observation suggests that the phase transition is
mostly due to their interaction.

Lawniczak and Tang (2005) investigated a similar problem, namely the
packet traffic dynamics in a data network model near the phase transition point
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from free flow to congestion. They built a model to investigate the spatiotemporal
dynamics of packets traffic near the phase transition point for different network
connection topologies and for static or adaptive routing algorithms. The results
showed, for adaptive routings and periodic square-lattice connection topologies,
the emergence of synchronization, i.e., of a structure with peaks and valleys in
the distributions of outgoing queue sizes when the network models are in their
congested states. The emergence of this type of synchronization is accelerated
by adding an extra link but destroyed by adding many more links. With adaptive
routings and periodic triangular-lattice connection topologies, the packet traffic
was much more evenly distributed.

In a more recent paper Marbukh (2007) discussed the possible presence of a
phase transition in various types of complex communication networks, as well as
the consequences of these phenomena for network performance evaluation and
control. The microscopic description of the network was given by a Markov pro-
cess with a large number of locally interacting components. The relation between
microscopic and macroscopic descriptions was studied using statistical physics
tools.

A more comprehensive approach to the analysis of synchronization in
complex networks, including both numerical and analytical approaches, was
provided by Arenas et al. (2008). The authors offered explanations of the syn-
chronization occurring in a network with complex topology when oscillating
elements interact. Moreover, they highlighted the new features emerging from
the interplay between the structure and the underlying pattern of connections.
The investigation was extended to the analysis of opinion formation, where nu-
merical simulations show that there is a phase transition from incoherence to
synchrony at a well-defined critical coupling.

A directed small-world network consisting of attractively coupled identical
phase oscillators has been analyzed recently (Tönjes et al., 2010). The authors
found that complete synchronization is always stable but is not always reach-
able from random initial conditions. Depending on the shortcut density and on
the asymmetry of the phase coupling function, there exists a regime of persistent
chaotic dynamics. On increasing the density of shortcuts or decreasing the asym-
metry of the phase coupling function, they observed a discontinuous transition
in the ability of the system to synchronize.

12.4 Biological networks

Large biological networks, such as, for instance, gene regulatory networks, are
typical of the complex systems that can be found in many branches of biol-
ogy and physiology. Problems in these areas have been often approached via
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machine learning techniques, both supervised and unsupervised; cluster analy-
sis, in particular, has been widely applied, for example to find groups of related
genes (Naczar et al., 2007). Clearly, such large networks have also been inves-
tigated with complex systems tools with aim of linking biological properties to
network measures, such as betweenness, centrality, degree distribution, and so
on.

Very recently, methods from statistical mechanics have been used also with
very promising results. One approach was proposed by Braunstein et al. (2008),
who analyzed and compared two different algorithmic approaches to identify
gene-regulatory interactions from high-throughput gene expression data. The
first approach uses pairwise correlations between regulated and regulating genes
and the second uses message-passing techniques for inferring activating and in-
hibiting regulatory interactions. The message-passing (belief propagation) tech-
niques can be understood as an algorithmic reinterpretation of the cavity method
in spin glass physics. It is the same idea as that underlying the survey propa-
gation algorithm described in Section 3.5.4. The performances of the two al-
gorithms have been analyzed theoretically on well-defined test sets, using tools
from the statistical physics of disordered systems such as the replica method. The
message-passing algorithm was found to outperform the classical algorithms,
since it takes into account the collective effects of multiple regulators.

An interesting work linking evolutionary learning to gene network genera-
tion appeared recently (Nicolau and Schoenauer, 2009). The authors proposed
a novel approach to generating scale-free network topologies that is based on
an existing artificial gene-regulatory-network model. From this model different
interaction networks can be extracted, on the basis of the value of an activation
threshold. Using an evolutionary computation approach, the model is allowed
to evolve in order to reach network-specific statistical measures. The results
obtained show that, when the model uses a duplication and divergence initial-
ization, such as that seen in nature, the resulting regulation networks are closer
in topology to scale-free networks. Indeed, these initialized genomes are far bet-
ter suited for evolution than are purely random networks, owing to the larger
range of degrees in the networks they encode as well as to the wider choice of
resulting networks obtained by varying the threshold parameter that decides the
existence of an edge between nodes.

12.5 Comments

The networks mentioned in this chapter have different natures regarding their
composition at the microscopic level. In fact, the component elements differ
greatly in their complexity, autonomy, and richness of interactions, ranging from
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proteins and computers to human beings. It is then quite striking that analogous
patterns of behaviors appear.

As a matter of fact, once the components have been brought to a suitable
level of abstraction (keeping only the essentials of their individual behavior and
discarding irrelevant details) only the pattern and strength of their interactions
matters. It is thus possible to find commonalities in systems that differ largely in
their composition but not in their behavior, allowing the transfer of results from
one domain into another.

For this reason, this chapter does not aim at providing full details of the
approaches and results but suggests where one should start to look for similarities
in other domains.
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Ensemble phenomena such as the emergence of a phase transition are by no
means limited to artificial and inanimate entities. On the contrary, in living be-
ings one may not infrequently observe similar phenomena, whose origin can
be tracked down to the effect of the interaction among many components. In-
deed, in living organisms the number of cells cooperating in biological and
physiological processes is so large that ensemble behaviors are only to be ex-
pected. The rapid transition between two neural states was observed as early as
the late 1980s (Freeman, 1988). The experimental setting used by Freeman and
co-workers included animal and human subjects, engaged in goal-directed be-
havior, on which high-density electrode arrays were fixed. Action potentials and
brain waves (electroencephalograms (EEG) and local field potentials) were then
recorded and used to develop a data-driven brain theory.

Freeman and co-workers designed data processing algorithms that enhance
the spatial and temporal resolution of the textures of brain activity patterns
found in three-layer paleocortex and six-layer neocortex. A major discovery of
their work was evidence that cortical self-organized criticality creates a pseudo-
equilibrium in brain dynamics that allows cortical mesoscopic state transitions
to be modeled analogously to phase transitions in near-equilibrium physical
systems. In more detail, the uncovered transition has four stages: a first-order
phase transition, which resets the phase of beta–gamma EEG oscillations in a
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discontinuity of the cortical dynamics; a pattern selection in the attractor land-
scape by phase resynchronization; a second-order phase transition, which leads
to pattern stabilization by a dramatic decrease in the rate of change of the order
parameter; and then high-energy pattern broadcast over divergent–convergent
axonal cortical output pathways, during which the rate of free energy dissipa-
tion is maximized. The ratio of the rate of free energy dissipation and the rate of
change in the order parameter defines the pragmatic information, which is max-
imized during cortical transmission. On the basis of these findings the authors
noticed that the power law and fractal distributions of EEG parameters enabled
the scale-free dynamics of the cortex to be displayed as a macroscopic cortical
state transition that sometimes covers an entire cerebral hemisphere almost in-
stantaneously, even in humans; thus, they hypothesize that this transition is the
neural mechanism that forms Gestalts (unified multisensory percepts).

Freeman also investigated the emergence of a phase transition in the ani-
mal visual system (Freeman, 1990). By analogy with the olfactory system, he
suggested that in the visual cortex also a state transition causes a jump in the
cortical dynamic state, constituting a type of bifurcation. The model proposed
by Freeman requires that the cortex be intrinsically unstable and liable to sudden
transitions under the appropriate stimuli. The conditions that facilitate controlled
instability include a high level of cortical activity and of excitability, which is
achieved under the neurochemical states of behavioral arousal and motivation.
In a suitably aroused animal that expects a certain stimulus, the arrival of the
sought stimulus can induce neural activity that serves as a bifurcation parameter.

After two decades of work on the subject, the presence of phase transitions
in perception is still at the core of Freeman’s interest. In a recent paper (Freeman,
2009) he investigated the process of storing information, extracted from micro-
scopic sensory inputs, in the mesoscopic memory for retrieval in recognition.
The process requires the creation of spatio-temporal patterns of neural activ-
ity. Such a construction occurs through phase transitions in cortical populations
that condense the background activity through spontaneous symmetry breaking.
Large-scale interactions create fields of synaptically driven activity, which is ob-
served by measuring brain waves (with an electrocorticogram) and evaluated by
constructing a mesoscopic vectorial order parameter.

Recently, Cowan also investigated in depth the question of phase transi-
tions in the brain (Koppes, 2008). According to his view the same rules that
are valid in the transition from vapor to liquid or from liquid to solid can be
applied to the activation schemes followed by the neurons in the human brain.
In particular, he observed the emergence of phase transitions as a consequence
of neural interactions: he showed that, using the mathematical tools provided
by statistical physics, it is possible to explain how the rhythms observed with
an electroencephalogram, including δ-waves (occurring during sleep), α-waves
(linked to visual processing), and γ-waves (linked to information processing), are
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generated. Cowan was a proposer of the Wilson–Cowan equations, which are
aimed at describing the dynamic activity of (biological) neural nets. Even though
these equations are too simple to be realistic, they are nevertheless a first step to-
wards relating neural phase transitions and neurological conditions or cognitive
states.

Neurological functioning in humans is not the only such area where phase
transitions have been found. For instance, Szabo et al. (2006) recorded the
swarming-like collective migration of a large number of keratocytes (tissue cells
obtained from the scales of goldfish) using long-term videomicroscopy. The au-
thors showed that on increasing the density of the migrating cells, a kinetic phase
transition from a disordered to an ordered state occurs. Near the critical density,
interacting clusters of cells, moving in groups, appear. On the basis of these
experimental results they proposed a flocking model that exhibits a continuous
transition to the ordered phase, assuming only short-range interactions and no
explicit information about the directions of motion of neighbors. Placing cells in
microfabricated arenas, they found a spectacular whirling behavior, which they
could also reproduce in simulations. The formation of groups of moving cells
near the phase transition is surprisingly similar to the formation of clusters of
solutions in the analogous SAT problem, as described in Section 3.3.2.

Another piece of work related to the emergence of a phase transition was
reported by Kshivets (2008). He found that in lung cancer the diameter of the
tumor cell shows a critical value (2 cm) that separates a state in which the five-
year survival chance after surgery is 100% from a state where the survival chance
falls sharply. It was earlier proved that this happens because there is a phase
transition in so-called “early-invasive lung cancer” at a critical level of the lung-
cancer cell population.

Carmesin and Arndt (1995) described a neural network, constituted by sen-
sors (the input layer) and inner neurons (the hidden layer), that models multi-
stable visual perception (Kruse et al., 1996). The authors proposed a dynamic
model that includes a stochastic neuronal dynamics, a formal Hebb-type cou-
pling dynamics, and a resource mechanism that corresponds to saturation ef-
fects in perception. The model comprises a set of differential equations. Single
stimuli are bound to exactly one percept, even in ambiguous situations where
multistability occurs. The network exhibits both discontinuous and continuous
phase transitions and can model various empirical findings, including the per-
cepts of succession, alternative motion, and simultaneity; the percept of oscilla-
tion is explained by the oscillation of percepts at a continuous phase transition.
In particular, Carmesin and Arndt studied the phenomenon of stroboscopic alter-
native motion. Increasing the frequency of presentation, there are five different
percepts: (a) succession, (b) fluttering motion, (c) reversible clockwise and an-
ticlockwise turning motion, (d) oppositional motion, and (e) simultaneity. The
frequency of presentation serves as the control parameter, whereas the percepts
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are the order parameters, of the phase transition. Both theoretical prediction and
experiments agree on the existence of the three phases (a), (c), and (e), with the
two continuous phase transitions (b) and (d) in between.

Work in a related field was done by Kelso et al. (1990) and Fuchs et al.
(2000). These authors studied the transition in coordination behavior from synco-
pation to synchronization in human subjects. The subjects’ task was to perform a
flexion movement of the preferred index finger in between two consecutive tones
of an auditory metronome, i.e., to syncopate with the stimulus. It is well known
that, by increasing the presentation rate of the stimuli as a control parameter, a
point is reached where subjects can no longer perform a stable syncopated co-
ordination pattern and, under the instruction to keep pace with the metronome,
switch spontaneously to a movement that is instead synchronized with the stim-
ulus. Three major changes in brain activity take place when the switch in the
movement behavior occurs.

• The topography of the dominant spatial pattern of brain activity changes.

• The frequency of the time-dependent amplitude of neuromagnetic activity
corresponding to the pattern described above switches from the coordina-
tion frequency (prior to the transition) to twice the coordination frequency
(after the transition).

• In certain sensors the time series undergoes a phase shift of π at the same
time as the transition in the coordination behavior.

Subsequent theoretical work established the nature of the phase transition at both
brain and behavioral levels through phenomenological modeling. More recently,
a theory connecting the brain and behavioral levels of description has been de-
veloped, based on the known cellular, and neural, ensemble properties of the
cerebral cortex.

Another phenomenon in which a phase transition has been uncovered is in
the trace conditioning paradigm, specifically in the air-puff eye-blink paradigm
(Howe and Levy, 2007). The paradigm consists of presenting to rabbits two tem-
porally separated non-overlapping stimuli (air puffs) with a specified amount of
stimulus-free time in between. A rabbit should learn to anticipate the second air
puff, the unconditioned stimulus (US), by a timely blinking just prior to its on-
set. The US follows at a specified time after the offset of a conditioned stimulus
(CS). The stimulus-free time between the CS offset and the US onset is called
the trace interval. As the paradigm requires the rabbit to predict the US onset
based on the CS, the paradigm belongs to the class of problems handled by the
authors’ computational theory of the hippocampus as a multisensory sequence
encoding and predicting system. The ability to predict the US onset shows an
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abrupt change. No US neurons predict the US for 95 trials. Then, within five ad-
ditional trials, more than 30% of US neurons produce a timely prediction. After
a training period, characterized by a failure in prediction, rabbits suddenly and
accurately begin to predict the US onset. Moreover, a prior investigation of CS
and US longevity noted a phase-transition-like behavior in the predictive mode
that was dependent on the trace-interval length (Wu and Levy, 2005).

An overview of phase-transition-like phenomena in brain functioning was
reported by Werner (2007), who considered both experimental observations and
theoretical models. The brain clearly appears to be a non-linear system operating
at the edge of criticality, which is achieved and maintained by self-organization.
The concepts of scaling and universality, derived from statistical physics, prove
to be useful notions for explaining the nature of the underlying neural processes
occurring in neural circuits of cerebral cortex and subcortical structures. A sim-
ilar view was proposed by Haken (2002), who considered the brain as a pattern-
forming system that operates close to instability in order to achieve flexible and
rapid switching between coherent states. Basar contributed to this view of the
brain as a dynamic system as early as the 1980s (Basar, 1983). Since 1975, Free-
man has produced a steady flow of studies of the dynamic principles of wave
patterns in brains, which have yielded numerous relevant findings including char-
acterizations of attractors, bifurcations, and critical phase transitions (Freeman,
1975; Freeman and Vitiello, 2006).

Recently, Cocco et al. (2009) have applied methods from inverse statistical
physics to infer coupling between retinal ganglion cells in salamanders. As the
complexity of neural systems often makes it impractical to measure the interac-
tions between neural cells, the authors propose to use inverse statistical physics
approaches to infer effective couplings between neurons from their spiking ac-
tivity. In particular, they described two computationally efficient inverse algo-
rithms, based on the Ising and “leaky integrate-and-fire” models, and applied
them to re-analyze multielectrode recordings in the salamander retina in dark-
ness and under random visual stimuli. The authors found strong positive cou-
plings between nearby ganglion cells common to both types of stimulus, whereas
long-range couplings appear under random stimulus only. They claimed that the
proposed methods would also allow the real-time evaluation of couplings for
large assemblies of neurons.

13.1 Comments

Given the internal complexity of biological entities, it should be expected that
ensemble phenomena will occur. In fact, most activities of life consist of the
interaction of large numbers of small components, be they proteins in regulation
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networks, cells in organs, or neurons in the brain. However, only recently have
these patterns of interactions become the object of investigation with methods
derived from complex systems theory and statistical physics.

Even though natura non facit saltus, according to Carl von Linnée1 (and
Leibniz and Darwin), we do experience discontinuities, especially in our cogni-
tive functioning. For instance, this happens with ambiguous illusions, which are
pictures or objects that may have two valid interpretations that are not both visi-
ble at the same time: the viewer can only switch from one to another, as if there
is a barrier to cross. In reasoning also we may suddenly reach a long-sought goal,
such as grasping or learning a concept, after a critical amount of information has
been collected. In the future this situation might be related to what happens in
artificial neural networks, reported in Section 7.1. In consequence the investiga-
tion of cognitive processes with methods from statistical physics may prove to
be both viable and successful.

1Philosophia Botanica, Stockholm, 1751.
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In the long journey undertaken in this book, we have visited statistical mechan-
ics, constraint satisfaction problems and satisfiability, complex networks and nat-
ural systems, and, in particular, many facets of machine learning ranging from
propositional to relational learning, grammatical inference, and neural networks.
The thread that connects all these fields is the emergence of phenomena ex-
hibiting sharp discontinuities. These phenomena are reminiscent of the phase
transitions found in physics and, indeed, the methods of statistical physics have
been employed with success to analyze them. In this chapter we try to summa-
rize what we have learned from these connections and in particular from the role
played by machine learning. Our aim is to point out gaps in the understanding of
basic phenomena and to identify open questions that may suggest future research
directions.
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Figure 14.1 Probability Phead vs. β for various values of the number n of trials
in a single session.

14.1 Phase transitions or threshold phenomena?

In a recent and very interesting paper, which recalls similar arguments put for-
wards in Percus et al. (2006), Zweig et al. (2010) have challenged the current
view of phase transitions in computational problems, wondering whether the
abrupt change observed in the probability of solution (the order parameter) in
SAT problems is in fact nothing other than a “self-fulfilling” discontinuity, i.e.,
an existential discontinuity generated by the very definitions of the problem and
of the order parameter.

The first argument in support of their claim is that it is easy to produce
rather simple models that exhibit phase transition phenomena while, as most
of us would agree, the essential ingredients that underly a “true” phase transition
are lacking. Indeed, Zweig et al. managed to produce a model that tightly fits the
measures available in the 3-SAT problem.

Regarding the models exhibited by these authors, the first consists in tossingCoin tossing

a coin n times with a probability 1− β of outputting head. The probability β is
the control parameter. The order parameter is the probability Phead that among
the n tosses there is a majority of heads. Clearly, when n → ∞, Phead → 1
below β = 0.5 and Phead → 0 above. The system also shows a finite size-
scaling effect, with exponent 0.5. In Figure 14.1 Phead is shown as a function of
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β for various values of the number of trials n. The increasing sharpness with n
of the curves in Figure 14.1 seems to be ascribable to the law of large numbers
rather than a transition between two “phases”.

The other problem is the coupon collector problem: there are n distinguish- Coupon collector
problemable items (the “coupons”), named “1”, . . . , “n”, and multiple copies of each are

contained in a large multiset S. A collector extracts an item from S one at a time,
uniformly at random, and puts it in his or her collection C, if it is not yet present
there. Let Ck be the collection when it contains k different items. The collection
is complete when k = n. As S is very large, extraction with and extraction with-
out replacement are almost equivalent and the probability of extracting a new
item, not already belonging to Ck , can be written as (n − k)/n. The expected
number of ways yk of obtaining Ck+1 from Ck is given by the equation

yk
n− k

n
= 1,

i.e., yk = n/(n− k). The total number of ways y of obtaining Cn is then

y =
n−1∑
k=0

n

n− k
= nHn,

where Hn is the nth harmonic number. Let us now generalize the problem from
just one to x collections, and let Pfull(t) be the proportion of full collections after
t draws. By taking into account the size n of the problem, and by introducing the
Euler–Mascheroni constant γ = 0.577, a variable τ is defined:

τ =
t

nHn
� t

n lnn + γn + 0.5
.

Plotting Pfull(τ) versus τ gives a graph similar to that in Figure 14.1, with an
apparent phase transition at the value τcr = 1. Also, the system shows a non-
trivial finite-size scaling effect with exponent 0.17.

On the basis of the two simple examples reported above, Zweig et al. (2010)
observe that, notwithstanding their mathematical behavior, our intuition hardly
accepts that these systems undergo a “true” phase transition. And this observa- True phase

transition?tion leads them to raise the issue of a precise definition of what a phase transition
really is. Informally, in their opinion, a “true” phase transition should correspond
to some structural and deep change in the system under study that is independent
of the definition of the order parameter. In other words, the “phases” must be
defined first and then the nature of the transition between them has to be investi-
gated as opposed to defining the phases from the behavior of the order parameter
itself (i.e., the phases are defined as regions of the control parameter space where
the order parameter assumes different values). This is what happens in physical
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systems when, for instance, water freezes or boils. Even though contributing to
this definitional discussion is beyond the scope of the book, we will make some
comments on the implications that such discussion may have on our problem of
interest, namely relational machine learning.

Before proceeding any further it is important to realize that whatever the
true nature of the phase-transition-like phenomena at play in machine learning,
their impact on the practicality of machine learning is undiminished. However,
we agree with intuition of Zweig et al. that in a phase transition phenomenon
something more fundamental should be happening than the typical mathemati-
cal behavior of the order parameter. In particular, we believe that two essential
aspects should be present:

1. the existence of a micro level where a large number of entities are present;

2. some interaction of these entities that produces ensemble phenomena
(such as a phase transition) at the macro level.

The above is also the context in which statistical physics methods are applicable.
Whereas in neural networks, in complex social and information networks, and
in the brain the micro and macro levels are quite easy to identify (as we saw in
Chapters 7, 12, and 13, respectively), in computational problems such as SAT
and symbolic machine learning it may be more difficult to do this.

Considering the coin-tossing problem, clearly neither condition 1 nor condi-
tion 2 above is verified; in fact, there is no underlying structure, and each toss
is independent of the others, so that no interaction exists. Extrapolating from
this example and from the coupon collector example, one may wonder whether
a similar threshold phenomenon on a stochastic variable might actually be the
mechanism underlying several other apparent phase transitions. However, as
suggested above, the answer to this question may actually be irrelevant as the
important thing is the effect that this type of behavior has in practice. To be more
precise, the findings that emerged in Chapter 10 set limits on the feasibility of
relational machine learning, independently of the actual nature of the transition
investigated in Chapter 9. Likewise, for k-SAT and other NP-hard problems it
is relevant in practice to know where the most difficult instances are located in
the space of the control parameters. Nevertheless, to distinguish between a true
phase transition and an apparent one has a significant impact on a deep under-
standing of the problem under study. Therefore, the need for a precise definition
of a phase transition depends on the perspective one takes.

Before moving to machine learning we would like to illustrate a further point
with an intuitive example, namely, the idea of feedback in complex sets of inter-Feedback

acting entities. Let us consider the toy system in Figure 14.2, which shows a box
whose bottom is covered by a regular grid of cylindric holes. Suppose that a some
pellets randomly slide over the bottom of the box, colliding with each other and
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Figure 14.2 Toy model for a complex system exhibiting a phase transition.
(a) When the pellet speed is above a given threshold the pellets fly over the
holes. (b) When the average speed decays below a given threshold, the pellets
are quickly entrapped in the holes. The arrows in (a) indicate the pellets’ vector
velocities.

with the box walls, according to a pseudo-Brownian motion. More specifically,
let us assume that the velocity vi of pellet πi follows a normal distribution with
average value vavg and standard deviation σ (the motion is isotropic). Finally,
around the rim of each hole is a small incline, which imparts a vertical veloc-
ity to the pellets.1 As long as the pellets have a speed whose modulus is above a
given threshold vcr , they fly over the holes and the motion continues.2 Only those
pellets whose velocity lies below vcr fall into the holes. Their number depends
on σ. When the average speed decays below the threshold, more and more pellets
fall into the holes. If we define as an order parameter the proportion of pellets
that have fallen into holes and as a control parameter the average speed vavg , the
order parameter decreases with increasing vavg . When vavg = vcr the proportion
of fallen pellets is 0.5. The form of the function is typical of a phase transition
and its steepness increases with decreasing σ. In fact, the function becomes a
step function when σ = 0.

This case is analogous to the coin tossing problem, as each pellet is effec-
tively independent of the others as long as their number allows a macroscopic
description of their motion. On the contrary, the number n of pellets, if suffi-
ciently large, does not influence the results unless we consider the normal distri-
bution as a description of the fluctuations around the mean velocity. In this case,
the intensity of the fluctuations decreases as 1/

√
n, approaching 0 for increasing

system size. Even though the ensemble of pellets may constitute a microscopic
level for the system, the elementary constituents do not interact so that it is still

1This is necessary otherwise the pellets would always fall into the holes whatever their hori-
zontal speed.

2The threshold vcr is a constant depending on the system geometry (the hole size), the vertical
velocity, and the elasticity, texture, etc. of the material used to construct the box and balls.
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difficult to consider the introduced order parameter as revealing a phase transi-
tion. In fact, as in the case of the coin tossing, the transition seems dictated by
the law of large numbers.

Now, let us complicate the system a little more, by assuming that a pellet
that has fallen into a hole modifies the geometry of the system by widening the
hole. Thus, the size of the holes grows, according to a given law, with the num-
ber of pellets already entrapped. The first pellets that fall into holes (those with
velocities close to 0, located in the extreme left tail of the distribution) cause the
hole size to increase, with the consequence that the critical velocity increases and
more pellets are captured because more pellets have a lower speed than vcr . In
this way an “avalanche” process is started by the positive feedback resulting from
the entrapped pellets, which very quickly brings the proportion of entrapped pel-
lets from 0 to 1 for any speed distribution, provided that there is at least one pellet
with a speed lower than the original critical value. The difference between this
setting and the preceding one is that now there are indirect interactions between
the pellets, and the order parameter behavior depends on the global configura-
tion of the system. Moreover, as the feedback strength depends on the number of
entrapped pellets the global number n of pellets present in the box matters since
the speed of the process increases with n. The existence of a loop determined
by the feedback is reflected in the possibility of plotting the order parameter (the
proportion of fallen pellets) as a function of the total number of pellets fallen so
far. The same kind of retroaction and avalanche phenomenon has been seen in
the case of grammar induction, as was described in Section 11.5.3.

Moving on to relational learning, we showed in Chapter 10 how the change
in the probability of finding a matching between a hypothesis and an example in-
fluences the quality of the learned knowledge as well as its learnability. Assum-
ing that experiments have uncovered a true phase transition, one has to wonder
what the micro and macro levels might be and what kind of interaction could be
hypothesized as the basis of the macroscopic behavior. Let us start from the cov-
ering test described in Chapter 9. In the covering test, or matching problem (ϕ, e)
between a hypothesis ϕ and an example e, the macroscopic level corresponds to
either an existential or a quantitative problem: the former can be formulated as
“Does ϕ cover e?”, whereas the latter can be formulated as “How many models
has ϕ in e?”. This is the same distinction as that pointed out by Zweig et al.
(2010).

For our purpose we may consider either formulation, as our attention is fo-
cused on the less obvious microscopic level. This level must involve the exam-Microscopic level

in machine
learning?

ples. Actually there is more than one way to encode examples as a set of inter-
acting entities, and the one we proposed is just a suggestion. We described in
Chapter 9 how an example e comprises a set of m tables, each with N goods;
each good is a pair of constants, both taken from the same set Λ of cardinality
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L. Let us associate with each good in each table a node in an m-partite colored
multigraph Ge with mN nodes. Given a node (ai, aj) from table Rh and a ver-
tex (ai′ , aj′) from table Rk , the two nodes are connected iff one of the following
conditions holds.

• ai = ai′ In this case we connect the nodes with a red edge.

• ai = aj′ In this case we connect the nodes with a green edge.

• aj = ai′ In this case we connect the nodes with a blue edge.

• aj = aj′ In this case we connect the nodes with an orange edge.

Two nodes may then have up to four edges connecting them. Edges can only be
established between nodes corresponding to different relations, as each predicate
in the domain appears only once in any formula. For this reason the graph is m-
partite. The graph captures the internal structure of the example e and defines
interactions between the variable pairs. The pattern of interaction determines
whether a formula ϕ covers the example. However, the graph Ge is insufficient
for this, because all examples are generated with the same procedure and there
is nothing intrinsic in example e that makes it positive or negative with respect
to a hypothesis ϕ. Now comes the second level of interaction: when the formula
ϕ is generated the predicates in it have specified pairs of variables, whose chain-
ing must be matched by the example. Thus there is an interaction between the
structure of the formula and the structure of the neutral example that determines
whether ϕ covers e. More precisely, let α1(x, y) and α2(u, v) be two predicates
in ϕ, with variables taken from the set X = {x1, . . . , xn}.

Let us build a new graph Gϕ, with pairs of variables as nodes. The node
(x, y) is connected to node (u, v) with a colored edge using the same criteria as
for Ge. The graph Gϕ is m-partite as well, and the node (x, y) associated with
the variable pair in α1 corresponds to the N nodes associated with the pairs oc-
curring in the table α1 in Ge. Knowledge of the formula ϕ induces a transforma-
tion in Ge; in fact, given a node (ai, aj) in Ge corresponding to the extension of
predicate α1 and another node (ai′ , aj′) corresponding to the extension of predi-
cate α2, all edges with a different color from those occurring in Gϕ between the
variable pairs of α1 and α2 can be removed, because they will never be part of
a model of ϕ in e. As a consequence, ϕ will have a model in example e iff Ge

contains at least one subgraph isomorphic to Gϕ. The solution of the matching
problem is then determined by the global interaction pattern among the goods
and by that between the formula and the goods. It is an open question whether
these two kinds of interaction generate matching problems whose structure is
essentially different for pairs (ϕ, e) with and without a solution.
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Moving to the global level of learning rather than just matching, similar con-
siderations apply. We recall that a learning problem Π consists of a target concept
c and examples in two sets, P (positive) and N (negative). Possible structural
differences between positive and negative examples cannot exist, per se, because
both sets of examples are generated by an identical procedure. What makes them
positive or negative is their interaction with the target concept. In fact, given a set
of constants Λ, most examples are located on the horizontal line L = |Λ| in the
plane (m, L); thus each example is labeled positive or negative either by the lo-
cation of the target concept itself or when needed by the modification procedures
(see Section 10.1.1), which depend upon ϕ as well.

In the case of learning, we can build two ensembles of graphs, Gp and Gn ,
whose elements are associated with the positive and negative examples, respec-
tively. In this case we do not know the target concepts but instead the labels,
positive and negative, of the examples are known. Learning consists in extract-
ing commonalities from Gp and Gn , those from the former to be included in
the learned concept, those from the latter to be avoided. This process is again a
global one, which exploits the structure of the examples and their links to gener-
alize them. Also, in this case it is an open question whether the internal structures
of the ensembles Gp and Gn , once that they have been labeled by the target con-
cept, are essentially different. As a matter of fact the two ensembles cannot be
different, per se: they were generated using the same procedure. It is only af-
ter the target concept has been defined that the examples are labeled. Thus, it
is the interaction with the target concept that may distinguish them. However,
examples in Gp and Gn can be labelled as positive and negative arbitrarily. In this
case it might happen that a concept distinguishing them cannot be found, if the
example sets do not have differentiating structures.

Another novel aspect in the paper by Zweig et al. (2010) refers to experimen-
tal results on the 3-SAT problem. These comprise three issues. The first is that
their experimental measurements provide for αcr a value closer to that found by
Kirkpatrick and Selman (1994), i.e., 4.15 ± 0.05, than the value found theoreti-
cally by Mézard and Zecchina (2002), i.e., 4.267, which is believed to be exact.
The second issue consists of a challenge to the phase transition nature of 3-SAT,
as they were able to build a simple model that has all the characteristics of the
actual k-SAT without invoking any deep restructuring of the solution space. The
third issue is the most interesting, from our perspective, as it concerns the num-
ber of models. Contrary to what is widely acknowledged, the average number of
solutions at the phase transition of a 3-SAT is not 1 and does not drop abruptly
to 0 to the right of the critical value αcr ; instead, solutions may be found deeper
into the UNSAT phase, their average number reaching 1 at the value α = 5.19.
It is true, however, that this average number is dominated by a few instances
with many solutions and a large number of instances with no solution. The



Do phase transitions occur in practice? 327

average number of solutions does not show, however, any anomalous behavior at
αcr .3

This last finding is interesting, not only because it may deeply change the
current view of 3-SAT but also because it recalls a phenomenon that occurs in
physical phase transitions: a system existing in one phase may go into another
by passing the critical point and remaining as it is in an unstable state, which
suddenly may change if some perturbation occurs. As a concrete example, let us
take water. Very pure water may remain liquid at a temperature well below the
freezing point (for instance, at −20 ◦C at normal pressure) if the temperature is
lowered very slowly. The water enters thus an unstable state; it is sufficient to
introduce an impurity particle or let the water come into contact with a warmer
surface to see it change into ice in almost no time. Owing to the structure of the
solution space, it is not unreasonable to think that some instances with α < αcr

can be transformed, with small steps, into instances with α > αcr and still be
solvable. Clearly, such type of instance must be a minority and the transforma-
tion cannot take the original solvable instance too far inside the UNSAT region
(actually, α = 5.19 is quite close to αcr). This explanation would leave the
essence of the 3-SAT phase transition unchanged but it would further complicate
the structure of the solution space. Actually, we guess that something similar
might happen in learning when positive (negative) examples are slowly trans-
formed into negative (positive) ones. For matching problems (ϕ, e) that have
moved from the YES region into the NO region, near misses (which are negative
examples that are almost identical to corresponding positive examples except
for a crucial aspect; Winston, 1975; Alphonse and Osmani, 2008a) could be the
extremal points that they can reach.

14.2 Do phase transitions occur in practice?

As we have seen in Chapters 3, 4, 9, and 10, generative models for SAT prob-
lems, CSPs, and matching and learning problems all have an essentially stochas-
tic nature. It is then a reasonable question to ask whether phenomena such as
those investigated in the above-mentioned chapters actually do occur in real life.
In order to interpret the emergence of an ensemble phenomenon such as a phase
transition, one has to hypothesize that the problems to be solved are extracted
from a population of random problems having the same values of the order pa-
rameters as those actually considered.

3In Chapter 10 we found similar results, as the average number of models that a formula ϕ has
in an example e in the YES region decreases exponentially towards the phase transition but does
not show a discontinuity at the boundary.
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However, the real world does not seem to us, in general, as random (rather the
opposite); evolution has shaped it toward the creation of an environment suitable
for life. Thus, given a class of problems and its space of control parameters, the
studies that have been performed tell us that the solvable and unsolvable prob-
lems are not uniformly distributed and that there are regions where one type of
problem dominates the other. Random sampling serves to identify these regions.
The fact that in a given region the overwhelming majority of problems is unsolv-
able does not mean that solvable problems are not present (and vice versa); it
means, however, that the latter must be searched for specifically and that we do
not have much hope of finding them by just moving around randomly.

Learning is an anomalous task, in this respect. In fact, the ensemble of prob-There is experi-
mental evidence that

a phase transition
also occurs in

real-world relational
problems.

lems to consider for the emergence of phase transitions is generated internally
by the learner itself. Indeed, if the set of training examples is given, the learner is
responsible for the generation of the candidate hypotheses during search. Each
example is paired with each hypothesis, generating thus a possibly large number
of matching problems. Given a specific learning task, including a set of train-
ing examples, learners differ from each other in the way in which they generate
hypotheses, i.e., in the heuristics they use. Different heuristics might correspond
to phase transitions of a different location and steepness, and the ensemble of
matching problems to which they give birth may be more or less similar to the
randomly generated set. As we showed in Chapter 10, the space of matching
problems has large benches (plateaus), where all heuristics based on coverage
are ineffective and the search becomes almost random without additional knowl-
edge. It is no surprise, then, that even in real learning problems a phase transi-
tion emerges and that it attracts the search, as in the case of random problem
sets (Giordana and Saitta, 2000). In Appendix A two real learning applications,
solved by a learner based on an evolutionary search strategy and guided by the
minimum description length principle (Anglano et al., 1997, 1998) are analyzed
in detail.

However, learning is not an exception. In fact, other authors have previously
shown that phase transitions do emerge in real-world problems that are not ran-
domly generated. For instance, Gent and Walsh (1996) analyzed the travelling
salesperson problem on a city graph containing the capitals of 48 contiguous
states of the USA. A phase transition did occur, although at a smaller control
parameter value than for random graphs whereas the cost of search was higher
than predicted. The same authors also noticed a phase transition in graph color-
ing problems derived from university exam timetables (Gent et al., 1995); Gomes
and Selman (1997) found a phase transition in quasi-group completion.4

4This term comes from group theory.
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Finally, considering again the case of machine learning, it is worth noticing
that in the learning problems used in Chapter 10 the examples were not purely
random. In fact, negative examples in the YES region and positive examples in
the NO region were constructed on purpose. Even so, both the phase transition
in the covering test and the consequent blind spot have been detected.

14.3 Blind spot

One of the most surprising effect linked to the occurrence of the phase transition
in matching is the presence of a region in the plane (m, L) where learners fail
to learn. We called this region, in Chapter 10, a blind spot. It includes learning
problems that lie in the phase transition region or in the part of the NO region
immediately adjacent to it. Considering the findings reported in Chapters 9 and
10, the blind spot can be explained by considering the distribution of models
of relational formulas in the (m, L) plane. As can be seen in Figure 10.11(a)
the number of models has a peak in the YES region and then decays expo-
nentially toward the phase transition edge. There are three consequences of this
distribution.

1. Counting the models in the YES region has an exponential cost for any
search algorithm.

2. Finding at least one model for a formula is very easy in the YES region
but becomes exponentially hard in the phase transition region. In fact, it
requires a very large search tree to be visited, where few or no leaves
correspond to a model.

3. The information gain heuristic becomes unreliable, because any system-
atic difference between the model counts in the positive and negative ex-
amples is masked by the large stochastic variance of the model number
(see Figure 10.11(b)). For the same reason, any other heuristic based on
the model count is expected to fail as well.

The blind spot has quite sharp contours, as might correspond to a threshold phe-
nomenon in the information gain effectiveness; this has an analogue in the coin-
tossing problem. In fact, in the case of a binary concept, FOIL’s information gain
reduces to the computation of the expression

IG(h1, h2) = t

[
lg2

(
P2

P2 + N2

)]
− lg2

(
P1

P1 + N1

)
,

where P1, P2, N1, and N2 are the number of instances that two hypotheses have
on a set of learning events sampled from the world. Thus P1, P2, N1, and N2 are
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inherently stochastic variables and so the information gain itself is a stochastic
variable. Therefore, the decision to add a literal to a hypothesis is always done by
selecting the maximum value among a set of stochastic variables, as in the case
of the coin-tossing problem. When the difference between the number of models
(ways of verifying a formula) that a correct concept approximation has in posi-
tive and negative instances is small, the probability of distinguishing the correct
concept from incorrect approximations will tend to 0.5 and thus the heuristic
reduces to a random choice. Even if this point has not yet been experimentally
addressed, by referring to Figure 14.1 we can guess that the transition between
solvable and unsolvable problems will be quite sharp.

Another important aspect, related to the information gain, is that top-down
strategies, used for instance by FOIL (Quinlan and Cameron-Jones, 1993) and
SMART+ (Botta and Giordana, 1993), require the number of models that the
formula has in every example to be counted. Algorithms like Django only check
whether there exists at least one model and stop as soon as this has been found.
The process of counting the models, whose number can be very large in the YES
region even close to the border with the phase transition region, has a complexity
which is lower-bounded by the number of models itself. Thus, the complexityThe information gain

heuristic requires the
models that a formula

has in an example
to be counted.

peak is still to be considered as a serious obstacle in scaling up to relational
learning problems more complex than those currently addressed.

Going into a little more detail, in the YES region every formula has typically
plenty of models whereas in the NO region any formula has typically no models.
This means that the search trees that must be visited to find a model in the YES
region are huge until the phase transition edge is crossed. A formula ϕ, on the
border of the phase transition region, that has been obtained by adding one more
literal to a formula ψ may have a search tree of about the same size as that
of ψ. The difference is that the leaves of ϕ’s tree are almost all failure nodes
while those in the ψ’s tree correspond to models. Deciding whether ψ contains
at least one model has a low complexity because only a small portion of the
tree needs to be visited. At the same time, counting the models of ψ does not
help the information gain heuristic because their number is comparably large
on all examples. On the contrary, the covering test for ϕ requires a large part
(possibly all) of the tree to be visited; thus regions of the search space where
models are few and highly informative for the inductive heuristic are entered
by this covering test. As a final observation, in relational learning we notice
that, considering the outcomes of the coin-tossing model, we may expect that
by increasing the number of positive and negative examples in the learning set
it should become easier to detect small differences in the information gain of
correct and incorrect concept approximations. Then, the blind spot should shrink.
Unfortunately, the tremendous complexity of the learning process in this region
has prevented a systematic investigation of this conjecture.
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Also in propositional learning, as Baskiotis and Sebag (2004) have shown,
there may be regions of the control parameter space where learning tends to fail;
specifically, they found such a region for C4.5, guided by the information gain.
The considerations for relational learning still hold in this case. In addition, it is
plausible to believe that the variance of the information gain estimate increases
when a large number of attributes are taken into account in its evaluation. More-
over, we may expect that upon increasing the number of examples, the difference
between the information gain of two formulas could be estimated more reliably,
so that the blind spot of C4.5 shrinks. Experimental evidence to support this
guess would be welcome.

14.4 Number of examples

In the research described in this book, we have not considered the dependence
of the results obtained upon the number of training examples. This issue appears
to be a relevant one. For instance, as described by Watkin et al. (1993), in Ising
neural networks a phase transition occurs to perfect learnability in correspon-
dence with a critical value of the number of examples in the learning set (see
Chapter 7). Phase transitions with the number of examples as a control parame-
ter have also been detected by Rückert et al. (2002) and Alphonse and Osmani
(2009).

These findings suggest that relational learning may show a double phase
transition, one at the level of matching and one at the level of learning itself. So
far, no work reports results on the possible interactions or separation between
the two. It would be interesting to investigate their separate contributions to the
overall computational complexity. Moreover, an increasing number of examples
could constitute a suitable thermodynamic limit for the study of asymptotic be-
haviors. As we have seen, scaling with the number of variables n does not make
much sense in learning, as this value is always limited and actually quite small.

14.5 Machine learning and SAT or CSP solvers

In this book, on the one hand we have presented machine learning as a set of hard
search problems, both in the propositional and in the relational framework. On
the other hand we have seen how the CSP and SAT fields have progressed, de-
veloping powerful search algorithms able to solve problems of a very large size.
Particularly impressive are the algorithms for SAT, such as WalkSAT and survey
propagation, which are now able to solve problems with millions of clauses and
variables.
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A natural question is whether, and if so how, such algorithms could be
exploited to make progress in machine learning as well, solving problems of
a size and complexity that are still intractable today. In fact, we showed in
Chapter 10 how a rather naive local search algorithm actually solves many re-
lational problems located in the blind spot, where classical learners fail. Even
though an increase in the variable number would render the blind spot uncon-
querable, we could at least expect to increase the size of the solvable problems
by one or two orders of magnitude.

Considering propositional learning, we showed in Section 8.1 how a two-
class learning problem can be mapped onto a SAT problem that can be solved by
SAT solvers. In turn, a relational learning problem described in a DATALOG lan-
guage can always be transformed into a propositional learning problem (Kramer
et al., 2000). Thus, at least in principle, a relational learning problem can be
mapped onto a SAT problem using a two-step transformation. This is surely an
interesting approach, worth exploring, which, at least in principle, could solve
learning problems that are much more complex than those currently solved by
state-of-the-art relational learners. An alternative way, not yet explored, could be
to state a relational learning problem as a CSP (which, as a matter of fact, it ac-
tually is). Then, either CSP solvers could be used to solve the learning problem
or, in turn, the CSP problem could be converted into a SAT problem, as we saw
in Chapter 8.

In practice, things are not so simple. The first obstacle is that SAT and CSP
exact solvers cannot be used because of the noise which affects all data sets ex-
tracted from the real world. So, we must look at MaxSAT and MaxCSP solvers.
Nevertheless, in this case also there is an issue to investigate before going further
in this direction. MaxSAT and MaxCSP solvers aim at minimizing the number
of violated constraints, without considering the nature of these constraints. This
strategy may produce solutions that overfit the data without providing useful con-
cept definitions. Actually, this is what happens in the blind spot, where the search
heuristics of FOIL and of the other learners fail. As discussed in Chapter 10, in
this case the solution is just a description of the learning set which minimizes
the number of errors (violated constraints) but does not correctly classify new
concept instances because it lacks generalization.

The question is thus how to formulate the problem, or how to provide
MaxSAT and MaxCSP solvers with proper heuristics, in order to select good
generalizations of the target concept. It is worth noting that a major stream in
machine learning, that based on the kernel approach (Shawe-Taylor and Cris-
tianini, 2004), formulates a learning problem as a task of minimizing the num-
ber of violated constraints. The difference from the approach we are proposing
here is that kernels are actually continuous functions and the task is solved with
methods developed in linear algebra.
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14.6 Relational learning and complex networks

We have seen that every single example used by relational learning can be rep-
resented as a colored graph (network) of items. A subset of these examples, i.e.,
the positive examples in the YES region and the negative examples in the NO
region, are actually constructed as random graphs and thus they must exhibit the
properties discussed in Section 4.2. More specifically, we should expect a phase
transition in the connectivity in correspondence with the critical value zcr = 1
of the degree z of the graph. However, the average degree z of the examples
randomly generated to investigate relational learning is approximately

z = 2(m− 1)
(

N

L2

)
,

which is usually much larger than the critical value zcr = 1. This means that
most of the time all considered examples are strongly connected. Neverthe-
less, for N very small (N < L2/2(m − 1)), the examples will reduce to a
set of small independent substructures and the learning problem will be located
very far from the phase transition, easy to solve, and not interesting for our
purpose.

Let us consider the strongly connected examples that we actually generated.
In this case, the models of a formula ϕ in an example e correspond to subgraphs
in the graph Ge of the example. Finding a solution to the problem of the covering
test reduces to finding a subgraph in Ge that is isomorphic to Gϕ. This is the
viewpoint taken in the development of algorithms like MCS (Scheffer et al.,
1996).

In any case, looking at structured learning examples as graphs is suggestive
and opens other perspectives for future research. In the first place it establishes
an explicit link between relational learning and investigations of complex net-
works. Discovering a “community”, like, for instance, Internet users, in a graph
is equivalent to describing a subgraph satisfying a set of preassigned conditions.
Thus it can be modeled as a relational learning problem. However, a method
for discovering communities in social networks should be easy to adapt to the
problem of verifying a logical formula.

Another intriguing point to investigate is the impact of the graph structure
on the performances of relational learning algorithms. The blind spot for FOIL
was found by considering examples whose background structure is an almost ho-
mogeneous random graph. Singularities constructed by the procedure Change-
ToPositive described in Section 10.1.1, correspond to a single (non-random) sub-
graph forcibly inserted into a random graph. Then, solving a learning problem in
the blind spot reduces to finding and characterizing a non-random subgraph in a
large set of random subgraphs.
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Thus, in learning, two types of graphs are involved: the first is the con-
straint graph and the second is the graph associated with each example. Both
have the underlying structure of a random graph, such as those introduced in
Definitions 3.6 and 3.7. It would be interesting to investigate what would happen
if the generation procedures considered here were replaced by a small-world or
scale-free graph generator. With very few exceptions (see for instance Walsh,
1999), this issue has not been approached so far.

14.7 Relational machine learning perspective

The most appealing properties of learning in first-order logic is the comprehen-
sibility of the acquired knowledge and the ability to learn in complex domains
where objects cannot be simply represented by 〈attribute, value〉 pairs. How-
ever, according to the findings reported in this book, relational learning also has
strong limitations, especially relating to the number of variables; in fact, we can-
not expect to scale up to clauses with more than four or five variables without
incurring a prohibitive computational complexity. Therefore relational learning,
as we now know it, is probably restricted to dealing with data and concepts of
limited size, however interesting. Moreover, as the phase transition region acts
as an attractor, the quality of the learned knowledge is also affected because only
hypotheses in that region may actually be learned. These facts are likely also to
affect statistical relational learning, or at least those approaches that learn first
the network structure and then the parameters.

Coming back to the statistical physics perspective and assuming that the ex-
perimentally uncovered phase transition is a “true” one, several questions arise
that need to be answered. We saw in Chapter 2 that, according to a modern view,
a phase transition occurs when the partition function of the system under analysis
has a singularity. If we want to transfer results from statistical physics to rela-
tional learning, we need to identify what the corresponding “partition function”
might be. This function is likely to be linked to the structure of the examples and
to their interactions, both within themselves (the connections between tuples of
constants in one example) and among them (commonalities to be discovered).
In this way, we could be in the same situation as that for Ising neural networks
and for SAT problems, where a precise definition of the partition function can be
obtained and methods from statistical physics can be applied.

Moreover, given the strict relation between matching and CSP, the solution
space of matching also might show an analogous clustering structure. Investi-
gating this aspect has the potential of suggesting more effective learning strate-
gies, in the same way as it suggested the survey propagation algorithm for SAT.
Concerning the search algorithms we have seen that, by exploiting the powerful
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heuristics developed in the CSP field, the complexity of the covering test can
be at least partly reduced. This opens up the possibility of handling hypothe-
ses that are much more complex that those currently generated by relational
learners. We may wonder whether an analogous step ahead in the area of the
heuristics for guiding the inductive search is likely. The stochastic algorithm
presented in Chapter 10 proved to be capable of solving many problems not
solved by FOIL, while its complexity was comparable. More specifically, we
showed that by combining stochastic search with local deterministic search it
is possible to learn approximated concept descriptions where no known classical
algorithm is successful. Even if the algorithm is used under the stringent assump-
tion that a conjunctive concept description exists, it is not difficult to extend it to
cope with more general concept descriptions. For instance, disjunctive descrip-
tions can be learned by integrating the algorithm T4 (Section 10.4.2) with the
type of set-covering algorithm found in most relational learners (Quinlan and
Cameron-Jones, 1993; Botta and Giordana, 1993). As a matter of fact, the ap-
proach described, even if still in a very elementary version, goes along the lines
of CSP heuristics such as local search and tabu search.5 Thus we expect that
more powerful relational learners can be designed and implemented.

Finally, in machine learning in general it is well known that the selection of
the learning set SL can deeply affect the robustness of the learned knowledge,
especially for unstable learners such as decision tree learners. As we have seen
in previous chapters, SL acts as the quenched disorder of the learning system.
An interesting question is whether the generalization error is a self-averaging
quantity, such that, for increasing cardinality of SL , it becomes independent of
the learning set, so that only its mean value need be computed, not its whole
distribution. This question has received a positive answer in the case of neural
networks, as we saw in Chapter 7.

A point that seems a real obstacle to the scaling up of relational learning is the
number of variables. Even under the simplistic assumption that all predicates are
relevant to the concept description, the task looks hard for many concepts requir-
ing at least four variables. On increasing the number of variables, the complexity
rises exponentially. Given the presence of irrelevant predicates, the analysis we
performed still holds but the density of subformulas of the target concept close to
the phase transition becomes even smaller, and so the difficulty increases further.
This limit on the number of variables means, for instance, that we cannot learn
descriptions of scenarios with more than four objects in them.

After pointing out the difficulties of the task, we will mention possible ways
to mitigating the negative aspects of the relational learning task. Beyond the po-
tential improvements in the search algorithms mentioned above, there appear to

5A tabu search has a memory of past failures, kept to avoid repeating them.
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be three ways to scale up relational learning, from the point of view of reducing
its computational needs and improving the quality of the results, which we now
discuss.

Propositionalization
In relational machine learning much effort has been devoted to propositionaliza-
tion, i.e., the process of transforming a relational learning problem into a propo-
sitional one, with the aim of exploiting the efficient propositional learning algo-
rithms that are available (Lavrač and Džeroski, 1994; Alphonse and Rouveirol,
2000; Bournaud et al., 2003; Mauro et al., 2010). Reviews have been presented
by Kramer et al. (2000), Krogel et al. (2003), and Karunaratne and Boström
(2009).

The idea is to transform a multirelational data set containing structured ex-
amples into a propositional one with grounded 〈attribute, value〉 features de-
scribing the structural properties of the examples. The propositional data set con-
tains a single table, with one row per example. Propositionalization has proved
to be an effective method in relational learning, and several algorithms imple-
menting the process are available in the literature.

The process has, however, two potentially negative aspects. The first is that
the size of the target table may grow exponentially in the size of the original
problem, so that the advantage of using a fast propositional algorithm is reduced
by the very size of the data. The second is that the learned knowledge may only
be an approximation to what could have been learned in the first-order logic set-
ting. In fact, by aggregating and summarizing the original data some information
may be lost.

Nevertheless, propositionalization may be a viable way of approaching theProblems solved by
current relational

learners are easy to
transform into the

propositional
framework.

problem. In this case it would be interesting to investigate where the phase tran-
sition in the matching of the original problem lies. Furthermore, an accurate
investigation of the issue may suggest more effective ways of transforming the
original data. It could be more rewarding to invest in techniques for translating a
relational problem into a propositional one than in new algorithms for learning
directly in the relational framework.

A priori knowledge
Another way of scaling up to more complex problems could be to exploit domain
knowledge to guide the search. As an example, Alphonse and Osmani (2009)
showed that by providing the right knowledge, in the form of “near-miss” neg-
ative examples, it is possible to solve all the problems in the dataset we used
for the experiments described in previous chapters. This agrees with the princi-
ple on which the stochastic approach we proposed is based. If we know a good
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Figure 14.3 Abstraction process for problem solving. In learning, the ground
problem consists of the representation spaces of examples and hypotheses. These
spaces are then abstracted, obtaining some “simpler” spaces where learning may
take place. After learning, the acquired knowledge may be re-transformed into
the original space even though in some cases this step may not be necessary.

educated guess to start from, we would not need stochastic sampling on the hy-
pothesis space.

In a random domain like the one we explored, no domain knowledge is pos-
sible. Nevertheless, in many real-world applications this knowledge is available
and can be exploited to prune the search in the hypothesis space. Of course, cod-
ing the necessary knowledge and developing algorithms for using it is costly but
may be a winning strategy in the long run.

Considering the many complex problems successfully solved in fields such
as signal interpretation and molecular biology, we can see that there has been
substantial progress in discovering the underlying structure of a problem when
learning techniques, typically in a propositional framework, have been exploited.
In principle one could think of approaching the same kind of problem in a re- Knowledge-based

approaches may be
a valid option.

lational framework that exploits the expressive power of first-order-logic lan-
guages. An interactive approach, where human experts and machines cooperate
to learn in complex domains might be the solution.

Abstraction
Another way to try to reduce the negative effects of a phase transition in learn-
ing problems is to use abstraction. Abstraction is a pervasive activity in human
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perception, conceptualization, and reasoning. It is generally associated with a
transformation of a problem representation that allows a solution to be found
more easily, i.e., with reduced computational effort. The process is represented
in Figure 14.3. Abstraction seems a very promising way out of the limitations
of relational learning. Indeed, previous works have already shown that, when a
“good” abstraction can be found, relational learning may be achieved with the
same quality of acquired knowledge and with a strong reduction in computa-
tional cost (Saitta and Zucker, 2000). However, the type of abstraction has to be
chosen carefully, because it always entails an information reduction. This loss of
information may be critical, and the learning problem might not be solvable in
the abstract space.

Leaving aside all considerations regarding the choice of a good abstraction
(which are outside our current scope), we just provide a hint of how it may work.
Among various abstraction operators (Saitta and Zucker, 2000, 2001, 2009) let
us consider the term construction operator, which inputs a description of the
parts of an object, and of how they are related, and outputs a single composite
description. For instance, the whole object “bicycle” can be obtained from two
“wheels”, one “handlebar”, two “pedals”, and so on. As long as we do not need
to distinguish its parts, the whole object may be used for learning. The big advan-
tage of an abstract space where only whole bicycles exist is that each bicycle can
be associated with a single variable whereas in the concrete space many variables
were needed to describe it. As we have seen that the number of variables is the
strongest limiting factor in relational learning, this type of abstraction moves the
learning problem into a space where a phase transition still exists but is located
in a region of the control parameters where the complexity is lower.

Another approach exploiting abstraction to move away from the phase tran-
sition in CSP is described by Schrag and Miranker (1996). They used domain ab-
straction to allow some subset of constants appearing in the relations to collapse
to single constants. They showed that the transformation loosens the constraints
so that this type of abstraction is effective when both the original and the abstract
CSP are unsolvable. Through this type of abstraction, when effective, a sensible
reduction in computational cost is obtained.

The explicit use of abstraction techniques for the same problem class was
proposed by Caseau (1991) and Ellman (1993).

Beyond the ideas suggested in this section, other approaches may be con-
sidered, in order to improve relational learning with respect to both quality and
computational cost. Up to the present time only simple learning applications
have been described, so that the negative effects of the phase transition in match-
ing have been limited. For the future, either we will not need more complex
learning cases or we will need to devise means to cope with them.



Appendix A Phase transitions
detected in two real cases

In Chapter 9 we claimed that there is experimental evidence that in real-world
applications also, where examples are not randomly generated, discriminant hy-
potheses found by relational learners lie on the phase transition edge. In order to
support this claim, we discuss here the findings presented by Giordana and Saitta
(2000) concerning two-real world applications. The first is a popular benchmark
known as the mutagenesis dataset (Srinivasan et al., 1995), while the second
is an application to mechanical troubleshooting in a chemical plant (Giordana
et al., 1993). In both cases the learning problems were solved using G-Net, the
relational learner based on evolutionary search described in Chapter 6 (Anglano
et al., 1997, 1998).

It is worth noticing that datasets suitable for relational learning and avail-
able in public repositories are few and, in general, rather simple. In fact, the
concept descriptions that have been learned from them contain few literals only
and, mostly, two or three chained variables. The datasets that we present in this
appendix are among the most complex approached with machine learning: for
both, descriptions containing up to four variables and up to six binary relations
have been discovered. For the sake of reference, Figure A.1 gives the same graph
as Figure 9.9(a) but for n = 4. A phase transition is evident, but the expected
complexity in the mushy region is much lower than that in Figure 9.9(a).

Comparing Figure A.1 (n = 4) with Figure 9.9(a) (n = 10), we notice
that the mushy region is much wider for n = 4 than for n = 10, as predicted
by the theory (Williams and Hogg, 1994). Moreover, a 50-fold increase in the
complexity is observed in correspondence with a 2.5-fold increase in the number
of variables.

A.1 Mutagenesis dataset

The mutagenesis dataset has been widely used in the machine learning commu-
nity as a benchmark for testing induction algorithms in first-order logic. The task
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Figure A.1 Complexity in the (m, L) plane for randomly generated matching
problems with n = 4 and N = 100.

is to learn to predict the mutagenicity in nitroaromatic chemical compounds on
the basis of their structure (Srinivasan et al., 1995). The goal of our analysis was
to investigate where the classification rules learned by an inductive program lie
in the plane (m, L), with respect to the mushy region.

The mutagenesis dataset1 consists of the chemical description of 188
molecules classified as “mutagenic” (125 positive examples) or “non-mutagenic”
(63 negative examples). The goal of the learning task is to discover classifica-
tion rules that separate the two classes. Every compound is described as a set
of atoms, each characterized by an attribute vector reporting the atom type, the
atomic number, and the electrical charge, plus a set of relations describing atomic
links and substructures of the molecule such as aromatic rings. Moreover, every
compound is characterized by two global numeric attributes: lumo and logp, cor-
responding to the energy of the compound’s lowest unoccupied molecular orbital
and the logarithm of the compound’s octanol–water partition coefficient, respec-
tively. Extensive experimentation with different sets of attributes was reported
by Srinivasan et al. (1995).

The definition of this learning problem is usually based upon predicates (con-
straints) with arity greater than 2, and it is not immediately suitable for analysis
with the method used in Chapter 9, which was limited to binary constraints.2

However, the problem can be reformulated using only unary and binary predi-
cates, as was done by Anglano et al. (1998). Every molecule is considered as

1The dataset used here is a “regression friendly” one: it includes those examples that can be
modeled with a good approximation by linear regression.

2A discussion on the relations between binary and non-binary CSPs was provided by Bacchus
and van Beek (1998).
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Figure A.2 Example of a nitroaromatic molecule structure in the mutagenesis
dataset. Each atom is denoted by a constant, and each link defines a binary rela-
tion between two atoms.

a different universe that must be classified as either mutagenic or not. The hy-
pothesis description language contains literals of the form P (x, K) or Q(x, y),
where variable x and y range over atoms and K denotes a set of constants that
are to be learned by an induction algorithm (Giordana et al., 1997). In Figure A.2
an example is shown.

A set of experiments was performed for each of two different hypothe-
sis description languages, L1 and L2. The language L1 was analogous to that
used by other authors in the past (Sebag and Rouveirol, 1997, 2000) and con-
tains three unary predicates, namely, chrg(x, K), reporting the electrical charge,
anm(x, K), reporting the atomic number, and type(x, K), reporting the atomic
type, plus one binary predicate, bound(x, y), stating the existence or otherwise
of a link between two atoms. Moreover, the constraint x < y was imposed for ev-
ery variable pair in order to avoid inefficiency due to the test of symmetric or re-
flexive relations entailed by the relation bound(x, y). The language L2 contains
all the predicates defined in L1 with the addition of lumo(x, K) and logp(x, K)
to the description of each atom. The algorithm G-Net was programmed to gen-
erate formulas with exactly four variables, which is the maximum number used
in previous studies. In both experiments G-Net was run several times on the
entire dataset of 188 examples, producing sets of classification rules correctly
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ϕ1 : anm(x3 , [195, 22, 3, 27, 38, 40, 92]) ∧ ¬chrg(x3 , [−0.2, 0.2])∧
anm(x4 , [195, 22, 3, 38, 40, 29, 92]) ∧ ¬type(x4 , [O]) ∧ ¬chrg(x4 , [−0.2])∧
(x1 < x2) ∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4) ∧ (x3 < x4)∧
bound(x3 , x4) → mutagenic,

ϕ2 : ¬chrg(x1 , [−0.2]) ∧ ¬type(x2 , [N ]) ∧ ¬anm(x3 , [22])∧
¬chrg(x3 , [−0.6,−0.4]) ∧ ¬type(x4 , [H, N, O]) ∧ (x1 < x2) ∧ (x1 < x3)∧
(x1 < x4) ∧ (x2 < x3) ∧ bound(x2 , x3) ∧ (x2 < x4) ∧ (x3 < x4)∧
bound(x3 , x4) → mutagenic,

ϕ3 : anm(x1 , [195, 38, 29, 92]) ∧ chrg(x1 , [−0.8, 0.6]) ∧ ¬type(x3 , [C])∧
¬chrg(x3 , [0.0]) ∧ anm(x4 , [195, 22, 3, 27, 38, 29, 92]) ∧ ¬type(x4 , [N ])∧
(x1 < x2) ∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4) ∧ (x3 < x4)
→ mutagenic,

ϕ4 : anm(x1 , [195, 3, 27, 38, 40, 29, 92]) ∧ ¬type(x1 , [H]) ∧ ¬chrg(x1 , [−0.2])
¬anm(x3 , [40]) ∧ anm(x4 , [195, 22, 27, 38, 40, 29, 92]) ∧ ¬type(x4 , [H, N ])
(x1 < x2) ∧ ¬bound(x1 , x2) ∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3)∧
(x2 < x4) ∧ bound(x3 , x4) ∧ (x3 < x4) → mutagenic.

Figure A.3 The solution Φ learned by G-Net using the languageL1; Φ correctly
classifies 94.1% of the dataset.4

covering from 90% to 95% of the examples depending on the control parameter
setting.3

In the following we will analyze in detail two solutions, namely Φ =
{ϕ1, ϕ2, ϕ3, ϕ4} consisting of the four clauses shown in Figure A.3, which are
expressed in the language L1, and Ψ = {ψ1, ψ2, ψ3} consisting of the three
clauses shown in Figure A.4, which are expressed in the language L2. The same
analysis was performed on several other solutions generated by G-Net, and qual-
itatively equivalent results were obtained.

All rules in the solutions Φ and Ψ were analyzed according to the following
procedure. For each rule ϕi ∈ Φ or ψi ∈ Ψ, the two parameters p2 and p̂2,cr were
computed for every example in the dataset. The reasons for using p2 were that m
and n are constant for each formula whereas L and N change from one example
to another; this variability is captured by p2, which depends upon both N and L.
Thus, theoretical results from the literature (Prosser, 1996) can be used directly.

3In these experiments the whole dataset was used, because here we were interested not in eval-
uating the predictive power of the learned knowledge, but in the impact of the matching complexity
on the learning process.

4In the ϕi the symbol ¬ denotes, as before, the negation of a variable.
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ψ1 : first− atom(x1) ∧ logp(x1 , [0.0÷ 7.0]) ∧ ¬lumo(x1 , [−1.0])∧
¬logp(x2 , [1.5, 7.0]) ∧ ¬lumo(x2 , [−1.25]) ∧ ¬logp(x3 , [0.5, 1.0, 6.5])∧
¬lumo(x3 , [−4.0÷−1.0]) ∧ ¬logp(x4 , [2.5, 3.0]) ∧ (x1 < x2) ∧ (x1 < x3)∧
(x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4) ∧ (x3 < x4) → mutagenic,

ψ2 : first− atom(x1) ∧ logp(x1 , [0.0÷ 7.0]) ∧ ¬lumo(x1 , [−1.0])∧
¬logp(x2 , [1.5]) ∧ ¬lumo(x2 , [−1.25]) ∧ ¬logp(x3 , [0.5])∧
lumo(x3 , [−1.5,−0.75]) ∧ ¬logp(x4 , [2.5]) ∧ ¬lumo(x4 , [−1.75]) ∧ (x1 < x2)
∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3) ∧ (x2 < x4) ∧ (x3 < x4) →
mutagenic,

ψ3 : first− atom(x1) ∧ ¬lumo(x1 , [−1.0]) ∧ ¬logp(x2 , 2.0])∧
anm(x3 , [195, 22, 3, 27, 38, 40, 29, 92]) ∧ ¬chrg(x3 , [−0.20)])∧
¬anm(x4 , [22]) ∧ type(x4 , [C, O, F ]) ∧ ¬chrg(x4 , [−0.4, 0.0])∧
(x1 < x2) ∧ (x1 < x3) ∧ (x1 < x4) ∧ (x2 < x3)∧
(x2 < x4) ∧ (x3 < x4) → mutagenic.

Figure A.4 The solution Ψ learned by G-Net using the languageL2; Ψ correctly
classifies 90.7% of the dataset.

For our analysis, every formula was decomposed into subformulas with the
following structure:

γ(x1, x2) = α1(x1) ∧ α2(x2) ∧ β(x1, x2). (A.1)

Each subformula γ was considered as a single constraint. The unary predicates
occur in each subformula containing the same variable as an argument; they
have the role of reducing the number of bindings that may occur in the binary
relations (namely, the N value). As all variables in a clause are correlated at
least through the predicate <, six binary formulas were always obtained. Thus,
p1 = 1 for every clause, whereas the parameter p̂2,cr depends upon the number
L of constants; L corresponds, in this case, to the number of atoms in a molecule
and varies from one example to another. More precisely, the minimum value for
L in the dataset was Lmin = 18, the maximum was LMax = 40, and the average
was Lavg = 26.7.

Using the expression (9.21) we obtain, considering all formulas:

p̂2,cr = 1− L−4/6.7 (A.2)

The parameter p2 also depends upon the formula ϕ and upon the universe U
represented by an example e; in order to stress this dependency, we use the no-
tation p2(ϕ, e). More specifically, p2 was computed according to the expression

p2(ϕ, e) =
1
6

6∑
j=1

p2(γj, e) = 1− 1
6L2

6∑
j=1

Nj. (A.3)
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Figure A.5 Distribution of the variable p2 − p̂2,cr for the mutagenesis dataset,
for (a) ϕ1, (b) ϕ2, (c) ϕ3, (d) ϕ4 vs. the number of examples (all, positive, and
those matched by the formula).

In (A.3), γj is a binary subformula obtained from ϕ; its associated re-
lation has Nj elements. Let us consider now the classification rules Φ =
{ϕ1, ϕ2, ϕ3, ϕ4}. For each rule ϕi we computed the distribution of the variable
p2 − p̂2,cr over all the examples in the dataset, over the positive examples, and
over the examples (both positive and negative) “covered” by the rule. The graphs
of these distributions are shown in Figure A.5. If the matching problem corre-
sponding to a (ϕ, e) pair is exactly on the phase transition then the value p2−p̂2,cr

is zero. Notice that the mushy region is quite large for n = 4, as we can see from
Figure A.1; moreover, as neither L nor N are constant across relations and exam-
ples, the broadening of the mushy region is enhanced. Figure A.5 clearly shows
that, for the formulas ϕ2, ϕ3, and ϕ4, the p2 values are distributed substantially in
the mushy region for both positive and negative examples whereas the matching
problems involving ϕ1 seem to lie mostly in the YES region.

The same analysis was performed for the solution Ψ, and the results are
shown in Figure A.6. The Solution Ψ shows a different behavior from Φ. In
fact, the rules ψ1 and ψ2 exhibit three separate peaks: one to the left, one inside,
and one to the right of the mushy region, respectively. Moreover, in each case the
peaks corresponding to the examples satisfying the rule practically coincide with
the left-hand peak. A different behavior is exhibited by rule ψ3, which shows
only two peaks, the first near the critical point p̂2,cr , and the second clearly to the
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Figure A.6 Distribution of the variable p2 − p̂2,cr for the mutagenesis dataset,
for (a) ψ1, (b) ψ2, and (c) ψ3, vs. the number of examples (all, positive, and those
matched by the formula).

right of the mushy region. This situation is confirmed by the presence of both
positive and negative instances in the peaks.

From Figures A.5(a)–(d) we predict that formula ϕ1 should be easy to match
for all the examples, whereas matching ϕ2 is likely to involve a high computa-
tional cost because most examples lie in the critical region. For formulas ϕ3 and
ϕ4, many examples are close to the mushy region but not exactly at the transition
point, so that an intermediate complexity should be expected. In Table A.1 the
measured complexities for matching the formulas on the whole dataset are re-
ported. As can be seen the theory prediction for all the formulas is substantially
verified, except for ϕ1, for which both the location of the peak in Figure A.5(a)
and the complexity in Table A.1 appear to be in error. Looking more closely
at formula ϕ1 in Figure A.3, we suggest the following explanation. On the one
hand, the formula ϕ1 actually contains only two “meaningful” variables, namely
x3 and x4, in the predicate bound(x3, x4); thus, both n and m are overestimated
and so the value p̂2,cr is actually a little larger than that in the figure. On the other
hand, N is computed as the average of all the relations involved in the formula,
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Table A.1 Average complexities for matching the clauses in Φ and Ψ to
the examples of the dataset

Φ Ψ

ϕ1 ϕ2 ϕ3 ϕ4 ψ1 ψ2 ψ3
Avg 26 215.10 5168.06 1249.04 1496.85 1.33 1.43 7.06
Avgpos 22.46 207.74 23.89 1249.86 2.00 2.00 2.35
Avgneg 30 418.86 8609.00 1463.44 1789.79 1.00 1.00 8.33

Table A.2 Classification rates obtained by setting a
threshold between the peaks corresponding to low and high
p2 values, respectively, for the three formulas ψ1, ψ2, and ψ3.
The values within parentheses correspond to the classification
obtained by actually matching the formula on the dataset.
Setting a threshold on p2 reduces the omission error but
increases the commission error

Formula Threshold on p2 Positive Negative

ψ1 0.85 80 (80) 3 (1)
ψ2 0.85 60 (60) 4 (2)
ψ3 0.95 54 (40) 23 (0)

so that the extension of (x1 < x2), which is much larger than the other, means
that p2 appears much smaller than it must be. The consequence is an apparent
shift toward the left with respect to the phase transition. The second aspect to
be explained, namely the abnormally high complexity of ϕ1 seen in Table A.1,
is also related to spurious joins of the intermediate tables corresponding to x1
and x2, which are pruned only later. This effect would not have appeared if a
dynamic variable ordering had been exploited during matching. A set of focused
experiments in which ϕ1 was reduced to the subformula containing only x3 and
x4, confirmed both explanations. Of the seven formulas in Φ and Ψ, ϕ1 is the
only formula in which only two variables are effective. It is sufficient that three
among the four variables are chained by the predicate bound, which is much
more constraining than the predicate <, for the anomaly to disappear.

An interesting observation can be made for Figure A.6(a)–(c): the positive
and negative examples could be discriminated almost without performing the
matching but simply by setting a threshold on p2: by considering as “positive”
the examples on the left and as “negative” those on the right of the threshold, the
classification reported in Table A.2 is obtained. The values of p2 and hence the
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threshold can be computed from N and L only. Problems that exhibit this kind
of behavior are essentially “propositional” even though formally expressed in
a FOL language. The very low matching complexities in Table A.1 confirm this
assertion. The above property can be exploited to reduce the amount of matching
to be done during learning and knowledge use. By estimating the distributions
of p2 values for the positive and negative training examples, a “best” threshold
(or, preferably, a “best margin”) can be learned.

Moreover, by looking at the syntactic structure of the clauses in Ψ, (see Fig-
ure A.4), we notice that most literals occurring in them involve the attributes
lumo and logp, which have the same value for all atoms, according to the way
they have been defined. Therefore, in spite of their structural aspect, ψ1 and ψ2
are easily translated into propositional assertions. The rule ψ3 shows a differ-
ent structure, since it also contains literals related to the atomic charge and the
atomic number. This is sufficient to require an actual matching. This last situa-
tion occurs in all clauses of the solution Φ.

A.2 Mechanical troubleshooting datasets

The second real-world case study that we discuss here is a problem approached
by two of the authors some time ago in an industrial environment. The goal of
the application was the automatic acquisition of a diagnostic knowledge base for
mechanical troubleshooting at the chemical company ENICHEM in Ravenna.
The knowledge base learned by the system ENIGMA (Giordana et al., 1993)
has been used for many years by the company.

The basis for the troubleshooting was mechanalysis, a methodology that ex-
ploits mechanical vibrations and requires considerable expertise for its applica-
tion. The diagnosed apparatus, ranging from small motor pumps to large turbo
alternators, shared the common feature of possessing a rotating shaft. When
some fault occurs in the machine, anomalous vibrations appear. Mechanalysis
basically performs a Fourier analysis of the vibratory motions measured on the
supports of the machine components. Each mechanalysis constitutes an exam-
ple. The data, arranged into groups, correspond to the machine’s supports: each
group contains the frequency and velocity of the harmonic components of the
vibration for three spatial directions, as shown in Figure A.7.

The troubleshooting task consists of discriminating between six classes (one
“normal” and five for the types of fault). G-Net found 13 conjunctive formulas,
distributed over the six classes,5 each having at most four variables. One of these

5In the real-world application the system ENIGMA was used (Giordana et al., 1993), but
here we have re-analyzed the dataset using the new system G-Net. In fact, the knowledge base
used in the field was obtained by an integration of similarity- and explanation-based learning, and
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Figure A.7 Structure of a mechanalysis table corresponding to a single exam-
ple. (a) Scheme of a motor pump. The vibrations of the four supports A, B, C,
and D are measured. (b) For each support (A, B, C and D) and for each triple
of “total vibration” measurements, several groups of three rows, such as those
given under the heading “Fourier Analysis”, may be present, as vibrations with
different frequencies are measured. Globally, a mechanalysis table may contain
20 through 60 items, an item being an entry in the mechanalysis table, i.e., a
4-tuple <support, direction, frequency, velocity> for each vibration harmonic.

formulas is the following:

ϕ = vout(x1) ∧ sup(x1, [2, 3, 4]) ∧ ismax(x2) ∧ ¬mis(x2, [0.0− 3.0]) ∧
vin(x3) ∧ rpm(x2, [2, 3, 4, 6, 7, 8]) ∧ ¬cpm(x3, [9.0]) ∧ ¬mis(x3,

[1.0, 2.0]) ∧ ¬fea(x3, [ia, iv]) ∧ ¬rpm(x3, [5]) ∧ ¬sup(x4, [1, 3])
∧ near(x1, x2, [1]) ∧ near(x1, x3, [1]) ∧ ¬near(x1, x4, [1])
∧ near(x2, x3, [0, 1]).

The meaning of the predicates in ϕ is not important here and can be found
in Giordana et al. (1993). The relevant aspect is the syntactic structure of ϕ.
In Figures A.8 and A.9 the results of the same analysis as that performed on

was structured with chains of disjunctive rules instead of flat ones. In the cited paper a complete
description of the application may be found.
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Figure A.8 Distribution of the variable p2 − p̂2,cr for the matching problems
obtained by pairing each of the 13 formulas (disjuncts) in the solution with all
the examples in the dataset. Each graph corresponds to one of the 13 formulas.
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Figure A.9 Distribution of the variable p2 − p̂2,cr obtained by matching each
disjunct corresponding to a given class with the positive examples of the same
class that are covered by it. Hence, all the considered problems are solvable.

the mutagenesis dataset are shown. More specifically, Figure A.8 reports the
distribution of the variable p2 − p̂2,cr for the matching problems obtained by
pairing each of the 13 formulas with all the examples in the dataset (164 exam-
ples), giving a total of 2132 matching problems. In Figure A.9, however, only
matching problems obtained by pairing each formula with the positive examples
of its class are considered.
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Figure A.10 Location of the line Psol = 0.5 for N = 50, 80, 100, 130 and
n = 4 variables. The symbols + and * (this lies about halfway up the vertical
axis) locate the positions in the plane (m, L) of the “average” matching problems
found in the mutagenesis and mechanical troubleshooting datasets, respectively.

As we can see from Figure A.8, most problems lie inside the mushy region,
except for one formula. A closer analysis of this formula showed that, in contrast
with the case of Figure A.1(a), the peak to the left of the phase transition actually
corresponds to an “easy” problem, with a low matching complexity and a high
coverage of both positive and negative examples.

In the two real-world problems that we have considered, the cardinality N
of the relations corresponding to the basic predicates was not constant, as is
assumed in model RL. Thus, we considered the model prediction for a range of
N values corresponding to the actual cardinalities occurring in the two datasets.
The plot in Figure A.10 is analogous to that in Figure 9.8(b) but for n = 4
variables. Again, N was set to 50, 80, 100, and 130, respectively.

In Figure A.10 we have indicated the “average” solutions found by G-Net
(the average was over all pairs (ϕ, e), in the plane (m, L)). As can be seen from
the figure, these solutions are located on the respective phase transition curves.
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It is easy to produce a probability function that exhibits a very steep transition
between the values 0 and 1. Take for instance a binary tree corresponding to the
exploration graph of a two-player game with a constant branching factor b. Each
node in the tree represents a position, and each edge a possible move for a player
from one position to a next position. Some games do indeed offer only exactly b
possibilities at each time to the current player.

Suppose further, as it is usually the case, that the computer whose turn it is to
play does not have sufficient time or memory space to explore the whole tree of
possibilities. Then, the standard approach is for the computer to develop the tree
to a given depth, say 10, and then to evaluate the merit of each position and to
carry up these estimations through the celebrated min–max procedure. If a node
represents the computer’s turn to play, the maximum value of the nodes below is
returned and passed above, otherwise the minimal value is passed above.

One question is then how to compute the probability of a “win” at the root of
the tree given the probability that a leaf node is a win. By computing the proba-
bility that a node is a win, given the probability of a win of its direct successors
and its own nature (either a Max node or a Min node), it is straightforward to
compute the probability at a Max node at depth d − n from the probability of a
Min node at depth d− (n− 1), one move ahead: thus

Pn = 1− (1− Pb
n−1)

b, (B.1)

where b is the branching factor and Pn is the probability of a win when n is the
number of moves to be played by Max until a leaf node (where n = 0) is reached.
This is a recursive function (called in this case the logistic function), from which
the probability of a win at the root can be calculated given the probability of a
win at a leaf node, Pd = f(P0). The function f(x) = 1 − (1 − xb)b intersects
the line y = x at three points. Two of them, at x = 0 and x = 1, are stable points
and the third, x = ξb, is unstable. If Pn−1 is equal to any of these three values
then we have Pn = Pn−1. If, however, Pn−1 < ξb then Pn < Pn−1 and therefore
Pn+1 < Pn < Pn−1, and so on, whereas if Pn−1 > ξb then Pn > Pn−1 and
therefore Pn+1 > Pn > Pn−1, and so on (see Pearl, 1984).
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Figure B.1 (Lower panel) The probability (see (B.1)) of a win at the root node
of a max–min game with branching factor b = 2 (upper panel) when the depth
of the game increases from n = 1 to n = 5 and n = 10.

As a consequence, the greater the value of the depth d, the steeper the func-
tion f (see Figure B.1). In the limit, we have

lim
d→∞

Pd(P0) =

{
1 if P0 > ξb

0 if P0 < ξb

(B.2)

The same analysis can be carried out to compute the probability of accep-
tance of a string when an automaton has a self-similar structure.

Suppose that we have a “circuit” of the form shown of Figure B.2 (upper
panel). We will call such a circuit a series circuit by analogy with the electrical
case. Each edge in the circuit acts as a filter. Either the current letter in the incom-
ing string matches the letter specified by the edge and the remaining string goes
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Figure B.2 (Upper panel) A self-similar series–parallel circuit. The top left el-
lipse encloses a series circuit. The probability that a string passes through the
circuit is Pn−1 = Q2

n if the probability that the string passes each test is Qn . The
larger ellipse encloses an elementary series–parallel circuit with two branches.
The probability that a string passes it is Pn = 1 − (1 − P 2

n−1)
2. (Lower panel)

Example of an automaton obtained during learning from a prefix tree acceptor
(PTA). It exhibits a series–parallel pattern, if not a self-similar one.

on, possibly towards an accepting state, or it does not match and the string is not
accepted. When the edges appear on the same branch, the string must satisfy all
conditions. This acts as an AND logical door, or as a Min node in a two-player
game (see Figure B.1, upper panel). If we assume that the probability that the
string successfully passes an elementary test is Pn−1 then the probability that
the string successfully passes the series of b tests is Qn = Pb

n−1.
However, if several branches, say b, are available in parallel (see Figure B.2)

and if the probability that the string passes one branch is Qn then the probability
that the string does not pass the parallel circuit is 1− Pn = (1−Qn)b.

Thus, we obtain again Pn = 1− (1−Pb
n−1)

b. Overall, the probability that a
string passes a self-similar circuit such as that of Figure B.2 has the same form as
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Figure B.1. As the depth of the circuit increases, the transition from probability
0 to probability 1 sharpens and tends towards a step function.

Therefore, if an automaton exhibited a topology akin to such self-similar
series-parallel circuits, should one expect a phase-transition-like profile for the
coverage of random strings? Is this realistic, or is it only a game of the mathe-
matical mind? This remains to be studied more carefully.
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BARABÁSI, A., and BONABEAU, E. (2003) Scale-free networks. Scientific
American 288: 50–59.
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and P. Flach, pp. 262–286, Springer-Verlag.

KRAMERS, H., and WANNIER, G. (1941) Statistics of the two-dimensional
ferromagnet, I. Phys. Rev. 60: 252–262.

KROC, L., SABHARWAL, A., GOMES, C., and SELMAN, B. (2009) Integrating
systematic and local search paradigms: a new strategy for maxsat. In Proc.
IJCAI 2009, pp. 544–551.
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VÁZQUEZ, A., and WEIGT, M. (2003) Computational complexity arising from
degree correlations in networks. Phys. Rev. E 67: 027101.

VICSEK, T. (2007) Phase transitions and overlapping modules in complex net-
works. Physica A 378: 20–32.

VILONE, D., and CASTELLANO, C. (2004) Solution of voter model dynamics
on annealed small-world networks. Phys. Rev. E 69: 016 109.

WALSH, T. (1999) Search in a small world. In Proc. 16th Int. Joint Conf. on
Artificial Intelligence, pp. 1172–1177, Stockholm.
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