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Preface

This book is an outgrowth of ten years of research at the University of Florida
Computational NeuroEngineering Laboratory (CNEL) in the general area of
statistical signal processing and machine learning. One of the goals of writing
the book is exactly to bridge the two fields that share so many common
problems and techniques but are not yet effectively collaborating.

Unlike other books that cover the state of the art in a given field, this book
cuts across engineering (signal processing) and statistics (machine learning)
with a common theme: learning seen from the point of view of information the-
ory with an emphasis on Renyi’s definition of information. The basic approach
is to utilize the information theory descriptors of entropy and divergence as
nonparametric cost functions for the design of adaptive systems in unsuper-
vised or supervised training modes. Hence the title: Information-Theoretic
Learning (ITL). In the course of these studies, we discovered that the main
idea enabling a synergistic view as well as algorithmic implementations,
does not involve the conventional central moments of the data (mean and
covariance). Rather, the core concept is the α-norm of the PDF, in partic-
ular its expected value (α = 2), which we call the information potential.
This operator and related nonparametric estimators link information theory,
optimization of adaptive systems, and reproducing kernel Hilbert spaces in a
simple and unconventional way.

Due to the pervasive nature of learning, the reading of the material re-
quires prior basic knowledge on a broad set of subjects such as information
theory, density estimation, adaptive filtering, pattern recognition, reproduc-
ing kernel Hilbert spaces (RKHS), and kernel machines. Because there are
few researchers with such broad interests, the first chapter provides, in sim-
ple terms, the minimal foundations of information theory, adaptive filtering,
and RKHS, while the appendix reviews density estimation. Once the reader is
able to grasp these fundamentals, the book develops a nonparametric frame-
work that is rich in understanding, setting the stage for the evolution of a
new generation of algorithms of varying complexity. This book is therefore
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VIII Preface

useful for professionals who are interested in improving the performance of
traditional algorithms as well as researchers who are interested in exploring
new approaches to machine learning.

This thematic view of a broad research area is a double-sided sword. By
using the same approach to treat many different problems it provides a unique
and unifying perspective. On the other hand, it leaves out many competing
alternatives and it complicates the evaluation of solutions. For this reason, we
present many examples to illustrate and compare performance with conven-
tional alternatives in the context of practical problems. To be more specific,
the reader will find:

• Information-theoretic cost functions for linear and nonlinear adaptive fil-
tering that have low complexity but are robust to impulsive noise, and
extract valuable structure from the error signal

• Information-theoretic cost functions for classification and unsupervised
learning and a new principle of self-organization

• A RKHS for ITL defined on a space of probability density functions that
simplify statistical inference

• A new similarity function called correntropy that extends the conventional
correlation

The book is organized as follows.
Chapter 1 covers the foundations of information theory, an overview of

adaptive systems, and also the basic definitions of RKHS.
Chapter 2 presents the foundations of Renyi’s entropy, divergence, mutual

information, and their estimators based on the information potential. This is
a foundational chapter, and readers should spend time understanding the con-
cepts, and practicing with the algorithms for estimating the ITL descriptors
directly from data. The chapter concludes with fast computational algorithms.

Chapter 3 develops the idea of error entropy criterion (EEC) minimization
and its minimum error entropy (MEE) algorithm to adapt learning systems.
An analysis of the cost function is undertaken and key properties of the error
entropy criterion are presented. One of the main reasons why the EEC is
useful in practical applications is its robustness to outliers. We establish the
link between the EEC and Huber’s robust statistics through a weighted least
squares point of view. In so doing we define a new function called correntropy
that can also be used to train adaptive filters and is easier to compute than
EEC. Correntropy defines a metric in the data space and it is directly related
to entropy. The chapter ends with a method to adapt the kernel size parameter
in adaptive systems training.

Chapter 4 develops a set of algorithms to adapt linear filters using MEE.
Basically all the practical gradient-based algorithms are covered: the MEE
batch algorithm, the MEE recursive information potential that saves compu-
tation, the MEE stochastic information gradient (SIG) that mimics Widrow’s
LMS algorithm, the MEE self adjusting stepsize, and the normalized MEE.
We also present a fixed-point algorithm (no stepsize) with higher complexity
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but that is much faster because it explores second-order information content
of the cost function. The chapter ends with a comparison with the error cor-
rentropy criterion, which has practical computational advantages.

Chapter 5 addresses filtering (regression) problems extending the training
algorithms for nonlinear systems. We show how to integrate backpropagation
with the error entropy costs, so the reader is able by the end of this chapter
to train nonlinear systems with entropic costs. Incidentally, this is really the
type of systems that benefit from the error entropy cost because most of the
time the errors created are non-Gaussian. Comparisons with traditional mean
square error cost are provided. A brief overview of advanced search methods
with ITL algorithms is also presented.

Chapter 6 changes the focus to classification problems. The techniques
necessary to train classifiers with MEE have already been established in
Chapter 5, so this chapter addresses the usefulness of error entropy costs for
classification, which is a harder problem than regression. Alternatively, non-
parametric classifiers using a MAP approach can be easily implemented and
work reasonably well in small-dimensional spaces. For classification, the idea
of utilizing the dissimilarity between class labels and system output separately
(instead of creating the error) is appealing because of Fano’s bound. We ex-
tend the cost function to include the ITL divergence measures and quadratic
mutual information, and show that this alternative cost function is beneficial
not only to train classifiers but also for feature selection. The chapter ends
with a proof that the classification error can be lower and upper bounded
(i.e., can be bracketed) by Renyi’s entropy for alpha greater and smaller than
one, respectively.

Chapter 7 treats clustering (the simplest of unsupervised learning
methods) using ITL divergence measures. First, we discuss the Cauchy-
Schwarz divergence measure as a cost function for clustering, bringing out
the nice feature that optimal clusters are not necessarily spherical. Then, a
gradient descent algorithm is proposed to find the data partition that mini-
mizes this clustering cost function, and its connection to spectral clustering
and optimal graph cuts is established. Gaussian mean shift is also framed
as the optimization of an ITL cost function. The chapter ends with a novel
information cut algorithm for graph clustering.

Chapter 8 reviews several self-organizing principles based on information-
theoretic concepts to show the importance of IT descriptors as cost func-
tions for the optimal design of unsupervised learning systems. Then, a new
self-organizing principle called the principle of relevant information is pre-
sented that yields as special cases, clustering, principal curves, and vector
quantization. Finally, the ITL descriptors are utilized to implement the most
common forms of self-organizing principles without assumptions about the
data PDFs.

Chapter 9 defines a new reproducing kernel Hilbert space on the space
of PDFs with an inner product defined by the cross information potential
of ITL. This RKHS provides a functional analysis perspective of ITL and
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helps us understand links between statistical inference and the RKHS defined
for ITL. Moreover, we show the relationship between ITL descriptors and
statistical operators used in machine learning in the RKHS defined by the
kernel, including an interpretation of support vector machines.

Chapter 10 defines in the space of random variables a novel generalized
correlation function named correntropy. We present many properties of
correntropy to make clear its statistical meaning. Based on correntropy, we
propose the correntropy coefficient that is bounded by unity and zero for inde-
pendent random variables, unlike the conventional correlation coefficient. By
defining the concept of parametric correntropy, we propose a new correntropy
dependence measure that obeys most of Renyi’s postulates for dependence.
We illustrate the use of correntropy in statistical inference problems, such as
matched filtering, tests of nonlinear coupling and as a dependent measure
between random variables.

Chapter 11 extends the concept of correntropy to random processes. The
name can be properly explained in this context because correntropy (built
from correlation plus entropy) looks like correlation but the sum over the
lags (or dimensions) is the information potential (the argument of the log of
Renyi’s entropy). We show that the autocorrentropy function is a positive
definite kernel and, as such, defines a novel RKHS with interesting properties.
It is possible to define a correntropy spectral density that provides a spec-
tral representation that includes, for the first time, second- and higher-order
moments of the random process. We end the chapter with a case study to ex-
emplify how to transform optimal linear algorithms to the correntropy RKHS,
and a few examples in speech processing, time series analysis, a correntropy
Karhunen-Loeve transform and, object recognition.

The appendix completes the book with a review of kernel density estima-
tion and Renyi’s entropy estimation.

The author is conscious that such a vast coverage of topics imposes some
compromises of breadth versus depth. To help readers with different back-
grounds, profiles, and goals the following flowcharts help establish a road map
for the book.

Adaptive Systems (including neural networks) Theme
Ch 1 → Ch 2 → Ch 3 → Ch 4 → Ch 5 → Ch 6 → Ch 7 → Ch 8
Unsupervised Learning Theme
Ch 1 → Ch 2 → Ch 7 → Ch 8
RKHS Theme
Ch 1 → Ch 2 → Ch 9 → Ch 10 → Ch 11
Statistical Signal Processing Theme
Ch 1 → Ch 2 → Ch 3 → Ch 9 → Ch 9 → Ch 11
Pattern Recognition Theme
Ch 1 → Ch 2 → Ch 5 → Ch 6 → Ch 7 → Ch 9 → Ch 10

The book is based on a large collection of journal papers and confer-
ence proceedings produced by an extraordinary group of PhD students and
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CNEL visitors who were smart enough, knowledgeable enough, and brave
enough to think outside the box and ask very pertinent questions about the
principles ordinarily used in statistical signal processing and machine learning.
Their names are: Deniz Erdogmus, Weifeng Liu, Dongxin Xu, Robert Jenssen,
Jianwu Xu, Ignacio Santamaria, Kenneth Hild II, Jeongju Han, Kyu-Hwa
Jeong, Sudhir Rao, Puskal Pokharel, Rodney Morejon, Antonio Paiva, Sohan
Seth, Il Park, and Abhishek Singh.

To demonstrate my appreciation for their work I consider them my coau-
thors and list their names in the chapters where their main contributions are
centered.

The author is grateful to the National Science Foundation, in particular the
Electrical, Communications and Cyber Systems Division in the Engineering
Directorate which has funded the great majority of this work and the above
mentioned students.

Gainesville, Florida
August, 2009.
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Fα(x) α–Information Force
v(x,y) Correntropy
v(t,s) Correntropy Function
va,b(x,y) Parameteric Correntropy
u(x,y) Centered Correntropy
u(t,s) Centered Correntropy Function

E(X) Expected Value of x
H(X) Shannon Entropy
Hα(X) Renyi’s Entropy of order α
I(X) Information of x
I(X ,Y) Shannon Mutual Information
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Notation

There are mainly three types of variables we need to distinguish among: scalar,
vector, and matrix variables.

The following is a list of the notational conventions used in the book:

1. We use small italic letters to denote scalar variables.
2. We use CAPITAL ITALIC letters to denote scalar constants and random

variables
3. We use small bold letters for vectors
4. We use CAPITAL BOLD letters to denote matrices
5. We use parentheses to denote the time-dependency of any variables (either

scalar, vector or matrix).
6. We use the superscript T to denote transposition.
7. All variables in our presentation are real, unless explicitly stated.
8. All vectors in our presentation are column vectors without exception.
9. We use subscript indices to denote 1) a component of a vector (or a matrix).
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Information Theory, Machine Learning,
and Reproducing Kernel Hilbert Spaces

1.1 Introduction

The common problem faced by many data processing professionals is how
to best extract the information contained in data. In our daily lives and in
our professions, we are bombarded by huge amounts of data, but most of-
ten data are not our primary interest. Data hides, either in time structure or
in spatial redundancy, important clues to answer the information-processing
questions we pose. We are using the term information in the colloquial sense,
and therefore it may mean different things to different people, which is OK for
now. We all realize that the use of computers and the Web accelerated tremen-
dously the accessibility and the amount of data being generated. Therefore the
pressure to distill information from data will mount at an increasing pace in
the future, and old ways of dealing with this problem will be forced to evolve
and adapt to the new reality. To many (including the author) this represents
nothing less than a paradigm shift, from hypothesis-based, to evidence-based
science and it will affect the core design strategies in many disciplines includ-
ing learning theory and adaptive systems.

Modeling Levels

One productive step involved in extracting information from data is data
modeling. A model of the data basically summarizes the process of its genera-
tion, and allows for the optimal design of data processing systems. Therefore
the overall data processing goal can be thought as the macroscopic modeling
level. We pursue here methodologies based on probabilistic reasoning because
it has played and will continue to play a central role in the endeavor of extract-
ing information from data. Probability theory provides an established frame-
work to work with uncertain or noisy data. In this framework, learning from
samples can be thought of as discovering structure in data, or equivalently,
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as finding dependencies in the data generation model under the uncertainty
produced by noise, incomplete knowledge of the sample space, and unknown
parameters or the data structure.

When the data sources contain all the information in their distribution,
it is reasonable to build information-processing systems that directly use the
data’s joint probability density function (PDF) (or any other marginal or con-
ditional PDF, which is easily obtained from the joint distribution). Examples
of this approach include the current work on graphical models and its special
cases such as the Bayesian filter or the hidden Markov model, which are very
powerful but are computationally demanding. Bayesian reasoning allows di-
rect implementation of macroscopic system goals from the data, hence we call
this approach microscopic modeling.

Another major line of reasoning in statistics deals with the construction
of scalar descriptors of the PDF that, under an appropriate set of modeling
assumptions, succinctly characterize the data structure. In our terminology,
this is the mesoscopic modeling level . The advantage of mesoscopic data de-
scriptors is that they solve the macroscopic data processing goals with com-
putational simplicity, enabling both portable implementations in engineering
and “giga-dataset” processing in machine learning. Statistical moments are,
in the fields of statistical signal processing and machine learning, by far the
most widely used mesoscopic descriptors of the PDF. The appeal of moment
expansions is that there are consistent nonparametric estimators for the mo-
ments. Moreover, as is well known in probability theory, well-behaved PDFs
can be described as accurately as desired by increasing the expansion order.
In particular, if the Gaussian assumption is invoked for the PDF, then the
mean and the variance completely describe the PDF.

Let us contrast the microscopic and the mesoscopic modeling levels with
a simple macroscopic goal of time series modeling. Given a sufficient amount
of data, the Bayesian filter is capable of modeling (with a weak Markovian
assumption) any time series by directly using the posterior density with a re-
cursive estimator (a state model). Under linearity and Gaussian assumptions,
the Kalman filter can provide exactly the same solution based on mesoscopic
descriptors (the data covariance function) with the difference that it requires
only a fraction of the data and computational resources required to imple-
ment the Bayesian filter. Even if the data do not obey these assumptions, the
Kalman filter may still be useful because of its computational simplicity and
because the Bayesian filter suffers from poor estimation when data are scarce.

This book uses mesoscopic statistical models for adaptive filtering and
machine learning. Let us assume that the problem we are facing is to find a
relationship between {x, z} by observing pairs of samples (xi, zi) produced by
the experimental signal source. Figure 1.1 provides the fundamental building
block for this scenario.

A learning machine (linear or nonlinear) having a set of free parameters
w is constructed to receive the data xi and produce an output yi. We then
compare how similar yi is to zi according to some criterion and minimize this
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Fig. 1.1. Model building through adaptation.

difference by changing the parameters w with some systematic procedure. In
the end we obtain a system that, when activated with new data from the
source x, approximates the unknown z with y. The procedure just outlined
builds implicitly a model for the relationship between x and z. We call the
system a learning machine or adaptive system and the process of finding
parameters from data, learning or adaptation.

This idea of training adaptive systems is far from new (probably used
for the first time by Gauss or Legendre in linear regression), and there are
many different approaches to formulate and characterize the training methods.
For example, the adaptive system shown in Figure 1.1 uses what is known as
supervised learning. Another type of learning, known as unsupervised learning
occurs when x is available, but z is not. More is said later in the text about
supervised and unsupervised learning.

Parametric and Nonparametric Model Building

Both parametric and nonparametric designs create models from data and the
trade-offs between the two have been a central theme in statistical thinking.
It is appropriate to recall the debate, summarized in [133], that happened
in the early 1920s. In this debate Fisher and Pearson argued about how to
model data when neither the error distribution nor the functional form of
the fitting function was specified. Fisher proposed to select a simple fitting
function (in his terminology the problem of specification) and concentrate
on estimating its parameters (in his terminology the problem of estimation).
Fisher championed this parametric (or model-based) approach because of its
lower variance, in particular when data are scarce. On the other hand, Pearson
advocated the importance of specification in detriment of estimation, which
leads to nonparametric learning approaches. They handle the bias of the fit
well, but have difficulty with the model variance. Looking critically at the
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literature in pattern recognition and time series analysis for the last 80 years,
Fisher’s approach seems the winner because it has been widely utilized in
statistics, machine learning, and statistical signal processing and it is the most
accurate as long as the assumed model fits the data generation mechanism.
Unfortunately, the theory only handles rather simple statistical models that
may not be accurate enough to describe the complex PDFs of today’s real-
world problems.

The learning machine depicted in Figure 1.1 can be designed using ei-
ther parametric or nonparametric modeling methodologies. The system (also
called the mapping function) implements by its topology a set of functions,
which defines a manifold of possible solutions depending upon its parametric
values. Therefore, the procedure provides in general a parametric model for
the statistical relation between input-desired data. Assumptions of linearity
(for regression) or Gaussianity (for classification) are imposed so that optimal
solutions could be analytically computed, but the set of possible input–output
mappings is rather restrictive. Neural networks and kernel machines are both
universal mappers; the former combine discriminant functions created by a
fixed number of nonlinear units that are incrementally adapted from the data,
and the latter functionally map the input data. Therefore, the user does not
need to select an explicit parametric model a priori, but proper design steps
still need to be followed. In the extreme case of placing in each sample a sim-
ple fixed kernel and weighting the local contributions, the system effectively
implements a nonparametric model. Therefore, the model bias is currently
much less important than in the early days of machine learning. Likewise, the
benefits of the nonparametric approach are also increasing due to the avail-
ability of large amounts of training data (that reduce the variance), added to
the ever–increasing power in computational speed.

Finally, the estimation part of the modeling can not be forgotten: (1) the
model parameters still need to be learned from the data through an appro-
priate loss function (criterion); (2) to reach the optimal solution, the learning
algorithms need to be able to deal with the nonlinear or the functional na-
ture of the mappings. The block diagram of Figure 1.1 enables online model
building, by feeding back the results of the model evaluation to the adapta-
tion algorithm which will seek the extremum of the criterion by continuously
modifying the system parameters. This is not the only way of solving the
optimization problem, but it is the one that is preferred in this book.

Selecting an appropriate loss function or criterion for the goals of machine
learning has been largely neglected, and the parametric/nonparametric mod-
eling issue reappears. Perhaps the most principled approach is to translate the
goal of the analysis into a cost function, but this is often complex (i.e., how to
minimize the probability of errors in classification). The moments (e.g., the
mean square error criterion (MSE) which is the second-order moment of the er-
ror PDF) are the most often preferred. The success story of MSE is regression
because all the information on the error PDF under a Gaussian assumption
is captured in a simple analytical model. However, MSE is used in situations
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where it may be a poor descriptor of optimality such as in classification, where
classifiers are nonlinear and the errors are not Gaussian distributed. What we
should not forget is that the mapping function and the cost function work in
tandem, and the overall performance is limited by the one that reflects the
poorest approximation for the problem at hand.

The Information-Theoretical Learning Approach

This book combines a functional mapper with a cost function based on
mesoscopic data modeling for computational efficiency. However, the pro-
posed criterion does not suffer from the limitation of Gaussianity inherent in
cost functions based on second-order moments (MSE). This is achieved with
information-theoretic descriptors of entropy and dissimilarity (divergence and
mutual information) combined with nonparametric PDF estimators, which
bring robustness and generality to the cost function, and improve performance
in many realistic scenarios (fat-tail distributions, and severe outlier noise).
One of the other appeals of this information theoretic learning (ITL) method-
ology is that it can, with minor modifications, use the conventional learning
and adaptation methodologies of adaptive filters, neural networks, and kernel
learning. Our hope is that this line of research can close the performance
gap between microscopic and mesoscopic data modeling, while preserving the
simplicity of the latter.

Let us then interpret adaptation in Figure 1.1 from an information-
theoretic point of view. The information contained in the joint PDF p(x, z)
should be transferred as efficiently as possible to the parameters w of the
learning system. Therefore, one would hope to extract as much information
as possible from the error PDF p(e) by changing w to make y as close as
possible to z in an information sense. Entropy measures uncertainty of the
error, therefore the cost should minimize the entropy of the error.

Shannon entropy [293] for continuous random variables reads
∫
p(x) log

p(x)dx , therefore knowledge of the data PDF p(x) is a necessary first step to
estimate entropy, divergence, and mutual information. In information theory
a Gaussian PDF model is adequate, because manmade signals can be de-
signed to fit the selected parametric model and also because the channel noise
statistics are basically Gaussian. Under these conditions Shannon entropy
can be easily estimated. However, the problems and data in statistical signal
processing and machine learning are often incompatible with this parametric
methodology without raising the model bias issue. This is exactly where a
nonparametric line of reasoning is helpful if an efficient and accurate PDF
estimator can be derived.

The author published in 2000 three major observations. First, in most en-
gineering cases the error variable is a scalar or has low dimension, so PDF
estimation is still accurate. Second, the requirements of a PDF estimator for
an entropic cost function are very different from the ones for density estima-
tion. Indeed, in adaptation what matters is to locate the extrema (maximum
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or minimum) of a cost function, not the exact value of the cost. Therefore,
as long as the free parameters of the entropic cost estimator are tuned to
the data dynamic range and they are kept constant for the same data, rel-
ative comparisons of entropy are sufficient to find the optimal value of the
system parameters. However, the estimator must be smooth to allow gradient
descent searches. Third, although nonparametric PDF estimation for contin-
uous random variables is difficult, the argument of the logarithm in Renyi’s
entropy (1−α)−1 log

∫
pα(x)dx [264] is easier to estimate directly from data,

in particular for α = 2. Because EX [p(x)] =
∫
p(x)p(x)dx , the α = 2 case

is just the mean value of the data PDF. Moreover, the logarithm can be
dropped from the cost function because optimal parameters are invariant to
monotonic transformations on the cost. The core concept in this book became
naturally EX [p(x)], which is called the information potential (IP) for reasons
that become apparent later (Figure 1.2).

In simple terms, this book provides answers to the following questions.
Under what conditions are ITL costs better than MSE to train a learning
machine and how can they be practically implemented?

We called this framework information-theoretic learning, a terminology
perhaps first used by Watanabe in the 1970s [330] and also coined by us in
the context of adaptive systems training [252]. This terminology succinctly
conveys the goals of this book. Namely, we seek to quantify global scalar de-
scriptors of the underlying PDF (e.g., entropy), while being primarily inter-
ested in learning and adaptation. However, inasmuch as information is utilized
extensively in our colloquial language and we use the mathematical theory of
information developed initially by Claude Shannon and Alfred Renyi among
many others, the inclusion of theoretic in the title is natural.

The bridge to reproducing kernel Hilbert spaces (RKHS) [35] in Figure 1.2
may appear as a surprise. It turns out that EX [p(x)] is a special case of∫
p(x)q(x)dx that occurs when two different PDFs p(x) and q(x) are equal.

This integral is a bivariate positive definite function and, as we show, it

Cost functions for
adaptive systems 

Information
Theory descriptors

Reproducing Kernel
Hilbert spaces

E [p (x ) ]
and

estimators

Fig. 1.2. Relationship of the information potential with the covered topics.
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defines a linear space of functions (more precisely a Hilbert space) with finite
evaluations called an RKHS. The argument of Renyi’s quadratic cross-entropy,
− log

∫
p(x)q(x)dx , is called the cross information potential (CIP) so there is

a straight relationship between information theory and the RKHS created by
the CIP. RKHS are possibly infinite-dimensional linear spaces, and they are
well studied and very important in physics, engineering, and machine learn-
ing because they possess an inner product structure to implement many of
the algorithms required in these fields. They have been shown to provide a
functional analysis view of Gaussian processes, which is very useful for many
of the results addressed in this book and they also provide useful bridges to
kernel learning. The CIP defines a RKHS for information-theoretic learning,
extending the concept of entropy to functional spaces. This may be particu-
larly useful in cases where the natural structure of the space of the random
variables does not allow inner products (e.g., point processes).

No book loosely related to the mathematical theory of information can
avoid starting with Claude Shannon’s seminal work on communication theory
and this is also our starting point. In Section 1.2 we show how the fundamental
definitions of entropy and mutual information yielded a paradigm shift in
the design of communication systems. Information theory (IT) has grown
tremendously since Shannon, so we briefly present some generalizations of
this work and the role of IT in machine learning.

In Section 1.3 we briefly review adaptive filter theory, which serves as the
backdrop to explain the impact of entropic and divergence criteria in adaptive
filters and pattern recognition applications. We present the gradient method
for finding optimal parameters of linear systems, and describe the different
types of learning and show how ITL can provide a unifying perspective for
supervised and unsupervised learning from data that are normally treated
independently.

In Section 1.4 of this chapter, we review reproducing kernels Hilbert spaces.
A more systematic treatment of RKHS is provided later in the book, where we
discuss the properties of the ITL estimators, present new similarity functions,
design nonlinear filters, and compare ITL concepts with other efforts in kernel
learning.

1.2 Information Theory

Information theory was conceptualized by Shannon [293] to deal with the
problem of optimally transmitting messages over noisy channels. Although
there is a physical substrate to communication systems (antennas, transmit-
ters, receivers), the essence of information theory deals with characterizing
the message structure and the limits of error-free transmission of the mes-
sage’s content, as its foundations are mathematical. Mathematical theories
are rarely developed single-handedly and they normally take many years to
be accepted and applied to practical problems. But information theory is
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the brain-child of a single man, Claude Shannon, and was quickly accepted
by the science and engineering communities. Information theory had an im-
mediate impact in the design of communication systems, and it provided a
mathematical framework to formulate and quantify interaction beyond physi-
cal laws, which is very important for society and in helping to understand the
goal-driven behavior of biological organisms.

Origins

The work of Norbert Wiener established that the best way to quantify the
transmission of manmade signals over noisy environments involves a proba-
bilistic framework both for the signals and the noise [333]. A signal s(n) can
then be modeled as a random process, that is a sequence of random variables
si over time with a given probability law which we assume constant across
time (stationary random process). Wiener’s idea of using a random basis to
decompose even deterministic manmade signals was an important contribu-
tion that changed for ever optimal signal processing.

For simplicity we start by describing binary messaging, random processes
that can only take two discrete values, 0 or 1. The problem of communication
over a noisy channel (Figure 1.3) can then be stated as follows. Starting from
the transmitter side, a given message is drawn from the pool of all possible
messages {mi}. Next it is encoded to binary values and then translated by the
transmitter into a physical symbol (voltage or current). Under a probability
framework the chosen message is modeled as a Bernoulli process. These sym-
bols are then corrupted by the channel noise νn, which is normally modeled
as stationary additive Gaussian noise vi with a given variance (the power of
the noise). At the receiver, a new sequence of symbols xi = si + vi is mea-
sured. The problem of the communication system designer is to find out how
to recover si from xi, making as few errors as possible.

It is useful to formulate the design of a communication system in abstract
terms in order to elucidate the core problems. Optimum channel design consti-
tutes a compromise among three factors: signal-to-noise ratio (SNR), message
rate, and power. How transmission power affected SNR was well understood.
Sampling theory quantified the requirements to recover signals coded in dis-
crete alphabets. The characterization of pulse code modulation (PCM) and
pulse position modulation (PPM) showed that it was possible to trade SNR

messagesPool of all possible
messages 

Encoder DecoderDemodulationModulation
messages

Channel noise v(t)

bits bits

Transmitter Receiver

 s(t)  x(t)

Fig. 1.3. Block diagram of a communication system.
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for message rate. However, no one had the vision how to mathematically
formulate the optimization problem, nor what the solution might be.

The strategy proposed by Shannon differed from that of Wiener. Wiener
was the first to suggest attributing probabilities to messages, but he was
more interested in prediction and control, so he proposed to optimally filter
the noise from the received symbol sequence (the Wiener filter). Shannon, on
the other hand, proposed a scheme where the transmitted signal should be
modified first (predistorted or encoded) to withstand minimum degradation
when transmitted through the channel and modified after (decoded) at the
receiving end to regain the original message.

Information theory was exactly created to help study the theoretical issues
of optimally encoding messages according to their statistical structure, select-
ing transmission rates according to the noise levels in the channel, and eval-
uating the minimal distortion in messages. Surprisingly, only two statistical
descriptors are needed to accomplish this seemingly impossible task: entropy
and mutual information, the latter of which is closely related to divergence
(a dissimilarity measure) in probability spaces. According to Shannon [293],
the optimal transmission of messages with a predetermined distortion over
noisy channels is accomplished using the system shown in Figure 1.4: the prob-
ability structure of the messages dictates the optimal coding, as established in
the source coding theorem (optimal coding exploits source redundancy, which
is quantified by entropy). Practically speaking, when the message rate is too
high for the channel one has to impose a message rate limit. The inclusion of
a limit results in the need to optimally compress the messages, as established
by the rate distortion theory (optimal compression is achieved by minimiz-
ing the mutual information between the original message and its compressed
version).

In order to withstand the channel noise in the transmission, the source-
compressed data are encoded for error-free transmission by maximizing the
mutual information between the sent message and the received message, as

Source
X, H(x)

ˆ
Min 
I(X, X ) ˆ

Max
I(X, Y )

Source
Compressed

X̂

C
O
D
E

Channel
D
E
C
O
D
E

Source
Decompress 

Source
X

Compression
(Rate distortion)

Error correction
(Channel Capacity)

Source

Decompression

Receiver

Fig. 1.4. An information-theoretic view of optimal communications.



10 1 Information Theory, Machine Learning, and RKHS

established by the channel capacity theorem. Finally, the received message
is decoded and decompressed to yield the original message (with the prede-
fined distortion). There is a duality between the problem of data compression
and data transmission in the sense that the first minimizes redundancy for
efficiency, whereas the second adds redundancy to mitigate the noise effects in
the channel. But what is remarkable is that the same quantity, mutual infor-
mation, is specifying the two compromises for error-free communication: the
data compression minimum limit (rate distortion) and the data transmission
maximum limit (channel capacity).

1.3 Entropy

In 1928 Hartley reasoned that when one symbol is chosen from a finite set of
possible symbols S, then the number of choices can be regarded as a measure
of information and he called it the “amount of information” [137]. According
to Hartley, the amount of information in a set of N transmitted symbols
is H0 = log10 SN = N log10 S, i.e. proportional to the number of different
choices (the base 10 logarithm is called the Hartley). Today we prefer to
think in terms of two symbols [0,1] and the logarithm is normally taken as
base 2 and the unit becomes the bit. One of the prerequisites for a measure
of information is to be additive for independent events, so the logarithmic
function is a “natural” measure, and it also handles rather well the physical
systems that give rise to the set of events of interest in communications (i.e.,
an N -bit long digital word produces 2N different messages, so the amount
of information would be N , the number of bits). Notice that no probabilistic
reasoning was used by Hartley to derive the amount of information.

Today we can be more precise in the justification of the logarithm by defin-
ing a random variable x with a set of possible outcomes SX = {s1, . . . , sN}
having probabilities pX = {p1, . . . , pN}, with p(x = sk) = pk, pk ≥ 0 and∑

x∈Sx
p(x) = 1, and denote the number of elements in S by #S. The num-

ber of binary questions guaranteed to identify any outcome in SX is lower
bounded by

IH(X) = log2(#SX) (1.1)

which is exactly Hartley’s amount of information. Moreover, H0 is additive
for independent events, that is,

IH(X,Y ) = IH(X) + IH(Y ). (1.2)

It was Shannon who stated that one should go beyond the cardinality of
the message set to accurately quantify how much choice is involved in the
selection of probabilistic events when only the probabilities are known. The
probability of selecting each message matters and should therefore be brought
into the formulation. First, he noted that Hartley’s information content is only
accurate if we do not know anything about the data, that is if we assume an
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equal probability to all the events (pk = 1/N). In order to fully characterize
an element of a set of symbols SX occurring with different probabilities pk
the information amount of an outcome should be

Ik = log2

1
pk
. (1.3)

The probabilistic view is that the amount of information for unequal prob-
able messages is a measure of the unexpectedness in the data due to the in-
verse dependence on probability. In fact, for a single message, if pk = 1 then
the information content of the message is zero (perfect knowledge), whereas
if pk is small, the message is unexpected so its information content is high.
Therefore − log pk is a new random variable on S that is fully specified by the
probability mass function (PMF) of the messages. We also use the notation
I(xk) to represent the amount of information. But if we are interested in the
information conveyed by the random variable X defined on the set of mes-
sages SX , how should one weight the information content? Shannon defined
the uncertainty of the ensemble X as the sum across the set of the uncertainty
in each message weighted by the probability of each message, or

H(X) = −
∑

k

p(xk) log2 p(xk) = −E[log2 p(X)]. (1.4)

Shannon called his uncertainty measure entropy and it is measured in bits
of information, with the assumption that for p(xk) = 0, p(xk) log p(xk) = 0.
This is the same expression as the same form of physical entropy, but informa-
tion entropy is a property of the probability mass function, whereas physical
entropy is a property of the state of the physical system. Notice that entropy
measures the uncertainty in the data set using a single scalar quantity. It is
also important to note that it is the combination of unexpectedness weighted
by the probability that is really the essence of the concept of entropy: events
that are very unlikely, and therefore of high information content, are dis-
counted by their rare occurrence through the product with the probability.
Likewise, events that are very likely have a low information content so that
the product once again has a small value. This creates a “balance” that had
hitherto never been quantified in probabilistic reasoning.

Figure 1.5 shows I(xk) and H(X) for a Bernoulli random variable (which
is uniquely defined by a single probability) for different values of probability p.

Notice also that H(X) depends on the shape of the distribution and
H(X) ≤ H0(X), where H0(X) is the maximum entropy as shown in the
figure. In words this states that not all random variables are equally random,
and the scalar called entropy is able to characterize the uncertainty in the
data, which is contained implicitly in the functional form of the PDF. The
redundancy in X is exactly defined as R = (H0(X)−H(X))/H0(X).

It is important to understand how a single scalar H(X) can produce a
useful description of the PMF of the data, the latter of which is a func-
tion. The reason is because H(X) quantifies remarkably well the effective
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Fig. 1.5. Information content versus entropy for Bernoulli random variable with
probability p and 1 − p.

“volume” spanned by the data in high- dimensional spaces. This basic re-
sult is contained in the asymptotic equipartition property (AEP) [65], which
states the following. For an ensemble of N independent i.i.d. random vari-
ables, X = (X1, X2, . . . , XN ) with N sufficiently large, the outcome
x = (x1, x2, . . . , xN ) is almost certain to belong to a subset of SNX having only
2NH(X) members, and all having probability close to 2−NH(X). This means
that there is a subset of elements of S (called the typical set) that speci-
fies the probability of the set and describes the behavior of the distribution.
Therefore, if H(X) << H0(X) then 2NH(X) is a small fraction of the number
of possible outcomes (#SX)N = 2NHo(X). The reason for this result is the fast
convergence of −1/N log p(X1, . . . , XN ) → H(X) for large N in all points of
the domain except in the neighborhoods of 0 and 1. This result is conceptually
similar to the law of large numbers, which justifies the use of the sample mean
for approximating the expected value.

Suppose there is an i.i.d. Bernoulli random source with probability 0.2 and
0.8 for 0 and 1, respectively. If the length of the sequence is N , then the typical
sequence should contain around 0.2N zeros and around 0.8N ones. Figure 1.6a
illustrates the convergence of the probability across these sequences. Also, we
can see from Figure 1.6b that the probability of the typical sequences defined
above converges to 1 as the length increases.
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Fig. 1.6. (a) Convergence of the typical sequences and; (b) the total probability as
a function of N .

Entropy is not the only scalar descriptor of the probability mass (or
density) function of the data, but it is arguably the most fundamental [264].
Still today, the most commonly used descriptors of PMFs (or PDFs) are the
moments of the data [235]. For instance, the mean, which locates the center
of mass of the PMF, is defined as

m(X) = E[x] ∼= 1
N

∑

k

xk

and the variance, which measures the dispersion around the mean, is defined as

var(X) = E[(x−m)2] ∼= 1
N

∑

k

(xk −m)2.

Likewise, the ith moment around the mean is mi(X) = E[(x−m)i]. For i = 3
the moment is referred to as the skewness, which measures the asymmetry in
the PMF, whereas i = 4 is referred to as the kurtosis, which measures the
peakness with respect to the Gaussian PMF. As is well known, the PMF can be
entirely defined by the central moment expansion of the data (or alternatively
by the characteristic function ϕX(s) = EX [ejsX ]), but one needs an infinite
set of such numbers.

The definition of entropy is fundamental because of its elegant properties,
deep meaning, and above all, because it enabled numerous developments in
communication theory, which brought a paradigm shift to the design of opti-
mal communication systems. In terms of elegance, Shannon proved that his
definition of entropy (for discrete random variables and apart from a scale fac-
tor that is related to the units of measurement) was the only one that obeyed
a very simple and intuitive set of axioms [293]:

1. H(p, 1− p) is a continuous function of p.
2. H(p1, p2, .., pN ) is a symmetric function of the pk.
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3. H(1/n, 1/n, . . . , 1/n) is a monotonically increasing function of n.
4. H(p1, p2, . . . , pN) = H(p1 + p2, p3, . . . , pN) + (p1 + p2)H(p1/(p1 + p2),
p2/(p1 + p2)).

5. H(p1.p2) = H(p1) +H(p2) for independent events.

The fourth property is called recursivity and it singles out Shannon’s en-
tropy from all the other definitions of entropy. There is also a sixth property
known as permutational symmetry, which was implicitly used by Shannon.
Entropy is a concave function of its arguments [65], therefore a large body of
mathematics can be readily applied. Perhaps more important than this ax-
iomatic characterization, Shannon was able to build a mathematical theory for
the information content of messages and prove three very important theorems:
the source coding theorem, the channel capacity (or channel coding) theorem,
and the rate distortion theorem (see [65])

1.4 Mutual Information

Up to now we dealt with the characterization of a single source of information.
However, communication systems have inputs and outputs, each uncertain in
its own way, therefore it is important to expand the analysis to two sources
of information. This expansion leads us to the second important descriptor
of statistical properties used in information theory, which Shannon named
mutual information. Let us create a discrete product space of the transmitted
message X = {xk}Nk=1 and the received message Y = {yk}Nk=1 in Figure 1.3.
The channel noise creates a probability distribution p(X, Y ) over the product
space. From the point of view of error-free communication in the receiver,
the question is to what extent does yi specify one of the xk. The channel
basically changes the probability of xk from its a priori value p(xk) to the
a posteriori value p(xk|yi). This is just plain old probabilistic theory. We
previously discussed the characterization of the information content of X by
its entropy, now we would like to determine how much information can be
communicated through the channel. After observing yi the probability of xk
is denoted p(xk|yi) and the uncertainty left in xk becomes log(1/p(xk|yi)).
Therefore, the decrease in uncertainty about xk brought about by observing
yi is

I(xk, yi) ≡ log2

(
1

p(xk)

)

− log2

(
1

p(xk|yi)
)

= log2

p(xk|yi)
p(xk)

= log2

p(xk, yi)
p(xk)p(yi)

(1.5)

which can complementarily be thought of as the gain in information. Notice
that if p(xk) = p(xk|yi), I(xk, yi) = 0, which indicates that there is no
decrease in uncertainty. In the other extreme, if p(xk|yi) = 1 then I(xk, yi) =
log(1/p(xk)); that is all the information about xk was conveyed through the
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channel. For some messages the gain of information can be positive, whereas
it can be negative for others. Notice also that I(xk, yi) = I(yi, xk). The
total decrease in uncertainty in X by observing Y is known as the mutual
information between X and Y , which is defined as

I(X,Y ) = E[I(xk, yi)] =
∑

i

∑

k

p(xk, yi) log2

p(xk|yi)
p(xk)

=
∑

i

∑

k

P (xk, yi) log2

p(xk, yi)
p(xk)p(yi)

(1.6)

where p(X, Y ) is the joint mass function of X and Y .
In communications, the base of the logarithm is normally two so that the

units are measured in bits, but any other basis can be used. It is appropriate
to relate mutual information with the probability theory concepts of joint
and condition PMFs. One can start by defining the joint entropy of a pair of
random variables X and Y as

H(X,Y ) = −
∑

x

∑

y

p(x, y) log p(x, y) = −EX,Y [log p(X,Y )]. (1.7)

Likewise we can define the conditional entropy of Y given X as

H(Y |X) = −
∑

x

∑

y

p(x, y) log p(y|x) =− EX,Y [log p(y|x)]. (1.8)

Therefore, mutual information can also be formally defined by expanding
Eq. (1.6) as

I(X,Y ) = H(X) +H(Y )−H(X,Y )
I(X,Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) (1.9)

The relationships between mutual information and these quantities can be
visually appreciated on a Venn diagram, as shown in Figure 1.7.

H(X,Y)

H(X)

H(Y)

H(X|Y) H(Y|X)I(X,Y)

Fig. 1.7. Diagram to illustrate the relationship among joint information, marginal
entropy, conditional entropy, and mutual information.
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As one can see, mutual information is always greater than zero and it
quantifies the intersection of H(X) and H(Y ). From a communication sys-
tem perspective and in words, mutual information quantifies the reduction of
uncertainty in X after observing Y , that is H(X)−H(X |Y ). But sometimes
it is easier to perform the computation in reverse order, that is computing
H(Y )−H(Y |X), from which the same result will be obtained.

1.5 Relative Entropy and Kullback–Leibler Divergence

In 1936, Mahalanobis first introduced the concept of “distance” between two
probability distributions, and since then many important results related to
this concept have been established. Let us consider two different probability
densities p(x) and q(x), and define the Kullback–Leibler (KL) divergence as

DKL(p || q) =
∑

x

p(x) log
p(x)
q(x)

= Ep

[

log
p(X)
q(X)

]

. (1.10)

The KL divergence is effectively measuring dissimilarity (which conceptu-
ally is a distance) between p(x) and q(x). However, we cannot call it a distance
because it only obeys one of the postulates of distance. More specifically, the
KL divergence obeys the positivity requirement (DKL(p||q) is nonnegative),
but it is not symmetric (DKL(p||q) differs from DKL(q||p) in general), and it
does not obey the triangular inequality. For this reason it is called a directed
distance or a divergence. The quantity – Ep[log q(X)] is commonly named
cross entropy. Figure 1.8 shows the contours of constant value of dissimilar-
ity over the p(x) and q(x) space, obtained with the conventional Euclidean
distance for a pair of distributions (DED(p, q)), DKL(p||q), (DKL(q||p), and
Jdiv(p||q) respectively (the latter is defined shortly). As we can see the assess-
ment of dissimilarity is quite different for the four measures.

The asymmetry may be a useful property when one addresses directional
coupling, but many times one would like to work with an information dissim-
ilarity measure that is symmetric. Jeffrey [65] defined a symmetric measure
that is now known as J divergence, which is given as

Jdiv (p, q) =
√

1/2(DKL(p || q))2 + 1/2(DKL(q || p))2. (1.11)

There is kind of Pythagorean theorem that supports the interpretation
of the KL divergence as square distance. Suppose that the distribution p
lies in a convex set S and Q lies outside S. Choose a distribution p∗ on
the boundary of the convex set such that DKL(p∗||q) assumes its minimum
value for p∗ belonging to S and fixed q. It is possible to show [178] that
DKL(p || q) ≥ DKL(p || p∗) + DKL(p∗ || q). This agrees with the Euclidean
distance between the same points D2

E(p, q) ≥ D2
E(p, p∗) +D2

E(p∗, q).
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Fig. 1.8. Measures of distinguishability between probability distributions P =
(p, 1 − p) and Q = (q, 1 − q): (a) DE(P ||Q), (b) DKL(P ||Q) (c) DKL(Q||P )
(d) Jdiv (P, Q).

Properties of KL Divergence

So far we have related the concept of entropy with uncertainty. It seems rea-
sonable that reduction of entropy should result in a gain of information but we
have not provided a systematic treatment of this aspect. The KL divergence
is associated with the concept of gain of information, which is considered by
many as the fundamental concept in information theory [264].

Let the probability of an event A be P (A) = q and let it change to p
after observing an event B, P (A|B) = p. We obtain log 1/q− log 1/p bits of
information on A by observing B. Likewise, using the concept of entropy, we
could say that the uncertainty in A was log 1/q and it changed to log 1/p after
observing B. The decrease in uncertainty is again given by log 1/q− log 1/p
bits. Now, if one has events A1, . . . , AN with qk = P (Ak), k = 1, . . . , N ,
when observing B these probabilities become pk = P (Ak|B). How much infor-
mation was gained by observing B in this case? The decrease in uncertainty
(gain in information) log pk/qk is positive for some and negative for others.
The total gain in information can be calculated in two different ways: by tak-
ing the average of the partial gains of information or by averaging the negated
increase in partial uncertainty, multiplied by pk, which yields DKL(P ||Q) or
the relative entropy. This quantity is also called Shannon’s information gain
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and it is exactly the decrease in uncertainty, which distinguishes Shannon’s
from all the other information measures defined in the literature. For the par-
ticular case that q(x) is the uniform distribution, the relative entropy defaults
to the entropy of p(x).

Mutual information is a special case of the KL divergence, which is ob-
tained when p(x) is the joint PDF of x y, and q(x) is the product of the
marginals:

DKL(p(X,Y ) || p(X)q(Y )) = I(X,Y ). (1.12)

The relative entropy is jointly convex; that is for any λ ∈ [0, 1],

DKL(λp1 +(1−λ)p2 || λq1 +(1−λ)q2) ≤ λDKL(p1 || q1)+(1−λ)DKL(p2 || q2)

When applied to Markov chains, KL divergence has a very distinct property
that is very useful. Let T be a stochastic map, i.e. a properly normalized
matrix that transforms one probability distribution into another. Then we
can prove [65] that

DKL(Tp(X) ||Tp(Y )) ≤ DKL(p(X) || p(Y )) (1.13)

or in words, that the relative entropy in a Markov chain always decreases
with time.

Another property of KL divergence that is worth stating in this brief review
is that it is invariant to a reparameterization of the random variable. This is
very important and it is a reflection that there is a close relationship between
the KL divergence and the local structure of the space quantified by the
Fisher–Rao metric [178].

Continuous Variables

Up to now we have concentrated on discrete event spaces, but it is possible to
extend the definitions of mutual information and entropy to continuous event
spaces. The (differential) entropy of a continuous random variable X with
PDF p(x) is defined as h(X) = − ∫

S p(x) log p(x)dx , provided the integral
exists and where S is the support of the random variable X . Although in this
book we are interested in continuous random variables, we use the notation
H(X) to represent differential entropy and also refer to it simply as entropy.
Therefore entropy and mutual information for continuous random variables
are defined as

H(X) = −
∫

log p(x)p(x)dx = −EX [log(p(x)], (1.14)

I(X,Y ) =
∫ ∫

I(x, y)p(x, y)dxdy = EX,Y [I(x, y)], (1.15)

DKL(p(x) || q(x)) =
∫
p(x) log

p(x)
q(x)

dx = Ep

[

log
p(x)
q(x)

]

, (1.16)
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where p(.) and q(.) are PDFs, I(x, y) is given by Eq. (1.5) and E[.] is the
expected value operator. However, we must remember two things: entropy for
the continuous variable case is not bounded from below (i.e., the entropy of
the delta function, or a sum of delta functions, distribution is minus infinity);
and entropy is not invariant to coordinate transformations.

1.6 Information Theory beyond Communications

After the pioneering work of Shannon, there was an immediate interest in bet-
ter understanding the properties and applications of entropy and divergence.
Information theory became a scientific field in itself and many mathematicians
expanded upon Shannon’s fundamental concepts. Moreover, information the-
ory was also used in physics, statistics, and biology as well as in other areas of
engineering such as signal processing and machine learning. This, book uses
entropy and divergence as similarity metrics for optimization, thus it is im-
portant to briefly review some of these developments to fully appreciate the
power and generality of these concepts.

Generalized Definitions of Entropy and Divergences

The original definitions of entropy and divergence have been extended in nu-
merous different directions, and today they can be considered as descriptors
for a large class of concave functions. Burbea and Rao [43] introduced the
φ-entropy defined as

Hφ(X) =
∫
φ(p(x))dx, (1.17)

where p(x) is the PDF of the continuous random variable x, φ is a continuous
concave real function over the positive reals, and φ(0) = limt→0− φ(t). There
were some important definitions of entropy that could not be written in this
form, therefore Salicru [278] defined the (h, φ) entropies as

Hh
φ (X) = h

(∫
φ(p(x))dx

)

, (1.18)

where φ is a continuous concave (convex) real function and h is a differentiable
and increasing (decreasing) real function. Most of the definitions of entropy
presented in the last 50 years can be written as (h, φ) entropies. Some examples
are presented in Table 1.1.

Likewise, Csiszar [66] defined the φ divergences between the probability
densities p(x) and q(x) as

Dφ(p(x), q(x)) =
∫
q(x)φ

(
p(x)
q(x)

)

dx, (1.19)
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Table 1.1. Some Entropies Written as (h, φ) Entropies

Entropy type φ(x) h(x)
Shannon −x log(x) x
Renyi xα [α(1 − α)]−1 log(x)

Havrda–Charvat (Tsallis) (1 − β)−1(xβ − x) x

Table 1.2. Divergences Written as (h, φ) Divergences

Divergences φ(x) h(x)
Kullback-Liebler x log(x) − x + 1 x
Renyi (xα − α(x − 1) − 1)/(α(α − 1)) (log(α(α − 1)x + 1)/(α(α − 1))

Bhattacharyya −x
1/2 + 0.5(x + 1) − log(−x + 1)

J-Divergence (x − 1) log(x) x

where φ belongs to the class of convex functions on the positive real plane,
such that at x = 1 φ(1) = 0 and at x = 0, φ(0) = 0. A special case of
the φ divergence is the α divergence (α real value) defined as Dα = Dφ(α)

obtained as

Dα(p(x), q(x)) =
1

α− 1

∫
q(x)

(
p(x)
q(x)

)α
dx α 	= 1 (1.20)

and which directly gives the KL for α → 1, the Hellinger for α = 1/2 and
Renyi’s α entropy when the density q(x) dominates p(x) and is uniform over
the domain. As with the entropies there were important divergences not con-
sidered in this definition, therefore Menendez et al [216] proposed the (h, φ)
divergences defined as

Dh
φ(p(x), q(x)) = h(Dφ(p(x), q(x)), (1.21)

where h is a differentiable increasing real function defined on [0, φ(0) +
limt→∞ φ(t)/t]. Table 1.2 shows some of the more conventional divergences
expressed as (h, φ) divergences.

The work on entropies and divergences is still flourishing and there are
many new exciting ideas being researched today that may have a potential
large impact in learning theory. For instance, an important divergence that
escapes this taxonomy is the Bregman divergence [41] which is defined for
strictly convex and differentiable real functions f(x) between two points of
the domain P and Q as

Bf (P ||Q) = f(P )− f(Q) + (P −Q).∇f(Q), (1.22)

where ∇ is the partial derivative operator. The Bregman divergence can be
interpreted as the distance between f(P ) and the first-order Taylor expansion
of f at Q, evaluated at P . Bregman divergence is a generalization of the
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Euclidean distance
(
f(x) = ‖x‖2

)
, and it is also related to the KL divergence

(f(p) =
∑

k pk log pk −
∑

k pk).
Let us briefly examine Renyi’s parametric family of entropies which plays

a central role in this book and is given by

Hα(X) =
1

1− α log
∑

k
pα(xk) or Hα(X) =

1
1− α log

∫
pα(x)dx, α ≥ 1

for discrete and continuous random variables, respectively, where α is a free
parameter. One of the advantages of Renyi’s definition of entropy for estima-
tion is that the logarithm appears outside the sum (or the integral). This has
two important implications in our studies. First, it helps separate the effect
of the logarithm, which is required to fulfill the additivity of the indepen-
dent events property, from the role of the argument as a mesoscopic descrip-
tor of random variables. Indeed, α = 2 is Renyi’s quadratic entropy, which
yields Hα(X) = − log

∑
k p

2(xk) = − logE[p(X)]. Notice that the argument
of the logarithm is the information potential and is exactly the focal point of
Figure 1.2 linking three seemingly unrelated topics. Moreover, we show that
α→ 1 yields Shannon entropy. Second, it opens up the possibility of applying
ITL to signal processing and machine learning problems even when the user
does not have a clue about the PDF of the experimental data. In such cases
a parametric PDF model is not recommended. This book utilizes Renyi’s in-
stead of Shannon’s entropy as a starting point for ITL, primarily because the
information potential can be estimated nonparametrically from pairwise sam-
ple differences. In adaptation, one can directly use the information potential
instead of Renyi’s entropy for several different criteria. For example, we derive
cost functions for adaptation, as well as estimators for divergences and mutual
information, all based on the information potential and its estimator.

Information Theory and Machine Learning

One of the key contributions of information theory for probabilistic reasoning
is to specify in unambiguous terms the amount of information (the information
measure) that an observer possesses concerning a given phenomenon when
only the PDF is known. This is of exceptional value for the design of com-
munication systems because entropy is a scalar descriptor that abstracts an
important PDF quantifier and it is sufficient to specify optimal design goals.
Therefore, entropy and mutual information should be included in the class of
mesoscopic data descriptors, on par with the moment decompositions. The
following two questions naturally arise. For what class of learning problems
are entropy and mutual information acceptable mesoscopic descriptors of the
data? Can they be applied even in the case that the processing goal does not
involve information measures?

In order to answer these questions, it is important to contrast the realities
of information theory with machine learning. First and foremost, machine
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learning and advanced signal processing applications can not be dependent
upon parametric models of the data PDF to estimate entropy and mutual
information. Indeed, the real world data sets and the diversity of applications
are conducive to nonGaussian PDFs that can even change in time. Therefore,
the first conclusion is that the usefulness of IT for machine learning is predi-
cated upon non-parametric estimators of entropy and mutual information.

Second, one must be cognizant of the differences between IT applications
and machine learning problems. As summarized in Section 1.2, to create opti-
mal source codes, optimal message compression and take full advantage of the
channel capacity, communication theory assumes full knowledge of the mes-
sage statistics and additive channel noise. It turns out that the fundamental
problem in machine learning is rather different. In unsupervised learning, the
input data statistics are not only unknown but their quantification consti-
tutes the goal of the analysis. Likewise, in supervised learning the goal is to
estimate the joint PDF between the inputs and the desired response. This
means that the a priori knowledge required to apply information theory to
the optimal design of communication systems turns out to be the main fi-
nal objective in many machine learning settings. From this perspective, it is
not even clear that information theory will play a role in machine learning
research.

Indeed many authors have experienced difficulties in applying information
theory concepts in the biological sciences, and there is an absence of suc-
cess stories that mimic the drastic impact that IT had in the development
of communication theory [171]. Let us give a simple example in autonomous
robotics. The goal in autonomous robotics is to model the “world”, that is, a
given workplace to implement goal-directed behavior. Let us assume that the
system is adaptive and it learns from its inputs with an information principle
given by the log-likelihood of the data. The problem is that once an event is
learned the machine state changes, but the probabilities in the external world
remain the same. This is similar to what happens in the cognitive sciences,
where objective probabilities cannot represent individual knowledge or beliefs
nor can they discriminate between events that are of great importance or sim-
ply irrelevant for an individual. A productive approach is to first understand
how to fully exploit conditional information for autonomous robotics before
attempting to assign meaning to information.

Even with these concerns, this author believes that there are great advan-
tages of using an IT framework for machine learning even when information
measures are not involved in the solution. From our vintage point, the primary
niches for IT applications in machine learning are to:

• Develop new frameworks for the design of learning systems
• Foster new cost functions for optimization and learning algorithms.
• Quantify data better with mesoscopic descriptors

Information theory has a lot to offer in helping create new paradigms for
the optimal design of complex engineering systems because it focus the
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designer’s attention in the preservation and transfer of information among the
sub-systems. As an example, we provide the IT perspective of the fundamental
dilemma in machine learning: the trade-off between model complexity and
generalization accuracy. Most readers have heard about the Occam’s razor
principle and the many, many alternate ways of framing and proposing so-
lutions to this problem. According to Tishby et al [316], information theory
can provide an alternative view and a new set of tools because of the abstract
and principled concept of mutual information. It is not difficult to bridge rate
distortion and compression theories with the complexity–accuracy dilemma.
In fact, the rate distortion theorem specifies the simplest representation X̂ (in
bits/s) of the input X for a given expected accuracy by solving

R(D) = min
d≤D

I(X, X̂) (1.23)

with D being the distortion, whereas the channel capacity theorem specifies
the best prediction X̂ (maximum number of bits/s) that can be sent reliably
for a given condition of the channel (such as power) by solving

C(E) = max
e≤E

I(X̂, Y ). (1.24)

Therefore the recipe for using IT to address the complexity-accuracy
dilemma is the solution of a MIN–MAX problem that involves mutual in-
formation between two pairs of variables. First, the input data X should be
optimally compressed by a model and then its output X̂ should transfer as
much information as possible with respect to the desired data Y . According
to Linsker [199], biology operates an amazing compression within the sensory
cortices to deliver features to the rest of the brain by maximizing exactly the
information transfer across deep networks. Perhaps this is nature’s way of
coping with the curse of dimensionality, one of the unsolved problems in ex-
perimental science. Tishby et al. have proposed the information bottleneck
method [316] as a self-organizing principle using mutual information to opti-
mally compress input X (very much like Linsker’s principle), and optimally
transfer information to a second variable Y using the compressed data input.
We also propose in Chapter 8 a novel statistical inference paradigm based
on a multiobjective cost function combining entropy and Kullback–Leibler
divergence, which directly yields the most common unsupervised learning ap-
plications (clustering, principal curves, and vector quantization).

This book mostly discusses the second bullet, IT-based cost functions for
learning. We show how Renyi’s entropy, which through its special form de-
couples the logarithm from its argument, has opened up new applications
for optimal filtering, regression, clustering, and classification, all based on
the exploitation of the 2-norm of the data PDF as a cost function. Therefore
we envisage the data mean (as a location parameter) and the 2-norm of the
PDF as alternate mesoscopic descriptors to the conventional least squares cost
functions. We show in Chapters 10 and 11 that ITL ideas even lead to the
development of novel mesoscopic similarity functions.
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Finally, entropy and mutual information quantify more precisely the data’s
statistical microstructure when compared with second order statistics which
still constitute the mainstream of statistical signal processing and machine
learning using mesoscopic models. As we are going to see, ITL replaces 2nd
order moments with a geometric statistical interpretation of data in functional
spaces where variance is substituted by entropy, correlation by correntopy,
mean square error (MSE) by Minimum error entropy (MEE), and distances
in data space by distances in probability spaces.

In reverse direction, we also expect that learning theory will contribute to
information theory, primarily by the development of Hilbert spaces where the
inner product structure is related to the descriptors of entropy and divergence,
even in cases where the structure of the original data does not support such
operations (e.g., point processes). The definition of a RKHS for ITL operators
is studied in Chapter 9.

1.7 Adaptive Model Building

Wiener and Kolmogorov’s framework to seek optimal projections in spaces
defined by stochastic processes initiated modern optimal filtering and changed
forever our thinking about signal processing [185,333]. The roots of adaptive
model building go even farther back to the nineteenth century, when sci-
entists started describing real data by linear relationships and correlations
between independent variables. The combination of the Gaussian assumption
and second-order statistical criteria has withstood the test of time and has
led to mathematically convenient and analytically tractable optimal solutions,
which could be easily studied through conventional calculus, linear algebra,
and functional analysis. The most familiar examples are the mean square error
in least squares linear regression, and output variance in principal components
analysis (PCA).

The potential of optimal filtering became fully realized with the advent of
digital computers, when the Wiener solution could be solved analytically for
FIR filters using least-square algorithms. Adaptive methodologies that search
for the optimal solution very efficiently such as Widrow’s least mean square
(LMS) [332] could be implemented in digital signal processors to solve opti-
mally (in the MSE sense) and in real-time challenging signal-processing tasks.
A curiosity at first, stochastic adaptive algorithms (i.e., processing the incom-
ing data samples on a one-by-one basis) have become pervasive in signal pro-
cessing and machine learning because they can be applied to problems where
analytical solutions do not exist, as in the case of nonlinear filters. A notewor-
thy example is the backpropagation algorithm from neural networks [331].

In adaptive systems research (which is broadly used here to encompass tra-
ditional adaptive filtering as well as neural networks and various branches of
machine learning), the user starts by specifying a parametric mapper (a pro-
jector or a filter), which can be linear or nonlinear, an adaptation algorithm
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for the parameters (weights), and a criterion for optimality (see Figure 1.1).
Supervised learning algorithms traditionally use the mean square error cri-
terion defined as E[e2(n)] (where e(n) = z(n) − y(n) is the error sequence)
as the figure of merit in adaptation, which represents the sufficient statistics
for the case of zero-mean signals and linear systems under Gaussian residual
error assumptions [141, 333]. The emphasis on second-order statistics as the
choice of optimality criterion is still prevalent today. This is understandable
for the three main reasons:

1. The success of linear systems combined with second-order statistics, at
least in part due to the inevitable Gaussianization effect of convolution

2. The well established mathematical framework
3. The abundance of efficient adaptive algorithms

Although the combination of second order-statistics and the Gaussianity
assumption, the latter of which is supported by the central limit theorem, pro-
vide successful engineering solutions to most practical problems, it has become
evident that this approach does not always work well. For example, it often
has trouble adapting nonlinear systems and observation noise having fat-tail
distributions or outliers [141]. Therefore, criteria that not only consider the
second-order statistics but that also take into account the higher-order statis-
tical behavior of the systems and signals are desired. Recent work in both the
control literature [99] and the signal processing/machine learning literature
[51, 95, 102] addresses this issue. For instance, in blind separation of sources
and blind deconvolution of linear channels, the insufficiency of second-order
statistics in stationary environments has led to new approaches incorporating
higher order statistics into adaptation. Specifically, the field of independent
components analysis (ICA) has benefited greatly from the use of information-
theoretic performance measures [156].

From Linear Adaptive to Information Filtering

In ITL we use information-based criteria to adapt systems. For example,
several chapters of this book are devoted to training linear and nonlinear
systems using the entropy of the error signal. Hence it is appropriate to refer
to this process as adaptive information filtering . Likewise, because optimal fil-
tering of stochastic processes is essentially regression for multivariate random
variables, the methods can be applied without modification to information
regression.

Training utilizes sensitivity considerations to optimize the system’s pa-
rameters during adaptation (Figure 1.1). Let us consider a single-output para-
metric system y = f(x, w) and a set of training input desired response pairs
{x(n), z(n)} where n is a time index. The system output y(n) is compared
with the desired response z(n) at each time step and an error is defined
as e(n) = z(n) − y(n). We start by assuming that f(.) is a linear function
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of x(n) and the parameters, such as in finite impulse response (FIR) filters
y(n) = wTx(n) or equivalently

y(n) =
M−1∑

k=0

wkx(n− k), (1.25)

where x = [x(n), . . . , x(n − M + 1)]T, w = [w0, . . . , wM−1]T are the FIR
coefficient (also called the weights) and M is the filter order. For future refer-
ence, we sometimes denote x(n − k) = xk(n) to represent the value at tap k
and time n. Let J(e(n)) be the cost function constrained to be a continuous
function of the error. The conventional adaptive filtering framework [141] de-
scribes the optimal filtering problem as one of obtaining the minimal error in
the mean square error sense between the desired response z(n) and the system
output y(n):

Jw(e(n)) = E[(z(n)− f(x(n),w))2]. (1.26)

The general approach to finding a set of parameters that correspond to a
stationary point of J(e(n)) is to take the partial derivatives with respect to
the unknowns (in this case the system parameters w also called the weights)
and equate them to zero; that is,

∂J(e(n))
∂w

= 0. (1.27)

Using the chain rule (see the block diagram of Figure 1.1), we immediately
obtain

∂J(e(n))
∂w

=
∂J(e(n))
∂e(n)

∂e(n)
∂w

= 0. (1.28)

The first term on the right side is calculated from the cost function, whereas
the second term is the sensitivity calculated across the specified system topol-
ogy. For an FIR filter and the mean square error cost this yields

∂J(e(n))
∂w

= E

[
∂e2(n)
∂e(n)

∂e(n)
∂w

]

= −2E[e(n)x(n)] = 0. (1.29)

When interpreted in vector spaces this expression states that the optimal so-
lution occurs when the error is orthogonal to the input space. If we substitute
the definitions of e(n) in Eq. (1.29) we obtain [185]

E[(z(n)− y(n))x(n− i)] = E[z(n)x(n− i)]

−E
[
M−1∑

k=0

wkx(n− k)x(n− i)
]

= 0, i = 0, . . . , M − 1. (1.30)

The solution of this set of M equations in M unknowns yields the length-M
vector of weights w = R−1p where R is the (M ×M) autocorrelation matrix
of the input x(n) defined as
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R =

⎡

⎣
R0,0 · · · R0,M−1

· · · · · · · · ·
RM−1,0 · · · RM−1.M−1

⎤

⎦ , Rk,i = E[x(n− k)x(n− i)]

and p is the cross correlation vector between the input and desired signals
defined as p = [p0 . . . pM−1 ]T, pk = E[z(n)x(n− k)] [141].

Instead of analytically computing the optimal solution with Eq. (1.30), one
can use a search technique such as steepest descent (also known as gradient
descent). Indeed, Eq. (1.26) defines a cost function in the space of the weights
which is conventionally called the performance surface [332]. Due to the linear
and feedforward nature of the FIR, the performance surface contains a single
minimum. The gradient of the error is obtained as

∇J(n) =
∂J(e(n))
∂w

=
∂E(e2(n))

∂w
. (1.31)

An initial weight vector is chosen (normally w(0) = 0), the gradient at the
point is estimated, and a new weight vector is found by changing w(n) pro-
portionally to the negative of the gradient vector; that is,

w(n+ 1) = w(n)− η∇J(n). (1.32)

The procedure is repeated until the operating point is in the neighborhood of
the optimal solution found by analytical methods. The constant of proportion-
ality η is called the stepsize or the learning rate. This expression can be applied
locally to each of the weights in the weight vector. If the expected value is
substituted by the average overN past samples, the gradient can be estimated
from the available data at sample n. This steepest descent algorithm has been
studied in depth in the adaptive filtering literature [332] and it is known that
the stepsize for convergence is upper bounded by the inverse of the largest
eigenvalue of the input data autocorrelation matrix R; η < 1/λmax. The
famed least mean square algorithm is a stochastic approximation to the steep-
est descent that uses the current error (e(n)) as the gradient estimate; that is,

∇k J(n) =
∂

∂wk

(
1

2N

N−1∑

i=0

e2(n− i)
)

≈ ∂

∂wk
(e2(n)) =

∂e2(n)
∂e(n)

∂e(n)
∂wk

= −e(n)xk(n) (1.33)

yielding the simple LMS adaptation formula

wk(n+ 1) = wk(n) + ηe(n)xk(n), k = 0, . . . ,M − 1 (1.34)

which has a complexity of two multiplications per weight. The computation
in Eq. (1.34) is also local in the topology and local in time. The simplicity
of this algorithm launched the engineering applications of optimal filtering as
we know them today.
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The least square solution which uses the MSE cost has a very distinguished
history dating back to Gauss, and leads to a closed-form characterization of
the solution as a conditional mean. But it can also be framed in statistical
terms as regression. Given two dependent random variables {x(n), z(n)}, we
can pose the problem of determining an “optimal” estimator of z(n) given
x(n). Under the minimum mean-square-error criterion (MMSE), we have

min
w
E[e2(n)] (1.35)

with e(n) = z(n)−f(x(n),w), and E[e(n)] = 0. It is well known that ẑ(n), the
minimum least mean square estimator of z(n) given x(n), is the conditional
expectation of z(n) given x(n) [235]:

y(n) = E[z(n) |x(n)] =
∫
z(n)p(z(n) |x(n))dz, (1.36)

which corresponds to the minimization of the error variance of Eq. (1.35).
Moreover,

E[ẑ(n)] = ȳ(n)

E[e2(n)] = E[z2(n)]− E[y2(n)] → σ2
z ≥ σ2

y (1.37)

E[e(n)x(n)] = 0.

There are several important observations. First, the result σ2
z ≥ σ2

y is interest-
ing because, if we view the variance as a loose measure of uncertainty (similar
to entropy), this inequality tells us that the “information” contained in the
estimate cannot be more than that of the original desired random variable.

Second, the orthogonality condition in Eq. (1.37) states that an estimator
y(n) = ẑ(n) = f(x(n)) is optimal in the least mean squares sense if and only
if y(n) is unbiased and e(n)⊥ f(x(n)) for any function f . In other words, the
optimal MMSE estimator is such that no matter how we modify the system
parameters, there is no better solution that can extract additional structure to
reduce the variance of y(n) further. In other words the orthogonality condition
is a defining property for the minimization of the variance. Effectively this
corresponds to estimating the orthogonal projection (with an Euclidean norm)
of the desired response z(n) in the space spanned by the states of the system,
or for FIR filters, the space spanned by the input signal x(n).

However, a more general question is under what conditions is the choice
of MSE optimal because the optimization only constrains the second-order
moment (variance) of the error, this question is equivalent to optimizing the
second-order statistic. For instance, Wiener [333] has shown that if the signals
x(n) and z(n) are wide sense stationary random processes (i.e., fully described
by second-order statistics) then this procedure is optimal. In a statistical
framework, as long as the residuals are Gaussian, least squares will provide
the best linear fit.



1.8 Information-Theoretic Learning 29

1.8 Information-Theoretic Learning

When the residuals are not Gaussian distributed, a more appropriate approach
would be to constrain directly the information content of signals rather than
simply their energy [68,177,199]. Because entropy is defined as the uncertainty
of a random variable, it is only natural to adopt it as the criterion for appli-
cations where manipulation of the information content of signals is desired or
necessary. However, there are important differences between the application
of information theory to communication systems and the reality of adaptive
signal processing and machine learning.

1. Adaptive systems must handle continuous-valued random processes rather
than discrete-valued processes. Noting this fact, we must focus our discus-
sion on continuous random variables, described by their probability density
functions.

2. Adaptive algorithms require smooth cost functions; otherwise the local
search algorithms become difficult to apply.

3. The data statistics in machine learning and modern signal processing ap-
plications have long tails (especially when nonlinear topologies are consid-
ered) and the real-world examples are plagued with outliers. Therefore, the
Gaussian assumption so widespread in communications is normally a poor
descriptor for these applications.

This means that the analytic approach taken in information theory must
be modified with continuous and differentiable nonparametric estimators of
entropy and divergence. To meet requirements 2 and 3 we are convinced that
the nonparametric kernel density estimators championed by Rosenblatt and
Parzen [241, 272] are a productive research direction. As we show, kernel
(Parzen) estimation has the added advantage of linking information theory,
adaptation, and kernel methods.

This book provides a general ITL methodology to implement adaptive al-
gorithms with information theoretic criteria. ITL synergistically integrates the
general framework of information theory in the design of new cost functions
for adaptive systems, and it is poised to play an expanding role in adaptive
signal processing. ITL does not only affect our understanding of optimal signal
processing, but also influences the way we approach machine learning, data
compression, and adaptation as we demonstrate in the sequel.

The fundamental issue in ITL is how to estimate entropy and divergence
directly from samples, which is treated in Chapter 2 in great detail. Chapters 3
to 5 cover the learning algorithms to adapt linear or nonlinear systems using
the error entropy criterion (EEC). ITL also provides divergence and mutual
information measures and the corresponding estimators. These mesoscopic
descriptors can also be used to train linear and nonlinear systems when a
desired response is available as in classification (Chapter 6), or even extract
structure from the input data alone (unsupervised learning) as demonstrated
in Chapters 7 and 8.
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1.9 ITL as a Unifying Learning Paradigm

The theory of learning is conventionally divided in three basic principles: su-
pervised, unsupervised, and reinforcement learning. Although there are good
reasons to make this division, the algorithms that are currently employed
accentuate the differences. We will briefly present the impact of ITL for
learning theory in this section.

Supervised Learning Paradigm
In supervised learning, the adaptive system has access to two sources of data
from the external world; pairs of signals {xi, zi}. The goal of learning is to
discover the model that relates x with z (Figure 1-1). Given the existence
of two external data sources, the supervised learning problem normally is
framed as a functional mapping, where there is a parametric system in some
functional class that receives the input x and z takes the role of the desired
response. Hence, an error between the desired and the adaptive system output
y can be easily defined by subtraction, which leads to the idea of penalizing
the error for adaptation and to find the parameters that achieve this minimal
error. This gives rise to least squares and gradient descent procedures, which
became the hallmarks of supervised adaptation.

Unsupervised Learning Paradigm
In unsupervised learning, the adaptive system has access to a single source
of data from the external world. The goal of learning in this case is to
find system parameters that quantify the data structure. In principle it is
not easy to pose the unsupervised learning problem in terms of a cost, but
one of the exciting advances of the last 20 years has been the formulation of
self-organizing principles [152] that are also related to “energy methods” [196].

Reinforcement Learning Paradigm
In reinforcement learning, there are still two sources of data from the external
world, however, one of them is just a binary value that tells the system if
its response is good or bad. Therefore, the supervised learning methodologies
cannot be directly applied, and the system has to explore the environment to
receive rewards. Although supervised learning has thus far been the major in-
spiration for reinforcement learning algorithms, there is a role for unsupervised
methods to help structure the search. This topic is not treated further here.

The ITL methodologies play an important role to develop algorithms that
are independent of the learning paradigm; that is, the same algorithm can be
applied to both unsupervised and supervised scenarios just by switching the
inputs to the cost function. This characteristic unifies the learning paradigms
and is shown in Figure 1.9. ITL accomplishes this goal by creating versatile
cost functions that are external to the learning machine and also by framing
unsupervised algorithms as adaptations with an external cost function.
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Fig. 1.9. A unifying view of learning based on ITL cost functions (from [252]).

Divergence or Mutual Information Criteria

One of the inputs to the cost function in Figure 1.9 is always the system
output. The control of supervised versus unsupervised is done by the switch
that brings the other source of data to the cost criterion. Instead of mutual
information as shown in the figure, divergence can be used interchangeably,
except for the fact that minimization will be substituted by maximization of
the cost.

Switch in position 1
Filtering (or regression) and classification: When the switch is in position 1,
the cost receives the system output and the other source of information is
the desired response, so the problem is supervised in our terminology (two
sources of data from the external world), and by minimizing the divergence
(or maximizing MI) we are making the system output as close as possible to
the desired response, just as in regression or optimal filtering with the min-
imization of the MSE, except that now we are using knowledge about the
PDFs, and we do not require the same number of system outputs as desired
responses, as demonstrated in Chapter 6.

min
w

DKL(y | z) =
∫
p(y) log

p(y)
p(z)

dy

max
w

I(y, z) = H(y)−H(y | z).
(1.38)

The same thing happens for classification, except that now the desired re-
sponse is a set of indicator functions (discrete value function; i.e., 0/1). This
might simplify the calculations.

Feature Extraction: Suppose that the desired response is an indicator function.
In this case, one important question is how to project the high-dimensional
input to a possibly nonlinear subspace, such that the discriminability of the
outputs with respect to the labels is preserved. The problem can be solved by
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maximizing the mutual information between the projection outputs and the
class labels:

max
w

I(y, c) = H(y)−
∑

c
pcH(y | c). (1.39)

This principle generalizes the concepts behind PCA and LDA to nonlinear
feature projections [106,108].

Switch in position 2
When the switch is in position 2, the other source is the input data itself,
so learning is unsupervised according to our definition because the cost has
access to the data (x) and a processed version of the data (y).

Maximum Information Transfer : The optimization problem is to maximize the
transfer of information between the input and the output of the system. This
is called the principle of maximal information transfer and is related to the
channel capacity theorem and the information bottleneck framework [97,316].
One could maximize the mutual information between the original input data
and the transformed output data to preserve information maximally while
reducing noise.

max
w

I(y, x) =
∫
p(y, x) log

p(y, x)
∏
d p(yd)p(xd)

dydx . (1.40)

This formulation has also been suggested as a self-organization principle in
distributed systems.

Switch in position 3
When the switch is in position 3, the only source of data is the system output
that is assumed multidimensional.

Independent Component Analysis : In this case if we minimize MI we are per-
forming redundancy reduction or independent component analysis, which is an
unsupervised problem. Indeed, one assumes a multiple-input–multiple-output
(MIMO) system and the goal is to create statistically independent outputs
[57,156]. For a nonlinear MIMO system y = f(x;w), the nonlinear ICA prob-
lem seeks to determine the parameters w of f(.) such that the mutual infor-
mation between the components of y is minimized (preferably to zero):

min
w

I(y, y1 . . . yd) =
∫
p(y, , y1 . . . yd) log

p(y, , y1 . . . yd)∏
d p(yd)

dy. (1.41)

Clustering: Finally, assume that the goal of the mapper is to divide the input
data into a preselected number of structurally and/or statistically distinct
groups (clusters). Here, the weights become the assigned cluster membership
values and the criterion is to assign samples to a cluster such that the clus-
ters are defined as compactly and distinctly as possible, measured by cluster
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entropy and divergence. In the case of two clusters, one could use the J diver-
gence, for example;

max
w

DKL(p1(y) || p2(y)) +DKL(p2(y) || p1(y)). (1.42)

Entropy Costs

Instead of using divergences or mutual information, we can also use the
entropy as our information cost, but now only one variable is utilized for the
cost, so an extra operation may be necessary before bringing the signal to
the cost.

Switch in position 1
Error Entropy Criterion: With the switch in position 1, if the difference be-
tween the desired and the system output is computed first (i.e., the error) and
the criterion minimizes entropy, this is information filtering (or information
regression) and classification.

min
w

H(e) =
∫
p(e) log p(e)de. (1.43)

Switch in position 2
Optimizing for Extremes of System Output : An alternative is to simply max-
imize (or minimize) the entropy at the system output (subject to some con-
straint on the weight vector norm or the nonlinear topology), which leads to
an information-theoretic factor analysis to discover interesting structures in
the high-dimensional input data.

max
w

H(y) = −
∫
p(y) log p(y)dy

subject to E[hi(y)] = αi, i = 1, . . . , d.
(1.44)

This formulation is useful in blind equalization, nonlinear principal component
analysis, ICA, and novelty filtering [139,156].

On the other hand, if the switch is in position 3 and the entropy criterion
is maximized, we are implementing MaxEnt. All these cases are summarized
in Table 1.1-1.3. Perhaps even more remarkably as we show in Chapter 2, all
of these learning scenarios can be implemented using nonparametric estima-
tors of Renyi’s entropy and Euclidean distance or Cauchy–Schwarz divergence
based on the information potential (for entropy) or the generalized informa-
tion potential (for divergence or mutual information).

Therefore the ITL methodology improves upon many of the previous works
where the self organizing principles were applied but their implementation
with real data used Gaussian assumptions, wasting the generality of the prin-
ciples in the sense that equivalent maximum likelihood solutions could be used
instead.
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Table 1.3. Summary of ITL costs for Different Applications

Switch Distance
Max

Distance
Min

Mutual Info
Max

Mutual Info
Min

Entropy
Max

Entropy
Min

1 Information
filtering

Information
filtering

Innovation
filtering

Information
filtering

2 InfoMax InfoMax
3 Clustering ICA MaxEnt

(NLPCA)

1.10 Reproducing Kernel Hilbert Spaces

A Hilbert space is a linear, complete, and normed space endowed with an in-
ner product [214]. Some Hilbert spaces are infinite-dimensional vector spaces
and they are the foundation of continuous-time signal processing. Prior to the
widespread use of digital signal processing, which is based on finite discrete
time series of finite length that can be properly described in Euclidean spaces
(Rd), infinite-dimensional Hilbert spaces were commonly used. Fourier trans-
forms, Karhunen–Loeve transforms, and Wiener filters were initially studied
in infinite-dimension Hilbert spaces, so the theory is very well developed. The
existence of a reproducing kernel Hilbert space corresponding to any symmet-
ric and nonnegative definite kernel function is one of the most fundamental
results of the theory. The RKHS framework was originally studied because
all Green’s functions of self-adjoint ordinary differential equations and some
bounded Green’s functions in partial differential equations belong to this
special class of functionals of two variables. But it was not until 1943 that
Aronszajn systematically developed the general theory of RKHS and coined
the term “reproducing kernel” [7]. The expanded paper [8] on his previous
work became one of the standard references for RKHS theory.

The application of RKHS methodology in statistical signal processing was
proposed by Parzen in the late 1950s, who provided for the first time a func-
tional analysis perspective of random processes defined by second-order mo-
ments (called Gaussian processes) because they can be approached by purely
geometric methods when studied in terms of their second-order moments
(covariance kernel) [238]. Parzen clearly illustrated that the RKHS approach
offers an elegant general framework for minimum variance unbiased estima-
tion of regression coefficients, least squares estimation of random variables,
detection of know signals in Gaussian noise, and so on. Although they involve
random variables, all these problems can be solved algebraically in the RKHS
associated with their covariance functions with all the geometric advantages of
the inner product defined in such spaces. In the early 1970s, Kailath presented
a series of detailed papers on the RKHS approach for detection and estimation
to demonstrate its superiority in computing likelihood ratios, testing for non-
singularity, bounding signal detectability, and determining detection stability
[173–175]. Although the approach was very elegant, it did not produce new
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results. RKHS concepts have also been extensively applied to a wide variety
of problems in optimal approximation by Wahba including minimum norm
interpolation and smoothing by spline functions in one or more dimensions
(curve and surface fitting) [327]. Figueiredo took a different approach to ap-
ply RKHS in nonlinear system and signal analysis [69]. He built the RKHS
bottom-up using arbitrarily weighted Fock spaces. The spaces are composed
of Hilbert–Schmidt polynomials or power series in either scalar or multidimen-
sional variables. The generalized Fock spaces have been applied in engineer-
ing for nonlinear system approximation, semiconductor device characteristics
modeling, and neural networks [103].

Today, RKHS are often applied in connection with the kernel methods of
machine learning [289, 294], and it is important to understand their advan-
tage for this application, which is different from the work developed by Parzen.
Since Cover’s work [232] we know that the probability of linearly “shatter-
ing” data (i.e., finding a hyperplane that classifies the data with zero error)
approaches one with the increase in dimensionality of the space. However, the
bottleneck of this technique was the large number of free parameters of the
high-dimensional classifiers, hence computation would become expensive and
there would be the need to regularize the solutions. The RKHS provides a way
to simplify the computation, because for most kernels the space dimension is
very high (even infinite), but by the “kernel trick” the calculations can still
be done efficiently in the input space provided the quantities of interest in
the algorithms can be expressed by inner products. However, the problem of
regularization still remains. The work on support vector machines by Vapnik
rekindled the interest in RKHS for pattern recognition [232] because he pro-
vided a robust regularizer which is essential when working in high-dimensional
spaces with analytic solutions. The excitement of the kernel methods is very
vivid today. Essentially a kernel machine is a one-layer neural network (e.g.,
RBF when Gaussian kernels are used) whose parameters can be analytically
computed in the RKHS given the training set data using either the structural
risk minimization principle [323] or least square techniques [311].

A linear system in RKHS may become (depending upon the kernel) a
nonlinear filter in the input space, and this opens a very interesting avenue
to pursue nonlinear signal-processing applications. If an optimal iterative so-
lution is desirable, gradient descent algorithms have also been proposed in
RKHS [202], with the advantage that there are no local minima in the adap-
tation. This is an enormous advantage with respect to neural networks, where
the training is always problematic because the system state can be caught in
local minima. Therefore developing adaptive solutions in RKHS is an intrigu-
ing possibility to go beyond traditional neural networks.

RKHS also appear naturally in information-theoretic learning. In fact,
inasmuch as we are interested in nonparametric approaches to estimate en-
tropy and divergence, kernel density estimation is central in ITL. There is
a large overlap between the mathematical conditions required for a kernel
proper for density estimation and positive definite functions (in fact most of
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the kernels used in density estimation are positive definite). However, there are
even deeper connections as Figure 1.2 illustrates through the cross-information
potential. It turns out that the argument of quadratic Renyi’s cross-entropy is
a positive definite function involving PDFs. Therefore, it is possible to define
a RKHS for ITL as explained in Chapter 9. We now briefly review RKHS
foundations.

RKHS Definitions

A reproducing kernel Hilbert space is a special Hilbert space associated with a
kernel κ such that it reproduces (via an inner product) each function f in the
space, or, equivalently, every point evaluation functional is bounded [214]. Let
Hκ be a Hilbert space of real-valued functions defined on a set E, equipped
with an inner product < ·, · > and a real-valued bivariate function κ(x, y) on
E ×E. Then the function κ(x, y) is said to be nonnegative definite if for any
finite point set {x1 , x2 , . . . , xn} ⊂ E and for any not all zero corresponding
real numbers {α1 , α2 , . . . , αn} ⊂ R,

n∑

i=1

n∑

j=1

αiαjκ(xi, xj) ≥ 0. (1.45)

Any nonnegative definite bivariate function κ(x, y) is a reproducing kernel
because of the following fundamental theorem.

Theorem 1.1 (Moore–Aronszajn). Given any nonnegative definite func-
tion κ(x, y), there exists a uniquely determined (possibly infinite-dimensional)
Hilbert space Hκ consisting of functions on E such that

(I) ∀x ∈ E, κ(·, x) ∈ H,
(II)∀x ∈ E, ∀f ∈ H, f(x) = 〈f, κ(·, x)〉Hκ

.
(1.46)

By property (I) we see that each point in the input space is mapped onto a
function in the RKHS defined by the selected kernel. Therefore the richness of
the representation in RKHS is related to the kernel one defines, thus we denote
this dependence by Hκ, or H := Hκ is said to be a reproducing kernel Hilbert
space with reproducing kernel κ. The property (II) is called the reproducing
property of κ(x, y) in Hκ. In particular, we can define our nonlinear mapping
from the input space to a RKHS as Φ(x) = κ(., x); then we have

〈Φ(x),Φ(y)〉Hκ
= 〈κ(., x), κ(., y)〉 = κ(x, y) (1.47)

and thus Φ(x) = κ(., x) defines the Hilbert space associated with the kernel.
Notice that similarity between functions in the RKHS is also totally defined
by the kernel because it defines the inner product of functions. For those who
know delta functions from signal processing, the delta function has the repro-
ducing property (through convolution it extracts the value of the function at
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the point where it occurs), but does not obey Property I above, so it is not
a kernel nor defines a RKHS. Besides its defining property, this theorem also
suggests a huge simplification which is addressed next.

Kernel-Based Learning Theory

Kernel-based (Mercer) learning algorithms use the following idea [289]. Via a
nonlinear mapping

Φ : E → H
x→ Φ(x)

the data {x1, x2, . . . , xn} ⊂ E (where E is usually Rd) are mapped into
a potentially much higher-dimensional feature space Hκ with a linear struc-
ture. A given learning problem in E is solved in Hκ instead, by working with
{Φ(x1), . . . ,Φ(xn)} ⊂ H . Because Hκ is high-dimensional, a simple linear
learning algorithm, and preferably one expressed solely in terms of inner-
product evaluations, can solve arbitrarily nonlinear problems in the input
space (if Hκ is sufficiently rich to represent the mapping). The inner product
formulation implicitly executes the linear algorithm in kernel feature space
but the data and the operations are all done in the input space (by the kernel
property of Eq. (1.47), normally called the kernel trick). The Mercer theorem
guarantees the existence of the nonlinear mapping Φ.

Theorem 1.2 (Mercer’s). Consider a symmetric kernel function κ ∈ L∞
(E × E). If κ is the kernel of a positive integral operator in L2(E), and E is
a compact subset of Rd then

∀ψ ∈ L2(E) :
∫

E

κ(x, y)ψ(x)ψ(y)dxdy ≥ 0. (1.48)

Let Φi ∈ L2(E) be orthonormal eigenfunctions of the above operator and
λi > 0 their corresponding eigenvalues. Then

κ(x, y) =
NF∑

i=1

λiΦi(x)Φi(y) (1.49)

holds for NF < ∞ or NF = ∞. In the latter case the series converges abso-
lutely and uniformly for almost all x and y in E [217]

The operation in Eq. (1.49) clearly provides a nonlinear mapping via the
eigenfunctions determined by the kernel. The kernel trick can be used to
develop nonlinear generalizations of any algorithm that can be cast in terms
of inner products [287]. For example, KPCA, KLDA, and kernel k-means
[72, 112,287] are simply extensions of the corresponding linear algorithms by
applying the kernel trick on every inner-product evaluation. A kernel that
satisfies Eq. (1.49) is known as a Mercer kernel. The most widely used Mercer
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kernel is the Gaussian function (also used in the radial basis function (RBF)
network)

Gσ(x, y) =
1√
2πσ

exp

(

−‖x− y‖
2

2σ2

)

(1.50)

where σ is a kernel size or bandwidth that works as a scale parameter which
controls the width of the Gaussian. A Gaussian kernel corresponds to an
infinite-dimensional Mercer kernel feature space, because the Gaussian has an
infinite number of eigenfunctions.

Nevertheless, there is an immediate downside to this property, and it ap-
pears as the need to evaluate the functions in a pointwise manner; that is
the algorithms become memory intensive because in principle all the kernel
evaluations must be saved to compute future outputs. In fact, these learn-
ing machines look like nonparametric algorithms when implemented with the
kernel trick, except that there is a model in the RKHS to adapt the param-
eters. After this brief presentation of RKHS properties, RKHS is linked with
information theory, adaptive filtering which is an example of the RKHS for
representation, and their role for statistical inference.

1.11 RKHS and ITL

The need to estimate nonparametrically entropy and divergence raises the
question of how to accomplish this goal. Because these descriptors are based
on the PDF, the use of kernel density estimation jumps immediately into our
minds because of its nice properties. Kernel density estimation is a very well
established field [272], therefore many results are available quantifying the
bias and variance of the estimators and their consistency [241], as well as its
difficulties in determining the optimal kernel size and its poor efficiency in
high-dimensional spaces [170].

Most of the kernels used in density estimation are indeed nonnegative bi-
variate functions, therefore they define a RKHS. For instance, Schölkopf shows
that classifiers can be easily constructed using the mean of the transformed
data, which implicitly use the PDF as the discriminant function [225]. How-
ever, there are deeper connections that are explored in this book as illustrated
in Figure 1.2. Let us define cross-entropy between two PDFs p(x) and q(x) as

H(p; q) = −
∫
p(x) log q(x)dx = −Ep[log q(x)], (1.51)

which measures the average number of bits needed to identify an event from
a density q(x) with a coding scheme built on a different probability density
p(x). For Renyi’s entropy, the equivalent quadratic cross-entropy is defined as

H2(p; q) = − log
∫
p(x)q(x)dx = − logEp[q(x)]. (1.52)
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It turns out that the argument of the logarithm, which we call the cross
information potential, is a positive definite function as we demonstrate in
Chapter 9 so it defines a RKHS that will provide a functional analysis view of
the information-theoretic descriptors of entropy and divergence. Note that for
the special case p(x) = q(x), the cross information potential defaults to the
information potential which is the argument of the 2-norm of the PDF p(x).
The IP appears in a prominent role in Figure 1.2 because it is used in Renyi’s
quadratic entropy, and it is also the cost function that is used to adapt linear
or nonlinear systems in Chapters 3, through 6. The CIP is utilized as the
basis for similarity in clustering and unsupervised learning applications in
Chapters 7 and 8.

Let us contrast the RKHS defined by the CIP with the RKHS defined
in kernel methods. Let E be the space of input samples {xi}Ni=1. A kernel
is an inner-product operator κ : E × E → R. An explicit way to describe
κ is via a mapping Φ : E → H from E to an inner-product space Hκ such
that κ(x, x′) =< Φ(x) · Φ(x′) >. In this RKHS the user selects the kernel as
any positive definite function (Gaussian, Laplacian, etc.), therefore the kernel
function is independent of the data, and if the input space data are random
variables, the RKHS is built from functions that operate on stochastic data
producing stochastic outputs. The dimensionality of the RKHS is controlled
by the dimension of the mapping Φ, which is potentially very large (hence its
primary use for representation). The size of the kernel matrix (Gram matrix)
is N × N , its elements are random variables, and statistical operators are
needed to operate on the Gram matrix.

The RKHS defined by the argument of the logarithm in the CIP, Eq. (1.52)
is vastly different. The input space E is now the set of all one-dimensional
and square integrable PDFs defined in the sample space; that is, fi(x) ∈ E,
∀i ∈ I. The kernel is still an inner product operator defined on κ : E ×
E → R but the mapping between E and Hv is now defined by the CIP
(i.e. V(fi, fj) =

∫
fi(x)fj(x)dx, ∀i, j ∈ I). As one can see, the kernel now is

built explicitly with the statistical properties of the input data. The elements
of Hv are deterministic functions so one can operate algebraically with them
for statistical inference. The dimensionality of this RKHS is controlled by the
dimension of the PDF function, and the size of the data matrix is the size
of I. There is a relationship between the two RKHS that is further elaborated
in Chapter 9. We now present two simple applications of the use of these two
classes of RKHS.

An Adaptive Filter in RKHS

The purpose of this example is to illustrate the use of RKHS to design optimal
nonlinear adaptive filters to bring together RKHS and adaptive filter theory.
The RKHS is defined on the sample set of the input and the inner product
is defined by the kernel selected for the transformation, therefore it is an
example of the RKHS for representation. As the simplest of the examples, we
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derive the equations to train in RKHS a linear adaptive FIR filter with the
LMS algorithm. It is well known that the optimal FIR filter w between r.v.
X and Z (Figure 1.1) is defined as

y(n) = wTx(n) = 〈w, x(n)〉 , (1.53)

where the size of the vector of weights and inputs is established by the filter
order M . It is also well known that the optimal weight vector is given by
w∗ = R−1p with the definitions in Eq. (1.25). Notice from Eq. (1.53) that the
FIR filter can be written as an inner product between the weight vector and
the input, so optimal filtering is a good candidate for a RKHS implementation
and the end result will be a nonlinear optimal filter in the input space. The
equation analogous to Eq. (1.53) for a linear filter in RKHS is therefore

y(n) = 〈Ω(n), Φ(x(n))〉Hκ
, (1.54)

where Φ(x(n)) is the transformed data x(n), and Ω(n) is the weight function
(the filter) in the RKHS Hκ at iteration n, and the inner product is defined
by the selected kernel (e.g., the Gaussian kernel). So conceptually, what is
needed is to map the input by the nonlinear function specified by the kernel
eigenfunctions, and do an inner product with the weight vector, which can be
computed in the input space by the kernel evaluation.

The fundamental issue is how to find the optimal weights, and here instead
of attempting to solve the least square problem analytically as done in kernel
methods [289], we proceed with an implementation of the kernel LMS (KLMS)
algorithm [202] for simplicity. If you recall, the LMS algorithm is given by

w(n) = w(n− 1) + ηe(n)x(n), (1.55)

where η is the stepsize that needs to be selected by the user. Let us now
implement this recursion in kernel spaces. Let us start with a zero weight
function Ω(0) = 0, which we can think of as a high-dimensional vector. The
error at iteration n is given by

e(n) = d(n)− 〈Ω(n− 1), Φ(x(n))〉Hκ
(1.56)

inasmuch as it is the output of the system computed with the previous weights.
Now the new weight vector from Eq. (1.55) becomes

Ω(n) = Ω(n− 1) + ηΦ(x(n))e(n). (1.57)

It is easy to show that we can write Ω(n− 1) in terms of Ω(n− 2) until Ω(0)
that can be set at zero and rewrite Eq. (1.57) iteratively from the first weight
to obtain

Ω(n) =
n∑

j=1

ηe(j)Φ(x(j)). (1.58)
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Therefore, we can now compute the present output substituting Eq. (1.58)
into Eq. (1.54)

y(n) = 〈Ω(n), Φ(x(n))〉Hκ
=

〈
n∑

j=1

ηe(j)Φ(x(j)),Φ(x(n))

〉

Hκ

=
n∑

j=1

ηe(j)κ(x(j),x(n)). (1.59)

This iteration if it converges will approximate the optimal least square solu-
tion in the RKHS and will provide a nonlinear filter in the input space. For
further analysis of this very interesting solution that does not need explicit
regularization, see [202].

Let us now discuss Eq. (1.59). First, if the kernel is a Gaussian, the nonlin-
ear filter is a radial basis function (RBF) network with a growing structure,
where centers are placed at the projected samples and the weights are the
errors at each sample. The filter grows with each new sample following a
non-parametric approach that is discovering the mapping as time progresses.
Of course, because of finite resources one must cut the growing structure of
the filter, but if one recalls the learning curve in LMS the error decreases ex-
ponentially with the number of samples until it stabilizes. A similar behavior
is displayed by the KLMS, so a relatively small number of centers provide
better solutions than the LMS in nonlinear problems [202]. It is also possible
to compute in RKHS the optimal regressor using a block of data, but the
solution needs regularization and is essentially equivalent to the kernel regres-
sion solution (see [225]). We do not pursue these developments here, but it is
important to keep in mind that the ITL cost functions developed throughout
this book can also be used to train filters in RKHS.

RKHS Induced by the Covariance of a Random Process

The theory of Hilbert space representations of Gaussian processes (i.e., ran-
dom functions or stochastic processes {X(t), t ∈ T } fully described by second-
order statistics) was mentioned by Loeve [203] but mostly developed by Parzen
[238]. Our explanation will follow [238] very closely. This RKHS is defined in
an index set T and it is induced by the covariance function of the random
process, which is different in nature from the Gaussian kernel used in the
previous section. Therefore, we briefly study here some of its properties.

A time series is a family X(.) = {X(t), t ∈ T } of random variables with
finite second order moments. The mean value function m and the covariance
kernel R are functions on T and T×T defined asm(t) = E[X(t)] and R(s, t) =
Cov [X(s), X(t)] respectively.

It is often convenient to think of a time series X(.) as indexed by a Hilbert
space Ho with inner product < x, y >Ho in the sense that the “random” inner
product < X, h >Ho , where h is a vector in Ho is not a true inner product
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but represents a random variable indexed by h. The basic goal to define this
random inner product is to establish a correspondence between elements of
Ho and random variables.

Let us define the Hilbert space HX spanned by a Gaussian process
{X(t), t ∈ T } to be the set of all random variables in the linear manifold
L(X(t), t ∈ T ) together with their limit points and denote it by L2(X(t),
t ∈ T ), i.e. HX = H(X(t), t ∈ T ) = L2(X(t), t ∈ T ). The Hilbert space
spanned by the time series becomes the smallest Hilbert space of random
variables that contains X(.). It can be shown that every random variable U in
HX is a linear functional of X(.), i.e. U =

∑n
j=1 cjX(tj), for some n. Parzen

proved the following theorem:

Theorem 1.3 (Parzen). For a stochastic process {X(t), t ∈ T } with T being
an index set, R(s, t) is the covariance function, if and only if, it is symmetric
and positive definite.

An immediate result from Theorem 1.3 and 1.1 is that R also defines a
RKHS HR for the stochastic process. In the proof of Theorem 1.3, Parzen also
showed that for any symmetric and positive definite kernel function there is a
space of Gaussian distributed random variables defined on the same domain
for which the kernel is the covariance function. In other words, any kernel
inducing a RKHS denotes simultaneously an inner product in the RKHS and
a covariance function in the space of random processes. Furthermore, Parzen
established that there exists an isometric isomorphism (i.e., a one–to-one inner
product-preserving mapping), also called a congruence, between these two
spaces. This is an important result as it sets up a correspondence between the
inner product due to the kernel in the RKHS to our intuitive understanding
of the covariance function and associated statistics. Let us explore these ideas
more formally.

Let us start by obtaining a representation of a random variable which is a
function of a stochastic process {θ(s), s ∈ S}. Parzen showed that [238]:

1. Every function f in HR can be represented has f(s) = E[θ(s)U ] for some
unique U in L2(θ(s), s ∈ S) with zero mean and variance ‖f‖2HR

.
2. A one to one correspondence between HR and L2(θ(s), s ∈ S) exists

such that

θ(s) ↔ R(., s)

U =
∑

i
ciθ(si) ↔ f =

∑

i
ciR(., si)

The function f ∈ HR that corresponds to the random variable U ∈ L2(θ(s),
s ∈ S) is denoted by f̃ or < f, θ >H̃R

and will be called a congruence inner
product. With this result one can write

E
[
< f, θ >H̃R

]
=< f, θ >HR

Cov
[
< f1, θ >H̃R

, < f2, θ >H̃R

]
=< f1, f2 >HR ∀f1, f2 ∈ HR (1.60)
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Therefore, any random variable z(t) which is a linear function of {θ(s), s ∈ S}
can be expressed as z(t) =< g(t, .), θ >H̃R

for some g(t, .) ∈ HR, and it is the
representer of z(t), that is, it is obtained from {R(., s), s ∈ S} by the same
operations as z(t) is obtained from {θ(s), s ∈ S}.

As we can see the RKHS defined by the Gaussian kernel and the RKHS
defined by the covariance function are very different from each other. The
eigenfunctions Φi(x) of the kernel nonlinearly map an input sample into a
functional in a high-dimensional space, as needed for better representation
(regression, classification). The RKHS HR (defined by the covariance kernel)
on the other hand, maps linearly entire random vectors into a scalar function
(i.e., a point). Statistical inference in HR can be done with simple algebra
as Parzen and others have elucidated. The mapping functions Φi(x) of Hκ

are independent of the data statistics, whereas the mapping functions Φi(x)
for HR incorporates naturally the data statistics due to the expected value
operator. Moreover, the elements of the Gram matrix of HR are deterministic,
whereas the elements of the Gram matrix of Hκ are stochastic when the
input is a random variable. Therefore, one sees how different RKHS can be,
depending upon how the elements of the space and the kernel are defined,
which illustrates how powerful the methodology really is.

Optimal Filtering Problem in RKHS HR

Given a time series {Y (t), t ∈ T } with an underlying signal and additive noise
Y (t) = X(t) + N(t), 0 ≤ t ≤ T and a random variable Z (which can be the
value of X in the past or in the future, or any other random variable) find for
each t ∈ T the best random variable in L2(Y (t), t ∈ T ) whose mean square
distance to Z is minimum. In probability theory this can be accomplished
by finding the conditional expectation of the random variable Z relative to
a σ field defined by X(t). Wiener developed an important alternate solution
using spectral factorization [333], and Kolmogorov provided an equivalent and
elegant geometric solution [185]. An alternative result derived by Parzen [238]
from orthogonal projections and direct sums of elements of complementary
Hilbert spaces provides the existence and uniqueness of the same basic solution
in a RKHS. We will briefly present this solution here.

Let the widesense conditional mean of X(t) given the entire set of Y (.) be

X(t) = Ep[X(t) |Y (s), s ∈ T ]

where the superscript p denotes projection in the Hilbert space. The wide
sense conditional mean can be posed as the following optimization problem.
LetHY = H(Y (t), t ∈ T ) be the Hilbert space of the square integrable random
variables spanned by the family {Y (t), t ∈ T }. Find Û in HY such that

E
[
|Û −X(t)|2

]
= min
U∈HY

E
[|U −X(t)|2] (1.61)
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The vector Û will be denoted as X̂(t). Parzen showed it can be obtained as
the solution of the normal equations

E[X̂(t)Y (s)] = E[X(t)Y (s)], s ∈ T (1.62)

which can be written as

X̂(t) =< E[X(t)Y (s)], Y (s) >H̃E[Y (t1)Y (t2)]

In fact, define the covariance kernel on T×T KY (t1, t2) = E[Y (t1), Y (t2)]. Let
HKY be the RKHS corresponding to KY , then for each t ∈ T, KXY (t, s) =
E[Y (t), Y (s)] ∈ HKY and X̂(.) =< KXY (., s), Y (s) >H̃KY

. For uncorrelated
signal and noise, let us represent R(t1, t2) = E[N(t1), N(t2)] and K(t1, t2) =
E[X(t1), X(t2)], then KY = R+K,KXY = K and

X̂(.) =< K(., s), Y (s) >H̃R+K
(1.63)

Eq. (1.63) is the equivalent of the Wiener–Hopf solution for the optimal fil-
tering problem, but obtained in the RKHS.

In order to help draw the similarity, let us write loosely the optimal pro-
jection as X̂(t) =

∫
T W (t, u)Y (u)du, and with this notation, the normal

equations of Eq. (1.62) can be rewritten as

X̂(t) =
∫

T

W (t, u)[K(u, s) +R(u, s)]du = K(t, s), s ∈ T (1.64)

which need to be solved for the projector W (t, u). Define the operator R+K
on L2(T ) as follows: (R+K)f is the function whose value at s is

{(R+K)f}(s) =
∫

T

f(u){K(u, s) +R(u, s)}du

With this notation the solution to Eq. (1.64) becomes W (t, u) = {(R +
K)−1K(t, ·)}(u), and substituting in Eq. (1.64) yields X̂(t) =

∫
T Y (u)

{(R+K)−1K(t, ·)}du for which Eq. (1.63) is a rigorous form.

1.12 Conclusions

This chapter gave an overview of the foundations for the approach developed
in the remainder of the book. The apparently unrelated topics of information
theory, optimal filtering, and RKHS theory can be easily linked from the
point of view of the expected value of the PDF operator, which we call the
information potential, the argument of the logarithm of Renyi’s quadratic
entropy. When new synergisms are established the hope is that they can lead to
new advances and later be exploited for statistical signal processing, machine
learning, and information-theoretic applications.
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The chapter starts with a brief review of the problem of optimal transmis-
sion of information in communication systems and how information theory
concepts were developed to answer them. The review emphasizes understand-
ing of the fundamantal concepts of entropy and mutual information and how
they have been put to good use in the design of communication systems.
Extensions to the original definitions of entropy and mutual information pro-
posed by Shannon are also discussed to provide a glimpse of how the original
theory evolved. The role of information theoretic concepts in machine learn-
ing is also briefly reviewed to point out the role of mesoscopic descriptors of
the data that can be used for new cost functions and new learning principles
based on information-theoretic concepts.

The foundations of adaptive filter theory (which are remarkably similar to
regression in discrete time) are also presented. The impact of information-
theoretic cost functions (entropy and divergences) in regression, filtering,
classification and unsupervised learning is presented. Basically, information-
theoretic costs unify supervised and unsupervised algorithms in the sense
that changing the inputs to the cost function yields both classes of learning
paradigms.

The last part of Chapter 1 deals with basic definitions of reproducing kernel
Hilbert spaces. The review also illustrates how powerful the RKHS methodol-
ogy is because alternate definitions of the domain and range of the functional
mapping provides radically different RKHS characteristics. Basically, we can
say that there are RKHS for representation and for statistical inference. The
review also demonstrates the importance of RKHS for adaptive filtering, by
showing how the LMS algorithm can be easily ported to RKHS defined by the
Gaussian kernel function. The uses of the autocorrelation function of a ran-
dom process as an alternative kernel is also discussed to show the flexibility
of the RKHS framework and how it can be used for statistical inference.
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Renyi’s Entropy, Divergence
and Their Nonparametric Estimators

Dongxin Xu and Deniz Erdogmuns

2.1 Introduction

It is evident from Chapter 1 that Shannon’s entropy occupies a central role in
information-theoretic studies. Yet, the concept of information is so rich that
perhaps there is no single definition that will be able to quantify informa-
tion properly. Moreover, from an engineering perspective, one must estimate
entropy from data which is a nontrivial matter. In this book we concentrate
on Alfred Renyi’s seminal work on information theory to derive a set of esti-
mators to apply entropy and divergence as cost functions in adaptation and
learning. Therefore, we are mainly interested in computationally simple, non-
parametric estimators that are continuous and differentiable in terms of the
samples to yield well-behaved gradient algorithms that can optimize adap-
tive system parameters. There are many factors that affect the determination
of the optimum of the performance surface, such as gradient noise, learning
rates, and misadjustment, therefore in these types of applications the entropy
estimator’s bias and variance are not as critical as, for instance, in coding or
rate distortion theories. Moreover in adaptation one is only interested in the
extremum (maximum or minimum) of the cost, with creates independence
from its actual values, because only relative assessments are necessary. Fol-
lowing our nonparametric goals, what matters most in learning is to develop
cost functions or divergence measures that can be derived directly from data
without further assumptions to capture as much structure as possible within
the data’s probability density function (PDF).

The chapter starts with a review of Renyi’s entropy origins, its properties,
and interpretations. Then a new estimator for Renyi’s quadratic entropy is
developed using kernel density estimation. With cost functions for adapta-
tion in mind, the properties of this estimator which is called the Information
Potential (IP) estimator are carefully presented, including its bias and vari-
ance. A physical interpretation of the IP is presented which will motivate new
adaptation algorithms in Chapter 3.
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A brief review of Renyi’s divergence and mutual information is also pre-
sented, and two divergence measures in probability spaces are introduced that
have the great appeal of being computed from combinations of the IP estima-
tor; that is, IP can be readily extended to estimate divergences. A detailed
discussion of the algorithms and interpretations of these divergence measures
is presented to allow their use in practical applications. This includes two
classes of algorithms that speed up the computations to O(N). Furthermore,
Appendix A presents a review of entropy estimators along with a review of
how the IP can be used in practical problems.

2.2 Definition and Interpretation of Renyi’s Entropy

The parametric family of entropies was introduced by Alfred Renyi in the
mid 1950s as a mathematical generalization of Shannon entropy [263]. Renyi
wanted to find the most general class of information measure that preserved
the additivity of statistically independent systems and were compatible with
Kolmogorov’s probability axioms.

Let us assume a discrete probability distribution P = {p1, p2, . . . , pN}
fulfilling the conditions of

∑
kpk = 1, pk ≥ 0. If one observes the outcome of

two independent events with probabilities p and q, additivity of information
for independent events requires that the corresponding information I(·) obey
Cauchy’s functional equation (i.e. the information of the joint event is the
sum of the information of each event)

I(P ·Q) = I(P ) + I(Q). (2.1)

Therefore, the amount of information produced by knowing that an event
with probability p took place could be, apart from a multiplicative factor
(normalized by setting I(1/2) = 1)

I(P ) = − log2 p, (2.2)

which is similar to Hartley’s amount of information. Let us further assume
that the outcomes of some experimental discrete random variable occur with
probabilities p1, . . . , pN , and if the kth outcome delivers Ik bits of information
then the total amount of information for the set Γ = {I1, . . . .IN} is

I(P ) =
N∑

k=1

pkIk (2.3)

which can be recognized as Shannon’s entropy H(X). However, we have as-
sumed the linear averaging operator in this formulation. In the general the-
ory of means for any monotonic function g(x) with an inverse g−1(x) one
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can define the general mean associated with g(x) for a set of real values
{xk, k = 1, . . . , N} with probabilities of {pk} as

g−1

(
N∑

k=1

pkg(xk)

)

.

Applying this definition to the information I(P ), we obtain

I(P ) = g−1

(
N∑

k=1

pkg(Ik)

)

, (2.4)

where g(x) is a Kolmogorov–Nagumo invertible function [229]. This g(x) is
the so called quasi-linear mean and it constitutes the most general mean com-
patible with Kolmogorov’s axiomatics [184]. Renyi then proved that when
the postulate of additivity for independent events is applied to Eq. (2.4) it
dramatically restricts the class of possible g(x). In fact, only two classes are
possible; g(x) = cx with c a constant, which states that for linear g(x) the
quasi-linear mean reduces to the ordinary mean and yields the Shannon in-
formation measure Eq.(2.3). Hence, Shannon’s information is the averaged
information in the usual sense, and becomes the simplest of the information
measures. The other functional class is g(x) = c 2(1−α)x which implies

Iα(P ) =
1

1− α log

(
N∑

k=1

pαk

)

with α 	= 1 and α ≥ 0, and it is called Renyi’s information measure of order α,
or Renyi’s α entropy, denoted as Hα(X). We adopt the term “entropy” since
Renyi showed that it also represents the disclosed information (or removed
ignorance) after analyzing the expression in a close analogy with Shannon’s
theory.

At a first glance, the main difference between Shannon and Renyi’s en-
tropies is the placement of the logarithm in the expression. In Shannon en-
tropy (Eq. (1.4), the probability mass function (PMF) weights the log(pk)
term, whereas in Renyi’s entropy the log is outside a term that involves the
α power of the PMF. In order to compare further with Shannon’s entropy let
us rewrite Renyi’s entropy as

Hα(X) =
1

1− α log

(
N∑

k=1

pαk

)

= − log

(
N∑

k=1

pαk

) 1
α−1

= − log

(
N∑

k=1

pkp
α−1
k

) 1
α−1

. (2.5)

We see in Eq. (2.5) that the PMF pk also weights a term that now is the
(α − 1) power of the probability mass function. Let us denote the argument
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of the log as Vα(X) =
∑

kp
α
k = E

[
pα−1
k

]
which is called in this book the α

information potential (IPα) and allows rewriting Eq. (2.5) as

Hα(X) =
1

1− α log (Vα(X)) = − log
(

α−1
√
Vα(X)

)
. (2.6)

At a deeper level, Renyi’s entropy measure is much more flexible due to
the parameter α, enabling several measurements of uncertainty (or dissimilar-
ity) within a given distribution [177]. Considered as a function of α, Hα(X)
is normally called the spectrum of Renyi information and its graphical plot
is useful in statistical inference [308]. The value at α = 1 is particularly im-
portant because it provides the expected value of the negative log-likelihood
(E[− log p(x)]) while its derivative with respect to α is proportional to the
variance of the log-likelihood function (Ḣ1(X) = −1/2var(log p(x))). Due to
this fact it is possible to derive an index of the intrinsic shape of the PDF as
S(X) = −2Ḣ1(X) which has more statistical power than kurtosis and can be
used as a partial order for the tails of distributions.

To find the most fundamental (and possibly irreducible) set of properties
characterizing Renyi’s information it is desirable to axiomatize it. Various
axiomatizations have been proposed [1,265]. For our purpose the most conve-
nient set of axioms is the following [340].

1. The entropy measure H(p1, . . . ., pN ) is a continuous function of all the
probabilities pk, which means that a small change in probability distribu-
tion will only result in a small change in the entropy.

2. H(p1, . . . , pN) is permutationally symmetric; that is, the position change
of any two or more pk in H(p1, . . . ., pN) will not change the entropy value.
Actually, the permutation of any pk in the distribution will not change the
uncertainty or disorder of the distribution and thus should not affect the
entropy.

3. H(1/n, . . . ., 1/n) is a monotonic increasing function of n. For an equiprob-
able distribution, when the number of choices increases, the uncertainty or
disorder increases, and so does the entropy measure.

4. Recursivity: If an entropy measure satisfies

H(p1, p2, . . . ., pN ) = H(p1 + p2, p3, . . . , pN )

+(p1 + p2)αH
(

p1

p1 + p2
,

p2

p1 + p2

)

then it has a recursivity property. It means that the entropy of N outcomes
can be expressed in terms of the entropy of N − 1 outcomes plus the
weighted entropy of the combined two outcomes.

5. Additivity: If p = (p1, . . . , pN ) and q = (q1, . . . , qN ) are two independent
probability distributions, and the joint probability distribution is denoted
by p · q, then the property H(p · q) = H(p) +H(q) is called additivity.
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The table compares Renyi’s entropy property versus Shannon for these
axioms.

Properties (1) (2) (3) (4) (5)

Shannon yes yes yes yes yes
Renyi yes yes yes no yes

Notice that Renyi’s recursivity property differs from Shannon’s recursivity, so
we entered no in Property (4) to make this fact clear. Further properties of
Renyi’s entropy were studied extensively in [1, 265]. We list here a few of the
key ones.

(a) Hα(X) is nonnegative: Hα(X) ≥ 0.
(b) Hα(X) is decisive: Hα(0, 1) = Hα(1, 0) = 0.

For α ≤ 1 Renyi’s entropy is concave. For α > 1 Renyi’s entropy is neither
pure convex nor pure concave. It loses concavity for α > α∗ > 1 where α∗

depends on N as α∗ ≤ 1 + ln(4)/ ln(N − 1).
(d) Because

α− 1
α

Hα(X) ≤ β − 1
β

Hβ(X), α ≥ β,

(α− 1)Hα(X) is a concave function of pk.
(e) Hα(X) is a bounded, continuous and nonincreasing function of α.
(f) For α ∈ R; Hα(A ∩ B) = Hα(A) − Hα(B|A) with Hα(B|A) =

g−1 (
∑

k ρk(α)g(Hα(B|A = Ak))), which can be interpreted as the condi-
tional entropy with ρk(α) = pαk /

∑
k p

α
k and g an invertible and positive

function in [0,1).
(g) Hz(X) with z = α+ jω is analytic in the entire complex plane except the

negative real axis. Therefore the singularity at α = 1 is not essential and
we obtain limα→1Hα(X) = HS(X).

The ambiguous concavity property of Renyi’s entropy in (b) makes it in-
compatible with the requirements of physical entropy (unlike Shannon’s) when
expressed as a function of the pertinent pk. The implications of (g) are far
reaching. It can be shown that if we perform an analytical continuation of α in
the complex domain (e.g., z = α+jω),Hz(X) =

∑N
k=1 p

z
k is analytic except in

the negative real axis. More specifically, if we make z = 1+rejω , Hz(X) is an-
alytic in the interior of the circle of radius r so it is also analytic at z = α = 1.
Therefore Renyi’s entropy is differentiable at z = 1 to all orders. With this
proof, Shannon entropy can be uniquely determined from the behavior of (an-
alytically continued) Renyi’s entropy in the vicinity of z = 1. Therefore from
a strict mathematical point of view, Shannon entropy is not a special informa-
tion measure deserving separate axiomatization but a member of Renyi’s wide
class of entropies embraced by a single unifying axiomatic [168]. Despite its for-
mal origin Renyi’s entropy proved important in a variety of practical applica-
tions: coding theory [44], statistical inference [236], quantum mechanics (as an
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estimator for von Neumann entropy) [32], chaotic dynamical systems [120],
multifractal analysis [168], and as a measure of diversity in economics [135].

Geometric Interpretation of Renyi’s Entropy

Before we actually start the derivation of the estimators, we investigate further
the role of α by providing a geometric picture of Renyi’s entropy that is very
useful to describe this family of entropies. Probability mass functions can
be visualized geometrically as points in a vector space called the simplex with
the axis given by the random variables. The simplex ΔN consists of all possible
probability distributions for an N multidimensional random variable; that is,

ΔN =

{

p = (p1, . . . , pN )T ∈ RN , pi ≥ 0,
∑

i

pi = 1, ∀i
}

For instance, for three variables (x, y, z), the space of all such distributions
is an equilateral triangle with vertices at (1,0,0), (0,1,0), (0,0,1) (a convex
subset of R3). Figure 2.1 shows the simplex for N = 2 and N = 3.
Any point in the simplex is a different PMF and has a different distance to
the origin. If one defines the PMF α-norm as

‖p(x)‖α = α

√
∑N

k=1
pαk = α

√
Vα(X),

that is, the α-information potential Vα(x) can be interpreted as the α power
of the PMF α-norm. Specifically, Renyi’s α entropy takes the α − 1 root of
Vα(x) and rescales it by the negative of the logarithm as specified in Eq. (2.6).
Therefore α specifies in the simplex the norm to measure the distance of p(x)
to the origin. As is well known from the theory of norms [40], the free pa-
rameter α specifying the norm changes the importance of small values versus
large values in the set. Three α cases are of special interest: H0 is the loga-
rithm of the number of nonzero components of the distribution and is known

1

1
1

0

1

1

0

p = (p1, p2)

p = (p1, p2, p3)

p2

p1 p1

p3

p2

(a-norm of p raised power to a)

pk
a

k = 1

n
å p a

a
=  (entropy a − norm)

Fig. 2.1. The simplex for N = 2, 3 and the entropy α norm.
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as Hartley’s entropy. H∞ can be thought of as limα→∞HRα = H∞ with
H∞ = − log(maxk(pk)) which is called the Chebyshev entropy [177]. The
most interesting special case is obtained for limα→1Hα = HS which means
that Shannon’s entropy is the limiting case of the 1- norm of the probability
mass function p(x). Actually, the 1-norm of any probability density is always
1 by definition, which will give 0/0 in Eq (2.6). Using the l’Hôpital rule we
can proceed and evaluate Eq. (2.6) as

lim
α→1

Hα(X)= lim
α→1

d
dα log

N∑

k=1

pαk

d
dα(1 − α)

=

(
N∑

k=1

log pk · pαk
)(

N∑

k=1

pαk

)−1
∣
∣
∣
∣
∣
α=1

−1
=HS(X)

(2.7)

so, in the limit, Shannon’s entropy can be regarded as the functional value of
the 1-norm of the probability density.

Renyi’s entropy is a scalar that characterizes densities, thus it is also
interesting to display the contours of equal Renyi’s entropy in the simplex
(Figure 2.2) for several α.

In order to illustrate how Renyi’s entropy evaluation behaves in the sim-
plex, we plot the isoentropy contours as a function of α. Notice that for α
close to zero the values inside the simplex change very little, and the Shannon
case basically preserves the shape of these contours except that there is a more
visible change. Observe that for α = 2 the contours are circular, meaning a

[ 0 0 1 ]

[ 1 0 1 ] [ 0 1 0 ] [ 0 1 0 ][ 1 0 0 ]

[ 1 0 1 ] [ 0 1 0 ] [ 0 1 0 ][ 1 0 0 ]

[ 0 1 0 ][ 1 0 0 ]

[ 0 1 0 ][ 1 0 0 ]

[ 0 0 1 ] [ 0 0 1 ]

[ 0 0 1 ] [ 0 0 1 ] [ 0 0 1 ]

α = 0.2

α = 2 α = 4 α = 20

α = 0.5 α = 1

Fig. 2.2. Isoentropy contour in the N = 3 probability simplex for different α values.
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l2 -norm to the center. For higher values of α the contours rotate by 180 degrees
and emphasize changes with respect to the central point when α increases.

When α > 1, Renyi’s entropy Hα are monotonic decreasing functions of
IPα. So, in this case, the entropy maximization is equivalent to IP minimiza-
tion, and the entropy minimization is equivalent to IP maximization.

When α ≤ 1, Renyi’s entropy Hα are monotonic increasing functions of
the Vα. So, in this case, the entropy maximization is equivalent to IP maxi-
mization, and the entropy minimization is equivalent to IP minimization.

Renyi’s Quadratic Entropy H2

H2 is of particular interest in this book and it is a monotonic decreasing
function of the α = 2 information potential V2 (V for short) of the PMF p(x).
H2 implicitely uses an Euclidean distance from the point p(x) in the simplex
to the origin of the space.

H2(X) = − log

(
∑

k

p2
k

)

. (2.8)

In the particle physics literature, the second moment of the probability mass
function is known as the index of coincidence or purity (because it vanishes if
the state of the particle is pure) [32]. The linear entropy is defined asHL(X) =
1 − p2(x) (which is in fact the Havrda-Charvat [138] or Tsallis entropy of
second order [320]), but in Renyi’s case, the logarithm is used instead. In
econometrics, Renyi’s quadratic entropy has been used to quantify diversity
[135]. Because H2 is a lower bound of Shannon’s entropy, it might be more
efficient than Shannon’s entropy for entropy maximization.

One aspect that we would like to stress after the presentation of the geo-
metric picture of Renyi’s entropy is the fact that the argument of the log in
Renyi’s quadratic entropy, V2 = E[p(x)] has meaning in itself as the expected
value of the PMF. Equivalently, if one considers the PMF a nonlinear func-
tion of the random variable x and defines the transformed random variable
ξ = p(x), IP2 (IP for short) becomes the expected value of ξ. The argument of
the log in H2(x) is central to our studies. In fact, we show that in optimization
(parameter adaptation) the logarithm is irrelevant (because it is a monotonic
function and therefore does not affect the location of the extremum of the
cost function in the space of the system parameters) and is dropped almost
from the beginning of our adaptive system studies. This is unthinkable in
communication theory, because there the fundamental issue is the additivity
of information, which is intrinsically linked to the logarithmic function.

Some authors [32] define fα(p) =
∑N
k=1 p

α
k as the α moment of the prob-

ability mass function, which is Schur concave for α < 1 and Schur convex for
α > 1. Therefore Renyi’s entropy is a function of the moment of the vector
variable p = [p1, p2, . . . , pN ]. Moreover, the moments fα(p1, p2, . . . , pN) for
α = 2, . . . , N define the vector p up to a permutation of its components,
which means that the spectrum of Renyi’s entropies defines the probability
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p(x)

Mean p(x)

Mean of x X

Fig. 2.3. Relation between mean of x and mean of p(x).

mass function in a similar manner as the characteristic function expansion.
The α moments also relate Renyi’s to von Neumann’s entropy [326]. It is im-
portant not to confuse the moments of the PMF with the moments of the
data, therefore we prefer to use the information potential terminology, which
also has a powerful analogy as we discuss later. Figure 2.3 shows the relation
between the 2-norm of the PMF (mean of ξ) and the mean of the data, which
should be obvious.

Renyi’s Entropy of Continuous Variables

Renyi’s entropy can also be defined for continuous random variables. Let p(x)
be the continuous PDF defined in [0,1]. The integrated probability is

pn,k =
∫ (k+1)/n

k/n

p(x)dx, k = 0, 1, . . . , n− 1

and by defining the discrete mass function Pn = {pn,k} it is possible to show
[265] that

Hα(X) = lim
n→∞(Iα(Pn)− log n) =

1
1− α log

∫
pα(x)dx. (2.9)

This is very similar to the Shannon case, showing that the differential
Renyi’s entropy can be negative for α ≤ 1. Indeed log(n) can be thought as
the entropy of the uniform distribution, and so the continuous entropy is the
gain obtained by substituting the uniform distribution by the experimental
samples Pn. The generalization for multidimensions proceeds along the same
arguments, preserving the functional form of Eq. (2.9). Quadratic Renyi’s
entropy for continuous random variables reads

H2(X) = − log
∫
p2(x)dx. (2.10)

We use capital H for differential entropy throughout this book.



56 2 Renyi’s Entropy, Divergence and Their Nonparametric Estimators

2.3 Quadratic Renyi’s Entropy Estimator

As already stated in Chapter 1, in experimental science, one is faced with
the issue of estimating entropy directly from samples in a nonparametric way
because it is often not prudent to advance with a parametric PDF model. In
such cases we have to resort to a nonparametric estimation. But instead of first
estimating the PDF and then computing its entropy, here we seek the direct
approach of estimating quadratic Renyi’s entropy from samples by estimating
E[p(X)], which is a scalar. In adaptive systems we are mostly interested in
continuous random variables, and this is the case on which we concentrate
from this point on.

Recall the definition of quadratic entropy given in Eq. (2.10) for the con-
tinuous random variable X . Suppose we have N independent and identically
distributed (i.i.d.) samples {x1, . . . , xN} from this random variable. The ker-
nel (Parzen) estimate of the PDF [241] using an arbitrary kernel function
κσ(.) is given by

p̂X(x) =
1
Nσ

N∑

i=1

κ

(
x− xi
σ

)

(2.11)

where σ is the kernel size or bandwidth parameter. This kernel function has
to obey the following properties [300].

1. κ(x) ≥ 0.

2.
∫
R κ(x)dx = 1.

3. lim
x→∞ |xκ(x)| = 0.

Normally one uses a symmetric normalized kernel that peaks at the sam-
ple and for our purposes it must be continuous and differentiable (reasons
are discussed later). Kernel density estimation is a–well-studied topic and
the use of kernels has been widespread since the seminal work of Rosenblatt
and Parzen. The quality of estimators is normally quantified by their bias
and variance, and for kernel estimation they are respectively given by [241]
(∧ denotes estimated quantities)

Bias(p̂σ(x)) = E[p̂σ(x)] − p(x) ≈ σ2/2p′′(x)μ(K)

Var(p̂σ(x)) = E[(p̂σ(x) − E[pσ(x)])2] ≈ 1
Nσ

‖K‖22 p(x), Nσ →∞ (2.12)

where μ(K) and ‖K‖2 are constants given by the specific kernel utilized, and
p′′ is the second derivative of the PDF. As one can see in Eq. (2.12) the kernel
size affects the bias and the variance in opposite ways, so the best kernel
size is a compromise between bias and variance of the estimator. It is well
known from Parzen’s seminal work [241] that the class of kernel estimators
is asymptotically unbiased when the kernel size tends to zero (i.e., the kernel
approaches a Dirac delta function), and consistent in quadratic mean when
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the number of samples increases to infinite (the product Nσ must tend to
infinite). Moreover, one can show that the mean square error between the
true and estimated PDF can decrease for the optimal kernel size at a rate as
high as N−4/5 for scalar variables, which is close to the best possible (1/N).
For symmetric kernels such as the Gaussian it is typically N−2/5.

The difficulty of density estimation, in particular in high dimensions and
with few samples, is that one wants to obtain a reasonable estimate for all
the points in the domain. This is an ill-posed problem (see Appendix A).
However, for V2(X), we are only interested in estimating a single number
E[p(x)]. Assuming Gaussian kernels Eq. (1.50),Gσ(.), with standard deviation
σ and substituting this in the quadratic entropy expression Eq. (2.10), we get
after straightforward substitutions the estimator

Ĥ2(X) = − log

∞∫

−∞

(
1
N

N∑

i=1

Gσ(x− xi)
)2

dx

= − log
1
N2

∞∫

−∞

⎛

⎝
N∑

i=1

N∑

j=1

Gσ(x− xj) ·Gσ(x− xi)
⎞

⎠ dx

= − log
1
N2

N∑

i=1

N∑

j=1

∞∫

−∞
Gσ(x− xj) ·Gσ(x− xi)dx

= − log

⎛

⎝ 1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xj − xi)
⎞

⎠ . (2.13)

The result is easily obtained by noticing that the integral of the product of
two Gaussians is exactly evaluated as the value of the Gaussian computed at
the difference of the arguments and whose variance is the sum of the variances
of the two original Gaussian functions. Other kernel functions, however, do
not result in such convenient evaluation of the integral because the Gaussian
maintains the functional form under convolution. Nevertheless, any positive
definite function that peaks at the origin (most kernels) might still be used
in the estimation, but the expressions become a bit more complicated. We
named the argument of the log in Eq. (2.13) (i.e., the kernel estimator of the
2-norm of the PMF (or PDF)) the quadratic information potential estimator
(simply IP when there is no confusion) for reasons that become apparent later.

Information Potential for Entropy Estimation

The argument of the logarithm in quadratic Renyi’s entropy that has been
called the information potential can be estimated directly from data as

Ĥ2(X) = − log(V̂2(X)) V̂2,σ(X) =
1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xj − xi) (2.14)
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where V̂2,σ(X) is the quadratic IP estimator that depends on σ. Let us
compare this with the conventional way that entropy is estimated from data.
In practical cases, the estimation of Shannon or Renyi’s entropy directly from
data will follow the route:

data → pdf estimation → integral estimation .

Notice that entropy is a scalar, but as an intermediate step one has to estimate
a function (the PDF), which is much harder in high dimensional spaces. With
quadratic Renyi’s entropy and the IP (i.e. V (X)) we bypassed the explicit
need to estimate the PDF; that is, the calculations follow the path

data → IP(V̂2(X)) → algebra.

Eq. (2.14) is one of the central results of information-theoretic learning be-
cause it shows that the Information Potential, which is a scalar, can be es-
timated directly from samples with an exact evaluation of the integral over
the random variable for Gaussian kernels. Eq. (2.14) shows that the IP is
only a function of sample pairs, instead of the PDF shape. This is similar
to the conventional estimators of the mean and the variance that work di-
rectly with the samples irrespective of the PDF, but unfortunately here the
estimator has a free parameter and it shares the properties of kernel density
estimation.

There are two important implications of Eq. (2.14). As is apparent, the
variance of the Gaussian (also called the kernel size or bandwidth) is a free
parameter that needs to be selected by the user. Therefore, when the IP is
estimated, the resulting values of entropy depend on the kernel size selected,
which is also a crucial problem in density estimation [300]. The estimated val-
ues of the IP have little absolute meaning due to this kernel size dependence,
but it gauges performance in a relative sense when comparing data generated
with the same set of parameters. In learning (the main purpose of this book)
the system parameters depend only on the cost function’s extremum location
in parameter space, not of the cost’s actual value, so the IP dependence on
kernel size is more manageable than for applications that require the actual
value of the estimated quantity.

The way we interpret the kernel bandwidth is as a scale parameter for the
analysis. It has to be selected according to the data dynamic range and number
of samples to make the estimation of the entropy meaningful. Silverman’s rule
[300] is

σopt = σX
(
4N−1(2d+ 1)−1

) 1
(d+4) , (2.15)

where N is the number of samples, d is the data dimensionality, and σx is the
data standard deviation. Although Eq. (2.15) was derived for Gaussian distri-
butions it is sufficient for most of our applications. The bandwidth selection
is treated more thoroughly in Appendix A. To summarize, we want to say
that the existence of this free parameter is a double-sided sword: it provides
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flexibility in the application of the methodology to real data; but on the other
hand it either requires a selection criterion or a scanning over σ because the
effect of the kernel size is much harder to quantify than the scale in wavelet
decompositions or frequency in Fourier analysis that also contain a free pa-
rameter in their definitions. More generally, it shows the functional nature of
entropy estimation using kernels.

The second implication is that the estimator is O(N2), which may create
computation bottlenecks for large datasets. This is the price we have to pay
to estimate entropy with the IP when compared with mean and variance.
Indeed, both the mean and the variance estimators work with a single sample
at a time (in fact the variance also requires pairwise computation but one of
the elements of the pair is the mean that can be computed a priori), but if we
are interested in qualifying the “shape” of the PDF with Renyi’s second-order
entropy, pairwise interactions are necessary. We show later in this chapter how
the fast Gauss transform and the incomplete Cholesky decomposition solve
this problem with algorithms that are O(N).

Extended Estimator for α-Renyi’s Entropy

It turns out that the pairwise interaction model can be generalized from an
estimator of Renyi’s quadratic entropy to all α 	= 1. In essence Ĥ2 is the
centerpiece for nonparametric kernel estimation of Renyi’s entropy as we show
below. Consider the definition of Renyi’s order-α entropy in Eq. (2.9), which
can also be written with an expectation operator as

Hα(X)
Δ= 1

1− α log

∞∫

−∞
pαX(x)dx =

1
1− α logEX

[
pα−1
X (X)

]
. (2.16)

Approximating the expectation operator with the sample mean as is com-
monly done in density estimation [300], we get

Hα(X) ≈ Ĥα(X) =
1

1− α log
1
N

N∑

j=1

pα−1
X (xj). (2.17)

Notice that we never had to address this approximation in deriving Eq. (2.14),
therefore we can expect that an estimator of Eq. (2.17) will differ from Ĥ2(X)
in Eq. (2.13), i.e. it will have different bias and variance. Finally, substituting
the Parzen window estimator of Eq. (2.11) in Eq. (2.17) and rearranging terms,
we obtain a nonparametric plug-in estimator for Renyi’s α entropy as

Ĥα(X) =
1

1− α log
1
N

N∑

j=1

(
1
N

N∑

i=1

κσ(xj − xi)
)α−1

=
1

1− α log(V̂α,σ(X)),

(2.18)
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where the α information potential estimator (the dependence on σ is normally
omitted)

V̂α,σ(X) =
1
Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

.

The nonparametric estimator in Eq. (2.18) can still be written as the log of
the α-norm of V̂α(X) = IPα(X), but again it differs from the IP of Eq. (2.14).
For α = 1, V̂1 = 1 for any PDF. For all α ≥ 0, α 	= 1 it is a general-purpose
estimator and can be used to evaluate α entropy directly from samples or
to adapt the weights of a learning system based on an entropic performance
index. We now study its properties in detail.

2.4 Properties of Renyi’s Nonparametric Entropy
Estimators

In the following, all kernel functions and random variable samples are assumed
to be single-dimensional unless noted otherwise. The generalization of these
results to multidimensional cases is trivial and the proofs follow similar lines.
We start by analyzing the accuracy of the approximation of the expected value
by the sample average.

Property 2.1. For the special case of Gaussian kernels, the estimator V̂α(X)
of Eq. (2.18) only differs from the V̂2(X) of Eq. (2.14) by a factor of

√
2 in

the kernel size.

Proof. A direct comparison proves the property. This difference stems from
the need to approximate the expected value by the sample mean in Eq. (2.18).
In fact, the estimator of Eq. (2.18) requires two approximations, the approxi-
mation of the expected value by the sample mean and the kernel approxima-
tion of the PDF, whereas Eq. (2.13) only requires the kernel approximation of
the PDF. Therefore in general they yield two different estimators of the same
statistical quantity. However, what is interesting is that for α = 2 the sample
mean approximation for finite N and Gaussian kernels can still be exactly
compensated by a change of the kernel size from σ to σ

√
2 in Eq. (2.18).

Property 2.2. For any kernel function κ(x) that obeys the relation

κnew(xj − xi) =

∞∫

−∞
κold(x− xi) · κold(x− xj)dx, (2.19)

where κnew (.) denotes the kernel function used in Eq. (2.18) and κold(.) de-
notes the kernel function used in Eq. (2.14), the estimator of Renyi’s quadratic
entropy of Eq. (2.18) matches the estimator of Eq. (2.14) using the IP.
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Proof. Direct substitution proves the property. These properties reiterate the
privileged place of the Gaussian kernel and quadratic Renyi’s entropy in ITL.
The case α = 2 also allows a very interesting link between ITL and kernel
learning, and explains the reason why the sample mean approximation is not
necessary in IP computation.

It is possible to show using the properties of the Gaussian kernel that
Renyi’s α entropy estimator can be written exactly as

Ĥα(X) =
1

1− α log

{
1
Nα

(
1√
2πσ

)α−1 (
1√
α

) (√
2π
√
ασ

)
(

α

2

)

N∑

i1=1

. . .

N∑

iα=1

[
α∏

p=1

α∏

q=1,q>p

Gσ
√
α(xip − xiq )

]}

(2.20)

or

Ĥα(X) =
1

1− α log

{
1
Nα

(
1√
2πσ

)α−2

N∑

i1=1

. . .

N∑

iα=1

G√
ασ

(
α∑

p=1

α∑

q=1,q>p

(
xip − xiq

)2

)}

. (2.21)

In either form one still sees the kernel size for the Gaussian being multiplied
by σ

√
α as could be expected from Property 2.1, however, these expressions

are not easily compared with Eq. (2.18) even when the kernel is a Gaussian.
Therefore, the practical estimation of α Renyi’s entropy with kernels will fol-
low the approximation of the expected value by the sample mean as indicated
in Eq. (2.18).

Property 2.3. The kernel size must be a parameter that satisfies the scaling
property κcσ(x) = κσ(x/c)/c for any positive factor c [241].

This regulatory condition guarantees that changes in the kernel size can
be compensated by linear scaling in the domain and range of the estimated
quantities. In the analysis of the eigenstructure of the entropy cost function
near the global optimum and in obtaining scale-invariant entropy-based cost
functions, this property becomes useful.

Property 2.4. The entropy estimator in Eq. (2.18) is invariant to the mean
of the underlying density of the samples as is the actual entropy [86].
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Proof. Consider two random variables X and X̄ where X̄ = X + m with m
being a real number. The entropy of X̄ becomes

Hα(X̄) =
1

1− α log
∫
pαX̄(x̄)dx̄ =

1
1− α log

∫
pαX(x̄−m)dx̄

=
1

1− α log
∫
pαX(x)dx = Hα(X). (2.22)

Let {x1, . . . , xN} be samples of X , then samples of X̄ are {x1 + m, . . . ,
xN +m}. Therefore, the estimated entropy of X̄ is

Ĥα(X̄) =
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

κσ(x̄j − x̄i)
)α−1

=
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

κσ(xj +m− xi −m)

)α−1

= Ĥα(X). (2.23)

Due to this property of the entropy and its estimator, when the entropy
cost is utilized in supervised learning the mean of the error signal is not nec-
essarily zero, which is a requirement for most applications. This requirement
has to be implemented by adding a bias term to the system output that makes
the mean of the error equal to zero. Because of this feature, entropy does not
define a metric in the space of the samples. We address this point in more de-
tail in Chapter 3. However, when we are interested in the statistical properties
of the signals other than their means, this is not a problem.

Property 2.5. The limit of Renyi’s entropy as α → 1 is Shannon’s entropy.
The limit of the entropy estimator in Eq. (2.18) as α→ 1 is Shannon’s entropy
estimated using Parzen windowing with the expectation approximated by the
sample mean.

Proof. Notice that Renyi’s entropy in Eq. (2.16) is discontinuous at α = 1.
However, when we take its limit as this parameter approaches one, we get
Shannon’s entropy as shown in Eq. (2.24) for continuous variables (similarly
to Eq. (2.8)),

lim
α→1

Hα(X) = lim
α→1

1
1− α log

∫
pαX(x)dx

=
lim
α→1

∫
log pX(x) · pαX(x)dx

/∫
pαX(x)dx

lim
α→1

−1

= −
∫
pX(x) · log pX(x)dx = HS(X) (2.24)
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The derivation of this result for the estimator in Eq. (2.18) is shown in
Eq. (2.25).

lim
α→1

Ĥα(X) = lim
α→1

1

1 − α
log

1

N

N∑

j=1

(
1

N

N∑

i=1

κσ(xj − xi)

)α−1

= − lim
α→1

(
1
N

N∑

j=1

(
1
N

N∑

i=1

κσ(xj − xi)

)α−1

log

(
1
N

N∑

i=1

κσ(xj − xi)

))

(
1
N

N∑

j=1

(
1
N

N∑

i=1

κσ(xj − xi)

)α−1
)

=
−1

N

N∑

j=1

log

(
1

N

N∑

i=1

κσ(xj − xi)

)

= ĤS(X). (2.25)

In terms of adaptation, this means that all the conclusions drawn in this
research about Renyi’s entropy, its estimator, and training algorithms based
on Renyi’s entropy apply in the limit of α→ 1, to Shannon’s definition as well.

Property 2.6. In order to maintain consistency with the scaling property
of the actual entropy, if the entropy estimate of samples {x1, . . . , xN} of a
random variable X is estimated using a kernel size of σ, the entropy estimate
of the samples {cx 1, . . . , cxN} of a random variable cX must be estimated
using a kernel size of |c|σ.

Proof. Consider the Renyi’s entropy of the random variable cX, whose PDF
is pX(x/c)/ |c| in terms of the PDF of the random variable X and the scaling
coefficient c.

Hα(cX) =
1

1− α log

∞∫

−∞

1
|c|α p

α
X

(x
c

)
dx = Hα(X) + log |c| . (2.26)

Now consider the entropy estimate of the samples {cx1, . . . , cxN} using the
kernel size |c|σ.

Ĥα(cX) =
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

κ|c|σ

(
xj − xi

c

))α−1

=
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

1
|c|κσ

(
cxj − cxi

c

))α−1

=
1

1− α log
1

|c|α−1
Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

= Ĥα(X) + log |c| . (2.27)
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This property is crucial when the problem requires a scale-invariant cost
function as in blind deconvolution illustrated in Chapter 8. The scaling of
the kernel size as described above according to the norm of the weight vec-
tor guarantees that the nonparametric estimation of the scale-invariant cost
function possesses this property as well.

Property 2.7. When estimating the joint entropy of an n-dimensional ran-
dom vector X from its samples {x1, . . . , xN}, use a multidimensional kernel
that is the product of single-dimensional kernels. In this way, the estimate of
the joint entropy and estimate of the marginal entropies are consistent.

Proof. Let the random variable Xo be the oth component of X . Consider the
use of single-dimensional kernels κσo(.) for each of these components. Also
assume that the multidimensional kernel used to estimate the joint PDF of
X is κΣ(.). The Parzen estimate of the joint PDF is then given by

p̂X(x) =
1
N

N∑

i=1

κΣ(x− xi). (2.28)

Similarly, the Parzen estimate of the marginal density of Xo is

p̂X,o(x) =
1
N

N∑

i=1

κσo(xo − xo(i)). (2.29)

Without loss of generality, consider the marginal PDF of X1 derived from the
estimate of the joint PDF in Eq. (2.28).

p̂X,1(x1) =

∞∫

−∞
· · ·

∞∫

−∞
p̄X(x1, . . . , xn)dx2, . . . , dxn

=

∞∫

−∞
· · ·

∞∫

−∞

1
N

N∑

i=1

κΣ(x1 − x1(i), . . . , xn − xn(i))dx2, . . . , dxn

=
1
N

N∑

i=1

∞∫

−∞
· · ·

∞∫

−∞
κΣ(x1 − x1(i), . . . , xn − xn(i))dx2, . . . , dxn. (2.30)

Now, assuming that the joint kernel is the product of the marginal ker-
nels evaluated at the appropriate values (i.e., κΣ(x) =

∏N
o=1 κσo(xo)), we get

Eq. (2.31). Thus, this choice of the multidimensional kernel for joint entropy
estimation guarantees consistency between the joint and marginal PDF and
entropy estimates. This property is, in fact, critical for the general PDF esti-
mation problem besides being important in entropy estimation.
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pX,1(x1) =
1
N

N∑

i=1

∞∫

−∞
· · ·

∞∫

−∞

n∏

o=1

κσo(xo − xo(i))dx2, . . . , dxn

=
1
N

N∑

i=1

κσ1(x1 − x1(i))

∞∫

−∞
· · ·

∞∫

−∞

n∏

o=2

κσo(xo − xo(i))dx2, . . . , dxn

=
1
N

N∑

i=1

κσ1(x1 − x1(i))

⎛

⎝
n∏

o=2

∞∫

−∞
κσo(xo − xo(i))dxo

⎞

⎠ = p̂X,1(x1).

(2.31)

This important issue should be considered in adaptation scenarios where
the marginal entropies of multiple signals and their joint entropy are used
in the cost function simultaneously. It is desirable to have consistency between
the marginal and joint entropy estimates.

Theorem 2.1. The entropy estimator in Eq. (2.18) is consistent if the Parzen
windowing and the sample mean are consistent for the actual PDF of the i.i.d.
samples.

Proof. The proof follows immediately from the consistency of the Parzen
window estimate for the PDF and the fact that as N goes to infinity the
sample mean converges to the expected value which makes Eq. (2.18) ap-
proach Eq. (2.16) (e.g., the sample mean estimate is not consistent for infinite-
variance PDFs).

This theorem is important because it points out the asymptotic limitations
of the estimator. In adaptation and learning from finite samples, because we
rarely have huge datasets, consistency is not the primary issue, but the bias
and variance of the estimator must still be known. Their effect in the location
of the extremum of the function in the space of the parameters is the real
issue.

Theorem 2.2. If the maximum value of the kernel κσ(ξ) is achieved when
ξ = 0, then the minimum value of the entropy estimator in Eq. (2.18) is
achieved when all samples are equal to each other, that is, x1 = . . . =
xN − c [86].

Proof. By substitution, we find that the entropy estimator takes the value
− log κσ(0) when all samples are equal to each other. We need to show that

1
1− α log

1
Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

≥ − log κσ(0). (2.32)
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For α > 1, this is equivalent to showing that

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

≤ Nακα−1
σ (0). (2.33)

Replacing the left-hand side of Eq. (2.33) with its upper bound we get
Eq. (2.34). Because the kernel function is chosen such that its maximum occurs
when its argument is zero, we obtain the desired result given in Eq. (2.33).

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

≤ N max
j

⎡

⎣

(
N∑

i=1

κσ(xj − xi)
)α−1

⎤

⎦

≤ N max
j

⎡

⎣Nα−1 max
i
κα−1
σ (xj − xi)

i

⎤

⎦ = Nαmax
i,j

κα−1
σ (xj − xi).

(2.34)

The proof for the case α < 1 is similar. It uses the min operator instead of
max due to the direction of the inequality.

In supervised training, it is imperative that the cost function achieve its
global minimum when all the error samples are zero. Minimum error entropy
learning using this entropy estimator, which is introduced in Chapter 3, be-
comes a valid supervised training approach with this property of the entropy
estimator. In addition, the unsupervised training scenarios such as minimum
entropy blind deconvolution, which are discussed in Chapter 8, benefit from
this property of the estimator as well.

Theorem 2.3. If the kernel function κσ(.) is continuous, differentiable, sym-
metric, and unimodal, then the global minimum described in Theorem 2.2 of
the entropy estimator in Eq. (2.18) is smooth, that is, it has a zero gradient
and a positive semidefinite Hessian matrix.

Proof. Let x̄ = [x1, . . . , xN ]T be the data samples collected in a vector for
notational simplicity. Without loss of generality, consider the dataset given by
x̄ = 0, meaning all samples are zero. With some algebra, the gradient and the
Hessian matrix of the expression in Eq. (2.18) with respect to x̄ are found as

∂Ĥα

∂xk
=

1
1− α

∂V̂α/∂xk

V̂α

∂2Ĥα

∂xl∂xk
=

1
1− α

(∂2V̂α/∂xl∂xk)V̂α − (∂V̂α/∂xk)(∂V̂α/∂xl)
V̂ 2
α

. (2.35)

where the variable V̂α is the argument of the logarithm in the final expression
in Eq. (2.18). Evaluating these expressions at x̄ = 0, which corresponds to the
maximum value of the kernel we get
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V̂α

∣
∣
∣
x̄=0

= κα−1
σ (0)

∂V̂α
∂xk

∣
∣
∣
∣
∣
x̄=0

=
(α− 1)
Nα

[
Nα−1κα−2

σ (0)κ′(0)−Nα−1κα−2
σ (0)κ′(0)

]
= 0

∂2V̂α
∂x2

k

∣
∣
∣
∣
∣
x̄=0

=
(α− 1)(N − 1)κα−3

σ (0)
N2

[
(α − 2)κ′2(0) + 2κ(0)κ′′(0)

]

∂2V̂α
∂xl∂xk

∣
∣
∣
∣
∣
x̄=0

= − (α− 1)κα−3
σ (0)

N2

[
(α− 2)κ′2(0) + 2κ(0)κ′′(0)

]
, (2.36)

which shows that the gradient vector is zero and that the Hessian matrix is
composed of

∂2Ĥα

∂xl∂xk

∣
∣
∣
∣
∣
x̄=0

=

{−(N − 1)κ−α−1
σ (0)

[
(α− 2)κ′2(0) + 2κ(0)κ′′(0)

]
/N2, l = k

κ−α−1
σ (0)

[
(α− 2)κ′2(0) + 2κ(0)κ′′(0)

]
/N2, l 	= k

(2.37)

Denoting the diagonal terms by a and the off-diagonal terms by b, we can
determine all the eigenvalue-eigenvector pairs of this matrix to be

{0, [1, . . . , 1]T }, {aN/(N − 1), [1,−1, 0, . . . , 0]T}, {aN/(N − 1),

[1, 0,−1, 0, . . . , 0]T }, . . .
Notice that the nonzero eigenvalue has a multiplicity of N − 1 and for a

kernel function as described in the theorem and for N > 1 this eigenvalue is
positive, because the kernel evaluated at zero is positive, the first derivative
of the kernel evaluated at zero is zero, and the second derivative is negative.
Thus the Hessian matrix at the global minimum of the entropy estimator is
negative semidefinite. This is to be expected because there is one eigenvector
corresponding to the direction that only changes the mean of data, along
which the entropy estimator is constant due to Property 2.4.

In adaptation using numerical optimization techniques, it is crucial that
the global optimum be a smooth point in the weight space with zero gradient
and finite-eigenvalue Hessian. This last theorem shows that the nonparametric
estimator is suitable for entropy minimization adaptation scenarios.

Property 2.8. If the kernel function satisfies the conditions in Theorem 2.3,
then in the limit, as the kernel size tends to infinity, the quadratic entropy
estimator approaches the logarithm of a scaled and biased version of the
sample variance.

Proof. Let {x1, . . . , xN} be the samples of X . We denote the second-order
sample moment and the sample mean with the following.

x2 =
1
N

N∑

j=1

x2
j x̄2 =

⎛

⎝ 1
N

N∑

j=1

xj

⎞

⎠

2

.
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By assumption the kernel size is very large, therefore the pairwise differ-
ences of samples will be very small compared to the kernel size, thus allowing
the second-order Taylor series expansion of the kernel function around zero to
be a valid approximation. Also, due to the kernel function being symmetric
and differentiable, its first-order derivative at zero will be zero yielding

κσ(ξ) ≈ κσ(0) + κ′σ(0)ξ + κ′′σ(0)ξ2/2 = κσ(0) + κ′′σ(0)ξ2/2. (2.38)

Substituting this in the quadratic entropy estimator obtained from Eq. (2.18)
by substituting α = 2, we get Eq. (2.39), where x2−x2 is the sample variance.
Notice that the kernel size affects the scale factor multiplying the sample
variance in Eq. (2.39). In addition to this, there is a bias depending on the
kernel’s center value.

Ĥ2(X) ≈ − log

⎡

⎣ 1
N2

N∑

j=1

N∑

i=1

(
κσ(0) + κ′′σ(0)(xj − xi)2/2

)
⎤

⎦

= − log

⎡

⎣κσ(0) +
1
2
κ′′σ(0)

⎛

⎝ 1
N2

N∑

j=1

N∑

i=1

(
x2
j − 2xjxi + x2

i

)
⎞

⎠

⎤

⎦

= − log
[

κσ(0) +
1
2
κ′′σ(0)

(
x2−x̄2

)]

. (2.39)

Property 2.9. In the case of joint entropy estimation, if the multidimensional
kernel function satisfies κΣ(ξ) = κΣ(R−1ξ) for all orthonormal matrices R,
then the entropy estimator in Eq. 2.18 is invariant under rotations as is the
actual entropy of a random vector X . Notice that the condition on the joint
kernel function requires hyperspherical symmetry.

Proof. Consider two n-dimensional random vectors X and X̄ related to each
other with X̄ = RX where R is an n× n real orthonormal matrix. Then the
entropy of X̄ is

Hα(X̄) =
1

1− α log

∞∫

−∞
pαX̄(x̄)dx̄ =

1
1− α log

∞∫

−∞

1
|R|α p

α
X(R−1x̄)dx̄

=
1

1− α log

∞∫

−∞

1
|R|α p

α
X(x) |R|dx =

1
1− α log |R|1−α

∞∫

−∞
pαX(x)dx

= Hα(X) + log |R| = Hα(X). (2.40)

Now consider the estimation of the joint entropy of X from its samples,
which are given by {Rx1, . . . ,RxN}, where {x1, . . . , xN} are samples of X .
Suppose we use a multidimensional kernel κΣ(.) that satisfies the required con-
dition. This results in Eq. (2.41). In adaptation scenarios where the invariance-
under-rotations property of entropy needs to be exploited, the careful choice
of the joint kernel becomes important. Property 2.5 describes how to select
kernel functions in such situations.
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Ĥα(X) =
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

κΣ(Rxj −Rxi)
)α−1

=
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

1
|R|κΣ(R−1(Rxj −Rxi))

)α−1

=
1

1− α log |R|α−1 1
Nα

N∑

j=1

(
N∑

i=1

κΣ(xj − xi)
)α−1

= Ĥα(X) (2.41)

Theorem 2.4. limN→∞ Ĥα(X) = Hα(X̂) ≥ Hα(X), where X̂ is a random
variable with the PDF fX(.)∗κσ(.). The equality occurs if and only if the kernel
size is zero. This result is also valid on the average for the finite-sample case.

Proof. It is well known that the Parzen window estimate of the PDF of X
converges consistently to fX(.)∗κσ(.). Therefore, the entropy estimator in
Eq. (2.18) converges to the actual entropy of this PDF. To prove the inequality
consider

e(1−α)Hα(X̂) =

∞∫

−∞
pα
X̂

(y)dy =

∞∫

−∞

⎡

⎣
∞∫

−∞
κσ(τ)pαX(y − τ)dτ

⎤

⎦ dy. (2.42)

Using Jensen’s inequality for convex and concave cases, we get Eq. (2.43),
where we defined the mean-invariant quantity Vα(X) as the integral of the αth
power of the PDF of X , which is the argument of the log in the definition of
Renyi’s entropy given in Eq. (2.16). Reorganizing the terms in Eq. (2.43) and
using the relationship between entropy and information potential, regardless
of the value of α and the direction of the inequality, we arrive at the conclusion
Hα(X̂) ≥ Hα(X). The fact that these results are also valid on the average for
the finite-sample case is due to the property E[p̂X(.)] = pX(.)∗κσ(.) of Parzen
windowing, which relates the average PDF estimate to the actual value and
the kernel function.

exp((1− α)Hα(X̂))
α>1≤

(
α<1≥

) ∞∫

−∞

⎡

⎣
∞∫

−∞
κσ(τ) [pX(y − τ)]α dτ

⎤

⎦ dy

=

∞∫

−∞
κσ(τ)

⎡

⎣
∞∫

−∞
[pX(y − τ)]α dy

⎤

⎦dτ

=

∞∫

−∞
κσ(τ)Vα(X)dτ

= Vα(X) ·
∞∫

−∞
κσ(τ)dτ = Vα(X). (2.43)
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This theorem is useful in proving asymptotic noise rejection properties of
the entropy-based adaptation criteria, and shows that for entropy minimiza-
tion, the proposed estimator provides a useful approximation in the form of
an upper bound to the true entropy of the signal under consideration.

2.5 Bias and Variance of the Information Potential
Estimator

IP Estimator Bias

In this section, the bias of the information potential is analyzed for finite
samples using the shape of the data probability density function (which is
unknown for most cases, but provides understanding of the factors involved).
We call the attention of the readers to the analysis of the density estimation
in Appendix A, which should be used to contrast the results obtained in this
section. The same basic approach is taken here, but a simplified notation will
be used and some steps are omitted. We choose the Gaussian kernel for density
estimation. The information potential estimator is

V̂2,σ(X) =
1
N2

N∑

i=1

N∑

j=1

Gσ(xj − xi). (2.44)

The IP bias is obtained by taking the expectation

E[V̂2(X)] = E

⎡

⎣ 1
N2

N∑

i=1

N∑

j=1

Gσ(xj − xi)
⎤

⎦

=
1
N2

N∑

i=1

N∑

j=1

E[Gσ(xj − xi)] = E[Gσ(xj − xi)]. (2.45)

Now expanding the PDF in Taylor series and using the i.i.d. assumption
on the data and the definition of expected value

E[Gσ(xj − xi)] =
∫∫

Gσ(xi − xj)p(xi)p(xj)dxidxj

=
∫
p(xi)

[∫
Gσ(s)p(xi + σ s)ds

]

dxi s = (xi − xj)/σ

=
∫
p(x)

{∫
Gσ(s)[p(x) + σ sp(x) + 1/2(σ2s2p′′(x)

+o(σ4)]ds
}

dx

≈
∫
p(x)[p(x) + 1/2(σ2p′′(x))μ2(G)]dx as σ → 0

=
∫
p2(x)dx + (σ2/2)μ2(G)

∫
p(x)p′′(x)dx. (2.46)
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where for the Gaussian kernel μ2(G) =
∫
σ2Gσ(s)ds = 1. Now

∫
p(x)p′′(x)dx = E[p′′(X)] (2.47)

and combining the above equations we obtain

Bias[V̂2(X)] = E[V̂2(X)]−
∫
p2(x)dx = (σ2/2)E[p′′(X)] (2.48)

We see that the bias of IP for Gaussian kernels increases proportionally
to the square of the kernel size multiplied by the expected value of the PDF
second derivative. This result has the same basic form of Eq. (2.12) for kernel
density estimation (see Appendix A), except that the double derivative of the
PDF is substituted by its expected value, which is better behaved.

IP Estimator Variance

To analyze the variance of the information potential, we rewrite Eq. (2.44) as

N2V̂ (X) =
∑

i

∑

j

Gσ(xi − xj)

and take the variance of both sides to obtain:

N4V ar(V̂ (X)) = N4
⌊
E(V̂ 2(X))− (E(V̂ (X)))2

⌋

=
∑

i

∑

j

∑

k

∑

l

{E [Gσ(xi − xj)Gσ(xk − xl)]

−E [Gσ(xi − xj)]E [Gσ(xk − xl)]} (2.49)

The right-hand side of Eq. (2.49) consists of N4 terms. These terms can be
classified into four categories according to the possible values of i, j, k, and l:

1. If i, j, k, l are all different among each other, then, according to the inde-
pendence assumption, their joint distribution can be factorized as

E �Gσ(xi − xj)Gσ(xk − xl)� = E �Gσ(xi − xj)�E [Gσ(xk − xl)] (2.50)

therefore, all the positive terms in the summation cancel out the corre-
sponding negative terms.

2. If j 	= i = k 	= l and j 	= l, then, xj , xl would be independent when xi = xk
and those terms can be calculated as

E �Gσ(xi − xj)Gσ(xl − xi)� − E �Gσ(xi − xj)�E [Gσ(xk − xl)] , (2.51)

Choosing different values of i, j, and k there are totally N(N − 1)(N − 2)
terms like Eq. (2.51).
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3. If i = k 	= j = l, by the same argument, there are N(N − 1) terms and
these terms are all equal:

E �Gσ(xi − xj)Gσ(xj − xi)� − E �Gσ(xi − xj)�E �Gσ(xj − xi)�
= E

[
Gσ(xi − xj)2

]− E [Gσ(xi − xj)]2 = V ar[Gσ(xi − xj)]. (2.52)

4. If i = k = j 	= l, then, similarly, the independent terms can be written as:

E [Gσ(xi − xi)Gσ(xi − xl)]− E [Gσ(xi − xi)]E [Gσ(xi − xl)]
= E [Gσ(0)Gσ(xi − xl)]− E [Gσ(0)Gσ(xi − xl)] = 0. (2.53)

From this discussion, we see that only Cases 2 and 3 will yield a nonzero
value, and they will affect the variance of the information potential with dif-
ferent weights; that is, since the number of terms in Case 2 is N(N−1)(N−2)
which is proportional to N3 while the number of terms in Case 3 is N(N − 1)
which is proportional to N2. Thus, as the number of sample N increases,
Eq. (2.51) becomes dominant. We denote

a = E �Kσ(xi − xj)Kσ(xj − xl)� − E �Kσ(xi − xj)�E �Kσ(xj − xl)�
b = V ar[Kσ(xi − xj)], (2.54)

whereK is the Gaussian kernel of Eq. (1.50) without the division by σ. If a 	= 0
which is generally true for most probability density functions we can write:

Var(V̂ (X)) = E(V̂ 2(X))− (E(V̂ (X)))2

=
aN(N − 1)(N − 2) + bN(N − 1)

σN4
≈ a

Nσ
, N →∞. (2.55)

So, from this analysis, we conclude that the variance of the information
potential will decrease inversely proportional to N , which is a comfortable
result for estimation. The asymptotic mean integrated square error (AMISE)
of the IP is therefore

AMISE(V̂ (X)) = E

[∫
(V̂ (X)− V (X))2dx

]

=
σ4

2

∫
(p′′(x))2dx+

aN(N − 1)(N − 2) + bN(N − 1)
σN4

(2.56)

Notice that the AMISE will tend to zero when the kernel size goes to zero
and the number of samples goes to infinity with Nσ → ∞, that is, the IP
is a consistent estimator of the 2-norm of the PDF. Unlike the estimators
for the mean and variance, the IP is a biased estimator of the 2-norm of the
PDF for finite bandwidth kernels. If we compare closely Eqs. (2.49), (2.55),
and (2.56) with the well-known Parzen estimation (Eq. (2.12) and [300]) we
see that they are assymptotically the same; the bias is proportional to σ2

and the variance decreases proportionally to Nσ. The similarity of Eq. (2.56)
with kernel density estimation shows that the body of knowledge in density
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estimation is directly applicable to the estimation of IP, or that the IP is
essentially a kernel estimator of the 2-norm of the PDF. We also can conclude
that the estimators of Eqs. (2.14) and (2.18) for the quadratic Renyi’s entropy
trade bias with variance; that is Eq. (2.14) has larger bias but smaller variance.

2.6 Physical Interpretation of Renyi’s Entropy
Kernel Estimators

There is a useful physical analogy for the kernel estimator in Renyi’s entropy
as defining an information potential field [86]. This analogy has its roots in
the link between Renyi’s entropy and the norms of the PDF of the data. In-
deed, because the kernels in PDF estimation are positive functions that decay
with the distance between samples, one can think that one kernel placed on a
sample creates a potential field in the sample space, just as physical particles
create a gravity field in space. However, in our case the law of interaction is
dictated by the kernel shape. The density of samples is measured by the PDF,
therefore the potential field in the space of the samples is an approximation
of the PDF shape. In this context, samples can be named information parti-
cles and they interact in the information potential field of the PDF creating
information forces [86]. The only difference is that this framework must obey
the sum constraint of PDFs (so sums are replaced by averages). We explain
these concepts next.

Consider V̂2(X) in Eq. (2.14) as the average sum of interactions from each
sample xj in the sample set; that is, V̂2(X) = 1/N

∑N
j=1 V̂2(xj) where

V̂2(xj)
Δ=1/N

N∑

i=1

V̂2(xj ;xi) and V̂2(xj ;xi) =Gσ
√

2(xj − xi) (2.57)

which basically measures the effect of the potential field in the space location
occupied by the sample xj due to all the other samples xi. The sample-by-
sample interaction Eq. (2.57) is controlled as we can see by the kernel used in
the analysis. The analogy with fields is accurate if we think of the “average”
field produced by the samples and this is required to establish the link to
PDFs which must add to one. V̂2(xj) can be recognized as the value of the
PDF estimated at xj so V̂2(x), the estimated PDF with kernels for an arbitrary
point x in the space, can be properly called the information potential field.
The IP is just the average value of the information potential field of the sample
set (hence the name).

For Gaussian kernels, the derivative of the information potential with re-
spect to the position of sample xj is easily evaluated as

∂

∂xj
V̂2(xj) =

1
N

N∑

i=1

G′
σ
√

2
(xj − xi) =

1
2Nσ2

N∑

i=1

Gσ
√

2(xj − xi)(xi − xj).
(2.58)



74 2 Renyi’s Entropy, Divergence and Their Nonparametric Estimators

This expression estimates the information force exerted on sample xj due to
all the other samples. Note that the derivative of the Gaussian evaluated at
zero is zero (any kernel that is symmetric, continuous, and maximum at the
origin has a similar property). We can also regard Eq. (2.58) as the average
contribution of derivatives due to all other samples. Denoting the contribution
of a single sample xi as F̂2(xj ;xi), and the overall derivative with respect to
xj as F̂2(xj), we get

F̂2 (xj ;xi)
Δ= G′

σ
√

2
(xj − xi)

F̂2 (xj)
Δ=

∂

∂xj
V̂2 (xj) =

1
N

N∑

i=1

F̂2 (xj ;xi). (2.59)

We name these two quantities the information force on sample xj due to
sample xi and the (total) information force acting on sample xj , respectively.
Figure 2.4 shows one projection of the information force created by one sample
at the origin (Gaussian kernel) in 2D space.

It is instructive to visualize the procedure for the calculation of the in-
formation potential and the information force with a Gaussian kernel. For a
dataset {xi} in Rn two matrices can be defined as

{
D = {dij}, dij = xi − xj
ς = {V̂ij} V̂ij = Gσ

√
2(dij) ,

(2.60)

where D is a matrix of distances, with vector elements in Rn, and ς a matrix
of scalar values where each element quantifies the interaction between two
points in the lattice by the kernel, which gives rise to a similarity matrix.
From these quantities, all the quantities of information potential field V (i) at
location xi, information force field F̂ (i), and the information potential V (X)

Fig. 2.4. The information force created by one information particle placed at the
origin in 2D space (Gaussian kernel) in normalized coordinates (x/σ, y/σ) (from
[252]).
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xN

xN

xi

xj

x2

x2
x1

x1

di,j = xi-xj

Vij = G(dij)

Fig. 2.5. The structure of the matrices D and ς.

can be easily computed for any Parzen kernel. In fact, for the specific case of
the Gaussian kernel they are:

fields

⎧
⎪⎪⎨

⎪⎪⎩

V̂ (i) =
1
N

N∑

j=1

V̂i,j

F̂ (i) =
−1

2Nσ2

N∑

j=1

V̂i,jdi,j

V̂ (X) =
1
N2

N∑

i=1

N∑

j=1

V̂i,j =
1
N

N∑

i=1

V̂ (i).

(2.61)

For further reference, notice that information fields are computed with a
single sum over columns (or rows) whereas the information potential requires
double sums. Because the computation is done with pairs of samples, it can
be visualized in a grid where the sample is the axes that work as pointers
to the pairwise distances di,j , and the Gaussian is computed directly with
this information (Figure 2.5). We can also conclude that the computation
complexity of this class of algorithms is O(N2) or O(N) depending on the
quantity of interest, where N is the number of data samples.

Illustration of Information Forces

Two numerical examples illustrate the information forces and information
potentials in single-dimensional and two-dimensional cases. In the first illus-
tration, we consider the single-dimensional case with the kernel function cho-
sen to be a Gaussian. In Figure 2.6, the one-dimensional information forces
and information potential fields are shown for various kernel sizes [86]. The
attractive force field of an individual particle centered at the origin is plotted
in Figure 2.6a. The forces can be made repulsive by introducing a negative
sign in the definition. This procedure corresponds to choosing between mini-
mizing or maximizing the sample entropy. Figure 2.6b shows the information
potential at any point due to the existence of this particle at the origin as



76 2 Renyi’s Entropy, Divergence and Their Nonparametric Estimators

−1.5 −1 −0.5 0 0.5 1 1.5 2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−6

−4

−2

0

2

4

6

Relative Position Relative Position

F
or

ce
Force field of a single particle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
ot

en
tia

l

Potential field of a single particlea b

c d

−1 −0.5 0 0.5 1 1.5 2 2.5

−15

−10

−5

0

5

10

15

Position
−1 −0.5 0 0.5 1 1.5 2 2.5

Position

T
ot

al
 F

or
ce

Combined force field of all particles

−1

0

1

2

3

4

5
T

ot
al

 P
ot

en
tia

l

Total potential energy at a given point

σ 

σ

σ σ 

MSE 

MSE 

Fig. 2.6. Forces and potentials as a function of position for different values of kernel
size (a) force due to a single particle; (b) potential due to a single particle; (c) overall
quadratic force at a given position due to all particles; (d) total quadratic potential
at a given position (from [91]).

a function of distance to the origin. To further investigate the effect of addi-
tional samples on the potential and force fields, we position three additional
randomly located samples. The overall quadratic information force field ob-
tained by superposition of the individual forces of these four particles is shown
in Figure 2.6c, and the overall quadratic information potential at a given lo-
cation is presented as a function of position in Figure 2.6d. All plots include
illustrations for various values of the selected kernel size. Notice that, as a
consequence of the equivalence with sample variance showed in Property 2.4,
as the kernel size increases, the effective force becomes a linear function of
distance, and is shown with the label MSE in Figure 2.6d. For different ker-
nel functions, different force field definitions can be obtained, changing the
adaptation dynamics.

As a second illustration, a snapshot of a two-dimensional entropy maxi-
mization scenario is depicted in Figure 2.7, where the particles are bounded
to within a unit square and interact under the quadratic force definition with
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Fig. 2.7. A snapshot of the locations of the information particles and the instan-
taneous quadratic information forces acting on them to maximize the joint entropy
in the two-dimensional unit square (from [91]).

a Gaussian kernel. The objective is to maximize the entropy of the sample
ensemble, therefore the forces become repulsive and they stabilize in an ar-
rangement that fills the space uniformly with samples. Given a set of randomly
spaced samples in the unit square, when the forces acting on each sample are
evaluated, it becomes evident that the information particles are pushed by
the other particles in order to move along the direction of maximal entropy.
Notice also that the forces tend to be larger for samples away from the cen-
ter of the cluster (the lines attached to each sample are vectors that display
intensity and point to the direction of change).

Wave Function Interpretation of the Information
Potential Estimator

There is another “quantum theory” interpretation of kernel density estimation
that is worth presenting [154]. As we have seen, the kernel estimator creates
a probability density over the space of the samples. The stationary (time-
independent) Schrödinger equation for a particle in the presence of a potential
field can be written as

�
2

2m
∇2ψ(x) + ψ(x)[E − VQ(x)] = 0, (2.62)
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where h is the Plank’s constant, m the mass of the particle, and the wave
function ψ determines the spatial probability of the particle with p(x) =
|ψ(x)|2. VQ(x) is the “quantum” potential energy as a function of position,
E corresponds to the allowable energy state of the particle, and ψ becomes
the corresponding eigenvector. For the set of information particles with the
Gaussian kernel, the wavefunction for a set of N , one–dimensional, informa-
tion particles can be written

ψ(x) =

√√
√
√ 1
N

N∑

i=1

Gσ(x − xi).

To simplify the derivation and if we are not interested in the physical meaning
of the eigenfunctions, we can redefine ψ(w) as

ψ(x) =
N∑

i=1

Gσ(x− xi). (2.63)

We can also rescale VQ(x) such that there is a single free parameter σ in
Eq. (2.62) to yield

− σ2

2
∇2ψ(x) + VQ(x)ψ(x) = Eψ(x). (2.64)

Solving for VQ(x) we obtain

VQ(x) = E +
σ/2∇2ψ(x)

ψ(x)
= E − 1

2
+

1
2σ2ψ(x)

∑

i

(x− xi)2e−(x−xi)
2/2σ2

.

(2.65)

To determine the value of VQ(x) uniquely we can require that minVQ(x) = 0,
which makes

E = −min
σ/2∇2ψ(x)

ψ(x)

and 0 ≤ E ≤ 1/2. Note that ψ(x) is the eigenfunction of H and E is the lowest
eigenvalue of the operator, which corresponds to the ground state. Given the
data set, we expect VQ(x) to increase quadratically outside the data region
and to exhibit local minima associated with the locations of highest sample
density (clusters). This can be interpreted as clustering because the potential
function attracts the data distribution function ψ(x) to its minima, whereas
the Laplacian drives it away, producing a complicated potential function in the
space. We should remark that in this framework E sets the scale at which the
minima are observed. This derivation can be easily extended to multidimen-
sional data.

We can see that VQ(x) in Eq. (2.65) is also a “quantum” potential function
that differs from V (x) in Eq. (2.57) because it is associated with a quantum
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description of the information potential. For Gaussian kernels the two fields
are similar to each other within the regions with samples and because the
derivative of the Gaussian is a Gaussian, but Eq. (2.65) may present advan-
tages because of the intrinsic normalization produced by the eigenvalue that
may simplify the search scale for minima of the potential field. We can also
estimate the information quantum forces as presented above in Eq. (2.58).

2.7 Extension to α-Information Potential
with Arbitrary Kernels

Recall the definition of Renyi’s α entropy given in Eq. (2.18). Thus, its non-
parametric estimator with arbitrary kernel κσ(x) with bandwidth σ is given by

V̂α(X) =
1
Nα

N∑

j=1

(
N∑

i=1

κσ(xj − xi)
)α−1

, (2.66)

which can be written as a sum of contributions from each sample xj , denoted
V̂α(xj),

V̂α(xj)
Δ= 1
Nα−1

(
N∑

i=1

κσ(xj − xi)
)α−1

V̂α(X) =
1
N

N∑

j=1

V̂α(xj) (2.67)

for all positive α 	= 1. Note that this α information potential can be written
as a function of V̂2(xj) as

V̂α(xj) =
1

Nα−2

(
N∑

i=1

κσ(xj − xi)
)α−2

1
N

N∑

i=1

κσ(xj − xi) = p̂α−2(xj)V̂2(xj),

(2.68)

which means that IPα for all integer alpha can be derived conceptually from
the quadratic information potential by scaling them by the estimated (α-2)
PDF at the point. Naturally (in analogy with physical potentials), we de-
termine the α information forces by simply taking the derivative of these
information potentials with respect to the particle location (sample value).

F̂α(xj)
Δ=

∂

∂xj
V̂α(xj) =

α− 1
Nα−1

(
N∑

i=1

κσ(xj − xi)
)α−2 (

N∑

i=1

κ′σ(xj − xi)
)

= (α − 1)p̂α−2
X (xj)F̂2(xj). (2.69)

This formula defines the total information force acting on sample xj , where
the quadratic information force is similar to Eq. (2.59), with the exception
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that the kernel function need not be specifically Gaussian. In Eq. (2.68), the
quadratic force is defined as

F̂2(xj)
Δ=

1
N

(
N∑

i=1

κ′σ(xj − xi)
)

. (2.70)

From Eq. (2.69), which is the total information force acting on sample xj , and
using the additivity of quadratic forces in Eq. (2.70), we can write out the
individual contributions of every other sample as

F̂α(xj ;xi) = (α− 1)p̂α−2
X (xj)F̂2(xj ;xi), (2.71)

where we defined
F̂2(xj ;xi)

Δ=κ′σ(xj − xi). (2.72)

Although we considered above only the single-dimensional case, extensions
of these information potential and information force definitions to multidi-
mensional situations is trivial. Note that, in choosing multidimensional kernel
functions, some restrictions apply as mentioned in Section 2.3.

Notice that the generalized information forces introduce a scaling factor
that depends on the estimated probability density of the corresponding sam-
ple and the selected entropy order. Specifically, the baseline is obtained for
α = 2; that is, the quadratic information potential treats equally the contri-
butions of all the samples. For α > 2, the scale factor (power of the estimated
PDF) in Eq. (2.69) becomes a monotonically increasing function of the PDF
value, meaning that compared to the quadratic case, the forces experienced
by samples in dense regions of the sample space are amplified. For α < 2, on
the other hand, the opposite takes place, and the forces on sparse regions of
the data space are amplified.

This scenario also shows the difficulty of estimating Shannon entropy di-
rectly from samples with kernel estimators. The information potential field
estimated by Eq. (2.67) becomes constant over the space of the samples for
α = 1, therefore from Eq. (2.69) the force becomes zero. This does not mean
that for Shannon’s entropy the individual interactions of samples are constant
and their forces are zero everywhere in the space, but simply that Eqs. (2.67)
and (2.69) that capture macroscopic behavior cannot be applied for α = 1.
Renyi’s entropy is discontinuous at α = 1, therefore the direct substitution
of this value in the expressions should be avoided. However, we can use the
above estimator formalism for values of alpha close to 1, but we can expect
very slow convergence.

2.8 Renyi’s Divergence and Mutual Information

The structure of probability spaces is much more complex than linear spaces,
therefore computing distances in such spaces is nontrivial. The most widely
used disimilarity measure is the Kullback-Leibler divergence [188] due to its



2.8 Renyi’s Divergence and Mutual Information 81

nice properties (invariant to reparameterization, monotonicity for Markov
chains, and linked locally to the Fisher information matrix that quantifies
the Riemannian metric of the space) as we have briefly outlined in Chapter 1.
In this section we present Renyi’s definition of divergence and mutual informa-
tion and will also propose two alternate dissimilarity measures in probability
spaces that can be easily estimated nonparametrically with the information
potential.

Renyi’s α Divergence

Alfred Renyi, in his studies of information theory [264], proposed what is now
called the Renyi’s divergence, intrinsically linked with his definition of entropy
and an extension to the KL divergence. The definition of this divergence mea-
sure and some of its basic properties are reviewed herein.

Renyi’s order-α divergence of g(x) from f(x) is defined as [264]

Dα(f || g) Δ=
1

α− 1
log

∞∫

−∞
f(x)

(
f(x)
g(x)

)α−1

dx. (2.73)

Property 2.10. Renyi’s divergence measure has the following properties

i. Dα(f || g) ≥ 0, ∀f, g, α > 0.

ii. Dα(f || g) = 0 iff f(x) = g(x) ∀x ∈ R.

iii. lim
α→1

Dα(f || g) = DKL(f || g).

Proof. We do the proof of each part separately.

i. Using Jensen’s inequality on the argument of the logarithm in Eq. (2.73),
we get

∞∫

−∞
f(x)

(
g(x)
f(x)

)1−α
dx

α>1≥
≤

0<α<1

⎛

⎝
∞∫

−∞
f(x)

(
g(x)
f(x)

)

dx

⎞

⎠

1−α

= 1. (2.74)

Substituting this result in Eq. (2.73), the desired inequality for all α > 0
is obtained.

ii. Clearly, if g(x) = f(x), then Dα(f || g) = 0. For the reverse direction,
suppose we are given that Dα(f || g) = 0. Assume g(x) 	= f(x), so that
g(x) = f(x) + δ(x), where

∫ ∞
−∞ δ(x) = 0, and ∃x ∈ R such that δ(x) 	= 0.

Consider the divergence between these two PDFs. Equating this diver-
gence to zero, we obtain
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Dα(f || g) =
1

1− α log

∞∫

−∞
f(x)

(
f(x) + δ(x)

f(x)

)1−α

dx =
1

1− α log

∞∫

−∞
f(x)

(

1 +
δ(x)
f(x)

)1−α
dx = 0 (2.75)

which implies that
∞∫

−∞
f(x)

(

1 +
δ(x)
f(x)

)1−α
dx = 1 ⇒

(

1 +
δ(x)
f(x)

)

= 1, ∀x ∈ R. (2.76)

From this last result, we get that δ(x) = 0, ∀x ∈ R, which contradicts
our initial assumption, therefore, we conclude that g(x) = f(x).

iii. Consider the limit of Eq. (2.73) as α→ 1.

lim
α→1

Dα(f || g) = lim
α→1

1
α− 1

log

∞∫

−∞
f(x)

(
f(x)
g(x)

)α−1

dx

=
lim
α→1

∞∫

∞−
−f(x)

(
f(x)
g(x)

)α−1

log
(
g(x)
f(x)

)

dx

lim
α→1

∞∫

∞−

(
f(x)
g(x)

)α−1

dx

=

∞∫

∞−
f(x) log

(
f(x)
g(x)

)

dx = DKL(f || g). (2.77)

Following the same ideas used in deriving the estimator for Renyi’s en-
tropy, we can determine a kernel-based resubstitution estimate of Renyi’s
order-α divergence using Eq. (2.18). Suppose we have the i.i.d. samples
{xg(1), . . . , xg(N)} and {xf (1), . . . , xf (N)} drawn from g(x) and f(x), re-
spectively. The nonparametric estimator for Renyi’s divergence obtained with
this approach is given as

Dα(f || g) =
1

α− 1
logEp

[(
f(x)
g(x)

)α−1
]

≈ 1
α− 1

log
1
N

N∑

j=1

(
f̂(x(j))
ĝ(x(j))

)α−1

=
1

α− 1
log

1
N

N∑

j=1

⎛

⎜
⎜
⎝

N∑

i=1

κσ(xf (j)− xf (i))
M∑

i=1

κσ(xg(j)− xg(i))

⎞

⎟
⎟
⎠

α−1

= D̂α(f || g),

(2.78)

with the computational complexity O(N2), the same as the entropy estimator.
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Although Renyi’s α-divergence has many of the same properties as KL
divergence, it is not as general. In fact, for Shannon’s relative entropy, the
total information gained by observing a random event A with probability f(x)
that changes to g(x) by observing a second event B can be computed either
by averaging the partial gains of information, or by averaging the increase in
uncertainty with a negative sign [65], as we have seen in Section 2.5. Shannon
information gain for continuous variables

I(f || g) =
∫
f(x) log

f(x)
g(x)

dx (2.79)

is obtained by averaging over f(x) the partial gains of information log(f(x)/
g(x)). Notice that Eq. (2.79) is equivalent to Shannon’s relative entropy (KL
divergence). However, if Renyi’s entropy with α 	= 1 is used to evaluate this
gain of information or the negated increase in uncertainty the results differ.
Renyi’s gain of information by partial increase in information of order α is [266]

Īα(f || g) =
1

1− α log
∫
f(x)2−α

g(x)1−α
dx. (2.80)

If one uses the measure of uncertainty of order α, we get Renyi’s gain of in-
formation of order-α or Renyi’s divergence of Eq. (2.73) which is a different
quantity (in fact Īα(f || g) = D2−α(g || f)). Therefore, Shannon relative en-
tropy is the only one for which the sum of average gain of information is
equal to the negated average increase of uncertainty. This different behavior
between Shannon and Renyi stems from the generalized additivity used in
Renyi’s definition which excludes the case I(fΓ) + I(f−Γ) = 0, unless Ik are
all the same (uniform distribution), where −Γ is the set of the negated amount
of information (i.e., −Ik). This has implications for the definition of Renyi’s
mutual information as well.

Renyi’s α Mutual Information

Recall that Shannon’s mutual information between the components of an
n-dimensional random vector X is equal to the KL divergence of the joint
distribution ofX from the product of the marginal distributions of the compo-
nents of X [266]. Similarly, Renyi’s α mutual information is defined as Renyi’s
divergence between the same quantities. Letting pX(.) be the joint distribu-
tion and pXo(.) be the marginal density of the oth component, Renyi’s mutual
information becomes [266]

Iα(X) Δ=
1

α− 1
log

∞∫

−∞
· · ·

∞∫

−∞

pαX(x1, . . . , xn)
n∏

o=1
pα−1
X0

(xo)
dx1 . . . dxn. (2.81)
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Once again, it is possible to write a kernel-based estimator for Renyi’s
mutual information by approximating the joint expectation with the sam-
ple mean estimator

Iα(X)
Δ= 1

α− 1
logEX

[(
pX(x1, . . . , xn)
∏n
o=1 pXo(xo)

)α−1
]

≈ 1
α− 1

log
1
N

N∑

j=1

(
pX(x(j))

∏n
o=1 pXo(xo(j))

)α−1
(2.82)

and when replacing the PDFs with their Parzen estimators that use consis-
tent kernels between the marginal and joint PDF estimates as mentioned in
Property 2.7, the nonparametric mutual information estimator becomes

Îα(X)
Δ= 1
α− 1

log
1
N

N∑

j=1

⎛

⎜
⎜
⎝

(
1
N

N∑

i=1

κΣ(x(j) − x(i))
)

n∏

o=1

(
1
N

N∑

i=1

κσo(xo(j)− xo(i))
)

⎞

⎟
⎟
⎠

α−1

=
1

α− 1
log

1
N

N∑

j=1

⎛

⎜
⎜
⎝

(
1
N

N∑

i=1

n∏

o=1
κσo(x(j) − x(i))

)

n∏

o=1

(
1
N

N∑

i=1

κσo(xo(j)− xo(i))
)

⎞

⎟
⎟
⎠

α−1
(2.83)

The limit of Eq. (2.83) when α → 1 is an estimate of Shannon’s mutual
information between the random variables under consideration. Therefore, this
nonparametric mutual information estimator can be used to estimate directly
Renyi’s mutual information Iα(X) from data for α close to one, but it does
not have all the nice properties of Shannon mutual information. Although it is
nonnegative and symmetric, it may yield a value greater than 1 (i.e., the
information on x1 given by x2 can be larger than the information of x1,
which is a shortcoming). There are many other alternatives to define Renyi’s
mutual information and unfortunately all of them have shortcomings. See
Renyi [266] for a full treatment.

2.9 Quadratic Divergences and Mutual Information

As pointed out by Kapur [177], there is no reason to restrict ourselves to
Shannon’s measure of entropy or to Kullback-Leibler’s measure for cross-
entropy (density dissimilarity). Entropy and relative entropy are too deep
and too complex concepts to be measured by a single measure under all con-
ditions. This section defines divergence and mutual information measures in-
volving only a simple quadratic form of PDFs to take direct advantage of the
IP and its nice estimator. A geometric approach is used here.

Looking at the Euclidean space, the two most common families of dis-
tance are the sums of difference squares in coordinates and the inner-product
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distances, and they are be the starting point to derive the corresponding
divergences in probability spaces. Equal neighborhoods in the simplex are
transformed into spheres of equal size to preserve the Fisher information
matrix [32]. This gives rise to a unit sphere where each transformed PMF
has coordinates

√
pk (the simplex is transformed to the positive hyperoctant

of the sphere). The geodesic distance DG between two PMFs f and g in the
sphere (i.e., the length of the great circle) can be estimated by the cosine
of the angle between them, or cosDG =

∑
k

√
fk
√
gk. This result is related

to the argument of the Bhattacharyya distance [39], which is defined (for
continous PDFs) as DB(f, g)

DB(f, g) = − ln
(∫ √

f(x)g(x)dx
)

. (2.84)

DB(f, g) vanishes iff f = g almost everywhere. We can further establish
a link of Eq. (2.84) with Renyi’s divergence with α = 1/2 (apart from a
scalar). The Chernoff distance [56] or generalized Bhattacharya distance is a
non-symmetric measure defined by

DC(f, g) = − ln
(∫

(f(x))1−s (g(x))s dx
)

0 < s < 1 (2.85)

which for s = 1/2 yields the Bhattacharyya, and again, apart from the scaling,
corresponds to Renyi’s divergence for α = 1− s.

Instead of the inner product distance we can also measure the distance
between f and g in a linear projection space of the hyperoctant (chordal
distance) as DH =

(∑
k (
√
fk −√gk)2

)1/2. This result yields the Hellinger’s
distance [19] which is defined (for continuous densities) as

DH(f, g)=
[∫ (√

f(x)−
√
g(x)

)2

dx

]1/2

=
[

2
(

1−
∫ √

f(x)g(x)dx
)] 1/2

.

(2.86)

Compared with the KL and Renyi’s divergences, Hellinger’s distance has
the advantage of being a difference of PDFs so it avoids stability problems
when the denominator PDF is zero. It is also related to the Havrda-Charvat
(α = 1/2) divergence that is intimately related to α Renyi’s divergence.

After all, Bhattacharyya Eq. (2.84) and Hellinger’s distances Eq. (2.86) are
angular and Euclidean distances in the hypersphere and their relationship with
Renyi’s α = 1/2 divergence inspired us to seek definitions of divergences that
could benefit from the α information potential estimator (specifically α = 2).

The similarity between two PDFs using the 2-norm is a simple and
straightforward distance measure; it obeys all the properties of a distance
(including symmetry and the triangular inequality), and can be written as
DED(f, g) =

∫ √
(f(x)− g(x))2 dx . For simplicity we do not include the

square root in the definition because our goal is to use these measures as
cost functions, so the Euclidean distance between PDFs is redefined as
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DED(f, g) =
∫

(f(x)− g(x))2dx =
∫
f2(x)dx − 2

∫
f(x)g(x)dx +

∫
g2(x)dx

(2.87)
DED(f, g) can be recognized as belonging to the same family as the

Herlinger distance (chordal distances) but with a different α-norm. Although
being a distance, DED(f, g) is sometimes lumped with the divergence termi-
nology in PDF spaces.

The squared distance between the joint PDF and the factorized marginal
PDF is called the quadratic mutual information Euclidean distance (QMIED),
and is written as

IED(X1, X2) = DED(fX1X2(x1, x2), fX1(x1)fX2(x2)). (2.88)

DED(f, g) ≥ 0 with equality if and only if f(x) = g(x) almost every-
where and the integrals involved are all quadratic forms of PDFs. Obviously,
the QMIED between X1 and X2 is nonnegative and is zero if and only if
fX1X2(x1, x2) = fX1(x1)fX2(x2); that is, X1 and X2 are independent ran-
dom variables. There is no strict theoretical justification that the QMIED is
an appropriate measure for dependence between two variables. However, it can
be shown that DED(f, g) is a lower bound for the KL divergence [319], there-
fore when one maximizes DED(f, g), we are also maximizing KL. For multiple
variables, the extension of QMIED interpreted as a multivariate dissimilarity
measure is straightforward:

IED(X1, . . . , Xk) = DED (fX(x1, . . . , xk) ,
k∏

i=1

fXi(xi)),

where fX(x1, . . . , xk) is the joint PDF, and fXi(xi), (i = 1, . . . , k) are
marginal PDFs.

The other possible PDF divergence is related to the Battacharyya distance.
Formally it can be derived from the Cauchy-Schwarz inequality [276]:

√∫
f2(x)dx

∫
g2(x)dx ≥

∫
f(x)g(x)dx, (2.89)

where equality holds if and only if f(x) = cg(x) for a constant scalar c. If f(x)
and g(x) are PDFs (i.e.,

∫
f(x)dx = 1 and

∫
g(x)dx = 1), then f(x) = cg(x)

implies c = 1. So, for two PDFs f(x) and g(x) equality holds if and only if
f(x) = g(x). Similarly to DED(f, g) for the estimators we normally use the
square of Eq. (2.89) to simplify the calculations. Thus, we may define the
Cauchy- Schwarz divergence for two PDFs as

DCS(f, g) = − log

(∫
f(x)g(x)dx

)2

∫
f2(x)dx

∫
g2(x)dx

, (2.90)
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DCS (f, g) ≥ 0, where the equality holds if and only if f(x) = g(x) almost
everywhere and the integrals involved are all quadratic forms of PDFs.
DCS (f, g) is symmetric but it does not obey the triangular inequality.

Let us look closely at Eq. (2.87). One can immediately recognize the first
and last terms as the quadratic information potential of f(x) and g(x), respec-
tively. The middle term

∫
f(x)g(x)dx is called the cross information potential

(CIP), and basically estimates the interactions on locations in the space dic-
tated by the dataset f(x) in the potential created by the dataset g(x) (or
viceversa). This is really the term that measures the “distance” between the
two PDFs, because the other two are simply normalizing terms. TheDCS(f, g)
of Eq. (2.90) can be rewritten as

DCS(f, g) = log
∫
f(x)2dx+ log

∫
g(x)2dx− 2 log

∫
f(x)g(x)dx, (2.91)

where all the three terms of DED(f, g) appear also in DCS(f, g), simply with
a logarithmic weighting. Based on DCS(f, g), we define the Cauchy–Schwarz
quadratic mutual information (QMICS) between two variables X1 and X2 as

ICS(X1, X2) = DCS (fX(x1, x2) , fX1(x1)fX2(x2)), (2.92)

where the notations are the same as above. Directly from above, ICS (X1, X2)
≥ 0 meets the equality if and only if X1 and X2 are independent random
variables. So, ICS is an appropriate measure of independence. This measure
is a geodesic distance in the sphere, therefore the Cauchy–Schwarz divergence
may also be appropriate as a dependence measure in cases where the PDFs
exist in the sphere. For multivariate variables, the extension of QMICS is also
straightforward:

ICS(X1, . . . , Xk) = DCS (fX(x1, . . . , xk) ,
k∏

i=1

fXi(xi)).

Cauchy-Schwarz Divergence and Renyi’s Relative Entropy

Recently, Lutwak, et al [205] defined a new Renyi’s divergence called the
relative α-Renyi entropy between f(x) and g(x) as

DRα(f, g) = log

(∫
R
gα−1(x)f(x)

) 1
(1−α)

(∫
R
gα(x)

)1/α

(∫
R f

α(x)
) 1

(α(1−α))
. (2.93)

Note that the denominator in the argument of the log now contains an inte-
gral that is more robust than Renyi’s original definition of Eq. (2.73). So f(x)
could be zero at some points of the domain but overall the integral is well
defined, thus avoiding numerical issues of Eq. (2.73). Again, for α → 1, this
gives DKL(f || g). In particular, for α = 2 Eq. (2.93) is exactly the Cauchy–
Schwarz divergence of Eq. (2.90). This is a very interesting relation because it
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provides an information-theoretic interpretation both for the Cauchy-Schwarz
divergence and also for the integral of the product of PDFs. Indeed, we can
rewrite the Cauchy–Schwarz divergence in terms of Renyi’s quadratic en-
tropy as

DCS(X,Y ) = − log
(∫

f(x)g(x)
)2

dx+ log
(∫

f(x)2dx
)

+ log
(∫

g(x)2dx
)

= 2H2(X ;Y )−H2(X)−H2(Y ), (2.94)

where the first term can be shown to be the quadratic Renyi’s cross-entropy
[259] (and should not be confused with the joint entropy of X and Y ). The
similarity of this expression with Shannon’s mutual information in Eq. (1.10)
is striking if we think in terms of cross-entropy versus joint entropy.

2.10 Information Potentials and Forces
in the Joint Space

The interactions among the samples interpreted as information particles for
the case of divergence are substantially more involved than IP because of the
different information potential fields that exist. In essence one has to realize
that each probability density function creates its own information potential
field, and that particle interactions are produced by weighted sums of each
potential field computed in the joint space [340]. We illustrate the principles
for the calculation of the Euclidean distance and QMIED.

Euclidean and Cauchy–Schwarz Divergence Estimators

The divergences are composed of three different information potential fields,
each specified by the location of the samples from f(x), from g(x), and the
cross–information potential field. Because the potentials are additive, we can
compute one at a time and add the result as specified by Eq. (2.86). The infor-
mation potential estimated by the Gaussian kernel for each PDF is given by

V̂f =
1
N2

N∑

i=1

N∑

i=j

G√
2σ(xf (i)− xf (j))2

V̂g =
1
N2

N∑

i=1

N∑

i=j

G√
2σ(xg(i)− xg(j))2 (2.95)

V̂c =
1
N2

N∑

i=1

N∑

i=j

G√
2σ(xf (i)− xg(j))2,
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where for simplicity we assume that we have the same number of samples
(N) in each dataset and the same kernel size σ. VC is the cross-information
potential estimator and basically measures the interaction of the field created
by f(x) on the locations specified by g(x). The Euclidean and Cauchy–Schwarz
information potential fields are therefore:

D̂ED(f, g) = V̂ED = V̂f + V̂g − 2V̂c

D̂CS(f, g) = V̂CS = log
V̂f V̂g

V̂ 2
c

.
(2.96)

The computation of the Euclidean and Cauchy–Schwarz information forces
exerted on each sample xi can be easily achieved using the additive rule of
derivatives

∂V̂ED

∂xi
=
∂V̂f
∂xi

+
∂V̂g
∂xi

− 2
∂V̂c
∂xi

∂V̂CS

∂xi
=

1
V̂f

∂V̂f
∂xi

+
1
V̂g

∂V̂g
∂xi

− 2
V̂c

∂V̂c
∂xi

.

(2.97)

The computation of the Euclidean and Cauchy–Schwarz divergences can pro-
ceed in a fashion very similar to the information potential defining a matrix of
distances and of scalars as given by Eq. (2.61). See [340] for a full treatment.

Generalized Information Potential (GIP) for Quadratic
Mutual Information

Both QMIED and QMICS can be written in a very similar way to DED(f, g)
and DCS(f, g) but they are a little more complex due to the fact that we have
two variables and the existence of the joint and the product of the marginals.
We can decompose the overall expressions Eqs. (2.88) and (2.92) in the fol-
lowing three terms,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

VJ =
∫∫

fX1X2(x1, x2)2dx1dx2

VM =
∫∫

(fX1(x1)fX2(x2))2dx1dx2

Vc =
∫∫

fX1X2(x1, x2)fX1(x1)fX2(x2)dx1dx2

(2.98)

where VJ is the IP of the joint PDF, VM is the IP of the factorized marginal
PDF, and VC is the generalized cross information potential. Just like for the
quadratic divergences, this is really the term that measures the interactions
between the two information potentials, whereas the other two are proper
normalizations. With these three terms, both QMIs yield

{
IED = VJ − 2Vc + VM

ICS = logVJ − 2 logVc + logVM
(2.99)
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θ

Fig. 2.8. Geometrical interpretation of quadratic mutual information.

Figure 2.8 shows the illustration of the geometrical interpretation of all
these quantities in the 2D simplex (for the case of discrete random variables).
IS, as previously mentioned, is the KL divergence between the joint PDF and
the factorized marginal PDF, IED is the squared Euclidean distance between
these two PDFs, and ICS is related to the angle between these two PDFs.

For the estimation of each of the potentials in Eq. (2.98) the following no-
tation is used: subscripts denote the input components, and indices represent
sums over samples. For a given dataset {x (i) = (x1(i), x2(i))T |i = 1, . . . , N}
of a two-dimensional variable X = (x1, x2)T , the joint and marginal PDFs
define a joint (VJ ), a marginal (VM ) and a cross (VC) information potential
field from Eq. (2.98). Using Gaussian kernels to estimate the joint and the
marginals yields,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f̂X1X2(x1, x2) =
1
N

N∑

i=1

Gσ(x − x(i))

f̂X1(x1) =
1
N

N∑

i=1

Gσ(x1 − x1(i))

f̂X2(x2) =
1
N

N∑

i=1

Gσ(x2 − x2(i)).

(2.100)

Because information potential fields are additive, we can estimate indepen-
dently the three terms in QMIED or QMICS of Eq. (2.99) based only on the
given dataset.

Note that VJ , which exists over the joint space, can be decomposed for
radially symmetric kernels in a product of interactions along each of the vari-
ables G(x i − x j) = G(x1i − x1j)G(x2i − x2j), where x = (x1, x2)T . The
generalized cross–information potential VC of Eq. (2.98) is the potential that
seems more difficult to compute, therefore it is illustrated here. Starting from
the definition of the information potential, we obtain
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V̂C =
∫∫

f̂(x1, x2)f̂(x1)f̂(x2)dx1dx2

=
∫∫ [

1
N

N∑

k=1

Gσ(x1 − x1(k))Gσ(x2 − x2(k))

][
1
N

N∑

i=1

Gσ(x1 − x1(i))

]

×
⎡

⎣ 1
N

N∑

j=1

Gσ(x2 − x2(j))

⎤

⎦ dx1dx2

=
1
N

N∑

i=1

1
N

N∑

j=1

1
N

N∑

k=1

∫
Gσ(x1 − x1(i))Gσ(x1 − x1(k))dx1

×
∫
Gσ(x2 − x2(k))Gσ(x2 − x2(j))dx2

=
1
N

N∑

k=1

[
1
N

N∑

i=1

G√
2σ(x1(k)− x1(i))

]⎡

⎣ 1
N

N∑

j=1

G√
2σ(x2(k)− x2(j))

⎤

⎦

(2.101)

Notice that the GCIP for QMI requiresO(N3) computation. VM can be further
factorized as two marginal information potentials V1 and V2

V̂M =
∫∫

f̂2
X1

(x1)f̂2
X2

(x2)dx1dx2

V̂1 =
∫∫

f̂2
X1

(x1)dx1 (2.102)

V̂2 =
∫∫

f̂2
X2

(x2)dx2

Therefore the final expressions are

V̂k(i, j) = G√
2σ(xk(i)− xk(j)),

V̂k(i) =
1
N

N∑

j=1

V̂k(i, j), V̂k =
1
N

N∑

i=1

V̂k(i), k = 1, 2

V̂J =
1
N2

N∑

i=1

N∑

j=1

V̂1(i, j)V̂2(i, j) (2.103)

V̂M = V̂1V̂2 with V̂k =
1
N2

N∑

i=1

N∑

j=1

V̂k(i, j), k = 1, 2

V̂C =
1
N

N∑

i=1

V̂1(i)V̂2(i).



92 2 Renyi’s Entropy, Divergence and Their Nonparametric Estimators

So, the estimated Euclidean Mutual information (QMIED) and the estimated
Cauchy-Schwarz Mutual Information (QMICS) are given by

ÎED (X1, X2) =
1
N2

N∑

i=1

N∑

j=1

V̂1(i, j)V̂2(i, j) + V̂1V̂2 − 1
N

N∑

i=1

V̂1(i)V̂2(i)

ÎCS (X1, X2) = log

(
1
N2

N∑

i=1

N∑

j=1

V̂1(ij)V̂2(i, j)

)
(
V̂1V̂2

)

(
1
N

N∑

i=1

V̂1(i)V̂2(i)
)2 . (2.104)

From the above, we can see that both QMIs can be expressed as interac-
tions between the marginal information potential fields at different levels:
V1(i, j)V2(i, j) is the level of the sample-to-sample interactions from each
marginal (the joint field), V1(i)V2(j) is the level of one full marginal field
acting on a single sample (the GCIP), and V1V2 is the interaction between
both marginal potential fields (product of marginals). ÎED is called the
Euclidean generalized information potential (GIPED), and ÎCS is the Cauchy-
Schwartz generalized information potential (GIPCS).

The quadratic mutual information and the corresponding cross informa-
tion potential can be easily extended to the case with multiple variables
(e.g., X = (x1, . . . , xk)T). In this case, we have similar IPs and marginal
IPs as in Eq. (2.104). Then we have the QMIED and QMICS and their corre-
sponding GIPED and GIPCS as follows,

ÎED (X1, . . . , XK) =
1
N2

N∑

i=1

N∑

j=1

K∏

k=1

V̂k(i, j)− 2
N

N∑

i=1

K∏

k=1

V̂k(i) +
K∏

k=1

V̂k

ÎCS (X1, . . . , XK) = log

(
1
N2

N∑

i=1

N∑

j=1

K∏

k=1

V̂k(i, j)

)
K∏

k=1

V̂k

(
1
N

N∑

i=1

K∏

k=1

V̂k(i)
)2 . (2.105)

Generalized Information Forces

Three different potentials contribute to the generalized information potential,
but because the derivative is distributive with respect to addition, one can
still operate on each term independently. The cases of GIPED and GIPCS are
slightly different because of the logarithm, but the procedure is to take the
derivative of Eq. (2.104) with respect to a given sample, yielding

F̂ED (i) =
∂ÎCS

∂xk(i)
=

∂V̂j
∂xk(i)

− 2∂V̂C
∂xk(i)

+
∂V̂k
∂xk(i)

F̂CS (i) =
∂ÎCS

∂xk(i)
=

1
Vj

∂V̂j
∂xk(i)

− 2
VC

∂V̂C
∂xk(i)

+
1
Vk

∂V̂k
∂xk(i)

.

(2.106)
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The case for multiple variables can be readily obtained in a similar way (see
[340] for a full treatment).

A simple example

To understand the similarities and differences among the dissimilarity mea-
sures IS, IED, and ICS, let’s look at a simple case with two discrete ran-
dom variables X1 and X2 as shown in Figure 2.9. It is trivial to apply
these definitions to discrete events. We exemplify here the QMIED and
QMICS. For the discrete variables X1 and X2 with probability distribution
{PX1(i); i = 1, . . . , n} and {PX2(j); j = 1, . . . ,m}, respectively, and the joint
probability distribution {PX(i, j); i = 1, . . . , n; j = 1, . . . ,m}, the QMIED and
QMICS are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

IED (X1, X2) =
n∑

i=1

m∑

j=1

(PX(i, j)− PX1 (i)PX2(j))2

ICS (X1, X2) = log

(
n∑

i=1

m∑

j=1

(PX(i, j))2
) (

n∑

i=1

m∑

j=1

(PX1(i)PX2 (j))2
)

n∑

i=1

m∑

j=1

(PX(i, j)PX1 (i)PX2(j))2

.

(2.107)

X1 can take the values 1 or 2 with a probability PX1 = (PX1 (1), PX1(2));
that is, P (X1 = 1) = PX1 (1) and P (X1 = 2) = PX1(2). Similarly X2

can take the values 1 or 2 with the probability PX2 = (PX2 (1), PX2(2))
where P (X2 = 1) = PX2(1) and P (X2 = 2) = PX2(2). The joint prob-
ability distribution is PX = (PX(1, 1), PX(1, 2), PX(2, 1), PX(2, 2)); where
PX(1, 1) = P ((X1, X2) = (1, 1)) and likewise for the other cases. Obviously,

X2

X1

2

21

1

PX
2

2

PX
2

1

PX
12 PX

22

PX
21PX

11
PX

1
2

PX
1

1

Fig. 2.9. The 2D data for the example.



94 2 Renyi’s Entropy, Divergence and Their Nonparametric Estimators

PX1(1) = PX(1, 1) + PX(1, 2), PX1 (2) = PX(2, 1) + PX(2, 2), PX2(1) =
PX(1, 1) + PX(2, 1), and PX2(2) = PX(1, 2) + PX(2, 2). In the following
figures related to this example, the probability variables are simplified as
P 1
X1

= PX1(1), P 11
X = PX(1, 1), etc.

First, let’s look at the case with the marginal distribution of X1 fixed as
PX1 = (0.6, 0.4). Then the free parameters left are PX(1, 1) from [0, 0.6] and
PX(2, 1) from [0, 0.4]. When PX(1, 1) and PX(2, 1) change in these ranges,
the values of IS, IED, and ICS can be easily calculated. The right graphs in
Figure 2.10 show the contour plots of the corresponding left surfaces (contour
means that each line has the same functional value).

Fig. 2.10. The surfaces and contours of IS, IED, and ICS versus PX(1, 1) and
PX(2, 1)



2.10 Information Potentials and Forces in the Joint Space 95

These graphs show that although the contours of the three measures
are different, they reach the minimum value 0 in the same line PX(1, 1) =
1.5PX(2, 1) where the joint probabilities equal the corresponding factorized
marginal probabilities. And the maximum values, although different, are also
reached at the same points (PX(1, 1), PX(2, 1)) = (0.6, 0) and (0, 0.4) where
the joint probabilities are
[
PX(1, 2) PX(2, 2)
PX(1, 1) PX(2, 1)

]

=

[
0 0.4

0.6 0

]

and

[
PX(1, 2) PX(2, 2)
PX(1, 1) PX(2, 1)

]

=

[
0.6 0
0 0.4

]

,

respectively.
If the marginal probability of X2 is further fixed (e.g. PX2 = (0.3, 0.7)),

then the free parameter is PX(1, 1) from 0 to 0.3, which can be regarded as the
previous setting with a further constraint specified by PX(1, 1) + PX(2, 1) =
0.3. In this case, both marginal probabilities of X1 and X2 are fixed, the
factorized marginal probability distribution is also fixed and only the joint
probability distribution will change. Figure 2.11 shows how the three measures
change with PX(1, 1), from which we can see that the minima are reached at
the same point PX(1, 1) = 0.18, and the maxima are also reached at the same
point PX(1, 1) = 0; that is,

[
PX(1, 2) PX(2, 2)
PX(1, 1) PX(2, 1)

]

=

[
0.6 0.1
0 0.3

]

.

From this simple example, we can see that although the three measures
are different, they have the same minimum point and also have the same

Fig. 2.11. IS, IED, and ICS versus PX(1, 1).
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maximum points in this particular case. It is known that both Shannon’s
mutual information IS and QMIED(IED) are convex functions of PDFs, and
IED is a lower bound for IS. From the above graphs, we can confirm this
fact and also reach the conclusion that QMICS(ICS) is not a strictly convex
function of PDFs.

2.11 Fast Computation of IP and CIP

One of the practical difficulties of the information potential, cross-information
potential and ITL quantities in general, such asDED andDCS and QMIED and
QMICS is that the calculations are O(N2) or O(N3), respectively. This section
presents an effort to make the estimation of IP faster using two techniques:
one based on the fast Gauss transform (FGT) [122] and the other using the
incomplete Cholesky decomposition to exploit the Gram matrix band struc-
ture that for kernels possess rapidly decreasing eigenvalues, particularly in low
dimensions [100].

Fast Gauss Transform

The fast multipole method is a very interesting and important family of fast
evaluation algorithms that have been developed over the past two decades
to enable rapid calculation of approximations, with arbitrary accuracy, to
large matrix-vector products of the form Ad where the elements of A are
ai,j =

∑
i

∑
j ϕ(xi − xj) with ϕ a nonlinear fast decaying positive function of

the argument [121]. The fast Gauss transform [122] is a special case derived
for efficient calculation of weighted sums of unidimensional Gaussians at a
point yi,

S(yi) =
∑N

j=1
wie

−(yj−yi)
2/4σ2

i = 1, . . . ,M (2.108)

The FGT has been applied to many areas including astrophysics, kernel
density estimation, and machine learning algorithms decreasing the computa-
tion from O(NM ) to O(N +M) where N is the number of samples (sources)
and M the number of points where the evaluation is required. The computa-
tional savings come from two facts, both related to the shifting property of
the Gaussian function

e
−

(
yj−yi

σ

)2

= e
−

(
yj−yC−(yi−yC )

σ

)2

= e
−

(
yj−yc

σ

)2 ∑∞
n=0

1
n!

(
yi − yc
σ

)n
hn

(
yj − yc
σ

)

, (2.109)

which means that a Gaussian centered at yj can be shifted to a sum of Her-
mite polynomials times a Gaussian, all centered at yc. First, the Hermite
polynomials hn(y) given by

hn(y) = (−1)n
dn exp(−x2)

dxn
(2.110)
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are very efficient in the approximation and a small order p is normally suffi-
cient; that is,

exp
(−(yj − yi)2

4σ2

)

=
p−1∑

n=0

1
n!

(
yi − yC

2σ

)n
hn

(
yj − yC

2σ

)

+ ε(p),

where ε(p) is the error associated with the truncation of the expansion at
order p. The second savings is that there is no need to evaluate every Gaussian
at every point. Instead a p-term sum is computed around a small number yc of
cluster centers with O(Np) computation with Eq. (2.109). These sums are then
shifted to the yi desired locations and computed in another O(Mp) operation.
In practice, an expansion around a single center is not always accurate over the
entire domain of interest. A tiling of the space is constructed and the Gaussian
function is expanded at multiple centers with the FGT. To efficiently subdivide
the space, a very simple greedy algorithm called furthest-point clustering [117]
can be used, which computes a data partition with a maximum radius at most
twice the optimum for the problem. The direct implementation of furthest-
point clustering has running time O(BN ), with B the number of clusters.

If one recalls the definition of the IP this algorithm can be immediately
applied, remembering that now the sources and the locations where the ex-
pansion needs to be computed coincide. If we apply this expansion to the
IP V (y), we obtain

V (y) ≈ 1
2σN2

√
π

N∑

j=1

B∑

b=1

p−1∑

n=0

1
n!
hn

(
yj − yCb

2σ

)

Cn(b), (2.111)

where B is the number of clusters used with centers yCb , and Cn(b) is de-
fined by

Cn(b) =
∑

yi∈B

(
yj − yCb

2σ

)n
, (2.112)

From the above equation, we can see that the total number of operations
required is O(BpN ) per data dimension. The order p of the expansion depends
on the desired accuracy required (normally 4 or 5), and is independent of N .
In addition to the complexity reduction, the other appeal of the FGT is that
the code becomes parallelizable due to the clustering step.

Taylor Series for Multiple Dimensions

The extension to more than one dimension of the previous algorithm is done
by treating the multivariate Gaussian as a Kronecker product of univariate
Gaussians. Following the multi-index notation of the original FGT papers,
we define the multidimensional Hermite function as

hα(y) = hα1(y1)hα2(y2) · · ·hαd
(yd), (2.113)
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where y = (y1, · · · , yd)T ∈ Rd and α = (α1, . . . , αd) ∈ Nd. As can be ex-
pected the algorithm scales up very poorly with dimension due to this prod-
uct form.

An alternative method introduced by Yang et al. [345] is to expand the
Gaussian function into a multivariate Taylor series. The Gaussian function is
factorized as

exp

(

−‖yj − yi‖2
4σ2

)

= exp

(

−‖yj − c‖
2

4σ2

)

× exp

(

−‖yi − c‖
2

4σ2

)

exp
(

2
(yj − c) · (yi − c)

4σ2

)

. (2.114)

In the third term of (2.114), the product of the evaluation at two different
points (called the entanglement) is split by expanding the exponential into a
Taylor series as

exp
(

2
(yj − c) · (yi − c)

4σ2

)

=
∑

α≥0

2|α|

α!

(
yj − c

2σ

)α(
yi − c

2σ

)α
+ ε(α),

(2.115)

where the factorial and the length of α are defined, respectively, as α! =
α1!α2! · · ·αd! and |α| = α1 + α2 + · · ·+ αd. The IP can then be written using
this form as

VT (y) ≈ 1

N2 (4πσ2)d/2

N∑

j=1

∑

B

∑

α≥0

Cα (B) exp

(

−‖yj − cB‖
2

4σ2

)(
yj − cB

2σ

)α
,

(2.116)

where the coefficients Cα are given by

Cα (B) =
2|α|

α!

{
∑

ei∈B
exp

(

−‖yi − cB‖
2

4σ2

)(
yi − cB

2σ

)α}

. (2.117)

The coefficients Cα are lexicographically ordered before storage because the
expansion of multivariate polynomials can be performed efficiently in
this form. For a d-dimensional polynomial of order p, all terms are stored in
a vector of length

rp,d =
(
p+ d
d

)

=
(p+ d)!
d!p!

.

If the series is truncated at order p, then the number of terms is rp,d which
is much less than Πd

p = pd in higher dimensions. The total computational
complexity is O(BNrp,d), where B is the number of clusters.

These algorithms decrease the number of computations appreciably when
estimating entropy and divergence in ITL with the Gaussian kernel because
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the computations become O(N). However, we have to remember that they are
not exact evaluations, therefore the number of terms in the expansions and
the number of clusters have to be determined appropriately according to the
application. Coprocessors for desktop computers in the GigaFlop range have
been developed for astrophysics applications [179], but they lack the flexibility
required for ITL where the number of dimensions of the problem, the kernel
type are free parameters and where the computations are much more general
than just evaluating forces.

Incomplete Cholesky Decomposition

Any N × N symmetric positive definite matrix K can be expressed as K =
GTG where G is an N × N lower triangular matrix with positive diagonal
entries. This decomposition is known as the Cholesky decomposition which is
a special case of the LU decomposition for a symmetric positive definite matrix
[116]. However, if the eigenvalues of K drop rapidly, then the matrix can be
approximated by a N ×D(D ≤ N) lower triangular matrix G̃ with arbitrary

accuracy; that is,
∥
∥
∥K− G̃

T
G̃

∥
∥
∥ < ε where ε is a small positive number of

choice and || · || is a suitable matrix norm. This decomposition is called the
incomplete Cholesky decomposition (ICD) [116]. It is observed that in kernel
learning [100], depending on the eigenstructure of the matrix, even D << N
provides desired accuracy in practice. Although computation involving K can
be largely simplified using G̃, computing G̃ itself appears as an overhead,
but fortunately there are efficient algorithms to accomplish this task [116].
The particular algorithm in the following table takes a greedy approach and
tries to minimize the trace of the residual K− G̃

T
G̃. Its space complexity is

O(ND) and the time complexity is O(ND2), exactly the same complexity as
the factorization of G̃. We provide the algorithm below.

Fast Computation of IP

The information potential can be written in terms of a symmetric positive
Gram matrix as

V̂ (X) =
1
N2

N∑

i=1

N∑

j=1

κ(xi − xj) =
1
N2

1TN KXX1N =
1
N2

∥
∥
∥1TNG̃XX

∥
∥
∥

2

2
,

(2.118)
where 1N is a vector of all 1 and size N . The computation decreases from
O(N2) to O(ND2), and we have obtained precisions of 10−6 for 1000 sample
datasets, while reducing the computation time 100-fold [292]. The quadratic
mutual information algorithms of Eq. (2.97) use only the IP so they can be
easily written as
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ÎED =
1
N2

1T
DX

(
G̃
T

XX G̃YY ◦ G̃
T

XX G̃YY

)
1Dy

+
1
N4

∥
∥
∥1TNG̃XX

∥
∥
∥

2

2

∥
∥
∥1TNG̃YY

∥
∥
∥

2

2

− 2
N3

(
1TNG̃XX

) (
G̃
T

XX G̃YY

)(
G̃
T

YY 1N
)

(2.119)

ÎCS = log
1T
DX

(
G̃
T

XX G̃YY ◦ G̃
T

XX G̃YY

)
1Dy

∥
∥
∥1TNG̃XX

∥
∥
∥

2

2

∥
∥
∥1TNG̃YY

∥
∥
∥

2

2((
1TNG̃XX

)(
G̃
T

XX G̃YY

)(
G̃
T

YY 1N
))2 .

(2.120)

In these expressions the symbol ◦ denotes the elementwise matrix multiplica-
tion (Hadamard or Schur product). The computational complexity decreases
dramatically from O(N3) to O(N(D2

x +D2
y +DxDy)).

Fast Computation of the CIP

Unfortunately, the cross information potential does not yield a symmetric pos-
itive definite Gram matrix, therefore the above algorithm cannot be directly
applied. However, one can augment the matrix to make it symmetric: if the
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Gram matrix for the CIP is denoted KXY , we create a matrix of double size
given by

KZZ =
∣
∣
∣
∣
KXX KXY

KXY KYY

∣
∣
∣
∣ .

This may seem a waste, but it turns out that in many ITL descriptors each
one of the parts of this matrix is needed as we show below. The CIP then can
be written as

V̂ (X,Y ) =
1
N2

N∑

i=1

N∑

j=1

κ(xi − yj) =
1
N2

eT1 Kzze2 =
1
N2

(
eT1 G̃ZZ

)(
G̃ZZe2

)
,

(2.121)

where

e1 = {1, . . . , 1
︸ ︷︷ ︸

N

, 0, . . . , 0
︸ ︷︷ ︸

N

}T and e2 = {0, . . . , 0
︸ ︷︷ ︸

N

, 1, . . . , 1
︸ ︷︷ ︸

N

}T .

The computational complexity of the CIP is also O(ND2). The divergences of
Eq. (2.86) and (2.90) that use the CIP can be written in matrix form as

D̂ED =
1
N2

(
eT
1 G̃ZZ

) (
G̃
T

ZZe1

)
+

1
N2

(
eT
2 G̃ZZ

)(
G̃
T

ZZe2

)

− 2
N2

(
eT
1 G̃ZZ

)(
G̃
T

ZZe2

)
(2.122)

D̂CS = log

(
eT
1 G̃ZZ

) (
G̃
T

ZZe1

)(
eT
2 G̃ZZ

) (
G̃
T

ZZe2

)

((
eT
1 G̃ZZ

) (
G̃
T

ZZe2

))2 . (2.123)

The computational complexity is identical to the CIP. The advantage of the
ICD with respect to the FGT is the simpler data structures for the computa-
tion, in as much as everything is done in vector matrix products.

2.12 Conclusion

This chapter presented the definition of Renyi’s family of entropies, their
meaning and relationship with Shannon, and their impact in developing non-
parametric estimators for entropy. In particular the argument of the log of
quadratic Renyi’s entropy called here the information potential, can be esti-
mated directly from data with kernels. The IP can be considered on a par with
nonparametric estimators of mean and variance, but unlike them it depends
upon one free parameter that needs to be estimated from the data structure
and controls the bias and variance for finite datasets. This brings flexibility to
the designer, but also requires proper selection. The simple Silverman’s rule
of density estimation is normally sufficient when data are low-dimensional,
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but more involved techniques such as cross-validation are required for more
accurate results. This dependence on the kernel size makes the IP appropriate
primarily for relative comparisons within the same dataset, but when the goal
is to optimize a cost function this is perfectly suitable.

From the IP estimator we developed a physical interpretation for the
PDF estimated with kernels as a potential field, where samples interact with
each other under information forces. From the information potential we pro-
posed two dissimilarity measures in probability spaces that can also be esti-
mated directly from data because they are functions of the IP. One important
part of the chapter addresses a detailed treatment of the properties of these
estimators in adaptation in as much as this is going to be instrumental for
the rest of the chapters, including an analysis of the mean and variance of
the IP.

The chapter presents all the necessary equations to implement ITL quan-
tities and they are used extensively throughout the book. The estimator of
entropy and ITL divergences are O(N2) and the estimator for QMI is O(N3),
therefore we also presented two approximations to the computation that pro-
vides tremendous speedups in most cases, by using the concept of fast Gauss
transform and incomplete Cholesky decomposition.
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Adaptive Information Filtering with Error
Entropy and Error Correntropy Criteria

Deniz Erdogmus and Weifeng Liu

3.1 Introduction

This chapter formulates a new cost function for adaptive filtering based on
Renyi’s quadratic error entropy. The problem of estimating the linear sys-
tem parameters w = [w0, . . . , wM−1]T in the setting of Figure 3.1 where
x(n), and z(n) are random variables can be framed as model-based infer-
ence, because it relates measured data, uncertainty, and the functional de-
scription of the system and its parameters. The desired response z(n) can
be thought of as being created by an unknown transformation of the input
vector x = [x(n), . . . , x(n − M + 1)]T. Adaptive filtering theory [143, 284]
addresses this problem using the MSE criterion applied to the error signal,
e(n) = z(n)− f(w, x(n))

Jw(e(n)) = E[(z(n)− f(w, x(n)))2] (3.1)

when the linear filter is a finite impulse response filter (FIR);

y(n) =
M−1∑

k=0

wkx(n− k). (3.2)

The optimal solution was derived in Chapter 1 (Eqs. (1.26) to (1.34)) and
reads w = R−1p, where R is the autocorrelation matrix of the input
x(n) (M ×M) and p is the cross-correlation vector between the input and de-
sired signals. The gradient search approach yields the famed LMS algorithm,
wk(n + 1) = wk(n) + ηe(n)xk(n), k = 0, . . . ,M − 1, which approaches the
neighborhood of the optimal solution incrementally with only two multiplica-
tions per parameter.

The goal of the chapter is to substitute the MSE of Eq. (3.1) with an
information measure, more specifically an entropic criterion, and to provide
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Fig. 3.1. Error entropy adaptation.

some important properties. One of the achievements is that we show that the
entropic error shares properties of the M-estimators developed by Huber [157].
We define a novel function called correntropy and contrast it to MSE as well
as with the entropic cost to provide understanding. Unfortunately, there is no
known analytical solution to this class of cost functions because the optimiza-
tion problem is nonlinear in the weights.

3.2 The Error Entropy Criterion (EEC) for Adaptation

It can be argued that MSE is not always the best possible criterion to use
in adaptation. In fact, the minimization of MSE is just taking into consid-
eration the second-order moment of the error distribution, which is optimal
only for Gaussian distributed errors. In cases where the error distribution is
not Gaussian, it makes sense to study alternate cost functions for adaptation.
The traditional way to handle this shortcoming is to include higher-order non-
linearity in the errors [4, 78], and the best-known algorithms are perhaps the
least mean fourth (LMF) algorithm [328], the Lp power [244], or the mixed
norm algorithms [313].

Here we take a different approach using information-theoretical concepts,
and propose the error entropy criterion (EEC) where the goal of adaptation
should be to remove as much uncertainty as possible from the error signal.
In the ideal case, the error PDF should be a delta function, meaning that all
the uncertainty in the error was removed, or equivalently, all the information
contained in the input-desired signal pairs was translated into the weights
of the system. Combining the ideas of optimization and information theory
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presented in Chapter 1, this can be accomplished by calculating the entropy
of the error and minimizing it with respect to the free parameters;

min
w
H [e] s.t. e = z − f(x,w) & E[e] = 0, (3.3)

which is called the minimization of the error entropy algorithm or MEE for
short [87]. Instead of using Shannon’s entropy definition we substitute Renyi’s
quadratic entropy explained in Chapter 2 to take advantage of its estimator
provided by the information potential (IP) estimator of Eq. (2.14), and in
general for any α 	= 1 with Eq. (2.18). More recently this method was extended
to the (h, φ) entropies [53]. Recall that Renyi’s quadratic entropy of the error
is defined as {

H2(e) = − logV (e)
V (e) = E[p(e)].

(3.4)

Notice that Renyi’s quadratic entropy is a monotonic function of the nega-
tive of V (e) for α > 1. Therefore, for the purpose of adaptation, the logarithm
can be dropped (it will not change the location of the stationary point of the
cost function in parameter space), and minimization (or maximization) of
entropy will correspond to maximization (minimization) of V (e); that is,

min
w
H2(e) = max

w
V (e). (3.5)

This simplifies the explanation and the learning algorithms. Therefore, in
analogy with Eq. (1.27), the optimal weights can be found by computing [332],

∂H2(e)
∂w

→ ∂V (e)
∂w

= 0. (3.6)

3.3 Understanding the Error Entropy Criterion

Dropping the logarithm is inconceivable in an information-theoretic context
therefore, we seek here an explanation for the role of the expected value
of the PDF as a cost function for adaptation. Recall from Eq. (3.4) that
V (e) = E[p(e)], which makes V (e) a function of both the error and its PDF
unlike the MSE cost. Let us define ξ = p(e) to yield V (e) = E[ξ], or in other
words, we are nonlinearly transforming the error by its own PDF, which means
that we have left the error space and actually are performing the adaptation
on a transformed variable ξ. Figure 3.2 depicts this mapping. Why is this map-
ping useful? As is well known in statistics, the PDF contains all the relevant
statistical structure in the data. We claim that when the goal is to capture in
a single number the statistical structure of the error samples through a trans-
formation, the PDF is the natural nonlinear mapping from the data space to
the transformed space. Of course through ξ we are transforming samples into
samples, so we still do not have the single number we desire, but if we take
the mean value of ξ we easily achieve our goal and obtain Eq. (3.4).
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Fig. 3.2. The result of maximizing/minimizing the IP in the space of the error for
an arbitrary error PDF.

In adaptation, the error (the horizontal axis of Figure 3.2) is effectively
under the control of the parameters of the adaptive system because of the
error dependence on y which is a function of w (Eq. (3.2)). With Eq. (3.4),
changing the parameters of the learning system will also change the shape of
the error PDF, or in other words, in EEC not only the error samples but also
the set of functions that can be created in the mapping are under the control
of the learning system. This is clearly a much more powerful criterion than
MSE [78].

The EEC works on the vertical axis, and in the case of Renyi’s quadratic
entropy is simply E[p(e)], a scalar that turns out to be the mean of ξ. To
minimize entropy we want obviously to make the error PDF a delta function
anywhere in the space of the error, which implies a maximization of E[p(e)] as
Eq. (3.5) specifies. On the contrary, if we want to maximize entropy we want
the PDF to be flat (for finite range) or a Gaussian when the range is infinite,
which leads to a minimization of E[p(e)] in the vertical axis. In essence, the
specific values of the error are not important in EEC because the cost is just
constraining the mean of its PDF. We gain flexibility and power because a
single number now is related to the mean of the error distribution instead of
being just a fixed function (the power) of the error as in MSE. As a conclusion,
if one thinks about this interpretation of EEC using E[p(e)], information
theory is really not necessary, although our work was initially motivated by
entropy. But, we have to be much more careful when taking the derivative
with respect to the weights, because there is a functional dependence involved
through p(e).

Let us assume a linear system for simplicity, e = z − wTx. Note that
the cost is a function of the probability density function (PDF) of e, denoted
pe(.), which depends on the error, the parameter w, and in general also on the
joint PDF of the input X and desired response Z. Further note that when we
change the weights, there is a functional dependence among e, w, and p(e),
therefore we need to compute the total derivative of V (e,w, pXZ) w.r.t. the
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weights, instead of the partial derivative we normally utilize in MSE. From
Eq. (3.6) taking the total derivative of V w.r.t. to the weights yields

d
dw

V (e,w, pXZ ) =
d

dw

∫
pe(e,w, pXZ )2de (3.7)

or
d

dw
V (e,w, pXZ ) = 2E

[
d

dw
pe(e,w, pXZ )

]∣
∣
∣
∣ e=e. (3.8)

The difficulty is that both the function pe(.) and the evaluation point
change when weights are being adapted, so we have to compute partial deriva-
tives for each, which yields

E

[
d

dw
pe(e,w, pXZ )

]∣
∣
∣
∣ e=e = E

[
∂pe(e,w, pXZ )

∂e

∂e

∂w
+
∂pe(e,w, pXZ )

∂w

]∣
∣
∣
∣ e=e

= E

[
∂pe(e,w, pXZ )

∂e

∂e

∂w
|e=e +

∂pe(e,w, pXZ )
∂w

]

(3.9)
so

E

[
d

dw
pe(e,w, pXZ )

]∣
∣
∣
∣ e=e = E

[

(∂1pe)(e,w, pXZ )
∂e
∂w

+ (∂2pe)(e,w, pXZ )
]

= E [(∂1pe)(e,w, pXZ )X + (∂2pe)(e,w, pXZ )] ,
(3.10)

where ∂1, ∂2 correspond, respectively, to the partial derivative operator on
the first and second argument of the function (the partial with respect to the
third term is zero, in as much as the joint does not depend on the weights).
In simplified notation, one could write

d
dw

V (e,w, pXZ ) = 2E
[(

∂pe

∂e

)

X +
(
∂pe

∂w

)]

= 0

→ E

[(
∂pe

∂e

)

X

]

= −E
[(

∂pe

∂w

)]

. (3.11)

If pXZ is differentiable, then at extrema of the cost function V , one of which will
be the optima, the gradient is zero: ∂V (e)/∂w = 0. If we compare Eq. (3.11)
with the MSE in Eq. (1.28) we see two big differences: the first term includes
the derivative of the error PDF instead of the derivative of the error square,
but apart from this difference, this term quantifies how a change of weight
affects the cost through the error. Notice that the input X appears in both
equations as it should because it refers to the propagation of the error through
the filter topology. The second term in Eq. (3.11) quantifies how a change in
the weight affects the cost by changing the shape of the PDF. This term does
not exist in MSE because in Eq. (1.28) there is a direct relation between the
error and the weight. It can be shown that when the PDF is the Gaussian
Eq. (3.11) yields back Eq. (1.28).
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Utilizing the Error Entropy Criterion in Adaptation

The interpretation of the EEC and how it differs from MSE must be well
understood if we are going to use it effectively in adaptation. This is the pur-
pose of this section. It is apparent that EEC does not constrain the mean
value of the error, because it is acting on the projected random variable (the
vertical axis of Figure 3.2) and only the PDF shape that achieves the cost goal
is constrained, immaterial of where it is located in the error space. But prac-
tical adaptive problems require that the mean of the error be zero such that
the system output approaches the desired response. Therefore, the designer
must take care of the error mean by an additional procedure when using the
EEC. The simplest approach is to use an extra bias term at the output of the
FIR that is set by the mean of the desired response (Figure 3.3). Therefore a
linear combiner with bias, that is, y(n) =

∑M−1
k=0 wkx(n− k)+ z̄(n), is always

assumed in our discussions.
There are more principled ways of achieving the same goal as explained

later, but this solution is simple and works for desired responses with sym-
metric PDFs.

Optimizing Error Entropy Criterion with Estimators

The derivation of Eq. (3.11) is very nice, but the issues associated with the
implementation of this criterion seem mind boggling: the PDF is not known,
its estimators are ill-posed, and furthermore the criterion is changing through
iterations because the parameters of the system are changing! The beauty of
the ITL methodology is that we can approximate Eq. (3.11) by estimating
directly the 2-norm of the PDF with the information potential estimator and
working directly with data samples.

x(n)

z(n)

y(n)

w0

wM-1

E[z(n)]

z-1

z-1

z-1

S +
-

1

x(n-M+1)

Fig. 3.3. Compensating the mean indeterminancy of EEC with a bias weight.
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The minimization can be achieved by maximizing the information
potential estimator V̂2(e). Recall from Chapter 2 that, given a batch of
N samples, the estimator for V2(e) with the Gaussian kernel is

V̂2(e) =
1
N2

N∑

i=1

N∑

j=1

G√
2σ(ei − ej). (3.12)

According to the gradient ascent approach (because the interest is in maxi-
mizing V (e)) and a linear combiner (Eq. (1.32)), the kth weight of the FIR
at time n+ 1 can be adapted as

wk(n+ 1) = wk(n) + η∇kV̂2(n) k = 0, . . . ,M − 1, (3.13)

where we denote the IP for the past N samples as V̂2(n). Substituting
Eq. (3.12), the gradient for wk can be estimated as

∇kV̂2(n) =
∂V̂2(n)
∂wk

=
∂

∂wk

⎛

⎝ 1
N2

N∑

i=1

N∑

j=1

G√
2σ(e(n− i)− e(n− j))

⎞

⎠ .

(3.14)

Exchanging the derivative with the double sum and applying the chain
rule through the filter structure this can be further written as

∇kV̂2(n) =
1
N2

N∑

i=1

N∑

j=1

∂G√
2σ(e(n− i)− e(n− j))

∂(e(n− i)− e(n− j))
∂(e(n− i)− e(n− j))

∂wk
.

(3.15)

The derivative of the difference in errors appears because of the IP depen-
dence on pairs of samples. Because e(n) = z(n)−y(n) and z(n) is independent
of the weights this yields

∇kV̂2(n) =
1

2N2σ2

N∑

i=1

N∑

j=1

G√
2σ(e(n− i)− e(n− j))

× (e(n− i)− e(n− j))(xk(n− i)− xk(n− j))
(3.16)

for k = 0, . . . ,M − 1, where xk(n) means the sample at tap k and instant n.
Notice one important difference of Eq. (3.16) with respect to the steepest

descent computation of MSE (Eq. (1.33)): the IP gradient is no longer given
by products of inputs and errors, but it is expressed as differences of error
samples multiplied by the corresponding differences of inputs weighted by
the Gaussian function of the errors. Therefore this algorithm is still local in
the topology but it is not local in time. We rewrite Eq. (3.16) below for the
adaptation of a FIR with a general kernel κ.

∇kV̂2(n) =
1
N2

N∑

i=1

N∑

j=1

κ′σ(e(n− i)− e(n− j))(xk(n− j)− xk(n− i)) (3.17)
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As we can observe, Eqs. (3.16) and (3.17) use a sample block of size N and
so they are equivalent to the steepest descent procedure of MSE, therefore this
method is simply called the MEE algorithm. The MEE has a complexity of
O(N2), and it involves the evaluation of the kernel, which most of the time is
a transcendental function. This added complexity is the price paid to extract
more structure from the error when compared with the MSE.

The IP gradient expression can be easily extended for arbitrary α > 1 and
any kernel following the steps of Chapter 2, and for the FIR case yields

∇kVα(n) =
α− 1
Nα

N∑

i=1

⎛

⎝
N∑

j=1

κσ(e(n− i)− e(n− j))
⎞

⎠

α−2

×
N∑

j=1

κ′σ(e(n− i)− e(n− j))(xk(n− j)− xk(n− i)).
(3.18)

When compared with the theoretical entropy cost of Eq. (3.11), Eq. (3.16)
differs in two ways: the first term in Eq. (3.11) resembles Eq. (3.16) in the
sense that the expected value is substituted by the empirical mean (the double
sums), and that it is multiplied by the input vector when using the chain
rule over the topology. However, notice that the estimator works with pairs
of samples, so it is not just a matter of substituting E → ∑

in Eq. (3.11).
Secondly, the second term of Eq. (3.11) does not appear in Eq. (3.16), which
is reasonable because when working nonparametrically with the data and
kernels, the shape of the PDF is never quantified explicitly. Therefore, we
conclude that Eq. (3.16) corresponds to the optimization of EEC in a projected
space specified by the kernels for the estimation of the PDF (Chapter 10 shows
that effectively the optimization is in the reproducing kernel Hilbert space
defined by the kernel).

Information Forces in Adaptation

In Chapter 2 we provided a physical interpretation of the information po-
tential: when kernels are used for PDF estimation they create a field over
the space of the samples defined by the kernel shape. In adaptation the sam-
ples that are under study are the error samples e(n) created by subtracting
the system output from the desired response; that is, e(n) = z(n) − y(n).
Therefore one can also postulate that the samples, interpreted as informa-
tion particles, create forces among themselves as given by Eq. (2.59). If
we compare the information forces with the sensitivity of the cost with
respect to the error in Eq. (3.14) we conclude that they are exactly the
same. Therefore, in error entropy learning the injected error for adapta-
tion is the information force created by the ensemble on each error sample.
Notice that as the IP is a function of pairs of samples, the sensitivity has to
be computed with respect to each error, and can be combined as shown in
Eq. (3.16).
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3.4 Minimum Error Entropy Algorithm

We start by providing some important properties of EEC for adaptation and
learning. Recall again that filtering is a regression problem in functional spaces
and it is the only one treated explicitly in this chapter, although all of the
conclusions also apply to regression. The intuition behind the entropy criterion
for supervised learning is conceptually straightforward: given samples from an
input–output mapping, in order to extract the most structure from the data,
the information content of the error signal must be minimized; hence the error
entropy over the training dataset must be minimized, which is achieved with
a delta function (i.e., with all errors being equal if the system has a sufficient
number of degrees of freedom to solve the problem exactly).

Theorem 3.1. The stationary point of the EEC criterion for a linear com-
biner is achieved when

E

[
∂pe

∂e
X

]

= −E
[
∂pe

∂w

]

. (3.19)

The proof is straightforward from Eq. (3.11). This is an interesting equation,
because it imposes a balance between the inner product of the weight vector
with the functional derivative of the PDF, and the expected value of the
derivative of the PDF with respect to the weights. In the case where the
righthand side of Eq. (3.19) is zero, then the derivative of the PDF function
becomes orthogonal to the weight vector. We have not investigated under what
conditions and classes of PDFs the second term is zero, but this will preserve
the orthogonality condition between the gradient of the error PDF and the
input subspace as in MSE. In order to fully study Eq. (3.19) a differential
geometry approach seems necessary [6]. In fact, because we are dealing with a
parameter estimation problem, this result can be interpreted as constraining
the inner product of the error’s Fisher information with the weight vector
in the data manifold (∂p(e)/∂e is by definition the Fisher information of the
error PDF [6]).

Theorem 3.2. The stationary point of the EEC estimated with the IP is
translated in an orthogonality condition between the difference in input vectors
and the difference in errors weighted by the kernel of the error differences.

This theorem can also be easily proved from Eq. (3.16). In fact let us first
define Δeij = ei− ej, Δxij = xi−xj . If we express Eq. (3.16) with statistical
quantities, then it becomes E[G(Δe)ΔeΔx] and at the stationary point, the
differential input and the differential error rotated by G(Δe), the Gaussian of
the differential error, must be orthogonal to each other.

Theorem 3.2 indicates that the MEE provides “similar” weight updates
to MSE when the incremental errors are small, but drastically reduces the
weight updates when the incremental errors are large. We can therefore expect
robustness of the MEE criterion to impulse noise, as detailed in the next
section.
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Theorem 3.3. In perfect identification, the error entropy criterion is
insensitive to additive zero-mean noise independent of the input and desired,
regardless of the noise.

As is well known, the filter weights adapted with MSE are insensitive to
zero- mean additive white noise in the desired response [284]. EEC behaves
similarly, with some advantages in the small dataset case [87].

Proof. Consider the learning process depicted in Figure 3.1. Suppose that
the desired signal consists of the superposition of a deterministic component
and a zero-mean random component, such that z = g(x)+v, where g(.) is the
unknown function that the adaptive system is trying to identify and v is the
zero-mean noise with PDF pv(.) independent of x, and z. Suppose the learning
system is a parametric family of functions of the form f(x;w) where w is the
vector of parameters, called the weight vector. Assume x, z, and y are all zero-
mean signals without loss of generality. Let w∗ be the optimal weight vector
that minimizes the error entropy, and the error signal be defined as e = z− y.
Let w∗ be the optimal weight vector that minimizes the entropy of the clean
error signal that is defined as ē = g(x)−h(x,w). Notice that we have the iden-
tity e = ē+ v. Because v is an independent noise signal that does not depend
on w, the weights of the adaptive system, when ē is δ-distributed we have

w∗ = arg min
w

Hα(e(w)) = argmin
w

Hα(ē(w) + v) = argmin
w

Hα(ē(w)) = w̄∗.

(3.20)

Even if ē is not δ-distributed (which occurs when the model space does not
include the actual system), because the noise and the error are independent
Hα(ē+v) ≥ Hα(ē) and minimizing this upper bound will force the solution to
converge to a good value, which would be obtained in the noise-free situation.

Conjecture 3.1. The bandwidth parameter of the Gaussian kernel can be used
as a regularizer for the adaptation, mimicking the method of convolution
smoothing in global optimization.

Let us start by remarking that V̂ (e) can be alternatively obtained by
convolution of the kernel with the true PDF

E[p̂E(e)] = pE(e) ∗ κσ(e) =
∫
pE(τ)κσ(e− τ)dτ . (3.21)

Normally, we select the kernel size with respect to the data properties, but
let us look at the problem from the point of view of adaptation. In the space of
the system parameters, there is an estimated value V̂ (e) at every point, which
is called the performance surface (Figure 3.4). But because V̂ (e) is a function
of the kernel size, there is in fact an infinite family of estimates for each
point in weight space. Due to Theorem 2.4 and Eq. (3.19) we can expect that
the estimate will always be larger than the true quantity. More important,
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if the true performance surface is nonconvex, the smoothing properties of
the convolution may make it convex as the theory of convolution smoothing
indicates [310].

The control of the bandwidth parameter has been proposed as an effective
way to smooth local minima in the performance surface created by nonconvex
performance functions such as V (e) [87]. In global optimization the method
is called convolution smoothing (CS), and it has been proven effective in
many practical applications, such as the adaptation of IIR filters [84]. The
basic idea behind this approach is to convolve the cost function with a broad
smoothing functional, which initially eliminates the local minima. The width
of the smoothing functional can then be gradually decreased until a Dirac-δ is
obtained, which leaves the original cost function. During a proper annealing
phase (similar to temperature in simulated annealing [275]), the optimization
parameters approach the vicinity of the global optimum and are in the domain
of attraction that yield the optimal solution by gradient descent.

The interesting aspect of convolution smoothing for ITL is that normally
the smoothing function has to be applied to the cost function after the fact,
but in ITL the cost function V̂ (e) is created through a convolution, so the
method is intrinsic to the ITL formalism; we just need to use the kernel size
to achieve the optimization goal. However, in ITL the kernel size cannot be
decreased to zero, otherwise the estimation of V (e) by the IP breaks down.
Therefore the minimum value of the kernel size should be dictated by Silver-
man’s or equivalent rule. This value will not affect the location of the minimum
in weight space in perfect identification. Unfortunately, we have not been able
to prove all of the conditions of the theory of convolution smoothing applied
to ITL, but experimental results have shown that annealing the kernel size
during adaptation helps the convergence to the global minimum [87,165,223].
Appendix A summarizes current knowledge about kernel size annealing.

3.5 Analysis of MEE Performance Surface

General Shape of EEC Performance Surface

It is well known that the MSE cost function is a paraboloid facing up in the
space of the free parameters of the FIR filter. Here we analyze the overall shape
of the MEE cost function for Gaussian kernels, and we start with a single-
parameter FIR; that is, y(n) = wx(n). Because e(n− i) = z(n− i)− y(n− i)
Eq. (3.12) can be written

V̂2(E,w) =
1

N2
√

2πσ

N∑

i=1

N∑

j=1

e−[(Δzij−wΔxij )/2σ]2

=
1

N2
√

2πσ

N∑

i=1

N∑

j=1

e−(Δzij/2σ)2e+(2wΔxijΔzij/2σ)e−(wΔxij/2σ)2 ,

(3.22)
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where we use the notation Δzij = zi − zj , Δxij = xi − xj . This expression
is not amenable to a simple interpretation but there are several important
observations.

• All the terms in the exponent appear divided by the kernel size, which
means that the scale in the performance function space is dictated by the
kernel size. Or, in other words, the concept of “large” or “small” errors in
adaptation is always going to be relative to the kernel size.

• The first exponential term in the double sum is negative, independent of
the weight, and so it will be a constant dictated simply by the desired
signal; the second term is positive, linear in the weights, and contains the
cross-product difference between input and desired response; and the third
term is negative, depends only on the input difference, and is a function
of w2.

• Due to the square dependence on the weight, the third term will dominate
for large positive or negative values and we can expect the performance
surface to peak at some point in weight space (dictated primarily by the
second term) and then decrease exponentially with increasing or decreasing
w with a slight asymmetry due to the second term. The rate of decrease
is solely controlled by the input signal.

At first, adaptation of the EEC cost function seems to be unrelated to
what we know for MSE, but there is a hidden similarity. In fact, if we do
an approximation of the exponential function truncated at the second term,
which is only valid for small errors, we see that e−x

2 ∼ 1 − x2; that is, we
obtain a quadratic function of the error, but now the parabola is facing down,
meaning the optimization is for a maximum. What this means is that near the
optimum there is always a neighborhood (controlled by the kernel size) where
the EEC performance surface is well approximated by a quadratic function.
However, this does not imply that the stationary point of the EEC coincides
with the MSE in weight space. To see this let us compute the optimal weight
for the one-parameter case. Taking the derivative of Eq. (3.22) and equating
it to zero we obtain

w∗ =

∑N
i=1

∑N
j=1Gσ(Δeij )Δzij Δxij

∑N
i=1

∑N
j=1Gσ(Δeij )Δx

2
ij

. (3.23)

If we recall, the least square solution for the single-parameter case is
w =

∑N
i=1 zixi

/∑N
i=1 x

2
i . If one substitutes the variables with their time

increments (referred to as the delta) the form of the solution is very similar,
except that each term in the sum is multiplied by the Gaussian of the error dif-
ference. In perfect identification the errors go to zero, so the Gaussian goes to
one, and we can expect that the two solutions coincide, provided the input or
desired response are zero-mean stationary random processes. The latter con-
dition is required to preserve the optimal weight vector between the MSE so-
lution and the formulation with the differences of input/desired response pairs
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because
∑

i

∑
j ΔzijΔxij =

∑
i xizi+

∑
j xjzj−

∑
i xi

∑
j zj−

∑
i zi

∑
j xj and

the two last sums are zero for zero mean signals (likewise for the denominator).
The other case where the two solutions are similar is when the kernel size

is chosen much larger than the one required from the data structure (and
the input or desired response data are zero-mean), which means that the
Gaussian of the errors become approximately independent of the index and
can be factored out of the sums. Alternatively, this can be interpreted as
stating that the quadratic approximation of the EEC cost includes the full
parameter space.

In general, the EEC minimum will be different from the MSE in parameter
space, and the EEC shape does not display constant curvature (unlike the
MSE cost function) because Gσ(Δeij ) changes across iterations and affects
all the terms in the sum differently, starting with small values (large error
differences) and increasing until all the errors are basically the same (the
minimum of entropy). These ideas are made more precise with a simulation
below.

The simulation adapts a 1-tap FIR in a system identification configuration
(Figure 3.1), for which the desired response data are generated by a 2-tap FIR
with weight vector w∗ = [1, 2]T . There is no measurement noise and the input
to the filter is white Gaussian noise with zero-mean and unit variance. This
experimental setup is very simple but we can visualize the weight tracks during
adaptation to evaluate convergence and we know that the stationary point is
equal to the MSE cost because the system identification solution is unique.
On the other hand it does not fully display all the characteristics of the EEC,
which in general will provide different optimal solutions that may be “better”
than the MSE errors under some conditions.

Our first simulation is obtained with a single-tap FIR filter, that is, y(n) =
w0x(n), and Figure 3.4 depicts the performance surface for various values
of the kernel size (according to Silverman’s rule, the kernel size should be
σ = 0.45 for this specific example). Notice that the cost function displays
local minima for small values of σ, but it becomes progressively smoother,
symmetric and closer to a quadratic when σ grows.

Figure 3.5 shows an example of the information potential and the normal-
ized IP, that is, (V (e)/V (0 )) for a two-tap filter that is able to identify the
unknown system exactly (i.e., zero error). The maximum value of the normal-
ized IP for perfect identification is 1, but in all other cases (V (0)−V (E))/V (0)
can be interpreted as the deviation from the best possible solution (i.e., similar
to the final error power in MSE). Recall that maximizing IP corresponds to
minimizing Renyi’s entropy. Notice that the IP is always positive and pretty
flat in most of the space, which is very different from the MSE cost func-
tion. In regions close to the peak, the surface is steeper than a quadratic
function.
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Fig. 3.4. The performance surface for four values of the kernel size.

Fig. 3.5. Comparison of the IP and normalized IP (σ = 1): (a) information poten-
tioal [V (e)]; (b) normalized information potential [V (e)/V (0)]

Multiple Parameter Analysis of EEC Optimal Solution

An analysis of Eq. (3.23) shows that it is possible to extend the closed form
optimal weight solution for filters with multiple parameters (weights), when
the kernel is Gaussian, just by extending the least square approach to EEC.



3.5 Analysis of MEE Performance Surface 117

In fact, assume now that the filter has M parameters. Taking the derivative of
Eq. (3.12) with respect to the weights yields Eq. (3.16). Substituting Δei,j =
Δzi,j −

∑M−1
l=0 wlΔxi−l,j−l in this equation and equating to zero obtains

∑N

i=1

∑N

j=1
Gσ(Δeij)ΔzijΔxi−k,j−k =

∑M−1

l=0
wl

∑N

i=1
∑N

j=1
Gσ(Δeij)Δxi−l,j−lΔxi−k,j−k k = 0, . . . ,M − 1 (3.24)

Note the similarity of this set of M equations with M unknown filter param-
eters to the least square solution presented in Chapter 1: we have the cross-
correlation between the incremental desired and the incremental input (which
corresponds to the cross-correlation vector in least squares) equal to the au-
tocorrelation matrix of the incremental input, each weighted by the Gaussian
of the incremental errors; that is, in vector form, RΔw∗ = pΔ, where R is the
M×M locally Gaussian averaged delta autocorrelation function with elements
RΔ(wl,k) =

∑N
i=1

∑N
j=1Gσ(Δeij )Δxi−l,j−lΔxi−k,j−k and the M -dimensional

cross-correlation vector of locally Gaussian averaged incremental inputs and
desired signals with elements pΔ(wk) =

∑N
i=1

∑N
j=1Gσ(Δeij )ΔzijΔxi−k,j−k .

Note also the differences. In least squares, the solution is only a function
of the external system variables, whereas here these equations are still a func-
tion of the error signal, which in itself is a function of the filter parameters.
Therefore, Eq. (3.24) should not be interpreted as an analytic solution, but
more as a fixed point update algorithm. It is readily computable provided
we have access to the error and it has no free parameters. This means that
once the new parameters are estimated, we estimate the new error to plug
in Eq. (3.24) to get the new parameters in recursive fashion. Note the effect
of the Gaussian kernel that is multiplying all the elements of both the delta
autocorrelation and delta cross-correlation functions, and is what embodies
the difference between straight least squares and this weighted version of least
squares. Again we can expect the EEC solution to match least squares for zero
mean input or zero mean desired signals in perfect identification, that is, when
the error is zero. We continue to analyze this solution closely below and also
in Chapter 4.

Analysis of the Gradient Around the EEC Optimal Solution

As is well known in adaptation using the MSE criterion, the stepsize (or
learning rate) for convergence is linked to the largest eigenvalue of the input
autocorrelation matrix. In practice the inverse of the input power is consid-
ered as a stricter, but much easier to estimate, upper bound. If we analyze
Eq. (3.16) closely we can see that the expression is a much more complex func-
tion of the error, unlike the steepest descent algorithm. Therefore, our first
problem is to estimate the shape and steepness of the information potential
cost function to arrive at an understanding of how to select the stepsize.
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Suppose that the adaptive system under consideration in Figure 3.1 is a
linear combiner with a weight vector w. The error samples are e(n) = z(n)−
wTx(n), where x(n) is the input vector at sample n, formed by feeding the
input signal to a tapped delay line (FIR filter). The gradient of the information
potential estimator with respect to the weight vector in vector notation is
simply

∂Vα
∂w

=
(α − 1)
Nα

∑

j

(
∑

i

κσ(ej − ei)
)α−2

·
(

∑

i

κ′σ(ej − ei)(xi − xj)T
)

.

(3.25)

In this expression, further simplifications are possible through the use of the
scaling property of the kernel size and the following identity between the
derivatives of a width-σ kernel and a unit-width kernel κ′σ(x) = 1/σ2κ′(x/σ).
With these substitutions, the explicit expression for the gradient is easily
determined to be

∂Vα
∂w

=
(α− 1)
σαNα

∑

j

(
∑

i

κ (Δeji,w)

)α−2

·
(

∑

i

κ′ (Δeji,w) · (xi − xj)T
)

,

(3.26)

where Δeji,w = (zj − zi)−wT (xj − xi).
To continue with our analysis of adaptation near the optimum, we consider

the Taylor series expansion truncated to the linear term of the gradient around
the optimal weight vector w∗.

∇V̂α(w) ∼ ∇V̂α(w∗) +
∂∇V̂α(w∗)

∂w
(w−w∗) . (3.27)

Notice that truncating the gradient at the linear term corresponds to approx-
imating the cost function around the optimal point by a quadratic function.
From the previous discussion there is always a neighborhood of the optimum
controlled by the kernel size where this approximation is valid. The Hessian
matrix of this quadratic performance surface approximation is Ξ/2, where Ξ
is given as

Ξ =
∂∇V̂α(w∗)

∂w
=
∂2V̂α(w∗)
∂w2

=
(α− 1)
σαNα

∑

j

[
∑

i

κ(Δeji,w∗)

]α−3

·
⎧
⎪⎪⎨

⎪⎪⎩

(α− 2)
[
∑

i

κ′(Δeji,w∗) · (xi − xj)
]

·
[
∑

i

κ′(Δeji,w∗) · (xi − xj)T
]

+
[
∑

i

κ(Δeji,w∗)
]

·
[
∑

i

κ′′(Δeji,w∗) · (xi − xj)(xi − xj)T
]

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.28)

We can see that even under quadratic approximation, the EEC Hessian
matrix is a function of the input and the desired response through the error,
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unlike the MSE cost function. Moreover, due to the inclusion of the errors, it
is also not constant curvature. However, one can state that if the adaptation
problem can be solved with small final error, then the effect of the desired
response on the shape of the performance surface decreases proportionally.
In parallel to the work in MSE, we can define a new weight vector space
w̄ = w−w∗ whose origin is translated to the optimal solution w∗, and rewrite
the linearized dynamics of the weight equations in the vicinity of the solution
in terms of the stepsize and the Hessian matrix as w̄(n+ 1) = [I + η Ξ]w̄(n).
These are the coupled equations for the translated weights. In order to obtain
decoupled equations, we rotate the vector space by defining v = QT w̄, Q
being the orthonormal (modal) matrix consisting of the eigenvectors of Ξ.
Thus, the uncoupled dynamics for the translated and rotated weights are
v(n + 1) = [I + η Λ]v(n) where Λ is the diagonal eigenvalue matrix with
entries ordered in correspondence with the ordering in Q. From this set of
equations, we can isolate the dynamics of the weight vector along each mode
of the matrix Ξ. Specifically, for the ith mode, the dynamic equation will only
depend on the ith eigenvalue of Ξ by

vi(n+ 1) = [1 + η λi]vi(n), i = 1, . . . , l (3.29)

Note that, because Ξ is the Hessian of the performance surface evaluated
at a local maximum its eigenvalues are negative. For stable dynamics, all of
the coefficients in the n equations of Eq. (3.29) must be inside the unit circle;
that is, |1 + η λi| < 1. For stability this yields the following bound for the
stepsize

0 < η <
1

maxi |λi| . (3.30)

As expected, this condition is the same as the MSE criterion [143], except we
consider the eigenvalues of the Hessian matrix of the second-order approxi-
mation of the information potential instead of those of the covariance matrix
(autocorrelation matrix in the FIR filter case) of the input vector to the FIR.
Unfortunately, as seen in Eq. (3.28) it is very difficult to progress towards a
reasonable approximation of the eigenvalue matrix to decide about a reason-
able stepsize. Using the power of the input as an upper bound for the largest
eigenvalue still works under most conditions.

At this point, it also becomes possible to talk about time constants of
the modes in the neighborhood of the optimum point. We can determine an
approximate time constant for each individual mode whose dynamic equations
are governed by Eq. (3.29). Specifically, for the kth mode, we write (1+η λk) =
e−1/τk from which the time constant is determined to be

τk =
−1

ln(1 + ηλk)
≈ −1
ηλk

=
1

η |λk| . (3.31)

The time constants allow us to compare the convergence times of different
modes. In order to evaluate the overall convergence speed, one must consider
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the slowest mode, which corresponds to the largest time constant, that is, the
smallest eigenvalue. Understanding the relationship between the eigenvalues
of the Hessian matrix in Eq. (3.28) and the two parameters, the kernel size
and the entropy order, is crucial to maintaining the stability of the algorithm
following any changes in these parameters. One practical case where this re-
lationship becomes important is when we adapt the kernel size during the
training in connection with Conjecture 3.1. Because in this approach the ker-
nel size is decreased, we need to know how to adapt the stepsize to achieve
faster learning in the initial phase of adaptation (by using a larger stepsize)
and stable convergence in the final phase (by using a smaller stepsize). As
an example, consider the case where we evaluate the quadratic information
potential using Gaussian kernels. In this case, the Hessian matrix simplifies to

Ξ =
1

σ2N2

∑

j

[
∑

i

κ′′(Δeji,w∗)(xi − xj)(xi − xj)T
]

. (3.32)

Observe from Eq. (3.32) that as σ increases, Δeji,w∗ → 0, therefore,
κ′′(Δeji,w∗) → 0− with speed O(σ−6). This is faster than the reduction
rate of the denominator, which is O(σ−2), hence overall, the eigenvalues of Ξ
approach 0−. This means that the crest near the global maximum gets wider
and one can use a larger stepsize in steepest ascent, while still achieving stable
convergence to the optimal solution. In fact, this result can be generalized to
any kernel function and any α. This analysis is useful, but the big challenge
that remains is to estimate easily from the data an upper bound for the
eigenvalues of the quadratic approximation to select the stepsize.

Analysis of the Eigenvalues for Varying α

A precise analysis cannot be analytically pursued, but we can still predict how
the eigenvalues of the Hessian behave as this parameter is modified. In order
to estimate the behavior of the eigenvalues under changing α, we exploit the
following well-known result from linear algebra relating the eigenvalues of a
matrix to its trace. For any matrix R, whose eigenvalues are given by the set
{λi} ,

∑
i λi = trace(R). Now consider the general expression of Ξ given in

Eq. (3.32). The trace of Ξ is computed as

trace(Ξ) =
(α− 1)
σαNα

∑

j

[
∑

i

κ(Δeji,w∗)

]α−3

×
⎧
⎨

⎩
(α− 2)

∑

k

[
∑

i

κ′(Δeji,w∗) · (xik − xjk )

]2

+

[
∑

i

κ(Δeji,w∗)

]

·
[
∑

i

κ′′(Δeji,w∗) ·
(

∑

k

(xik − xjk )2
)]}

(3.33)



3.5 Analysis of MEE Performance Surface 121

The eigenvalues of Ξ are negative and the dominant component, which
introduces this negativity, is the term in the last line of Eq. (3.33). The nega-
tivity arises naturally because we use a differentiable symmetric kernel; at w∗
the entropy is small, therefore the error samples are close to each other and the
second derivative evaluates as a negative coefficient. Now let’s focus on the
term that involves the (α − 3)-power in the first line of Eq. (3.33). All other
terms vary linearly with α, thus this term dominantly affects the behavior
of the trace when α is varied. Consider the case where σ is small enough such
that the small entropy causes the kernel evaluations in the brackets to be close
to their maximum possible values and the sum therefore exceeds one. In this
case, the power of the quantity in the brackets increases exponentially with
increasing α (for α > 3), thus regardless of the terms affected linearly by α,
the overall trace value decreases (increases) in absolute value. Consequently,
a narrower crest towards the maximum appears and the upper bound on the
stepsize for stability is reduced.

On the other hand, if the kernel size is large so that the sum in the brack-
ets is less than one, then the (α − 3)-power of this quantity decreases, thus
resulting in a wider crest towards the maximum in contrast to the previous
case (for α > 3). However, in practice we do not want to use a very small or
a very large kernel size, as this will increase the variance or increase the bias
of the Parzen estimation, respectively.

Another important observation is to evaluate the changes of the trace
across iterations for constant α and kernel size. Eq. (3.33) is rather complex,
but notice that all the input factors are multiplied by kernels and their first
and second derivative. When the error is large, all these kernel evaluations
will be close to zero so we can expect that the maximum eigenvalue of Ξ will
be much smaller than the one obtained from the autocorrelation matrix far
from the optimum. However, notice that near the optimum, the terms multi-
plying κ′ are going to be small, whereas the ones involving κ are close to 1 and
those for κ′′ have a large negative value that is inversely proportional to the
kernel size. Therefore, the trace around the optimum may be larger than for
the autocorrelation function. We can expect that the maximum eigenvalue of
the EEC cost is far from constant during adaptation, which indirectly trans-
lates the fact that the performance surface is not a paraboloid as Figure 3.4
shows. Therefore, adaptive stepsize algorithms seem particularly appropriate
for the IP cost function. These conclusions are summarized in the following
three facts.

Fact 3.1. Regardless of the entropy order, increasing the kernel size results
in a wider crest around the optimal solution because the absolute values of
the (negative) eigenvalues of the IP Hessian matrix decrease.

Fact 3.2. The effect of entropy order on the eigenvalues of the Hessian de-
pends on the value of the kernel size. If the kernel size is small, then increasing
the entropy order increases the absolute values of the (negative) eigenvalues
of the Hessian of the information potential function at the global maximum.
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This results in a narrower crest. If the kernel size is large, the effect is the
opposite; increasing the entropy order decreases the absolute value of the
eigenvalues of the Hessian of the information potential, resulting in a wider
crest. This analysis is expected to hold at least for α > 3.

Fact 3.3. The largest eigenvalue across iterations for constant α and kernel
size is far from constant, reflecting the fact that the IP performance surface
is not a quadratic function. To avoid divergence, the stepsize should be set
smaller than the input power, but we can expect slow convergence far from
the optimum.

We remark that our conclusions in this section do not only apply to the
eigenvalues of Ξ, but they generalize to how these two parameters affect the
volume of the region where our quadratic approximation is valid. These results
are very useful from a practical point of view, because they explain how the
structure of the performance surface can be manipulated by adjusting these
parameters. Besides, they identify the procedures to adjust the stepsize for
fast and stable convergence.

Figure 3.6 depicts the effect of entropy order and kernel size on the per-
formance surface when the estimator in Eq. (3.26) is utilized in the simple
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Fig. 3.6. Contours of information potential in supervised FIR training for various
choices of kernel size (σ) and entropy order (α) (from [88]).
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problem of Section 3.5. Evaluation of associated gradients and Hessians is
carried out using the formulas presented in the preceding sections. This case
study aims to illustrate how the performance surface (here represented by its
contour plots) of the information potential criterion for supervised training of
a linear combiner is altered as a consequence of changing entropy order and
kernel size in the estimator.

Recall that we have concluded that as the kernel size is increased, the
valley around the global maximum becomes wider (allowing a larger step-
size for stable convergence) as well as the volume of the region of quadratic
approximation. This is clearly observed in the columns of Figure 3.6. As we
predicted the coverage area of the quadratic approximation expands as the
cost function approaches MSE when the kernel size is increased. In Figure 3.6,
each row represents a constant kernel size (σ = 0.1, 0.5, 1) and each column
represents a constant entropy order (α = 1.5, 2, 3), respectively.

3.6 Error Entropy, Correntropy, and M Estimation

The usual goal in adaptive filtering and regression (Figure 3.1) is to bring
the system output as “close” to the desired signal as possible. The concept
of “close” implicitly or explicitly employs a distance function or similarity
measure. MSE is probably the most widely used cost function and it has the
obvious meaning of an L2 distance if we replace the statistical expectation
with the sample mean estimator. Assume that the desired signal and the sys-
tem output are random variables Z = {zi}, i = 1, . . . , N , and Y = {yi},
i = 1, . . . , N , respectively, from which we obtain N samples from our exper-
iment, and we define a new random variable E = Z − Y . The mean square
error (MSE) is defined as

MSE(Y, Z) = E[(Y − Z)2] =
∫

y

∫

z

(y − z)2pYZ (y, z)dydz =
∫

e

e2pE(e)de

(3.34)

where the error square term is illustrated in Figure 3.7.
Notice that MSE is a quadratic function in the joint space with a valley

along the z = y line. Because similarity quantifies how close Z is from Y
in probability, this intuitively explains why MSE is a similarity measure in
the joint space. In Eq. (3.34), we also see that the error square is weighted
by the PDF of the error. However, the quadratic increase of the error for
values away from the z = y line due to the second moment has the net effect
of amplifying the contribution of samples that are far away from the mean
value of the error distribution and it is why Gaussian distributed residuals
(or other short-tail distributions) provide optimality for the MSE procedure.
But it is also the reason why other fat-tail data distributions such as the
Laplacian and in particular error distributions with outliers, nonsymmetric,
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Fig. 3.7. The MSE cost function in the joint space.

or nonzero-mean, make the MSE suboptimal. This has been well recognized in
the statistical literature [157], and methodologies that go by the name robust
statistics are preferred in this scenario. We show below that the 2-norm of the
PDF and the IP estimator play a very central role in implementing robust
statistics.

We use the definitions of quadratic Renyi’s entropy and the estimator
of the IP of Eq. (3.12) exclusively using the Gaussian kernel, although the
results extend to other kernels. The EEC is a well-defined cost function in
the sense that it has a global solution manifold where all error entries are
equal (to obtain a single point the mean error value must be constrained,
for instance, by using the mean of the desired response; see Section 3.3).
However, does EEC define a metric in the same sense that MSE defines an L2

norm on the error sample space? This is the question that we will address in
this section. In order to answer this question we have to introduce a related
cost function for learning named the error correntropy criterion (ECC) [201]
defined by a function of two arguments called cross-correntropy. Chapter 10
studies correntropy extensively, and here we just use the concept to motivate
robust estimation. Cross-correntropy for two random variables Z and Y is
formally defined as

v(Z, Y ) = EZY [Gσ(Z − Y )] =
∫ ∫

Gσ(z − y)p(z, y)dzdy . (3.35)

When sampling from the densities, cross-correntropy can be estimated as

v̂(Z, Y ) =
1
N

N∑

i=1

Gσ(zi − yi) =
1
N

N∑

i=1

Gσ(ei). (3.36)
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Fig. 3.8. Correntopy in the joint space.

Figure 3.8 shows a plot of cross-correntropy for the Gaussian kernel with
σ = 1. As one observes, cross-correntropy can also be used as a similarity
measure in the joint space, but it differs appreciably from the MSE shown in
Figure 3.7. In fact, the cost emphasizes the behavior between Z and Y along
the line z = y, and exponentially attenuates contributions away from this line
depending on the shape and parameter of the kernel utilized.

From Eq. (3.36), one can propose the ECC as a new cost function for adap-
tation well grounded in statistical meaning that maximizes the error proba-
bility density at the origin and that yield the maximum correntropy criterion
(MCC) algorithm; that is,

MCC = max
w

v̂(E),

where the parameters w control the error PDF E = Z − Y . Indeed, using the
Parzen method, the error PDF pE(e) can be estimated as

p̂E(e) =
1
N

N∑

i=1

Gσ(e− ei).

Evaluating this PDF at e = 0, we obtain, comparing with Eq. (3.36),

v̂(Z, Y ) = p̂E(0). (3.37)

Therefore, MCC effectively increases the value of the error PDF at zero (if pos-
sible a delta function), which is the natural thing to do in regression or adap-
tive filtering, where the goal is to increase the number of small deviations
between Z and Y .
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If we recall the EEC discussion early in this chapter, we also see that
maximizing the information potential was achieved by creating a PDF that
was very peaky (if possible a delta function), but we lost the ability to cen-
ter it at zero because we were simply maximizing the mean of the trans-
formed error variable. These interpretations are very important to understand
these three cost functions (i.e., ECC, EEC, and MSE) and their effects on
learning.

A Brief Review of M Estimation

The MSE cost function performs very well when the error statistics are zero-
mean and the PDF of the noise is Gaussian or short-tailed. In many practical
conditions these conditions are violated by outliers that can make the noise
nonzero-mean and extend the tails of the distribution. This is well recognized
in statistics, and there are many possible ways of mitigating outliers, either
by removing them manually, using trimming methods or using other statistics
that are more resilient to noise such as the rank statistics (for which the me-
dian is the best-known example) [297]. An alternative that has many followers
is the idea of weighted least squares, where the second moment of the error
is substituted by other less steeply increasing functions of the error that are
customized for the application (linear increase, windowizing, even saturating
after some value as the bisquare proposed by Tukey) [127]. The solution is
less sensitive to outliers, therefore it is called robust.

A systematic way of handling outliers is achieved by introducing the con-
cept of robustness in maximum likelihood as proposed by Huber [157]. Recall
that the maximum likelihood estimator from a data observation x1, . . . , xn

assuming the distribution p(x) is known except for the parameters θ, can be
written as

θ̂MLE = argmax
θ
p(x1, . . . , xN |θ). (3.38)

If we assume i.i.d. observations we can rewrite as

θ̂MLE = arg max
θ

N∏

i=1

p(xi|θ) = argmax
θ

N∑

i=1

log p(xi|θ)

= argmin
θ

N∑

i=1

(− log p(xi|θ)), (3.39)

due to the monotonicity of the logarithm. Huber defined the M-estimators as
a generalization of maximum likelihood as

min
θ

N∑

i=1

ρ(xi) or
N∑

i=1

ψ(xi) = 0 with ψ(x) =
dρ(x)
dx

, (3.40)
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where ρ(x) must obey the properties:

1. ρ(x) ≥ 0.
2. ρ(0) = 0.
3. ρ(x) = ρ(−x).
4. ρ(xi) ≥ ρ(xj), |xi| > |xj | .

(3.41)

This estimator can be readily applied to regression problems in lieu of the
MSE criterion. Let us assume the data model z = wTx + e. The robust cost
function can be applied to the error in Figure 3.7 yielding

J(e) =
N∑

i=1

ρ(ei) =
N∑

i=1

ρ(zi −wTxi). (3.42)

Taking the derivative of the cost w.r.t. the parameter vector w and equat-
ing to zero produces a set of equations of the form,

N∑

i=1

ψ(zi −wTxi)xTi = 0.

Define the weighting function γ(e) = ψ(e)/e and let γi = γ(ei). Then the
equivalent gradient becomes

N∑

i=1

γixTi ei = 0, (3.43)

which corresponds to a weighted least squares cost function inasmuch as
min
w

∑N
i=1 γie

2
i , but it requires an iterative reweighted least squares solu-

tion since both the weighting function and the parameters depend upon the
residues e [104]. This result establishes formally the link between M-estimation
and weighted least squares, which includes least squares as a special case; that
is, ρLS(e) = e2 and γ(e) = 1 (see Table 3.1).

Table 3.1. Comparison of Robust Least Square Estimators

Method Cost Function Weighting Function

Least

squares

ρLS (e) = e2 γLS (e) = 1

Huber ρH (e) =

{
1/2e2 |e| < α

α |e| − 1/2k2 |e| > α
γH(e) =

{
1 |e| < α

α/ |e| |e| > α

Bi-square ρBi (e) =

{
α2/6(1 − (1 − (e/α)2)3) |e| < α

α2/6 |e| > α
γBi (e) =

{
(1 − (e/α)2)2 |e| < α

0 |e| > α

ECC ρCEC (e) = (1 − exp(−e2/2σ2))/
√

2πσ γCEC (e) = exp(−e2/2σ2)/
√

2πσ3
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3.7 Correntropy Induced Metric and M-Estimation

Let us assume two random vectors X = (x1, x2, . . . , xN ) and Y =
(y1, y2, . . . , yN). Eq. (3.35) defining cross-correntropy between these two
vectors is a similarity measure because it is always positive and is maximum
when the two vectors are the same. Moreover, it induces a distance function
in the input space called the correntropy induced metric (CIM). A metric on
a set ℵ is a function d : ℵ×ℵ → R. For all X,Y,Z in ℵ, a metric should satisfy
the following properties.

1. Nonnegativity d(X,Y ) ≥ 0.
2. Identity d(X,Y ) = 0 if and only if X = Y .
3. Symmetry d(X,Y ) = d(Y,X).
4. Triangle inequality d(X,Z) ≤ d(X,Y ) + d(Y, Z).

If Property 2 is dropped, a pseudometric is obtained. In the supervised learn-
ing case, a metric is a function of the error vector E = Y −X = [e1, e2, . . . , eN ]
and induces a norm if it is translation-invariant and homogeneous, which are
respectively defined as

d(X + a, Y + a) = d(X,Y ) (3.44)

d(αX,αY ) = |α|d(X,Y ) (3.45)

Definition 3.1. For any two random vectors X = (x1, x2, . . . , xN ) and Y =
(y1, y2, . . . , yN) the correntropy induced metric is defined as

CIM(X,Y ) = (v(0, 0)− v(X,Y ))1/2. (3.46)

It can be easily proven that CIM satisfies the properties of nonnegativity,
identity, symmetry, triangle inequality, and translation invariant, and thus is
a well-defined metric.

1. Non-negativity. CIM(X,Y ) ≥ 0 by realizing that correntropy is positive
and bounded: 0 < v(X,Y ) ≤ 1/

√
2πσ. It reaches its maximum if and only

if X = Y .
2. Identity. CIM(X,Y ) = 0 if and only if X = Y by the same reasoning as 1.
3. Symmetry. It is easily verified by reversing the argument in the kernel.
4. Triangle inequality: CIM(X,Z) ≤ CIM(X,Y ) + CIM(Y, Z). The proof is

based on the kernel mapping and a vector construction in a feature space
which is a well-defined Hilbert space. For X and Y , we construct two new
vectors X̃ = [Φ(x1), . . . ,Φ(xN )] and Ỹ = [Φ(y1), . . . ,Φ(yN )] in the Hilbert
space Hκ. The Euclidean distance ED(X̃, Ỹ ) is
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ED(X̃, Ỹ ) =
√
< (X̃ − Ỹ ), (X̃ − Ỹ ) >

=
√
< X̃, X̃ > −2 < X̃, Ỹ > + < Ỹ , Ỹ >

=
(
N∑

i=1

Gσ(xi − xi)− 2
N∑

i=1

Gσ(xi − yi) +
N∑

i=1

Gσ(yi − yi)
)1/2

=
√

2N(Gσ(0)− v(X,Y )) =
√

2NCIM (X,Y ).
(3.47)

Therefore

CIM (X,Z)=
ED(X̃, Z̃)√

2N
≤ ED(X̃, Ỹ )√

2N
+

ED(Z̃, Ỹ )√
2N

=CIM (X,Y )+CIM (Y, Z).

(3.48)
This completes the proof.

It can also be shown that this metric is translation invariant for translation-
invariant kernels such as the Gaussian kernel, so we can denote CIM (X, Y ) as
CIM (Y −X). However, CIM is not homogeneous so it cannot further induce
a norm on the sample space. The contour plots of constant CIM between two
samples, one at the origin in 2D space, are shown in Figure 3.9.
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When the ECC is used as a cost function to train adaptive systems, we
actually make the system output close to the desired signal in the CIM sense.
Figure 3-9, which depicts the contour lines of equal CIM, shows that when
the error vector is close to zero, CIM is equivalent to the L2-distance (circular
contours); when the error gets larger, CIM becomes an L1-distance (diamond
contour); and eventually when the error is large the metric levels off and
becomes insensitive to the value of the error vector (approaching L0; i.e., a
counting norm). The concepts of large and small here are related to the kernel
size utilized in the Gaussian function. This intuitively explains the robustness
of ECC, but we can be more precise by putting ECC in the general framework
of M-estimation [201].

Theorem 3.4. The error entropy criterion implemented with kernels is a ro-
bust cost function (in the sense of Huber’s robust statistics).

Proof. To show the relationship between ECC and M-estimation the error
weighting function in Eq. (3.40) becomes (CIM(e))2; that is,

ρ(e) = (1 − exp(−e2/2σ2))/
√

2πσ. (3.49)

It is easy to see that this ρ(e) obeys the properties of Eq. (3.41). Therefore,
according to Huber’s theory of robust estimation, ECC as defined in Eq. (3.35)
is equivalent to the following M-estimation problem,

min
N∑

i=1

ρ(ei) (3.50)

or the following weighted least square problem,

min
w

N∑

i=1

γie
2
i . (3.51)

The weight function γ(e) is defined by

γ(e) = ρ′(e)/e, (3.52)

where ρ′ is the derivative of ρ. Therefore

γ(e) = exp(−e2/2σ2)/
√

2πσ3. (3.53)

This means that large errors get larger attenuation, thus the estimation
is resistant to outliers. The weighting function of Eq. (3.53) is very similar to
the bi-square method in Table 3.1 where α is a tuning constant.

It turns out that the square of the Taylor expansion of Eq. (3.53) to the
first order is the weighting function of bi-square and the kernel size σ substi-
tutes the tuning constant in bi-square. Notice that in ECC the kernel size has
a double role of representing the error PDF well and at the same time attenu-
ating outliers, which sometimes may be too constraining when the number of
samples is small. But in general it shows that the cost function has a built-in
robustness because of the local estimation produced by the kernel.
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3.8 Normalized Information Potential as a Pseudometric

In this section, we show the relation between the error entropy criterion of
Eq. (3.36) and the error correntropy criterion, and therefore also the relation
between EEC and M-estimation. Let us look at the EEC criterion in a way
conducive to a similarity measure interpretation. Take the first-order differ-
ence between elements of Z and denote it by Δzij = zi − zj , likewise for Y ,
and construct vectors

ΔZ = (Δz11,Δz12, . . . ,Δz21,Δz22, . . . ,ΔzNN )
ΔY = (Δy11,Δy12, . . . ,Δy21,Δy22, . . . ,ΔyNN ).

The correntropy between these two new vectors is

v̂(ΔZ,ΔY ) =
1
N2

N∑

j=1

N∑

i=1

Gσ(Δzij −Δyij ). (3.54)

Because Δzij −Δyij = (zi − zj)− (yi − yj) = ei − ej we obtain

v̂(ΔZ,ΔY ) =
1
N2

N∑

j=1

N∑

i=1

Gσ(ei − ej) = V̂ (E). (3.55)

Correntropy is a similarity measure, therefore so is the error entropy. The for-
mer compares the components of Z and Y directly whereas the error IP com-
pares their first-order differences. Using this argument, it is easy to show that
a simple normalization of the information potential is a pseudometric. Define
the function VN (Z, Y ) =

√
(V (0)− V (E))/V (0). By substituting Eq. (3.55)

and noting that v(0, 0) = V (0) we get

VN (Z, Y ) =
(
v(0, 0)− v(ΔZ,ΔY )

V (0)

)1/2

=
CIM (ΔZ,ΔY )

V (0)
(3.56)

The normalized IP loses the property of identity when one takes the first order
difference between variables. In other words, with ΔZ available one can only
recover the original Z up to an undetermined shifting constant (the mean
of Z). Let us calculate the MSE between ΔZ and ΔY to gain some more in-
sights. After some manipulations, we obtain MSE(ΔZ,ΔY ) = 2var(e), which
tells us two things: first the error IP of Eq. (3.55) is equivalent to the error vari-
ance when the kernel size is large; second it is not sensitive to the error mean
which coincides with the previous analysis of MEE. Figure 3.10 shows the
contour plots of VM (X, 0) to compare with the CIM contours of Figure 3.9.

The EEC criterion actually minimizes the distance between Z and Y in the
IP sense or between ΔZ and ΔY in the CIM sense. In fact, if we define the
new error variable Δeij = Δzij−Δyij = ei−ej and assume that e is the actual
random variation contained in the data, EEC is equivalent to the following
M-estimation problem
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Fig. 3.10. Contours of VM (X ,0 ) in 2D sample space. It is a pseudometric (kernel
size is set to 1) (from [200]).

min
N∑

j=1

N∑

i=1

ρ(Δeij), (3.57)

or the weighted least square problem

min
N∑

j=1

N∑

i=1

γ(eij )(Δeij )2 (3.58)

with ρ(·) and γ(·) defined in Eqs. (3.49) and (3.53). Therefore, it becomes
clear that the EEC criterion is also a method of M-estimation which further
explains why EEC is a cost function that is resistant to outliers.

The basic assumption about errors in regression is they are purely stochas-
tic white and follow a Gaussian distribution with zero mean and constant vari-
ance σ2. Then the new error variable Δeij also follows a Gaussian distribution
with zero mean and constant variance 2σ2 for i 	= j. In the case of i = j, it
equals zero and has no effect on the estimation. On the other hand, a small
deviation from the above error model assumption (i.e., outliers present in the
errors) corresponds to a small deviation of our new error random variable
from the Gaussian model. Suppose the errors are drawn from the following
PDF (Middleton model [220])

pE(e) = (1− ε)×N(0, σ2) + ε×N (
m2, σ

2
2

)
. (3.59)
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Here, ε denotes the degree of deviation which is usually much smaller than 1
and σ2 >> σ. Because ei, ej (i 	= j) are independent, the PDF of Δeij is

pE(de) = (1− ε)2N(0, 2σ2) + ε(1− ε)N (
m2, σ

2
2 + σ2

)
+ ε(1− ε)

×N (−m2, σ
2
2 + σ2

)
+ ε2N

(
0, 2σ2

2

)
.

(3.60)

However, by introducing the difference operation, the noise power is almost
doubled (recall that MSE (ΔZ,ΔY ) = 2var(e)) and the outlier effect is also
double with respect to ECC. To summarize, let us compare ECC, EEC, and
MSE by rewriting their definitions

max v(Z, Y ) =
∫

e

Gσ(e)pE(e)de

maxV (E) =
∫

e

pE(e)pE(e)de

min MSE(E) =
∫

e

e2pE(e)de.

The learning process is nothing but the evolution of the error PDF according
to a specific criterion. The problem of ECC and other M-estimation methods
such as bi-squares is that one has to carefully anneal the kernel size or the
tuning constant to balance efficiency with robustness. Intuitively, ECC is a
local criterion because it only cares about the local part of the error PDF
falling within the kernel bandwidth. When the error modes are far from the
origin, they fall outside the kernel bandwidth, and the learning is insensitive
to them. When one weights the error PDF by itself as in EEC, the error modes
are easily detected anywhere in the error space with the advantage of data
efficiency, but the kernel size still needs to be properly annealed as we saw
early in this chapter. Whereas ECC is robust to outliers because it is local,
EEC achieves robustness and efficiency by selfadjusting the localness of the
weighting function based on the error distribution. The only problem with
EEC is how to determine the location of the error PDF because the criterion
is shift-invariant. Practically this is achieved by biasing the system output to
the desired signal mean to make the error mean equal to zero. However, when
the error PDF is nonsymmetric or has heavy tails the estimation of the mean
error is problematic.

Finally, since we are utilizing gradient descent procedures, the adaptation
of EEC and ECC are much simpler than the recursive approaches used in
M-estimation.

Centered Error Entropy Criterion

Our goal of supervised training is to make most of the errors equal to zero,
therefore we can construct naturally an augmented criterion so that it min-
imizes the error entropy with respect to 0. A natural idea to automatically
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achieve this goal is to locate the peak of the error PDF at the origin. Fixing
the error peak at the origin in EEC is obviously better than the conventional
method of shifting the error based on the mean of the desired response. Denote
e0 = 0, EC = [e0, E] where E is the error vector produced by the adaptive
system and e0 serves as a point of reference, which we call here a fiducial
point. Then the error IP with a fiducial point at the origin becomes

V (EC) =
1

(N + 1)2

N∑

j=0

N∑

i=0

κσ(ei − ej) =
1

(N + 1)2
⎡

⎣2
N∑

i=1

κσ(ei) +
N∑

j=1

N∑

i=1

κσ(ei − ej) + κσ(0)

⎤

⎦ .

(3.61)

The above cost function is nothing but a weighted combination of ECC and
EEC. According to our understanding, the EEC term minimizes the error
entropy and the ECC term anchors the main peak of the error PDF at the
origin which fulfills the design goal. In general, we can write the centered error
entropy criterion (CEEC) as

J = λ
N∑

i=1

κσ(ei) + (1− λ)
N∑

j=1

N∑

i=1

κσ(ei − ej), (3.62)

where λ is a weighting constant between 0 and 1 that can be interpreted by
how many fiducial “samples” one puts at the origin. The more samples one
puts at the origin, the larger λ becomes. When λ = 0, Eq. (3.62) reduces to
EEC; when λ = 1, it is ECC, and λ = 1/3 gives Eq. (3.61).

The advantage of CEEC versus the practical procedure outlined in
Section 3.3 is that Eq. (3.62) automatically locates the main peak of the
error PDF and fixes it at the origin even in the cases where the estimation
of the error mean is not robust (i.e., the error PDF is not symmetric or has
heavy tails). More significantly, we also can show that the CEEC actually
induces a well-defined metric. We use Eq. (3.61) to show that it induces
a metric as correntropy and an interesting observation is that it becomes
sensitive to direction because it contains the MEE term (Figure 3.11). Most
metrics are symmetric in the following sense

SM(. . . , ei, . . .) = SM(. . . ,−ei, . . .). (3.63)

However, CEEC favors errors with the same sign and penalizes the directions
where errors have different signs. If the errors are small with respect to the
kernel size, this metric can be described by the linear term of Eq. (3.61).
Assume N = 2 and by simple manipulations, we have

r2 ∝
(
e1
e2

)T (
2 1
1 2

)−1 (
e1
e2

)

. (3.64)
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Fig. 3.11. Contours of the metric induced by CEEC in 2D sample space (scaling
and rotating variant). It penalizes the directions of 3π/4 and 7π/4 where the errors
have different signs (kernel size is 1)(from [200]).

This is the squared Mahalanobis distance from e to 0 with covariance matrix
∑

=
(

2 1
1 2

)

.

The eigenvectors are (0.707,0.707), (−0.707, 0.707) with the corresponding
eigenvalues 3, 1. This justifies the elliptic pattern in Figure 3.11, and it may
find practical applications.

3.9 Adaptation of the Kernel Size in Adaptive Filtering

The kernel size in EEC and ECC can be considered one more parameter to be
adapted during learning, unlike the work in density estimation where a rea-
sonable cost function for selecting the kernel size remains elusive. This shows
that filtering is a simpler problem than density estimation, but a thorough
investigation of the best cost to adapt the kernel size parameter is still lacking.
Figure 3.12 shows the overall block diagram for the adaptation of EEC and
ECC when the kernel size parameter is also being adapted. Notice that now
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Fig. 3.12. Composite adaptation of filter parameters and the kernel size.

we have two cost functions, one to adapt the parameters of the filter Jσ (w),
and a second cost function JKL (σ) to adapt the kernel size in the estimation
of the EEC or ECC costs.

The optimality condition proposed to adapt the kernel size is derived from
nonparameteric regression concepts [133], where the kernel size is understood
as a compromise between bias and variance of the regressor. As such we pro-
pose the use of the Kullback-Leibler divergence between the true error PDF
and the estimated PDF as our criterion to adapt the kernel size parameter
online [302].

Let p̂σ (e) be the estimated density from a window of N samples of
the error, evaluated using the Gaussian kernel with width σ : p̂σ(e) =
1/N

∑N
i=1Gσ(e− ei). From an information-theoretic perspective, an optimal

value of σ would be one that minimizes the discriminant information between
the estimated density and the true density p(e) of the errors. Therefore, the
cost function for optimizing the kernel size is:

DKL(p||p̂σ) =
∫
p(e) log

(
p(e)
p̂σ(e)

)

de =
∫
p(e) log p(e)de −

∫
p(e) log p̂σ(e)de.

(3.65)

The first term in Eq. (3.65) is independent of the kernel size. Therefore,
minimizing DKL(p||p̂σ) with respect to σ is equivalent to maximizing the
second term of Eq. (3.65), which is nothing but the cross-entropy between the
true PDF and the estimated PDF with kernels. Therefore our cost function
to optimize for the value of σ is simply

JKL(σ) = E[log(p̂σ(e)], (3.66)
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which can also be interpreted as a maximum log-likelihood condition. Using
the sample estimator for the expectation operator, we obtain

ĴKL(σ) =
1
N

N∑

i=1

log

⎛

⎝ 1
N

N∑

j=1

G(ei − ej)

⎞

⎠ . (3.67)

Taking the derivative of JKL(σ) with respect to σ yields

∂JKL(σ)
∂σ

= E

⎡

⎢
⎢
⎣

∑N
i=1 exp

(−(e− ei)2
2σ2

) (
(e− ei)2

σ3
− 1
σ

)

∑N
i=1 exp

(−(e− ei)2
2σ2

)

⎤

⎥
⎥
⎦ . (3.68)

Going back to our original adaptive filter configuration, using the above
equation and adapting it to an online application we can formulate a sim-
ple gradient ascent search rule to update the kernel size, at every weight
update step of the adaptive filter as

σ(n+ 1) = σ(n) + η
∂JKL(σ(n))
∂σ(n)

σ(n+ 1) = σ(n) + ηE

⎡

⎢
⎢
⎣

∑n−1
i=n−L exp

(−(e− e(i))2
2σ2(n)

) (
(e− e(i))2
σ3(n)

− 1
σ(n)

)

∑n−1
i=n−L exp

(−(e− e(i))2
2σ2(n)

)

⎤

⎥
⎥
⎦,

(3.69)

where n is the current time index, and L is the window size to estimate
J . We can use a stochastic approximation of the gradient by dropping the
expectation operator and evaluating the operand at the current sample of the
error. Therefore the final update rule becomes:

σ(n + 1) = σ(n) + η

⎡

⎢
⎢
⎢
⎣

∑n−1
i=n−L exp

(−(e(n) − e(i))2

2σ2(n)

) (
(e(n) − e(i))2

σ3(n)
− 1

σ(n)

)

∑n−1
i=n−L exp

(−(e(n) − e(i))2

2σ2(n)

)

⎤

⎥
⎥
⎥
⎦

.

(3.70)

The computational complexity of this adaptation technique is O(L), where
L is the length of the window used for computing the density estimate. A spe-
cial case of the above update rule arises when we take L = 1, in which case
Eq. (3.70) takes the simple form of a stochastic gradient update to adapt the
kernel size as

σ(n+ 1) = σ(n) + η

(
(e(n)− e(n− 1))2

σ3(n)
− 1
σ(n)

)

. (3.71)
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Equation (3.68) deserves a closer examination, as it provides useful insights
about the steady-state values of σ. Clearly, the condition for convergence of
σ is when

∑n−1

i=n−L exp
(−(e(n)− e(i))2

2σ2(n)

) (
(e(n)− e(i))2

σ3(n)
− 1
σ(n)

)

= 0. (3.72)

A little rearrangement yields

σ2(n) =

∑n−1
i=n−L exp

(−(e(n)− e(i))2
2σ2(n)

)
(
(e(n)− e(i))2)

∑n−1
i=n−L exp

(−(e(n)− e(i))2
2σ2(n)

) . (3.73)

It is interesting to observe that the right-hand side of Eq. (3.73) is in
fact the computation of a weighted variance of the errors around the cur-
rent sample e(n). The exponential weighting given to the squared differences
(e(n) − e(i))2 provides a windowing or a localization to the variance compu-
tation. The localization is not in time, but in the space of the magnitude of
the errors. This means that values close to the current sample e(n) receive
higher weight while computing the variance. It can therefore be seen that us-
ing the adaptation rule of Eq. (3.70), the kernel width converges to the value
of the localized variance of the error. This property is particularly useful when
the distribution of errors is multimodal.

Although the stochastic gradient approximation of Eq. (3.70) reduces com-
putational complexity as compared to Eq. (3.69), it is more easily affected by
outliers in the data. In practice, this effect can be alleviated by having a small
regularization constant ϖ added to the denominator of Eq. (3.71). The initial
condition for the kernel size should be much larger than the one expected
from density estimation considerations, because for large kernel sizes the cost
function becomes closer to the quadratic cost as discussed above.

We have tested this method in adaptive noise cancellation of speech signals
masked by heavy noise, and the kernel size adjusts itself to match the changes
in variance of the error. Figure 3.13 shows examples of the kernel size through
adaptation as a function of window size. This figure corroborates the analysis
that the kernel size estimates the local variance of the error signal, which is a
good thing because the error power changes across iterations in an unknown
way. But of course, JKL (σ) is still not linked to the performance of the
adaptation algorithm, and moreover, it depends upon the error distribution,
which is beyond the control of the designer. Experience shows that the values
obtained are reasonable and that the adaptation is faster than with constant
kernel size.
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Fig. 3.13. Kernel size being adapted online (top: L = 1; bottom L = 100)
(from [302]).

3.10 Conclusions

The purpose of Chapter 3 is to go beyond mean square error adaptation by
using the argument of the logarithm of Renyi’s quadratic entropy. Because the
logarithm does not change the location of the optimum in parameter space
because it is a monotonic function, the adaptation algorithms are simplified
when the IP is used as the cost instead of Renyi’s entropy directly.

When the information potential estimator is utilized, the PDF is never
explicitly estimated, so the cost works with pairs of samples of the error
distribution, which can be thought of as a nonlinear projection of the error
into a high-dimensional space. Therefore, although the filter is linear, the
solution obtained by the MEE algorithms does not necessarily coincide with
the MSE solution. It really depends on the error distribution: in cases where
the error PDF is approximately Gaussian, the two solutions provide similar
results, but in other cases, the solutions will differ.

We presented the basic block mode gradient descent update for the MEE
cost function, studied some of its properties, and addressed the features of the
EEC performance surface to get a better feel for the adaptation. We found
that EEC tends to have a peaky performance surface, with exponential tails,
with potential local minima in the tails region. Therefore in most of the space
the search using gradient descent can be expected to be slow. However, near
the optimum the steepness of the performance curve is faster than quadratic.
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We have also shown that there is always a neighborhood around the mini-
mum, controlled by the kernel size, where a quadratic approximation of the
performance surface is possible. This simplifies the treatment of the adap-
tation near the optimum, but still leaves open the problem of finding fast
algorithms overall.

This chapter also provided a clear statistical reason why the error entropy
criterion (and its MEE algorithm) is robust to outliers by establishing the
link between entropy cost functions and robust statistics. This link was ac-
complished through a new function called correntropy that is further studied
in Chapter 10. But the correntropy error criterion (and its MCC learning al-
gorithm) is rather interesting because it creates a new metric in the space of
the errors that has unique properties. In fact, unlike normal metrics it uses
different evaluations of distance depending upon how far the points of inter-
est are; when the samples are close the metric is L2, farther apart it becomes
L1, and farther out it saturates to L0. The values of near and far are rela-
tive to the kernel size utilized in the Gaussian function, which means that a
single constant has a tremendous effect in the evaluation of similarity. When
placed in the framework of M-estimation, we showed that the derivative of
(CIM)2 is effectively the weighting function in weighted least squares. The
conventional threshold in M-estimation is replaced by the kernel size. The
comparisons show that the ECC is comparable to M-estimation, but it can
be easily integrated online as a cost function because it is continuous, unlike
Huber’s (Table 3.1).

The chapter also linked ECC with EEC, by showing that the ECC of the
error differential yields EEC, which shows that the noise robustness of the
MEE algorithm can also be interpreted in terms of weighted least squares.
This close relation between the two criteria suggests a new criterion that
automatically centers the errors, unlike EEC, which we called the centered
EEC and which is based on a metricTherefore it can be used as a criterion
without the requirement of centering the errors. As a conclusion we see that
the MEE and MCC algorithms can be used with advantage when the noise
PDF has a long tail. This condition happens even when the model system
that creates our data is linear, but the observation noise has outliers.

The final topic covered in this chapter deals with the online adaptation
of the kernel size, which in adaptive filtering makes a lot of sense because it
can be considered as an extra parameter that needs to be adapted. However,
the kernel size affects the cost function, so it requires a different cost function
for adaptation. We have proposed a cost that minimizes the KL divergence
between the true error PDF and the estimated error PDF. We showed that
the method basically estimates local variance, it is easy to implement online,
and the results are reasonable and follow the changes in error power that
normally occur through adaptation. However, this cost is not related to the
properties of the adaptation, which is a shortcoming; that is, we may want to
adapt the kernel size to minimize the misadjustment or to increase the speed
of adaptation. Therefore, the proposed method should be interpreted as just
one of many possible ways of framing the kernel adaptation problem.
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Algorithms for Entropy and Correntropy
Adaptation with Applications to Linear

Systems

Deniz Erdogmus, Seungju Han, and Abhishek Singh

4.1 Introduction

This chapter develops several batch and online learning algorithms for the
error entropy criterion (EEC) that are counterparts to the most widely used
algorithms for the mean square error criterion (MSE). Because the chapter
assumes knowledge of adaptive filter design, readers unfamiliar with this topic
should seek a textbook such as [332] or [253] for a review of fundamentals.
But the treatment does not require an in-depth knowledge of this field. The
case studies in this chapter address only adaptation of linear systems, not be-
cause entropic costs are particularly useful for the linear model, but because
the solutions for linear systems are well understood and performance com-
parisons can be easily drawn. This chapter also considers applications of fast
evaluations of the IP using the fast Gauss transform and incomplete Cholesky
decomposition, and ends with an application of the error correntropy criterion
(ECC) to adaptive noise cancellation.

Unlike the MSE criterion, there is no known closed form solution to find
the optimal weights in EEC adaptation even in the finite impulse response
(FIR) case. However, local search procedures based on the gradient can be
used effectively as we demonstrated in Eq. (3.16) that implements a steepest
descent procedure for V (e) estimated with the IP.

Table 4.1 shows the most widely used adaptive algorithms under the MSE
criterion and the corresponding ones for EEC presented in this chapter. Be-
cause the goal of this chapter is to minimize EEC, we refer almost exclusively
to the minimization of error entropy (MEE) algorithm in Eq. (3.16).

In the table, N is the number of samples, M the filter order, and L the
number of samples in a window. Each of these algorithms was developed to
answer a specific question [143]. The steepest descent has a smooth conver-
gence to the minimum because it uses an average estimation of the gradient.
The LMS is a stochastic approximation to the latter, and has the smallest
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Table 4.1. Family of Algorithms

MSE Criterion Error Entropy Criterion Complexity
MSE/EEC

Steepest descent MEE (Minimum error entropy) O(N)/O(N2)
MEE-RIP (recursive IP) -/O(L)

LMS (least means squares) MEE-SIG (stochastic gradient) O(M)/O(L)
LMF (least mean fourth) MEE-SAS (self adjusting stepsize) O(M)/O(N2)
NLMS (normalized LMS) NMEE (normalized MEE) O(M)/O(N2)
RLS (recursive least squares) MEE-FP (fixed point update) O(M2)/O(M2L)

computational complexity of the group (two multiplications per weight), but
the estimation of the gradient is noisy so the stepsize needs to be reduced
about 1/10 when compared with the steepest descent. The LMF was intro-
duced to speed up the convergence of the LMS, whereas the NLMS is very
robust to changes in the input signal power. The RLS algorithm is the fastest
of the group, approximating the Wiener solution at every sample, but it is far
more computationally expensive than the others. The corresponding MEE al-
gorithms serve a similar role, but are based on the error entropy cost function.

For the case of multiple system outputs, the cost function needs to be
modified as the sum of marginal error entropies, or alternatively, the product
of the individual information potentials. For a system with d outputs, the
corresponding cost is

min
w
J(w) = min

w

d∑

o=1

Hα(eo)
α>1≡ max

w

d∏

o=1

Vα(eo), (4.1)

where eo denotes the error signal for the oth output of the adaptive system.
With this cost function, then the gradient has to be modified to

∂J

∂w
=

d∑

o=1

1
1− α

∂Vα(eo)/∂w
Vα(eo)

or
d∑

o=1

⎛

⎝
∏

p�=o
Vα(ep)

⎞

⎠ ∂Vα(eo)
∂w

. (4.2)

A second approach for multioutput situations is to minimize the joint
entropy of the error vector, however, in general this approach requires an ex-
ponentially increasing number of samples, so the product approach is preferred
in practice.

4.2 Recursive Information Potential for MEE
(MEE-RIP)

The MEE algorithm already presented in Section 3.3 is O(N2) in the number
of samples due to the double summation in Eq. (3.16). For online scenar-
ios, we notice that it is possible to obtain a recursive formula to update the
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information potential estimate when a new sample is acquired. Suppose that
at time n, when we already have n samples, the quadratic information poten-
tial is estimated to be

V̂n(X) =
1
n2

n∑

j=1

n∑

i=1

κσ(xj − xi). (4.3)

Suppose at time n + 1 we get a new sample xn+1 and we wish to update
our estimate. Assuming that the kernel function is selected to be an even-
symmetric PDF,

V̂n+1(X) =
1

(n+ 1)2

n+1∑

j=1

n+1∑

i=1

κσ(xj − xi)

=
n2

(n+ 1)2
V̂n +

1
(n+ 1)2

[

2
n∑

i=1

κσ(xn+1 − xi) + κσ(0)

]

.

(4.4)

Once the information potential estimate is updated, the new entropy estimate
can be obtained by simply evaluating Ĥn+1(X) = − log V̂n+1(X). This recur-
sion yields exactly the same estimate as the batch estimator in Eq. (4.3) at
every time instance, therefore we call this the exact recursive entropy estima-
tor. The beauty of Eq. (4.4) is that it is online, and of complexity O(n) instead
of O(n2), but n is increasing with iterations. This exact recursion is useful for
estimating the entropy of stationary signals, however, due to its increasing
memory depth, it is not suitable for nonstationary environments. Therefore,
we employ the fixed forgetting factor approach to derive one estimator that
would serve satisfactorily in such situations.

Recursive Estimator with Forgetting Factor

We start by defining a recursive Parzen window estimate. Suppose that at
time n, the PDF estimate pn(x) for pX(x) is available. Using the new sample
xn+1, we update this PDF estimate according to

pn+1(x) = (1 − λ)pn(x) + λκσ(x− xn+1). (4.5)

The initial PDF estimate could be selected as p1(x) = κσ(x − x1). Substi-
tuting the recursive PDF estimate in Eq. (4.3) for the actual PDF in the
definition given in Eq. (4.5), we obtain the recursion for the quadratic infor-
mation potential.

V n+1 = EX [pn+1(X)] = (1− λ)EX [pn(X)] + λEX [κσ(X − xn+1)]

∼= (1− λ)V n +
λ

L

n∑

i=n−L+1

κσ(xi − xn+1).
(4.6)
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The recursion in Eq. (4.6) is named the forgetting recursive entropy estimator.
The parameters λ, L, and σ are called the forgetting factor, window length,
and kernel size, respectively. These free design parameters have an effect on
the convergence properties of this recursive entropy estimator, and have been
fully investigated in [90].

An interesting relationship between the exact and forgetting recursive en-
tropy estimators of Eqs. (4.4) and (4.6) is that, if we replace the fixed memory
depth and the fixed window length of Eq. (4.6) with dynamic ones, the two
recursions asymptotically converge to the same value. In order to see this, we
set λ = 1 − n2/(n + 1)2 and L = n. Then taking the limit of the difference
between Eq. (4.4) and Eq. (4.6) as n goes to infinity yields

lim
n→∞(V̂n+1 − V̄n+1)

= lim
n→∞

⎡

⎢
⎢
⎣

n2

(n+ 1)2
V̂n − (1− λ)V̄n +

1
(n+ 1)2

κσ(0)

+
2

(n+ 1)2
n∑

i=1

κσ(xn+1 − xi)− λ

n

n∑

i=1

κσ(xi − xn+1)

⎤

⎥
⎥
⎦ = 0. (4.7)

The important practical property of this recursive estimator is that it
reduces the computational complexity from O(n2) to O(L). This is a drastic
reduction in the computational requirements. The forgetting recursive entropy
estimator also enjoys a reduced memory requirement compared to the exact
recursion and the batch formula which is very useful to track changes of the
input in locally stationary signals.

Case Study for MEE-RIP

In this section, we investigate the performance of the recursive entropy estima-
tors proposed above. We start by demonstrating the convergence properties
of both estimators to the true entropy value of the PDF underlying the data
that are being presented. In these simulations, we have utilized 5000 sam-
ples generated by zero-mean, unit-variance uniform, Laplacian, and Gaussian
distributions. For these density functions, both the exact and forgetting re-
cursions are evaluated and displayed in Figure 4.1.

The Gaussian kernel has size σ = 0.01, the window length is 100 samples
and the forgetting factor λ = 0.05. Several simulations were run on these data
to investigate the effect of the forgetting factor, window length, and kernel
size in the estimates. They are summarized in the Tables 4.2 through 4.4.

In recursive estimates there is an intrinsic trade-off between speed and
variance, which the designer must consider in selecting the forgetting factor
(see Table 4.2).

As expected, the speed of convergence is not affected by the variations in
the window size. However, the estimation variance after convergence is greatly
affected because of the number of samples (Table 4.3). The trade-off in the
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Fig. 4.1. Actual entropy and its exact and forgetting recursive estimates for uni-
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Table 4.2. Convergence for Different Forgetting Factors

L = 100, σ = 0.01 λ = 0.001 λ = 0.003 λ = 0.01

Convergence (samples) 8000 2500 1000
variance 1.1 × 10−4 9.5 × 10−4 2.7 × 10−3

Table 4.3. Effect of Window Length

λ = 0.002, σ = 0.001 L = 10 L = 100 L = 1000

Convergence (samples) 8000 2500 1000
variance 6.7 × 10−3 1.7 × 10−4 2.2 × 10−5

selection of this parameter is between the accuracy after convergence and the
memory requirement.

Parzen windowing has a bias that increases with the kernel size, whereas
its variance decreases with the kernel size. As expected, the smallest kernel
size resulted in the largest variance and the largest kernel size resulted in the
largest bias (Table 4.4).
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Table 4.4. Effect of Kernel Size

λ = .002, L = 001 σ = 0.001 σ = 0.01 σ = 0.1 σ = 1

mean 5 × 10−2 2.2 × 10−2 1.3 × 10−2 2.4 × 10−1

variance 3.9 × 10−3 1.6 × 10−4 2.9 × 10−5 3 × 10−5

Gradient for the MEE-RIP

The previous experiments show the good properties of the recursive computa-
tion of the information potential, but for our purposes, we need the gradient of
this quantity to train the FIR filter with MEE. Towards this goal we take the
derivative of the recursive information potential with respect to the weights
and write

∂V n
∂w

=
∂V n

∂(ei − en)
∂(ei − en)

∂w
. (4.8)

Now using Eq. (4.5) for the first term on the right-hand side, we get

∂V̄n
∂(ei − en) = (1− λ)

∂V̄n−1

∂(ei − en) +
λ

L

∂

∂(ei − en)

(
n−1∑

i=n−L
G(ei − en)

)

(4.9)

and evaluating the derivative

∂V̄n
∂(ei − en) = (1− λ)

∂V̄n−1

∂(ei − en) +
λ

σ2L

n−1∑

i=n−L
G(ei − en)(ei − en). (4.10)

Notice that the first derivative on the right side of Eq. (4.9) is not zero, be-
cause Vn−1 depends on the previous errors (it is called an ordered derivative).
Now this term can be computed at each step by storing a single quantity
∂V̄n−1/∂(en − ei), which is the gradient at the previous step, and computing
the sum which is O(L) at each step. The initial condition is ∂V̄0/∂e0 = 0 and
of course the sum is started with G(0− e1)(0− e1). The gradient of the error
with respect to the weights in Eq. (4.8) is ∂(ei− en)/∂w = xn− xi and it can
be brought in this formulation easily to yield the gradient for the kth FIR
weight as

∇kV̄ (n) = (1−λ)
∂V̄k(n− 1)
∂(ei − en) +

λ

σ2L

n−1∑

i=n−L
G(ei − en)(ei − en)(xk(n)−xk(i)).

(4.11)

This expression is the gradient of the MEE-RIP and substitutes Eq. (3.16),
preserving the accuracy of the solution for appropriate λ and L.

4.3 Stochastic Information Gradient for MEE
(MEE-SIG)

Having introduced the methodology to derive a recursive estimator for the
information potential, we can still attempt to derive a stochastic informa-
tion gradient using Widrow’s intuition of dropping the expectation operator
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in his famous LMS algorithm [332]. Both the recursive and the stochastic
information gradient use online updates, but the strength of LMS lies in its
ability to determine the optimal solution of the MSE criterion with extremely
simple updates on the weight vector, which it computes using only the most
recently acquired input signal. In this section, we derive a stochastic gradient
for the minimum error entropy criterion, with the hope to obtain even a sim-
pler estimator for the information potential. It is important to remember that
the fundamental property that supports the stochastic update is an unbiased
estimator of the gradient with the present sample.

Suppose that, in an online adaptation scenario, we approximate the
α-information potential stochastically by the argument of the expectation
operation. Therefore, dropping E[.] in Vα(e) = E

[
pα−1
e (e)

]
and substituting

the required PDF by its Parzen estimate over the most recent L samples at
time n, the stochastic information potential estimate becomes

V̂α(e(n)) ≈
(

1
L

n−1∑

i=n−L
κσ(en − ei)

)α−1

. (4.12)

If we substitute in Eq. (3.18) we obtain

∂V̂α(e(n))
∂wk

= − (α− 1)
Lα−1

(
n−1∑

i=n−L
κσ(en − ei)

)α−2

×
[

n−1∑

i=n−L
κ′σ(en − ei)(xk(n)− xk(i))

]

. (4.13)

This is the general expression of the stochastic gradient of the IP for arbitrary
α and kernel (MEE-SIG). The first expression provides the weighting on the
sample density translating the role of α in Renyi’s entropy. For α = 2 the
first sum in Eq. (4.13) disappears as discussed in Chapter 2, and it provides a
simpler expression. For the quadratic information potential using a Gaussian
kernel, the SIG(L) gradient becomes

∂V̂2(e(n))
∂wk

=
1
σ2L

[
n−1∑

i=n−L
Gσ(en − ei)(en − ei)(xk(i)− xk(n))

]

. (4.14)

Comparing with Eq. (3.18) the computation of this expression is proportional
to the size of the time window used to estimate the information potential.
Comparing with Eq. (4.11) SIG(L) corresponds to the MEE-RIP for λ = 1.
In the extreme case, L = 1 the MEE-SIG denoted by SIG(1) becomes,

∂V̂α(e(n))
∂wk

=
1
σ2
Gσ(e(n)−e(n−1))(e(n)−e(n−1))(xk(n−1)−xk(n)), (4.15)

which can be interpreted as a weighted combination (by the Gaussian of the
error difference) of the product of the incremental error and the incremental
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input. SIG(1) is the EEC equivalent of the LMS algorithm, and the similarity
between the two updates is easy to pinpoint. There are a lot of assumptions
in this update, but the stochastic estimation literature [192] tells us that as
long as the time estimator is unbiased, the average over iterations decreases
its variance and converges to the same value. We only conducted experimental
evaluations of the SIG(1), and the results show that it still finds extremes of
the entropy cost in synthetic datasets (this is also demonstrated in Chapter 8).

Training a Linear Combiner with SIG(L)

All the simulations presented in this chapter, unless otherwise specified, adapt
a 2-tap FIR for system identification (Figure 3.1), and the desired response
data are also generated by a 2-tap FIR with weight vector w∗ = [1, 2]T .
There is no measurement noise and the input to the filter is zero-mean, unit
variance white Gaussian noise. This experimental setup is very simple but
is used in this chapter because we can visualize the weight tracks during
adaptation to evaluate convergence and we know that the stationary point is
equal to the MSE cost because the system identification solution is unique.
Figure 4.2 shows the effect of the kernel size (σ) in the adaptation speed of
the SIG (L = 100) and μ = 1. For a large range of kernel sizes the adaptation
converges and the slowest convergence is achieved in intermediate values of
the kernel size (σ = 0.5). When the kernel size is smaller than required for

Fig. 4.2. The effect of kernel size in adaptation speed.
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Fig. 4.3. Effects of the window length in adaptation.

the data, convergence actually does not happen because there is insufficient
information to estimate the gradient of the IP (σ = 0.1). Figure 4.3 shows the
dependence of SIG on the window length.

For this problem where the solution is obtained with zero error, we see
that smaller windows provide faster convergence. However, if the error was
not zero, misadjustment would increase with smaller L (not shown).

In the following simulation we illustrate the performance of SIG(1) in
training a linear filter; once again, for visualization purposes, we have chosen a
2-weight adaptive filter. The goal is to predict a time series from its most recent
two samples, where the sequence is generated by x(t) = sin 20t + 2 sin 40t +
3 sin 60t sampled at 100Hz. The training set consists of 32 samples, which
approximately corresponds to one period of the signal, and it is repeated for
150 epochs for both SIG(1) and LMS algorithms.

The weight tracks of both algorithms starting from five different initial
conditions are shown in Figure 4.4 along with the contours for the minimum
error entropy criterion for this training set. Therefore, we can expect that
in linear filtering when the signals are stationary and the initializations are
close to the minimum, there is a σ that makes the MEE and the MSE con-
verge at the same speed of adaptation and misadjustment. But in general
the two algorithms perform differently because of the changes in performance
surfaces.
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Fig. 4.4. Weight tracks for SIG (solid) and LMS (dotted) in online training a linear
filter for time-series prediction (from [88]).

SIG(1) and Shannon’s Entropy Gradient Estimation

This section shows the difficulty of analyzing the stochastic gradient
algorithm. We have stated that working with the IP or Reni’s entropy is
equivalent if the goal is to find the stationary points of the cost, but we can
obviously derive formulas to minimize Renyi’s entropy directly. It is just a
matter of incorporating the logarithm in the cost function of Eq. (3.12) and
computing the partial derivative. This equivalence is true for the estimators of
IP with double sums, and if the stochastic gradient is a consistent estimator
of IP it should also be true for the SIG. Unfortunately, this is not the case as
we now demonstrate.

The SIG estimate of α-Renyi’s entropy from Eq. (4.12) yields immediately

Ĥα(X) =
1

1− α log

[
1
L

n−1∑

i=n−L
κσ(xn − xi)

]α−1

= − log

[
1
L

n−1∑

i=n−L
κσ(xn − xi)

]

(4.16)

Notice that the entropy order disappears from the expression for the SIG class
of estimators of α-Renyi’s entropy. This means that the SIG algorithms when
used to estimate α-Renyi’s entropy are unable to weight dense and sparse
regions of the PDFs differently, therefore they provide for σ → 0, L→∞ the
same result as Ĥ2(X).
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This result can also be interpreted as an unbiased estimator of the gradient
of Shannon’s entropy using Parzen windowing.

Theorem 4.1. The expected value of the stochastic gradient of Renyi’s
α-entropy in Eq. (4.16) is an unbiased instantaneous estimator of the gradient
of Shannon’s entropy estimated using Parzen windowing.

Proof. Consider Shannon’s entropy of the error given by HS(e) =
−E[log pe(e)]. Suppose we estimate this quantity by substituting the PDF
with its Parzen window estimate over the most recent L samples at time k.
Then this estimate of Shannon’s entropy at time n is given by

ĤS,n(e) ≈ −E
[

log

(
1
L

n−1∑

i=n−L
κσ(en − ei)

)]

. (4.17)

The error gradient of Eq. (4.17) is easily determined to be

∂Ĥs,n

∂(en − ei) = E

⎡

⎢
⎢
⎢
⎣

n−1∑

i=n−L
κ′σ(en − ei)

n−1∑

i=n−L
κσ(en − ei)

⎤

⎥
⎥
⎥
⎦
, (4.18)

which is the expected value of the SIG estimator of α-Renyi’s entropy of
Eq. (4.16).

There is even a stranger special case of the stochastic gradient that occurs
when the window length L = 1, the kernel function is a Gaussian and the goal
is to adapt a linear combiner. For Gaussian kernels, the derivative of the kernel
can be written in terms of the kernel function itself as G′

σ(x) = −xGσ(x)/σ2.
When these are substituted in Eq. (4.18), and the chain rule is used to compute
the gradient with respect to the weights of the linear combiner, the solution
becomes

∂ĤS,n

∂wk
= − 1

σ2
(e(n)− e(n− 1))(xk(n)− xk(n− 1)). (4.19)

Notice two things: First, with respect to the SIG(1) applied to the IP in
Eq. (4.15), the nonlinear weighting produced by the Gaussian kernel dis-
appears. Second, notice the resemblance between this update and the LMS
update, which is given by −2e(n)xk(n), for the linear combiner. The updates
in Eq. (4.19) are based on the instantaneous increments of the signal values
in this special case, whereas the LMS updates are based on the instantaneous
signal values. Therefore, it is unclear if indeed Eq. (4.19) is a proper stochastic
gradient estimator of Shannon’s entropy because the weighting produced by
the kernels actually disappears from the update (see Eq. (4.15)). Further
work is necessary.
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4.4 Self-Adjusting Stepsize for MEE (MEE-SAS)

From the analysis of the shape of the error entropy cost function in Section 3.5
we foresee changes in curvature (i.e., varying Hessian) even for the scalar case.
Constant stepsize gradient algorithms simply cannot take advantage of such
characteristics, so an effort to develop variable stepsize algorithms is in order,
or even second order search algorithms. Here we deal with the variable step-
size case [128]. As can be easily inferred from the definition of the information
potential Eq. (3.12), the largest value of the potential occurs when all the sam-
ples are at the same location (V (0)): that is, V (e) ≤ V (0) and V (0) provides
an upper bound on the achievable V (e). Seen from a different perspective,
V (0) is the ideal “target” value for the information potential curve during
adaptation, which will be reached when there is no observation noise and the
system has sufficient degrees of freedom to achieve an all-zero error. Thus
[V̂ (0) − V̂ (e)] is always a nonnegative scalar quantity that does not change
the direction of the gradient and can be used to accelerate the conventional
gradient search algorithm given in Eq. (3.16). Note that this quantity is the
numerator of the normalized IP of Eq. (3.56). This modified search algorithm
is named MEE-self-adjusting stepsize (SAS) because it actually works as a
selfadjusting stepsize algorithm as we show below. Let us define the new cost
function as

min
w

JMEE−SAS(e) = [V̂ (0)− V̂ (e)]2. (4.20)

Taking the gradient of Eq. (4.20) directly yields

∇JMEE−SAS(e) = −2[V̂ (0)− V̂ (e)] · ∇V̂ (e),

and the weight update for MEE-SAS becomes

w(n+ 1) = w(n) + μ[V̂ (0)− V̂ (e)]∇V̂ (e) = w(n) + μ (n)∇V̂(e), (4.21)

where μ(n) = μ[V̂ (0) − V̂ (e)]. It is also easy to show that the MEE-SAS
cost function preserves the location of the MEE minimum. In fact, stationary
points are not affected by monotonic transformations on the cost. In MEE-
SAS, f(V̂ (e)) = [V̂ (0)− V̂ (e)]2 is monotonic, therefore the optimum coincides
with the MEE solution. Notice that Eq. (4.21) basically states that we have
a gradient descent procedure with an adaptive stepsize, which is automati-
cally determined by how different the actual IP is from the maximum. We
can expect that this new cost function and corresponding gradient descent
will automatically take care of the differences in curvature encountered when
searching the IP cost function that were mentioned in the analysis of Sec-
tion 3.5: giving acceleration when far away from the optimal solution and
automatically reducing the stepsize as the solution is approached. Using the
same quadratic approximation of Section 3.5 for the performance surface, it
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is easy to show that to ensure convergence of the MEE-SAS algorithm, a
necessary condition is

0 < μ (n) <
−2
λk
, (4.22)

where μ(n) = μ [V (0)− V (e)] and λk is the largest eigenvalue of the MEE
cost function. The intuition about the role of μ(n) can be mathematically
proved as follows.

Theorem 4.2. Let Ξ̃ and Ξ denote the Hessian approximation of MEE-SAS
and MEE, respectively. The relation between these Hessians is the following,

Ξ̃ = −cΞ +
(
w̃(n)T Ξw̃(n)

)
Ξ + 2Ξ w̃(n) w̃(n)TΞT , (4.23)

where c = 2[V̂ (0)− V̂w∗(e)].

Proof. Differentiating Eq. (4.20) twice with respect to the weight vector pro-
duces Ξ̃ = −2[V̂ (0) − V̂ (e)]∇2V̂(e) + 2∇V̂(e)∇V̂(e)T and substituting the
second-order Taylor series approximation of IP around the optimal solution
V̂ (e) = V̂w∗(e)+1/2w̃(n)T Ξw̃(n) and ∇V̂(e) = −Ξw̃(n) yields the expected
result for Eq. (4.23).

From this theorem and using the eigendecompositions of MEE-SAS (Ξ̃ =
Q̃Λ̃Q̃

T
) and MEE (Ξ = QΛQT ) with a coordinate transformation into the

natural modes, we obtain

Q̃Λ̃ Q̃
T

= −cQΛQT + (w̃(n)T QΛQT w̃(n))QΛQT

+ 2QΛQT w̃(n) w̃(n)T (QΛQT )T

= Q[−cΛ + (w̃(n)T QΛQT w̃(n))Λ + 2ΛQT w̃(n) w̃(n)TQΛT ]QT

= Q[−cΛ + (v(n)TΛv(n))Λ + 2Λv(n)v(n)TΛ]QT , (4.24)

where v(n) = QT w̃(n). In Eq. (4.24) substituting the eigendecomposition of
the matrix in brackets denoted by ΣDΣ, where Σ is orthonormal and D is
diagonal, yields

Q̃Λ̃ Q̃
T

= QΣDΣTQT . (4.25)

By direct comparison, its eigenvectors and the eigenvalues are determined
to be

Q̃ = QΣ, Λ̃ = D. (4.26)

The entries in ΣDΣT are found as follows. The ith diagonal entry is −cλi +(∑M
j=1 λjv

2
j

)
λi + 2λ2

i v
2
i and the (i, j)th entry is 2λiλjvivj , where λi is the

ith diagonal entry of Λ and vi the ith entry of v(n).
Especially if v(n) is small, the matrix [−cΛ +

(
v(n)TΛv(n)

)
Λ +

2Λv(n)v(n)TΛ] is diagonally dominant; hence (due to the Gershgorin the-
orem [192]) its eigenvalues will be close to those of −cΛ. In addition, the
eigenvectors will also be close to identity.
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Consider the special case when the operating point is moving along the
kth eigenvector (v = [0, . . . , vk, . . . , 0]T ). Then the expressions simplify to:

Λ̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−cλ1 + λkλ1v
2
k 0 · · · 0 · · · 0

0 −cλ2 + λkλ2v
2
k 0 0

...
. . .

...
0 0 −cλk + 3λ2

kv
2
k 0

...
. . .

...
0 0 · · · 0 · · · −cλM + λkλMv

2
k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.27)

In real scenarios, there exist modes that converge more slowly than others due
to the eigenvalue spread. If we analyze the convergence along the principal
axis of Ξ, we obtain

λ̃j = −2[V̂ (0)− V̂w∗(e)]λj + λkλjv
2
k, ∀ j 	= k

λ̃k = −2[V̂ (0)− V̂w∗(e)]λk + λ2
kv

2
k + 2λ2

kv
2
k (4.28)

= −2[V̂ (0)− V̂w∗(e)]λk + 3λ2
kv

2
k , j = k

When the weights are close to the optimal solution v2
k ≈ 0, the eigenvalues

of MEE-SAS are proportional to the eigenvalues of the MEE cost which is
quadratic. On the other hand, when the weights of MEE-SAS are far from
the solution, v2

k is large and thus the second term in Eq. (4.28) dominates
and the eigenvalues are proportional to the square of the original eigenvalues.
A consequence of this is that MEE-SAS cost function has the remarkable
property of changing curvature depending upon the distance from the optimal
solution. Also note that the convergence along the kth natural mode is faster
than other modes due to the extra 2λ2

kv
2
k term when the weights are far from

the optimal solution.
For each natural mode vk in Eq. (4.28), the relationship between the eigen-

value of MEE-SAS (λ̃k) and that of MEE (λk) is

λ̃k = −2[V̂ (0)− V̂w∗(e)]λk + 3λ2
kv

2
k = −λk

(
c− 3λkv2

k

)
, (4.29)

where c = 2[V̂ (0) − V̂w∗(e)] is nonnegative. Because we maximize the cost
function V (e) in MEE, the eigenvalues λk of its Hessian approximation are
negative. Similarly, for MEE-SAS, the minimization of its cost function makes
λ̃k positive. The turning point of curvature occurs when λ̃k = −λk, or

c− 3λkv2
k = 1. (4.30)

From Eq. (4.30), we specifically obtain

vk = ±
√
c− 1
3λk

. (4.31)
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Using the nonnegative property of c in Eq. (4.31), we conclude that 0 ≤ c ≤ 1
for real eigenvalues, therefore, c = 0 → V (0) = Vw∗(e), whereas c = 1 →
vk = 0 (i.e., w = w∗).

It is interesting to note that the point at which the curvature changes
from higher than second order to second order is closer to the optimal so-
lution when V (0) 	= Vw∗(e) than when V (0) = Vw∗(e). In fact, when
V (0) = Vw∗(e), the turning point of curvature is vk = ±√−1/3λk, whereas
it is vk = ±√

(c− 1)/3λk, when V (0) 	= Vw∗(e).
Thus, the curvature turning point vk is farther away from the optimal

solution when the achievable error is zero than for cases where the final error
is nonzero. Because vk marks the change of curvature from fourth order to
second order, this implies that for practical scenarios (i.e, V (0) 	= Vw∗(e)), the
curvature is going to be predominately fourth order, leading to much faster
convergence than MEE for the same initial step size.

Switching Scheme between MEE-SAS and MEE

One disadvantage of MEE-SAS over the MEE with the same stepsize for
tracking is the smaller gradient of the performance surface near the optimum
which makes it slow to track changes in the input statistics (although both
algorithms have quadratic performance surfaces near the optimum, the eigen-
values are different; see Eq. (4.28)). This was observed in practical problems
(prediction of nonstationary Mackey-Glass (MG) time series) that require a
continuous fine adjustment of the optimal weight vector. Combining MEE
and MEE-SAS algorithms for nonstationary signals becomes therefore impor-
tant. In order to decide the switching time to maximize convergence speed,
an analytical criterion needs to be developed.

The dynamics of adaptation can be understood in terms of energy mini-
mization in the context of Lyapunov stability theory [206]. This method con-
firms the intuition that the best strategy for switching is when the gradients
of the two adaptation schemes are identical:

|∇JMEE−SAS| = |∇JMEE| . (4.32)

Therefore, in the region satisfying the condition |∇JMEE–SAS| > |∇JMEE|,
MEE-SAS should be used because MEE-SAS converges faster than MEE,
otherwise MEE is used. However, the application of this switching decision
implies a high computational complexity inasmuch as both algorithms need to
be run in parallel. Instead, we can evaluate Eq. (4.32) to obtain the condition
for which |∇JMEE–SAS| > |∇JMEE| as

4μMEE−SAS [V (0)− V (e)]2
∥
∥
∥
∥
∂V (e)
∂w

∥
∥
∥
∥

2

> μMEE

∥
∥
∥
∥
∂V (e)
∂w

∥
∥
∥
∥

2

⇔ V (e) < V (0)− 1
2

√
μMEE

μMEE−SAS
. (4.33)
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Therefore one needs just to evaluate the information potential at each iteration
and compare it with a constant, which is a function of the learning rates of
MEE and MEE-SAS. This provides a very practical test and only requires
running a single algorithm. But of course, the selection of the stepsize for
each method still requires experimentation.

Curvature Analysis of MEE and MEE-SAS

Effect of Kernel Size in Perfect Identification

The default system identification example is used here. This case study aims
to illustrate how the MEE (V̂ (0)− V̂w∗(e)) and MEE-SAS ([V̂ (0)− V̂w∗(e)]

2)
cost functions are altered as a consequence of changing the kernel size in the
estimator. Figure 4.5 shows both performance surfaces in 3D. One hundred
noiseless training samples are utilized to obtain the contour and gradient
vector plots. The kernel size is set to σ = 0.35.

Our interest is in illustrating the gradient differences between the two
cost functions, therefore we plot the gradient difference between MEE from
MEE-SAS in Figure 4.6.

As illustrated in Figure 4.6, when using a small kernel size (σ = 0.1),
MEE-SAS has a larger gradient magnitude when compared with MEE over
most of the space whereas for a larger kernel size (σ = 0.6), the position
reverses (MEE gradient is larger).

Effect of Kernel Size in Imperfect Identification

We just show the simulation result for the measurement noise case (similar
results are obtained when the modeling error is nonzero). We add uniform
distributed noise with three different powers (P = 1, 2, and 3) to the desired
signal of the above example.

Fig. 4.5. Performance surface of normalized MEE (a) and MEE-SAS (b) (from
[128]).
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σ = 0.35, grad[J(MEE)] - grad[J(MEE-SAS)]

σ = 0.6, grad[J(MEE)] - grad[J(MEE-SAS)]
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Fig. 4.6. Contour and gradient difference between MEE and MEE-SAS on error
information potential for various choices of kernel size (from [128]). : (a) 0.1; (b) =
0.35; (c) 0.6.

As observed in Figure 4.7, the higher the noise power, the larger is the
region over which the MEE-SAS gradient exceeds the MEE, as our analysis
showed. This means that when V̂ (0) 	= V̂w∗(e) the point at which the curva-
ture changes from higher than second order to second order is closer to the
optimal solution than in perfect identification. This also means that the larger
the final error, the faster is the convergence.

4.5 Normalized MEE (NMEE)

One of the difficulties of the gradient-based algorithms is that an increase in
input power appears directly in the weight update formulas, and can momen-
tarily cause divergence (i.e. very large change in the weights). Divergence in
an adaptive algorithm is catastrophic because all the information about past
data is contained in the weights of the filter. If the weights diverge, then it is
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σ = 0.6, grad[J(MEE)] - grad[J(MEE-SAS)], noise power = 1

σ = 0.6, grad[J(MEE)] - grad[J(MEE-SAS)], noise power = 3
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Fig. 4.7. Contour and gradient difference between MEE and MEE-SAS on error
information potential for three different measurement noises (from [128]). : (a) no
noise; (b) noise power 1; (c) noise power 2; (d) noise power 3.

equivalent to throwing away all of the past data and starting again! This is
why ways to avoid divergence have been sought in adaptive filtering. One of
the most widely used methods is intuitive and consists in dividing the step-
size by the norm of the current input vector (values in the filter taps) [253].
This procedure, called the normalized LMS algorithm, can also be proved
mathematically as the best strategy to have an update that is insensitive to
fluctuations of input power [143].

We derive the NMEE algorithm by analogy with the normalized LMS
(NLMS) algorithm, that is, as a modification of the ordinary MEE criterion
in light of the principle of minimal disturbance [143]. The criterion of NMEE
is formulated as the following constrained optimization,

min ‖w(n+ 1)−w(n)‖2 subject t o V̂ (0)− V̂ (ep(n)) = 0, (4.34)
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where ep(n) = z(n) − w(n + 1)Tx(n) is the posterior error, and Eq. (4.34)
translates the constraint of optimal performance in terms of the information
potential.

The above constrained optimization problem can be solved using the
method of Lagrange multipliers as follows,

J(e(n)) = ‖w(n+ 1)−w(n)‖2 + λ(V̂ (0)− V̂ (ep(n))). (4.35)

Taking the derivative with respect to w(n+1) and equating the result to zero
to find the minimum we obtain

w(n+ 1) = w(n) +
1
2
λ∇V̂(ep(n)). (4.36)

To solve for the unknown λ, Eq. (4.36) is substituted into the constraint of
Eq. (4.34) i.e., V̂ (0) = V̂ (ep(n)) → ep(n) = ep(i), n− L < i < n− 1, to yield

λ =
2

n−1∑

i=n−L
(ea(n)− ea(i))

∇V̂(ep(n))T
[
n−1∑

i=n−L
(x(n)− x(i))

] (4.37)

which when plugged back into Eq. (4.36) yields

w(n+ 1) = w(n) + η

[
n−1∑

i=n−L
(ea(n)− ea(i))

]

∇V̂(ep(n))

∇V̂(ep(n))T
[
n−1∑

i=n−L
(x(n)− x(i))

] , (4.38)

where ea(n) = z(n) − w(n)Tx(n) is the a priori error, and η is the stepsize
that can be proven to be between 0 and 2 for stability. In this update, there
is an added difficulty because estimating w(n + 1) requires the a posteriori
error ep(n). We approximate it by ea(n) because the algorithm minimizes
‖w(n+ 1)−w(n)‖2, so the approximation gets progressively better through
adaptation. Therefore, the weight update for NMEE is

w(n+ 1) = w(n) + η

[
n−1∑

i=n−L
(ea(n)− ea(i))

]

∇V̂(ea(n))

∇V̂(ea(n))T
[

n−1∑

i=n−L
(x(n)− x(i))

] . (4.39)

The Lagrange multiplier in LMS is just the error divided by the input
power estimated with the samples in the taps. Here Eq. (4.37) shows that the
situation for NMEE is more complex, because not only does the input power
appear in the denominator but also the information forces (the gradient of
the error). Due to this division by the information forces and input power, we
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can expect that the sensitivity to the input power and the kernel size will be
diminished in NMEE.

When the SIG(1) is utilized in Eq. (4.39) the stochastic update for the
NMEE algorithm becomes

w(n+ 1) = w(n) + η
(ea(n)− ea(n− 1))∇V̂(ea(n))

(
∇V̂(ea(n))

)T
(x(n)− x(n− 1))

= w(n) + η
(ea(n)− ea(n− 1))(x(n)− x(n− 1))

‖x(n)− x(n− 1)‖2 . (4.40)

We see again (see Section 4.3) that the kernel disappears in this expression,
so there is no local weighting on the errors. Moreover, this is exactly the
normalized LMS update with the instantaneous input and error substituted
by the product of their increments, which was previously derived as the error-
whitening LMS [258].

To interpret the results for L > 1 we write the equations in component
form that generalize for a higher number of samples. For L = 2 and a one-tap
filter the update becomes

w(n + 1) = w(n) + η

(Δe(2) + Δe(1))

[(
Δx1(2)

Δx2(2)

) (
Δx1(1)

Δx2(1)

)] [
G (2) Δe(2)

G (1) Δe(1)

]

[
G (2) Δe(2) G (1) Δe(1)

]
∥
∥
∥
∥

(
Δx1(2)

Δx2(2)

) (
Δx1(1)

Δx2(1)

)∥
∥
∥
∥

2 [
1

−1

] ,

(4.41)

where we are using the simplified index notation Δe(i) = e(n)− e(n− i). We
can observe that there is an error term in the numerator that is not affected
by the kernel, but the kernel does not cancel out completely, which suggests
that the effect of the kernel size exists but will be decreased with respect to
the MEE.

NMEE Dependence on Input Power

We consider a moving-average plant with transfer function given by
(order = 9)

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.4z−3 + 0.5z−4 + 0.4z−5 + 0.3z−6

+ 0.2z−7 + 0.1z−8.

The FIR adaptive filter is selected with equal order to the plant. A standard
method of comparing the performance in system identification is to plot the
weight error norm inasmuch as this is directly related to misadjustment [143].
In each case the power of the weight noise (averaged over 125 samples) was
plotted versus the number of iterations. The input to both the plant and the
adaptive filter is white Gaussian noise. In the first experiment, a unit power
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Fig. 4.8. (a) Average weight error power for MA(9) comparing the MEE (dashed
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error power for MA(9) with different kernel sizes, with white Gaussian input of
variance 10, eigenspread S = 550. (kernel sizes left to right dashed lines: 0.4, 0.7, 1,
1.3, 1.6, 0.1) (from [130]).

input is selected (1P), whereas in the second experiment the input is 10 ×
power (10P). The kernel size using Silverman’s rule is σ = 0.7.

In this perfect identification scenario, the filter exactly tracks the output
of the plant. Figure 4.8a shows the plot of the weight error norm for a moving
average model. We choose a large stepsize within the range of MEE stability.
For the unit input power case, both MEE and NMEE converge in 190 iter-
ations with basically the same misadjustment. To guarantee the stability of
MEE adaptation for 10 × input power, the stepsize is chosen 10 times smaller,
and it remains at the same value for NMEE. NMEE just takes 190 iterations to
converge as compared to MEE which takes nearly 700 iterations with practi-
cally the same misadjustment of 1.243×10−8. We can therefore conclude that
the NMEE is insensitive to the input power, as expected. We also present in
Figure 4.8a the convergence of the NLMS for the same misadjustment, and
conclude that the NMEE is faster than the NLMS.

NMEE Dependence on Kernel Size and Speed

Selecting a proper kernel size is one important factor because it depends on
the error statistics and it influences the performance of the MEE algorithm.
The effect of kernel sizes on both MEE and NMEE is shown in Figure 4.8b,
where the weight error power curves with different kernel sizes are plotted
when the input data is white Gaussian with zero mean, 10 × unit variance and
with an eigenvalue spread ratio of S = 550. We observe that the performance
of MEE is sensitive to the kernel size and this sensitivity increases when the
eigenvalue spread of the input signal increases (not shown). However, NMEE
shows a much more uniform performance with different kernel sizes even when
the input has a large dynamic range. The misadjustment of NMEE in the
worst case is almost the same as that of MEE in the best case. Furthermore,
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the kernel size of 0.7 and 1 for MEE and NMEE, respectively, are found to
be optimal, giving the lowest misadjustment of 6.7 × 10−10 and 8.2 × 10−14

in the case when S = 1 and 3.8× 10−8 and 1.5× 10−12 when S = 550.
Another important aspect of these experiments is the different speed of

convergence between the MEE and the NMEE. Figure 4.8b clearly shows
that there are two sets of curves, one for each algorithm. But notice that the
misadjustment between the two algorithms is practically the same (8.2×10−14

versus 6.7 × 10−10), therefore we conclude that the NMEE is substantially
faster than the MEE. However, the robustness to outliers of NMEE may be
compromised.

4.6 Fixed-Point MEE (MEE-FP)

Until now only first-order (gradient-based) algorithms for EEC were devel-
oped. In this section we present a fixed-point algorithm to solve the EEC
criterion as a continuation of the discussion in Section 3.5. As is well known,
fixed-point algorithms have second-order convergence to the optimal solution,
as the well-known recursive least square (RLS) algorithm of adaptive filtering
[143], and they do not have free parameters. However, the region of conver-
gence for the fixed-point updates must be determined and fast solutions are
not always available. To complement the analysis in that section we present
the algorithms for the Gaussian kernel in vector notation.

Given the criterion V (e) of Eq. (4.16), and without assuming any prior
knowledge about the location of its minimizing argument w∗, we wish to devise
a procedure that starts from an initial guess for w∗ and then improves upon
it in a recursive manner until ultimately converging to w∗. The stationary
point w obeys

∂V (e)
∂wk

∣
∣
∣
∣
∣
∣
wk=w∗ =

1
2N2σ2

N∑

i=1

N∑

j=1

(ei − ej)Gσ√2(ei − ej)(xi − xj) = 0. (4.42)

The condition in Eq. (4.42) implies that at wk = w∗ an optimum exists
i.e., e1 = · · · = eN . Substituting ei − ej = zi − zj − (xi − xj)Tw in Eq. (4.42)
yields directly

w∗ =

⎛

⎝
N∑

i=1

N∑

j=1

Gσ
√

2(ej − ei)[xj − xi][xj − xi]T

⎞

⎠

−1

⎛

⎝
N∑

i=1

N∑

j=1

Gσ
√

2(ej − ei)[zj − zi][xj − xi]

⎞

⎠ . (4.43)

Equation (4.43) looks very similar to the least square optimal solution (for
comparison we should substitute the input and desired response vectors by
their time increments, and apply a weighting to every term given by the
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Gaussian of the incremental errors). But in fact it is rather different, because
the error in Eq. (4.43) is still a function of the weights, and must be computed
iteratively from the current weights. Therefore Eq. (4.43) is in fact a recursive
algorithm normally called a fixed-point update. Let the weight vector wk at
iteration k be the estimate of the optimal solution. Then, the estimate of the
new weight vector at iteration k + 1 becomes

wk+1 = F (wk) =

⎛

⎝ 1
2k2σ2

k∑

i=1

k∑

j=1

Gσ
√

2(ej − ei)[xj − xi][xj − xi]T

⎞

⎠

−1

⎛

⎝ 1
2k2σ2

k∑

i=1

k∑

j=1

Gσ
√

2(ej − ei)[zj − zi][xj − xi]

⎞

⎠

= RΔ(w)−1PΔ(w), (4.44)

where RΔ (wn) and PΔ (wn) are the pairwise locally weighted incremental
autocorrelation matrix and cross-correlation vector of the input and desired
signals given by

RΔ(wk) =
1

2k2σ2

k∑

i=1

k∑

j=1

Gσ
√

2(ej − ei)[xj − xi][xj − xi]T (4.45)

PΔ(wk) =
1

2k2σ2

k∑

i=1

k∑

j=1

Gσ
√

2(ej − ei)[zj − zi][xj − xi]. (4.46)

This algorithm is called the fixed-point minimum error entropy (MEE-FP)
algorithm, which is analogous to the RLS update rule that tracks the Wiener
solution at every update.

It is important when applying a fixed-point solution to establish the re-
gion of convergence for the algorithm, using, for instance, the well-known
Banach–Caccioppoli contraction theorem [118]. We were able to prove the lo-
cal convergence of MEE-FP using a Taylor series expansion truncated at the
linear term for the gradient around the optimal weight vector [129]. For solu-
tions far away from the optimal solution, there is as yet no theoretical proof
of convergence. However, experimental results suggest that the algorithm can
be used in general conditions.

Recursive MEE-FP with Forgetting Factor

We now derive an online forgetting recursive estimator for the fixed-point
MEE. Investigating the structure of the estimator for the entropy weighted
incremental autocorrelation RΔ (wn) and the entropy weighted incremental
cross-correlation PΔ (wn) of the entropy in Eqs. (4.45) and (4.46), we obtain
a recursive formula to update their estimates when a new sample is acquired.
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When a new sample n arrives, RΔ (wn−1) and PΔ (wn−1) are modified with
the new input-output sample pair (xn, zn) as

RΔ(wn) =
(n− 1)2

2n2σ2
RΔ(wn−1) +

1
n2σ2

n−1∑

i=1

Gσ
√

2(en − ei)[xn − xi][xn − xi]T

(4.47)

PΔ(wn) =
(n− 1)2

2n2σ2
PΔ(wn−1) +

1
n2σ2

n−1∑

i=1

Gσ
√

2(en − ei)[zn − zi][xn − xi].

(4.48)

This exact recursion is useful for estimating the recursively weighted incre-
mental autocorrelation and cross-correlation of stationary signals, however,
it is time consuming (it increases with n) and not suitable for nonstation-
ary environments due to its increasing memory depth. Therefore, a forgetting
recursive estimator using the past L samples is necessary to overcome both
shortcomings. We define

RΔ(wn) = (1− λ)RΔ(wn−1) +
λ

L

n−1∑

i=n−L
Gσ

√
2(en − ei)[xn − xi][xn − xi]T

(4.49)

PΔ(wn) = (1− λ)PΔ(wn−1) +
λ

L

n−1∑

i=n−L
Gσ

√
2(en − ei)[zn − zi][xn − xi],

(4.50)

where the parameters λ and L are called the forgetting factor and window
length. These free design parameters have an effect on the convergence prop-
erties of this recursive estimator and have to be established experimentally for
the application. The practical importance of this recursive estimator is that
it reduces the computational complexity from O(n2) in Eqs. (4.47) (4.48) to
O(L). Depending upon the size of the window, this can be a drastic reduction.
Overall, the recursive MEE-FP algorithm of Eq. (4.44) with the updates of
Eqs. (4.49) and (4.50) is order O(M3+M2L). The O(M2L) term is due to the
evaluation of the contribution to the RE matrix and PE vector of the current
state (input and error). The O(M3) term relates to the inversion of the RE
matrix.

Inversion Lemma for MEE-FP

The weight updates by Eq. (4.44) are costly both computationally and memo-
rywise. This is because it requires an inversion of anM×M coefficient matrix,
R̄Δ (wn) where M is the filter order, at all time instants. This matrix inver-
sion requires O(M3) operations. It is possible to obtain alternative algorithms
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based on the matrix inversion lemma [143]. First, convert the summation of
the rank-one update Eq. (4.49) to the following

RΔ(wn) = (1− λ)RΔ(wn−1) +
λ

L
ΠΠT , (4.51)

where Π = [qn−1, . . . ,qn−L], qi =
√
Gσ

√
2(en − ei)(xn − xi). Then, apply

the matrix inversion lemma

(A+ BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1 (4.52)

with A = (1 − λ)R̄Δ(wn−1), B = (λ/L)Π, C = I, and D = ΠT .
We obtain a recursive inverse locally weighted incremental autocorrelation
([R̄Δ(wn−1)]−1 = Φ̄(wn)) as

Φ̄(wn) =
1

1− λ Φ̄(wn−1)− λ

(1− λ)2 L
Φ̄(wn−1)Π

(

ILxL +
λ

(1− λ)L
ΠT Φ̄(wn−1)Π

)−1

ΠT Φ̄(wn−1). (4.53)

The matrix inversion included in Eq. (4.52) requires O (L3) operations. In
big-O notation, the complexity of the MEE-FP of Eq. (4.44) with the in-
version lemma update of Eqs. (4.51) through (4.53), has a computational
complexity of O(L3 + M2L + ML2), where the matrix multiplications have
complexity O(M2L + ML2). For small windows this algorithm is preferred.
Comparing the recursive estimator for the autocorrelation matrix in the RLS
algorithms (e.g., weighted-RLS and extended-RLS [143]) with the MEE-FP
counterpart, we again verify the presence of an extra summation due to the
pairwise interactions. This term weights the input and desired responses by
the Gaussian of the difference in errors. If the errors are similar (remember
this similarity is controlled by the kernel size) and L = 1, the equation de-
faults to the RLS. This weighting becomes particularly useful for the impulse
noise case as we already discussed in Chapter 3.

In terms of computational complexity, whereas in the RLS the estimate of
the new autocorrelation is obtained from the current input vector, in the recur-
sive MEE-FP the estimation of the RE matrix must account for the relation of
the current input and error with all previous inputs and corresponding errors.
In practice, however, to limit the computational complexity this estimation
is truncated to a window of the last L samples. Based on this observation it
is natural to expect an increase in the computational complexity of the error
entropy-based algorithms such as MEE-FP, unless L = 1.

Comparing the two MEE-FP updates, consider first the situation that M
(filter order) is significantly smaller than L (window length). In this case the
first form of the algorithm is simpler, and the computational complexity sim-
plifies to O(M−2L) because this is the dominant term. Conversely, if L is
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significantly smaller than M then the second form of the recursion is more
computationally efficient. Similarly, the O(M−2L) term dominates the com-
putational complexity. Consequently, for a given value of M , in either case
the complexity is higher than that of RLS by a linear factor of L. This factor
is the result of the need for an additional summation in the estimation of
the information potential and, in this sense, it is not at all an unreasonable
increase. For the extreme case L = 1, RLS and recursive MEE-FP have the
same computational complexity of (O(M2)).

Effect of Eigenvalue Spread on MEE-FP

In the system identification scenario, both the unknown system and the adap-
tive system have the same structure. The measurement noise is white Gaussian
distributed with zero mean and variance 10−4 and is added to the system out-
put. The effect of the eigenvalue spread on both MEE and fixed-point MEE
depicted in Figure 4.9 shows the results in the case of colored Gaussian input,
whose variance is 30 and a eigenvalue spread ratio (S) is 10.

In order to compare the two algorithms, we find the stepsize for the MEE
algorithm and the forgetting factor for the fixed-point MEE algorithm to be
such that they produce the same misadjustment (around 10−6). For both
algorithms, the kernel size (σ) is set to 0.707 and the window length L is set
to 100. Also, we fix two initial weight vectors to w0 = [−1, 2]T and [1, 0]T .

The important aspect of these experiments is the different speed and direc-
tion of convergence between the MEE and Fixed-Point MEE. From Figure 4.9,
we can observe that the fixed-point MEE converges much faster than the MEE
algorithm. Figure 4.9b) clearly shows that the weight track of MEE moves
along the gradient direction, whereas the fixed-point MEE travels in a direct
path to the optimal solution. Therefore, as expected the eigenvalue spread
does not affect the speed and direction in the fixed-point MEE algorithm
unlike MEE.

One important property experimentally verified is that the FP-MEE still
converges well with small windows, in particular L = 1 (Figure 4.10).
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Input correlation matrix eigenvalue spread of S = 10. (from [131]).
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Fig. 4.10. RLS and FP-MEE convergence for two window sizes L = 1, L = 100 and
S = 10. (from [131]).

Figure 4.10 shows the comparison of RLS and FP-MEE (forgetting factor
of 0.9 in both) for the two weight system identification problem, and we can
observe that although there is a slight increase in misadjustment for L = 1,
the convergence of the FP-MEE for L = 1 is very close to the case L = 100 and
better than RLS. The misadjustment of the MEE-FP (L = 1) is comparable
to the RLS, and the misadjustment of the MEE-FP (L = 100) is smaller.
For this case, both implementations of MEE-FP are faster than the RLS,
perhaps due to the error weighting, but it is unclear if this a general feature
of MEE-FP.

4.7 Fast Gauss Transform in MEE Adaptation

We have covered two ways to decrease the computational complexity of MEE
algorithms: by approximating the IP computation recursively (MEE-RIP)
and stochastically (MEE-SIG) which decrease the complexity to O(MN ) and
O(N), respectively. But the SIG slows down training somewhat due to the
noise in the estimate, whereas the RIP is useful in online training of MEE.
Here we use the FGT as a means of decreasing the computational complexity
of MEE.

The fast Gauss transform (FGT) algorithms presented in Section 2.9 can
be applied readily to the MEE algorithm. Suppose that the adaptive system
is an FIR structure with a weight vector w. The error samples are ek =
zk −wT

k xk, where zk is the desired response, and xk is the input vector. For
convenience we copy below the MEE gradient equation
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∇V̂ (e) =
1

2σ2N2

N∑

j=1

N∑

i=1

Gσ
√

2(ej − ei)(ej − ei)(xj − xi). (4.54)

The FGT with Hermite interpolation can be readily applied to Eq. (4.54)
yielding

∇V̂H(e) =
1

2σN2
√
π

N∑

j=1

∑

B
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n=0

{

hn

(
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2σ
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· ∇Cn (B)

+ Cn (B) · hn+1
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·
(xj

2σ

)}

,

(4.55)

where ∇Cn (B) is defined by

∇Cn (B) =
1
n!

∑

ei∈B
n

(
ei − cB

2σ

)n−1

·
{
− xi

2σ

}
. (4.56)

The FGT with Taylor series expansion is similar and presented in Eq. (4.57)

∇VT (e) =
1

2σN2
√
π
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[
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ei − cB

2σ
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(4.57)

where ∇Cn (B) is defined by

∇Cn (B) =
2n

n!

∑

ei∈B
−

{

−2 · exp

(

− (ei − cB)2

4σ2
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·
(
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4σ2
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·
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·
( xi
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.

(4.58)

Entropy Estimation with FGT

We analyzed the accuracy of the FGT in the calculation of the IP for the
Gaussian and uniform distributions for two sample sizes (100 and 1000 sam-
ples) [131]. For a comparison between SIG and FGT we use p = L in all
our simulations. We fix the radius of the farthest-point clustering algorithm
at r = σ. As can be expected, the absolute error between the IP and the FGT
estimation decreases with the order p of the Hermite expansion to very small
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values, from 10−4 for p = 3 to 10−12 for p = 20, whereas that of the SIG
fluctuates around 0.005 (100 samples) and 0.0001 (1000 samples). We can
conclude that from a strictly absolute error point of view, a FGT with order
p > 3 outperforms the SIG for all cases.

Recall that the Taylor expansion in the FGT saves computation in
high dimensions. This is only relevant for the multiple-input-multiple-output
(MIMO) case, and indeed we are able to show computational savings, but
also a decrease in accuracy when the number of outputs are more than three.
Again the results are presented in [131]. For the single-input-single-output
(SISO) or MISO cases the Hermite expansion is the preferred approach. How-
ever, for our ITL application, the accuracy of the IP is not the only objective.
Indeed, in ITL we train adaptive systems using gradient information, so the
smoothness of the cost function is perhaps even more important.

Adaptive Learning with FGT

We consider the system identification of a moving-average plant with a ninth
order transfer function given by

H(z) = 0.1 + 0.2z−1 + 0.3z−2 + 0.4z−3 + 0.5z−4 + 0.4z−5 + 0.3z−6

+ 0.2z−7 + 0.1z−8

using the minimization of the error entropy (zero achievable error). In each
case the power of the weight noise was plotted versus the number of epochs
performed. In this simulation, the inputs to both the plant and the adaptive
filter are also white Gaussian noise. We choose a proper kernel size by using
Silverman’s rule (σ = 0.707) and fix the radius of the farthest point clustering
algorithm r = 0.5× σ.

As can be observed in Figure 4.11a, all the adaptive methods of the in-
formation potential produce converging filters. However, the speed of conver-
gence and the weight error values of the final epoch are different. The fast
method using the Hermite expansion performs better in training the adap-
tive system as compared to the fast method using the Taylor expansion. The
method expanded into a Hermite function with second order has a better
performance when compared with that of the tenth order expansion in the
Taylor series. The Hermite expansion method with a tenth order expansion is
virtually identical to the value of the direct method.

Figure 4.11b shows the plot of the number of clusters during adaptation.
Because the error is decreasing at each epoch, the number of clusters gets
progressively smaller. In this case, where the achievable error is zero, the
number reduces to one cluster after adaptation. The Taylor expansion method
with second and tenth order defaults to one cluster after 12 and 10 epochs,
respectively, whereas the Hermite expansion method with second and tenth
achieves one cluster after 5 epochs.

We have also shown [131] that the fast method using the Taylor expansion,
although worse than the Hermite expansion, provides converging filters in



170 4 Algorithms for Entropy and Correntropy Adaptation

0 5 10 15 20
10−30

10−25

10−20

10−15

10−10

10−5

100

Number of Epochs

a b

Number of Epochs

W
ei

gh
t E

rr
or

 P
ow

er

MEE
Hermite Exp.(p=2)
Taylor Exp.(p=2)
Hermite Exp.(p=10)
Taylor Exp.(p=10)

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

N
um

be
r 

oc
 C

lu
st

er
s

Hermite Exp.(p=2)
Taylor Exp.(p=2)
Hermite Exp.(p=10)
Taylor Exp.(p=10)

Fig. 4.11. (a) Comparison of the direct method and the fast methods (Hermite
and Taylor expansion) for system identification with the white uniform noise using
N (= 2500) samples. (b) Plot of the number of clusters during adaptation in system
identification. (from [131]).

high dimensions with a small penalty in converging speed (not shown here).
Therefore, our recommendation is to use the Hermite approximation for small
dimensionality outputs (< 3), and the Taylor method in higher dimensions.

4.8 Incomplete Cholesky Decomposition for MEE

A first analysis of the gradient equation for the MEE (Eq. (3.16)) shows that
the kernels are multiplied by products of incremental errors and incremental
inputs, which in a matrix implementation destroys the Toeplitz structure re-
quired to apply the incomplete Cholesky decomposition [116]. However, we can
still apply this technique if we rewrite Eq. (3.16) in a slightly different form. In
fact, note that the Hadamard product of two matrices C and A = abT , where
a and b are column vectors, can be written as C◦A = diag(a)Cdiag(b) where
diag(a) is a diagonal matrix with the entries of the a vector in the diagonal.
With this notation Eq. (3.16) can be rewritten as

∇kV (n) =
1

2N2σ2
1T (K ◦ΔE ◦ΔX(k))1, (4.59)

where matrix K has entries Kij = G(e(n− i)− e(n− j)) and the matrix ΔE
entries ΔEij = e(n − i) − e(n − j), as well as ΔX(k) with entries ΔX(k)

ij =
xk(n − i) − xk(n − j). We can further decompose ΔE = e1T − 1eT and
ΔX(k) = xk1T − 1xTk . If we apply the identity for the Hadamard product of
matrices above in Eq. (4.59), we get

∇kV (n) =
1

2N2σ2
1T (diag(xk)(diag(e)K−Kdiag(e))

−(diag(e)K−Kdiag(e))diag(xk))1
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Fig. 4.12. Computation time for the adaptive filter based on the minimum error
entropy criterion. Averages are taken from 15 trials of the computation time of the
low rank approximation.

Now if the incomplete Cholesky decomposition is applied to K ∼ ΓΓT , we
obtain

∇kV (n) ≈ 1
N2σ2

(eTΓΓTxk − (e ◦ xk)TΓΓT )1. (4.60)

Equation (4.60) can be computed in O(Np), where p is the number of columns
of Γ, instead of O(N2), so the savings are substantial.

We tested the incomplete Cholesky decomposition (ICD) in the adapta-
tion of the same filter as in Section 4.7. Figure 4.12 depicts the behavior of
the computation time for different accuracy levels in the ICD. Each trial uses
4000 samples for training and the estimates of the IP gradient are computed
using batches of 200 points. Training always converges to the same zero er-
ror solution. It is remarkable that even for very strict levels of accuracy the
computation time remains about 100 times lower than direct computation.
The main reason behind this phenomenon is due to the shrinkage of the er-
ror. Each step decreases the entropy of the error distribution resulting in a
low-rank Gram matrix that can be efficiently computed by ICD.

4.9 Linear Filter Adaptation with MSE, MEE and MCC

We have been applying in this chapter the EEC to linear adaptive filters with
no noise in the desired response, and the reader may be induced to think that
we suggest such an application instead of the more traditional mean square
error cost function. This is not the general case, and our only motivation has
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been to apply the MEE to the simplest filter topology where adaption is well
understood. The true advantage of the EEC (and ECC) over MSE is when the
error distribution is non-Gaussian, which occurs in basically two scenarios: the
filter topology is nonlinear or the noise in the desired signal (or the desired
signal itself) is non-Gaussian. The former is the object of the next chapter
and the latter is exemplified in this section.

We will also include the MCC algorithm in our comparisons because of
its close relation with the MEE, and the simpler computational complexity
which is linear with the data samples per weight as the LMS algorithm. In
fact, Eq. (3.36) presents the ECC and adapting this equation to the Gaussian
kernel and the online cost function of adaptive filtering we obtain the MCC
cost function as

J(n) =
1

L
√

2πσ

n∑

i=n−L+1

e−(z(i)−y(i))2/2σ2
(4.61)

for a window size of L samples and where z is the desired signal and y the filter
output. Taking the gradient of J(n) with respect to the filter weight vector
w, and using the gradient ascent approach for each weight wk, wk(n+ 1) =
wk(n) + η∇kJ(n) we obtain the MCC steepest gradient ascent update for-
mula as

wk(n+ 1) = wk(n) +
η

L
√

2πσ3

n∑

i=n−L+1

e−e(i)
2/2σ2

e(i)xk(i). (4.62)

Notice that the stochastic gradient approximation to Eq. (4.62), the SIG(1)
only uses the current sample because there is only one element in the sum,
yielding

wk(n+ 1) = wk(n) +
η

σ2
Gσ(e(n))e(n)xk(n) (4.63)

which is the MCC-SIG(1) algorithm with the same complexity as the LMS
algorithm. However, now the product error and input are weighted by a non-
linear function of the error for Gaussian kernels, so there is an extra control of
the weight update using the ECC when compared with MSE. Therefore the
ECC cost function yields a stochastic weight update of the same complexity
of the LMS, and with some of the properties of the MEE as demonstrated in
Chapter 3.

System Identification in Non-Gaussian Noise Environments

A system identification problem involves determining the coefficients of an un-
known plant, by studying its response to a white input signal. The unknown
plant is modeled by the adaptive filter in such a way that for the same input,
the difference between the outputs of the plant and the filter is minimized.
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This adaptation is complicated by the presence of measurement noise which
gets added to the output of the plant. A practical extension of the system
identification problem is when the transfer function of the plant is changing
with time and is required to be tracked by the adaptive filter. For this simu-
lation [302], the input to the plant and the adaptive filter is a white Gaussian
signal with zero-mean and unit variance. The coefficients of the plant are again
chosen as

w∗ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.4, 0.3, 0.2, 0.1]T.

We intend to compare the three cost functions in the presence of an impulsive
observation noise, which can be simulated using a mixture of Gaussians:

0.95G(0, 10−4) + 0.05G(0, 10),

where G(m, σ) is the Normal distribution with mean m and standard de-
viation σ. Clearly, in this density, the Gaussian distribution with variance
10 creates strong outliers. The kernel sizes for the MCC and the MEE algo-
rithms are set to 2 for this case. The stepsizes for the three update rules are
chosen such that when the observation noise is Gaussian, their performance
is similar in terms of the weight SNR defined as,

WSNR = 10 log
(

w∗Tw∗

(w∗ −w(n))T (w∗ −w(n))

)

.

When adaptation is done in the presence of impulsive noise, we can
see a significant difference in performance (Figure 4.13). Whenever a high-
amplitude outlier is encountered in the desired signal it is transmitted to the
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Fig. 4.13. Weight SNR of MSE, MEE, and MCC in impulsive measurements
(from [302]).
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Fig. 4.14. Weight SNR of LMS, MEE, and MCC while tracking a time-varying
system in the presence of impulsive measurement noise (from [302]).

error and the LMS weight update rule is forced to make a large increment,
which takes the weights away from the true values. The overall effect of several
such outliers is that the weights keep jittering around the optimal values, and
exhibit noisy weight tracks.

This can be seen from the weight SNR (WSNR) plots in Figure 4.13. The
MCC weight tracks are more robust in such situations. Referring back to the
MCC update rule, Eq. (4.62), the exponential function of the error provides
the attenuation when high-amplitude outliers are encountered, keeping the
overall weight track close to the optimal. The MEE criterion also exhibits
similar characteristics in the presence of impulsive noise for a similar reason
(see Eq. (4.15)).

We now simulate a time-varying plant transfer function where the coeffi-
cients are changing as follows,

w∗(n) = 2
(
1 +

n

1000

)
u(1000− n)w∗ +

(
−1 +

n

1000

)
u(n− 1000)w∗,

where u(n) is the unit step function. Figure 4.14 shows the results of tracking
the above plant weights. The performance of the MCC algorithm is better in
this case. As compared to the MEE algorithm, it is able to track the weights
better as can be seen from the portion of the curves just after the discontinuity
(n = 1000).

Adaptive Noise Cancellation of Speech Signals

An important application of adaptive filters is in acoustic noise cancellation.
Given a desired signal (speech, music, etc.) corrupted by ambient noise, an
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adaptive filter tries to replicate this noise by exactly modeling the acoustic
transfer function between the noise source and the signal. In practical scenar-
ios, both the noise and the acoustic transfer function may be nonstationary.

Figure 4.15 shows the configuration of a noise cancellation system. The
difference between the desired signal z and the output of the filter y is in fact
the noise-free signal (cleaned speech), which is a non-Gaussian signal (positive
kurtosis, also called super-Gaussian). We have tried to simulate real-life condi-
tions as closely as possible [302]. The speech signal is shown in Figure 4.16a.
The noise signal is that of a vacuum cleaner collected in a room, and it is
nonstationary as can be seen in Figure 4.16b. The acoustic transfer function
is that of a typical closed room environment. We use a 200-tap filter to model
the acoustic path.

Fig. 4.15. An acoustic noise cancellation configuration.
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Fig. 4.16. (a) Speech recording and (b) vacuum cleaner noise.
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Fig. 4.17. Weight tracks for one of the filter weights. The convergence time for all
the methods has been kept the same. The LMS procedure is much less stable at
steady state in such conditions.

The parameters of the weight update equations were chosen to have a high
rate of convergence, and in all three cases were set to be the same. The MCC
algorithm was found to be quite robust in the presence of sudden and irregular
“bursts” that appear in the voiced portions of speech. Figure 4.17 shows the
weight tracks of one of the filter weights.

For the same convergence rate, the MSE cost function produced a much
higher misadjustment at steady state. This is because of the highly impulsive
nature of the speech signal. The sudden, high-amplitude “bursts” that occur
in speech signals can easily disturb the LMS weight track. However, corren-
tropy, being a localized similarity measure, places exponentially decreasing
weights on samples that are distant and impulsive. Therefore, the overall
weight tracks of filters trained with MCC are much less affected by such types
of nonstationarities in the signal.

Figure 4.18 shows the signal-to-noise ratio between the original speech sig-
nal and the cleaned signal (after averaging over a moving window of 10,000
samples, for visual clarity). There is a substantial improvement in the SNR
as obtained by MEE when compared with the MSE criterion. The MCC SNR
is also much better than LMS but slightly worse than MEE, but it is im-
portant to remember that the MCC results are obtained at a much simpler
computational complexity as compared to the MEE filter.

Echo return loss enhancement (ERLE) is a commonly used measure of
performance for echo cancellers. It measures the amount of noise (or echo)
power that has been removed from the desired signal by subtracting the output
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Fig. 4.18. SNR (smoothed over a running window of 10,000 samples) obtained after
noise cancellation with LMS, MCC, and MEE cost functions.

of the adaptive filter. It is a ratio of the power of the desired signal and the
error, expressed in decibels:

ERLE (dB) = 10 log
(
E[z2

i ]
E[e2i ]

)

.

Figure 4.19 shows the ERLE values of the three techniques, after smooth-
ing using a running window of 10,000 samples, for visual inspection. Clearly,
the MEE and MCC algorithms are able to remove more noise power from the
desired signal, as compared to the LMS.

From these preliminary tests we can say that for real-world applications
requiring low computational complexity such as for portable devices, the MCC
is a very strong contender. Of course the kernel size must be determined from
the data, unless the adaptive kernel size algorithm of Section 3.7 is used. In
this case no extra parameters when compared with the conventional LMS are
required, but the adaptation of σ is O(N).

4.10 Conclusion

This chapter explained in great detail a set of algorithms for the error entropy
criterion called minimum error entropy that can be applied to both adaptive
filters or in regression. Conceptually EEC is a more powerful cost function
because it deals directly with the PDF of the error. During adaptation the
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Fig. 4.19. ERLE values (smoothed over a running window of 10,000 samples)
obtained after noise cancellation with LMS, MCC, and MEE cost functions.

PDF of the error changes, therefore the weights of the filter control the shape
of the PDF.

The use of linear FIR of small order was dictated by easy visualization of
the solution. In fact, we do not recommend the use of EEC with FIR filters
when signals are stationary in noise free environments, which normally leads
to Gaussian residuals (recall that the FIR adds random variables, so the filter
output tends to be Gaussian). But again the linear FIR case is the simplest
of the architectures so insights of how EEC works in nonlinear systems can
be inferred from this chapter.

We have presented several different adaptation algorithms for the EEC
that parallel most of the gradient descent methods (and RLS) for MSE. Some
of the MEE algorithms (MEE-RIP, MEE-SIG) attempt to decrease the com-
putation of the gradient (i.e., O(N2) if nothing is done). We propose a re-
cursive estimation of the IP and a stochastic approximation that drop the
computation to O(L), where L is the number of samples in the window used
to estimate the IP. We also addressed the difficulty of searching the EEC using
the MEE-SAS (self-adjusting stepsize) that speeds up the adaptation consid-
erably because it has a fourth order convergence in a large portion of the
space (very similar to the LMF algorithm). There is also an NMEE algorithm
that alleviates the problem of large swings in the amplitude power, and also
reduces the dependency of the kernel size in the search. We also presented
a second-order search method for the MEE based on a fixed-point update,
which is insensitive to eigenvalue spread, but is more computationally costly.
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Finally, we applied the fast Gauss transform approximation to the train-
ing of MEE, and found out that small order expansions (p < 10) and few
clusters are sufficient to create an accurate search of the EEC performance
surface, and they considerably decrease the computational complexity. The
Taylor series expansion should be used in higher dimensions for efficiency in
the calculations, but it is less accurate. Regarding the incomplete Cholesky
decomposition explained in Chapter 2 as an alternative to speed up compu-
tation, we show how it can still be applied to gradient computation in block
form (i.e., for the batch mode algorithms). The ICD has advantages because
it is a well known matrix manipulation so it is simpler to apply than the
FGT. It is also able to decrease the computational accuracy product 100-
fold, effectively yielding O(N) algorithms, which means that it is a practical
methodology when simulating or implementing EEC solutions using the IP
estimator. Therefore, we consider that a sufficiently rich set of algorithms ex-
ists to apply EEC in practical applications. However, not all is known about
this new cost function. The selection of the kernel size is still an open problem
(minimized by the NMEE), as well as the determination of the learning rate.
They both need further research and it may be possible to derive an adaptive
kernel size algorithm (see [302] for some preliminary results).

The chapter ends with a comparison among the MSE, EEC, and ECC cost
functions under the linear model to illustrate the fact that even in the simple
scenario of linear models there are advantages of using the MEE and MCC
algorithms over LMS when the noise is non-Gaussian or when the signals of
interest are non Gaussian as in the case of acoustic noise cancellation. The
MCC has a great advantage with respect to the MEE in terms of computa-
tional complexity, because a single sum is necessary to evaluate the cost. In
practical problems, the MCC has performance very close to the MEE, there-
fore its applicability in low-power, portable DSP processors may be preferable
to MEE. Although not yet fully studied, the class of error entropy and error
correntropy cost functions may provide faster convergence for the same mis-
adjustment because the cost functions are not constant curvature as is the
MSE cost. The issue is how to choose the operating point to achieve faster
convergence as initiated in the MEE-SAS approach.
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Nonlinear Adaptive Filtering with MEE,
MCC, and Applications

Deniz Erdogmus, Rodney Morejon, and Weifeng Liu

5.1 Introduction

Our emphasis on the linear model in Chapter 4 was only motivated by
simplicity and pedagogy. As we have demonstrated in the simple case studies,
under the linearity and Gaussianity conditions, the final solution of the MEE
algorithms was basically equivalent to the solution obtained with the LMS.
Because the LMS algorithm is computationally simpler and better understood,
there is really no advantage to use MEE in such cases.

The primary domain where the EEC criterion will likely provide advan-
tages with respect to MSE is when the cost function works on a random vari-
able that is not Gaussian distributed. The case where the observation noise
added to the desired response, or the desired response itself is non–Gaussian,
was already exemplified in Chapter 4 with speech echo noise cancellation (the
speech becomes the error). Here we study the nonlinear systems case, where
even if the input–desired response pairs are Gaussian distributed random vari-
ables the error is likely not Gaussian distributed due to system nonlinearities.
These are two already identified conditions where the EEC may provide su-
perior performance, but others may still be discovered due to the differences
in the EEC, ECC and MSE cost functions.

We show that the MEE algorithms can be easily extended to nonlinear
adaptive filtering by integrating the error entropy cost function with the back-
propagation algorithm (BP) of neural network theory [253]. In as much as for
nonlinear systems the cost functions become nonconvex, it is important to go
beyond the conventional gradient descent procedure explained in Chapter 4.
We address the modifications made to advanced search procedures when ITL
cost functions are utilized. Finally, this chapter also covers several important
applications of information filtering to engineering applications to illustrate
the gains and the important parameters that need to be controlled to achieve
operational performances close to the optimum EEC can provide.

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 181
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2 5,
c© Springer Science+Business Media, LLC 2010
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Nonlinear Adaptive Filtering with Error Entropy Criterion

Neural networks are an important engineering tool in nonlinear signal process-
ing, therefore this chapter addresses the application of the EEC and its MEE
algorithm to neural networks. The fundamental question is: what changes in
the large body of neural network training methods when the MSE is sub-
stituted by the EEC? The answer is rather simple. If we carefully examine
together the gradient equations for the MSE and EEC (Eqs. (1.33) and (3.15))
using the chain rule across the system topology we see that the effect of the
EEC appears encapsulated in the partial derivative of the cost with respect
to the error (∂J/∂e), which means that when we switch between MSE and
EEC this is the only part of the gradient computation that changes. The other
aspect that must be noticed in Eq. (3.15) is that the MEE algorithm works
with pairs of samples; that is, the gradient is no longer local in time, but it
can still be written compactly as differences in gradients. The propagation of
the sensitivities throughout the topology (∂e/∂w) is computed from the par-
tial derivative of the error with respect to the system parameters. Therefore,
when a nonlinear topology is selected instead of a linear one, the propagation
of sensitivities is where most changes occur, which is a topic well treated in
the theory of neural network training [253]. We can thus expect that the MEE
algorithm can be easily integrated in neural network training. Let us basically
explain the procedure with the simplest nonlinear topology of Figure 5.1 which
is called a focused time delay neural network (TDNN) with a single layer and
one single processing element (PE) for simplicity.

In the figure ϕ(.) is a static differentiable nonlinearity, normally a sigmoid
[253]. The sensitivity of the cost J at time n with respect to the weight wk

can be computed using the ordered derivative over the topology, to read

∂J

∂wk
=

∂J

∂e(n)
∂e(n)
∂net(n)

∂net(n)
∂wk

. (5.1)

j(net)

net (n)=åiwix(n-i)

x(n)

z(n)

e(n)y(n)

w0

wM-1z-1

z-1

z-1

S +
-

x(n-M+1)

Fig. 5.1. A simple TDNN network.
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Notice that when compared with Eq. (1.33) we now have a third partial
derivative (the middle term) in the chain rule applied to the topology that
relates the error and the argument of the nonlinearity which we called net(n).
If we use the MSE cost, Eq. (5.1) immediately gives

∂J

∂wk
= −2E(e(n))ϕ′(net(n))xk(n), (5.2)

where ϕ′(net) stands for the derivative of the nonlinearity evaluated at the
operating point net(n). We just rederived the delta rule of neural network
learning [253].

In the case of the MEE procedure, recall that V̂ (E) = 1/N2
∑N
i=1

∑N
j=1

κ(e(i)− e(j)), with an arbitrary kernel κ, so the counterpart of Eq. (5.1) is

∂V̂ (En)
∂wk

=
1
N2

N∑

i=1

N∑

j=1

∂κ(e(n− i)− e(n− j))
∂(e (n− i)− e(n− j))

∂(e(n− i)− e(n− j))
∂wk

=
1
N2

N∑

i=1

N∑

j=1

∂κ(e(n− i)− e(n− j))
∂(e (n− i)− e(n− j))

(
∂e(n− i)
∂net(n− i)

∂net(n− i)
∂wk

− ∂e(n− j)
∂net(n− j)

∂net(n− j)
∂wk

)

. (5.3)

The big difference is simply in the use of pairs of samples, which means that
the gradient has to be computed for each sample in the pair, over all pairs.
When evaluated with Gaussian kernels Eq. (5.3) yields the batch gradient
estimate for the MEE delta-rule

∂V̂ (En)
∂wk

=
1

2σ2N2

N∑

i=1

N∑

j=1

Gσ
√

2(e(n− i)− e(n− j))(e(n− i)− e(n− j))

(ϕ′(net(n− i))xk(n− i)− ϕ′(net(n− j)xk(n− j)) , (5.4)

where ϕ′ is the derivative of the PE nonlinearity. The interpretation of in-
formation force given in Chapters 2 and 3 about the first component of the
gradient in Eq. (5.3) still applies here, but now notice that the derivative of
the nonlinearity evaluated at the operating point is weighting the informa-
tion force (just as it was modulating the error in the MSE cost function).
Of course the nonlinear topology we utilized is very simple, but the principle
can be easily generalized for topologies with hidden processing elements and
the general procedure is called the backpropagation algorithm [277,331].

5.2 Backpropagation of Information Forces
in MLP Training

In this section, we derive the backpropagation algorithm for a multilayer
perceptron (MLP) trained under the MEE algorithm, which is called the
MEE-BP, that is the adaptation of the MLP weights using a cost function of
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the form of Eq. (3.12). This extended algorithm backpropagates the informa-
tion forces between the error samples in the output error space through the
layers of the MLP instead of the error in the standard MSE criterion case.
For simplicity, consider the unweighted total potential of the error samples as
the cost function. Assume that for multi output situations, we simply sum the
potentials of the error signals from each output (as explained in Section 4.1).

Consider an MLP that has L layers with ml PEs in the lth layer. We
denote the input vector with layer index 0. Let wlji be the weight connecting
the ith PE of layer l − 1 to the jth PE in the lth layer. Let V̂ lj (s) be the in-
formation potential of the jth PE at the lth layer corresponding to the input
sample x(s), where s is the sample index. Assume further that we have mL

output PEs. Let ϕ(.) be the sigmoid nonlinearity of the MLP, the same for all
PEs, including the output layer. Assume we have N training samples. The in-
formation potential of the system of error samples, given by {e(1), . . . , e(N)},
is then

V̂ =
N∑

s=1

N∑

t=1

mL∑

k=1

V̂ (ek(s)− ek(t)) Δ=
N∑

s=1

N∑

t=1

ε(s, t). (5.5)

The derivation of the backpropagation of information forces algorithm fol-
lows along similar lines to those of the conventional error backpropagation
algorithm [253]. The total information potential of the output errors summed
over the output PEs, for a given sample pair (s, t) is defined as

ε(s, t)
Δ=
mL∑

k=1

V̂ (ek(s)− ek(t)). (5.6)

For this MLP, the output y of the kth PE before and after the nonlinearity
of the lth layer is respectively given by

netlk =
ml−1∑

i=0

wlkiy
l−1
i ylk = ϕ(netlk). (5.7)

Taking the derivative of ε(s, t) with respect to the output layer weights, we
obtain Eq. (5.8), where ϕ′(.) is the derivative of the MLP’s sigmoid function
and ζlk(., .) are the sensitivities of the local information potentials in the net-
work that depend on the information forces between the indicated samples,
which will be denoted by F̂ (s, t) = V̂ ′(e(s)− e(t)).
∂ε(s, t)
∂wlki

= V̂ ′(e(s)− e(t)) · [−ϕ′(netlk(s))y
l−1
i (s) + ϕ′(netlk(t))y

l−1
i (t)

]

= V̂ ′(e(s)− e(t))ϕ′(net lk(t))y
l−1
i (t)− V̂ ′(e(s)− e(t))ϕ′(net lk(s))y

l−1
i (s)

Δ= ζlk(t, s)y
l−1
i (t) + ζlk(s, t)y

l−1
i (s). (5.8)
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For the hidden layer l−1, and for arbitrary weight wji we can write, similarly,

∂ε(s, t)
∂wl−1

ji

= V̂ ′(e(s)− e(t))

⎡

⎢
⎢
⎢
⎢
⎣

∂e(s)
∂yl−1

j (s)

∂yl−1
j (s)

∂netl−1
j (s)

∂netl−1
j (s)

∂wl−1
ji

− ∂e(t)
∂yl−1

j (t)

∂yl−1
j (t)

∂netl−1
j (t)

∂netl−1
j (t)

∂wl−1
ji

⎤

⎥
⎥
⎥
⎥
⎦

= V̂ ′(e(s)− e(t))

⎡

⎢
⎢
⎣

−
ml∑

k=1

ϕ′(netlk(s))w
l
kjϕ

′(netl−1
j (s))yl−2

i (s)

+
ml∑

k=1

ϕ′(netlk(t))w
l
kjϕ

′(netl−1
j (t))yl−2

i (t)

⎤

⎥
⎥
⎦

=
ml∑

k=1

ζlk(t, s)w
l
kjϕ

′(netl−1
j (t))yl−2

i (t)

+
ml∑

k=1

ζlk(s, t)w
l
kjϕ

′(netl−1
j (s))yl−2

i (s)

Δ= ζl−1
k (t, s)yl−2

i (t) + ζl−1
k (s, t)yl−2

i (s). (5.9)

The sensitivities of the other hidden layers (if there are more than two)
can be computed using the same idea, resulting in similar equations. This
derivation and the main points of the algorithm can be summarized as follows.
In the algorithm below, η is the learning rate.

MEE-BP Summary. Let the information force acting on sample s due to the
potential field of sample t be F̂ (ej(s), ej(t)) = V̂ ′(ej(s) − ej(t)) in the jth
output node of the MLP. These interactions minimize the IP in Eq. (5.5).

1. Evaluate local gradients for the output layer for s, t = 1, . . . , N and
j = 1, . . . ,ml using

ζlj(s, t) = F̂ (ej(s), ej(t)) · ϕ′(netlj(s))

ζlj(t, s) = −F̂ (ej(s), ej(t)) · ϕ′(netlj(t)). (5.10)

2. For layer index l = L, . . . , 1 (decreasing index) evaluate the local gradients

ζl−1
j (s, t) = ϕ′(netl−1

j (s))
ml∑

k=1

ζlk(s, t)w
l
kj

ζl−1
j (t, s) = ϕ′(netl−1

j (t))
ml∑

k=1

ζlk(t, s)w
l
kj . (5.11)

3. Once all the sensitivities ζ are computed, update the weight (for gradient
descent) by

Δwlji = −η (
ζlj(s, t)y

l−1
i (s) + ζlj(t, s)y

l−1
i (t)

)
. (5.12)
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Information potential cost functions in general are insensitive to the mean
position of the desired response, therefore, in applications where the mean of
the samples is also desired to be zero (i.e. supervised training), an external
force acting on all the particles to draw them towards the zero value must be
introduced. Since forces are additive, the information force of the last layer
sensitivities in Eq. (5.9) must be the superposition of the information force
produce by the cost and the external force acting on that sample. Practically,
the introduction of a bias at the output processing element set by the mean of
the desired response implements this goal, as already discussed in Chapter 3.

5.3 Advanced Search Methods for Nonlinear Systems

When adapting nonlinear systems, very often the gradient descent procedure
is not the most recommended due to the flat spots and even local minima of
the performance surfaces created by the nonlinear topologies. There is a very
large class of methods to speed up learning by changing the stepsize adaptively,
or even using second–order search procedures that exploit information of the
curvature of the performance surface [285]. All these algorithms have been
developed with MSE cost functions in mind, so it is important to see how
these advanced search methods can be extended to the EEC and other ITL
cost functions. The general problem of parameter optimization has been the
focus of much research and has motivated the development of many advanced
techniques for parameter search [38]. Several of these advanced search methods
are briefly described below in anticipation of their application in EEC training
or in more general terms with ITL cost functions.

Gradient Descent with Momentum

The addition of a momentum term to gradient descent (GD) serves as a low–
pass filter for parameter adaptation. This allows parameter adaptation to
avoid shallow local minima in the performance surface. Adaptation is taken
in the direction of a weighted sum of the current GD direction and the last
step taken as,

Δwk = (1− α)(−η∇kJ) + αΔwk−1, (5.13)

where α is the momentum constant. Clearly, the momentum constant deter-
mines how much credence is given to the historical trend versus the current
estimate. Another useful method that combines GD with the adaptive learn-
ing rate and momentum (GDX) is studied as well.

Resilient Backpropagation

Resilient backpropagation (RP) was introduced to help eliminate some of the
problems encountered when training neural networks containing saturating
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nonlinearities using GD methods [267]. RP uses the sign of the gradient, rather
than the actual gradient to determine the direction of the weight change. This
helps to improve the slow learning caused by the near-zero gradients in the
saturated regions of the nonlinear processing elements. The magnitudes of
the weight changes are adapted according to the direction of the most recent
epochs as follows: (1) if a weight change is in the same direction for the last two
epochs, the magnitude of the change is increased; (2) if the update direction
is different, the magnitude of change is decreased. The update rule for RP is
given as

Δwij(k) = −sign(∇Jij(k))rij(k), (5.14)

where the magnitude, rij (k), is adapted as

rij(k) =

{
arij(k − 1) if ∇Jij(k) ∗ ∇Jij(k − 1) > 0 where a > 1

brij(k − 1) if ∇Jij(k) ∗ ∇Jij(k − 1) < 0 where b < 1.
(5.15)

RP has proven to be a robust algorithm in as much as its adaptation is
governed more by the ongoing adaptive behavior of the weights than the
shape of the performance surface.

Conjugate Gradient Algorithms

Conjugate gradient algorithms were developed in order to select a more ef-
ficient search direction than the standard GD approach. These algorithms
begin with a steepest descent step and then choose conjugate directions for
adaptation rather than steepest descent. For quadratic performance surfaces,
conjugate directions form a complete basis in the parameter space and gen-
erally provide much faster convergence than GD directions [285]. Most con-
jugate gradient methods determine the change magnitude using a line search
technique. The basic update for conjugate gradient methods is

Δwk = αkdk (5.16)
dk = −∇Jk + βkdk−1, (5.17)

where αk is determined using a line search αk = minλ J(wk +λdk), dk repre-
sents the conjugate search direction, and βk determines the method by which
the next conjugate direction is chosen. The Fletcher-Reeves (CGF) method
chooses the direction by

βk =
∇JTk∇Jk

∇JTk−1∇Jk−1

, (5.18)

whereas the Polak–Ribiere (CGP) updates the direction with,

βk =
(∇Jk−1 −∇Jk−2)T∇Jk

∇JTk−1∇Jk−1

. (5.19)
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For all conjugate gradient algorithms, the search direction is periodically
reset to the negative of the gradient. Typically this is done when the number
of epochs equals the number of parameters to be optimized. The Powell–Beale
(CGB) uses a reset condition based on a measure of orthogonality. The CGB
method also computes the search direction from a linear combination of the
negative gradient, the previous search direction, and the last search direction
before the previous reset.

The scaled conjugate gradient (SCG) method was developed to eliminate
the computationally expensive line search from the conjugate gradient ap-
proach [221]. The method takes advantage of computational savings when the
product of the Hessian and a vector are computed. However, the SCG is a
model-trust-region method and requires the addition of a scaling coefficient
λ to govern the trust region. The basic update takes the form of Eqs. (5.16)
and (5.17) with,

αk = − dTk∇Jk
dTkHkdk + λk ‖dk‖2

(5.20)

βk =
∇JTk∇Jk −∇JTk∇Jk−1

−dTk−1∇Jk
, (5.21)

where λ is adjusted to ensure the validity of the model. All the conjugate
gradient methods assume a static performance surface to properly execute
the line search or to determine whether a performance improvement can be
realized in the case of SCG.

Newton’s Method

Newton’s method makes use of the second derivative information, via the
Hessian matrix (H), to arrive at the performance minimum in fewer steps.
The basic update for Newton’s method is given by

Δw = −H−1∇J. (5.22)

However, because the direct computation of the Hessian is computation-
ally expensive, quasi-Newton methods have been developed that iteratively
estimate the inverse of the Hessian at each epoch. One of the most successful
approaches is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-
Newton algorithm [285]. Quasi-Newton approaches determine the change di-
rection using the inverse Hessian estimate and the change magnitude using a
line search as follows,

Δw = −αH−1∇J, (5.23)

where α is determined using a line search. The BFGS method requires stor-
age of the inverse Hessian approximation, which may consume prohibitive
amounts of memory for large networks.
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The one-step secant (OSS) algorithm is a simplified quasi-Newton
approach that was developed to avoid the storage requirements for the
Hessian estimate [20]. The method assumes that for each epoch the previous
Hessian estimate was the identity matrix and uses the same update rule as
Eq. (5.23). Each of these methods assumes a static performance surface for
proper execution of their line searches.

Levenberg–Marquardt Algorithm

The Levenberg–Marquardt (LM) algorithm uses a model-trust-region tech-
nique specifically designed to minimize the mean square error (MSE) function.
The model assumes a locally linear network, which produces a parabolic error
surface [38]. Based on these assumptions, the algorithm estimates the Hessian
matrix and gradient as

H = JTJ (5.24)
∇J = JT e, (5.25)

where J is the Jacobian matrix and e is the vector of network errors com-
puted as the difference between the desired and current outputs. The method
adds a variable diagonal element μ to the Hessian approximation in order to
compensate when the model-trust assumptions are not valid. The value of μ
is decreased with each successful step and increased with each unsuccessful
step. As μ approaches zero, the weight adaptation direction becomes that
of Newton’s method. For large μ, the direction becomes parallel to steepest
descent. The LM update rule is summarized by

Δw = −
[
JTJ + μI

]−1

JTe. (5.26)

The LM algorithm assumes a static performance surface for divergence
measures and its efficiency is highly dependent upon the assumptions regard-
ing the error criterion.

Performance Assessment Index

Some of the above algorithms use a performance assessment index to decide
whether the new weight update should be kept or whether it should be dis-
carded while readjusting the parameters of the search routine. The simplest
test compares the current performance value to the previous performance as

Jk+1 > Jk. (5.27)

If the test in Eq. (5.27) is false, it is considered positive for the goals of
learning and it is considered against the learning goal when true. However,
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in order to increase robustness for noise and shallow local minima, a small
amount of performance degradation is often allowed. A common implementa-
tion of this measure is the specification of a small maximum change percentage
in the performance. For MSE criteria this is typically implemented by allowing
a five percent degradation tolerance,

Jk+1/Jk > 1.05. (5.28)

If Eq. (5.28) evaluates to true, the performance is considered degraded
beyond the tolerable limit, the current update is discarded, and the search
parameters are adjusted to stabilize learning accordingly. If it evaluates as
false, adaptation is continued using either the current search parameters or
parameters adjusted to speed up learning.

5.4 ITL Advanced Search Algorithms

These algorithms have been developed and adapted to the MSE cost function,
therefore some of their assumptions may interfere with the peculiarities of
ITL algorithms. In general, application of the advanced parameter search
techniques described above to EEC and ITL in general (meaning entropy
and divergence costs) are straightforward, but care must be taken with the
specificities of the new costs for acceptable results. This section concludes
with a summary of how the various advanced training algorithms mentioned
above have been adapted for use with ITL [224].

Adaptive Kernel Size

Both entropy and divergence costs of ITL have a free parameter, the kernel
size, which is at the core of the learning process because adaptation is caused
by interactions between samples that are mediated by their spacing and the
kernel size. Research has demonstrated that allowing the kernel size to adapt
during training can lead to improved results as mentioned in Chapter 3. How-
ever, straight application of the adaptive kernel size in ITL can present prob-
lems for many of the advanced parameter search techniques. The cause of
the problems is that the kernel size controls the shape of the performance
surface. Figure 5.2 compares the performance surface for three different val-
ues of kernel size (σ2 = 0.001, 0.01, 0.1) for the frequency double example
presented next.

The figure illustrates that although the surfaces generally have similar
shapes and similar location of extrema within the weight-space, there are two
significant differences. First, as intuition suggests, the relative smoothness of
the performance surface increases with larger kernel size. Notice the shallow
local minima in the case when σ2 = 0.001. Secondly, the value of the per-
formance function varies with the kernel size as illustrated by the different
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Fig. 5.2. Performance surface variation with kernel size (from [224]).

scales for the performance surface plots on the right. A changing kernel size
during adaptation creates what we call a dynamic performance surface, that
is, a performance surface that changes from iteration to iteration.

The impact of a dynamic performance surface on a search algorithm that
assumes a static surface can be disastrous, quickly leading to divergence and
instability. Some of the key search algorithms that are affected include line
searches and conjugate direction selection. In order to accommodate dynamic
performance surfaces, the kernel size is kept constant at its current value dur-
ing the execution of any sequence of search steps that require a performance
comparison or a line search execution. Once these steps have been complete
and the resulting set of weights is determined, kernel size adaptation is re-
sumed. For some algorithms, this requires re-evaluation of the performance
index so that it can be used in the next epoch as the basis for comparison.
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Although this implies an increased computational burden for each epoch, the
advantage of adapting the kernel size based on the new distribution of samples
is fully realized.

Information Potential Versus Entropy as Performance Cost

The use of the MSE criterion produces a nonnegative performance surface
where a zero value corresponds to zero error, or a perfect fit. The nature
of Renyi’s quadratic entropy estimator from Eq. (3.8) allows the entropy to
take on any real value. This characteristic can be difficult with some of the
performance assessment indices described above; that is, Eq. (5.28) no longer
works if both performance values are negative. Instead of trying to compensate
for this fact (see [224]), we strongly suggest the use of the information potential
V (E) (or V (0 ) − V (E) as in the MEE-SAS) as our cost function because
they are always positive and so the only difference with respect to MSE is
to remember that the goal of adaptation is to maximize V (E) (or minimize
V (0 ) − V (E)).

Relative Error Versus Absolute Squared-Error

Although the MSE criterion provides an absolute error measure, ITL criteria
provide only a relative measure of the error because the estimated entropy de-
pends upon the kernel size and it is blind to the mean of the error distribution.
The LM algorithm, designed specifically for the MSE criterion, uses the as-
sumption of a quadratic performance surface along with the absolute MSE to
determine both the direction and magnitude of weight change. This presents
two problems. First, the computation of the MSE criterion is typically built
into the LM algorithm implementations and requires a set of desired target
outputs to compute the absolute MSE. For ITL training, a desired target set
is not always available and even if it is available, it need not be the same
dimensionality as the output space as we show in Chapter 6. These difficulties
have been overcome by matching the mean of the model output to the desired
mean and substituting the ITL information forces of Eq. (5.3) for the error
term e in the gradient computation of the LM algorithm Eq. (5.26).

Although this approach now provides the correct search direction accord-
ing to the ITL criterion, it introduces a second problem. LM uses the absolute
error assumption to determine the magnitude of the stepsize; however, in ITL
the information forces only provide a relative measure of the error for each
output sample. This mismatch in assumptions can lead to improper stepsizes
during LM parameter adaptation as illustrated in Figure 5.3. The figure shows
the contours of an ITL performance surface for a simple two-parameter sys-
tem identification problem of an infinite impulse response (IIR) filter with
N = 40 samples. In addition, the weight tracks for three implementations of
LM–ITL algorithms are also shown. The first, labeled “LM”, is the weight
track for the implementation described above. Although the algorithm seems
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Fig. 5.3. Levenberg–Marquardt ITL algorithms: weight tracks from the same ini-
tialization condition (from [224]).

to be pointing in the appropriate direction at each step, many epochs are
required for convergence compared to typical LM behavior due to an inap-
propriately small stepsize. To help alleviate this problem, two methods are
proposed.

The first method, illustrated in the figure as “LM–SC”, simply scales the
stepsize by scaling the ITL information forces in proportion to the number of
samples, N . This approach assumes that the ITL information forces provide
an average error that needs to be scaled in order to yield a larger magnitude
for larger numbers of samples. An ad hoc value for the scale factor of N/9
was determined empirically to be fairly robust. As is shown in the figure,
this approach takes larger steps than LM and arrives at the minimum in
fewer epochs. The second approach combines LM with a line search algorithm
(LM-LS) to determine the step magnitude. Although the line search adds
computational complexity per epoch, convergence happens in very few steps.
The update rule for this method is given by (α is determined using a line
search)

Δw = −α
[
JTJ + μI

]−1

JT e. (5.29)

The computational complexity of these three methods is compared in
Figure 5.4. Notice how the proposed methods converge more efficiently than
the basic LM method. This improved efficiency becomes more pronounced for
larger values of N .
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Fig. 5.4. Levenberg–Marquardt ITL algorithms: training efficiency (from [224]).

Due to the importance of second-order methods in adapting neural net-
works, we present in Table 5.1 the outline for parameter adaptation based
on Levenberg–Marquardt with line search for ITL. In bold are the required
changes when the cost is ITL.

ITL Advanced Parameter Algorithm Summary

The sections above describe how to apply standard advanced parameter
search techniques to ITL. For each problem encountered, a viable solution
or workaround has been identified allowing ITL systems to be trained with
more advanced algorithms. Table 5.2 summarizes the algorithms that have
been applied to ITL along with the associated modifications that were re-
quired to arrive at a suitable implementation. Due to the complexity involved
with each computation of the ITL criteria, the traditional approach of com-
paring algorithms by number of epochs is better performed using a lower–level
metric such as the number of floating-point operations (Flops). For the pur-
pose of providing performance comparisons among the methods the frequency
doubling problem is studied with a fixed kernel size using an ITL cost func-
tion (the QMIED) discussed in the next chapter. However, we include it here
because the goal of this comparison is the relative behavior of the search
algorithms, not the cost function itself.
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Table 5.1. LM–LS Flowchart (From [224])

1. Calculate Initial Network State:
a. Compute Performance Using ITL Criterion (Instead of MSE).
b. Compute Internal Network Signals (for Backpropagation).
c. Substitute ITL-Based Information Forces for Error Terms.
d. Set the Kernel Size to Fixed Mode at Current Value.

2. Calculate Jacobian and Hessian Approximation Using Error Terms.
3. Check for Stopping Criteria:

a. Maximum Epoch Reached.
b. Performance Goal Reached.
c. Maximum Time Reached.
d. Maximum μ Reached.
e. Minimum Gradient Reached.

4. Compute LM Search Direction: dXi = −(JTJ + μI)−1JTEi

5. Compute Step Size (α) Using Line Search.
6. Calculate New Weights: Xi+1 = Xi + αdXi

7. Calculate New Network State:
a. Compute Performance Using ITL Criterion (Instead of MSE).
b. Compute Internal Network Signals (for Backpropagation).
c. Substitute ITL-Based Information Forces for Error Terms.

8. Compare Performance:
a. If Performance Improves:

i. Update Network to New Weights.
ii. Reset the Kernel Size to Desired Adaptive Mode.
iii. Recalculate New Performance with Adaptive Kernel Size.
iv. Set the Kernel Size to Fixed Mode at new value for next.
iteration
v. Decrease μ.
vi. Increment Epoch.
vii. Go to Step 2.

b. If Performance Declines:
i. Increase μ.
ii. If μ <= μmax Go to Step 4.
iii. Else go to Step 3.

Case Study: The Frequency Doubler

This example is based on the frequency-doubling problem in [253]. The input
signal is a sampled sine wave with a period of 40 samples. The desired output
is a sine wave with twice the frequency (i.e. a period of 20 samples). Five
delay elements are used to create a six-input time delay neural network The
network topology consists of two hidden units and one output unit, all with
hyperbolic tangent nonlinearities. The resulting network contains a total of
17 connection weights and biases. Figures 5.5a and b illustrate the input and
desired signals and the network topology, respectively.
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Table 5.2. ITL Advanced Parameter Search Algorithm Summary (From [224])

Acronym Description Modifications

Adaptive
Kernel
Size

Performance
Tracking

Relative Error
Adjustment

GD Gradient Descent X
GDA GD w/Adaptive Learning

Rate
X X

GDX GDA w/Momentum X X
RP Resilient Backpropagation
LM Levenberg–Marquardt X X
LMSC LM – Scaled Step Size X X
LMLS LM – Line Search X X
SCG Scaled Conjugate Gradient X
CGB CG – Powell–Beale X
CGF CG – Fletcher–Reeves X
CGP CG – Polak–Ribiere X
OSS One Step Secant X
BFGS BFGS Quasi-Newton X
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Fig. 5.5. Frequency doubler (a) input and desired signals; (b) TDNN (From [223]).

Training was conducted using a set of 30 different initial conditions for
backpropagation. At least two local minima of the performance surface were
identified during the training of this system, with a narrow global minimum.
Due to the simplicity of the input one could identify the effect of the local
minima, with one corresponding to a flat half–cycle (positive or negative de-
pending upon the runs) and a staircase signal with level changes at each zero
crossing of the desired signal as illustrated in Figure 5.6.

Figure 5.7 plots the average of the 30 learning curves against the num-
ber of floating point operations/s (FLOPS) required for the various search
algorithms.
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In this example, GD is clearly the least efficient algorithm. Some computa-
tional efficiency is achieved by each of the advanced algorithms, however, the
most dramatic improvement is realized by RP and the various Levenberg–
Marquardt methods. Notice that the gradient descent, conjugate gradient,
and quasi-Newton methods tend to get trapped in the first local minima
most frequently as illustrated by their high average terminal value of around
−0.035 to −0.04. After this group, the LM-SC, RP, LM, and LM-LS meth-
ods demonstrate progressively better terminal values. Of particular interest
is the efficiency of the RP method, especially in the early stages of training.
Although exhibiting a very good terminal average, RP has the steepest initial
phase of learning. In terms of final performance, however, the LM-LS method
performs the best overall.

5.5 Application: Prediction of the Mackey–Glass
Chaotic Time Series

The goal in dynamic modeling is to identify the nonlinear mapping that pro-
duced the given input–target data. This is traditionally achieved in a predic-
tive framework as shown in Figure 5.8.

Minimization of MSE in the criterion block simply constrains the square
difference between the original trajectory and the trajectory created by the
adaptive system (TDNN in this case), which does not guarantee capturing
all the structure about the underlying dynamics. Hence, we illustrate here
the minimization of the EEC as a more robust criterion for dynamic mod-
eling, and an alternative to MSE in other supervised learning applications
using nonlinear systems, such as nonlinear system identification with neural
networks [140].

Our first example is the single-step prediction of the well-known Mackey–
Glass chaotic time series, which often serves as a benchmark in testing pre-
diction algorithms in the literature. The Mackey–Glass system is a chaotic
system (for τ = 30 or higher) given by

ẋ(t) = −0.1x(t) +
0.2x(t− 30)

1 + x(t− 30)10
(5.30)

xk

ek

x̂k

_

+

Unknown 
System

TDNN

Criterion

Fig. 5.8. Time-delav neural network prediction scheme.
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that was proposed to model irregular behavior in biological systems [113].
After transients die out the system response approaches its limit dynamics
(the attractor). The dimension of the attractor for a chaotic system is nor-
mally a real number, and it is possible to embed the attractor onto a suffi-
ciently large Euclidean space such that there is a one–to–one mapping (with
a unique inverse) between the trajectories in the attractor and the system
output (i.e. the attractor trajectories never cross each other). If the dimen-
sion of the attractor is D, the embedding space dimension is selected higher
than 2D + 1 [140]. When the embedding is implemented with time delays,
the number of time delays should be 2D, which for the MG30 is 7 [253]. For
our simulations, we use samples drawn at T = 1 s intervals from the MG30
system of Eq. (5.30), using the Runge–Kutta method with time-step equal
to 0.1 s, and then the generated series was down–sampled by 10, to get the
desired sampling period of 1 s. Figure 5.9 illustrates a segment of the MG30
time series.

In all the following simulations regarding the MG30 data, we used 200 sam-
ples for training and 10,000 new test samples are generated using a different
initial condition, thus are from a different trajectory on the same attractor.

As the aim of our first set of simulations is to compare the generalization
properties of learning with MSE versus learning with MEE, we train two
identical TDNNs on the same data: one of them uses MSE as the criterion
and the other uses EEC. In addition, in order to make sure that the results
we obtain are not dependent on the specific TDNN architecture we choose
its capabilities; we include eight different two-layer TDNNs in each group
with seven delays and whose number of hidden neurons varies from three
to ten. To increase the speed of training for all 16 TDNNs we use the scaled
conjugate gradient approach explained above. However, in order to avoid local
minima we take the Monte Carlo approach to select the initial conditions for
the weight vectors and use 1000 (uniformly distributed) randomly selected sets
of weights for each TDNN. After all 16 TDNNs are trained, the weight vectors
of the solution that yielded the smallest MSE were selected to be the optimal
solution. Similarly, the optimal weight vector for the TDNNs trained with the
EEC criterion was selected as the run that yielded the smallest error entropy.

Fig. 5.9. A segment of the Mackey-Glass (τ = 30) system.
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Afterwards, these solutions were iterated a couple of more epochs to guarantee
their convergence to the minimum; in fact, visual inspection of the learning
curves for all TDNNs showed that with the conjugate gradient approach, all
TDNNs using the BP algorithm converged in less than 100 iterations and
all TDNNs using the MEE-BP algorithm criterion converged in less than 30
iterations. It must be noted, however, that the computational complexity of
the MEE-BP is greater than that of the BP. The Gaussian kernel was used
to estimate entropy in all simulations with size σ = 0.01 because it provided
experimentally the best results. In addition, the output bias of the linear
output PE is set as the sample mean of the desired output for both MSE and
EEC criteria. In this first set of simulations, we use Renyi’s quadratic entropy
definition. Surprisingly, the MEE-BP algorithm achieves smaller variance for
all sizes of the network except for six hidden neurons. For this reason, in
the following, we elaborate on this special case, where the TDNN has six
hidden PEs.

The first question is how to compare the two approaches fairly. Indeed if we
use MSE as our comparison criterion, we may be favoring the TDNN trained
with MSE, and vice versa. A possible approach used here evaluates how close
to the delta function are the error PDFs trained with the two distinct methods.
One can expect that the delta function will not be achieved due to imprecision
in the estimation of optimal parameters, and because the mapping capabilities
of the TDNN with a finite number of units may not include the system that
generated the MG30 system. Figure 5.10 shows the estimated error PDFs of
the best–performing TDNNs for each cost. Clearly, the TDNN that is trained
using the MEE-BP algorithm provided errors more concentrated around zero
(i.e. higher number of smaller errors and fewer large errors), which corresponds
to a better model. In this case there are no noticeable ripples in the error PDF.
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Fig. 5.10. Comparisons of reconstructed error PDFs for MEE and MSE training
(from [87]).
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Fig. 5.11. Probability density estimates of the 10000-sample MG30 test series
(solid) and its predictions by MEE-trained (thick dots) and MSE-trained (dotted)
TDNNs. All PDFs are normalized to zero-mean (from [87]).

Figure 5.11 shows the estimated PDF of the data generated in the test
set by the two different models and clearly demonstrates that the PDF of the
TDNN trained predictions with MEE-BP follows very closely the PDF of
the data. In this case it seems an L1 fit, but this is not guaranteed, because
the EEC criterion favors a large concentration of errors (delta functions have
negligible entropy) so there are many possible local minima, and how to avoid
them without using brute force is still unknown.

Our second set of simulations was aimed at investigating the effect of
entropy order on the performance of the final solution obtained. The effect
of the kernel size was studied as well. For each set of free parameters (kernel
size and entropy order) we ran 100 Monte Carlo runs using randomly selected
initial weight vectors. At the end of the training, which used 200 samples, the
information potential of the error on the test set consisting of 10,000 samples
corresponding to each TDNN was evaluated using a Gaussian kernel of size
σ = 10−3 to provide a good basis for a comparison (i.e. there are plenty of
data to obtain a good estimate of the true statistical quantity).

For the final error signals obtained, this value of the kernel size allows the
kernels to cover on average 10 samples in 3σ (this is another simple rule of
thumb to establish the kernel size). The results are summarized in Table 5.3 in
the form of normalized information potentials (maximum value is one). There
are a total of 12 trained TDNNs, using the designated entropy orders and
kernel sizes given in the first column. The performances of these TDNNs are
then evaluated and compared using two different entropy orders, presented in
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Table 5.3. Normalized Information Potential Evaluation (From [87])

��������������
Training
Parameters

Evaluation
Parameters Vα(e) Vα(e)

α = 1.01 α = 2
σ = 10−3 σ = 10−3

σ = 0.01 0.976 0.099
α = 1.01 σ = 0.1 0.976 0.104

σ = 1 0.969 0.047
σ = 0.01 0.977 0.112

α = 1.5 σ = 0.1 0.977 0.109
σ = 1 0.976 0.105
σ = 0.01 0.979 0.135

α = 2 σ = 0.1 0.979 0.133
σ = 1 0.978 0.126
σ = 0.01 0.977 0.124

α = 3 σ = 0.1 0.977 0.117
σ = 1 0.976 0.105

each column. The first thing to notice is that, as expected, the information
potential estimates (and therefore the entropy estimates) change a lot with the
selected α and kernel size, the two free parameters of the method. This reflects
the fact that the estimates are a function of the kernel size, and therefore
quoting an estimated entropy value at the optimal solution should be avoided.
But notice that once the parameters are selected and during the adaptation
process, this dependence is immaterial, because the goal of adaptation is to
seek the extremes (either maximum or minimum) for the same data with a
preselected choice of the free parameters.

It is comforting to see that irrespective of the column (entropy order in
the evaluation) the best results occur for the networks trained with the same
entropy order (α = 2 in this case), so this means that the IP estimator is
accurate when the number of samples is large. But the difference in values
across the rows means that different optimal points in parameter space are
obtained for different α, and the best for this example is α = 2. The variability
of the IP estimate within each α for the range of kernel sizes tried is small,
perhaps showing that using smaller kernel sizes in training improves the final
set of optimal coefficients. The dynamic range of the IP values is much higher
for α = 2 than α = 1.01.

Our third set of simulations investigates the validity of the conjecture on
the global optimization capabilities of the MEE algorithm. In these simula-
tions, we use the quadratic entropy criterion on the MG30 training data again.
This time, however, the size of the Gaussian kernel is annealed during the
training from a large value to a smaller one. Once again the Monte Carlo ap-
proach is taken with 100 randomly selected initial weight vector assignments.
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The results of these experiments are summarized in Figure 5.12 as a PDF
estimate of the final normalized information potential values (so that the
maximum value is one) obtained on the training data. In Figure 5.12a, the
distributions of the final performances for two experiments (fixed and an-
nealed kernel sizes) are shown. In the static kernel case the kernel size is kept
fixed at σ = 10−2, whereas the changing kernel has an exponentially annealed
size σ = 10−1 → 10−2, during a training phase of 200 iterations. For the large
static kernel size of σ = 10−2, approximately 10% of the time the algorithm
got trapped in a local maximum of the information potential with a normal-
ized value of about 0.1. The annealed kernel size algorithm avoided this local
optimum in all the runs and achieved a better (possibly the global) maximum,
with a normalized value of 0.9.

In Figure 5.12b, the distributions of the performances for three experi-
ments are shown, but now the static kernel has a size of σ = 10−3 throughout
the training. The slow- and fast-annealed kernels, on the other hand, have
exponentially decreasing sizes of σ = 10−1 → 10−3 for a training phase of
500 and 200 iterations, respectively. This annealing scheme is the same for
all initial conditions. Because the kernel size is smaller now, we can expect
more local maxima in the normalized information potential surface, but more
accurate performance if global maximum is achieved.

In this small kernel case with σ = 10−3, it is observed that the static kernel
gets trapped in local maxima quite often (90% of the time), whereas the fast
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annealed kernel shows some improvement in avoiding local optima (70% of
the time achieves global optimum), and eventually the slow annealed kernel
consistently achieves the global maximum (100% of the time).

These experiments showed that, by annealing the kernel size, one is likely
to improve the algorithm’s chances of avoiding local optimum solutions. How-
ever, there is no prescription yet for how to anneal the kernel size. The expo-
nential annealing scheme and the decay rates assumed in the above simulations
were determined by trial and error.

5.6 Application: Nonlinear Channel Equalization

In digital communications, the transmission of messages is plagued by the
intersymbol interference (ISI) due to the finite bandwidth of the channel. The
most popular equalizer is the linear transversal equalizer (LTE), trained to
minimize the MSE between its output and the desired sequence by means
of the LMS or the recursive least square algorithm [255]. An interesting and
powerful alternative to the LTE is the decision feedback equalizer (DFE).
In this case, the past decisions are included in the equalization process to
improve the margin against noise and performance, mainly in channels with
deep nulls. Although the DFE structure is nonlinear, it can only cope with very
moderate nonlinear distortion. Moreover, it suffers from error propagation due
to the feedback part. The received signal xi at the input of the equalizer can
be expressed as

xi =
nc∑

k=0

hksi−k + ei, (5.31)

where the transmitted symbol sequence is assumed to be an equiprobable bi-
nary sequence {1,−1}, hk are the channel coefficients (we assume here an
FIR channel), and the measurement noise ei can be modeled as zero-mean
Gaussian with variance σ2

n. The equalization problem reduces to correctly
classify the transmitted symbols si based on the observation vector. For in-
stance, LTE estimates the value of a transmitted symbol as

ŝi−d = sgn(yi) = sgn(wTxi), (5.32)

where yi = wTxi is the output of the equalizer, w = [w0, . . . , wM−1]T are the
equalizer coefficients, x i = [xi, . . . , xi−M+1]T are the observations and d is the
equalizer delay. The LTE implements a linear decision boundary; however, it
is well known that even if the channel is linear, the optimal (Bayesian) decision
border is nonlinear, which becomes more noticeable when the noise increases.

On the other hand, when the channel is nonlinear, in order to eliminate
the ISI, it is necessary to consider a nonlinear equalizer. Recently, artificial
neural networks have been proven to be attractive alternatives for nonlinear
equalization, in particular, the multilayer perceptron (MLP) and the radial
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basis function (RBF) have demonstrated good performance [31]. In this case,
the output of the equalizer is given by

yi = g(xi,W), (5.33)

where g(.) is a nonlinear mapping and W denotes the parameters of the
equalizer. After the mapping, a hard threshold is still needed in order to
decide the symbols; in this way, Eq. (5.32) can be viewed as a mapping from
the input space to an output space, where the classification becomes possible
and hopefully easier. Here an MLP will be employed to perform that mapping.
Assuming a single hidden layer MLP, Eq. (5.33) reduces to

yi = wT
2 tanh(W1xi + b1) + b2, (5.34)

where W1 is an N ×M matrix connecting the input layer with the hidden
layer, b1 is an N×L vector of biases for the hidden layer PEs, w2 is an N×L
vector of weights connecting the hidden layer to the ouptut PE and b2 is the
output bias. The training of this structure to minimize the MSE criterion can
be done using the BP algorithm [253].

Alternatively, Renyi’s quadratic entropy can also be used as the cost func-
tion. Obviously, the minimum of Renyi’s entropy is obtained when p(e) =
δ(e − ε) for any ε (i.e., when the error is a constant signal). On the other
hand, the PDF of the equalizer’s output y = s + e, given the training se-
quence s (considered as deterministic), is

p(y|s) = pe(y − s). (5.35)

In this way, the output of the equalizer converges to y = s+ ε with proba-
bility one. In practice, a finite training sequence is used; in this case, by max-
imizing the information potential, each error sample interacts with all other
errors, pushing the solution towards a constant error signal. The constant
term has no influence because it can be easily eliminated using an additional
bias term in the equalizer. This argument supports the use of an error entropy
minimization criterion in equalization problems, but a closer analysis shows
an even better picture.

To gain some more insight into the appeal of the error entropy criterion for
this problem, it is interesting to write the information potential as a function
of the output of the equalizer (linear or nonlinear) yi. Considering a binary
signal, the set of outputs yi for the training set can be partitioned according
to the desired output si−d = ±1 into the following two subsets:

R(±1) = {yi, si−d = ±1}. (5.36)

Now, taking into account that

ei − ej = sd−i − sd−j + yj − yi. (5.37)
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it is easy to show that

V̂ (y) =
∑

i,j

∑

∈R(+1)

G(yi − yj) +
∑

i,j

∑

∈R(−1)

G(yi − yj)

+ 2
∑

i∈R(+1)

∑

j∈R(−1)

G(yi − yj − 2). (5.38)

The first two terms in Eq. (5.38) are maximized when yi = yj for i, j ∈ R(+1)

and i, j ∈ R(−1) respectively. This process can be viewed as minimizing the
“intraclass” output entropy; that is, the equalizer tries to cluster the outputs
in delta functions for inputs belonging to R(+1) and R(−1). On the other hand,
the third term is maximized when yi − yj = 2, for i ∈ R(+1) and j ∈ R(−1);
therefore, it tries to separate the outputs for each class. As a comparison, the
MSE criterion in terms of the equalizer outputs is given by

MSE(y) =
∑

i∈R(+1)

(1 − yi)2 +
∑

i∈R(−1)

(1 + yi)2. (5.39)

It can be concluded that the entropy criterion forces additional constraints by
exploiting the relationship between each pair of equalizer outputs. Moreover,
although the MSE criterion forces a constant modulus for the output signal
as in Eq. (5.39), the entropy criterion ensures that the difference between the
outputs for the two classes has a constant value. The advantages of MEE for
equalization are particularly useful for the nonlinear channel case [31].

The nonlinear channel used here is composed of a linear channel followed
by a memoryless nonlinearity often encountered in digital satellite communi-
cations [279] and as nonlinear channel models for digital magnetic recording
[280]. The linear channel considered is H(z) = 0.3482+0.8704z−1+0.348z−2,
and the nonlinear function applied is z = x+0.2x2−0.1x3, where x is the lin-
ear channel output. Finally, white Gaussian noise for SNR 16 dB was added.
The nonlinear equalizer structure is an MLP with seven PEs in the input layer
and three PEs in the hidden layer, and the equalization delay is d = 4.

For this example, the online MEE-BP algorithm is applied with a short
sliding window of just N = 5 error samples. At each iteration a single step
was taken. For both criteria, a fixed stepsize η = 0.01 was used, which is the
largest stepsize for which the algorithms converged in all trials. The results
provided by a linear (FIR) equalizer with coefficients and trained with an
MSE criterion were also obtained. In this case, a conventional LMS algorithm
with a fixed stepsize was used.

Figure 5.13 shows the convergence of the normalized information potential
and the MSE evaluated over the sliding window for the three algorithms. These
results were obtained by averaging 100 independent simulations. It can be seen
that the MLP trained with the MEE-BP achieves the best results, and it also
provides the fastest convergence, whereas the linear equalizer is not able to
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Fig. 5.13. Convergence of the different equalizers in terms of MSE and IP (from
[281]).

Fig. 5.14. Error PDF for the MLP equalizer trained with MSE and MEE (from
[281]).

remove the nonlinear ISI part. It is interesting that even though the entropy
criterion does not directly minimize the MSE it achieves a lower MSE than
direct minimization of this criterion.

The explanation is that, in comparison to the MSE, the entropy criterion
yields a spiky error with more abrupt changes (higher kurtosis) but with a
lower MSE, and this was experimentally verified, see Figure 5.14.
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Fig. 5.15. Convergence of the bit error rate through iterations for MSE and MEE
(from [281]).

The error sequence PDF was estimated using the Parzen windowing
method with σ2 = 0.01 and as expected the minimization of the error en-
tropy tries to push the PDF of the error closer to a delta function.

The important parameter in communications is not the equalization but
the bit error rate (BER). The convergence of the BER with the number of
training symbols is shown in Figure 5.15. Experience with the MSE criterion
shows that better equalization implies a better (smaller) BER. However, the
entropy criterion achieves a very fast decrease in BER, but the final BER is
slightly worse than the BER obtained by the MSE criterion. This result was
not expected, given the better equalization of the channel achieved with the
EEC, and it may be explained by the spikiness of the error achieved with
minimization of error entropy [281]. This problem requires a better control
of the kernel size. Our suggestion at this point is to switch between MEE
and MSE during equalization but an entropy order α < 1 has the potential
to improve the BER, although it can slow down the training. This example
demonstrates that each practical application has its own peculiarities that
require attention when testing a new cost criterion.

5.7 Error Correntropy Criterion (ECC) in Regression

Recall that Eq. (3.36) defines still another cost function (the ECC) that is
based on the correntropy criterion. In Section 3.6, ECC was shown equivalent
to the EEC if one works with the difference in errors instead of the individual
errors. The appeal of the ECC and its MCC algorithm is its much faster
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computation when compared with EEC, the automatic centering of the error
PDF at zero, but one loses the information–theoretic interpretation. Just by
looking at the CIM metric in Figure 3.9 we can anticipate that the ECC
may pose problems during adaptation because the errors saturate and so
the search algorithms based on this cost function become less sensitivity to
change in errors (which gives rise to plateaus also called flat spots, or even local
minima). To elucidate the practical application of these two alternate costs, we
compare them on a simple linear and nonlinear regression problem, along with
the more conventional LAR (least angle regression) and the bisquare weights
(BW) mentioned in Chapter 3. The same algorithms can be used for filtering,
although we do not pursue this application here.

Linear Regression

Let us consider the general model of regression Z = f(X) + v where f is
an unknown function, ν is a noise process and Z is the observation. Here
{(xi, zi)}Ni=1 are the training data. A parametric approximator g(x;w) (speci-
fied below) is used to discover this function and alleviate the effect of noise as
much as possible. Let the noise probability density function be an impulsive
Gaussian mixture (Middleton model) pν(ν) = 0.9G(0, 0.1) + 0.1G(4, 0.1). In
MSE, the optimal solution is found by Eq. (3.2) and for the MCC algorithm,
the optimal solution is found as

max J(w) =
1
M

N∑

i=1

kσ(g(xi;w)− zi) (5.40)

The first example implements a first–degree polynomial system for simplic-
ity; that is, g(x;w) = w1x+w2. f(x) = ax +b with a = 1 and b = 0. Inasmuch
as the ultimate performance of the MCC algorithm is under investigation here,
the kernel size is chosen by systematically searching for the best result. Per-
formance sensitivity with respect to kernel size is quantified experimentally in
Table 5.4 and is compared with the kernel size estimated by Silverman’s rule.
The data length is set small on purpose: N = 100. Steepest descent is used for

Table 5.4. Regression Results Summary (From [201])

Algorithms a Standard
Deviation
of a

b Standard
Deviation
of b

Intrinsic
Error
Power

Standard
Deviation of
Intrinsic Error
Power

MSE 1.0048 0.1941 0.3969 0.1221 0.1874 0.1121
MCC 0.9998 0.0550 0.0012 0.0355 0.0025 0.0026
MEE 0.9964 0.0546 0.3966 0.1215 0.1738 0.1049
LAR 1.0032 0.0861 0.0472 0.0503 0.0072 0.0066
BW 1.0007 0.0569 0.0010 0.0359 0.0025 0.0025
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Fig. 5.16. Average learning curves with error bars of MCC, MSE and MEE
(from [201]).

both criteria. Under the MSE criterion, the learning rate is set to 0.001 and
the system is trained for 500 epochs (long enough to guarantee it reaches its
global solution). For the MCC algorithm, we first train the system with the
MSE criterion during the first 200 epochs (which is an extreme case of a large
kernel size in kernel size annealing), and switch the criterion to ECC during
the next 300 epochs. The learning rate is set to 0.001 and the kernel size is
0.5 which performs best on test data. We run 50 Monte Carlo simulations
for the same data by changing the initial conditions. The average estimated
coefficients for MSE are [0.484 0.679] and [0.020 0.983] for MCC. The average
learning curves for the intrinsic error power (E[(g(X ;w)−f(X))2]) are shown
in Figure 5.16, along with its standard deviation. We observe that after the
switching between criteria, the learning curve drops rapidly to a new value
with small variability after 300 iterations, which means that the ECC criterion
found a better set of weights.

When the MSE criterion is used, g(x) is shifted by the nonzero-mean noise
and slanted by the outliers due to the global property of MSE (Figure 5.17).
Now we see the importance of correntropy with its local property. In other
words, correntropy has the ability of being insensitive to the shape of the noise
PDF tail. For comparison, we also include the result of the MEE algorithm
with the bias set at the mean of the desired response. Although MEE is also
insensitive to outliers, the error is not symmetric and the resulting regressor
will be biased, which explains the large final error.

Although the main purpose of this example is to highlight the robust-
ness of correntropy, we also compare performance with the existing ro-
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bust fitting methods such as least absolute residuals (LAR) (which uses
an L1 norm penalty) and bi-square weights (BW) [128]. The parameters of
these algorithms are the recommended settings in MATLAB. All the results
(50 Monte Carlo for each) are summarized in Table 5.4 in terms of intrinsic
error power on the test set. Recall that the intrinsic error power compares the
difference between the model output and the true system (without the noise).
The performance of MCC is much better than LAR, and when regarded as
a l1 norm alternative, correntropy is differentiable everywhere and to every
order. Furthermore, notice that there is no threshold for MCC, just the selec-
tion of the kernel size. Moreover, the algorithm complexity of MEE is O(N2)
whereas MSE, MCC, BS and LAR are all O(N).

We have to remember that the kernel size plays an important and perhaps
contradictory role here, representing the statistics of the data and attenuating
the outlier noise. In [201] we test the performance as a function of the kernel
size, mean and variance of outliers, and the major conclusion is that the
MCC algorithm performs at the same level or better than BS and LAR and
that there is a relatively large range of kernel sizes that provides very similar
performance. Moreover, the standard Silverman’s rule for density estimation
falls within the good performance range. If the data are plentiful, there is
basically no compromise and good outlier rejection can be achieved, however,
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a compromise must be struck for small datasets (because the kernel size cannot
be made arbitrarily small). Nevertheless, MCC using large kernel sizes will
perform no worse than MSE due to the correntropy unique metric structure.
The shortcoming of the MCC algorithm is in the adaptation, because of its
local nature. We recommend that the kernel size be started large compared
with Silverman’s rule for the data, and slowly annealed to the Silverman value.
Otherwise the adaptation is very slow, or can even stall due to local minima.
Alternatively, one can start the adaptation with MSE to bring the weights to
a reasonable value close to the optimal solution, and then switch to the ECC
cost as we illustrated in the example.

Nonlinear Regression

A second, more complex and nonlinear, regression experiment is conducted
to demonstrate the efficiency of the MCC algorithm. Let the noise PDF be
the same as above and f(X) = sinc(X), X ∈ [−2, 2]. An MLP is used as the
function approximator g(x;w) with one input unit, seven hidden units with
tanh nonlinearity and one linear output. The MLP is trained with MEE-BP
(Eq. (3.36)), using an online update implemented with the stochastic gradient
(see Eq. (4.61)). The data length is N = 200. Under the MSE criterion, the
MLP is trained for 500 epochs with learning rate 0.01 and momentum rate
0.5. Under the LAR criterion, 600 epochs are used with learning rate 0.002
and momentum rate 0.5. In the MCC case, the MSE criterion is used for the
first 200 epochs and switched to MCC for the next 400 epochs with learning
rate 0.05 and momentum rate 0.5. Different values of ε are tried to test the
efficiency of MCC against LAR. Fifty Monte Carlo simulations are run for
each value. The results are shown in Table 5.5. The kernel size in MCC is
chosen as σ = 1 for best results. A nice feature of MCC is that it can attain
the same efficiency as MSE when the noise is purely Gaussian due to its unique
property of “mix norm” whereas LAR can not.

Experimentally, the behavior of MCC for nonlinear systems is very similar
to the linear case considered above. Figure 5.18 shows the good fit to the

Table 5.5. Nonlinear Regression Results Summary (From [201])

ε Intrinsic
Error
Power
by MCC

Intrinsic
Error
Power
by MSE

Intrinsic
Error
Power
by LAR

Standard
Deviation of
Intrinsic Error
Power by
MCC

Standard
Deviation of
Intrinsic Error
Power by MSE

Standard
Deviation of
Intrinsic Error
Power by LAR

0.1 0.0059 0.2283 0.0115 0.0026 0.0832 0.0068
0.05 0.0046 0.0641 0.0083 0.0021 0.0325 0.0041
0.01 0.0039 0.0128 0.0058 0.0017 0.0124 0.0025
0 0.0040 0.0042 0.0061 0.0019 0.0020 0.0028
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Fig. 5.18. Nonlinear regression results by MSE, MCC and LAR respectively
(from [201]).

true regression of MCC and LAR across the whole domain, and the poorer
approximation obtained with MSE due to the outliers.

5.8 Adaptive Kernel Size in System Identification
and Tracking

In Chapter 3 we introduced the concept of online adaptation of the kernel
size, and here we illustrate its performance in nonlinear adaptive filtering.
For our first application, we train a TDNN with the MEE-BP algorithm (see
Section 5.2) with an adaptive kernel, for prediction the Lorenz system output
which is a well–known chaotic dynamical system [204]. We focus on evaluating
the effects of using different values of σ, including the adaptive kernel size
algorithm of Section 3.7. The kernel size update technique is incorporated
by continuously updating σ using Eq. (3.70) and the weights, but using a
smaller (10 times) learning rate for σ. Using this framework, we trained a
6–tap TDNN, with a single hidden layer and six processing elements in the
hidden layer with a sigmoid nonlinearity. Two hundred time samples from
the Lorenz attractor were used in the one–step–ahead prediction training set.
Therefore, the neural network was trained to predict the next sample in the
time series, by using the six previous samples. The system was trained for 20
epochs over the training set.

Figure 5.19 shows the evolution of the prediction error (difference between
the desired sample and the predicted value) over all the iterations (cumulated
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Fig. 5.19. Evolution of prediction error during the training of the neural network.
The kernel width adapts to the values of the error.

over the 20 epochs). As expected, the kernel widths adapt to the values of the
error. The adaptation automatically results in annealing of the kernel size,
which is useful in smoothing out local optima, as elaborated in an earlier
discussion.

To quantify the advantage of an adaptive kernel width over fixed ones, we
compare how the prediction error evolves during training for different values
of kernel size. Figure 5.20 shows the error MSE (averaged over 200 Monte
Carlo runs) over the 20 epochs, for three different fixed kernel sizes, 0.1, 1, 3,
and also using the adaptive kernel.

As discussed, a large kernel size such as σ = 3, results in a high gradient,
and therefore faster adaptation speed early on. However, as the optimal point
approaches, the adaptation speed reduces, as seen from the plot. For a small
kernel size such as σ = 0.1, there is relatively lesser gradient initially, but the
rate of convergence is comparatively higher as the error power reduces, as can
be seen in Figure 5.20. Because the adaptive kernel starts initially with a high
kernel width, and an annealing of the kernel as the error reduces, a higher
overall convergence rate is attained, shown by the solid curve in the plot.

Figure 5.21 shows the prediction result from the last epoch of the training,
superimposed on the original Lorenz attractor time series that was used in
the experiment.

System Tracking Using the MCC Algorithm

Our second experiment demonstrates the effectiveness of the proposed kernel
adaptation method while identifying and tracking a time–varying linear sys-
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Fig. 5.20. Evolution of mean squared value of the error for different kernel widths,
averaged over 200 Monte Carlo simulations. As expected, an adaptive kernel width
has the highest rate of convergence, shown by the solid curve.
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Fig. 5.21. Evolution of prediction results for the Lorenz time series for the trained
TDNN with adaptive kernel size.

tem using the MCC algorithm in the presence of impulsive observation noise.
The corresponding weight update equation, after using a stochastic approx-
imation of the gradient is given as Eq. (4.63), which is strikingly similar to
the LMS algorithm except for the Gaussian multiplicative factor evaluated
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Fig. 5.22. Weight SNR learning curves while identifying and tracking a nonstation-
ary system using the maximum correntropy criterion, with different kernel widths.
The plots have been obtained after averaging over 200 Monte Carlo runs with dif-
ferent initializations.

at e(n). Depending on the kernel width, the Gaussian evaluates to a small
quantity if a large outlier error sample is encountered. This small value keeps
the weight update stable, which would otherwise make a very large update
if a strong outlier were encountered. Therefore, in the above weight update
rule, having a small kernel size makes the algorithm more robust to impulsive
noise. But, due to reasons mentioned earlier, a small kernel width also results
in slower adaptation. We therefore expect that adapting the kernel size would
lead to an optimal trade–off between these two factors.

For our simulation, we used a 4–tap adaptive filter to track another
4-tap filter. After 800 iterations, the original filter weights are changed from
w∗ = 5[0.1, 0.5, 0.3, 0.2] to w∗ = 0.4[0.1, 0.5, 0.3, 0.2]. The input to the
original filter and the adaptive filter is unit power Gaussian noise. The follow-
ing impulsive noise is added as observation noise 0.95G(0, 0.4) + 0.05G(0, 5).
Figure 5.22 shows the weight SNR (see Section 4.9) values for different choices
of kernel sizes. As expected, a small kernel width such as σ = 1 results in
slower adaptation, but has higher WSNR values after convergence due to
more robustness to impulsive noise. A large kernel width such as σ = 5 causes
faster adaptation, but loses the robustness to impulsive noise, and therefore
has lower WSNR values after convergence. This is a clear tradeoff between
speed and robustness for fixed values of kernel size. An adaptive kernel width,
however, results in a better learning curve as it has better robustness and
faster learning than σ = 1. It has a much higher WSNR value as compared to
σ = 5.
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Fig. 5.23. The error signal obtained while tracking using an adaptive kernel size
in the cost function. The values of the kernel width over all the iterations are
also shown.

Figure 5.23 shows how the kernel width adapts with the values of the error.
When the filter weights are changed after 800 iterations, the errors become
large. The kernel width adapts to this change and anneals again as the errors
reduce. The increase in the kernel size improves the convergence speed, and
the annealing results in more robustness to impulsive noise, after convergence.

5.9 Conclusions

This chapter shows how the EEC and ECC and in particular their MEE and
MCC algorithms can be extended to nonlinear signal processing quite easily.
The simplicity is based on the fact that EEC and ECC are differentiable costs,
therefore the chain rule applies and the MEE/MCC can be easily brought into
the backpropagation framework to train any nonlinear system (in particular
neural networks) with gradient descent learning. In this respect the MCC is
slightly simpler because the same code for BP can be used; we just need to
change the injected error. We present the equations for backpropagation of the
information forces as done in Chapter 2. We also present an overview of how
to apply advanced search techniques to EEC, which is of practical importance
for nonlinear systems in as much as gradient descent learning is commonly
too slow and too brittle for nonlinear signal processing applications.

We included in the chapter four practical examples: the first in system
identification, the second in channel equalization using decision feedback, both
using the MEE, the third in linear and nonlinear regression and the fourth
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showing the performance of the adaptive kernel size algorithm in system iden-
tification and tracking using both the MEE and the MCC algorithms to il-
lustrate the fact that the same strategy works for both. These examples show
performance comparisons with MSE and also provide a more detailed view
of why MEE and MCC can be advantageous in practical problems. But they
also point out that there is no universally better tool, and sometimes current
thinking needs to be changed to explain the results (i.e. better equalization
does not necessarily mean better error rates using the MEE criterion). The ef-
fect of α in the performance of MEE has not been thoroughly investigated, but
the equalization example shows that α may play a role in practical problems.

One other conclusion is that the MCC is comparable to the MEE per-
formance with a much reduced computational complexity, so it may show
practical advantages in real–world scenarios. One issue to be resolved is the
local minima in the cost function. Either kernel annealing or switching be-
tween MSE and ECC seem the best strategies.

Finally, the online adaptation of the kernel size seems to be an impor-
tant addition to this set of cost functions, because it anneals the kernel size
naturally during adaptation due to the decrease of error power. Although
the cost function is proposed from the bias–variance dilemma perspective, in
the examples tested it provides good overall adaptation characteristics; fast
convergence with small final misadjustment. But ultimately, the kernel size
evolution in adaptation depends upon the PDF of the error that is not un-
der the control of the designer, so its use should be carefully tested in each
practical scenario.
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Classification with EEC, Divergence Measures,
and Error Bounds

Deniz Erdogmus, Dongxin Xu, and Kenneth Hild II

6.1 Introduction

The previous chapters provided extensive coverage of the error entropy
criterion (EEC) especially in regard to minimization of the error en-
tropy (MEE) for linear and nonlinear filtering (or regression) applications.
However, the spectrum of engineering applications of adaptive systems is
much broader than filtering or regression. Even looking at the subclass of
supervised applications we have yet to deal with classification, which is an
important application area for learning technologies. All of the practical
ingredients are here to extend EEC to classification inasmuch as Chapter 5
covered the integration of EEC with the backpropagation algorithm (MEE-
BP). Hence we have all the tools needed to train classifiers with MEE. We
show that indeed this is the case and that the classifiers trained with MEE
have performances normally better than MSE-trained classifiers. However,
there are still no mathematical foundations to ascertain under what conditions
EEC is optimal for classification, and further work is necessary.

The second aspect that we have yet to explore is the training of systems
with divergence measures. In this chapter, we present learning algorithms
based on the generalized information potential and the generalized informa-
tion forces that implement the Euclidean and Cauchy-Schwarz divergence
measures. In spite of the fact that divergence can train systems in any of
the supervised or unsupervised learning frameworks, we concentrate in this
chapter only on the supervised case and provide examples of its use in feature
extraction and classification.

By extending Fano’s bound with Renyi’s entropy formalism, we can show
that it is possible to bracket the probability of error in classification using
Renyi’s α mutual information for α < 1 and > 1. This reinforces the argument
that training a classifier with entropy measures should yield good classification
performance.

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 219
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2 6,
c© Springer Science+Business Media, LLC 2010
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6.2 Brief Review of Classification

The minimization of error entropy was motivated for regression in Chapter 3
from the point of view of minimizing the uncertainty in the error PDF. Is it
possible to derive a similar solid framework for EEC in classification problems?
Of course, it is always possible to use EEC as a cost function for classification,
but this question goes beyond the engineering application and attempts to
study the optimality of the criterion; that is, does the EEC yield a solution
close to the minimum probability of error? It is therefore important to review
briefly the theory of classification.

Consider the problem of assigning a pattern x to one of L classes, repre-
sented by labels C1 , . . . , CL. According to Bayes rule, the probability that
x belongs to class Ck is given by

P (Ck |x) =
P (Ck)p(x |Ck)

p(x)
, (6.1)

where P (Ck|x) is the posterior probability of class Ck given that x was ob-
served, P (Ck) is the prior probability of class Ck, p(x|Ck) is the likelihood
function and p(x) is the PDF of x which plays the role of a normalization
factor. According to Fisher [101] the decision that minimizes the classifier’s
error probability can be written as

x ∈ Ck if k = argmax
l=1,...L

P (Cl |x). (6.2)

This became known as the maximum a posteriori (MAP) classifier. The
decision rule provides a hypersurface in pattern space, effectively dividing the
space in regions that are associated with each class. A proper discriminant
function for class Ck is defined as any function that provides a large value
for points x ∈ Ck and low values for any other points in pattern space. The
discriminant function plays a central role in classifier design because the class
decision is made with respect to it. Effectively the optimal classifier uses the
posterior density as the discriminant function, but any other function that
preserves the class boundaries can be used instead. The wellknown linear
and quadratic discriminant functions arise from Eq. (6.2) under a Gaussian
assumption for the classes (with equal and different class covariance matrices,
respectively) [80].

Instead of designing classifiers by fitting a Gaussian model to the like-
lihood function of the data (parametric design of classifiers), one can use
nonlinear adaptive systems (commonly called neural networks) to construct
the discriminant function. The classes of multilayer perceptrons (MLPs) or
radial basis function (RBF) networks are commonly used because they are
universal function approximators [38]. The nonparametric nature brings the
need to find a figure of merit (cost function) to fit the model parameters to
the training data.
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The natural figure of merit in classification is the probability of error.
However, this is hardly ever used as a cost function in classification because
it is very difficult to evaluate in practice (effectively an integral over tails
of class posteriors). Hence, researchers have used other costs as proxies for
probability of error. Perhaps the most widely used method is to constrain the
error power (MSE) between the output of the classifier and the correct targets
in a training set [108].

Let us consider the usual classification problem where a pattern x ∈ RD
is to be assigned to one of L classes by a learning machine (here we focus on a
multilayer perceptron (MLP) with one hidden layer built from sigmoid nonlin-
earities and weight vector w). The MLP is trained using a set of training vector
pairs {(xi, ci), i = 1, . . . , N}, where each target vector ci = [ci1, . . . , ciL]T is
of length L and describes the class to which xi belongs in a 1-out-of-L coding,
with ci,j ∈ [0, 1]. Hence, the MLP has an output layer described by a vector
yi = [yi1 , . . . , yiL]T that produces for each xi its corresponding output yi The
mean square error (MSE) function

JMSE =
1
N

N∑

i=1

‖ci − yi‖2 (6.3)

is probably the most common error cost used for neural network training.
Originally derived for regression, the MSE cost corresponds to applying the
principle of maximum likelihood when the regression model is linear and the
error is Gaussian distributed, zero-mean, and uncorrelated across exemplars.
However, in classification the Gaussianity assumption on the error is invalid,
due to the finite domain and multimodal nature of classification errors. It
has been shown that classifier outputs trained with the MSE approximate
the conditional average of the target data given the input, which under some
conditions [38] means that the classifier outputs approximate the Bayesian
posterior probabilities. However, in practice it is difficult to bound how far
MSE training is from the minimum probability of error, and the simplicity
of the procedure has been the main force behind its wide applicability. It is
therefore important to look at alternative cost functions for classification.

The Cross-Entropy Cost in Classification

Any differentiable function of the targets and outputs with a minimum for
y = c (as does the MSE) is in principle an appropriate cost function for clas-
sification, but one generally seeks a choice based on solid statistical reason-
ing. One of the early alternatives that can also be derived from the maximum
likelihood principle utilizes the crossentropy (CE) cost function [334]. Each
component yk, k = 1, . . . , L of the output vector is interpreted as an esti-
mate of the posterior probability that input pattern x belongs to class Ck
represented by ck, yk = P̂ (Ck|x), where the “true” marginal distributions of
c given x, p = (p1 , . . . , pL) are
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pk = P (Ck |x), k = 1, . . . , L (6.4)

For mutually exclusive classes, the true conditional distribution p(c|x),
and the MLP estimate y = pw(c|x) (the dependence on the weights w is
made explicit) can be described by multinomial distributions:

p(c |x) = pc11 p
c2
2 . . . .pcL

L (6.5)

pw(c |x) = yc11 y
c2
2 . . . .ycL

L . (6.6)

We would like the MLP output in Eq. (6.6) to approximate the true distribu-
tion Eq. (6.5). Considering a set of observed pairs {xi, ci} one can define the
cross-entropy cost function between the true and estimated conditionals as

JCE = log
p(c |x)
pw(c |x)

= log
N∏

i=1

p(ci |xi)
pw(ci |xi) =

N∑

i=1

log
(
p(ci |xi)
pw(ci |xi)

)

,

= −
N∑

i=1

L∑

k=1

ck,i log(yk,i) +
N∑

i=1

L∑

k=1

ck,i log(pk,i) (6.7)

where we assume that the class labels are conditionally independent and ci
depends only on x i. The goal is then to minimize Eq. (6.7) with respect to the
weights; minw JCE . Note that the second term does not depend on the MLP
parameters w which means that the minimization of Eq. (6.7) is equivalent
to the minimization of

JCE = −
N∑

i=1

L∑

k=1

ck,i log(yk,i). (6.8)

Equation (6.8) is known in the literature as the cross-entropy cost function,
because of its analogy with cross entropy (−Ec[log(p(y)]) in spite of the fact
that ck,i are not necessarily probabilities [145]. If we take the gradient of
Eq. (6.8) with respect to the weights of a perceptron with tanh nonlinearities
we find that the weight update becomes just dependent upon the error (ek =
ck − yk) and independent of the derivative of the nonlinearity [145]. As we
recall from Chapter 5, Eq. (5.2), the gradient of the MSE cost is multiplied
by the derivative of the nonlinearity, which slows down training when the PE
is even slightly saturated. Therefore we can expect much faster convergence
with the cross-entropy cost when compared with MSE training. Experience
has also shown that the CE cost normally works slightly better than the MSE
for many problems [145].

6.3 Error Entropy Criterion in Classification

Another alternative is to use the EEC described in Chapters 3 and 4 that can
be applied to both discrete and continuous error distributions and fully utilizes
(for training) the shape of the error distribution. In Chapter 5 we saw how to
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train nonlinear systems with EEC and its MEE algorithms, so the algorithm
presented in Section 5.2 can be used directly here. However, classification is
more complex than regression, so there are some important issues that need
to be addressed to evaluate how appropriate EEC is for classification.

Silva et al. [298] have studied theoretically the EEC for the case of uni-
variate data passing through a classifier with threshold nonlinearities that
produce a discrete error random variable. For the special case of a two-class
problem with a single parameter classifier this is equivalent to the Stoller
split [309]. First, they proved that the EEC can only be related to the min
P (E) if the class priors are equal, which is a reasonable assumption in many
practical problems (equal number of exemplars in each class). Furthermore,
the min P (E) always corresponds to a stationary point of the EEC cost but,
depending upon the class separation, may correspond to either a minimum
of entropy when the classes are well separated or to a maximum when the
classes have large overlap. This is an unexpected result if we use our under-
standing from EEC in regression, and raises questions about the applicability
of EEC for classification. It also does not corroborate experimental evidence
that the EEC outperforms MSE in practical classification problems as these
researchers and others have reported [86,283].

In order to understand this difficulty, we take the continuous variable set-
ting as in [299] because the discrete case is perhaps less appropriate to the
information potential method described in this book, inasmuch as the error
PMF is composed of only three values (e.g., for c = {l, −1} the possible
errors occur at (−2, 0, 2) with different magnitudes). Let us consider a two-
class problem from one dimensional data x with support DX to be classified
in two classes C−1 and C1, using targets c = { − 1,+1}, and a classifier pro-
ducing continuous outputs y. We will assume that the classifier performs a
mapping y = ϕw(x), y ∈ DY that depends upon the parameters w and the
PE nonlinearity ϕ(x) = tanh(x). The PDF of the input can be written as

pX(x) = γ pX|1(x) + β pX|−1(x), x ∈ DX (6.9)

where γ and β are the prior class probabilities (γ = 1 − β) and the notation
pX|1(x) ≡ pX(x|c = 1) is used. So the error is a continuous random variable
defined as E = C −ϕw(X). In this setting it is not difficult to write the error
PDF as

p(e) = γ pY |1(1− e) + β pY |−1(−1− e), e ∈ [−2, 2]. (6.10)

We present here just the simplest of the cases (see [299] for a complete
treatment), with a single-parameter perceptron; that is, y = tanh(x − w0)
where w0 is the bias. Renyi’s entropy of the output error can be decomposed as

Hα =
1

1− α log
∫ ∞

−∞
pα(e)de

=
1

1− α log
[∫ 0

−2

(βpY |−1(−1− e))αde +
∫ 2

0

(γpY |1(1− e))αde
]

. (6.11)
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Notice that due to the nonoverlapping domains in the two integrals, the
information potentials are effectively separable and the minimization of
Eq. (6.11) is equivalent to the maximization of the sum of the information
potentials for α > 1 which is much simpler. For α = 2 we get

V2(E) =
∫ 0

−2

(βpY |−1(−1− e))2de+
∫ 2

0

(γpY |1(1− e))2de. (6.12)

Before actually presenting the result, let us compare the form of this V (E)
with the regression case. We see that now there are two data distributions,
one for each class and therefore, the distribution of the error is conditioned
not only on the input data as it was in regression, but also on the class label
C. It is still possible to evaluate Eq. (6.12) in closed form for simple den-
sities such as the uniform and for the tanh nonlinearity (that has a range
between [−1, 1]). Assume we have two input overlapping classes, one uni-
form over [a, b] (class C−1) and the other over [c, d] (class C1) with a < c <
b < d. Then the information potential of the error for the one-parameter
perceptron is

V2(E) = −β
2

4

[
2 + e(e+ 2) log(|e| /(2 + e)) + 2e

(b− a)2(2 + e)e

]−1−tanh(a−w0)

−1−tanh(b−w0)

+
γ2

4

[
2 + e(e− 2) log(|e| /(e− 2))− 2e

(d− c)2(e− 2)e

]1−tanh(c−w0)

1−tanh(d−w0)

.(6.13)

Silva [299] showed theoretical results with Eq. (6.13) that contradict the
principle of minimization of the error entropy when the two classes overlap
sufficiently, in the sense that the theoretical minimum probability of error
occurs at the maximum of the error entropy for the one-parameter perceptron
(w0). Likewise for the case of a two-parameter perceptron, there are many
cases of poor class separability.

Perhaps the biggest conundrum is to conciliate these theoretical results
with the experience that in practical problems (see Section 6.3), the classifi-
cation results with EEC are often better than the same classifier trained with
MSE. First and foremost, we have to realize that we do not train MLPs in
the same way as implied by the theoretical analysis of Eq. (6.12). Indeed this
cost function does not implement discriminative training because the errors
are computed independently for each class, while in MLP training with EEC
the error is computed in batch mode summing contributions of errors across
classes. Second, one uses kernel estimation. In fact using Eq. (5.5), the infor-
mation potential V̂2(E) can be written in the following way,
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V̂ (E) = c
∑

i∈C−1

∑

j∈C−1

G(ei − ej) + c
∑

i∈C1

∑

j∈C1

G(ei − ej)

+2c
∑

i∈C−1

∑

j∈C1

G(ei − ej)

= β2V̂2,E|−1(E) + γ2V̂2,E|1(E) + 2βγ
1

N−1N1

∑

i∈S−1

∑

j∈S1

G(ei − ej),

(6.14)

where c is a normalizing constant for the number of samples in each class, N−1

and N1 are the number of exemplars having class −1 and 1, respectively, and
S−1 and S1 are the set of indices corresponding to class −1 and 1, respectively.

Just by looking at Eq. (6.14) we see that the IP estimator differs from
the theoretical calculations of Eq. (6.12) because there is an extra term (the
last term) that effectively computes the interactions between the errors of the
two classes. For large kernel sizes this third term may be sufficiently large to
change the cost function landscape. Silva [299] has shown that in some of the
cases where the theoretical probability of error corresponds to a maximum of
the entropy, the function estimated by Eq. (6.14) corresponds to a minimum,
more in line with what we would expect from the EEC principle. Therefore,
the conclusion is that the information potential of the error in batch mode is
richer as a cost function for classification than the theoretical calculation of
Eq. (6.12) which involves only the individual class entropies.

If we recall the estimation of the Euclidean or Cauchy–Schwarz diver-
gences in Chapter 2 and apply it in a classifier setting, the cross-information
potential is responsible for estimating the distance between the target and the
classifier output densities. Notice that the third term in Eq. (6.14) can also
be interpreted as a cross-information potential but now between the errors
of each class. Although there are marked differences between the two expres-
sions (Eq. (6.14) applies to errors, whereas the cross-information potential
works directly with the density of targets and classifier outputs), this analogy
deserves a more in-depth study to understand the difference between the the-
oretical EEC results and the practical applications of MEE, but it will not be
pursued here.

Performance of Classifier Trained with MEE

We illustrate here some of the published results of the application of EEC
and its MEE algorithm in classification which have generally yielded better
results than classification with the MSE cost function. However, we are not
currently in a position to state under what conditions EEC is a better cost in
classification so proper validation is required.



226 6 Classification with EEC, Divergence Measures, and Error Bounds

Generalized Exclusive OR

We start with a simple example that shows the importance of kernel smoothing
in classification. The generalized XOR problem is designed to provide an ex-
perimental demonstration of the global optimization property of the entropy-
training algorithm we propose. Namely, the 5-bit parity problem in the class
of generalized XOR problems is considered. In this case study, a 5-5-1 MLP
with tanh nonlinearities in the hidden layer and a linear output PE is used.
The five inputs take the values ±1 according to the considered bit sequence
and the desired output is also ±1, corresponding to the case of even (+1) or
odd (−1) number of ones. The training set consists of all possible 32 input
sequences. In the constant kernel case, the kernel size is set to σ = 10−1 and
the MLP is trained for 1000 iterations starting from 100 random initial weight
vectors. In the annealed kernel case, the kernel size is annealed down expo-
nentially as σ = 10 → 10−1 in 1000 iterations for the same initial conditions
(these values were experimentally obtained). The results of these experiments
are summarized in Figure 6.1.
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Fig. 6.1. Results for the XOR problem: (a) estimated probability densities of the
final information potential values for the static kernel (dotted) and the annealed
kernel (solid) cases; (b) annealing of the kernel size versus iterations; (c) annealed
kernel case, desired output (solid), MLP output (dotted) (perfect match); (d) local
optimum from the static kernel case, desired output (solid), MLP output (dotted)
(from [86]).
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In Figure 6.1a, the probability distribution of the final (normalized) infor-
mation potential values is presented. Clearly, with the annealed kernels, the
final information potential values are concentrated around the global maxi-
mum, whereas with the static kernels the algorithm is often trapped at lo-
cal maxima. Figure 6.1b shows how the kernel size is exponentially annealed
down in 1000 iterations. Figures 6.1c and d show optimal MLP outputs, one
that exactly matches the desired output and a local optimum that produces
a low-grade output. Therefore, the MLP trained using the annealed kernels
achieved global optimum in all trials (100% of the time), whereas the MLP
trained using the static kernels could only achieve the global optimum 10% of
the time.

MEE in Real Word Classification Tasks

The EEC criterion was also used to train single hidden layer MLPs with a
different number of hidden units in the Diabetes, Wine, and Iris datasets of the
UC Irvine repository by Santos, [283]. Each MLP was trained 20 times for 150
epochs with two fold cross-validation, both for MEE and MSE. The number of
patterns for each of the databases is, respectively, 768, 178, 150. Santos et al.
suggest an empiric formula to choose the kernel size, σ = 25

√
L/N where

L is the dimension of the classifier output and N the number of samples.
This value is normally much larger than the one found by density estimation
formulas (e.g., Silverman’s rule), and the author states that it consistently
outperformed the Silverman’s value in a large number of datasets (Ionosphere,
Sonar, WDBC, IRIS, Wine, 2 Vowels PB, Olive). This result may be related
to the discussion surrounding Eq. (6.14). Table 6.1 shows the results on the
test set as a function of the number of hidden processing elements (PE).

Table 6.1. Average Error Counts with MEE/MSE (From [283])

# PE Diabetes Diabetes Wine Wine Iris Iris
MEE MSE MEE MSE MEE MSE

2 23.89 28.40 3.62 9.72 4.36 4.72
3 23.94 27.25 3.81 4.27 4.43 4.75
4 23.99 26.42 1.94 3.03 4.38 4.15
5 23.80 25.10 2.54 3.20 4.30 3.97
6 24.10 24.70 2.47 3.06 4.42 5.18
7 24.10 24.40 2.44 2.39 4.31 4.65
8 23.90 23.90 2.16 2.92
9 24.30 24.00 2.22 2.50
10 23.60 24.10 2.31 2.95
11 24.02 27.41
12 24.93 27.64
STD 0.35 1.69 0.65 2.29 0.05 0.44
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The authors concluded that the MLP trained with MEE has a more
consistent performance across topologies; it seems to be less sensitive to the
dimension of the hidden layer, and tends to have the best performance with
fewer PEs. Finally, its performance also compares favorably with the MSE in
two out of the three cases.

6.4 Nonparametric Classifiers

Neural networks are still parametric mappers (i.e., universal topologies with
free parameters), but they are nonparametrically trained by means of a cost
function; that is, one does not need generative models of the data to config-
ure the free parameters to the problem at hand. This section addresses still
another class of classifiers that works directly with the data to make classifi-
cation decisions and that we appropriately call nonparametric classifiers. The
PDF and the concepts of Renyi’s α-norm, information potential, and informa-
tion forces outlined in Chapter 2 are utilized directly for classification. In fact,
as we stated in Section 6.2, a valid discriminant function is any function that
provides a large value for the partition of the space where the samples from
the class reside and low values for any other part of the space. When the data
classes do not overlap significantly, the PDF itself for each class estimated in a
training set is such a function because it measures the density of samples in a
region of the space. When class conditional PDFs are used as the discriminant
functions then classification is performed using the maximum likelihood prin-
ciple. Given an unlabeled sample in a test set, the maximum likelihood (ML)
principle can decide which class it belongs to and therefore perform classifi-
cation. A simple max operator is sufficient to implement the ML principle for
many classes because partnership is discrete (Figure 6.2). The problem is that
this method may not be very accurate in high-dimensional spaces, particularly
when data are scarce; therefore it is only applicable to a subset of the cases
of practical importance.
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Fig. 6.2. General classifier built from discriminate functions.
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However, it is very simple because it yields a nonparametric classifier;
that is, one does not need a parametric system (neural network) to be
trained to construct the appropriate discriminant function. We propose to
utilize the α–information potential that are intrinsically related to Renyi’s α
entropies, so we are indirectly using an information theoretic classifier. With
the α–information potential we have two parameters to be set from the train-
ing set: the kernel size σ and the α norm. Alternatively, two approaches are
also possible that extend the range of applications for short datasets and/or
high dimensional data: estimating the change in class divergence to include
discriminative information; and projecting the data to a subspace that pre-
serves discriminability with respect to the class labels, and then deciding class
partnership based on the max operator (maximum likelihood).

Information Potential and Force in Classification

Substituting Bayes rule into Eq. (6.2) we get

x0 ∈ Ck if k = argmax
l=1,...,L

P (Cl)P (x0|Cl),

where we disregard p(x) because it is common to all classes. If we as-
sume that the a priori probabilities are the same across the classes, the
MAP rule for classification defaults to a test of likelihoods (i.e., x0 ∈ Ck
if k = arg maxl P (x0|Cl)). This rule is very simple to implement with labeled
data and Parzen estimators (the information potential field of Chapter 2).
In fact, if we define p̂(x|Ck) = 1/Nk

∑
xj∈Ck

κ(x− xj), the test of likelihood
becomes

x0 ∈ Ck if k = argmax
l=1,...,L

p̂(x0|Cl) (6.15)

That is, we estimate the probability density at p(x = x0|Cl) from all the L
likelihood functions and attribute the class partnership to the one that has
the highest value. Figure 6.3 shows a simple 2D example of this rule for the
two-class half-moon data where the decision rule defaults to sign(p̂(x|C1) −
p̂(x|C2)). The kernel is a Gaussian with σ = 1 and α = 2.

Figure 6.3 also depicts the information forces to illustrate the “attraction”
force created in pattern space due to the simple existence of the samples
(information particles). In particular, notice the forces that are exerted at the
tips of the half-moons that “attract” these samples to each cluster of samples.
This is where the kernel size is critical because an inappropriate value may
reverse the direction of the forces and then the classification for the samples
at the boundary will be wrong. Moreover, the adaptation of the kernel size
presented in Chapter 3, and illustrated in Chapter 5 can be readily applied
here to fine tune the kernel size in the training set.

If one recalls the discussions in Chapter 2, the order α of the norm also af-
fects the forces because it weights differently regions of higher sample density
versus regions of lower sample density dependent upon the α selected. Indeed,
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Information potential field and forces for data samples generated by class 1
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Fig. 6.3. The information potential field (IP) and the information forces for each
class (left panel), the combined IPF and the boundary defined by the maximum
likelihood rule (right panel).

from Eq. (2.68) we can conclude that the α-IP field is built at every sam-
ple using a weighted Parzen estimation, where the weights are automatically
defined by the density of samples in the neighborhood;

V̂α(xj) = p̂α−2(xj)V̂2(xj) =
1
N

N∑

i=1

wjκσ(xi − xj) wj = p̂α−2(xj) (6.16)

Equation (6.16) can be used in the training set to find out which value of
α produces the best results. In order to be less sensitive to the scarcity of the
data, one can pose the classification problem in terms of divergences. Assume
first a two-class problem, and that f̂(x) and ĝ(x) are, respectively, the PDF
estimates for class 1 and class 2 obtained from a training set. For a new test
sample xt, we can estimate the incremental change in divergence when xt is
placed in f̂(x) or in ĝ(x), denoted as f̂ t(x), ĝt(x), respectively. For instance,
according to the Euclidean distance, we should place

xt ∈ c1 :
∫ (

f̂ t(x)− ĝ(x)
)2

dx ≥
∫ (

f̂(x)− ĝt(x)
)2

dx. (6.17)

In words, we should place the sample in the class that most increases the
divergence between the two classes (for mutual information the argument
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is that the sample should be placed in the class that most decreases the
mutual information). We show in Chapter 9 that this argument is also related
to support vector machine classification. Moreover, the computation can be
easily carried out with the IP of Chapter 2, and indeed without having to
do much computation if the recursive information potential of Eq. (4.4) is
utilized.

6.5 Classification with Information Divergences

Instead of training neural networks with MSE, EEC, or using the PDF as the
discriminant function in nonparametric classification, one can use the concept
of information divergence in classification, which includes the KL divergence,
Euclidean and Cauchy–Schwarz divergences, as well as Shannon mutual in-
formation and the two quadratic mutual information algorithms defined in
Chapter 2. In fact, the Fano bound is a strong theoretical result which shows
that the probability of error in classification is lower bounded by the mutual
information between data classes [97]. This link between mutual information
and classification error means that mutual information is able to quantify
separability between classes and suggests that it may be a very appropriate
choice as a cost function for classification to improve upon the bound. The ITL
techniques discussed in this book are readily applicable here as we have briefly
mentioned in Eq. (6.17), which essentially is using the conditional entropy to
implement a nonparametric classifier. Finally, the concept of information di-
vergence also leads to the very interesting topic of discriminative projections
that we frame as information filtering. These topics are expanded below.

Discriminative Projections

The problem we treat in this section has wide applicability in pattern recog-
nition when classifiers need to be implemented in large data spaces and the
data are scarce. We present a methodology to adapt linear or nonlinear pro-
jection networks that find the most discriminative subspace for classification,
taking full advantage of the fact that the labels in classification are indicator
functions; that is, they are discrete random variables [340].

X denotes a continuous multivariate random variable for the input data,
and C the class label vector which is discrete. We are given a set of training
data and their corresponding class labels {(xi, ci), i = 1, . . . , N}, and the task
is to design a classifier that assigns the correct class reliably when given an
unseen input x. Again, classification can be formulated as a MAP problem as
in Eq. (6.2):

ĉ = argmax
i

P (Ci |x) = arg max
c

pXC (x,c),

where P (Ci|x) is the a posteriori probability of the class label c given the
data x, and pXC(x, c) is their joint PDF. Normally, a neural network or other
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nonlinear system is trained to estimate directly the posteriors P (Ci|x), but
conceptually one can also estimate the joint PDF pXC(x, c). However, when
the data x are high-dimensional and scarce, it is often difficult to obtain a
reliable estimation of the joint PDF. Dimensionality reduction (or feature ex-
traction) is therefore appropriate. A multiple-input multiple-output (MIMO)
information filter y = f(x ,w) (where w is a parameter set) is needed with
dim(y) << dim(x) such that its outputs y can convey the most information
about the class label and discard all the other irrelevant information. To be
practical the dimensionality of y should also be decoupled from the number
of classes c, so solutions that create an error by subtraction (as MSE or EEC)
are inappropriate. The information filter outputs define a space for classifi-
cation, but the difficulty is to design a method that projects the data and
preserves discriminability.

Subspace projection is conventionally implemented with PCA (principal
component analysis) due to its simplicity, but PCA does not preserve dis-
criminability among classes [108]. Linear discriminant analysis (LDA) is an
alternative, but it is restricted to linear projections and Gaussian classes so
it suffers from these limitations [80]. The method outlined here seeks a pro-
jection that maximizes the mutual information of the projector output with
the targets to preserve as much discriminability as possible in the reduced
subspace, followed by a simple classifier (Figure 6.4). Based on the feature
vector y, the classification problem can be reformulated by the same MAP
strategy of Section 6.4 as

ĉ = arg max
c

pYC (y,c) y = f(x,w), (6.18)

where p(y, c) is the joint PDF of the classification feature y and c the class
label. The performance for this classification scheme crucially depends on how
good the feature vector y really is. The problem of reliable PDF estimation in

Class Identity C

Image X Information Force

Back-Propagation

Fig. 6.4. Training a classifier with QMIED (from [349]).
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a high-dimensional space is now converted to the problem of building a reliable
information filter for classification based only on the given training dataset.
This goal is achieved again with the mutual information and the problem of
finding an optimal information filter is formulated as

w∗ = arg max
w

I(Y = f(X,w), C), (6.19)

that is, to find the optimal parameter set w∗ such that the mutual information
between the classification feature Y and the class identity C is maximized. Of
course the two optimization steps can be combined. To implement this idea,
mutual information should be estimated nonparametrically to avoid restrictive
assumptions, and this estimation is now done in the projected space, which is
simpler. When there is a large difference in dimensionality between X and Y
the information filter will be a simple linear projector although the method is
also applicable with minor modifications to nonlinear mappers.

Notice that one of the important aspects of this formulation is that the
dimensionality of y is not restricted to be equal to the dimensionality of c
because Eq. (6.19) is working with the joint and each of the marginal distri-
butions. This also is an indication that we suddenly are independent of the
actual dimensionality of the variables, and are only interested in their PDFs.

6.6 ITL Algorithms for Divergence and Mutual
Information

It should be apparent to the attentive reader that the learning procedures
of Chapters 4 and 5 can be easily modified to include the Cauchy-Schwarz
or Euclidean divergences or the corresponding mutual information definitions
introduced in Chapter 2 because they are defined as additive combinations of
different information potential fields. The big difference is that the error is
not constructed; instead, the class labels and the output of the classifier are
directly utilized to change the system parameters to match the label statistics.

In the ITL class of cost functions Γ(X), the general gradient form to train
system parameters w (implementing a smooth map) is

∇kΓ̂ (U) =

(
∂Γ̂(U)

∂(u(i)− u(j))

)(
∂(u(i)− u(j))

∂wk

)

, (6.20)

which is calculated by the chain rule over the combination of the system topol-
ogy and cost function. Recall that the partial derivative in the first bracket
is the information force that depends on the specific cost function (the cost
variable u), and the second term is the partial derivative of u with respect to
the parameters of the system and depends upon the topology. If we want to
substitute the EEC cost function with any of the DED, DCS, or QMIED or
QMICS the modifications are restricted to the first term (which may or may
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not imply a modification in the second term because by the chain rule they
need to be compatible). To illustrate, let us compute the gradient for DED

(Eq. (2.87)).
Remember that all the potentials in DED work with a pair of random

variables, unlike the EEC that only works with a single (the error) variable.
To demonstrate the method, let us assume that we have two functions f(x)
the system output and the desired response g(x). As shown in Eq. (2.99)
the potential field of DED, V̂ED , is a combination of three different fields
created by the samples of f(x), the samples of g(x), and the crossiinformation
potential among them. The corresponding information potentials are written
for the case of N samples and where f(i) and g(i) refer to samples from f(x)
and g(x), respectively, assuming an arbitrary kernel κ.

V̂ED =
1
N2

N∑

i=1

N∑

j=1

κ(f(i)− f(j))− 2
N2

N∑

i=1

N∑

j=1

κ(f(i)− g(j))

+
1
N2

N∑

i=1

N∑

j=1

κ(g(i)− g(j))

In order to adapt a system with V̂ED , the injected error (first term in
Eq. (6.20)) will be the information forces, that is, the partial derivative of
V̂ED with respect to the system output variable f(x). Therefore we just need
to substitute the numerator of the first partial derivative in Eq. (6.20) with
V̂ED and noticing that g(x) is independent of the system weights this yields

∇kV̂ED =

⎛

⎝ 1
N2

N∑

i=1

N∑

j=1

∂κ(f(i)− f(j))
∂(f(i)− f(j))

(
∂(f(i)− f(j))

∂wk

)
⎞

⎠

−
⎛

⎝ 2
N2

N∑

i=1

N∑

j=1

∂κ(f(i)− g(j))
∂f(i)

(
∂f(i)
∂wk

)
⎞

⎠ . (6.21)

The minimization of the distance between f(x) and g(x) in linear systems
for weight k at iteration n uses the update equation (move in the opposite
direction of the gradient).

wk(n) = wk(n− 1)− η∇kV̂ED (n− 1). (6.22)

Similar equations can be written for Cauchy-Schwarz divergence and extended
to nonlinear systems (see Section 5.2).

Information Filtering with QMI

In this section, we implement with quadratic mutual information the pro-
jection procedure that ideally preserves class discriminability. We show how
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to adapt linear and nonlinear systems with quadratic mutual information
using the generalized information potential. As we saw in Chapter 2, the
case of the QMI is a bit more detailed than the divergences because we now
have three different information fields in the joint and marginal spaces. The
quadratic mutual information based on Euclidean distance QMIED and its cor-
responding generalized information potential IED are employed to illustrate
the procedure. No assumption is made on the data density and when there
is a large difference in dimensionality between X and Y the information
filter is a simple linear projector. The method is also applicable with mi-
nor modifications to nonlinear mappers (the term in the right bracket of
Eq. (6.16) will have to be substituted by the delta rule or backpropagation
algorithm).

In the case study that follows the input are images of size 64 × 64 (4096
dimensions), and there are three classes in a two-dimensional space, so we
use a two-dimensional projection space to derive the equations for QMIED.
In classification, the three labels are discrete and define a probability mass
function that can be written as p(c) = N1/Nδ(c − c1) + N2/Nδ(c − c2) +
N3/Nδ(c − c3) where Ni represents the cardinality of class i divided by the
number of samples, ci are the values of the class labels and the delta function
is defined as f(x0) =

∫
δ(x − x0)f(x)dx . Recall that QMIED is specified by

the generalized information potential that for this case is given by

IED =
∫∫ ∫

(pYC (y,c)− pY (y)pC (c))2 dy1 dy2 dc

=
∫ ∫ ∫

pYC (y,c)2 dy1 dy2 dc− 2
∫∫ ∫

pY C(y,c)pY (y)pC(c)dy1 dy2 dc,

+
∫ ∫ ∫

(pY (y)pC (c))2dy1 dy2 dc (6.23)

where y1 and y2 are the two outputs and c is the class label. Because each
term is a quadratic function of PDFs we can use the IP as the estimator, and
obtain

V̂J =
∫∫∫

p̂YC
2(y,c)dy1dy2dc

=
1
N2

N∑

i=1

N∑

j=1

[
Gσ

√
2 (y1(i)− y1(j)) ·Gσ√2 (y2(i)− y2(j)) · δK (c(i)− c(j))

]

(6.24)

where δK(c) = 1, iff c = 0 is called the Kronecker delta (the discrete version of
the delta function). Alternatively, one could have used the fact that labels are
discrete and work directly with a mixed (discrete/continuous) joint density.
For the other terms we have
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V̂C =
∫∫∫

p̂YC (y,c)p̂Y (y)p̂C(c)dy1dy2dc

=
1
N

N∑

i=1

⎡

⎣

⎛

⎝ 1
N

N∑

j=1

Gσ
√

2 (y1(i)− y1(j))Gσ√2 (y2(i)− y2(j))
⎞

⎠

·
(

1
N

N∑

k=1

δK (c(i)− c(k))

)]

(6.25)

V̂M =
∫∫∫

(p̂Y (y)p̂C(c))2 dy1dy2dc

=

(
1
N2

N∑

i=1

N∑

k=1

Gσ
√

2 (y1(i)− y1(k))Gσ√2 (y2(i)− y2(k))
)

·
⎛

⎝ 1
N2

N∑

j=1

N∑

m=1

δK (c(j)− c(m))

⎞

⎠ . (6.26)

By noting the property of the delta function, the sums are nonzero only
when i and j are drawn from the same class. So, the calculation of VJ defaults
to the marginal PDF of Y estimated at the sample pairs that belong to the
class, which saves computation. Assuming in general that there are L classes,
that the samples are ordered from each class as N1, N2, . . . , NL, and a vector
representation for the outputs is utilized with an index that refers to the class
(when needed) then Eq. (6.24)–(6.26) become

V̂J =
1
N2

L∑

p=1

Np∑

i=1

Np∑

j=1

[
Gσ

√
2I

(
yp(i)− yp(j)

)]

V̂C =
1
N2

L∑

p=1

Np
N

Np∑

i=1

N∑

j=1

Gσ
√

2I

(
yp(i)− y(j)

)

V̂M =
1
N2

(
L∑

p=1

(
Np
N

)2
)

N∑

i=1

N∑

j=1

Gσ
√

2I (y(i)− y(j)). (6.27)

Once ÎED is estimated, then we still need to adapt the projector param-
eters. The concept is exactly the same as explained in Section 6.6, with ÎED

substituing Γ in Eq. (6.20). Because we are interested in performing gradient
ascent in the ÎED field (maximizing mutual information), the weight update
equation Eq. (6.22) uses a plus sign instead of the minus sign and V̂ED sub-
stituted by ÎED as

wk(n) = wk(n− 1) + η∇k ÎED(n+ 1), ÎED = V̂J − 2V̂C + V̂M . (6.28)

The QMIED information force in this particular case can be interpreted
as repulsion among the information particles with different class identity, and
attraction among the information particles within the same class.
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The appeal of this methodology is that once the projector to a small
feature space is adapted, it is easy to estimate the joint PDF pYC(y, c) by
Parzen windowing because the dimensionality now is low, which immediately
yields the MAP decision rule of Eq. (6.18). Moreover, the class label is a
discrete variable, thus the search for the maximum in Eq. (6.19) can be simply
implemented by comparing each value of pYC(y, c) to find the maximum.

There is a free variable in this method that is the best dimension M of the
subspace that obviously affects the quality of the final classification. One can
adopt the concepts of dimensionality analysis in dynamical systems and mod-
ify them to our setting. Potentially, Fano’s bound can be used to help select the
projection space dimensionality (see Section 6.8). The information divergence
formulation frees us from the use of EEC and allow us to truly start exploring
cost functions that manipulate divergences in probability spaces which is the
true appeal of information-theoretic learning (ITL). It is worth mentioning
another interesting feature of the divergence-based cost functions. As noted
in Chapter 1, the same criterion can be used for unsupervised learning, which
is fully exploited in Chapter 7.

6.6.1 Case Study: Automatic Target Recognition (ATR) with ITL

Before we actually describe the data it is necessary to explain briefly the
characteristics of automatic target recognition as open set classification. Au-
tomatic target recognition (ATR) is more demanding than the conventional
classification problems where all the data belong to one of the trained classes
(as illustrated in Section 6.3), which is normally called close set classification.
When an ATR classifier is deployed in the real world, it is very likely that new
vehicles (called confusers) will be encountered, that is, vehicles that belong
to none of the vehicle classes used in the training set (open set classification).
Therefore, the testing of ATR classifiers requires one or more confuser classes
to verify their performance. The issue can be understood in terms of false
positives (detection of confusers as belonging to one of the trained classes),
and missed detections (i.e., to reject the confusers some of the test vehicles
may not be classified because the confidence level of the classifier may be too
low to make a decision).

The aspect angle of a target (i.e., the angle from which the target is viewed)
is unknown, therefore ATR classifiers have to be trained for all 360 degrees of
aspect angles. Because the SAR image of a target is based on radar reflections
on the target, different aspect angles of the same target will result in quite
different SAR signatures. Instead of training a single classifier for the full 360
degrees of aspect angle, several classifiers can be trained for different aspect
angle sectors (this is a divide and conquer strategy), although it requires a
good estimator for the aspect angle. In this divide and conquer approach
better classification accuracy is obtained in this difficult problem [349].

Finally to evaluate better the generalization ability it is common practice
to create a test set of the same vehicles that is taken at a different depression
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Fig. 6.5. The SAR images of three vehicles for training classifier (0–30 degree)
(from [349]).

angle (the angle between the sensor line of sight and ground) of the training
set. This increases the difficulty of the task inasmuch as the radar returns in
angular objects change drastically with the depression angle.

The experiment is conducted on the MSTAR database [324]. There are
three classes of vehicles, BMP2, BTR70, and T72, classified from 64 × 64
pixel synthetic aperture radar (SAR) images with the approach described in
Section 6.6. The system diagram is shown in Figure 6.4.

Figure 6.5 shows the training images (22, 21, 19 images per class, respec-
tively) to illustrate the difficulty of the task.

Here, two types of confusers were used, so the test set was built from
images taken at a 15 degree depression angle of the following vehicles (for
each class, there are some different configurations) as shown below.

BMP2———BMP2 C21, BMP2 9563, BMP2 9566
BTR70——–BTR97 C71
T72———–T72 132, T72 S7, T72 812
Confuser——-2S1, D7

Aspect Angle Estimation with QMI

The design of the aspect angle estimator is done first to show the large ap-
plicability of this nonparametric MAP approach in pattern recognition appli-
cations. For instance, the problem of aspect angle (pose) in an image set can
be framed as the following maximum a posteriori problem. From the input
image x find a projection y that is maximally informative with respect to the
unknown aspect angle θ (the latency variable) of the vehicle in the image:
θ̂ = arg max

θ
pY θ(y, θ) y = f(x,w). For this particular case, because the pose



6.6 ITL Algorithms for Divergence and Mutual Information 239
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Fig. 6.6. Performance of the pose estimator based on QMIED when trained on a
vehicle and tested in another. In (a), diamonds are the training set poses and the
triangles the test set results. The axis in (b) shows the estimated angle (vertical)
versus the test image number ordered by increasing aspect angle (from [340]).

angle is a one-dimensional periodic variable we code it as a two-dimensional
vector a = [a1, a2], where a1 = sin(2θ) and a2 = cos(2θ) and construct a lin-
ear projector from 4096 dimensions to a 2D space of outputs [y1, y2] trained
to maximize the QMIED between y and a. The difficulty of distinguishing
between front and back views in the SAR images of targets led us to use the
double of the angle to wrap around the angles between 0–180 instead of 0–360.
Once the system is trained with 53 exemplars (3.5 degree resolution), a new
image of a different vehicle is input to the system, the maximum value of y is
found, and the true pose is this angle divided by two to compensate for a. The
kernel size was selected at σ = 0.01 (Silverman’s rule) and a large range of
kernel sizes (an order of magnitude in both directions) gave basically the same
results. Figure 6.6 shows an example of the pose estimator performance when
it is trained in one vehicle (BMP2) and tested in another (T72), while the
vehicle is being rotated from 0 to 360 degrees.

The left panel with diamonds shows the training performance, and the
triangles the test results. The right panel shows the pose estimation on the
y–axis versus the image number (ordered by increasing value of the aspect
angle) denoted as stars, and the true pose in the solid line. Due to the fact
that we only trained for 0–180 degrees, there is a wraparound phenomenon
with a jump of 180 degrees due to the confusion between front and back views.
If this jump is discounted the average pose error is 6.18 degrees and the s.d.
is 5.18 degrees. When the same network is trained with MSE the training set
error is slightly smaller, but the test results are much worse. The big advantage
of QMIED training versus the MSE was obtained when the image was occluded
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Fig. 6.7. Occlusion results. Top row shows the overall results of the pose through
progressive occlusions in polar coordinates (left) and in value (right). The bottom
figures show two instances (c) and (e). Numbers on top represent (left to right) the
true pose and two different pose estimators (ML or mean of estimated PDF) (from
[340]).

with increasing amounts of background. As shown in Figure 6.7 the vehicle
image can be mostly occluded but the pose estimator is still reasonable.

Figure 6.7 shows in the top left panel the changes of pose estimation across
progressively larger occlusions. It is noticeable that the values (triangles) de-
crease towards the center of the circle but maintain more or less the same
angle. In the top right panel a more detailed view of the estimation is pro-
vided, where the true pose is shown (the solid horizontal line at 60 degrees),
and the estimations at different occlusions (horizontal axis). Two of the cases
(c) and (e) are shown in the bottom two panels. It is remarkable that it is
sufficient to observe a tiny part of the boundary of the object for the system
to estimate its pose.
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Training the Projector for Classification

The training of the discriminability-preserving projection is accomplished in
the same way as the pose estimator, except that now the labels are the three
target classes. That is, a linear network with 4096 inputs is trained to maxi-
mize the mutual information between the output of the projector in 2D space
and the class labels, using gradient ascent learning Eq. (6.28). Although there
are three classes, a two-dimensional feature space gave very good results and
is the one used for visualization. A training set built from 62 exemplars of the
three classes within the 0–30 degree sector were used for training (Figure 6.5
depicts the images from each vehicle included in the training set). The ker-
nel size was kept at the same value as for the pose estimator, the step size
was η = 5× 10−5, training was stopped at 200 iterations, and the class label
positions were chosen as the vertices of an equilateral triangle embedded in a
circumference of unit radius.

Snapshots of the network during training displaying the information forces
acting on the samples of each class are depicted in Figure 6.8 at different
phases of training. Panel A shows the initial phase with the three classes still
mixed together, but the forces are already pointing outward; Panel B shows
the result after 50 iterations with classes starting to separate, and the forces
are very strong at this stage. Panel C shows the output data distribution at
the final stage of the training where the three classes are clearly separated,
each class tends to shrink to one point, and the forces decrease towards zero.

After the projector is trained, the class PDFs estimated with the infor-
mation potential field (Eq. (6.16)) are used to assign the test set exemplars
to the classes using the MAP rule. Table 6.2 shows the classification result
for the sector 0–30 degrees. In spite of the limited number of training data, the
classifier still shows very good generalization ability because only two errors
occur in the test set.

For comparison purposes, an SVM classifier using the Gaussian kernel was
trained with cross-validation for the slack variables for best performance [349].

Fig. 6.8. Information forces acting on the samples of each class during training
(from [254]).
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In this particular sector the SVM had higher errors (7 versus 2), but the overall
error rate of both classifiers in all the quadrants was statistically equivalent
and it is shown in Table 6.2.

The open set classification results for this sector with the two confuser
vehicles were also established by setting a threshold on the probability of
detection (Pd = 90%). Table 6.3 shows the detection performance for the
classifier trained with ITL and SVM. ITL records four false positives for the
two confusers, but SVM rejects them all. However, SVM misses more T 72
targets, so we conclude that the classification result of QMIED is only slightly
worse than the support vector machine [349].

In terms of overall performance in all the sectors, Table 6.4 shows the
overall error rate for the test set (724 samples) of the template matcher (which
is the most widely used classifier for this problem using 36 templates per
target), a multiresolution PCA projector [349], the QMIED classifier, and the
SVM. As the table shows, the QMI and SVM have comparable performance,

Table 6.2. Confusion Matrices for the ITL and SVM Classification (from [349])

ITL BMP2 BTR70 T72 SVM BMP2 BTR70 T72

BMP2-C21 18 0 0 BMP2-C21 18 0 0
BMP2-9563 11 0 0 BMP2-9563 11 0 0
BMP2-9566 15 0 0 BMP2-9566 15 0 0
BTR70 0 17 0 BTR70 0 17 0
T72-132 0 0 18 T72-132 0 0 18
T72-812 0 2 9 T72-812 5 2 4
T72-S7 0 0 15 T72-S7 0 0 15

Table 6.3. Confusion Matrices for Detection (Pd = 0.9) (from [349])

ITL BMP2 BTR70 T72 Reject SVM BMP2 BTR70 T72 Reject

BMP2-C21 18 0 0 0 BMP2-C21 18 0 0 0
BMP2-9563 11 0 0 2 BMP2-9563 11 0 0 2
BMP2-9566 15 0 0 2 BMP2-9566 15 0 0 2
BTR70 0 17 0 0 BTR70 0 17 0 0
T72-132 0 0 18 0 T72-132 0 0 18 0
T72-812 0 2 9 7 T72-812 0 1 2 8
T72-S7 0 0 15 0 T72-S7 0 0 12 3
2S1 0 3 0 24 2S1 0 0 0 27
D7 0 1 0 14 D7 0 0 0 16

Table 6.4. Overall Classification Results (from [349])

Classifier Error Rate (%)

Template 9.60
PCA-M 10.3
QMI-ED 5.93
SVM 5.13
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but they achieve classification in totally different ways: the SVM uses 400
support vectors to represent the classes, whereas the QMIED chooses the best
2D projection that separates the classes.

This test with SAR ATR classification highlights the differences that we
have mentioned between training with EEC and training with QMI. The
training of the classifier really can be thought of as a projection to a lower-
dimensional space that preserves discriminability followed by classification in
the subspace. Hence, each one of the classes is mapped independently of the
other, unlike the case of the EEC which combines the errors of each class and
changes the weights with this combined information. We have only presented
results where the IP is used for both projecting the data and classification,
but any other classifier can be used in the projected space.

Case Study: Training (deep) Networks Layer by Layer with QMI

The conventional paradigm to train multilayer networks is by backpropagating
the errors across the network layers. This is a clever and well-studied proce-
dure that brings error information from the top (i.e., closer to the output)
layers back to the bottom (i.e., closer to the input) layers and trains the mul-
tilayer system in a cohesive way. However, in computational neuroscience, the
biological plausibility of the error backpropagation step has been questioned,
and in more general terms, it is conceptually important to know if a purely
feedforward training procedure is able to discover complex mappings one stage
at a time (e.g., deep and growing networks). We show here that maximizing
quadratic mutual information (using QMIED) at each layer of a nonlinear
network (MLP) with respect to a desired signal is able to discover complex
mappings. In a sense the maximization of the mutual information with respect
to the training signal at each layer substitutes for the backpropagated error
from the top layers. We basically use the methodology of Section 6.5 to find
subspace projections. We consider each network layer as an information filter
that is trained to convey in its output (Y ) as much input information (X)
about the desired response Z as possible (Figure 6.9).

z-1

z-1

z-1

z-1

Desired z(n)Input x(n)

å

å

å

Fig. 6.9. TDNN trained one stage a time without error backpropagation.
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w∗ = argmax
w

I(Y = f(X,w), Z).

Equation (6.23) is the one that applies to QMIED, except now the class
labels c are substituted by the desired signal z(n) which is a continuous vari-
able, so there are no simplifications in the kernel estimation of V̂J , V̂c, V̂M
(see Eq. (2.103)). Because each layer of the MLP is nonlinear, Eq. (6.20) needs
to be applied with an update for nonlinear PEs, which results in the following
gradients (GIFs) for each one of the field components

∂VJ
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We demonstrate this training in the so-called frequency doubler, already men-
tioned in Chapter 5: a TDNN that duplicates the frequency of any periodic
signal presented at its input (Figure 6.9).

A system that doubles the frequency of its input must be nonlinear be-
cause, by definition, linear systems do not create new frequencies. Here we
construct a TDNN with four delays in the input layer, two nonlinear process-
ing elements (tanh) in the hidden layer, with a single linear processing element
in the output layer. The number of delays should be selected to create a proper
embedding of the input signal dynamics (for a sinewave one single delay is
sufficient, but more delays simplify the discovery of the mapping).

The input sinewave x(n) has 80 samples per cycle, and the desired response
z(n) has 40 samples per cycle. QMIED and gradient ascent learning with kernel
annealing are used here as the criterion and adaptive algorithm to train the
parameters of the TDNN, except that the training proceeds as follows. The
input layer weights are trained first until convergence, are fixed, and only then
the output weights are trained. Although it is possible to train all the weights
at the same time, this procedure is wasteful because the output layer learns its
part of the mapping only after the first layer training stabilizes. The kernel size
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Fig. 6.10. Left panel: input to the two nonlinear PEs. Middle panel: output of the
two nonlinear PEs showing the saturation that corresponds to the maximum QMI
solution for this problem and system. Right panel: The final solution obtained in
the output layer, which just flips one signal and adds the other.

starts at a large value (σ = 10) and is annealed through training to σ = 0.5
which is appropriate for the statistics of the sinewave with unit amplitude,
and it is hoped, avoids the local minima of the performance surface. We select
a batch size at least as large as one period of the input to provide a good
description of the input PDF. Another slight modification is to use just the
sign of the gradient (instead of the actual value) as suggested in Chapter 5 in
the resilient backpropagation, because it makes training less dependent upon
the actual structure of the performance surface (the existence of plateaus is
one of the difficulties of neural network training). The stepsize is 0.01, and
the number of training epochs is heuristically selected at 200.

Figure 6.10 shows from left to right the inputs to the nonlinear PEs and
the corresponding hidden PE outputs that are trained first with QMIED. The
mapping is very similar to the one found by conventional backpropagation
learning [253]. Basically the solution requires that the hidden PEs saturate
opposite sides of the input signal, and the output layer flips one and adds
them as shown in the rightmost panel of the figure. We can now state that
this solution also maximizes the mutual information at every layer of the
deep network. It is particularly surprising that the saturation produced in the
hidden layer, which is critical to build the double frequency, is a maximum
mutual information solution for this problem with this type of nonlinearity.

Training the TDNN with QMIED is not simple, due to the local minima
and shallow slopes. Figure 6.11 shows the effect of the kernel size in the perfor-
mance surface to adapt the output weights and demonstrates the advantage
of the kernel annealing. The two top panels obtained with a large kernel size
show basically a convex performance surface but with a very flat and broad
convexity, and the bottom panels, obtained with a smaller kernel size com-
patible with the data variance, show a well-defined global minimum but with
many other local minima. Kernel annealing therefore helps avoid local minima
but the current state solution still needs to be close to the optimum (hence
the advantage of working just with the sign of the gradient).
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Fig. 6.11. The performance surface for the output layer obtained with different
kernel sizes sigma =10, 5, 1, 0.5 (clockwise from top left). Note the smoothing effect:
for large kernel sizes, the solution is basically convex but with a very broad minimum.
When the kernel size is reduced, the basin where the minimum exists is reduced, but
other minima pop out, making the search much harder if the kernel is not annealed.

The QMIED solution also has a few drawbacks with respect to the conven-
tional training of the MLP with backpropagation. In fact, the cost function
evaluates statistics of the input and desired responses, not matching sample-
by-sample differences. Moreover, it works with pairs of samples of each signal
so it is insensitive to the dc value, polarity, and to a certain extent also am-
plitude of the desired signal. Only the “PDF shapes” matter, which may be
a hindrance or a great advantage, depending upon the application. So we are
not yet ready to give up on backpropagation to adapt deep networks, but
the proof of concept of adaptation with maximizing mutual information is
established.

6.7 The Role of ITL Feature Extraction in Classification

In the previous section we showed how to use QMI to find an information
theoretic linear subspace to represent data for classification (it can be a man-
ifold if the projector is nonlinear). However, we loose the ability to determine
the importance of each input as is required in feature selection. Here we com-
pare ITL with more traditional methods of selecting and ranking individual
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Fig. 6.12. Block diagram of a generic classification system (from [151]).

features, and with the design of optimal classifiers. We also introduce a more
computationally efficient algorithm to train the projector.

The feature extractor and the classifier are shown in Figure 6.12, where
sc(i), xc(i), and yc(i) are the inputs (size NI × 1), the output features (size
NO×1), and classifier outputs (size NC×1), respectively, for the ith exemplar,
which happens to belong to class c (s(i) and x(i) are used to denote the ith
exemplar irrespective of class). Likewise c(n) and e(n) denote, respectively, the
true class label and the error for the nth exemplar. Only linear transformations
are considered here where xc(i) = R sc(i). The feature extractor and the
classifier can be trained independently as exemplified above, or simultaneously
as used in several recent approaches. One important question is which method
provides the best results.

Some researchers believe that training both systems at once, which in-
volves the minimization of criteria that resemble the misclassification rate,
are expected to outperform methods that train the selector and classifier in-
dependently. Herein, we use an information-theoretic method that trains the
extractor in an independent fashion, and show that it outperforms several
simultaneously trained systems on five randomly chosen datasets.

Information-Theoretic Feature Extraction
with Renyi’s Entropy

The direct maximization of QMI as done for the SAR ATR example does
not scale up well to many classes. Indeed, if there are many classes the QMI
involves a joint with as many dimensions as classifier outputs, so estimating
QMI with an acceptable error is computationally complex and demands lots of
data that may not exist in a practical setting. There are, however, many other
ways to write mutual information (MI), as we saw in Chapter 1. Shannon MI
may be written in one of three equivalent expressions,
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I(X, C) = H(X)−H(X |C)
= H(C)−H(C |X),
= H(X) +H(C)−H(X, C) (6.29)

where H(X) is Shannon’s entropy, X is the random output feature vector,
and C the class labels (where N realizations of X and C are given by x(i)
and c(i), respectively, for i = 1, . . . , N). Notice that the two first expressions
do not need estimation in the joint space, which simplifies the computation
and decreases the estimation error for a given number of data samples avail-
able. However, none of these expressions is commonly used because Shannon’s
entropy estimation is computationally intensive [21].

The method presented here and called maximization of Renyi’s mutual
information (MRMI) [151] replaces the two (Shannon) entropy terms in the
first version of Eq. (6.29) with Renyi’s entropy terms. If you recall the defini-
tion of Renyi’s mutual information in Eq. (2.81), the change of the placement
of the logarithm will not yield an equation similar to Eq. (6.29). However,
multiplying the denominator by pXo(xo) yields

Iα(X) ≈ 1
α− 1

log

∞∫

−∞
· · ·

∞∫
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pαX(x)dx1, . . . , dxd

∞∫
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. . .
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n∏

o=1
pαXo

(xo)dx1, . . . , xd

=
d∑

o=1

HRα(xo)−HRα(x)

(6.30)
which is a new figure of merit that maintains Shannon’s general MI form
but where every term is given by Renyi’s entropy (however, it is no longer
mutual information). For the case of two variables and using the first form of
Eq. (6.29) yields,

I2(X, C) ≈ H2(X)−H2(X |C), (6.31)

where H2(X) is Renyi’s quadratic entropy. In spite of the approximation,
this substitution is appealing because as we have seen in Chapter 4, Renyi’s
quadratic entropy accepts a stochastic approximator of the information po-
tential, the SIG which was obtained by dropping the expected value Eq. (4.15)
to reduce the computational complexity from O(N2) to O(N). Here, we use
a Gaussian kernel with symmetric covariance matrix.

We selected Eq. (6.31) for the following reasons: the second formulation
in Eq. (6.29) is not convenient for the entropy estimator with IP because the
given data X have a continuous distribution, thus requiring integration. The
third form is used for blind source separation (BSS) [149] because the joint
entropy can easily be made invariant to the adaptation, as we show in Chap-
ter 8; however, this simplification does not apply when extracting features
because the MI is measured between the output feature set and the class la-
bel. The entropy estimator with IP has a scale (gain) that is a function of the
dimensionality of the underlying random vector [223]. This gain is irrelevant
for the maximization or minimization of entropy when there is a single entropy
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term, but it plays an important role when the criterion consists of a summa-
tion of two or more entropies if the random vectors on which they are based
have different dimensionalities. To avoid the dimensionality-dependent gain
for feature extraction, the first formulation in Eq. (6.29) is preferred because
the two entropy terms have an identical dimensionality of NO.

Maximization of Renyi’s Mutual Information (MRMI-SIG)

Both classifiers considered herein are made invariant to an invertible linear
transformation to reduce the number of free parameters that must be adapted
without unnecessarily restricting the possible set of decision surfaces that can
be produced by a (linear) projection. This is achieved by constraining the
feature extraction matrix R to be a pure rotation matrix. Hence, R can be
expressed as a function of the NO(NI −NO)× 1 vector of rotation angles, θ,
as follows.

xc(i) = R(θ)sc(i), R(θ) =

[
NO∏

k=1

NI∏

m=NO+1

Rk,m(θi,m)

]

NO

, (6.32)

where the notation [A]NO corresponds to keeping only the first NO rows
of matrix A, θk,m is a single element of the rotation angle vector, and
Rk,m(θk,m) is an individual Given’s rotation matrix [151]. Constraining the
transformation in this manner reduces the number of parameters from NONI
to NO(NI −NO). The MRMI-SIG criterion can be estimated by substituting
the SIG, H(x) ∼= − log 1/N

∑N
i=1GσI(x(i)− x(i− 1)) in Eq. (6.31) to yield

J = − log
1
N
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i=1

GσI(x(i)− x(i− 1))

+
L∑

c=1

(
Nc
N

log
1
Nc

N∑

i=1

GσI(xc(i)− xc(i− 1))

)

, (6.33)

where xc(i) = R(θ)sc(n) is the ith exemplar, which happens to belong to class
c, Θ is the vector of rotation angles adapted to maximize J, Nc is the number
of class labels in the training set having class c, and N is the length of the
training set. The parameters are updated using gradient ascent optimization,
as seen in Chapter 4

θ(i+ 1) = θ(i) + η∇θJi,
where η is the step size and the subscript on J is used to denote that the
order in which the data are presented is shuffled every iteration, the need for
which is explained next.

The second term on the right-hand side of Eq. (6.33) increases when min-
imizing (xc(i) − xc(i − 1))2, which is accomplished by choosing R such that
all the consecutive exemplars from a given class are as near as possible to
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each other in the space of the output features. This equates to minimizing
the within-class spread in the limit as long as the data order is shuffled dur-
ing adaptation. A trivial solution for minimizing the total within-class spread
is to set R equal to an all-zeros matrix. This, however, causes the features
from all classes to overlap perfectly. The first term on the right-hand side of
Eq. (6.33) prevents this undesirable solution because it is maximized by max-
imizing (x(i)−x(i−1))2, which is a measure of the spread of the data (in the
space of the output features) irrespective of the class. Linear discriminate
analysis (LDA) is an alternate ways to construct a criterion that attempts
to minimize within-class spread and maximize overall spread, [80] (which is
based on second-order statistics). QMI and MRMI-SIG, which have both an
information-theoretic interpretation, represent another possibility.

Comparing Training Methodologies

The performances of several different methods are compared using the rate of
correct classification of five different datasets. The two Bayes classifiers that
are selected are the Bayes-P (parametric) and the Bayes-NP (nonparametric)
classifiers, both of which generate nonlinear decision surfaces. The Bayes-
P classifier assumes that the set of output features, for each class c, is a
multivariate Gaussian distribution [108]. The Bayes-NP uses Parzen windows
to estimate each of the a posteriori distributions as was done in Section 6.5.
Unlike the Bayes-P classifier, the Bayes-NP classifier makes no assumptions
on the distribution of the output features so that it is able to take into account
higher-order statistics of the output features, including multiple modality. The
Bayes-NP classifier uses a kernel size of σ = 0.25.

Results are shown for a total of six methods. Three of these train the
extractor and classifier independently, namely, MRMI-SIG, PCA, and QMIED.
The remaining three methods train the feature extractor and the classifier
simultaneously. These methods include minimum classification error (MCE)
[37], mean square error (MSE), and a method that ranks features based on
classification performance of a validation set (FR-V) [38].

For the sake of perspective, the classification results of random projections
are also included for the lower-dimensional datasets, the coefficients of which
are chosen uniformly in [−1, 1]. The results of the random projection are rep-
resented in the plots using a dashed line. The MRMI-SIG, MCE, and MSE
methods all have computational complexity O(N) and QMIED has compu-
tational complexity O(N3), whereas the computational complexity of FR-V
depends only on the classifier and PCA has an analytical solution. For the
two high-dimensional datasets, MRMI-SIG is used only to rank the input fea-
tures so that the comparison between MRMI-SIG and FR-V is between two
methods having similar computational complexity.

Feature ranking, which is suitable for datasets having extremely high di-
mensionality, is used for demonstrative purposes only. We suspect that using
PCA to reduce the dimensionality to a manageable intermediate value or using
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Table 6.5. Description of the Data Sets Used in the Comparison

Dataset NI NC NT Test Size Outliers

Pima Indians 8 2 500 268 8%
Landsat Satellite Image (Statlog) 36 6 4435 2000 0%
Letter Recognition 16 26 16000 4000 0%
Musk 166 2 300 176 0%
Arrhythmia 279 16 300 152 0.3%

a multistage (semi greedy) approach will provide better classification results
than ranking. MRMI-SIG uses a kernel size of σ = 0.5 for all datasets (which
is half of the data variance).

The MSE criterion uses the 1 out of the L scheme to define the targets,
τc(i), which is defined as setting the target for the ith exemplar associated
with class c to 1 and the other L − 1 targets to 0 (this is represented in
Figure 6.12 using the demultiplexer). MCE has two user-defined parameters,
α and ν, which are set to 10 and 2, respectively. The FR-V method uses a
validation set that is found by randomly selecting a (disjoint) subset of the
original training set.

Table 6.5 shows the important characteristics of the five datasets. The
first three were randomly selected from the list of all datasets at the UCI
Machine Learning Repository, whereas the Musk and Arrhythmia datasets
were selected for their large input dimensionality (all data sets may be found
at http://www.ics.uci.edu/∼mlearn/MLRepository.html). For all methods
except PCA, data were preprocessed such that the resulting (NI×1) input fea-
tures, s(i), are zero-mean, (spatially) uncorrelated, and have unit variance. Be-
cause the transform for PCA depends on the eigenvalues of the autocorrelation
matrix, sphering should not be used with PCA. The Pima dataset has numer-
ous invalid datapoints, for example, features that have a value of 0 even though
a value of 0 is not meaningful or physically possible. These correspond to
points in feature space that are statistically distant from the mean calculated
using the remaining data (with the points in question removed). No attempt
was made to remove or correct for these outliers. Likewise, the Arrhythmia
dataset has missing values, all of which are set to 0 for the comparison.

The Bayes-P classifier produces the best classification performance for the
Pima, Landsat, and Musk datasets, whereas the Bayes-NP classifier performs
best for the Letter Recognition and Arrhythmia datasets. Therefore, the re-
sults shown are restricted to these combinations of datasets and classifiers.
This choice has no effect on the relative performance of the different feature
extraction methods. The training is performed using NT randomly selected
samples of the dataset and is tested on the remaining (disjoint) data. All
results are reported using ten-fold cross-validation. The results for all algo-
rithms are the same whenever NO = NI . This is because both classifiers are
invariant under full-rank linear transformations.
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Fig. 6.13. Classification performance versus output dimension for PIMA (a) and
Letter data (b). (from [151]).
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Fig. 6.14. Classification performance versus output dimension for Musk and Ar-
rhythmia data (from [151]).

Figure 6.13 shows the correct classification rates for the Pima and Letter
Recognition data. Each figure includes error bars that represent one standard
error. All five methods perform well on these datasets, with the exception
that MSE has trouble with the Pima dataset and PCA performs poorly for
the Letter Recognition data for small NO. The proposed method has the best
performance for the Pima and Letter Recognition datasets. It is interesting
to recognize that the differences in the methods are most noticeable for the
small projection spaces, and when NO increases, even the random projections
have similar performance; that is, there is progressively less advantage in fine
tuning the projector for larger projection spaces.

Figure 6.14 shows the results for the two high-dimensional datasets, Musk
and Arrhythmia. For these two plots, MRMI-SIG is only used to rank the
features. Results are shown for both MRMI-SIG and FR-V and the inset
in each figure shows the corresponding error bars. In Figure 6.14a, the best
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performances for MRMI-SIG and FR-V are similar. Notice, however, that
MRMI-SIG concentrates the most useful group of features for classification
into the top 20% of the highest-ranked features.

Hence, it requires roughly 25 fewer features to reach peak performance.
The jaggedness of the curves for NO > 120 corresponds to the point at which
at least one of the class covariance matrices used in the Bayes-P classifier be-
comes ill-conditioned. The curves in Figure 6.14b have a very different char-
acteristic due to the use of the Bayes-NP classifier where roughly 1/4 of the
16 class labels are poorly represented (fewer than five instances each).

Classification results for both methods are flat and very nearly equal for
the portion of NO not shown in the figure. As can be seen, the performance of
MRMI-SIG is better than or equal to the performance of FR-V for all values
of NO.

These results should be contrasted with the formulation of the MCE
method and the view expressed by LeCun et al. [195] that discriminative
(simultaneously trained) methods should be the preferred way to train clas-
sifiers. Although the arguments make sense, we have not found any practical
advantage for discriminative training in this study, and conclude that the issue
may be problem-dependent [151]. In fact discriminative training and training
one class at a time puts emphasis on different parts of the data space (bound-
aries between classes and cluster centers, respectively), so the nature of the
problem has an important role in the final results.

6.8 Error Bounds for Classification

Fano’s bound [97] is a well-known inequality because it is essential to prove
key theorems in information theory [65]. Fano’s bound entails an important
conclusion about the structure of optimal classifiers: the probability of error
is lower bounded by the mutual information between data classes. But it does
so a priori, just by examining the structure of the data without implementing
any classifier.

The related question of determining optimal features has been one of the
major focal points in pattern recognition research, and information theory has
also played a central role in this quest. It has been established that information
is not preserved in subspace projections, yet information maximization across
the mapping is essential in this process [68]. As we saw in this chapter, mutual
information can be used to train classifiers directly and is also useful for feature
extraction using the nonparametric estimator for quadratic Renyi’s entropy.
Although Fano’s lower bound for the probability of error in classification is
a valuable indicator of attainable performance, the goal in statistical pattern
recognition and machine learning is to minimize the probability of error [268],
or possibly an upper bound for the error probability as in structural risk
minimization [323]. Therefore, a family of lower and upper bounds would
encompass the advantages of both: identify the limitations and indicate the
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possible generalization performance simultaneously. In the theory of bounds,
one of the central issues is to study how tight the bound is because otherwise
its usefulness diminishes.

The flexibility of Renyi’s family of entropy and divergences is also central
to our results because it encompasses Shannon’s definitions as special cases.
The recent work of Feder and Merhav is especially important as it provides a
lower and an upper bound for the minimal probability of error in estimating
the value of a discrete random variable [98]. Their bounds show the association
between the probability of value-prediction error and Shannon’s entropy, and
Renyi’s entropy with infinite order as well. Han and Verdu’s generalization of
Fano’s bound, again using α = ∞ Renyi’s entropy is theoretically appealing
and also useful in proving a generalized source-channel separation theorem
[132]. Yet, the bounds presented in these works do not explicitly consider the
classification process, thus do not make use of the confusion matrix of the
classifier under consideration. We develop here a family of lower and upper
bounds, using Renyi’s definitions of information-theoretic quantities [86]. The
free parameter α in Renyi’s definitions was exploited along with Jensen’s
inequality for convex and concave functions.

In order to understand the effect of α on the value of entropy, consider
the following fact: Renyi’s entropy is a monotonically decreasing function of
α whose values range from logNc to − log(maxk p(ck)), where Nc is the total
number of events and p(c) is the probability of each event as α is varied from
zero to infinity. As shown in Chapter 2 the limit of Renyi’s entropy (and
mutual information) approaches Shannon’s definitions as α goes to 1.

Fano’s Bound on Misclassification Probability

Fano’s inequality determines a lower bound for the probability of classifica-
tion error in terms of the information transferred through the classifier. More
specifically, consider a classifier for which the actual classes (Nc is the number
of total classes), denoted by C, have prior probabilities {p(ck)}Nc

k=1 and the
classifier decisions, denoted by Y , have the conditional probabilities p(yj|ck)
where the index j indicates the classifier decision. Fano’s bound for the prob-
ability of classification error, in terms of the conditional entropy, is given
by [97]

pe ≥ HS(Y |C)− hS(pe)
log(Nc − 1)

=
HS(Y )− I(Y,C)− hS(pe)

log(Nc − 1)
, (6.34)

where

HS(Y |C) =
Nc∑

k=1

HS(Y | ck)p(ck) and

HS(Y | ck) = −
Nc∑

j=1

p(yj | ck) log p(yj | ck).
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The special notation hS(pe) = −pe log pe − (1 − pe) log(1 − pe) is Shannon’s
entropy of the binary error. Notice that Eq. (6.34), as it appears in Fano’s
derivation has the probability of error appearing on both sides of the inequal-
ity. Also the denominator prevents the application of this bound to two-class
situations. To account for these problems, the binary entropy of pe is re-
placed by its maximum possible value, log2 2 = 1, and the denominator is
replaced with the larger log Nc. In addition, the conditional entropy can be
replaced by the sum of marginal entropy and mutual information terms in ac-
cordance with Eq. (6.29), yielding the commonly presented version of Fano’s
bound in the literature [318]

pe ≥ HS(Y )− IS(Y,C)− 1
logNc

. (6.35)

Notice, however, that substituting hS(pe) by a reasonable quantity without
implementing a classifier is not a trivial problem and it is key for the tightness
of the bound. This issue is not pursued here (see [86]).

Bounds Using Renyi’s Entropy and Mutual Information

We apply Jensen’s inequality on Renyi’s definition of conditional entropy,
joint entropy, and mutual information to obtain the following lower and up-
per bounds for the probability of error [86]. Renyi’s mutual information and
conditional entropy do not share the identity in Eq. (6.34), thus these bounds
have to be separately derived, starting from their corresponding basic defini-
tions. For simplicity, we only provide the derivation for the bound that uses
the conditional entropy below. The derivations of the bounds using the joint
entropy and the mutual information are given in [92].

Jensen’s Inequality: Assume that g(x) is a convex function (if concave reverse
inequality), and x ∈ [a, b]; then for

∑
k wk = 1, wk > 0, g (

∑
k wkxk) ≤∑

k wkg(xk).
For later use in the derivation, we also write the conditional probability of

error given a specific input class k as

p(e | ck) =
∑

j �=k
p(yj | ck) 1− p(e | ck) = p(yk | ck). (6.36)

Consider Renyi’s conditional entropy of Y given ck.

Hα(Y | ck) =
1

1− α log
∑

j

pα(yj | ck)= 1
1− α log

⎡

⎣
∑

j �=k
pα(yj | ck) + pα(yk | ck)

⎤

⎦

=
1

1− α log

⎡

⎣pα(e | ck)
∑

j �=k

(
p(yj | ck)
p(e | ck)

)α

+ (1 − p(e | ck))α
⎤

⎦ (6.37)



256 6 Classification with EEC, Divergence Measures, and Error Bounds

Using Jensen’s inequality in Eq. (6.37), and the fact that HS(e|ck) =
p(e|ck) log p(e|ck) + (1 − p(e|ck)) log(1 − p(e|ck)), we obtain two inequalities
for α > 1 and α < 1 cases:

Hα(Y | ck)
α>1≤
≥
α<1

p(e | ck) 1
1− α log pα−1(e | ck)

∑

j �=k

(
p(yj | ck)
p(e | ck)

)α

+(1− p(e | ck)) 1
1− α log(1− p(e | ck))α−1

=
α>1≤
≥
α<1

HS(e | ck) + p(e | ck) 1
1− α log

∑

j �=k

(
p(yj | ck)
p(e | ck)

)α

. (6.38)

Let us call Hα(Y | e, ck) the conditional entropy given an error is made in
classification and the actual class was ck, which is computed as

Hα(Y | e, ck) =
1

1− α log
∑

j �=k

(
p(yj | ck)
p(e | ck)

)α
. (6.39)

We now have to find an upper bound and a lower bound for this quantity
depending upon the value of α. Recall that for an (Nc − 1) sample set, we
have the following upper bound for entropy, which is the entropy of a uniform
probability distribution,

1
1− α log

∑

j �=k

(
p(yj | ck)
p(e | ck)

)α
≤ log(Nc − 1), (6.40)

equality being achieved only for a uniform distribution. Hence, for α > 1,
from Eq. (6.38) and Eq. (6.40) we obtain

Hα(Y | ck) ≤ HS(e | ck) + p(e | ck) log(Nc − 1). (6.41)

Finally, using Bayes rule on the conditional distributions and entropies we get
the lower bound for pe as

Hα(Y |C) ≤ HS(e) + pe log(Nc − 1)→ pe ≥ Hα(Y |C)−HS(e)
log(Nc − 1)

. (6.42)

For α < 1, from Eq. (6.38) we have

Hα(Y | ck) ≥ HS(e | ck) + p(e | ck)Hα(Y | e, ck)
≥ HS(e | ck) + p(e | ck)[min

k
Hα(Y | e, ck)]. (6.43)

Finally, combining these results and incorporating Fano’s special case into the
lower bound, we bracket the classification error probability as,

Hα(Y |C)−HS(e)
log(Nc − 1)

≤ pe ≤ Hβ(Y |C)−HS(e)
min
k
Hβ(Y |e, ck) ,

α ≥ 1
β < 1 . (6.44)
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Following a similar approach [92], we obtain the following upper and
lower bounds for pe expressed in terms of the joint entropy and the mutual
information.

Hα(Y,C)−HS(C) −HS(e)
log(Nc − 1)

≤ pe ≤ Hβ(Y,C)−HS(C)−HS(e)
min
k
Hβ(Y |e, ck) ,

α ≥ 1
β < 1

(6.45)

HS(Y )− Iα(Y,C)−HS(e)
log(Nc − 1)

≤ pe ≤ HS(Y )− Iβ(Y,C)−HS(e)
min
k
Hβ(Y |e, ck) ,

α ≥ 1
β < 1 .

(6.46)

Notice that in all three cases, the lower bounds for α = 1 correspond to Fano’s
bound through Eq. (6.35). The term in the denominator of the upper bound
is the entropy of the conditional distribution given the actual class under the
condition that the classifier makes an error.

From a theoretical point of view, these bounds are interesting as they in-
dicate how the information transfer through the classifier relates to its perfor-
mance. Because the family parameter of Renyi’s definition does not affect the
location of minimum and maximum points of the entropy and mutual infor-
mation, it is safely concluded from Eq. (6.45) that, as the mutual information
between the input and the output of the classifier is increased, its probability
of error decreases. Consequently, this result also provides a theoretical basis
for utilizing mutual information for training classifiers and performing feature
extraction.

The denominators of the upper bounds also offer an interesting insight
about the success of the classification process. As these entropy terms are
maximized, the upper bounds become tighter. This happens when the corre-
sponding distribution is uniform; that is, when the distribution of probabili-
ties over the erroneous classes is uniform. This conforms to the observations
of Feder and Merhav [98] who noted that in a prediction process, their upper
bound is tightest when the probabilities are distributed uniformly over the
wrong values.

Recall that Renyi’s entropy is a monotonically decreasing function of the
entropy order. Therefore, it is clear that the lower bound in Eq. (6.44) attains
its tightest (i.e., greatest) value for Shannon’s entropy, which is exactly Fano’s
bound. Determining the tightest upper bound is not as easy. The optimal value
of the entropy order is determined by the balance between the decrease in the
numerator and the increase in the denominator. However, our simulations
with several simple examples point out that the tightest value for the upper
bounds may as well be attained for values of entropy order approaching 1
from above. These simulation results are presented below.

One issue to be solved in these bound expressions (also an issue for the
original bound by Fano) is to eliminate the binary entropy of the probability
of error from the bounds; otherwise, the probability of error appears in both
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sides of the inequalities. For theoretical use, this does not cause any problems
(as evident from the wide use of Fano’s bound in various proofs in informa-
tion theory). From a practical point of view, however, this situation must
be corrected. We investigated ways of achieving this objective [86], however,
the obtained bounds were extremely loose compared to the original bounds.
Therefore, we do not present these modified bounds here. We could use the
bounds as they appear in Eqs. (6.44) to (6.46) by nonparametrically esti-
mating the confusion matrix and the prior probabilities (perhaps by simply
counting samples). On the other hand, the information used in this approach
is already sufficient to estimate directly the probability of error itself. There-
fore, we suggest using the estimated bounds as a confirmation of the estimated
probability of error. They may also provide confidence intervals on the cal-
culated value. For a practical application of this procedure, however, further
work and analysis of the bounds estimated from a finite number of samples is
necessary [86].

Numerical Illustrations of the Bounds

In this section, we show the performance of the bounds in two different nu-
merical case studies. These studies are aimed at showing the basic conclusions
drawn in the preceding sections about these Renyi bounds. In addition, we
present a comparison of these bounds and the Feder and Merhav bound ap-
plied to misclassification probability through one of the examples. Our first
example is a simple three-class situation designed to test the basic properties
of the bounds. For this example, the confusion matrix of our hypothetical
classifier is given by

PY |C =

⎡

⎣
1− pe pe − ε ε
ε 1− pe pe − ε

pe − ε ε 1− pe

⎤

⎦ ,

whose i, jth entry denotes the conditional probability of decision on class i
given the input class j. Each column represents the distribution of the proba-
bilities among the possible output classes and the diagonal entries correspond
to the probabilities of correct classification given a specific input class. The
structure of this confusion matrix guarantees that the overall probability of
error is fixed at pe, which is selected to be 0.2 in the following examples. By
varying the free variable ε in the interval [0, pe/2], it is possible to study the
performance of the bounds in terms of tightness. The lower and upper bounds
of Eq. (6.44) evaluated for various values of the family parameter (entropy
order) are shown in Figure 6.15 as a function of ε.

We observe that the family of lower bounds achieves its tightest value for
Fano’s bound, whereas the upper bounds become tighter as the entropy order
approaches one. One other interesting observation is that the upper bounds
remain virtually flat over a wide range of ε, suggesting that this bound is as
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Fig. 6.15. Family of lower and upper bounds for probability of error evaluated for
different values of Renyi’s entropy order (from [92]).

tight for a broad variety of classifiers as it is for the optimum situation where
the probability mass distribution among the wrong output classes is uniform.
If the upper bound is evaluated for β = 1, then it reduces to exactly the
probability of error, pe.

QPSK Example. As a second example, we evaluate the bounds for an oversim-
plified quadrature phase-shift keying (QPSK) digital communication scheme
over an additive white Gaussian noise (AWGN) channel. The energy per trans-
mitted bit is Eb and the power spectral density (PSD) for the additive white
Gaussian noise is N0/2. In this problem, it is possible to evaluate the exact
values for average bit error rate pe and all the conditional and prior probabil-
ities necessary to evaluate the bounds in terms of Q-functions. The confusion
matrix for this case is

PQPSKY |C =

⎡

⎢
⎢
⎣

(1−Q1)2 Q1
∗(1−Q1) Q2

1 Q1
∗(1−Q1)

Q1
∗(1 −Q1) (1−Q1)2 Q1

∗(1−Q1) Q2
1

Q1
∗(1 −Q1) Q1

∗(1−Q1) (1−Q1)2 Q1
∗(1−Q1)

Q2
1 Q2

1 Q1
∗(1−Q1) (1−Q1)2

⎤

⎥
⎥
⎦ ,

where Q1 = Q
(√

2Eb/N0

)
. The prior probabilities for each symbol are as-

sumed to be uniformly distributed. The probability of error and the bounds
are shown in Figure 6.16. For the upper bound, we used entropy order 0.995
in Eq. (6.44).
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Fig. 6.16. Probability of error and its bounds versus bit-energy-to-noise ratio for
QPSK (from [92]).

As we can see in these simple examples, the bounds do not differ much
from the theoretical probability of error, but a full study of this issue is beyond
the scope of this book.

6.9 Conclusions

This chapter addressed the design of classifiers with ITL cost functions. We
started by extending the EEC to classification, but we found that the problem
is more complex, because in classification the error is also conditioned on the
class. From a theoretical perspective it is still unclear under what conditions
minimizing the error entropy in classification is optimum. However, the ex-
perimental results with the MEE criterion yield results that supplant the ones
obtained with MLPs trained with MSE.

In this chapter we derived the first algorithms to train linear and nonlinear
systems with divergence or quadratic mutual information. These costs benefit
from the IP estimator, and so it is just a matter of modifying the injected
error to train the learning machine. We have applied these algorithms to train
classifiers for automatic target recognition with very good results. We also
applied mutual information to extract features for classification, and verified
that the IP estimator is capable of extracting features that yield classification
results comparable to or better than alternative methods.
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Finally, we addressed the very important relationship between the proba-
bility of error and the mutual information proved by Fano. In order to improve
our pattern recognition and feature extraction capabilities, it is imperative to
understand how the information propagation through the classifiers and fea-
ture extractors affects the overall performance. Fano’s bound provides the
attainable limits for performance. However, the bounds we derived in this
chapter provide upper bounds for the probability of classification error, which
is an important result to evaluate the generalization capabilities. The key con-
clusion of this chapter is that, by training classifiers to maximize the mutual
information between its output and decision classes, it is possible to decrease
the probability of error, because both the lower and the upper bound decrease
in this situation. Moreover, both the entropy of the right decisions and the
entropy of the wrong decisions are important in determining the final perfor-
mance.

These arguments should be contrasted with the MEE discussion of
Section 6.2. They indicate that for classification, estimating the error en-
tropy at the output of the classifier may be suboptimal. At the very least
one should use discriminative training, which may explain why the informa-
tion potential in batch mode works better in practice than the theoretical
analysis predicts. But the intriguing idea for classification is to train non
parametrically discriminative projections with mutual information.
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Clustering with ITL Principles

Robert Jenssen and Sudhir Rao

7.1 Introduction

Learning and adaptation deal with the quantification and exploitation of the
input source “structure” as pointed out perhaps for the first time by Watanabe
[330]. Although structure is a vague and difficult concept to quantify, structure
fills the space with identifiable patterns that may be distinguishable macro-
scopically by the shape of the probability density function. Therefore, entropy
and the concept of dissimilarity naturally form the foundations for unsuper-
vised learning because they are descriptors of PDFs.

In the case of supervised learning there is a major simplification because
labels are available and normally they are of the same dimensionality of the
system output. Therefore one can define a composite random variable, the
error that contains information about the differences in the distribution of
the desired and the system output that simplifies the adaptation.

In unsupervised learning the researcher only has the input data (i.e., only
one source of information). Finding structure in the data then requires a
methodology that will be able to quantify in detail similarity and one or more
criteria that somehow impose constraints to elucidate relationships among the
data samples. We can expect that the evaluation of dissimilarity (or similar-
ity), normally quantified by divergence becomes the center piece of unsuper-
vised learning.

We have seen that the information potential (the expected value of the
PDF), the core quantity of ITL algorithms, evaluates pairwise data inter-
actions and extracts more information from data than evaluations based on
single data samples such as the mean or even the variance (which computes
distances between two samples, but one of them – the mean – is fixed, therefore
it does not require full pairwise evaluations). Therefore, as explained in Chap-
ter 2, the pairwise interactions of the ITL algorithms can be used naturally as
entries of a similarity matrix when the goal of the analysis is mostly based on
the estimation of information divergences. Moreover, because ITL provides an
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efficient nonparametric estimator of entropy, it allows the description of data
structure in a more meaningful way than what is normally done with variance.

In this chapter we present two basic procedures based on entropy and di-
vergence to perform clustering, one of the centerpieces of unsupervised learn-
ing. The concept of IP and its corresponding forces is a powerful analogy for
understanding information-theoretic clustering. A cost function based on the
cross information potential is proposed and a gradient algorithm developed to
optimize the cost. Examples and comparisons show that this criterion is able
to cluster data of arbitrary shapes provided that there is a “valley” between
them. We also present the relationship of ITL clustering to spectral clustering,
graph cuts, and to mean shift algorithms which are faster algorithms based
on a fixed-point update.

7.2 Information-Theoretic Clustering

Clustering [136] is a data grouping technique that obeys a given measure of
similarity. Clustering algorithms attempt to organize unlabeled feature vec-
tors into clusters or “natural groups” such that samples within a cluster are
“more similar” to each other than to samples belonging to different clusters.
In clustering there is neither information given about the underlying data
structure nor is there a single similarity measure to differentiate all clusters.
Hence, it should not come as a surprise that there is no unifying clustering
theory.

The literature on clustering is huge [136]. Comprehensive introductory con-
cepts can be found in the books by Duda et al [80], and Jain and Dubes [160].
Clustering algorithms can be basically divided into two groups depending
upon locality or globality of the criterion. In the former case, some attribute
of the local structure of the data is tested against the local criterion, in order
to construct the clusters. This category includes hierarchical clustering algo-
rithms [243], and algorithms based on artificial neural networks [253]. The
majority of clustering metrics are based on a minimum variance criterion, for
instance, merging and splitting, neighborhood-dependent, hierarchical meth-
ods and ART networks [115]. Competitive networks [183] can be used in clus-
tering procedures where they form Voronoi cells with a minimum variance
flavor. Valley seeking clustering [108] is a different concept that exploits not
the regions of high sample density but the regions of less data. In a sense
valley seeking clustering attempts to divide the data in a way similar to su-
pervised classifiers, that is, by positioning discriminant functions in data space
to provide nonlinear discriminants among the data clusters (unlike the previ-
ous methods). The problem in valley seeking clustering is the pulverization of
the number of clusters, if there is a slight nonuniformity in one of them. Tradi-
tional valley seeking clustering still uses a variance measure to split the data.

The most popular global optimization technique for clustering is
MacQueens’ k-means algorithm [208]. The idea in k-means is to find the
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best division of N samples by k clusters C for i = 0, . . . , K such that the
total distance between the clustered samples and their respective centers
(i. e., the total variance) is minimized. The criterion as an equation reads

min
x
J =

K∑

i=1

∑

n∈Ci

|xn − γi|2, (7.1)

where γi is a vector representing the center of the ith class. This criterion
is similar to local regression, except that in clustering, the residuals are the
distance between each point and its cluster center. Minimizing the residu-
als (total variance) provides the “best” clustering. The k-means algorithm
starts by randomly assigning samples to the classes Ci, computes the centers
according to

γi =
1
Ni

∑

n∈Ci

xn, (7.2)

then reassigns the samples to the nearest cluster, and reiterates the computa-
tion. One can show that J decreases at each step until it reaches a minimum.
If we interpret J as a performance criterion, its minimum can be obtained
by taking the gradient with respect to the unknowns (the centers’ positions).
With the new sample x(n), one first implements a competitive step by asking
which is the cluster center γi that is closest to the sample. Then use an on-line
update algorithm that will move the center γi incrementally towards the new
sample according to

γi(n+ 1) = γi(n) + η(x(n)− γi(n)). (7.3)

One can show that with this very simple procedure and the L2 metric, con-
vex clusters (think of spheres) will be created. Note that the user has to select
the number of clusters beforehand. There are many applications of clustering
with great practical significance such as speech recognition, handwritten char-
acter classification, fault detection, and medical diagnosis. As can be expected
the simplicity of k-means has a cost in performance. Therefore what we would
like to investigate here is if the ITL ideas can improve performance through
reclustering of the samples, i.e. when these simple minimum variance clusters
are considered as an initial condition.

Information-theoretic methods appear particularly appealing alternatives
to capture data structure beyond second order statistics. This stems from the
fact that entropy and PDF distance measures are scalars that summarize in
relevant ways the information contained in the data distributions. Previously,
Watanabe [330] used a coalescence model and a cohesion method to aggregate
and shrink the data into desired clusters. In recent years, Rose, et al [271]
employed the robustness properties of maximum entropy inference for vector
quantization, and Hofmann and Buhmann [153] applied the same criterion
for pairwise clustering. Roberts et al. proposed a clustering method based on
minimizing the partition entropy. Lately, Tishby and Slonim [317] proposed
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the mutual information based information bottleneck method, and reported
successful results. Information-theoretic clustering methods have also been
put forward in the context of independent component analysis (ICA) [13].

The major problem of clustering based on information-theoretic measures
has been the difficulty of evaluating the metric without imposing unrealis-
tic assumptions about the data distributions, and this is the reason ITL is so
promising. We start with the simplest of the clustering methods, k-means clus-
tering [208], and apply the sample estimators of Renyi’s entropy and quadratic
divergences to the formed clusters to find out how they improve clustering.
We claim [162] that there are at least two ways to apply ITL concepts to
enhance performance through reclustering k-means assignments:

1. Assign the current sample to the cluster that minimizes the increase in
differential entropy.

2. Assign the current sample to the cluster that maximizes the distance
among the clusters.

Either method can be implemented with the ITL descriptors of infor-
mation potential and Euclidean or Cauchy–Schwarz divergences covered in
Chapter 2. Differential clustering is intuitive and is a straight application of
the concepts of the information potential that we covered in Chapter 2. There
are, however, practical problems with differential entropy clustering (entropy
is not scale-invariant, so it is difficult to compare entropy of datasets with
different numbers of samples and different cluster shapes) which make the
method difficult to apply in practice [165]. The idea of maximizing diver-
gences is much more robust, but it needs a more in-depth study. We present
a cluster evaluation function that is central to clustering and is related to the
cross-information potential (CIP) [114]. When first developed, both differen-
tial clustering and the concept of clustering evaluation function (CEF) were
applied with greedy methods.

7.3 Differential Clustering Using Renyi’s Entropy

From a theoretical viewpoint, clustering is a form of nonparametric density
estimation. In the absence of a desired response, the best we can do for cat-
egorization is to use the information about the input data distribution to
separate inputs into groups that share the same region in data space. The ba-
sic idea of clustering is to seek regions of high sample density – data clusters –
and represent their centers. Cluster centers thus represent the local modes of
the data distribution, where the definition of local is based on the number of
centers we are willing to have.

Consider the situation depicted in Figure 7.1. A set of patterns, or feature
vectors, is distributed in feature space. Initially a sufficiently large subset of
the feature vectors has been assigned to clusters C1 or C2. These are shown
as the encircled points. The problem is now to decide whether a new pattern
x (pointed to by the arrow) should be assigned to C1 or C2.
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Fig. 7.1. Assigning a new sample to pre-existing clusters.

We propose to cluster x based on the following simple observation. If x is
wrongly assigned to C1, the uncertainty, or entropy, of C1 will increase more
than the entropy of C2 when x is added to it. Hence, in the general case of
having initial clusters Ck, k = 1, . . . , K, assign x to cluster Ci if

H(Ci + x)−H(Ci) < H(Ck + x)−H(Ck) for k = 1, . . . ,K k 	= i ,
(7.4)

and H(.) denotes the entropy of cluster Ck. We refer to this method as dif-
ferential entropy clustering. The estimation of entropy directly from data can
be implemented with the information potential estimator of Renyi’s quadratic
entropy (Eq. 2.14). Because the entropy is calculated based on points assigned
to the same cluster, we refer to Eq. (7.4) as the within-cluster entropy. From
the proximity matrix D created by all pairwise distances, the similarity ma-
trix with elements {Vij = κ(xi − xj)} is computed and stored, where κ is the
kernel used to estimate the IP. This means that after the similarity matrix has
been obtained, all calculations are matrix manipulations. Obviously this limits
somewhat the size of the dataset that can be clustered with this algorithm.

Another issue regards the kernel size σ. Our experiments have shown that
promising clustering results are obtained provided that σ is chosen such that
the Parzen PDF estimate is relatively accurate. It should be noted that this
algorithm resembles other kernel-based clustering methods, such as spectral
clustering [13] and Mercer kernel-based clustering [162]. In all such methods,
as in ITL, the kernel size is a parameter of great importance defining the scale
of the analysis.

7.4 The Clustering Evaluation Function

Let’s assume that we have two data subgroupings p(x) and q(x). As
briefly mentioned in Chapter 2, the cross-information potential

∫
p(x)q(x)dx

measures dissimilarity (i.e., some form of “distance”) between the two data
subgroups. For quick reference we include below the definition of CIP assuming
a Gaussian kernel,
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V̂ (p, q) =
1

N1N2

N1∑

i=1

N2∑

j=1

Gσ
√

2(xi − xj) (7.5)

with xi ∈ p(x) and xj ∈ q(x); that is, each index is associated with one
subgrouping with N1 and N2 samples, respectively. In fact, the CIP measures
the information potential created by the dataset p(x) in places where samples
of q(x) occur (or vice versa). One conventional way of measuring the distance
between two clusters represented here by the random variables X1 and X2 is
the average distance between pairs of samples, one in each cluster given by

D̄2(X1, X2) =
1

N1N2

∑

xi∈X1

∑

xj∈X2

‖xi − xj‖2. (7.6)

This measure works well when the clusters are well separated and compact,
but it will fail if the clusters are close to each other producing nonlinear
boundaries. A better way of measuring the distance between clusters is to
weight nonlinearly the distance between samples. The issue is to find a rea-
sonable nonlinear weighting function. The information potential concept sug-
gests that the weighting should be a localized symmetric window given by
the kernel (e.g., Gaussian kernel). When the kernel function is selected, the
average distance function becomes

D̄CIP (X1, X2) =
1

N1N2

∑

xi∈X1

∑

xj∈X2

Gσ

(
‖xi − xj‖2

)
(7.7)

which is exactly the CIP.

Relation of Cross Information Potential with Divergences

The concept of dissimilarity is central in clustering, and here CIP is moti-
vated from the point of view of divergence measures. The Cauchy–Schwarz
divergence measure (Chapter 2) is

DCS(p, q)=− ln

⎛

⎝
∫
p(x) • q(x)dx

√∫
p2(x)dx

∫
q2(x)dx

⎞

⎠=− ln

⎛

⎝ V (p, q)
√∫

p2(x)dx
∫
q2(x)dx

⎞

⎠ .

(7.8)
Because the denominator is a product of two numbers that convey global
information about the cluster shape, it serves as a normalization, therefore
Eq (7.8) shows that in fact the numerator controls the behavior of DCS(p, q).
In optimization, the fact that the minimum distance is not zero is irrelevant,
so the clustering evaluation function was defined as the numerator of the
CIP [114]

DCEF (p, q) = − lnV (p, q). (7.9)
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Recall that DCEF has an information-theoretic interpretation as Renyi’s
quadratic cross-entropy. Moreover, DCEF is a “pseudodistance” (because the
identity property is not met), but it can be utilized as a figure of merit for
clustering. Using the definition of the CIP it is easy to show that DCEF is
indeed always greater than zero and it is symmetric.

Writing the CIP as the integral of the product of p(x) and q(x) also
shows that the difference between Eq (7.9) and the Bhattacharyya distance
of Eq. (2.84) is just the square root in the argument. Again note that when
DCEF is used as a cost function in optimization the logarithm is not required
because it is a monotonic function so we can say that the stationary points of
V (p, q) and DCEF(p, q) coincide. When optimizing the ratio in Eq. (7.8), we
can think that the denominator works as a constraint for the optimization of
the numerator, and consequently the optimization of V (p, q) coincides only
with a special case of DCS(p, q).

Figure 7.2 compares DCEF (p, q) experimentally with other conventional
dissimilarity measures assuming that clusters are unimodal. The comparison
is done between two Gaussian distributions, when the mean of one of the
Gaussians is changed. The DCEF, DCS, and Bhattacharyya are calculated
with a kernel size of σ = 0.3, whereas the Chernoff distance of Eq. (2.85) is
calculated with σ = 0.2, and Renyi’s divergence in Eq. (2.73) for α = 2 and
the J divergence of Eq. (1.11) is calculated with σ = 1.1.

The figure shows that although the minimum of DCEF (p, q) is not zero
when the two PDF functions are equal, its behavior as a function of cluster
separation is consistent with the other measures, hence it can be used as a
cost function in optimization. Many more tests are conducted in [114] com-
paring these distance measures, and we conclude that the product measures
(Bhattacharyya and DCEF) are superior to the ratio measures (KL and Renyi)

cef

renyi

J_div

cefnorm

bhat

chernof

Fig. 7.2. Comparison of different measures as a function of cluster separation
(from [114]).
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in experiments with few data samples. We also stress the fact that DCEF (p, q)
is by far the measure that displays the smallest algorithmic complexity when
compared with the others due to the efficient computation of the information
potential using, for instance, the incomplete Cholesky decomposition (batch
mode) or the recursive IP (see Chapters 2 and 4) which are O(N). This makes
it practical for machine learning algorithms.

Membership Function for Multiple Clusters

The previous definition of CIP was given for two clusters, and this section
generalizes the definition for more clusters. To be more explicit and simplify
the evaluations, a membership function is included in Eq. (7.5) which explicitly
shows sample partnership. For the two cluster case, every sample is tagged
with a menbership function m defined as:

If xi belongs to cluster C1, mi = [1, 0]T (7.10)

(mi = [0, 1]T when xi belongs to C2). mi(k) k = 1, 2 denotes the element k of
mi, and notice that now the IP becomes a function of memberships. Redefine
the CIP as

V̂ (m1, . . . ,mN) =
1
2

N∑

i=1

N∑

j=1

(
1−mT

i mj

)
Gσ

√
2(xi − xj). (7.11)

In the case ofK clusters, when xi belongs to cluster C1, mi = [1, 0, . . . , 0]T

(the size of the binary vector is K, so this notation is easily generalized for
multiple clusters. The stepwise nature of the function V̂ (m1, . . . ,mN) creates
problems for gradient-based methods that we have been able to resolve (see
Section 7.5).

Case Study: CEF for Reclustering

The CEF can be used for reclustering the results of a traditional clustering
algorithm as k-means with the goal of further decreasing the CEF. The original
algorithm used greedy search (see [114]) which is slow and does not scale
up, but it is always able to find the best possible solution. Figure 7.3 shows
the results of clustering the three datasets in [114] (triangles, crosses and
circles for each cluster) using the CEF algorithm initialized with three and
two clustering centers, respectively. These datasets were designed to require
nonlinear discriminant functions (MLPs or RBFs) in a supervised paradigm,
but all display a valley between the clusters. We used a kernel size ranging
from 0.005 to 0.02, when the data are normalized between −1 and +1. The
kernel size σ is important to produce the best assignments, but we found
that the clustering is mildly sensitive to the actual value, provided it is in the
correct range, that is, in the range where the PDF estimation is sensitive to
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Fig. 7.3. Clustering with CEF (left to right: σ2 = 0.05, σ2 = 0.021, σ2 = 0.026)
(from [114]).

the structure of the data. We should realize that neither k-means nor Gaussian
mixtures would divide the datasets in the way the CEF did. In the figure, the
number of samples per cluster is 150 points for the left panel, 350 samples for
the middle panel, and the right panel has dissimilar number of 350 and 150
points. In the three class problem there is little overlap among the clusters,
although the problem is hard due to the nonconvex boundaries. The two cases
of two-class problems have substantial overlap and even an uneven number of
points in the last example.

CEF always produces good clustering with smooth convergence although
the best results are obtained with slightly different kernel sizes. Against our
expectation, CEF is not too sensitive to the unequal size of the clusters in
the right most example [114]. The convergence of the algorithm is normally
smooth. In the early portion of the training, the number of samples that
changed cluster was N/8−N/4 and it decreased to about 1 to 2 per iteration
towards the end. Samples that stand alone in the data space (outliers) pose a
problem to the algorithm, because they tend to define their own clusters, and
were aggregated to the closest cluster in post processing.

Comparison with other Supervised and Unsupervised Techniques

We compared the CEF procedure with the well-known and widely used expec-
taction maximization (EM) algorithm, and with a single hidden layer MLP
(ten hidden units). The MLP was trained with backpropagation (early stop-
ping) in a different 1000 sample set obtained from the same data model. The
k-means (not shown) could not separate the data as can be expected, because
its cost function uses minimum variance. The CEF procedure, the EM and
the MLP had perfect performance in the first dataset (the three moons) of
Figure 7.3. The results in the second data set of Figure 7.3 are depicted in
Figure 7.4 (CEF, EM with two clusters and the MLP, respectively) and visu-
ally the CEF achieves a clustering very similar to the MLP. The EM algorithm
can actually capture the data structure better if more than two clusters are
selected, but how to agreggate these clusters remains problematic.
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Fig. 7.4. (a) Clustering with CEF, (b) mixture of Gaussians, and (c) MLP, respec-
tively (from [114]).

Table 7.1. Confusion Tables: Left MLP, Right CEF (From [114])

DATA SET 2 Class 1 Class 2

Class 1 342 8
Class 2 9 341

DATA SET 2 Class 1 Class 2

Class 1 340 10
Class 2 12 338

DATA SET 3 Class 1 Class 2

Class 1 145 5
Class 2 9 341

DATA SET 3 Class 1 Class 2

Class 1 144 6
Class 2 9 341

Table 7.2. Confusion Matrix of Iris Data

Class 1 Class 2 Class 3

Class 1 50 0 0
Class 2 0 42 8
Class 3 0 6 44

Table 7.1 compares the MLP and CEF performance in the two datasets
of Figure 7.3. From the table we can conclude that the CEF initialized with
two clusters performs at the same level as the MLP, although the CEF is
an unsupervised learning method and the MLP uses class label information.
Notice also that the results are achieved with a careful selection of the kernel
size and an exaustive search, which in practice does not scale to a high number
of samples and requires the development of a learning algorithm. Still it shows
the power of the CEF cost to exploit the structure of the clusters.

The second test uses the well-known Iris data, which consist of three dif-
ferent classes with a four-dimensional feature vector, and 50 samples for each
class. We should mention that a trained perceptron makes 19 mistakes, where
a trained single hidden layer MLP makes 3 mistakes [253]. From Table 7.2
we conclude that given the exact number of clusters and the right kernel
size, the CEF clustering is able to refine the clustering produced by K means



7.5 A Gradient Algorithm for Clustering with DCS 273

to the point that it competes with supervised techniques. CEF seems to be
insensitive to the shape of the clusters, but to work properly it still requires a
“valley” among the clusters (e.g., a region of smaller sample density between
the clusters).

7.5 A Gradient Algorithm for Clustering with DCS

Now that the power of the clustering evaluation function was briefly ana-
lyzed, it is important to provide a general-purpose algorithm for clustering
that exploits its good properties and can be applied directly to the data,
not to a pre-clustered configuration. This effort falls in the family of kernel-
based clustering algorithms but avoids direct PDF estimation due to the use
of the information potential estimator. In recent years, many kernel-based
global optimization algorithms have been proposed, for example, support vec-
tor machine inspired algorithms [30], graph-theoretic algorithms [296], and
spectral clustering methods [230]. Because the CEF is the logarithm of the
cross-information potential of ITL, we can either use the Euclidean or the
Cauchy-Schwarz divergences estimated by the information potential directly
from the data. Here we optimize the Cauchy-Schwarz divergence (DCS) of
Eq. (7.8) by means of the Lagrange multiplier formalism using kernel size
annealing, which exhibits a well-known robustness property with regard to
avoiding local optima of the cost function.

We derive a fuzzy clustering approach to optimize DCS under constraints
with regard to the values the membership functions can take. This approach
is basically a constrained gradient descent procedure, and can be interpreted
as a gradient search with built-in variable step sizes for each coordinate direc-
tion in feature space. We solve the optimization problem with respect to the
membership functions, using the Lagrange multiplier formalism. The prob-
lem with most kernel-based methods is that it is not clear how to choose a
specific kernel size for optimal performance. We circumvent this problem to
some degree by incorporating kernel size annealing during the adaptation as
mentioned already in Chapter 3 (Section 3.4) that has the potential to provide
a global optimum provided the annealing rate is “sufficiently slow”. However,
the smallest kernel size still needs to be set from the data.

This algorithm is gradient-based, thus the log can be eliminated in
DCS (p, q) = − logJCS (p, q) and work directly with the argument

JCS(p, q) =
∫
p(x)q(x)dx

√∫
p2(x)dx

∫
q2(x)dx

(7.12)

and the corresponding estimator using the information potential becomes
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ĴCS(p, q) =

1
NpNq

Np∑

i=1

Nq∑

j=1

Gσ
√

2(xi − xj)
√

1
N2
p

Np∑

i=1

Np∑

i′=1

Gσ
√

2(xi − xi′ )
1
N2
q

Nq∑

j=1

Nq∑

j′=1

Gσ
√

2(xj − xj′ )
. (7.13)

For each scalar (for simplicity) data pattern xi, i = 1, . . . , N, N = Np +
Nq, we use the corresponding membership vector mi in the derivation and
Eq. (7.13) can be rewritten as

ĴCS(m1, . . . ,mN ) =

1

2

N∑

i=1

N∑

j=1

(
1 − mT

i mj

)
Gσ

√
2(xi − xj)

√
N∑

i=1

N∑

j=1

mi1mj1Gσ
√

2(xi − xj)
N∑

i=1

N∑

j=1

mi2mj2Gσ
√

2(xi − xj)

.

(7.14)

Here we are assuming a Gaussian kernel and that the data are one-
dimensional, but the form of the expressions is unchanged except that now
the kernel is multidimensional and normally circularly symmetric of s.d.

√
2σ

I. In the case of multiple clusters, Ck, k = 1, . . . , K, Eq. (7.14) becomes

ĴCS(m1, . . . ,mN ) =

1
2

N∑

i=1

N∑

j=1

(
1−mT

i mj

)
Gσ

√
2(xi − xj)

√
K∏

k=1

N∑

i=1

N∑

j=1

mikmjkGσ
√

2(xi − xj)
, (7.15)

where each mi is a binary K-dimensional vector. Only the kth element of any
mi equals one, meaning that the corresponding data pattern xi is assigned to
cluster k.

At this point we note some particularly interesting features of the Cauchy–
Schwarz divergence. Friedman and Tukey [105] defined a measure of cluster
compactness identical to the information potential. This is in contrast to the
Euclidean compactness measure defined by the sum-of-squares error. Sim-
ilarly, the CIP Eq. (7.5) can be considered a measure of the inter cluster
compactness. According to Eq. (7.14), it is clear that in order for JCS to be
small, the inter cluster compactness should be small, and the product of intra
cluster compactness should be large. This means that in order for DCS to be
large, the sum of the entropies of the individual clusters must be small, while
at the same time the cross-entropy between the clusters must be large. This
makes perfect sense. Finally, it should be mentioned that we assume a priori
knowledge about the number K of clusters inherent in the dataset (see [163]
for methods to choose the number of clusters). We conclude that Eq. (7.14)
and (7.15) provide an information-theoretic cost function for clustering, capa-
ble of capturing data structure beyond mere second-order statistics to which
many traditional clustering cost functions are restricted.
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Optimization of DCS by Lagrange Multipliers

For a given dataset consisting of the data patterns, xi, i = 1, . . . , N , each
data pattern is assigned to a crisp membership with respect to the K clus-
ters, represented by the membership vector mi. Our goal is to assign mem-
berships to samples such that ĴCS (m1, . . . ,mN ) is minimized, because this
corresponds to theDCS being maximized. According to [163] this optimization
problem benefits from the method of Lagrange multipliers. Because this is a
technique of differential calculus, ĴCS (m1, . . . ,mN ) is made continuous and
differentiable by fuzzifying the membership vectors. This approach is some-
times called fuzzy clustering [315]. Our first step is to let the elements of mi to
be in [0,1], i = 1, . . . , N , and to define the following constrained optimization
problem:

min
m1,...mN

ĴCS(m1, . . . ,mN ) subject to mT
j 1− 1 = 0, j = 1, . . . , N

(7.16)
where 1 is a K-dimensional vector whose elements are all one. Hence, a data
pattern is allowed to have a certain degree of membership in any cluster, but
the constraint ensures that the sum of the memberships adds up to one. Now
we make a convenient change of variables. Let mi(k) = v2

i (k), k = 1, . . . , K,
and consider the following optimization

min
v1,...vN

ĴCS(v1, . . . ,vN ) subject to vTj v− 1 = 0, j = 1, . . . , N

(7.17)
The constraints for the problem stated in Eq. (7.17) with regard to vj , j =
1, . . . , N , are equivalent to the constraints for the problem stated in Eq. (7.16)
with regard to m j. The optimization problem, Eq. (7.17), amounts to adjust-
ing the vectors vi, i = 1, . . . , N , such that

∂ĴCS

∂vi
=

(
∂ĴTCS

∂mi

∂mi

∂vi

)T

= Γ
∂ĴCS

∂mi
= 0, (7.18)

where Γ = diag(2
√
mi1, . . . , 2

√
miK ) which is very interesting. Notice that if

all of the diagonal elements
√
miK are positive, the direction of the gradients

of ∂ĴCS/∂vi and ∂ĴCS/∂mi will always be the same. Hence, in this case,
these scalars can be thought of as variable step sizes built into the gradient
descent search process, as a consequence of the change of variables. We force
all the elements of the membership vectorsmi to always be positive, by adding
a small positive constant α (e.g. α ∼ 0.01) to all the elements during each
membership update in the iterative algorithm. This approach also has the
effect of introducing a small amount of noise into the algorithm, a strategy
that is well known as an additional means to help avoid local optima.

The computation of all the gradients ∂ĴCS/∂mi, i = 1, . . . , N , is
an O(N2) procedure at each iteration. Let us write Eq. (7.15) as JCS =
U/V where
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(7.19)

with vk =
∑N

i=1
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j=1 mi(k)mj(k)G√
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∂mi
, (7.20)

where ∂vk′/∂mi =
[
0 . . . 2

∑N
j=1mj(k′)G√

2σ(xi − xj), . . . , 0
]T

. Thus, only
the element k′ of this vector is nonzero. The necessary conditions that the
solution of Eq. (7.17) must obey are commonly generated by constructing
a function, L = L(v1, . . . ,vN , λ1, . . . λN ) known as the Lagrange function,
given by;

L = ĴCS (v1, . . . ,vN ) +
N∑

j=1

λj
(
vTj vj − 1

)
(7.21)

where λj , j = 1, . . . , N , are the Lagrange multipliers. The necessary condi-
tions for the extremum of L, which also corresponds to the solution of the
original problem in Eq. (7.16), are given by (note that vTj vj − 1 = 0)

⎧
⎪⎪⎨

⎪⎪⎩

∂L

∂vi
=
∂ĴCS
∂vi

+
N∑

k=1

λk
∂

(
vTk vk − 1

)

∂vi
= 0

∂L

∂λj
= vTj vj − 1 j = 1, . . . , N .

(7.22)

From Eq. (7.22) the vector vi is derived as follows,

∂ĴCS

∂vi
+ 2λivi = 0⇒ v+

i = − 1
2λi

∂ĴCS
∂vi

i = 1, . . . , N (7.23)

where the superscript + denotes the updated vector. We solve for the Lagrange
multipliers, λi by evaluating the constraints given by Eq. (7.23) as follows,

v+T
i v+

i − 1 = 0 ⇒ λi =
1
2

√
∂ĴTCS
∂vi

∂ĴCS
∂vi

. (7.24)

After convergence of the algorithm, or after a predetermined number of iter-
ations, the maximal element of each membership vector mi is set to one, and
the rest to zero.
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We propose to initialize the vectors as vi = |N(0; γ2 I)|, where N denotes
the Gaussian distribution and γ is small (e.g., 0.5). It is clear that the vectors
vi, do not initially obey the constraint of Eq. (7.17). We have observed that
after the first iteration, the constraint is always obeyed. This algorithm is
order-independent: the order in which the data patterns are presented to the
algorithm is of no importance. The computational complexity is O(N2) for
each iteration through the whole dataset. The increase in complexity com-
pared to k-means, which is O(N), is the price we have to pay in order to
capture higher order statistical properties of the data.

Learning by Kernel Annealing

In this chapter we use extensively a synthetic data set built from four Gaussian
anisotropic clusters shown in Figure 7.5 with the labels that created the clus-
ters. The size of the kernel is the only free parameter of this ITL fuzzy al-
gorithm (except for the constant γ, discussed in the previous section) as is
normally the case in kernel methods, but the issue is how to choose a suitable
kernel size for good results.

The learning strategy proposed here consists in allowing the kernel size to
decrease over time as the iterative Lagrange multiplier optimization algorithm
proceeds as explained in Chapters 3, 5 and 6. This means that an upper limit
for the size of the kernel, a lower limit, and an annealing rate need to be
determined for the problem, increasing the number of free parameters to be
set by the experimenter. However, we will show that the resulting algorithm
is not too sensitive to the actual value of each of these parameters, and that

−1 0 1
−1

0

1

Fig. 7.5. Artificially created dataset used in kernel annealing case study. All clusters
consist of 150 patterns, except the cluster in the middle, consisting of 100 patterns
(squares).
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Fig. 7.6. Result of clustering experiment using static kernels of size (a) σ = 0.35
and (b) 0.05, respectively. The result is not satisfying in either case (from [162]).

this learning strategy greatly helps reduce the risk of being trapped in a local
minimum of the performance surface. The end result is that kernel annealing
makes the algorithm much more flexible and robust. However, for datasets
where the density of the clusters is grossly different, it is difficult to tune the
annealing rate.

We illustrate the annealing property of our algorithm in the dataset of
Figure 7.5. First we apply the ITL fuzzy clustering algorithm to this dataset
using a fixed kernel size and K = 4 clusters (Figure 7.6a).

The membership vectors are initialized as proposed, and the constant α is
set to 0.01. In the first experiment the algorithm is run a total of 20 times,
using a kernel of size σ = 0.35. The number of iterations for each trial is fixed
at 300, and the resulting labels are evaluated. In every one of these trials
the algorithm quickly converges to a k-means-like solution, clearly wrong,
from which it only sporadically recovers. Similarly, in the second experiment
(Figure 7.6b), the kernel-size is fixed to σ = 0.05. For such a relatively small
kernel size, the algorithm is not able to unravel the global structure of the
data, but produces clusters where the parts of the dataset which are designated
with the same label, may be located far from each other.

Now we demonstrate the result of annealing the kernel over 300 iterations.
Four experiments were performed, each with a different upper limit for the
kernel size, but all with the same lower limit, which is given by σ = 0.05. In
Figure 7.7a, the size of the kernel versus the number of iterations is plotted
for each annealing scheme. For each of the four experiments, 20 runs are at-
tempted, and the mean percentage of errors plotted, evaluated at every tenth
iteration. With annealing the results are quite remarkable; that is, the algo-
rithm obtains a solution very close to the optimal solution in every single trial,
as shown in Figure 7.7b. No matter how large the initial kernel is, provided it
is annealed sufficiently slowly over iterations, the algorithm always escapes the
k-means local minimum. When the initial kernel size is started at σ = 0.35,
0.25, and 0.15, respectively, the end result is the same (three errors only in
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Fig. 7.7. The clustering result is near optimal in all 300 trials. The annealing rates
are shown in (a), and (b) displays the mean percentage of clustering errors for
each rate.
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Fig. 7.8. Typical example of clustering result using kernel annealing. There are
three errors in the lower-right corner corresponding to 0.55% errors.

the lower right corner of Figure 7.8), in every single trial. This corresponds
to an error rate of 0.55%. For σ = 0.5 as the starting point, the end result is
four errors in 19 of the 20 trials, and three errors in the remaining trial. We
can see that for large kernel sizes, the error percentage decreases slowly until
the kernel size reaches about σ = 0.2.

Finally, Figure 7.9a, b, and c show the underlying Parzen PDF estimates
corresponding to a kernel size of σ = 0.35, 0.2, and 0.05, respectively. The
smoothing effect inherent in the Parzen kernel method is clearly visible for
the PDF estimate corresponding to σ = 0.35, but for σ = 0.2, still no clear
structure in the dataset can be observed. Even so, this kernel size seems to be
a critical value for the annealing process for this dataset. The PDF estimate
for σ = 0.05 clearly shows the structure of the data.
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Fig. 7.9. Different looks at the dataset with different kernel sizes.

How to select a particular annealing scheme is still an open question. How-
ever, our experience recommends selecting the upper limit for the kernelsize
such that the width of the kernel covers at least about 25% of the samples
present in the dataset. For the lower limit, it seems appropriate to select the
size of the kernel such that it covers about 5% of the data. In most cases it
seems sufficient to anneal over about 300 to 400 iterations to guarantee robust
performance over all clustering trials.

Case Studies with DCS Clustering

We now demonstrate that the fuzzy clustering algorithm is able to unravel
the underlying structure of several different datasets, and hence to produce
reasonable clusters. The datasets are real datasets extracted from the UCI
repository, University of California, Irvine [227]. Special attention is paid to
the IRIS dataset, inasmuch as this is a well-known benchmark dataset for
clustering. In all cases the membership vectors were initialized as was proposed
in Section 7.5. The constant γ is set to 0.01, and the comparison with the
traditional k-means algorithm is conducted.

The clustering of the IRIS dataset achieves 9.3% misclassifications, av-
eraged over 20 trials, and for a wide range of kernel sizes and annealing
rates. This relatively unsatisfying result can be attributed to the symmet-
ric kernel used in the DCS algorithm, which does not perform well when the
input dynamic ranges are different. In such cases two simple methods can
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be used to preprocess the data. The first method applies the CS cluster-
ing method with an asymmetric kernel. For a multidimensional asymmetric
Gaussian kernel with a diagonal covariance matrix Σ, each diagonal element
Σi is calculated for feature number i by the Sheater–Jones plug-in method
[295]. Optimality is defined by the mean integrated squared error between the
true PDF and the one-dimensional Parzen estimate. The calculation of the
asymmetric kernel using the IRIS dataset yields the following bandwidths.
Σ1 = 0.32, Σ2 = 0.14, Σ3 = 0.19 and Σ4 = 0.08.

The second method simply normalizes the dynamic ranges of the features
one-by-one, such that they lie within the same interval, in our case [−1, 1].
Thereafter clustering can use a symmetric kernel. The kernel size annealing is
performed such that the mean of these values decreases from approximately
0.5 to approximately 0.05. In the experiment using normalized features, we
anneal the kernel size from Σ = 0.5 to Σ = 0.05. In both cases the annealing
is performed over 300 iterations.

Figure 7.10 shows the mean error percentage over 20 trials (solid curve)
along with the best result (dashed curve), using the asymmetric kernel and the
normalized features, respectively. The results are more satisfying, taking into
consideration that the IRIS dataset is known to be difficult to cluster because
of a nonlinear boundary between two of the three clusters. In the case of using
the asymmetric kernel, the best result yields only 3.33% errors. When normal-
izing the features, the best result yields 4% errors. Our results of clustering the

Fig. 7.10. Clustering the IRIS dataset. The upper panel shows the mean result and
the best result with CS-clustering and an asymmetric kernel. Similarly, in the lower
panel, the result using normalized features is shown. The kernel is annealed from
σ = 0.5 to σ = 0.05 over 300 iterations.
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IRIS dataset compares favorably to most results achieved by recent clustering
methods on the same dataset (see e.g., [269], [114], [30], [296]).

7.6 Mean Shift Algorithms and Renyi’s Entropy

Let us consider a dataset X={x1, . . . , xN}, x ∈ RD with independent and
identically distributed (i.i.d.) samples. Using the nonparametric Parzen
window method, the probability density estimate is given by p̂X,σ(x) =
1/N

∑N
i=1Gσ(x− xi) where Gσ is a Gaussian kernel with bandwidth σ > 0.

The modes of the PDF are solutions of the equation ∇pX,σ(x) = 0 [109].
Substituting the estimator and rearranging the gradient equation into an
iterative fixed-point equation, we obtain

x(n+ 1) = m(x(n)) =
∑N
i=1Gσ(x− xi)xi∑N
i=1Gσ(x − xi)

. (7.25)

The term m(x) − x was coined “mean shift” by Fukunaga and Hostetler in
their landmark paper [109]. Given an initial dataset X(0) = Xo and us-
ing Eq. (7.25), we successively “blur” the dataset Xo to produce datasets
X(1), . . . , X(n). As the new datasets are produced the algorithm forgets the
previous one which gives rise to the blurring process. It was Cheng [55] who
first pointed out this and renamed the fixed point update Eq. (7.25) as the
blurring mean shift .

This successive blurring collapses the data rapidly and hence made the al-
gorithm unstable. In his 1995 paper, which sparked renewed interest in mean
shift, Cheng proposed a modification in which two different datasets would
be maintained, namely X and Xo defined as Xo = {xo1, . . . , xoN }, xo ∈ RD.
The dataset X would be initialized to Xo. At every iteration, a new dataset
X(n + 1) is produced by comparing the present dataset X(n) with Xo.
Throughout this processXo is fixed and kept constant. This stable fixed-point
update is called the mean shift algorithm and is given by

x(n+ 1) = m(x(n)) =
∑No

i=1Gσ(x− xoi)xoi∑No

i=1Gσ(x− xoi)
. (7.26)

To be consistent with the existing mean shift literature, we call these al-
gorithms Gaussian blurring mean shift (GBMS) and Gaussian mean shift
(GMS), respectively, indicating the use of Gaussian kernels specifically.

Recent advancements in Gaussian mean shift has made it increasing pop-
ular in the image processing and vision communities. First, this class of algo-
rithms can be used for clustering and they do not require the specification of
the number of clusters. Second, they are also very fast due to the fixed-point
iteration, and they do not need a step size. In particular, the mean shift vec-
tor of GMS has been shown to always point in the direction of normalized
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density gradient [55]. Points lying in low-density regions have a small value
of p(x), so the normalized gradient at these points has large value. This helps
the samples to quickly move from low density regions towards the modes. On
the other hand, due to the relatively high value of p(x) near the mode, the
steps are highly refined around this region. This adaptive nature of step size
gives GMS a significant advantage over traditional gradient based algorithms
where the step size selection is a well-known problem.

A rigorous proof of stability and convergence of GMS was given by Co-
maniciu and Meer [61] where they proved that the sequence generated by
Eq. (7.26) is a Cauchy sequence that converges due to the monotonic in-
creasing sequence of the PDFs estimated at these points. Furthermore, the
trajectory is always smooth in the sense that the consecutive angles between
mean shift vectors is always between (−π/2, π/2). Carreira-Perpiñán [50]
also showed that GMS is an EM algorithm and thus has a linear convergence
rate (unlike gradient descent which is sublinear). Due to these interesting and
useful properties, GMS has been successfully applied in low level vision tasks
such as image segmentation and discontinuity preserving smoothing [61] as
well as in high level vision tasks such as appearance-based clustering [256] and
real-time tracking of non rigid objects [60]. Carreira-Perpiñán [49] used mean
shift for mode finding in a mixture of Gaussian distributions. The connection
to the Nadarayana-Watson estimator from kernel regression and the robust
M-estimators of location has been thoroughly explored by Comaniciu and
Meer [61]. With just a single parameter to control the scale of analysis, this
simple nonparametric iterative procedure has become particularly attractive
and suitable for a wide range of applications.

Connection to Information and Cross-Information Potentials

There is a profound and interesting connection between mean shift algorithms
and Renyi’s entropy. Consider an original dataset Xo = {xo1, . . . , xoN }, xo ∈
RD with i.i.d samples. This dataset is kept fixed throughout the experiment.
Let us define another dataset X = {x1, . . . , xN}, x ∈ RD with initialization
X = Xo and σX = σXo . With this setup, consider the following cost function.

J(X) = min
X

H2(X) = max
X

logV (X). (7.27)

Notice that X is the variable which evolves over time and hence appears in
the argument of the cost function. Because the log is a monotone function we
can redefine J(X) as

J(X) = max
X

V (X) = max
X

1
N2

N∑

i=1

N∑

i=1

Gσ(xi − xj). (7.28)

This means that the maximization of the information potential provides a
value equal to the maximum interaction among the samples dictated by the
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kernel, that is, when all of them collapse to the same point in space (i.e.,
a delta function). In order to find where the delta function is located, we
have to analyze how the samples move. Differentiating J(X) with respect to
xk={1,2,...,N} ∈ X and equating it to zero gives

F (xk) =
1

2σ2N

N∑

j=1

Gσ(xk − xj)(xj − xk) = 0. (7.29)

F (xk) is the information force acting on particle xk due to all other samples
within the dataset X . Thus we would like to evolve this dataset such that
the samples reach an equilibrium position with net force acting on each sam-
ple equal to zero. Rearranging the above equation gives us the fixed-point
update rule

xk(n+ 1) = m(xk(n)) =

∑N
j=1Gσ(xk − xj)xj

∑N
j=1Gσ(xk − xj)

. (7.30)

Comparing Eq. (7.30) to Eq. (7.25) we see that this is exactly equal to the
GBMS algorithm. Thus GBMS minimizes the overall Renyi’s quadratic en-
tropy of the dataset. The only stationary solution of Eq. (7.30) is a single
point, which is obtained by successive “blurring” of the initial dataset.

We can rectify this deficiency by making a slight modification to the cost
function. Instead of minimizing Renyi’s quadratic entropy we minimize the
cross-entropy or maximize the CIP, V (X, Xo), after dropping the logarithm

J(X) = max
X

V (X,Xo) = max
X

1
NNo

N∑

i=1

No∑

j=1

G(xi − xoj). (7.31)

Now this method indeed places the delta function over the mode of the original
data, as we can realize by differentiating J(X) with respect to xk={1,2,...,N} ∈
X and equating it to zero yields

F (xk) =
1

2σ2N

N∑

j=1

Gσ(xk − xoj)(xoj − xk) = 0. (7.32)

Thus in this scenario, the samples of dataset X move under the influence
of the “cross” information force exerted by samples from dataset Xo. The
fixed-point update is

xk(n+ 1) = m(xk(n)) =

∑N
j=1Gσ(xk − xoj)xoj

∑N
j=1Gσ(xk − xoj)

. (7.33)

Indeed, this is the GMS update equation as shown in Eq. (7.27). By minimiz-
ing the cross information potential, GMS evolves the dataset X and at the
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same time keeps in “memory” the original dataset Xo. Because F (x,Xo) ∝
∇pX0,σ(x), the result is movement of the samples xk={1,2,...,N} ∈ X towards
the modes of the dataset Xo (with kernel size σ) where F (x,Xo) = 0. There-
fore this is a truly clustering algorithm.

Stopping the GMS algorithm to find the modes is very simple. Inasmuch
as samples move in the direction of normalized gradients towards the modes
that are fixed points of Eq. (7.33), the average distance moved by samples
becomes smaller over subsequent iterations. By setting a tolerance (tol) level
on this quantity to a low value we can get the modes as well as stop GMS
from running unnecessarily. Stop when

1
N

N∑

i=1

dn(xi) < tol, dn(xi) = ‖xi(n)− xi(n− 1)‖. (7.34)

Case Study for Mean Shift Algorithms

The dataset in Figure 7.11a consists of a mixture of 16 Gaussians with centers
spread uniformly around a circle of unit radius. Each Gaussian density has a

Fig. 7.11. (a) Ring of 16 Gaussians (b) with different a priori probabilities. The
numbering of clusters is in the anticlockwise direction starting with center (1,0)
(c) GMS modes; (d) GBMS modes. (from [260]).
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spherical covariance of σ2
gI = 0.01 × I. To include a more realistic scenario,

different a priori probabilities were selected which are shown in Figure 7.11b.
Using this mixture model, 1500 i.i.d. data points were generated. We selected
the scale of analysis σ2 = 0.01 such that the estimated modes are very close
to the modes of the Gaussian mixture. Note that because the dataset is a
mixture of 16 Gaussians each with variance σ2

g = 0.01 and spread across the
unit circle, the overall variance of the data is much larger than 0.01.

Figure 7.11c, d, show the mode-finding ability of GMS and GBMS algo-
rithms. To compare with ground truth we also plot 2σg contour lines and
actual centers of the Gaussian mixture. With the tol level in Eq. (7.34) set
to 10−6, the GMS algorithm stops at the 46th iteration giving almost perfect
results. On the other hand, GBMS stops at the 20th iteration already miss-
ing four modes (shown with arrows), and was the best result achievable by
GBMS. In [280] there are many more applications of these algorithms.

These two algorithms have a direct information-theoretic interpretation
with the descriptors we have introduced in Chapter 2, which shows the power
of the tools being developed. Practically, they provide clustering algorithms
that are fast, do not require a selection of the number of clusters and have
neither stepsize nor local minima.

7.7 Graph-Theoretic Clustering with ITL

As discussed, one branch of clustering techniques utilizes graph theory to par-
tition the data. Graph-theoretic clustering has the advantage that parametric
assumptions about data distributions do not have to be made. In addition,
it normally precludes the need to know in advance the number of clusters to
be formed. In graph theoretic clustering, a proximity graph [160] is usually
constructed. In a proximity graph each node corresponds to a data sample,
which is considered a point in feature space. Between each pair of nodes an
edge is formed, and the weight d(i, j) on each edge is a measure of the simi-
larity (proximity) of the nodes i and j. Clustering now becomes the problem
of partitioning the proximity graph.

A common partitioning method consists of creating a hierarchy of thresh-
old subgraphs by eliminating the edges of decreasing weight in the proximity
graph, such as the well-known single-link [306] and complete-link [182] hi-
erarchical clustering algorithms. Other methods form clusters by breaking
inconsistent arcs in the minimum spanning tree [347] of the proximity graph,
or graphs constructed from limited neighborhoods [322].

Recently, a new line of research in clustering has emerged. It is based on
the notion of a graph cut. A set of points, xl, l = 1, . . . , N , in an arbitrary
data space can be represented as a weighted undirected graph Γ. Each node
in the graph corresponds to a data point. The edge formed between a pair
of nodes, say l and l′, is weighted according to the similarity between the
corresponding data points. The edge-weight is denoted kll ′ . The graph cut
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provides a measure of the cost of partitioning a graph Γ into two subgraphs
Γ1 and Γ2, and is defined as

Cut(Γ1,Γ2) =
N1∑

i=1

N2∑

j=1

kij , (7.35)

where the index i = 1, . . . , N1, runs over the N1 nodes of subgraph Γ1 and
the index j = 1, . . . , N2, runs over the N2 nodes of subgraph Γ2. That is,
the cut measures the weight of the edges that have to be removed in order
to create the two subgraphs. Wu and Leahy [336] first proposed minimizing
the cut-cost as a means for clustering and image segmentation. Shi and Malik
[296] pointed out that the cut tends to produce a skewed data partition. It
will in fact be minimized if one node in the graph is isolated in one group,
and all the rest in the other group. They proposed the heuristically motivated
normalized cut (NC), defined as

NC(Γ1,Γ2) =
Cut(Γ1,Γ2)
Assoc(Γ1,Γ)

+
Cut(Γ1,Γ2)
Assoc(Γ2,Γ)

, (7.36)

where Assoc(Γm,Γ) =
∑Nm

i=1

∑N
j=1 kij is the total connection from nodes in

Γm to all nodes in the graph Γ. Shi and Malik optimized the normalized cut
based on the eigenvectors of the Laplacian matrix L = D −K. Here, D is a
diagonal matrix where the mth diagonal entry is given by dm =

∑N
l=1 kml .

The matrix K = [kll ′ ], l = 1, . . . , N and l′ = 1 , . . . , N , is called the affinity
matrix. Several other heuristically motivated cut normalizations have also
been proposed, such as the min-max cut [75], the typical cut [111] and the
BCut [286].

When the optimization is carried out based on the eigendecomposition
(spectrum) of a matrix, the methods are referred to as graph spectral cluster-
ing methods. Graph spectral clustering methods are promising compared to
traditional clustering methods. Other examples of spectral clustering meth-
ods can be found in [230]. The main problems associated with graph spectral
clustering methods are the following.

1. An appropriate affinity measure (edge-weight) must be selected. Often, this
corresponds to selecting the width of an exponential kernel function. There
is no widely accepted procedure to select this parameter, even though it
heavily affects the clustering result.

2. Furthermore, the (N×N) matrixK needs to be stored in memory, and pos-
sibly other matrices too. In addition, a matrix eigendecomposition needs
to be done. The computational complexity of computing an eigenvector
of an (N × N) matrix is on the order of O(N2). Hence, finding all the
eigenvectors scales as O(N3).

3. It is a concern that the various graph spectral cost functions are based on
heuristics, and lack a clear theoretical foundation.
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In this section we see how ITL concepts can be used for graph clustering [186].
We start by showing that it makes sense to use the information forces to cut
graphs and then improve the idea using the concept of information cut [165]
implemented with the fuzzy algorithm already described in Section 7.5.

Information Forces for Graph Clustering

Perhaps the most interesting way to introduce ITL for graph theoretic clus-
tering, is based on directed trees [165]. In a directed tree (Figure 7.12) each
node i initiates a branch pointing to another node j, which is called the pre-
decessor of i.

The root is the only node that does not have a predecessor. Starting from
any node, the branches can be followed to the root. Let us assume that each
node except the root has one and only one predecessor, but each could be
the predecessor of a number of nodes (its “children”), including zero. The
two clusters are separated by a valley, where the density of data points are
low. Nodes near the valley, such as node i, must point away from the valley
in order for the clusters to be formed. In [108] the predecessor j of node i is
searched along the steepest ascent of the probability density function, which
is estimated based on points within a local region centered around i. Node j
is found within the local region, as the node closest to the steepest ascent line
from i. This method is sensitive to the size of the local region, especially in
the important areas near the valley.

In the ITL approach each data point can be considered as an information
particle that experiences a force acting on it, pointing in the direction of
a cluster. Therefore the ITL approach can be used to create directed trees

Fig. 7.12. Example of two directed trees, each corresponding to a cluster (from
[165]).
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Fig. 7.13. (a), (b) Example of a dataset and the IFs acting on each particle for
two different values of σ. (from [165]).

according to the direction of the information forces. The information forces
(IF) contain global information about all data points, governed by the width σ
of the kernel (e.g., Gaussian) function, so they can also be used when selecting
the predecessor node j. The algorithm searches for j in a neighborhood of i,
where the size of the neighborhood is specified by σ, such that j is closest to
the direction of the information force acting on i.

Figure 7.13 shows an example of the IF for the dataset. In Figure 7.13a
the IF acting on each data point is indicated by an arrow. The arrows only
convey information about the directions of the forces, not the magnitude.
Before calculating the IFs the dataset was normalized feature by feature to
lie in a range [−1, 1]. Figures 7.13 shows the IFs for two values of σ. For
σ = 0.03, it can be seen that nearly all the IFs point inward to one of the
clusters. A few outliers mostly interact with each other, because the kernel
size is small. For σ = 0.09, all the forces are pointing inward, however, the
corresponding PDF estimate (not shown, see [165]) is still a rather crude and
noisy estimate, indicating that if our concern is solely density estimation, σ
is probably too low. Notice also that although there is a large difference in
kernel sizes, the differences in the IFs are minor; that is, most of the forces
point to the same clusters that will yield very similar clustering results.

Creating Directed Trees

The procedure for creating directed trees is very intuitive, once the IFs have
been calculated. Each data point xi is examined, one at a time, where xi

corresponds to node i in the final tree. For node i we determine whether it
has a predecessor j, or whether it is a root, based on the following. Node j
is defined as the predecessor of node i if it satisfies the condition that node j
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Fig. 7.14. Predecessor selection with IF.

lies closest to the direction of the force Fi acting on i under the following
constraints;

1. The distance ‖xi − xj‖ ≤ 3σ.
2. Fi(xi − xj) ≥ 0.
3. Node j can not be one of i’s children.

If there exists no node satisfying the above constraints, then node i is
defined to be a root, not pointing to another node. The only free parameter,
σ is the same as the one already used for the IFs. The end result of this
procedure is a set of directed trees, each corresponding to a cluster.

Constraint 1 is necessary in order to avoid linking together trees that are
in fact part of different clusters. Consider Figure 7.14. The tiny arrows show
how nodes have been connected up to a certain iteration.

The nodes with larger arrows have not yet been examined, and the arrows
show the direction of the IF acting on each one of them. Let us examine
node i. Of all the nodes pointing inward to the cluster i belongs to, node j is
closest to the direction of Fi. However, node k, actually belonging to a different
cluster, is even closer to the direction of Fi. To avoid k being selected as the
predecessor of i, we must restrict our search to a neighborhood of node i. We
find that simply defining the neighborhood of i to be given by a hypersphere
of radius 3σ centered at i, is reasonable.

Our choice of neighborhood is reasonable based on the inherent properties
of kernel PDF estimation. In order for the PDF estimate to be relatively
accurate, the Gaussian kernel must be chosen such that its effective width
is sufficiently large, but not too large, otherwise the estimate would be too
smooth. The effective width of a Gaussian kernel is given by 3σ, because it
concentrates 98% of its power.
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Constraint 2 is crucial, in as much as it ensures that we really use the
information provided by the direction of the IFs. Figure 7.14 also illustrates
this point. Node m, or any of the other nodes to the right of the dashed line, is
not allowed to be selected as the predecessor of node i. The reason for this is
obvious; the whole idea of our clustering technique is to use the IFs to create
directed trees because the IFs point toward clusters, and not away from them.

Constraint 3 ensures that a node does not become one of its own children,
contradicting the idea of a directed tree. For instance, in Figure 7.14, node
l cannot be a predecessor of node i, even though it is located within the
neighborhood of i.

Case Study for Graph Clustering

Clustering experiments are presented herein, both on an artificially created
dataset, and two real datasets. In all experiments the data have been normal-
ized feature-by-feature to have a range [−1, 1]. We create the directed trees,
and for each tree assign the same labels to its members. Outliers in the dataset
tend to create trees with only one or a few members. Clusters with five mem-
bers or less are kept in an outlier set, and are not assigned a label. Labeling
these points can be done in a postclustering operation, for example, by simple
nearest-neighbor classification.

First, we revisit the dataset considered in Figure 7.5 and the clustering
result of the IF directed tree method produces identical clustering to the fuzzy
clustering algorithm presented in Section 7.5, for a kernel σ = 0.07. The result
is very satisfying in as much as there is no need for kernel annealing during
the training. Only three patterns have been assigned to the wrong cluster,
and there is only one outlier. Furthermore, the outlier would be assigned to
the correct cluster after a nearest-neighbor classification. However, we have
experimentally verified that even though the IFs point inward to clusters for
at least 0.03 < σ < 0.09, the overall clustering procedure is not uniformly
good for this range of values, so the actual value of σ matters.

Next, the method is tested on the Wine dataset, extracted from the UCI
repository database. This dataset consists of 178 instances in a 13-dimensional
feature space, where the features are found by chemical analysis of three dif-
ferent types of wines. This dataset is included in the analysis, because it shows
that this clustering method is capable of performing well in a highdimensional
feature space. For 0.29 < σ < 0.32 we obtain satisfactory clustering results.
The confusion matrix using σ = 0.32 is shown in Table 7.3, where the num-
bers in parentheses indicate the number of instances actually belonging to
each class. From the ten patterns assigned to the wrong class, they all belong
to C2, but some are assigned to C1, and some to C3. There are a total of
13 outliers.

We end this analysis with the well-known IRIS dataset, also extracted
from the UCI repository database. In this case this clustering method is more
sensitive to the kernel size than in the previous experiment. The range of σ for



292 7 Clustering with ITL Principles

Table 7.3. Confusion Matrix for Wine Data σ = 0.32

Result

C1 C2 C3

C1 (59) 59 0 0
True C2 (71) 4 50 6

C3 (48) 0 0 46

Table 7.4. Confusion Matrix for Iris Data, σ = 0.095

Result

C1 C2 C3

C1 (50) 49 0 0
True C2 (50) 0 42 3

C3 (50) 0 5 44

which we obtain reasonable results is narrow. However, choosing σ = 0.095, we
obtain the confusion matrix shown in Table 7.4. In this case eight patterns are
assigned to the wrong class. The incorrectly labeled patterns clearly belong
to the two clusters that overlap somewhat.

The advantage of the IF for graph clustering is its ability to discover
clusters of irregular shape, without having to know the true number of clusters
in advance. A further advantage is the simplicity of the approach. However,
the sensitivity to σ is a shortcoming, and it is due to the local emphasis of
this algorithm.

7.8 Information Cut for Clustering

From the creation of the directed trees with ITL, it is apparent that the
concepts of information potential fields and forces can be linked to graph the-
ory. It turns out that the gradient descent procedure outlined in Section 7.5
to clustering based on the DCS can also be framed as an automated way
to partion a graph, yielding an alternative to spectral clustering that we
called the information cut. The information cut draws its optimality from
the information-theoretic Cauchy-Schwarz divergence measure between prob-
ability density functions. The goal is to assign cluster memberships to the
data points such that the information cut is minimized. Next we link the con-
cepts of ITL to graphs such that the algorithm explained in Section 7.5 can
be applied.

As we have seen in Chapter 2, the convolution theorem for Gaussian func-
tions, states that

∫
Gσ(x, xl)Gσ(x, xl′ )dx = Gσ

√
2(xl, xl′) = κll′ , (7.37)
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where Gσ is the Gaussian function. Hence the affinity matrix is built from the
information potential between sample pairs. Thus, when the actual densities
are replaced in the cross-information potential (which is the argument of the
DCS) we obtain

∫
p̂1(x)p̂2(x)dx =

1
N1N2

N1∑

i=1

N2∑

j=1

κij. (7.38)

Comparing this expression with Eq. (7.35) we conclude that it is a graph cut.
Hence, the samples corresponding to p1(x) are related to the nodes of graph
Γ1, and the samples corresponding to p2(x) with the nodes of graph Γ2. An
exactly similar calculation is done for the two quantities in the denominator
of the CS distance and the new graph partitioning cost function which we call
the information cut (IC ) is defined as

IC(Γ1,Γ2) =

N1∑

i=1

N2∑

j=1

κij

√
N1∑

i=1

N1∑

i′=1

κii′
N2∑

j=1

N2∑

j′=1

κii′

. (7.39)

In graph theory, a quantity known as the volume of a graph is given by the
sum of all the edge-weights in the graph; that is, Vol(Γ1) =

∑N1
i=1

∑N1
i′=1 kii ′ .

Therefore, the information cut may also be written as

IC(Γ1,Γ2) =
Cut(Γ1,Γ2)√
V ol(Γ1)V ol(Γ2)

. (7.40)

In order for the information cut to take a small value, there is a trade-off
between a small cut value, and a large value for the product of the volumes.
Hence, this derivation has introduced a theoretically well-defined normaliza-
tion that will prevent the information cut from obtaining a minimum when
one node is isolated from the rest. In the case of partitioning a graph into
more than two subgraphs (i.e., subgraphs Γc, c = 1, . . . , C), we define the
following multiway cut

IC(Γ1, . . . .,ΓC) =
Cut(Γ1, . . . ,ΓC)
√∏C

c=1 V ol(ΓC)
, (7.41)

where Cut(Γ1, . . . ,ΓC) is the sum of all the edge weights that need to be
removed in order to create C subgraphs.

Information Cut with Gradient Search

The issue now is to find a way to optimize the information cut cost function
in Eq. (7.41). The gradient method described in Section 7.5 can be utilized
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here without any modification. The big advantage of this alternative is that
there is no need to precompute or store the full affinity matrix.

We initialize the membership vectors randomly according to a uniform
distribution. Better initialization schemes may be derived, although in our
experiments, this random initialization yields good results. Kernel size an-
nealing should also be part of the procedure. We show experimentally that
in our algorithm the convergence problem can to a certain degree be reme-
died, by allowing the size of the kernel to be annealed over an interval of
values around the optimal value. As opposed to most graph-based clustering
algorithms, the annealing procedure therefore has the effect that the affinity
measure will not be fixed, but will start out large, and decrease towards a
small value.

The computation of all the gradients ∂IC/∂mi, i = 1, . . . , N , is done
according to Eqs. (7.19) and (7.20). Because it is important to reduce the com-
plexity of the algorithm,

∑M
m=1mmkim in Eq. (7.20) is estimated by stochas-

tically sampling the membership space and utilizing M randomly selected
membership vectors. Hence, the overall complexity of the algorithm reduces
to O(MN ) for each iteration. We show that we obtain very good clustering
results, even for very small M (e.g. M = 0.2N). Alternatively, the incomplete
Cholesky decomposition can be used to reduce the calculation and still use a
matrix formulation for the algorithm.

Case Studies with the Information Cut

This section reports some clustering experiments using the proposed infor-
mation cut clustering method [165]. The number of stochastically selected
membership vectors for gradient computation is determined by M = 0.2N .
We compare with the normalized cut algorithm [296], which is considered by
many authors to be a state-of-the-art graph-based clustering method. In [296],
the normalized cut scale parameter was recommended to be on the order of
10–20% of the total range of the Euclidean distances between the feature
vectors. We use 15% in our experiments.

We manually select the number of clusters to be discovered. This is of
course a shortcoming compared to a fully automatic clustering procedure,
but it is commonly the case in most graph-based clustering algorithms. We
also normalize the variance in each feature vector dimension to one in all
experiments (for both algorithms) to avoid problems in case the data scales
are significantly different for each feature (both methods assume a spherical
affinity measure).

The dataset of Figure 7.5 is used in this example. We provide the number
of clusters, C = 4, as an input parameter to both algorithms. The Parzen win-
dow size used in the information cut algorithm is determined to be σ = 0.12
by AMISE (Eq. (2.56)). This means that the effective kernel size used to cal-
culate affinities between data points (nodes) is equal to σ = 0.17. Figure 7.15a
shows a typical result obtained by the information cut algorithm. By visual
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Fig. 7.15. Typical (70% of the trials) information cut clustering result shown in (a).
Typical normalized cut clustering result shown in (b) (from [165]).

inspection, it clearly makes sense, meaning that the cluster structure under-
lying the dataset seems to have been discovered. Figure 7.15b shows a typical
result obtained by the normalized cut algorithm. It is significantly different
from the results obtained with the information cut algorithm, and seems to
fail to discover the cluster structure. For this particular dataset, the scale pa-
rameter used in the normalized cut algorithm is determined to be σNC = 0.18.
This means that the edge-weights (affinities) between nodes are roughly the
same for both methods. Hence, the significantly different clustering results
observed must be a consequence of (1) different clustering cost functions, (2)
different optimization techniques, or both.

The next experiment illustrates the effect of the Parzen window size on
the clustering results, still using the dataset shown in Figure 7.5. Figure 7.16
shows the error percentage using the information cut algorithm for a range
of kernel sizes. The plot is created by running the algorithm three times for
each kernel size, and then picking the best of these trials based on the value of
the information cut (operating in fixed kernel mode). For σ < 0.05, the error
percentage is very high. In the range 0.11 < σ < 0.16 the error percentage is
very low, before it rises again. Note that the kernel size determined by AMISE
is in the middle of this range. In the range σ > 0.25, the error percentage is
very high again. On average, the algorithm stops after about 25 iterations.

The annealing procedure comes with a positive side-effect when it comes
to coping with clusters of significantly different data scales. In Figure 7.17a,
we show the result obtained by the normalized cut algorithm on a data set
consisting of three clusters of different data scales. The normalized cut algo-
rithm uses a fixed kernel size to determine node affinities, and the clustering
result clearly suffers from this property. In fact, the normalized cut algorithm
did not obtain satisfying results, even when manually tuning the kernel size.
The result obtained by the information cut algorithm in annealing mode is
shown in Figure. 7.17b. All three clusters have been revealed, even though
they have significantly different scales, and are separated by highly nonlinear
cluster boundaries.
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Fig. 7.16. Clustering result (error percentage compared to the generated model)
obtained by the information cut algorithm over a range of kernel sizes. The “optimal”
kernel size, σ = 0.12 by Eq. (7.27), lies in the middle of the range corresponding to
a low error percentage (from [165]).

Fig. 7.17. Comparison between the normalized cut (a) and the information cut (b)
(from [165]).

Pendigits Dataset: This dataset was created for pen-based handwritten digit
recognition (16 dimensions), and is extracted from the UCI repository. All
attributes are integers in the range [0, 100]. From the test data, we extract
the data vectors corresponding to the digits 0, 1 and 2. These classes consist
of 363, 364, and 364 data patterns, respectively. We specify C = 3 as an input
parameter to the algorithm.

The clustering results are compared to the known data labels (but
unknown to the algorithm). The normalized cut algorithm obtains 73.4%
correct clustering on this dataset. The information cut kernel size is
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Table 7.5. Effect of M in Performance (From [165])

M 0.1N 0.2N 0.3N 0.4N 0.5N 0.6N 0.7N 0.8N 0.9N N

% 83.5 84.4 84.7 85.3 84.1 84.5 83.8 84.7 85.3 85

automatically determined to be σ = 0.63. Operating in annealing mode,
using M = 0.2N samples for stochastic approximation, the information cut
algorithm obtains 84.4% correct clustering, a clear improvement compared
to the normalized cut method. In this data set, we investigate more closely
the effect of the stochastic sampling approach. Table 7.5 shows the informa-
tion cut result (best out of five trials) obtained for a range of M , and we
conclude that the stochastic sampling approach is very effective in terms of
computational complexity, at virtually no performance cost.

Wine DataSet: The information cut algorithm was also tested in the Wine
dataset, extracted from the UCI repository. The normalized cut algorithm
performs very well on this dataset, obtaining 96.6% correct clustering. The
information cut algorithm performs equally well or better, obtaining 97.2%
correct clustering, operating in annealing mode, with M = 0.2N . Moreover,
we have argued that our optimization approach has benefits with respect to
computational complexity and memory requirements. We have shown that
our strategy for dealing with the problem of convergence to a local minimum,
namely kernel annealing, may also have the positive side-effect of handling
better different cluster data scales.

7.9 Conclusion

This chapter dealt with clustering using information-theoretic criteria.
Clustering is a huge field but we concentrated on the subset of methods
that perform clustering based on a dissimilarity cost function. The role of
information-theoretic cost functions in clustering was developed from first
principles and how it bridges very different classes of algorithms, such as the
mean shift, graph cuts, and spectral clustering. These relationships are only
possible due to the abstract level and the usefulness of the Cauchy-Schwarz
divergence measure that can be directly estimated from data using kernels.
We also would like to emphasize how the analogy to information forces is able
to unravel how the algorithms cut the data, which is particularly clear in the
mean shift and in the graph cut methods.

For most of these algorithms what is needed is just the cross-information
potential because in optimization monotonic functions (the log) and scaling
factors do not affect the location of the extreme of the cost function, which
simplifies the algorithms. Once a reasonable cost function is selected, a search
algorithm is still needed to search for the extreme. Here we fuzzify the class
membership to be able to derive a gradient search method for clustering.
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The algorithm is very efficient computationally, but it is sensitive to local
minima. We demonstrated on several occasions the positive effect of using
kernel annealing during the adaptation, which is able to avoid local minima
with the proper annealing rate. However, this brings three extra parameters
to clustering. Use of the fast Gauss transform will speed up the clustering
algorithms. All the algorithms presented have performances comparable to or
better than the corresponding ones available in the literature.

More important several different clustering methodologies have been cou-
pled: mean shift was shown to be related to entropy minimization with a
penalty given by the Cauchy-Schwarz divergence; graph-based clustering was
coupled to non-parametric density estimation in terms of Parzen windowing.
Consequently, it was observed that the Parzen window width directly deter-
mines the affinity measure used to calculate edge-weights in the graph. It is
well known that it is crucial for any graph-based method to determine this
parameter appropriately, but few data-driven methods exist. We used the
simplest approach for data-driven kernel size selection, namely Silverman’s
rule. However, more advanced techniques can easily be incorporated. We also
proposed a novel information cut for graph clustering that seems to work
better than the conventional method used in the field. Moreover, we show
that effectively these methods are intrinsically related to spectral clustering,
having some practical advantages but also some disadvantages (requiring the
selection of the number of clusters before hand). We believe that much more
interesting work can be done using the ITL concepts for clustering, and re-
ally show the fundamental role that information-theoretic methods have for
clustering.
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Self-Organizing ITL Principles
for Unsupervised Learning

Sudhir Rao, Deniz Erdogmus, Dongxin Xu, and Kenneth Hild II

8.1 Introduction

Chapter 1 presented a synopsis of information theory to understand its
foundations and how it affected the field of communication systems. In a
nutshell, mutual information characterizes the fundamental compromise of
maximum rate for error-free information transmission (the channel capac-
ity theorem) as well as the minimal information that needs to be sent for a
given distortion (the rate distortion theorem). In essence given the statistical
knowledge of the data and these theorems the optimal communication system
emerges, or self-organizes from the data.

One of the fundamental goals of learning is exactly to learn the statistics
from the data, and to self-organize or adapt in such a way as to guarantee
optimality in some sense. We saw in Chapter 7 how ITL could be successfully
used for clustering, but it is not straightforward to extend the same principles
for more general forms of self-organization. Indeed, unsupervised learning is
normally thought of as a strictly data-driven learning process exploiting lo-
cal structure and similarity within the data, such as the k-means and ITL
clustering algorithms.

How biological organisms interact with their environments has naturally
been a source of inspiration, because they are a living proof that it is possible
to extract useful information from a time-varying and unknown environment
for goal-driven behavior using the external data and the genetic code, that is,
mostly in an unsupervised fashion. In this sense biological organisms are the
ultimate learning machines, but the principles at play are far from being well
understood, and naturally have attracted lots of attention from the learning
community.

Information-theoretic descriptors quantify the essence of the communi-
cation process assuming full statistical knowledge of the data, but the real
question is how to manipulate them to create models of the world when the
statistics of the task are unknwon. What are the optimal strategies for self-
organization using information theoretic principles? Are the channel capacity
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and the rate distortion theorems still the holy grail of optimal design for
learning, or are there any other information principles yet to be discovered?
These are some of the interesting questions that are only partially answered,
and that are addressed in this chapter.

Information theory has solid algorithmic procedures to manipulate en-
tropy and mutual information using global structure, namely the MaxEnt
and the MinXEnt principles that were proposed in the physics and statis-
tics literatures [157, 161]. These principles were developed to create distri-
butions that would match the explicit cost constraints given the data, and
they are the starting point for the chapter. However, there are other unsu-
pervised algorithms that mimic supervised learning in the sense that they re-
quire an adaptive system with adaptable parameters optimized from a global
cost function, which have been called energy-based algorithms [196]. Again
here information-theoretic costs play a significant role and they give rise to
what has been called self-organized information-theoretic principles [152]. We
present the case of Linsker’s information maximization [199], Becker and Hin-
ton Imax [24], and Barlow’s principle of entropy minimization [24] that are
a direct application of information theory ideas derived for communications,
dressed now as cost function for adaptation. But the learning problem is richer
than optimizing a communication channel, therefore we can expect that other
ITL-based principles are waiting to be discovered. For instance, when Bell
and Sejnowski coupled ITL with nonlinear adaptive systems, a very powerful
new way of performing independent component analysis surfaced [316].

As mentioned in Section 1.6, we further believe that the true advantage
of self-organizing information theoretic principles when compared to other
local unsupervised learning rules is to focus on the optimality of the cost
function. We already saw how productive this line of reasoning can be for
entropic and divergence cost functions, with the concepts of information po-
tential and information forces that link the global cost, no matter if supervised
or unsupervised, to the rules of the interactions everywhere in the space. In
an analogy with physics, each physical law describes interaction behaviors
that lead to quantifiable optimality. However, they can be utilized in a wide
range of scenarios, and foster very different behavior depending upon the
embodiment.

To illustrate this more abstract view of unsupervised learning two other
self-organizing principles are discussed: Tishby et al, information bottleneck
(IB) method [316] that for the first time brings explicit purpose into the op-
timization framework; and a related principle recently proposed by our group
called the principle of relevant information (PRI) [259] which brings a coher-
ent view to unsupervised learning algorithms that were originally developed
specifically for different application (e.g., clustering, principal curves, or vec-
tor quantization). We end the chapter with examples of how Renyi’s entropy
and the information potential can be applied in practice to implement all
the self-organizing principles, without having to constrain the data PDF nor
the linearity of the adaptive system as done in the past to obtain analytical
solutions.
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8.2 Entropy and Cross-Entropy Optimization

In many experimental conditions, the collected data are the only source of
knowledge about the problem, which in a Bayesian framework, raises the ques-
tion of the prior probability selection. Any function that obeys the definition
of a PDF can be a possible prior i.e.,

∑N
i=1 pi = 1, pi ≥ 0. Laplace formulated

a principle now called the principle of insufficient reason that basically stated
“. . . in the solution of a problem the researcher should only use what is known
about the problem and nothing else.” Laplace argued that when there is no
reason to believe that a stochastic event will occur preferentially compared to
other outcomes, the most reasonable solution is a uniform distribution for the
probabilities of occurrences.

Information theory (IT) provides a powerful inference methodology to
describe general properties of arbitrary systems on the basis of scarce mea-
surements, hence its appeal to machine learning. Jaynes proposed in 1958 the
maximum entropy principle (MaxEnt) which basically states that the exper-
imenter should choose a distribution that maximizes the entropy of the data
given the constraints (in fact agreeing with Laplace) [161]. Inasmuch as en-
tropy measures uncertainty in the data, maximizing entropy should add the
least of our a priori knowledge of the problem into the solution, and let the
data “speak for themselves.”

Moments of the distribution are viable alternatives to implement the
constraints or in general we can constrain the expected values of functions
gi(X),

∑N
i=1 pigk(xi) = ak, k = 1, 2, . . . ,m where the random variable X

take values x1, . . . , xN with corresponding probabilities p1, . . . , pN . In this
way a set of m + 1 constraints on the mass function are created (the extra
constraint is that the sum of pi must be one) but if m + 1 < N then there
will be many possible solutions. A much better strategy is to use the method
of Lagrange multipliers and find the probability mass function (the pi) that
obey all the available m+1 constraints when entropy is maximized. Therefore
one should

max
p

H = −
N∑

i=1

pi ln pi, subject to
N∑

i=1

pigk(xi) = ak,

k = 1, 2, ...,m,
N∑

i=1

pi = 1 (8.1)

for 1 ≥ pi ≥ 0, i = 1, . . . , N . The Lagrangian is given by

L = −
N∑

i=1

pi ln pi−(λ0−1)

(
N∑

i=1

pi − 1

)

−
m∑

k=1

λk

(
N∑

i=1

pigk(xi)− ak
)

, (8.2)
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Now taking the derivative of L with respect to the unknown pi yields

∂L

∂pi
= 0 → − ln pi − λ0 −

m∑

k=1

λkgk(xi) = 0,

which shows that the maximum entropy distribution given any possible con-
straints involving linear combinations of pi is always an exponential

pi = exp(−λ0 − λ1g1(xi)− · · · − λmgm(xi)) (8.3)

The multipliers can be determined by substituting back pi, yielding

ak =

N∑

i=1

gk(xi) exp

(

−
m∑

j=1

λjgj(xi)

)

N∑

i=1

exp

(

−
m∑

j=1

λjgj(xi)

) k = 1, 2, ..., m (8.4)

The Lagrange multipliers are the partial derivatives of entropy at its maximum
value w.r.t. the ak, and the maximum value is Hmax = λ0 +

∑m
i=1 λiai.

This result can also be applied to the continuous variable case only with
trivial modifications (changing summations to integrals). The maximum en-
tropy distribution for the range [−∞,∞] when the mean and the variance
are constrained is the Gaussian, whereas it becomes the uniform PMF for
finite range.

Jaynes showed that the three most common distributions in statistical
mechanics can be obtained using the MaxEnt principle applied to differ-
ent physical constraints on the energy of particles: Maxwell–Boltzmann dis-
tributions when the expected energy of the particles is constrained; the
Bose–Einstein distribution when the number of particles in the system is also
known (besides the mean energy); and the Fermi–Dirac distribution when the
energy states can contain either one or zero particles. In signal processing
the Burg spectral estimator was derived using the MaxEnt principle, and it
has also been applied in independent component analysis. Above all, MaxEnt
is a tool to optimize entropy and is therefore very relevant for information
theoretic learning.

Minimum Cross-Entropy Optimization

Another information optimization procedure is based on the concept of
Kullback–Leibler (KL) divergence. The KL divergence is defined for two PMFs
p and q as DKL(p||q) =

∑N
i=1 pi ln(pi/qi). The divergence can be used much

like the entropy to create a different optimization principle, but now we have
two PMFs so one can set the optimization problem in several ways. General-
izing the MaxEnt principle it makes sense to select the distribution q for the
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comparison (representing some a priori knowledge about the solution) and
finding a distribution p that satisfies the data constraints and is the closest
to q. We call this the MinKL principle. It turns out that there is an interesting
relationship between MaxEnt and MinKL: The solution of MaxEnt coincides
(for discrete random variables) to the solution of MinKL when the given dis-
tribution is the uniform and the constraints remain the same. The MinKL
problem is formulated as follows,

min
p
DKL(p||q), subject to

N∑

i=1

pigk(xi) = ak k = 1, 2..., m
N∑

i=1

pi = 1

(8.5)

and the solution becomes (the derivation is exactly the same as MaxEnt)

pi = qi exp(−λ0 − λ1g1(xi)− · · · − λmgm(xi))

which coincides with the MaxEnt except for the multiplication with qi. Like-
wise we can obtain the constraints and Lagrange multipliers in a very similar
fashion.

However, in the literature, the optimization principle based on the KL
divergence is also called minimization of cross-entropy or MinxEnt. However
with Eq. (8.5) the final distribution is not the cross-entropy between p and q.
To obey the definition of cross-entropy, the problem must start by selecting the
distribution p and finding the distribution q that satisfies the contraints. Obvi-
ously, the solutions are different. The MinxEnt problem can be formulated as

min
q
DKL(p||q), subject to

N∑

i=1

qigk(xi) = ak k = 1, 2..., m
N∑

i=1

qi = 1

(8.6)

and the solution becomes

q∗ = argmin
q

N∑

i=1

pi ln
pi
qi

=arg min
q

−
N∑

i=1

pi ln qi

L = −
N∑

i=1

pi ln qi − λ0

(
N∑

i=1

qi − 1

)

−
m∑

k=1

λk

(
N∑

i=1

qigk(xi)− ak
)

dL

dqi
= −pi

qi
− λ0 −

m∑

k=1

λkgk(xi) = 0

qi =
pi(

−λ0 −
m∑

k=1

λkgk(xi)
)

The concavity of the logarithm endows Shannon entropy of many impor-
tant mathematical properties that have been crucial to define the generalized
forms of entropy reviewed above, and that yield some of its desirable features.
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For information-theoretic studies, these two mathematical properties are very
useful:

• When the stationary value of Shannon entropy subject to linear constraints
is found, the global maximum is always obtained (no need for further
checks).

• Maximizing Shannon entropy subject to linear constraints using the
Lagrange method always yields quantities that are greater than zero.
This is particular useful because in constrained optimization imposing the
nonnegativity constraints is in general difficult, and here it is unnecessary.

8.3 The Information Maximization Principle

Ralph Linsker in a series of papers [199] enunciated a very general learning
principle in distributed networks called the information maximization princi-
ple (InfoMax). He stated that to self-organize distributed systems with multi-
ple layers (deep networks) the early processing layers should transfer as much
information as possible about the input to the subsequent layers. Formally,
Linsker proposed maximizing the mutual information between the output and
the signal portion of the input (assumed corrupted by noise). To be biologi-
cally plausible, the optimization should be expressed by local interaction rules,
otherwise the learning complexity would be factorial and would therefore be
unrealistic in neural systems. The achievement of Linsker’s work is that he
was able to show that for linear networks and multivariate Gaussian signal
and noise distributions, the global mutual information cost function for a dis-
tributed network can be implemented locally by the simple Hebbian learning
rule, which is an unexpected result.

Linsker’s InfoMax Principle

The problem setting is the following. Let us assume that the input to a lin-
ear feedforward network possibly followed by a nonlinear element that does
not affect the training (Widrow’s Adaline), is a random variable X = {xi},
i = 1, . . . , N , which is composed either by the signal portion X = S alone or
by S disturbed with noise N , that is, X = S+N both drawn from zero-mean
multivariate Gaussian distributions. The network’s output is z = y+ ν where
y = wTx and the observation noise ν is assumed zero-mean Gaussian and
independent of Y . See Figure 8.1.

The information that Z conveys about S is calculated by I(Z, S) =
H(Z) −H(Z|S). For Gaussian distributed signal and noise, these quantities
are easily computed analytically because Shannon’s entropy for the multivari-
ate Gaussian is (apart from constants) H(X) = 1/2 ln(detΣ) where Σ is the
covariance of X . Therefore, for our case

I(Z, S) = 1/2 ln(detΣS)− 1/2 ln(detΣN ), (8.7)
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Fig. 8.1. Linsker’s lateral connection network.

where

ΣS = wqSwT + r

ΣN = wqNwT + r

qS = E
[
SST

]
+ E

[
NNT

]

qN = E
[
NNT

]

r = E
[
vvT

]

The subscripts S and N refer to the fact that the entropy of the output
H(Z) depends on S + N and H(Z|S) depend on N only, but they have the
same basic form due to the Gaussian assumption on S and N . In order to
derive the learning rule to adapt the network weights, assume that the noise
ν is independent of the system weights w, so the gradient has the same form
for both terms (see Eq. (8.7))

∂H

∂wij
= (Σ−1wq)ij . (8.8)

This gradient can be interpreted as an Hebbian update because of the follow-
ing reasoning. In a linear network such as the one assumed here, wij would
be the product of the output yi times xj ;

Δwij = η
∂H

∂wij
= ηE[YiXj ]. (8.9)
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Comparing Eq. (8.9) with Eq. (8.8) qj yields xj directly but yi is equivalent
to the multiplication of Σ−1 by the corresponding weight vector wij , which
implies in principle nonlocal learning. However, Σ−1w can still be com-
puted locally by enhancing the Adaline output layer with lateral connec-
tions among the output units (Fig. 8.1) as long as the lateral weights are
F = I−αΣ [9]. These weights stabilize over time and produce outputs Yi(∞)
when the learning rate is appropriately selected. Therefore, the final rule be-
comes Δwij = ηE[αYi(∞)Xj ] [199], where the familiar Hebbian update is
noticeable, and α is the stepsize of the recursive algorithm that updates the
lateral connections such that αY(∞) = Σ−1Y. This means that Infomax, in
a linear network with Gaussian inputs, defaults to a manipulation (maximiza-
tion) of output variance terms.

According to Linsker [199], a network that learns how to maximize I(Z, S)
must learn how to distinguish input signal from noise, which can be accom-
plished by two- phase learning. In the learning phase examples of S +N are
shown, followed up by an unlearning phase where examples of N alone are
provided. Therefore the total weight update will be a sum of the Hebbian
term with an anti-Hebbian term produced by the unlearning phase as

Δwij = η(E[αSYi(∞;S)Xj ]− E[αNYi(∞;N)Xj ]). (8.10)

Equation (8.10) has a very nice interpretation. In fact, maximizing mutual
information between the input and output of a linear system with Gaussian
noisy inputs corresponds to maximize output variance when the S +N input
is applied and to minimize output variance when only the noise is applied, or
if we prefer, to use a Hebbian update when S+N is applied and anti-Hebbian
update when the noise only is applied. Therefore the network can still use
second-order statistics and local adaptive rules to estimate entropies provided
the signal and noise distributions are Gaussian distributed (which is, however,
an unrealistic limitation).

This reasoning also means that information-theoretic principles are really
unnecessary in the Gaussian and linear scenario, because under these assump-
tions maximum likelihood would have been sufficient to reach the same con-
clusion (output variance maximization). So in our opinion, the real benefit
of information-theoretic reasoning is obtained when the linearity and Gaus-
sian assumptions are lifted as remarked several times in the previous three
chapters. The other notable aspect is that the weights adapted by Eq. (8.10)
will grow without bound for a linear system, as is expected from the Hebbian
update [233]. The nonlinearity of the Adaline output PEs constrains the out-
put and stabilizes learning, or alternatively one could utilize Oja’s rule, which
normalizes at each iteration the weights by their norms [233]. Quadratic mu-
tual information explained in Chapter 2 and used in Chapter 6 can directly
implement Linsker’s Infomax principle without imposing the constraint of lin-
ear networks and Gaussian inputs if applied to a network with output lateral
connections to make the learning rule local to the weights. Therefore the infor-
mation potential and forces help us explore Infomax in more realistic settings.
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8.4 Exploiting Spatial Structure for Self-Organization

As we saw in Section 8.2 the InfoMax principle requires a “supervisor” to de-
termine if the input is S +N or only N , which may be unrealistic. Internally
derived teaching signals can be derived if one exploits spatial information of
the input as proposed by Becker and Hinton in their I-Max principle [24]. If one
assumes that the external world is structured, neighboring parts of the sensory
input will have common causes in the world. If the processing system is mod-
ular with sensory inputs that overlap somewhat, a possible self-organization
principle will impose that the outputs of neighboring local networks produce
outputs that agree to a certain extent (Fig 8.2). The problem is that if one
attempt to use the MSE between neighboring module outputs as a cost to
adapt the module parameters, similar outputs among modules are obtained
that discard the input structure.

Becker and Hinton showed experimentally that a good measure of agree-
ment for modules A and B with scalar outputs is obtained by

1
2

log
Σ(ya + yb)
Σ(ya − yb) , (8.11)

where Σ is the variance obtained over the training set. This result can be in-
terpreted in two different ways: first, it can be interpreted in a linear Gaussian
setting as a cost function for canonical correlation, which finds linear combi-
nations YA = wA

TXA and YB = wB
TXB to maximize correlation between
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Fig. 8.2. Exploiting spatial coherence in local models with mutual information.
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them. Second, it turns out that if we assume that the input to the modules
accepts a Gaussian model, Eq. (8.11) is nothing but the mutual information
between the signal and the average of YA and YB ; that is,

I(YA, YB) = −1
2

log
(
1− ρ2

AB

)
, (8.12)

where ρ is the correlation coefficient between the signals YA and YB, which is
equivalent to Eq. (8.11). If we assume that X is again S+N as in Section 8.2,
then the external control to recognize when the signal is present is no longer
necessary (we assume that N is spatially uncorrelated but the signal has
spatial structure).

Therefore I-max is an information-theoretical principle similar to InfoMax
but now applied to spatial coherence: the transformation of a pair of vectors
XA and XB should be chosen to maximize the mutual information between
the pair of scalar outputs YA and YB. Maximizing output mutual information
among the modules trains them to preserve the underlying structure present
in the input scene.

Becker has been producing impressive results with this simple concept,
first applied to stereoscopic vision [25]. She started with a very simple linear
model for coherence at the pixel level, and later generalized to mixture mod-
els that even allow for different type of coherence in the scenes. Quadratic
mutual information (QMICS) in Chapter 2 can achieve this maximization di-
rectly without requiring the Gaussian assumption. Because this is equivalent
to a generalization of canonical correlation, there are many signal processing
problems that can benefit from the ITL formulation.

8.5 Principle of Redundancy Reduction

Another area of great interest in perception is to understand the role of re-
dundancy in sensory coding. Attneave [10] and Barlow [16] hypothesized that
redundancy plays a very fundamental role in characterizing the environment
and therefore should be part of biologically plausible learning models. This
led Barlow to enunciate a self-organizing principle for sensory processing as
follows: The purpose of early visual processing is to transform the highly re-
dundant sensory input into a more efficient factorial code, which makes the
neural outputs mutually statistical independent given the input.

When the brain receives a combination of stimuli that form a percept, it
needs to know the probability of occurrence of the percept for proper inter-
pretation in a Bayesian framework. Biological systems are keen on recognizing
unusual stimuli that may carry information, therefore they must have found a
way to assign a priori probabilities to events. Due to the huge dimensionality
of the space, it is unlikely that this is achieved through the quantification of
the joint probability density of stimuli and rewards which grows supralinear
with stimulus dimension. However, if the space of the sensory variables is
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sufficiently sparse (i.e., if all sensory variables are made mutually statistically
independent), then the joint probability of any two or more sensory variables
can be determined knowing only the marginal probabilities of each. Then it
is possible to assign probabilities to any logical function of the event from the
individual sensory variable probabilities without further knowledge. Minimum
entropy encoding measures the entropy of each individual event and chooses
the reversible code for which the sum of entropies is at a minimum [17].

When perception is set up in this manner, the relevant steps are (1)
estimation of entropies from sensory data and (2) finding the code with the
minimum sum of marginal (bit) entropies. Let’s assume that we have a rep-
resentative ensemble of sensory data A, where each “event” appears with
probably Ai, so H(A) = −∑

iAi log(Ai). The estimation of entropy from the
sensory data can be alternatively accomplished with the information potential
of Chapter 2. The problem of minimum entropy coding is a bit more complex.
The sum of marginal (bit) entropies for a binary alphabet of symbols A that
occur with probabilities Ai with a code c is given by

H(A, c) = −
∑

i

pi log(pi)−
∑

i

qi log(qi), (8.13)

where pi = 1−qi is the probability of the ith bit in the code to take the value 1
(and qi is the probability of the bit to take the value 0). We know that H(A,c)
is always larger than or equal to H(A) with equality for factorial codes [330].
A code is factorial if Aj = πj , with πj =

∏
cij=1

pi
∏
cij=0

qi, that is, when the
joint density of the symbols in the code words factorizes, where cij denotes
the ith bit of the code for the jth event. The problem is that finding factorial
codes requires an exhaustive search over the alphabet. One simple and quite
good approximation is the binary sequence coding provided the probabilities
of the input alphabet form a geometric progression that can be implemented
as follows. Compute the probability of the events in the alphabet, order them
in descending order of probability, and assign the code words with an in-
creasing number of ones to the list. Just by looking at the number of ones
in the code, we can infer the probability of the events that originated them,
so unusual activity can be pinpointed easily. The solution of the minimiza-
tion problem can be pursued with autoencoders as used in population codes
by Zemel and Hinton [348], or alternatively ITL cost functions if one frames
finding minimum entropy codes as mutual information minimization between
the events and their codes (i.e., H(A, c)−H(A) = −∑

j Aj log(πj/Aj)).
Barlow’s work stressed the importance of sparseness, the simplification

operated by independence in extracting information from high-dimensional
data and the role of entropic concepts in sensory coding. Later on, Atick
and Redlich postulated the principle of minimum redundancy for the visual
system following these ideas [9]. These principles transcend computational
neuroscience application and are applicable in general engineering system
design.
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8.6 Independent Component Analysis (ICA)

We have seen in the above principles that statistical independence is a
simplifying factor for a broad class of data analysis scenarios. The funda-
mental problem is how to achieve it in practical conditions using simply the
data and local learning rules. The importance of Bell and Sejnowski’s work
[26] was exactly to show that a simple local learning rule applied to a nonlinear
network (where the nonlinearity was matched to the cumulative distribution
function (CDF) of the inputs) trained to maximize the entropy at its output
was able to accomplish this seemingly difficult task. Independent component
analysis (ICA) was already being applied in signal processing using higher-
order statistical manipulations [62], but the elegance of the Bell and Sejnowski
formulation was fundamental to expand the field, as we explain next.

A typical instantaneous linear mixture problem that benefits from an ICA
solution consists ofN observations that are linear combinations ofM mutually
independent source signals (N ≥ M) (Fig. 8.3). The observed data X = AS
is a linear nonsingular mixture (dim A = M × M) of source signals S =
(s1, . . . , sM )T, independent of each other. There is no further information
about the sources nor mixing matrix, hence the name blind source separation
(BSS). The problem is to find a linear projector W such that Y = WX (dim
W = M ×M), and Y = S apart from a permutation and scaling.

In the BSS literature, the square mixture case where the number of mea-
surements is equal to the number of sources is the most investigated, because
if there are more sources than measurements, the source recovery cannot
be achieved without large distortions, although the mixing matrix can still
be identified in some cases.

It is important to understand why second-order statistics cannot solve this
problem. Let us assume that there are two independent sources that are mixed
by an unknown matrix A (Figure 8.4a). A matrix rotates and scales the source
input vector, therefore in the space of the mixtures there is a rotation and
scaling of the sources (Figure 8.4b). Now if PCA is applied to the data in
observation space and the principal directions are used as the projection
directions for the demixer, some separation may be achieved but the result is

so
ur

ce
 v

ec
to

r s
 

ob
se

rv
at

io
n 

ve
ct

or
 x

 

de
m

ix
ed

 o
ut

pu
t v

ec
to

r y
 ~

 s

Mixer

A

Demixer

W

unknown

Fig. 8.3. The source separation problem.
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y1=PCA1(x1,x2)
y2=PCA2(x1,x2)

y1=ICA1(x1,x2)
y2=ICA2(x1,x2)
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Fig. 8.4. How to achieve demixing in the output space. (a) independent sources;
(b) mixed sources; (c) demixed sources by PCA; (d) demixed sources by ICA.

far from optimal (Figure 8.4c). One needs to find a way to rotate the sources
such that they coincide again with the axis of the output space (Figure 8.4d).

Principal components analysis (PCA) is a tool that investigates the second-
order statistical structure underlying random vectors. Basically, the purpose
of PCA is to find a set of orthogonal directions where the data have maximal
variance [233], therefore the projections are uncorrelated with each other.
Independent component analysis strengthens uncorrelatedness to indepen-
dency of the projected random variables [155]. Besides its theoretical appeal
in factor analysis [62], ICA is interesting as a design principle in many signal
processing problems.

As a final remark, the BSS problem is broader in scope than ICA because
it seeks to separate a set of unknown source signals that are mixed by an
unknown mixture using either (or both) statistical independence as in ICA
or decorrelation over the lags of the time signals [335]. In this book, we only
consider the ICA model for the BSS problem, which requires an independent
assumption amongst the sources (at least approximately).

Bell and Sejnowski Algorithm

By definition (see Chapter 1), statistical independence among the components
of a multidimensional random variable is obtained when the joint is equal to
the product of the marginal densities, which can be evaluated by Shannon’s
mutual information (when it yields the value zero). However, there are simpli-
fying factors when applying this idea in ICA. In fact, the mutual information
of a multidimensional input – output system can also be written in terms of
the entropy of the output minus the conditional entropy of the output given
the input. When the goal is to adapt the system weights, it turns out that the
conditional density can be dropped from consideration because it is indepen-
dent of the system parameters [228]. Therefore, independence can be achieved
by maximizing simply the system’s output joint entropy. But this argument
does not clearly state how to accomplish the task with local adaptation rules.

Bell and Sejnowski’s insight was fundamental to solve this problem. Let
us assume first that the system is single-input – single-output with sigmoidal
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nonlinear (logistic) output units. The logistic function is a reasonable model
of the cumulative density function of the input, assuming PDF unimodality,
symmetry, and super-Gaussianity. In this case, if one maximizes the output
entropy making it uniform (because the logistic function has finite range), then
the system output density before the nonlinearity is being implicitly matched
to the statistics of the input. Therefore when the nonlinearity matches the
CDF of the input data the system is transferring as much mutual information
from its input to the output, as Linsker prescribes in his InfoMax principle.
Moreover, the learning rule for this system is trivial. In fact, if we interpret
the role of the network as a smooth transformation of its input y = f(x,w),
it is well known [235] that the system’s output PDF is related to the PDF of
the input by p(y) = p(x)/ |∂y/∂x|, so we immediately obtain

H(y) = E [ln |∂y/∂x|]− E [ln p(x)] . (8.14)

The second term of Eq. (8.14) can be dropped because for deterministic map-
pings it equates to the lowest entropy and it is independent of the system
parameters, so maximizing the entropy of y by changing parameters w is
equivalent to performing gradient ascent in the first term of Eq. (8.14). Using
the stochastic gradient idea we can drop the expected value to yield

Δw = η
∂H(y)
∂w

→ Δw = η
∂ ln |∂y/∂x|

∂w
=

(
∂y

∂x

)−1
∂

∂w

(
∂y

∂x

)

. (8.15)

In the case of the logistic sigmoid y = 1/(1+e−u) with u = wx +w0 this gives
{

Δw = η(1/w + x(1 − 2y))

Δw0 = η(1 − 2y).
(8.16)

Notice that the learning rule is anti-Hebbian because of the negative product
xy, but it is “regularized” because it repels the weight from zero due to the
1/w term, as well as from the extreme of the sigmoid due to (1 − 2y) in the
second equation; that is, it keeps the operating point in the middle of the sig-
moid range. So this rule maximizes the output entropy for the scalar case,
but the real importance is for the multidimensional output case. Following a
similar path, one can show that for the multidimensional input–output case,
Eq. (8.16) becomes

⎧
⎨

⎩
Δw = η

([
WT

]−1

+ (1− 2y)xT
)

= η
(
I + (1− 2y)(Wx )T

)
W

Δw0 = η(1 − 2y).
(8.17)

The repelling effect of the anti-Hebbian learning in the multidimensional sys-
tem (perceptron) has a profound and unexpected consequence: it also re-
pels the outputs from each other because any degenerate weight matrix with
detW = 0 is an unstable stationary point; that is, the rule naturally seeks
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weight vectors that are aligned with the inputs and are orthogonal among each
other if the observations are spatially whitened with unit variance (can always
be done as a preprocessing step). In the case where the inputs are mixtures
of sources, it promotes each output to seek an individual source, and once it
locks into it, the other outputs must represent one of the other sources, imple-
menting effectively a joint output maximization criterion, when maximizing
simply output entopy. Therefore, in the case where the logistic function is a
good estimate of the CDF of the input, maximizing output entropy at the
output of the nonlinearity maximizes the mutual information between input
and system outputs.

This is a simple and very ingenious learning rule that has many applica-
tions, but only under the conditions mentioned performs ICA. We show that
ITL can be also used very effectively for ICA however in its general formula-
tion it must estimate the information potential in the joint field.

8.7 The Information Bottleneck (IB) Method

Shannon left meaning out of information theory because he was interested in
a mathematical description of the concept that suited very well for the design
of communication systems. However, many researchers believe that the impor-
tance of IT goes beyond this mathematical formalism and can also be useful
in characterizing optimal solutions in cases where conditional probabilities are
important, as in real-world machine learning and computational neuroscience
modeling [171]. The fundamental problem is how to characterize “relevant”
information in a signal x ∈ X (normally corrupted by noise), which is defined
as the information provided with respect to another signal y ∈ Y . A very
important step towards this goal was recently achieved by Tishby and collab-
orators with the information bottleneck (IB) method [316]. They formulated
a variational principle for the extraction of relevant information by finding the
optimal compromise between (1) the minimization of mutual information be-
tween X and its compressed version X̃ , estimated from rate distortion theory;
and (2) the maximization of mutual information between the two variables
I(X̃, Y ), from channel capacity, where Y is the relevant variable. The name
information bottleneck comes from the bottleneck networks used for PCA,
where projection to a subspace and mapping back to the full space finds the
eigenspace of the data. In this case it is the lossy compression of X to X̃ when
used to match Y in the MI sense that creates the bottleneck and that extracts
the relevant information that X contains with respect to Y . This formulation
builds upon rate distortion theory [17], but takes away one of its fundamen-
tal shortcomings because the rate distortion function is built automatically
from the optimization of the cost function. Moreover, the method has a solid
foundation in statistical mechanics and many important results regarding the
method have been recently obtained [305].
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IB Optimization

The fundamental problem in IB is to find a reduced representation X̃ of X
characterized by the conditional PDF p(x̃|x) that preserves the information
of X with respect to another variable Y . The optimal solution can be found
by minimizing the functional

Λ[p(x̃|x)] = I(X̃,X)− βI(X̃, Y ), (8.18)

where β is the variational parameter, while maintaining p(x̃|x) as a true den-
sity. If one considers that the foot print of information theory lies between
the minimization of MI as in rate distortion theory and its maximization for
channel capacity, Eq. (8.18) shows clearly the “information theory” roots of
the IB method. Notice that when β → 0 the quantization approaches the
trivial point solution {X̃} = 0, whereas when β → ∞ one preserves all the
information in X . It turns out that this variational problem still accepts an
exact analytical solution given by [316]

p(x̃|x) =
p(x̃)
Z(x, β)

exp
(

−β
∑

y
p(y|x) log

p(y|x)
p(y|x̃)

)

=
p(x̃)
Z(x, β)

exp (−βDKL(p(y|x)|p(y|x̃))) , (8.19)

where Z(x, β) is the partition function, p(x̃) =
∑

xp(x̃|x)p(x), and the
distribution p(y|x̃) can be obtained with Bayes’ rule in the Markov chain
X̃ ← X ← Y as p(y|x̃) = 1/p(x̃)

∑
xp(y|x)p(x̃|x)p(x).

The free parameter in this algorithm is only the variational parameter β
that the user has to choose taking into consideration that small β will select
small representations (hence little relevance), whereas too large a β will prac-
tically use all the structure on X . For each β there is a convex curve in the
IXX̃ , IY X̃ plane, analogous to rate distortion curves. Because the distribu-
tions are not known explicitly in practice, and the solution has to be consistent
among p(y|x̃), p(x̃), and p(x̃|x), alternating iterations between them accord-
ing to ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pn(x̃|x) =
pn(x̃)
Zn(x, β)

exp(−βd(x, x̃))

pn+1(x) =
∑

x
p(x)pn(x̃|x)

pn+1(y|x̃) =
∑

y
p(y|x)pn(x|x̃),

(8.20)

where n is iteration number and d(x, x̃) = DKL(p(y|x)‖p(y|x̃)). The partition
function Zn(x, β) and the densities have to be evaluated at every iteration,
which means that the optimization can be time consuming, but it achieves
remarkable results when applied to speech [305] and text processing [245].
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8.8 The Principle of Relevant Information (PRI)

A common framework for the three different aspects of unsupervised learn-
ing, namely clustering, principal curves, and vector quantization has been
missing until today. Such a framework can only be developed if the central
theme of unsupervised learning is addressed, which is to capture the under-
lying structure in the data. Two schools of thought exist [38]. One approach
is to build generative models that effectively describe the observed data. The
parameters of these generative models are adjusted to optimize the likelihood
of the data with constraints on model architecture. Bayesian inference mod-
els and maximum likelihood competitive learning are examples of this line
of reasoning [207]. This modeling approach requires some form of regular-
ization to select a proper model order, such as minimum description length
(MDL), Bayesian information criterion (BIC), or Akaike’s information crite-
rion (AIC). Minimizing the model order forces the network to learn parsimo-
nious representations that capture the underlying regularities (redundancy) in
the data.

The second approach uses self-organization principles. As Watanabe
clearly stated [330], the goal of learning is to extract information or reduce
uncertainty in the data which can be accomplished by minimizing entropy.
However, minimization of entropy of a dataset leads, as is well known, to a
featureless solution given by the collapse of all the samples to a single point
in space. Therefore, without constraints that preserve different levels of detail
about the original data it leads to a featureless solution (a single point).
As we have seen, the principles of self-organization described by Linsker,
Barlow, and Tishby address in different forms information preservation and
redundancy reduction. Hence the relevance of information is crucial when
applying Watanabe’s idea to practical problems, and it gave the name for
this new self-organizing principle. The idea here is to construct energy func-
tions that effectively combine these two competing aspects as done in the
IB method. Thus by minimizing a combined overall function, we effectively
allow the data to self-organize and reveal their structure. Similar attempts
have been pursued in the literature, i.e., Heskes [146] developed a free energy
functional as a weighted combination of quantization error and entropy terms
and explored the exact connection among the self-organizing map (SOM),
vector quantization, and mixture modeling.

We choose the second approach to develop a simple yet elegant framework
for unsupervised learning with the advantage of not imposing statistical mod-
els on the data and instead allowing samples the freedom to interact with
each other and through this process reveal the data hidden structure through
self-organization. Furthermore, by using ITL algorithms and dealing directly
with the PDF, the method effectively goes beyond the second-order statistics
and extracts as much information as possible from the data.
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Principle of Relevant Information

The conventional unsupervised learning algorithms (clustering, principal
curves, vector quantization) are solutions to an information optimization
problem that balances the minimization of data redundancy with the distortion
between the original data and the solution, expressed by

L[p(x|xo)] = min
X

(H(X) + λDKL(X ||Xo)), (8.21)

where xo ∈ Xo is the original dataset, and x ∈ X is the compressed version
of the original data achieved through processing, λ is a variational param-
eter, and H(X) and DKL(X‖Xo) are, respectively, the entropy and the KL
divergence between the original and the compressed data.

The principle of relevant information (PRI) shares the spirit of the in-
formation bottleneck method, but its formulation addresses the entropy of a
single dataset. The solution is specified as an optimization over the conditional
of the compressed data given the original data. Each of the classical unsuper-
vised learning algorithms (clustering, principal curves, vector quantization)
is specified by a different value of λ in the optimization. One of the appeals
of this unifying principle for unsupervised learning is that it is formulated in
terms of information-theoretic quantities and fast adaptation ITL algorithms
exist as shown below.

There is an interesting cognitive interpretation of the PRI that is worth
mentioning. A fundamental problem in memory design is how to store an
increasing amount of facts in a system with finite memory resources. The
original data Xo can be considered the system memory of an event, and X
the memory trace through time. Therefore the PRI specifies how the original
memory evolves under the effect of two information forces: the need to sim-
plify the memory trace of the stored data (the entropy term) and the need
to preserve its similarity to the original self. Different values of λ provide dif-
ferent bits of information of the memory traces with respect to the original
memory Xo. Therefore this can be used as an information-theoretic model
for working memory and long-term memory. Many other interpretations are
possible.

Algorithms for PRI

Let us consider the family of compressed data x obtained by applying
Eq. (8.21) to the original data xo. The goal of unsupervised learning is to
create a hierarchical “skeleton of the dataset”: the modes of the data, the prin-
cipal curves, and vector-quantized approximations of the data with a specified
resolution. All of these special cases can be considered more or less distorted
versions of the original dataset. The variational parameter λ in Eq. (8.21) con-
trols the level of distortion in the compressed data, because minDKL(X‖Xo)
measures the allowable distortion of the original (similar to the rate distor-
tion function) under the specified weighting given by λ. The first term pushes
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the solution into the data manifold, because minimizing entropy without con-
straints moves the samples to the center of the data cluster. The major con-
ceptual difference with respect to the IB method is that here we are interested
in a different problem – minimizing entropy of a single dataset X – instead
of maximizing mutual information between two datasets, which simplifies the
mathematics and the algorithms. Another difference is the use of the KL di-
vergence instead of the mutual information because of internal consistence as
discussed below. So PRI is based on entropy and relative entropy instead of
MI as the IB method.

An added advantage of this formulation is that we can directly use the
estimators of ITL to derive fast fixed-point algorithms to solve for the different
solutions. Indeed we can rewrite Eq. (8.21) with Renyi’s formulation of entropy
and divergence as

L[p(x|xo)] = min
X

(Hα(X) + λDα(X‖Xo))

where Renyi’s entropy is defined in Eq. (2.9), and Renyi’s divergence or rel-
ative entropy in Eq. (2.73). For estimation purposes, we propose to measure
redundancy by Renyi’s quadratic entropy H2(x), and to measure the distor-
tion between the original and the processed data by the Cauchy – Schwarz
PDF divergence DCS(X,Xo), because of the equivalence shown in Eq. (2.94).
This yields

J(X) = min
X

[H2(X) + λDCS(X,Xo)]

= min
X

[(1− λ)H2(X) + 2λDCEF (X,Xo)− λH2(Xo)],
(8.22)

where DCS(X,Xo) = 2DCEF (X,Xo) − H2(X) − H2(Xo), and DCEF =
− logV (X,Xo) is the logarithm of the cross-information potential used so ex-
tensively in Chapter 7 and λ ∈ R+ is the variational parameter. In Eq. (8.22)
X is the variable that evolves over iterations and hence appears in the argu-
ment of the cost function. The last term in Eq. (8.22) is constant with respect
to X , therefore for optimization we can reduce J(X) to

J(X) = min
X

[(1− λ)Hα(X)− 2λ logV (X,Xo)]. (8.23)

We further propose to use the information potential (IP) estimator of
Renyi’s entropy to estimate all these quantities directly from samples. Notice
the simplicity of this formulation which is completely described by only two
parameters: the weighting parameter λ and the inherently hidden resolution
parameter σ in the kernel of the IP. The resolution parameter controls the
“scale” of the analysis whereas the weighting parameter effectively combines
the regularization and similarity terms in appropriate proportion to capture
different aspects of the data structure.

What is interesting is that the traditional unsupervised learning algorithms
are obtained for specific values of the weighting parameter as we show next.
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Effectively, the PRI produces a self-organizing decomposition of the data in
hierarchical features. An added advantage of this formulation for unsuper-
vised learning is that there is a very fast fixed-point algorithm, called the
mean shift algorithm as described in Chapter 7, Section 7.6, which can solve
this optimization problem efficiently. Let us study in detail the PRI for some
landmark values of λ.

Case 1: A Single Point — Gaussian Blurring Mean Shift

Let us start analyzing Eq. (8.21) for the special case of λ = 0. This would
reduce the cost function to

J(X) = min
X
HR2(X) = min

X
(− log(V (X))). (8.24)

If you recall from Section 7.6 this is exactly Eq. (7.28), which we showed is
equivalent to the Gaussian blurring mean shift algorithm (GBMS). Thus λ = 0
inimizes the overall Renyi’s quadratic entropy of the dataset. For kernels with
infinite support as the Gaussian that is used here, this leads to a single point as
the global solution because then H(X) = −∞ (for discrete cases H(X) = 0).
With X initialized to the original datasetXo, successive iterations of this fixed
point algorithm would “blur” the dataset ultimately giving a single point.

Case 2: The Modes — Gaussian Mean Shift

We consider another special case of the cost function Eq. (8.21) when λ = 1.
In this scenario the cost function is given by

J(X) = min
X
DCEF (X,Xo) = min

X
(− log(V (X,Xo))) (8.25)

which is exactly Eq. (7.31), and as we have demonstrated it corresponds to the
Gaussian mean shift algorithm (GMS) that finds the modes of the dataset.

Theorem 8.1. With X initialized to Xo in GMS, J(X) reaches its local max-
imum at the fixed points of Eq. (8.25).

Proof. Using Eq. (7.33) with a Gaussian kernel the mean shift vector at iter-
ation τ is

x(n+ 1)− x(n) = m(x(n))− x(n) =

N0∑

j=1

G(x(n) − xo(j))(xo(j)− x(n))

N0∑

j=1

G(x(n)− xo(j))

= σ2∇xp̂Xo,σ(x)
p̂Xo,σ(x)

= σ2∇x log(p̂Xo,σ(x)) (8.26)
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We see that in GMS the samples move in the direction of the normalized
density gradient with increasing density values. Each sample converges to the
mode dictated by the information forces acting on it and that define the convex
hull of the mode. Let sl = {1, . . . , L} be the modes of pXo,σ(x). Associate
each xi = {1, . . . , N} with the corresponding mode si∗ , i∗ ∈ {1, . . . , L} to
which it converges. Then,

V (X,Xo) =
1

NN0

N∑

i=1

N0∑

j=1

Gσ(xi − xoj) =
1
N

N∑

i=1

p̂Xo,σ(xi)

(8.27)
≤ 1
N

N∑

i∗=1

p̂Xo,σ(si∗) ≤ max
sl

p̂Xo,σ(sl).

Because the CIP at the fixed points (modes) is maximal, J(X) =
− log V(X,Xo) reaches its local minimum starting with the initialization
H(Xo).

Case 3: Beyond the Modes — Principal Curves and Back
to the Original Data

We now consider a more general situation when 1 < λ <∞.

J(X) = min
X

[(1− λ)Hα(X)− 2λ logV (X,Xo)]

= min
X

⎡

⎣−(1− λ) log

⎛

⎝ 1
N2

N∑

i=1

N∑

j=1

Gσ(xi − xj)
⎞

⎠

−2λ log

⎛

⎝ 1
NN0

N∑

i=1

N0∑

j=1

Gσ(xi − xoj)
⎞

⎠

⎤

⎦ . (8.28)

Differentiating J(X) with respect to xk = {1, . . . , N} and equating it to zero
yields

∂J(X)
∂xk

=
2(1− λ)
V (X)

F (xk) +
2λ

V (X,Xo)
F (x;Xo) = 0. (8.29)

In this general scenario, the samples of dataset X move under the influence of
two forces: the information force F (xk) exerted by all samples of the datasetX
and the “cross” information force F (xk, Xo) exerted by the samples belonging
to the fixed datasetXo. Rearranging Eq. (8.29) gives us the fixed-point update
equation as shown in Eq. (8.30)
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xk(n+ 1) = m(xk(n)) = c
(1− λ)
λ

∑N
j=1Gσ(xk − xj)xj

∑N0
j=1Gσ(xk − xoj)

+

∑N0
j=1Gσ(xk − xoj)xoj

∑N0
j=1Gσ(xk − xoj)

− c (1 − λ)
λ

∑N
j=1Gσ(xk − xj)xk

∑N0
j=1Gσ(xk − xoj)

,

c =
V (X,Xo)
V (X)

No
N
. (8.30)

Notice that in this case there are a total of three ways of rearranging
∂J(X)/∂xk to get a fixed-point update rule, but we found only the fixed-
point iteration Eq. (8.30) to be stable and consistent.

We have seen earlier that λ = 1 gives the modes of the data. As the value of
λ is increased more emphasis is given to the similarity between X and Xo, that
is, Dcs(X, Xo). Experimentally we found that for two-dimensional datasets
the principal curve is obtained for 1 < λ < 3. Furthermore, for λ > 3 in a
two-dimensional dataset makes the algorithm go beyond the principal curve
and represent more finely all the denser regions of the data, which is the vector
quantization regime. In short, every fine nuance of the PDF is captured as the
λ value is increased to infinity, yielding back the dataset Xo. So by varying
0 < λ <∞, PRI goes from a single point to the original dataset. This is neatly
summarized in Figure 8.5 for a two- dimensional dataset. Another interest-
ing interpretation comes from careful observation of Eq. (8.22). For values of
λ > 1, the first term H(X) is negative whereas the second term H(X, Xo) is
positive. Thus, the cost function attempts to maximize the entropy and mini-
mizes the DCS at the same time. These give rise to opposing forces which make
the data samples settle in different stationary configurations that correspond
to a hierarchical, self-organizing, feature decomposition of the input.

Theorem 8.2. When λ → ∞, J(X) minimizes the Cauchy–Schwarz diver-
gence Dcs(X,Xo).

Proof. We prove this theorem by showing that the fixed-point equation de-
rived by optimizing Dcs(X,Xo) is the same as Eq. (8.30) when λ → ∞.
Consider the cost function,

F (X) = minDCS (X,Xo) = min[−2 logV (X,Xo) + logV (X) + logV (Xo)]
(8.31)

Differentiating F (X) with respect to xk = {1, . . . , N} and equating it to zero
would yield the following fixed-point update equation

xk(n+ 1) = m(xk(n)) = −c
∑N
j=1Gσ(xk − xj)xj

∑No

j=1Gσ(xk − xoj)
+

∑No

j=1Gσ(xk − xoj)xoj
∑No

j=1Gσ(xk − xoj)

+ c

∑N
j=1Gσ(xk − xj)xk

∑No

j=1Gσ(xk − xoj)
, c =

V (X,Xo)
V (X)

No
N

(8.32)

Taking the limit λ →∞ in Eq. (8.30) gives Eq. (8.32).
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Fig. 8.5. An illustration of the structures revealed by the principle of relevant
information for the crescent-shaped dataset for σ2 = 0.05. As the values of λ increase
the solution passes through the modes, principal curves and in the extreme case of
λ → ∞ we get back the data themselves as the solution. (from [259]).

Corollary 8.1. With X initialized to Xo, the data satisfy Eq. (8.32) fixed-
point update rule.

Proof. When X(0) = Xo, V (X) = V (X, Xo) and N = No. Substituting this
in Eq. (8.32) we see that xk(n+ 1) = xk(n).

As the λ value becomes very large, the emphasis is laid more and more
on the similarity measure Dcs(X, Xo). Theorem 8.2 and its corollary depict
an extreme case where λ →∞. At this stage, PRI gives back the data as the
solution.
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Image Clustering

Mode-finding algorithms have been used extensively to cluster and segment
data into meaningful regions, and we presented them in Chapter 7. However,
we just want to recall that both GBMS and GMS are two special cases of PRI
with λ = 0 and 1, respectively. We illustrate here segmentation of the bald
eagle image (Figure 8.6) with λ = 1 and compare it with spectral clustering.

We downsampled this image to 48×72 pixels using a bicubic interpolation
algorithm, which still preserves the segments very well at the benefit of reduc-
ing the computation time for this example because the PRI is O(N2) com-
plexity. The incomplete Cholesky decomposition treated in Chapters 2 and 3
is recommended for practical applications of the PRI. The affinity matrix
construction in spectral clustering becomes difficult to manage for more than
5000 data points due to memory issues. In order to get meaningful segments
in images close to human accuracy, the perceived color differences should cor-
respond to Euclidean distances of pixels in the feature space. One such feature
space that best approximates perceptually uniform color spaces is the L∗u∗v
space [337]. Furthermore, the x and y coordinates are added to this feature
space to take into account the spatial correlation. Thus, the 3456 data points
exist in a five-dimensional feature space.

The obtained results for the multiscale analysis are shown in Figure 8.6.
Before plotting segments with less than 10 data points were merged to the
closest cluster mean. This is needed to eliminate spurious clusters arising due
to isolated points or outliers. In the case of the bald eagle image, spurious
clusters resulted only for kernel size σ = 3. This is clearly a result of a too
narrow kernel size selection. As the kernel size was increased, the number of
segments is drastically reduced reaching a level of seven segments for both
σ = 5 and σ = 6. Note the sharp and clear segments obtained. For example,
the eagle itself with its beak, head and torso is very well represented. One can
also appreciate the nice hierarchical structure in this analysis where previous
disjoint but close clusters merge to form larger clusters in a very systematic
way. For σ = 7, five segments are obtained which is the broadest segmentation
of this image. Beyond this point, important image segments disappear as
shown for σ = 8 where the beak of the eagle is lost.

Because both 5 and 7 segments look very appealing with the previous anal-
ysis, we show the comparison with spectral clustering for both these segments.
Figure 8.7 shows these results for σ = 5 and σ = 7 respectively. Spectral clus-
tering performs extremely well with clear well defined segments. Two things
need special mention. First, the segment boundaries are sharper in spectral
clustering when compared to GMS results. This is understandable because in
GMS each data point is moved towards its modes and in boundary regions
there may be ambiguity as to which peak to climb. This localized phenomenon
leads to a pixelization effect at the boundary. Second, it is surprising how the
spectral clustering technique could depict the beak region so well in spite
of the low- resolution image. A close observation shows that the region of
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Fig. 8.6. PRI for λ = 1, for different values of kernel size (which yields the segments)
(from [259]).
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Fig. 8.7. Spectral clustering for the bald eagle (from [259]).

intersection between the beak and the face of the eagle has a color gradation.
This is clearly depicted in the GMS segmentation result for σ = 4 as shown
in Figure 8.6c.

Manifold Learning

The modes of the data are the peaks of the PDF and hence correspond to
regions of high concentration of data samples and they are captured by the
PRI. We saw that when λ is increased beyond 1, the weight given to the simi-
larity term Dcs(X,X0) increases, which is responsible for finding the modes of
the data, as shown in Theorem 8.1. Therefore to minimize J(X) it is essential
that modes be part of the solution. On the other hand because (1 − λ) < 0
we are effectively maximizing H(X), which tends to spread the data. To sat-
isfy this and to minimize J(X) overall, the compressed data spread along a
curve connecting the modes of the PDF. This satisfies our intuition because
a curve through the modes of the data has higher entropy (more informa-
tion) than just discrete points representing modes. One attractive feature of
this principle is that the modes, not the mean of the data are anchoring the
curve. Notice that modes are points and this curve is one-dimensional, there-
fore this decomposition yields multidimensional features of the data set. For
2D data this decomposition stops here, but in high-dimensional spaces, when
λ is increased beyond 2 (up to the dimensionality of the data minus 1) we
are talking about multidimensional nonlinear principal spaces where the data
live, are commonly called data manifolds [274].

A New Definition of Principal Curves

Erdogmus and Ozertem recently introduced a new principal curve definition
[96]. We briefly summarize here the definition and the result obtained. Let
x ∈ RN be a random vector and p(x) its PDF. Let g(x) denote the transpose
of the gradient of this PDF and U(x) its local Hessian.
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Definition 8.1. A point x is an element of the D-dimensional principal set,
denoted by ρD, if and only if g(x) is orthonormal (null inner product) to at
least (N −D) eigenvectors of U(x) and p(x) is a strict local maximum in the
subspace spanned by these eigenvectors.

Using this definition Erdogmus and Ozertem proved that the modes of
the data correspond to ρ0 (i.e, 0-dimensional principal set) and further more
ρD ⊂ ρD+1. It is clear that ρ1 is a one-dimensional curve passing through the
data, ρ2 is a two-dimensional surface, and so on. Thus with ρD ⊂ ρD+1, there
is a hierarchical structure associated with this definition with modes being
part of the curve ρ1. This curve can be considered as a non linear principal
component that best approximates the data. By going through all the dense
regions of the data (the modes), ρ1 can be considered as a new definition
of principal curves that effectively captures the underlying one-dimensional
structure of the data.

In order to implement this definition, the reconstruction of the PDF using
Parzen windows is necessary. Erdogmus first found the modes of the data
using the Gaussian mean shift (GMS) algorithm (λ = 1, case of PRI). Starting
from each mode and shooting a trajectory in the direction of the eigenvector
corresponding to the largest eigenvalue one can effectively trace out this curve.
A numerical integration technique such as fourth order Runge–Kutta was
utilized to get the next point on the curve starting at the current point and
moving in the direction of the eigenvector of the local Hessian evaluated at
that point. Principal curves have immense applications in denoising and as a
tool for manifold learning. We illustrate with some examples of how this can
be achieved with the PRI.

Spiral Dataset Example

We illustrate the PRI for principal curves with the spiral data in Figure 8.8
which is considered a very difficult problem in principal curves literature
[181]. The data consist of 1000 samples perturbed by Gaussian noise with
0.25 variance.

We would like to add here that this is a much noisier dataset compared
to the one actually used in [25]. We use λ = 2 for our experiment although
we found that any value between 1 < λ < 3 can be actually used. Figure 8.8
shows the different stages of the principal curve as it evolves from X = X0.

The samples converge quickly to the curve in the middle of the dataset.
By the tenth iteration the structure of the curve is clearly revealed. After
this, the changes in the curve are minimal with the samples only moving
along the curve (and hence always preserving it). What is even more exciting
is that this curve exactly passes through the modes of the data for the same
scale σ. Thus our method gives a principal curve that satisfies Erdogmus’
definition naturally and does not require PDF estimation. We also depict the
development of the cost function J(X) and its two components H(X) and
DCS(X,X0) as the function of the number of iterations in Figure 8.9.
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Fig. 8.8. The evolution of principal curves starting with X initialized to the original
dataset X0. The parameters are λ = 2 and σ2 = 2 (from [259]).

Fig. 8.9. Changes in the cost function and its two components for the spiral data as
a function of the number of iterations: (a) cost function J(X); (b) Two components
of J(X) namely H(X) and DCS (X, X0) (from [259]).
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Note the quick decrease in the cost function due to the rapid collapse of
the data to the curve. Further decrease is associated with small changes in
the movement of samples along the curve.

Face Image Compression

Here, we present a quantization result with 64 centers of the edges taken
from a face. Apart from being an integral part of image compression, vector
quantization also finds application in face modeling and recognition. We would
like to preserve the facial details as much as possible, especially the eyes and
ears which are more complex features. Previous work on information-theoretic
vector quantization (ITQV) by Lehn-Schioler et al. [197] proposed a gradient
method to implement ITVQ. The cost function was exactly the DCS and the
gradient update is given by

xk(n+ 1) = xk(n)− η∂DCS(X,X0)
∂xk

, (8.33)

where η is the learning rate. Thus the derivative of J(X) would be equal to

∂DCS(X,X0)
∂xk

=
2

V (X ;X0)
F (xk;X0)− 2

V (X)
F (xk), (8.34)

which corresponds to the PRI of Eq. (8.29) for λ → ∞. Unfortunately, as is
true in any gradient method, the algorithm almost always gets stuck in local
minima, so annealing of the parameters (p1 = stepsize and p2 = kernel size)
is necessary according to the rule pin = kipi0/(1 + γikin), where n is the
iteration number. We repeat the procedure of finding the best parameters for
the gradient method. After an exhaustive search we end up with the following
parameters: k1 = 1, γ1 = 0.1, p10 = 1, k2 = 1, γ2 = 0.15, and p20 was set to
a diagonal matrix with variance along each feature component equal to the
diagonal entries. Although the cost functions coincide, the advantage of the
PRI is that we now have a fixed-point solution without a stepsize.

Both algorithms were initialized with 64 random points inside a small
square grid centered on the mouth region of Figure 8.10. As done before
for the fixed point, the kernel parameters were set exactly as the gradient
method for a fair comparison. Notice how the code vectors spread beyond the
face region initially with large kernel size and immediately capture the broad
aspects of the data. As the kernel size is decreased the samples then model
the fine details and give a very good solution. Figure 8.10 shows the results
obtained using the PRI, ITVQ gradient method, and the Linde–Buzo–Gray
(LBG) vector quantization algorithm [110]. Some important observations can
be made. Firstly, among the ITVQ algorithms the fixed point represents the
facial features better than the gradient method. For example, the ears are
very well modeled in the fixed-point method. Secondly, and perhaps the most
important advantage of the fixed-point method over the gradient method is
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Fig. 8.10. Comparison of different vector quantizers in a human face (from [259]).

Table 8.1. Comparison of Clustering Methods (From [259])

Method J(X) MSE

PRI 0.0253 3.355 × 10−4

ITVQ-grad 0.0291 3.492 × 10−4

LBG 0.1834 3.05 × 10−4

the speed of convergence. We found that the PRI solution was more than five
times faster than its gradient counterpart. In image applications, where the
number of data points N is generally large, this translates into a huge saving
of computational time.

Thirdly, both ITVQ and PRI algorithms outperform LBG in terms of
facial feature representation. The LBG uses many code vectors to model the
shoulder region and few code vectors to model the eyes or ears. This may
be due to the fact that LBG just uses second-order statistics whereas ITVQ
uses all higher-order statistics expressed by the kernel to better extract the
information from the data and allocate the code vectors to suit their structural
properties. This also explains why ITVQ methods also perform very close to
LBG from the MSE point of view as shown in Table 8.1.

On the other hand, notice the poor performance of LBG in terms of min-
imizing the cost function J(X). Obviously, the LBG and ITVQ fixed-point
give the lowest values for their respective cost functions.

PRI Space for Image Processing

Looking closely at the principle of relevant information we see that its two free
parameters define a two-dimensional space: the scale parameter given by the
kernel size and the variational parameter, where both are positive quantities.
This continuous parameter space can be thought of as a control space for un-
supervised learning, in the sense that all the points of the space correspond to
a pair of values that dictate a transformation of the input image. Unsupervised
learning algorithms live in horizontal lines of constant λ. In fact, when we do
clustering λ = 1 and the kernel size is changed to give different “looks” of the
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data at different spatial resolutions. With the PRI we are not limited anymore
to horizontal cuts, because we have a cost function that depends on the two
parameters, so it is possible for instance to anneal both parameters during
processing. Perhaps even more interesting, these parameters can be adapted
on the fly by the adaptive system for goal-driven image understanding.

8.9 Self-Organizing Principles with ITL Estimators

ITL for MaxEnt

The manipulation of entropy subject to constraints as developed in MaxEnt
and MinXent, is not the most appropriate for learning problems that include
training the system parameters. In such cases, an explicit cost function that
can be estimated from data and gradient descent learning or similar proce-
dures is preferable. Here we start by demonstrating how we can maximize
output entropy to train system parameters with local learning algorithms.
The closest second-order statistical analogy is the maximization of the output
power, which is the essence of principal component projections, or in more
general terms, correlation learning also called Hebbian learning [253].

Hebbian learning is also one of the mainstays of biologically inspired neural
processing. Hebb’s rule is biologically plausible, and it has been extensively
utilized in both computational neuroscience and in unsupervised training of
neural systems [54]. In these fields, Hebbian learning became synonymous
for correlation learning. But it is known that correlation is a second-order
statistic of the data, so it is sub-optimal when the goal is to extract as much
structure as possible from the sensory data stream when the data are not
Gaussian distributed. Ironically, Donald Hebb never spoke of correlation when
he enunciated his famous learning principle, as follows [144]. “When an axon
of cell A is near enough to excite cell B or repeatedly or consistently takes part
in firing it, some growth or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased.” This principle
has been “translated” in the neural network and computational neuroscience
literature according to the conventional wisdom of second-order statistics as:
in Hebbian learning, the weight connecting a neuron to another is incremented
proportionally to the product of the input to the neuron and its output [141].
This formulation then can be shown to maximize the correlation between the
input and the output of the neuron whose weights are updated through the
use of stochastic gradient on a correlation-based cost function [54]. For this
reason, correlation has been declared the basis of biological learning, and
Hebb’s rule has mostly shaped our understanding of the operation of the
brain and the process of learning. However, we have to point out that there is
a huge assumption of translating Hebb’s postulate as the statistical concept of
correlation (other researchers have modeled temporal dependent plasticity as
InfoMax [52]). We show below that Hebb’s postulate can be translated in the
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form of a maximum entropy principle with practical advantages. Instead of
using the solution proposed by Jayne’s using Lagrange multipliers, we directly
maximize entropy at the output of a linear or nonlinear system using ITL
principles.

Relation Between the SIG Algorithm and Hebbian Learning

It is straightforward to derive the incremental weight change for the Adaline
trained with output maximum entropy, and this was already implicitly done
in Chapter 4 when adapting FIR filters. The Adaline is an adaptive linear
element followed by a nonlinearity, but the error is calculated before the non-
linearity. We refer to the material of Section 4.3, where the gradient descent
update on Shannon’s entropy error cost function was presented (Eq. (4.19)).
If the goal is to maximize entropy at the output of a linear system, there is no
desired signal per se, only the output of the system, so the IP of interest is built
from the output samples {yi}i=1,...,N , yielding Vα(y) instead of the IP of the
error sequence. Furthermore, we showed in Chapter 4 (Theorem 4.1) that the
expected value of the SIG(L) is an unbiased estimator of Shannon entropy. In
an online adaptation scenario, we approximate SIG(L) by its current sample
estimate given by SIG(1). With this modification and for Gaussian kernels,
the SIG(1) gradient update to maximize the output entropy of an Adaline
becomes

∂Ĥα(y(k))
∂w

=
1
σ2

(y(k)− y(k − 1)) · (x(k) − x(k − 1)). (8.35)

We clearly see that the basic form of the Hebbian update is present (product
of inputs and outputs), but now it is applied to the instantaneous increments
of the output and the input of the Adaline. With this rule, the neuron imple-
ments Hebb’s information learning rather than merely correlation learning.
Alternatively, we can say that it is possible to approximate the maximization
of output entropy by maximizing the correlation between input and output
samples of the corresponding time index and minimizing the correlation be-
tween noncorresponding time indices.

Now, consider the general case where any differentiable symmetric ker-
nel function may be used in Parzen windowing. For general even symmetric,
unimodal, and differentiable kernels that are PDFs themselves, we get the
following update rule

∂Ĥα(y(k))
∂w

= f(y(k)− y(k − 1)) · (x(k) − x(k − 1)), (8.36)

where f(x) = −κ′σ(x)/κσ(x), where κ(.) is the Parzen kernel and satisfies
the condition sign(f(x)) = sign(x). Thus, the update amount that would be
applied to the weight vector is still in the same direction as would be in
Eq. (8.35); however, it is scaled nonlinearly depending on the value of the
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increment that occurred in the output of the neuron. This is in fact consistent
with Hebb’s postulate of learning, and demonstrates that the weight adapta-
tion based on the product of the output and the input signals as done today
is not the only possibility to implement Hebb’s postulate of learning.

Equal Sample Covariance Spaces

This example demonstrates that the just-derived Hebb’s MaxEnt rule extracts
more structure from data than the traditional Hebb’s rule. Fifty samples of
a two-dimensional random vector are generated such that the x-coordinate is
uniform, the y-coordinate is Gaussian, and the (sample) covariance matrix is
identity in the x, y space. In this case, PCA direction is ill defined, and an
online algorithm will find any direction dependent upon the initial conditions,
because the variance along each direction is the same. On the other hand,
using Hebb’s MaxEnt rule, the system can extract the direction along which
the data exhibit the most uncertainty (or the least if minimizing entropy),
which is the y-coordinate (the direction of the Gaussian). Figure 8.11a shows
the estimated entropy versus direction of the weight vector of a two-input –
one-output linear network trained with Eq. (8.35) for Gaussian and Cauchy
kernels. Figure 8.11b shows the convergence of weights from different initial
conditions to 0.5 radians (π/2), because the Gaussian distribution has the
largest entropy among distributions of fixed variance [16].

There is a main conclusion from this entropy study that we would like to
address. In fact, Hebbian MaxEnt learning adapts the weights (synapses) with
information forces, and therefore the adaptive system (neural assemblies) is
manipulating entropy, which from the point of information processing esti-
mates the uncertainty in the data. As with any mathematical theory, training
a linear network with an algorithm that estimates the entropy gradient, pre-
dictions can be made. In order to study the realism of Eq. (8.36) to model
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Fig. 8.11. (a) Entropy vs. direction for the Gaussian and Cauchy kernels, respec-
tively, on a trained system; (b) convergence from different initial conditions for both
kernels. (from [89]).
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neuronal interactions in the brain, experiments can be set up to see if in
fact synaptic strength is only dependent upon the level of excitability of the
neuron or if, as the formula predicts, the efficacy of the synapse is also mod-
ulated by past action potentials. If this prediction is correct, then we have a
very gratifying result that increases even further our admiration for biological
processes.

MaxEnt for Nonlinear Networks and Arbitrary Distributions

Another useful maximum entropy cost characteristic is that it can be easily
integrated with nonlinear networks as was demonstrated in Chapters 5 and 6
(MEE-BP). This opens the door for many applications in nonlinear signal
processing.

From PCA to Principal Curves

As is well known, the direction of the Adaline weights describes the direction of
a hyperplane that in the case of correlation learning defines the first principal
component of the input data. The Adaline weights trained with entropy define
the direction that maximizes entropy, which in general is different (except if
the data are Gaussian distributed).

What happens now if instead of a linear system, we use a nonlinear system
such as a MLP and train it to maximize entropy? The flexibility of the new
architecture is able to find curves, not necessarily straight lines that maxi-
mize entropy. In particular if the data are multimodal, this may much better
represent the manifold that contains the data. We begin with the simple case
of a two-dimensional Gaussian distribution with zero mean and a covariance
matrix given by:

Σ =
[
1 0
0 0.1

]

.

The contour plot of this distribution is shown in Figure 8.12 along with the
image of the first principal component vector superimposed (left panel). We
see from the figure that the first principal component lies along the x-axis.
We draw a set of observations (50 in this case) from this distribution and
compute a mapping using an MLP with the entropy maximizing criterion
described in the previous section. The architecture of the MLP is 2, 4, 1
indicating 2 input nodes, 4 hidden nodes, and 1 output node. The nonlinearity
used is the hyperbolic tangent function. Backpropagation of information forces
was utilized (see Section 5.2) with minimization of V (y). The learning and
annealing rates and the kernel size (σ = 0.5) were experimentally determined.

The network has the capability to nonlinearly transform the two-
dimensional input space onto a one-dimensional output space. The plot
at the right of Figure 8.12 shows the image of the maximum entropy mapping
onto the input space. From the contours of this mapping we see that the
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Fig. 8.12. Variance versus entropy, Gaussian case: left image PCA features shown
as contours of constant power; right, entropy mapping shown as contours of constant
entropy. (from [253]).

maximum entropy mapping lies essentially in the same direction as the first
principal components. This result is expected, inasmuch as it illustrates that
when the Gaussian assumption is supported by the data, maximum entropy
and PCA are equivalent. This result has been reported by many researchers.

We conduct another experiment to illustrate the difference when obser-
vations are drawn from a random source whose underlying distribution is
not Gaussian. Specifically the PDF is a mixture of Gaussian modes f(x) =
1/2(G(m1,Σ1) +G(m2,Σ2)) where G(m,Σ) are Gaussian distributions with
mean and covariance

m1 =
[−1.0
−1.0

]

Σ1 =
[
1 0
0 0.1

]

m2 =
[
1.0
1.0

]

Σ2 =
[
0.1 0
0 1

]

.

In this specific case it can be shown that the principal components of this
distribution are the eigenvectors of the matrix

R =
1
2

(
Σ1 + m1mT

1 + Σ2 + m2mT
2

)
=

[
0.62 1
1 0.62

]

.

We draw the same 50 samples from these distributions and train the same
MLP (2,4,1) with backpropagation to maximize entropy. The contour plot
(curves of equal variance) computed with PCA are shown in the left panel of
Figure 8.13.

The right panel shows the contours in the input space of constant output
entropy for the network trained to maximize entropy. As can be observed, the
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Fig. 8.13. Variance versus entropy, non-Gaussian case: left, image of PCA shown as
contours of equal power; right, entropy mapping shown as contours of equal entropy
(σ = 0.5) (from [253]).

maximum entropy mapping is more tuned to the structure of the data, but
training the network is rather difficult because there is a strong local mini-
mum corresponding to the linear solution. Notice also that the contours of
constant entropy over the data basically follow the orthogonal directions of
maximum sample density, which is compatible with the concept of principal
curves [96]. This experiment helps to illustrate the differences between PCA
and entropy mappings. PCA is primarily concerned with finding the covari-
ance eigen directions and is only sensitive to second-order statistics of the
underlying data, whereas entropy better explores the structure of the data
class. To verify how close the solution provided by the MLP trained with
SIG is to the optimal solution (flat distribution because the range of y is
finite), Figure 8.14 shows the output histogram obtained with a representa-
tive initial condition for the network. Although the output distribution is not
perfectly flat, it is a reasonable approximation given the small size of the
dataset.

Blind Deconvolution in Communication Channels

Another practical application of ITL in self-organization is the minimization of
output entropy in communication channels. At first this may seem a paradox
to train a system to minimize entropy, inasmuch as it drives the system out-
put towards a single value (for discrete random variables). However, when the
system is nonautonomous (i.e., when the input is permanently applied such as
a communication receiver), this criterion is useful to counteract the Gaussian-
ization effects of the channel on the transmitted message. Suppose we have
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Fig. 8.14. Initial and final output distribution and corresponding feature directions
in the input space (from [252]).

the result of the convolution of two discrete-time sequences sn and hn, and let
this new sequence be denoted by xn (i.e., xn = hn

∗sn). In a realistic context,
these two sequences could be the input signal to a linear time-invariant (LTI)
channel and the channel impulse response. Assuming the channel is linear and
has memory, the convolution will skew the input density towards the Gaussian
(by the law of large numbers), which happens to be the distribution that has
the largest entropy for a fixed variance. Therefore, minimizing the entropy of
the output will “undo” the effect of the channel in the messages, as pointed
out in [77]. Let us then see how this procedure can be implemented with ITL
algorithms.

Suppose that we have the output measurements xn, but know neither the
channel’s impulse response nor the input sequence. In the classical literature,
the problem of determining the input sequence using only this given informa-
tion (up to an uncertainty in the sign, amplitude, and the delay) is referred to
as blind deconvolution (BD).

Typically, BD is represented by the block diagram given in Figure 8.15.
Usually the equalizer wn is parameterized as an FIR filter and a suitable
criterion is determined depending on assumptions of the input signal statistics.
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sn
hn

xn
wn

yn

Criterion

Fig. 8.15. Typical blind deconvolution/equalization scheme (hn and sn are
unknown).

Although in reality the measurement samples xn may be corrupted by additive
noise, this is not considered in our simulations.

There are mainly two approaches that make use of entropy as the adapta-
tion criterion: (1) minimum entropy deconvolution (mED) and (2) maximum
entropy deconvolution (MED). MED requires that an estimate of the input
signal density be known, from which a nonlinearity created with its cumu-
lative density function can be created, and Bell and Sejnowski method (or
equivalent) implemented. In mED these assumptions are not necessary, so
it is “truly blind.” Both approaches assume that the samples sn are i.i.d,
and the equalizer structure is chosen such that it can successfully (even if
approximately) invert the channel filter. Here we only address mED and ap-
ply it at the output of the receiver. Due to the Benveniste–Goursat–Ruget
theorem [33], the entropy of the output of the equalizer is minimized if and
only if the overall filter, hn∗ wn, is an impulse (with arbitrary delay and
scale). The main intuition is that, as the overall filter departs from an im-
pulse, the output distribution approaches a Gaussian density due to the
addition of random variables in the filter delay line under the assumption
that the input is well modeled by a white random process. It is known that
under fixed variance, the Gaussian density has the maximum entropy and
thus minimizing entropy under a fixed variance constraint maximizes non-
Gaussianity.

In mED the scale factor is an indeterminancy, and in fact there are in-
finitely many solutions for the optimal weight vector. Normally one imposes
a constant variance constraint, that is, by constraining the weight vector to
be unit norm at all times. There are two ways to achieve this: normalize the
weight vector after each weight update (as Oja’s rule for PCA, e.g.) [233],
which is not pursued here because it is more complex in an adaptation sce-
nario. A second approach is to use a scale invariant cost function, so that the
performance evaluations of two weight vectors that are colinear but different
in norm and sign yield the same value, thus none will be preferred over the
other. The entropic cost functions developed in Chapters 3 and 4 do not obey
this condition, so they need to be modified.



8.9 Self-Organizing Principles with ITL Estimators 337

Minimum Entropy Deconvolution Using Renyi’s Entropy

As an initial step, consider the following theorem, which gives the relationship
between the entropies of linearly combined random variables.

Theorem 8.3. Let S1 and S2 be two independent random variables with
PDFs pS1(.) and pS2(.), respectively. Let Hα(.) denote the order-α Renyi’s en-
tropy for a continuous random variable. If a1 and a2 are two real coefficients
Y = a1S1 + a2S2, then

Hα(Y ) ≥ Hα(Si) + log |ai| , i = 1, 2. (8.37)

Proof. Because S1 and S2 are independent, the PDF of Y is given by

pY (y) =
1
|a1|pS1(y/a1) ∗ 1

|a2|pS2(y/a2). (8.38)

Recall the definition of Renyi’s entropy for Y and consider the following
identity.

e(1−α)Hα(Y ) =

∞∫

−∞
pαY (y)dy

=

∞∫

−∞

⎡

⎣
∞∫

−∞

1
|a1a2|pS1

(
τ

a1

)

pS2

(
y − τ
a2

)

dτ

⎤

⎦ dy (8.39)

Using Jensen’s inequality for convex and concave cases, we get

e(1−α)Hα(Y )

α>1
≤

≥
α<1

∞∫

−∞

⎡

⎣
∞∫

−∞

1
|a1|pS1

(
τ

a1

) [
1
|a2|pS2

(
y − τ
a2

)]α
dτ

⎤

⎦ dy

=

∞∫

−∞

1
|a1|pS1

(
τ

a1

)
⎡

⎣
∞∫

−∞

[
1
|a2|pS2

(
y − τ
a2

)]α
dy

⎤

⎦ dτ

=

∞∫

−∞

1
|a1|pS1

(
τ

a1

)

Vα(a2S2)dτ

= Vα(a2S2) ·
∞∫

−∞

1
|a1|pS1

(
τ

a1

)

dτ = Vα(a2S2) (8.40)

Rearranging terms in the last inequality and using the relationship between
entropy and information potential, regardless of the value of α and the di-
rection of the inequality, we arrive at the conclusion Hα(Y ) ≥ Hα(Si) +
log |ai| , i = 1,2. An immediate extension of this theorem is obtained by in-
creasing the number of random variables in the linear combination to n.
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Corollary 8.2. If Y = a1S1 + · · · + anSn, with i.i.d. Si ∼ pS(.), then the
following inequality holds for the entropies of S and Y.

Hα(Y ) ≥ Hα(S) +
1
n

log |a1...an| , (8.41)

where equality occurs iff ai = δij , where δ denotes the Kronecker-delta
function.

Proof. It is trivial to generalize the result in Theorem 8.3 to n random vari-
ables using mathematical induction. Thus, for the case where all n random
variables are identically distributed we get n inequalities.

Hα(Y ) ≥ Hα(S) + log |a1|
Hα(Y ) ≥ Hα(S) + log |a2|

...
Hα(Y ) ≥ Hα(S) + log |an| (8.42)

Adding these inequalities, we get the desired result. The necessary and suffi-
cient condition for the equality of entropies is obvious from the formulation.
If ai = δij , then Y = S; therefore the entropies are equal. If ai 	= δij , then
due to Theorem 8.3, entropy of Y is greater than the entropy of S (assuming
normalized coefficients). Notice that this corollary does not necessarily guar-
antee that the overall entropy of Y is greater than the entropy of S, because
when the absolute value of the product of the gains is less than one, the log-
arithm brings in a negative component. Through complicated algebra, which
we omit here, we are able to show that in the vicinity of a combination where
only one of the gains is close to one and all the others are close to zero, these
terms lose their significance and the inequality is mostly dominated by the
two entropy terms.

Notice that the blind deconvolution problem is structurally very similar to
the situation presented in the above corollary. The coefficients ai of the linear
combination are replaced by the impulse response coefficients of the overall
filter hn∗wn. In addition, the random variables S and Y are replaced by
the source signal and the deconvolving filter (equalizer) output, respectively.
Especially, when close to the ideal solution, that is, when hn∗wn is close to an
impulse, the second term in Corollary 8.1 will approach rapidly to zero and
the two entropy values will converge as the two signals Y and S converge to
each other. With this understanding, we are ready to go back to the blind
deconvolution cost function.

Renyi’s Entropy Implementation

The entropy of a random variable is not scale invariant. In order to solve the
blind deconvolution problem using unconstrained optimization techniques and
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without having to normalize the weights at every iteration, the original EEC
criterion of Chapter 3 must be modified by introducing appropriate terms to
make it scale-invariant. For this purpose, consider the following modified cost
function.

Property 8.1. The modified EEC cost function is scaled-invariant

J(Y ) = Hα(Y )− 1
2

log [Var(Y )] (8.43)

that is, J(aY ) = J(Y ), ∀a ∈ R.

Proof. It is trivial to show by a simple change of variables in the integral that
for Renyi’s entropy (as for Shannon’s entropy), we have the following identity
between the entropies of two scaled random variables,

Hα(aY ) = Hα(Y ) + log |a| , (8.44)

where we can replace log |a| with 1/2 log a2. We also know that for variance

Var(aY ) = a2Var(Y ). (8.45)

Combining these two identities, the terms with a cancel out and we get the de-
sired result. In practice, the information potential replaces the actual entropy
expression in the cost function given in Eq. (8.43). The sample variance esti-
mators already satisfy the scaling property of the variance given in Eq. (8.45),
however, we saw in Chapter 2 that in order for the entropy estimator to sat-
isfy the scaling property of entropy given in Eq. (8.44), the kernel size needs
to be scaled up by the same ratio as the scaling of the norm of the weight
vector. Therefore, a kernel size that yields a unit norm weight vector is se-
lected and the weight vector initialized to unit norm. During the course of
adaptation, the kernel size is scale up/down according to the new norm of the
weight vector.

Practically, because the deconvolving filter wn is a causal FIR filter, after
the addition of a sufficiently long delay line (length L) due to the nonminimum
phase situation, one can express its output as a linear combination of the input
samples at consecutive time steps as yk = wT xk where the weight vector
w = [w0, . . . , w2M ]T consists of the FIR impulse response coefficients and
Xk = [xk, . . . , xk−2M ]T consists of the most recent values of the input signal to
the filter. As for the variance term in Eq. (8.44), under the assumption that
the source signal is zero-mean and stationary, the unknown channel is linear
time-invariant, we can write

Var(Y ) = Var(X) ·
2M∑

i=0

w2
i (8.46)

Substituting Eqs. (2.18) and (8.46) in Eq. (8.43), we get the nonparametric
estimate of the cost function as
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Ĵ(w) =
1

1− α log
1
Nα

N∑

j=1

(
N∑

i=1

κσ(yj − yi)
)α−1

− 1
2

log
M∑

i=0

w2
i . (8.47)

where Var(X) dropped out because it does not depend on the weights of the
adaptive filter. Now, the gradient of the EEC scale invariant cost function in
Eq. (8.47) with respect to the weight vector is obtained as

∂Ĵ

∂w
= −

N∑

j=1

(
N∑

i=1

κσ(yj − yi)
)α−2 (

N∑

i=1

κ′σ(yj − yi)(xTj − xTi )
)

N∑

j=1

(
N∑

i=1

κσ(yj − yi)
)α−1 − wT

wTw
,

(8.48)
where κ′σ(.) is the derivative of the kernel function with respect to its argu-
ment. Given N samples of Xk, the adaptive filter may be trained to converge
to the inverse of the channel. Choosing a sufficiently small window length of
N samples (depending on the computational requirements), which may be
sliding or nonoverlapping, it is possible to estimate the source signal online.
As for the optimization techniques that can be applied to obtain the optimal
solution, simple gradient descent, conjugate-gradient, Levenberg–Marquardt,
or other approaches may be taken as explained in Chapter 5. If the kernel
size is chosen sufficiently large (usually, a kernel width that covers about ten
samples on the average yields good results), then the performance surface is
reasonably simple to search as demonstrated with numerous simulations [93].

Blind Deconvolution Case Study

In order to test the performance of the proposed blind deconvolution algo-
rithm, we performed a series of Monte Carlo runs using different entropy
orders and batch-sizes. In the MonteCarlo runs, a random minimum-phase
15-tap FIR filter is chosen for the unknown channel impulse response, and
the length of the deconvolving filter is set to that of the ideal inverse filter.
For various values of N and α, 100 random-choice (both for Cauchy dis-
tributed data samples and deconvolver initial weights) simulations are run
for each combination of (N, α). The signal to interference ratio (SIR) of a
single run is defined as the average of the SIR values of the last 100 iterations
after convergence of that simulation (because due to the constant stepsize,
the performance rattles slightly after convergence). The SIR value at a given
iteration is computed as the ratio of the power of the maximum component
of the overall filter to the power of the other components; that is, if we let
an = hn

∗ wn be the overall filter where wn is the current estimate of the
deconvolving filter, we evaluate

SIR = 10 log10

[max(ai)]2∑

i

a2
i − [max(ai)]2

. (8.49)
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Note that under the assumption of wide sense stationary source signals,
the power of the observed signal is time-invariant; therefore, the overall filter
weights can equivalently be used to determine the signal-to-interference ratio.
Regardless of the entropy order and batch size, an average deconvolution
performance above 20 dB was attained [93]. As expected, with increased batch
size, the SIR improved, although slightly. In addition, convergence was mostly
achieved within 60 to 70 iterations (note that this number depends on the
stepsize selected in the gradient descent algorithm), which makes this method
potential interesting for practical applications.

Blind Source Separation Using ITL

In the ICA literature, minimization of the mutual information between out-
puts (estimated source signals) is considered to be the natural information-
theoretic “contrast function” which is the cost function in our terminology
[47]. In spite of this understanding, two of the most well-known methods
for ICA, (i.e., Bell and Sejnowski’s algorithm [26], and Hyvarinen’s FastICA
[155]) use respectively the maximization of joint output entropy and negen-
tropy. One difficulty in using Shannon’s MI is the estimation of the marginal
entropies. In order to estimate the marginal entropy, Comon and others ap-
proximate the output marginal PDFs with truncated polynomial expansions
[62], which naturally introduces error in the estimation procedure for densities
far from the Gaussian. There are also parametric approaches to BSS, where
the designer assumes a specific parametric model for the source distributions
based on previous knowledge of the problem [59].

ITL algorithms are a natural fit for ICA because they manipulate either
entropy or mutual information directly from data; that is, they are obvious
competitors of the most widely applied algorithms utilized in the literature.
We present below a review of three algorithms based on the maximization of
the demixer joint output entropy, minimization of mutual information at the
output of the demixer, and minimization of the sum of marginal entropies,
however only the latter has been properly evaluated.

Maximization of Output Entropy

Instead of using the Bell and Sejnowski learning rule in Eq. (8.17), Renyi’s
quadratic entropy can implement the maximum entropy idea using a linear
demixing network trained to maximize output entropy. We have used the MEE
algorithm Eq. (3.16) to train the network to minimize the output information
potential and the results in the data from the TIMIT database showed that
this algorithm achieves similar signal-to-distortion ratio (SDR) to the Bell and
Sejnowski algorithm (slightly higher if one of the sources is sub-Gaussian), and
it is as simple to implement [251]. However, this method does not guarantee
that only one source appears in each channel because the sum of marginal
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entropies is used as the cost. Because it is difficult to measure effective sepa-
ration of sources, for synthetic mixtures SDR is normally utilized and it is a
slight modification of Eq. (8.49) defined as

SDR =
1
n

n∑

i=1

10 log10

(
(max qi)2

qiqTi − (max qi)2

)

, (8.50)

where Q = RWH is the overall processing matrix and qi is the ith row of Q.
This criterion effectively measures the distance of Q from an identity matrix,
it is invariant to permutations and scaling, and it is a reasonable quality
measure for source separation (apart from giving wrongly high values when
two sources appear in the same channel, which is obviously detrimental, but
most of the current algorithms avoid this condition).

Minimization of Quadratic Mutual Information

The algorithm proposed by Xu et al. [339] avoids the polynomial expansion to
approximate the marginal PDFs by using the nonparametric Parzen window-
ing with Gaussian kernels to estimate directly QMIED or QMICS at the output
of the mapper as described in Chapter 2. Unfortunately, this method requires
estimation of the joint output entropy, which is computationally expensive for
many sources and requires in principle many samples for robust performance.
Based on the generalized IP (GIP) criterion of Chapter 2, the demixing prob-
lem can be restated as finding a projection W , so that the GIP created by
QMI is minimized. The advantage of the approach is that it can be applied to
any linear or nonlinear demixing networks, because it is formulated as a cost
function. As we have seen in Chapter 2, each of the terms in Eq. (2.104) can
be computed with the information potential and so a nonparametric estima-
tion of mutual information is achieved. Moreover multidimensional extensions
have also been derived (see Eq. (2.105)).

One of the tests of this algorithm employed two speech signals from the
TIMIT database as source signals. The mixing matrix is [1, 3.5; 0.8, 2.6]
where two mixing directions [1, 3.5] and [0.8, 2.6] are similar. Whitening is
first performed as a preprocessing stage. An online implementation is tried in
this experiment, in which a short time window (200 samples) slides over the
speech data (e.g., 10 samples/step). In each window position, the speech data
within the window is used to calculate the GIP and the information forces are
back-propagated using batch learning to adjust the demixing matrix. As the
window slides at 10 samples/step the demixing matrix keeps being updated.
The training curve (SDR vs. sliding index) is shown in Figure 8.16, which
tells us that the method converges within 8000 samples of speech (0.5 sec) and
achieves an SDR approaching 49.15dB, which is comparable to other methods
for this mixing condition [339]. The appeal of the method is its ability to track
slowly varying mixing matrices (within 0.25 sec the demixing parameters are
already close to their final positions). QMICS can also be used and similar
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Fig. 8.16. Training curve for BSS of two speech signals using a linear demixing
network trained with QMI. Notice how quickly the SDR converges. SDR (dB) versus
Iterations (from [252]).

results have been obtained. We experimentally verified that the result is not
very sensitive to the kernel size in the cross-information potential estimation
(a very large range of the kernel size will work, e.g., from 0.01 to 10).

Although the disadvantage of this method is the need to estimate the joint
density to evaluate the mutual information that limits its applications to a
small number of mixtures, the method efficiently uses the data (it can track
changes in the demixing matrix) and can be immediately extended to non-
linear mixtures by substituting the demixing system with an MLP. We have
also verified experimentally that it is not necessary to have a good estimation
of the joint entropy to obtain good separation performance, therefore QMI is
a practical ICA algorithm for small number of sources.

Minimization of Renyi’s Mutual Information (MRMI)

The last algorithm for ICA to be reviewed here avoids the estimation of the
joint PDF and was experimentally proven superior to many commonly ac-
cepted methods in extensive tests, in the sense that it requires fewer data to
achieve the same performance level [148]. This algorithm works on whitened
observations and uses only the sum of marginal Renyi’s entropies estimated
with the information potential.

It is well known that an instantaneous linear mixture can be separated
by a spatial whitening (sphering) block followed by a pure rotation in N
dimensions [62]. In fact, in general, for all BSS algorithms prewhitening is
suggested to increase convergence speed [26]. The minimization of Renyi’s
mutual information (MRMI) algorithm already used in Chapter 6 for feature
extraction, but for ICA we minimize Renyi’s mutual information.
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In this approach, the spatial (pre-) whitening matrix is evaluated from
the observed data: W = QΛ−1/2, where Q is the matrix of eigenvectors of
the covariance matrix of the observations, and Λ is the corresponding eigen-
value matrix. Applying this transformation on the samples of the observation
vector, x = Wz, we obtain the whitened samples x. The rotation matrix that
follows this whitening procedure is adapted according to a Renyi’s inspired
cost function to produce the outputs y = R(θ)x. Here, θ denotes the set
of Givens rotation angles that are used to parameterize the rotation matrix
[148]. Now recall the following identity [148] that holds for an N -dimensional
random vector y and its marginals yo, which relates the mutual information
between the components of the random variable to the marginal entropies of
these components and the joint entropy

IS(Y ) =
N∑

o=1

HS(Yo)−HS(Y ). (8.51)

The same equality is not valid for Renyi’s definitions of these quantities be-
cause Renyi’s entropy lacks the recursivity property of Shannon’s entropy, as
was already stated in Chapter 6 for feature extraction. We show experimen-
tally that a slightly modified Renyi’s mutual information expression with the
basic form of Eq. (8.51), given by

N∑

o=1

Hα(yo)−Hα(y) =
1

α− 1
log

∞∫

−∞
pY (y)αdy

∞∫

−∞

n∏

o=1

pY o(yo)αdy

(8.52)

still can be used as a cost function in ICA with good results in many cases,
provided we know or estimate the kurtosis of each source. Although Eq. (8.52)
is not Renyi’s mutual information, at the separating solution the criterion is
guaranteed to be zero (the separating solution corresponds to letting the joint
density, which is the integrand in the numerator, be equal to the product
of marginal densities, which is the integrand in the denominator). But the
converse does not hold (i.e., a value of zero does not imply independence, and
when the sources are sub-Gaussians or have mixed kurtosis, small negative
values of the cost are possible; see [150]).

Because only the rotation matrix in the separating topology is a function
of the network parameters and Renyi’s joint entropy is invariant to rotations
(see Property 2.5), we can remove it and reduce the cost function to Eq. (8.53)
which mimics the cost functions of Comon [62] with Renyi’s entropy substi-
tuted for Shannon’s,

J(θ) =
M∑

o=1

Hα(Yo) (8.53)



8.9 Self-Organizing Principles with ITL Estimators 345

We [150] and Pham, et al. [246] showed that Eq. (8.53) is not a valid
contrast for ICA in all cases, but we have also experimentally shown in [150]
that it is possible to obtain separation results comparable to or better than
other ICA methods with a slight modification to Eq. (8.53) when the sign of
the kurtosis of the sources is taken into consideration as

Jα(θ) =
M∑

o=1

Hα(Yo)sign
(
E

[
Y 4
o − 3Y 2

o

])
α ≥ 0, α 	= 1 , (8.54)

which is an extra calculation but can be readily done (for each value of α,
the kernel size parameter must be chosen appropriately; see [150]). In order
to estimate the marginal entropies of each output yo, we use the information
potential for α = 2 and the SIG, yielding the cost function

Ĵ2(θ) = −
M∑

o=1

sign

(
N∑

k=1

(y4
o(k)− 3y2

o(k))

)

log
1
N

N∑

k=1

Gσ
√

2(yo(k)− yo(k − 1))

(8.55)
The Givens rotation parameter vector θ consists ofM(M−1)/2 parameters

θij , j > i, where each parameter represents the amount of Givens rotation in
the corresponding i − j plane. The overall rotation matrix is the product of
the individual in-plane rotation matrices

R(θ) =
M−1∏

i=1

M∏

j=i+1

Rij(θij). (8.56)

In Eq. (8.56), all products are performed sequentially from the right (or left).
The important point is to perform these operations in the same order and from
the same side when evaluating the gradient expression. The Givens rotation in
the i− j plane is defined as an identity matrix whose (i, i)th, (i, j)th, (j, i)th,
and (j, j)th entries, as in a rotation in two dimensions, are modified to read
cos θij , − sin θij , sin θij , and cos θij , respectively.

The MRMI Algorithm

The batch mode adaptation algorithm for the rotation matrix, which is pa-
rameterized in terms of Givens rotations, can be summarized as follows.

1. Whiten the observations {z1, . . . , zN} using W to produce the samples
{x1, . . . , xN}.

2. Initialize (randomly) the Givens rotation angles θij , i = 1, . . . , n− 1, j =
i+ 1, . . . , n.

3. Compute the rotation matrix using Eq. (8.56) and evaluate the output
samples.

4. Until the algorithm converges repeat the following steepest descent
procedure.
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a. Evaluate the gradient of the cost function J(θ) =
∑M
o=1 Ĥα(Yo), using

∂J

∂θij
=

M∑

o=1

∂Ĥα(Yo)
∂θij

=
M∑

o=1

1
1− α

∂V̂α(Yo)/∂θij
V̂α(Yo)

, (8.57)

where the information force ∂V̂α/∂yo is estimated by Eq. (2.69) and

yo,j = Roxj , o = 1, ...,M, j = 1, ...,N

∂yo,j
∂θij

=
∂Ro

∂θij
xj =

(
∂R
∂θij

)o
xj (8.58)

∂R
∂θij

=

(
i−1∏

p=1

M∏

q=p+1

Rpq

) ⎛

⎝
j−1∏

q=i

Riq

⎞

⎠

×R′
ij

⎛

⎝
M∏

q=j+1

Riq

⎞

⎠

⎛

⎝
M−1∏

p=i+1

M∏

q=p+1

Rpq

⎞

⎠ , (8.59)

where for any matrix A, Ao denotes the oth row of that matrix
and R′

ij denotes the derivative of the specific Givens rotation matrix
(in the i, j plane) with respect to its parameter θij .

b. Evaluate the sign of the sum of kurtosis (K), and update the Givens
angles using

θij ← θij − η sign(K)
∂J

∂θij
. (8.60)

The algorithm above is for the separation of real-valued signals from real-
valued mixtures. In order to generalize it to the case of complex-valued mix-
tures, the Givens matrices must be modified by incorporating imaginary parts
to the rotation angles to account for rotations in the imaginary portions of
the complex-valued vector space.

Simulations for Batch MRMI

The whitening-rotation scheme has a very significant advantage. We observed
experimentally that when this topology is used with a large number of samples,
appropriately selected α, and generalized Gaussian source distributions, there
are no local minima of the cost function. Consider a two-source separation
problem, for instance. The rotation matrix consists of a single parameter,
which can assume values in the interval [0, 2π). As far as separation is con-
cerned, there are four equivalent solutions, which correspond to two permu-
tations of the sources and the two possible signs for each source. The value
of the cost function is periodic with π/2 over the scalar rotation angle θ, and
most often is a very smooth function (sinusoidal like), which is easy to search
using descent-based numerical optimization techniques.
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There are approximations in deriving Eq. (8.53), therefore we run numer-
ous simulations using different α and smooth kernels on synthetic and audio
data instantaneous mixtures [148]. We first start with an investigation of the
effect of α on the separation of instantaneous mixtures, when the source kur-
tosis values span the range of super- and sub-Gaussian signals. In search of
the answer to this question, a series of Monte Carlo simulations is performed
(ten for each), using source distributions of different kurtosis values. In all
these simulations, the two sources are assumed to have the same generalized
Gaussian density, which is given by Gυ(x) = C · exp(− |x|υ /(υE[|x|υ]). The
parameter υ controls the kurtosis of the density and this family includes dis-
tributions ranging from Laplacian (υ = 1) to uniform (υ → ∞). Gaussian
distribution is a special case corresponding to (υ = 2), which leads to the
classification of densities as super-Gaussian and sub-Gaussian for (υ < 2) and
(υ > 2), respectively. For a given kurtosis value the training dataset is gen-
erated from the corresponding generalized Gaussian density and a random
mixing matrix is selected. Then the separation is performed using various en-
tropy orders (tracing the interval from 1.2 to 8 in steps of 0.4) and Gaussian
kernels. The Gaussian kernel size was set at 0.25, and the adaptation using
MRMI was run until a convergence of the SDR within a 0.1 dB band was
achieved (although in practice this cannot be used as the stopping criterion),
which usually occurred in less than 50 iterations with a stepsize of 0.2.

According to these simulations, the optimal entropy orders for the corre-
sponding kurtosis value of the source densities are determined and are pre-
sented in Table 8.2. These results indicate that, for super-Gaussian sources,
entropy orders greater than or equal to 2 should be preferred, whereas for
sub-Gaussian sources, entropy orders smaller than 2, perhaps closer to 1 or
even smaller than 1, should be preferred.

These results are in conformity to our expectations from the analysis of the
information forces in Chapter 2. As we saw in that analysis, entropy orders
larger than two emphasize samples in concentrated regions of data, whereas
smaller orders emphasize the samples in sparse regions of data. If the mixtures
belong to different kurtosis classes, then the quadratic entropy can be used as
it puts equal emphasis on all data points regardless of their probability density.
This effect is very different from some of the available algorithms where the

Table 8.2. Optimal Entropy Order Versus Source Density Kurtosis (From [150])

Kurtosis of Sources Optimal Entropy Order α

0.8 (υ = 1) 6.4
Super-Gaussian Sources 0.5 (υ = 1.2) 5.2

0.2 (υ = 1.5) 2

−0.8 (υ = 4) 1.2
Sub-Gaussian Sources −0.9 (υ = 5) 1.6

−1.0 (υ = 6) 1.2
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Fig. 8.17. SIR versus amount of data for the MRMI algorithm, Infomax, FICA,
JADE, and MSM, for the separation of five audio sources (from [148]).

BSS algorithms diverge if the source kurtosis is misestimated [26]. Another
interesting aspect of this simulation is that it seems to imply that the Shannon
information definition (α→ 1) is not particularly useful for separating super-
Gaussian sources, although it might be useful for sub-Gaussian sources [150].

The next question addresses the performance of MRMI-SIG for a realistic
source such as speech. Figure 8.17 depicts the SDR plots for the MRMI-SIG
algorithm with α = 2 and Gaussian kernels, the FastICA (FICA) [155] with
the symmetric approach and cubic nonlinearity, Infomax [26] with Amari,
Cichocki, and Yang’s natural gradient [5], and Comon’s minimization of mu-
tual information (MMI) using an instantaneous mixture of five audio sources
[150]. The sources for each Monte Carlo trial were randomly drawn from one
music piece, four female and five male speakers. Spatial prewhitening was used
for each method, and the mixing matrix entries were chosen from a uniform
density on [−1, 1]. The numbers in parentheses are the number of data sam-
ples used to train each algorithm. It is clearly seen from the figure that the
MRMI-SIG method achieves better performance for a given amount of input
data. The improved data efficiency of the MRMI-SIG method is discussed and
shown in greater detail by Hild, et al. [150].

The MRMI-SIG method converges in fewer iterations than the others with
a similar or lower computational complexity per update (O(N)) than the
other five methods. In the separation of temporally correlated sources such as
speech, the MRMI-SIG shows a consistently better performance with respect
to the Shannon entropy method (MSMI) implemented with kernel estimators,
which become O(N2).
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8.10 Conclusions

This chapter addresses algorithms for self-organization utilizing information
theoretic concepts. The appeal of information theory stems from the ability
of its descriptors (entropy and mutual information) to quantify the structure
of the data. The appeal of self-organizing principles for unsupervised learning
is that they provide “cost functions” that can be searched. The disadvan-
tage is that most of the paradigms discovered thus far are still very much
influenced by the ideas of information theory in a communication scenario,
utilizing mutual information to quantify either channel capacity or rate dis-
tortion scenarios. We believe that there are many other information-theoretic
principles for unsupervised and supervised learning to be discovered. We ad-
vance a novel principle, the principle of relevant information, which is able
to create from a single cost function algorithms for all of the most commonly
used applications of unsupervised learning (i.e., clustering, principal curves,
and vector quantization). This principle generates automatically hierarchical
features from the data, in fact searching a two-parameter space of a varia-
tional parameter and the kernel size. This can be very useful in particular if
the learning machine has access to the operating point and can search mean-
ingfully this space according to goals.

The other important aspect that this chapter discusses is the utility of
the ITL nonparametric estimators of entropy and divergence to free the self-
organizing principle of Infomax and I-Max from the conventional assumptions
of linearity and Gaussianity that still permeate their application to real data.
We have shown that simple algorithms to maximize output entropy resemble
correlation learning (specifically the Hebbian rule), but they are more powerful
than correlation learning as can be expected. In fact we showed that the
eigendirections of PCA become curves that tend to pass through the data
clusters. A practical application of minimization of entropy to blindly equalize
a communication system was also presented.

Towards the end of the chapter we showed that the ITL cost function
can be used for blind source separation, exploring not only the statistical but
also the temporal characteristics of the data (when they posses time structure)
when the stochastic gradient update is selected. The only algorithm’s that un-
derwent sufficient testing in BSS are the MRMI and MRMI-SIG algorithms.
They utilize the data very efficiently (i.e., achieve high SDR with small num-
ber of samples), which shows that they are quantifying higher-order statistics
of the data better than the current methods. The MRMI-SIG is the core com-
ponent of a fetal heart rate monitoring system [213] currently being developed
for commercial use.
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A Reproducing Kernel Hilbert Space
Framework for ITL

Jianwu Xu, Robert Jenssen, Antonio Paiva, and Il Park

9.1 Introduction

During the last decade, research on Mercer kernel-based learning algorithms
has flourished [226,289,294]. These algorithms include, for example, the sup-
port vector machine (SVM) [63], kernel principal component analysis (KPCA)
[289], and kernel Fisher discriminant analysis (KFDA) [219]. The common
property of these methods is that they operate linearly, as they are explic-
itly expressed in terms of inner products in a transformed data space that
is a reproducing kernel Hilbert space (RKHS). Most often they correspond
to nonlinear operators in the data space, and they are still relatively easy
to compute using the so-called “kernel-trick”. The kernel trick is no trick at
all; it refers to a property of the RKHS that enables the computation of inner
products in a potentially infinite-dimensional feature space, by a simple kernel
evaluation in the input space. As we may expect, this is a computational sav-
ing step that is one of the big appeals of RKHS. At first glance one may even
think that it defeats the “no free lunch theorem” (get something for nothing),
but the fact of the matter is that the price of RKHS is the need for regulariza-
tion and in the memory requirements as they are memory-intensive methods.
Kernel-based methods (sometimes also called Mercer kernel methods) have
been applied successfully in several applications, such as pattern and object
recognition [194], time series prediction [225], and DNA and protein analysis
[350], to name just a few.

Kernel-based methods rely on the assumption that projection to the high-
dimensional feature space simplifies data handling as suggested by Cover’s
theorem, who showed that the probability of shattering data (i.e., separating
it exactly by a hyperplane) approaches one with a linear increase in space
dimension [64]. In the case of the SVM, the assumption is that data classes
become linearly separable, and therefore a separating hyperplane is sufficient
for perfect classification. In practice, one cannot know for sure if this assump-
tion holds. In fact, one has to hope that the user chooses a kernel (and its free

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 351
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parameter) that shatters the data, and because this is improbable, the need
to include the slack variable arises. The innovation of SVMs is exactly on how
to train the classifiers with the principle of structural risk minimization [323].

ITL emerged independently of the research on Mercer kernel-based learn-
ing algorithms. In information-theoretic learning, the starting point is a
dataset that globally conveys information about a real-world event. The goal is
to capture the information in the parameters of a learning machine, using some
information theoretic performance criterion. As we have seen, information-
theoretic criteria are expressed as integrals over functions of probability
densities. As a simplifying factor, ITL estimates the α-norm of the PDF di-
rectly from data, without an explicit PDF estimation. Moreover, information-
theoretic methods have the advantage over Mercer kernel-based methods in
that they are easier to interpret.

In this chapter, we define bottom-up an RKHS for information-theoretic
learning, named ITL RKHS, defined on the Hilbert space of square integrable
PDFs. Then we provide a geometric perspective of all the ITL quantities
presented in the previous chapters. Moreover, we show equivalences between
Renyi’s quadratic estimators of the statistical quantities and the Mercer ker-
nel methods, which until now have been treated separately. Specifically, we
show that Parzen window based estimators for Renyi’s quadratic informa-
tion measures have a dual interpretation as Mercer kernel-based measures,
when they are expressed as functions of mean values in the Mercer kernel
feature space. The Mercer kernel plays a similar role to the Parzen win-
dow of density estimation and they are shown to be equivalent. This means
that if the Parzen window size can be reliably determined, then the cor-
responding Mercer kernel size is simultaneously determined by the same
procedure.

Furthermore, we develop a classification rule based on the Euclidean dis-
tance between PDFs, and show that this corresponds to a linear classifier in
the feature space. By regarding this classifier as a special case of the support
vector machine, we provide an information theoretic interpretation of the SVM
optimization criterion. This chapter is organized as follows. We start with the
definition of the ITL RKHS and show the relation between the RKHS used
in ITL and kernel methods. Then an ITL perspective of kernel learning and
distances is explained, and a new information theoretic classification rule is
derived. Thereafter, we analyze the connection between this classifier and the
SVM and other kernel methods. The ITL RKHS structure offers an elegant
and insightful geometric perspective towards information-theoretic learning
and to the evaluation of statistics in kernel space. Finally, an application of
RKHS to spike train analysis is presented to show the versatility of the ap-
proach in a difficult signal processing application.
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9.2 A RKHS Framework for ITL

This section proposes a reproducing kernel Hilbert space (RKHS) framework
for information-theoretic learning (ITL), not based on estimators but directly
involving the PDFs. The issue of estimation from data samples is treated in
Section 9.4.

The ITL RKHS is uniquely determined by the symmetric non-negative
definite kernel function defined as the cross information potential (CIP) in
ITL. The cross information potential between two PDFs p(x) and q(x), de-
fined in Chapter 2 as V (p, q) =

∫
p(x)q(x)dx , characterizes similarity between

two stochastic functions. The information potential used so extensively in
Chapters 3, 4, 5 and 6 as an entropic cost function (since it is the argu-
ment of the log of Renyi’s quadratic entropy) is a special case obtained when
p(x) = q(x), i.e. a measure of self-similarity. CIP also appears both in the Eu-
clidean and Cauchy-Schwarz divergence measures as well as in the QMICS and
QMIED used in Chapters 6, 7 and 8 as a measure of dissimilarity in supervised
and unsupervised learning.

We prove the existence of a congruence mapping between the ITL RKHS
and the inner product space spanned by square integrable probability density
functions. All the descriptors and cost functions in the original information-
theoretic learning formulation can be re-written as algebraic computations on
deterministic functionals in the ITL RKHS. We first focus on one-dimensional
PDFs, and then consider the extension to multi-dimensions in Section 9.2. We
form a L2 space spanned by all one-dimensional PDFs, and define an inner
product in L2. Since the inner product is symmetric non-negative definite, it
uniquely determines the reproducing kernel Hilbert space for ITL which will
be denoted as HV . We then prove that the inner product itself is indeed a
reproducing kernel in HV .

The L2 Space of PDFs

Let E be the set that consists of all square integrable one-dimensional prob-
ability density functions over the real numbers; that is, fi(x) ∈ E, ∀i ∈ I,
where

∫
fi(x)2dx <∞ and I is an index set. We then form a linear manifold{∑

i∈K αifi (x)
}

for any K ⊂ I and αi ∈ R. We close the set topologically
according to the convergence in the mean using the norm

‖fi(x) − fj(x)‖ =

√∫
(fi(x)− fj(x))2dx ∀i, j ∈ I (9.1)

and denote the set of all linear combinations of PDFs and its limit points by
L2(E). L2(E) is an L2 space on PDFs. Moreover, by the theory of quadrati-
cally integrable functions, we know that the linear space L2(E) forms a Hilbert
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space if an inner product is imposed accordingly. Given any two PDFs fi(x)
and fj(x) in E, we can define an inner product as

〈fi(x), fj(x)〉L2 =
∫
fi(x)fj(x)dx ∀i, j ∈ I (9.2)

Notice that this inner product is exactly the cross-information potential de-
fined in Section 2.7. This definition of inner product has Eq. (9.1) as the
corresponding norm. Hence, L2(E) equipped with the inner product Eq. (9.2)
is a Hilbert space. However, it is not a reproducing kernel Hilbert space be-
cause the inner product is not reproducing in L2(E): that is, the evaluation
of any element in L2(E) cannot be reproduced via the inner product between
two functionals in L2(E). Next we show that the inner product of Eq. (9.2)
is symmetric nonnegative definite, and by the Moore–Aronszajn theorem it
uniquely determines the RKHS Hν .

RKHS Hν Based on L2(E)

First, we define a bivariate function on the set E as

ν(fi, fj) =
∫
fi(x)fj(x)dx ∀i, j ∈ I (9.3)

Even though ν is defined on E its computation makes use of L2(E). However,
by construction of L2(E) as the span of E, any inner product defined on L2(E)
can be written as an inner product of elements of E. In reproducing kernel
Hilbert space theory, the kernel function is a measure of similarity between
functionals. Notice that Eq. (9.3) corresponds to the definition of the inner
product in Eq. (9.2) and the cross- information potential between two PDFs,
hence it is natural and meaningful to define the kernel function as ν(fi, fj).
Next, we show that Eq. (9.3) is symmetric nonnegative definite in E.

Property 9.1. (Non negative Definiteness): The function in Eq. (9.3) is
symmetric non negative definite in E × E → R.

Proof. The symmetry is obvious. Given any positive integer N , any
set of {f1(x), f2(x), . . . fN(x)} ∈ E and any not all zero real numbers
{α1, α2, . . . , αN}, by definition we have

∑N

i=1

∑N

j=1
αiαjν(fi, fj) =

∑N

i=1

∑N

j=1
αiαj

∫
fi(x)fj(x)dx (9.4)

=
∫ (∑N

i=1
αifi(x)

) (∑N

j=1
αjfj(x)

)

dx =
∫ (∑N

i=1
αifi(x)

)2

dx ≥ 0.

Hence, ν(fi, fj) is symmetric non negative definite, and it is also a kernel func-
tion. According to the Moore–Aronszajn theorem [7, 222], there is a unique
reproducing kernel Hilbert space, denoted by Hν , associated with the sym-
metric non negative definite function in Eq. (9.3). We construct the RKHS
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Hν bottom-up. Because this bivariate function is symmetric and non negative
definite, it also has an eigen-decomposition by Mercer’s theorem [217] as

ν(fi, fj) =
∞∑

k=1

λkψk(fi)ψk(fj) (9.5)

where {ψk(fi), k = 1, 2, . . .} and {λk, k = 1, 2, . . . } are sequences of eigenfunc-
tions and corresponding eigenvalues of the kernel function ν(fi, fj), respec-
tively. The series above converges absolutely and uniformly on E × E. Then
we define a space Hν consisting of all functionals G(·) whose evaluation for
any given PDF fi(x) ∈ E is defined as

G(fi) =
∞∑

k=1

λkakψk(fi), (9.6)

where the sequence {ak, k = 1, 2, . . .} satisfies the following condition

∞∑

k=1

λka
2
k <∞. (9.7)

Furthermore we define an inner product of two functionals in Hν as

〈G,F 〉Hν =
∞∑

k=1

λkakbk, (9.8)

where G and F are of form Eq. (9.6), and ak and bk satisfy property Eq. (9.7).
It can be verified that the space Hν equipped with the kernel function

Eq. (9.3) is indeed a reproducing kernel Hilbert space and the kernel function
ν(fi, ·) is a reproducing kernel because of the following two properties:

1. ν(fi, fj) as a function of fi(x) belongs to Hν for any given fj(x) ∈ E
because we can rewrite ν(fi, fj) as

ν(fi, ·)(fj) =
∞∑

k=1

λkbkψk(fj), bk =ψk(fi)

That is, the constants {bk, k = 1, 2, . . .} become the eigenfunctions
{ψk(fi), k = 1, 2, . . .} in the definition of G. Therefore,

ν(fi, ·) ∈ Hν , ∀fi(x) ∈ E (9.9)

2. Given any G ∈ Hν , the inner product between the reproducing kernel and
G yields the function itself by the definition Eq. (9.8),

〈G, ν(fi, ·)〉Hν =
∞∑

k=0

λkakbk =
∞∑

k=0

λkakψk(fi) = G(fi).

This is the so called reproducing property.
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Therefore, Hν is a reproducing kernel Hilbert space with the kernel function
and inner product defined above. By the reproducing property, we can rewrite
the kernel function in Eq. (9.5) as

ν(fi, fj) = 〈ν(fi, ·),ν(fj , ·)〉Hv ν(fi, ·) : fi �→
√
λkψk(fi), k = 1, 2, . . .

(9.10)

The reproducing kernel nonlinearly maps the original PDF fi(x) into the
RKHS Hν .

We emphasize here that the reproducing kernel ν(fi, fj) is deterministic
(due to the expected value in the inner product) and data-dependent in the
sense that the mean of the norm of the nonlinearly transformed vector in Hν

is dependent on the PDF of the original random variable because

‖ν(fi, ·)‖2 = 〈ν(fi, ·),ν(fi, ·)〉Hv =
∫
fi(x)2dx. (9.11)

Congruence Map Between Hν and L2(E)

We have presented two Hilbert spaces, the Hilbert space L2(E) of PDFs and
the reproducing kernel Hilbert space Hν . Even though their elements are very
different, there actually exists a one-to-one congruence mapping Ψ (isometric
isomorphism) from Hν onto L2(E) such that

Ψ(v(fi, ·)) = fi (9.12)

Notice that the mapping Ψ preserves isometry betweenHν and L2(E) because
by definitions of inner product Eq. (9.2) in L2(E) and Eq. (9.10) in Hν

〈ν(fi, ·),ν(fj , ·)〉Hv = 〈fi(x)), fj(x)〉L2 = 〈Ψ(ν(fi, ·)),Ψ(ν(fj , ·))〉L2 , (9.13)

that is, the mapping Ψ maintains the inner products in both Hν and L2(E).
In order to obtain an explicit representation of Ψ, we define an orthogonal
function sequence {ξm(x),m = 1, 2, . . .} over the real numbers satisfying

∫
ξk(x)ξm(x)dx =

{
0, k 	= m
λk, k = m

and
∞∑

k=1

ψk(fi)
∫
ξk(x)dx = 1,

(9.14)

where {λk} and {ψk(fi)} are the eigenvalues and eigenfunctions evaluated at
fi, associated with the kernel function ν(fi, fj) by Mercer’s theorem Eq. (9.5).
We achieve an orthogonal decomposition of the probability density function as

f(x) =
∞∑

k=1

ψk(f)ξk(x), ∀f ∈ E. (9.15)

The integration to unit of f is guaranteed by Eq. (9.14) (right). Note that the
congruence map Ψ can be characterized as the unique mapping from Hν into
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L2(E) satisfying the condition that for every functional G in Hν and every
j in I ∫

Ψ(G)fj(x)dx = 〈G,ν(fj, ·)〉Hv = G(fj) (9.16)

It is obvious that Ψ in Eq. (9.13) fulfills the condition Eq. (9.16). Then the
congruence map can be represented explicitly as

Ψ(G) =
∞∑

k=1

akξk(x), ∀G ∈ Hν , (9.17)

where ak satisfies condition Eq. (9.7). To prove the representation Eq. (9.17) is
a valid and unique map, substituting Eq. (9.15) and Eq. (9.17) into Eq. (9.16),
we obtain

∫ ∑∞
k=1

akξk(x)
∑∞

m=1
ψm(fj)ξm(x)dx

=
∑∞

k=1

∑∞
m=1

akψm(fj)
∫
ξk(x)ξm(x)dx

=
∑∞

k=1
λkakψk(fj) = G(fj). (9.18)

In summary, we provide an explicit representation for the congruence map
Ψ from Hν into L2(E). These two spaces are equivalent in this geometri-
cal sense. However, it should be emphasized that the constituting elements
are very different in nature. When using samples (realizations), the RKHS
isometry framework offers a natural link between stochastic and deterministic
functional analysis. Hence, it is more appealing to use Hν for information-
theoretic learning, and we do not need the kernel trick.

Extension to Multidimensional PDFs

Extension of Hν to multi-dimensional PDFs is straightforward because the
definitions and derivations in the previous section can be easily adapted
into multidimensional probability density functions. Now let Em be the
set that consists of all square integrable m-dimensional probability density
functions, that is, fi,m(x1, . . . , xm) ∈ Em, ∀i ∈ I and m ∈ N , where∫
fi,m(x1, . . . , xm)2dx 1, . . . , dxm < ∞ and I is the index set. We need to

change the definition of kernel function Eq. (9.3) to

ν(fi,m, fj,m) =
∫
fi,m(x1, . . . , xm)fj,m(x1, . . . , xm)dx1 . . . .dxm ∀i, j ∈ I

(9.19)

Then every definition and derivation might as well be modified accordingly in
the previous section. Let Hν(m) denote the reproducing kernel Hilbert space
determined by the kernel function for m-dimensional PDFs. The proposed
RKHS framework is consistent with dimensionality of PDFs.
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The CIP based on the multidimensional PDFs characterizes the
information among different random variables whose domains might not
necessarily be the same in the whole space. In particular, the two-dimensional
PDF CIP can be used to quantify the divergence or the cross-covariance
between two random variables, because the joint PDF can be factorized into
a product of two marginal PDFs as a special independent case. This is exactly
on what the definitions of QMIED and QMICS in Chapter 2 are based. We
use the two-dimensional PDF CIP to reformulate these two quantities in the
following section.

9.3 ITL Cost Functions in the RKHS Framework

In this section, we re-examine the ITL cost functions introduced in Chapter 2
in the proposed ITL RKHS framework. First, as the kernel function ν(fi, fj) in
Hν is defined as the cross information potential between two PDFs, immedi-
ately we have ∫

p(x)q(x)dx = 〈ν(p, ·),ν(q, ·)〉Hv . (9.20)

That is, the cross information potential is the inner product between two
transformed functionals in Hν . The inner product quantifies similarity
between two functionals which is consistent with the definition of cross-
information potential. The information potential can thus be specified as the
inner product of the functional with respect to itself

∫
p(x)2dx = 〈ν(p, ·),ν(p, ·)〉Hv = ‖ν(p, ·)‖2Hv

. (9.21)

The information potential appears as the norm square of the nonlinearly
transformed functional in Hν . Therefore, minimizing error entropy in ITL
turns out to be maximization of norm square in Hν (due to the minus sign in
Renyi’s quadratic entropy definition).

More interestingly, the result in Eq. (9.21) presents a new interpretation of
Renyi’s quadratic entropy. Because Renyi’s quadratic entropy is the negative
of the logarithm of the information potential, we obtain

H2(X) = − log ‖ν(p, ·)‖2HV
. (9.22)

This means that there is an information theoretic interpretation for the
log of the mean square of the transformed functional in Hν .

Based on the reformulations of cross information potential Eq. (9.18)
and information potential Eq. (9.19) in Hν , we are ready to rewrite the
1-dimensional Euclidean and Cauchy–Schwarz distance measures in terms of
operations on functionals in Hν . First,

DED(p, q) = ‖ν(p, ·)− ν(q, ·)‖2HV
; (9.23)
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that is, the Euclidean distance measure is in fact the norm square of the
difference between two corresponding functionals in Hν . The Cauchy-Schwarz
divergence measure can be presented as

DCS(p, q) = − log

(
〈ν(p, ·),ν(q, ·)〉Hv

‖ν(p, ·)‖Hv
‖ν(q, ·)‖Hv

)

= − log(cos θ), (9.24)

where θ is the angle (in Hν) between two functionals ν(p, ·) and ν(q, ·). There-
fore, the argument of the log of the Cauchy-Schwarz divergence measure truly
depicts the separation of two functional vectors in Hν . When two vectors lie
in the same direction the angle θ = 0◦ and DCS (p, q) = 0. If two vectors are
perpendicular to each other (θ = 90◦), and DCS(p, q) = ∞. The RKHS Hν

supplies rich geometric insights into the original definitions of the two diver-
gence measures. Now we see that the geometric interpretation presented in
Chapter 2, Section 2.7 is in fact accurate in Hν .

To extend the same formulation to the Euclidean and Cauchy–Schwarz
quadratic mutual information defined in Section 2.7, consider the product
of marginal PDFs f1(x1)f2(x2) as a special subset A2 of the 2-dimensional
square integrable PDFs set E2 where the joint PDF can be factorized into
product of marginals; that is, A2 ⊆ E2. Then both measures characterize
different geometric information between the joint PDF and the factorized
marginal PDFs. The Euclidean quadratic mutual information (QMIED) can
be expressed as

IED (X1, X2) = ‖ν(f1,2, ·)− ν(f1f2, ·)‖2HV
, (9.25)

where ν(f1,2, ·) is the functional in Hν(2) corresponding to the joint PDF
f1,2(x1, x2), and ν(f1f2, ·) for the product of the marginal PDFs f1(x1)f2(x2).
Similarly, the Cauchy–Schwarz quadratic mutual information (QMICS) can be
rewritten as

ICS (X1, X2) = − log
〈ν(f1,2, ·),ν(f1f2, ·)〉HV

‖ν(f1,2, ·)‖HV
‖ν(f1f2, ·)‖HV

= − log(cos γ). (9.26)

The angle γ, measured between f1,2 and f1f2 is the separation between
two functional vectors in Hν(2). When two random variables are indepen-
dent (f1,2(x1, x2) = f1(x1)f2(x2)), γ = 0◦ and the divergence measure is
ICS (f1, f2) = 0 because two sets are equal. If γ = 90◦, two vectors in Hν(2)

are orthogonal and the joint PDF is singular to the product of marginals. In
this case, the divergence measure is infinity.

The proposed RKHS framework provides an elegant and insightful geomet-
ric perspective towards information-theoretic learning. All the ITL descriptors
can now be re-expressed in terms of algebraic operations on functionals in Hν .

We can also provide a more mathematical understanding for the ITL op-
erators and their properties. Let us start with the cross-information poten-
tial. From a statistical point of view, this quantity is a composite moment
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(expected value over p(x) of another function q(x)) of the r.v. x. In Chapter 7
we showed that it is a pseudo distance that was useful because it was easier
to estimate than KL, Renyi’s, MI, and other distance measures in probability
spaces. Now we clearly see that it is the natural metric in Hν , because it
defines the inner product in ITL RKHS. In the same RKHS we can define
obviously other distances, such as DED, DCS, and QMIED and QMICS that
are all dependent on the CIP. But now this picture becomes quite clear.

Another example is the evaluation of the statistical properties of IP. For
instance, in Chapter 2 we say that the IP estimator contains higher-order
statistical information of the input data. This has been recognized in ITL by
applying the Taylor expansion to the Gaussian kernel used in the estimate of
the information potential definition,

V̂ (X) =
1
N2

N∑

i=1

N∑

j=1

1√
2πσ2

∞∑

k=0

1
k!

[

− (xi − xj)2
2σ2

]k
. (9.27)

But notice that this result depends on the kernel utilized (the Gaussian kernel
only provides sums of even-order moments, a polynomial kernel creates a finite
sum of moments, etc.). From Eq. (9.21) it is clear that the norm maximization
in ITL RKHS will include the PDF, therefore now we have a clean statement
that derives from the use of the first order moment of the PDF in Hν .

9.4 ITL Estimators in RKHS

This section reinterprets the estimators of the information-theoretic quantities
of the information potential and Euclidean and Cauchy–Schwarz distance in
kernel spaces. Let H be a Hilbert space of real-valued functions defined on the
real numbers R, equipped with an inner product 〈·, ·〉 and a real-valued non
negative definite function κ(x, y) on R×R. According to the Moore–Aronszajn
theorem, κ(x, y) is a reproducing kernel, which means that each point in the
input space R is mapped to a function in the RKHS defined by the selected
kernel κ(·, x) ∈ Hκ. We can define the nonlinear mapping between R and Hκ

as Φ(x) = κ(·, x), and obtain the reproducing property

〈Φ(x),Φ(y)〉Hκ
= 〈κ(., x), κ(., y)〉 = κ(x, y). (9.28)

Therefore, Φ(x) = κ(., x) defines the Hilbert space associated with the
kernel. For our purposes here we will use the Gaussian kernel κ(x, y) =
Gσ(x − y), which is a nonnegative definite function, but many others can
also be used. A Gaussian kernel corresponds to an infinite-dimensional Mercer
kernel feature space, because the Gaussian has an infinite number of eigen-
functions.

This is very different from the reproducing kernel ν(fi, fj) which has a
norm dependent upon the PDF of the data as shown in Eq. (9.11). The norm
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of the nonlinearly projected vector in the RKHS Hκ does not rely on the
statistical information of the original data inasmuch as

‖Φ(x)‖2 = 〈Φ(x),Φ(x)〉Hk
= κ(0) (9.29)

if we use translation-invariant kernel functions. Moreover, if x is a random
variable, Φ(x) is a function operating on random variable in Hκ. The value
of κ(0) is a constant regardless of the original data. Consequently, the repro-
ducing kernel Hilbert spaces Hν and Hκ determined by ν(fi, fj) and κ(x, y),
respectively, are very different in nature, however, there are very interesting
links among them as we show below.

Estimator of the Information Potential

Recall the definition of the information potential estimator in Chapter 2,
which is presented below for convenience,

V̂ (X) =
1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xi − xj).

Recall from Chapter 2 that this expression is obtained by integrating a
product of two Gaussian functions centered at each sample over the domain
which can be written as an inner product as

Gσ
√

2(xi − xj) = κ(xi, xj) = 〈Φ(xi),Φ(xj)〉Hk
. (9.30)

Hence, the Parzen window-based estimator for the information potential can
be expressed in terms of an inner product in the Mercer kernel space. We can
further operate to obtain

V̂ (X) =
1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xi − xj) =
1
N2

N∑

i=1

N∑

j=1

〈Φ(xi),Φ(xj)〉Hk

=

〈
1
N

N∑

j=1

Φ(xi),
1
N

N∑

j=1

Φ(xi)

〉

Hk

= mTm = ‖m‖2 . (9.31)

where N samples are assumed available from the data. That is, it turns out
that the estimated information potential may be expressed as the squared
norm of the mean vector of the data in a Mercer kernel feature space. This
connection was previously pointed out in [112] in a study relating orthogonal
series density estimation to kernel principal component analysis. Therefore
the magic that may still have existed in why we could estimate an entropy
without explicit PDF estimation becomes clear now. The argument of the log
is a central moment of the projected data, therefore it is likely to find good
estimators that do not require PDF estimation. As we mentioned in Chapter 2,
estimating the mean and variance from data with the sample mean operator
does not require PDF estimation, and the same applies to Renyi’s quadratic
entropy.
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Estimators of Quadratic Distances

In Chapter 2 we defined two distance measures using the information potential
DED and DCS and their corresponding estimators based on kernels. Let us
assume that the goal is to estimate the distance between two PDFs p(x)
and q(x) from which we have, respectively, N1 and N2 samples. Again for
convenience we copy below the estimator for DED .

D̂ED(p, q) = V̂ED =
1
N2

1

N1∑

i=1

N1∑

i′=1

Gσ
√

2(xi − xi′)−
2

N1N2

N1∑

i=1

N2∑

j=1

Gσ
√

2(xi − xj)

+
1
N2

2

N2∑

i=1

N2∑

j=1

Gσ
√

2(xj − xj′). (9.32)

Note that we have for simplicity assumed that the same kernel size σ is
appropriate for both estimators. This may not be the case in practice, but it
can be incorporated in the subsequent analysis. In analogy to Eq. (9.32), DED

may also be expressed in terms of mean vectors in the Mercer kernel feature
space Hκ to obtain

D̂ED(p, q) = ‖m1‖2 − 2mT
1 m2 + ‖m2‖2 = ‖m1 −m2‖2 . (9.33)

where m1 is the kernel feature space mean vector of the data points drawn
from p(x), and m2 is the kernel feature space mean vector of the data points
drawn from q(x). Hence, DED can also be seen to have a geometric inter-
pretation in Hκ. It measures the square of the norm of the difference vector
between the two means m1 and m2. In a similar fashion we can obtain the
estimator for the Cauchy–Schwarz divergence as

D̂CS(p, q) = − log
(

mT
1 m2

‖m1‖ ‖m2‖
)

= − log (cos∠ (m1,m2)) . (9.34)

Remember that the information cut explained in Chapter 6 was defined as
the argument of the log of DCS , therefore it has a dual interpretation as
a measure of the cosine of the angle between cluster mean vectors in the
Mercer kernel feature space Hκ. This metric is very natural in kernel machines
because the nonlinear transformation induced by a symmetric reproducing
kernel maps the input samples over a sphere in the feature space, because for
any x, ||Φ(x)||2 = κ(0) = 1/(

√
2πσ). Therefore, the distance between Φ(xi)

and Φ(xj) on that sphere (i.e., the geodesic distance) is proportional to the
angle between the vectors from the origin to those points

d(Φ(xi),Φ(xj)) ∝ cos−1

( 〈Φ(xi),Φ(xj)〉
‖Φ(xi)‖ ‖Φ(xj)‖

)

= cos−1(
√

2πσκ(xi − xj)).

In other words, the kernel function is in fact computing the cosine of the
angle between two points over the sphere (i.e., a distance). In addition, we
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notice from the previous discussion that the transformed data Φ(xi) must
lie on some embedded manifold over the positive hyperoctant on the sphere
(because the kernel takes only positive values, the angle belongs to the interval
[0, π/2]).

The relationship between the two RKHS Hν and Hκ can then be readily
perceived thru the ITL descriptors of IP , DED and DCS and their estimators.
In fact, by comparing Eq. (9.22) with (9.31) (and Eq. (9.23) with (9.33) as
well as Eq. (9.24) with (9.34)) we see that these statistical quantities in Hν

can be estimated by the mean operator of the projected functionals in Hκ,
which effectively were derived with Parzen’s non-parametric asymptotically
unbiased and consistent PDF estimator employed in the ITL cost functions.
Provided one chooses a non negative definite kernel function as the Parzen
window, the statistical quantities in Hν are related to the estimators in Hκ

as illustrated in Figure 9.1.
In more general terms, the reproducing kernel Hilbert spaces Hκ and Hν

are formally related via the expectation operator, which means that the fea-
ture map ν(fi, ·) is a transformation of the PDF space into a deterministic
RKHS Hν , whereas the feature map Φ(x) nonlinearly projects the sample
space into a RKHS Hκ of functions operating on random variables. The fea-
ture map ν(fi, ·) is a descriptor of the stochasticity of the sample space, and
immediate algebraic operation can be applied to compute statistics in Hν .
This means that IP, CIP and all the distances are deterministic scalars that
quantify PDF properties. Hence, the proposed ITL RKHS framework provides
a function analysis view of these statistics, and it seems the natural RKHS to
perform statistical inference. Of course, the issue is that if one does not have
an analytical description of the data PDF one can not progress further. This
is where Hκ becomes useful because one can build there the estimators for the
above mentioned statistical quantities. But this clearly shows that statistical
estimators in Hκ operate with the full PDF information.

Fig. 9.1. The relationship between Hν and Hκ (from [341]).
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Parzen was the first to introduce the RKHS methodology in statistical
signal processing and time series analysis in the late 1950s. The essential
idea is that there exists a congruence map between the RKHS of random
variables spanned by the random process and its covariance function R(t, s) =
E[X(t)X(s)] which determines a unique RKHS, denoted asHR. This research
line was briefly reviewed in Section 1.10. The conventional mean square error
has also been rewritten as the norm square of projected vectors in HR induced
by the covariance function [238]. But HR only takes the second-order statistics
into account, whereas Hν is defined over PDFs and Hκ, depending upon the
kernel utilized, will also implicitly embed all the statistical information of the
data. Moreover, notice that Hν although linearly related to the PDF space, is
nonlinearly related to the data space, unlike HR which is linearly related to
the data space. This implies that, with appropriate kernels, Hκ can be used
to estimate second-and-higher order statistical information of the data. In
general, mean and covariance operators are necessary to perform statistics in
Hκ as we discuss next, but our work shows that the inclusion of the expected
value operator in the kernel itself simplifies the analysis when the goal is
statistical inference.

9.5 Connection Between ITL and Kernel Methods
via RKHS Hν

In this section, we connect ITL and kernel methods via the proposed RKHS
framework. As we have mentioned in the previous section, because Hκ is
induced by the data-independent kernel function, the nonlinearly projected
data in Hκ is still stochastic and statistical inference is required in order to
compute quantities of interest. For instance, in order to compute the statistics
over the functionals, the expectation and covariance operators are required.
The expected value of functionals in Hκ is defined as E[Φ(x)]. The cross-
covariance is defined as a unique operator ΣXY such that for any functionals
f and g in Hκ

〈
g,

∑

XY
f
〉

Hk

= E[g(y)f(x)]− E[g(y)]E[f(x)] = Cov[f(x), g(y)]. (9.35)

The mean and cross-covariance operators as statistics of functionals in Hκ

become intermediate steps to compute other quantities such as the maximum
mean discrepancy (MMD) [123], kernel independent component analysis (Ker-
nel ICA) [27], and others. But the interesting question is to find out the re-
lationships with both Hν and the ITL estimators of Equations (9.31), (9.33),
and (9.34). We show here that MMD is equivalent to the Euclidean divergence
measure, and that Kernel ICA is equivalent to the Cauchy–Schwarz quadratic
mutual information. The statistical computations in Hκ have corresponding
algebraic expressions in Hν .
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An ITL Perspective of Maximum Mean Discrepancy

The maximum mean discrepancy [126] is a statistical test based on kernel
methods to determine whether two samples are from different distributions.
Because the first-order moment of the PDF describes Renyi’s quadratic en-
tropy, theoretically, if the expected value of a PDF p(x) for an arbitrary mea-
surable function is the same for both random variables, the two distributions
are identical. Inasmuch as it is not practical to work with such a rich function
class, MMD restricts the function class to a unit ball in a reproducing kernel
Hilbert space Hκ that is associated with the kernel κ(·, ·). This leads to the
following quantity,

M(X,Y ) = sup
‖p‖Hk

≤1

(E[p(x)]− E[p(y)]), (9.36)

where X and Y are the underling random variables of the two distributions,
and p is a family of measurable functionals in the unit ball of Hκ. The kernel
trick can be employed here to compute MMD; that is,

p(x) = 〈Φ(x), p〉Hk
= 〈κ(x, ·), p〉Hk

. (9.37)

Substituting Eq. (9.37) into the definition of MMD Eq. (9.36), we obtain

M(X,Y ) = ‖mX −mY ‖Hκ
, (9.38)

where mX = E[Φ(x)] and mY = E[Φ(y)] are the statistical expectations
of the functionals Φ(x) and Φ(y) in Hκ. Applying mX = 1

N

∑N
i=1 Φ(xi), an

empirical estimate of MMD can be obtained as

∣
∣
∣M̂(X,Y )

∣
∣
∣
2

=
1
N2

N∑

i=1

N∑

j=1

κ(xi, xj)− 2
NL

N∑

i=1

L∑

j=1

κ(xi, yj)+
1
L2

L∑

i=1

l∑

j=1

κ(yi, yj)

(9.39)

where {xi}Ni=1 and {yj}Lj=1 are two sets of data samples. The estimate of MMD
provides a statistical test to determine whether two sets of data samples are
from the same distribution. Comparing with Eq. (9.35), it is easy to show that
MMD is equivalent to the Euclidean distance between PDFs (DED ); that is,
[M(X,Y )]2 = DED (f, g). Moreover, because the Euclidean distance measure
can be rewritten as the norm square difference between two functionals in Hν ,
we obtain

‖mX −mY ‖2Hκ
= ‖ν(f, ·)− ν(g, ·)‖2Hκ

. (9.40)

The left-hand side is the norm square difference between two functional expec-
tations in Hκ. The functional Φ(x) is still stochastic in Hκ, thus the expecta-
tion operation is necessary to carry out the computation. On the other hand,
the right-hand side is the norm square difference between two functionals in
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the RKHSHν . Because the functional ν(f, ·) is deterministic, the computation
is algebraic. The feature map ν(f, ·) for Hν is equivalent to the expectation
of the feature map Φ(x) for Hκ (see Figure 9.1). Therefore, the proposed ITL
RKHS framework provides a natural link between stochastic and determinis-
tic functional analysis. The MMD in kernel methods is essentially equivalent
to the Euclidean distance measure in information-theoretic learning.

An ITL Perspective of Kernel ICA

Kernel ICA is a novel independent component analysis method based on a ker-
nel measure of independence [12]. It assumes an Hκ determined by the kernel
κ(x, y) and feature map Φ(x). The feature map Φ(x) can be derived from the
eigendecomposition of the kernel function κ(x, y) according to Mercer’s theo-
rem, and forms an orthogonal basis for Hκ. Then the F -correlation function is
defined as the maximal correlation between the two random variables f1(x1)
and f2(x2), where f1 and f2 range over Hκ:

ρ = max
f1,f2

corr(f1(x1), f2(x2)) = max
f1,f2

corr(f1(x1), f2(x2))√
var(f1(x1))var(f2(x2))

. (9.41)

Obviously, if the random variables x1 and x2 are independent, then the
F -correlation is zero. And the converse is also true provided that Hκ is large
enough. This means that ρ = 0 implies x1 and x2 are independent. In or-
der to obtain a computationally tractable implementation of F -correlation,
the reproducing property of RKHS is used to estimate the F -correlation. The
nonlinear functionals f1 and f2 can be represented by the linear combination
of the basis {Φ(xi)}Ni=1 in which {xi}Ni=1 is an empirical observation of the
random variable x with N samples. That is,

f1 =
N∑

k=1

αk1Φ(xk1), f2 =
N∑

k=1

αk2Φ(xk2). (9.42)

Substituting Eq. (9.42) and (9.37) into Eq. (9.41) and using the empirical data
to approximate the population value, the F -correlation can be estimated as

ρ̂ = max
α1,α2

αT1 K1K2α2√(
αT1 K2

1α1

) (
αT2 K2

2α2

) (9.43)

where K1 and K2 are the Gram matrices associated with the datasets
{
xi1

}N
i=1

and
{
xi2

}N
i=1

defined as [Ki]a,b = κ
(
xai , x

b
i

)
.

Because the cost function in Eq. (9.43) is not a numerically stable estimator
in general, a regularization is needed by penalizing the RKHS norms of f1 and
f2 in the denominator of Eq. (9.43). The regularized estimator has the same
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independence characterization property of the F -correlation, because it is the
numerator, αT1 K1K2α2, that characterizes the independence property of two
random variables.

We prove here the equivalence between the cost function used in Kernel
ICA Eq. (9.43) and the Cauchy–Schwarz quadratic mutual information
Eq. (9.34). To prove the equivalence, we use the weighted Parzen window
which is defined as

f̂(x) =
1
A

N∑

i=1

αiκ(x, xi), (9.44)

where A is a normalization term such that the integral of f̂(x) equals to 1.
When the Cauchy–Schwarz quadratic mutual information is used as a con-

trast function in ICA, it should be minimized so that the mutual information
between random variables is also minimized. As the logarithm is a monotonic
function, minimizing the Cauchy–Schwarz quadratic mutual information is
equivalent to maximizing its argument. Therefore, by approximating the pop-
ulation expectation with sample mean for the argument in Eq. (9.34) and esti-
mating the joint and marginal PDFs with weighed Parzen window Eq. (9.44),
we obtain

Ĵ = max
α1,α2

αT1 K1K2α2√
L

(
1TK2

1α1

) (
1TK2

2α2

) , (9.45)

where 1 = [1, . . . , 1]T , [Ki]a,b = κ
(
xai , x

b
i

)
, and L =

∑N
i=1

∑N
j=1 α

i
1

κ
(
xi1, x

j
1

)
κ

(
xi2, x

j
2

)
αi2.

Comparing the two expressions Eq. (9.43) and (9.45), we notice that they
have the same numerators but different normalizations. As we already pointed
out, it is the numerators in the Kernel ICA and the Cauchy–Schwarz quadratic
mutual information that characterize the dependence measure of two ran-
dom variables. The denominators only provide normalization. Hence we con-
clude that the Cauchy–Schwarz quadratic mutual information, estimated via
a weighted Parzen window, is equivalent to kernel ICA. Moreover, the coordi-
nates of the nonlinear functionals f1 and f2 in the RKHS Hκ Eq. (9.42) have
corresponding terms in the weighted Parzen window Eq. (9.44).

In summary, the feature map Φ(x) works with individual data samples
and transforms each datum into Hκ induced by the kernel κ(·, ·). For applica-
tions involving statistical inference on the transformed data, extra operators
such as the mean and covariance are required. On the other hand, the feature
map ν(f, ·) deals with PDF directly and transforms each PDF into Hν de-
termined by the kernel ν(·, ·). If the applications are based on the statistics
of the transformed functionals, only algebraic computation is needed with-
out defining any extra operators as required in Hκ. Therefore the proposed
RKHS framework provides a direct and elegant treatment of statistical in-
ference using the RKHS technique. Certainly, Hκ is more flexible in other
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applications beyond statistical inference inasmuch as it is based on the avail-
able data samples. The RKHS Hν is built directly upon PDFs, and requires
Parzen windows to carry out the evaluation of the overall cost functions as
we saw in ITL.

9.6 An ITL Perspective of MAP and SVM Classifiers

From the previous sections, we obtained a very clear view of the statistical
power of mappings onto Hκ. The square of the projected data vector mean
is in fact an estimator of the 2-norm of the PDF of the data as we saw
in Chapter 2 when we interpreted quadratic Renyi’s entropy. Therefore, a
classification rule similar to LDA can be easily implemented with the projected
class means without making any Gaussian assumption and benefiting from
the high-dimensionality of the feature space that provides good performance
even for linear classifiers. We will be interpreting functional as vectors in this
perspective.

Euclidean Distances in Hκ and MAP Classifiers

The classification rule is based on DED , which we analyze theoretically both
in the input space and in the Mercer kernel space Hκ. An interesting property
of this classifier is that it contains the MAP classifier as a special case. We
have available the training data points {xi}; i = 1, . . . , N1, drawn from p(x),
and a corresponding sample from q(x); that is, {xj}; j = 1, . . . , N2. The label
information is used to create these two classes. Based on this training dataset
we wish to construct a classifier which assigns a test data point x0 to one of
the classes c1 or c2. Now, we define

p̂o(x) =
1

N1 + 1

N1∑

i=0

κ(x, xi), q̂o(x) =
1

N2 + 1

N2∑

j=0

κ(x, xj). (9.46)

Hence, p̂o(x) is the Parzen estimator for p(x), assuming x0 is included in the
c1 data class. Likewise, q̂o(x) is the Parzen estimator for q(x), assuming x0 is
included in the c2 dataset. The proposed DED-based strategy is to classify x0

according to the following rule:

x0 ∈ c1 :
∫

(p̂o(x)− q̂(x))2dx ≥
∫

(p̂(x) − q̂o(x))2dx. (9.47)

otherwise, assign x0 to c2. In words, the rule assigns x0 to the class which,
when having x0 appended to it, makes the estimated distance between the
classes the greatest. We now analyze this simple classification rule in terms
of the Mercer kernel feature space Hκ. Let m′

i, i = 1, 2 be the Mercer kernel
feature space mean vector of class ci, assuming Φ(x0) is assigned to that class.
It is easily shown that
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m′
1 =

N1

N1 + 1
m1 +

1
N1 + 1

Φ(x0)

m′
2 =

N2

N2 + 1
m2 +

1
N2 + 1

Φ(x0)
(9.48)

In the kernel feature space, the equivalent classification rule of Eq. (9.47)
may be expressed as

x0 ∈ c1: ‖m′
1 −m2‖2 ≥ ‖m1 −m′

2‖2 . (9.49)

Assume that P (c1) = P (c2), that is the prior probabilities for the classes are
equal. Let P (c1) = N1/N and P (c2) = N2/N , which means that we assume
N1 = N2. In this case,

m′
1 = β1m1 + β2Φ(x0)

m′
2 = β1m2 + β2Φ(x0)

(9.50)

where β1 = N1/(N1 + 1) = N2/(N2 + 1), and β2 = 1/(N1 + 1) = 1/(N2 + 1).
For ease of notation, let Φ(x0) = y. The left-hand side of Eq. (9.49), becomes

‖m′
1 −m2‖2 = m′T

1 m′
1 − 2m′T

1 m2 + mT
2 m2

= β2
1 ‖m1‖2 + 2β1β2mT

1 y + β2
2 ‖y‖2 − 2β1mT

1 m2

−2β2mT
2 y + ‖m2‖2 .

Similarly, the right-hand side of Eq.(9.46) becomes

‖m1 −m′
2‖2 = mT

1 m1 − 2mT
1 m′

2 + m′T
2 m2

= ‖m1‖2 + 2β1β2mT
2 y + β2

2 ‖y‖2 − 2β1mT
2 m1

−2β2mT
1 y + β2

1 ‖m2‖2 .

Using these results, the classification rule becomes

x0 ∈ c1: ‖m′
1 −m2‖2 ≥ ‖m1 −m′

2‖2

⇔mT
1 y−mT

2 y− β2
1 − 1

2β2(β1 + 1)

(
‖m2‖2 − ‖m1‖2

)
≥ 0

⇔mT
1 y−mT

2 y + b ≥ 0, (9.51)

where b = 1/2(‖m2‖2 − ‖m1‖2), and the constant (β2
1 − 1)/β2(β1 + 1) = −1.

The above classification rule has a simple geometrical interpretation. The
point y is assigned to the class whose mean it is closest, and the class boundary
in kernel feature space is a hyperplane given by a vector w. Let w = m1−m2,
and let the midpoint between m1 and m2 be given by mc = 1/2(m1 + m2).
Now the class of y is determined by examining whether the vector (y −mc)
encloses an angle smaller than π/2 with the vector w. If it does, y is closest
to m1, and y is assigned to c1.



370 9 A Reproducing Kernel Hilbert Space Framework for ITL

Fig. 9.2. ISE-based geometric classification rule: assign the point y to the class
to whose mean it is closest. This can be done by looking at the innerproduct be-
tween (y − mc) and w (v in the figure is mc). It changes sign as the enclosed angle
passes through π/2. The corresponding decision boundary is given by a hyperplane
orthogonal to w (dashed line) (from [164]).

Hence,

x0 ∈ c1: wT (y−mc) ≥ 0
wTy + b ≥ 0 (9.52)
⇔mT

1 y−mT
2 y + b ≥ 0.

Figure 9.2 geometrically illustrates this simple classification rule, which we
have derived using the DED criterion as a starting point. As explained above,
in the Mercer kernel space, the value of the inner product between the class
mean values and the new data point determines to which class it is assigned.
The threshold value b depends on the squared Euclidean norms of the mean
values, which are equivalent to the class information potentials, and hence the
class entropies.

We now complete the circle, and analyze the Mercer kernel feature space
classification rule in terms of Parzen estimators in the input space. Note that

mT
1 y = mT

1 Φ(x0) =
1
N1

N1∑

i=1

ΦT (xi)Φ(x0) =
1
N1

N1∑

i=1

κ(x0, xi) = p̂(x0). (9.53)

Likewise

mT
2 y = mT

2 Φ(x0) =
1
N2

N2∑

j=1

ΦT (xj)Φ(x0) =
1
N2

N2∑

j=1

κ(x0, xj) = q̂(x0). (9.54)
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The classification rule hence becomes

x0 ∈ c1 : p̂(x0)− q̂(x0) + b ≥ 0. (9.55)

We remark that this classification rule depends both on the estimated
densities at x0, and on the information potentials of the two classes. This forms
the basis for the nonparameteric classifier explained in Chapter 6. In the case
where the classes have the same value for the information potential (entropy),
which means that the kernel feature space mean values have equal length
from the origin, we have b = 0, and the current classification rule reduces
to the well-known MAP classification rule (for equal priors), where the class
probability densities are estimated using Parzen windowing. The same direct
connection cannot be obtained based on the Cauchy–Schwarz divergence.

The Support Vector Machine

The support vector machine is the most prominent Mercer kernel-based learn-
ing algorithm. It is a hyperplane classifier based on two crucial properties: (1)
the kernel property (kernel trick), which allows for a relatively efficient com-
putation of the SVM algorithm even in infinite dimensional spaces and, (2) the
maximization of the hyperplane margin, which is a regularizing condition on
the hyperplane solution. Basically, it limits the admissible separating hyper-
planes to the one maximizing the margin. This regularization has a positive
effect on the generalization capability of the classifier [323].

In the following, we give a brief review of the SVM theory. We formulate
the problem directly in the Mercer kernel feature space. This Mercer kernel
feature space is induced by some kernel function, which hopefully makes the
feature space data linearly separable such that it can be separated by a hy-
perplane. Whether the data in fact are linearly separable, heavily depends on
the user choosing a proper kernel.

Let c1 and c2 denote two data classes. We are given a training set consisting
of {xi}; i = 1, . . . , N1, from c1, and {xj}; j = 1, . . . , N2, from c2. The task
is to train a SVM classifier, such that it creates a maximum margin linear
classifier in the kernel feature space. After training, the classification rule in
feature space is

x0 ∈ c1 : w∗TΦ(x0) + b∗ ≥ 0 . (9.56)

otherwise, x0 ∈ c2, where x0 is a new, previously unseen data point. Presum-
ably, it has either been generated by the process generating the c1 data, or the
process generating the c2 data. Regularization by maximizing the margin in
feature space corresponds to minimizing the squared norm of the (canonical)
separating hyperplane weight vector, that is, ||w∗||2, given the constraints

w∗TΦ(xi) + b∗ ≥ +1, ∀xi ∈ c1
w∗TΦ(xj) + b∗ ≤ −1, ∀xj ∈ c2. (9.57)
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This is a constrained optimization problem, which is dealt with by introducing
Lagrange multipliers αi ≥ 0, αj ≥ 0, corresponding to the two classes, and a
primal Lagrangian

LP =
1
2
‖w∗‖2 −

N1∑

i=1

αi

[

w∗TΦ(xi) + b∗ − 1

]

+
N2∑

j=1

αj

[

w∗TΦ(xj) + b∗ + 1

]

.

(9.58)
The Lagrangian LP has to be minimized with respect to the primal variables
w∗ and b∗, and maximized with respect to the dual variables αi and αj . Hence,
a saddle point must be found. At the saddle point, the derivatives of LP with
respect to the primal variables must vanish,

∂Lp
∂b∗

= 0, ∂Lp
∂w∗ = 0 , (9.59)

which leads to

N1∑

i=1

αi =
N2∑

j=1

αj =Ω, w∗ = m1
∗ −m2

∗ , (9.60)

where

m1
∗ =

N1∑

i=1

αiΦ(xi), m2
∗ =

N2∑

j=1

αjΦ(xj). (9.61)

By substituting these constraints into Eq. (8.58), the dual Lagrangian

LD = 2Ω− 1
2

⎡

⎣
N1∑

i=1

N1∑

i′=1

αiαi′κ(xi, xi′ )− 2
N1∑

i=1

N2∑

j=1

αiαjκ(xi, xj)

+
N2∑

j=1

N2∑

j′=1

αjαj′κ(xj , xj′ )

⎤

⎦ (9.62)

is obtained, where κ(.,. ) denotes an inner product between any two training
data points in the Mercer kernel feature space Hκ. LD must be maximized
with respect to the Lagrange multipliers. It can be seen that the solution
vector w∗ has an expansion in terms of the training patterns weighted by the
Lagrange multipliers. The Karush–Kuhn–Tucker (KKT) conditions

αi

[
w∗TΦ(xi) + b∗ − 1

]
= 0, ∀i = 1, . . . , N1

αj

[
w∗TΦ(xj) + b∗ + 1

]
= 0, ∀j = 1, . . . , N2

(9.63)

specify the nonzero Lagrange multipliers to be those training patterns which
are situated on the margin in feature space. Hence, w∗ is a weighted com-
bination of the patterns on the margin. Let us determine the expression for
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b∗ in the SVM theory. For those b∗ corresponding to support vectors belong-
ing to c1, we have b∗1 = 1 − w∗T

Φ(xi), where Φ(xi) is a support vector. By
adding all b1∗ values corresponding to c1, we have (remember that only those
is corresponding to support vectors deviate from zero)

N1∑

i=1

αib1
∗ =

N1∑

i=1

αi −w∗T
N1∑

i=1

αiΦ(xi)

Ωb1∗ = Ω−w∗Tm1
∗ (9.64)

b1
∗ = 1− 1

Ω
‖m1

∗‖2 +
1
Ω

m1
∗Tm2

∗.

Similarly, for those b∗ corresponding to support vectors belonging to c2, we
have b∗2 = −1−w∗T

Φ(xj) and we obtain by adding them up

N2∑

j=1

αjb2
∗ = −

N2∑

j=1

αj −w∗T
N2∑

j=1

αjΦ(xj)

Ωb2∗ = −Ω−w∗Tm2
∗ (9.65)

b2
∗ = −1 +

1
Ω
‖m1

∗‖2 − 1
Ω

m1
∗Tm2

∗.

Because b∗1 = b∗2, b
∗ = 1/2 (b∗1 + b∗2) which can be written as b∗ = 1/2Ω(

‖m∗
2‖2 − ‖m∗

1‖2
)
.

ITL Interpretation of the SVM

The classifier developed in the previous section is entirely determined by the
mean vectors m1 and m2 of the training data, because both w and b are
determined by these vectors. For the classifier to perform well on test data, we
are totally dependent on these mean vectors to truly represent the structure
of the data. For example, the presence of outliers in the training set may
affect the computation of w and b in such a way that the performance of the
classifier is degraded. This may be remedied by allowing the contribution of
each training data point to the mean vectors to be weighted differently. Let
us therefore introduce the weighting components αi > 0 associated with c1,
and αj > 0 associated with c2. The weighted mean vectors then become

m1 =
1

Ω1

N1∑

i=1

αiΦ(xi), m2 =
1

Ω2

N2∑

j=1

αjΦ(xj) (9.66)

By introducing such weighted mean vectors, we also need to introduce
some criterion to determine proper weights. Such a criterion should be optimal
with respect to classifier performance. The performance of a classifier is mea-
sured by its success rate on test data. Hence, the classifier should generalize
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well. In statistical learning theory, it has been shown that minimization of the
squared norm of the hyperplane weight vector, although satisfying the classifi-
cation constraints on the training data, improves generalization performance.

Based on the arguments above, we may relate the vector w = m1 −m2

to the SVM weight vector w∗ = m1
∗ −m2

∗. Recall that the SVM is exactly
based on regularization by minimization of ||w∗||2. The minimization is ac-
companied by the classification constraints of Eq. (9.57), which ensures that
the training data are classified correctly. Taking a closer look at the informa-
tion potentials associated with the weighted mean vectors (Eq. (9.53)), we can
write

‖m1‖2 =
1

Ω2
1

N1∑

i=1

N1∑

i′=1

αiαi′κ(xi, xi′) =
∫
p̂2(x)dx. (9.67)

Thus, the weighted mean vector m1 is associated with

p̂(x) =
1

Ω1

N1∑

i′=1

αiκ(x, xi), (9.68)

a weighted Parzen window estimator in the input space. We likewise have the
same for the second class. However, in this case, the kernels that constitute
these Parzen window estimators are no longer equally important. Recall that
to derive the original classification rule based on the DED of Eq. (9.55) we
assumed thatN1 = N2. Using the weighted Parzen window estimators instead,
it is easily found that the corresponding assumption becomes Ω1 = Ω2 = Ω.
Therefore,

m1 =
1
Ω

m1
∗, m2 =

1
Ω

m2
∗ , w =

1
Ω

w∗ . (9.69)

Now, using the weighted Parzen window estimators we may express the
SVM optimization problem in an information-theoretic framework as

min
αi,αj

‖w∗‖2 = min
αi,αj

Ω2 ‖w‖2 = min
αi,αj

Ω2 ‖m1 −m2‖2 (9.70)

because ||m1 −m2||2 is the Mercer kernel feature space equivalent to DED ,
we have

min
αi,αj

Ω2 ‖m1 −m2‖2 = min
αi,αj

Ω2

∫
(p̂(x) − q̂(x))2dx. (9.71)

The optimization is subject to classification constraints, expressed as

w∗TΦ(xi) + b∗ ≥ +1 ⇔ ΩwTΦ(xi) + Ωb ≥ 1

⇔ p̂(xi)− q̂(xi) + b ≥ 1
Ω

i = 1, . . . , N1 (9.72)

and

w∗TΦ(xj) + b∗ ≤ −1⇔ ΩwTΦ(xj) + Ωb ≤ −1

⇔p̂(xj)− q̂(xj) + b ≤ − 1
Ω

j = 1, . . . , N2. (9.73)



9.6 An ITL Perspective of MAP and SVM Classifiers 375

Therefore, the SVM classification rule, using the weighted Parzen window
estimators, becomes

x0 ∈ c1 : w∗TΦ(xj) + b∗ ≥ 0,⇔ ΩwTΦ(x0) + Ωb ≥ 0
⇔ p̂(x0)− q̂(x0) + b ≥ 0

(9.74)

The weighted Parzen window estimators p̂(x), q̂(x), as defined above, are
bona fide density estimators. That is, they are always non negative and in-
tegrate to one. However, because the weights are determined by minimizing
DED , which puts emphasis on the points close to the class boundary trying
to maximize the overlap between the class PDFs, we do not regard them as
proper estimators for the PDFs that generated the data. From SVM theory,
we know that in the Mercer kernel feature space, the only nonzero weighting
components are those that correspond to data patterns on the margin.

In the input space, it seems that the corresponding nonzero weighting
components will be associated with data patterns near the class boundary.
We therefore interpret the minimization of the DED as a sparseness criterion,
which tunes the classifier to those patterns near the boundary. The other
data patterns should be much easier to classify correctly, and are not given
any weight in the design of the classifier.

The performance of the classifier is secured by the classification con-
straints. Note that weighted Parzen window estimators have been previously
proposed for improved Parzen window-based Bayes classification [11, 73]. In
summary, we have found that one may view the SVM theory in feature space
in terms of weighted Parzen density estimation in the input space, where reg-
ularization is obtained by minimizing the integrated squared error criterion.
Hence, in an information-theoretic framework, the support vector machine is
formulated by introducing the weights αi > 0 and αj > 0, and estimating the
class densities according to

p̂(x) =
1
Ω

N1∑

i=1

αiκ(x, xi), q̂(x) =
1
Ω

N2∑

j=1

αjκ(x, xj) . (9.75)

The weights, and hence p̂(x), q̂(x), are learned by enforcing a regularization
criterion

min
αi,αj

Ω2

∫
(p̂(x) − q̂(x))2dx (9.76)

subject to the classification constraints,

p̂(xi)− q̂(xi) + b ≥ +
1
Ω

∀xi ∈ c1

p̂(xj)− q̂(xj) + b ≤ − 1
Ω

∀xj ∈ c2 (9.77)
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9.7 Case Study: RKHS for Computation
with Spike Train

In the previous sections, we defined the ITL RKHS and showed several connec-
tions of this perspective with kernel methods. Although the original data space
structure was sufficient to perform computations required for machine learn-
ing, the RKHS augmented this perspective and provided an elegant math-
ematical approach to information-theoretic learning. Certain types of data
(e.g., point processes), however, do not naturally have the necessary structure
to implement machine learning algorithms. For these cases, the structure can
be obtained by the construction of an RKHS, and learning problems can easily
be formulated and solved in the RKHS. As an application example we illus-
trate this methodology for spike trains. A spike train s ∈ S(T ) is a simplified
representation of a neuron’s activity, specified by a sequence of ordered spike
times s = {tm ∈ T : m = 1, . . . , N} corresponding to the time instants in the
interval T = [0, T ] at which a neuron emits a spike (i.e., it “fires”) [67].

Kernel Function for Spike Trains

The first step in the construction of the RKHS is to define a symmetric non
negative definite kernel function. There are two basic approaches to do this
for spike trains. The first approach follows the ideas from kernel methods, and
utilizes the kernel κ to build an RKHS on spike times [48][290]. By writing
the spike train as a sum of impulses centered at the spike times, and utilizing
the linearity of the inner product in the RKHS, it is then possible to extend
this RKHS to spike trains. An alternative approach is to build the RKHS
by defining the kernel function on statistical descriptors of spike trains. We
follow the latter approach because it is more insightful, and closely parallels
the construction of the ITL RKHS.

A spike train is a realization of an underlying stochastic point process
[307]. In general, to completely characterize a point process, the conditional
intensity function must be used. However, for simplicity, here we focus on
the special case of Poisson processes, which are memoryless and therefore the
intensity function (or rate function) completely describes the point process
[307]. The general case is considered in Paiva et al. [234]. In a sense, it can
be said that intensity functions play for Poisson point processes the same
role as PDFs for random variables, inasmuch as both are complete statistical
functional descriptors [74]. Thus, it makes sense to build the RKHS for spike
trains following an approach similar to the construction of the ITL RKHS.

Consider two spike trains, si, sj ∈ S(T ), with i, j ∈ N . Denote the in-
tensity of the underlying Poisson processes by λsi(t) and λsj (t), respectively,
where t ∈ [0, T ] denotes the time coordinate. As with the CIP, we focus first
on the case of deterministic statistical descriptors and consider the estimation
problem in the next section. For any practical spike train with finite duration
T , we have that



9.7 Case Study: RKHS for Computation with Spike Train 377

∫

T

λ2
si

(t)dt <∞. (9.78)

As a consequence, the intensity functions of spike trains are valid elements of
L2([0, T ]). Therefore, we can define in this space a kernel function of intensity
functions given by the usual inner product in L2,

I(si, sj) =
〈
λsi , λsj

〉
L2(T )

=
∫

T

λsi(t)λsj (t)dt . (9.79)

We refer to I(·, ·) as the memoryless cross-intensity (mCI) kernel. The proof
that the mCI is indeed a symmetric non negative definite kernel, follows the
same steps as the proof of Property 9.1, and is omitted here. Hence, the mCI
induces an RKHS, denoted HI . Comparing the definition of the mCI kernel
with the CIP kernel, it is clear that both kernels incorporate the statistics de-
scriptors directly into the kernel function. Thus, both are complete statistical
operators. As with the CIP kernel, the definition of the mCI naturally induces
a norm in the space of the intensity functions,

‖λsi(·)‖L2(T ) =
√
〈λsi , λsi〉L2(T ) =

√∫

T

λ2
si

(t)dt (9.80)

which is very useful for the formulation of optimization problems.

Estimation of the Memoryless Cross-Intensity Kernel

Spike trains are realizations of underlying point processes, but, as defined,
the mCI kernel is a deterministic operator on the point processes rather than
on the observed spike trains. Thus, in practice, the kernel function is evalu-
ated with the intensity functions estimated from spike trains. A well–known
methodology for estimation of the intensity function is kernel smoothing [307].
Given a spike train si with spike times

{
tim ∈ T : m = 1, . . . , Ni

}
the estimated

intensity function is

λ̂si(t) =
Ni∑

m=1

h
(
t− tim

)
, (9.81)

where h is the smoothing function. This function must be non-negative and
integrate to one over the real line (just like a PDF). Commonly used smoothing
functions are the Gaussian, Laplacian, and α-functions, among others.

Consider spike trains si, sj ∈ S(T ) with estimated intensity functions
λ̂si(t) and λ̂sj (t), according to Eq. (9.81). Substituting the estimated intensity
functions in the definition of the mCI kernel (Eq. (9.79)) yields

Î(si, sj) =
Ni∑

m=1

Nj∑

n=1

κ
(
tim − tjn

)
. (9.82)
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where κ is the “kernel” obtained by the autocorrelation of the smoothing
function h. The difference of the space of intensity functions from which the
mCI kernel function was defined must be remarked, as well as the RKHS
induced by this kernel. As with the CIP and the ITL RKHS, it can be shown
there is a congruence mapping between the two spaces. Therefore, the same
result can be obtained from either space.

It is interesting to verify the parallel of concepts and derived operators
between the RKHS just defined for spike trains and the ITL RKHS. Yet, the
most important result is that the construction of this RKHS provides the
structure needed for computation with these data, which otherwise would not
be possible.

Principal Component Analysis

To exemplify these developments in an application, we now derive the algo-
rithm to perform principal component analysis (PCA) of spike trains. The
derivation of PCA in the RKHS is general, and applicable with other ker-
nel functions. Interestingly, this is the traditional approach in the functional
analysis literature [257]. A well-known example of discrete PCA done in an
RKHS is kernel PCA [287,288].

Consider a set of spike trains, {si ∈ S(T ), i = 1, . . . , N}, for which we wish
to determine the principal components. Computing the principal components
of the spike trains directly is not feasible because we would not know how
to define a principal component (PC), however, this is a trivial task in an
RKHS. Let {Λsi ∈ HI , i = 1, . . . , N} be the set of elements in the RKHS
corresponding to the given spike trains. Denote the mean of the transformed
spike trains as

Λ̄ =
1
N

N∑

i=1

Λsi , (9.83)

and the centered transformed spike trains (i.e., with the mean removed) can
be obtained as

Λ̃si = Λsi − Λ̄. (9.84)

PCA finds an orthonormal transformation providing a compact description
of the data. Determining the principal components of spike trains in the RKHS
can be formulated as the problem of finding the set of orthonormal vectors in
the RKHS such that the projections of the centered transformed spike trains
{Λ̃si} have maximum variance. This means that the principal components
can be obtained by solving an optimization problem in the RKHS. A function
ξ ∈ HI (i.e., ξ : S(T )→ R) is a principal component if it maximizes the PCA
cost function

J(ξ) =
N∑

i=1

[
Projξ(Λ̃si)

]2

− ρ (‖ξ‖2 − 1
)
, (9.85)
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where Projξ(Λ̃si) denotes the projection of the ith centered transformed spike

train onto ξ, and ρ is the Lagrange multiplier to the constraint
(
‖ξ‖2 − 1

)

imposing that the principal components have unit norm. To evaluate this cost
function one needs to be able to compute the projection and the norm of the
principal components. However, the inner product needed for the projection
and the norm are naturally defined. Thus, the above cost function can be
expressed as

J(ξ) =
N∑

i=1

〈
Λ̃si , ξ

〉2

HI

− ρ (〈ξ, ξ〉HI
− 1

)
, (9.86)

By the representer theorem [288], ξ is restricted to the subspace spanned
by the centered transformed spike trains {Λ̃si}. Consequently, there exist co-
efficients b1, . . . , bN ∈ R such that

ξ =
N∑

i=1

bjΛ̃si = bT Λ̃, (9.87)

where bT = [b1, . . . , bN ] and Λ̃(t) =
[
Λ̃s1(t), . . . , Λ̃sN (t)

]T
. Substituting in

Eq. (9.86) yields

J(ξ) =
N∑

i=1

(
N∑

j=1

bj

〈
Λ̃si , Λ̃sj

〉
)(

N∑

k=1

bk

〈
Λ̃si , Λ̃sk

〉)

+ρ

(

1−
N∑

j=1

N∑

k=1

bjbk

〈
Λ̃si , Λ̃sk

〉
)

= bT Ĩ
2
b+ ρ

(
1− bT Ĩb

)
.

(9.88)

where Ĩ is the Gram matrix of the centered spike trains; that is, the N ×N
matrix with elements

Ĩij =
〈
Λ̃si , Λ̃sj

〉

=
〈
Λsi − Λ̄,Λsj − Λ̄

〉

=
〈
Λsi ,Λsj

〉− 1
N

N∑

l=1

〈Λsi ,Λsl
〉 − 1

N

N∑

l=1

〈
Λsl

,Λsj

〉
+

1
N2

N∑

l=1

N∑

n=1
〈Λsl

,Λsn〉 .
(9.89)

In matrix notation,

Ĩ = I − 1
N

(1NI + I1N) +
1
N2

1NI1N , (9.90)

where I is the Gram matrix of the inner product of spike trains Iij =〈
Λsi ,Λsj

〉
, and 1N is the N × N matrix with all ones. This means that Ĩ

can be computed directly in terms of I without the need to explicitly remove
the mean of the transformed spike trains.
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From Eq. (9.88), finding the principal components simplifies to the problem
of estimating the coefficients {bi} that maximize J(ξ). Because J(ξ) is a
quadratic function its extrema can be found by equating the gradient to zero.
Taking the derivative with regard to b (which characterizes ξ) and setting it
to zero results in

∂J(ξ)
∂b

= 2 Ĩ
2
b− 2ρĨb = 0, (9.91)

and thus corresponds to the eigendecomposition problem

Ĩb = ρb. (9.92)

This means that any eigenvector of the centered Gram matrix is a solution of
Eq. (9.91). Thus, the eigenvectors determine the coefficients of Eq. (9.87) and
characterize the principal components. It is easy to verify that, as expected,
the variance of the projections onto each principal component equals the cor-
responding eigenvalue squared. So, the ordering of ρ specifies the relevance of
the principal components.

To compute the projection of a given input spike train s onto the kth
principal component (corresponding to the eigenvector with the kth largest
eigenvalue) we need only to compute in the RKHS the inner product of Λs
with ξk. That is,

Projξk
(Λs) = 〈Λs, ξk〉HI

=
1
N

N∑

i=1

bki

〈
Λs, Λ̃si

〉
(9.93)

=
1
N

N∑

i=1

bki

⎛

⎝I(s, si)− 1
N

N∑

j=1

I(s, sj)

⎞

⎠ .

An alternative approach to derive PCA for spike trains would be to utilize
the inner product in the space of intensity functions directly. Basically, the
derivation would follow the same steps but now in terms of intensity functions,
rather than elements in the RKHS. Nevertheless, due to the congruence be-
tween this space and the RKHS induced by the mCI kernel, the result is
the same. The key difference is that in Eq. (9.87), the principal components
are written as weighted combinations of intensity functions, with weights given
by the eigenvectors of the centered Gram matrix. That is, this approach allows
the principal components to be obtained as intensity functions. Intensity func-
tions characterize spike trains, therefore this perspective can be very telling
of the underlying data structure.

Examples with Synthetic Data

To illustrate the algorithm just derived we performed a simple experiment. We
generated two template spike trains comprised of ten spikes uniformly random
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Fig. 9.3. (a) Spike trains used for evaluation of the eigendecomposition coefficients
of PCA algorithm, and (b) for testing of the result. In either case, the first half of
the spike trains corresponds to the first template and the remaining to the second
template.

distributed over an interval of 0.25 sec. In a specific application these template
spike trains could correspond, for example, to the average response of a cul-
ture of neurons to two distinct but fixed input stimuli. For the computation
of the coefficients of the eigendecomposition (“training set”), we generated
a total of 50 spike trains, half for each template, by randomly copying each
spike from the template with probability 0.8 and adding zero mean Gaussian
distributed jitter with standard deviation 3ms. For testing of the obtained
coefficients, 200 spike trains were generated following the same procedure.
The simulated spike trains are shown in Figure 9.3.

With the PCA algorithm derived previously, we computed the eigende-
composition of the matrix Ĩ. The evaluation of the mCI kernel was estimated
from the spike trains according to Eq. (9.82), and computed with a Gaus-
sian kernel with size 2 ms. The eigenvalues {ρl, l = 1, . . . , 100} and first two
eigenvectors are shown in Figure 9.4.

The first eigenvalue alone accounts for more than 26% of the variance of
the dataset in the RKHS space. Although this value is not impressive, its im-
portance is clear since it is nearly four times higher than the second eigenvalue
(6.6%). Furthermore, notice that the first eigenvector clearly shows the sepa-
ration between spike trains generated from different templates (Figure 9.4b).
This again can be seen in the first principal component function, shown in
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Fig. 9.4. Eigenvalues {ρl, l = 1, . . . , 100} in decreasing order (a) and first two
eigenvectors (b) of the eigendecomposition of the centered Gram matrix Ĩ.
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Fig. 9.5. First two principal component functions (i.e., eigenfunctions) in the space
of intensity functions.

Figure 9.5, which reveals the location of the spike times used to generate the
templates and discriminates between them with opposite signs.

Around periods of time where the spike from both templates overlap the
first principal component is zero. As can be seen from the second principal
component function, the role of the second eigenvector is to account for the
dispersion in the data capable of differentiating spike trains generated from
different templates.

For evaluation and testing, both datasets where projected onto the first two
principal components. Figure 9.6 shows the projected spike trains. As noted
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Fig. 9.6. Projection of spike trains onto the first two principal components. (a)
Shows the projection of the spike trains in the training set and (b) in the testing
set. The different point marks differentiate between spike trains corresponding to
each one of the classes.

from the difference between the first and second eigenvalues, the first principal
component is the main one responsible for the dispersion between classes of
the projected spike trains. This happens because the direction of maximum
variance is the one that passes through both clusters of points in the RKHS
due to the small dispersion within class. The second principal component
seems to be responsible for dispersion due to the jitter noise introduced in the
spike trains, and suggests that other principal components play a similar role.

9.8 Conclusion

This chapter presented formally the relationship between the ITL descriptors
in the preceding chapters and a RKHS that we called Hν . The elements of Hν

are PDFs, and the kernel is the cross information potential. The inner product
between two PDFs was crucial to measure distances for clustering and it also
appeared in the divergence measures and quadratic mutual information. From
the RKHS perspective we can easily recognize its central role because it defines
the natural similarity metric in the space of PDFs.

In previous chapters we estimated all these quantities directly from sam-
ples using the information potential, that is the double sum of pairwise interac-
tions between the data samples. We saw in this chapter that these estimators
correspond rather directly to kernel methods. Indeed, when one places a ker-
nel on a data sample we are defining a function that exists in a RKHS defined
by the kernel. Therefore, we can reinterpret the information theoretical esti-
mators as kernel operations: the information potential estimator is nothing
but the mean square norm of the projected samples, the Cauchy–Schwarz di-
vergence estimator is nothing but the log of the cosine of the angles between
the projected samples.
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Finally, we can establish a relationship between Hν and the Hκ defined by
the kernel used in the ITL estimators: the mean value (over the data samples)
in the RKHS defined by the kernel exists in the Hν . We were able to show
that certain statistical operators defined in kernel spaces indeed correspond
to ITL quantities (e.g., MDD becomes the Euclidean distance in Hν).

It is therefore possible to also interpret well-known solutions in kernel
methods with ITL descriptors. We showed that the SVM can be interpreted
as the maximization of the Euclidean distance between classes estimated with
a weighted Parzen window, where the weights are basically the Lagrange mul-
tipliers that define the support vectors.

We hope to have convinced the reader that the CIP V (p, q) =
∫
p(x)q(x)dx

is the key concept behind all these relations, inasmuch as it defines Hν and
when p(x) = q(x) it defines the quadratic norm of the PDF that yields the es-
timators for Renyi’s entropy. Therefore, synergisms were established between
a statistical view of information and its functional view. The information-
theoretical descriptors presented by Alfred Renyi just take the log of the
projected data in Hv, which just changes the weighting of the inner product
as we established in Chapter 2.

As an application of the RKHS methodology we apply it to a problem
where the original space structure of the data does not support operations re-
quired for machine learning. One such example is the space of point processes.
However, we can define a positive definite function in the point process space
that builds a RKHS, where optimization algorithms can be carried out easily.
We demonstrate this with PCA, but could likewise have used dissimilarity
between spike trains, which as we have seen is associated with divergence.
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Correntropy for Random Variables: Properties
and Applications in Statistical Inference

Weifeng Liu, Puskal Pokharel, Jianwu Xu, and Sohan Seth

10.1 Introduction

Similarity is a key concept to quantify temporal signals or static measure-
ments. Similarity is difficult to define mathematically, however, one never
really thinks too much about this difficulty and naturally translates similar-
ity by correlation. This is one more example of how engrained second-order
moment descriptors of the probability density function really are in scientific
thinking. Successful engineering or pattern recognition solutions from these
methodologies rely heavily on the Gaussianity and linearity assumptions, ex-
actly for the same reasons discussed in Chapter 3.

We extend in this and the next chapter the fundamental definition of
correlation for pairs of random variables and stationary random processes
with a “generalized” correlation function called correntropy [201, 282] (the
name origin is explained in Chapter 11). We briefly defined correntropy in
Chapter 3 to show that the error entropy criterion is equivalent to robust
least squares, but did not pursue it further. As correlation, correntropy is a
bivariate function that produces a scalar, but it contains second and higher-
order PDF moments, which are expressed by the kernel used in its definition.
The higher moment description is not complete and does not appear in an
explicit form, but as a sum of terms added to the value of the correlation
weighted by the kernel size of ITL.

The reason we start with the case of two arbitrary random variables is to
provide the probabilistic and geometric meaning of correntropy. Although the
definition of correntropy is pretty general we have studied in detail the special
case of symmetric translation-invariant kernels (e.g., Gaussian, Laplacian) and
the results presented apply to the Gaussian kernel, denoted asG(·, ·). We show
that correntropy is directly related to the probability of how similar two ran-
dom variables are in a neighborhood of the joint space controlled by the kernel
bandwidth; that is, the kernel bandwidth acts as a spotlight, controlling the
“observation window” in which similarity is assessed. This adjustable window
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provides an effective mechanism to eliminate the detrimental effect of outliers,
and it is intrinsically different from the use of a threshold in conventional
techniques.

Statistics carry a geometric meaning in sample space (e.g., MSE yields the
2-norm distance in sample space). We have shown in Chapter 3 that corren-
tropy induces a new metric in sample space which is equivalent to the 2-norm
distance if points are close, behaves similarly to the 1-norm distance as points
get farther apart, and saturates as points are far apart approaching the zero-
norm. This geometric interpretation elucidates the robustness of correntropy
for outlier rejection and indeed implements Huber’s M estimation.

10.2 Cross-Correntropy: Definitions and Properties

Consider two arbitrary scalar random variables X and Y defined over the real
numbers.

Definition. Cross-correntropy is a generalized similarity measure between
two arbitrary scalar random variables X and Y defined by

v(X,Y ) = EXY [κ(X,Y )] =
∫∫

κ(x, y)pX,Y (x, y)dxdy, (10.1)

where the expected value is over the joint space and κ(·, ·) is any continuous
positive definite kernel. Cross-correntropy is a well-defined function provided
κ(x, y) belongs to L∞ (i.e. its maximal value is finite).

The conventional cross-correlation is a special case of cross-correntropy be-
cause the specific positive definite kernel κ(x, y) = xy substituted in Eq. (10.1)
yields cross-correlation. We study in detail the special case of the Gaussian
kernel (Eq. (1.50)) which is a symmetric, translation-invariant kernel. With
this constraint Eq. (10.1) can be written

vσ(X,Y ) = EXY [Gσ(X − Y )] =
∫∫

Gσ(x− y)pX,Y (x, y)dxdy, (10.2)

where σ is the kernel size or bandwidth. The properties presented below gen-
eralizable with minor modifications to other symmetric translation-invariant
kernels.

In practice, the joint PDF is unknown and only a finite number of data
{(xi, yi)}Ni=1 are available, leading to the sample estimator of cross-correntropy

v̂σ,N (X,Y ) =
1
N

N∑

i=1

Gσ(xi − yi). (10.3)

We can see an interesting link between cross-correntropy estimators and
ITL estimators which are explored below. For simplicity, we refer to Eq. (10.1)
or (10.2) as correntropy, and drop the explicit dependence on σ. Some impor-
tant properties of correntropy as defined by Eq. (10.2) are presented below.
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Property 10.1. For symmetric kernels, correntropy is symmetric; that is,
v(X,Y ) = v(Y,X).

Proof. This property follows from the definitions of positive definiteness and
symmetry.

Property 10.2. Correntropy is positive and bounded, and for the Gaussian
kernel yields 0 < v(X,Y ) ≤ 1/

√
2πσ. It reaches its maximum if and only if

X = Y .

Proof. This can be easily verified with the definition of the Gaussian function.

Property 10.3. For the Gaussian kernel, correntropy is a weighted sum of
all the even moments of the random variable Y–X.

Proof. Substituting the Taylor series expansion of the Gaussian function in
Eq. (10.2), and assuming that it is valid to interchange the integral with the
sum (all the moments of the PDF have to be finite), Eq. (10.2) yields

vσ(X,Y ) =
1√
2πσ

∞∑

n=0

(−1)n

2nσ2nn!
E[(X − Y )2n]. (10.4)

This is a very interesting expression that tells a lot about correntropy.
First of all, one sees that for the Gaussian kernel, the sum of all even moments
of the difference variable appear in correntropy. Thus correntropy keeps the
nice bivariate form of correlation, but is still sensitive to the sum of second–
and higher-order moments of the random variables. In many applications this
sum may be sufficient to quantify better than correlation the relationships of
interest and it is simpler to estimate than the higher-order moments. We do
not recommend computing correntropy with Eq. (10.4).

The kernel size appears as a parameter weighting the second-order mo-
ment (n = 1) and the higher-order moments. As σ increases above one, the
high-order moments decay faster due to the denominator, so the second order
moment tends to dominate and correntropy approaches (a biased) correlation.
This has been verified in practice for kernel sizes 20 times larger than the vari-
ance of the data. Therefore, the issue of kernel size selection in correntropy
is different from density estimation. As is demonstrated practically, the per-
formance sensitivity of correntropy to the kernel size is much less than what
could be expected from density estimation.

Property 10.4. When the Gaussian kernel shrinks to zero, correntropy ap-
proaches the value p(X = Y ); that is, lim

σ→0
vσ(X,Y ) =

∫
pXY (x, x)dx .

Proof. In the theory of distributions it can be proven that lim
σ→0

Gσ(x) ≡ δ(x).
Therefore, for densities for which the integral exists, we can write
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lim
σ→0

vσ(X,Y ) = lim
σ→0

∫∫
Gσ(x− y)pXY (x, y)dxdy

=
∫∫

δ(x− y)pXY (x, y)dxdy

=
∫
pXY (x, x)dx (10.5)

because by definition δ(x − y) = 0, (x − y) 	= 0. Eq. (10.5) represents a
variable transformation of the joint PDF evaluated with equal arguments that
yields a scalar value. Conceptually, we can interpret Eq. (10.5) as the integral
over the domain of the intersection of the joint PDF with a plane passing
through the origin with equation x = y. Hence, for the Gaussian kernel, the
limit of correntropy for small kernel sizes approaches p(X = Y ). According
to the conditions of the Parzen method [241], when σ goes to zero and the
product Nσ to infinity, p̂X,Y,σ(x, y) approaches pX,Y (x, y) asymptotically in
the mean square sense, therefore we can also expect a similar behavior for the
estimated quantities.

Property 10.4a. Assume i.i.d. data {(xi, yi)}Ni=1 are drawn from the joint
PDF pX,Y (x, y), and p̂X,Y,σ(x, y) is its Parzen estimate with kernel size σ.
The correntropy estimate with kernel size σ

√
2 is the integral of p̂X,Y,σ(x, y)

along the line x = y; that is,

v̂σ
√

2(X,Y ) =
∫
p̂X,Y,σ(x, y)|x=y=udu (10.6)

Proof. Using the two dimensional radially symmetric Gaussian kernel to esti-
mate the joint PDF, we have

p̂X,Y,σ(x, y) =
1
N

N∑

i=1

Gσ

([
x
y

]

−
[
xi
yi

])

, (10.7)

where

Gσ

([
x
y

])

=
1

2π|Σ|1/2 exp

(

−1
2

([
x
y

]T
Σ−1

[
x
y

]))

, Σ =
(
σ2 0
0 σ2

)

It is easy to see that with this choice

Gσ

([
x
y

])

= Gσ(x)Gσ(y), (10.8)

thus

p̂X,Y,σ(x, y) =
1
N

N∑

i=1

Gσ (x− xi)Gσ (y − yi) . (10.9)

Integrating Eq. (10.9) along the line x = y and assuming the integral exists,
we obtain
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∫ ∞

−∞
p̂X,Y,σ(x, y)|x=y=u du =

∫ ∞

−∞

1
N

N∑

i=1

Gσ (x− xi)Gσ (y − yi) |x=y=u du

=
1
N

N∑

i=1

∫ ∞

−∞
Gσ (u− xi)Gσ (u− yi)du

=
1
N

N∑

i=1

Gσ
√

2 (xi − yi) = v̂σ
√

2(X,Y ). (10.10)

This completes the proof.

In practical applications, the estimation of correntropy is done only with a
finite number of samples, which sets a lower bound on the kernel size, because
too small a kernel size will lead to meaningless estimation. When the kernel
size used in correntropy is σ, its rectangle approximation has a bandwidth√
π/2σ and assume further that the joint PDF is smooth in this bandwidth.

Then a more precise interpretation of correntropy with Gaussian kernels is

vσ(X − Y ) ≈ p
(
|Y −X | <

√
π/2σ

)
/
√

2πσ. (10.11)

Let us define the random variable E = X − Y with PDF p(e).

Property 10.5. When the Gaussian kernel shrinks to zero, vσ(X,Y ) is the
value of pE(e) evaluated at e = 0; i.e., lim

σ→0
vσ(X,Y ) = pE(0)

Proof. In fact,

vσ(X,Y ) = EXY [Gσ(X − Y )] = E[Gσ(E)] =
∫
Gσ(e)p(e)de, (10.12)

and
pE(0) = p(X = Y ) =

∫
pX,Y (x, x)dx, (10.13)

therefore the proof follows immediately from Property 10.4. There is an equiv-
alent statement in terms of estimators.

Property 10.5a. Assume the samples {(xi, yi)}Ni=1 are drawn from the joint
PDF pX,Y (x, y). Define the error random variable E = Y − X , and p̂E,σ(e)
as the Parzen estimate of the error PDF from data {(ei = xi − yi)}Ni=1. Then
v̂σ(X,Y ) is the value of p̂E,σ(e) evaluated at the point e = 0; that is,

v̂σ(X,Y ) = p̂E,σ(0). (10.14)

Proof. By Eq. (10.2)

v̂σ(X,Y ) =
1
N

N∑

i=1

Gσ(xi − yi) =
1
N

N∑

i=1

Gσ(ei) = p̂E,σ(0), (10.15)

which completes the proof.
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Property 10.6. Under the condition N → ∞, v̂N,σ(X,Y ) is an estimator
of vσ(X,Y ) consistent in mean square. Furthermore, under the conditions
Nσ →∞ and σ → 0, v̂N,σ(X,Y ) is an asymptotically unbiased estimator of
pE(0) and consistent in mean square.

Proof. The proof follows from the properties of Parzen estimation [241].
Indeed,

E[v̂N,σ(X,Y )] = vσ(X,Y ) (10.16)
lim

N→∞,σ→0
E[v̂N,σ(X,Y )] = pE(0) (10.17)

var[v̂N,σ(X,Y )] = N−1 var[Gσ(E)] (10.18)

lim
N→∞,σ→0

Nσvar[v̂N,σ(X,Y )] = pE(0)
∫
G2

1(u)du, (10.19)

where G1(u) is the Gaussian kernel with σ = 1.

From these properties we can conclude that the effect of the kernel size σ
in correntropy is not as dramatic as in ITL. In fact, let us assume the error
PDF is Gaussian with standard deviation σE . Then from Eq. (10.11)

vσ(X,Y ) = 1/
√

2π (σ2 + σ2
E) and v0 =: lim

σ→0
vσ = 1/

√
2πσE . (10.20)

A simple calculation shows that if σ < 0.32σE , |(vσ − v0)/v0| < 0.05. For
σ2 << σE

2, we obtain (vσ − v0)/v0 ≈ σ2/
(
2σ2

E

)
. More generally, taking the

derivative of the correntropy w.r.t. σ,
∣
∣
∣
∣
dvσ(X,Y )

dσ

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

σ

(σ2 + σ2
E)

√
2π (σ2 + σ2

E)

∣
∣
∣
∣
∣
<

1√
2πσ2

E

Therefore, if σ changes by Δσ, the change in correntropy is less than
Δσ/

√
2πσE . This weak sensitivity of the correntropy estimate w.r.t. σ is in

contrast with the large dependence of the density estimation w.r.t. σ.
Furthermore, if the Gaussian assumption holds in regression problems,

maximizing vσ in Eq. (10.20) is essentially minimizing the error variance σE ,
and σ becomes immaterial provided the variance of the estimator (Eq. (10.19))
is reasonably upper-bounded. For instance, given N we can choose σ so that

∣
∣
∣
∣

√
var(v̂N,σ)/E(v̂N,σ)

∣
∣
∣
∣ < 0.05.

Asymptotically (N sufficiently large and σ small according to Eq. (10.19))
we have

∣
∣
∣
∣

√
var(v̂N,σ)/E(v̂N,σ)

∣
∣
∣
∣ ≈

√

(NσpE(0))−1
∫
G2

1(u)du. (10.21)
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Property 10.7. Correntropy is a “summary” second-order statistic of the
data projected in a reproducing kernel Hilbert space (RKHS) defined by the
kernel function κ.

Proof. According to Mercer’s theorem [217], any symmetric positive definite
kernel function possesses an eigendecomposition as

κ(x, y) =
∞∑

n=0

λnϕn(x)ϕn(y) = 〈Φ(x),Φ(y)〉

Φ : x �→
√
λnϕn(x), n = 1, 2, . . .,

where {ϕn(x), n = 1, 2, . . .} and {λn, n = 1, 2, . . .} are sequences of eigen-
functions and corresponding eigenvalues of κ(x, y), respectively, and < ·, · >
denotes the inner product between two infinite-dimensional vectors Φ(x) and
Φ(y). By the Moore–Aronszajn Theorem [7], κ(x, y) uniquely determines a
high-dimensional reproducing kernel Hilbert space, denoted as Hκ, where the
nonlinear transformation Φ maps the original signals onto the surface of sphere
in Hκ. Based on the symmetric positive definite kernel function κ(x, y), the
correntropy can also be interpreted as

v(X,Y ) = E[κ(x, y)] = E[〈Φ(x),Φ(y)〉Hκ
] = E[Φ(x)TΦ(y)], (10.22)

Assume the dimension of the feature space is M (eventually infinity
as in the case of Gaussian kernel) and the kernel mapping is Φ(X) =
[ϕ1(X)ϕ2(X) . . . ϕM (X)]T .

The second-order statistics between Φ(X) and Φ(Y ) is expressed by the
following correlation matrix

RXY = E[Φ(X)Φ(Y )T ] =

⎡

⎢
⎣

E[ϕ1(X)ϕ1(Y )] · · · E[ϕ1(X)ϕM (Y )]
...

. . .
...

E[ϕM (X)ϕ1(Y )] · · · E[ϕM (X)ϕM (Y )]

⎤

⎥
⎦ (10.23)

Therefore, from Eq. (10.22),

v(X,Y ) = E[Φ(X)TΦ(Y )] = trace(RXY ). (10.24)

The trace of RXY is equal to the sum of the eigenvalues, which clearly shows
that correntropy summarizes the second-order statistics in the feature space.
Combining this property with Property 10.4, we can infer that the trace of
the Gram matrix measures the probability density of X = Y in the input
space, for small kernels.

Property 10.8. If X and Y are statistically independent,

v(X,Y ) =< E[Φ(X)],E[Φ(Y )] >Hκ , (10.25)

where 〈·, ·〉Hκ
denotes the inner product in RKHS defined by the kernel.
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Proof. Using the notation in Property 10.7,

v(X,Y ) = E
[∑M

i=1
λiϕi(X)ϕi(Y )

]

=
∑M

i=1
λiE[ϕi(X)]E[ϕi(Y )]

=< E[Φ(X)],E[Φ(Y )] >Hκ (10.26)

by the independence assumption. This completes the proof.

This property can be called uncorrelatedness in feature space and is an
easily computable necessary (but not sufficient) condition for independence
between X and Y . Additionally, this property can be interpreted in terms of
PDF. If X and Y are independent,

pX,Y (x, y) = pX(x)pY (y) (10.27)

Using kernels to estimate these PDFs,

p̂X,Y,σ(x, y) = 1
N

N∑

i=1

Gσ(x− xi)Gσ(y − yi) (10.28)

p̂X,σ(x, y) = 1
N

N∑

i=1

Gσ(x − xi)p̂Y,σ(x, y) = 1
N

N∑

i=1

Gσ(y − yi). (10.29)

Integrating Eq. (10.27) along the line x = y and using Eqs. (10.28), and (10.29)
yields

1
N

N∑

i=1

Gσ
√

2(xi − yi) ≈
1
N2

N∑

i=1

N∑

j=1

Gσ
√

2(xi − yj) (10.30)

which is a sample estimate approximation of Eq. (10.25). The approximation
in Eq. (10.30) is due to the Parzen estimate. When σ tends to zero and the
product Nσ to infinity, strict equality holds.

Using the analogy of potential fields in Chapter 2, the term on the right-
hand side of Eq. (10.30) is an estimate for the cross-information poten-
tial (CIP), therefore for independent random variables the estimator of cor-
rentropy is an estimator for the CIP, which is a great computational sav-
ings (one sum versus two sums). From the viewpoint of kernel methods,
pX(·) = E[Φ(X)], pY (·) = E[Φ(Y )] are two points in the RKHS, and the
CIP is the inner product between the vectors created by these two PDFs, as
demonstrated in Chapter 9. But if we recall the discussion in Chapter 2, the
CIP is also the argument of the logarithm in Renyi’s quadratic cross-entropy
between pX(·) and pY (·), so there is also an information-theoretic interpreta-
tion of correntropy when the variables are independent.

If two random variables are independent, the scalar J = v(X,Y ) −
CIP(X,Y ) = 0, which means that correntropy yields a “weak” test for
independence, in the sense that it is just a necessary condition for statis-
tical independence. J is easily estimated from the data using the estimators
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of correntropy in Eq. (10.3) and of the CIP in Eq. (7.5). Further analysis
and applications of this property in independent component analysis (ICA)
have been pursued [7]. Equation (10.30) bears resemblance to the constrained
covariance proposed by Gretton et al in [123], which is a strong measure of
independence. These authors constrained the covariance operator in a closed
ball of a reproducing kernel Hilbert space and converted the measure into a
matrix norm of Gram matrices. However, our measure starts directly from
Parzen estimates of PDFs and is a more intuitive, although weaker, measure
of independence.

Property 10.9. The estimator of correntropy, induces a metric in the sample
space. Given two vectors X = (x1, x2, . . . , xN )T and Y = (y1, y2, . . . , yN)T in
the sample space, the function CIM (X,Y ) = (Gσ(0)− v(X,Y ))1/2 defines a
metric in the sample space and is named as the correntropy induced metric
(CIM). This property was proved in Chapter 3 and is included here just for
completeness.

Property 10.10. For any symmetric positive definite kernel (i.e., Mercer ker-
nel) κ(x, y) defined on R×R, the cross-correntropy v(X,Y ) is a reproducing
kernel.

Proof. Because κ(x, y) is symmetrical, it is obvious that v(X,Y ) is also sym-
metrical. Now, because κ(x, y) is positive definite, for any set of N points
{x1, . . . , xN} and any set of real numbers {α1, . . . , αN}, not all zero

N∑

i=1

N∑

j=1

αiαjκ(xi, yj) > 0. (10.31)

It is also true that for any strictly positive function g(·, ·) of two random
variables x and y, E [g(x, y)] > 0. Then

E

⎡

⎣
N∑

i=1

N∑

j=1

αiαjκ(xi, yj)

⎤

⎦ > 0 ⇒
N∑

i=1

N∑

j=1

αiαjE[κ(xi, yj)]

=
N∑

i=1

N∑

j=1

αiαjv(X,Y ) > 0

Thus, v(X,Y ) is both symmetric and positive definite. Now, the Moore–
Aronszajn theorem [7] proves that for every real symmetric positive definite
function of two real variables, there exists a unique reproducing kernel Hilbert
space, denoted as Hv, with the positive function as its reproducing kernel.

As we have seen in Eq. (10.10), correntropy for small kernel sizes ap-
proaches p(X = Y ), (i.e. the integral of the joint PDF along the line x = y).
This interpretation enables a generalization of correntropy we call parametric
correntropy.
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Definition. Parametric correntropy in Cartesian coordinates is defined as

va,b(X,Y ) = E[Gσ(aX + b− Y )] =
∫∫

Gσ(ax+ b− y)p(x, y)dxdy (10.32)

for any real a and b, and a 	= 0. This definition allows integration of joint
PDFs on lines that do not necessarily pass through the origin and have arbi-
trary slopes.

For the special case of lines passing through the origin (b = 0 ), parametric
correntropy can also be defined as

vθ(X,Y ) =
∫∫

Gσ(sin(θ)x − cos(θ)y)p(x, y)dxdy, (10.33)

where θ ∈ [0, π] is the radial angle in the joint space and it defines the integral
of the joint PDF along any line that passes through the origin with slope θ.
Correntropy is obtained for the special case of θ = 45 degrees in Eq. (10.33).

Property 10.11. The parametric correntropy that passes through the origin
in the limit of σ → 0 is a radial conditional PDF and can be used to calculate
a radial marginal PDF in the joint space.

Proof. Let us operate a change of variables from Cartesian to polar coordi-
nates (x, y) = rejθ . The joint density can be written as p(R,Θ) = p(Θ)p(R|Θ).
By definition the radial conditional density function p(r|Θ = θ) is a cut of
the joint PDF along the radial direction Θ = θ. Integrating the joint density
along this radial direction yields

∫
p(Θ)p(r|Θ = θ)dr = p(θ). If we take the

limit of σ → 0 in Eq. (10.33), we see that we obtain exactly the same value,
provided the integral exists.

The radial marginal density function by definition will quantify the change
of probability density in the joint space as a function of the angle. Therefore, it
is possible to estimate a radial marginal density function with correntropy by
computing p̂(Θ = θ) and scanning 0 ≤ θ < π. The values vθ(X,Y )|θ=π/2 and
vθ(X,Y )|θ=π represent the weighted sum of (marginal) moments for X and Y ,
respectively. The variables X and Y are relatively similar if vθ(X,Y )|θ=π/4
is noticeably larger than the maximum of vθ(X,Y )|θ=π/2 and vθ(X,Y )|θ=π.
When vθ(X,Y )|θ=π/4 is larger than vθ(X,Y )|θ=π/2 it means that X and Y
are more similar than X is to an all-zero signal. In practical cases it is not
possible to make the kernel size zero as discussed in Property 10.4 because
of finite data, but an approximation to the radial conditional probability and
the marginal density function is possible.

Thus far we have addressed similarity between two random variables, but
it is possible to discuss similarity between two random vectors of arbitrary
dimension with correntropy if similarity is interpreted as similarity amongst
all its pairwise components. Correntropy can be generalized for more than two
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variables using the interpretation of correntropy expressed in Property 10.4.
We consider not only probability along lines in two dimensions (as X = Y )
but probability along lines in L-dimensional spaces by using the Parzen esti-
mator for the joint multidimensional PDF. The extension outlined here only
applies to the radially symmetric Gaussian kernel. To simplify the presenta-
tion, the formulation will be done for the difference variable e. The notation
ej(i) means the ith data sample of the jth component of the L-dimensional
random vector e = [e1, e2, . . . , eL]T . Suppose there are N data samples; then
p̂E(e1, e2, . . . , eL) = 1/N

∑N
i=1

∏L
j=1Gσ(ej − ej(i)) or

p̂E(e1, e2, . . . , eL) =
1
N

N∑

i=1

1

(2πσ2)L/2
exp

⎛

⎝− 1
2σ2

⎛

⎝
L∑

j=1

(ej − ej(i))2
⎞

⎠

⎞

⎠

(10.34)
This extension of correntropy consists in a line integral defined by the bisector
of the positive hyperoctant in L-dimensional space.

Definition. Correntropy for an L dimensional random vector e =
[e1, e2, . . . , eL]T is

v(e) =
∫
. . .

∫ L∏

j=2

Gσ(e1 − ej)pE(e1, e2, . . . , eL)de1 . . . deL. (10.35)

Equation (10.35) can be written as a simple integral in which all the parame-
ters of the joint PDF are equal; that is, v(e) =

∫
pE(e, e, . . . , e)de. Therefore

it can be easily estimated by plugging the estimator given in Eq. (10.34) to
obtain

v̂(e) =
1
N

N∑

i=1

∫
1

(2πσ2)L/2
exp

⎛

⎝− 1
2σ2

⎛

⎝
L∑

j=1

(e− ej(i))2
⎞

⎠

⎞

⎠ de

=
1
N

N∑

i=1

∫
1

(2πσ2)L/2
exp

⎛

⎝− 1
2σ2

⎛

⎝
L∑

j=1

(e2 − 2eej(i) + ej(i)2)

⎞

⎠

⎞

⎠de.

(10.36)

The argument of the exponential involves a sum of second order terms that
can be written as a product of a perfect square of polynomial terms multiplied
by a reminder term as

v̂(e) =
1
N

N∑

i=1

∫
1

(2πσ2)L/2
exp

(

− L

2σ2

(
e2 − 2eγi + γ2

i

)
)

exp
(

− L

2σ2
C2
i

)

de,

(10.37)

where γi =
∑L

j=1 ej(i)/L and Ci =

√
∑L

j=1 (ej(i))2/L−
(∑L

j=1 ej(i)/L
)2

are the polynomial factors. Now let σ̄ = σ/√L and write the expression as
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v̂(e) =
1
N

N∑

i=1

∫
1

LL/2
1

(2πσ̄2)(L−2)/2

1

(2πσ̄2)1/2
exp

(

− 1
2σ̄2

(e− γi)2
)

1

(2πσ̄2)1/2
exp

(

− 1
2σ̄2

C2
i

)

de.

As the integral is a complete Gaussian it integrates to one and simplifies to

v̂(e) =
1
N

N∑

i=1

1
LL/2

1

(2πσ̄2)(L−2)/2
Gσ′ (Ci).

Finally, plugging the value of Ci from the factorization yields

v̂(e) =
1
N

N∑

i=1

1
L

1

(2πσ̄2)(L−2)/2
Gσ̄

⎛

⎜
⎜
⎝

√
√
√
√
√ 1
L

L∑

j=1

e2j(i)−
⎛

⎝ 1
L

L∑

j=1

ej(i)

⎞

⎠

2
⎞

⎟
⎟
⎠.

(10.38)

10.3 Centered Cross-Correntropy and Correntropy
Coefficient

In the previous section we defined cross-correntropy, but this function is not
zero mean even if the input data are centered due to the nonlinear transfor-
mation produced by the kernel. In statistics, the covariance represents the
second-order statistics of centered data, so we now define a “generalized”
cross-covariance function, called centered cross-correntropy as

u(X,Y ) = EX,Y [Gσ(x, y)]− EXEY [Gσ(x, y)]

=
∫∫

Gσ(x, y)(pXY (x, y)−pX(x)pY (y))dxdy

= E[〈(Φ(x) − E[Φ(x)]), (Φ(y) − E[Φ(y)])〉Hκ
], (10.39)

where Hκ is the RKHS defined by the kernel. In the input space, the cor-
rentropy is the joint expectation of κ(x, y), whereas centered correntropy is
the joint expectation minus the marginal expectation of κ(x, y). The centered
cross-correntropy might be also interpreted as the trace of a covariance ma-
trix for the transformed random variables in the high-dimensional RKHS Hκ,
or equivalently, the trace of the cross-correlation matrix for the zero-mean
(centered) random functions Φ(x) − E[Φ(x)], and Φ(y)− E[Φ(y)].

The sample mean estimator of the centering term, EXEY [G(x, y)] is also
numerically equal to the kernel estimator of the cross-information potential
defined in Chapter 2, which as we saw is the argument of the log of Renyi’s
quadratic cross-entropy.
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Just by looking at Eq. (10.39) and utilizing our experience with kernel
estimators it is straightforward to obtain an estimator for center correntropy
u(X,Y ) as

ûσ(X,Y ) =
1
N

N∑

i=1

Gσ(xi − yi)− 1
N2

N∑

i=1

N∑

j=1

Gσ(xi − yj). (10.40)

Property 10.12. For symmetric kernels, the centered cross-correntropy
u(X,Y ) is a symmetric nonnegative definite function defined in X ×X → R.

Proof. The symmetry of u(X,Y ) is easily seen because the kernel function
used in the definition is symmetric. Given any positive integer N , any set of
{x1, x2, . . . xN} in X and any not all zero real numbers α1, α2, . . ., αN , by
definition we have

N∑

i=1

N∑

j=1

αiαju(xi, xj) =
N∑

i=1

N∑

j=1

αiαjE[
〈
(Φ(xi) − E[Φ(xi)]), (Φ(xj) − E[Φ(xj)])

〉
Hκ

= E

⎡

⎣

∥
∥
∥
∥
∥

N∑

i=1

αi(Φ(xi) − E[Φ(xi)])

∥
∥
∥
∥
∥

2⎤

⎦ ≥ 0 (10.41)

This is relevant because by Aronzajn’s theorem it defines a RKHS. The im-
portance of the centered correntropy in this discussion is to help us define
a single scalar that can quantify the similarity of the two random variables,
extending the concept of the correlation coefficient so pervasive in statistics.

Definition. The correntropy coefficient is defined as

η =
u(X,Y )

√
u(X,X)u(Y, Y )

, (10.42)

where u(X,Y ) is the centered cross-correntropy defined in Eq. (10.39) and
u(X,X) and u(Y, Y ) are, respectively, the centered autocorrentropy func-
tions for nondegenerate random variables X and Y , defined as u(X,X) =
EX [Gσ(x, x)] − EXEX [Gσ(x, x)]. A random variable X is nondegenerate (its
PDF is not a delta function), if u(X,X) > 0 [261].

Property 10.13. For nondegenerate random variables, the absolute value of
the correntropy coefficient is bounded by 1; that is, |η| < 1.

Proof. This property can be proven by showing that the centered cross-
correntropy u(X,Y ) satisfies |u(X,Y )| ≤ √

u(X,X)u(Y, Y ) which is simply
the Cauchy–Schwarz inequality in the RKHS Hκ. Let n = 2 in Eq. (10.41);
the expression reduces to

α2
1u(X,X) + α2

2u(Y, Y ) ≥ 2α1 α2 |u(X,Y )| . (10.43)
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For nondegenerate random variables, we can substitute

α2
1 =

u(Y, Y )
2
√
u(X,X)u(Y, Y )

and α2
2 =

u(X,X)
2
√
u(X,X)u(Y, Y )

into Eq. (10.43) to obtain Eq. (10.42). Therefore |u(X,Y )| ≤√
u(X,X)u(Y, Y )

must hold because the left-hand side is zero and the right-hand side is non-
negative. Hence we conclude the proof.

Property 10.14. If the two random variables X and Y are independent, the
correntropy coefficient reduces to zero.

Proof. This property is trivial to prove if we substitute in Eq. (10.39) the
equality EX,Y [Gσ(x, y)] = EXEY [Gσ(x, y)] proven in Property 10.8.

Therefore, unlike the conventional correlation coefficient, the correntropy
coefficient distinguishes between independence and uncorrelatedness. In fact,
the correlation coefficient yields a zero value for both independent and un-
correlated random variables, and the correntropy coefficient yields necessarily
zero if the random variables are independent, but will likely produce a nonzero
value (which depends on the kernel width used in the Gaussian kernel) for two
uncorrelated but not independent random variables.

In practice, only a finite number of data points are available from the real-
world experiment. So the need arises to estimate the correntropy coefficient.
Substituting the definition of the centered cross-correntropy Eq. (10.39) into
the correntropy coefficient Eq. (10.42) and approximating the ensemble av-
erage by the sample mean, the following estimate of correntropy coefficient
directly from data is obtained,

η̂ =
1
N

∑N
i=1Gσ(xi, yi)− 1

N2

∑N
i=1

∑N
j=1Gσ(xi, yj)√

κ(0)− 1
N2

∑N
i=1

∑N
j=1Gσ(xi, xj)

√
κ(0)− 1

N2

∑N
i=1

∑N
j=1Gσ(yi, yj)

,

(10.44)

where N is the total number of samples, and
(
1
/
N2

) ∑N
i=1

∑N
j=1Gσ(xi, yj)

is the estimator of the cross-information potential between X and Y ,
(
1
/
N2

)

∑N
i=1

∑N
j=1 Gσ(xi, xj) and

(
1
/
N2

) ∑N
i=1

∑N
j=1Gσ(yi, yj) are the IP estima-

tors for X and Y , respectively. In practice the estimate of the correntropy
coefficient depends on the kernel size, and a theoretical analysis of its effect
has not been conducted. Note the close resemblance of the correntropy co-
efficient of Eq. (10.42) with the Cauchy–Schwarz divergence between PDFs
introduced in Chapter 2 (apart from the logarithm). In addition to the cen-
tering of the PDFs using the IP, the computation is only done on the line
x = y.
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10.4 Parametric Cross-Correntropy and Measures
of Dependence

An important observation in the definition of the centered correntropy
Eq. (10.39) is that when two random variables are independent (pX,Y (x, y) =
pX(x)pY (y)) the quantity becomes zero but not vice versa. In order to make it
a suitable dependence measure, we modify the definition of the centered cor-
rentropy so that the correntropy coefficient satisfies the condition of attaining
zero if and only if the two random variables are independent.

Definition. Given two random variables X and Y , the parametric centered
correntropy is defined as

ua,b(X,Y ) = EX,Y [Gσ(aX + b− Y )] =
∫∫

Gσ(ax+ b− y)(pXY (x, y)

− pX(x)pY (y))dxdy, (10.45)

where pXY (x, y) is the joint PDF of random variables, pX(x) and pY (y) are
the marginal PDFs, respectively, and a 	= 0 and b are parameters in R.

Property 10.10 illustrates the meaning of parametric correntropy in the
input space as radial conditionals, but in the context of dependence measures,
the importance of parametric centered correntropy comes from the following
property.

Property 10.15. For infinite support kernels, the parametric centered cor-
rentropy is zero for all a and b if and only if X and Y are independent random
variables.

This property is proved in [261] and involves the use of Bochner’s theorem.
Obviously this is a very important property because it links independence
between scalar random variables with the calculation of a function of two
parameters, for which we have already presented sample estimators.

Definition. Given two random variables x and y, and two real numbers a, b
with a 	= 0 the parametric correntropy coefficient is defined as

ηa,b(X, Y )=η(aX + b, Y )=
u(aX + b, Y )

√
u(aX + b, aX + b)u(Y, Y )

=
EX,Y [Gσ(ax + b, y)] − EXEY [Gσ(ax + b, y)]

√
EY [Gσ(ax + b, ax + b)] − EXEX [Gσ(ax + b, ax + b)]

√
EY [Gσ(y, y)] − EY EY [Gσ(y, y)]

.

(10.46)

When samples from each one of the random variables are available, the para-
metric correntropy coefficient can be estimated from samples using kernels as

η̂a,b =

1
N

∑ N
i=1Gσ(axi + b, yi) − 1

N2
∑N

i=1

∑ N
j=1 Gσ(axi + b, yj)

√
Gσ(0) − 1

N2
∑ N

i=1

∑ N
j=1 Gσ(axi + b, axj + b)

√
Gσ(0) − 1

N2
∑N

i=1

∑ N
j=1 Gσ(yi, yj)

.

(10.47)
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Property 10.16. The absolute value of the parametric correntropy coefficient
is bounded by 1; that is, |ηa,b| ≤ 1.

The proof of this property was already given in Property 10.13.

This development showed that the parametric correntropy coefficient has
the very interesting property that it is zero for all a and b if and only if the
random variables are independent, and is always bounded between ±1. From
these results it is possible to define a novel dependence measure that obeys
most of the Renyi’ postulates [262].

Measures of Dependence

The concept of statistical independence is very clearly defined. However, when
two variables are not independent, then they are dependent. How to properly
quantify the degree of dependence is a central problem in statistics that has
received a lot of attention for over a century. The difficulty is that a construc-
tive definition of statistical dependence does not exist. Therefore, measures
of dependence proliferate in the literature. They are mostly based on the dis-
tance between the joint PDF of the data and the product of the marginal
PDFs [212]. Some of the most commonly used measures of bivariate depen-
dence include but are not limited to the correlation coefficient, Kendall’s τ ,
Spearmans’ ρs, maximal correlation coefficient, monotone correlation coeffi-
cient, and others.

The concept of dependence is also closely related to the amount of infor-
mation that one random variable contains with respect to another, because
the more dependent the random variables are, the more mutual information
they share. Therefore, several measures based on information theory have been
proposed in the literature, such as mutual information that can also be inter-
preted as the Kullback–Leibler divergence between the joint probability den-
sity functions and the product of the marginal densities [65]. It turns out the
Kullback–Leibler divergence is a special case of the ϕ-divergences discussed in
Chapter 1 when a specific convex function ϕ is chosen [218]. Silvey’s general-
ized coefficient [301] uses the Radon–Nikodym derivative of joint distribution
of random variables with respect to the product of their marginal distribu-
tions. Other dependence measures based on information theory include the
relative entropy measure proposed by [169] and others. However, Joe’s rela-
tive entropy dependence measure [169], and almost all other entropies fail to
be “metric” because they violate the triangular inquality. To overcome this
problem Granger, et al [119] proposed a metric measure of dependence.

Recently there has been considerable work on using functions in repro-
ducing kernel Hilbert space to quantify dependence. Bach and Jordan [12]
introduced kernel dependence functionals in the context of independent com-
ponent analysis. The kernel canonical correlation is a kernelization of canonical
correlation analysis with regularization on the functionals. The kernel general-
ized variance is an extension of kernel canonical correlation by estimating the
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spectral norm of the correlation operator between reproducing kernel Hilbert
spaces in the entire spectrum [12]. Instead of using the correlation operator
in RKHS, Gretton et al. [123] proposed the kernel constrained covariance
(COCO) and kernel mutual information based on the covariance operator.
The kernel constrained covariance estimates the spectral norm of the covari-
ance operator between RKHS. It has been proven that the kernel constrained
covariance is zero if and only if the original random variables are independent
provided that the kernel is universal. These dependence measures based on
kernel methods have enjoyed much success in independent component analy-
sis, quantification of generalized synchronization between chaotic signals, and
other machine learning applications.

Renyi took a functional approach to the problem and proposed seven ax-
ioms that any measure of dependence should fulfill [262]. Accordingly, Renyi’s
seven postulates for a proper measure of dependence Q(X,Y ) are:

1. Well defined over X, Y.
2. Symmetric Q(X,Y ) = Q(Y,X).
3. Bounded 0 ≤ |Q(X,Y )| ≤ 1.
4. Q(X,Y ) = 0 iff X and Y are independent.
5. Q(X,Y ) = 1 if Y = f(X).
6. Invariant Q(X,Y ) = Q(f(X), g(Y )) for any functions f, g.
7. Q(X,Y ) = ρ(X,Y ) for X,Y ∼ N(0,σ2).

Renyi showed that one measure satisfying all these postulates is Q(X,Y ) =
supf,g |corr(f(x), g(x))| where f(x) and g(x) are Borel measurable and have
finite positive variance. The search over all pairs of functions makes maximal
correlation impractical. Based on the parametric correntropy coefficient de-
veloped in the previous section, we formulate a novel dependence measure for
two random variables that obeys postulates 1,3,4,5.

Definition. Given two random variables x and y, the correntropy dependence
measure (CDM) is defined as

Γ(X,Y ) = supa,b|ηa,b(X,Y )|, (10.48)

The proof that Γ(X, Y ) fulfills the four postulates can be found in [261], but
can also be easily derived from the previous properties. The second Renyi
postulate for a dependence measure is symmetry. By defining ΓN(X, Y ) =
(Γ(X, Y ) + Γ(Y, X))/2 we can make CDM symmetric. By using very large
kernels, CDM can also approximate postulate 7, therefore the only outstand-
ing postulate is 6. One of the interesting properties of CMD is that it achieves
the limits of the range when the random variables are linearly dependent. This
property is also shared by the correlation coefficient, and can be used to test
hypotheses about linear dependence in experimental science.

Unlike the maximal correlation proposed by Renyi, CDM searches a
two dimensional parameter space (for scalar random variables) for a max-
imum instead of the entire function space. With the incomplete Cholesky
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decomposition explained in Chapter 2, the computational complexity of CDM
is O(N) for each (a, b) pair. However, one of the difficulties of CDM is the
poor scaling up with the dimensionality of the problem. Currently we have
used simple grid search methods, which are fine for low dimensional problems,
but the search can become prohibitive in high dimensions. It may be possible
to exploit some structure in the joint space to speed up the search, but this
has not been investigated.

Compared to the kernel constrained covariance presented in [123], our
measure is very simple to understand and does not require regularization
techniques, although the kernel size still needs to be chosen from the data.
We address this point in the case studies. The kernel constrained covariance
operates on the high (possibly infinite) dimensional functional space, there-
fore regularization is mandatory for good results. One of the appeals of COCO
is that it can quantify both linear and nonlinear dependence, and the solu-
tion involves simple matrix operators on the Gram matrix, independent of
the dimensionality of the input space, but the algorithm is O(N2). The ap-
proach we took for the CDM is interesting because it poses the problem in
the input space using a novel perspective, and is very intuitive and practical
for small-dimensional problems. For instance, the values of a, b that maxi-
mize (minimize) CDM have meaning because they show the direction in the
input space where the variables are most similar (dissimilar). More generally,
a dependence profile as a function of (a, b) can be used for design of practical
experiments.

10.5 Application: Matched Filtering

Matched filtering is known to be optimal for detection of data sent through a
linear channel in additive white Gaussian noise (AWGN) conditions. However,
there are many important cases in practice (i.e., nonlinear channels or linear
channels affected by “fat tail” noise) where the matched filter performs poorly.
Inspired by the new correntropy induced metric of Property 10.9 between two
random vectors, we define a new decision statistic used for matched filtering
which we call the correntropy matched filter (CMF) [249].

Let us assume a receiver and a linear channel with white additive noise.
For simplicity the binary detection problem is considered where the received
vector is denoted r. There are two possible cases: (a) when the signal s0 is
present (hypothesis H0, r0 = n + s0) and (b) when the signal s1 is present
(hypothesisH1, r1 = n + s1). Now it is sufficient to check whether the received
vector is “closer” to s1 (validating H1) or to s0 (validating H0) based on the
CIM similarity measure, which implies that cross-correntropy is appropriate.
We model the received signals and templates as random variables, with N
realizations for each (the length of each template sp, p = 0, 1). Using the
intuition given by Property 10.4, we can consider the joint space of both
the received signal and the known templates (r, s0) and (r, s1) and use
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cross-correntropy to find out which is larger. The simplest hypothesis test is
based on the sign of the difference, which yields the correntropy matched filter
statistic

LC(r) =
1
N

N∑

i=1

Gσ(ri, s1,i)− 1
N

N∑

i=1

Gσ(ri, s0,i) (10.49)

The case when timing is unknown is also simple and requires finding the best
lag to make the decision [249].

Selection of Kernel Size

The kernel size is a free parameter in information-theoretic methods, so it has
to be chosen by the user. For the particular case of the correntropy matched
filter we can show the following interesting property.

Property 10.17. For the Gaussian kernel, the decision under LC (Eq.
(10.49)) reduces to a maximum likelihood decision in the input space for i.i.d.
Gaussian noise.

Proof. Using the Taylor series expansion for a Gaussian kernel we get

Gσ(rn, sp,i) = 1− (rn − sp,i)2
2σ2

+
(rn − sp,i)4

2(2σ2)2
− · · · p = 0, 1 i = 1, . . . , N

Note that because the order of the exponent increases by two with each
term, the contribution of the higher-order terms becomes less significant
compared to the lower-order terms as σ increases. Truncating at the sec-
ond term yields Gσ(rn, sp,i) ≈ 1 − (rn − sp,i)2/2σ2. On the other hand, the
log-likelihood solution for the detection is LML(r) = 1/N

∑N
i=1 ri(s1i − s0i),

therefore LC ∝ LML.
This can be interpreted as saying that the kernel size acts as a way of tuning

the correntropy matched filter, where larger kernel sizes are appropriate for
linear channels and Gaussian noise. For instance, in AWGN, Property (10.17)
implies that the kernel size should be relatively larger than the dynamic range
of the received signal so that the performance defaults to that of the linear
matched filter, which is optimal for this case. In the experiments presented
below, the kernel size is chosen heuristically so that the best performance is
observed. In the cases where the correntropy matched filter is expected to
bring benefits, such as for additive impulsive noise, the kernel size should be
selected according to density estimation rules to represent the template well
(i.e., Silverman’s rule [300]). As illustrated later, choosing the appropriate
kernel size for the detection problem is not very critical (unlike many other
kernel estimation problems) because any value over a wide interval provides
nearly optimal performance for a given noise environment.
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Matched Filtering Case Studies

Receiver operating characteristic (ROC) curves were used to compare the
performance of the linear matched filter (MF), the matched filter based on
mutual information (MI) explained in [94], and the proposed correntropy
matched filter (CMF). ROC curves give the plot of the probability of de-
tection PD against the probability of false alarm PFA for a range [0,∞) of
threshold values, γ (the highest threshold corresponds to the ROC value for
Pf = 0). The area under the ROC can be used as a means of measuring the
overall performance of a detector. The ROC curves were plotted for various
values of the signal-to-noise ratio (SNR), defined as the ratio of the total en-
ergy of the signal template to the noise variance. For symmetric α -stable
distributions (defined by the characteristic function Ψα(u) = exp(−(σ |u|)α)),
where the variance of the noise is not defined, SNR was estimated as the sig-
nal power to squared scale of noise ratio. A total of 10,000 MonteCarlo (MC)
simulations were run for each of the following cases. The single template is a
sinusoid signal with length 64 given by si = sin(2πi/10), i = 1, 2, . . . , 64. Seg-
ments of length N , some containing the signal and others without the signal,
were generated with a 50% probability of transmitting a signal. The following
combinations of noise and channel types are simulated here.

1. Additive white Gaussian noise linear channel.
2. Additive zero mean α -stable noise channel.

α -stable distributions have been widely used to model heavy-tailed or lep-
tokurtic distributions, especially those observed in financial data analysis
[215], and are also a good noise model for underwater communications. Here
we use the α-stable distribution because of its gradual deviation from Gaus-
sianity as α decreases from 2 to 1 (when the distribution becomes Cauchy).
This range is also appropriate because even though the higher moments di-
verge, the mean is still defined. The symmetric α-distributed data are gen-
erated using the method given in [231] with the skewness parameter set to
beta = 0.

AWGN and Linear Channels: For the AWGN case, the matched filter is op-
timal so it should outperform all the other filters being tested. But the CMF,
although obtained in a different way, provides almost the same performance
as the matched filter as can be expected from Property 10.20, and observed in
Figure 10.1. In fact, the CMF performance will approach the MF arbitrarily
as the kernel size increases. The MI-based matched filter is not able to reach
the performance of CMF even when the kernel size is increased to high values.

α-Stable Noise in a Linear Channel: Now let us observe the behavior of these
methods for α-stable distributed noise. Since these distributions have second
moments tending to infinity for α close to 1, the matched filter will utterly
fail. Figure 10.2a shows the results for α = 1.1.

Of course, as α increases and approaches 2, the performance of the linear
MF improves because the noise then becomes Gaussian (see Figure 10.2b).
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Fig. 10.1. ROC plots for AWGN channel with kernel variance σ2(CMF ) =
15 σ2(MI ) = 15 (the curves for MF and CMF for 10 dB overlap) (from [249]).

Fig. 10.2. (a) ROC plots for additive channel with white alpha-stable distributed
noise, kernel variance σ2 = 3, α = 1.1. (b) ROC plots for additive channel with
several white α-stable distributed noise, kernel variance σ2 = 3, SNR = 15 dB; the
plots for MI and CMF almost coincide for both values of α (from [249]).
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For this case because the variance of the noise is not defined, the SNR implies
the squared scale of noise to signal power ratio.

Effect of the Kernel Size

The choice of kernel size, although important, is not as critical as in many
other kernel methods and density estimation problems. For detection with
the correntropy matched filter, we plot the area under the curve for different
values of the kernel size to evaluate its effect on detectability. As can be seen
in Figure 10.3, a wide range of kernel sizes works well. Note that for the
α-stable noise, Silverman’s rule is not computable because the variance of the
noise is ill-defined. However, it is trivial to choose a value for kernel size using
a quick scan on a training set to select the best performance for the particular
application. Tests with impulsive noise (not shown) show that Silverman’s
rule finds a kernel size in the best performance range.

Matched Filter Statistics in Feature Space

So far we introduced the correntropy matched filter from an information-
theoretic (ITL) learning perspective. We can also derive Eq. (10.49) from
kernel methods with a few assumptions. We transform the data from the
input space to the kernel feature space and compute the likelihood ratio of

Fig. 10.3. The area under the ROC for various kernel size values for additive alpha-
stable distributed noise, α = 1.1 (from [249]).
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the received signal for the case of i.i.d. zero-mean noise L(r) = (r − s1)T

(r− s1) −(r− s0)T (r− s0) in the feature space by using the kernel trick, but
instead of using the original kernel κ we design a new kernel as the average
of kernel evaluations, κ̄ defined by

κ̄(x, y) =
1
N

N∑

i=1

Gσ(xi − yi), (10.50)

where x = [x1, x2, . . . , xN ]T and y = [y1, y2, . . . , yN ]T are the input vectors.
Note that Eq. (10.50) is the cross-correntropy estimate and κ̄ is a valid kernel
because it is a sum of symmetric and positive definite functions. In a sense we
are designing a kernel (i.e., a RKHS and its similarity metric) tuned to the
data we want to find. Hence κ̄ can be written as

κ̄(x, y) = Φ̄T (x)Φ̄(y), (10.51)

where Φ̄ maps the input vector to a possibly (depending on the kernel chosen)
infinite-dimensional feature vector.

With the two possible transmitted vectors s0 and s1, and accordingly r0

and r1 as the received signal in the input space, the corresponding received
feature vectors will be Φ̄(r0), Φ̄(r1), respectively. Now applying the likelihood
statistic in the feature space yields

L1Φ̄(r) = (Φ̄(r) − Φ̄1)T (Φ̄(r)− Φ̄1)− (Φ̄(r) − Φ̄0)T (Φ̄(r)− Φ̄0), (10.52)

where Φ̄p = EΦ̄(rp), p = 0, 1. This expression assumes that the corresponding
covariance matrices are equal and diagonal, which only happens if the noise
component is additive and uncorrelated in the feature space. In general, this is
just an assumption because of the coupling due to the nonlinear transforma-
tion, but it makes the result computationally tractable. Dropping the terms
not depending on Φ̄(r) and rescaling Eq. (10.52) we get

L2Φ̄(r) = Φ̄T1 Φ̄(r)− Φ̄T0 Φ̄(r). (10.53)

We still have to calculate the expected value in the feature space. If the
vector length (template size) N is sufficiently large, we can use the following
approximation.

Φ̄Tp Φ̄(r) =
{
E

[
Φ̄p(rp)

]}T Φ̄(r) = Erp

[
Φ̄p (rp)

T
]
Φ̄(r)

= Erp

[
1
N

N∑

i=1

κ(rpi, ri)
]

≈ ErpE[κ(rpi, ri)]

≈ E[κ(rpi, ri)] ≈ 1
N

N∑

i=1

κ(rpi, ri),

(10.54)
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for p = 1, 0. So the modified decision statistic can be written as

LΦ̄ =
1
N

N∑

i=1

κ(r1i, ri)− 1
N

N∑

i=1

κ(r0i, ri), (10.55)

where r1i = s1i + ni, r0i = s0i + ni, and ri = r1i or r0i depending on the
signal that was sent. Equation (10.55) merely includes the lag zero estimate
of cross-correntropy between r and r1 and that between r and r0.

To compare the correlation receiver in feature space (LΦ̄) with the corren-
tropy matched filter (LC), let the detection problem decide for simplicity if
the signal s was sent; that is, r1 = s + n and r0 = n.

It can be seen that LC is the same as LΦ̄ when the RKHS projected noisem
instead of n corrupts the signal. Because the variance of m is greater than
that of n, LC implements LΦ̄ for a greater SNR value. Thus using LC results
in improved performance. Note that this improvement is possible because the
centers of the two hypotheses in RKHS don’t solely consist of the template but
also partly of the noise. This translates to using r1 and r0, which are noisy
versions of s0 = 0 and s1 = s in LΦ̄, whereas LC simply uses the “clean”
s0 = 0 and s1 = s instead. This difference in performance is illustrated in
Figure 10.4, which was generated using 10,000 Monte Carlo runs and shows
the ROCs using LΦ̄ and LC for impulsive noise for two different SNR values.

Fig. 10.4. ROC plots using LΦ̄ and LC as the decision statistics using a channel
with additive white impulsive noise for two SNR values, kernel variance σ2 = 5
(from [249]).
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It should also be noted that the implementation of the cross-correntropy
statistics using LΦ̄ requires storage of a set of noise samples to compute r0

and r1 which is not needed for LC . Interestingly, LΦ̄ does not result in the
maximum likelihood statistics in the feature space, because the data in the
feature space are not guaranteed to be Gaussian. The correntropy matched
filter happens to be a powerful and practical system for nonlinear channels or
non Gaussian noise environments. Although we compared it with the simplest
of the methods to ensure that the computational complexity is similar, the
CMF can compete with more advanced designs.

10.6 Application: Nonlinear Coupling Tests

The goal in this section is to demonstrate that the correntropy coefficient
of Eq. (10.42) is able to statistically quantify nonlinear couplings between
dynamical systems. In [344] we present a more in-depth study that shows
that the correntropy coefficient is sensitive to abrupt changes of the coupling,
and it is also able to estimate the strength of nonlinear coupling. Two Henon
maps X and Y were unidirectionally coupled as

X :
{
xn+1 = 1.4− x2

n + bxun
un+1 = xn

Y :
{
yn+1 = 1.4− [Cxn + (1− C)yn] yn + byvn
vn+1 = yn.

Notice that system X drives system Y with a nonlinear coupling strength
C where C ranges from 0 (no coupling) to 1 (complete coupling). Parameters
bx and by are both set to 0.3, the canonical value for the Henon map simu-
lations. For each coupling strength, we discard the first 1000 outputs in as
much as they are transient, and retain the next 500 data points for the ex-
periments. The correntropy coefficient estimator of Eq. (10.43) is calculated
between the first component x1 of system X , and the first component y1 of
system Y .

In order to demonstrate that the correntropy coefficient is able to quan-
tify the nonlinear coupling, we use the multivariate surrogate data technique
introduced in [250]. Basically, in order to generate the multivariate surrogate
data, first the Fourier transform is applied to each time series, then a random
number is added to each of the phases, and an inverse Fourier transform is ap-
plied. The resulting time series have identical power spectra and cross-power
spectra as the original time series, but any nonlinear coupling among the
time series has been destroyed. In the simulation, we use the TISEAN pack-
age [291] to generate 19 realizations of the surrogate time series xn and yn for
each different coupling strength. Then we compute the correntropy coefficient
for both the original and the surrogate data with respect to different coupling
strength. Figure 10.5 plots the correntropy coefficient curve for the original
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Fig. 10.5. Comparison of the correntropy coefficient for the original data and the
surrogate data for unidirectionally coupled nonidentical Henon map (from [344]).

data and the mean value of 19 correntropy coefficients for the surrogate data
with the corresponding maximal and minimal values indicated as error bars.

To quantify the significance level, we calculate the Z-score as Z =
|vorig − μsurr| /σsurr where vorig is the correntropy coefficient value for the orig-
inal data and μsurr and σsurr are the mean and the standard deviation for the
surrogate data, respectively. The table in Figure 10.5 presents the Z-score
values for different coupling strength. With the exception of C = 0.2 and 0.4,
the Z-score values are significantly larger than 1.96 which means the nonlinear
coupling has been detected with a probability p < 0.05. These results clearly
demonstrate that the correntropy coefficient is sensitive to the nonlinearity of
the dependence between two coupled systems. Note, however, that there are
values of the correntropy coefficient that are higher and lower than the cor-
responding values of the surrogates, which complicates the assessment. We
also experimentally addressed how the kernel size affects performance. We
found that the statistical difference between the correntropy of the surrogates
and the original system dynamics is only weakly coupled with the kernel size,
which implies that the bias introduced by the kernel is approximately the
same in the surrogates and in the original data.

10.7 Application: Statistical Dependence Tests

To demonstrate the validity of the proposed dependence measure, we start
by applying it to a very basic problem. Consider two independent Gaussian
random variables X and Y with zero mean and unit variance and construct a
new random variable Z = λX+(1−λ)Y with 0 ≤ λ ≤ 1. When λ = 0, Z = Y ,
and so Z andX are independent. However, when λ = 1, Z = X and, therefore,
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Fig. 10.6. The figures show the effect of λ on the dependence between X and Z.
(a) The original random variables with λ = 0; (b) with λ = 0.3; and (c) with λ = 0.9;
(d) shows the change in the (measured) dependence value as a function of λ (from
[261]).

Z and X are the same random variable and, thus, they are strictly dependent.
As we keep changing λ slowly from 0 to 1 we should expect a gradual increase
in the dependence between Z and X . Figure 10.6a, b, and c show the samples
from the scatterplot for random variable pair X and Z for different values of
λ. Clearly, when λ = 0 the random variables are independent whereas when
λ = 0.3 and λ = 0.9, they are more and more dependent. Figure 10.6d shows
the variation of CDM as a fucntion of λ. As λ is increased from 0 to 1, we
notice a monotonic increase in the dependence measure Γ(X, Z). We show in
[261] that the kernel size does not affect the range of CDM, only the slope of
the curve.

Next, we apply the CDM on a slightly more challenging problem, discussed
in [107]. Consider two independent random variables X and Y , both having
zero mean and unit variance, where X is uniformly distributed and Y is a
combination of two uniform random variables each having equal probability
of occurrence but not sharing a common support. (see Figure 10.7a.) This pair
of random variables has an identity covariance matrix. Therefore if we generate
a new pair of random variables by rotating this random variable pair by θ,
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Fig. 10.7. The figures show how rotating the samples from two independent random
variables affects the dependence between them. (a) The original random variables
with zero rotation, (b) with 45◦ rotation, and (c) with 90◦ rotation. (d) shows the
change in the (measured) dependence value as a function of the rotation (from [261]).

the covariance matrix does not change and, thus, the correlation between the
new pair of random variables remains constant at zero. However, the depen-
dence between the random variables changes with the rotation. Figures 10.7b
and c show the samples from the random variable pair X and Y after rotation.
Clearly, when θ = 0◦ or θ = 90◦ the new pair of random variables is indepen-
dent whereas when θ = 45◦ the pair is highly dependent. Figure 10.7d reflects
this fact. As we vary θ we can notice the smooth variation in the dependence
value between the resulting pair of random variables.

10.8 Conclusions

This chapter introduced a new function called cross-correntropy and its cen-
tered version as well as the cross-correntropy coefficient. These functions define
generalizations for conventional correlation, covariance functions, and the cor-
relation coefficient which are fundamental in statistics, pattern recognition,
and machine learning. Therefore the impact of the newly defined functions
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deserves a full investigation. We started the chapter by providing the most
important properties that are currently known about these functions to set
the foundations for the applications. Perhaps the most interesting feature of
correntropy is that it provides a different measure of similarity that can be
traced to the combination of higher-order statistics of the data that are ex-
pressed by the kernel. In the input space the idea is also clear. Similarity is
evaluated along the bisector of the first and third quadrants, in a region de-
fined by the kernel bandwidth, effectively being an estimation of p(X = Y ).
This implies that the correntropy coefficient has the nice property of distin-
guishing between uncorrelated and independent variables, which is impossible
to do with the correlation coefficient.

From the extension of these definitions to their parametric versions, we are
able to address a central problem in statistics which is the quantification of
statistical dependence. In fact the parametric correntropy coefficient (defined
from the parametric centered crosscorrentropy) can be used to define the cor-
rentropy dependence measure (CDM) which has the appealing property that
it is zero if and only if the pair of random variables is independent, and it be-
comes 1 or −1 if the random variables are linearly dependent. This is achieved
by searching over the space of the parameters (two for scalar r.v.), and for
low-dimensional problems is still manageable and simple to understand.

Our case studies give just a glimpse of the possible applications of cor-
rentropy in statistical inference. We start by applying correntropy to improve
the performance of matched filters for non-Gaussian and nonlinear channels
and show the performance improves drastically for fat-tail or impulsive noise.
The cross-correntropy coefficient is much more powerful that the correlation
coefficient for quantifying nonlinear coupling as demonstrated in the example
with the coupled Henon maps because of its sensitivity to the higher-order
statistics of the time series. Finally, we test the results of CDM to measure
dependence and also as a test for independence.
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Correntropy for Random Processes: Properties
and Applications in Signal Processing

Puskal Pokharel, Ignacio Santamaria, Jianwu Xu, Kyu-hwa Jeong,
and Weifeng Liu

11.1 Introduction

The previous chapter defined cross-correntropy for the case of a pair of scalar
random variables, and presented applications in statistical inference. This
chapter extends the definition of correntropy for the case of random (or
stochastic) processes, which are index sets of random variables. In statistical
signal processing the index set is time; we are interested in random variables
that are a function of time and the goal is to quantify their statistical depen-
dencies (although the index set can also be defined over inputs or channels of
multivariate random variables). The autocorrelation function, which measures
the statistical dependency between random variables at two different times,
is conventionally utilized for this goal. Hence, we generalize the definition of
autocorrelation to an autocorrentropy function. The name correntropy was
coined to reflect the fact that the function “looks like” correlation but the
sum over the lags (or over dimensions of the multivariate random variable) is
the information potential (i.e., the argument of Renyi’s quadratic entropy).
The definition of cross-correntropy for random variables carries over to time
series with a minor but important change in the domain of the variables that
now are an index set of lags. When it is clear from the context, we simplify
the terminology and refer to the different functions (autocorrentropy, or cross-
correntropy) simply as correntropy function, but keep the word “function” to
distinguish them from Chapter 10 quantities.

In principle, the autocorrentropy function can substitute the autocorre-
lation function, but inasmuch as it is nonlinearly related to the data, it is
important to analyze its properties to help us understand its benefits in non-
linear, non-Gaussian stationary signal analysis. As we show, the autocorren-
tropy function defines a new RKHS which is potentially useful because it can
be used to implement nonlinear algorithms in the input space while solving
linear algorithms in the RKHS. However, this RKHS is sufficiently different
from the one induced by kernel methods that it requires a step-by-step expla-
nation of how optimal algorithms can be mapped onto it, and how practical
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optimal solutions are achieved (under some conditions). We show applications
in speech processing to estimate the pitch, perform detection of sinewaves in
impulsive noise regimes, implement an ICA algorithm based on the corren-
tropy function, and design an object recognition algorithm.

Correntropy in Time Series Analysis

The fact that reproducing kernels are covariance functions as pointed out
by Aronszajn [8] and Parzen [238] explains their early role in time series
analysis. However, the most recent work in kernel learning including support
vector machines [323], kernel principal component analysis [288], kernel Fisher
discriminant analysis [219], and kernel canonical correlation analysis [134] are
based on similarity between identically independent distributed (i.i.d.) data,
which in many cases is not realistic.

A large class of problems in engineering deal with time series having
a complicated structure, which are normally modeled as random processes.
By definition, a random process is a collection of random variables, that
is, {Xt, t ∈ T } with T being an index set (integers for digital, or real val-
ues for continuous signal processing) and xt ∈ Rd. Random processes are
normally characterized by the statistical distribution of the instantaneous
random variables’ amplitudes and, unlike random variables, by their time
structure. For this reason researchers developed measures to quantify the sta-
tistical time structure such as the autocorrelation function which is defined
as R(t1, t2) = EX [xt1.xt2], {t1, t2 ∈ T }.

A major simplification occurs when the random process is widesense sta-
tionary, that is, when its first-order moment is independent of time, E[xt] =
constant , {t ∈ T }, and the autocorrelation function (second-order moment)
is dependent only on the difference between the two selected time instances,
that is, E[xt1 .xt2 ] = E[x0.xt1−t2 ], {t1, t2 ∈ T }, which can be also expressed
as R(t1, t2) = R(τ) for τ = t1 − t2. A single statistical measure that expresses
relevant information from both the instantaneous and temporal structure of
signals and that goes beyond second-order statistics would greatly enhance
the theory of stochastic random processes.

The autocorrentropy function is a step forward in this direction. Specif-
ically, it defines a generalized correlation function (GCF) in terms of inner
products of vectors in a kernel feature space. Because inner products are a
measure of similarity, for each two time indices in the input space defining a
time lag, the autocorrentropy function in effect measures the pairwise simi-
larity of the feature vectors. The inclusion of the time lag as a parameter in
the GCF represents a fundamental change from the cross-correntropy. The
former is now a function of the time lag, whereas the latter measures statis-
tical information of a scalar random variable or vector at a single instant of
time. From an analysis point of view, the autocorrentropy function maps the
mean variability over the realizations calculated between two preselected time
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intervals (lags) into a point in feature space. When the procedure is replicated
for many lags, the effective dimension of the feature space is increased and
it quantifies progressively better long-range statistical dependencies in the
random process.

11.2 Autocorrentropy Function: Definition
and Properties

Definition. Let {Xt, t ∈ T } be a strictly stationary stochastic process
(i.e., the joint PDF p(xt1 , xt2) is unaffected by a change of the time ori-
gin) with T being an index set and xt ∈ Rd. The autocorrentropy function
v(t1, t2) is defined as a function from T × T → R+ given by

vx,x(t1, t2) = E[κ(xt1 ,xt2)] =
∫
· · ·

∫
κ(xt1 ,xt2)p(xt1 ,xt2)dxt1dxt2 , (11.1)

where E [·] denotes mathematical expectation over the stochastic process xt,
and κ is any continuous positive definite kernel.

Notice the similarity of Eq. (11.1) with that of cross-correntropy
(Eq. (10.1)), except that now we are working with an index set of ran-
dom variables at two different time instances of the same random process.
Therefore this correntropy is truly an autocorrentropy function in time. Again,
for kernels in L∞ the autocorrentropy function always exists. When there is
no source of confusion, the dependence on x is dropped from the notation.
We pursue the analysis with symmetric translation invariant kernels such as
the Gaussian kernel and scalar random variables so that Eq. (11.1) becomes

vx,x;σ(t1, t2) = E[Gσ(xt1 , xt2)] =
∫ ∫

Gσ(xt1 − xt2)p(xt1 , xt2)dx t1dx t2 .
(11.2)

Performing a Taylor series expansion (subject to the same restrictions of
Eq. (11.1)), the autocorrentropy function of Eq. (11.2) can be rewritten as

vσ(t1, t2) =
1√
2πσ

∞∑

n=0

(−1)n

2nσ2nn!
E

[
‖xt1 − xt2‖2n

]
(11.3)

which involves all the even-order moments of the random variable (xt1−xt2).
Specifically, the term corresponding to n = 1 in Eq. (11.3) is proportional to

E
[||xt1 ||2

]
+E

[||xt2 ||2
]−2E [〈xt1 , xt2〉] = varxt1 +varxt2−2Rx(t1, t2). (11.4)

where Rx(t1, t2) is the covariance function of the random process; this
shows that the information provided by the conventional covariance func-
tion (or the autocorrelation for zero-mean processes) is included within the
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autocorrentropy function. For large kernel sizes the second-order moments
dominate the autocorrentropy function and it defaults to biased autocorrela-
tion, just as we saw for cross-correntropy in Chapter 10.

From Eq. (11.3), we can also see how the autocorrentropy function depends
upon the higher-order moments of the random variables produced by the ker-
nel (i.e., for the Gaussian kernel all even moments are created, wereas the
Laplacian kernel creates all moments), therefore in order to have an univari-
ate autocorrentropy function, all the moments must be invariant to time shifts.
This is a more restrictive condition than the commonly used wide-sense sta-
tionarity (w.s.s.), which involves only second-order moments. More precisely,
a sufficient condition to have v(t, t − τ) = v(τ) is that the input stochastic
process must be strictly stationary on all moments [235]; this means that the
joint PDF p(xt, xt+τ), must be unaffected by a change of time origin. We
assume this condition in the rest of the chapter when using v(τ).

For a discrete-time strictly stationary stochastic process we define the
autocorrentropy function as v(m) = E[Gσ(xn − xn−m)], which can be easily
estimated with kernels through the sample mean as

v̂(m) =
1

N −m+ 1

N∑

n=m

Gσ(xn − xn−m). (11.5)

The autocorrentropy function properties are similar to the cross-
correntropy properties with the proper modification due to the differences
in definitions: recall that cross-correntropy is defined on a pair of random
variables, whereas the autocorrentropy function is defined on a pair of in-
dexed sets, possibly continuous and of infinite dimension; the joint probability
density function in cross-correntropy is over two random variables (or random
vectors) at a single point in time, whereas the joint space in the autocor-
rentropy function is the space created by random variables at different lags.
Therefore, crosscorrentropy computes a number, whereas the autocorrentropy
function produces a number for each lag (i.e. it is a function of the lag).

The following properties are derived for Eq. (11.2) assuming a strictly
stationary discrete-time stochastic process, but obviously, the properties are
also satisfied for continuous-time processes.

Property 11.1. For symmetric kernels, v(m) is a symmetric function:
v(m) = v(−m).

Property 11.2. v(m) reaches its maximum at the origin (i.e., v(m) ≤
v(0) ∀m).

Property 11.3. v(m) ≥ 0 and v(0) = 1/
√

2πσ.

All these properties can be easily proven. Properties 11.1 and 11.2 are also
satisfied by the conventional autocorrelation function, whereas Property 11.3
is a direct consequence of the positiveness of the Gaussian kernel.
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Property 11.4. Given v(m) form = 0, . . . , P−1, then the following Toeplitz
matrix of dimensions P × P

V =

⎡

⎢
⎣

v(0) · · · v(P − 1)
...

. . .
...

v(P − 1) · · · v(0)

⎤

⎥
⎦ (11.6)

called the autocorrentropy matrix, is positive definite.

Proof. Using the empirical mean, the matrix V can be approximated as V̂ =∑N
n=mAn where An is given by

An =

⎡

⎢
⎣

Gσ(xn − xn) · · · Gσ(xn − xn−P−1)
...

. . .
...

Gσ(xn − xn−P−1) · · · Gσ(xn − xn)

⎤

⎥
⎦ .

Since the Gaussian is a kernel that satisfies Mercer’s conditions, An is a posi-
tive definite matrix. Furthermore, the sum of positive definite matrices is also
positive definite [235], hence V̂ is positive definite (for all N); Taking the limit
of N →∞, V̂ will approach V, which concludes the proof.

We would like to point out that these four important properties open the
possibility of applying the autocorrentropy function to all signal processing
methods that use conventional correlation matrices, which include signal and
noise subspace decompositions, projections, spectral estimation, and the like.

Property 11.5. Let {xn ∈ R,n ∈ T } be a discrete-time strictly sta-
tionary zero-mean Gaussian process with autocorrelation function r(m) =
E[xnxn−m]. The autocorrentropy function for this process is given by

v(m) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
2πσ

m = 0

1
√

2π(σ2 + σ2(m))
m 	= 0,

(11.7)

where σ is the kernel size and σ2(m) = 2(r(0)− r(m)).

Proof. The autocorrentropy function is defined as v(m) = E[Gσ(xn−xn−m)].
Because xn is a zero-mean Gaussian random process, for m 	= 0 Δxm = xn −
xn−m is also a zero-mean Gaussian random variable with variance σ2(m) =
2(r(0)− r(m)). Therefore

v(m) =
∫ ∞

−∞
Gσ(Δxm)

1√
2πσ(m)

exp
(

− Δx2
m

2σ2(m)

)

dΔxm. (11.8)
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Because we are using a Gaussian kernel with variance σ2, Eq. (11.8)
is the convolution of two zero-mean Gaussians of variances σ2 and σ(m)2,
which produces a Gaussian evaluated at the origin. This yields Eq. (11.7)
immediately. Property 11.5 clearly shows that the autocorrentropy function
conveys information about the lag structure of the stochastic process and
also about the weighted sum of even moments via quadratic Renyi’s entropy.
As a consequence of Property 11.5, if {xn ∈ R,n ∈ T } is a white zero-
mean Gaussian process strictly stationary with variance σ2

x we have that
v(m) = 1/

√
2π (σ2 + σ2

x),m 	= 0, which is the mean value of the autocor-
rentropy function and is also the information potential of a Gaussian random
variable of variance σ2

x, when σ = σ2
x.

The cross-correntropy of pairs of random variables defined a RKHS Hv,
but its application is restricted because the two random variables are mapped
to two functions in Hv so the effective dimension of the RKHS is 2. Using the
autocorrentropy function a much more useful RKHS can be defined.

Property 11.6. For any symmetric positive definite kernel (i.e., Mercer ker-
nel) κ(xt1, xt2) defined on the index set T × T , the autocorrentropy function
defined in Eq. (11.2) is a reproducing kernel.

Proof. Because κ(xt1, xt2) is symmetrical, it is obvious that v(t1, t2) is also
symmetrical. But κ(xt1, xt2) is also positive definite, for any set of N samples
indexed by t {xt1, . . . xtN } and any set of real numbers {α1, . . . , αN},

N∑

i=1

N∑

j=1

αiαjκ(xti , xtj ) > 0. (11.9)

It is also true that for any strictly positive function g(·, ·) of two random
variables x and y, E[g(x, y)] > 0. Then

E

⎡

⎣
N∑

i=1

N∑

j=1

αiαjκ(xti , xtj )

⎤

⎦ > 0 ⇒
N∑

i=1

N∑

j=1

αiαjE[κ(xti , xtj )]

=
N∑

i=1

N∑

j=1

αiαjv(t1, t2) > 0.

Thus, v(t1, t2) is both symmetric and positive definite. Now, the Moore-
Aronszajn theorem [8] guarantees that for every real symmetric positive def-
inite function of two real variables, there exists a unique RKHS, denoted as
Hv, with the positive function as its reproducing kernel.

The RKHS Hv defined in Property 10.10 and in Property 11.6, although
similar in the mapping, are defined in two different domains: the former on a
pair of random variables and the latter on an index set of time instants of the
random process, hence the different notations used in the cross-correntropy
of Chapter 10 and the autocorrentropy function. However, to simplify the
notation, both RKHS are denoted by Hv because one may consider the former
a special case of the latter.
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The autocorrentropy function can be interpreted in two vastly different
feature spaces. One is Hκ induced by the Gaussian kernel on pairs of obser-
vations κ(xt1, xt2), which is widely used in kernel learning. The elements of
this RKHS are infinite-dimensional vectors expressed by the eigenfunctions
of the Gaussian kernel [288], and they lie on the positive hyperoctant of a
sphere because ‖Φ(x)‖2 = Gσ(0) = 1/

√
2πσ. Correntropy performs statisti-

cal averages on the functionals in this sphere. A full treatment of this view
requires a differential geometry approach to take advantage of the manifold
properties [211].

The second feature space is the RKHS induced by the correntropy kernel
itself v(t1, t2) and denoted as Hv, which is defined on the index set of random
variables. The inner product is defined by the correlation of the kernel at two
different lags and the mapping produces a single deterministic scalar for each
element on the index set, that is, the practical dimension of Hv is the size of
the index set. Hv has very nice properties for statistical signal processing:

• Hv provides a straightforward way to apply optimal projection algorithms
based on second-order statistics that are expressed by inner products.

• The effective dimension ofHv is under the control of the designer by select-
ing the number of lags (just like the RKHS defined by the autocorrelation
function).

• Elements of Hv can be readily manipulated algebraically for statistical
inference (i.e. without taking averages over realizations).

• Hv is nonlinearly related to the input space, unlike the RKHS defined
by the autocorrelation of the random process (presented in Chapter 1).
Therefore it is in principle very appealing for nonlinear statistical signal
processing.

The problem is that we have yet to identify the Hilbert space defined from
{Xt, t ∈ T } that is congruent to Hv. Obviously, the Hilbert space spanned by
the set of all random variables in the linear manifold L(Xt, t ∈ T ) (together
with their limit points) is insufficient for our goal, inasmuch as the nonlinear
kernel in Eq. (11.1) yields a functional that may be outside the set of all
possible linear functionals on the random function {Xt, t ∈ T }. This brings
difficulties in the computation with transformed functionals, and so far we
have to rely on approximations using the kernel evaluated at the samples,
which is only valid in the expected value sense, as we show next.

Property 11.7. Let {x(n)}Nn=1 be a strictly stationary random process. The
autocorrentropy kernel induces a scalar nonlinear mapping μx that maps the
random process as {μx(n)}Nn=1 while preserving the similarity measure in
the sense

E[μx(n).μx(n− i)] = vσ(n, n− i) = E[Gσ(x(n) − x(n− i))], 0 ≤ i ≤ N − 1 .
(11.10)

Moreover, the square of the mean of the transformed data is an asymptotic
estimate (as N →∞) of the information potential (IP) of the original data.
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Proof. The existence of the nonlinear mapping μx for any positive definite
kernel is proved in [238], and justifies the statement that positive definite ker-
nels are covariance operators. Here we prove the second part of the property.
Denote mμ as the mean of the transformed data, mμ = 1/N

∑N
n=1 μx(n),

therefore m2
μ = 1/N2

∑N
n=1

∑N
i=1 μx(n)μx(i).

Rewriting Eq. (11.10) in the sample estimate form, asymptotically we have

N∑

n=1

μx(n)μx(n− i) =
N∑

n=1

Gσ(x(n) − x(n− i)) (11.11)

with fixed i and as N → ∞. We arrange the double summation of m2
μ as an

array and sum along the diagonal direction which yield exactly the autocor-
relation function of the transformed data at different lags, thus the autocor-
rentropy function of the input data at different lags to yield

1
N2

N∑

n=1

N∑

j=1

μx(n)μx(j) =
1
N2

(
N−1∑

n=i+1

N∑

i=1

μx(n)μx(n− i)

+
N−i∑

n=1

N−1∑

i=0

μx(n)μx(n+ i)

)

≈ 1
N2

(
N−1∑

n=i+1

N∑

i=1

Gσ(x(n)− x(n− i))

+
N−i∑

n=1

N−1∑

i=0

Gσ(x(n) − x(n+ i))

)

, (11.12)

which is the definition of the IP. As observed in Eq. (11.12), when the sum-
mation indices are far from the main diagonal, smaller and smaller data sizes
are involved which leads to poorer approximations. Notice that this is ex-
actly the same problem when the autocorrelation function is estimated from
windowed data. As N approaches infinity, the estimation error goes to zero
asymptotically. In other words, the mean of the transformed data induced by
the correntropy kernel asymptotically estimates the square root of the infor-
mation potential and thus Renyi’s quadratic entropy of the original data. This
property corroborates further the name of correntropy given to this function.

Definition. The generalized covariance function, called the centered autocor-
rentropy function is defined as

u(t1, t2) = Ext1xt2 [Gσ(xt1 − xt2 )]− Ext1Ext2 [Gσ(xt1 − xt2 )] (11.13)

for each t1 and t2 in T , where E denotes the statistical expectation operator
and Gσ(·, ·) is the Gaussian kernel. Notice that the centered autocorrentropy
function is the difference between the joint expectation and the product of
marginal expectations of Gσ(xt1 − xt2).
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For strictly stationary random processes the centered autocorrentropy is
only a function of τ = t1 − t2, and in discrete time it reads

u(m) = Ex0xm [Gσ(x(0)− x(m))] − Ex0Exm [Gσ(x(0)− x(m))].

Definition. The Fourier transform of the centered autocorrentropy function
of a strictly stationary process x(t), if it exists, is called the correntropy spectral
density (CSD) and is defined by

Pσ(ω) =
∫ ∞

−∞
u(τ)e−jωτdτ . (11.14)

ω in this expression is the frequency in radians, and a similar expression can
be written for the frequency f in Hz (ω = 2πf).

So there is a new Fourier transform pair P (ω) = !{u(τ)}, and there-
fore u(τ) = !−1{P (ω)}. This definition follows by analogy to the well-known
Wiener-Kinchin theorem that establishes a relationship between the power
spectrum and the Fourier transform of the autocorrelation function. This was
a major result in spectral estimation, because it bypassed the fact that the-
oretically the Fourier transform of a random process cannot be computed.
In our case, the centered autocorrentropy function is also square integrable
(just as is the autocorrelation function) so its Fourier transform exists (the
autocorrentropy is not square integrable because of the bias). However, the
CSD is not a measure of power anymore, and it is a function of the kernel
size utilized in the estimation. In particular, when the time lag τ = 0, the
correntropy spectral density function becomes

u(t, t) = Extxt [Gσ(xt − xt)]− ExtExt [Gσ(xt − xt)]
= E

[||Φ(xt)||2
]− ||E [Φ(xt)] ||2 = u(0)

=
1
2π

∫ ∞

−∞
P (ω)dω =

∫ ∞

−∞
P (f)df

This equation shows that the difference between the expectation of the norm
square and the norm square of the expectation of the nonlinearly transformed
random process is the total area under the correntropy spectral density func-
tion P (f) of the process. In traditional random process analysis, the power in
the random process is the total area under the power spectral density func-
tion. By analogy, we define u(0) as the projected power (data is projected in
the RKHS), and from a geometrical perspective, u(0) can also be considered
as “generalized” variance of the nonlinearly transformed random process in
the feature space. Due to the symmetry of u(τ), it is easy to show that the
CSD is a real function and also even, just as the PSD. It is also possible to
show that the CSD is nonnegative [343].

The kernel size can be interpreted as a continuous parameter that allows us
to select between the conventional PSD and a spectral representation that con-
tains different weightings of second and higher-order moments of the random
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process. In fact, if we observe the Taylor series expansion of autocorrentropy
(Eq. (11.3)), we see that for large kernel sizes, CSD is proportional to the PSD
(Eq. (11.4)), but for values in the range given by the Silverman’s rule different
information is contained in CSD, because it is in fact using a different simi-
larity metric. This may have applications in spectral estimation and detection
theories, however, we and others [22] have just started to explore this relation.

11.3 Cross-Correntropy Function: Definition and
Properties

Definition. Let {Xt, t ∈ T } and {Yt, t ∈ T } be two stochastic processes
with T being an index set and xt, yt ∈ Rd. The cross-correntropy function
vx,y(t1, t2) is defined as a function from T × T → R+ given by

vx,y;σ(t1, t2) = E[Gσ(xt1 − yt2)]. (11.15)

In spite of the name, vx,y(t1, t2) is more similar to the autocorrentropy func-
tion vx,x(t1, t2) than to the cross-correntropy vσ(X,Y ) defined in Chapter 10.
It is also defined on an index set but now it involves two different random
processes. Although similar to the autocorrentropy function, note that the
cross-correntropy function is not necessarily symmetric with respect to the
lag τ = t1 − t2, hence it is not guaranteed to be a positive definite function.
There is also a problem of the potential difference in the dynamic range of
the random variables that affects the definition of the kernel. Therefore, ei-
ther prescaling of the variables to the same range or ellipsoidal kernels are
required.

For discrete random processes Eq. (11.15) becomes vx,y(n, l) = E[Gσ(x(n)
−y(n− l))], which reduces to vx,y(l) for strictly stationary random processes.

Property 11.8. The cross-correntropy function of strictly stationary random
processes at lag zero (i.e., vx,y(0)) equals the cross-correntropy for the random
variables X and Y (i.e., vσ(X,Y )).

Proof. In fact for a strictly stationary random process, statistical properties
do not depend on the time index n, so the correntropy function can be written
vx,y(l) = E[Gσ(x(0)− y(−l))]. If we make l = 0, than vx,y(0) = E[Gσ(x(0) −
y(0))] which means that we are simply working with two random variables
X and Y , and it defaults to the cross-correntropy definition of Eq. (10.2).
This result helps us understand better the relation between the concepts in
Chapter 10 and in this chapter.

Property 11.9. A necessary condition for two strictly stationary stochastic
processes to be independent is:

vxy(l) = vxy(0), for all l; (11.16)
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that is, the cross-correntropy function becomes a quantity that is invariant
with respect to the lag l.

Proof. Using the RKHS notation and assuming independence and strict sta-
tionarity of x(n) and y(n), we have the cross-correntropy function at lag l as

vx,y(l) = E[〈Φ(x(n),Φ(y(n − l)〉Hκ
] = 〈E[Φ(x(n)],E[Φ(y(n− l)]〉Hκ

= 〈E[Φ(x(n)],E[Φ(y(n)]〉Hκ
= E[Gσ(x(n)− y(n))] = v(0)

(11.17)

This property is a generalization of Property 11.5 that was proved for the au-
tocorrentropy of Gaussian processes, and it can be used as a contrast function
for blind source separation of sources with or without a time structure as we
show below.

The properties involving the autocorrentropy and cross-correntropy func-
tions are far from complete, and similar results as the ones obtained in
Chapter 10 for dependency may be achievable, which will extend the toolkit
even further for time series analysis.

11.4 Optimal Linear Filters in Hv

In this section we illustrate how one can design optimal filters in the RKHS
created by the autocorrentropy defined on the index set T×T (denoted asHv).
Let us design an optimal nonlinear filter trained with a set of images taken
from a given object across orientations, with the intent of recognizing if a
test image belongs to the object. This also illustrates the fact that random
processes exist in domains other than time; in this special case the index
set consists of image pixel shifts. The idea is to take the minimum average
correlation energy filter (MACE) which is an optimal linear filter constructed
in the image domain and map it to Hv, yielding a nonlinear filter we call
CMACE [166]. We illustrate how the equations are mapped from the image
domain to Hv and how they can be computed directly from data, using the
approximation outlined in property 11.8. Because Hv is different from Hκ we
believe that this exercise is useful.

Let us consider a two-dimensional image as a d × 1 column vector by
lexicographically reordering the image, where d is the number of pixels, and
denote the ith image vector by xi after reordering. The conventional MACE
filter is better formulated in the frequency domain. The discrete Fourier trans-
form (DFT) of the column vector xi is denoted by Xi and we define the
training image data matrix X as X = [X1,X2, · · · ,XN ], where the size of X
is d × N and N is the number of training images. Let the vector h be the
[d × 1] filter in the space domain and represent by H its Fourier transform
vector. We are interested in the correlation between the input image and the
filter. The correlation of the ith image sequence xi(n) with the filter impulse
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response h(n) can be written as gi(n) = xi(n)⊗ h(n). By Parseval’s theorem,
the correlation energy of the ith image can be written as a quadratic form

Ei = HHDiH, (11.18)

where Ei in this case represents correlation energy of the ith image, Di is
a diagonal matrix of size d × d whose diagonal elements are the magnitude
squared of the associated element of Xi, that is, the power spectrum of xi(n),
and the superscript H denotes the Hermitian transpose. The objective of
the MACE filter is to minimize the average output correlation energy over
the image class while simultaneously satisfying an intensity constraint at the
origin of the output space for each image. The value of the correlation at
the origin of the output space can be written as gi(0) = XH

i H = ci, for
i = 1, . . . , N training images, where ci is a user-specified output correla-
tion value at the origin for the ith image. Our goal is to determine H. Then
the average energy over all training images is expressed as Eavg = HHDH,
where D = 1/N

∑N
i=1 Di. The MACE design problem is to minimize Eavg

while satisfying the constraint, XHH = c, where c = [c1, c2, · · · , cN ] is an
N -dimensional vector. This optimization problem can be solved using La-
grange multipliers, and the close form solution is [209]

H = D−1X(XHD−1X)−1c. (11.19)

It is clear that the spatial filter h can be obtained from H by an inverse DFT.
Once h is determined, we apply an appropriate threshold to the output corre-
lation plane and decide whether the test image belongs to the template’s class.

A RKHS Perspective of the MACE filter

The MACE filter can also be understood by the theory of Hilbert space rep-
resentations of random functions proposed by Parzen [238]. Here we need to
use a complex-valued kernel. Let H be a Hilbert space of functions on some
set I, define an inner product < ·, · >H in H and a complex-valued bivariate
function κ(xs, xt) on I × I. It is well known that the autocorrelation func-
tion R is nonnegative definite, therefore it determines a unique RKHS HR,
according to the Moore–Aronszajn theorem. By the Mercer’s theorem [217],

R(i, j) =
∞∑

k=0

λkϕk(i)ϕk(j),

where {λk, k = 1, 2, · · · } and {ϕk(i), k = 1, 2, · · · } are a sequence of non-
negative eigenvalues and corresponding normalized eigenfunctions of R(i, j),
respectively. One may define a congruence C from HR onto the linear space
L2(xi, i ∈ I) such that

C(R(i, ·)) = xi. (11.20)
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The congruence C can be explicitly represented as

C(f) =
∞∑

k=0

akξk, (11.21)

where ξk is a set of orthogonal random variables belonging to L2(ϕ(i), i ∈ I)
and f is any element in HR in the form of f(i) =

∑∞
k=0 λkakϕk(i) and every

i in I.
Let us consider the case of one training image and construct the following

matrix

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x(d) 0 · · · 0 0
x(d − 1) x(d) 0 · · · 0

...
...

...
...

...
x(1) x(2) · · · · · · x(d)

0 x(1) x(2) · · · x(d − 1)

0 0
...

...
...

0 · · · · · · · · · x(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11.22)

where the dimension of matrix U is (2d − 1) × d. Here we denote the ith
column of the matrix U as Ui. Then the column space of U is

L2(U) =

{
d∑

i=1

αiUi|αi ∈ R, i = 1, · · · , d
}

, (11.23)

which is congruent to the RKHS induced by the autocorrelation kernel

R(i, j) =< Ui, Uj >= UTi Uj , i, j = 1, · · · , d, (11.24)

where < ·, · > represents the inner product operation. As long as the columns
in U are linearly independent, all the vectors in this space can be expressed as
a linear combination of the column vectors. The optimization problem of the
MACE is to find a vector go =

∑d
i=1 hiUi in L2(U) space with coordinates

h = [h1h2 · · ·hd]T such that gTo go is minimized subject to the constraint
that the dth component of go (which is the correlation at zero lag) is some
constant. Formulating the MACE filter from this RKHS viewpoint will not
bring additional performance advantage over Eq. (11.19), however, it will help
us derive a nonlinear extension to the MACE with correntropy.

11.5 Correntropy MACE (CMACE) Filter in Hv

According to the RKHS perspective of the MACE filter, we can extend it
immediately to Hv. Applying the autocorrentropy concept to the MACE for-
mulation of Section 11.3, the definition of the autocorrelation in Eq. (11.24)
can be substituted by the autocorrentropy function
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v(i, j) =
1

2d− 1

2d−1∑

n=1

Gσ(Uin −Ujn) i, j = 1, . . . , d (11.25)

where Uin is the (i, n) th element in Eq. (11.22). This function is positive
definite and thus induces the Hv. According to Mercer’s theorem, there is a
basis {μi, i = 1, . . . , d} in this Hv such that

〈μi, μj〉 = v(i, j) i, j = 1, . . . d (11.26)

Because it is a d dimensional Hilbert space, it is isomorphic to any
d-dimensional real vector space equipped with the standard inner product
structure. After an appropriate choice of this isomorphism {μi, i = 1, . . . , d},
which is nonlinearly related to the input space, a nonlinear extension of
the MACE filter can be readily constructed, namely, finding a vector
v0 =

∑d
i=1 fh,iμi with fh = [fh1 · · · fhd ]T as coordinates such that vT

0 v0

is minimized subject to the constraint that the dth component of v0 is some
prespecified constant.

Let the ith image vector be xi = [xi(1)xi(2) · · ·xi(d)]T and the filter be
h = [h(1)h(2) · · ·h(d)]T , where T denotes transpose. From Property 11.7 with
the time index substituted by the row index, the CMACE filter can be formu-
lated in feature space by applying a nonlinear mapping function f onto the
data as well as the filter. We denote the transformed training image matrix
of size d×N by

FX = [fx1 , fx2 , · · · , fxN ], fxi = [f(xi(1)) f(xi(2)) · · · f(xi(d))]T , i = 1, · · ·, N

and the transformed filter vector fh = [f(h(1)) f(h(2)) · · · f(h(d))]T , of size
d × 1. Given data samples, the cross-correntropy between the ith training
image vector and the filter can be estimated as

voi[m] =
1
d

d∑

n=1

f(h(n))f(xi(n−m)), (11.27)

for all the lags m = −d+ 1, · · · , d− 1. Then the cross-correntropy vector voi

is formed with all the lags of voi(m) denoted by voi = Sifh, where Si is the
matrix of size (2d− 1)× d as

Si =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f(xi(d)) 0 · · · 0 0
f(xi(d− 1)) f(xi(d)) 0 · · · 0

...
...

...
...

...
f(xi(1)) f(xi(2)) · · · · · · f(xi(d))

0 f(xi(1)) f(xi(2)) · · · f(xi(d− 1))

0 0
...

...
...

0 0 0 f(xi(1)) f(xi(2))
0 0 · · · 0 f(xi(1))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11.28)
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The scale factor 1/d has no influence on the solution, therefore it is ignored.
The correntropy energy of the ith image is given by

Ei = vToivoi = fThSTi Sifh, (11.29)

Denoting Vi = STi Si and using the definition of autocorrentropy in Eq. (11.2),
the d× d correntropy matrix Vi is

Vi =

⎛

⎜
⎜
⎜
⎝

vi(0) vi(1) · · · vi(d− 1)
vi(1) vi(0) · · · vi(d− 2)

...
...

. . .
...

vi(d− 1) · · · vi(1) vi(0)

⎞

⎟
⎟
⎟
⎠
,

where each element of the matrix is computed without explicit knowledge of
the mapping function f by

vi(l) =
d∑

n=1

Gσ(xi(n)− xi(n+ l)) (11.30)

for l = 0, · · · , d − 1. The average correntropy energy over all the training
data is

Eav =
1
N

N∑

i=1

Ei = fThVXfh, (11.31)

where, VX = 1/N
∑N

i=1 Vi. Because our objective is to minimize the average
correntropy energy in feature space, the optimization problem is reformu-
lated as

min fThVXfh subject to FTXfh = c, (11.32)

where, c is the desired vector for all the training images. The constraint in
Eq. (11.32) means that we specify the correntropy values between the training
input and the filter as the desired constant. Because the correntropy matrix
VX is positive definite, there exists an analytic solution to the optimiza-
tion problem using the method of Lagrange multipliers in the new finite-
dimensional Hv. Then the CMACE filter in feature space becomes

fh = V−1
X FX

(
FTXV−1

X FX
)−1

c. (11.33)

The transformation from the input space to Hv is nonlinear and the inner
product structure of Hv provides the possibility of obtaining closed-form op-
timal nonlinear filter solutions utilizing second- and high-order statistics.

Another important difference compared with existing machine learning
methods based on the conventional kernel method, which normally yields an
infinite-dimensional feature space, is that Hv has the same effective dimension
as the input space. The goal of this new algorithm is to find a template fh
in this Hv such that the cost function is minimized subject to the constraint.
Therefore, the number of degrees of freedom of this optimization problem is
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still d, so regularization, which will be needed in traditional kernel methods, is
not necessary here. The dimensionality fixed by the image domain also carries
disadvantages because the user has no control of Hv’s effective dimensionality.
Therefore, the effectiveness of the nonlinear solution depends solely on the
nonlinear transformation between the input space and Hv. The theoretical
advantage of using this feature space is justified by the CIM metric, which is
very suitable to quantify similarity in feature spaces and should improve the
robustness to outliers of the conventional MACE.

CMACE Filter Implementation

Because the nonlinear mapping function f is not explicitly known, it is impos-
sible to directly compute the CMACE filter fh in the feature space. However,
the correntropy output can be obtained by the inner product between the
transformed input image and the CMACE filter in Hv. In order to test this
filter, let Z be the matrix of testing images (each a length-L vector) and FZ
be the transformed matrix of Z; then the L× 1 output vector is given by

y = FTZV−1
X FX

(
FTXV−1

X FX
)−1

c. (11.34)

Here, we denote KZX = FTZV−1
X FX and KXX =

(
FTXV−1

X FX
)−1

. Then the
output becomes

y = KZX(KXX)−1c, (11.35)

where KXX is an N × N symmetric matrix and KZX is an L × N matrix
whose (i, j)th elements are expressed by

(KXX)ij =
d∑

l=1

d∑

k=1

wlkf(xi(k))f(xj(l)) ∼=
d∑

l=1

d∑

k=1

wlkGσ(xi(k)− xj(l)),

i, j = 1, · · · , N (11.36)

(KZX)ij =
d∑

l=1

d∑

k=1

wlkf(zi(k))f(xj(l)) ∼=
d∑

l=1

d∑

k=1

wlkGσ(zi(k)− xj(l)),

i = 1, · · · , L, j = 1, · · ·N

where wlk is the (l, k)th element of V−1
X .

The final computable output in Eq. (11.36) is obtained by approximating
f(xi(k))f(xj(l)) and f(zi(k))f(xj(l)) by Gσ(xi(k) − xj(l)) and Gσ(zi(k) −
xj(l)) respectively, which hold on average because of Property 11.7.

The CMACE, although a nonlinear filter in the input space, preserves the
shift-invariant property of the linear MACE [209]. The output of the CMACE
in Eq. (11.35) is only one value for each input image, but it is possible to
construct the whole output plane by shifting the test input image and as a
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result, the shift invariance property of the correlation filters can be utilized at
the expense of more computation. Applying an appropriate threshold to the
output of Eq. (11.35), one can detect and recognize the testing data without
generating the composite filter in feature space.

Centering the CMACE in Hv

With the Gaussian kernel, the correntropy value is always positive, which
brings the need to subtract the mean of the transformed data in feature space
in order to suppress the effect of the output DC bias. Therefore, the centered
correntropy matrix VXC can be used in the CMACE output Eq. (11.35), by
subtracting the information potential from the correntropy matrix VX as

VXC = VX −m2
favg · 1d×d, (11.37)

where m2
favg is the average estimated information potential over N training

images and and 1d×d is a d×d matrix with all the entries equal to 1. Using the
centered correntropy matrix VXC , a better rejection ability for out-of-class
images is achieved.

11.6 Application: Autocorrentropy Function as a
Similarity Measure over Lags

Correlation is widely used to measure similarity of time series. Perhaps the
most obvious example is to compare the similarity produced by autocorren-
tropy with the one produced by the autocorrelation function. As is well-known,
the autocorrelation function of a sinewave is a sinewave. This is such a well
known fact in signal processing that we do not even ask what the similarity
should look like. If one recalls how the autocorrelation is obtained (shifting
one replica of the signal over the original signal) we dare to suggest that the
similarity should be a very peaky signal every time the two versions of the
sinewave align perfectly. Of course this is not what is observed with autocor-
relation (Figure 11.1 top row).

However, when the autocorrentropy function is computed for the sinewave
with a Gaussian kernel with size selected according to Silverman’s rule, we ob-
tain the plot of Figure. 11.1, bottom row. This seems to be a more “intuitive”
measure of similarity because it emphasizes clearly the periodicity! It is easy
to understand why this is if we look at Eq. (11.2). Notice that irrespective
of the amplitude of the samples, when they are similar, the autocorrentropy
assigns a value close to 1, while the autocorrelation multiplies the amplitudes,
de-emphasizing the contributions of the low-amplitude samples. Obviously, we
are using two different similarity metrics when computing the two measures
(see CIM in Chapter 3). Because of the narrowness of correntropy functions
in the time domain, we anticipate the rich harmonics present in the frequency
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Fig. 11.1. (a) Autocorrelation function of a sinusoid (top figure), narrowband au-
tocorrelation (with product of ten lags) in the middle and autocorrentropy of a si-
nusoidal signal of period 1s with 100 Hz sampling frequency (bottom figure). Kernel
size is 0.04 (Silverman’s rule). (b) Corresponding Fourier transforms (from [342]).

Fig. 11.2. Autocorrentropy for the sinewave with decreasing levels of additive white
noise (SNR = 1dB, 10 dB, and 20 dB respectively) (from [342]).

domain, as we see in Figure 11.1b. For this reason, the lag domain is the most
obvious to apply correntropy, but the richness of the harmonics in the CSD
may lead to many unforeseen frequency domain applications. Of course, noise
in the signal will affect the peakiness of the autocorrentopy because even when
the two signals are aligned the result may be away from zero. Hence, as the
noise increases the peak value tends to decrease, and broaden the peak as
shown in Figure 11.2. Note that in the high noise case (1 dB), the solution for
the autocorrentropy function approaches the correlation function.
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Pitch Determination Algorithms for Speech

Pitch in speech processing is a valuable descriptor for speaker identification
because it is related to the vibration of the vocal cords, which is an indi-
vidual attribute. The pitch determination algorithm (PDA) described here
uses cochlear filtering to pre-process the speech signal. This is achieved by
a bank of 64 gammatone filters distributed in frequency according to their
bandwidths [242]. The impulse response of a gammatone filter is defined as
q(t) = tn−1e−2πat cos(2πf0t+ψ), where n is the filter order with center frequency
at f0 Hz, Ψ is the phase, and a is the bandwidth parameter. The bandwidth
increases quasi-logarithmically with respect to the center frequency. The cen-
ter frequencies of each filter are equally spaced on the equivalent rectangular
bandwidth scale between 80 and 4000Hz. This creates a cochleogram, which
has served as a biologically preprocessing in computational auditory scene
analysis (CASA) [329], and is used extensively in pitch determination [147].

The analysis is done by computing the autocorrentropy function at the
output of each cochlear frequency channel, vi(τ) = 1/N

∑N−1
n=0 Gσ

(
xin, x

i
n−τ

)

where the subscript i stands for channel number of the cochlear output. The
kernel bandwidth is determined using Silverman’s rule [300]. The time lag τ is
chosen long enough to include the lowest expected pitch (10 ms). Gray coding
the amplitudes of the autocorrentropy for each cochlear channel in the y-axis
as a function of the correntropy lags in the horizontal axis forms a picture
(white high, black low). We name it correntropy-gram, which literally means
“picture of correntropy”. If a signal is periodic, strong vertical lines at certain
correntropy lags appear in the correntropy-gram indicating times when a large
number of cochlear channels display synchronous oscillations in correntropy.
The horizontal banding signifies different amounts of energy across frequency
regions. The correntropy-gram is similar to the correlogram in structure but
different in content because it does not display power, but “instantaneous”
information potential. In order to reduce the dynamic range for display in the
correntropy-gram, the correntropy function should be normalized such that
the zero lag value is one as given by Eq. (11.13).

In order to emphasize pitch-related structure in the correntropy-gram,
the correntropy functions are summed up across all the channels to form a
“pooled” or “summary” correntropy-gram, S(τ) =

∑
i ui(τ). The summary

correntropy-gram measures how likely the pitch would be perceived at a cer-
tain time lag, and the pitch frequency can be obtained by inverting the time
lag. In Figure 11.3, S(τ) is first normalized by subtracting the mean and di-
viding by the maximum absolute value. The position of pitch can be found by
various peak-picking algorithms to identify local maxima above the predefined
threshold.

We present a simple experiment to validate our method, by comparing the
correntropy-gram with the conventional autocorrelation function and the nar-
rowed autocorrelation function [42] in determining pitches for single speakers.
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Fig. 11.3. Comparison of the correlogram, narrow autocorrelogram (L = 15) and
the correntropy-gram (Gaussian kernel and s = 0.01) for the synthetic vowel /a/
(from [342]).

The synthetic vowels are produced by Slaney’s Auditory Toolbox [34]. For a
fair comparison, we did not apply any postprocessing to the correlogram.

Figure 11.3 presents the pitch determination results for a single synthetic
vowel /a/ with 100Hz fundamental frequency. The upper plots are the images
of correlation functions, narrowed autocorrelations, and correntropy functions
using the same cochlear model, respectively. The bottom figures are the sum-
maries of those three images. The kernel size in the Gaussian kernel is 0.01
and L = 15 lags is used in the narrowed autocorrelation function. The conven-
tional autocorrelation and narrowed autocorrelation are all able to produce
peaks at 10ms corresponding to the pitch of the vowel. But they also gener-
ate other erroneous peaks that might confuse pitch determination in normal
speech. On the contrary, the summary of correntropy-gram provides only one
single and narrow peak at 10ms which is the pitch period of the vowel sound.
And the peak is much narrower than those obtained from other methods.

In [342] we show ROC plots to compare the detectability of these methods
for one, two, and three synthetic vowels using thresholds and neural net-
works and show the robust performance achieved with autocorrentropy. Fur-
thermore, implementation complexity is relatively small. However, the proper
selection of the kernel size is still an open issue.

We also tested our pitch determination algorithm in Bagshaw’s database
[15], which contains 7,298 male and 16,948 female speech samples. The ground
truth pitch is estimated at reference points based on laryngograph data. These
estimates are assumed to be equal to the perceived pitch. The signal is seg-
mented into 38.4ms duration centered at the reference points in order to
make the comparisons between different PDAs fair. The sampling frequency
is 20 kHz. The kernel size is selected according to Silverman’s rule for differ-
ent segments. We calculate the normalized correntropy function to yield unit
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Table 11.1. PDAS Gross Error (%) (From [342])

Male FemalePDA

High (%) Low (%) High (%) Low (%)

Weighted
Mean (%)

HPS 5.34 28.20 0.46 1.61 11.54
SRPD 0.62 2.01 0.39 5.56 4.95
CPD 4.09 0.64 0.61 3.97 4.63
FBPT 1.27 0.64 0.60 3.35 3.48
IPTA 1.40 0.83 0.53 3.12 3.22
PP 0.22 1.74 0.26 3.20 3.01
SHR 1.29 0.78 0.75 1.69 2.33
SHAPE 0.95 0.48 1.14 0.47 1.55
eSRPD 0.90 0.56 0.43 0.23 0.90
Correntropy 0.71 0.42 0.35 0.18 0.71

value at zero lag. Because the pitch range for a male speaker is 50–250Hz and
120–400Hz for a female speaker, the PDA searches local maxima from 2.5ms
to 20ms in the summary correntropy function. We set the threshold to be
0.3 by trial and error so that every local maximum that exceeds 0.3 will be
detected as a pitch candidate.

Table 11.1 summarizes the performance of various PDAs taken from [15].
The performance criterion is the relative number of gross errors. A gross error
occurs when the estimated fundamental frequency is more than 20% off the
true pitch value.

The percent gross errors by gender and by lower or higher pitch estimates
with respect to the reference are given in Table 11.1. The weighted gross error
is calculated by taking into account the number of pitch samples for each
gender. It clearly shows that for this particular database correntropy-based
PDA outperforms others.

Time Series Analysis with Autocorrentropy

We consider the generative model shown in Figure 11.4, where different source
distributions and different linear time-invariant filters can be used.

First, we switch off the filter to obtain s(n) and generate zero-mean unit
variance white processes with different distributions: Gaussian, impulsive, and
exponential. The correntropy function has been estimated from N = 10, 000
samples, using a Gaussian kernel with σ = 1. Figure 11.4a shows that the cor-
rentropy for zero lag is independent of the data and depends only on the kernel
size, which is guaranteed as shown in Property 11.3. For lag m = 1 the values
differ for each source distribution, and these values are basically unchanged
across lags as predicted by Eq. (11.5). Specifically, the value of autocorren-
tropy at any nonzero lag corresponds to the estimation of the information
potential, which can be theoretically obtained for the Gaussian (0.23), impul-
sive (0.30), and exponential sources (0.26). Also recall that, for i.i.d. data, the
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Fig. 11.4. Data generative model (top). (a) autocorrentropy for white sources s(n)
and (b) linear filtered sources x(n) (from [283]).

correntropy estimate at any lag different from zero is directly related to the
estimate of quadratic Renyi’s entropy. The computed autocorrelation function
(not shown), is basically constant as expected for this example (the variance
of the sources are equal).

Next, the sources are filtered by the following second-order IIR filter
H(z) = 1/(1 − 1.5z−1 + 0.8z−2) to obtain x(n). Figure 11.4b shows that
in this case the differences are greatly attenuated due to the Gaussianization
effect of the linear filter, and the time structure created by the impulse re-
sponse of the filter is readily visible in the autocorrentropy. The value of the
autocorrentropy for very large lag (after the oscillations die down) is the best
indicator of the differences among noise statistics.

If we compare the power spectral density of x(n) estimated from the data
with the correntropy spectral density in Figure 11.5, we see that the center
frequency of the filter can be inferred from both plots, but the CSD has
extraneous peaks due to the peakiness of autocorrentropy. Recall that all these
plots are a function of the kernel used and its parameters, so for practical use
the selection of the kernel size is an important step.

In the final example we consider the chaotic Lorenz system described as

ẋ = a(y − x)
ẏ = −y − xz + cx
ż = xy − bz

where c = 28, a = 10, and b = 8/3. We generate 9000 samples of the Lorenz
system by solving the equations with a fourth-order Runge-Kutta method
with integral step 0.05. The goal is to compare the behavior of the autocor-
rentropy versus the autocorrelation in time series generated by a nonlinear
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Fig. 11.5. Correntropy spectral density (a) and power spectral density (b) for the
linear filter output (normalized digital frequency) (from [248]).

Fig. 11.6. Autocorrentropy (a) and autocorrelation (b) for the Lorenz chaotic
system (from [248]).

model. Figure 11.6a shows that v(m) peaks at the same lag for all the state
variables: because x is coupled nonlinearly to y and z the periodic similarities
in one state variable affect the other states so that any state of the system can
be used to gain information about the underlying nonlinear process. This does
not happen with the conventional autocorrelation, which when applied to the
y and z outputs shows a much decreased and hard to quantify periodicity
around the fifteenth lag that is produced by the x component. This example
clearly shows that autocorrentropy is able to extract nonlinear coupling infor-
mation embedded in the time structure of time series, unlike the conventional
autocorrelation. A simple comparison of both functions (or their spectra) may
yield a statistic to distinguish nonlinear models from linear ones.

We propose S(σ) =
∑N
i=1

∑N
j (V̂σ(xi)− V̂σ(yi))/(Vσ(0) −MinV̂σ(xi)) as

a separation index to help define the proper range for the comparisons (σ = 1
for this case).
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11.7 Application: Karhunen-Loeve Transform in Hv

In this case study, we present a correntropy extension to the Karhunen-Loeve
transform (KLT) which is widely utilized in subspace projections [203], and is
named correntropy KLT (CoKLT). Suppose the strict sense stationary discrete
time signal is {x(i), i = 1, 2, . . . , N + L − 1} and we can map this signal as a
trajectory of N points in the reconstruction space of dimension L. The data
matrix over the lags is

X =

⎡

⎢
⎣

x(1)
...

x(L)

x(2) · · · x(N)
...

. . .
...

x(L + 1) · · · x(N + L− 1)

⎤

⎥
⎦

L×N

. (11.38)

The Karhunen-Loeve transform estimates the eigenfilters and principal com-
ponents of the autocorrelation function or, equivalently. its principal compo-
nent analysis (PCA) [253]. This sounds like PCA, however, originally the KLT
was defined for continuous time signals, unlike PCA. In order to extend the
KLT easily to CoKLT, let us start by writing the autocorrelation (ACM) and
Gram matrices, denoted as R and K, respectively, as

R = XXT ≈ N ×

⎡

⎢
⎢
⎢
⎢
⎣

r(0) r(1) · · · r(L − 1)

r(1)
. . .

. . .
...

...
. . . r(0) r(1)

r(L − 1) · · · r(1) r(0)

⎤

⎥
⎥
⎥
⎥
⎦

L×L

(11.39)

K = XTX ≈ L×

⎡

⎢
⎢
⎢
⎢
⎣

r(0) r(1) · · · r(N − 1)

r(1)
. . . . . .

...
...

. . . r(0) r(1)
r(N − 1) · · · r(1) r(0)

⎤

⎥
⎥
⎥
⎥
⎦

N×N

, (11.40)

where r(k) = E[x(i)x(i + k)] is the autocorrelation function of x. When N
and L are large, Eqs. (11.39) and (11.40) are both good approximations to the
statistical quantities. In the following derivation, we show that L is actually
not involved in the new algorithm, so we can always assume L is set appropri-
ately to the application. Assuming L < N , by singular value decomposition
(SVD) we have

X = UDVT , (11.41)

where U, V are two orthonormal matrices and D is a pseudodiagonal L×N
matrix with singular values {√λ1,

√
λ2, . . .

√
λL} as its entries. Therefore,

R = XXT = UDDTUT (11.42)
K = XTX = VDTDVT . (11.43)
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From Eqs. (11.42) and (11.43), the columns of U and V are eigenvectors of
R and K, respectively. We may also write Eq. (11.41) as

UTX = DVT (11.44)

or equivalently,
UTi X =

√
λiV

T
i , i = 1, 2, . . . , L. (11.45)

Here Ui and Vi are the ith columns of U and V, respectively. This equation
simply shows that the projected data onto the ith eigenvector of R is exactly
the scaled ith eigenvector of K. This derivation provides another viewpoint to
understand why kernel PCA obtains the principal components from the Gram
matrix [289]. As is well known in conventional PCA, the principal components
can either be obtained by eigendecomposing the autocorrelation matrix and
then projecting the data or by eigendecomposing the Gram matrix directly.

Moreover, by Property 11.7, there exists a scalar nonlinear mapping μx(·)
(not Φ) that maps the input signal as {μx(i), i = 1, . . . , N + L − 1} while
preserving the similarity measure

E[μx(i).μx(j)] = E[Gσ(x(i)− x(j))]. (11.46)

In other words, the autocorrelation function of μx(i) is given by the autocor-
rentropy function of x. With these results, the correntropy extension to KLT
is straightforward. We simply replace the autocorrelation entries with the au-
tocorrentropy entries in Eq. (11.40) and obtain the principal components by
eigendecomposition of the new Gram matrix K. Therefore, CoKLT is similar
to kernel PCA in the sense that it obtains the principal components by eigen-
decomposing the Gram matrix. However, we are talking about two entirely
different RKHSs, Hv and Hκ, respectively.

As a practical example, we apply CoKLT to extract a single sinusoidal
signal corrupted with impulsive noise x(i) = sin(2πfi) + A · z(i) for i =
1, 2, . . . , N + L − 1, . . . , z(i) is a white noise process drawn from the mix-
ture of Gaussian PDF

pz(z) = 0.8G0.1(z, 0) + 0.1G0.1(z, 4) + 0.1G0.1(z,−4).

We set N = 256, f = 0.3, and generate 3N data to estimate N point au-
tocorrelation and correntropy functions. For a fair comparison, we choose to
eigendecompose the N -by-N Gram matrix for both methods. Results from
eigendecomposing the L-by-L autocorrelation matrix and then projecting the
data are also presented for comparison. For each case in Table 11.2, 1000
Monte Carlo trials with different noise realizations are run to evaluate the
performance of CoKLT and KLT. The kernel size is set to σ = 1 in CoKLT
(for finding sinusoids in noise, the kernel size can be scanned until the best
line spectrum is obtained; see Figure 11.8).

For A = 5, the probability of detecting the sinusoidal signal successfully
(based on using the largest peak in the spectrum) is 100% for CoKLT, com-
pared with 15% for N -by-N autocorrelation (Figure 11.7).
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Table 11.2. Results of CoKLT (From [201])

A CoKLT

(2nd PC),

%

Centering

CoKLT

(1st PC),

%

PCA by

N-by-N

Gram M

(N = 256),

%

PCA by

L-by-L

ACM

(L = 4),

%

PCA by

L-by-L

ACM

(L = 30),

%

PCA by

L-by-L

ACM

(L = 100),

%

5 100 100 15 3 4 8

4 100 100 27 6 9 17

2 100 100 99 47 73 90
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Fig. 11.7. CoKLT of sinusoidal signal in impulsive noise for A = 5. FFT of clean
sinusoidal signal and noisy observation (top); Average of FFT of first principal com-
ponent by SVD N-by-N auto-correlation matrix(middle); Average of FFT of second
principal component by SVD N-by-N correntropy matrix (bottom) (from [201]).

The second principal component is used in CoKLT instead of the first one,
because the transformed data are not centered in the feature space and the
mean introduces a large DC component, which is picked as the first principal
component (substituting Eq. (11.13) in Eq. (11.6) shows that the first principal
component of the correntropy matrix is always a DC component [201]). Results
are also shown for CoKLT when it uses a centered Gram matrix [294].

A second set of simulations is run to show how the kernel size affects
the performance of CoKLT and to throw some light on how to choose it
appropriately. A total of 1000 Monte Carlo simulations is run for each kernel
size. The results for CoKLT (with A = 5) are listed in Table 11.3.
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Table 11.3. The Effects of the Kernel Size on CoKLT (From [201])

Kernel size Centering CoKLT (%)

0.1 48
0.5 93
1.0 100
1.5 99
2.0 98
3.0 95
3.5 90
4.0 83
8.0 10
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Fig. 11.8. Average of normalized FFT magnitude of first principal component of
centering correntropy matrix over the change of kernel size (from [201]).

A graphical depiction of Table 11.3 is achieved by plotting the correntropy
spectral density (i.e., the Fourier transform of the correntropy function) as a
function of the kernel size (Figure 11.8).

The y-axis shows the average normalized amplitude across the 1,000 runs,
which can be interpreted as the percentage of time that the particular fre-
quency has the largest amplitude. We see that for kernel sizes between 1
and 2, the largest peak consistency occurred at the frequency corresponding
to the sinusoid. The FFT magnitude for a kernel size of 10 is very similar
to the power spectrum of the data. In this latter case, the highest peak in
the spectrum corresponded to the sinusoid in only 10% of the runs. We tried
Kernel PCA [288] on this problem and the results were disappointing. When
the Gaussian kernel with large kernel size is employed, kernel PCA is almost
equivalent to linear PCA but not better.
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An explanation of the behavior of CoKLT is provided by Property 10.9.
The sinusoidal signal in this example has a relatively small dynamic range and
mainly clusters in the Euclidean zone of the CIM space (refer to Chapter 3 for
a discussion of the CIM metric). The kernel size to implement this condition
can always be obtained as long as we have sufficient data. The impulsive noise
produces outliers in the rectification zone. CoKLT employs two steps: forward
nonlinear transformation and backward linear approximation. In the forward
nonlinear transformation, the method discards the large outliers moving the
“bad” points across the contours in CIM space, and emphasizes the correlation
of the sinewave that falls into the Euclidean zone; then by implicit backward
linear approximation, the method simply treats correntropy entries as second-
order statistics. This perspective justifies our correntropy extension to second-
order methods and explains why this method works well in impulsive noise
environments.

This insight also provides a clue on how to choose an appropriate kernel
size for this application. Namely, the kernel size should be chosen such that the
normal signal dynamics lie in the Euclidean zone and the impulsive outliers are
kept in the rectification zone. Indeed, the sinusoidal peak-to-peak amplitude
in this example is about 2 and the impulsive outliers are above 8, so an
appropriate kernel size is in the range of [0.5, 3.5] according to the 3σ condition
for outlier rejection and the variance condition of Eq. (10.19).

In a sense, Figure 11.8 exemplifies a new type of frequency analysis based
on correntropy, where a single parameter (the kernel size) in the correntropy
function is able to scan between the conventional linear frequency analysis
(large kernel sizes) and a nonlinear (higher-order moments) frequency analysis
(smaller kernel sizes). However, we have to say that the realistic case of finding
sinewaves in noise is much more complicated than this example because there
are normally many sinewaves present of different amplitudes. Although it may
still be advantageous to use correntopy, further research is necessary to analyze
the structure of the signal and noise spaces.

11.8 Application: Blind Source Separation

Here we use the very interesting properties of the cross-correntropy that
blend time and statistical information to propose two new contrast functions
(criteria) for BSS: one using both the time and statistical structure of the data
obtained from the cross-correntropy function, vx,y(t1, t2), and the other using
only statistical information gathered from the cross-correntropy, vσ(X,Y ).

Contrast Function for ICA with the Crosscorrentropy Function

The ICA problem was treated in Chapter 8, and here we use the same
basic notation and concepts. The BSS scenario is the same as depicted in
Figure 8.2, where for simplicity we are just assuming two sources and two
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sensors. For cases where the data have temporal structure, we propose to
constrain the Euclidean distance between the output cross-correntropy func-
tion of the demixer at different lags to obtain the first correntropy based
criterion for BSS (denoted as J1):

min
W

J1 =
L∑

l=−L
(vy1,y2(0)− vy1,y2(l))2, (11.47)

where y1(n) and y2(n) are the temporal source estimates and L is a user-
specified parameter representing the number of lags. Using the simple steepest
descent method in batch mode, the update equation for the demixing matrix
W is:

Wk+1 = Wk − η
L∑

l=−L
(v̂y1,y2(0)− v̂y1,y2(l)) (∇W v̂y1,y2(0)−∇W v̂y1,y2(l)),

(11.48)
where η is a stepsize parameter and,

∇W v̂y1,y2(l) =
1

N − l
N∑

n=l+1

κ(y1(n)− y2(n))

(y1(n)− y2(n− l))
[ −x1(n) −x2(n)
x1(n− l) x2(n− l)

]

(11.49)

for l = 0,±1, . . . ,±L.
Although it cannot be directly proved that, for all l Eq. (11.47) is a suffi-

cient condition for independence, we argue that it still suffices as a criterion
for BSS. Indeed, this criterion was first motivated by the joint diagonalization
of a set of covariance matrices, as in SOBI [29]. Like the correlation matrix,
given V [l] for l = 0,±1, . . . ,±L, we can form the following cross-correntropy
matrix:

V =

⎡

⎢
⎣

v(0) · · · v(L)
...

. . .
...

v(−L) · · · v(0)

⎤

⎥
⎦.

The J1 criterion is in fact minimizing the Frobenius norm of the matrix
V−V0 (with appropriate scaling for different entries), where V0 is a matrix
with constant entry V (0). When the global minimum is achieved, the ma-
trix V − V0, which contains high-order statistics of the mixtures, becomes
a diagonal matrix (in fact a null matrix for J1). In this sense, the above
criterion is similar to the method of joint diagonalization of cumulant matri-
ces or covariance matrices for BSS [335], except that now the entries of V
also contain higher-order statistical information about the sources. For this
reason one can expect better performance when compared to SOBI when
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the sources are not Gaussian. The criterion J1 may also be used to separate
temporally correlated Gaussian sources because it constrains more than one
lag of the mixtures (ICA algorithms will fail in this case). Suppose we have
two temporally correlated Gaussian sources and their whitened mixtures, as-
suming unit variance for both sources: y1[n] = s1[n] cos θ − s2[n] sin θ, and
y2[n] = s1[n] sin θ + s2[n] cos θ.

Using the RKHS notation, Φ (·) = [ϕ1 (·)ϕ2 (·) . . . ϕD (·)]T (D may be
infinity), simple calculations yield:

vyi,y2(0)− vy1,y2(l) =
D∑

i=1

E[ϕi(s1(n) cos θ − s1(n) sin θ)− ϕi(s1(n) cos θ

−s1(n− l) sin θ)] · E[ϕi(s2(n) cos θ − s2(n) sin θ)
−ϕi(s2(n− l) cos θ − s2(n) sin θ)]. (11.50)

Because ϕi (·) are nonlinear functions that involve high-order statistics of
the sources, the two expectations for each i are generally not zero for arbitrary
angle θ. Finally, because the crosscorrentropy function is constant across the
lags for independent sources (Property 11.9), J1 is especially useful when
applied to sources that have a time structure, since it using both statistical
and lag information in the demixing. For i.i.d. sources there is no lag structure
in the sources and the criterion can be simplified, as shown next.

Contrast Function Based on Crosscorrentropy

Instead of looking at y1(n) and y2(n) as stochastic processes, one can simply
drop the time indices and interpret them as two random variables y1, y2.
Obviously this modification will lose information about the temporal structure
of the mixtures. It turns out that for this case, we can obtain yet another
simplified criterion for BSS with correntropy, denoted as J2, which in this
case reduces to an ICA criterion because it only exploits statistical information
about the sources at a single lag.

From Property 10.8 we already saw that for independent random variables,
cross-correntropy is the inner product of the mean values of the projected data,
which was called the cross-information potential (CIP). Neglecting the issue of
sufficiency for the time being, we obtain another cost function for ICA based
on cross-correntropy (denoted as J2):

min
W

J2 = [vy1,y2 − CIPy1,y2 ]2. (11.51)

Again, using the steepest descent method in batch mode, the update equa-
tion for the demixing matrix W is:

Wk+1 = Wk − η
(
v̂y1,y2 − ĈIPy1,y2

)(
∇W v̂y1,y2 −∇W ĈIPy1,y2

)
, (11.52)
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where

∇W v̂y1,y2 =
1

N − l
N∑

i=1

κ(y1(i)− y2(i))(y1(i)− y2(i))
[ −x1(i) −x2(i)

x1(i) x2(i)

]

(11.53)

∇W ĈIPy1,y2 =
1
N2

N∑

i=1

N∑

j=1

κ(y1(i)− y2(j))(y1(i)− y2(j))
[ −x1(i) −x2(i)

x1(j) x2(j)

]

.

(11.54)

From Eq. (11.50), we can see that independence in the input space implies
uncorrelatedness in the feature space, with the feature vectors being Φ (y1) and
Φ (y2). Or if we look at the individual nonlinear mapping ϕi (·), we can see that
minimizing the cost function J2 is in a sense doing nonlinear decorrelation,
which was successfully used by Jutten and Herault [172] to solve the first ICA
problems. But the difference is, instead of decorrelating one nonlinear term,
J2 is decorrelating the sum of a possibly infinite number of nonlinear terms.

If we use the statistical interpretation for cross-correntropy (as p(Y1 = Y2))
in the large-sample case, the criterion J2 is in fact minimizing the following
quantity:

J =

⎡

⎣
∫

R

py1y2(u, u)du−
∫

R

py1(u)py2(u)du

⎤

⎦

2

. (11.55)

This is related to the contrast function based on Euclidean-distance
quadratic mutual information of Chapter 2, which takes the functional form:

JED−QMI =
∫∫

R2

[py1y2(u, v)− py1(u)py2(v)]
2 dudv. (11.56)

For two random variables y1, y2 that are independent, we would like
py1y2(u, v) = py1(u)py2(v) to be true for each point (u, v) in the sample space,
which is satisfied at the global minimum of Eq. (11.56). However, this is not
true for Eq. (11.55), where the only constraint is that the integrations for
the joint PDF and product of the marginal PDFs along the line u = v are
(approximately) equal. Obviously, the criterion J2 is a relaxed version of the
contrast function based on quadratic mutual information, with the advantage
that it is simpler to implement (just one sum, instead of a double sum). The
criterion J2 also bears some relation to the independence measures based on
kernel methods, for example, the constrained covariance proposed by Gretton
et al. in [123] as discussed when Property 10.8 was presented.

Because the cost function J2 does not involve any time structure of the
mixtures, it can not be used to separate temporally correlated Gaussian
sources. In general we can consider J2 to be a weaker criterion than J1. It
is straightforward to generalize the above two criteria to treat more than
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two sources by taking the summation of pairwise cost functions defined in
Eqs. (11.51) and (11.47), respectively. Ideally at the global minimum of these
cost functions, only pairwise independence among the outputs is achieved.
In general, it is not guaranteed that the outputs are mutually independent.
However, Comon showed that, in the context of linear instantaneous ICA,
pairwise independence is equivalent to mutual independence provided that at
most one of the independent components is Gaussian and that the underlying
densities do not contain delta functions [62]. This means that the new criteria
may be suitable for multivariate linear instantaneous ICA problems. But the
disadvantage is that the computation cost increases combinatorially with the
number of pairs. It may be better to use the extended definition of correntropy
for random vectors.

Demixing Results

In this section we compare the proposed criterion, correntropy ICA with
FastICA [155], JADE [46], and SOBI [29]. The performance measure is the
signal-to-distortion ratio (SDR), which is given by

SDR = −10 log10

⎡

⎢
⎢
⎢
⎣

1
M(M − 1)

M∑

i=1

⎛

⎜
⎜
⎜
⎝

M∑

j=1

|Bij |

max
j
|Bij | − 1

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎦
, (11.57)

where B = WA. This measure was initially proposed by Amari, et al [5] and
is invariant with respect to permutation and scaling of the rows in W . It
avoids the case of multiple sources in the same channel unlike Eq. (8.50). The
argument of the log function is always between 0 and 1 and equal to 0 if
and only if there is a perfect match between W−1 and A, up to permutation
and scaling. Intuitively, SDR measures the average proportion of components
that are not recovered by the algorithm. In all the following simulations, SDR
is averaged over 50 Monte Carlo runs. Each of the Monte Carlo runs uses a
different realization of the sources (except in the last example) and a different
mixing matrix, whose entries are chosen uniformly between −1 and 1.

The cost function is minimized for prewhitened mixtures using the stan-
dard gradient descent in batch mode (although not required for our cost func-
tion, we find that it often gave a slightly higher SDR). The parameters to be
adapted are the Givens rotation angles as done in Chapter 8 [150]. The ker-
nel size is annealed exponentially during adaptation from 10σs to σs, where
σs = 1.06σxN−0.2, according to Silverman’s rule, where σx is the standard
deviation of the data. When it is appropriately used, kernel size annealing
avoids local optima and find the global optima more often than the algorithm
which uses a static kernel size.

Table 11.4 shows the performance for separation of instantaneous mix-
tures of speech and music with a fixed sample size of 2000. We note that the
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Table 11.4. Separation of Instantaneous Mixtures of Speech and Music (From [198])

SDR(dB)/method Correntropy JADE FastICA SOBI
ICA J1

Mean 19.7 17.3 15.6 12.2
St. D. 10.4 0.0 7.3 8.2

speech signal has a super-Gaussian distribution with a kurtosis of 0.68 and
the music signal has a sub-Gaussian distribution with a kurtosis of −0.22.
In this example, J1 outperforms all the other algorithms. Nevertheless, the
trade-off is that it gives a larger variance in the performance. This means that
for some of the Monte Carlo runs, J1 actually fails to recover the sources. One
of the reasons for this is attributed to the local minima on the performance
surface.

In general we can say that correntropy ICA seems more suitable to separate
mixtures of mixed kurtosis sources (i.e., super-Gaussian and sub-Gaussian)
i.i.d. sources. On average, correntropy ICA gives an SDR 4 dB above FastICA
and JADE when separating mixtures of uniform and Laplacian sources. It
is also efficient for small sample sizes compared with JADE and FastICA,
particularly for separation of the two Laplacian sources and mixtures of super-
and sub-Gaussian sources. If we linearly regress the SDR by the sample size,
the slope for correntropy ICA would be smaller than the other two algorithms.
In this sense, we can say that the performance of correntropy ICA in terms
of SDR is less sensitive to the sample size.

Figure 11.9 shows the effectiveness of correntropy ICA for separating tem-
porally correlated Gaussian processes that have distinct spectra. We can see
on average a 7 dB improvement in SDR from the SOBI algorithm, although
the poor performance of SOBI for this particular dataset is a bit surprising.

One of the drawbacks of correntropy ICA is that it is not working as well
as the other two methods for mixtures of i.i.d. sources when the distributions
of the sources are similar. We speculate that the main reason is the integration
of the joint PDF along the line u = v (45 degree angle in joint space) with a
bandwidth associated with the kernel size (see Property 10.4), which makes
correntropy not very sensitive to the changes in the rotation angle when the
mixtures are close to independent. Thus, the empirical minima in the rotation
angle will deviate from the theoretical value to a larger extent than the other
methods. Performance is even worse for mixtures of super-Gaussian sources
since there are effectively much fewer data to estimate the correntropy along
the 45 degree line. This calls for the use of parametric correntropy and a
preprocessing step that finds the regions in mixture space where the highest
density of samples resides. Although fine tuning of the annealing scheme for
each run may increase the performance, this was not done in the experiments
and thus the benefits of kernel size annealing may not have been taken full
advantage of.
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Fig. 11.9. Sample size versus SDR for separation of temporally correlated Gaussian
sources (from [198]).

11.9 Application: CMACE for Automatic Target
Recognition

Object recognition involves assigning a class to each observation. Correla-
tion filters have been applied successfully to object recognition by virtue of
their linear, shift-invariant, and rotation-invariance through training over the
class of images [189]. The application domains range from automatic target
detection and recognition (ATR) in synthetic aperture radar (SAR) [210] to
biometric identification such as faces, iris, and fingerprint recognition [191].
Object recognition can be performed by cross-correlating an input image with
a synthesized template (filter) from previous observations at different poses
of the object class in a training set. The correlator output is searched for the
peak, which is used to determine whether the object of interest is present.

As we mentioned in Chapter 10, matched filters are the optimal linear
filters for signal detection under linear channel and Gaussian noise condi-
tions. However, for image detection, matched spatial filters (MSF) do not
fulfill the optimal condition and must be improved. See [190] for an excellent
review. Here we perform object recognition using a widely used correlation
filter called the minimum average correlation energy filter [209] already de-
scribed in Section 11.5. The MACE filter tends to produce sharp correlation
peaks, however, has been shown to have poor generalization properties; that
is, images in the recognition class but not in the training set may not be
recognized well. One reason for the poor generalization is that the MACE is
still a linear filter, which is optimal only when the underlying statistics are
Gaussian. Nonlinear extensions of the MACE have been attempted, including
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kernel methods. See [166] for a review. Here we compare the CMACE filter
developed in Section 11.3 with the MACE and the kernel MACE on a target
recognition application.

This section shows the performance of the proposed correntropy-based
nonlinear MACE filter for the SAR image recognition problem in the
MSTAR/IU public release dataset [273] already used in Chapter 7. Because
the MACE and the CMACE have a constraint at the origin of the output
plane, we centered all images and cropped the centered images to the size of
64× 64 pixels (in practice, with uncentered images, one needs to compute the
whole output plane and search for the peak). The selected area contains the
target, its shadow, and background clutter. Images lying in the aspect angles
of 0 to 179 degrees are used in the simulations. The original SAR image is
composed of magnitude and phase information, but here only the magnitude
data are used.

For the first test, a different aspect angle between training and testing data
is selected. For the second test, a different depression angle between test and
training data is selected, which is a harder problem because the silhouette of
the same vehicle may change drastically. In the simulations, the performance
is measured by observing the test output peak value and creating the ROC
(receiver operating characteristic) curve. The kernel size, σ, is chosen to be 0.1
for the estimation of correntropy in the training images and 0.5 for test output
in Eq. (11.35). The value of 0.1 for the kernel size corresponds to the stan-
dard deviation of the training data which is consistent with Silverman’s rule.
Experimentally it was verified that a larger kernel size for testing provided
better results.

Aspect Angle Distortion Case

In the first simulation, we selected the BTR60 (armored personal carrier) as
the target (true class) and the T62 (tank) as the confuser (false class). The
training and test images are taken at 17 degree depression angles. The goal
is to design a filter that will recognize the BTR60 with minimal confusion
from the T62. Figure 11.10a shows several examples of training images, used
to compose the MACE and the CMACE filters. In order to evaluate the effect
of the aspect angle distortion, every third of the 120 images was selected for
training (N = 40). The remaining images constitute out-of-class exemplars
(the difference in aspect angle from the closest training image is 1 or 2 degrees
difference).

Figure 11.10b shows test images for the recognition class and Figure 11.10c
shows several examples of the confusion vehicle images. Testing is conducted
with all 120 exemplar images for each vehicle. We are interested only in the
center of the output plane, because the images are already centered. The peak
output responses over all exemplars in the test set are shown in Figure 11.11.

In the simulation, a unity constraint was applied for the MACE as well
as the CMACE filter in the training, therefore the desired output peak value
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Training images (BTR 60) of aspect angle 0, 35, 124, 159 degrees

Test images from BTR 60 of aspect angle 3, 53, 104, 137 degrees 

a

b

c

Test images from confuser (T62) of aspect angle 2, 41, 103, 137 degrees

Fig. 11.10. Recognition with aspect angle distortion. Sample SAR images (64× 64
pixels) of the same vehicle type (BTR60) when the training and the test is taken at
different aspect angles, and a confuser (T62) (from [166]).

should be close to one when the test image belongs to the target class and
should be close to zero otherwise. We compute results for MACE, CMACE,
and the kernel correlation filter (KCF) [338]. For the KCF, prewhitened im-
ages are obtained by multiplying the input vector by D−0.5 in the frequency
domain and applying the kernel trick to the prewhitened images to compute
the output with the centered covariance. A Gaussian kernel with σ = 5 is used
for the KCF.

Figure 11.11 (circles) illustrates that recognition is perfect for both the
MACE and the CMACE within the training images, as expected. However,
it also shows that, in the MACE filter (top), most of the peak output values
on the test images are less than 0.5. This indicates that the MACE output
generalizes poorly for the images of the same class not used in training, which
is one of its known drawbacks. The CMACE (bottom) holds the output of
the out-of-class training mostly above 0.5. Figure 11.11 also depicts perfor-
mance for the confuser test images (crosses). Most of the output values for
the MACE (top) are near zero but some are higher than those of target im-
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Fig. 11.11. Aspect angle distortion case. Peak output responses of testing images
for a target chip (circle) and a confuser (cross): (top) MACE, (bottom) CMACE
(from [166]).

ages, creating false alarms. On the other hand, for the CMACE (bottom) the
rejecting performance for a confuser is better than the MACE. As a result,
recognition performance between two vehicles is improved by the CMACE, as
best quantified in the ROC curves of Figure 11.12. From the ROC curves in
this figure, we can also see that the CMACE outperforms the nonlinear ker-
nel correlation filter in particular for high detection probability. Figure 11.12
shows test set performance for two training runs with a different number of
training samples, and in all cases larger training sets improve performance, as
expected.

The CMACE performance sensitivity to the kernel size is studied next.
Table 11.5 shows the area under the ROC for different kernel sizes. From this
table we observe that kernel sizes between 0.01 and 1 provide little change in
detectability (kernel size given by Silverman’s rule is 0.1). This result corrob-
orates the robustness of performance to changes in the kernel size one order of
magnitude up and down from the Silverman’s rule value, already mentioned
for the matched filter.

Depression Angle Distortion Case

In the second simulation, we selected the vehicle 2s1 (rocket launcher) as the
target and the T62 as the confuser. These two kinds of images have very similar
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Fig. 11.12. Aspect angle distortion case. ROC curves with different numbers of
training images. Every filter benefits from a larger training set (from [166]).

shapes therefore they represent a difficult object recognition case, making it
useful for testing purposes. In order to show the effect of the depression angle
distortion, the images for the training data have a 13 degree larger depression
angle (30 degrees) than the images for the test set (17 degrees). A difference of
13 degrees of depression represents a huge distortion because it substantially
increases the shadows and perturbs the object dimensions. In this simulation,
we train with all the images (120 images covering 180 degrees of pose) at a 30
degree depression angle and test with all 120 exemplar images at a 17 degree
depression angle.

Figure 11.13 (top) shows the correlation output peak value of the MACE
and (bottom) the output peak values of the CMACE filter with the target and
the confuser test data. We see that the performance of the conventional MACE
is very poor in this case, either under- or overshooting the peak value of 1 for
the target class, but the CMACE can improve the recognition performance
because of its better generalization. Figure 11.14 depicts the ROC curve and
summarizes the CMACE advantage over the MACE in this large depression
angle distortion case. More interestingly, the KCF performance is closer to the
linear MACE, presumably because both use the same input space whitening
which is unable to cope with the large distortion.

In practice, the drawback of the proposed CMACE filter is the required
storage and its computational complexity. The MACE easily produces the
entire correlation output plane by FFT processing. However, computing the
whole output plane with the CMACE is a burden. For this reason, we rec-
ommend using either the fast Gauss transform or the incomplete Cholesky
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Fig. 11.13. Depression angle distortion case: peak output responses of testing im-
ages for a target chip (circle) and a confuser (cross): (top) MACE, (bottom) CMACE
(from [166]).

Fig. 11.14. Depression angle distortion case: ROC curves showing the big advantage
of the CMACE for this more difficult case (from [166]).
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Table 11.5. Case A: Comparison of ROC Areas with Different Kernel Sizes (From
[166])

Kernel size 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ROC area 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97

decomposition to save computation time, which results in a computational
savings of about 100-fold for 64 × 64 pixel images [166]. More recently we
experimented with a compressive sampling scheme that projects the ATR im-
ages with a random projection matrix with surprisingly good results [167].
The MACE filter is unable to discriminate the classes from the projected im-
ages, but discriminability is preserved to a large extent with the CMACE.
This may be due to the inclusion of higher-order statistics in the CMACE
generalized correlation.

11.10 Conclusion

This chapter presents the autocorrentropy function for random processes and
complements the theory presented in Chapter 10 for pairs of random vari-
ables. The correntropy function for random processes can be properly called
autocorrentropy and it is an enhancement of the autocorrelation function so
widely used in time series analysis. However, to define the autocorrentropy
function, stationarity in the strict sense is necessary because autocorrentropy
is a function of many moments expressed by the kernel.

Perhaps the most interesting feature of the autocorrentropy function is
that it combines statistical with temporal information, which are the defining
properties of any random process. This feature is due to the fact that the kernel
in the correntropy definition expresses higher-order moments of the random
variables, yielding a value that is easy to compute but rich in information
about the random process.

The other interesting property of the autocorrentropy function is that it
is a positive definite bivariate function, and so it defines a RKHS similar in
spirit but different in character to the RKHS defined by the autocorrelation
function, as proved by Parzen. The difference is that the mapping to the
correntropy RKHS is nonlinear, unlike what happens with the autocorrelation
function. This results in more powerful representations, but it also introduces
difficulties that have not been solved to date. Our results with the CMACE
show that when the optimal model order in Hv is large and when the order of
the samples do not matter, the approximation in Eq. (11.36) seems reasonable.
Our experience with the same approximation for Wiener filters in prediction
(not shown) has not been as successful [248]. Overall, these preliminary results
are encouraging which calls for further research in this class of similarity
functions.
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The chapter also explains properties of correntropy that are related to
the time nature of the function. In particular we show that the centered
autocorrentropy function accepts a Fourier transform, therefore a correntropy
spectral density can be defined, which is still a function of the kernel size. We
show that by changing the kernel size a family of spectra representations is
obtained, ranging from the PSD to new representations that blend in different
degrees second- and higher-order moments of the data. This extra capability
has not yet been tested in real problems.

The case studies illustrate four possible advanced signal processing appli-
cations: the pitch detection algorithm shows the high performance achieved
with autocorrentropy compared with a large set of comparable low-level al-
gorithms. The second example exploits the CIM metric to yield better per-
formance when finding a single sinewave in impulsive noise. However, further
work is necessary to fully understand the eigenstructure of the autocorren-
tropy matrix and apply the method for an arbitrary number of sinewaves.
The third example exploits the fact that independent random processes yield
a zero correntropy coefficient (unlike the correlation coefficient) and as such a
new contrast function for blind source separation based on correntropy is pro-
posed. Currently the crosscorrentropy is calculated along the bisector of the
first and third quadrants that may not have sufficient samples to estimate the
mixing directions with high precision. Although performance depends on the
mixing matrix, parametric correntropy has the potential to make this method
very useful as a general-purpose algorithm for BSS if the mixing directions
are first estimated to determine the regions in mixture space where autocor-
rentropy should be estimated. The final example applies autocorrentropy to
an image recognition problem, to show that autocorrentropy can be applied
to index sets that are not time (in this case the pixels of the image). Here
we showed that the performance of the correntropy MACE is superior to that
of the MACE in a difficult problem (ATR in SAR), but the computational
complexity of CMACE is far higher and will not scale up to large problems.
Methods to decrease the computational complexity of the CMACE are re-
quired (e.g., FGT and ICD). An alternative tested with surprising results is
random subsampling [167].



A

PDF Estimation Methods and Experimental
Evaluation of ITL Descriptors

Deniz Erdogmus and Rodney Morejon

A.1 Introduction

For optimal processing of the information available in the data at hand we need
to obtain reliable estimates of the underlying statistics. Traditionally, para-
metric Bayesian approaches have been heavily exploited to this goal with very
successful results in understanding the data as well as yielding engineering
information-processing systems that achieve the desired level of performance.
Recently, however, considerable attention has been devoted to semiparametric
and nonparametric approaches in signal processing and data analysis, as op-
posed to the traditional parametric view. In this appendix, several techniques
for estimating the data statistics and distributions from samples are summa-
rized. The presentation includes a variety of approaches from both the para-
metric and nonparametric estimation literatures. The main focus, however, is
on nonparametric methods. We also present specific experimental data that
demonstrate performance of the information potential and quadratic Renyi’s
entropy when the experimental parameters of data size, dynamic range, and
kernel size are varied. In most real-world learning scenarios the measured sig-
nals take continuous values, typically from the set of real numbers and estima-
tion of probability densities and differential information–theoretic quantities
is especially difficult. Alternatively the probability mass functions and the cor-
responding information measures of discrete-valued signals can easily be ap-
proximately evaluated by a counting procedure. Due to this reason, we are
mostly concerned with estimation of probability densities and differential in-
formation measures for continuous random variables throughout this chapter.

A.2 Probability Density Function Estimation

Density estimation frequently arises when solving learning and signal process-
ing problems. It has been studied extensively in the statistics literature and
many useful and strong techniques are at our disposal. Because we are using
estimators, it is appropriate to start with basic definitions of estimator quality.
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Suppose the data {xi i = 1, . . . , N} belongs to a probability density p(x).
We would like to estimate p(x) from a finite number of observations by some
procedure that has a free parameter σ (e.g., using the histogram σ as the
bin width). We will denote the estimator by p̂σ(x), and for simplicity the
dependence on σ is dropped when no confusion arises. The estimator p̂σ(x)
is called consistent when p̂(x) → p(x), N → ∞ (i.e., when the bias and
the variance of p̂σ(x) tend to zero when the number of samples approaches
infinity). The bias and variance of the estimator are defined, respectively, as

E[p̂σ(x) − p(x)]
Var[p̂σ(x)] = E[(p̂σ(x) − E[p̂σ(x)])2]. (A.1)

The mean square error of the estimator is defined as

MSE[p̂σ(x)] = E[p̂σ(x) − p(x)]2 (A.2)

Another quantity normally found in estimation is the mean integrated
square error (MISE) that is defined as

MISE = E
[∫ ∞

−∞
(p̂σ(x)− p(x))2dx

]

=
∫ ∞

−∞
MSE [p̂σ(x)] dx , (A.3)

which can be interpreted as the average global error. Sometimes to obtain
close form solutions one makes approximations to the MISE and in this case
we call it the asymptotic MISE (AMISE).

The density estimation techniques can be broadly classified as parametric
and nonparametric. Here, we discuss both classes of approaches.

Parametric Density Estimation

Parametric density estimation has been at the core of Bayesian learning and
signal processing [38, 79, 180]. These techniques rely on the availability of a
parametric family of density functions that can accurately describe the ob-
served data. Once a suitable family of densities is selected, the parameters
of the family can be optimized according to the available samples, hence the
name parametric density estimation. The two most commonly reported ap-
proaches in the literature are maximum likelihood estimation and Bayesian
estimation. The problem of parametric density estimation from available data
can be summarized as follows. Given the set {x1, . . . , xN} of independent and
identically distributed (i.i.d.) random vector samples and a family of density
functions p(x; θ) from which these samples are drawn, determine the param-
eter θ∗ such that the selected distribution p(x; θ∗) and the observed samples
{x1, . . . ,xN} exhibit the best fit with each other.

Maximum Likelihood Parameter Estimation. According to the maximum like-
lihood (ML) principle for estimating the parameters of an underlying den-
sity function, the available samples are generated by a distribution whose
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parameters are fixed, but are unknown to us. Consequently, the conditional
distribution p(x|θ∗) is assumed to be the underlying density for the observed
i.i.d. samples {x1,. . . ,xN}. For an arbitrary value θ of the parameters, the
probability of observing a particular sample xk is p(xk|θ). The observed sam-
ples are independent, therefore the joint probability distribution of the com-
plete dataset for the given parameter vector θ is the product of these individual
conditional probability densities.

p(x1, . . . ,xN |θ) =
N∏

k=1

p(xk|θ), (A.4)

This quantity is referred to as the likelihood of the data for the given pa-
rameter vector θ. The ML estimate for the underlying density is obtained by
maximizing this likelihood function with respect to θ. In general, the loga-
rithm of the likelihood function is considered instead, because the product
simplifies to a summation. Then, the ML estimate of the best density param-
eter corresponds to the solution of the following maximization problem.

θ̂ML = argmax
θ

N∑

k=1

log p(xk|θ), (A.5)

where the optimality measure is referred to as the log-likelihood function and
is typically denoted by L(θ).

The ML principle is known to correspond to a minimum Kullback–Leibler
(KL) divergence estimate for the underlying density. In order to observe this
relationship, we consider the expected value of the log-likelihood function
defined in Eq. (A.5) with respect to the true distribution q(x) of the random
vector X with samples {x1, . . . ,xN}, which does not necessarily lie within the
selected family of distributions p(x; θ) (also denoted by pθ in the following
derivation). Consider the following minimum KL problem for determining the
optimal density parameters.

θ̂KLD = argmin
θ

DKL(q; pθ)

= argmin
θ

∫
q(x) log

q(x)
p(x; θ)

dx

= argmin
θ

∫
q(x) log q(x)dx −

∫
q(x) log p(x; θ)dx

= argmin
θ

∫
q(x) log q(x)dx −

∫
q(x) log p(x; θ)dx

= argmin
θ

−HS(X)− EX[log p(X; θ)]. (A.6)

In the last line of Eq. (A.6), HS(X) denotes the Shannon entropy of the
true underlying distribution q(x), which is a constant with respect to the
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optimization variable θ. Therefore, this term can be dropped from the KL
optimization criterion. In addition, the minimization problem can be replaced
by a maximization problem if the negative sign in the second term is omitted.
Finally, we can approximate the expectation of log p(X; θ) with respect to
X using the sample mean approximation. With these assumptions, Eq. (A.6)
becomes

θ̂KL = arg min
θ

DKL(q||pθ)

= arg max
θ

1
N

N∑

k=1

log p(xk; θ)

= arg max
θ

1
N
L(θ)

= θ̂ML. (A.7)

Recall from the Pythagorean theorem of relative entropy that for pθ, pθ∗ ,
and q we have DKL(pθ‖q) ≥ DKL(pθ‖pθ∗) + DKL(pθ∗‖q). Provided that the
conditions in the theorem are satisfied by the family pθ and that minimizing
DKL(pθ‖q) and DKL(q‖pθ) yield the same pθ∗ , then we can expect the ML
estimate θ̂ML to approximate θ∗. Thus the corresponding ML density estimate
pθ∗ becomes the optimal projection of the true density q in the subset of
distributions spanned by the selected family pθ.

Bayesian Parameter Estimation. In contrast to the ML parameter estimation
principle, here we treat the parameter vector θ as a random variable. The
available data, in Bayesian parameter estimation, are utilized to convert a
prior distribution knowledge on this random variable to a posterior probability
distribution. Consequently, this method is also referred to as maximum a
posteriori (MAP) parameter estimation principle.

Suppose that the available i.i.d. samples {x1, . . . ,xN} are drawn from a
distribution p(x|θ∗). We assume that we know the following: the parametric
family of distributions p(x|θ) and the a priori distribution of the parameter
vector p(θ). For conditional distributions, we know that the following iden-
tity holds: p(x1, . . . ,xN |θ)p(θ) = p(θ|x1, . . . ,xN )p(x1, . . . ,xN ). From this, the
a posteriori probability distribution of the parameter vector given the data
are found to be

p(θ|x1, . . . ,xN ) =
p(x1, . . . ,xN |θ)p(θ)
p(x1, . . . ,xN )

. (A.8)

The MAP estimate for the parameter of the distribution underlying the data
are then obtained by maximizing the a posteriori distribution in Eq. (A.8) with
respect to θ. The denominator on the right–hand side is independent of the
estimated parameter θ, so it can be dropped from the optimization criterion.
As in the ML estimation procedure, because the samples are assumed to
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be i.i.d. with distributions p(xk|θ), taking the log of the criterion yields the
following problem that gives the MAP estimate,

θ̂MAP = argmax
θ

(

log p(θ) +
N∑

k=1

log p(xk|θ)

)

. (A.9)

We note that this is similar to the ML problem defined in Eq. (A.5), the dif-
ference being the introduction of some a priori information about the value of
the underlying parameter in the form of a probability distribution p(θ). Notice
that if p(θ) is assumed to be uniform over some set of possible values for the
parameter, MAP estimation reduces to ML estimation over this set of values.
In addition, if we denote the optimality criterion in Eq. (A.9) by M(θ) and
equivalently consider the maximization of M(θ)/N , as the number of samples
N →∞, the importance of the a priori distribution (i.e., (1/N) log p(θ)) will
decay to zero. Thus, we conclude that asymptotically θ̂MAP → θ̂ML. Hence
we expect it to approach the minimizer of the KL between the estimated dis-
tribution and the true underlying distribution, even if the true distribution
q(x) is not in the parametric family p(x|θ), as discussed above.

Semiparametric Density Estimation

In parametric density estimation, the requirement to assume a family of densi-
ties denoted by p(x|θ) is quite restrictive. The assumed family of distributions
will often have few parameters to optimize: for example, if a Gaussian distri-
bution is assumed, only the mean and covariance must be determined. The
assumed distribution is typically one of the well-established families such as
exponential, gamma, beta, Rician, Rayleigh, and so on. The performance of
the following steps in the information–processing procedure relies strongly on
the success of the selected family of distributions in representing the data
distribution adequately.

Mixture Density Models. Especially in machine learning and adaptive signal
processing, where the data distribution might be constantly changing due
to the weights adapting in time, the selected family should be sufficiently
complicated to accommodate a wide variety of distributions. Under these cir-
cumstances, one commonly resorts to the semiparametric density estimation
methods. One commonly used semiparametric approach is the mixture den-
sity paradigm where the data distribution is assumed to be within a family of
mixture distributions such as the mixture of Gaussians. The mixture density
is composed of a linear combination of parametric density models, where the
number of models and their linear combination coefficients can be separately
optimized. If we denote a Gaussian distribution with mean μ and covariance
Σ by G(x; μ,Σ), then a mixture of m Gaussians is given by

p(x; {αi,μi,Σi}) =
m∑

i=1

αiG(x; μi,Σi), (A.10)
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where the mixture coefficients αi must be positive and add up to one; that
is, α1 + · · · + αm = 1. A natural interpretation of this mixture model comes
from the total probability theorem. We understand from Eq. (A.10) that the
data are generated by a random process that first selects which Gaussian
model G(x; μi,Σi) is to be used, with each model having probability αi; then
a random sample is drawn from the selected Gaussian distribution.

In general we need not use all Gaussian distributions in the mixture model.
In fact the mixture can be composed of various distributions as long as each
component is a valid probability distribution itself. The mixture of Gaussians
is typically preferred for convenience (because only the mean and the covari-
ance of each Gaussian mode need to be optimized using ML or MAP tech-
niques). The added benefit of using Gaussian mixtures is that it is known to
be able to approximate any smooth distribution asymptotically as the number
of models is increased. This approximation capability is a direct consequence
of the universal approximation capability of radial basis function (RBF) net-
works [141].

In semiparametric density estimation, the parameters are still optimized
using the ML principle. An efficient algorithm that implements the ML pro-
cedure is called the expectation-maximization (EM) algorithm [70], but it is
not reviewed here. Another method that can be considered semiparametric is
Jaynes’ maximum entropy estimation principle, in as much as it is based on
a truncated moment expansion of the PDF [161].
Series Expansion Approximations. The maximum entropy estimate using mo-
ment constraints mentioned above can be considered as a truncated Tay-
lor series approximation of an exponential distribution. In fact, a number of
such truncated series approximations for distributions exist. We review below
Legendre and Gram–Charlier series expansions of PDFs.

Legendre series expansion of a distribution: Consider the Legendre poly-
nomials given recursively by

Pk(x) =

⎧
⎪⎨

⎪⎩

1 k = 0
x k = 1

1
k

[(2k − 1)xPk−1(x) − (k − 1)Pk−2(x)] k ≥ 2
. (A.11)

Any PDF f(x) can be expressed as an infinitely weighted sum of Legendre
polynomials as shown below.

f(x) =
∞∑

k=0

(

k +
1
2

)

E [Pk(X)]Pk(x). (A.12)

Gram–Charlier series expansion of a distribution: The characteristic func-
tion of a distribution f(x), denoted by Φf (ω), can be expressed in terms of
the characteristic function Φp(ω) of an arbitrary reference PDF p(x) as

Φf (ω) = exp

( ∞∑

k=1

(cf,k − cp,k) (jω)k

k!

)

Φp(ω), (A.13)
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where cf,k and cp,k are the kth cumulants of f(x) and p(x), respectively, and
j =

√−1. The cumulants can be expressed in terms of the moments of a
distribution using the cumulant generating function.

For the special case of a zero-mean and unit-variance Gaussian distribution
as the reference PDF (denoted by G(x) in the following), expanding the series
and collecting the same order derivatives of the PDF together, an equivalent
expansion can be obtained in terms of the Hermite polynomials. This yields,

f(x) = G(x) ·
∞∑

k=0

CkHk(x), (A.14)

where the coefficients of the expansion are simply Ck = E[Hk(X)]/k! and the
Hermite polynomials are obtained by the recursionHk(x) = xH k−1(x)−(k−1)
Hk−2(x), with H1(x) = x and H0(x) = 1. Alternatively, the Hermite polyno-
mials corresponding to the selected reference PDF G(x) can be obtained from
the following Taylor series expansion:

exp
(
tx − t2/2) =

∞∑

k=0

tk

k!
Hk(x). (A.15)

Expansion of a distribution using complete bases: In general, all distribu-
tions in the PDF space can be approximated by using a truncated subset
of bases. Given a complete basis set composed of infinite linearly indepen-
dent functions {b1(x), b2(x), . . . }, it is possible to express an arbitrary PDF
f(x) belonging to this space by a linear combination. Specifically, if the basis
functions are selected to be orthonormal (such as Laguerre functions), the
determination of the coefficients becomes trivial. Denoting the orthonormal
bases obtained using the Laguerre functions by {ϕ1(x), ϕ2(x), . . . }, the PDF
f(x) is given by

f(x) =
∞∑

k=1

E[ϕk(X)]ϕk(x), (A.16)

where E[ϕk(X)] corresponds to the inner product of the PDF with the kth
basis function in this Hilbert space. This inner product is defined as

< f(x), ϕk(x) >=
∫
f(x)ϕk(x)dx = E[ϕk(X)]. (A.17)

The polynomial expansions are simply special cases of this approach.
In practice, the expectations that determine the expansion coefficients can
be approximated by using sample mean estimates.

A drawback of expansions for density estimation is that the truncation
might result in estimates that do not satisfy the two basic properties of a
PDF: nonnegativity and integrating to unity. Although from a density esti-
mation perspective this is undesirable, in some information–theoretic signal
processing approaches, the cost function estimates resulting from such density
approximations might perform satisfactorily.
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Nonparametric Density Estimation

Nonlinear adaptive processing of real-world signals and data often requires
density models that can cope with a wide variety of signal distribution pos-
sibilities. Parametric models are quite restricted in their representation capa-
bility and semiparametric models offer some relaxation of these restrictions.
However, in many cases, one still needs to make assumptions that limit the
representation capability of semiparametric models. For example, in Gaussian
mixture models we need to specify a priori the number of Gaussian modes that
will be utilized, or in the maximum entropy approach with moment constraints
we need to specify the order moments that will be considered. Often, these
decisions have to be done blindly, in other words, without any knowledge of
the signals with which we will be dealing.

From this point of view, nonparametric density estimation techniques of-
fer the most freedom for representing signal distributions based purely on
the observed samples of data. A variety of nonparametric density estimation
methods is available in the statistics literature; however, we focus on only
a few of these in this section. Most important, we discuss Parzen window-
ing, which is also referred to as kernel density estimation, as estimators of
information–theoretic quantities based on this density estimator are central
to the adaptive signal processing and learning algorithms that we discuss.

Histogram-based Density Estimation. The simplest nonparametric density es-
timation method is the histogram. This estimate is motivated by the fact
that the probability density function is the limiting value of the following
expression:

p(x) = lim
Δ→0+

P (x−Δ < X ≤ x)
Δ

.

We only have a finite number of samples in practice, thus taking the limit
of the bin size Δ, to zero only creates a density estimate that consists of
Dirac-δ spikes located at the samples. This undesirable density estimate can
be smoothed by letting the bin size stay at a finite value. For a fixed bin size
Δ > 0, we form the non-overlapping bins centered at { . . . ,−kΔ, . . . ,Δ, 0,
Δ, . . . , kΔ, . . . }. Then, we count the number of samples that fall in
each bin to obtain a sequence called bin counts: { . . . , N−k, . . . , N−1,
N0, N1, . . . , Nk, . . . }. Clearly, the bin counts must add up to N , the to-
tal number of samples. The histogram estimate for the probability density
function is then obtained by a combination of uniform distributions in each
bin, where the rectangular area is set equal to the frequency of the samples
in that bin: fk = Nk/N . Consequently, the height of each uniform bin is
p(x) = fk/Δ if x ∈ [k − 1/2, k + 1/2]. In practice, as the number of samples
increases, the bin size can be decreased slowly. The bin size is key to the
trade–off between estimation bias and estimation variance.

The idea of histograms can easily be generalized to multivariate density esti-
mationby expanding the conceptof single-dimensional bins to multidimensional
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bins with fixed volume. The counting procedure within each bin is repeated
and the probability density in each bin is obtained by dividing the frequency
by the volume of the bin.
Nearest Neighbor Density Estimation. A problem with histograms is the pos-
sibility of having many bins that have zero samples in them. A possible mod-
ification to this type of density estimation would be to allow the bin size to
vary while keeping the number of samples in each bin constant. To achieve
this, we select a constant integer K typically much smaller than the avail-
able number of samples, denoted by N . The probability density function can
now be estimated using the sample–frequency approximation given above:
p(x) = f/V (x). In this estimate the frequency is constant at f = K/N and
the bin size (or the volume in multivariate cases) is determined by the dis-
tance to the Kth nearest sample of x in the sample set. In the univariate
case, V (x) = 2dK(x), where dK(x) is the distance from x to its Kth nearest
neighbor. In the multivariate case, V (x) would be the volume of the smallest
hypercube (or hypersphere) centered at x that contains the K nearest sam-
ples. Consequently, this method is referred to as K–nearest neighbor density
estimation. A typical and reasonable choice is K =

√
N .

This approach will yield continuous density estimates but its gradient with
respect to the sample points will have discontinuities. This is an undesirable
property from an adaptation and learning perspective, because learning algo-
rithms typically rely on gradient–based incremental weight vector updates.
Kernel Density Estimates. A nonparametric density estimation approach that
yields both continuous and smooth estimates is Parzen windowing [241]. Its
basic principle stems from the fixed bin-width approach in histogram density
estimates, but the nonoverlapping bins restriction is replaced by a sliding bin
method. Assuming rectangular window functions (called kernels from hereon),
the density estimate at any point would simply be the number of samples
falling within the rectangular window (as in histogram estimates), where the
window is symmetric and centered at the point of interest. We follow here
closely the exposition of Hardle [133]. A kernel is a density function

∫ ∞

−∞
κ(u)du = 1, and κ(u) ≥ 0 (A.18)

that is symmetric
∫
uκ(u)du = 0. Table A.1 presents a short list of well–known

kernel functions.

Table A.1. Examples of Kernel Functions

Uniform 1/2 |u| ≤ 1
Triangle (1 − |u|) |u| ≤ 1
Epanechnikov 3/4(1 − u2) |u| ≤ 1
Quartic 15/16(1 − u2)2 |u| ≤ 1
Triweight 35/32(1 − u2)3 |u| ≤ 1
Cosinus π/4 cos(π/2u), |u| ≤ 1
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x

p(x)ˆ

Fig. A.1. Estimation of PDF using triangular kernels.

Assuming a hypercubic kernel denoted by κh(x), where the kernel size pa-
rameter vector h controls the width of the window, the density estimate for
a sample set {x1, . . . ,xN} is

p̂σ(x) =
1
Nσ

N∑

n=1

κ

(
x− xi
σ

)

. (A.19)

The kernel function, in this case, simply evaluates as 1/Vh if xi is inside
the hypercube centered at x with volume Vh. That is, it implements the
counting operation required in the histogram construction procedure. The
normalization by the volume of the hypercube is necessary to obtain a density
estimate that integrates to unity over the set of possible values of x. Basically
the kernel density estimation is a convolution of the true density with the
histogram. Figure A.1 illustrates the procedure.

In the general framework of Parzen windowing, the rectangular kernels
can be replaced by smoother kernel functions (such as a Gaussian distribu-
tion function). In general, the kernel function in Eq. (A.19) can be selected to
be any continuous and smooth (differentiable at all orders) feasible zero-mean
probability density function itself. Typically, the kernel function is unimodal
and symmetric around zero (its mean value) implying that the probability
density contribution due to any given sample is maximum at the sample lo-
cation and decays as one moves away from the sample. For convenience, the
Gaussian distribution is preferred due to its many properties. In the case of
multidimensional density estimation using Gaussian kernels, the kernel size
parameter is, in general, controlled by the full covariance matrix Σ of the
Gaussian distribution:

GΣ(s) =
e−(sT Σ−1s)/2

(2π)n/2|Σ|1/2 . (A.20)

Traditionally, a circular Gaussian kernel with Σ = σ2I is preferred [79].
Another simple but more general alternative assumes a diagonal Σ, thus a
multivariate Gaussian kernel that is separable into a product of univariate
Gaussian kernels [86].
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Parzen windowing provides a suitable density estimate for the purpose
of this book. Specifically for gradient-based learning and adaptation based
on information–theoretic criteria, we need continuous and differentiable esti-
mates of relevant information–theoretic quantities, which in turn rely on the
underlying density estimation procedure. Therefore, it is important to inves-
tigate the convergence properties of Parzen windowing at this point. Suppose
that the sample set {x1, . . . ,xN} is i.i.d. and drawn from the true underlying
density function p(x). First, consider the expected value of the Parzen window
estimate using a suitable kernel function κσ(x):

E[p̂(x)] =
1
N

N∑

i=1

E[κσ(x− xi)] =
1
N

N∑

i=1

∫
p(s)κσ(xi − s)ds = p(x) ∗ κσ(x),

(A.21)
which becomes the convolution for continuous x. In the case of a finite number
of samples, the Parzen window estimate for the PDF yields a biased estimate
in general. Because, on average, the estimated distribution is equal to the con-
volution of the true distribution p(x) and the selected kernel function κσ(x), if
the kernel is a symmetric unimodal density as suggested, for very large kernel
sizes the estimated PDF is highly biased towards the kernel function itself.
On the other hand, as the kernel size approaches zero, the kernel approaches
a Dirac-delta, thus the bias in the average estimate vanishes. More formally
we can compute the bias as

E[p̂σ(x)] =
∫
κ(s){p(x) + σsp′(x) +

σ2s2

2
p′′(x) +O(σ2)}ds

= p(x) +
σ2

2
p′′(x)

∫
s2κ(s)ds +O(σ2)

≈ p(x) +
σ2

2
p′′(x)μ2(κ) for σ → 0, (A.22)

where μ2(κ) =
∫
s2κ(s)ds . Therefore,

Bias{p̂σ(x)} = E[p̂σ(x)] − p(x) ≈ σ2

2
p′′(x)μ2(κ). (A.23)

However, in practice, the kernel size cannot be reduced arbitrarily as it will
increase the estimation variance towards infinity. To see this, consider the
variance of the density estimate.

Var[p̂(x)] =
1
N2

N∑

i=1

Var[κσ(x− xi)] =
1
N

Var[κσ(x− s)]

=
1
N

[∫
p(s)κ2

σ(x− s)ds − (p(x) ∗ κσ(x))2
]

=
1
N

[
p(x) ∗ κ2

σ(x)− (p(x) ∗ κσ(x))2
]
. (A.24)
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Consequently, in practice, the kernel size parameters must be selected to
optimize this bias–variance trade-off. If we want to estimate the variance we
have to evaluate

Var[p̂(x)] = Var

[
1
Nσ

N∑

i=1

κ

(
x− xi
σ

)]

≈ 1
Nσ

‖κ‖22 p(x) (A.25)

for Nσ →∞ and where we define ‖κ‖22 =
∫
κ2(s)ds .

If we are interested in the MSE of kernel estimates we have to evaluate

MSE [p̂(x)] = E[(p̂(x) − p(x))2] ≈ σ4

4
p′′(x)2μ2(κ)2 +

1
Nσ

‖κ‖22 p(x) (A.26)

for σ → 0 and Nσ →∞, which shows a clear trade–off between variance and
bias for the estimator because the bias increases with the kernel size and the
variance decreases with it.

Selecting the kernel size: For optimal density estimation, careful selection of
the kernel function is critical. As demonstrated above, for a given kernel func-
tion, large kernel sizes will result in high–density estimation bias, whereas
small kernel sizes will lead to high estimation variance. The MISE can give us
a way to optimally select the kernel size. Indeed for any kernel, we have

MISE [p̂σ(x)] =
∫ ∞

−∞
MSE [p̂σ(x)]dx

=
σ4

4
p′′(x)2μ2(κ)2 +

1
Nσ

‖κ‖22 +O

(
1
Nσ

)

+O(σ4)

(A.27)

and so for σ going to zero and Nσ to infinity, the AMISE is

AMISE [p̂σ(x)] =
σ4

4
‖p′′(x)‖22 μ2(κ)2 +

1
Nσ

‖κ‖22 , (A.28)

where

σopt =

(
‖κ‖22

N ‖p′′(x)‖22 μ2(κ)2

)1/5

∝ N−1/5.

Therefore, the minimum value depends upon the data and the kernel but
we see that optimal value is also related to the number of samples. We can
expect that the MISE(σopt) ∼ n−4/5. However, notice that normally the PDF
is not known so there are significant challenges in finding the optimal kernel
size for a given application. There are two basic approaches: approximate the
second derivative or use cross–validation techniques.

Silverman’s rule [300], perhaps the most widely used rule of thumb for
kernel density estimation, belongs to the first method and approximates the
scalar data by a Gaussian of unknown variance to obtain
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‖p′′‖22 = σ−5

∫
G′′(s)2ds ≈ 0.212σ−5 (A.29)

which yields for a Gaussian kernel

σ̂S = 1.06 σ̂ N−1/5 (A.30)

for one-dimensional data.
The Park and Marron [237] estimator approximates the second derivative

of the PDF by

p̂′′σ̃(x) =
1

Nσ̃3

N∑

i=1

κ′′
(
x− xi
σ̃

)

which yields

σ̂PM =

⎛

⎜
⎝

‖κ‖22
N

∥
∥
∥p̂′′(x)

∥
∥
∥

2

2
μ2(κ)2

⎞

⎟
⎠

1/5

. (A.31)

Instead of estimating the derivative, one can estimate the MISE

MISE (p̂σ) =
∫

(p̂σ(x)− p(x))2dx = ‖p̂σ‖22 − 2
∫
p̂σ(x)p(x)dx + ‖p‖22 .

(A.32)
Note that only the two first terms depend upon the estimator. Substituting
the kernels yields

J(σ) = ‖p̂σ‖22 − 2
∫
p̂σ(x)p(x)dx =

1
N2σ

N∑

i=1

N∑

j=1

κ⊗ κ
(
xi − xj
σ

)

− 1
N(N − 1)σ

N∑

i=1

N∑

j=1

κ

(
xi − xj
σ

)

, (A.33)

where ⊗ means convolution. Therefore, we should minimize this quantity
w.r.t. σ; that is, σ̂J = argmin

σ
J(σ).

The bottom line is that there is no single best method to choose the kernel
size, so one needs to be careful and establish best procedures to select σ and
the kernel. For the estimation of smooth densities on Rn, it is known that
asymptotically, among nonnegative kernels, the L1-optimal and L2-optimal1

kernel function is the Epanechnikov kernel, which is given by

Kσ(x) =
c

σ
max

[(
1− ‖x/σ‖22

)n
, 0

]
. (A.34)

1 Asymptotic Lq-optimality is defined by minimizing the cost function∫ |p̂(x) − p(x)|qdx between the estimated and the true underlying probability
density functions fastest as number of samples increase unboundedly.
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Specifically, provided that the true underlying distribution is sufficiently
smooth (i.e., p(x) and p′(x) absolutely continuous) and not long-tailed
(i.e.,

∫
p1/2 (x)dx < ∞), the convergence of any bounded and symmetric

kernel is uniform with the L1-error being bounded from above by CN−2/5.
The constant C of this upper bound depends on the kernel function as well
as the true distribution, and, it is smallest for the Epanechnikov kernel [71].2

Consequently, although the kernel function in Eq. (A.23) is optimal in terms
of convergence speed for a wide class of distributions, it results in density
estimates that are not continuously differentiable at places.

A closer look at this problem shows that the value of C is really not
very different among different kernels (no more than 1% difference in effi-
ciency w.r.t. the Epanechnikov kernel) [85]. Because the Gaussian kernel of
Eq. (A.20) is bounded and symmetric, its convergence rate is also O(N−2/5).
Besides, it exhibits additional desirable properties such as smoothness, as well
as invariance under convolution (in other words, the convolution of two Gaus-
sian functions is also Gaussian).3 The statistics literature on kernel density
estimates mainly deals with the Lq-error norms whereas in signal processing
maximum likelihood approaches are often preferred.

ML kernel size estimation. Especially in the context of this text, ML
approaches become more important as they relate closely to the information–
theoretic techniques that we seek to incorporate into signal processing. Next,
we present the ML approach for kernel size optimization. Although, in
practice, we mostly utilize the Gaussian kernel, for the sake of generality, we
formulate the problem in terms of an arbitrary symmetric and bounded kernel
function KΣ(x). We assume an ML optimization approach with leave-one-out
cross–validation strategy.

Suppose that we are given i.i.d. samples {x1, . . . ,xN} drawn from p(x).
The leave-one-out kernel density estimates are of the form

p̂i(x) =
1

N − 1

N∑

j=1,j �=i
KΣ(x − xj). (A.35)

Recall that these density estimates are easily made consistent and asymptot-
ically unbiased. Using the i.i.d. sample assumption in conjunction with these
estimates, the log–likelihood function is determined to be

L(Σ) =
1
N

N∑

i=1

log p̂i(x) =
1
N

N∑

i=1

log

⎛

⎝ 1
N − 1

N∑

j=1,j �=i
KΣ(xi − xj)

⎞

⎠. (A.36)

2 For more results on convergence properties of kernel density estimates, the reader
is referred to [12] for an excellent overview of the literature on this subject.

3 The latter property later becomes appealing when the corresponding kernel den-
sity estimator is utilized in conjunction with Renyi’s entropy.
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From a practical perspective, the optimization of a complete kernel
orientation-size matrix Σ might be undesirable in some instances, due to
computational complexity [314]. To alleviate this problem, a few simplifica-
tions could be assumed.

The data covariance could be diagonalized by a rotation to align the prin-
cipal components with the axes of the coordinate system. This is achieved
by solving for the eigendecomposition of the data covariance matrix as
Σx = E[xxT ] = QΛxQT , where Q is the orthonormal eigenvector ma-
trix. The data are rotated according to z = QTx. Then a separable (prod-
uct) kernel can be optimized by individually optimizing the components of
the kernel function for each dimension of the data. Specifically, we utilize
KΛ(z) = Kλ1(z1) · · ·Kλn(zn). Once the individual kernels are optimized on
the marginal components of the rotated data z, the kernel for the original
data x can be obtained simply by rotating the multidimensional kernel ob-
tained through optimization as follows: KΣ(x) = KΛ(Qz). This procedure
effectively aligns the covariance of the kernel function (which is a PDF it-
self) with the sample covariance of the empirical data of x. The spread of
the kernel along each eigenvector is also individually optimized using the
ML principle by maximizing Eq. (A.36) for each marginal eigendirection in
the data.

An even simpler approach is to skip the PCA-based rotation steps of the
procedure described above. In this alternative, although the kernels are not
aligned to the data covariance, the estimated density estimate will still be un-
biased and consistent asymptotically. Further simplification could be achieved
by assuming a circular kernel, as is commonly done in the literature, in which
case there is only one parameter to optimize [58]. In some cases, the reduction
in computational complexity due to this assumption can be preferable to the
additional performance gain from a more involved kernel design procedure.
For further simplification, one can assume that a circular Gaussian kernel
is used and the underlying data distribution is also Gaussian. In this case,
according to Silverman’s rule-of-thumb, the L2-optimal kernel size is given
by σ∗ = tr(Σx)(4/(n + 2))1/(n+4)N−1/(n+4) ∼ tr(Σx)N−1/(n+4), where n is
the data dimensionality [300]. More advanced approximations for L2-optimal
kernel size selection also exist [170].

From a density estimation point of view, it might be suggested that each
kernel has a size that is determined by the local distribution of samples.
Specifically, kernel size assignments based on distance to kth-nearest-neighbor
type measures are shown to be efficient in terms of convergence speed [71,79].
However, from an adaptive signal processing point of view, the computational
complexity involved in optimizing one kernel size per sample can be practically
prohibitive. Therefore, in most cases the single kernel size scheme is preferred
for its simplicity.
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A.3 Nonparametric Entropy Estimation

The problem of entropy estimation appears in many contexts in a variety
of fields ranging from basic sciences such as biology [81] and physics [23] to
engineering [65]. From a mathematical standpoint, many approaches exist to
estimate the differential entropy of a continuous random variable [28]. An
obvious approach, usually preferred when there is confidence that the PDF
underlying the samples belongs to a known parametric family of PDFs, is to
use the samples to estimate the parameters of the specific member of this
family, perhaps using maximum likelihood methods, and then to evaluate the
entropy of the specific PDF obtained as a result of this procedure. A useful
list of explicit Shannon’s entropy expressions for many commonly encoun-
tered univariate PDFs was compiled by Lazo and Rathie [193]. A similar list
for various multivariate PDFs was presented by Ahmed and Gokhale [3]. This
approach, although useful in entropy evaluation tasks and effective when the
assumed parametric family is accurate, is not competent in adaptation sce-
narios, where the constantly changing PDF of the data under consideration
may not lie in a simple parametric family. Then it becomes necessary to non-
parametrically estimate the entropy.

Plug-In Estimates for Entropy

The plug-in entropy estimates are obtained by simply inserting a consistent
density estimator of the data in place of the actual PDF in the entropy ex-
pression. Four types of approaches could be followed when using a plug-in
estimate. The first one, named integral estimates, evaluates exactly or ap-
proximately the infinite integral existing in the entropy definition. Renyi’s
quadratic entropy estimator (developed and used successfully in this work)
belongs to this family of entropy estimators, with an exact evaluation of the
integral. An approximate estimate of this type for Shannon’s entropy was also
proposed [76]. Joe [169] also considered an approximate integral estimate of
Shannon’s entropy using a kernel-based PDF estimate; however, he concluded
that for multivariate cases, the approximate evaluation of the integral be-
comes complicated. Gyorfi and van der Meulen [125] avoid this problem by
substituting a histogram estimate for the PDF.

The second approach, resubstitution estimates, further includes the ap-
proximation of the expectation operator in the entropy definition with the
sample mean. Ahmad and Lin [2] presented a kernel-based estimate for Shan-
non’s entropy of this type and proved the mean-square consistency of this
estimate. Joe [169] also considered a similar resubstitution estimate of Shan-
non’s entropy based on kernel PDF estimates, and he concluded that in order
to obtain accurate estimates especially in multivariate situations, the num-
ber of samples required increased rapidly with the dimensionality of the data.
Other examples of this type of entropy estimates are more closely known to
the electrical engineering community [34, 62, 325, 346]. These estimates use
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spectral estimation–based or polynomial expansion type PDF estimates sub-
stituted for the actual PDF in Shannon’s entropy definition, except for the
last one, which uses a kernel PDF estimator. In fact, a thorough search of
the literature revealed that most estimators known to the electrical engineer-
ing community concentrate on resubstitution estimates of Shannon’s entropy.
Depending on the specific application the authors are interested in, these es-
timates are tailored to suit the computational requirements desired from the
algorithm. Therefore, it is possible to write out an extensive list of application-
oriented references with slight differences in their entropy estimators. The
nonparametric estimator for Renyi’s entropy that we derive in Section 2.2 is
also a member of the resubstitution class and all theoretical results in these
references might apply to it after some minor modifications.

The third approach is called the splitting data estimate, and is similar to
the resubstitution estimate, except that now the sample set is divided into
two parts and one is used for density estimation and the other part is used
for the sample mean [126].

Finally, the fourth approach, called cross-validation estimate, uses a leave–
one–out principle in the resubstitution estimate. The entropy estimate is ob-
tained by averaging the leave-one-out resubstitution estimates of the dataset.
Ivanov and Rozhkova [159] proposed such an estimator for Shannon’s entropy
using a kernel-based PDF estimator.

Sample Spacing Estimates for Entropy

In this approach, a density estimate is constructed based on the sample differ-
ences. Specifically in the univariate case, if the samples are ordered from the
smallest to the largest, one can define the m-spacing between the samples as
the difference between samples that are separated by m samples in the order-
ing. This PDF estimate can then be substituted in the entropy definition as
in the resubstitution estimates. Surprisingly, although the m-spacing density
estimates might not be consistent, their corresponding m-spacing entropy es-
timates might turn out to be (weakly) consistent [23, 27]. The generalization
of these estimates to multivariate cases is not trivial, however.

Nearest Neighbor Estimates for Entropy

For general multivariate densities, the nearest neighbor entropy estimate is
defined as the sample average of the logarithms of the normalized nearest
neighbor distances plus a constant, named the Euler constant [23]. Kozachenko
and Leonenko [187], Tsybakov and van der Meulen [321], and Bickel and
Breiman [36] provide different forms of consistency for these estimates under
mild conditions on the underlying densities.
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A.4 Estimation of Information–Theoretic Descriptors

The previous section reviewed methods of density of estimation, whereas this
section is more specific and deals with the estimation of information–theoretic
quantities. The goal is to increase the utility of ITL by providing a better un-
derstanding of the information criteria and the parameters associated with
their estimators. Here we examine the estimators for Renyi’s quadratic en-
tropy and mutual information (QMICS and QMIED) in further detail and
present various properties and characteristics that help to define the effects
and consequences of the various parameter settings. These results are primar-
ily useful when one wants to estimate the value of these quantities from finite
data, but they are also important for cost functions in as much as they provide
bounds and help determine the kernel size.

Families of curves are used to provide useful insight as to the significance
of each of the estimator parameters. These curves then help to derive and
illustrate some useful properties of the estimators including a scale–invariant
version of the entropy estimator and a novel approach for the estimation of
intrinsic dimensionality. An improved understanding of the characteristics of
the estimators helps to place bounds on the estimator parameters and serves as
a guide for selecting an appropriate parameter set based on the characteristics
of the problem at hand.

Renyi’s Entropy Estimator

One of the difficulties in comparing or assessing the performance of a sys-
tem trained with ITL stems from the performance criteria themselves. As
we stated, when information-theoretic criteria are computed using Renyi’s
quadratic entropy with Parzen estimation, the resulting values of entropy
have little absolute meaning. They only help to gauge performance in a rela-
tive sense when comparing data generated using the same set of parameters,
which is still find for adaptation which is only interested in the extrema of the
cost function. Although the actual values change, the location of extrema in
parameter space move little, if at all for a large set of kernel sizes. Experience
has shown, however, that the ability to change some of these parameters can
greatly improve training results. For example, it has been shown that the ker-
nel size σ plays an important role in the convergence of ITL systems and the
ability to adapt σ helps to avoid local extremes and assure better convergence
[86]. Adjustment of the sample size has also shown improvements in training
efficiency as demonstrated via the SIG and batch training methods. In other
cases, the problem at hand might necessitate the comparison of datasets with
different dimensionality or scale. For example, in the general problem of di-
mension reduction, the ability to compare the information content of feature
sets with different dimensions (M) is critical.

Renyi’s quadratic entropy estimator as described by Eq. (2.15) has served
as the workhorse for much of the recent work in ITL research. Despite its
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prevalence, the characteristics of the estimator and its dependencies on the
parameters to characterize its performance are mostly experimental. The fol-
lowing sections help to explore the relationships between the entropy estimator
and its major parameters by employing a family of curves approach combined
with some pertinent examples.

Families of Entropy Curves

The primary variable parameters of the entropy estimator that can be user–
defined or are a function of the problem at hand are the following

1. N : The number of data samples or exemplars
2. σ: The kernel size for the Parzen PDF estimate
3. M : The dimension of the dataset
4. d: A measure of the extent (or variance) of the data

Figures A.2, A.3, and A.4 illustrate the dependence of the entropy estimate on
these parameters and highlight the difficulty with the entropy criterion. These
figures were generated by estimating Renyi’s quadratic entropy with Parzen
PDF estimation from a random M -dimensional, uniformly distributed (over
the range [0,d]) dataset of N samples.

Notice that the entropy value can take on virtually any value depending
on the settings of the parameters. Each shows the entropy estimate H2 from
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Eq. (2.15) in solid lines, versus σ2, of the random uniformly distributed dataset
for a variety of N, M , and d combinations. Note the extreme variability
of entropy due to the different parameters for the exact same underlying
distribution.

Also of interest is that in all cases the entropy estimate asymptotically
approaches one line labeled H0 as σ → ∞ and another a set of parallel line
as σ → 0 for a given set of parameters, N, M , and d. The first line, denoted
H0(σ), is a lower bound on H2 as a function of σ and M . The second is an
upper bound on H2 as a function of σ, M , and N . The characteristics of these
lines can be solved analytically as

H0(σ) = lim
σ→∞H2 =

M

2
log 4π +

M

2
log σ2 (A.36)

Hmax(σ) = lim
σ→0

H2 =
M

2
log 4π +

M

2
log σ2 + logN, (A.37)

Equation (A.37) assumes that the N data points are all different from each
other. In some applications (e.g., discrete or saturated data) some of the data
points might be repeated. If this condition exists the maximum equation in
Eq. (A.37) can be modified to provide a more accurate maximum as follows;

Hmax(σ) = lim
σ→0

H2 =
M

2
log 4π +

M

2
log σ2 + log

N2

N +
∑

nonunique

ni!
, (A.38)

where ni represents the number of times each data sample is repeated in the
dataset. There are some cases where data are acceptable or expected and the
adjusted maximum from Eq. (A.38) should be used to determine the maximum
entropy for the dataset at hand. However, in other cases, the repeated data
might be undesirable, perhaps resulting from the underlying statistics of the
dataset and the current state of the mapping function, and the maximum
from Eq. (A.37) provides a better basis for comparison with other datasets.

In Eq. (A.36), as σ →∞, the kernel size becomes so large that the informa-
tion forces between data samples are indistinguishable. From the perspective
of the kernel forces, all points are effectively collocated and contribute equally
to the information potential. The net effect is that the entropy estimate sat-
urates and the information forces approach zero. Conversely, in Eq. (A.37) as
σ → 0, a point is reached where there is virtually no interaction between data
samples due to the small kernel size. This corresponds to the minimum IP
where the only contribution is from the number of points, N , in the space. In
this case, the information forces approach zero as well. The solid lines can be
interpreted as an approximation of the maximum entropy level that can be
achieved at a particular σ for the corresponding M, N , and d.

It is important to note the distinction between the estimation, H2(σ,N),
and the actual entropy value,H2(x). The former is a functional estimate of the
latter that is dependent on the number of samples N taken from the random
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variable X and the kernel size σ, used for PDF estimation. The quantities
H0(σ) and Hmax(σ,N) described in Eqs. (A.36–A.38) are also byproducts of
the estimation of the actual entropy using Parzen estimation.

Looking at the figures more closely, it is also clear that the properties
of Renyi’s quadratic entropy with Parzen estimation can pose problems for
adaptation of the kernel size, particularly for large M . Note that if the kernel
size starts large and is gradually decreased, the entropy value will tend to
decrease due to the slope of the asymptotic boundaries onH . This could cause
problems for many parameter search routines seeking to maximize entropy
where the kernel size is allowed to adapt or if the kernel size itself is one
of the optimization parameters. The adaptive kernel size modifications for
parameter search presented in Chapter 5 address these issues and help to
compensate for this phenomenon.

Kernel Size Ranges for Renyi’s Entropy

The first and perhaps most obvious application stemming from the exami-
nation of these curves is to help determine appropriate values of the kernel
size in a given problem. The curves clearly show the saturation that occurs
for both large and small kernel sizes as the entropy estimate approaches the
asymptotic limits defined by H0 and Hmax, respectively. By constraining the
kernel size to be within an appropriate region, the training process can avoid
the slow learning or stagnation that can occur when the entropy estimation
becomes saturated. Upper and lower limits on the kernel size can be used
as limits during adaptation for an adaptive kernel size implementation. They
can also serve as the start– and endpoints for the kernel annealing process
described in [86].

In order to develop an analytical expression for the kernel size limits, a
combination of an intuitive approach and empirical trial and error is pre-
sented. First, intuition suggests that the kernel limits be proportional to the
extent d of the data. In determining a maximum kernel size for M = 1, a
conservative approach is taken by equating the kernel size to the extent of
the data (i.e., σmax = d). This approach ensures kernel interaction forces to
be present throughout the extent of the sample space. In order to extend this
to any dimension M , it is desirable to take into account the effect of the de-
creasing relative volume of a hypersphere inset within a hypercube so that
interaction forces can be present even in the corners of the hypercube. The
ratio of the m-dimensional volume of a hypersphere and a hypercube is given
by Eq. (A.39).

vol(Spherem)
vol(Cubem)

=
(√

π

2

)
1

Γ(m2 + 1)
. (A.39)

By using Eq. (A.36) to scale the kernel size, the following expression for max-
imum kernel size is obtained.

σ2
max =

4d2

π
Γ

(
M

2
+ 1

)2/M

. (A.40)
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Next, for a minimum kernel size, the idea is to select an expression that
determines a kernel size below which there is likely to be little or no interac-
tion and consequently little benefit to attempt training. Because the curves
above were generated for uniformly distributed data, tighter clustering of data
might require smaller kernel sizes. For these cases, an expression is sought
that provides a viable minimum even when the data are highly clustered in
the sample space. Although the expression in Eq. (A.40) was determined em-
pirically by trial and error in order to arrive at an analytical expression for
the kernel size at the saturation point for Hmax, it can be explained intu-
itively as follows. First, the nearest spacing for N evenly distributed points
in an M -dimensional hypercube is determined. The kernel size is then set to
a fraction of this distance, in this case 1/7, for very small kernel interaction.
This distance is scaled so that the data are concentrated to cover only 10% of
the total sample space for relatively tight clustering. Finally, the distance is
scaled according to Eq. (A.39) resulting in the expression below for minimum
kernel size.

σ2
min =

(
d

7N1/M

)2 4
π

[

0.1× Γ
(
M

2
+ 1

)]2/M

. (A.41)

The crosses towards the large value of σ in Figures A.2, A.3, and A.4 represent
the evaluation of the kernel size maxima and the crosses towards the small
values of σ represent minima from Eqs. (A.40) and (A.41), respectively. It is
evident from these figures that, at least for the case of uniform data, these
expressions closely track the saturation points for both H0 and Hmax.

As noted previously, the expressions for kernel size range in Eqs. (A.40)
and (A.41) have been developed from families of curves derived from uniformly
distributed data. As such they are probably well suited for entropy maximiza-
tion problems. For entropy minimization, the minimum kernel size might be
required to be made much smaller for better optimization. Also, if during
initial training the dataset is highly clustered, a smaller kernel size may be
required in order to begin the separation process for maximum entropy prob-
lems. In other words, the expressions presented here simply establish some
basic guidelines for kernel size selection; care must be taken by exploring the
characteristics of the data prior to applying any expressions arbitrarily.

Scale Invariant Renyi’s Entropy

Scale invariance is a desirable characteristic for many cost functions because it
allows valid comparisons between datasets without the need for normalization.
The ITL entropy criteria, however, do not possess the characteristic of scale
invariance. For some problems, preprocessing of the data or the topology of
the learning system requires different scaling of the data. In order to fairly
compare the entropy of datasets with different scaling a closer inspection of
Figure A.2 is required. This figure shows the change in entropy due to a change
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in scale of the dataset. For d = 1, the uniformly distributed random numbers
are generated on the interval from 0 to 1 in all M -dimensions. For d = 2 and
d = 4, the original data are simply multiplied by the corresponding factor d.
This scaling produces an entropy curve of the same shape as the original that
is translated by a factor of d2/d1 in σ and by the corresponding slope of H0 or
Hmax in entropy. Therefore, in order to translate an entropy estimate in one
data scale and kernel size (d1, σ1), to another scale (d2, σ2) for comparison,
the translation formula in Eq. (A.42) can be applied. The proof follows in the
section below.

H(d2, σ2) = H(d1, σ1)−H0(σ1) +H0(σ2)

H(d2, σ2) = H(d1, σ1) +M log
d2

d1
where σ2 =

d2

d1
σ1. (A.42)

Note that the kernel size must also be scaled in proportion to the scale
of the data in order to maintain the same relative position on the entropy
curve. This makes sense because the amount of interaction in the entropy
computation is proportional to the ratio between the standard deviation or
scale of the data and the kernel size. Figure A.5 illustrates the scaling ap-
proach and verifies that this method can be applied to compare and translate
entropies with different scaling factors.

In this figure, the original entropy curves from Figure A.2 are translated
by various scale factors. The curves denoted “dA to dB” use the translation
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formula in Eq. (A.42) to shift data scaled on the range [0,A] to a range of [0,B].
As is evident, the translated entropy curves line up accurately with the curves
generated with the original data with the corresponding data scale.

Proof of Scaling Equation: Recall that the Parzen estimation with Gaussian
symmetric kernels is,

H2(y, σ) = − log

⎡

⎣ 1
N2

∑

i

∑

j

G(Δyij , 2σ2I)

⎤

⎦

= − log

⎡

⎣ 1
N2

∑

i

∑

j

1

(4πσ2)M/2
exp

(−(Δyij )T (Δyij )
4σ2

)
⎤

⎦ . (A.43)

If the original data y and kernel size σ are scaled by a factor of a, we obtain,

H2(ay , aσ) = − log

⎡

⎣ 1
N2

∑

i

∑

j

1

(4πa2σ2)M/2
exp

(−(aΔyij )T (aΔyij )
4a2σ2

)
⎤

⎦ .

(A.44)
Noting that the a terms in the exponential cancel and factoring the a terms
out of the sum yields

H2(ay , aσ) = − log

⎡

⎣ 1
|a|M

1
N2

∑

i

∑

j

1

(4πσ2)M/2
exp

(−(Δyij )T (Δyij )
4σ2

)
⎤

⎦ .

(A.45)
Utilizing the properties of logarithms of products yields

H2(ay, aσ)= − log

⎡

⎣ 1

N2

∑

i

∑

j

1

(4πσ2)
M/2

exp

(
−(Δyij )

T (Δyij )

4σ2

)⎤

⎦− log

(
1

|a|M
)

.

(A.46)
and finally, the desired result

H2(ay , aσ) = HR2(y, σ) +M log |a|. (A.47)

The result in Eq. (A.47) suggests that a scale–invariant criterion based on
Renyi’s quadratic entropy might be

J2(y, σ) = H2(y, σ)− M

2
log[var(y)] (A.48)

with the condition that the kernel size be directly proportional to the spread
of the data as

σ2(y) = k var(y), (A.49)

where k is a constant.
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Sample Size Variations and Batch Size Estimation
for Renyi’s Entropy

Figure A.3 shows the increase in the entropy estimate with increased sample
size for a given σ, implying that use of the entire dataset is necessary to make
use of all information. However, batch training successes have demonstrated
that there is a point of diminishing returns at least in terms of training effi-
ciency. Intuitively, the entropy of a specific distribution should not depend on
the number of samples taken from it. For example, 64 samples of a uniform
distribution should have a comparable entropy value to that of 256 samples
of a uniform distribution. Figure A.6 shows that this is the case for a family
of horizontal lines requiring each to have a unique σ as a function of N . Of
particular interest are the kernel sizes defined by the magenta triangles. These
triangles correspond to the theoretical maximum entropy of a range-limited
signal (i.e., the entropy of a uniform distribution) using Renyi’s entropy mea-
sure directly from Eq. (3.4) with α = 2 as follows,

H2max = − log

⎛

⎝
∞∫

−∞
u(z)2dz

⎞

⎠ = M log d. (A.49)

It should be noted that analytical solutions for Renyi’s entropy only ex-
ist in special cases; however, because the uniform distribution provides the

−8
10−4 10−3 10−2 10−1 100 101

−6

−4

−2

0

2

4

6
Family of Entropy Curves

σ2

H
R

2-
P

ar
ze

n

HR2max

H0

Hmax

Huniform

σ n
2

N=256
N=64

N=16

M=2,d=2 

Fig. A.6. Family of entropy curves when the training data size changes plotted
for the uniform distribution. The right diagonal line is H0 and the three left ones
represent Hmax for different number of samples (from [223]).



A.4 Estimation of Information–Theoretic Descriptors 483

maximum entropy for a range–limited signal, it is a useful special case. The
resulting kernel sizes correspond to the solution of:

H2max = Hmax (A.50)

which yields,

σ2
i =

d2

4πN2/M
i

. (A.51)

Equation (A.51) suggests a kernel size as a function of N that might be
used to compare entropy estimates computed with different sample sizes.

Note that Eq. (A.50) equates the maximum value of the Renyi’s quadratic
entropy from Eqs. (3.4) and (A.49) with the maximum of the estimator in
Eqs. (3.12) and (A.37) resulting in a specific kernel size for a given N, M ,
and d. Using these kernel sizes, a reasonable metric for comparison of en-
tropy estimates with different samples sizes, that is, HN1(N1, σ1) versus
HN2(N2, σ2), is proposed. Consider the following relative entropy measure:

Hrelative(Nn) =
HNn(Nn, σn)−H0(σn)
Hmax(σn)−H0(σn)

. (A.52)

In Eq. (A.52) the estimated entropy HN is computed using the kernel size
from Eq. (A.51) for the corresponding value of N . It is then translated by
the minimum of the estimator H0, and scaled by the maximum range of the
estimator H2max −H0. The net result is a relative entropy estimate that can
take on values in the range [0,1]. This estimate provides a basis for comparison
of entropies computed using a different number of sample points. Also, if a
kernel size other than Eq. (A.51) is used, perhaps due to the spread of the
data, as long as the ratio from σ1 to σ2 follows the relationship for N in
Eq. (A.51), valid comparisons can be made.

Figure A.7 shows an example of the relative entropy metric for a uni-
formly distributed random dataset that has been sampled with various values
of N . The curves show the consistency of the relative entropy, aside from the
expected fluctuations for very small N , across a wide range of sample sizes.

Another useful application of the relative entropy metric is motivated by
the batch training method described in Chapter 4. For the batch method, the
determination of an appropriate batch size is a key design parameter for batch
implementations. In order to facilitate the batch size selection, the relative
entropy metric is used to examine the information content as a function of
increasing sample size. The examples below illustrate the approach for several
batch-training problems.

Figure A.8 shows the relative entropy comparison for two cases. The first
example is N = 100 samples of a one-dimensional mixture of two sinusoids
with a composite period of approximately 50 samples. In this case, the relative
entropy reaches a maximum at N = 50, as might be expected, and begins to
level off around N = 30. This suggests that batch training could be conducted
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Fig. A.9. Relative entropy comparison—sonar 5 &12 (from [223]).

with N << 100 with little loss of terminal accuracy. The second example
is the frequency doubling problem presented in Chapter 5. Recall that in
this example, the input dataset consists of N = 32 samples of a composite
sinusoidal signal. In this case, the relative entropy reaches a plateau in the
N = 8 to 14 sample range, suggesting a batch implementation of this size.
Previous experimentation with various batch sizes on this problem yielded
excellent results for batch sizes of 8 and 16.

Figure A.9 illustrates a third example using a real–world dataset taken
from sonar images, the Sonar 5& 12 feature dataset [223]. This figure shows
the relative entropy comparison for the target class and false alarm class for
both the training set and the test set. Note here that for both the training
and test set, the relative entropy of the target class continues to increase with
the addition of new targets implying that most targets are providing relevant
new information. In contrast, the relative entropy for the false alarm class
begins to decrease steadily after the first 50 samples suggesting that not all
of the false alarms might be necessary during training.

Quadratic Mutual Information Estimators

As is the entropy criterion, the QMICS and QMIED estimators for mutual in-
formation of Eq. (2.104) are burdened with similar difficulties when comparing
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or assessing the performance of systems trained with these criteria. These
estimates lack a consistent absolute interpretation, therefore they can only
measure performance in a relative sense when compared to data using the
same set of parameters. To complicate matters in this case, the functional
form of these estimators is more complex than the entropy estimator because
mutual information measures the similarity between two or more signals rather
than estimating a property of a single signal. Although this complexity makes
generalizations more difficult, the following sections attempt to provide some
insight to the relationships between these mutual information estimators and
their associated parameters.

Families of QMI Curves

The parameters of the mutual information estimators are the same as those
for the entropy estimator, but each parameter is present for multiple, L, sig-
nals. For this investigation, the focus is primarily on two signals and it is
further assumed that the number of samples and kernel size is equal for both
signals. The following list summarizes the variables to be explored for mutual
information estimators.

1. N : The number of data samples or exemplars
2. σ: The kernel size for the Parzen PDF estimate
3. M1, M2: The dimensions of the signals
4. d1, d2: A measure of the extent (or variance) of the signals
5. L: The number of signals (only investigating L = 2)

In order to make comparisons with the mutual information estimators,
three test datasets are introduced. The first two datasets, X and Y , are
two independent N -sample datasets based on a random uniform distribution
in M -dimensions. The third dataset, Xn , is the X dataset with additive
Gaussian noise. These datasets are scaled by the ratio, dratio = d1/d2, in order
to explore the effects of different data scales. These datasets are illustrated
graphically in the scatterplot of Figure A.10 for M = 1 and dratio = 0.1.
The figure illustrates the expected correlation between X and Xn and the
independence of Y and Xn .

Effects of Sample Size in QMI Estimators

The first set of curves, in Figures A.11 and A.12, explores the effects of the
sample sizeN on self–mutual information, I(X , X ). Notice first that I(X , X )
approaches zero for both QMICS and QMIED as the kernel size increases to
large values. As the kernel size decreases, the saturating limit of QMICS is
defined by Eq. (A.53) as

ICS max(L,N) = lim
σ→0

ICS = (L− 1) logN (A.53)
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for the case where all N samples are unique. This saturating limit is illustrated
by the horizontal lines in Figure A.11. If some of the data points are repeated,
a more complex expression results as described by Eq. (A.54).

ICS max(L,N) = (L− 1) log

(

N +
∑

nonuniquesets

ni!

)
L∏

l=1

(

N +
∑

nonunique

ni!

)

N∑

j=1

L∏

l=1

nj,l

.

(A.54)
In Eq. (A.54) the first summation in the numerator is the sum of the

factorials of the number of occurrences for each repeated set (or pair for
L = 2) of points in the dataset. The second summation is the sum of the
factorials of each repeated point for each individual signal. The denominator
sums the product of the number of occurrences of the jth data point in each
of the signals.

In the QMIED case, as the kernel size decreases, the estimator diverges due
to the kernel size term in the denominator of the Gaussian kernels. Figure A.12
shows both linear and logarithmic plots of the QMIED. The QMIED estimator
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approaches infinity exponentially as described in Eq. (A.55) for N unique
samples and illustrated in Figure A.12 with the straight dashed lines.

IED max(L,M,N, σ) = lim
σ→0

IED =
1

N (4πσ2)LM/2

(

1− 1
NL−1

)

. (A.55)

Note that in the QMIED case, for small kernel sizes, the estimator approaches
Eq. (A.55) from above. For nonunique data samples, Eq. (A.56) describes the
asymptotes more accurately where the summations and products are the same
as in Eq. (A.54).

IED max=

1

N

(
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)

+
1

NL
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l=1

(
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)

− 2
1

NL

N∑

j=1
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nj,l

N (4πσ2)LM/2
.

(A.56)
In these figures, crosses represent the kernel size extremes described by
Eqs. (A.40) and (A.41) for the entropy estimate. Because the components
that make up the QMI estimates are essentially based on Renyi’s quadratic
entropy estimator, these same kernel sizes appear to track the saturation of
the QMI estimates as well. The plots in Figure A.13 support this inference
further. This figure shows the average information forces as a function of
kernel size for the QMICS and the QMIED. Notice that for both cases, the
information forces roll off in close relation to the kernel size extremes from
Eqs. (A.40) and (A.41).

Fig. A.13. Family of QMI information forces curves for the CS and ED as a function
of the number of samples when the kernel size is scanned (from [223]).
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As with the entropy estimators, comparison of mutual information esti-
mates with different sample sizes can be achieved by utilizing the expressions
in Eq. (A.53) through (A.56) to develop relative mutual information metrics as

ICSrelative(Nn) =
ICS (Nn, σn)
ICS max(Nn)

(A.57)

IEDrelative(Nn) =
IED max(Nn, σn)
IED (Nn, σn)

, (A.58)

where the kernel size σn should be adjusted as a function of Nn per the
relationship in (A.51) or (A.38). Note also that Eq. (A.58) is only appropriate
for small kernel sizes.

Effect of Scale in QMI Estimators

The next set of curves examines the dependency of the mutual information
estimators on the relative variance of the random variables that are being
compared. Figure A.14 shows the mutual information between X and X , de-
noted I(X, X), and between X and Y , denoted I(X, Y ) for various values
of dratio where N = 100 and M = 1. Note here that it is expected that the

Fig. A.14. Family of QMICS curves compared with self mutual information when
the dynamic range in the data changes. The estimated QMI(X, Y ) should al-
ways be smaller than self QMI, but this only happens for kernels larger than 10−6

(from [223]).
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self–mutual information I(X, X) should result in the maximum mutual in-
formation for a given set of parameters. Clearly for the CS case, the mutual
information estimate shifts from left to right as the dratio increases. Although
this behavior is undesirable, it is more troubling that for some kernel sizes even
when dratio = 1, the mutual information between the uncorrelated variables
I(X, Y ) is greater than I(X, X). To allay the first problem, a reasonable
approach is to normalize the variance of the two variables before comparing
mutual information. The second problem hints at the proper selection of ker-
nel size. Clearly, when the kernel size is too small, the QMICS can produce
unexpected results.

We have experimentally verified that QMIED is better behaved than
QMICS in terms of the expectation that I(X, X) be greater than I(X, Y ).

Effect of Dimension in QMI Estimators

Figure A.15 illustrates the effects of increasing dimension on the mutual in-
formation estimators. In this figure, the dimensionality of both variables is
varied with M1 = M2 for values of 1, 2, and 4. For these curves, X and Y are
independent M -dimensional random uniform datasets consisting of N = 50
samples. As with the entropy estimator, the slope of the transition increases

Fig. A.15. Family of QMICS curves compared with self mutual information when
the dimension changes (from [223]).
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Fig. A.16. Family of QMICS curves compared with self mutual information when
only one of the variables changes dimension (from [223]).

with increasing M . Note here that the crosses denoting the kernel size limits
from Eqs. (A.40) and (A.41) seem to track the saturation points well with
increasing M . Again, note the unexpected performance of the QMICS esti-
mator for small kernel sizes, producing a larger value for I(X,Y) than for
I(X, X), as well as the saturation.

In Figure A.16, the effects of increasing dimension on the QMICS mutual
information estimator is explored when only one variable increases in dimen-
sion. This case represents an important class of problems where the goal is to
determine which set of features with differing dimensions most closely repre-
sents a given target variable. In these curves, the dimensionality of M1 is held
fixed at one and M2 varies from 1 to 4. Here, one variable, either X or Y ,
is an M2-dimensional random uniform dataset consisting of N = 50 samples.
The other variable, X1, is equal to the first dimension of X with additive
Gaussian noise. So it is expected that the I(X1, X) values should be greater
than the values for I(X1, Y ). Note that the slope of the transition does not
increase with dimension as in the previous case and that the kernel size ranges
are perhaps modeled best as a function of either the maximum or minimum
dimension using the expressions in Eqs. (A.40) and (A.41) as

σ2
max = σ2

max(max(M1,M2)) (A.59)

σ2
min = σ2

min(min(M1,M2)). (A.60)

Note also that the mutual information estimate is generally higher with in-
creasing dimensionality.



A.4 Estimation of Information–Theoretic Descriptors 493

In order to be helpful in solving the stated problem, it is desirable for the
smallest set that accurately represents the target set, represented by X1, to
have the largest value of mutual information. At a minimum, it is desired for
the sets that represent the target set to be greater than those sets that are
uncorrelated regardless of dimensionality. Unfortunately, even in this simple
case, none of the metrics performs ideally. First, note that the QMICS is again
plagued with inverted results for small kernel sizes. For large kernel sizes, all
the QMICS curves are greater for I(X1, X) than for I(X1, Y ). However, the
largest value corresponds to the largest dimension rather than the smallest as
would be ideal.

These difficulties have hindered the general application of the QMI esti-
mators for feature relevance ranking. One possible remedy to compensate for
the different dimensionalities is to select a largest common dimension in which
to conduct all comparisons. Feature vectors in lower-dimensions can be em-
bedded in the higher dimension by simply repeating the information in the
lower dimensional feature until the size of the largest common dimension is
reached. Using this technique, the experiment from above is repeated with M1

held fixed at one, M2 fixed at the largest common dimension (which is four),
and the intrinsic dimensionality of M2 varying from 1 to 4.

Figure A.17 shows the results for the QMICS. Notice that the range in
which the values for I(X 1, X ) are greater than the those for I(X 1,Y ) has
increased. Again, for large kernel sizes, all the QMICS curves are greater for

Fig. A.17. Family of QMICS curves compared with self mutual information when
the estimation is done in the largest dimension space. The range of kernel sizes where
the estimation makes sense increases (from [223]).
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I(X 1, X ) than for I(X 1,Y ). However, in this case, the largest value corre-
sponds to the smallest intrinsic dimension rather as is desired. Although we
have only demonstrated the results for QMICS similar results were obtained
for QMIED perhaps with a slightly larger range of kernel sizes with the ex-
pected behavior.

A.5 Convolution Smoothing

The global convergence theorem for convolution smoothing states that the
following optimization problems are equivalent

min
x∈D⊂�n

g(x) = g(x∗) = min
x∈D⊂�n

ĝβ(x), β → 0, (A.61)

where the smoothed cost function is defined as

ĝβ(x)
Δ= g(x) ∗ hβ(x) (A.62)

and thus both problems result in the global optimal point x∗ [310]. The
smoothing functional hβ(x) has to satisfy the following conditions.

i. hβ(x) = (1/βn)h(x/β), (A.63)

ii. lim
β→0

hβ(x) = δ(x), (A.64)

iii. lim
β→0

ĝβ(x) = g(x), (A.65)

iv. hβ(x) is a PDF. (A.66)

Condition (iii) guarantees that both g(x) and hβ(x) are well-behaved func-
tions. Condition (iv) allows the proof techniques from the stochastic optimiza-
tion literature to be applicable. For our purposes, this strict condition is not
necessary, because even if the convolving function does not integrate to one,
then the same convolution smoothing effect will be observed, except there will
be a scale factor that multiplies the smoothed functional. The most important
constraints on the smoothing function are (i) and (ii).

Conjecture A.1. Given a specific choice of the kernel function κσ(.), there ex-
ists a corresponding smoothing functional, which is a solution of

V α,σ(w) = Vα(w) ∗ hβ(w), (A.67)

where Vα(w) =
∫
pαe (e;w)de , V α,σ(w) = lim

N→∞
V̂α,σ(e) and that satisfies the

conditions (i)–(iv) given above.
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Support : There are a number of theoretical and experimental observations
that support this conjecture. First, consider the nonparametric information
potential we use for the error samples.

V̂α,σ(e) =
1
Nα

∑

j

(
∑

i

1
σ
κσ

(
ej − ei
σ

))α−1

=
1

σα−1
V̂α,1(e/σ). (A.68)

Notice that an increase in kernel size causes a dilation in the e-space.
Therefore all points, including all local extremes, move radially away from the
origin when σ is increased. The only point that maintains its position is the
origin. From this, we conclude that if the function approximator (adaptive sys-
tem) belongs to the function class being approximated (i.e., the error at the
optimal point is zero), then the location of the global solution is independent
of the kernel size. Moreover, if the function approximator used is a contrac-
tive mapping, which is the case in feedforward neural networks, for example,
then the dilation in the e-space must be followed by dilation in the weight-
space, hence the volume of the domain of attraction of the global optimum is
increased.

In addition, consider the asymptotic behavior of the nonparametric infor-
mation potential estimator. Because Parzen windowing is a consistent estima-
tor, as the number of samples goes to infinity, the estimated PDF converges
to the actual PDF convolved with the selected kernel function [241], which
also is valid in the mean; that is,

V α,σ(w) =
∫

[pe(e;w)∗eκσ(e)]
αde, (A.69)

where ∗ denotes a convolution with respect to the variable e. Equating (A.69)
to the convolution of the true information potential Vα(w) and the
(hypothetical) smoothing functional hβ(w), we obtain the condition
Eq. (A.67). Consider the explicit form of this equality written in terms
of the kernel function and the error PDF.

hβ(w)∗w

∫
pαe (e;w)de =

∫
�pe(e;w)∗eκσ(e)�α de. (A.70)

Taking the Laplace transform of both sides with respect to w, we can isolate
the Laplace transform of hβ(w) in terms of the transforms of the remaining
quantities. The Laplace transform of hβ(w) is guaranteed to exist if the error
PDF and the kernel function are absolutely integrable functions and α ≥ 1,
which is the case. We can write this function in the transform domain as the
following ratio.

Hβ(s) =
Lw

∫
[pe(e;w)∗eκσ(e)]

α de

Lw

∫
pαe (e;w)de

=

∫
Lw [pe(e;w)∗eκσ(e)]

α de
∫
Lw [pαe (e;w)] de

. (A.71)
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The right-hand side is a function of σ only, because the integration over e
from −∞ to ∞ eliminates this variable.

Because Hβ(s) exists, hβ(w) must be absolutely integrable, therefore,
lim

w→±∞hβ(w) = 0. We next observe that as σ → 0, the numerator of Eq. (A.71)

converges to the denominator, hence the bandwidth ofHβ(ω) (considering the
Fourier transform) increases. An increase in frequency-domain bandwidth is
accompanied by a decrease in duration of the impulse response in the time
domain, thus the width of hβ(w) decreases as σ → 0; note that there is a
nonlinear monote relation between β and σ.

Now that we know the width of hβ(w) decreases monotonically as σ → 0,
that it is always absolutely integrable, and that it converges to δ(w) in the
limit, we conclude that it has to be unimodal, symmetric, and positive for
all w. Consequently, even if hβ(w) does not integrate to 1, it integrates to
some finite value and therefore it is a scaled version of a PDF. A scaling
factor in the convolution process does not affect the nature of the smoothing
but only the scale factor of the smoothed performance surface.

Although it is not easy to solve for the corresponding smoothing function
from Eq. (A.67), we showed that the solution still satisfies some of the required
conditions, specifically (ii)–(iv). Furthermore, the dilation in the e-space, pre-
sented in Eq. (A.68), hints towards the validity of condition (i). However, it
has not been possible to verify that the first condition is satisfied in general
for any mapper, nor it was possible to set forth the conditions under which
this occurs. Therefore, we propose the existence of a smoothing functional
corresponding to each kernel choice as a conjecture.

The second issue in the application of kernel annealing to real problems
is to define the rate of annealing to guarantee that the optimal solution is
obtained. The problem is formally very similar to the temperature anneal-
ing schedule in simulated annealing [275], except that here one cannot easily
evaluate the probability of being caught in a local minimum. Therefore, the
annealing rate is left to the experimenter.

Consequently, we propose the following methodology to achieve global
optimization when using the current nonparametric entropy estimator in EEC
training of adaptive systems. Start with a large kernel size, and during the
adaptation gradually and slowly decrease it towards a predetermined suitable
value established by the Simpson rule or equivalent; the local solutions, which
would trap the training for those same initial conditions when the w-space has
not been dilated, will be avoided. Hence, global optimization will be achieved
still using a gradient descent approach. In Chapter 6 we experimentally show
that good solutions are found reliably.

As a final remark, we also showed that as the kernel size in the estimator
is increased, the entropy estimate approaches the log of a scaled version of
the sample variance, thus in EEC error entropy and error variance become
asymptotically identical.
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A.6 Conclusions

This appendix reviews basic concepts of density estimation, the ITL
estimators for Renyi’s quadratic entropy and quadratic mutual informa-
tion, and a brief overview of convolution smoothing. The purpose of the
density estimation review is to provide pointers to the literature and review
some basic concepts that may be helpful to estimate the kernel size which is
so important in ITL.

The material on the ITL estimators of IP and QMI illustrates using the
family of curves approach to how the estimators of these quantities change
as a function of the values selected in practical conditions for kernel size and
number of samples. We can clearly see the wide variability of the estimated
values but of importance is the saturation effect achieved for large and small
kernel sizes. Finally we present the theory of convolution smoothing and our
present understanding of its applicability for the kernel size annealing during
adaptation. Unfortunately the annealing rate has not been determined; there
is no formal proof of the link between convolution smoothing and kernel size
annealing. This may be achieved in future research by our group or by some
of the readers.
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