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Preface

This book is an outgrowth of ten years of research at the University of Florida
Computational NeuroEngineering Laboratory (CNEL) in the general area of
statistical signal processing and machine learning. One of the goals of writing
the book is exactly to bridge the two fields that share so many common
problems and techniques but are not yet effectively collaborating.

Unlike other books that cover the state of the art in a given field, this book
cuts across engineering (signal processing) and statistics (machine learning)
with a common theme: learning seen from the point of view of information the-
ory with an emphasis on Renyi’s definition of information. The basic approach
is to utilize the information theory descriptors of entropy and divergence as
nonparametric cost functions for the design of adaptive systems in unsuper-
vised or supervised training modes. Hence the title: Information-Theoretic
Learning (ITL). In the course of these studies, we discovered that the main
idea enabling a synergistic view as well as algorithmic implementations,
does not involve the conventional central moments of the data (mean and
covariance). Rather, the core concept is the a-norm of the PDF, in partic-
ular its expected value (o0 = 2), which we call the information potential.
This operator and related nonparametric estimators link information theory,
optimization of adaptive systems, and reproducing kernel Hilbert spaces in a
simple and unconventional way.

Due to the pervasive nature of learning, the reading of the material re-
quires prior basic knowledge on a broad set of subjects such as information
theory, density estimation, adaptive filtering, pattern recognition, reproduc-
ing kernel Hilbert spaces (RKHS), and kernel machines. Because there are
few researchers with such broad interests, the first chapter provides, in sim-
ple terms, the minimal foundations of information theory, adaptive filtering,
and RKHS, while the appendix reviews density estimation. Once the reader is
able to grasp these fundamentals, the book develops a nonparametric frame-
work that is rich in understanding, setting the stage for the evolution of a
new generation of algorithms of varying complexity. This book is therefore
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VIII  Preface

useful for professionals who are interested in improving the performance of
traditional algorithms as well as researchers who are interested in exploring
new approaches to machine learning.

This thematic view of a broad research area is a double-sided sword. By
using the same approach to treat many different problems it provides a unique
and unifying perspective. On the other hand, it leaves out many competing
alternatives and it complicates the evaluation of solutions. For this reason, we
present many examples to illustrate and compare performance with conven-
tional alternatives in the context of practical problems. To be more specific,
the reader will find:

e Information-theoretic cost functions for linear and nonlinear adaptive fil-
tering that have low complexity but are robust to impulsive noise, and
extract valuable structure from the error signal

e Information-theoretic cost functions for classification and unsupervised
learning and a new principle of self-organization

e A RKHS for ITL defined on a space of probability density functions that
simplify statistical inference

e A new similarity function called correntropy that extends the conventional
correlation

The book is organized as follows.

Chapter 1 covers the foundations of information theory, an overview of
adaptive systems, and also the basic definitions of RKHS.

Chapter 2 presents the foundations of Renyi’s entropy, divergence, mutual
information, and their estimators based on the information potential. This is
a foundational chapter, and readers should spend time understanding the con-
cepts, and practicing with the algorithms for estimating the I'TL descriptors
directly from data. The chapter concludes with fast computational algorithms.

Chapter 3 develops the idea of error entropy criterion (EEC) minimization
and its minimum error entropy (MEE) algorithm to adapt learning systems.
An analysis of the cost function is undertaken and key properties of the error
entropy criterion are presented. One of the main reasons why the EEC is
useful in practical applications is its robustness to outliers. We establish the
link between the EEC and Huber’s robust statistics through a weighted least
squares point of view. In so doing we define a new function called correntropy
that can also be used to train adaptive filters and is easier to compute than
EEC. Correntropy defines a metric in the data space and it is directly related
to entropy. The chapter ends with a method to adapt the kernel size parameter
in adaptive systems training.

Chapter 4 develops a set of algorithms to adapt linear filters using MEE.
Basically all the practical gradient-based algorithms are covered: the MEE
batch algorithm, the MEE recursive information potential that saves compu-
tation, the MEE stochastic information gradient (SIG) that mimics Widrow’s
LMS algorithm, the MEE self adjusting stepsize, and the normalized MEE.
We also present a fixed-point algorithm (no stepsize) with higher complexity
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but that is much faster because it explores second-order information content
of the cost function. The chapter ends with a comparison with the error cor-
rentropy criterion, which has practical computational advantages.

Chapter 5 addresses filtering (regression) problems extending the training
algorithms for nonlinear systems. We show how to integrate backpropagation
with the error entropy costs, so the reader is able by the end of this chapter
to train nonlinear systems with entropic costs. Incidentally, this is really the
type of systems that benefit from the error entropy cost because most of the
time the errors created are non-Gaussian. Comparisons with traditional mean
square error cost are provided. A brief overview of advanced search methods
with ITL algorithms is also presented.

Chapter 6 changes the focus to classification problems. The techniques
necessary to train classifiers with MEE have already been established in
Chapter 5, so this chapter addresses the usefulness of error entropy costs for
classification, which is a harder problem than regression. Alternatively, non-
parametric classifiers using a MAP approach can be easily implemented and
work reasonably well in small-dimensional spaces. For classification, the idea
of utilizing the dissimilarity between class labels and system output separately
(instead of creating the error) is appealing because of Fano’s bound. We ex-
tend the cost function to include the ITL divergence measures and quadratic
mutual information, and show that this alternative cost function is beneficial
not only to train classifiers but also for feature selection. The chapter ends
with a proof that the classification error can be lower and upper bounded
(i.e., can be bracketed) by Renyi’s entropy for alpha greater and smaller than
one, respectively.

Chapter 7 treats clustering (the simplest of unsupervised learning
methods) using ITL divergence measures. First, we discuss the Cauchy-
Schwarz divergence measure as a cost function for clustering, bringing out
the nice feature that optimal clusters are not necessarily spherical. Then, a
gradient descent algorithm is proposed to find the data partition that mini-
mizes this clustering cost function, and its connection to spectral clustering
and optimal graph cuts is established. Gaussian mean shift is also framed
as the optimization of an ITL cost function. The chapter ends with a novel
information cut algorithm for graph clustering.

Chapter 8 reviews several self-organizing principles based on information-
theoretic concepts to show the importance of IT descriptors as cost func-
tions for the optimal design of unsupervised learning systems. Then, a new
self-organizing principle called the principle of relevant information is pre-
sented that yields as special cases, clustering, principal curves, and vector
quantization. Finally, the ITL descriptors are utilized to implement the most
common forms of self-organizing principles without assumptions about the
data PDFs.

Chapter 9 defines a new reproducing kernel Hilbert space on the space
of PDFs with an inner product defined by the cross information potential
of ITL. This RKHS provides a functional analysis perspective of ITL and
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helps us understand links between statistical inference and the RKHS defined
for ITL. Moreover, we show the relationship between ITL descriptors and
statistical operators used in machine learning in the RKHS defined by the
kernel, including an interpretation of support vector machines.

Chapter 10 defines in the space of random variables a novel generalized
correlation function named correntropy. We present many properties of
correntropy to make clear its statistical meaning. Based on correntropy, we
propose the correntropy coefficient that is bounded by unity and zero for inde-
pendent random variables, unlike the conventional correlation coefficient. By
defining the concept of parametric correntropy, we propose a new correntropy
dependence measure that obeys most of Renyi’s postulates for dependence.
We illustrate the use of correntropy in statistical inference problems, such as
matched filtering, tests of nonlinear coupling and as a dependent measure
between random variables.

Chapter 11 extends the concept of correntropy to random processes. The
name can be properly explained in this context because correntropy (built
from correlation plus entropy) looks like correlation but the sum over the
lags (or dimensions) is the information potential (the argument of the log of
Renyi’s entropy). We show that the autocorrentropy function is a positive
definite kernel and, as such, defines a novel RKHS with interesting properties.
It is possible to define a correntropy spectral density that provides a spec-
tral representation that includes, for the first time, second- and higher-order
moments of the random process. We end the chapter with a case study to ex-
emplify how to transform optimal linear algorithms to the correntropy RKHS,
and a few examples in speech processing, time series analysis, a correntropy
Karhunen-Loeve transform and, object recognition.

The appendix completes the book with a review of kernel density estima-
tion and Renyi’s entropy estimation.

The author is conscious that such a vast coverage of topics imposes some
compromises of breadth versus depth. To help readers with different back-
grounds, profiles, and goals the following flowcharts help establish a road map
for the book.

Adaptive Systems (including neural networks) Theme
Chl—-Ch2—-Ch3—-Ch4—-Ch5—Ch6—Ch7— Chs8
Unsupervised Learning Theme

Chl—-Ch2—-Ch7—Ch8

RKHS Theme

Chl1—-Ch2—-Ch9— Ch10— Ch 11

Statistical Signal Processing Theme
Chl1—-Ch2—-Ch3—-Ch9—Ch9— Chll

Pattern Recognition Theme
Chl—Ch2—-Ch5—-Ch6—-Ch7—Ch9— Ch10

The book is based on a large collection of journal papers and confer-
ence proceedings produced by an extraordinary group of PhD students and
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CNEL visitors who were smart enough, knowledgeable enough, and brave
enough to think outside the box and ask very pertinent questions about the
principles ordinarily used in statistical signal processing and machine learning.
Their names are: Deniz Erdogmus, Weifeng Liu, Dongxin Xu, Robert Jenssen,
Jianwu Xu, Ignacio Santamaria, Kenneth Hild II, Jeongju Han, Kyu-Hwa
Jeong, Sudhir Rao, Puskal Pokharel, Rodney Morejon, Antonio Paiva, Sohan
Seth, Il Park, and Abhishek Singh.

To demonstrate my appreciation for their work I consider them my coau-
thors and list their names in the chapters where their main contributions are
centered.

The author is grateful to the National Science Foundation, in particular the
Electrical, Communications and Cyber Systems Division in the Engineering
Directorate which has funded the great majority of this work and the above
mentioned students.

Gainesville, Florida
August, 2009.
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Fy(z)  a-Information Force

v(z,y)  Correntropy

v(t,s)  Correntropy Function

Va,b(2,y) Parameteric Correntropy
u(z,y)  Centered Correntropy

u(t,s) Centered Correntropy Function

E(X)  Expected Value of x

H(X)  Shannon Entropy

Hy(X) Renyi’s Entropy of order o

I(X) Information of x
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o(t) Delta Function
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Notation

There are mainly three types of variables we need to distinguish among: scalar,
vector, and matrix variables.

O w
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The following is a list of the notational conventions used in the book:

. We use small italic letters to denote scalar variables.
. We use CAPITAL ITALIC letters to denote scalar constants and random

variables

We use small bold letters for vectors

We use CAPITAL BOLD letters to denote matrices

We use parentheses to denote the time-dependency of any variables (either
scalar, vector or matrix).

We use the superscript T to denote transposition.

All variables in our presentation are real, unless explicitly stated.

All vectors in our presentation are column vectors without exception.

We use subscript indices to denote 1) a component of a vector (or a matrix).



1

Information Theory, Machine Learning,
and Reproducing Kernel Hilbert Spaces

1.1 Introduction

The common problem faced by many data processing professionals is how
to best extract the information contained in data. In our daily lives and in
our professions, we are bombarded by huge amounts of data, but most of-
ten data are not our primary interest. Data hides, either in time structure or
in spatial redundancy, important clues to answer the information-processing
questions we pose. We are using the term information in the colloquial sense,
and therefore it may mean different things to different people, which is OK for
now. We all realize that the use of computers and the Web accelerated tremen-
dously the accessibility and the amount of data being generated. Therefore the
pressure to distill information from data will mount at an increasing pace in
the future, and old ways of dealing with this problem will be forced to evolve
and adapt to the new reality. To many (including the author) this represents
nothing less than a paradigm shift, from hypothesis-based, to evidence-based
science and it will affect the core design strategies in many disciplines includ-
ing learning theory and adaptive systems.

Modeling Levels

One productive step involved in extracting information from data is data
modeling. A model of the data basically summarizes the process of its genera-
tion, and allows for the optimal design of data processing systems. Therefore
the overall data processing goal can be thought as the macroscopic modeling
level. We pursue here methodologies based on probabilistic reasoning because
it has played and will continue to play a central role in the endeavor of extract-
ing information from data. Probability theory provides an established frame-
work to work with uncertain or noisy data. In this framework, learning from
samples can be thought of as discovering structure in data, or equivalently,

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 1
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2_1,
(© Springer Science+Business Media, LLC 2010



2 1 Information Theory, Machine Learning, and RKHS

as finding dependencies in the data generation model under the uncertainty
produced by noise, incomplete knowledge of the sample space, and unknown
parameters or the data structure.

When the data sources contain all the information in their distribution,
it is reasonable to build information-processing systems that directly use the
data’s joint probability density function (PDF) (or any other marginal or con-
ditional PDF, which is easily obtained from the joint distribution). Examples
of this approach include the current work on graphical models and its special
cases such as the Bayesian filter or the hidden Markov model, which are very
powerful but are computationally demanding. Bayesian reasoning allows di-
rect implementation of macroscopic system goals from the data, hence we call
this approach microscopic modeling.

Another major line of reasoning in statistics deals with the construction
of scalar descriptors of the PDF that, under an appropriate set of modeling
assumptions, succinctly characterize the data structure. In our terminology,
this is the mesoscopic modeling level. The advantage of mesoscopic data de-
scriptors is that they solve the macroscopic data processing goals with com-
putational simplicity, enabling both portable implementations in engineering
and “giga-dataset” processing in machine learning. Statistical moments are,
in the fields of statistical signal processing and machine learning, by far the
most widely used mesoscopic descriptors of the PDF. The appeal of moment
expansions is that there are consistent nonparametric estimators for the mo-
ments. Moreover, as is well known in probability theory, well-behaved PDF's
can be described as accurately as desired by increasing the expansion order.
In particular, if the Gaussian assumption is invoked for the PDF, then the
mean and the variance completely describe the PDF.

Let us contrast the microscopic and the mesoscopic modeling levels with
a simple macroscopic goal of time series modeling. Given a sufficient amount
of data, the Bayesian filter is capable of modeling (with a weak Markovian
assumption) any time series by directly using the posterior density with a re-
cursive estimator (a state model). Under linearity and Gaussian assumptions,
the Kalman filter can provide exactly the same solution based on mesoscopic
descriptors (the data covariance function) with the difference that it requires
only a fraction of the data and computational resources required to imple-
ment the Bayesian filter. Even if the data do not obey these assumptions, the
Kalman filter may still be useful because of its computational simplicity and
because the Bayesian filter suffers from poor estimation when data are scarce.

This book uses mesoscopic statistical models for adaptive filtering and
machine learning. Let us assume that the problem we are facing is to find a
relationship between {x, z} by observing pairs of samples (z;, z;) produced by
the experimental signal source. Figure 1.1 provides the fundamental building
block for this scenario.

A learning machine (linear or nonlinear) having a set of free parameters
w is constructed to receive the data z; and produce an output y;. We then
compare how similar y; is to z; according to some criterion and minimize this
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Fig. 1.1. Model building through adaptation.

difference by changing the parameters w with some systematic procedure. In
the end we obtain a system that, when activated with new data from the
source x, approximates the unknown z with y. The procedure just outlined
builds implicitly a model for the relationship between x and z. We call the
system a learning machine or adaptive system and the process of finding
parameters from data, learning or adaptation.

This idea of training adaptive systems is far from new (probably used
for the first time by Gauss or Legendre in linear regression), and there are
many different approaches to formulate and characterize the training methods.
For example, the adaptive system shown in Figure 1.1 uses what is known as
supervised learning. Another type of learning, known as unsupervised learning
occurs when z is available, but z is not. More is said later in the text about
supervised and unsupervised learning.

Parametric and Nonparametric Model Building

Both parametric and nonparametric designs create models from data and the
trade-offs between the two have been a central theme in statistical thinking.
It is appropriate to recall the debate, summarized in [133], that happened
in the early 1920s. In this debate Fisher and Pearson argued about how to
model data when neither the error distribution nor the functional form of
the fitting function was specified. Fisher proposed to select a simple fitting
function (in his terminology the problem of specification) and concentrate
on estimating its parameters (in his terminology the problem of estimation).
Fisher championed this parametric (or model-based) approach because of its
lower variance, in particular when data are scarce. On the other hand, Pearson
advocated the importance of specification in detriment of estimation, which
leads to nonparametric learning approaches. They handle the bias of the fit
well, but have difficulty with the model variance. Looking critically at the
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literature in pattern recognition and time series analysis for the last 80 years,
Fisher’s approach seems the winner because it has been widely utilized in
statistics, machine learning, and statistical signal processing and it is the most
accurate as long as the assumed model fits the data generation mechanism.
Unfortunately, the theory only handles rather simple statistical models that
may not be accurate enough to describe the complex PDFs of today’s real-
world problems.

The learning machine depicted in Figure 1.1 can be designed using ei-
ther parametric or nonparametric modeling methodologies. The system (also
called the mapping function) implements by its topology a set of functions,
which defines a manifold of possible solutions depending upon its parametric
values. Therefore, the procedure provides in general a parametric model for
the statistical relation between input-desired data. Assumptions of linearity
(for regression) or Gaussianity (for classification) are imposed so that optimal
solutions could be analytically computed, but the set of possible input—output
mappings is rather restrictive. Neural networks and kernel machines are both
universal mappers; the former combine discriminant functions created by a
fixed number of nonlinear units that are incrementally adapted from the data,
and the latter functionally map the input data. Therefore, the user does not
need to select an explicit parametric model a priori, but proper design steps
still need to be followed. In the extreme case of placing in each sample a sim-
ple fixed kernel and weighting the local contributions, the system effectively
implements a nonparametric model. Therefore, the model bias is currently
much less important than in the early days of machine learning. Likewise, the
benefits of the nonparametric approach are also increasing due to the avail-
ability of large amounts of training data (that reduce the variance), added to
the ever—increasing power in computational speed.

Finally, the estimation part of the modeling can not be forgotten: (1) the
model parameters still need to be learned from the data through an appro-
priate loss function (criterion); (2) to reach the optimal solution, the learning
algorithms need to be able to deal with the nonlinear or the functional na-
ture of the mappings. The block diagram of Figure 1.1 enables online model
building, by feeding back the results of the model evaluation to the adapta-
tion algorithm which will seek the extremum of the criterion by continuously
modifying the system parameters. This is not the only way of solving the
optimization problem, but it is the one that is preferred in this book.

Selecting an appropriate loss function or criterion for the goals of machine
learning has been largely neglected, and the parametric/nonparametric mod-
eling issue reappears. Perhaps the most principled approach is to translate the
goal of the analysis into a cost function, but this is often complex (i.e., how to
minimize the probability of errors in classification). The moments (e.g., the
mean square error criterion (MSE) which is the second-order moment of the er-
ror PDF) are the most often preferred. The success story of MSE is regression
because all the information on the error PDF under a Gaussian assumption
is captured in a simple analytical model. However, MSE is used in situations
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where it may be a poor descriptor of optimality such as in classification, where
classifiers are nonlinear and the errors are not Gaussian distributed. What we
should not forget is that the mapping function and the cost function work in
tandem, and the overall performance is limited by the one that reflects the
poorest approximation for the problem at hand.

The Information-Theoretical Learning Approach

This book combines a functional mapper with a cost function based on
mesoscopic data modeling for computational efficiency. However, the pro-
posed criterion does not suffer from the limitation of Gaussianity inherent in
cost functions based on second-order moments (MSE). This is achieved with
information-theoretic descriptors of entropy and dissimilarity (divergence and
mutual information) combined with nonparametric PDF estimators, which
bring robustness and generality to the cost function, and improve performance
in many realistic scenarios (fat-tail distributions, and severe outlier noise).
One of the other appeals of this information theoretic learning (ITL) method-
ology is that it can, with minor modifications, use the conventional learning
and adaptation methodologies of adaptive filters, neural networks, and kernel
learning. Our hope is that this line of research can close the performance
gap between microscopic and mesoscopic data modeling, while preserving the
simplicity of the latter.

Let us then interpret adaptation in Figure 1.1 from an information-
theoretic point of view. The information contained in the joint PDF p(z, 2)
should be transferred as efficiently as possible to the parameters w of the
learning system. Therefore, one would hope to extract as much information
as possible from the error PDF p(e) by changing w to make y as close as
possible to z in an information sense. Entropy measures uncertainty of the
error, therefore the cost should minimize the entropy of the error.

Shannon entropy [293] for continuous random variables reads [ p(z)log
p(z)dz, therefore knowledge of the data PDF p(x) is a necessary first step to
estimate entropy, divergence, and mutual information. In information theory
a Gaussian PDF model is adequate, because manmade signals can be de-
signed to fit the selected parametric model and also because the channel noise
statistics are basically Gaussian. Under these conditions Shannon entropy
can be easily estimated. However, the problems and data in statistical signal
processing and machine learning are often incompatible with this parametric
methodology without raising the model bias issue. This is exactly where a
nonparametric line of reasoning is helpful if an efficient and accurate PDF
estimator can be derived.

The author published in 2000 three major observations. First, in most en-
gineering cases the error variable is a scalar or has low dimension, so PDF
estimation is still accurate. Second, the requirements of a PDF estimator for
an entropic cost function are very different from the ones for density estima-
tion. Indeed, in adaptation what matters is to locate the extrema (maximum
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or minimum) of a cost function, not the exact value of the cost. Therefore,
as long as the free parameters of the entropic cost estimator are tuned to
the data dynamic range and they are kept constant for the same data, rel-
ative comparisons of entropy are sufficient to find the optimal value of the
system parameters. However, the estimator must be smooth to allow gradient
descent searches. Third, although nonparametric PDF estimation for contin-
uous random Variables is difﬁcult the argument of the logarithm in Renyi’s
entropy (1 —a)~!log [ p*(z)dx [264} is easwr to estlmate directly from data,
in particular for o = 2. Because Ex|[p fp x)dz, the « = 2 case
is just the mean value of the data PDF Moreover the logarlthm can be
dropped from the cost function because optimal parameters are invariant to
monotonic transformations on the cost. The core concept in this book became
naturally Ex[p(z)], which is called the information potential (IP) for reasons
that become apparent later (Figure 1.2).

In simple terms, this book provides answers to the following questions.
Under what conditions are ITL costs better than MSE to train a learning
machine and how can they be practically implemented?

We called this framework information-theoretic learning, a terminology
perhaps first used by Watanabe in the 1970s [330] and also coined by us in
the context of adaptive systems training [252]. This terminology succinctly
conveys the goals of this book. Namely, we seek to quantify global scalar de-
scriptors of the underlying PDF (e.g., entropy), while being primarily inter-
ested in learning and adaptation. However, inasmuch as information is utilized
extensively in our colloquial language and we use the mathematical theory of
information developed initially by Claude Shannon and Alfred Renyi among
many others, the inclusion of theoretic in the title is natural.

The bridge to reproducing kernel Hilbert spaces (RKHS) [35] in Figure 1.2
may appear as a surprise. It turns out that Ex[p(x)] is a special case of
[ p(z)g(x)dz that occurs when two different PDFs p(z) and ¢(z) are equal.
This 1ntegra1 is a bivariate positive definite function and, as we show, it

E[p(x)]
and
estimators
y
Cost functions for Information Reproducing Kernel
adaptive systems Theory descriptors Hilbert spaces

Fig. 1.2. Relationship of the information potential with the covered topics.
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defines a linear space of functions (more precisely a Hilbert space) with finite
evaluations called an RKHS. The argument of Renyi’s quadratic cross-entropy,
—log [ p(z)g(x)dz, is called the cross information potential (CIP) so there is
a straight relationship between information theory and the RKHS created by
the CIP. RKHS are possibly infinite-dimensional linear spaces, and they are
well studied and very important in physics, engineering, and machine learn-
ing because they possess an inner product structure to implement many of
the algorithms required in these fields. They have been shown to provide a
functional analysis view of Gaussian processes, which is very useful for many
of the results addressed in this book and they also provide useful bridges to
kernel learning. The CIP defines a RKHS for information-theoretic learning,
extending the concept of entropy to functional spaces. This may be particu-
larly useful in cases where the natural structure of the space of the random
variables does not allow inner products (e.g., point processes).

No book loosely related to the mathematical theory of information can
avoid starting with Claude Shannon’s seminal work on communication theory
and this is also our starting point. In Section 1.2 we show how the fundamental
definitions of entropy and mutual information yielded a paradigm shift in
the design of communication systems. Information theory (IT) has grown
tremendously since Shannon, so we briefly present some generalizations of
this work and the role of IT in machine learning.

In Section 1.3 we briefly review adaptive filter theory, which serves as the
backdrop to explain the impact of entropic and divergence criteria in adaptive
filters and pattern recognition applications. We present the gradient method
for finding optimal parameters of linear systems, and describe the different
types of learning and show how ITL can provide a unifying perspective for
supervised and unsupervised learning from data that are normally treated
independently.

In Section 1.4 of this chapter, we review reproducing kernels Hilbert spaces.
A more systematic treatment of RKHS is provided later in the book, where we
discuss the properties of the ITL estimators, present new similarity functions,
design nonlinear filters, and compare I'TL concepts with other efforts in kernel
learning.

1.2 Information Theory

Information theory was conceptualized by Shannon [293] to deal with the
problem of optimally transmitting messages over noisy channels. Although
there is a physical substrate to communication systems (antennas, transmit-
ters, receivers), the essence of information theory deals with characterizing
the message structure and the limits of error-free transmission of the mes-
sage’s content, as its foundations are mathematical. Mathematical theories
are rarely developed single-handedly and they normally take many years to
be accepted and applied to practical problems. But information theory is
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the brain-child of a single man, Claude Shannon, and was quickly accepted
by the science and engineering communities. Information theory had an im-
mediate impact in the design of communication systems, and it provided a
mathematical framework to formulate and quantify interaction beyond physi-
cal laws, which is very important for society and in helping to understand the
goal-driven behavior of biological organisms.

Origins

The work of Norbert Wiener established that the best way to quantify the
transmission of manmade signals over noisy environments involves a proba-
bilistic framework both for the signals and the noise [333]. A signal s(n) can
then be modeled as a random process, that is a sequence of random variables
s;j over time with a given probability law which we assume constant across
time (stationary random process). Wiener’s idea of using a random basis to
decompose even deterministic manmade signals was an important contribu-
tion that changed for ever optimal signal processing.

For simplicity we start by describing binary messaging, random processes
that can only take two discrete values, 0 or 1. The problem of communication
over a noisy channel (Figure 1.3) can then be stated as follows. Starting from
the transmitter side, a given message is drawn from the pool of all possible
messages {m;}. Next it is encoded to binary values and then translated by the
transmitter into a physical symbol (voltage or current). Under a probability
framework the chosen message is modeled as a Bernoulli process. These sym-
bols are then corrupted by the channel noise v,, which is normally modeled
as stationary additive Gaussian noise v; with a given variance (the power of
the noise). At the receiver, a new sequence of symbols z; = s; + v; is mea-
sured. The problem of the communication system designer is to find out how
to recover s; from z;, making as few errors as possible.

It is useful to formulate the design of a communication system in abstract
terms in order to elucidate the core problems. Optimum channel design consti-
tutes a compromise among three factors: signal-to-noise ratio (SNR), message
rate, and power. How transmission power affected SNR was well understood.
Sampling theory quantified the requirements to recover signals coded in dis-
crete alphabets. The characterization of pulse code modulation (PCM) and
pulse position modulation (PPM) showed that it was possible to trade SNR

Transmitter Receiver
w ( )
S messages i s(t t i
Pool of all possible 9 Encoder bits Modulation Wl DemodulationﬂS» Decoder —»messages
messages J j/ L
J

Channel noise v(t)

Fig. 1.3. Block diagram of a communication system.
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for message rate. However, no one had the vision how to mathematically
formulate the optimization problem, nor what the solution might be.

The strategy proposed by Shannon differed from that of Wiener. Wiener
was the first to suggest attributing probabilities to messages, but he was
more interested in prediction and control, so he proposed to optimally filter
the noise from the received symbol sequence (the Wiener filter). Shannon, on
the other hand, proposed a scheme where the transmitted signal should be
modified first (predistorted or encoded) to withstand minimum degradation
when transmitted through the channel and modified after (decoded) at the
receiving end to regain the original message.

Information theory was exactly created to help study the theoretical issues
of optimally encoding messages according to their statistical structure, select-
ing transmission rates according to the noise levels in the channel, and eval-
uating the minimal distortion in messages. Surprisingly, only two statistical
descriptors are needed to accomplish this seemingly impossible task: entropy
and mutual information, the latter of which is closely related to divergence
(a dissimilarity measure) in probability spaces. According to Shannon [293],
the optimal transmission of messages with a predetermined distortion over
noisy channels is accomplished using the system shown in Figure 1.4: the prob-
ability structure of the messages dictates the optimal coding, as established in
the source coding theorem (optimal coding exploits source redundancy, which
is quantified by entropy). Practically speaking, when the message rate is too
high for the channel one has to impose a message rate limit. The inclusion of
a limit results in the need to optimally compress the messages, as established
by the rate distortion theory (optimal compression is achieved by minimiz-
ing the mutual information between the original message and its compressed
version).

In order to withstand the channel noise in the transmission, the source-
compressed data are encoded for error-free transmission by maximizing the
mutual information between the sent message and the received message, as

Source Channel Receiver
D
Source C E S
g ource
Source Compressed o |:> C ouree X
X, H(x) . D O Decompress
X E D
E
Min_ Max
1X, X) 1X,Y)
Compression Error correction Decompression
(Rate distortion) (Channel Capacity)

Fig. 1.4. An information-theoretic view of optimal communications.
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established by the channel capacity theorem. Finally, the received message
is decoded and decompressed to yield the original message (with the prede-
fined distortion). There is a duality between the problem of data compression
and data transmission in the sense that the first minimizes redundancy for
efficiency, whereas the second adds redundancy to mitigate the noise effects in
the channel. But what is remarkable is that the same quantity, mutual infor-
mation, is specifying the two compromises for error-free communication: the
data compression minimum limit (rate distortion) and the data transmission
maximum limit (channel capacity).

1.3 Entropy

In 1928 Hartley reasoned that when one symbol is chosen from a finite set of
possible symbols .S, then the number of choices can be regarded as a measure
of information and he called it the “amount of information” [137]. According
to Hartley, the amount of information in a set of N transmitted symbols
is Hy = log;o S = Nlogy,S, i.e. proportional to the number of different
choices (the base 10 logarithm is called the Hartley). Today we prefer to
think in terms of two symbols [0,1] and the logarithm is normally taken as
base 2 and the unit becomes the bit. One of the prerequisites for a measure
of information is to be additive for independent events, so the logarithmic
function is a “natural” measure, and it also handles rather well the physical
systems that give rise to the set of events of interest in communications (i.e.,
an N-bit long digital word produces 2V different messages, so the amount
of information would be N, the number of bits). Notice that no probabilistic
reasoning was used by Hartley to derive the amount of information.

Today we can be more precise in the justification of the logarithm by defin-
ing a random variable z with a set of possible outcomes Sx = {s1,...,sn}
having probabilities px = {p1,...,pn}, with p(z = si) = pr,pr > 0 and
> ces, P() =1, and denote the number of elements in S by #S. The num-
ber of binary questions guaranteed to identify any outcome in Sx is lower
bounded by

I(X) = logy(#5x) (L.1)

which is exactly Hartley’s amount of information. Moreover, Hy is additive
for independent events, that is,

In(X,Y) =Ig(X) + Iu(Y). (12)

It was Shannon who stated that one should go beyond the cardinality of
the message set to accurately quantify how much choice is involved in the
selection of probabilistic events when only the probabilities are known. The
probability of selecting each message matters and should therefore be brought
into the formulation. First, he noted that Hartley’s information content is only
accurate if we do not know anything about the data, that is if we assume an
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equal probability to all the events (px = 1/N). In order to fully characterize
an element of a set of symbols Sx occurring with different probabilities pj
the information amount of an outcome should be

1
I = log, —. 1.3
k o Pr ( )

The probabilistic view is that the amount of information for unequal prob-
able messages is a measure of the unexpectedness in the data due to the in-
verse dependence on probability. In fact, for a single message, if p = 1 then
the information content of the message is zero (perfect knowledge), whereas
if pi is small, the message is unexpected so its information content is high.
Therefore — log pi is a new random variable on S that is fully specified by the
probability mass function (PMF) of the messages. We also use the notation
I(x) to represent the amount of information. But if we are interested in the
information conveyed by the random variable X defined on the set of mes-
sages Sx, how should one weight the information content? Shannon defined
the uncertainty of the ensemble X as the sum across the set of the uncertainty
in each message weighted by the probability of each message, or

H(X) == p(xx)logy p(ar) = —Ellog, p(X)]. (1.4)
k

Shannon called his uncertainty measure entropy and it is measured in bits
of information, with the assumption that for p(zx) = 0, p(ay)logp(zx) = 0.
This is the same expression as the same form of physical entropy, but informa-
tion entropy is a property of the probability mass function, whereas physical
entropy is a property of the state of the physical system. Notice that entropy
measures the uncertainty in the data set using a single scalar quantity. It is
also important to note that it is the combination of unexpectedness weighted
by the probability that is really the essence of the concept of entropy: events
that are very unlikely, and therefore of high information content, are dis-
counted by their rare occurrence through the product with the probability.
Likewise, events that are very likely have a low information content so that
the product once again has a small value. This creates a “balance” that had
hitherto never been quantified in probabilistic reasoning.

Figure 1.5 shows I(zy) and H(X) for a Bernoulli random variable (which
is uniquely defined by a single probability) for different values of probability p.

Notice also that H(X) depends on the shape of the distribution and
H(X) < Hy(X), where Hyp(X) is the maximum entropy as shown in the
figure. In words this states that not all random variables are equally random,
and the scalar called entropy is able to characterize the uncertainty in the
data, which is contained implicitly in the functional form of the PDF. The
redundancy in X is exactly defined as R = (Ho(X) — H(X))/Ho(X).

It is important to understand how a single scalar H(X) can produce a
useful description of the PMF of the data, the latter of which is a func-
tion. The reason is because H(X) quantifies remarkably well the effective
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Fig. 1.5. Information content versus entropy for Bernoulli random variable with
probability p and 1 — p.

“volume” spanned by the data in high- dimensional spaces. This basic re-
sult is contained in the asymptotic equipartition property (AEP) [65], which
states the following. For an ensemble of N independent i.i.d. random vari-
ables, X = (X3, Xo,..., Xy) with N sufficiently large, the outcome
x = (1, T2,...,7y) is almost certain to belong to a subset of S¥ having only
2NVH(X) members, and all having probability close to 2~ VH(X) This means
that there is a subset of elements of S (called the typical set) that speci-
fies the probability of the set and describes the behavior of the distribution.
Therefore, if H(X) << Hy(X) then 2V1(X) is a small fraction of the number
of possible outcomes (#5x )N = 2VHo(X) The reason for this result is the fast
convergence of —1/Nlogp(Xy,...,Xny) — H(X) for large N in all points of
the domain except in the neighborhoods of 0 and 1. This result is conceptually
similar to the law of large numbers, which justifies the use of the sample mean
for approximating the expected value.

Suppose there is an i.i.d. Bernoulli random source with probability 0.2 and
0.8 for 0 and 1, respectively. If the length of the sequence is N, then the typical
sequence should contain around 0.2N zeros and around 0.8 N ones. Figure 1.6a
illustrates the convergence of the probability across these sequences. Also, we
can see from Figure 1.6b that the probability of the typical sequences defined
above converges to 1 as the length increases.
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Fig. 1.6. (a) Convergence of the typical sequences and; (b) the total probability as
a function of N.

Entropy is not the only scalar descriptor of the probability mass (or
density) function of the data, but it is arguably the most fundamental [264].
Still today, the most commonly used descriptors of PMFs (or PDFs) are the
moments of the data [235]. For instance, the mean, which locates the center
of mass of the PMF, is defined as

1
m(X) = Blr] =
k
and the variance, which measures the dispersion around the mean, is defined as

var(X) = Bz — m)?] = %Z (2 — m)2.
k

Likewise, the ith moment around the mean is m;(X) = E[(z —m)?]. For i = 3
the moment is referred to as the skewness, which measures the asymmetry in
the PMF, whereas i = 4 is referred to as the kurtosis, which measures the
peakness with respect to the Gaussian PMF. As is well known, the PMF can be
entirely defined by the central moment expansion of the data (or alternatively
by the characteristic function ¢x (s) = Ex[e’*X]), but one needs an infinite
set of such numbers.

The definition of entropy is fundamental because of its elegant properties,
deep meaning, and above all, because it enabled numerous developments in
communication theory, which brought a paradigm shift to the design of opti-
mal communication systems. In terms of elegance, Shannon proved that his
definition of entropy (for discrete random variables and apart from a scale fac-
tor that is related to the units of measurement) was the only one that obeyed
a very simple and intuitive set of axioms [293]:

1. H(p,1 — p) is a continuous function of p.
2. H(p1,p2,..,pN) is a symmetric function of the py.
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3. H(1/n, 1/n,..., 1/n) is a monotonically increasing function of n.
4. H(p1,p2;---,pN) = H(p1 + p2,p3,...,pn) + (p1 + p2)H(p1/(p1 + p2),

p2/(p1+ p2))-
5. H(p1.p2) = H(p1) + H(p2) for independent events.

The fourth property is called recursivity and it singles out Shannon’s en-
tropy from all the other definitions of entropy. There is also a sixth property
known as permutational symmetry, which was implicitly used by Shannon.
Entropy is a concave function of its arguments [65], therefore a large body of
mathematics can be readily applied. Perhaps more important than this ax-
iomatic characterization, Shannon was able to build a mathematical theory for
the information content of messages and prove three very important theorems:
the source coding theorem, the channel capacity (or channel coding) theorem,
and the rate distortion theorem (see [65])

1.4 Mutual Information

Up to now we dealt with the characterization of a single source of information.
However, communication systems have inputs and outputs, each uncertain in
its own way, therefore it is important to expand the analysis to two sources
of information. This expansion leads us to the second important descriptor
of statistical properties used in information theory, which Shannon named
mutual information. Let us create a discrete product space of the transmitted
message X = {z;}~_, and the received message Y = {y;}_, in Figure 1.3.
The channel noise creates a probability distribution p(X, Y) over the product
space. From the point of view of error-free communication in the receiver,
the question is to what extent does y; specify one of the x;. The channel
basically changes the probability of x) from its a priori value p(xj) to the
a posteriori value p(zk|y;). This is just plain old probabilistic theory. We
previously discussed the characterization of the information content of X by
its entropy, now we would like to determine how much information can be
communicated through the channel. After observing y; the probability of xy,
is denoted p(zx|y;) and the uncertainty left in zj becomes log(1/p(xk|y;)).
Therefore, the decrease in uncertainty about x; brought about by observing
Yi 18

) =lo Ly o 1 — 1o p(zklyi) — 1o p(@k, Yi)
I, 30) = logz <P(xk)> 108 <p(w‘k|yi)> log p(ak) togs p(zk)p(y:)
(1.5)

which can complementarily be thought of as the gain in information. Notice
that if p(zr) = p(aklyi), I(zk, yi) = 0, which indicates that there is no
decrease in uncertainty. In the other extreme, if p(zy|y;) = 1 then I'(xy,y;) =
log(1/p(zx)); that is all the information about x; was conveyed through the
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channel. For some messages the gain of information can be positive, whereas
it can be negative for others. Notice also that I(zk, v;) = I(y;, ). The
total decrease in uncertainty in X by observing Y is known as the mutual
information between X and Y, which is defined as

I(va) xkayz ZZP Tk, Yi IOgZ ((k|y)2)

=2 Plen s HEb) (1

where p(X, Y) is the joint mass function of X and Y.

In communications, the base of the logarithm is normally two so that the
units are measured in bits, but any other basis can be used. It is appropriate
to relate mutual information with the probability theory concepts of joint
and condition PMFs. One can start by defining the joint entropy of a pair of
random variables X and Y as

=YY p(x,y)logp(x,y) = —Exyllogp(X,Y)].  (1.7)

Likewise we can define the conditional entropy of Y given X as

H(Y|X) = ZZP (z,y) logp(ylz) = — Ex,y[log p(ylz)]- (1.8)
Therefore, mutual information can also be formally defined by expanding
Eq. (1.6) as

I(X,Y) = H(X)+ H(Y) - H(X,Y)
I(X,Y) = H(X) - HX|Y) = HY) - HY|X) (1.9)

The relationships between mutual information and these quantities can be
visually appreciated on a Venn diagram, as shown in Figure 1.7.

H(X,Y)

H(X)

b |
L H(XIY) ok 1(X,Y) ——— H(YIX) —2,
1

H(Y)

Fig. 1.7. Diagram to illustrate the relationship among joint information, marginal
entropy, conditional entropy, and mutual information.
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As one can see, mutual information is always greater than zero and it
quantifies the intersection of H(X) and H(Y'). From a communication sys-
tem perspective and in words, mutual information quantifies the reduction of
uncertainty in X after observing Y, that is H(X) — H(X|Y). But sometimes
it is easier to perform the computation in reverse order, that is computing
H(Y)— H(Y|X), from which the same result will be obtained.

1.5 Relative Entropy and Kullback—Leibler Divergence

In 1936, Mahalanobis first introduced the concept of “distance” between two
probability distributions, and since then many important results related to
this concept have been established. Let us consider two different probability
densities p(z) and ¢(z), and define the Kullback—Leibler (KL) divergence as

Dkr(p |l q) = Zp logi Ep[logzg—;(;}

(1.10)

The KL divergence is effectively measuring dissimilarity (which conceptu-
ally is a distance) between p(z) and g(z). However, we cannot call it a distance
because it only obeys one of the postulates of distance. More specifically, the
KL divergence obeys the positivity requirement (Dkr(p||¢) is nonnegative),
but it is not symmetric (Dkr,(p||q) differs from Dk, (¢||p) in general), and it
does not obey the triangular inequality. For this reason it is called a directed
distance or a divergence. The quantity — E,[log¢(X)] is commonly named
cross entropy. Figure 1.8 shows the contours of constant value of dissimilar-
ity over the p(z) and ¢(x) space, obtained with the conventional Euclidean
distance for a pair of distributions (Dgp(p, ¢)), Dku(p|lq), (Dxw(q||p), and
Jaiv(p||q) respectively (the latter is defined shortly). As we can see the assess-
ment of dissimilarity is quite different for the four measures.

The asymmetry may be a useful property when one addresses directional
coupling, but many times one would like to work with an information dissim-
ilarity measure that is symmetric. Jeffrey [65] defined a symmetric measure
that is now known as J divergence, which is given as

Jaio(p.@) = /1/2(Dkr(p [| ) +1/2(Dxe(q || p))*. (1.11)

There is kind of Pythagorean theorem that supports the interpretation
of the KL divergence as square distance. Suppose that the distribution p
lies in a convex set S and @ lies outside S. Choose a distribution p* on
the boundary of the convex set such that Dkp,(p*||g) assumes its minimum
value for p* belonging to S and fixed ¢. It is possible to show [178] that
Dki(p || ¢) > Dki(p || p*) + Drr(p* || ¢). This agrees with the Euclidean
distance between the same points D% (p, q) > D%(p,p*) + D% (p*, q).
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Fig. 1.8. Measures of distinguishability between probability distributions P =
(p,1 —p) and Q = (¢, 1 = q): (a) De(Pl|Q), (b) Dxr(Pl|Q) (c) Dxr(Q[|P)
(d) de(P7 Q)

Properties of KL, Divergence

So far we have related the concept of entropy with uncertainty. It seems rea-
sonable that reduction of entropy should result in a gain of information but we
have not provided a systematic treatment of this aspect. The KL divergence
is associated with the concept of gain of information, which is considered by
many as the fundamental concept in information theory [264].

Let the probability of an event A be P(A) = ¢ and let it change to p
after observing an event B, P(A|B) = p. We obtain log 1/¢—log 1/p bits of
information on A by observing B. Likewise, using the concept of entropy, we
could say that the uncertainty in A was log 1/¢ and it changed to log 1/p after
observing B. The decrease in uncertainty is again given by log 1/¢ —log 1/p
bits. Now, if one has events A;, ..., Ay with ¢, = P(Ag), k=1, ..., N,
when observing B these probabilities become py = P(Ag|B). How much infor-
mation was gained by observing B in this case? The decrease in uncertainty
(gain in information) log pi/qx is positive for some and negative for others.
The total gain in information can be calculated in two different ways: by tak-
ing the average of the partial gains of information or by averaging the negated
increase in partial uncertainty, multiplied by py, which yields Dk (P||Q) or
the relative entropy. This quantity is also called Shannon’s information gain
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and it is exactly the decrease in uncertainty, which distinguishes Shannon’s
from all the other information measures defined in the literature. For the par-
ticular case that g(x) is the uniform distribution, the relative entropy defaults
to the entropy of p(x).

Mutual information is a special case of the KL divergence, which is ob-
tained when p(z) is the joint PDF of z y, and ¢(z) is the product of the
marginals:

Die(p(X,Y) || p(X)a(¥)) = I(X,Y). (112)

The relative entropy is jointly convex; that is for any A € [0, 1],

Drgr(Ap1+(1=X)p2 || A1 +(1=XN)g2) < ADkr(p1 || ¢1)+(1—=AN)Dgr(p2 || ¢2)

When applied to Markov chains, KL divergence has a very distinct property
that is very useful. Let T' be a stochastic map, i.e. a properly normalized
matrix that transforms one probability distribution into another. Then we
can prove [65] that

D (Tp(X) [ Tp(Y)) < Dr(p(X) || p(Y)) (1.13)

or in words, that the relative entropy in a Markov chain always decreases
with time.

Another property of KL divergence that is worth stating in this brief review
is that it is invariant to a reparameterization of the random variable. This is
very important and it is a reflection that there is a close relationship between
the KL divergence and the local structure of the space quantified by the
Fisher-Rao metric [178].

Continuous Variables

Up to now we have concentrated on discrete event spaces, but it is possible to
extend the definitions of mutual information and entropy to continuous event
spaces. The (differential) entropy of a continuous random variable X with
PDF p(z) is defined as h(X) = — [¢p(z)logp(x)dz, provided the integral
exists and where S is the support of the random variable X. Although in this
book we are interested in continuous random variables, we use the notation
H(X) to represent differential entropy and also refer to it simply as entropy.
Therefore entropy and mutual information for continuous random variables
are defined as

H(X) = — / log p(x)p(x)de = — Ex[log(p(x)), (1.14)

I(X,)Y)= //I(m,y)p(m,y)d:cdy = Exy[I(z,v)], (1.15)

Ds(p(a) la(e)) = [ pioytog 5o = 5, log 23] (116)
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where p(.) and ¢(.) are PDFs, I(z,y) is given by Eq. (1.5) and E[.] is the
expected value operator. However, we must remember two things: entropy for
the continuous variable case is not bounded from below (i.e., the entropy of
the delta function, or a sum of delta functions, distribution is minus infinity);
and entropy is not invariant to coordinate transformations.

1.6 Information Theory beyond Communications

After the pioneering work of Shannon, there was an immediate interest in bet-
ter understanding the properties and applications of entropy and divergence.
Information theory became a scientific field in itself and many mathematicians
expanded upon Shannon’s fundamental concepts. Moreover, information the-
ory was also used in physics, statistics, and biology as well as in other areas of
engineering such as signal processing and machine learning. This, book uses
entropy and divergence as similarity metrics for optimization, thus it is im-
portant to briefly review some of these developments to fully appreciate the
power and generality of these concepts.

Generalized Definitions of Entropy and Divergences

The original definitions of entropy and divergence have been extended in nu-
merous different directions, and today they can be considered as descriptors
for a large class of concave functions. Burbea and Rao [43] introduced the
¢-entropy defined as

Hy(X) = /¢(p(x))dﬂc, (1.17)

where p(x) is the PDF of the continuous random variable z, ¢ is a continuous
concave real function over the positive reals, and ¢(0) = lim;_,o- ¢(t). There
were some important definitions of entropy that could not be written in this
form, therefore Salicru [278] defined the (h, ¢) entropies as

HE(X) =h </ ¢(p(fc))dw) : (1.18)

where ¢ is a continuous concave (convex) real function and h is a differentiable
and increasing (decreasing) real function. Most of the definitions of entropy
presented in the last 50 years can be written as (h, ¢) entropies. Some examples
are presented in Table 1.1.

Likewise, Csiszar [66] defined the ¢ divergences between the probability
densities p(z) and ¢(z) as

Dalp(e).q(a)) = [ a()o (%)dm (1.19)
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Table 1.1. Some Entropies Written as (h, ¢) Entropies

Entropy type o(z) h(z)
Shannon —z log(z) x
Renyi x* [o(1 — a)] " log(z)

Havrda—Charvat (Tsallis) (1—6)"YaP - 2) z

Table 1.2. Divergences Written as (h, ¢) Divergences

Divergences o(x) h(x)

Kullback-Liebler zlog(x) —x +1 x

Renyi (z*—a(z—1)—1)/(a(a—1)) (log(a(a—1)z+1)/(a(a—1))
Bhattacharyya ' 0.5(z +1) —log(—z+1)

J-Divergence (z — 1) log(z) x

where ¢ belongs to the class of convex functions on the positive real plane,
such that at x = 1 ¢(1) = 0 and at z = 0, ¢(0) = 0. A special case of
the ¢ divergence is the o divergence (o real value) defined as DY = Dy
obtained as

1 )\
Do) ao) = o5 [t (B) @ az1 20
and which directly gives the KL for o — 1, the Hellinger for a = 1/2 and
Renyi’s o entropy when the density ¢(z) dominates p(z) and is uniform over
the domain. As with the entropies there were important divergences not con-
sidered in this definition, therefore Menendez et al [216] proposed the (h, ¢)
divergences defined as

Dl(p(x), q(x)) = h(Dy(p(x), (), (1.21)

where h is a differentiable increasing real function defined on [0,$(0) +
lim; o ¢(t)/t]. Table 1.2 shows some of the more conventional divergences
expressed as (h, ¢) divergences.

The work on entropies and divergences is still flourishing and there are
many new exciting ideas being researched today that may have a potential
large impact in learning theory. For instance, an important divergence that
escapes this taxonomy is the Bregman divergence [41] which is defined for
strictly convex and differentiable real functions f(x) between two points of
the domain P and @ as

By (Pl|Q) = f(P) = f(@) + (P - Q).V[(Q), (1.22)

where V is the partial derivative operator. The Bregman divergence can be
interpreted as the distance between f(P) and the first-order Taylor expansion
of f at @, evaluated at P. Bregman divergence is a generalization of the
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Euclidean distance ( flz) = HmHZ), and it is also related to the KL divergence
(f(p) = X2y prlogpr — 324 pr)-

Let us briefly examine Renyi’s parametric family of entropies which plays
a central role in this book and is given by

1
1—«

1
11—«

H,(X) = log Zk p*(xg) or He(X)= log/pa(x)dx, a>1
for discrete and continuous random variables, respectively, where o is a free
parameter. One of the advantages of Renyi’s definition of entropy for estima-
tion is that the logarithm appears outside the sum (or the integral). This has
two important implications in our studies. First, it helps separate the effect
of the logarithm, which is required to fulfill the additivity of the indepen-
dent events property, from the role of the argument as a mesoscopic descrip-
tor of random variables. Indeed, oo = 2 is Renyi’s quadratic entropy, which
yields Ho(X) = —log Y, p*(zx) = —log E[p(X)]. Notice that the argument
of the logarithm is the information potential and is exactly the focal point of
Figure 1.2 linking three seemingly unrelated topics. Moreover, we show that
a — 1 yields Shannon entropy. Second, it opens up the possibility of applying
ITL to signal processing and machine learning problems even when the user
does not have a clue about the PDF of the experimental data. In such cases
a parametric PDF model is not recommended. This book utilizes Renyi’s in-
stead of Shannon’s entropy as a starting point for ITL, primarily because the
information potential can be estimated nonparametrically from pairwise sam-
ple differences. In adaptation, one can directly use the information potential
instead of Renyi’s entropy for several different criteria. For example, we derive
cost functions for adaptation, as well as estimators for divergences and mutual
information, all based on the information potential and its estimator.

Information Theory and Machine Learning

One of the key contributions of information theory for probabilistic reasoning
is to specify in unambiguous terms the amount of information (the information
measure) that an observer possesses concerning a given phenomenon when
only the PDF is known. This is of exceptional value for the design of com-
munication systems because entropy is a scalar descriptor that abstracts an
important PDF quantifier and it is sufficient to specify optimal design goals.
Therefore, entropy and mutual information should be included in the class of
mesoscopic data descriptors, on par with the moment decompositions. The
following two questions naturally arise. For what class of learning problems
are entropy and mutual information acceptable mesoscopic descriptors of the
data? Can they be applied even in the case that the processing goal does not
involve information measures?

In order to answer these questions, it is important to contrast the realities
of information theory with machine learning. First and foremost, machine
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learning and advanced signal processing applications can not be dependent
upon parametric models of the data PDF to estimate entropy and mutual
information. Indeed, the real world data sets and the diversity of applications
are conducive to nonGaussian PDFs that can even change in time. Therefore,
the first conclusion is that the usefulness of IT for machine learning is predi-
cated upon non-parametric estimators of entropy and mutual information.

Second, one must be cognizant of the differences between I'T applications
and machine learning problems. As summarized in Section 1.2, to create opti-
mal source codes, optimal message compression and take full advantage of the
channel capacity, communication theory assumes full knowledge of the mes-
sage statistics and additive channel noise. It turns out that the fundamental
problem in machine learning is rather different. In unsupervised learning, the
input data statistics are not only unknown but their quantification consti-
tutes the goal of the analysis. Likewise, in supervised learning the goal is to
estimate the joint PDF between the inputs and the desired response. This
means that the a priori knowledge required to apply information theory to
the optimal design of communication systems turns out to be the main fi-
nal objective in many machine learning settings. From this perspective, it is
not even clear that information theory will play a role in machine learning
research.

Indeed many authors have experienced difficulties in applying information
theory concepts in the biological sciences, and there is an absence of suc-
cess stories that mimic the drastic impact that IT had in the development
of communication theory [171]. Let us give a simple example in autonomous
robotics. The goal in autonomous robotics is to model the “world”, that is, a
given workplace to implement goal-directed behavior. Let us assume that the
system is adaptive and it learns from its inputs with an information principle
given by the log-likelihood of the data. The problem is that once an event is
learned the machine state changes, but the probabilities in the external world
remain the same. This is similar to what happens in the cognitive sciences,
where objective probabilities cannot represent individual knowledge or beliefs
nor can they discriminate between events that are of great importance or sim-
ply irrelevant for an individual. A productive approach is to first understand
how to fully exploit conditional information for autonomous robotics before
attempting to assign meaning to information.

Even with these concerns, this author believes that there are great advan-
tages of using an IT framework for machine learning even when information
measures are not involved in the solution. From our vintage point, the primary
niches for IT applications in machine learning are to:

e Develop new frameworks for the design of learning systems
e Foster new cost functions for optimization and learning algorithms.
e Quantify data better with mesoscopic descriptors

Information theory has a lot to offer in helping create new paradigms for
the optimal design of complex engineering systems because it focus the
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designer’s attention in the preservation and transfer of information among the
sub-systems. As an example, we provide the IT perspective of the fundamental
dilemma in machine learning: the trade-off between model complexity and
generalization accuracy. Most readers have heard about the Occam’s razor
principle and the many, many alternate ways of framing and proposing so-
lutions to this problem. According to Tishby et al [316], information theory
can provide an alternative view and a new set of tools because of the abstract
and principled concept of mutual information. It is not difficult to bridge rate
distortion and compression theories with the complexity—accuracy dilemma.
In fact, the rate distortion theorem specifies the simplest representation X (in
bits/s) of the input X for a given expected accuracy by solving

R(D) = min I(X,X) (1.23)

with D being the distortion, whereas the channel capacity theorem specifies
the best prediction X (maximum number of bits/s) that can be sent reliably
for a given condition of the channel (such as power) by solving

C(E) = max I(X,Y). (1.24)

Therefore the recipe for using IT to address the complexity-accuracy
dilemma is the solution of a MIN-MAX problem that involves mutual in-
formation between two pairs of variables. First, the input data X should be
optimally compressed by a model and then its output X should transfer as
much information as possible with respect to the desired data Y. According
to Linsker [199], biology operates an amazing compression within the sensory
cortices to deliver features to the rest of the brain by maximizing exactly the
information transfer across deep networks. Perhaps this is nature’s way of
coping with the curse of dimensionality, one of the unsolved problems in ex-
perimental science. Tishby et al. have proposed the information bottleneck
method [316] as a self-organizing principle using mutual information to opti-
mally compress input X (very much like Linsker’s principle), and optimally
transfer information to a second variable Y using the compressed data input.
We also propose in Chapter 8 a novel statistical inference paradigm based
on a multiobjective cost function combining entropy and Kullback—Leibler
divergence, which directly yields the most common unsupervised learning ap-
plications (clustering, principal curves, and vector quantization).

This book mostly discusses the second bullet, IT-based cost functions for
learning. We show how Renyi’s entropy, which through its special form de-
couples the logarithm from its argument, has opened up new applications
for optimal filtering, regression, clustering, and classification, all based on
the exploitation of the 2-norm of the data PDF as a cost function. Therefore
we envisage the data mean (as a location parameter) and the 2-norm of the
PDF as alternate mesoscopic descriptors to the conventional least squares cost
functions. We show in Chapters 10 and 11 that ITL ideas even lead to the
development of novel mesoscopic similarity functions.
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Finally, entropy and mutual information quantify more precisely the data’s
statistical microstructure when compared with second order statistics which
still constitute the mainstream of statistical signal processing and machine
learning using mesoscopic models. As we are going to see, ITL replaces 2nd
order moments with a geometric statistical interpretation of data in functional
spaces where variance is substituted by entropy, correlation by correntopy,
mean square error (MSE) by Minimum error entropy (MEE), and distances
in data space by distances in probability spaces.

In reverse direction, we also expect that learning theory will contribute to
information theory, primarily by the development of Hilbert spaces where the
inner product structure is related to the descriptors of entropy and divergence,
even in cases where the structure of the original data does not support such
operations (e.g., point processes). The definition of a RKHS for ITL operators
is studied in Chapter 9.

1.7 Adaptive Model Building

Wiener and Kolmogorov’s framework to seek optimal projections in spaces
defined by stochastic processes initiated modern optimal filtering and changed
forever our thinking about signal processing [185,333]. The roots of adaptive
model building go even farther back to the nineteenth century, when sci-
entists started describing real data by linear relationships and correlations
between independent variables. The combination of the Gaussian assumption
and second-order statistical criteria has withstood the test of time and has
led to mathematically convenient and analytically tractable optimal solutions,
which could be easily studied through conventional calculus, linear algebra,
and functional analysis. The most familiar examples are the mean square error
in least squares linear regression, and output variance in principal components
analysis (PCA).

The potential of optimal filtering became fully realized with the advent of
digital computers, when the Wiener solution could be solved analytically for
FIR filters using least-square algorithms. Adaptive methodologies that search
for the optimal solution very efficiently such as Widrow’s least mean square
(LMS) [332] could be implemented in digital signal processors to solve opti-
mally (in the MSE sense) and in real-time challenging signal-processing tasks.
A curiosity at first, stochastic adaptive algorithms (i.e., processing the incom-
ing data samples on a one-by-one basis) have become pervasive in signal pro-
cessing and machine learning because they can be applied to problems where
analytical solutions do not exist, as in the case of nonlinear filters. A notewor-
thy example is the backpropagation algorithm from neural networks [331].

In adaptive systems research (which is broadly used here to encompass tra-
ditional adaptive filtering as well as neural networks and various branches of
machine learning), the user starts by specifying a parametric mapper (a pro-
jector or a filter), which can be linear or nonlinear, an adaptation algorithm
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for the parameters (weights), and a criterion for optimality (see Figure 1.1).
Supervised learning algorithms traditionally use the mean square error cri-
terion defined as E[e?(n)] (where e(n) = z(n) — y(n) is the error sequence)
as the figure of merit in adaptation, which represents the sufficient statistics
for the case of zero-mean signals and linear systems under Gaussian residual
error assumptions [141,333]. The emphasis on second-order statistics as the
choice of optimality criterion is still prevalent today. This is understandable
for the three main reasons:

1. The success of linear systems combined with second-order statistics, at
least in part due to the inevitable Gaussianization effect of convolution

2. The well established mathematical framework

3. The abundance of efficient adaptive algorithms

Although the combination of second order-statistics and the Gaussianity
assumption, the latter of which is supported by the central limit theorem, pro-
vide successful engineering solutions to most practical problems, it has become
evident that this approach does not always work well. For example, it often
has trouble adapting nonlinear systems and observation noise having fat-tail
distributions or outliers [141]. Therefore, criteria that not only consider the
second-order statistics but that also take into account the higher-order statis-
tical behavior of the systems and signals are desired. Recent work in both the
control literature [99] and the signal processing/machine learning literature
[51,95,102] addresses this issue. For instance, in blind separation of sources
and blind deconvolution of linear channels, the insufficiency of second-order
statistics in stationary environments has led to new approaches incorporating
higher order statistics into adaptation. Specifically, the field of independent
components analysis (ICA) has benefited greatly from the use of information-
theoretic performance measures [156].

From Linear Adaptive to Information Filtering

In ITL we use information-based criteria to adapt systems. For example,
several chapters of this book are devoted to training linear and nonlinear
systems using the entropy of the error signal. Hence it is appropriate to refer
to this process as adaptive information filtering. Likewise, because optimal fil-
tering of stochastic processes is essentially regression for multivariate random
variables, the methods can be applied without modification to information
regression.

Training utilizes sensitivity considerations to optimize the system’s pa-
rameters during adaptation (Figure 1.1). Let us consider a single-output para-
metric system y = f(z, w) and a set of training input desired response pairs
{z(n), z(n)} where n is a time index. The system output y(n) is compared
with the desired response z(n) at each time step and an error is defined
as e(n) = z(n) — y(n). We start by assuming that f(.) is a linear function
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of x(n) and the parameters, such as in finite impulse response (FIR) filters

y(n) = wl'x(n) or equivalently

M-1
wrz(n — k), (1.25)
k=0
where x = [z(n),...,z(n — M + 1)]T, w = [wo,...,wy—1]T are the FIR

coefficient (also called the weights) and M is the filter order. For future refer-
ence, we sometimes denote z(n — k) = xp(n) to represent the value at tap k
and time n. Let J(e(n)) be the cost function constrained to be a continuous
function of the error. The conventional adaptive filtering framework [141] de-
scribes the optimal filtering problem as one of obtaining the minimal error in
the mean square error sense between the desired response z(n) and the system
output y(n):

Juw(e(n)) = El(2(n) — f(z(n), w))?]. (1.26)
The general approach to finding a set of parameters that correspond to a
stationary point of J(e(n)) is to take the partial derivatives with respect to
the unknowns (in this case the system parameters w also called the weights)
and equate them to zero; that is,

dJ(e(n))
=0 (1.27)

Using the chain rule (see the block diagram of Figure 1.1), we immediately

obtain
dJ(e(n))  0J(e(n)) de(n)
ow  Oe(n) ow
The first term on the right side is calculated from the cost function, whereas

the second term is the sensitivity calculated across the specified system topol-
ogy. For an FIR filter and the mean square error cost this yields

9J(e(n)) de%(n) de(n)
ow =P { de(n) Ow

= 0. (1.28)

] = —2F[e(n)x(n)] = 0. (1.29)

When interpreted in vector spaces this expression states that the optimal so-
lution occurs when the error is orthogonal to the input space. If we substitute
the definitions of e(n) in Eq. (1.29) we obtain [185]

E[(2(n) —y(n))x(n —i)] = Elz(n)x(n — i)]
M—

Z wyz(n — k (ni)]—O, i=0,...,M—1. (1.30)

k=0

The solution of this set of M equations in M unknowns yields the length- M
vector of weights w = R™'p where R is the (M x M) autocorrelation matrix
of the input z(n) defined as
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Roo -+ Rom—1
R = , Ry, = E[z(n — k)xz(n —1)]
Ry—10 -+ Ry—1.m—1

and p is the cross correlation vector between the input and desired signals
defined as p=[po ...pv—1]T, pr = Elz(n)z(n — k)] [141].

Instead of analytically computing the optimal solution with Eq. (1.30), one
can use a search technique such as steepest descent (also known as gradient
descent). Indeed, Eq. (1.26) defines a cost function in the space of the weights
which is conventionally called the performance surface [332]. Due to the linear
and feedforward nature of the FIR, the performance surface contains a single
minimum. The gradient of the error is obtained as

_0J(e(n)) _ OE(e2(n))

VI(n) = = S (1.31)

An initial weight vector is chosen (normally w(0) = 0), the gradient at the
point is estimated, and a new weight vector is found by changing w(n) pro-
portionally to the negative of the gradient vector; that is,

w(n+1) =w(n) —nVJ(n). (1.32)

The procedure is repeated until the operating point is in the neighborhood of
the optimal solution found by analytical methods. The constant of proportion-
ality m is called the stepsize or the learning rate. This expression can be applied
locally to each of the weights in the weight vector. If the expected value is
substituted by the average over N past samples, the gradient can be estimated
from the available data at sample n. This steepest descent algorithm has been
studied in depth in the adaptive filtering literature [332] and it is known that
the stepsize for convergence is upper bounded by the inverse of the largest
eigenvalue of the input data autocorrelation matrix R; 1 < 1/Anax. The
famed least mean square algorithm is a stochastic approximation to the steep-
est descent that uses the current error (e(n)) as the gradient estimate; that is,

o (1R )
ViJ(n) = 8_wk (ﬁ ; e?(n — z)) ~ a—wk(eQ(n)) = de(n) dwn
= —e(n)ax(n) (1.33)
yielding the simple LMS adaptation formula
wg(n + 1) = wi(n) + ne(n)zk(n), k=0,...,M—1 (1.34)

which has a complexity of two multiplications per weight. The computation
in Eq. (1.34) is also local in the topology and local in time. The simplicity
of this algorithm launched the engineering applications of optimal filtering as
we know them today.
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The least square solution which uses the MSE cost has a very distinguished
history dating back to Gauss, and leads to a closed-form characterization of
the solution as a conditional mean. But it can also be framed in statistical
terms as regression. Given two dependent random variables {z(n), z(n)}, we
can pose the problem of determining an “optimal” estimator of z(n) given
z(n). Under the minimum mean-square-error criterion (MMSE), we have

min Ee?(n)] (1.35)
w
with e(n) = z(n)— f(z(n),w), and Ele(n)] = 0. It is well known that 2(n), the
minimum least mean square estimator of z(n) given xz(n), is the conditional
expectation of z(n) given z(n) [235]:

y(n) = Elz(n) |2(n)] = /Z(n)p(Z(n) | 2(n))dz, (1.36)

which corresponds to the minimization of the error variance of Eq. (1.35).
Moreover,

(1.37)

There are several important observations. First, the result of > 0’5 is interest-
ing because, if we view the variance as a loose measure of uncertainty (similar
to entropy), this inequality tells us that the “information” contained in the
estimate cannot be more than that of the original desired random variable.

Second, the orthogonality condition in Eq. (1.37) states that an estimator
y(n) = 2(n) = f(x(n)) is optimal in the least mean squares sense if and only
if y(n) is unbiased and e(n) L f(z(n)) for any function f. In other words, the
optimal MMSE estimator is such that no matter how we modify the system
parameters, there is no better solution that can extract additional structure to
reduce the variance of y(n) further. In other words the orthogonality condition
is a defining property for the minimization of the variance. Effectively this
corresponds to estimating the orthogonal projection (with an Euclidean norm)
of the desired response z(n) in the space spanned by the states of the system,
or for FIR filters, the space spanned by the input signal z(n).

However, a more general question is under what conditions is the choice
of MSE optimal because the optimization only constrains the second-order
moment (variance) of the error, this question is equivalent to optimizing the
second-order statistic. For instance, Wiener [333] has shown that if the signals
x(n) and z(n) are wide sense stationary random processes (i.e., fully described
by second-order statistics) then this procedure is optimal. In a statistical
framework, as long as the residuals are Gaussian, least squares will provide
the best linear fit.
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1.8 Information-Theoretic Learning

When the residuals are not Gaussian distributed, a more appropriate approach
would be to constrain directly the information content of signals rather than
simply their energy [68,177,199]. Because entropy is defined as the uncertainty
of a random variable, it is only natural to adopt it as the criterion for appli-
cations where manipulation of the information content of signals is desired or
necessary. However, there are important differences between the application
of information theory to communication systems and the reality of adaptive
signal processing and machine learning.

1. Adaptive systems must handle continuous-valued random processes rather
than discrete-valued processes. Noting this fact, we must focus our discus-
sion on continuous random variables, described by their probability density
functions.

2. Adaptive algorithms require smooth cost functions; otherwise the local
search algorithms become difficult to apply.

3. The data statistics in machine learning and modern signal processing ap-
plications have long tails (especially when nonlinear topologies are consid-
ered) and the real-world examples are plagued with outliers. Therefore, the
Gaussian assumption so widespread in communications is normally a poor
descriptor for these applications.

This means that the analytic approach taken in information theory must
be modified with continuous and differentiable nonparametric estimators of
entropy and divergence. To meet requirements 2 and 3 we are convinced that
the nonparametric kernel density estimators championed by Rosenblatt and
Parzen [241,272] are a productive research direction. As we show, kernel
(Parzen) estimation has the added advantage of linking information theory,
adaptation, and kernel methods.

This book provides a general ITL methodology to implement adaptive al-
gorithms with information theoretic criteria. ITL synergistically integrates the
general framework of information theory in the design of new cost functions
for adaptive systems, and it is poised to play an expanding role in adaptive
signal processing. ITL does not only affect our understanding of optimal signal
processing, but also influences the way we approach machine learning, data
compression, and adaptation as we demonstrate in the sequel.

The fundamental issue in ITL is how to estimate entropy and divergence
directly from samples, which is treated in Chapter 2 in great detail. Chapters 3
to 5 cover the learning algorithms to adapt linear or nonlinear systems using
the error entropy criterion (EEC). ITL also provides divergence and mutual
information measures and the corresponding estimators. These mesoscopic
descriptors can also be used to train linear and nonlinear systems when a
desired response is available as in classification (Chapter 6), or even extract
structure from the input data alone (unsupervised learning) as demonstrated
in Chapters 7 and 8.
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1.9 ITL as a Unifying Learning Paradigm

The theory of learning is conventionally divided in three basic principles: su-
pervised, unsupervised, and reinforcement learning. Although there are good
reasons to make this division, the algorithms that are currently employed
accentuate the differences. We will briefly present the impact of ITL for
learning theory in this section.

Supervised Learning Paradigm

In supervised learning, the adaptive system has access to two sources of data
from the external world; pairs of signals {z;, z;}. The goal of learning is to
discover the model that relates  with z (Figure 1-1). Given the existence
of two external data sources, the supervised learning problem normally is
framed as a functional mapping, where there is a parametric system in some
functional class that receives the input x and z takes the role of the desired
response. Hence, an error between the desired and the adaptive system output
y can be easily defined by subtraction, which leads to the idea of penalizing
the error for adaptation and to find the parameters that achieve this minimal
error. This gives rise to least squares and gradient descent procedures, which
became the hallmarks of supervised adaptation.

Unsupervised Learning Paradigm

In unsupervised learning, the adaptive system has access to a single source
of data from the external world. The goal of learning in this case is to
find system parameters that quantify the data structure. In principle it is
not easy to pose the unsupervised learning problem in terms of a cost, but
one of the exciting advances of the last 20 years has been the formulation of
self-organizing principles [152] that are also related to “energy methods” [196].

Reinforcement Learning Paradigm
In reinforcement learning, there are still two sources of data from the external
world, however, one of them is just a binary value that tells the system if
its response is good or bad. Therefore, the supervised learning methodologies
cannot be directly applied, and the system has to explore the environment to
receive rewards. Although supervised learning has thus far been the major in-
spiration for reinforcement learning algorithms, there is a role for unsupervised
methods to help structure the search. This topic is not treated further here.
The ITL methodologies play an important role to develop algorithms that
are independent of the learning paradigm; that is, the same algorithm can be
applied to both unsupervised and supervised scenarios just by switching the
inputs to the cost function. This characteristic unifies the learning paradigms
and is shown in Figure 1.9. ITL accomplishes this goal by creating versatile
cost functions that are external to the learning machine and also by framing
unsupervised algorithms as adaptations with an external cost function.
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Fig. 1.9. A unifying view of learning based on ITL cost functions (from [252]).

Divergence or Mutual Information Criteria

One of the inputs to the cost function in Figure 1.9 is always the system
output. The control of supervised versus unsupervised is done by the switch
that brings the other source of data to the cost criterion. Instead of mutual
information as shown in the figure, divergence can be used interchangeably,
except for the fact that minimization will be substituted by maximization of
the cost.

Switch in position 1

Filtering (or regression) and classification: When the switch is in position 1,
the cost receives the system output and the other source of information is
the desired response, so the problem is supervised in our terminology (two
sources of data from the external world), and by minimizing the divergence
(or maximizing MI) we are making the system output as close as possible to
the desired response, just as in regression or optimal filtering with the min-
imization of the MSE, except that now we are using knowledge about the
PDFs, and we do not require the same number of system outputs as desired
responses, as demonstrated in Chapter 6.

. B og P
n&nDKL(y | 2) = /p(Y)l gp(z) dy (1.38)

max I(y,z) = H(y) = H(y | 2).

The same thing happens for classification, except that now the desired re-
sponse is a set of indicator functions (discrete value function; i.e., 0/1). This
might simplify the calculations.

Feature Extraction: Suppose that the desired response is an indicator function.
In this case, one important question is how to project the high-dimensional
input to a possibly nonlinear subspace, such that the discriminability of the
outputs with respect to the labels is preserved. The problem can be solved by
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maximizing the mutual information between the projection outputs and the
class labels:

maxI(y,c) = H(y) = Y pH(y | o). (1.39)

This principle generalizes the concepts behind PCA and LDA to nonlinear
feature projections [106,108].

Switch in position 2

When the switch is in position 2, the other source is the input data itself,
so learning is unsupervised according to our definition because the cost has
access to the data () and a processed version of the data (y).

Mazximum Information Transfer: The optimization problem is to maximize the
transfer of information between the input and the output of the system. This
is called the principle of maximal information transfer and is related to the
channel capacity theorem and the information bottleneck framework [97,316].
One could maximize the mutual information between the original input data
and the transformed output data to preserve information maximally while
reducing noise.

p(y, x)

L p(yanGea) Yo (1.40)

max [ (y, x) = / p(y, x) log

This formulation has also been suggested as a self-organization principle in
distributed systems.

Switch in position 3
When the switch is in position 3, the only source of data is the system output
that is assumed multidimensional.

Independent Component Analysis: In this case if we minimize MI we are per-
forming redundancy reduction or independent component analysis, which is an
unsupervised problem. Indeed, one assumes a multiple-input—-multiple-output
(MIMO) system and the goal is to create statistically independent outputs
[57,156]. For a nonlinear MIMO system y = f(x;w), the nonlinear ICA prob-
lem seeks to determine the parameters w of f(.) such that the mutual infor-
mation between the components of y is minimized (preferably to zero):

. P(Y:s¥1---Yd)
minI(y,y1 ...y :/p Y,,Y1-..Yq) log —=—"—"—""dy. 1.41
R | A

Clustering: Finally, assume that the goal of the mapper is to divide the input
data into a preselected number of structurally and/or statistically distinct
groups (clusters). Here, the weights become the assigned cluster membership
values and the criterion is to assign samples to a cluster such that the clus-
ters are defined as compactly and distinctly as possible, measured by cluster
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entropy and divergence. In the case of two clusters, one could use the J diver-
gence, for example;

max Dycr,(pi(y) || p2(y)) + Drr(pa(y) | pr(y))- (1.42)

Entropy Costs

Instead of using divergences or mutual information, we can also use the
entropy as our information cost, but now only one variable is utilized for the
cost, so an extra operation may be necessary before bringing the signal to
the cost.

Switch in position 1

Error Entropy Criterion: With the switch in position 1, if the difference be-
tween the desired and the system output is computed first (i.e., the error) and
the criterion minimizes entropy, this is information filtering (or information
regression) and classification.

w

min H (e) :/p(e) log p(e)de. (1.43)

Switch in position 2

Optimizing for Extremes of System Output: An alternative is to simply max-
imize (or minimize) the entropy at the system output (subject to some con-
straint on the weight vector norm or the nonlinear topology), which leads to
an information-theoretic factor analysis to discover interesting structures in
the high-dimensional input data.

max H(y) =~ [ p(y) logp(y)dy
subject to Elhi(y)] =i, i=1,...,d.

(1.44)

This formulation is useful in blind equalization, nonlinear principal component
analysis, ICA, and novelty filtering [139,156].

On the other hand, if the switch is in position 3 and the entropy criterion
is maximized, we are implementing MaxEnt. All these cases are summarized
in Table 1.1-1.3. Perhaps even more remarkably as we show in Chapter 2, all
of these learning scenarios can be implemented using nonparametric estima-
tors of Renyi’s entropy and Euclidean distance or Cauchy—Schwarz divergence
based on the information potential (for entropy) or the generalized informa-
tion potential (for divergence or mutual information).

Therefore the ITL methodology improves upon many of the previous works
where the self organizing principles were applied but their implementation
with real data used Gaussian assumptions, wasting the generality of the prin-
ciples in the sense that equivalent maximum likelihood solutions could be used
instead.
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Table 1.3. Summary of ITL costs for Different Applications

Switch Distance Distance Mutual Info Mutual Info Entropy  Entropy

Max Min Max Min Max Min
1 Information Information Innovation Information
filtering filtering filtering filtering
2 InfoMax InfoMax
3 Clustering ICA MaxEnt
(NLPCA)

1.10 Reproducing Kernel Hilbert Spaces

A Hilbert space is a linear, complete, and normed space endowed with an in-
ner product [214]. Some Hilbert spaces are infinite-dimensional vector spaces
and they are the foundation of continuous-time signal processing. Prior to the
widespread use of digital signal processing, which is based on finite discrete
time series of finite length that can be properly described in Euclidean spaces
(RY), infinite-dimensional Hilbert spaces were commonly used. Fourier trans-
forms, Karhunen—Loeve transforms, and Wiener filters were initially studied
in infinite-dimension Hilbert spaces, so the theory is very well developed. The
existence of a reproducing kernel Hilbert space corresponding to any symmet-
ric and nonnegative definite kernel function is one of the most fundamental
results of the theory. The RKHS framework was originally studied because
all Green’s functions of self-adjoint ordinary differential equations and some
bounded Green’s functions in partial differential equations belong to this
special class of functionals of two variables. But it was not until 1943 that
Aronszajn systematically developed the general theory of RKHS and coined
the term “reproducing kernel” [7]. The expanded paper [8] on his previous
work became one of the standard references for RKHS theory.

The application of RKHS methodology in statistical signal processing was
proposed by Parzen in the late 1950s, who provided for the first time a func-
tional analysis perspective of random processes defined by second-order mo-
ments (called Gaussian processes) because they can be approached by purely
geometric methods when studied in terms of their second-order moments
(covariance kernel) [238]. Parzen clearly illustrated that the RKHS approach
offers an elegant general framework for minimum variance unbiased estima-
tion of regression coefficients, least squares estimation of random variables,
detection of know signals in Gaussian noise, and so on. Although they involve
random variables, all these problems can be solved algebraically in the RKHS
associated with their covariance functions with all the geometric advantages of
the inner product defined in such spaces. In the early 1970s, Kailath presented
a series of detailed papers on the RKHS approach for detection and estimation
to demonstrate its superiority in computing likelihood ratios, testing for non-
singularity, bounding signal detectability, and determining detection stability
[173-175]. Although the approach was very elegant, it did not produce new
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results. RKHS concepts have also been extensively applied to a wide variety
of problems in optimal approximation by Wahba including minimum norm
interpolation and smoothing by spline functions in one or more dimensions
(curve and surface fitting) [327]. Figueiredo took a different approach to ap-
ply RKHS in nonlinear system and signal analysis [69]. He built the RKHS
bottom-up using arbitrarily weighted Fock spaces. The spaces are composed
of Hilbert—Schmidt polynomials or power series in either scalar or multidimen-
sional variables. The generalized Fock spaces have been applied in engineer-
ing for nonlinear system approximation, semiconductor device characteristics
modeling, and neural networks [103].

Today, RKHS are often applied in connection with the kernel methods of
machine learning [289, 294], and it is important to understand their advan-
tage for this application, which is different from the work developed by Parzen.
Since Cover’s work [232] we know that the probability of linearly “shatter-
ing” data (i.e., finding a hyperplane that classifies the data with zero error)
approaches one with the increase in dimensionality of the space. However, the
bottleneck of this technique was the large number of free parameters of the
high-dimensional classifiers, hence computation would become expensive and
there would be the need to regularize the solutions. The RKHS provides a way
to simplify the computation, because for most kernels the space dimension is
very high (even infinite), but by the “kernel trick” the calculations can still
be done efficiently in the input space provided the quantities of interest in
the algorithms can be expressed by inner products. However, the problem of
regularization still remains. The work on support vector machines by Vapnik
rekindled the interest in RKHS for pattern recognition [232] because he pro-
vided a robust regularizer which is essential when working in high-dimensional
spaces with analytic solutions. The excitement of the kernel methods is very
vivid today. Essentially a kernel machine is a one-layer neural network (e.g.,
RBF when Gaussian kernels are used) whose parameters can be analytically
computed in the RKHS given the training set data using either the structural
risk minimization principle [323] or least square techniques [311].

A linear system in RKHS may become (depending upon the kernel) a
nonlinear filter in the input space, and this opens a very interesting avenue
to pursue nonlinear signal-processing applications. If an optimal iterative so-
lution is desirable, gradient descent algorithms have also been proposed in
RKHS [202], with the advantage that there are no local minima in the adap-
tation. This is an enormous advantage with respect to neural networks, where
the training is always problematic because the system state can be caught in
local minima. Therefore developing adaptive solutions in RKHS is an intrigu-
ing possibility to go beyond traditional neural networks.

RKHS also appear naturally in information-theoretic learning. In fact,
inasmuch as we are interested in nonparametric approaches to estimate en-
tropy and divergence, kernel density estimation is central in ITL. There is
a large overlap between the mathematical conditions required for a kernel
proper for density estimation and positive definite functions (in fact most of
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the kernels used in density estimation are positive definite). However, there are
even deeper connections as Figure 1.2 illustrates through the cross-information
potential. It turns out that the argument of quadratic Renyi’s cross-entropy is
a positive definite function involving PDF's. Therefore, it is possible to define
a RKHS for ITL as explained in Chapter 9. We now briefly review RKHS
foundations.

RKHS Definitions

A reproducing kernel Hilbert space is a special Hilbert space associated with a
kernel k such that it reproduces (via an inner product) each function f in the
space, or, equivalently, every point evaluation functional is bounded [214]. Let
Hy be a Hilbert space of real-valued functions defined on a set F, equipped
with an inner product < -,- > and a real-valued bivariate function x(z,y) on
E x E. Then the function x(z,y) is said to be nonnegative definite if for any

finite point set {z;, z2, ..., x,} C E and for any not all zero corresponding
real numbers {a;, ag, ..., a,} C R,
n n
ZZ a;a5k(x;, x5) > 0. (1.45)
i=1j=1

Any nonnegative definite bivariate function x(zx,y) is a reproducing kernel
because of the following fundamental theorem.

Theorem 1.1 (Moore—Aronszajn). Given any nonnegative definite func-
tion k(x,y), there exists a uniquely determined (possibly infinite-dimensional)
Hilbert space H,, consisting of functions on E such that

(I) VeeE, &k(,z)€H,
(INVz e E, VfeH, f(z)=(fr(,2))y .

K

(1.46)

By property (I) we see that each point in the input space is mapped onto a
function in the RKHS defined by the selected kernel. Therefore the richness of
the representation in RKHS is related to the kernel one defines, thus we denote
this dependence by H,, or H := H, is said to be a reproducing kernel Hilbert
space with reproducing kernel . The property (II) is called the reproducing
property of k(z,y) in H,. In particular, we can define our nonlinear mapping
from the input space to a RKHS as ®(x) = (., z); then we have

<(I)($)’ (I)(y)>HN = <I€J(.,l‘), F‘;(',y)> = Iﬂ;(l‘,y) (147)

and thus ®(x) = k(.,x) defines the Hilbert space associated with the kernel.
Notice that similarity between functions in the RKHS is also totally defined
by the kernel because it defines the inner product of functions. For those who
know delta functions from signal processing, the delta function has the repro-
ducing property (through convolution it extracts the value of the function at
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the point where it occurs), but does not obey Property I above, so it is not
a kernel nor defines a RKHS. Besides its defining property, this theorem also
suggests a huge simplification which is addressed next.

Kernel-Based Learning Theory

Kernel-based (Mercer) learning algorithms use the following idea [289]. Via a
nonlinear mapping
¢:F—-H
x — O(x)

the data {z1, 2, ..., 7,} C E (where E is usually R?) are mapped into
a potentially much higher-dimensional feature space H, with a linear struc-
ture. A given learning problem in F is solved in H, instead, by working with
{®(z1),...,P(z,)} C H. Because H, is high-dimensional, a simple linear
learning algorithm, and preferably one expressed solely in terms of inner-
product evaluations, can solve arbitrarily nonlinear problems in the input
space (if H,; is sufficiently rich to represent the mapping). The inner product
formulation implicitly executes the linear algorithm in kernel feature space
but the data and the operations are all done in the input space (by the kernel
property of Eq. (1.47), normally called the kernel trick). The Mercer theorem
guarantees the existence of the nonlinear mapping ®.

Theorem 1.2 (Mercer’s). Consider a symmetric kernel function k € Lo
(E x E). If k is the kernel of a positive integral operator in Lo(E), and E is
a compact subset of R? then

Vo € Lo(E): AfWWWQW@MMyEQ (1.48)

Let ®; € La(E) be orthonormal eigenfunctions of the above operator and
A; > 0 their corresponding eigenvalues. Then

() = YN0 () (1.49)

holds for Ng < oo or Np = oo. In the latter case the series converges abso-
lutely and uniformly for almost all  and y in E [217]

The operation in Eq. (1.49) clearly provides a nonlinear mapping via the
eigenfunctions determined by the kernel. The kernel trick can be used to
develop nonlinear generalizations of any algorithm that can be cast in terms
of inner products [287]. For example, KPCA, KLDA, and kernel k-means
[72,112,287] are simply extensions of the corresponding linear algorithms by
applying the kernel trick on every inner-product evaluation. A kernel that
satisfies Eq. (1.49) is known as a Mercer kernel. The most widely used Mercer
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kernel is the Gaussian function (also used in the radial basis function (RBF)

network)
’ 2mo 202

where 6 is a kernel size or bandwidth that works as a scale parameter which
controls the width of the Gaussian. A Gaussian kernel corresponds to an
infinite-dimensional Mercer kernel feature space, because the Gaussian has an
infinite number of eigenfunctions.

Nevertheless, there is an immediate downside to this property, and it ap-
pears as the need to evaluate the functions in a pointwise manner; that is
the algorithms become memory intensive because in principle all the kernel
evaluations must be saved to compute future outputs. In fact, these learn-
ing machines look like nonparametric algorithms when implemented with the
kernel trick, except that there is a model in the RKHS to adapt the param-
eters. After this brief presentation of RKHS properties, RKHS is linked with
information theory, adaptive filtering which is an example of the RKHS for
representation, and their role for statistical inference.

1.11 RKHS and ITL

The need to estimate nonparametrically entropy and divergence raises the
question of how to accomplish this goal. Because these descriptors are based
on the PDF, the use of kernel density estimation jumps immediately into our
minds because of its nice properties. Kernel density estimation is a very well
established field [272], therefore many results are available quantifying the
bias and variance of the estimators and their consistency [241], as well as its
difficulties in determining the optimal kernel size and its poor efficiency in
high-dimensional spaces [170].

Most of the kernels used in density estimation are indeed nonnegative bi-
variate functions, therefore they define a RKHS. For instance, Scholkopf shows
that classifiers can be easily constructed using the mean of the transformed
data, which implicitly use the PDF as the discriminant function [225]. How-
ever, there are deeper connections that are explored in this book as illustrated
in Figure 1.2. Let us define cross-entropy between two PDFs p(z) and ¢(z) as

Hpi) =~ [ plo)loga(a)ds = ~Ellog (o)) (151)
which measures the average number of bits needed to identify an event from

a density ¢(z) with a coding scheme built on a different probability density
p(zx). For Renyi’s entropy, the equivalent quadratic cross-entropy is defined as

mm@=4%/mmmw=—m%mm. (152)
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It turns out that the argument of the logarithm, which we call the cross
information potential, is a positive definite function as we demonstrate in
Chapter 9 so it defines a RKHS that will provide a functional analysis view of
the information-theoretic descriptors of entropy and divergence. Note that for
the special case p(x) = ¢(z), the cross information potential defaults to the
information potential which is the argument of the 2-norm of the PDF p(x).
The IP appears in a prominent role in Figure 1.2 because it is used in Renyi’s
quadratic entropy, and it is also the cost function that is used to adapt linear
or nonlinear systems in Chapters 3, through 6. The CIP is utilized as the
basis for similarity in clustering and unsupervised learning applications in
Chapters 7 and 8.

Let us contrast the RKHS defined by the CIP with the RKHS defined
in kernel methods. Let E be the space of input samples {xl}fil A kernel
is an inner-product operator k : E x E — R. An explicit way to describe
K is via a mapping ¢ : E — H from E to an inner-product space H, such
that k(z,2") =< ®(x) - ®(a’) >. In this RKHS the user selects the kernel as
any positive definite function (Gaussian, Laplacian, etc.), therefore the kernel
function is independent of the data, and if the input space data are random
variables, the RKHS is built from functions that operate on stochastic data
producing stochastic outputs. The dimensionality of the RKHS is controlled
by the dimension of the mapping ®, which is potentially very large (hence its
primary use for representation). The size of the kernel matrix (Gram matrix)
is N x N, its elements are random variables, and statistical operators are
needed to operate on the Gram matrix.

The RKHS defined by the argument of the logarithm in the CIP, Eq. (1.52)
is vastly different. The input space E is now the set of all one-dimensional
and square integrable PDFs defined in the sample space; that is, f;(x) € E,
Vi € I. The kernel is still an inner product operator defined on k : E X
E — R but the mapping between E and H, is now defined by the CIP
(le. V(fi, f;) = [ fi(z)f;(z)dx, Vi,j € I). As one can see, the kernel now is
built explicitly with the statlstlcal properties of the input data. The elements
of H, are deterministic functions so one can operate algebraically with them
for statistical inference. The dimensionality of this RKHS is controlled by the
dimension of the PDF function, and the size of the data matrix is the size
of I. There is a relationship between the two RKHS that is further elaborated
in Chapter 9. We now present two simple applications of the use of these two
classes of RKHS.

An Adaptive Filter in RKHS

The purpose of this example is to illustrate the use of RKHS to design optimal
nonlinear adaptive filters to bring together RKHS and adaptive filter theory.
The RKHS is defined on the sample set of the input and the inner product
is defined by the kernel selected for the transformation, therefore it is an
example of the RKHS for representation. As the simplest of the examples, we
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derive the equations to train in RKHS a linear adaptive FIR filter with the
LMS algorithm. It is well known that the optimal FIR filter w between r.v.
X and Z (Figure 1.1) is defined as

y(n) = wix(n) = (w, x(n)), (1.53)

where the size of the vector of weights and inputs is established by the filter
order M. It is also well known that the optimal weight vector is given by
w* = R~ 'p with the definitions in Eq. (1.25). Notice from Eq. (1.53) that the
FIR filter can be written as an inner product between the weight vector and
the input, so optimal filtering is a good candidate for a RKHS implementation
and the end result will be a nonlinear optimal filter in the input space. The
equation analogous to Eq. (1.53) for a linear filter in RKHS is therefore

y(n) = (Qn), 2(x(n))) 4, » (1.54)

where ®(x(n)) is the transformed data x(n), and Q(n) is the weight function
(the filter) in the RKHS Hy at iteration n, and the inner product is defined
by the selected kernel (e.g., the Gaussian kernel). So conceptually, what is
needed is to map the input by the nonlinear function specified by the kernel
eigenfunctions, and do an inner product with the weight vector, which can be
computed in the input space by the kernel evaluation.

The fundamental issue is how to find the optimal weights, and here instead
of attempting to solve the least square problem analytically as done in kernel
methods [289], we proceed with an implementation of the kernel LMS (KLMS)
algorithm [202] for simplicity. If you recall, the LMS algorithm is given by

w(n) = w(n — 1) +ne(n)x(n), (1.55)

where n is the stepsize that needs to be selected by the user. Let us now
implement this recursion in kernel spaces. Let us start with a zero weight
function ©(0) = 0, which we can think of as a high-dimensional vector. The
error at iteration n is given by

e(n) = d(n) — (n - 1), 2(x(n))) 4

inasmuch as it is the output of the system computed with the previous weights.
Now the new weight vector from Eq. (1.55) becomes

(1.56)

K

Q(n) = Qn —1) + n®(x(n))e(n). (1.57)

It is easy to show that we can write Q(n — 1) in terms of Q(n — 2) until Q(0)
that can be set at zero and rewrite Eq. (1.57) iteratively from the first weight
to obtain

Qn) = Zne(j)‘ﬁ(X(j)) (1.58)
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Therefore, we can now compute the present output substituting Eq. (1.58)
into Eq. (1.54)

y(n) = (Qn), ®(x(n)))p, = <Zne(j)¢’(><(j))»¢’(><(n))>

Hy

= Zne(j)/’v(X(j),X(n)) (1.59)

This iteration if it converges will approximate the optimal least square solu-
tion in the RKHS and will provide a nonlinear filter in the input space. For
further analysis of this very interesting solution that does not need explicit
regularization, see [202].

Let us now discuss Eq. (1.59). First, if the kernel is a Gaussian, the nonlin-
ear filter is a radial basis function (RBF) network with a growing structure,
where centers are placed at the projected samples and the weights are the
errors at each sample. The filter grows with each new sample following a
non-parametric approach that is discovering the mapping as time progresses.
Of course, because of finite resources one must cut the growing structure of
the filter, but if one recalls the learning curve in LMS the error decreases ex-
ponentially with the number of samples until it stabilizes. A similar behavior
is displayed by the KLMS, so a relatively small number of centers provide
better solutions than the LMS in nonlinear problems [202]. It is also possible
to compute in RKHS the optimal regressor using a block of data, but the
solution needs regularization and is essentially equivalent to the kernel regres-
sion solution (see [225]). We do not pursue these developments here, but it is
important to keep in mind that the ITL cost functions developed throughout
this book can also be used to train filters in RKHS.

RKHS Induced by the Covariance of a Random Process

The theory of Hilbert space representations of Gaussian processes (i.e., ran-
dom functions or stochastic processes { X (t),t € T'} fully described by second-
order statistics) was mentioned by Loeve [203] but mostly developed by Parzen
[238]. Our explanation will follow [238] very closely. This RKHS is defined in
an index set T and it is induced by the covariance function of the random
process, which is different in nature from the Gaussian kernel used in the
previous section. Therefore, we briefly study here some of its properties.

A time series is a family X (.) = {X(¢),t € T} of random variables with
finite second order moments. The mean value function m and the covariance
kernel R are functions on 7' and T'x T defined as m(t) = E[X(t)] and R(s,t) =
Cov[X (s), X (t)] respectively.

It is often convenient to think of a time series X (.) as indexed by a Hilbert
space H, with inner product < x,y >p, in the sense that the “random” inner
product < X,h >y, where h is a vector in H, is not a true inner product
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but represents a random variable indexed by h. The basic goal to define this
random inner product is to establish a correspondence between elements of
H, and random variables.

Let us define the Hilbert space Hx spanned by a Gaussian process
{X(t),t € T} to be the set of all random variables in the linear manifold
L(X(t),t € T) together with their limit points and denote it by Lo(X (%),
teT), ie Hx = H(X(t),t € T) = Lao(X(t),t € T). The Hilbert space
spanned by the time series becomes the smallest Hilbert space of random
variables that contains X (.). It can be shown that every random variable U in
Hx is a linear functional of X (.), i.e. U = Z;;l ¢; X (t;), for some n. Parzen
proved the following theorem:

Theorem 1.3 (Parzen). For a stochastic process {X (t),t € T} with T being
an index set, R(s, t) is the covariance function, if and only if, it is symmetric
and positive definite.

An immediate result from Theorem 1.3 and 1.1 is that R also defines a
RKHS Hpy, for the stochastic process. In the proof of Theorem 1.3, Parzen also
showed that for any symmetric and positive definite kernel function there is a
space of Gaussian distributed random variables defined on the same domain
for which the kernel is the covariance function. In other words, any kernel
inducing a RKHS denotes simultaneously an inner product in the RKHS and
a covariance function in the space of random processes. Furthermore, Parzen
established that there exists an isometric isomorphism (i.e., a one-to-one inner
product-preserving mapping), also called a congruence, between these two
spaces. This is an important result as it sets up a correspondence between the
inner product due to the kernel in the RKHS to our intuitive understanding
of the covariance function and associated statistics. Let us explore these ideas
more formally.

Let us start by obtaining a representation of a random variable which is a
function of a stochastic process {6(s), s € S}. Parzen showed that [238]:

1. Every function f in Hp can be represented has f(s) = E[0(s)U] for some
unique U in Ly(0(s), s € S) with zero mean and variance Hf||§{R

2. A one to one correspondence between Hp and Lo(6(s),s € S) exists
such that

0(s) < R(.,s)
U= chﬂ(sl) - f= ZZ cR(.,5)

The function f € Hg that corresponds to the random variable U € Lo (6(s),

s € S) is denoted by f or < f,0 > i1, and will be called a congruence inner
product. With this result one can write

E [< f,0 >HR} =< f,0 >ug

Cov < f1,0 >, < 2.0 >, | =< i o> Vi f2€Hr  (160)
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Therefore, any random variable z(¢) which is a linear function of {6(s),s € S}
can be expressed as z(t) =< g(t,.),0 > for some g(t,.) € Hg, and it is the
representer of z(t), that is, it is obtained from {R(.,s),s € S} by the same
operations as z(t) is obtained from {6(s),s € S}.

As we can see the RKHS defined by the Gaussian kernel and the RKHS
defined by the covariance function are very different from each other. The
eigenfunctions ®;(x) of the kernel nonlinearly map an input sample into a
functional in a high-dimensional space, as needed for better representation
(regression, classification). The RKHS Hp (defined by the covariance kernel)
on the other hand, maps linearly entire random vectors into a scalar function
(i.e., a point). Statistical inference in Hgr can be done with simple algebra
as Parzen and others have elucidated. The mapping functions ®;(x) of H,
are independent of the data statistics, whereas the mapping functions ®;(x)
for Hg incorporates naturally the data statistics due to the expected value
operator. Moreover, the elements of the Gram matrix of Hg are deterministic,
whereas the elements of the Gram matrix of H, are stochastic when the
input is a random variable. Therefore, one sees how different RKHS can be,
depending upon how the elements of the space and the kernel are defined,
which illustrates how powerful the methodology really is.

Optimal Filtering Problem in RKHS Hpg

Given a time series {Y(t),t € T} with an underlying signal and additive noise
Y(t)=X()+ N(t), 0 <t <T and a random variable Z (which can be the
value of X in the past or in the future, or any other random variable) find for
each t € T the best random variable in Lo(Y'(t),t € T') whose mean square
distance to Z is minimum. In probability theory this can be accomplished
by finding the conditional expectation of the random variable Z relative to
a o field defined by X (¢). Wiener developed an important alternate solution
using spectral factorization [333], and Kolmogorov provided an equivalent and
elegant geometric solution [185]. An alternative result derived by Parzen [238]
from orthogonal projections and direct sums of elements of complementary
Hilbert spaces provides the existence and uniqueness of the same basic solution
in a RKHS. We will briefly present this solution here.

Let the widesense conditional mean of X (t) given the entire set of Y(.) be

X(t) = EP[X ()| Y (s), 5 € T]

where the superscript p denotes projection in the Hilbert space. The wide
sense conditional mean can be posed as the following optimization problem.
Let Hy = H(Y (t),t € T) be the Hilbert space of the square integrable random
variables spanned by the family {Y'(t),t € T'}. Find U in Hy such that

E [|U7X(t)|2} = min B [|U ~ X ()]’ (1.61)
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The vector U will be denoted as X (t). Parzen showed it can be obtained as
the solution of the normal equations

EX(#)Y(s)] = E[X(1)Y(s)], seT (1.62)
which can be written as

£ =< EXOYGLYS) >y 0
In fact, define the covariance kernel on T X T Ky (t1,t2) = E[Y (t1), Y (t2)]. Let
Hp, be the RKHS corresponding to Ky, then for each t € T, Kxy(t,s) =
E[Y(1),Y(s)] € Hg, and X(.) =< Kxy(.,s),Y(s) > e, For uncorrelated
signal and noise, let us represent R(t1,t2) = E[N(t1), N(t2)] and K (t1,t2) =
E[X (t1), X (t2)], then Ky = R+ K, Kxy = K and

X()=<K(,9),Y(s) >, . (1.63)

Eq. (1.63) is the equivalent of the Wiener—Hopf solution for the optimal fil-
tering problem, but obtained in the RKHS.

In order to help draw the similarity, let us write loosely the optimal pro-
jection as X (t) = J7W(t,u)Y (u)du, and with this notation, the normal
equations of Eq. (1.62) can be rewritten as

= / W(t,u)[K (u,s)+ R(u, s)|du = K(t,s), se€T (1.64)

which need to be solved for the projector W (¢, u). Define the operator R+ K
on Ly(T') as follows: (R + K)f is the function whose value at s is

{(R+ K)f}(s) /f HEK (u,s) + R(u, s) tdu
{(

With this notation the solution to Eq. (1.64) becomes W( u)
K)™'K(t,-)}(u), and substituting in Eq. (1.64) yields X(t) =

{(R+ K) 'K (t,-)}du for which Eq. (1.63) is a rigorous form

I

1.12 Conclusions

This chapter gave an overview of the foundations for the approach developed
in the remainder of the book. The apparently unrelated topics of information
theory, optimal filtering, and RKHS theory can be easily linked from the
point of view of the expected value of the PDF operator, which we call the
information potential, the argument of the logarithm of Renyi’s quadratic
entropy. When new synergisms are established the hope is that they can lead to
new advances and later be exploited for statistical signal processing, machine
learning, and information-theoretic applications.
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The chapter starts with a brief review of the problem of optimal transmis-
sion of information in communication systems and how information theory
concepts were developed to answer them. The review emphasizes understand-
ing of the fundamantal concepts of entropy and mutual information and how
they have been put to good use in the design of communication systems.
Extensions to the original definitions of entropy and mutual information pro-
posed by Shannon are also discussed to provide a glimpse of how the original
theory evolved. The role of information theoretic concepts in machine learn-
ing is also briefly reviewed to point out the role of mesoscopic descriptors of
the data that can be used for new cost functions and new learning principles
based on information-theoretic concepts.

The foundations of adaptive filter theory (which are remarkably similar to
regression in discrete time) are also presented. The impact of information-
theoretic cost functions (entropy and divergences) in regression, filtering,
classification and unsupervised learning is presented. Basically, information-
theoretic costs unify supervised and unsupervised algorithms in the sense
that changing the inputs to the cost function yields both classes of learning
paradigms.

The last part of Chapter 1 deals with basic definitions of reproducing kernel
Hilbert spaces. The review also illustrates how powerful the RKHS methodol-
ogy is because alternate definitions of the domain and range of the functional
mapping provides radically different RKHS characteristics. Basically, we can
say that there are RKHS for representation and for statistical inference. The
review also demonstrates the importance of RKHS for adaptive filtering, by
showing how the LMS algorithm can be easily ported to RKHS defined by the
Gaussian kernel function. The uses of the autocorrelation function of a ran-
dom process as an alternative kernel is also discussed to show the flexibility
of the RKHS framework and how it can be used for statistical inference.
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Renyi’s Entropy, Divergence
and Their Nonparametric Estimators

Dongxin Xu and Deniz Erdogmuns

2.1 Introduction

It is evident from Chapter 1 that Shannon’s entropy occupies a central role in
information-theoretic studies. Yet, the concept of information is so rich that
perhaps there is no single definition that will be able to quantify informa-
tion properly. Moreover, from an engineering perspective, one must estimate
entropy from data which is a nontrivial matter. In this book we concentrate
on Alfred Renyi’s seminal work on information theory to derive a set of esti-
mators to apply entropy and divergence as cost functions in adaptation and
learning. Therefore, we are mainly interested in computationally simple, non-
parametric estimators that are continuous and differentiable in terms of the
samples to yield well-behaved gradient algorithms that can optimize adap-
tive system parameters. There are many factors that affect the determination
of the optimum of the performance surface, such as gradient noise, learning
rates, and misadjustment, therefore in these types of applications the entropy
estimator’s bias and variance are not as critical as, for instance, in coding or
rate distortion theories. Moreover in adaptation one is only interested in the
extremum (maximum or minimum) of the cost, with creates independence
from its actual values, because only relative assessments are necessary. Fol-
lowing our nonparametric goals, what matters most in learning is to develop
cost functions or divergence measures that can be derived directly from data
without further assumptions to capture as much structure as possible within
the data’s probability density function (PDF).

The chapter starts with a review of Renyi’s entropy origins, its properties,
and interpretations. Then a new estimator for Renyi’s quadratic entropy is
developed using kernel density estimation. With cost functions for adapta-
tion in mind, the properties of this estimator which is called the Information
Potential (IP) estimator are carefully presented, including its bias and vari-
ance. A physical interpretation of the IP is presented which will motivate new
adaptation algorithms in Chapter 3.

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 47
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A brief review of Renyi’s divergence and mutual information is also pre-
sented, and two divergence measures in probability spaces are introduced that
have the great appeal of being computed from combinations of the IP estima-
tor; that is, IP can be readily extended to estimate divergences. A detailed
discussion of the algorithms and interpretations of these divergence measures
is presented to allow their use in practical applications. This includes two
classes of algorithms that speed up the computations to O(N). Furthermore,
Appendix A presents a review of entropy estimators along with a review of
how the IP can be used in practical problems.

2.2 Definition and Interpretation of Renyi’s Entropy

The parametric family of entropies was introduced by Alfred Renyi in the
mid 1950s as a mathematical generalization of Shannon entropy [263]. Renyi
wanted to find the most general class of information measure that preserved
the additivity of statistically independent systems and were compatible with
Kolmogorov’s probability axioms.

Let us assume a discrete probability distribution P = {p1,p2, ..., pn}
fulfilling the conditions of Y xpr = 1, pr > 0. If one observes the outcome of
two independent events with probabilities p and ¢, additivity of information
for independent events requires that the corresponding information I(-) obey
Cauchy’s functional equation (i.e. the information of the joint event is the
sum of the information of each event)

I(P- Q)= I(P)+1(Q). (2.1)

Therefore, the amount of information produced by knowing that an event
with probability p took place could be, apart from a multiplicative factor
(normalized by setting I(1/2) = 1)

1(P) = ~log, p. (2.2)

which is similar to Hartley’s amount of information. Let us further assume
that the outcomes of some experimental discrete random variable occur with

probabilities py, ..., py, and if the kth outcome delivers Iy bits of information
then the total amount of information for the set I' = {I1,....In} is
N
1(P) =S pi (2.3)
k=1

which can be recognized as Shannon’s entropy H(X). However, we have as-
sumed the linear averaging operator in this formulation. In the general the-
ory of means for any monotonic function g(x) with an inverse g~!(x) one
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can define the general mean associated with g(z) for a set of real values
{zr, k=1,..., N} with probabilities of {pi} as

97! (Zmﬂm)) :

k=1

Applying this definition to the information I(P), we obtain

N
I(P)=g" (Zpkg(fk)> ; (2.4)
k=1

where g(z) is a Kolmogorov—Nagumo invertible function [229]. This g(z) is
the so called quasi-linear mean and it constitutes the most general mean com-
patible with Kolmogorov’s axiomatics [184]. Renyi then proved that when
the postulate of additivity for independent events is applied to Eq. (2.4) it
dramatically restricts the class of possible g(z). In fact, only two classes are
possible; g(x) = cz with ¢ a constant, which states that for linear g(z) the
quasi-linear mean reduces to the ordinary mean and yields the Shannon in-
formation measure Eq.(2.3). Hence, Shannon’s information is the averaged
information in the usual sense, and becomes the simplest of the information
measures. The other functional class is g(z) = ¢ 2(1=®* which implies

1 N
o (2)

with @ # 1 and a > 0, and it is called Renyi’s information measure of order o,
or Renyi’s o entropy, denoted as Hy(X). We adopt the term “entropy” since
Renyi showed that it also represents the disclosed information (or removed
ignorance) after analyzing the expression in a close analogy with Shannon’s
theory.

At a first glance, the main difference between Shannon and Renyi’s en-
tropies is the placement of the logarithm in the expression. In Shannon en-
tropy (Eq. (1.4), the probability mass function (PMF) weights the log(pg)
term, whereas in Renyi’s entropy the log is outside a term that involves the
o power of the PMF. In order to compare further with Shannon’s entropy let
us rewrite Renyi’s entropy as

N N a1
1
H,(X) 1o log (Zp?) = —log (Zpﬁ)
k=1 k=1
N a1
= —log (Zpkp;‘1> : (2.5)
k=1

We see in Eq. (2.5) that the PMF p;, also weights a term that now is the
(o0 — 1) power of the probability mass function. Let us denote the argument

Ia(P) =
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of the log as V,(X) = 3" 4p® = E [pf~'] which is called in this book the o
information potential (IPy) and allows rewriting Eq. (2.5) as

Ho(X) = -2 log (Va(X)) = ~log ( * {/Ta(X)) (2.6)

At a deeper level, Renyi’s entropy measure is much more flexible due to
the parameter o, enabling several measurements of uncertainty (or dissimilar-
ity) within a given distribution [177]. Considered as a function of o, Hy(X)
is normally called the spectrum of Renyi information and its graphical plot
is useful in statistical inference [308]. The value at oo = 1 is particularly im-
portant because it provides the expected value of the negative log-likelihood
(E[—log p(z)]) while its derivative with respect to o is proportional to the
variance of the log-likelihood function (H;(X) = —1/2var(logp(z))). Due to
this fact it is possible to derive an index of the intrinsic shape of the PDF as
S(X) = —2H,(X) which has more statistical power than kurtosis and can be
used as a partial order for the tails of distributions.

To find the most fundamental (and possibly irreducible) set of properties
characterizing Renyi’s information it is desirable to axiomatize it. Various
axiomatizations have been proposed [1,265]. For our purpose the most conve-
nient set of axioms is the following [340].

1. The entropy measure H(pi,....,pn) is a continuous function of all the
probabilities py, which means that a small change in probability distribu-
tion will only result in a small change in the entropy.

2. H(p1,...,pn) is permutationally symmetric; that is, the position change
of any two or more py in H(py,....,pn) will not change the entropy value.
Actually, the permutation of any pj in the distribution will not change the
uncertainty or disorder of the distribution and thus should not affect the
entropy.

3. H(1/n,....,1/n) is a monotonic increasing function of n. For an equiprob-
able distribution, when the number of choices increases, the uncertainty or
disorder increases, and so does the entropy measure.

4. Recursivity: If an entropy measure satisfies

H(plap2a""apN) - H(pl +p2ap3a-~-apN)

D1 D2
o (2 )
(1 +p2) p1+p2 p1+p2

then it has a recursivity property. It means that the entropy of NV outcomes
can be expressed in terms of the entropy of N — 1 outcomes plus the
weighted entropy of the combined two outcomes.

5. Additivity: If p = (p1,...,pn) and ¢ = (q1,...,qn) are two independent
probability distributions, and the joint probability distribution is denoted
by p - ¢, then the property H(p-q) = H(p) + H(q) is called additivity.
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The table compares Renyi’s entropy property versus Shannon for these
axioms.

Properties (1) (2) (3) (4) (5)
Shannon  yes yes yes yes yes
Renyi yes yes yes 1o  yes

Notice that Renyi’s recursivity property differs from Shannon’s recursivity, so
we entered no in Property (4) to make this fact clear. Further properties of
Renyi’s entropy were studied extensively in [1,265]. We list here a few of the
key ones.

(a) Hy(X) is nonnegative: Hy(X) > 0.

(b) Hy(X) is decisive: Hy(0, 1) = Hy(1, 0) = 0.
For a« < 1 Renyi’s entropy is concave. For a > 1 Renyi’s entropy is neither
pure convex nor pure concave. It loses concavity for a > o* > 1 where o*
depends on N as a* <14 1In(4)/In(N —1).

(d) Because

= Ha(X) < S Hy(X), a2

«

(o — 1)Hy(X) is a concave function of py.

(e) Hy(X) is a bounded, continuous and nonincreasing function of a.

(f) For @« € R; Hoq(A N B) = Hy(A) — Hy(B|A) with H,(B|A) =
g (4 pr(@)g(Ho(BJA = Ay))), which can be interpreted as the condi-
tional entropy with pi(a) = pff/ >, Pi and g an invertible and positive
function in [0,1).

(g) H,(X) with z = o+ jw is analytic in the entire complex plane except the
negative real axis. Therefore the singularity at o = 1 is not essential and
we obtain lim,_,1 H,(X) = Hs(X).

The ambiguous concavity property of Renyi’s entropy in (b) makes it in-
compatible with the requirements of physical entropy (unlike Shannon’s) when
expressed as a function of the pertinent py. The implications of (g) are far
reaching. It can be shown that if we perform an analytical continuation of a in
the complex domain (e.g., z = a+jw), H,(X) = fovﬂ p} is analytic except in
the negative real axis. More specifically, if we make z = 1+7re/*, H,(X) is an-
alytic in the interior of the circle of radius r so it is also analytic at z = a = 1.
Therefore Renyi’s entropy is differentiable at z = 1 to all orders. With this
proof, Shannon entropy can be uniquely determined from the behavior of (an-
alytically continued) Renyi’s entropy in the vicinity of z = 1. Therefore from
a strict mathematical point of view, Shannon entropy is not a special informa-
tion measure deserving separate axiomatization but a member of Renyi’s wide
class of entropies embraced by a single unifying axiomatic [168]. Despite its for-
mal origin Renyi’s entropy proved important in a variety of practical applica-
tions: coding theory [44], statistical inference [236], quantum mechanics (as an
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estimator for von Neumann entropy) [32], chaotic dynamical systems [120],
multifractal analysis [168], and as a measure of diversity in economics [135].

Geometric Interpretation of Renyi’s Entropy

Before we actually start the derivation of the estimators, we investigate further
the role of a by providing a geometric picture of Renyi’s entropy that is very
useful to describe this family of entropies. Probability mass functions can
be visualized geometrically as points in a vector space called the simplex with
the axis given by the random variables. The simplex A consists of all possible
probability distributions for an N multidimensional random variable; that is,

Ay = {p— (p1, - pn)" € RN, pi >0, pi = LW}

2

For instance, for three variables (x, y, z), the space of all such distributions
is an equilateral triangle with vertices at (1,0,0), (0,1,0), (0,0,1) (a convex
subset of R?). Figure 2.1 shows the simplex for N =2 and N = 3.

Any point in the simplex is a different PMF and has a different distance to
the origin. If one defines the PMF a-norm as

N
lp@)ll, = />, 2 = VValX),

that is, the o-information potential Vi (x) can be interpreted as the o power
of the PMF a-norm. Specifically, Renyi’s a entropy takes the a — 1 root of
Va(z) and rescales it by the negative of the logarithm as specified in Eq. (2.6).
Therefore « specifies in the simplex the norm to measure the distance of p(x)
to the origin. As is well known from the theory of norms [40], the free pa-
rameter o specifying the norm changes the importance of small values versus
large values in the set. Three o cases are of special interest: Hy is the loga-
rithm of the number of nonzero components of the distribution and is known

n
A S p{'= lIpll; (entropy o - norm) P2
k=1
14 (a—norm of p raised power to o) p = (P} Py P3)
p=(.P)
P3
p
T =1 pl
0 1

Fig. 2.1. The simplex for N = 2, 3 and the entropy « norm.
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as Hartley’s entropy. Ho, can be thought of as lim, .., Hre = H, with
H,, = —log(maxy(py)) which is called the Chebyshev entropy [177]. The
most interesting special case is obtained for lim,_.; H, = Hg which means
that Shannon’s entropy is the limiting case of the 1- norm of the probability
mass function p(x). Actually, the 1-norm of any probability density is always
1 by definition, which will give 0/0 in Eq (2.6). Using the I'Hopital rule we
can proceed and evaluate Eq. (2.6) as

N N N -1
g (5 osnn)(50)
lim H,(X)= lim =L —

a—1 a—1 %(1 — a) —1

e=t = Hs(X)

2.7)

S0, in the limit, Shannon’s entropy can be regarded as the functional value of
the 1-norm of the probability density.

Renyi’s entropy is a scalar that characterizes densities, thus it is also
interesting to display the contours of equal Renyi’s entropy in the simplex
(Figure 2.2) for several o.

In order to illustrate how Renyi’s entropy evaluation behaves in the sim-
plex, we plot the isoentropy contours as a function of o. Notice that for «
close to zero the values inside the simplex change very little, and the Shannon
case basically preserves the shape of these contours except that there is a more
visible change. Observe that for a = 2 the contours are circular, meaning a

[001] [001] [001]

[101] =02 [010] [100] [010] [100] o=1 [010]

[101] =2 [010] [100] =4 [010] [100] o=20 [010]

Fig. 2.2. [soentropy contour in the N = 3 probability simplex for different a values.
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la-norm to the center. For higher values of o the contours rotate by 180 degrees
and emphasize changes with respect to the central point when a increases.

When o > 1, Renyi’s entropy H, are monotonic decreasing functions of
IPy. So, in this case, the entropy maximization is equivalent to IP minimiza-
tion, and the entropy minimization is equivalent to IP maximization.

When a < 1, Renyi’s entropy H, are monotonic increasing functions of
the V4. So, in this case, the entropy maximization is equivalent to IP maxi-
mization, and the entropy minimization is equivalent to IP minimization.

Renyi’s Quadratic Entropy H-

H> is of particular interest in this book and it is a monotonic decreasing
function of the o = 2 information potential V2 (V for short) of the PMF p(z).
H, implicitely uses an Euclidean distance from the point p(z) in the simplex
to the origin of the space.

Hy(X) = —log (Zzﬁ) : (2:8)
k

In the particle physics literature, the second moment of the probability mass
function is known as the index of coincidence or purity (because it vanishes if
the state of the particle is pure) [32]. The linear entropy is defined as Hy,(X) =
1 — p*(x) (which is in fact the Havrda-Charvat [138] or Tsallis entropy of
second order [320]), but in Renyi’s case, the logarithm is used instead. In
econometrics, Renyi’s quadratic entropy has been used to quantify diversity
[135]. Because Hs is a lower bound of Shannon’s entropy, it might be more
efficient than Shannon’s entropy for entropy maximization.

One aspect that we would like to stress after the presentation of the geo-
metric picture of Renyi’s entropy is the fact that the argument of the log in
Renyi’s quadratic entropy, Vo = E[p(x)] has meaning in itself as the expected
value of the PMF. Equivalently, if one considers the PMF a nonlinear func-
tion of the random variable z and defines the transformed random variable
&€ = p(z), IPy (IP for short) becomes the expected value of €. The argument of
the log in Hy(x) is central to our studies. In fact, we show that in optimization
(parameter adaptation) the logarithm is irrelevant (because it is a monotonic
function and therefore does not affect the location of the extremum of the
cost function in the space of the system parameters) and is dropped almost
from the beginning of our adaptive system studies. This is unthinkable in
communication theory, because there the fundamental issue is the additivity
of information, which is intrinsically linked to the logarithmic function.

Some authors [32] define f,(p) = Z)Icv=1 pi as the @ moment of the prob-
ability mass function, which is Schur concave for o < 1 and Schur convex for
a > 1. Therefore Renyi’s entropy is a function of the moment of the vector
variable p = [p1,p2,...,pn]. Moreover, the moments fu(p1,p2,...,pn) for
a =2, ..., N define the vector p up to a permutation of its components,
which means that the spectrum of Renyi’s entropies defines the probability
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p(x)

Mean p(x)\

Mean of x X

Fig. 2.3. Relation between mean of x and mean of p(z).

mass function in a similar manner as the characteristic function expansion.
The o moments also relate Renyi’s to von Neumann’s entropy [326]. It is im-
portant not to confuse the moments of the PMF with the moments of the
data, therefore we prefer to use the information potential terminology, which
also has a powerful analogy as we discuss later. Figure 2.3 shows the relation
between the 2-norm of the PMF (mean of £) and the mean of the data, which
should be obvious.

Renyi’s Entropy of Continuous Variables

Renyi’s entropy can also be defined for continuous random variables. Let p(x)
be the continuous PDF defined in [0,1]. The integrated probability is

(k+1)/n
pn,kZ/ p(x)dz, k=0,1,...,n—1
k/n

and by defining the discrete mass function P,, = {p, 1} it is possible to show
[265] that

H,(X) = lim (Io(P,) —logn) = 1 !

n—oo —

log /pa (x)dx. (2.9)

This is very similar to the Shannon case, showing that the differential
Renyi’s entropy can be negative for a@ < 1. Indeed log(n) can be thought as
the entropy of the uniform distribution, and so the continuous entropy is the
gain obtained by substituting the uniform distribution by the experimental
samples P,,. The generalization for multidimensions proceeds along the same
arguments, preserving the functional form of Eq. (2.9). Quadratic Renyi’s
entropy for continuous random variables reads

Hy(X) = flog/p2(x)dm. (2.10)

We use capital H for differential entropy throughout this book.
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2.3 Quadratic Renyi’s Entropy Estimator

As already stated in Chapter 1, in experimental science, one is faced with
the issue of estimating entropy directly from samples in a nonparametric way
because it is often not prudent to advance with a parametric PDF model. In
such cases we have to resort to a nonparametric estimation. But instead of first
estimating the PDF and then computing its entropy, here we seek the direct
approach of estimating quadratic Renyi’s entropy from samples by estimating
E[p(X)], which is a scalar. In adaptive systems we are mostly interested in
continuous random variables, and this is the case on which we concentrate
from this point on.

Recall the definition of quadratic entropy given in Eq. (2.10) for the con-
tinuous random variable X. Suppose we have N independent and identically
distributed (i.i.d.) samples {z1, ..., 2y} from this random variable. The ker-
nel (Parzen) estimate of the PDF [241] using an arbitrary kernel function
Ko (.) is given by

R 1 & T — T
pX(x):mei( . ) (2.11)

i=1

where G is the kernel size or bandwidth parameter. This kernel function has
to obey the following properties [300].

1. k(z) > 0.
2. [ph(x)de =1

3. lim |zs(z)|=0.

r—00

Normally one uses a symmetric normalized kernel that peaks at the sam-
ple and for our purposes it must be continuous and differentiable (reasons
are discussed later). Kernel density estimation is a-well-studied topic and
the use of kernels has been widespread since the seminal work of Rosenblatt
and Parzen. The quality of estimators is normally quantified by their bias
and variance, and for kernel estimation they are respectively given by [241]
(" denotes estimated quantities)

Bias(po (x)) = Elpo ()] — pla) ~ o /20 (2)u(K)
Var (3, (2)) = El(5o(2) = Blpo (2))?) % = IK[3p().  No — oo (212)

where W(K) and || K||? are constants given by the specific kernel utilized, and
p” is the second derivative of the PDF. As one can see in Eq. (2.12) the kernel
size affects the bias and the variance in opposite ways, so the best kernel
size is a compromise between bias and variance of the estimator. It is well
known from Parzen’s seminal work [241] that the class of kernel estimators
is asymptotically unbiased when the kernel size tends to zero (i.e., the kernel
approaches a Dirac delta function), and consistent in quadratic mean when
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the number of samples increases to infinite (the product No must tend to
infinite). Moreover, one can show that the mean square error between the
true and estimated PDF can decrease for the optimal kernel size at a rate as
high as N~%/° for scalar variables, which is close to the best possible (1/N).
For symmetric kernels such as the Gaussian it is typically N—2/5,

The difficulty of density estimation, in particular in high dimensions and
with few samples, is that one wants to obtain a reasonable estimate for all
the points in the domain. This is an ill-posed problem (see Appendix A).
However, for V2(X), we are only interested in estimating a single number
E[p(z)]. Assuming Gaussian kernels Eq. (1.50), G, (.), with standard deviation
o and substituting this in the quadratic entropy expression Eq. (2.10), we get
after straightforward substitutions the estimator

o] N 2
f[z(X) —log/ (%ZGJm—xQ) dx

*® (N N
= IOgNQ/ ZZGg(x—xj)-Gg(x—xi) dz

o =1 j=1

N N <%

710g ! ZZ/ngfo -Gy — a;)dx

=1 j=1_"

(2.13)

I
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5}
R
[\v)
N
o
Q
N
&
\
&8

The result is easily obtained by noticing that the integral of the product of
two Gaussians is ezxactly evaluated as the value of the Gaussian computed at
the difference of the arguments and whose variance is the sum of the variances
of the two original Gaussian functions. Other kernel functions, however, do
not result in such convenient evaluation of the integral because the Gaussian
maintains the functional form under convolution. Nevertheless, any positive
definite function that peaks at the origin (most kernels) might still be used
in the estimation, but the expressions become a bit more complicated. We
named the argument of the log in Eq. (2.13) (i.e., the kernel estimator of the
2-norm of the PMF (or PDF)) the quadratic information potential estimator
(simply IP when there is no confusion) for reasons that become apparent later.

Information Potential for Entropy Estimation

The argument of the logarithm in quadratic Renyi’s entropy that has been
called the information potential can be estimated directly from data as

Hy(X) = —log(Va(X)) Vil =+ ZZG —z)  (2.14)

1=1 j=1
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where VQ,U(X ) is the quadratic IP estimator that depends on o. Let us
compare this with the conventional way that entropy is estimated from data.
In practical cases, the estimation of Shannon or Renyi’s entropy directly from
data will follow the route:

data — pdf estimation — integral estimation.

Notice that entropy is a scalar, but as an intermediate step one has to estimate
a function (the PDF), which is much harder in high dimensional spaces. With
quadratic Renyi’s entropy and the IP (i.e. V(X)) we bypassed the explicit
need to estimate the PDF; that is, the calculations follow the path

data — IP(Va(X)) — algebra.

Eq. (2.14) is one of the central results of information-theoretic learning be-
cause it shows that the Information Potential, which is a scalar, can be es-
timated directly from samples with an exact evaluation of the integral over
the random variable for Gaussian kernels. Eq. (2.14) shows that the IP is
only a function of sample pairs, instead of the PDF shape. This is similar
to the conventional estimators of the mean and the variance that work di-
rectly with the samples irrespective of the PDF, but unfortunately here the
estimator has a free parameter and it shares the properties of kernel density
estimation.

There are two important implications of Eq. (2.14). As is apparent, the
variance of the Gaussian (also called the kernel size or bandwidth) is a free
parameter that needs to be selected by the user. Therefore, when the IP is
estimated, the resulting values of entropy depend on the kernel size selected,
which is also a crucial problem in density estimation [300]. The estimated val-
ues of the IP have little absolute meaning due to this kernel size dependence,
but it gauges performance in a relative sense when comparing data generated
with the same set of parameters. In learning (the main purpose of this book)
the system parameters depend only on the cost function’s extremum location
in parameter space, not of the cost’s actual value, so the IP dependence on
kernel size is more manageable than for applications that require the actual
value of the estimated quantity.

The way we interpret the kernel bandwidth is as a scale parameter for the
analysis. It has to be selected according to the data dynamic range and number
of samples to make the estimation of the entropy meaningful. Silverman’s rule
[300] is

Gopt = ox (AN“H(2d +1)71) @ | (2.15)

where N is the number of samples, d is the data dimensionality, and oy is the
data standard deviation. Although Eq. (2.15) was derived for Gaussian distri-
butions it is sufficient for most of our applications. The bandwidth selection
is treated more thoroughly in Appendix A. To summarize, we want to say
that the existence of this free parameter is a double-sided sword: it provides
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flexibility in the application of the methodology to real data; but on the other
hand it either requires a selection criterion or a scanning over ¢ because the
effect of the kernel size is much harder to quantify than the scale in wavelet
decompositions or frequency in Fourier analysis that also contain a free pa-
rameter in their definitions. More generally, it shows the functional nature of
entropy estimation using kernels.

The second implication is that the estimator is O(N?), which may create
computation bottlenecks for large datasets. This is the price we have to pay
to estimate entropy with the IP when compared with mean and variance.
Indeed, both the mean and the variance estimators work with a single sample
at a time (in fact the variance also requires pairwise computation but one of
the elements of the pair is the mean that can be computed a priori), but if we
are interested in qualifying the “shape” of the PDF with Renyi’s second-order
entropy, pairwise interactions are necessary. We show later in this chapter how
the fast Gauss transform and the incomplete Cholesky decomposition solve
this problem with algorithms that are O(N).

Extended Estimator for a-Renyi’s Entropy

It turns out that the pairwise interaction model can be generalized from an
estimator of Renyi’s quadratic entropy to all @ # 1. In essence H, is the
centerpiece for nonparametric kernel estimation of Renyi’s entropy as we show
below. Consider the definition of Renyi’s order-a entropy in Eq. (2.9), which
can also be written with an expectation operator as

00
1

A
Ha(X)2 = tog [ pi(o)ds =

——log Ex % ' (X)]. (2.16)
— 00

Approximating the expectation operator with the sample mean as is com-

monly done in density estimation [300], we get

N
1 1 e
Ho(X) ~ Ho(X) = mlogﬁ E bx 1(%_). (2.17)
j=1

Notice that we never had to address this approximation in deriving Eq. (2.14),
therefore we can expect that an estimator of Eq. (2.17) will differ from Ha(X)
in Eq. (2.13), i.e. it will have different bias and variance. Finally, substituting
the Parzen window estimator of Eq. (2.11) in Eq. (2.17) and rearranging terms,
we obtain a nonparametric plug-in estimator for Renyi’s o entropy as

. 1 11 R -
Ho(X) = & log N Z (N Z/‘ia(%‘ - ffz)) R log(Va,o (X)),
j=1 i=1
(2.18)
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where the o information potential estimator (the dependence on G is normally
omitted)

A LA a—l
VQ,U(X) = WZ (Z Hg(a?j — .%‘z)> .

j=1 \i=1

The nonparametric estimator in Eq. (2.18) can still be written as the log of
the o-norm of V,(X) = IP,(X), but again it differs from the IP of Eq. (2.14).
Foroo=1, V; =1 for any PDF. For all & > 0, # 1 it is a general-purpose
estimator and can be used to evaluate o entropy directly from samples or
to adapt the weights of a learning system based on an entropic performance
index. We now study its properties in detail.

2.4 Properties of Renyi’s Nonparametric Entropy
Estimators

In the following, all kernel functions and random variable samples are assumed
to be single-dimensional unless noted otherwise. The generalization of these
results to multidimensional cases is trivial and the proofs follow similar lines.
We start by analyzing the accuracy of the approximation of the expected value
by the sample average.

Property 2.1. For the special case 9f Gaussian kernels, the estimator VQ(X )
of Eq. (2.18) only differs from the V2(X) of Eq. (2.14) by a factor of v/2 in
the kernel size.

Proof. A direct comparison proves the property. This difference stems from
the need to approximate the expected value by the sample mean in Eq. (2.18).
In fact, the estimator of Eq. (2.18) requires two approximations, the approxi-
mation of the expected value by the sample mean and the kernel approxima-
tion of the PDF, whereas Eq. (2.13) only requires the kernel approximation of
the PDF. Therefore in general they yield two different estimators of the same
statistical quantity. However, what is interesting is that for o = 2 the sample
mean approximation for finite N and Gaussian kernels can still be exactly
compensated by a change of the kernel size from 6 to ov/2 in Eq. (2.18).

Property 2.2. For any kernel function ¥(z) that obeys the relation
K'Y (2 —x;) = / Kz — z;) - KO (2 — z;)de, (2.19)
—00
where "% (.) denotes the kernel function used in Eq. (2.18) and x°!(.) de-

notes the kernel function used in Eq. (2.14), the estimator of Renyi’s quadratic
entropy of Eq. (2.18) matches the estimator of Eq. (2.14) using the IP.
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Proof. Direct substitution proves the property. These properties reiterate the
privileged place of the Gaussian kernel and quadratic Renyi’s entropy in ITL.
The case a0 = 2 also allows a very interesting link between ITL and kernel
learning, and explains the reason why the sample mean approximation is not
necessary in IP computation.

It is possible to show using the properties of the Gaussian kernel that
Renyi’s o entropy estimator can be written exactly as

Hy(X) = 1 log{i(;rl(L) (m\/%)(‘;)

1—a N« Va

ZZ [H 11 Ggﬂ(xipxiq)u (2.20)

or

ii Gz (i a (xipxiq)2>}. (2.21)

In either form one still sees the kernel size for the Gaussian being multiplied
by o+v/a as could be expected from Property 2.1, however, these expressions
are not easily compared with Eq. (2.18) even when the kernel is a Gaussian.
Therefore, the practical estimation of o Renyi’s entropy with kernels will fol-
low the approximation of the expected value by the sample mean as indicated
in Eq. (2.18).

Property 2.3. The kernel size must be a parameter that satisfies the scaling
property ke, () = ko (x/c)/c for any positive factor ¢ [241].

This regulatory condition guarantees that changes in the kernel size can
be compensated by linear scaling in the domain and range of the estimated
quantities. In the analysis of the eigenstructure of the entropy cost function
near the global optimum and in obtaining scale-invariant entropy-based cost
functions, this property becomes useful.

Property 2.4. The entropy estimator in Eq. (2.18) is invariant to the mean
of the underlying density of the samples as is the actual entropy [86].
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Proof. Consider two random variables X and X where X = X +m with m
being a real number. The entropy of X becomes

Ha(X) = 1= log [ (a)ds =

1 o/ _
1o alog/px(xfm)dx

- ! . 1og/pg;(x)dx — Ha(X). (2.22)

Let {x1, ..., zn} be samples of X, then samples of X are {x1 +m, ...,
xn + m}. Therefore, the estimated entropy of X is

Ha(X) ﬁ gNaZ<Z“" - >

1 1 N N a—1 X
= 1alogmz<2fig(xj +m—xi—m)> = H,(X). (2.23)

j=1 \i=1

Due to this property of the entropy and its estimator, when the entropy
cost is utilized in supervised learning the mean of the error signal is not nec-
essarily zero, which is a requirement for most applications. This requirement
has to be implemented by adding a bias term to the system output that makes
the mean of the error equal to zero. Because of this feature, entropy does not
define a metric in the space of the samples. We address this point in more de-
tail in Chapter 3. However, when we are interested in the statistical properties
of the signals other than their means, this is not a problem.

Property 2.5. The limit of Renyi’s entropy as a — 1 is Shannon’s entropy.
The limit of the entropy estimator in Eq. (2.18) as « — 1 is Shannon’s entropy
estimated using Parzen windowing with the expectation approximated by the
sample mean.

Proof. Notice that Renyi’s entropy in Eq. (2.16) is discontinuous at a@ = 1.
However, when we take its limit as this parameter approaches one, we get
Shannon’s entropy as shown in Eq. (2.24) for continuous variables (similarly
to Eq. (2.8)),

1
lim1 H,(X)= hm1 log/ % (z)dx

hm/logpx i (z dfv//px

lim —1
a—1

- /px(x) log px(x)dx = Hg(X) (2.24)
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The derivation of this result for the estimator in Eq. (2.18) is shown in
Eq. (2.25).

1 1 (1 -
R e L TN W)

— _ Im Jj=1 =1 =1
a—1 L N | N a—1
B (R
1 X 1 .
- WZlog <NZKU[,(% :m) = Hs(X). (2.25)
j=1 i=1

In terms of adaptation, this means that all the conclusions drawn in this
research about Renyi’s entropy, its estimator, and training algorithms based
on Renyi’s entropy apply in the limit of &« — 1, to Shannon’s definition as well.

Property 2.6. In order to maintain consistency with the scaling property
of the actual entropy, if the entropy estimate of samples {z1, ..., zn} of a
random variable X is estimated using a kernel size of o, the entropy estimate
of the samples {cz1, ..., czy} of a random variable ¢X must be estimated
using a kernel size of |c|o.

Proof. Consider the Renyi’s entropy of the random variable ¢X, whose PDF
is px(x/c)/ |c| in terms of the PDF of the random variable X and the scaling
coefficient c.

1 7 1 T
Ho(eX) = - log / e (E) do = Ho(X) +log|c|. (2.26)
— 00

Now consider the entropy estimate of the samples {cz1, ..., czy} using the
kernel size |c|o.

1 1 N N a—1
~ o ZL’j*.’EZ‘
Ha(CX)l_along<Zﬂlc|a< - >>

j=1 \i=1
1 N N 1 cxr; — CT; o

= — log — Ky J T

e (X e (=)
7j=1 \i=1

1 1 N N a—1
= og — Ko (25 x,))
e (2

= Ho(X) +log|c|. (2.27)
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This property is crucial when the problem requires a scale-invariant cost
function as in blind deconvolution illustrated in Chapter 8. The scaling of
the kernel size as described above according to the norm of the weight vec-
tor guarantees that the nonparametric estimation of the scale-invariant cost
function possesses this property as well.

Property 2.7. When estimating the joint entropy of an n-dimensional ran-
dom vector X from its samples {x, ..., zn}, use a multidimensional kernel
that is the product of single-dimensional kernels. In this way, the estimate of
the joint entropy and estimate of the marginal entropies are consistent.

Proof. Let the random variable X, be the oth component of X. Consider the
use of single-dimensional kernels k,, (.) for each of these components. Also
assume that the multidimensional kernel used to estimate the joint PDF of
X is kx(.). The Parzen estimate of the joint PDF is then given by

L
= Nng(x—xi). (2.28)

Similarly, the Parzen estimate of the marginal density of X, is

Px.o(@ anu o — o(1)). (2.29)

Without loss of generality, consider the marginal PDF of X; derived from the
estimate of the joint PDF in Eq. (2.28).

oo o0

ﬁX71(x1)= /~-~/ﬁx(x1,...,Z‘n)d.fQ,...,d.’L‘n

oo ool N
:/ /Nz:”2 1 —21(8), ..., ¥p — T (i) dT2, . .. day,
o0

;Z/ /“2 x1—21(9),. .., 2n — Tp(i))dxe, ..., dz,. (2.30)

Now, assuming that the joint kernel is the product of the marginal ker-
nels evaluated at the appropriate values (i.e., kxn(x) = H(])Vzl Ko, (Zo)), we get
Eq. (2.31). Thus, this choice of the multidimensional kernel for joint entropy
estimation guarantees consistency between the joint and marginal PDF and
entropy estimates. This property is, in fact, critical for the general PDF esti-
mation problem besides being important in entropy estimation.
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/ /ﬁ“% Lo — o(i))dxa, . . ., dxy,

oo o

oy (21 — 1) / ~-~/012[2500(%—J:o(i))dxg,...,dxn

px,1($1) =

=
M= 1 Mz

s
Il
_

==

N Zo(3))dz? | = px1(x1).

I MHZ

Koy (1 — 21 (4 ﬁ 75
- (2.31)

This important issue should be considered in adaptation scenarios where
the marginal entropies of multiple signals and their joint entropy are used
in the cost function simultaneously. It is desirable to have consistency between
the marginal and joint entropy estimates.

Theorem 2.1. The entropy estimator in Eq. (2.18) is consistent if the Parzen
windowing and the sample mean are consistent for the actual PDF of the i.i.d.
samples.

Proof. The proof follows immediately from the consistency of the Parzen
window estimate for the PDF and the fact that as N goes to infinity the
sample mean converges to the expected value which makes Eq. (2.18) ap-
proach Eq. (2.16) (e.g., the sample mean estimate is not consistent for infinite-
variance PDF's).

This theorem is important because it points out the asymptotic limitations
of the estimator. In adaptation and learning from finite samples, because we
rarely have huge datasets, consistency is not the primary issue, but the bias
and variance of the estimator must still be known. Their effect in the location
of the extremum of the function in the space of the parameters is the real
issue.

Theorem 2.2. If the mazimum value of the kernel k,(§) is achieved when
€ =0, then the minimum value of the entropy estimator in Eq. (2.18) is

achieved when all samples are equal to each other, that is, x; = ... =
xN — c [86].

Proof. By substitution, we find that the entropy estimator takes the value
—log K, (0) when all samples are equal to each other. We need to show that

1—a NL Z:: (Z Ko (T — l‘z‘)) > —log ko (0). (2.32)
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For v > 1, this is equivalent to showing that

N /N a-1
> (Z Ko (T — m) < N*x2710). (2.33)

j=1 \i=1

Replacing the left-hand side of Eq. (2.33) with its upper bound we get
Eq. (2.34). Because the kernel function is chosen such that its maximum occurs
when its argument is zero, we obtain the desired result given in Eq. (2.33).

N N a—1 N a—1
Z (Z Ko (T — J,‘Z)> < ijax (Z Ko(T; — J,‘Z)>
j=1 \i=1 i=1
(2.34)
< Nmax [N 'max k2 (z; — 2;) | = NYmax s H(x; — ;).
7 7 7

i

The proof for the case @ < 1 is similar. It uses the min operator instead of
max due to the direction of the inequality.

In supervised training, it is imperative that the cost function achieve its
global minimum when all the error samples are zero. Minimum error entropy
learning using this entropy estimator, which is introduced in Chapter 3, be-
comes a valid supervised training approach with this property of the entropy
estimator. In addition, the unsupervised training scenarios such as minimum
entropy blind deconvolution, which are discussed in Chapter 8, benefit from
this property of the estimator as well.

Theorem 2.3. If the kernel function ks (.) is continuous, differentiable, sym-
metric, and unimodal, then the global minimum described in Theorem 2.2 of
the entropy estimator in Eq. (2.18) is smooth, that is, it has a zero gradient
and a positive semidefinite Hessian matriz.

Proof. Let X = [z1, ..., xN]T be the data samples collected in a vector for
notational simplicity. Without loss of generality, consider the dataset given by
% = 0, meaning all samples are zero. With some algebra, the gradient and the
Hessian matrix of the expression in Eq. (2.18) with respect to x are found as

oH,, 1 9V, /0xp
Oxy, l—a vV,
9%H., 1 (02V,/0x10x1) Ve — (OVi ) 021) (OVa /O2:)

= = . 2.
ox0xr, 1—a« V2 (2.35)

where the variable V,, is the argument of the logarithm in the final expression
in Eq. (2.18). Evaluating these expressions at X = 0, which corresponds to the
maximum value of the kernel we get
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Va| _, =#57(0)
% - (aN—al) [No—1k2=2(0)"(0) — N~ Lk2=2(0)(0)] = 0
%2;% By _ (- 1)(NA;21)“?_3(0) [(a — 2)K"2(0) + 2k(0)x"(0)]
(gg/gk - wﬂ [ — 2)5(0) + 26(0)x" (0)] . (2.36)

which shows that the gradient vector is zero and that the Hessian matrix is
composed of

?H,
8xlaxk

{ —(N = Drz271(0) [(a — 2)5"(0) + 2k(0)s" (0)] /N2, 1 =k
k7971(0) [(o — 2)K2(0) + 26(0)K"(0)] /N2, 1 #k

7=0 o

(2.37)
Denoting the diagonal terms by a and the off-diagonal terms by b, we can
determine all the eigenvalue-eigenvector pairs of this matrix to be

{0,[1,..., 107}, {aN/(N - 1),[1,-1,0,...,0/"}, {aN/(N — 1),
[1,0,—-1,0,...,0]"},...

Notice that the nonzero eigenvalue has a multiplicity of N — 1 and for a
kernel function as described in the theorem and for N > 1 this eigenvalue is
positive, because the kernel evaluated at zero is positive, the first derivative
of the kernel evaluated at zero is zero, and the second derivative is negative.
Thus the Hessian matrix at the global minimum of the entropy estimator is
negative semidefinite. This is to be expected because there is one eigenvector
corresponding to the direction that only changes the mean of data, along
which the entropy estimator is constant due to Property 2.4.

In adaptation using numerical optimization techniques, it is crucial that
the global optimum be a smooth point in the weight space with zero gradient
and finite-eigenvalue Hessian. This last theorem shows that the nonparametric
estimator is suitable for entropy minimization adaptation scenarios.

Property 2.8. If the kernel function satisfies the conditions in Theorem 2.3,
then in the limit, as the kernel size tends to infinity, the quadratic entropy
estimator approaches the logarithm of a scaled and biased version of the
sample variance.

Proof. Let {x1,...,2n} be the samples of X. We denote the second-order
sample moment and the sample mean with the following.
2

. 1 N 1 N

2 2

x ——E T T2 = _§ z;
Jj=1 j=1
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By assumption the kernel size is very large, therefore the pairwise differ-
ences of samples will be very small compared to the kernel size, thus allowing
the second-order Taylor series expansion of the kernel function around zero to
be a valid approximation. Also, due to the kernel function being symmetric
and differentiable, its first-order derivative at zero will be zero yielding

ko (§) = £ig (0) + iy (0)€ + 1y (0)67 /2 = g (0) + i (0)€2 /2. (2.38)

Substituting this in the quadratic entropy estimator obtained from Eq. (2.18)
by substituting a = 2, we get Eq. (2.39), where 22 —Z2 is the sample variance.
Notice that the kernel size affects the scale factor multiplying the sample
variance in Eq. (2.39). In addition to this, there is a bias depending on the
kernel’s center value.

A i AR
Hy(X) ~ —log _ZZZ(HU(O)+HZ(O)(xj —xi)2/2)
. 1 | XN
= —log | ks (0) + 5/1;’(0) 3 Z Z (1:12 — 2z + xf)
= —log | ks (0) + %KZ(O) (“2- —x2>} . (2.39)

Property 2.9. In the case of joint entropy estimation, if the multidimensional
kernel function satisfies k5 (¢) = kx(R™1€) for all orthonormal matrices R,
then the entropy estimator in Eq. 2.18 is invariant under rotations as is the
actual entropy of a random vector X. Notice that the condition on the joint
kernel function requires hyperspherical symmetry.

Proof. Consider two n-dimensional random vectors X and X related to each
other with X = RX where R is an n X n real orthonormal matrix. Then the
entropy of X is

(o) (o)
_ 1 o 1 | N P
Ho(X) = 1_a10g/19)‘<(5”)d$: mlog / WPX(R 'z)dz
(o) (o]
-1y /L o (2) |R|dz = ——1o \R|1—a/ & (2)do
— Ho(X) + log |R| = Ha(X). (2.40)

Now consider the estimation of the joint entropy of X from its samples,
which are given by {Rxz1,..., Rzy}, where {z1,...,2ny} are samples of X.
Suppose we use a multidimensional kernel xx (.) that satisfies the required con-
dition. This results in Eq. (2.41). In adaptation scenarios where the invariance-
under-rotations property of entropy needs to be exploited, the careful choice
of the joint kernel becomes important. Property 2.5 describes how to select
kernel functions in such situations.
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N a—1
I:Ia(y) = 1 i a Z (Z rs(Ra; — R$2)>

= Ha(X) (2.41)

Theorem 2.4. limy oo Hy(X) = Hy(X) > Ho(X), where X is a random
variable with the PDF fx(.)*k,(.). The equality occurs if and only if the kernel
size is zero. This result is also valid on the average for the finite-sample case.

Proof. 1t is well known that the Parzen window estimate of the PDF of X
converges consistently to fx(.)*kq(.). Therefore, the entropy estimator in
Eq. (2.18) converges to the actual entropy of this PDF. To prove the inequality
consider

oo oo oo
e(1—a)Ha(X) _ /p‘)’f((y)dy:/ /HJ(T)pS‘((y—T)dT dy. (2.42)

Using Jensen’s inequality for convex and concave cases, we get Eq. (2.43),
where we defined the mean-invariant quantity V., (X) as the integral of the ath
power of the PDF of X, which is the argument of the log in the definition of
Renyi’s entropy given in Eq. (2.16). Reorganizing the terms in Eq. (2.43) and
using the relationship between entropy and information potential, regardless
of the value of o and the direction of the inequality, we arrive at the conclusion
H.(X) > H,(X). The fact that these results are also valid on the average for
the finite-sample case is due to the property E[px(.)] = px(.)*ks(.) of Parzen
windowing, which relates the average PDF estimate to the actual value and
the kernel function.

exp((1 - o) Ha (X)) < <a§1) 7 7 ko () [px(y — )" dr | dy
= 7/’»0(7) 7pr(y7)} dy | dr

I
\
3
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\]

:nay/%mmznay (2.43)
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This theorem is useful in proving asymptotic noise rejection properties of
the entropy-based adaptation criteria, and shows that for entropy minimiza-
tion, the proposed estimator provides a useful approximation in the form of
an upper bound to the true entropy of the signal under consideration.

2.5 Bias and Variance of the Information Potential
Estimator

IP Estimator Bias

In this section, the bias of the information potential is analyzed for finite
samples using the shape of the data probability density function (which is
unknown for most cases, but provides understanding of the factors involved).
We call the attention of the readers to the analysis of the density estimation
in Appendix A, which should be used to contrast the results obtained in this
section. The same basic approach is taken here, but a simplified notation will
be used and some steps are omitted. We choose the Gaussian kernel for density
estimation. The information potential estimator is

Voo (X =+ ZZG (2.44)

=1 j=1

The IP bias is obtained by taking the expectation

B[Va(X NQZZG

=N 2 ZlE — ;)] = E[Go(xj — x;)].  (2.45)

Now expanding the PDF in Taylor series and using the i.i.d. assumption
on the data and the definition of expected value

E[Go(z / / p(xi)p(z;)dridz;

/ (z:) UG x,—i—as)ds]dxz 5= (i —2;)/0

/ { / G (3)p(a) + o sp(x) +1/2(0%s%" ()
+0(04)]ds} dx

[ p@lbl@) + 120 @)a(G)lde as 7 -0

[P@is+ @120 [ e @), (2.46)

Q
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where for the Gaussian kernel 12(G) = [ 02G,(s)ds = 1. Now

/ p(x)p” (2)dzx = E[p"(X)] (2.47)

and combining the above equations we obtain

Bias[Va(X)] = EIVa(X)] - [ p(@)do = (o*/DEW' (X)) (248)

We see that the bias of IP for Gaussian kernels increases proportionally
to the square of the kernel size multiplied by the expected value of the PDF
second derivative. This result has the same basic form of Eq. (2.12) for kernel
density estimation (see Appendix A), except that the double derivative of the
PDF is substituted by its expected value, which is better behaved.

IP Estimator Variance

To analyze the variance of the information potential, we rewrite Eq. (2.44) as
N0 = T 5 Gt
and take the variance of both sides to obtain:
N*Var(V (X)) = N* | B(V2(X)) - (B(
—ZZZZ{E ;)G (), — )]

-B [Ga( zi — ;)] B [Go 2k — 21)]} (2.49)

<>
—~
>
S
=
=
[ V]

| I

The right-hand side of Eq. (2.49) consists of N* terms. These terms can be
classified into four categories according to the possible values of i, j, k, and I:

1. If 4, j, k, [ are all different among each other, then, according to the inde-
pendence assumption, their joint distribution can be factorized as

E|Go(zi —2)Go(zr —x1)| = B |Go(x; — ;)| E[Go(xr —x1)] (2.50)

therefore, all the positive terms in the summation cancel out the corre-
sponding negative terms.

2. Ifj#i=Fk#1land j#1, then, z;, x; would be independent when z; = z
and those terms can be calculated as

E|Go(x; —2;)Go(x1 — x:) | — E |Go(x; — ;)] E [Go(z, — x1)], (2.51)

Choosing different values of ¢, j, and k there are totally N(N — 1)(N —2)
terms like Eq. (2.51).
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3. If i = k # j = [, by the same argument, there are N(IN — 1) terms and
these terms are all equal:

E|Go(v; — 5)Go(x; — xi)] — B |Go(xi — ;)] B |Go(x; — i)
= E[Go(x; — 7)) — E[Go(z;i — ;)] = Var(Gy(z; — 2;)]. (2.52)
4. If i = k = j # 1, then, similarly, the independent terms can be written as:

E[Gy(x; — x;)Go(x; — x1)] — E[Go(x; — ;)] E [Go(2; — x1)]
= E[Gy(0)Gy(z; — x1)] — E[G(0)Gy(z; — 21)] = 0. (2.53)

From this discussion, we see that only Cases 2 and 3 will yield a nonzero
value, and they will affect the variance of the information potential with dif-
ferent weights; that is, since the number of terms in Case 2 is N(N —1)(N —2)
which is proportional to N3 while the number of terms in Case 3 is N(N — 1)
which is proportional to N2. Thus, as the number of sample N increases,
Eq. (2.51) becomes dominant. We denote

a=E|Ks(vi—x;)Ko(x; —m1)] — E[Ko(x; — ;)| B | Ko(2; — 1))
b=Var[K,(z; — x;)], (2.54)

where K is the Gaussian kernel of Eq. (1.50) without the division by 6. If a # 0
which is generally true for most probability density functions we can write:

Var(V (X)) = E(V3(X)) - (E(V(X)))?
_aN(N-1)(N-2)+bN(N—-1) a
N oN4 ~ No’
So, from this analysis, we conclude that the variance of the information
potential will decrease inversely proportional to IV, which is a comfortable

result for estimation. The asymptotic mean integrated square error (AMISE)
of the IP is therefore

N — oo, (2.55)

AMISE(V(X)) = E [/ (V(X) = V(X))2dz

ot aN(N —1)(N —2)4+bN(N - 1)
oN4

(2.56)

Notice that the AMISE will tend to zero when the kernel size goes to zero
and the number of samples goes to infinity with No — oo, that is, the IP
is a consistent estimator of the 2-norm of the PDF. Unlike the estimators
for the mean and variance, the IP is a biased estimator of the 2-norm of the
PDF for finite bandwidth kernels. If we compare closely Egs. (2.49), (2.55),
and (2.56) with the well-known Parzen estimation (Eq. (2.12) and [300]) we
see that they are assymptotically the same; the bias is proportional to o2
and the variance decreases proportionally to No. The similarity of Eq. (2.56)
with kernel density estimation shows that the body of knowledge in density



2.6 Physical Interpretation of Renyi’s Entropy Kernel Estimators 73

estimation is directly applicable to the estimation of IP, or that the IP is
essentially a kernel estimator of the 2-norm of the PDF. We also can conclude
that the estimators of Egs. (2.14) and (2.18) for the quadratic Renyi’s entropy
trade bias with variance; that is Eq. (2.14) has larger bias but smaller variance.

2.6 Physical Interpretation of Renyi’s Entropy
Kernel Estimators

There is a useful physical analogy for the kernel estimator in Renyi’s entropy
as defining an information potential field [86]. This analogy has its roots in
the link between Renyi’s entropy and the norms of the PDF of the data. In-
deed, because the kernels in PDF estimation are positive functions that decay
with the distance between samples, one can think that one kernel placed on a
sample creates a potential field in the sample space, just as physical particles
create a gravity field in space. However, in our case the law of interaction is
dictated by the kernel shape. The density of samples is measured by the PDF,
therefore the potential field in the space of the samples is an approximation
of the PDF shape. In this context, samples can be named information parti-
cles and they interact in the information potential field of the PDF creating
information forces [86]. The only difference is that this framework must obey
the sum constraint of PDFs (so sums are replaced by averages). We explain
these concepts next.

Consider V3(X) in Eq. (2.14) as the average sum of interactions from each
sample ; in the sample set; that is, Va(X) = 1/N Z;V:1 Va(z;) where

N
Va(e) SN Valajsas)  and  Valajim) =Gy ygle —x;)  (2.57)
i=1

which basically measures the effect of the potential field in the space location
occupied by the sample z; due to all the other samples x;. The sample-by-
sample interaction Eq. (2.57) is controlled as we can see by the kernel used in
the analysis. The analogy with fields is accurate if we think of the “average”
field produced by the samples and this is required to establish the link to
PDFs which must add to one. Vg(xj) can be recognized as the value of the
PDF estimated at 2; so Va(z), the estimated PDF with kernels for an arbitrary
point x in the space, can be properly called the information potential field.
The IP is just the average value of the information potential field of the sample
set (hence the name).

For Gaussian kernels, the derivative of the information potential with re-
spect to the position of sample z; is easily evaluated as

o - 1 & .
%sz(%‘) =~ G sl — ) = ING? > G, alay —zi)(wi — ).
1=1 1=1
(2.58)
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This expression estimates the information force exerted on sample z; due to
all the other samples. Note that the derivative of the Gaussian evaluated at
zero is zero (any kernel that is symmetric, continuous, and maximum at the
origin has a similar property). We can also regard Eq. (2.58) as the average
contribution of derivatives due to all other samples. Denoting the contribution
of a single sample z; as Fg(xj; x;), and the overall derivative with respect to
zj as Fy(x;), we get

By (wj320) £ G sla; — ;)

o

. A O N
F2(xj)=a— = ZF T ;). (2.59)

We name these two quantities the information force on sample x; due to
sample x; and the (total) information force acting on sample x;, respectively.
Figure 2.4 shows one projection of the information force created by one sample
at the origin (Gaussian kernel) in 2D space.

It is instructive to visualize the procedure for the calculation of the in-
formation potential and the information force with a Gaussian kernel. For a
dataset {z;} in R™ two matrices can be defined as

{D ={di}, dij =xi —x;
s={Vij} Vi =G, z(di),

where D is a matrix of distances, with vector elements in R*, and ¢ a matrix
of scalar values where each element quantifies the interaction between two
points in the lattice by the kernel, which gives rise to a similarity matrix.
From these quantities, all the quantities of information potential field V(i) at
location z;, information force field F(i), and the information potential V' (X)

(2.60)

Fig. 2.4. The information force created by one information particle placed at the
origin in 2D space (Gaussian kernel) in normalized coordinates (z/c, y/0) (from
(252]).
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X1 Xy Xj XN
X

X, _
dij = XX

V; = G(dy)

Y
\

XN

Fig. 2.5. The structure of the matrices D and .

can be easily computed for any Parzen kernel. In fact, for the specific case of
the Gaussian kernel they are:

V0 - 5 &V
1 (2.61)

V(z‘).

<)
|
i M=

N
TOR S
For further reference, notice that information fields are computed with a
single sum over columns (or rows) whereas the information potential requires
double sums. Because the computation is done with pairs of samples, it can
be visualized in a grid where the sample is the axes that work as pointers
to the pairwise distances d; ;, and the Gaussian is computed directly with
this information (Figure 2.5). We can also conclude that the computation
complexity of this class of algorithms is O(N?) or O(N) depending on the
quantity of interest, where N is the number of data samples.

Illustration of Information Forces

Two numerical examples illustrate the information forces and information
potentials in single-dimensional and two-dimensional cases. In the first illus-
tration, we consider the single-dimensional case with the kernel function cho-
sen to be a Gaussian. In Figure 2.6, the one-dimensional information forces
and information potential fields are shown for various kernel sizes [86]. The
attractive force field of an individual particle centered at the origin is plotted
in Figure 2.6a. The forces can be made repulsive by introducing a negative
sign in the definition. This procedure corresponds to choosing between mini-
mizing or maximizing the sample entropy. Figure 2.6b shows the information
potential at any point due to the existence of this particle at the origin as
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a Force field of a single particle b Potential field of a single particle
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Fig. 2.6. Forces and potentials as a function of position for different values of kernel
size (a) force due to a single particle; (b) potential due to a single particle; (c¢) overall
quadratic force at a given position due to all particles; (d) total quadratic potential
at a given position (from [91]).

a function of distance to the origin. To further investigate the effect of addi-
tional samples on the potential and force fields, we position three additional
randomly located samples. The overall quadratic information force field ob-
tained by superposition of the individual forces of these four particles is shown
in Figure 2.6c, and the overall quadratic information potential at a given lo-
cation is presented as a function of position in Figure 2.6d. All plots include
illustrations for various values of the selected kernel size. Notice that, as a
consequence of the equivalence with sample variance showed in Property 2.4,
as the kernel size increases, the effective force becomes a linear function of
distance, and is shown with the label MSFE in Figure 2.6d. For different ker-
nel functions, different force field definitions can be obtained, changing the
adaptation dynamics.

As a second illustration, a snapshot of a two-dimensional entropy maxi-
mization scenario is depicted in Figure 2.7, where the particles are bounded
to within a unit square and interact under the quadratic force definition with
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Fig. 2.7. A snapshot of the locations of the information particles and the instan-
taneous quadratic information forces acting on them to maximize the joint entropy
in the two-dimensional unit square (from [91]).

a Gaussian kernel. The objective is to maximize the entropy of the sample
ensemble, therefore the forces become repulsive and they stabilize in an ar-
rangement that fills the space uniformly with samples. Given a set of randomly
spaced samples in the unit square, when the forces acting on each sample are
evaluated, it becomes evident that the information particles are pushed by
the other particles in order to move along the direction of maximal entropy.
Notice also that the forces tend to be larger for samples away from the cen-
ter of the cluster (the lines attached to each sample are vectors that display
intensity and point to the direction of change).

Wave Function Interpretation of the Information
Potential Estimator

There is another “quantum theory” interpretation of kernel density estimation
that is worth presenting [154]. As we have seen, the kernel estimator creates
a probability density over the space of the samples. The stationary (time-
independent) Schrodinger equation for a particle in the presence of a potential
field can be written as

2
T V2@ +6(@)[E ~ Val)] =0, (2.62)
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where h is the Plank’s constant, m the mass of the particle, and the wave
function y determines the spatial probability of the particle with p(z) =
|1/)(ac)|2. Vq(x) is the “quantum” potential energy as a function of position,
FE corresponds to the allowable energy state of the particle, and y becomes
the corresponding eigenvector. For the set of information particles with the
Gaussian kernel, the wavefunction for a set of N, one-dimensional, informa-
tion particles can be written

1 N
Y(z) = NZGJ(x_%).

To simplify the derivation and if we are not interested in the physical meaning
of the eigenfunctions, we can redefine y(w) as

N

U(@) =Y Golz — ). (2.63)

i=1

We can also rescale Vq(x) such that there is a single free parameter ¢ in
Eq. (2.62) to yield

- @) + Vo l)ile) = B ) (264)

Solving for V() we obtain

B o/2V2)(z) 1 1 N2 —(z—11)2 /202
VQ($)—E+W—E*§+QU2—MZ:(ZE7$Z)G .

(2.65)

To determine the value of Vq(x) uniquely we can require that min Vg (x) = 0,

which makes
o /2V2p(x)
¥(x)

and 0 < E < 1/2. Note that ¢(z) is the eigenfunction of H and FE is the lowest
eigenvalue of the operator, which corresponds to the ground state. Given the
data set, we expect Vq(x) to increase quadratically outside the data region
and to exhibit local minima associated with the locations of highest sample
density (clusters). This can be interpreted as clustering because the potential
function attracts the data distribution function ¢ (z) to its minima, whereas
the Laplacian drives it away, producing a complicated potential function in the
space. We should remark that in this framework FE sets the scale at which the
minima are observed. This derivation can be easily extended to multidimen-
sional data.

We can see that Vg () in Eq. (2.65) is also a “quantum” potential function
that differs from V' (z) in Eq. (2.57) because it is associated with a quantum

FE = —min
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description of the information potential. For Gaussian kernels the two fields
are similar to each other within the regions with samples and because the
derivative of the Gaussian is a Gaussian, but Eq. (2.65) may present advan-
tages because of the intrinsic normalization produced by the eigenvalue that
may simplify the search scale for minima of the potential field. We can also
estimate the information quantum forces as presented above in Eq. (2.58).

2.7 Extension to a-Information Potential
with Arbitrary Kernels

Recall the definition of Renyi’s « entropy given in Eq. (2.18). Thus, its non-
parametric estimator with arbitrary kernel . (z) with bandwidth o is given by

N a—1
Va(X) = % > (Z Ko () — x4 ) : (2.66)

which can be written as a sum of contributions from each sample z;, denoted

Va (:Ej)a

Va(X) = =3 V(o) (2.67)

for all positive a« # 1. Note that this o information potential can be written
as a function of Va(z;) as

R - 1 N a—2 1 N o )
Va(zj) = No—2 (Zﬂa(%‘ $i)> NZFEJ(%‘ —xi) =p* " (z;)Va(z;),
- (2.68)

which means that IP,, for all integer alpha can be derived conceptually from
the quadratic information potential by scaling them by the estimated (0-2)
PDF at the point. Naturally (in analogy with physical potentials), we de-
termine the « information forces by simply taking the derivative of these
information potentials with respect to the particle location (sample value).

0 1 A
Fa(xj) é a—xjva(l'] ]O\éf; 1 (Z HU — z)) (Z H/U(xj — .’L‘Z)>

(o —1)p§ (l’j)FQ(l’j). (2.69)

This formula defines the total information force acting on sample x;, where
the quadratic information force is similar to Eq. (2.59), with the exception
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that the kernel function need not be specifically Gaussian. In Eq. (2.68), the
quadratic force is defined as

N
lﬁ'z(?ﬂj)é % (Z Ko () — »’Bz)) . (2.70)

From Eq. (2.69), which is the total information force acting on sample z;, and
using the additivity of quadratic forces in Eq. (2.70), we can write out the
individual contributions of every other sample as

Folzjsai) = (a — 1)pS 2 (z)) Falay; 2), (2.71)

where we defined A
Fa(zjsa) =k (v — x;). (2.72)

Although we considered above only the single-dimensional case, extensions
of these information potential and information force definitions to multidi-
mensional situations is trivial. Note that, in choosing multidimensional kernel
functions, some restrictions apply as mentioned in Section 2.3.

Notice that the generalized information forces introduce a scaling factor
that depends on the estimated probability density of the corresponding sam-
ple and the selected entropy order. Specifically, the baseline is obtained for
o = 2; that is, the quadratic information potential treats equally the contri-
butions of all the samples. For a > 2, the scale factor (power of the estimated
PDF) in Eq. (2.69) becomes a monotonically increasing function of the PDF
value, meaning that compared to the quadratic case, the forces experienced
by samples in dense regions of the sample space are amplified. For a < 2, on
the other hand, the opposite takes place, and the forces on sparse regions of
the data space are amplified.

This scenario also shows the difficulty of estimating Shannon entropy di-
rectly from samples with kernel estimators. The information potential field
estimated by Eq. (2.67) becomes constant over the space of the samples for
a = 1, therefore from Eq. (2.69) the force becomes zero. This does not mean
that for Shannon’s entropy the individual interactions of samples are constant
and their forces are zero everywhere in the space, but simply that Eqgs. (2.67)
and (2.69) that capture macroscopic behavior cannot be applied for o = 1.
Renyi’s entropy is discontinuous at a = 1, therefore the direct substitution
of this value in the expressions should be avoided. However, we can use the
above estimator formalism for values of alpha close to 1, but we can expect
very slow convergence.

2.8 Renyi’s Divergence and Mutual Information

The structure of probability spaces is much more complex than linear spaces,
therefore computing distances in such spaces is nontrivial. The most widely
used disimilarity measure is the Kullback-Leibler divergence [188] due to its
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nice properties (invariant to reparameterization, monotonicity for Markov
chains, and linked locally to the Fisher information matrix that quantifies
the Riemannian metric of the space) as we have briefly outlined in Chapter 1.
In this section we present Renyi’s definition of divergence and mutual informa-
tion and will also propose two alternate dissimilarity measures in probability
spaces that can be easily estimated nonparametrically with the information
potential.

Renyi’s a Divergence

Alfred Renyi, in his studies of information theory [264], proposed what is now
called the Renyi’s divergence, intrinsically linked with his definition of entropy
and an extension to the KL divergence. The definition of this divergence mea-
sure and some of its basic properties are reviewed herein.

Renyi’s order-a divergence of g(x) from f(z) is defined as [264]

Dafll9) 2 1 1og 71‘(96) (ﬁ) dr. (273)

a—1 9(x)
Property 2.10. Renyi’s divergence measure has the following properties
i. Da(fllg) >0, Yf,g, a>0.
ii. Do(flg) =0iff f(x) =g(x) Vo € R.
ii. lim Do (f[|9) = Dxe(f1]9)-

Proof. We do the proof of each part separately.
i. Using Jensen’s inequality on the argument of the logarithm in Eq. (2.73),

we get
Z f(x) (%)l_a deE; Z f(z) (%) dz - =1. (2.74)

Substituting this result in Eq. (2.73), the desired inequality for all o > 0
is obtained.

ii. Clearly, if g(x) = f(z), then D,(f]||g) = 0. For the reverse direction,
suppose we are given that Dy (f||g) = 0. Assume g(x) # f(x), so that
g(z) = f(z) + 6(x), where [*°_§(x) =0, and 3z € R such that §(z) # 0.
Consider the divergence between these two PDFs. Equating this diver-
gence to zero, we obtain
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Paltllo) = 1 i o log ff(x) <%>la

log/f (1+—z)))1_adx:0 (2.75)

de =

which implies that

/f <1+—i))>ladx—1:»(1+%)—1, Vz € R. (2.76)

From this last result, we get that §(z) = 0, Vo € R, which contradicts
our initial assumption, therefore, we conclude that g(z) = f(z).
iii. Consider the limit of Eq. (2.73) as o — 1.

limy Do (f[]) = lim, = 1og [ f(a) (%) i
i i (2)" g (42 o
I § g(—§>d

- /f < g)dm_DKL(flg) (2.77)

Following the same ideas used in deriving the estimator for Renyi’s en-
tropy, we can determine a kernel-based resubstitution estimate of Renyi’s
order-a divergence using Eq. (2.18). Suppose we have the i.i.d. samples
{z4(1),...,24(N)} and {xf(1),...,25(N)} drawn from g(z) and f(z), re-
spectively. The nonparametric estimator for Renyi’s divergence obtained with
this approach is given as

)Q—l]

ko (Tf(f) — z5(i))

1

Dalfllg) = ——logF,

Y
~
—

8
N—

=2
&

a—1
z(j)
I
OgN;( a(z(7)) >

-1

—
z

1 — R
=——lg > |5 = Duo(f 1] 9),
= _%lma(xgu)—xg(i))
(2.78)

with the computational complexity O(N?), the same as the entropy estimator.
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Although Renyi’s o-divergence has many of the same properties as KL
divergence, it is not as general. In fact, for Shannon’s relative entropy, the
total information gained by observing a random event A with probability f(x)
that changes to g(x) by observing a second event B can be computed either
by averaging the partial gains of information, or by averaging the increase in
uncertainty with a negative sign [65], as we have seen in Section 2.5. Shannon
information gain for continuous variables

f(z)
171l9) = [ f@)tos T2 (279)
is obtained by averaging over f(z) the partial gains of information log(f(x)/
g(x)). Notice that Eq. (2.79) is equivalent to Shannon’s relative entropy (KL
divergence). However, if Renyi’s entropy with a # 1 is used to evaluate this
gain of information or the negated increase in uncertainty the results differ.
Renyi’s gain of information by partial increase in information of order o is [266)

. 1 z)*=e
I,(f1lg) = - log/ Lch((xil_“ dx. (2.80)
If one uses the measure of uncertainty of order a, we get Renyi’s gain of in-
formation of order-o or Renyi’s divergence of Eq. (2.73) which is a different
quantity (in fact I, (f||g) = Da2—a(g]|| f)). Therefore, Shannon relative en-
tropy is the only one for which the sum of average gain of information is
equal to the negated average increase of uncertainty. This different behavior
between Shannon and Renyi stems from the generalized additivity used in
Renyi’s definition which excludes the case I(fr) + I(f-r) = 0, unless Iy are
all the same (uniform distribution), where —I" is the set of the negated amount
of information (i.e., —Ij). This has implications for the definition of Renyi’s
mutual information as well.

Renyi’s oo Mutual Information

Recall that Shannon’s mutual information between the components of an
n-dimensional random vector X is equal to the KL divergence of the joint
distribution of X from the product of the marginal distributions of the compo-
nents of X [266]. Similarly, Renyi’s v mutual information is defined as Renyi’s
divergence between the same quantities. Letting px(.) be the joint distribu-
tion and px, (.) be the marginal density of the oth component, Renyi’s mutual
information becomes [266]

log/ /pxn(xl""’ )dxl -z, (2.81)

1.(X) 2 ~
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Once again, it is possible to write a kernel-based estimator for Renyi’s
mutual information by approximating the joint expectation with the sam-

ple mean estimator
<pX(x1, o ,xn)>a1
HZZI pXo (x())

LI pxel) N
o — 11 & N Z (H::leo(xO(j))>

Jj=1

1>

Ia(X) 1 10g Ex

(2.82)

Q

and when replacing the PDFs with their Parzen estimators that use consis-
tent kernels between the marginal and joint PDF estimates as mentioned in
Property 2.7, the nonparametric mutual information estimator becomes

(3 £ rstati) - )

)22 1ogizN: =1
=1 (% S i (20(j) —xo(z))>
o=1 i=1 . (2.83)
N n
Do (BE T e -s0)
s 10gﬁz "
ML (% £ el - ) )

The limit of Eq. (2.83) when oo — 1 is an estimate of Shannon’s mutual
information between the random variables under consideration. Therefore, this
nonparametric mutual information estimator can be used to estimate directly
Renyi’s mutual information I(X) from data for a close to one, but it does
not have all the nice properties of Shannon mutual information. Although it is
nonnegative and symmetric, it may yield a value greater than 1 (i.e., the
information on x; given by xo can be larger than the information of zi,
which is a shortcoming). There are many other alternatives to define Renyi’s
mutual information and unfortunately all of them have shortcomings. See
Renyi [266] for a full treatment.

2.9 Quadratic Divergences and Mutual Information

As pointed out by Kapur [177], there is no reason to restrict ourselves to
Shannon’s measure of entropy or to Kullback-Leibler’s measure for cross-
entropy (density dissimilarity). Entropy and relative entropy are too deep
and too complex concepts to be measured by a single measure under all con-
ditions. This section defines divergence and mutual information measures in-
volving only a simple quadratic form of PDF's to take direct advantage of the
IP and its nice estimator. A geometric approach is used here.

Looking at the Euclidean space, the two most common families of dis-
tance are the sums of difference squares in coordinates and the inner-product
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distances, and they are be the starting point to derive the corresponding
divergences in probability spaces. Equal neighborhoods in the simplex are
transformed into spheres of equal size to preserve the Fisher information
matrix [32]. This gives rise to a unit sphere where each transformed PMF
has coordinates /py (the simplex is transformed to the positive hyperoctant
of the sphere). The geodesic distance D¢ between two PMFs f and g in the
sphere (i.e., the length of the great circle) can be estimated by the cosine
of the angle between them, or cos Dg = >, \/ﬁ\/g_k This result is related
to the argument of the Bhattacharyya distance [39], which is defined (for
continous PDFs) as Dg(f, g)

Dz(f,9) < / V(x)g(z) dm) (2.84)

Dg(f,g) vanishes iff f = g almost everywhere. We can further establish
a link of Eq. (2.84) with Renyi’s divergence with oo = 1/2 (apart from a
scalar). The Chernoff distance [56] or generalized Bhattacharya distance is a
non-symmetric measure defined by

Def,g) = —In ( [ @) gy dm) 0<s<l (2.85)

which for s = 1/2 yields the Bhattacharyya, and again, apart from the scaling,
corresponds to Renyi’s divergence for o =1 — s.

Instead of the inner product distance we can also measure the distance
between f and ¢ in a linear projection space of the hyperoctant (chordal

distance) as Dy = (3, (v/Fr — ,/gk)2)1/2. This result yields the Hellinger’s
distance [19] which is defined (for continuous densities) as

putt = [ (Vi@ ~va@) @] = [ (1~ [ viwe)]
(2.86)

Compared with the KL and Renyi’s divergences, Hellinger’s distance has
the advantage of being a difference of PDF's so it avoids stability problems
when the denominator PDF is zero. It is also related to the Havrda-Charvat
(o0 = 1/2) divergence that is intimately related to oo Renyi’s divergence.

After all, Bhattacharyya Eq. (2.84) and Hellinger’s distances Eq. (2.86) are
angular and Euclidean distances in the hypersphere and their relationship with
Renyi’s o0 = 1/2 divergence inspired us to seek definitions of divergences that
could benefit from the o information potential estimator (specifically o = 2).

The similarity between two PDFs using the 2-norm is a simple and
straightforward distance measure; it obeys all the properties of a distance
(includlng symmetry and the trlangular inequality), and can be written as
Dgp(f,g9) = [V(f 2 dz. For simplicity we do not include the
square root in the deﬁnltlon because our goal is to use these measures as
cost functions, so the Euclidean distance between PDF's is redefined as
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Den(f.9) = / (f(z) — g(z))*de = / F(a)dz -2 / f(@)g(@)da + / ¢ (@)dz
(2.87)

Dgp(f,g) can be recognized as belonging to the same family as the
Herlinger distance (chordal distances) but with a different o-norm. Although
being a distance, Dgp(f, ¢) is sometimes lumped with the divergence termi-
nology in PDF spaces.

The squared distance between the joint PDF and the factorized marginal
PDF is called the quadratic mutual information Euclidean distance (QMIgp),
and is written as

Ipp (X1, X2) = Dep(fx,x, (%1, 72), fx, (%1) fx, (72)). (2.88)

Dgp(f,9) > 0 with equality if and only if f(x) = g(x) almost every-
where and the integrals involved are all quadratic forms of PDFs. Obviously,
the QMIgp between X; and X, is nonnegative and is zero if and only if
fxix, (1, 22) = fx,(x1)fx,(x2); that is, X; and X, are independent ran-
dom variables. There is no strict theoretical justification that the QMIgp is
an appropriate measure for dependence between two variables. However, it can
be shown that Dgp(f, g) is a lower bound for the KL divergence [319], there-
fore when one maximizes Dgp(f, g), we are also maximizing KL. For multiple
variables, the extension of QMIgp interpreted as a multivariate dissimilarity
measure is straightforward:

k
Ipp(X1,..., Xe) = Dep (fx (w1, .. oxx), ] Fx. (@),
i=1

where fx(z1,...,2x) is the joint PDF, and fx,(z;),(i = 1,...,k) are
marginal PDFs.

The other possible PDF divergence is related to the Battacharyya distance.
Formally it can be derived from the Cauchy-Schwarz inequality [276]:

\/ [ e [ @@y = [ gt (2.89)

where equality holds if and only if f(z) = cg(z) for a constant scalar c. If f(x)
and g(z) are PDFs (i.e., [ f(z)dr =1 and [ g(x)dz = 1), then f(z) = cg(z)
implies ¢ = 1. So, for two PDFs f(x) and g(z) equality holds if and only if
f(z) = g(z). Similarly to Dep(f, g) for the estimators we normally use the
square of Eq. (2.89) to simplify the calculations. Thus, we may define the
Cauchy- Schwarz divergence for two PDFs as

Des(f,g9) = —log (2.90)
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Des(f,g) > 0, where the equality holds if and only if f(z) = g(z) almost
everywhere and the integrals involved are all quadratic forms of PDFs.
Des(f, g) is symmetric but it does not obey the triangular inequality.

Let us look closely at Eq. (2.87). One can immediately recognize the first
and last terms as the quadratic information potential of f(x) and g(z), respec-
tively. The middle term [ f(z)g(z)dz is called the cross information potential
(CIP), and basically estimates the interactions on locations in the space dic-
tated by the dataset f(z) in the potential created by the dataset g(z) (or
viceversa). This is really the term that measures the “distance” between the
two PDF's, because the other two are simply normalizing terms. The Dcg(f, g)
of Eq. (2.90) can be rewritten as

Des(f.g) = log / f(2)2dz + log / g()%dz — 2log / f@)g(x)de,  (2.91)

where all the three terms of Drp(f, g) appear also in Des(f, g), simply with
a logarithmic weighting. Based on Dcs(f, g), we define the Cauchy—Schwarz
quadratic mutual information (QMIcg) between two variables X; and Xs as

Ics(X1, X2) = Dos (fx (21, 22) , fx, (21) fx, (22)), (2.92)

where the notations are the same as above. Directly from above, Ics(X1, X5)
> 0 meets the equality if and only if X; and X, are independent random
variables. So, I¢g is an appropriate measure of independence. This measure
is a geodesic distance in the sphere, therefore the Cauchy—Schwarz divergence
may also be appropriate as a dependence measure in cases where the PDF's
exist in the sphere. For multivariate variables, the extension of QMI¢g is also
straightforward:

ICS(Xl, . 7)(;f) = DCS (fx(.’El, e ,.’L‘k) 5 HfX7 (l‘z))

Cauchy-Schwarz Divergence and Renyi’s Relative Entropy

Recently, Lutwak, et al [205] defined a new Renyi’s divergence called the
relative a-Renyi entropy between f(x) and g(z) as

([ 9 @) f(@) T (f59°())
([, fo(2)) @O0

Note that the denominator in the argument of the log now contains an inte-
gral that is more robust than Renyi’s original definition of Eq. (2.73). So f(z)
could be zero at some points of the domain but overall the integral is well
defined, thus avoiding numerical issues of Eq. (2.73). Again, for oo — 1, this
gives Dkr(f || ¢g). In particular, for oo = 2 Eq. (2.93) is exactly the Cauchy—
Schwarz divergence of Eq. (2.90). This is a very interesting relation because it

1/

Dg.(f,9) = log (2.93)
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provides an information-theoretic interpretation both for the Cauchy-Schwarz
divergence and also for the integral of the product of PDFs. Indeed, we can
rewrite the Cauchy—Schwarz divergence in terms of Renyi’s quadratic en-
tropy as

Dos(x.) =~log ( [ f(w)g(w)>2 s -+10g ([ s0yac)

+log </g(w)2dx>

= 2Hy(X;Y) — Ho(X) — Ha(Y), (2.94)

where the first term can be shown to be the quadratic Renyi’s cross-entropy
[259] (and should not be confused with the joint entropy of X and Y'). The
similarity of this expression with Shannon’s mutual information in Eq. (1.10)
is striking if we think in terms of cross-entropy versus joint entropy.

2.10 Information Potentials and Forces
in the Joint Space

The interactions among the samples interpreted as information particles for
the case of divergence are substantially more involved than IP because of the
different information potential fields that exist. In essence one has to realize
that each probability density function creates its own information potential
field, and that particle interactions are produced by weighted sums of each
potential field computed in the joint space [340]. We illustrate the principles
for the calculation of the Euclidean distance and QMIgp.

Euclidean and Cauchy—Schwarz Divergence Estimators

The divergences are composed of three different information potential fields,
each specified by the location of the samples from f(z), from g(x), and the
cross—information potential field. Because the potentials are additive, we can
compute one at a time and add the result as specified by Eq. (2.86). The infor-
mation potential estimated by the Gaussian kernel for each PDF is given by

R 1 N N
Vi=w2 3D G s, (ar i) — 24 (5))

i=1 i=j

1 N N
el DD Gumlag(i) = 2y(4))? (2.95)

i=1 i=j

1 L ‘ 2
Vo= 57322 Guao(ws () —24(3)%,

i=1 i=j

Vg
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where for simplicity we assume that we have the same number of samples
(N) in each dataset and the same kernel size 6. Vi is the cross-information
potential estimator and basically measures the interaction of the field created
by f(x) on the locations specified by g(z). The Euclidean and Cauchy—Schwarz
information potential fields are therefore:

Dep(f,g) = Vap = Vi + V, — 2V,
V0, (2.96)

Des(f,g) = Ves = log

The computation of the Euclidean and Cauchy—Schwarz information forces
exerted on each sample z; can be easily achieved using the additive rule of
derivatives

OVen _ 0V 0V, v,
Ves 10V 10V, 20V,

(2.97)

The computation of the Euclidean and Cauchy—Schwarz divergences can pro-
ceed in a fashion very similar to the information potential defining a matrix of
distances and of scalars as given by Eq. (2.61). See [340] for a full treatment.

Generalized Information Potential (GIP) for Quadratic
Mutual Information

Both QMIgp and QMIeg can be written in a very similar way to Dep(f, ¢)
and Dcs(f, g) but they are a little more complex due to the fact that we have
two variables and the existence of the joint and the product of the marginals.
We can decompose the overall expressions Eqgs. (2.88) and (2.92) in the fol-
lowing three terms,

VJ :/ fX1X2 (x1,x2)2dx1dx2
Vi = //(fX1 (1) fx, (22))? day day (2.98)
Vc:/ Ixix (1, 22) fx, (21) fx, (22)dr1das

where V is the IP of the joint PDF, V}; is the IP of the factorized marginal
PDF, and V¢ is the generalized cross information potential. Just like for the
quadratic divergences, this is really the term that measures the interactions
between the two information potentials, whereas the other two are proper
normalizations. With these three terms, both QMIs yield

(2.99)

Igp =Vy=2V.+Vy
Ics =logVy —2log V, + log Vi
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Jx,x, (%1, x2) ) ,
-+ Ip(Euclidean Distance)

/
_— I(K-L Divergence)

v, e

“~ S0 ()
X
| »

Ics = —log((cos 0)?) V.=cos® ViV

Fig. 2.8. Geometrical interpretation of quadratic mutual information.

Figure 2.8 shows the illustration of the geometrical interpretation of all
these quantities in the 2D simplex (for the case of discrete random variables).
Is, as previously mentioned, is the KL divergence between the joint PDF and
the factorized marginal PDF, Igp is the squared Euclidean distance between
these two PDF's, and Icg is related to the angle between these two PDF's.

For the estimation of each of the potentials in Eq. (2.98) the following no-
tation is used: subscripts denote the input components, and indices represent
sums over samples. For a given dataset {z(i) = (z1(i),22(i))T]i = 1,...,N}
of a two-dimensional variable X = (x1,22)7, the joint and marginal PDFs
define a joint (Vy), a marginal (V) and a cross (V) information potential
field from Eq. (2.98). Using Gaussian kernels to estimate the joint and the
marginals yields,

Froxaor2) = 3 Golo — ()
F, (o) = _szjlag(xl — (i) (2.100)
Frafos) = 5 32 Galoa = a2(0).

Because information potential fields are additive, we can estimate indepen-
dently the three terms in QMIgp or QMIcs of Eq. (2.99) based only on the
given dataset.

Note that V;, which exists over the joint space, can be decomposed for
radially symmetric kernels in a product of interactions along each of the vari-
ables G(z; — x;) = G(x1; — 21;)G(v2 — x2j), where x = (w1, 22)T. The
generalized cross—information potential Vo of Eq. (2.98) is the potential that
seems more difficult to compute, therefore it is illustrated here. Starting from
the definition of the information potential, we obtain
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Vo = //f(ml,xg)f(xl)f(xg)dwldxz

(2.101)

Notice that the GCIP for QMI requires O(N?) computation. V3 can be further
factorized as two marginal information potentials V; and V5

Var = // f§1($1)f;2(2(x2)dx1dx2
Vi =//f§1(x1)dx1 (2.102)

Vp = // f%, (w2)das

Therefore the final expressions are

Vi(i,5) = G zo (2n (i) — 2x(4)),

j=1 1=1
R 1 M. .
i=1 j=1
. . . 1 M.
Vi = ViV with Vi, = WZZVk(z,]),k =1,2
i=1 j=1

R 1N
Vo = NZVl(Z’)Vz(i)-
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So, the estimated Euclidean Mutual information (QMIgp) and the estimated
Cauchy-Schwarz Mutual Information (QMIcg) are given by

R 1 N N ) . o 1 N . R
Lpp(X1,X2) = 55 202 Vil )Valin ) + VaVe = 5 D Vi()Va(i)
(%iiWMMﬁCQ)

Ios(X1, Xs) = log (2.104)

From the above, we can see that both QMIs can be expressed as interac-
tions between the marginal information potential fields at different levels:
Vi(i,j)Va(i,j) is the level of the sample-to-sample interactions from each
marginal (the joint field), V1 (i)V2(j) is the level of one full marginal field
acting on a single sample (the GCIP), and V4V, is the interaction between
both marginal potential fields (product of marginals). Igp is called the
Euclidean generalized information potential (GIPgp), and Icg is the Cauchy-
Schwartz generalized information potential (GIPcg).

The quadratic mutual information and the corresponding cross informa-
tion potential can be easily extended to the case with multiple variables
(e.g., X = (21,...,21)T). In this case, we have similar IPs and marginal
IPs as in Eq. (2.104). Then we have the QMIgp and QMIcs and their corre-
sponding GIPgp and GIPcg as follows,

A 1 ) 9 N K K
IED(X1,-~-,XK)=—N2 E E k(i,j)—ﬁ E ||Vk(i)—|— ||Vk
i £ . paie

s
Il
_
<
Il
_
=~
Il
_
s
Il
_
=~
Il
—

jcs(Xl,...,XK) = log

(2.105)

Generalized Information Forces

Three different potentials contribute to the generalized information potential,
but because the derivative is distributive with respect to addition, one can
still operate on each term independently. The cases of GIPgp and GIPcg are
slightly different because of the logarithm, but the procedure is to take the
derivative of Eq. (2.104) with respect to a given sample, yielding

. dlgs v,  20Ve IV
F = = —
20 (0) = 50 " P~ Ban() T 9en(d)

~ . afcs 1 8‘7] 2 8VC 1 8‘716

FosO) = 50u@) = V; 020~ Ve 0an(®) | Vi D)

(2.106)
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The case for multiple variables can be readily obtained in a similar way (see
[340] for a full treatment).

A simple example

To understand the similarities and differences among the dissimilarity mea-
sures Is, Igp, and Icg, let’s look at a simple case with two discrete ran-
dom variables X; and Xs as shown in Figure 2.9. It is trivial to apply
these definitions to discrete events. We exemplify here the QMIgp and
QMlIcs. For the discrete variables X; and X5 with probability distribution
{Px,(@);i=1,...,n} and {Px,(j);j = 1,...,m}, respectively, and the joint
probability distribution {Px(¢,7);i=1,...,n;j =1,...,m}, the QMIgp and
QMlIcg are

Iep(X1, Xa) = 3= 3 (Px(i.d) = Pxi ()P, ()"
> 5 (Px(ind)? (; 3 (P, (i)Px, <]>>2>
Tos(X1, X)) =log ~—— oz
Z (PX(Zaj)le (Z)sz (.7))2

(2.107)

X1 can take the values 1 or 2 with a probability Px, = (Px, (1), Px,(2));
that is, P(X; = 1) = Px,(1) and P(X; = 2) = Px,(2). Similarly X»
can take the values 1 or 2 with the probability Px, = (Px,(1),Px,(2))
where P(X; = 1) = Px,(1) and P(X2 = 2) = Px,(2). The joint prob-
ability distribution is Px = (Px(1,1), Px(1,2),Px(2,1), Px(2,2)); where
Px(1,1) = P((X1, X2) = (1,1)) and likewise for the other cases. Obviously,

X
A
Py 24+ @P} @PY
Py 14 eor) ery
| | »
T T > X
1 2
1 2
Py Py,

Fig. 2.9. The 2D data for the example.
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Px, (1) = Px(1,1) + Px(1,2), Px,(2) = Px(2,1) + Px(2,2), Px,(1) =
Px(1,1) + Px(2,1), and Px,(2) = Px(1,2) + Px(2,2). In the following
figures related to this example, the probability variables are simplified as
Py = Px, (1), Py = Px(1,1), etc.

First, let’s look at the case with the marginal distribution of X; fixed as
Px; = (0.6,0.4). Then the free parameters left are Px(1,1) from [0, 0.6] and
Px(2,1) from [0, 0.4]. When Px(1,1) and Px(2,1) change in these ranges,
the values of Ig, Irp, and Icg can be easily calculated. The right graphs in
Figure 2.10 show the contour plots of the corresponding left surfaces (contour
means that each line has the same functional value).

Fig. 2.10. The surfaces and contours of Is, Iep, and Ics versus Px(1,1) and
Px(2,1)
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These graphs show that although the contours of the three measures
are different, they reach the minimum value 0 in the same line Px(1,1) =
1.5Px(2,1) where the joint probabilities equal the corresponding factorized
marginal probabilities. And the maximum values, although different, are also
reached at the same points (Px(1,1), Px(2,1)) = (0.6, 0) and (0, 0.4) where
the joint probabilities are

Px(1,2) Px(22)] [0 04
Px(1,1) Px(21)| |06 o | ™

Px(1,2) Px(2,2)| |06 0
Px(1,1) Px(2,1)| | 0 04|’

respectively.

If the marginal probability of X is further fixed (e.g. Pxz = (0.3,0.7)),
then the free parameter is Px (1,1) from 0 to 0.3, which can be regarded as the
previous setting with a further constraint specified by Px(1,1) + Px(2,1) =
0.3. In this case, both marginal probabilities of X; and X5 are fixed, the
factorized marginal probability distribution is also fixed and only the joint
probability distribution will change. Figure 2.11 shows how the three measures
change with Px(1, 1), from which we can see that the minima are reached at
the same point Px (1,1) = 0.18, and the maxima are also reached at the same
point Px(1,1) = 0; that is,

Px(1,2) Px(2,2) | |06 0.1
Px(1,1) Px(2,1)| | 0 03]

From this simple example, we can see that although the three measures
are different, they have the same minimum point and also have the same
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Fig. 2.11. Is, Igp, and Ics versus Px(1,1).
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maximum points in this particular case. It is known that both Shannon’s
mutual information Is and QMIgp(/gp) are convex functions of PDFs, and
Igp is a lower bound for Ig. From the above graphs, we can confirm this
fact and also reach the conclusion that QMIcs(Ics) is not a strictly convex
function of PDFs.

2.11 Fast Computation of IP and CIP

One of the practical difficulties of the information potential, cross-information
potential and ITL quantities in general, such as Dgp and D¢cg and QMIgp and
QMIcs is that the calculations are O(N?) or O(N?), respectively. This section
presents an effort to make the estimation of IP faster using two techniques:
one based on the fast Gauss transform (FGT) [122] and the other using the
incomplete Cholesky decomposition to exploit the Gram matrix band struc-
ture that for kernels possess rapidly decreasing eigenvalues, particularly in low
dimensions [100].

Fast Gauss Transform

The fast multipole method is a very interesting and important family of fast
evaluation algorithms that have been developed over the past two decades
to enable rapid calculation of approximations, with arbitrary accuracy, to
large matrix-vector products of the form Ad where the elements of A are
aij =, Zj @(x; — x;) with ¢ a nonlinear fast decaying positive function of
the argument [121]. The fast Gauss transform [122] is a special case derived
for efficient calculation of weighted sums of unidimensional Gaussians at a

point y;,
N PR . 2 0-2 .
S(yz) = Zj=1 wie_(yj yi)~/4 1= ]_, ceey M (2108)

The FGT has been applied to many areas including astrophysics, kernel
density estimation, and machine learning algorithms decreasing the computa-
tion from O(NM) to O(N + M) where N is the number of samples (sources)
and M the number of points where the evaluation is required. The computa-
tional savings come from two facts, both related to the shifting property of
the Gaussian function

7(193'—%‘)2 7(yj—yc—(yi—yc))2
e G2 a

e
yj—ve? o R n -
_ () ano% <y - y) B (%) . (2.109)

which means that a Gaussian centered at y; can be shifted to a sum of Her-
mite polynomials times a Gaussian, all centered at y.. First, the Hermite
polynomials h,,(y) given by

n d"exp(—1z?)

2.110
T (2.110)

hn(y) = (_1)
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are very efficient in the approximation and a small order p is normally suffi-
cient; that is,

eXp<—( 40—2% ) an <yz Uyc> hy, (ZUJ 20y0>+5(p)’

where g(p) is the error associated with the truncation of the expansion at
order p. The second savings is that there is no need to evaluate every Gaussian
at every point. Instead a p-term sum is computed around a small number y,. of
cluster centers with O(Np) computation with Eq. (2.109). These sums are then
shifted to the y; desired locations and computed in another O(Mp) operation.
In practice, an expansion around a single center is not always accurate over the
entire domain of interest. A tiling of the space is constructed and the Gaussian
function is expanded at multiple centers with the FGT. To efficiently subdivide
the space, a very simple greedy algorithm called furthest-point clustering [117)
can be used, which computes a data partition with a maximum radius at most
twice the optimum for the problem. The direct implementation of furthest-
point clustering has running time O(BN), with B the number of clusters.

If one recalls the definition of the IP this algorithm can be immediately
applied, remembering that now the sources and the locations where the ex-
pansion needs to be computed coincide. If we apply this expansion to the
IP V(y), we obtain

V( S h be C. (b
y) ~ 20N2\/—ZZZ (), (2.111)

j=1b=1n=0

where B is the number of clusters used with centers ycyp, and C,,(b) is de-

fined by
AOEDY (%) , (2.112)

y;€EB

From the above equation, we can see that the total number of operations
required is O(BpN) per data dimension. The order p of the expansion depends
on the desired accuracy required (normally 4 or 5), and is independent of N.
In addition to the complexity reduction, the other appeal of the FGT is that
the code becomes parallelizable due to the clustering step.

Taylor Series for Multiple Dimensions

The extension to more than one dimension of the previous algorithm is done
by treating the multivariate Gaussian as a Kronecker product of univariate
Gaussians. Following the multi-index notation of the original FGT papers,
we define the multidimensional Hermite function as

ha(y) = hoy (Y1) has (Y2) - - hay (Ya), (2.113)
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where y = (y1, -+, ya)" € R4 and a = (o, ..., ag) € N%. As can be ex-
pected the algorithm scales up very poorly with dimension due to this prod-
uct form.

An alternative method introduced by Yang et al. [345] is to expand the
Gaussian function into a multivariate Taylor series. The Gaussian function is

factorized as
2 2
exp | Wi =¥ill) _ o vi=cl
402 402

X exp ( IIyz4 Gl ) exp (2 by =) byi = C)) . (2114)

402

In the third term of (2.114), the product of the evaluation at two different
points (called the entanglement) is split by expanding the exponential into a
Taylor series as

] CED N CTE e
- (2.115)

where the factorial and the length of « are defined, respectively, as a! =
aqlag! - agl and |a| = a3 + a2 + -+ - + a4. The IP can then be written using
this form as

~ ly; —esll® (vi—es\®
VT(y) ~ Ao d/2 Z Z Z C eXp <_ 40_2 2% )

j=1 B a>0
(2.116)

where the coefficients C,, are given by

2la| lly: — CB|| Yi — CB “
C. (B {;;B exp ( = ( = ) : (2.117)

The coefficients C,, are lexicographically ordered before storage because the
expansion of multivariate polynomials can be performed efficiently in
this form. For a d-dimensional polynomial of order p, all terms are stored in

a vector of length
p+d\ _(p+d)!
A= a )T Tap

If the series is truncated at order p, then the number of terms is r, 4 which
is much less than Hg = p? in higher dimensions. The total computational
complexity is O(BNrp q4), where B is the number of clusters.

These algorithms decrease the number of computations appreciably when
estimating entropy and divergence in ITL with the Gaussian kernel because
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the computations become O(N). However, we have to remember that they are
not exact evaluations, therefore the number of terms in the expansions and
the number of clusters have to be determined appropriately according to the
application. Coprocessors for desktop computers in the GigaFlop range have
been developed for astrophysics applications [179], but they lack the flexibility
required for ITL where the number of dimensions of the problem, the kernel
type are free parameters and where the computations are much more general
than just evaluating forces.

Incomplete Cholesky Decomposition

Any N x N symmetric positive definite matrix K can be expressed as K =
GTG where G is an N x N lower triangular matrix with positive diagonal
entries. This decomposition is known as the Cholesky decomposition which is
a special case of the LU decomposition for a symmetric positive definite matrix
[116]. However, if the eigenvalues of K drop rapidly, then the matrix can be
approximated by a N x D(D < N) lower triangular matrix G with arbitrary

~T ~
accuracy; that is, HK -G GH < ¢ where ¢ is a small positive number of

choice and || - || is a suitable matrix norm. This decomposition is called the
incomplete Cholesky decomposition (ICD) [116]. It is observed that in kernel
learning [100], depending on the eigenstructure of the matrix, even D << N
provides desired accuracy in practice. Although computation involving K can
be largely simplified using G, computing G itself appears as an overhead,
but fortunately there are efficient algorithms to accomplish this task [116].
The particular algorithm in the following table takes a greedy approach and

~T ~
tries to minimize the trace of the residual K — G G. Its space complexity is
O(ND) and the time complexity is O(ND?), exactly the same complexity as
the factorization of G. We provide the algorithm below.

Fast Computation of IP

The information potential can be written in terms of a symmetric positive
Gram matrix as

5 1 L& 1., s |2
=1 j=1

(2.118)

where 1y is a vector of all 1 and size N. The computation decreases from
O(N?) to O(ND?), and we have obtained precisions of 1076 for 1000 sample
datasets, while reducing the computation time 100-fold [292]. The quadratic
mutual information algorithms of Eq. (2.97) use only the IP so they can be
easily written as
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Algorithm 1 Incomplete Cholesky decomposition
I: Input: X, k and €, Output: G
2 DeR™, P=][L2,..., n]"
3 G(;,1)=K(;,1)
4 fori=1:ndo

5 ifi =1 then

6: D(i : n) = diag(K)

7. else

8: D(i :n) = diag(K(i : n,i :n))—

9: (Gli:n,1l:i—1)oG(i:n,1:i—1))1;4
10: end if

1. if 2;;, D(j) < € then

12: BREAK

13:  end if

14 j* = argmaX;< <, D(j)

15: P(i) = P(j*)

6 G(i,1:i—1) = G(G*,1:i—1)

17 G(i,i) = /D{",j%)

18 G(i+1:n,4) = (K(P(i+1:n),P(i))—

19 G(i+1:n,1:i—1)#(G(i,1:i- I}JT);‘G(-J,t')
20: end for

21: Sort rows of G according to P

- 1 ~T = ~T =
Igp = mlgx (GXXGYY © GXXGYY> ]‘Dy

1 N 2 . 2
+ o [th G 1R G
2 ~ ~T = ~T
— m ( %Gxx) (GXXGYY) (GYY1N> (2.119)
T (AT F ~T = T & 2T & 2
o (i i) 1, 10 116 |

f cs = log ~ T - T 3
((1620) (Ghxins) (651

(2.120)

In these expressions the symbol o denotes the elementwise matrix multiplica-

tion (Hadamard or Schur product). The computational complexity decreases
dramatically from O(N?) to O(N(D?, + D?, + D, D,)).

Fast Computation of the CIP

Unfortunately, the cross information potential does not yield a symmetric pos-
itive definite Gram matrix, therefore the above algorithm cannot be directly
applied. However, one can augment the matrix to make it symmetric: if the
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Gram matrix for the CIP is denoted K xy, we create a matrix of double size
given by

This may seem a waste, but it turns out that in many ITL descriptors each
one of the parts of this matrix is needed as we show below. The CIP then can
be written as

N N
N 1 1 1 ~ ~
VIX.Y) = 5 S k(i —y) = N2 el K..ep = el <e1TGzz) (Gzzez) ;

i=1 j=1

(2.121)
where
e ={1,...,1,0,...,0}T and ez = {0,...,0,1,...,1}7T.
—— —— —— ——
N N N N

The computational complexity of the CIP is also O(NDQ). The divergences of
Eq. (2.86) and (2.90) that use the CIP can be written in matrix form as

Do g (76uz) (Ghoon) 1 1 (656 ()

]52 (el GZZ) (ngez) (2.122)

(ef@zz) (ngel) (erzré'ZZ) g@gzez). (2.123)
(62 (650)

The computational complexity is identical to the CIP. The advantage of the
ICD with respect to the FGT is the simpler data structures for the computa-
tion, in as much as everything is done in vector matrix products.

Des = log

2.12 Conclusion

This chapter presented the definition of Renyi’s family of entropies, their
meaning and relationship with Shannon, and their impact in developing non-
parametric estimators for entropy. In particular the argument of the log of
quadratic Renyi’s entropy called here the information potential, can be esti-
mated directly from data with kernels. The IP can be considered on a par with
nonparametric estimators of mean and variance, but unlike them it depends
upon one free parameter that needs to be estimated from the data structure
and controls the bias and variance for finite datasets. This brings flexibility to
the designer, but also requires proper selection. The simple Silverman’s rule
of density estimation is normally sufficient when data are low-dimensional,
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but more involved techniques such as cross-validation are required for more
accurate results. This dependence on the kernel size makes the IP appropriate
primarily for relative comparisons within the same dataset, but when the goal
is to optimize a cost function this is perfectly suitable.

From the IP estimator we developed a physical interpretation for the
PDF estimated with kernels as a potential field, where samples interact with
each other under information forces. From the information potential we pro-
posed two dissimilarity measures in probability spaces that can also be esti-
mated directly from data because they are functions of the IP. One important
part of the chapter addresses a detailed treatment of the properties of these
estimators in adaptation in as much as this is going to be instrumental for
the rest of the chapters, including an analysis of the mean and variance of
the IP.

The chapter presents all the necessary equations to implement I'TL quan-
tities and they are used extensively throughout the book. The estimator of
entropy and ITL divergences are O(N?) and the estimator for QMI is O(N?),
therefore we also presented two approximations to the computation that pro-
vides tremendous speedups in most cases, by using the concept of fast Gauss
transform and incomplete Cholesky decomposition.
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Adaptive Information Filtering with Error
Entropy and Error Correntropy Criteria

Deniz Erdogmus and Weifeng Liu

3.1 Introduction

This chapter formulates a new cost function for adaptive filtering based on
Renyi’s quadratic error entropy. The problem of estimating the linear sys-
tem parameters w = [wy,...,wy—1]" in the setting of Figure 3.1 where
x(n), and z(n) are random variables can be framed as model-based infer-
ence, because it relates measured data, uncertainty, and the functional de-
scription of the system and its parameters. The desired response z(n) can
be thought of as being created by an unknown transformation of the input
vector x = [z(n),...,z(n — M + 1)]*. Adaptive filtering theory [143, 284]
addresses this problem using the MSE criterion applied to the error signal,

e(n) = z(n) — f(w,z(n))
Ju(e(n)) = E[(z(n) — f(w,z(n)))*] (3.1)

when the linear filter is a finite impulse response filter (FIR);

M-—-1
y(n) =Y wpz(n — k). (3.2)
k=0

The optimal solution was derived in Chapter 1 (Egs. (1.26) to (1.34)) and
reads w = R7'p, where R is the autocorrelation matrix of the input
x(n) (M x M) and p is the cross-correlation vector between the input and de-
sired signals. The gradient search approach yields the famed LMS algorithm,
wr(n + 1) = wi(n) + ne(n)xx(n), k =0,...,M — 1, which approaches the
neighborhood of the optimal solution incrementally with only two multiplica-
tions per parameter.

The goal of the chapter is to substitute the MSE of Eq. (3.1) with an
information measure, more specifically an entropic criterion, and to provide

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 103
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2_3,
(© Springer Science+Business Media, LLC 2010
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Fig. 3.1. Error entropy adaptation.

some important properties. One of the achievements is that we show that the
entropic error shares properties of the M-estimators developed by Huber [157].
We define a novel function called correntropy and contrast it to MSE as well
as with the entropic cost to provide understanding. Unfortunately, there is no
known analytical solution to this class of cost functions because the optimiza-
tion problem is nonlinear in the weights.

3.2 The Error Entropy Criterion (EEC) for Adaptation

It can be argued that MSE is not always the best possible criterion to use
in adaptation. In fact, the minimization of MSE is just taking into consid-
eration the second-order moment of the error distribution, which is optimal
only for Gaussian distributed errors. In cases where the error distribution is
not Gaussian, it makes sense to study alternate cost functions for adaptation.
The traditional way to handle this shortcoming is to include higher-order non-
linearity in the errors [4,78], and the best-known algorithms are perhaps the
least mean fourth (LMF) algorithm [328], the Lp power [244], or the mixed
norm algorithms [313].

Here we take a different approach using information-theoretical concepts,
and propose the error entropy criterion (EEC) where the goal of adaptation
should be to remove as much uncertainty as possible from the error signal.
In the ideal case, the error PDF should be a delta function, meaning that all
the uncertainty in the error was removed, or equivalently, all the information
contained in the input-desired signal pairs was translated into the weights
of the system. Combining the ideas of optimization and information theory
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presented in Chapter 1, this can be accomplished by calculating the entropy
of the error and minimizing it with respect to the free parameters;

min Hle] s.t. e=z— f(x,w) & Ele]=0, (3.3)

w

which is called the minimization of the error entropy algorithm or MEE for
short [87]. Instead of using Shannon’s entropy definition we substitute Renyi’s
quadratic entropy explained in Chapter 2 to take advantage of its estimator
provided by the information potential (IP) estimator of Eq. (2.14), and in
general for any « # 1 with Eq. (2.18). More recently this method was extended
to the (h, ¢) entropies [53]. Recall that Renyi’s quadratic entropy of the error

is defined as
Hjy(e) = —logV (e
V(e) = Elp(e)].

Notice that Renyi’s quadratic entropy is a monotonic function of the nega-
tive of V'(e) for oo > 1. Therefore, for the purpose of adaptation, the logarithm
can be dropped (it will not change the location of the stationary point of the
cost function in parameter space), and minimization (or maximization) of
entropy will correspond to maximization (minimization) of V(e); that is,

min Hs(e) = max V(e). (3.5)
This simplifies the explanation and the learning algorithms. Therefore, in
analogy with Eq. (1.27), the optimal weights can be found by computing [332],

OHs(e) . aV (e)
ow ow

= 0. (3.6)

3.3 Understanding the Error Entropy Criterion

Dropping the logarithm is inconceivable in an information-theoretic context
therefore, we seek here an explanation for the role of the expected value
of the PDF as a cost function for adaptation. Recall from Eq. (3.4) that
V(e) = E[p(e)], which makes V(e) a function of both the error and its PDF
unlike the MSE cost. Let us define £ = p(e) to yield V(e) = E[¢], or in other
words, we are nonlinearly transforming the error by its own PDF, which means
that we have left the error space and actually are performing the adaptation
on a transformed variable £. Figure 3.2 depicts this mapping. Why is this map-
ping useful? As is well known in statistics, the PDF contains all the relevant
statistical structure in the data. We claim that when the goal is to capture in
a single number the statistical structure of the error samples through a trans-
formation, the PDF is the natural nonlinear mapping from the data space to
the transformed space. Of course through ¢ we are transforming samples into
samples, so we still do not have the single number we desire, but if we take
the mean value of £ we easily achieve our goal and obtain Eq. (3.4).
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Fig. 3.2. The result of maximizing/minimizing the IP in the space of the error for
an arbitrary error PDF.

In adaptation, the error (the horizontal axis of Figure 3.2) is effectively
under the control of the parameters of the adaptive system because of the
error dependence on y which is a function of w (Eq. (3.2)). With Eq. (3.4),
changing the parameters of the learning system will also change the shape of
the error PDF, or in other words, in EEC not only the error samples but also
the set of functions that can be created in the mapping are under the control
of the learning system. This is clearly a much more powerful criterion than
MSE [78].

The EEC works on the vertical axis, and in the case of Renyi’s quadratic
entropy is simply E[p(e)], a scalar that turns out to be the mean of & To
minimize entropy we want obviously to make the error PDF a delta function
anywhere in the space of the error, which implies a maximization of E[p(e)] as
Eq. (3.5) specifies. On the contrary, if we want to maximize entropy we want
the PDF to be flat (for finite range) or a Gaussian when the range is infinite,
which leads to a minimization of E[p(e)] in the vertical axis. In essence, the
specific values of the error are not important in EEC because the cost is just
constraining the mean of its PDF. We gain flexibility and power because a
single number now is related to the mean of the error distribution instead of
being just a fixed function (the power) of the error as in MSE. As a conclusion,
if one thinks about this interpretation of EEC using FE[p(e)], information
theory is really not necessary, although our work was initially motivated by
entropy. But, we have to be much more careful when taking the derivative
with respect to the weights, because there is a functional dependence involved
through p(e).

Let us assume a linear system for simplicity, e = z — w’ x. Note that
the cost is a function of the probability density function (PDF) of e, denoted
Pe(-), which depends on the error, the parameter w, and in general also on the
joint PDF of the input X and desired response Z. Further note that when we
change the weights, there is a functional dependence among e, w, and p(e),
therefore we need to compute the total derivative of V (e, w,pxz) w.r.t. the
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weights, instead of the partial derivative we normally utilize in MSE. From
Eq. (3.6) taking the total derivative of V w.r.t. to the weights yields

d d
d—wV(e,W,pXZ) = d—w/Pe(e,WapXZ)2d€ (37)

or

. (3.8)

d d
%V(@W,pxz) =2E [Epe(e,w,pxz)}

The difficulty is that both the function p.(.) and the evaluation point
change when weights are being adapted, so we have to compute partial deriva-
tives for each, which yields

d
E {@Pe(e, Wapxz)]

E |:ape(evwapXZ) ﬁ + ape(eawapXZ)]

e Oe ow ow e

- B 8pe(eawapXZ) ﬁ | ape(eavaXZ)_

B De ow ¢ ow ]
(3.9)

SO

0
e=e — E |:(81pe)(ea WapXZ)a_vev + (82]96)(6, W,pXZ)

= E[(01pe)(e, W, pxz)X + (02pe)(e, W, px2z)] s
(3.10)

d
E {@Pe(e, Wapxz)]

where 01,0, correspond, respectively, to the partial derivative operator on
the first and second argument of the function (the partial with respect to the
third term is zero, in as much as the joint does not depend on the weights).
In simplified notation, one could write

d B Ipe Ipe \| _
—WV(e,w,pXZ) =2F [( P ) X+ (awﬂ =0

o[(2) [ e

If px7 is differentiable, then at extrema of the cost function V', one of which will
be the optima, the gradient is zero: 9V (e)/0w = 0. If we compare Eq. (3.11)
with the MSE in Eq. (1.28) we see two big differences: the first term includes
the derivative of the error PDF instead of the derivative of the error square,
but apart from this difference, this term quantifies how a change of weight
affects the cost through the error. Notice that the input X appears in both
equations as it should because it refers to the propagation of the error through
the filter topology. The second term in Eq. (3.11) quantifies how a change in
the weight affects the cost by changing the shape of the PDF. This term does
not exist in MSE because in Eq. (1.28) there is a direct relation between the
error and the weight. It can be shown that when the PDF is the Gaussian
Eq. (3.11) yields back Eq. (1.28).
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Utilizing the Error Entropy Criterion in Adaptation

The interpretation of the EEC and how it differs from MSE must be well
understood if we are going to use it effectively in adaptation. This is the pur-
pose of this section. It is apparent that EEC does not constrain the mean
value of the error, because it is acting on the projected random variable (the
vertical axis of Figure 3.2) and only the PDF shape that achieves the cost goal
is constrained, immaterial of where it is located in the error space. But prac-
tical adaptive problems require that the mean of the error be zero such that
the system output approaches the desired response. Therefore, the designer
must take care of the error mean by an additional procedure when using the
EEC. The simplest approach is to use an extra bias term at the output of the
FIR that is set by the mean of the desired response (Figure 3.3). Therefore a
linear combiner with bias, that is, y(n) = 21151:51 wrx(n — k) + Z(n), is always
assumed in our discussions.

There are more principled ways of achieving the same goal as explained
later, but this solution is simple and works for desired responses with sym-
metric PDFs.

Optimizing Error Entropy Criterion with Estimators

The derivation of Eq. (3.11) is very nice, but the issues associated with the
implementation of this criterion seem mind boggling: the PDF is not known,
its estimators are ill-posed, and furthermore the criterion is changing through
iterations because the parameters of the system are changing! The beauty of
the ITL methodology is that we can approximate Eq. (3.11) by estimating
directly the 2-norm of the PDF with the information potential estimator and
working directly with data samples.

x(n)

Fig. 3.3. Compensating the mean indeterminancy of EEC with a bias weight.
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The minimization can be achieved by maximizing the information
potential estimator Va(e). Recall from Chapter 2 that, given a batch of
N samples, the estimator for Vz(e) with the Gaussian kernel is

R 1 N N
‘/2(6) = mZZGﬁU(eZ — 6]‘). (3.12)

i=1 j=1

According to the gradient ascent approach (because the interest is in maxi-
mizing V'(e)) and a linear combiner (Eq. (1.32)), the kth weight of the FIR
at time n + 1 can be adapted as

wi(n+1) = wi(n) +nViVa(n)  k=0,...,M—1, (3.13)
where we denote the IP for the past N samples as Vg(n) Substituting
Eq. (3.12), the gradient for wy can be estimated as

‘ N N
P 2 LSS Gy feln =) eln )

i=1 j=1

Vng(n) =

(3.14)

Exchanging the derivative with the double sum and applying the chain
rule through the filter structure this can be further written as

0y, (e(n — ) — eln — 1)) el — i) — e(n — 1))
ViVa(n . :
NQZZ;; e(n—1i)—e(n—j)) Owy,
(3.15)
The derivative of the difference in errors appears because of the IP depen-
dence on pairs of samples. Because e(n) = z(n)—y(n) and z(n) is independent
of the weights this yields

1 N N

=snzs3 2 2 Guaele(n—i) —e(n ) (3.16)

i=1 j=1

x (e(n — i) —e(n = j))(zx(n — 1) —zx(n = j))

Vng(n)

for k=0,...,M — 1, where x(n) means the sample at tap k and instant n.

Notice one important difference of Eq. (3.16) with respect to the steepest
descent computation of MSE (Eq. (1.33)): the IP gradient is no longer given
by products of inputs and errors, but it is expressed as differences of error
samples multiplied by the corresponding differences of inputs weighted by
the Gaussian function of the errors. Therefore this algorithm is still local in
the topology but it is not local in time. We rewrite Eq. (3.16) below for the
adaptation of a FIR with a general kernel x.

A NQE:E:K e(n— i) — e(n — j))(zx(n — ) —zx(n —i)) (3.17)

=1 j=1
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As we can observe, Egs. (3.16) and (3.17) use a sample block of size N and
so they are equivalent to the steepest descent procedure of MSE, therefore this
method is simply called the MEE algorithm. The MEE has a complexity of
O(N?), and it involves the evaluation of the kernel, which most of the time is
a transcendental function. This added complexity is the price paid to extract
more structure from the error when compared with the MSE.

The IP gradient expression can be easily extended for arbitrary oo > 1 and
any kernel following the steps of Chapter 2, and for the FIR case yields

o1 N (N a2
ViVa(n) === > | D kole(n—i) = e(n = 7))
==t (3.18)
N
x> ry(e(n —i) = e(n — ) (zr(n — j) — zx(n — i)).

When compared with the theoretical entropy cost of Eq. (3.11), Eq. (3.16)
differs in two ways: the first term in Eq. (3.11) resembles Eq. (3.16) in the
sense that the expected value is substituted by the empirical mean (the double
sums), and that it is multiplied by the input vector when using the chain
rule over the topology. However, notice that the estimator works with pairs
of samples, so it is not just a matter of substituting £ — Y in Eq. (3.11).
Secondly, the second term of Eq. (3.11) does not appear in Eq. (3.16), which
is reasonable because when working nonparametrically with the data and
kernels, the shape of the PDF is never quantified explicitly. Therefore, we
conclude that Eq. (3.16) corresponds to the optimization of EEC in a projected
space specified by the kernels for the estimation of the PDF (Chapter 10 shows
that effectively the optimization is in the reproducing kernel Hilbert space
defined by the kernel).

Information Forces in Adaptation

In Chapter 2 we provided a physical interpretation of the information po-
tential: when kernels are used for PDF estimation they create a field over
the space of the samples defined by the kernel shape. In adaptation the sam-
ples that are under study are the error samples e(n) created by subtracting
the system output from the desired response; that is, e(n) = z(n) — y(n).
Therefore one can also postulate that the samples, interpreted as informa-
tion particles, create forces among themselves as given by Eq. (2.59). If
we compare the information forces with the sensitivity of the cost with
respect to the error in Eq. (3.14) we conclude that they are exactly the
same. Therefore, in error entropy learning the injected error for adapta-
tion is the information force created by the ensemble on each error sample.
Notice that as the IP is a function of pairs of samples, the sensitivity has to
be computed with respect to each error, and can be combined as shown in
Eq. (3.16).
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3.4 Minimum Error Entropy Algorithm

We start by providing some important properties of EEC for adaptation and
learning. Recall again that filtering is a regression problem in functional spaces
and it is the only one treated explicitly in this chapter, although all of the
conclusions also apply to regression. The intuition behind the entropy criterion
for supervised learning is conceptually straightforward: given samples from an
input—output mapping, in order to extract the most structure from the data,
the information content of the error signal must be minimized; hence the error
entropy over the training dataset must be minimized, which is achieved with
a delta function (i.e., with all errors being equal if the system has a sufficient
number of degrees of freedom to solve the problem exactly).

Theorem 3.1. The stationary point of the EEC criterion for a linear com-
biner is achieved when

5[2x] - 5[], 219

The proof is straightforward from Eq. (3.11). This is an interesting equation,
because it imposes a balance between the inner product of the weight vector
with the functional derivative of the PDF, and the expected value of the
derivative of the PDF with respect to the weights. In the case where the
righthand side of Eq. (3.19) is zero, then the derivative of the PDF function
becomes orthogonal to the weight vector. We have not investigated under what
conditions and classes of PDF's the second term is zero, but this will preserve
the orthogonality condition between the gradient of the error PDF and the
input subspace as in MSE. In order to fully study Eq. (3.19) a differential
geometry approach seems necessary [6]. In fact, because we are dealing with a
parameter estimation problem, this result can be interpreted as constraining
the inner product of the error’s Fisher information with the weight vector
in the data manifold (Op(e)/0e is by definition the Fisher information of the
error PDF [6]).

Theorem 3.2. The stationary point of the EEC estimated with the IP is
translated in an orthogonality condition between the difference in input vectors
and the difference in errors weighted by the kernel of the error differences.

This theorem can also be easily proved from Eq. (3.16). In fact let us first
define Aey; = e; —e;, Awyj = x; —x;. If we express Eq. (3.16) with statistical
quantities, then it becomes E[G(Ae)AeAx] and at the stationary point, the
differential input and the differential error rotated by G(Ae), the Gaussian of
the differential error, must be orthogonal to each other.

Theorem 3.2 indicates that the MEE provides “similar” weight updates
to MSE when the incremental errors are small, but drastically reduces the
weight updates when the incremental errors are large. We can therefore expect
robustness of the MEE criterion to impulse noise, as detailed in the next
section.



112 3 Adaptive Information Filtering with Error Entropy and ECC

Theorem 3.3. In perfect identification, the error entropy criterion 1is
insensitive to additive zero-mean noise independent of the input and desired,
regardless of the noise.

As is well known, the filter weights adapted with MSE are insensitive to
zero- mean additive white noise in the desired response [284]. EEC behaves
similarly, with some advantages in the small dataset case [87].

Proof. Consider the learning process depicted in Figure 3.1. Suppose that
the desired signal consists of the superposition of a deterministic component
and a zero-mean random component, such that z = g(z) +v, where g(.) is the
unknown function that the adaptive system is trying to identify and v is the
zero-mean noise with PDF p,(.) independent of z, and z. Suppose the learning
system is a parametric family of functions of the form f(x; w) where w is the
vector of parameters, called the weight vector. Assume z, z, and y are all zero-
mean signals without loss of generality. Let w, be the optimal weight vector
that minimizes the error entropy, and the error signal be defined as e = z —y.
Let w, be the optimal weight vector that minimizes the entropy of the clean
error signal that is defined as € = g(z) — h(z, w). Notice that we have the iden-
tity e = € + v. Because v is an independent noise signal that does not depend
on w, the weights of the adaptive system, when € is J-distributed we have

w, = argmin Hy (e(w)) = argmin H, (e(w) + v) = argmin H, (e(w)) = W..
w

N N (3.20)

Even if € is not §-distributed (which occurs when the model space does not
include the actual system), because the noise and the error are independent
H,(é+v) > H,(€) and minimizing this upper bound will force the solution to
converge to a good value, which would be obtained in the noise-free situation.

Congecture 3.1. The bandwidth parameter of the Gaussian kernel can be used
as a regularizer for the adaptation, mimicking the method of convolution
smoothing in global optimization.

Let us start by remarking that V(e) can be alternatively obtained by
convolution of the kernel with the true PDF

Epr(e)] = pr(e) x ko (e) = /pE(T)IiJ(e —T)dT. (3.21)

Normally, we select the kernel size with respect to the data properties, but
let us look at the problem from the point of view of adaptation. In the space of
the system parameters, there is an estimated value V(e) at every point, which
is called the performance surface (Figure 3.4). But because V(e) is a function
of the kernel size, there is in fact an infinite family of estimates for each
point in weight space. Due to Theorem 2.4 and Eq. (3.19) we can expect that
the estimate will always be larger than the true quantity. More important,
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if the true performance surface is nonconvex, the smoothing properties of
the convolution may make it convex as the theory of convolution smoothing
indicates [310].

The control of the bandwidth parameter has been proposed as an effective
way to smooth local minima in the performance surface created by nonconvex
performance functions such as V(e) [87]. In global optimization the method
is called convolution smoothing (CS), and it has been proven effective in
many practical applications, such as the adaptation of IIR filters [84]. The
basic idea behind this approach is to convolve the cost function with a broad
smoothing functional, which initially eliminates the local minima. The width
of the smoothing functional can then be gradually decreased until a Dirac-9 is
obtained, which leaves the original cost function. During a proper annealing
phase (similar to temperature in simulated annealing [275]), the optimization
parameters approach the vicinity of the global optimum and are in the domain
of attraction that yield the optimal solution by gradient descent.

The interesting aspect of convolution smoothing for ITL is that normally
the smoothing function has to be applied to the cost function after the fact,
but in ITL the cost function V(e) is created through a convolution, so the
method is intrinsic to the ITL formalism; we just need to use the kernel size
to achieve the optimization goal. However, in ITL the kernel size cannot be
decreased to zero, otherwise the estimation of V' (e) by the IP breaks down.
Therefore the minimum value of the kernel size should be dictated by Silver-
man’s or equivalent rule. This value will not affect the location of the minimum
in weight space in perfect identification. Unfortunately, we have not been able
to prove all of the conditions of the theory of convolution smoothing applied
to ITL, but experimental results have shown that annealing the kernel size
during adaptation helps the convergence to the global minimum [87,165,223].
Appendix A summarizes current knowledge about kernel size annealing.

3.5 Analysis of MEE Performance Surface

General Shape of EEC Performance Surface

It is well known that the MSE cost function is a paraboloid facing up in the
space of the free parameters of the FIR filter. Here we analyze the overall shape
of the MEE cost function for Gaussian kernels, and we start with a single-
parameter FIR; that is, y(n) = wz(n). Because e(n — i) = z(n — i) — y(n —19)
Eq. (3.12) can be written

V2(E,w)= > Zze [(Azy—wAwy)/20]°
ye

i= 1] 1
_ 1 Zze (A2y/20)? +(2uwiay Azi; /20) o=(wATy /20)°

2
N 271'(7Z 1=

(3.22)
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where we use the notation Az = z; — zj, Axy = x; — ;. This expression
is not amenable to a simple interpretation but there are several important
observations.

e All the terms in the exponent appear divided by the kernel size, which
means that the scale in the performance function space is dictated by the
kernel size. Or, in other words, the concept of “large” or “small” errors in
adaptation is always going to be relative to the kernel size.

e The first exponential term in the double sum is negative, independent of
the weight, and so it will be a constant dictated simply by the desired
signal; the second term is positive, linear in the weights, and contains the
cross-product difference between input and desired response; and the third
term is negative, depends only on the input difference, and is a function
of w?.

e Due to the square dependence on the weight, the third term will dominate
for large positive or negative values and we can expect the performance
surface to peak at some point in weight space (dictated primarily by the
second term) and then decrease exponentially with increasing or decreasing
w with a slight asymmetry due to the second term. The rate of decrease
is solely controlled by the input signal.

At first, adaptation of the EEC cost function seems to be unrelated to
what we know for MSE, but there is a hidden similarity. In fact, if we do
an approximation of the exponential function truncated at the second term,
which is only valid for small errors, we see that e~ 1 — 22 that is, we
obtain a quadratic function of the error, but now the parabola is facing down,
meaning the optimization is for a maximum. What this means is that near the
optimum there is always a neighborhood (controlled by the kernel size) where
the EEC performance surface is well approximated by a quadratic function.
However, this does not imply that the stationary point of the EEC coincides
with the MSE in weight space. To see this let us compute the optimal weight
for the one-parameter case. Taking the derivative of Eq. (3.22) and equating
it to zero we obtain

*

wt Sy S Go(Aey) Az Ay

Zf\i1 Z;V:1 Go (Aeij)Axfj

If we recall, the least square solution for the single-parameter case is

(3.23)

w = Zfil szz/zlj\il x2. If one substitutes the variables with their time

increments (referred to as the delta) the form of the solution is very similar,
except that each term in the sum is multiplied by the Gaussian of the error dif-
ference. In perfect identification the errors go to zero, so the Gaussian goes to
one, and we can expect that the two solutions coincide, provided the input or
desired response are zero-mean stationary random processes. The latter con-
dition is required to preserve the optimal weight vector between the MSE so-
lution and the formulation with the differences of input/desired response pairs
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because D, >0, Az Azyy =3, Tizi+) Xizi—) ;T )5 25— D ;% ) Tj and
the two last sums are zero for zero mean signals (likewise for the denominator).

The other case where the two solutions are similar is when the kernel size
is chosen much larger than the one required from the data structure (and
the input or desired response data are zero-mean), which means that the
Gaussian of the errors become approximately independent of the index and
can be factored out of the sums. Alternatively, this can be interpreted as
stating that the quadratic approximation of the EEC cost includes the full
parameter space.

In general, the EEC minimum will be different from the MSE in parameter
space, and the EEC shape does not display constant curvature (unlike the
MSE cost function) because G,(Ae;;) changes across iterations and affects
all the terms in the sum differently, starting with small values (large error
differences) and increasing until all the errors are basically the same (the
minimum of entropy). These ideas are made more precise with a simulation
below.

The simulation adapts a 1-tap FIR in a system identification configuration
(Figure 3.1), for which the desired response data are generated by a 2-tap FIR
with weight vector w, = [1,2]. There is no measurement noise and the input
to the filter is white Gaussian noise with zero-mean and unit variance. This
experimental setup is very simple but we can visualize the weight tracks during
adaptation to evaluate convergence and we know that the stationary point is
equal to the MSE cost because the system identification solution is unique.
On the other hand it does not fully display all the characteristics of the EEC,
which in general will provide different optimal solutions that may be “better”
than the MSE errors under some conditions.

Our first simulation is obtained with a single-tap FIR filter, that is, y(n) =
wpx(n), and Figure 3.4 depicts the performance surface for various values
of the kernel size (according to Silverman’s rule, the kernel size should be
6 = 0.45 for this specific example). Notice that the cost function displays
local minima for small values of G, but it becomes progressively smoother,
symmetric and closer to a quadratic when ¢ grows.

Figure 3.5 shows an example of the information potential and the normal-
ized IP, that is, (V(e)/V(0)) for a two-tap filter that is able to identify the
unknown system exactly (i.e., zero error). The maximum value of the normal-
ized IP for perfect identification is 1, but in all other cases (V' (0)—V (E))/V(0)
can be interpreted as the deviation from the best possible solution (i.e., similar
to the final error power in MSE). Recall that maximizing IP corresponds to
minimizing Renyi’s entropy. Notice that the IP is always positive and pretty
flat in most of the space, which is very different from the MSE cost func-
tion. In regions close to the peak, the surface is steeper than a quadratic
function.
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Fig. 3.4. The performance surface for four values of the kernel size.
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Fig. 3.5. Comparison of the IP and normalized IP (¢ = 1): (a) information poten-
tioal [V (e)]; (b) normalized information potential [V (e)/V (0)]

Multiple Parameter Analysis of EEC Optimal Solution

An analysis of Eq. (3.23) shows that it is possible to extend the closed form
optimal weight solution for filters with multiple parameters (weights), when
the kernel is Gaussian, just by extending the least square approach to EEC.
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In fact, assume now that the filter has M parameters. Taking the derivative of
Eq. (3.12) with respect to the weights yields Eq. (3.16). Substituting Ae; ; =

M—1 . . . . .
Az j— > —y wiAz;_;j; in this equation and equating to zero obtains

M—-1

Zil Zjil GU(AGU)AZUA$Z’,]€J,]€ = ZZ:O wy Zil

N
Zj:l Ga(Aeij)A-’L‘i—l,j—lei—k,j—k k= 0, ey M-—-1 (324)

Note the similarity of this set of M equations with M unknown filter param-
eters to the least square solution presented in Chapter 1: we have the cross-
correlation between the incremental desired and the incremental input (which
corresponds to the cross-correlation vector in least squares) equal to the au-
tocorrelation matrix of the incremental input, each weighted by the Gaussian
of the incremental errors; that is, in vector form, RAw* = p,, where R is the
M x M locally Gaussian averaged delta autocorrelation function with elements
Ra(wi i) = Zfil Z;V:1 Go(Aeij) Az j_1 Az j—i and the M-dimensional
cross-correlation vector of locally Gaussian averaged incremental inputs and
desired signals with elements pa (wy) = ZZ]\LI Z;V:1 Go(Aey)AzijAmi_g j—k.

Note also the differences. In least squares, the solution is only a function
of the external system variables, whereas here these equations are still a func-
tion of the error signal, which in itself is a function of the filter parameters.
Therefore, Eq. (3.24) should not be interpreted as an analytic solution, but
more as a fixed point update algorithm. It is readily computable provided
we have access to the error and it has no free parameters. This means that
once the new parameters are estimated, we estimate the new error to plug
in Eq. (3.24) to get the new parameters in recursive fashion. Note the effect
of the Gaussian kernel that is multiplying all the elements of both the delta
autocorrelation and delta cross-correlation functions, and is what embodies
the difference between straight least squares and this weighted version of least
squares. Again we can expect the EEC solution to match least squares for zero
mean input or zero mean desired signals in perfect identification, that is, when
the error is zero. We continue to analyze this solution closely below and also
in Chapter 4.

Analysis of the Gradient Around the EEC Optimal Solution

As is well known in adaptation using the MSE criterion, the stepsize (or
learning rate) for convergence is linked to the largest eigenvalue of the input
autocorrelation matrix. In practice the inverse of the input power is consid-
ered as a stricter, but much easier to estimate, upper bound. If we analyze
Eq. (3.16) closely we can see that the expression is a much more complex func-
tion of the error, unlike the steepest descent algorithm. Therefore, our first
problem is to estimate the shape and steepness of the information potential
cost function to arrive at an understanding of how to select the stepsize.
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Suppose that the adaptive system under consideration in Figure 3.1 is a
linear combiner with a weight vector w. The error samples are e(n) = z(n) —
wlx(n), where x(n) is the input vector at sample n, formed by feeding the
input signal to a tapped delay line (FIR filter). The gradient of the information
potential estimator with respect to the weight vector in vector notation is

simply

%l‘:f (o —1) Z(an - z)> : (Z"E;(ejei)(xixj)T> :
' (3.25)

In this expression, further simplifications are possible through the use of the
scaling property of the kernel size and the following identity between the
derivatives of a width-o kernel and a unit-width kernel & () = 1/0%k’ (x /o).
With these substitutions, the explicit expression for the gradient is easily
determined to be

aVa B (a B 1) a—2 ,
Tw ~ ooNeo > (Z“(Aeﬁ,w)> : (2;"6 (Aejiw) - (xi Xj)T>7

T (3.26)

where Aeji o = (25 — 2;) — W (xj — X;).
To continue with our analysis of adaptation near the optimum, we consider
the Taylor series expansion truncated to the linear term of the gradient around

the optimal weight vector w,.

OVVy(w,)
ow

Notice that truncating the gradient at the linear term corresponds to approx-
imating the cost function around the optimal point by a quadratic function.
From the previous discussion there is always a neighborhood of the optimum
controlled by the kernel size where this approximation is valid. The Hessian
matrix of this quadratic performance surface approximation is 2/2, where =
is given as

V(W) ~ VVi(w,) + (W — W) . (3.27)

ow ow? o N

== 5VVQ(W*) _ 82Va(w*) _ (a—1) Z lz e ) a—3.

7 %

(@2 [T (Aes) 05— 0)| [ DB b - )"
L D) B Do e

i
(3.28)

We can see that even under quadratic approximation, the EEC Hessian
matrix is a function of the input and the desired response through the error,
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unlike the MSE cost function. Moreover, due to the inclusion of the errors, it
is also not constant curvature. However, one can state that if the adaptation
problem can be solved with small final error, then the effect of the desired
response on the shape of the performance surface decreases proportionally.
In parallel to the work in MSE, we can define a new weight vector space
w = w— W, whose origin is translated to the optimal solution w,, and rewrite
the linearized dynamics of the weight equations in the vicinity of the solution
in terms of the stepsize and the Hessian matrix as w(n + 1) = [I + nE]jw(n).
These are the coupled equations for the translated weights. In order to obtain
decoupled equations, we rotate the vector space by defining v = QTw, Q
being the orthonormal (modal) matrix consisting of the eigenvectors of Z.
Thus, the uncoupled dynamics for the translated and rotated weights are
vin+ 1) = [I +n A]Jv(n) where A is the diagonal eigenvalue matrix with
entries ordered in correspondence with the ordering in Q. From this set of
equations, we can isolate the dynamics of the weight vector along each mode
of the matrix E. Specifically, for the ith mode, the dynamic equation will only
depend on the ith eigenvalue of E by

vi(n+1) = [1+n N]vi(n), i=1,...,1 (3.29)

Note that, because = is the Hessian of the performance surface evaluated
at a local maximum its eigenvalues are negative. For stable dynamics, all of
the coefficients in the n equations of Eq. (3.29) must be inside the unit circle;
that is, |1 + 71 A\;| < 1. For stability this yields the following bound for the
stepsize

0<n< (3.30)

max; ‘)\2| '
As expected, this condition is the same as the MSE criterion [143], except we
consider the eigenvalues of the Hessian matrix of the second-order approxi-
mation of the information potential instead of those of the covariance matrix
(autocorrelation matrix in the FIR filter case) of the input vector to the FIR.
Unfortunately, as seen in Eq. (3.28) it is very difficult to progress towards a
reasonable approximation of the eigenvalue matrix to decide about a reason-
able stepsize. Using the power of the input as an upper bound for the largest
eigenvalue still works under most conditions.

At this point, it also becomes possible to talk about time constants of
the modes in the neighborhood of the optimum point. We can determine an
approximate time constant for each individual mode whose dynamic equations
are governed by Eq. (3.29). Specifically, for the kth mode, we write (1+n Ax) =
e~ /7 from which the time constant is determined to be

-1 11
In(1+n9\e)  nA 0|l

T = (3.31)

The time constants allow us to compare the convergence times of different
modes. In order to evaluate the overall convergence speed, one must consider
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the slowest mode, which corresponds to the largest time constant, that is, the
smallest eigenvalue. Understanding the relationship between the eigenvalues
of the Hessian matrix in Eq. (3.28) and the two parameters, the kernel size
and the entropy order, is crucial to maintaining the stability of the algorithm
following any changes in these parameters. One practical case where this re-
lationship becomes important is when we adapt the kernel size during the
training in connection with Conjecture 3.1. Because in this approach the ker-
nel size is decreased, we need to know how to adapt the stepsize to achieve
faster learning in the initial phase of adaptation (by using a larger stepsize)
and stable convergence in the final phase (by using a smaller stepsize). As
an example, consider the case where we evaluate the quadratic information
potential using Gaussian kernels. In this case, the Hessian matrix simplifies to

— 1
==z Z Z K" (Aejiw, ) (xi —x5)(xi — %) T |. (3.32)
J %

Observe from Eq. (3.32) that as o increases, Aej ., — 0, therefore,
k"(Aejiw,) — 07 with speed O(0=%). This is faster than the reduction
rate of the denominator, which is O(c=2), hence overall, the eigenvalues of =
approach 0~. This means that the crest near the global maximum gets wider
and one can use a larger stepsize in steepest ascent, while still achieving stable
convergence to the optimal solution. In fact, this result can be generalized to
any kernel function and any «. This analysis is useful, but the big challenge
that remains is to estimate easily from the data an upper bound for the
eigenvalues of the quadratic approximation to select the stepsize.

Analysis of the Eigenvalues for Varying «

A precise analysis cannot be analytically pursued, but we can still predict how
the eigenvalues of the Hessian behave as this parameter is modified. In order
to estimate the behavior of the eigenvalues under changing «, we exploit the
following well-known result from linear algebra relating the eigenvalues of a
matrix to its trace. For any matrix R, whose eigenvalues are given by the set
{A\i}, X, A = trace(R). Now consider the general expression of 2 given in
Eq. (3.32). The trace of E is computed as

a—3
trace(Z) = (:a;\[i) Z [Z K(Aeji,w*)]

%

Z Aeﬂw*] [Zm (Aeji ) (Z(x,-kxjk)?)”(&%)

k

2
xQ(a=2)Y [Z K (Aejiw,) - (Tt — xjk)]
k

+
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The eigenvalues of 2 are negative and the dominant component, which
introduces this negativity, is the term in the last line of Eq. (3.33). The nega-
tivity arises naturally because we use a differentiable symmetric kernel; at w,
the entropy is small, therefore the error samples are close to each other and the
second derivative evaluates as a negative coefficient. Now let’s focus on the
term that involves the (a — 3)-power in the first line of Eq. (3.33). All other
terms vary linearly with «, thus this term dominantly affects the behavior
of the trace when « is varied. Consider the case where o is small enough such
that the small entropy causes the kernel evaluations in the brackets to be close
to their maximum possible values and the sum therefore exceeds one. In this
case, the power of the quantity in the brackets increases exponentially with
increasing « (for a > 3), thus regardless of the terms affected linearly by «,
the overall trace value decreases (increases) in absolute value. Consequently,
a narrower crest towards the maximum appears and the upper bound on the
stepsize for stability is reduced.

On the other hand, if the kernel size is large so that the sum in the brack-
ets is less than one, then the (o — 3)-power of this quantity decreases, thus
resulting in a wider crest towards the maximum in contrast to the previous
case (for a > 3). However, in practice we do not want to use a very small or
a very large kernel size, as this will increase the variance or increase the bias
of the Parzen estimation, respectively.

Another important observation is to evaluate the changes of the trace
across iterations for constant oo and kernel size. Eq. (3.33) is rather complex,
but notice that all the input factors are multiplied by kernels and their first
and second derivative. When the error is large, all these kernel evaluations
will be close to zero so we can expect that the maximum eigenvalue of E will
be much smaller than the one obtained from the autocorrelation matrix far
from the optimum. However, notice that near the optimum, the terms multi-
plying ' are going to be small, whereas the ones involving x are close to 1 and
those for " have a large negative value that is inversely proportional to the
kernel size. Therefore, the trace around the optimum may be larger than for
the autocorrelation function. We can expect that the maximum eigenvalue of
the EEC cost is far from constant during adaptation, which indirectly trans-
lates the fact that the performance surface is not a paraboloid as Figure 3.4
shows. Therefore, adaptive stepsize algorithms seem particularly appropriate
for the IP cost function. These conclusions are summarized in the following
three facts.

Fact 3.1. Regardless of the entropy order, increasing the kernel size results
in a wider crest around the optimal solution because the absolute values of
the (negative) eigenvalues of the IP Hessian matrix decrease.

Fact 3.2. The effect of entropy order on the eigenvalues of the Hessian de-
pends on the value of the kernel size. If the kernel size is small, then increasing
the entropy order increases the absolute values of the (negative) eigenvalues
of the Hessian of the information potential function at the global maximum.
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This results in a narrower crest. If the kernel size is large, the effect is the
opposite; increasing the entropy order decreases the absolute value of the
eigenvalues of the Hessian of the information potential, resulting in a wider
crest. This analysis is expected to hold at least for o > 3.

Fact 3.3. The largest eigenvalue across iterations for constant oo and kernel
size is far from constant, reflecting the fact that the IP performance surface
is not a quadratic function. To avoid divergence, the stepsize should be set
smaller than the input power, but we can expect slow convergence far from
the optimum.

We remark that our conclusions in this section do not only apply to the
eigenvalues of =, but they generalize to how these two parameters affect the
volume of the region where our quadratic approximation is valid. These results
are very useful from a practical point of view, because they explain how the
structure of the performance surface can be manipulated by adjusting these
parameters. Besides, they identify the procedures to adjust the stepsize for
fast and stable convergence.

Figure 3.6 depicts the effect of entropy order and kernel size on the per-
formance surface when the estimator in Eq. (3.26) is utilized in the simple

Fig. 3.6. Contours of information potential in supervised FIR training for various
choices of kernel size (o) and entropy order («) (from [88]).
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problem of Section 3.5. Evaluation of associated gradients and Hessians is
carried out using the formulas presented in the preceding sections. This case
study aims to illustrate how the performance surface (here represented by its
contour plots) of the information potential criterion for supervised training of
a linear combiner is altered as a consequence of changing entropy order and
kernel size in the estimator.

Recall that we have concluded that as the kernel size is increased, the
valley around the global maximum becomes wider (allowing a larger step-
size for stable convergence) as well as the volume of the region of quadratic
approximation. This is clearly observed in the columns of Figure 3.6. As we
predicted the coverage area of the quadratic approximation expands as the
cost function approaches MSE when the kernel size is increased. In Figure 3.6,
each row represents a constant kernel size (o = 0.1, 0.5, 1) and each column
represents a constant entropy order (o0 = 1.5, 2, 3), respectively.

3.6 Error Entropy, Correntropy, and M Estimation

The usual goal in adaptive filtering and regression (Figure 3.1) is to bring
the system output as “close” to the desired signal as possible. The concept
of “close” implicitly or explicitly employs a distance function or similarity
measure. MSE is probably the most widely used cost function and it has the
obvious meaning of an Lo distance if we replace the statistical expectation
with the sample mean estimator. Assume that the desired signal and the sys-
tem output are random variables Z = {z;}, i =1, ..., N, and Y = {y;},
1=1, ..., N, respectively, from which we obtain N samples from our exper-
iment, and we define a new random variable £ = Z — Y. The mean square
error (MSE) is defined as

MSE(Y,Z) = E[(Y — Z)z] = //(y — z)zpyz(y,z)dydz = /esz(e)de

(3.34)

where the error square term is illustrated in Figure 3.7.

Notice that MSE is a quadratic function in the joint space with a valley
along the z = y line. Because similarity quantifies how close Z is from Y
in probability, this intuitively explains why MSE is a similarity measure in
the joint space. In Eq. (3.34), we also see that the error square is weighted
by the PDF of the error. However, the quadratic increase of the error for
values away from the z = y line due to the second moment has the net effect
of amplifying the contribution of samples that are far away from the mean
value of the error distribution and it is why Gaussian distributed residuals
(or other short-tail distributions) provide optimality for the MSE procedure.
But it is also the reason why other fat-tail data distributions such as the
Laplacian and in particular error distributions with outliers, nonsymmetric,
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z

Fig. 3.7. The MSE cost function in the joint space.

or nonzero-mean, make the MSE suboptimal. This has been well recognized in
the statistical literature [157], and methodologies that go by the name robust
statistics are preferred in this scenario. We show below that the 2-norm of the
PDF and the TP estimator play a very central role in implementing robust
statistics.

We use the definitions of quadratic Renyi’s entropy and the estimator
of the IP of Eq. (3.12) exclusively using the Gaussian kernel, although the
results extend to other kernels. The EEC is a well-defined cost function in
the sense that it has a global solution manifold where all error entries are
equal (to obtain a single point the mean error value must be constrained,
for instance, by using the mean of the desired response; see Section 3.3).
However, does EEC define a metric in the same sense that MSE defines an Lo
norm on the error sample space? This is the question that we will address in
this section. In order to answer this question we have to introduce a related
cost function for learning named the error correntropy criterion (ECC) [201]
defined by a function of two arguments called cross-correntropy. Chapter 10
studies correntropy extensively, and here we just use the concept to motivate
robust estimation. Cross-correntropy for two random variables Z and Y is
formally defined as

WZY) = Ezv(GaZ - V)] = [ [Gole—piplepazts. (33)

When sampling from the densities, cross-correntropy can be estimated as

1 1
i=1 i=1
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Fig. 3.8. Correntopy in the joint space.

Figure 3.8 shows a plot of cross-correntropy for the Gaussian kernel with
6 = 1. As one observes, cross-correntropy can also be used as a similarity
measure in the joint space, but it differs appreciably from the MSE shown in
Figure 3.7. In fact, the cost emphasizes the behavior between Z and Y along
the line z = y, and exponentially attenuates contributions away from this line
depending on the shape and parameter of the kernel utilized.

From Eq. (3.36), one can propose the ECC as a new cost function for adap-
tation well grounded in statistical meaning that maximizes the error proba-
bility density at the origin and that yield the maximum correntropy criterion
(MCC) algorithm; that is,

MCC = max 0(E),

where the parameters w control the error PDF E = Z — Y. Indeed, using the
Parzen method, the error PDF pg(e) can be estimated as

pile) = %ZGo(e—ei).

Evaluating this PDF at e = 0, we obtain, comparing with Eq. (3.36),
0(2,Y) = pe(0). (3.37)

Therefore, MCC effectively increases the value of the error PDF at zero (if pos-
sible a delta function), which is the natural thing to do in regression or adap-
tive filtering, where the goal is to increase the number of small deviations
between Z and Y.
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If we recall the EEC discussion early in this chapter, we also see that
maximizing the information potential was achieved by creating a PDF that
was very peaky (if possible a delta function), but we lost the ability to cen-
ter it at zero because we were simply maximizing the mean of the trans-
formed error variable. These interpretations are very important to understand
these three cost functions (i.e., ECC, EEC, and MSE) and their effects on
learning.

A Brief Review of M Estimation

The MSE cost function performs very well when the error statistics are zero-
mean and the PDF of the noise is Gaussian or short-tailed. In many practical
conditions these conditions are violated by outliers that can make the noise
nonzero-mean and extend the tails of the distribution. This is well recognized
in statistics, and there are many possible ways of mitigating outliers, either
by removing them manually, using trimming methods or using other statistics
that are more resilient to noise such as the rank statistics (for which the me-
dian is the best-known example) [297]. An alternative that has many followers
is the idea of weighted least squares, where the second moment of the error
is substituted by other less steeply increasing functions of the error that are
customized for the application (linear increase, windowizing, even saturating
after some value as the bisquare proposed by Tukey) [127]. The solution is
less sensitive to outliers, therefore it is called robust.

A systematic way of handling outliers is achieved by introducing the con-
cept of robustness in maximum likelihood as proposed by Huber [157]. Recall
that the maximum likelihood estimator from a data observation z1, ..., zp
assuming the distribution p(z) is known except for the parameters 6, can be
written as .

OmLE :argmeaxp(xl,...,xN\Q). (3.38)

If we assume i.i.d. observations we can rewrite as

N N
OmLe = arg m(;%XH p(xil0) = arg mgleogp(m@)
i=1 i=1
N
— argmi — log p(a .
wrgmin Y~ (~logp(a) (3.39)

due to the monotonicity of the logarithm. Huber defined the M-estimators as
a generalization of maximum likelihood as

N

N
mezn;p(xz) or qu(x,)zo with w(l‘):

i=1

dp(x)
dz ’
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where p(x) must obey the properties:

(3.41)

=W N
B
NN TN N

zi) > p(xj), @] > |j].

This estimator can be readily applied to regression problems in lieu of the
MSE criterion. Let us assume the data model z = w”x + e. The robust cost
function can be applied to the error in Figure 3.7 yielding

J(e) = ple)) =D plzi —w'xy). (3.42)

i=1 i=1

Taking the derivative of the cost w.r.t. the parameter vector w and equat-
ing to zero produces a set of equations of the form,

Define the weighting function v(e) = v¥(e)/e and let v; = 7(e;). Then the
equivalent gradient becomes

N
Z%xfei =0, (3.43)
=1

which corresponds to a weighted least squares cost function inasmuch as
min Zfil y:€2, but it requires an iterative reweighted least squares solu-
w

tion since both the weighting function and the parameters depend upon the
residues e [104]. This result establishes formally the link between M-estimation
and weighted least squares, which includes least squares as a special case; that
is, prs(e) = e and vy(e) = 1 (see Table 3.1).

Table 3.1. Comparison of Robust Least Square Estimators

Method  Cost Function Weighting Function
Least  prs(e) = €2 Yis(e) =1

squares

1/2€? le|] < a 1le] <a

Hub = _

uber  pa () {a|e| ~1/2k%  |e| > a HE = afle] e > a

. a?/6(1— (1 - (e/a@)?)?) le| < a 1—(e/a)?)? |e| <«
Bi-square pp;(e) = { /6( (OCQ/é /\e|)>)a) lel vpi(e) = { ( ( /() )‘6|)>‘a|

ECC pcec(e) = (1 — exp(—e?/202))/V2ra verc(e) = exp(—e?/202)/\/2m0?




128 3 Adaptive Information Filtering with Error Entropy and ECC

3.7 Correntropy Induced Metric and M-Estimation

Let us assume two random vectors X = (z1,292,...,2y) and Y =
(y1,y2,---,yn). Eq. (3.35) defining cross-correntropy between these two
vectors is a similarity measure because it is always positive and is maximum
when the two vectors are the same. Moreover, it induces a distance function
in the input space called the correntropy induced metric (CIM). A metric on
a set Nis a function d : X x X — R. For all X,Y,Z in N, a metric should satisfy
the following properties.

1. Nonnegativity d(X,Y) > 0.

2. Identity d(X,Y) =0if and only if X =Y.

3. Symmetry d(X,Y) =d(Y, X).

4. Triangle inequality d(X, Z) < d(X,Y) +d(Y, Z).

If Property 2 is dropped, a pseudometric is obtained. In the supervised learn-
ing case, a metric is a function of the error vector E =Y — X = [e1, ea,...,eN]
and induces a norm if it is translation-invariant and homogeneous, which are
respectively defined as

dX +a,Y +a)=d(X,Y) (3.44)

dlaX,aY) = |a]d(X,Y) (3.45)

Definition 3.1. For any two random vectors X = (x1,22,...,2n) and Y =
(y1,y2,---,YN) the correntropy induced metric is defined as

CIM(X,Y) = (v(0,0) — v(X,Y))"/2 (3.46)

It can be easily proven that CIM satisfies the properties of nonnegativity,
identity, symmetry, triangle inequality, and translation invariant, and thus is
a well-defined metric.

1. Non-negativity. CIM(X,Y) > 0 by realizing that correntropy is positive
and bounded: 0 < v(X,Y) < 1/y/270. It reaches its maximum if and only
ifX =Y.

2. Identity. CIM(X,Y) = 0 if and only if X =Y by the same reasoning as 1.

Symmetry. It is easily verified by reversing the argument in the kernel.

4. Triangle inequality: CIM(X, Z) < CIM(X,Y) + CIM(Y, Z). The proof is
based on the kernel mapping and a vector construction in a feature space
which is a well-defined Hilbert space. For X and Y, we construct two new
vectors X = [®(z1),...,P(zx)] and Y = [®(y1),..., ®(yn)] in the Hilbert
space H,. The Euclidean distance ED(X,Y) is

bl
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(3.47)
Therefore
_ED(X,Z) ED(X,Y) ED(Z,Y)
CIM (X, Z)= oo < Nor + oo =CIM(X,Y)+ CIM(Y, Z).

(3.48)
This completes the proof.

It can also be shown that this metric is translation invariant for translation-
invariant kernels such as the Gaussian kernel, so we can denote CIM (X, Y') as
CIM (Y — X). However, CIM is not homogeneous so it cannot further induce
a norm on the sample space. The contour plots of constant CIM between two
samples, one at the origin in 2D space, are shown in Figure 3.9.

2

1.5

0.5

-1.5

-2
- . -0.5

Fig. 3.9. Contours of CIM(X,0) in 2D sample space (kernel size is set to 1)
(from [201]).
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When the ECC is used as a cost function to train adaptive systems, we
actually make the system output close to the desired signal in the CIM sense.
Figure 3-9, which depicts the contour lines of equal CIM, shows that when
the error vector is close to zero, CIM is equivalent to the La-distance (circular
contours); when the error gets larger, CIM becomes an L;-distance (diamond
contour); and eventually when the error is large the metric levels off and
becomes insensitive to the value of the error vector (approaching Lo; i.e., a
counting norm). The concepts of large and small here are related to the kernel
size utilized in the Gaussian function. This intuitively explains the robustness
of ECC, but we can be more precise by putting ECC in the general framework
of M-estimation [201].

Theorem 3.4. The error entropy criterion implemented with kernels is a ro-
bust cost function (in the sense of Huber’s robust statistics).

Proof. To show the relationship between ECC and M-estimation the error
weighting function in Eq. (3.40) becomes (CIM(e))?; that is,

ple) = (1 — exp(—e?/20%))/V2r0. (3.49)

Tt is easy to see that this p(e) obeys the properties of Eq. (3.41). Therefore,
according to Huber’s theory of robust estimation, ECC as defined in Eq. (3.35)
is equivalent to the following M-estimation problem,

N
min Z ple;) (3.50)

or the following weighted least square problem,

N
minZ%ef. (3.51)
w
i=1

The weight function ~y(e) is defined by
v(e) = p'(e)/e, (3.52)
where p’ is the derivative of p. Therefore
v(e) = exp(—e?/20°) /v 2mo>. (3.53)

This means that large errors get larger attenuation, thus the estimation
is resistant to outliers. The weighting function of Eq. (3.53) is very similar to
the bi-square method in Table 3.1 where « is a tuning constant.

It turns out that the square of the Taylor expansion of Eq. (3.53) to the
first order is the weighting function of bi-square and the kernel size o substi-
tutes the tuning constant in bi-square. Notice that in ECC the kernel size has
a double role of representing the error PDF well and at the same time attenu-
ating outliers, which sometimes may be too constraining when the number of
samples is small. But in general it shows that the cost function has a built-in
robustness because of the local estimation produced by the kernel.
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3.8 Normalized Information Potential as a Pseudometric

In this section, we show the relation between the error entropy criterion of
Eq. (3.36) and the error correntropy criterion, and therefore also the relation
between EEC and M-estimation. Let us look at the EEC criterion in a way
conducive to a similarity measure interpretation. Take the first-order differ-
ence between elements of Z and denote it by Az = z; — z;, likewise for Y,
and construct vectors

AZ = (AZH, Azlg, ey A221, AZQQ, ey AZNN)
AY = (Ayll, AylZ, ey AyZl, Ay227 ey AyNN)

The correntropy between these two new vectors is

N N
. 1
o(AZ,AY) = DY Go(Azy — Ayy). (3.54)

j=11i=1

Because Az;j — Ay = (2 — 2z5) — (yi — yj) = e; — e; we obtain

1 N N
H(AZAY) = 3" " Gole; — e5) = V(E). (3.55)

Correntropy is a similarity measure, therefore so is the error entropy. The for-
mer compares the components of Z and Y directly whereas the error IP com-
pares their first-order differences. Using this argument, it is easy to show that
a simple normalization of the information potential is a pseudometric. Define
the function Vi (Z,Y) = /(V(0) — V(E))/V(0). By substituting Eq. (3.55)
and noting that v(0,0) = V(0) we get

0(0,0) — v(AZ, AY))1/2 _ CIM(AZ,AY) (3.56)

Vl(Z,Y) = ( 7(0) v(0)

The normalized IP loses the property of identity when one takes the first order
difference between variables. In other words, with AZ available one can only
recover the original Z up to an undetermined shifting constant (the mean
of Z). Let us calculate the MSE between AZ and AY to gain some more in-
sights. After some manipulations, we obtain MSE(AZ, AY') = 2var(e), which
tells us two things: first the error IP of Eq. (3.55) is equivalent to the error vari-
ance when the kernel size is large; second it is not sensitive to the error mean
which coincides with the previous analysis of MEE. Figure 3.10 shows the
contour plots of VM (X, 0) to compare with the CIM contours of Figure 3.9.

The EEC criterion actually minimizes the distance between Z and Y in the
IP sense or between AZ and AY in the CIM sense. In fact, if we define the
new error variable Ae;; = Az, — Ay = e;—e; and assume that e is the actual
random variation contained in the data, EEC is equivalent to the following
M-estimation problem
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Fig. 3.10. Contours of VM (X, 0) in 2D sample space. It is a pseudometric (kernel
size is set to 1) (from [200]).

minZZp(Aeij), (3.57)

or the weighted least square problem

N N
minZZ’y(eij)(Aer)Q (3.58)
j=11i=1
with p(-) and v(-) defined in Egs. (3.49) and (3.53). Therefore, it becomes
clear that the EEC criterion is also a method of M-estimation which further
explains why EEC is a cost function that is resistant to outliers.

The basic assumption about errors in regression is they are purely stochas-
tic white and follow a Gaussian distribution with zero mean and constant vari-
ance 2. Then the new error variable Aey; also follows a Gaussian distribution
with zero mean and constant variance 202 for i # j. In the case of i = j, it
equals zero and has no effect on the estimation. On the other hand, a small
deviation from the above error model assumption (i.e., outliers present in the
errors) corresponds to a small deviation of our new error random variable

from the Gaussian model. Suppose the errors are drawn from the following
PDF (Middleton model [220])

pe(e) = (1—¢) x N(0,0%) +& x N (ma,03) . (3.59)
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Here, € denotes the degree of deviation which is usually much smaller than 1
and o2 >> 0. Because e;, e; (i # j) are independent, the PDF of Ae;; is

pe(de) =(1—¢)2N(0,20%) + e(1 — )N (m2,05 +0?) +£(1 —¢)

3.60
x N (=ma, 03 + 0?) + 2N (0,203) . (3.60)

However, by introducing the difference operation, the noise power is almost
doubled (recall that MSE(AZ, AY) = 2var(e)) and the outlier effect is also
double with respect to ECC. To summarize, let us compare ECC, EEC, and
MSE by rewriting their definitions

maxv(Z,Y) = /Ga(e)pE(e)de

e

max V(E) = /pE(e)pE(e)de

e

min MSE(E) = /e2pE(e)de.

The learning process is nothing but the evolution of the error PDF according
to a specific criterion. The problem of ECC and other M-estimation methods
such as bi-squares is that one has to carefully anneal the kernel size or the
tuning constant to balance efficiency with robustness. Intuitively, ECC is a
local criterion because it only cares about the local part of the error PDF
falling within the kernel bandwidth. When the error modes are far from the
origin, they fall outside the kernel bandwidth, and the learning is insensitive
to them. When one weights the error PDF by itself as in EEC, the error modes
are easily detected anywhere in the error space with the advantage of data
efficiency, but the kernel size still needs to be properly annealed as we saw
early in this chapter. Whereas ECC is robust to outliers because it is local,
EEC achieves robustness and efficiency by selfadjusting the localness of the
weighting function based on the error distribution. The only problem with
EEC is how to determine the location of the error PDF because the criterion
is shift-invariant. Practically this is achieved by biasing the system output to
the desired signal mean to make the error mean equal to zero. However, when
the error PDF is nonsymmetric or has heavy tails the estimation of the mean
error is problematic.

Finally, since we are utilizing gradient descent procedures, the adaptation
of EEC and ECC are much simpler than the recursive approaches used in
M-estimation.

Centered Error Entropy Criterion

Our goal of supervised training is to make most of the errors equal to zero,
therefore we can construct naturally an augmented criterion so that it min-
imizes the error entropy with respect to 0. A natural idea to automatically
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achieve this goal is to locate the peak of the error PDF at the origin. Fixing
the error peak at the origin in EEC is obviously better than the conventional
method of shifting the error based on the mean of the desired response. Denote
eo =0, Ec = [eg, E] where E is the error vector produced by the adaptive
system and ey serves as a point of reference, which we call here a fiducial
point. Then the error IP with a fiducial point at the origin becomes

1
V1B = S et~ = G

7=0 =0
(3.61)

2ngez+zzf@7 — ;) + £ (0)

j=11:=1

The above cost function is nothing but a weighted combination of ECC and
EEC. According to our understanding, the EEC term minimizes the error
entropy and the ECC term anchors the main peak of the error PDF at the
origin which fulfills the design goal. In general, we can write the centered error
entropy criterion (CEEC) as

N N N
J:)\ng(ei)nL(lf)\)Zng(ei —¢j), (3.62)

j=1i=1

where ) is a weighting constant between 0 and 1 that can be interpreted by
how many fiducial “samples” one puts at the origin. The more samples one
puts at the origin, the larger A becomes. When A = 0, Eq. (3.62) reduces to
EEC; when A =1, it is ECC, and A = 1/3 gives Eq. (3.61).

The advantage of CEEC versus the practical procedure outlined in
Section 3.3 is that Eq. (3.62) automatically locates the main peak of the
error PDF and fixes it at the origin even in the cases where the estimation
of the error mean is not robust (i.e., the error PDF is not symmetric or has
heavy tails). More significantly, we also can show that the CEEC actually
induces a well-defined metric. We use Eq. (3.61) to show that it induces
a metric as correntropy and an interesting observation is that it becomes
sensitive to direction because it contains the MEE term (Figure 3.11). Most
metrics are symmetric in the following sense

SM(,eZ,):SM(,—eZ,) (363)

However, CEEC favors errors with the same sign and penalizes the directions
where errors have different signs. If the errors are small with respect to the
kernel size, this metric can be described by the linear term of Eq. (3.61).
Assume N = 2 and by simple manipulations, we have

() () () 6ot
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Fig. 3.11. Contours of the metric induced by CEEC in 2D sample space (scaling
and rotating variant). It penalizes the directions of 37w /4 and 77 /4 where the errors
have different signs (kernel size is 1)(from [200]).

This is the squared Mahalanobis distance from e to 0 with covariance matrix
(21

2 (1)
The eigenvectors are (0.707,0.707), (—0.707,0.707) with the corresponding

eigenvalues 3, 1. This justifies the elliptic pattern in Figure 3.11, and it may
find practical applications.

3.9 Adaptation of the Kernel Size in Adaptive Filtering

The kernel size in EEC and ECC can be considered one more parameter to be
adapted during learning, unlike the work in density estimation where a rea-
sonable cost function for selecting the kernel size remains elusive. This shows
that filtering is a simpler problem than density estimation, but a thorough
investigation of the best cost to adapt the kernel size parameter is still lacking.
Figure 3.12 shows the overall block diagram for the adaptation of EEC and
ECC when the kernel size parameter is also being adapted. Notice that now
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Fig. 3.12. Composite adaptation of filter parameters and the kernel size.

we have two cost functions, one to adapt the parameters of the filter J, (w),
and a second cost function Jgz, (o) to adapt the kernel size in the estimation
of the EEC or ECC costs.

The optimality condition proposed to adapt the kernel size is derived from
nonparameteric regression concepts [133], where the kernel size is understood
as a compromise between bias and variance of the regressor. As such we pro-
pose the use of the Kullback-Leibler divergence between the true error PDF
and the estimated PDF as our criterion to adapt the kernel size parameter
online [302].

Let p, (e) be the estimated density from a window of N samples of
the error, evaluated using the Gaussian kernel with width ¢ : p,(e) =
1/N Zfil G, (e — e;). From an information-theoretic perspective, an optimal
value of ¢ would be one that minimizes the discriminant information between
the estimated density and the true density p(e) of the errors. Therefore, the
cost function for optimizing the kernel size is:

A ple .
Dkr(p||ps) = /p(e)log (f)(_(e))> de = /p(e) logp(e)de —/p(e) log p,(€)de.
(3.65)
The first term in Eq. (3.65) is independent of the kernel size. Therefore,
minimizing Dk (p||ps) with respect to ¢ is equivalent to maximizing the
second term of Eq. (3.65), which is nothing but the cross-entropy between the

true PDF and the estimated PDF with kernels. Therefore our cost function
to optimize for the value of ¢ is simply

Jr (o) = Ellog(ps(€)]; (3.66)
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which can also be interpreted as a maximum log-likelihood condition. Using
the sample estimator for the expectation operator, we obtain

. 1 & 1 Y
JKL(U):Nng NZG(eFej) : (3.67)
i=1 j=1

Taking the derivative of Jxr,(0) with respect to ¢ yields

i [ () (5221
v SN exp <—(62+;>2)

Going back to our original adaptive filter configuration, using the above
equation and adapting it to an online application we can formulate a sim-
ple gradient ascent search rule to update the kernel size, at every weight
update step of the adaptive filter as

&]KL (O’(TL))
o (n)

st (Z5i ) (S )

S L exXp (_(;0_2—(6753))2) (3.69;

where n is the current time index, and L is the window size to estimate
J. We can use a stochastic approximation of the gradient by dropping the
expectation operator and evaluating the operand at the current sample of the
error. Therefore the final update rule becomes:

Sl (—(e(;T)an(a)(i))Q) ((e(ngs—(s)(z‘)ﬂ 1 >

o(n)
SR EEOErL

(3.68)

o(n+1) = o(n) +1

on+1)=0o(n)+nE

on+1)=0(n)+n

(3.70)

The computational complexity of this adaptation technique is O(L), where
L is the length of the window used for computing the density estimate. A spe-
cial case of the above update rule arises when we take L = 1, in which case
Eq. (3.70) takes the simple form of a stochastic gradient update to adapt the
kernel size as

(e(n) —e(n —1))? 1 > . (3.71)

ot 1) = o) (CZEE
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Equation (3.68) deserves a closer examination, as it provides useful insights
about the steady-state values of G. Clearly, the condition for convergence of
G is when

Zj;:—L eXPp <_(e(;22zne)(i))2> ((e(nzg_(i)(i)y - U(ln)> =0. (3.72)

A little rearrangement yields

S e <W> ((e(n) — e())?)
S, L exXp (%@3(2))2)

It is interesting to observe that the right-hand side of Eq. (3.73) is in
fact the computation of a weighted variance of the errors around the cur-
rent sample e(n). The exponential weighting given to the squared differences
(e(n) — e(i))? provides a windowing or a localization to the variance compu-
tation. The localization is not in time, but in the space of the magnitude of
the errors. This means that values close to the current sample e(n) receive
higher weight while computing the variance. It can therefore be seen that us-
ing the adaptation rule of Eq. (3.70), the kernel width converges to the value
of the localized variance of the error. This property is particularly useful when
the distribution of errors is multimodal.

Although the stochastic gradient approximation of Eq. (3.70) reduces com-
putational complexity as compared to Eq. (3.69), it is more easily affected by
outliers in the data. In practice, this effect can be alleviated by having a small
regularization constant @ added to the denominator of Eq. (3.71). The initial
condition for the kernel size should be much larger than the one expected
from density estimation considerations, because for large kernel sizes the cost
function becomes closer to the quadratic cost as discussed above.

We have tested this method in adaptive noise cancellation of speech signals
masked by heavy noise, and the kernel size adjusts itself to match the changes
in variance of the error. Figure 3.13 shows examples of the kernel size through
adaptation as a function of window size. This figure corroborates the analysis
that the kernel size estimates the local variance of the error signal, which is a
good thing because the error power changes across iterations in an unknown
way. But of course, Jg (o) is still not linked to the performance of the
adaptation algorithm, and moreover, it depends upon the error distribution,
which is beyond the control of the designer. Experience shows that the values
obtained are reasonable and that the adaptation is faster than with constant
kernel size.

o%(n) = (3.73)
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Fig. 3.13. Kernel size being adapted online (top: L = 1; bottom L = 100)
(from [302]).

3.10 Conclusions

The purpose of Chapter 3 is to go beyond mean square error adaptation by
using the argument of the logarithm of Renyi’s quadratic entropy. Because the
logarithm does not change the location of the optimum in parameter space
because it is a monotonic function, the adaptation algorithms are simplified
when the IP is used as the cost instead of Renyi’s entropy directly.

When the information potential estimator is utilized, the PDF is never
explicitly estimated, so the cost works with pairs of samples of the error
distribution, which can be thought of as a nonlinear projection of the error
into a high-dimensional space. Therefore, although the filter is linear, the
solution obtained by the MEE algorithms does not necessarily coincide with
the MSE solution. It really depends on the error distribution: in cases where
the error PDF is approximately Gaussian, the two solutions provide similar
results, but in other cases, the solutions will differ.

We presented the basic block mode gradient descent update for the MEE
cost function, studied some of its properties, and addressed the features of the
EEC performance surface to get a better feel for the adaptation. We found
that EEC tends to have a peaky performance surface, with exponential tails,
with potential local minima in the tails region. Therefore in most of the space
the search using gradient descent can be expected to be slow. However, near
the optimum the steepness of the performance curve is faster than quadratic.
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We have also shown that there is always a neighborhood around the mini-
mum, controlled by the kernel size, where a quadratic approximation of the
performance surface is possible. This simplifies the treatment of the adap-
tation near the optimum, but still leaves open the problem of finding fast
algorithms overall.

This chapter also provided a clear statistical reason why the error entropy
criterion (and its MEE algorithm) is robust to outliers by establishing the
link between entropy cost functions and robust statistics. This link was ac-
complished through a new function called correntropy that is further studied
in Chapter 10. But the correntropy error criterion (and its MCC learning al-
gorithm) is rather interesting because it creates a new metric in the space of
the errors that has unique properties. In fact, unlike normal metrics it uses
different evaluations of distance depending upon how far the points of inter-
est are; when the samples are close the metric is Lo, farther apart it becomes
Ly, and farther out it saturates to Lg. The values of near and far are rela-
tive to the kernel size utilized in the Gaussian function, which means that a
single constant has a tremendous effect in the evaluation of similarity. When
placed in the framework of M-estimation, we showed that the derivative of
(CIM)2 is effectively the weighting function in weighted least squares. The
conventional threshold in M-estimation is replaced by the kernel size. The
comparisons show that the ECC is comparable to M-estimation, but it can
be easily integrated online as a cost function because it is continuous, unlike
Huber’s (Table 3.1).

The chapter also linked ECC with EEC, by showing that the ECC of the
error differential yields EEC, which shows that the noise robustness of the
MEE algorithm can also be interpreted in terms of weighted least squares.
This close relation between the two criteria suggests a new criterion that
automatically centers the errors, unlike EEC, which we called the centered
EEC and which is based on a metricTherefore it can be used as a criterion
without the requirement of centering the errors. As a conclusion we see that
the MEE and MCC algorithms can be used with advantage when the noise
PDF has a long tail. This condition happens even when the model system
that creates our data is linear, but the observation noise has outliers.

The final topic covered in this chapter deals with the online adaptation
of the kernel size, which in adaptive filtering makes a lot of sense because it
can be considered as an extra parameter that needs to be adapted. However,
the kernel size affects the cost function, so it requires a different cost function
for adaptation. We have proposed a cost that minimizes the KL divergence
between the true error PDF and the estimated error PDF. We showed that
the method basically estimates local variance, it is easy to implement online,
and the results are reasonable and follow the changes in error power that
normally occur through adaptation. However, this cost is not related to the
properties of the adaptation, which is a shortcoming; that is, we may want to
adapt the kernel size to minimize the misadjustment or to increase the speed
of adaptation. Therefore, the proposed method should be interpreted as just
one of many possible ways of framing the kernel adaptation problem.
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Algorithms for Entropy and Correntropy
Adaptation with Applications to Linear
Systems

Deniz Erdogmus, Seungju Han, and Abhishek Singh

4.1 Introduction

This chapter develops several batch and online learning algorithms for the
error entropy criterion (EEC) that are counterparts to the most widely used
algorithms for the mean square error criterion (MSE). Because the chapter
assumes knowledge of adaptive filter design, readers unfamiliar with this topic
should seek a textbook such as [332] or [253] for a review of fundamentals.
But the treatment does not require an in-depth knowledge of this field. The
case studies in this chapter address only adaptation of linear systems, not be-
cause entropic costs are particularly useful for the linear model, but because
the solutions for linear systems are well understood and performance com-
parisons can be easily drawn. This chapter also considers applications of fast
evaluations of the IP using the fast Gauss transform and incomplete Cholesky
decomposition, and ends with an application of the error correntropy criterion
(ECC) to adaptive noise cancellation.

Unlike the MSE criterion, there is no known closed form solution to find
the optimal weights in EEC adaptation even in the finite impulse response
(FIR) case. However, local search procedures based on the gradient can be
used effectively as we demonstrated in Eq. (3.16) that implements a steepest
descent procedure for V(e) estimated with the IP.

Table 4.1 shows the most widely used adaptive algorithms under the MSE
criterion and the corresponding ones for EEC presented in this chapter. Be-
cause the goal of this chapter is to minimize EEC, we refer almost exclusively
to the minimization of error entropy (MEE) algorithm in Eq. (3.16).

In the table, NV is the number of samples, M the filter order, and L the
number of samples in a window. Each of these algorithms was developed to
answer a specific question [143]. The steepest descent has a smooth conver-
gence to the minimum because it uses an average estimation of the gradient.
The LMS is a stochastic approximation to the latter, and has the smallest
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Table 4.1. Family of Algorithms

MSE Criterion Error Entropy Criterion Complexity
MSE/EEC
Steepest descent MEE (Minimum error entropy) O(N)/O(N?)
MEE-RIP (recursive IP) -/O(L)

LMS (least means squares)  MEE-SIG (stochastic gradient) Oo(M)/0O(

L
LMF (least mean fourth) MEE-SAS (self adjusting stepsize) O(M)/O(N?)
NLMS (normalized LMS) NMEE (normalized MEE) O(M)/O(N?)
RLS (recursive least squares) MEE-FP (fixed point update) 0O(M?)/O(M?L)

computational complexity of the group (two multiplications per weight), but
the estimation of the gradient is noisy so the stepsize needs to be reduced
about 1/10 when compared with the steepest descent. The LMF was intro-
duced to speed up the convergence of the LMS, whereas the NLMS is very
robust to changes in the input signal power. The RLS algorithm is the fastest
of the group, approximating the Wiener solution at every sample, but it is far
more computationally expensive than the others. The corresponding MEE al-
gorithms serve a similar role, but are based on the error entropy cost function.

For the case of multiple system outputs, the cost function needs to be
modified as the sum of marginal error entropies, or alternatively, the product
of the individual information potentials. For a system with d outputs, the
corresponding cost is

d d

1

min J(w) = min Z H,(eo) °Z' max H Val(eo), (4.1)
v v o=1 v o=1

where e, denotes the error signal for the oth output of the adaptive system.

With this cost function, then the gradient has to be modified to

d

d
aJ = 1 OValeo)/Ow ST Vater) Wg_(eo)_ (4.2)

ow 1—a  Val(eo) =\ w

o=1

A second approach for multioutput situations is to minimize the joint
entropy of the error vector, however, in general this approach requires an ex-
ponentially increasing number of samples, so the product approach is preferred
in practice.

4.2 Recursive Information Potential for MEE
(MEE-RIP)

The MEE algorithm already presented in Section 3.3 is O(N?) in the number
of samples due to the double summation in Eq. (3.16). For online scenar-
ios, we notice that it is possible to obtain a recursive formula to update the
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information potential estimate when a new sample is acquired. Suppose that
at time n, when we already have n samples, the quadratic information poten-
tial is estimated to be

. 1 n n
Vo(X) = EZZKU(%— — ;). (4.3)

7j=1 =1
Suppose at time n + 1 we get a new sample z,11 and we wish to update
our estimate. Assuming that the kernel function is selected to be an even-

symmetric PDF,

R 1 n+1n+1
Va1 (X) = CESIE Z Z Ko (T; — ;)
o (4.4)
n2 R 1 n
= 2 _ .
G ap G |22 ) )

Once the information potential estimate is updated, the new entropy estimate
can be obtained by simply evaluating ﬁnH(X ) = —log Vit (X). This recur-
sion yields exactly the same estimate as the batch estimator in Eq. (4.3) at
every time instance, therefore we call this the exact recursive entropy estima-
tor. The beauty of Eq. (4.4) is that it is online, and of complexity O(n) instead
of O(n?), but n is increasing with iterations. This exact recursion is useful for
estimating the entropy of stationary signals, however, due to its increasing
memory depth, it is not suitable for nonstationary environments. Therefore,
we employ the fixed forgetting factor approach to derive one estimator that
would serve satisfactorily in such situations.

Recursive Estimator with Forgetting Factor

We start by defining a recursive Parzen window estimate. Suppose that at
time n, the PDF estimate p,(z) for px (z) is available. Using the new sample
ZTn+1, we update this PDF estimate according to

Prt1(2) = (L= N)pn(z) + Ao (2 = 2ni1). (4.5)

The initial PDF estimate could be selected as pi(x) = ko(x — 21). Substi-
tuting the recursive PDF estimate in Eq. (4.3) for the actual PDF in the
definition given in Eq. (4.5), we obtain the recursion for the quadratic infor-
mation potential.

Vst = Ex[ps1 (X)] = (1= NV Ex[pa(X)] + AEx [fig (X — 241)]

2 (1-NV,+ % Z Ko (T — Tpt1)- (4.6)

1=n—L+1
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The recursion in Eq. (4.6) is named the forgetting recursive entropy estimator.
The parameters A\, L, and o are called the forgetting factor, window length,
and kernel size, respectively. These free design parameters have an effect on
the convergence properties of this recursive entropy estimator, and have been
fully investigated in [90].

An interesting relationship between the exact and forgetting recursive en-
tropy estimators of Eqgs. (4.4) and (4.6) is that, if we replace the fixed memory
depth and the fixed window length of Eq. (4.6) with dynamic ones, the two
recursions asymptotically converge to the same value. In order to see this, we
set A =1—n?/(n+1)? and L = n. Then taking the limit of the difference
between Eq. (4.4) and Eq. (4.6) as n goes to infinity yields

lim (Vn+1 - Vn+1)

(A 4 0)
2 vn - n o vo
~m |7 2) § (n +A1) i — 0. (4.7)
1) Z; Ro(Tnt1 — i) = — Z; Ko (Ti — Tpi1)

The important practical property of this recursive estimator is that it
reduces the computational complexity from O(n?) to O(L). This is a drastic
reduction in the computational requirements. The forgetting recursive entropy
estimator also enjoys a reduced memory requirement compared to the exact
recursion and the batch formula which is very useful to track changes of the
input in locally stationary signals.

Case Study for MEE-RIP

In this section, we investigate the performance of the recursive entropy estima-
tors proposed above. We start by demonstrating the convergence properties
of both estimators to the true entropy value of the PDF underlying the data
that are being presented. In these simulations, we have utilized 5000 sam-
ples generated by zero-mean, unit-variance uniform, Laplacian, and Gaussian
distributions. For these density functions, both the exact and forgetting re-
cursions are evaluated and displayed in Figure 4.1.

The Gaussian kernel has size 0 = 0.01, the window length is 100 samples
and the forgetting factor A = 0.05. Several simulations were run on these data
to investigate the effect of the forgetting factor, window length, and kernel
size in the estimates. They are summarized in the Tables 4.2 through 4.4.

In recursive estimates there is an intrinsic trade-off between speed and
variance, which the designer must consider in selecting the forgetting factor
(see Table 4.2).

As expected, the speed of convergence is not affected by the variations in
the window size. However, the estimation variance after convergence is greatly
affected because of the number of samples (Table 4.3). The trade-off in the
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Actual Entropy and its Recursive Estimates for Various (Unit-Variance) Data Distributions Using A= 0.005 L=100 6=0.01
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Fig. 4.1. Actual entropy and its exact and forgetting recursive estimates for uni-
form, Laplacian, and Gaussian densities (from [90]).

Table 4.2. Convergence for Different Forgetting Factors

L =100, 0 =0.01 A =0.001 A =0.003 A =10.01
Convergence (samples) 8000 2500 1000
variance 11x10* 9.5 x 107" 2.7x107°

Table 4.3. Effect of Window Length

A =0.002, ¢ =0.001 L=10 L =100 L = 1000
Convergence (samples) 8000 2500 1000
variance 6.7x10°° 1.7 x 10" 2.2 x 107°

selection of this parameter is between the accuracy after convergence and the
memory requirement.

Parzen windowing has a bias that increases with the kernel size, whereas
its variance decreases with the kernel size. As expected, the smallest kernel
size resulted in the largest variance and the largest kernel size resulted in the
largest bias (Table 4.4).
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Table 4.4. Effect of Kernel Size

A=.002, L=001 6=0.001 6=001 o=0.1 c=1

mean 5x 1072 22x107%2 1.3x1072 24x 107!
variance 39x1072 1.6 x107™* 29x107°% 3x 107°

Gradient for the MEE-RIP

The previous experiments show the good properties of the recursive computa-
tion of the information potential, but for our purposes, we need the gradient of
this quantity to train the FIR filter with MEE. Towards this goal we take the
derivative of the recursive information potential with respect to the weights
and write

oV, oV, Oe; —en)

= . 4.
ow d(e; —en) ow (4.8)
Now using Eq. (4.5) for the first term on the right-hand side, we get
oV, Vi1 A
" (1= —én 4.
oy =0Vt e e £ o) 69
and evaluating the derivative
v, Vs A=
AL NI\ a4 S i—en)(ei—en). (4.1
Aei—en) - L Vo —em T 2 Gl en)leimen). (410)

Notice that the first derivative on the right side of Eq. (4.9) is not zero, be-
cause V;,_; depends on the previous errors (it is called an ordered derivative).
Now this term can be computed at each step by storing a single quantity
OVy_1/0(en, — €;), which is the gradient at the previous step, and computing
the sum which is O(L) at each step. The initial condition is 9Vy/dep = 0 and
of course the sum is started with G(0 — e1)(0 — e1). The gradient of the error
with respect to the weights in Eq. (4.8) is d(e; — ep) /0w = @, — x; and it can
be brought in this formulation easily to yield the gradient for the kth FIR
weight as
7 n—1
ViVin)=(1- )\)% + % | G(e; —en)(e; — en)(xr(n)—xk ().
(4.11)

This expression is the gradient of the MEE-RIP and substitutes Eq. (3.16),
preserving the accuracy of the solution for appropriate A and L.

4.3 Stochastic Information Gradient for MEE
(MEE-SIG)

Having introduced the methodology to derive a recursive estimator for the
information potential, we can still attempt to derive a stochastic informa-
tion gradient using Widrow’s intuition of dropping the expectation operator
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in his famous LMS algorithm [332]. Both the recursive and the stochastic
information gradient use online updates, but the strength of LMS lies in its
ability to determine the optimal solution of the MSE criterion with extremely
simple updates on the weight vector, which it computes using only the most
recently acquired input signal. In this section, we derive a stochastic gradient
for the minimum error entropy criterion, with the hope to obtain even a sim-
pler estimator for the information potential. It is important to remember that
the fundamental property that supports the stochastic update is an unbiased
estimator of the gradient with the present sample.

Suppose that, in an online adaptation scenario, we approximate the
a-information potential stochastically by the argument of the expectation
operation. Therefore, dropping E[] in V,(e) = E [p2~!(e)] and substituting
the required PDF by its Parzen estimate over the most recent L samples at
time n, the stochastic information potential estimate becomes

Va(e(n)) ~ (% i Ko(€n — ei)> . (4.12)

i=n—L

If we substitute in Eq. (3.18) we obtain

N a—2
Walen))  (a—1) [ &=
ow, Lot ( > “"(e"_ei)>

i=n—L
X Z_: Ko (en — €;)(zr(n) — ok (7)) (4.13)
i=n—L

This is the general expression of the stochastic gradient of the IP for arbitrary
o and kernel (MEE-SIG). The first expression provides the weighting on the
sample density translating the role of o in Renyi’s entropy. For a = 2 the
first sum in Eq. (4.13) disappears as discussed in Chapter 2, and it provides a
simpler expression. For the quadratic information potential using a Gaussian
kernel, the SIG(L) gradient becomes

8‘%(5?)) _ % ig:L Go(en —€i)(en — €;)(ap(i) — xk(n))l . (419)

Comparing with Eq. (3.18) the computation of this expression is proportional
to the size of the time window used to estimate the information potential.
Comparing with Eq. (4.11) SIG(L) corresponds to the MEE-RIP for A = 1.
In the extreme case, L = 1 the MEE-SIG denoted by SIG(1) becomes,

M = %Gg(e(n)—e(n—l))(e(n)—e(n—l))(mk(n—l)—xk(n)), (4.15)

which can be interpreted as a weighted combination (by the Gaussian of the
error difference) of the product of the incremental error and the incremental
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input. SIG(1) is the EEC equivalent of the LMS algorithm, and the similarity
between the two updates is easy to pinpoint. There are a lot of assumptions
in this update, but the stochastic estimation literature [192] tells us that as
long as the time estimator is unbiased, the average over iterations decreases
its variance and converges to the same value. We only conducted experimental
evaluations of the SIG(1), and the results show that it still finds extremes of
the entropy cost in synthetic datasets (this is also demonstrated in Chapter 8).

Training a Linear Combiner with SIG(L)

All the simulations presented in this chapter, unless otherwise specified, adapt
a 2-tap FIR for system identification (Figure 3.1), and the desired response
data are also generated by a 2-tap FIR with weight vector w, = [1,2]7T.
There is no measurement noise and the input to the filter is zero-mean, unit
variance white Gaussian noise. This experimental setup is very simple but
is used in this chapter because we can visualize the weight tracks during
adaptation to evaluate convergence and we know that the stationary point is
equal to the MSE cost because the system identification solution is unique.
Figure 4.2 shows the effect of the kernel size (6) in the adaptation speed of
the SIG (L = 100) and u = 1. For a large range of kernel sizes the adaptation
converges and the slowest convergence is achieved in intermediate values of
the kernel size (6 = 0.5). When the kernel size is smaller than required for

Learning Curves for MEE SIG: =100, p=1
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Fig. 4.2. The effect of kernel size in adaptation speed.
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Learning Curves for MEE SIG: o=1, p=1
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Fig. 4.3. Effects of the window length in adaptation.

the data, convergence actually does not happen because there is insufficient
information to estimate the gradient of the IP (6 = 0.1). Figure 4.3 shows the
dependence of SIG on the window length.

For this problem where the solution is obtained with zero error, we see
that smaller windows provide faster convergence. However, if the error was
not zero, misadjustment would increase with smaller L (not shown).

In the following simulation we illustrate the performance of SIG(1) in
training a linear filter; once again, for visualization purposes, we have chosen a
2-weight adaptive filter. The goal is to predict a time series from its most recent
two samples, where the sequence is generated by z(t) = sin 20t + 2sin 40t +
3sin 60t sampled at 100 Hz. The training set consists of 32 samples, which
approximately corresponds to one period of the signal, and it is repeated for
150 epochs for both SIG(1) and LMS algorithms.

The weight tracks of both algorithms starting from five different initial
conditions are shown in Figure 4.4 along with the contours for the minimum
error entropy criterion for this training set. Therefore, we can expect that
in linear filtering when the signals are stationary and the initializations are
close to the minimum, there is a ¢ that makes the MEE and the MSE con-
verge at the same speed of adaptation and misadjustment. But in general
the two algorithms perform differently because of the changes in performance
surfaces.
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Weight Tracks on Contours of Information Potential

Fig. 4.4. Weight tracks for SIG (solid) and LMS (dotted) in online training a linear
filter for time-series prediction (from [88]).

SIG(1) and Shannon’s Entropy Gradient Estimation

This section shows the difficulty of analyzing the stochastic gradient
algorithm. We have stated that working with the IP or Reni’s entropy is
equivalent if the goal is to find the stationary points of the cost, but we can
obviously derive formulas to minimize Renyi’s entropy directly. It is just a
matter of incorporating the logarithm in the cost function of Eq. (3.12) and
computing the partial derivative. This equivalence is true for the estimators of
IP with double sums, and if the stochastic gradient is a consistent estimator
of IP it should also be true for the SIG. Unfortunately, this is not the case as
we now demonstrate.

The SIG estimate of o-Renyi’s entropy from Eq. (4.12) yields immediately

n—1 a—1 n—1
N 1 1 1
H,(X)= 1—a10g I Z mg(xn—xi)] :—loglz Z Ko (Tn — ;)
i=n—L i=n—1L

(4.16)

Notice that the entropy order disappears from the expression for the SIG class
of estimators of a-Renyi’s entropy. This means that the SIG algorithms when
used to estimate o-Renyi’s entropy are unable to weight dense and sparse
regions of the PDFs differently, therefore they provide for ¢ — 0, L — oo the
same result as Hy(X).
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This result can also be interpreted as an unbiased estimator of the gradient
of Shannon’s entropy using Parzen windowing.

Theorem 4.1. The expected value of the stochastic gradient of Renyi’s
a-entropy in Eq. (4.16) is an unbiased instantaneous estimator of the gradient
of Shannon’s entropy estimated using Parzen windowing.

Proof. Consider Shannon’s entropy of the error given by Hg(e) =
—E[logp.(e)]. Suppose we estimate this quantity by substituting the PDF
with its Parzen window estimate over the most recent L samples at time k.
Then this estimate of Shannon’s entropy at time n is given by

log (% Z_: Ko (€n — ei)>] . (4.17)

i=n—L

Hs,(e) ~ —E

The error gradient of Eq. (4.17) is easily determined to be

Of Y. ky(en —ei)
s,m i=n—L
—— =F , (4.18)
en —ei) bl Ko(€n — €;)
i=n—L 7

which is the expected value of the SIG estimator of o-Renyi’s entropy of
Eq. (4.16).

There is even a stranger special case of the stochastic gradient that occurs
when the window length L = 1, the kernel function is a Gaussian and the goal
is to adapt a linear combiner. For Gaussian kernels, the derivative of the kernel
can be written in terms of the kernel function itself as G/, () = —2G,(x)/0>.
When these are substituted in Eq. (4.18), and the chain rule is used to compute
the gradient with respect to the weights of the linear combiner, the solution
becomes

H, 1

‘9873];" = ——5(e(n) —e(n — ) (x(n) — zx(n — 1)). (4.19)
Notice two things: First, with respect to the SIG(1) applied to the IP in
Eq. (4.15), the nonlinear weighting produced by the Gaussian kernel dis-
appears. Second, notice the resemblance between this update and the LMS
update, which is given by —2e(n)xy(n), for the linear combiner. The updates
in Eq. (4.19) are based on the instantaneous increments of the signal values
in this special case, whereas the LMS updates are based on the instantaneous
signal values. Therefore, it is unclear if indeed Eq. (4.19) is a proper stochastic
gradient estimator of Shannon’s entropy because the weighting produced by
the kernels actually disappears from the update (see Eq. (4.15)). Further
work is necessary.
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4.4 Self-Adjusting Stepsize for MEE (MEE-SAS)

From the analysis of the shape of the error entropy cost function in Section 3.5
we foresee changes in curvature (i.e., varying Hessian) even for the scalar case.
Constant stepsize gradient algorithms simply cannot take advantage of such
characteristics, so an effort to develop variable stepsize algorithms is in order,
or even second order search algorithms. Here we deal with the variable step-
size case [128]. As can be easily inferred from the definition of the information
potential Eq. (3.12), the largest value of the potential occurs when all the sam-
ples are at the same location (V(0)): that is, V(e) < V(0) and V(0) provides
an upper bound on the achievable V(e). Seen from a different perspective,
V(0) is the ideal “target” value for the information potential curve during
adaptation, which will be reached when there is no observation noise and the
system has sufficient degrees of freedom to achieve an all-zero error. Thus
[V(0) — V(e)] is always a nonnegative scalar quantity that does not change
the direction of the gradient and can be used to accelerate the conventional
gradient search algorithm given in Eq. (3.16). Note that this quantity is the
numerator of the normalized IP of Eq. (3.56). This modified search algorithm
is named MEE-self-adjusting stepsize (SAS) because it actually works as a
selfadjusting stepsize algorithm as we show below. Let us define the new cost
function as

mvin Jnee-sas(e) = [V(0) — V(e)]%. (4.20)

Taking the gradient of Eq. (4.20) directly yields

Vmee-sas(e) = —2[V(0) — V(e)] - VV (e),
and the weight update for MEE-SAS becomes

w(n+1) = w(n) + pu[V(0) = V(e)]VV(e) = w(n) + u(n)VVi(e), (4.21)
where p(n) = p[V(0) — V(e)]. It is also easy to show that the MEE-SAS
cost function preserves the location of the MEE minimum. In fact, stationary
points are not affected by monotonic transformations on the cost. In MEE-
SAS, f(V(e)) = [V(0) — V(e)]? is monotonic, therefore the optimum coincides
with the MEE solution. Notice that Eq. (4.21) basically states that we have
a gradient descent procedure with an adaptive stepsize, which is automati-
cally determined by how different the actual IP is from the maximum. We
can expect that this new cost function and corresponding gradient descent
will automatically take care of the differences in curvature encountered when
searching the IP cost function that were mentioned in the analysis of Sec-
tion 3.5: giving acceleration when far away from the optimal solution and
automatically reducing the stepsize as the solution is approached. Using the
same quadratic approximation of Section 3.5 for the performance surface, it
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is easy to show that to ensure convergence of the MEE-SAS algorithm, a
necessary condition is

where p(n) = p[V(0) —V(e)] and A is the largest eigenvalue of the MEE
cost function. The intuition about the role of p(n) can be mathematically
proved as follows.

(4.22)

Theorem 4.2. Let = and Z denote the Hessian approzimation of MEE-SAS
and MEE, respectively. The relation between these Hessians is the following,

E=—cE+ (Wn)TEW(n)) E+ 2EW(n) w(n)TET, (4.23)
where ¢ = 2[V(0) — Vi, (€)].

Proof. Differentiating Eq. (4.20) twice with respect to the weight vector pro-
duces 2 = —2[V(0) — V(e)]V2V(e) 4+ 2VV(e)VV(e)T and substituting the
second-order Taylor series approximation of IP around the optimal solution
V(e) = Vi, (e) +1/2w(n)T Ew(n) and VV(e) = —Ew(n) yields the expected
result for Eq. (4.23).

From this theorem and using the eigendecompositions of MEE-SAS (E =

QAQ ) and MEE (2 = QAQ") with a coordinate transformation into the
natural modes, we obtain

1

QAQ' = -cQAQ" + (W(n)" QAQ W (n))QA Q"
+2QA Q7w (n)W(n)T(QAQT)T
= Q[-cA+ (W(n)" QAQ"W(n))A +2A Q" W(n) w(n)"QATIQ"
= Q[—cA + (v(n)TAv(n)A + 2Av(n) v(n)TAJQT, (4.24)

where v(n) = QTW(n). In Eq. (4.24) substituting the eigendecomposition of
the matrix in brackets denoted by ¥XDX, where X is orthonormal and D is
diagonal, yields

-~ =T
QAQ =QxDx7qQ”. (4.25)
By direct comparison, its eigenvectors and the eigenvalues are determined

to be R R
Q=QX, A=D. (4.26)
The entries in EDX7T are found as follows. The ith diagonal entry is —cA; +
(Z V3 ) i + 2A7v? and the (i, j)th entry is 2)\;\jv;v;, where ); is the
ith dlagonal entry of A and v; the ith entry of v(n).
Especially if v(n) is small, the matrix [—cA + (v(n)TAv(n)) A +
2A v(n)v(n)T A] is diagonally dominant; hence (due to the Gershgorin the-

orem [192]) its eigenvalues will be close to those of —cA. In addition, the
eigenvectors will also be close to identity.
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Consider the special case when the operating point is moving along the

kth eigenvector (v = [0,...,vx,...,0]T). Then the expressions simplify to:
[—cA1 + AgA1v7 0 e 0 e 0 |
0 —cAg + )\k)\z’l)i 0 0
A= 0 0 —cAk + 3030} 0
0 0 0 —C/\M—I-)\k/\MUI%
) (4.27)

In real scenarios, there exist modes that converge more slowly than others due
to the eigenvalue spread. If we analyze the convergence along the principal
axis of =, we obtain

Aj = =2[V(0) = Ve, (e)]Nj + MeAjuZ, Vi#k
Mo = =2[V(0) = Vav. ()] Ak + Ajwil + 207 (4.28)
= —2[V(0) — Vav. (e)]\r + 3Nf0E, j=k

When the weights are close to the optimal solution vi ~ 0, the eigenvalues
of MEE-SAS are proportional to the eigenvalues of the MEE cost which is
quadratic. On the other hand, when the weights of MEE-SAS are far from
the solution, v,% is large and thus the second term in Eq. (4.28) dominates
and the eigenvalues are proportional to the square of the original eigenvalues.
A consequence of this is that MEE-SAS cost function has the remarkable
property of changing curvature depending upon the distance from the optimal
solution. Also note that the convergence along the kth natural mode is faster
than other modes due to the extra 2)%11,3 term when the weights are far from
the optimal solution.

For each natural mode vy in Eq. (4.28), the relationship between the eigen-
value of MEE-SAS (A) and that of MEE (\y) is

e = —2[V(0) — Vi, (€)] Ak + 3A207 = =g (¢ — 3M\pv}) | (4.29)

where ¢ = 2[V(0) — Vi, (e)] is nonnegative. Because we maximize the cost
function V(e) in MEE, the eigenvalues \; of its Hessian approximation are
negative. Similarly, for MEE-SAS, the minimization of its cost function makes
Ak positive. The turning point of curvature occurs when Xe = —\j, or

c—3\vi = 1. (4.30)

From Eq. (4.30), we specifically obtain

v = (4.31)

3Nk
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Using the nonnegative property of ¢ in Eq. (4.31), we conclude that 0 < ¢ <1
for real eigenvalues, therefore, ¢ = 0 — V(0) = Vi, (e), whereas ¢ = 1 —
vy =0 (le,, w = w,).

It is interesting to note that the point at which the curvature changes
from higher than second order to second order is closer to the optimal so-
lution when V(0) # Vi, (e) than when V(0) = Vi, (e). In fact, when
V(0) = Vi, (e), the turning point of curvature is vy, = £+/—1/3\;, whereas
it is vy = £4/(c — 1)/3\g, when V(0) # V4, (e).

Thus, the curvature turning point vy is farther away from the optimal
solution when the achievable error is zero than for cases where the final error
is nonzero. Because v; marks the change of curvature from fourth order to
second order, this implies that for practical scenarios (i.e, V(0) # Vi, (€)), the
curvature is going to be predominately fourth order, leading to much faster
convergence than MEE for the same initial step size.

Switching Scheme between MEE-SAS and MEE

One disadvantage of MEE-SAS over the MEE with the same stepsize for
tracking is the smaller gradient of the performance surface near the optimum
which makes it slow to track changes in the input statistics (although both
algorithms have quadratic performance surfaces near the optimum, the eigen-
values are different; see Eq. (4.28)). This was observed in practical problems
(prediction of nonstationary Mackey-Glass (MG) time series) that require a
continuous fine adjustment of the optimal weight vector. Combining MEE
and MEE-SAS algorithms for nonstationary signals becomes therefore impor-
tant. In order to decide the switching time to maximize convergence speed,
an analytical criterion needs to be developed.

The dynamics of adaptation can be understood in terms of energy mini-
mization in the context of Lyapunov stability theory [206]. This method con-
firms the intuition that the best strategy for switching is when the gradients
of the two adaptation schemes are identical:

|[VIveE—sas| = |[VIuEE| - (4.32)

Therefore, in the region satisfying the condition |VJIugr-sas| > |VIurgl,
MEE-SAS should be used because MEE-SAS converges faster than MEE,
otherwise MEE is used. However, the application of this switching decision
implies a high computational complexity inasmuch as both algorithms need to
be run in parallel. Instead, we can evaluate Eq. (4.32) to obtain the condition
for which |VJMEE*SAS‘ > ‘VJMEE| as

2
> UMEE

e V(0) — Vo) |20 N

1
SV(Ee)<V(0) -3/ /ﬁ (4.33)
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Therefore one needs just to evaluate the information potential at each iteration
and compare it with a constant, which is a function of the learning rates of
MEE and MEE-SAS. This provides a very practical test and only requires
running a single algorithm. But of course, the selection of the stepsize for
each method still requires experimentation.

Curvature Analysis of MEE and MEE-SAS

Effect of Kernel Size in Perfect Identification

The default system identification example is used here. This case study aims
to illustrate how the MEE (V (0) — V4. (€)) and MEE-SAS ([V(0) — Vay. (€)]?)
cost functions are altered as a consequence of changing the kernel size in the
estimator. Figure 4.5 shows both performance surfaces in 3D. One hundred
noiseless training samples are utilized to obtain the contour and gradient
vector plots. The kernel size is set to o = 0.35.

Our interest is in illustrating the gradient differences between the two
cost functions, therefore we plot the gradient difference between MEE from
MEE-SAS in Figure 4.6.

As illustrated in Figure 4.6, when using a small kernel size (¢ = 0.1),
MEE-SAS has a larger gradient magnitude when compared with MEE over
most of the space whereas for a larger kernel size (¢ = 0.6), the position
reverses (MEE gradient is larger).

Effect of Kernel Size in Imperfect Identification

We just show the simulation result for the measurement noise case (similar
results are obtained when the modeling error is nonzero). We add uniform
distributed noise with three different powers (P =1, 2, and 3) to the desired
signal of the above example.

Fig. 4.5. Performance surface of normalized MEE (a) and MEE-SAS (b) (from
[128)).
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Fig. 4.6. Contour and gradient difference between MEE and MEE-SAS on error
information potential for various choices of kernel size (from [128]). : (a) 0.1; (b) =
0.35; (c) 0.6.

As observed in Figure 4.7, the higher the noise power, the larger is the
region over which the MEE-SAS gradient exceeds the MEE, as our analysis
showed. This means that when V(0) # Vi, (€) the point at which the curva-
ture changes from higher than second order to second order is closer to the
optimal solution than in perfect identification. This also means that the larger
the final error, the faster is the convergence.

4.5 Normalized MEE (NMEE)

One of the difficulties of the gradient-based algorithms is that an increase in
input power appears directly in the weight update formulas, and can momen-
tarily cause divergence (i.e. very large change in the weights). Divergence in
an adaptive algorithm is catastrophic because all the information about past
data is contained in the weights of the filter. If the weights diverge, then it is
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Fig. 4.7. Contour and gradient difference between MEE and MEE-SAS on error
information potential for three different measurement noises (from [128]). : (a) no
noise; (b) noise power 1; (c¢) noise power 2; (d) noise power 3.

equivalent to throwing away all of the past data and starting again! This is
why ways to avoid divergence have been sought in adaptive filtering. One of
the most widely used methods is intuitive and consists in dividing the step-
size by the norm of the current input vector (values in the filter taps) [253].
This procedure, called the normalized LMS algorithm, can also be proved
mathematically as the best strategy to have an update that is insensitive to
fluctuations of input power [143].

We derive the NMEE algorithm by analogy with the normalized LMS
(NLMS) algorithm, that is, as a modification of the ordinary MEE criterion
in light of the principle of minimal disturbance [143]. The criterion of NMEE
is formulated as the following constrained optimization,

min [w(n + 1) —w(n)||> subject to V(0) = V(ey(n)) =0,  (4.34)
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where e,(n) = z(n) — w(n + 1)Tz(n) is the posterior error, and Eq. (4.34)
translates the constraint of optimal performance in terms of the information
potential.

The above constrained optimization problem can be solved using the
method of Lagrange multipliers as follows,

J(e(n)) = [w(n +1) = w(n)|* + A(V(0) = V(ep(n))). (4.35)

Taking the derivative with respect to w(n+ 1) and equating the result to zero
to find the minimum we obtain

w(n+ 1) =w(n) + %WV(ep(n)). (4.36)

To solve for the unknown A, Eq. (4.36) is substituted into the constraint of
Eq. (4.34) i.e., V(0) = V(ep(n)) — ep(n) =ep(i), n — L <i<n—1, to yield

2 S (ealn) - eald))
N ST (4.37)
vwepm))T[ > <x<n>x<z‘>>]

i=n—L

which when plugged back into Eq. (4.36) yields

, (4.38)

where e,(n) = z(n) — w(n)Tx(n) is the a priori error, and 7 is the stepsize

that can be proven to be between 0 and 2 for stability. In this update, there
is an added difficulty because estimating w(n + 1) requires the a posteriori
error ep(n). We approximate it by eq(n) because the algorithm minimizes
[w(n +1) — w(n)||?, so the approximation gets progressively better through
adaptation. Therefore, the weight update for NMEE is

L5 (ealn) = eali)]| TV Ceal)
w(n+ 1) = w(n) + 17—

(4.39)

Vsl | 'S ) —x()]

i=n—L

The Lagrange multiplier in LMS is just the error divided by the input
power estimated with the samples in the taps. Here Eq. (4.37) shows that the
situation for NMEE is more complex, because not only does the input power
appear in the denominator but also the information forces (the gradient of
the error). Due to this division by the information forces and input power, we
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can expect that the sensitivity to the input power and the kernel size will be
diminished in NMEE.

When the SIG(1) is utilized in Eq. (4.39) the stochastic update for the
NMEE algorithm becomes

(ca(n) — ea(n 1))V V(ea(n))
N T
(V¥ eatn)) (x(n) = x(n = 1))

(€a(n) = €a(n —1))(x(n) —x(n —1))
Ix(n) = x(n — 1)|

w(n+1) =wn) +1

=w(n)+n (4.40)

We see again (see Section 4.3) that the kernel disappears in this expression,
so there is no local weighting on the errors. Moreover, this is exactly the
normalized LMS update with the instantaneous input and error substituted
by the product of their increments, which was previously derived as the error-
whitening LMS [258].

To interpret the results for L > 1 we write the equations in component
form that generalize for a higher number of samples. For L = 2 and a one-tap
filter the update becomes

e+ 20| (5335) (amat0)] |60 )
1

crmsrconsan|(822) (2

w(n+1) =w(n)+n

where we are using the simplified index notation Ae(i) = e(n) —e(n — ). We
can observe that there is an error term in the numerator that is not affected
by the kernel, but the kernel does not cancel out completely, which suggests
that the effect of the kernel size exists but will be decreased with respect to
the MEE.

NMEE Dependence on Input Power

We consider a moving-average plant with transfer function given by
(order = 9)

H(z)=014+022"1 403272 +0422 405274+ 04275 +0.327¢
+0.2277+0.12785

The FIR adaptive filter is selected with equal order to the plant. A standard
method of comparing the performance in system identification is to plot the
weight error norm inasmuch as this is directly related to misadjustment [143].
In each case the power of the weight noise (averaged over 125 samples) was
plotted versus the number of iterations. The input to both the plant and the
adaptive filter is white Gaussian noise. In the first experiment, a unit power
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Fig. 4.8. (a) Average weight error power for MA(9) comparing the MEE (dashed
lines), NMEE (solid line), and NLMS for different input powers. (b) Average weight
error power for MA(9) with different kernel sizes, with white Gaussian input of
variance 10, eigenspread S = 550. (kernel sizes left to right dashed lines: 0.4, 0.7, 1,
1.3, 1.6, 0.1) (from [130]).

input is selected (1P), whereas in the second experiment the input is 10 x
power (10P). The kernel size using Silverman’s rule is o = 0.7.

In this perfect identification scenario, the filter exactly tracks the output
of the plant. Figure 4.8a shows the plot of the weight error norm for a moving
average model. We choose a large stepsize within the range of MEE stability.
For the unit input power case, both MEE and NMEE converge in 190 iter-
ations with basically the same misadjustment. To guarantee the stability of
MEE adaptation for 10 x input power, the stepsize is chosen 10 times smaller,
and it remains at the same value for NMEE. NMEE just takes 190 iterations to
converge as compared to MEE which takes nearly 700 iterations with practi-
cally the same misadjustment of 1.243 x 1078, We can therefore conclude that
the NMEE is insensitive to the input power, as expected. We also present in
Figure 4.8a the convergence of the NLMS for the same misadjustment, and
conclude that the NMEE is faster than the NLMS.

NMEE Dependence on Kernel Size and Speed

Selecting a proper kernel size is one important factor because it depends on
the error statistics and it influences the performance of the MEE algorithm.
The effect of kernel sizes on both MEE and NMEE is shown in Figure 4.8b,
where the weight error power curves with different kernel sizes are plotted
when the input data is white Gaussian with zero mean, 10 X unit variance and
with an eigenvalue spread ratio of S = 550. We observe that the performance
of MEE is sensitive to the kernel size and this sensitivity increases when the
eigenvalue spread of the input signal increases (not shown). However, NMEE
shows a much more uniform performance with different kernel sizes even when
the input has a large dynamic range. The misadjustment of NMEE in the
worst case is almost the same as that of MEE in the best case. Furthermore,
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the kernel size of 0.7 and 1 for MEE and NMEE, respectively, are found to
be optimal, giving the lowest misadjustment of 6.7 x 1071 and 8.2 x 10714
in the case when S =1 and 3.8 x 107® and 1.5 x 1072 when S = 550.

Another important aspect of these experiments is the different speed of
convergence between the MEE and the NMEE. Figure 4.8b clearly shows
that there are two sets of curves, one for each algorithm. But notice that the
misadjustment between the two algorithms is practically the same (8.2x 10714
versus 6.7 x 10710), therefore we conclude that the NMEE is substantially
faster than the MEE. However, the robustness to outliers of NMEE may be
compromised.

4.6 Fixed-Point MEE (MEE-FP)

Until now only first-order (gradient-based) algorithms for EEC were devel-
oped. In this section we present a fixed-point algorithm to solve the EEC
criterion as a continuation of the discussion in Section 3.5. As is well known,
fixed-point algorithms have second-order convergence to the optimal solution,
as the well-known recursive least square (RLS) algorithm of adaptive filtering
[143], and they do not have free parameters. However, the region of conver-
gence for the fixed-point updates must be determined and fast solutions are
not always available. To complement the analysis in that section we present
the algorithms for the Gaussian kernel in vector notation.

Given the criterion V(e) of Eq. (4.16), and without assuming any prior
knowledge about the location of its minimizing argument w,., we wish to devise
a procedure that starts from an initial guess for w, and then improves upon
it in a recursive manner until ultimately converging to w,. The stationary
point w obeys

AV (e) 1 A&
8—VVk wp=w* = W Z Z (ei — ej)Gg\/i(ei — ej)(xi — Xj) =0. (442)
i=1 j=1
The condition in Eq. (4.42) implies that at wi = w, an optimum exists
ie., e; =--- = en. Substituting e; — e; = 2; — 2z; — (x; — x;)Tw in Eq. (4.42)

yields directly
~1

N N
W = G,yale; — el — xilx; — xi]"
i=1 j=1
N N
Z Z Ggﬁ(ej — ei)[zj — ZiHXj — Xi] . (443)
i=1 j=1

Equation (4.43) looks very similar to the least square optimal solution (for
comparison we should substitute the input and desired response vectors by
their time increments, and apply a weighting to every term given by the
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Gaussian of the incremental errors). But in fact it is rather different, because
the error in Eq. (4.43) is still a function of the weights, and must be computed
iteratively from the current weights. Therefore Eq. (4.43) is in fact a recursive
algorithm normally called a fixed-point update. Let the weight vector wy at
iteration k be the estimate of the optimal solution. Then, the estimate of the
new weight vector at iteration k + 1 becomes

-1

k k
1
Wit = F(wi) = | 55— D> G, e — el —xillx; —xi)"

i=1 j=1

k k
1
%202 DD GLales — ez — zllx; —xi

i=1 j=1

= Ra(w) 'Pa(w), (4.44)

where Ra (wy,) and Pa (w,,) are the pairwise locally weighted incremental
autocorrelation matrix and cross-correlation vector of the input and desired
signals given by

k k
Ra(wh) = 555 D0 D Govales — )l — il —xil”  (4.45)

Pa(wi) = ﬁ >3 Goales — el — 2l —xi). (4.46)

This algorithm is called the fixed-point minimum error entropy (MEE-FP)
algorithm, which is analogous to the RLS update rule that tracks the Wiener
solution at every update.

It is important when applying a fixed-point solution to establish the re-
gion of convergence for the algorithm, using, for instance, the well-known
Banach—Caccioppoli contraction theorem [118]. We were able to prove the lo-
cal convergence of MEE-FP using a Taylor series expansion truncated at the
linear term for the gradient around the optimal weight vector [129]. For solu-
tions far away from the optimal solution, there is as yet no theoretical proof
of convergence. However, experimental results suggest that the algorithm can
be used in general conditions.

Recursive MEE-FP with Forgetting Factor

We now derive an online forgetting recursive estimator for the fixed-point
MEE. Investigating the structure of the estimator for the entropy weighted
incremental autocorrelation Ra (wy,) and the entropy weighted incremental
cross-correlation P (wy,) of the entropy in Eqs. (4.45) and (4.46), we obtain
a recursive formula to update their estimates when a new sample is acquired.
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When a new sample n arrives, Ra (wy,—1) and Pa (w,,_1) are modified with
the new input-output sample pair (X, z,) as

n—1)2 1=
Ra(wy,) = #RA(wn,l) + 5 Z G, zlen —ei)[xn — xi][x, — x;]7
=1
(4.47)
(n—1)2 1 =
PA(Wn) = 55 Pa(Wno1) + D G, slen — i)l — zil[xn — xi].
1=1

(4.48)

This exact recursion is useful for estimating the recursively weighted incre-
mental autocorrelation and cross-correlation of stationary signals, however,
it is time consuming (it increases with n) and not suitable for nonstation-
ary environments due to its increasing memory depth. Therefore, a forgetting
recursive estimator using the past L samples is necessary to overcome both
shortcomings. We define

Ra(w,) = (1 - MRa(wn_1) + % i G, zlen — €i)[xn — Xi][xn — x;|T
i=n—L
(4.49)
?A(Wn) = (1 — )\)ﬁA(Wn—l) + % z_: Ggﬁ(en — 61)[2’n — Zz][xn — XZ‘},
i=n—L
(4.50)

where the parameters A and L are called the forgetting factor and window
length. These free design parameters have an effect on the convergence prop-
erties of this recursive estimator and have to be established experimentally for
the application. The practical importance of this recursive estimator is that
it reduces the computational complexity from O(n?) in Eqs. (4.47) (4.48) to
O(L). Depending upon the size of the window, this can be a drastic reduction.
Overall, the recursive MEE-FP algorithm of Eq. (4.44) with the updates of
Egs. (4.49) and (4.50) is order O(M?3+ M?L). The O(M?L) term is due to the
evaluation of the contribution to the RE matrix and PE vector of the current
state (input and error). The O(M?3) term relates to the inversion of the RE
matrix.

Inversion Lemma for MEE-FP

The weight updates by Eq. (4.44) are costly both computationally and memo-
rywise. This is because it requires an inversion of an M x M coefficient matrix,
R (w,,) where M is the filter order, at all time instants. This matrix inver-
sion requires O(M?) operations. It is possible to obtain alternative algorithms
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based on the matrix inversion lemma [143]. First, convert the summation of
the rank-one update Eq. (4.49) to the following

— — A
Ra(w,) = (1 - MNRa(Wn_1) + ZHHT, (4.51)
where Il = [q,,_1,---,9,—1], q; = /G, z(en —€i)(Xn — X;). Then, apply
the matrix inversion lemma
(A+BCD) ' =A7' —A7'B(C7' +DA™'B)"'DA™! (4.52)

with A = (1 — M)Ra(w,_1), B = (\/D)I, C = I, and D = TI7.
We obtain a recursive inverse locally weighted incremental autocorrelation
(Ra(Wn-1)]7" = ®(wy)) as

B(w,) = ﬁé(wn_l) _ m@(wn_lm
(ILxL + WHT&)(Wn—l)H> i HT&’(Wn—l)- (4.53)

The matrix inversion included in Eq. (4.52) requires O (L3) operations. In
big-O notation, the complexity of the MEE-FP of Eq. (4.44) with the in-
version lemma update of Eqs. (4.51) through (4.53), has a computational
complexity of O(L? + M?L + ML?), where the matrix multiplications have
complexity O(M?L + ML?). For small windows this algorithm is preferred.
Comparing the recursive estimator for the autocorrelation matrix in the RLS
algorithms (e.g., weighted-RLS and extended-RLS [143]) with the MEE-FP
counterpart, we again verify the presence of an extra summation due to the
pairwise interactions. This term weights the input and desired responses by
the Gaussian of the difference in errors. If the errors are similar (remember
this similarity is controlled by the kernel size) and L = 1, the equation de-
faults to the RLS. This weighting becomes particularly useful for the impulse
noise case as we already discussed in Chapter 3.

In terms of computational complexity, whereas in the RLS the estimate of
the new autocorrelation is obtained from the current input vector, in the recur-
sive MEE-FP the estimation of the R matrix must account for the relation of
the current input and error with all previous inputs and corresponding errors.
In practice, however, to limit the computational complexity this estimation
is truncated to a window of the last L samples. Based on this observation it
is natural to expect an increase in the computational complexity of the error
entropy-based algorithms such as MEE-FP, unless L = 1.

Comparing the two MEE-FP updates, consider first the situation that M
(filter order) is significantly smaller than L (window length). In this case the
first form of the algorithm is simpler, and the computational complexity sim-
plifies to O(M~2L) because this is the dominant term. Conversely, if L is
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significantly smaller than M then the second form of the recursion is more
computationally efficient. Similarly, the O(M ~2L) term dominates the com-
putational complexity. Consequently, for a given value of M, in either case
the complexity is higher than that of RLS by a linear factor of L. This factor
is the result of the need for an additional summation in the estimation of
the information potential and, in this sense, it is not at all an unreasonable
increase. For the extreme case L = 1, RLS and recursive MEE-FP have the
same computational complexity of (O(M?)).

Effect of Eigenvalue Spread on MEE-FP

In the system identification scenario, both the unknown system and the adap-
tive system have the same structure. The measurement noise is white Gaussian
distributed with zero mean and variance 10~% and is added to the system out-
put. The effect of the eigenvalue spread on both MEE and fixed-point MEE
depicted in Figure 4.9 shows the results in the case of colored Gaussian input,
whose variance is 30 and a eigenvalue spread ratio (5) is 10.

In order to compare the two algorithms, we find the stepsize for the MEE
algorithm and the forgetting factor for the fixed-point MEE algorithm to be
such that they produce the same misadjustment (around 107°). For both
algorithms, the kernel size (o) is set to 0.707 and the window length L is set
to 100. Also, we fix two initial weight vectors to wo = [—1,2]7 and [1,0]7.

The important aspect of these experiments is the different speed and direc-
tion of convergence between the MEE and Fixed-Point MEE. From Figure 4.9,
we can observe that the fixed-point MEE converges much faster than the MEE
algorithm. Figure 4.9b) clearly shows that the weight track of MEE moves
along the gradient direction, whereas the fixed-point MEE travels in a direct
path to the optimal solution. Therefore, as expected the eigenvalue spread
does not affect the speed and direction in the fixed-point MEE algorithm
unlike MEE.

One important property experimentally verified is that the FP-MEE still
converges well with small windows, in particular L = 1 (Figure 4.10).
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Fig. 4.9. (a) Average weight error power (b) Weight track on contour of IP surface.
Input correlation matrix eigenvalue spread of S = 10. (from [131]).
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Fig. 4.10. RLS and FP-MEE convergence for two window sizes L = 1, L = 100 and
S = 10. (from [131]).

Figure 4.10 shows the comparison of RLS and FP-MEE (forgetting factor
of 0.9 in both) for the two weight system identification problem, and we can
observe that although there is a slight increase in misadjustment for L = 1,
the convergence of the FP-MEE for L = 1 is very close to the case L = 100 and
better than RLS. The misadjustment of the MEE-FP (L = 1) is comparable
to the RLS, and the misadjustment of the MEE-FP (L = 100) is smaller.
For this case, both implementations of MEE-FP are faster than the RLS,
perhaps due to the error weighting, but it is unclear if this a general feature
of MEE-FP.

4.7 Fast Gauss Transform in MEE Adaptation

We have covered two ways to decrease the computational complexity of MEE
algorithms: by approximating the IP computation recursively (MEE-RIP)
and stochastically (MEE-SIG) which decrease the complexity to O(MN) and
O(N), respectively. But the SIG slows down training somewhat due to the
noise in the estimate, whereas the RIP is useful in online training of MEE.
Here we use the FGT as a means of decreasing the computational complexity
of MEE.

The fast Gauss transform (FGT) algorithms presented in Section 2.9 can
be applied readily to the MEE algorithm. Suppose that the adaptive system
is an FIR structure with a weight vector w. The error samples are e;, =
2k — ngk, where zj, is the desired response, and xj, is the input vector. For
convenience we copy below the MEE gradient equation
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. 1 N N
VV(@) = W ZZGUﬁ(ej - ei)(ej - ei)(X]‘ - Xi). (454)

j=11i=1

The FGT with Hermite interpolation can be readily applied to Eq. (4.54)
yielding

R Rl (s

o ' ”“( 20 > 2;)}

where VC,, (B) is defined by
Ve, (B) =L S (eoe) (-3} (4.56)
" ~nl " 20 20 )" '
e;€EB
The FGT with Taylor series expansion is similar and presented in Eq. (4.57)
SIS [ (el (e
X .
20N2\/_ el 402 20
(ei —cp)” ei—cp )"
—9. — .
P ( 402 20
tn-e 7(61‘*03)2 « [&i=C¢B n <X2> (4.57)
P 402 20 20 '
where VC,, (B) is defined by

w5 5o (52)- (252)

e, €B
tn-ex (eizen)’) (ezes)" (ﬁ)
P 402 20 20/

Entropy Estimation with FGT

VVir(e)

xVC, (B) — C, (B)

(4.58)

We analyzed the accuracy of the FGT in the calculation of the IP for the
Gaussian and uniform distributions for two sample sizes (100 and 1000 sam-
ples) [131]. For a comparison between SIG and FGT we use p = L in all
our simulations. We fix the radius of the farthest-point clustering algorithm
at r = 0. As can be expected, the absolute error between the IP and the FGT
estimation decreases with the order p of the Hermite expansion to very small
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values, from 107 for p = 3 to 1072 for p = 20, whereas that of the SIG
fluctuates around 0.005 (100 samples) and 0.0001 (1000 samples). We can
conclude that from a strictly absolute error point of view, a FGT with order
p > 3 outperforms the SIG for all cases.

Recall that the Taylor expansion in the FGT saves computation in
high dimensions. This is only relevant for the multiple-input-multiple-output
(MIMO) case, and indeed we are able to show computational savings, but
also a decrease in accuracy when the number of outputs are more than three.
Again the results are presented in [131]. For the single-input-single-output
(SISO) or MISO cases the Hermite expansion is the preferred approach. How-
ever, for our ITL application, the accuracy of the IP is not the only objective.
Indeed, in ITL we train adaptive systems using gradient information, so the
smoothness of the cost function is perhaps even more important.

Adaptive Learning with FGT

We consider the system identification of a moving-average plant with a ninth
order transfer function given by

H(2)=01+022"' 4032724042734+ 052"* +0.427°40.327F
+0.227740.1278

using the minimization of the error entropy (zero achievable error). In each
case the power of the weight noise was plotted versus the number of epochs
performed. In this simulation, the inputs to both the plant and the adaptive
filter are also white Gaussian noise. We choose a proper kernel size by using
Silverman’s rule (o = 0.707) and fix the radius of the farthest point clustering
algorithm r = 0.5 x 0.

As can be observed in Figure 4.11a, all the adaptive methods of the in-
formation potential produce converging filters. However, the speed of conver-
gence and the weight error values of the final epoch are different. The fast
method using the Hermite expansion performs better in training the adap-
tive system as compared to the fast method using the Taylor expansion. The
method expanded into a Hermite function with second order has a better
performance when compared with that of the tenth order expansion in the
Taylor series. The Hermite expansion method with a tenth order expansion is
virtually identical to the value of the direct method.

Figure 4.11b shows the plot of the number of clusters during adaptation.
Because the error is decreasing at each epoch, the number of clusters gets
progressively smaller. In this case, where the achievable error is zero, the
number reduces to one cluster after adaptation. The Taylor expansion method
with second and tenth order defaults to one cluster after 12 and 10 epochs,
respectively, whereas the Hermite expansion method with second and tenth
achieves one cluster after 5 epochs.

We have also shown [131] that the fast method using the Taylor expansion,
although worse than the Hermite expansion, provides converging filters in
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Fig. 4.11. (a) Comparison of the direct method and the fast methods (Hermite
and Taylor expansion) for system identification with the white uniform noise using
N (= 2500) samples. (b) Plot of the number of clusters during adaptation in system
identification. (from [131]).

high dimensions with a small penalty in converging speed (not shown here).
Therefore, our recommendation is to use the Hermite approximation for small
dimensionality outputs (< 3), and the Taylor method in higher dimensions.

4.8 Incomplete Cholesky Decomposition for MEE

A first analysis of the gradient equation for the MEE (Eq. (3.16)) shows that
the kernels are multiplied by products of incremental errors and incremental
inputs, which in a matrix implementation destroys the Toeplitz structure re-
quired to apply the incomplete Cholesky decomposition [116]. However, we can
still apply this technique if we rewrite Eq. (3.16) in a slightly different form. In
fact, note that the Hadamard product of two matrices C and A = ab”, where
a and b are column vectors, can be written as CoA = diag(a)Cdiag(b) where
diag(a) is a diagonal matrix with the entries of the a vector in the diagonal.
With this notation Eq. (3.16) can be rewritten as

ViV (n) 17(K o AE 0 AX®)1, (4.59)

T 2N2g2
where matrix K has entries K;; = G(e(n —1) — e(n — j)) and the matrix AE
entries AE;; = e(n — 1) — e(n — j), as well as AX® with entries AXi(jk) =
wp(n — i) — zx(n — j). We can further decompose AE = el? — 1e” and

AX ) = x,17 — 1xF. If we apply the identity for the Hadamard product of
matrices above in Eq. (4.59), we get

ViVi(n) = ﬁlT(diag(xk)(diag(e)K — Kdiag(e))

—(diag(e)K — Kdiag(e))diag(xx))1
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Fig. 4.12. Computation time for the adaptive filter based on the minimum error
entropy criterion. Averages are taken from 15 trials of the computation time of the
low rank approximation.

Now if the incomplete Cholesky decomposition is applied to K ~ I'TT, we
obtain

ViVi(n) eTTITx; — (e o x) ' TTT)1. (4.60)

b er
Equation (4.60) can be computed in O(Np), where p is the number of columns
of T, instead of O(N?), so the savings are substantial.

We tested the incomplete Cholesky decomposition (ICD) in the adapta-
tion of the same filter as in Section 4.7. Figure 4.12 depicts the behavior of
the computation time for different accuracy levels in the ICD. Each trial uses
4000 samples for training and the estimates of the IP gradient are computed
using batches of 200 points. Training always converges to the same zero er-
ror solution. It is remarkable that even for very strict levels of accuracy the
computation time remains about 100 times lower than direct computation.
The main reason behind this phenomenon is due to the shrinkage of the er-
ror. Each step decreases the entropy of the error distribution resulting in a
low-rank Gram matrix that can be efficiently computed by ICD.

4.9 Linear Filter Adaptation with MSE, MEE and MCC

We have been applying in this chapter the EEC to linear adaptive filters with
no noise in the desired response, and the reader may be induced to think that
we suggest such an application instead of the more traditional mean square
error cost function. This is not the general case, and our only motivation has
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been to apply the MEE to the simplest filter topology where adaption is well
understood. The true advantage of the EEC (and ECC) over MSE is when the
error distribution is non-Gaussian, which occurs in basically two scenarios: the
filter topology is nonlinear or the noise in the desired signal (or the desired
signal itself) is non-Gaussian. The former is the object of the next chapter
and the latter is exemplified in this section.

We will also include the MCC algorithm in our comparisons because of
its close relation with the MEE, and the simpler computational complexity
which is linear with the data samples per weight as the LMS algorithm. In
fact, Eq. (3.36) presents the ECC and adapting this equation to the Gaussian
kernel and the online cost function of adaptive filtering we obtain the MCC
cost function as

1 ~ PPN
Jn) = —— o~ (2()—y()*/20 4.61
0=y X (461)

for a window size of L samples and where z is the desired signal and y the filter
output. Taking the gradient of J(n) with respect to the filter weight vector
w, and using the gradient ascent approach for each weight wy, wg(n+1) =
wi(n) + nViJ(n) we obtain the MCC steepest gradient ascent update for-
mula as

n

_ n —e(i)2/20'2 . .
wg(n+1) =wg(n)+ g e e(?)xr(1). 4.62
k( ) k( ) NG ) i ( ) k( ) ( )

Notice that the stochastic gradient approximation to Eq. (4.62), the SIG(1)
only uses the current sample because there is only one element in the sum,
yielding

wi(n +1) = wy(n) + %Ga(e(n))e(n)xk(n) (4.63)

which is the MCC-SIG(1) algorithm with the same complexity as the LMS
algorithm. However, now the product error and input are weighted by a non-
linear function of the error for Gaussian kernels, so there is an extra control of
the weight update using the ECC when compared with MSE. Therefore the
ECC cost function yields a stochastic weight update of the same complexity
of the LMS, and with some of the properties of the MEE as demonstrated in
Chapter 3.

System Identification in Non-Gaussian Noise Environments

A system identification problem involves determining the coefficients of an un-
known plant, by studying its response to a white input signal. The unknown
plant is modeled by the adaptive filter in such a way that for the same input,
the difference between the outputs of the plant and the filter is minimized.
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This adaptation is complicated by the presence of measurement noise which
gets added to the output of the plant. A practical extension of the system
identification problem is when the transfer function of the plant is changing
with time and is required to be tracked by the adaptive filter. For this simu-
lation [302], the input to the plant and the adaptive filter is a white Gaussian
signal with zero-mean and unit variance. The coefficients of the plant are again
chosen as
w* =10.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1] .

We intend to compare the three cost functions in the presence of an impulsive
observation noise, which can be simulated using a mixture of Gaussians:

0.95G(0,10™%) 4 0.05G(0, 10),

where G(m, o) is the Normal distribution with mean m and standard de-
viation o. Clearly, in this density, the Gaussian distribution with variance
10 creates strong outliers. The kernel sizes for the MCC and the MEE algo-
rithms are set to 2 for this case. The stepsizes for the three update rules are
chosen such that when the observation noise is Gaussian, their performance
is similar in terms of the weight SNR defined as,

W*T

(w* — W(n))Tsz:* - W(n))> '

When adaptation is done in the presence of impulsive noise, we can
see a significant difference in performance (Figure 4.13). Whenever a high-
amplitude outlier is encountered in the desired signal it is transmitted to the

WSNR = 10log (
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Fig. 4.13. Weight SNR of MSE, MEE, and MCC in impulsive measurements
(from [302]).
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Fig. 4.14. Weight SNR of LMS, MEE, and MCC while tracking a time-varying
system in the presence of impulsive measurement noise (from [302]).

error and the LMS weight update rule is forced to make a large increment,
which takes the weights away from the true values. The overall effect of several
such outliers is that the weights keep jittering around the optimal values, and
exhibit noisy weight tracks.

This can be seen from the weight SNR (WSNR) plots in Figure 4.13. The
MCC weight tracks are more robust in such situations. Referring back to the
MCC update rule, Eq. (4.62), the exponential function of the error provides
the attenuation when high-amplitude outliers are encountered, keeping the
overall weight track close to the optimal. The MEE criterion also exhibits
similar characteristics in the presence of impulsive noise for a similar reason
(see Eq. (4.15)).

We now simulate a time-varying plant transfer function where the coeffi-
cients are changing as follows,

w*(n) =2 (1 + L) u(1000 — n)w™ + <71 o

1000 1000
where u(n) is the unit step function. Figure 4.14 shows the results of tracking
the above plant weights. The performance of the MCC algorithm is better in
this case. As compared to the MEE algorithm, it is able to track the weights

better as can be seen from the portion of the curves just after the discontinuity
(n = 1000).

) u(n — 1000)w™,

Adaptive Noise Cancellation of Speech Signals

An important application of adaptive filters is in acoustic noise cancellation.
Given a desired signal (speech, music, etc.) corrupted by ambient noise, an
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adaptive filter tries to replicate this noise by exactly modeling the acoustic
transfer function between the noise source and the signal. In practical scenar-
ios, both the noise and the acoustic transfer function may be nonstationary.

Figure 4.15 shows the configuration of a noise cancellation system. The
difference between the desired signal z and the output of the filter y is in fact
the noise-free signal (cleaned speech), which is a non-Gaussian signal (positive
kurtosis, also called super-Gaussian). We have tried to simulate real-life condi-
tions as closely as possible [302]. The speech signal is shown in Figure 4.16a.
The noise signal is that of a vacuum cleaner collected in a room, and it is
nonstationary as can be seen in Figure 4.16b. The acoustic transfer function
is that of a typical closed room environment. We use a 200-tap filter to model
the acoustic path.

Speech

: X | Acoustic Transfer
Noise o Function

/

X Adaptive Filter
w

J Criterion or Cost
function

Learning algorithm |

Fig. 4.15. An acoustic noise cancellation configuration.

Fig. 4.16. (a) Speech recording and (b) vacuum cleaner noise.
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Fig. 4.17. Weight tracks for one of the filter weights. The convergence time for all
the methods has been kept the same. The LMS procedure is much less stable at
steady state in such conditions.

The parameters of the weight update equations were chosen to have a high
rate of convergence, and in all three cases were set to be the same. The MCC
algorithm was found to be quite robust in the presence of sudden and irregular
“bursts” that appear in the voiced portions of speech. Figure 4.17 shows the
weight tracks of one of the filter weights.

For the same convergence rate, the MSE cost function produced a much
higher misadjustment at steady state. This is because of the highly impulsive
nature of the speech signal. The sudden, high-amplitude “bursts” that occur
in speech signals can easily disturb the LMS weight track. However, corren-
tropy, being a localized similarity measure, places exponentially decreasing
weights on samples that are distant and impulsive. Therefore, the overall
weight tracks of filters trained with MCC are much less affected by such types
of nonstationarities in the signal.

Figure 4.18 shows the signal-to-noise ratio between the original speech sig-
nal and the cleaned signal (after averaging over a moving window of 10,000
samples, for visual clarity). There is a substantial improvement in the SNR
as obtained by MEE when compared with the MSE criterion. The MCC SNR
is also much better than LMS but slightly worse than MEE, but it is im-
portant to remember that the MCC results are obtained at a much simpler
computational complexity as compared to the MEE filter.

Echo return loss enhancement (ERLE) is a commonly used measure of
performance for echo cancellers. It measures the amount of noise (or echo)
power that has been removed from the desired signal by subtracting the output
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Fig. 4.18. SNR (smoothed over a running window of 10,000 samples) obtained after
noise cancellation with LMS, MCC, and MEE cost functions.

of the adaptive filter. It is a ratio of the power of the desired signal and the
error, expressed in decibels:

Figure 4.19 shows the ERLE values of the three techniques, after smooth-
ing using a running window of 10,000 samples, for visual inspection. Clearly,
the MEE and MCC algorithms are able to remove more noise power from the
desired signal, as compared to the LMS.

From these preliminary tests we can say that for real-world applications
requiring low computational complexity such as for portable devices, the MCC
is a very strong contender. Of course the kernel size must be determined from
the data, unless the adaptive kernel size algorithm of Section 3.7 is used. In
this case no extra parameters when compared with the conventional LMS are
required, but the adaptation of ¢ is O(N).

E[2?]

2

Ele?]

(3

ERLE(dB) = 10 log (

4.10 Conclusion

This chapter explained in great detail a set of algorithms for the error entropy
criterion called minimum error entropy that can be applied to both adaptive
filters or in regression. Conceptually EEC is a more powerful cost function
because it deals directly with the PDF of the error. During adaptation the
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Fig. 4.19. ERLE values (smoothed over a running window of 10,000 samples)
obtained after noise cancellation with LMS, MCC, and MEE cost functions.

PDF of the error changes, therefore the weights of the filter control the shape
of the PDF.

The use of linear FIR of small order was dictated by easy visualization of
the solution. In fact, we do not recommend the use of EEC with FIR filters
when signals are stationary in noise free environments, which normally leads
to Gaussian residuals (recall that the FIR adds random variables, so the filter
output tends to be Gaussian). But again the linear FIR case is the simplest
of the architectures so insights of how EEC works in nonlinear systems can
be inferred from this chapter.

We have presented several different adaptation algorithms for the EEC
that parallel most of the gradient descent methods (and RLS) for MSE. Some
of the MEE algorithms (MEE-RIP, MEE-SIG) attempt to decrease the com-
putation of the gradient (i.e., O(N?) if nothing is done). We propose a re-
cursive estimation of the IP and a stochastic approximation that drop the
computation to O(L), where L is the number of samples in the window used
to estimate the IP. We also addressed the difficulty of searching the EEC using
the MEE-SAS (self-adjusting stepsize) that speeds up the adaptation consid-
erably because it has a fourth order convergence in a large portion of the
space (very similar to the LMF algorithm). There is also an NMEE algorithm
that alleviates the problem of large swings in the amplitude power, and also
reduces the dependency of the kernel size in the search. We also presented
a second-order search method for the MEE based on a fixed-point update,
which is insensitive to eigenvalue spread, but is more computationally costly.
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Finally, we applied the fast Gauss transform approximation to the train-
ing of MEE, and found out that small order expansions (p < 10) and few
clusters are sufficient to create an accurate search of the EEC performance
surface, and they considerably decrease the computational complexity. The
Taylor series expansion should be used in higher dimensions for efficiency in
the calculations, but it is less accurate. Regarding the incomplete Cholesky
decomposition explained in Chapter 2 as an alternative to speed up compu-
tation, we show how it can still be applied to gradient computation in block
form (i.e., for the batch mode algorithms). The ICD has advantages because
it is a well known matrix manipulation so it is simpler to apply than the
FGT. It is also able to decrease the computational accuracy product 100-
fold, effectively yielding O(N) algorithms, which means that it is a practical
methodology when simulating or implementing EEC solutions using the IP
estimator. Therefore, we consider that a sufficiently rich set of algorithms ex-
ists to apply EEC in practical applications. However, not all is known about
this new cost function. The selection of the kernel size is still an open problem
(minimized by the NMEE), as well as the determination of the learning rate.
They both need further research and it may be possible to derive an adaptive
kernel size algorithm (see [302] for some preliminary results).

The chapter ends with a comparison among the MSE, EEC, and ECC cost
functions under the linear model to illustrate the fact that even in the simple
scenario of linear models there are advantages of using the MEE and MCC
algorithms over LMS when the noise is non-Gaussian or when the signals of
interest are non Gaussian as in the case of acoustic noise cancellation. The
MCC has a great advantage with respect to the MEE in terms of computa-
tional complexity, because a single sum is necessary to evaluate the cost. In
practical problems, the MCC has performance very close to the MEE, there-
fore its applicability in low-power, portable DSP processors may be preferable
to MEE. Although not yet fully studied, the class of error entropy and error
correntropy cost functions may provide faster convergence for the same mis-
adjustment because the cost functions are not constant curvature as is the
MSE cost. The issue is how to choose the operating point to achieve faster
convergence as initiated in the MEE-SAS approach.
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Nonlinear Adaptive Filtering with MEE,
MCC, and Applications

Deniz Erdogmus, Rodney Morejon, and Weifeng Liu

5.1 Introduction

Our emphasis on the linear model in Chapter 4 was only motivated by
simplicity and pedagogy. As we have demonstrated in the simple case studies,
under the linearity and Gaussianity conditions, the final solution of the MEE
algorithms was basically equivalent to the solution obtained with the LMS.
Because the LMS algorithm is computationally simpler and better understood,
there is really no advantage to use MEE in such cases.

The primary domain where the EEC criterion will likely provide advan-
tages with respect to MSE is when the cost function works on a random vari-
able that is not Gaussian distributed. The case where the observation noise
added to the desired response, or the desired response itself is non—Gaussian,
was already exemplified in Chapter 4 with speech echo noise cancellation (the
speech becomes the error). Here we study the nonlinear systems case, where
even if the input—desired response pairs are Gaussian distributed random vari-
ables the error is likely not Gaussian distributed due to system nonlinearities.
These are two already identified conditions where the EEC may provide su-
perior performance, but others may still be discovered due to the differences
in the EEC, ECC and MSE cost functions.

We show that the MEE algorithms can be easily extended to nonlinear
adaptive filtering by integrating the error entropy cost function with the back-
propagation algorithm (BP) of neural network theory [253]. In as much as for
nonlinear systems the cost functions become nonconvex, it is important to go
beyond the conventional gradient descent procedure explained in Chapter 4.
We address the modifications made to advanced search procedures when ITL
cost functions are utilized. Finally, this chapter also covers several important
applications of information filtering to engineering applications to illustrate
the gains and the important parameters that need to be controlled to achieve
operational performances close to the optimum EEC can provide.

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 181
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2_5,
(© Springer Science+Business Media, LLC 2010
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Nonlinear Adaptive Filtering with Error Entropy Criterion

Neural networks are an important engineering tool in nonlinear signal process-
ing, therefore this chapter addresses the application of the EEC and its MEE
algorithm to neural networks. The fundamental question is: what changes in
the large body of neural network training methods when the MSE is sub-
stituted by the EEC? The answer is rather simple. If we carefully examine
together the gradient equations for the MSE and EEC (Egs. (1.33) and (3.15))
using the chain rule across the system topology we see that the effect of the
EEC appears encapsulated in the partial derivative of the cost with respect
to the error (0.J/0e), which means that when we switch between MSE and
EEC this is the only part of the gradient computation that changes. The other
aspect that must be noticed in Eq. (3.15) is that the MEE algorithm works
with pairs of samples; that is, the gradient is no longer local in time, but it
can still be written compactly as differences in gradients. The propagation of
the sensitivities throughout the topology (de/0w) is computed from the par-
tial derivative of the error with respect to the system parameters. Therefore,
when a nonlinear topology is selected instead of a linear one, the propagation
of sensitivities is where most changes occur, which is a topic well treated in
the theory of neural network training [253]. We can thus expect that the MEE
algorithm can be easily integrated in neural network training. Let us basically
explain the procedure with the simplest nonlinear topology of Figure 5.1 which
is called a focused time delay neural network (TDNN) with a single layer and
one single processing element (PE) for simplicity.

In the figure ¢(.) is a static differentiable nonlinearity, normally a sigmoid
[253]. The sensitivity of the cost J at time n with respect to the weight wy
can be computed using the ordered derivative over the topology, to read

0J  9J 0Oe(n) Onet(n)
Owy  Oe(n) Onet(n) Owy

(5.1)

x(n)

z(n)

‘p(net)] o e

net (n)=>;wx(n—i)

WM-1
x(n-M+1)

Fig. 5.1. A simple TDNN network.
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Notice that when compared with Eq. (1.33) we now have a third partial
derivative (the middle term) in the chain rule applied to the topology that
relates the error and the argument of the nonlinearity which we called net(n).
If we use the MSE cost, Eq. (5.1) immediately gives

0T _aB(e(m)y (met(n)zi () (5:2)

awk

where ¢'(net) stands for the derivative of the nonlinearity evaluated at the
operating point net(n). We just rederived the delta rule of neural network
learning [253].

In the case of the MEE procedure, recall that V(E) = 1/N? Zf\il Zjvzl
k(e(i) — e(4)), with an arbitrary kernel K, so the counterpart of Eq. (5.1) is

OV (En) _ 1 som On(e(n — i) — e(n — j)) d(e(n — i) — e(n — 5))
Owy, N2 P j—l dle(n—1i)—e(n—7j)) Owy,
B e(n—1) —e(n—j))
_N2;; (n—1) —e(n—7j))
Oe(n —1i) Onet(n —1) Ode(n —j) Onet(n —j)
<8net(n —i)  Owy  Onet(n—j) Oy ) - (5:3)

The big difference is simply in the use of pairs of samples, which means that
the gradient has to be computed for each sample in the pair, over all pairs.
When evaluated with Gaussian kernels Eq. (5.3) yields the batch gradient
estimate for the MEE delta-rule

N N N
W) ez D23 Caleln — i) — eln— ) (eln — i) — eln )

ow
k i=1j=1

(¢ (net(n — i)k (n — i) — @' (net(n — jzr(n - j)), (5.4)

where ¢ is the derivative of the PE nonlinearity. The interpretation of in-
formation force given in Chapters 2 and 3 about the first component of the
gradient in Eq. (5.3) still applies here, but now notice that the derivative of
the nonlinearity evaluated at the operating point is weighting the informa-
tion force (just as it was modulating the error in the MSE cost function).
Of course the nonlinear topology we utilized is very simple, but the principle
can be easily generalized for topologies with hidden processing elements and
the general procedure is called the backpropagation algorithm [277,331].

5.2 Backpropagation of Information Forces
in MLP Training

In this section, we derive the backpropagation algorithm for a multilayer
perceptron (MLP) trained under the MEE algorithm, which is called the
MEE-BP, that is the adaptation of the MLP weights using a cost function of
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the form of Eq. (3.12). This extended algorithm backpropagates the informa-
tion forces between the error samples in the output error space through the
layers of the MLP instead of the error in the standard MSE criterion case.
For simplicity, consider the unweighted total potential of the error samples as
the cost function. Assume that for multi output situations, we simply sum the
potentials of the error signals from each output (as explained in Section 4.1).

Consider an MLP that has L layers with m; PEs in the Ith layer. We
denote the input vector with layer index 0. Let wéi be the weight connecting

the ith PE of layer [ — 1 to the jth PE in the lth layer. Let V]l(s) be the in-
formation potential of the jth PE at the Ith layer corresponding to the input
sample z(s), where s is the sample index. Assume further that we have my,
output PEs. Let ¢(.) be the sigmoid nonlinearity of the MLP, the same for all
PEs, including the output layer. Assume we have N training samples. The in-
formation potential of the system of error samples, given by {e(1),...,e(N)},
is then

N N mp N
V=330 Viers) —en(®) 2D Y as.t). (5.5)
s=1 t=1 k=1 s=1 t=1

The derivation of the backpropagation of information forces algorithm fol-
lows along similar lines to those of the conventional error backpropagation
algorithm [253]. The total information potential of the output errors summed
over the output PEs, for a given sample pair (s, t) is defined as

V(ex(s) — ex(t)). (5.6)

For this MLP, the output y of the kth PE before and after the nonlinearity
of the [th layer is respectively given by

mp—1

nety = Y wiy ' gk = p(nety). (5.7)
=0

Taking the derivative of (s, t) with respect to the output layer weights, we
obtain Eq. (5.8), where ¢'(.) is the derivative of the MLP’s sigmoid function
and C!(.,.) are the sensitivities of the local information potentials in the net-
work that depend on the information forces between the indicated samples,
which will be denoted by F(s,t) = V'(e(s) — e(t)).

= V'(e(s) = e(t) - [~/ (neti ())y; (s) + ¢ (neti())y; " (1))

= V'(e(s) — e(t)¢' (net (0)y; (1) = V' (e(s) = e(t)) (net (s)y; " (s)
Ch(t )y (1) + Gi(s, )y~ (s). (5:8)
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For the hidden layer [ —1, and for arbitrary weight wj; we can write, similarly,

de(s) ayé-_l(s) anetg-_l(s)
Oe(s,t) 0y§_1(s) 5netl_1(s) 8w§,i_1
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2 Nt )2 () + ¢ (s, )yl (s). (5.9)

The sensitivities of the other hidden layers (if there are more than two)
can be computed using the same idea, resulting in similar equations. This
derivation and the main points of the algorithm can be summarized as follows.
In the algorithm below, n is the learning rate.

MEE-BP Summary. Let the information force acting on sample s due to the
potential field of sample ¢t be F(e;(s),e;(t)) = V'(e;(s) — e;(t)) in the jth
output node of the MLP. These interactions minimize the IP in Eq. (5.5).

1. Evaluate local gradients for the output layer for s, ¢t = 1,..., N and
7 =1,...,my using
Gs,1) = Flej(s),¢5(t)) - &' (netl(s))
G5t 5) = —F(ej(s), ¢;(t)) - ¢’ (netj(1)). (5.10)
2. For layer index [ = L, ..., 1 (decreasing index) evaluate the local gradients

C]lfl(s,t) netl o ch (s,t) wkj

C]lfl(t,s) netl o ng t,s w,ﬂ (5.11)

3. Once all the sensitivities ¢ are computed, update the weight (for gradient
descent) by

Awly = =1 (G5, )y () + G, 9)yi ' (1)) - (5.12)
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Information potential cost functions in general are insensitive to the mean
position of the desired response, therefore, in applications where the mean of
the samples is also desired to be zero (i.e. supervised training), an external
force acting on all the particles to draw them towards the zero value must be
introduced. Since forces are additive, the information force of the last layer
sensitivities in Eq. (5.9) must be the superposition of the information force
produce by the cost and the external force acting on that sample. Practically,
the introduction of a bias at the output processing element set by the mean of
the desired response implements this goal, as already discussed in Chapter 3.

5.3 Advanced Search Methods for Nonlinear Systems

When adapting nonlinear systems, very often the gradient descent procedure
is not the most recommended due to the flat spots and even local minima of
the performance surfaces created by the nonlinear topologies. There is a very
large class of methods to speed up learning by changing the stepsize adaptively,
or even using second—order search procedures that exploit information of the
curvature of the performance surface [285]. All these algorithms have been
developed with MSE cost functions in mind, so it is important to see how
these advanced search methods can be extended to the EEC and other ITL
cost functions. The general problem of parameter optimization has been the
focus of much research and has motivated the development of many advanced
techniques for parameter search [38]. Several of these advanced search methods
are briefly described below in anticipation of their application in EEC training
or in more general terms with ITL cost functions.

Gradient Descent with Momentum

The addition of a momentum term to gradient descent (GD) serves as a low—
pass filter for parameter adaptation. This allows parameter adaptation to
avoid shallow local minima in the performance surface. Adaptation is taken
in the direction of a weighted sum of the current GD direction and the last
step taken as,

Awy = (1 — @) (—nVid) + aAwy_1, (5.13)

where « is the momentum constant. Clearly, the momentum constant deter-
mines how much credence is given to the historical trend versus the current
estimate. Another useful method that combines GD with the adaptive learn-
ing rate and momentum (GDX) is studied as well.

Resilient Backpropagation

Resilient backpropagation (RP) was introduced to help eliminate some of the
problems encountered when training neural networks containing saturating
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nonlinearities using GD methods [267]. RP uses the sign of the gradient, rather
than the actual gradient to determine the direction of the weight change. This
helps to improve the slow learning caused by the near-zero gradients in the
saturated regions of the nonlinear processing elements. The magnitudes of
the weight changes are adapted according to the direction of the most recent
epochs as follows: (1) if a weight change is in the same direction for the last two
epochs, the magnitude of the change is increased; (2) if the update direction
is different, the magnitude of change is decreased. The update rule for RP is
given as

Aww(k) = —sign(VJij (k‘))?“z] (k‘), (514)

where the magnitude, r;;(k), is adapted as

bT‘Z‘j(kﬁ — 1) if VJZ](]C) * VJU(]C — 1) <0 where b<1.
(5.15)
RP has proven to be a robust algorithm in as much as its adaptation is

governed more by the ongoing adaptive behavior of the weights than the
shape of the performance surface.

n { arij(k—1) if VJi(k)*VJi;(k—1)>0 where a>1
Tij =

Conjugate Gradient Algorithms

Conjugate gradient algorithms were developed in order to select a more ef-
ficient search direction than the standard GD approach. These algorithms
begin with a steepest descent step and then choose conjugate directions for
adaptation rather than steepest descent. For quadratic performance surfaces,
conjugate directions form a complete basis in the parameter space and gen-
erally provide much faster convergence than GD directions [285]. Most con-
jugate gradient methods determine the change magnitude using a line search
technique. The basic update for conjugate gradient methods is

Awk = Ozkdk (516)
d, = —VJ. + Grdi_1, (5.17)

where «y, is determined using a line search ay = miny J(wy + Ady), dj repre-
sents the conjugate search direction, and 3y determines the method by which
the next conjugate direction is chosen. The Fletcher-Reeves (CGF) method
chooses the direction by

VIi v
By = =k Tl (5.18)
Vkalek_l
whereas the Polak-Ribiere (CGP) updates the direction with,
_ T
B = (Vg1 — VIg_2) VJk. (5.19)

VI, VI
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For all conjugate gradient algorithms, the search direction is periodically
reset to the negative of the gradient. Typically this is done when the number
of epochs equals the number of parameters to be optimized. The Powell-Beale
(CGB) uses a reset condition based on a measure of orthogonality. The CGB
method also computes the search direction from a linear combination of the
negative gradient, the previous search direction, and the last search direction
before the previous reset.

The scaled conjugate gradient (SCG) method was developed to eliminate
the computationally expensive line search from the conjugate gradient ap-
proach [221]. The method takes advantage of computational savings when the
product of the Hessian and a vector are computed. However, the SCG is a
model-trust-region method and requires the addition of a scaling coefficient
A to govern the trust region. The basic update takes the form of Egs. (5.16)
and (5.17) with,

d{VvJ
ap = (5.20)
d; Hydy + Ax [|di||
VI{VI, - VIIVI,_
B = ~—k Yk B YOkl (5.21)

—d{_, VI,

where )\ is adjusted to ensure the validity of the model. All the conjugate
gradient methods assume a static performance surface to properly execute
the line search or to determine whether a performance improvement can be
realized in the case of SCG.

Newton’s Method

Newton’s method makes use of the second derivative information, via the
Hessian matrix (H), to arrive at the performance minimum in fewer steps.
The basic update for Newton’s method is given by

Aw = -H 'VJ. (5.22)

However, because the direct computation of the Hessian is computation-
ally expensive, quasi-Newton methods have been developed that iteratively
estimate the inverse of the Hessian at each epoch. One of the most successful
approaches is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-
Newton algorithm [285]. Quasi-Newton approaches determine the change di-
rection using the inverse Hessian estimate and the change magnitude using a
line search as follows,

Aw = —aH V], (5.23)

where « is determined using a line search. The BFGS method requires stor-
age of the inverse Hessian approximation, which may consume prohibitive
amounts of memory for large networks.
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The one-step secant (OSS) algorithm is a simplified quasi-Newton
approach that was developed to avoid the storage requirements for the
Hessian estimate [20]. The method assumes that for each epoch the previous
Hessian estimate was the identity matrix and uses the same update rule as
Eq. (5.23). Each of these methods assumes a static performance surface for
proper execution of their line searches.

Levenberg—Marquardt Algorithm

The Levenberg—Marquardt (LM) algorithm uses a model-trust-region tech-
nique specifically designed to minimize the mean square error (MSE) function.
The model assumes a locally linear network, which produces a parabolic error
surface [38]. Based on these assumptions, the algorithm estimates the Hessian
matrix and gradient as

H=J"J (5.24)
VI =J"e, (5.25)

where J is the Jacobian matrix and e is the vector of network errors com-
puted as the difference between the desired and current outputs. The method
adds a variable diagonal element p to the Hessian approximation in order to
compensate when the model-trust assumptions are not valid. The value of p
is decreased with each successful step and increased with each unsuccessful
step. As p approaches zero, the weight adaptation direction becomes that
of Newton’s method. For large pu, the direction becomes parallel to steepest
descent. The LM update rule is summarized by

Aw = — [JTJ + MI} g7, (5.26)

The LM algorithm assumes a static performance surface for divergence
measures and its efficiency is highly dependent upon the assumptions regard-
ing the error criterion.

Performance Assessment Index

Some of the above algorithms use a performance assessment index to decide
whether the new weight update should be kept or whether it should be dis-
carded while readjusting the parameters of the search routine. The simplest
test compares the current performance value to the previous performance as

Je+1 > Jg. (5.27)

If the test in Eq. (5.27) is false, it is considered positive for the goals of
learning and it is considered against the learning goal when true. However,
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in order to increase robustness for noise and shallow local minima, a small
amount of performance degradation is often allowed. A common implementa-
tion of this measure is the specification of a small maximum change percentage
in the performance. For MSE criteria this is typically implemented by allowing
a five percent degradation tolerance,

Jk+1/Jk > 1.05. (5.28)

If Eq. (5.28) evaluates to true, the performance is considered degraded
beyond the tolerable limit, the current update is discarded, and the search
parameters are adjusted to stabilize learning accordingly. If it evaluates as
false, adaptation is continued using either the current search parameters or
parameters adjusted to speed up learning.

5.4 ITL Advanced Search Algorithms

These algorithms have been developed and adapted to the MSE cost function,
therefore some of their assumptions may interfere with the peculiarities of
ITL algorithms. In general, application of the advanced parameter search
techniques described above to EEC and ITL in general (meaning entropy
and divergence costs) are straightforward, but care must be taken with the
specificities of the new costs for acceptable results. This section concludes
with a summary of how the various advanced training algorithms mentioned
above have been adapted for use with ITL [224].

Adaptive Kernel Size

Both entropy and divergence costs of ITL have a free parameter, the kernel
size, which is at the core of the learning process because adaptation is caused
by interactions between samples that are mediated by their spacing and the
kernel size. Research has demonstrated that allowing the kernel size to adapt
during training can lead to improved results as mentioned in Chapter 3. How-
ever, straight application of the adaptive kernel size in ITL can present prob-
lems for many of the advanced parameter search techniques. The cause of
the problems is that the kernel size controls the shape of the performance
surface. Figure 5.2 compares the performance surface for three different val-
ues of kernel size (62 = 0.001, 0.01, 0.1) for the frequency double example
presented next.

The figure illustrates that although the surfaces generally have similar
shapes and similar location of extrema within the weight-space, there are two
significant differences. First, as intuition suggests, the relative smoothness of
the performance surface increases with larger kernel size. Notice the shallow
local minima in the case when 62 = 0.001. Secondly, the value of the per-
formance function varies with the kernel size as illustrated by the different
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Fig. 5.2. Performance surface variation with kernel size (from [224]).

scales for the performance surface plots on the right. A changing kernel size
during adaptation creates what we call a dynamic performance surface, that
is, a performance surface that changes from iteration to iteration.

The impact of a dynamic performance surface on a search algorithm that
assumes a static surface can be disastrous, quickly leading to divergence and
instability. Some of the key search algorithms that are affected include line
searches and conjugate direction selection. In order to accommodate dynamic
performance surfaces, the kernel size is kept constant at its current value dur-
ing the execution of any sequence of search steps that require a performance
comparison or a line search execution. Once these steps have been complete
and the resulting set of weights is determined, kernel size adaptation is re-
sumed. For some algorithms, this requires re-evaluation of the performance
index so that it can be used in the next epoch as the basis for comparison.
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Although this implies an increased computational burden for each epoch, the
advantage of adapting the kernel size based on the new distribution of samples
is fully realized.

Information Potential Versus Entropy as Performance Cost

The use of the MSE criterion produces a nonnegative performance surface
where a zero value corresponds to zero error, or a perfect fit. The nature
of Renyi’s quadratic entropy estimator from Eq. (3.8) allows the entropy to
take on any real value. This characteristic can be difficult with some of the
performance assessment indices described above; that is, Eq. (5.28) no longer
works if both performance values are negative. Instead of trying to compensate
for this fact (see [224]), we strongly suggest the use of the information potential
V(E) (or V(0) — V(E) as in the MEE-SAS) as our cost function because
they are always positive and so the only difference with respect to MSE is
to remember that the goal of adaptation is to maximize V(E) (or minimize
V(0) - V(E)).

Relative Error Versus Absolute Squared-Error

Although the MSE criterion provides an absolute error measure, ITL criteria
provide only a relative measure of the error because the estimated entropy de-
pends upon the kernel size and it is blind to the mean of the error distribution.
The LM algorithm, designed specifically for the MSE criterion, uses the as-
sumption of a quadratic performance surface along with the absolute MSE to
determine both the direction and magnitude of weight change. This presents
two problems. First, the computation of the MSE criterion is typically built
into the LM algorithm implementations and requires a set of desired target
outputs to compute the absolute MSE. For ITL training, a desired target set
is not always available and even if it is available, it need not be the same
dimensionality as the output space as we show in Chapter 6. These difficulties
have been overcome by matching the mean of the model output to the desired
mean and substituting the ITL information forces of Eq. (5.3) for the error
term e in the gradient computation of the LM algorithm Eq. (5.26).
Although this approach now provides the correct search direction accord-
ing to the ITL criterion, it introduces a second problem. LM uses the absolute
error assumption to determine the magnitude of the stepsize; however, in ITL
the information forces only provide a relative measure of the error for each
output sample. This mismatch in assumptions can lead to improper stepsizes
during LM parameter adaptation as illustrated in Figure 5.3. The figure shows
the contours of an ITL performance surface for a simple two-parameter sys-
tem identification problem of an infinite impulse response (IIR) filter with
N = 40 samples. In addition, the weight tracks for three implementations of
LM-ITL algorithms are also shown. The first, labeled “LM”, is the weight
track for the implementation described above. Although the algorithm seems
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LM-ITL Algorithm Comparison
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Fig. 5.3. Levenberg-Marquardt ITL algorithms: weight tracks from the same ini-
tialization condition (from [224]).

to be pointing in the appropriate direction at each step, many epochs are
required for convergence compared to typical LM behavior due to an inap-
propriately small stepsize. To help alleviate this problem, two methods are
proposed.

The first method, illustrated in the figure as “LM-SC”, simply scales the
stepsize by scaling the ITL information forces in proportion to the number of
samples, N. This approach assumes that the ITL information forces provide
an average error that needs to be scaled in order to yield a larger magnitude
for larger numbers of samples. An ad hoc value for the scale factor of N/9
was determined empirically to be fairly robust. As is shown in the figure,
this approach takes larger steps than LM and arrives at the minimum in
fewer epochs. The second approach combines LM with a line search algorithm
(LM-LS) to determine the step magnitude. Although the line search adds
computational complexity per epoch, convergence happens in very few steps.
The update rule for this method is given by (« is determined using a line
search)

-1
Aw = —a [JTJ + MI} I e. (5.29)

The computational complexity of these three methods is compared in
Figure 5.4. Notice how the proposed methods converge more efficiently than
the basic LM method. This improved efficiency becomes more pronounced for
larger values of N.
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Training Efficiency Comparison
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Fig. 5.4. Levenberg-Marquardt ITL algorithms: training efficiency (from [224]).

Due to the importance of second-order methods in adapting neural net-
works, we present in Table 5.1 the outline for parameter adaptation based
on Levenberg—Marquardt with line search for ITL. In bold are the required
changes when the cost is ITL.

ITL Advanced Parameter Algorithm Summary

The sections above describe how to apply standard advanced parameter
search techniques to ITL. For each problem encountered, a viable solution
or workaround has been identified allowing ITL systems to be trained with
more advanced algorithms. Table 5.2 summarizes the algorithms that have
been applied to ITL along with the associated modifications that were re-
quired to arrive at a suitable implementation. Due to the complexity involved
with each computation of the ITL criteria, the traditional approach of com-
paring algorithms by number of epochs is better performed using a lower—level
metric such as the number of floating-point operations (Flops). For the pur-
pose of providing performance comparisons among the methods the frequency
doubling problem is studied with a fixed kernel size using an ITL cost func-
tion (the QMIgp) discussed in the next chapter. However, we include it here
because the goal of this comparison is the relative behavior of the search
algorithms, not the cost function itself.
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Table 5.1. LM-LS Flowchart (From [224])

1. Calculate Initial Network State:
a. Compute Performance Using ITL Criterion (Instead of MSE).
b. Compute Internal Network Signals (for Backpropagation).
c. Substitute ITL-Based Information Forces for Error Terms.
d. Set the Kernel Size to Fixed Mode at Current Value.
2. Calculate Jacobian and Hessian Approximation Using Error Terms.
3. Check for Stopping Criteria:
a. Maximum Epoch Reached.
b. Performance Goal Reached.
c. Maximum Time Reached.
d. Maximum p Reached.
e. Minimum Gradient Reached.
. Compute LM Search Direction: dX; = —(JTJ +ul) =1 J7E;
. Compute Step Size (o)) Using Line Search.
. Calculate New Weights: Xi11 = X + adX;
. Calculate New Network State:
a. Compute Performance Using ITL Criterion (Instead of MSE).
b. Compute Internal Network Signals (for Backpropagation).
c. Substitute ITL-Based Information Forces for Error Terms.
8. Compare Performance:
a. If Performance Improves:
i. Update Network to New Weights.
ii. Reset the Kernel Size to Desired Adaptive Mode.
iii. Recalculate New Performance with Adaptive Kernel Size.
iv. Set the Kernel Size to Fixed Mode at new value for next.
iteration
v. Decrease L.
vi. Increment Epoch.
vii. Go to Step 2.
b. If Performance Declines:
i. Increase W.
i, If u <= u,,,, Go to Step 4.
iii. Else go to Step 3.

IS IoNNC N

Case Study: The Frequency Doubler

This example is based on the frequency-doubling problem in [253]. The input
signal is a sampled sine wave with a period of 40 samples. The desired output
is a sine wave with twice the frequency (i.e. a period of 20 samples). Five
delay elements are used to create a six-input time delay neural network The
network topology consists of two hidden units and one output unit, all with
hyperbolic tangent nonlinearities. The resulting network contains a total of
17 connection weights and biases. Figures 5.5a and b illustrate the input and
desired signals and the network topology, respectively.



196

5 Nonlinear Adaptive Filtering with MEE, MCC, and Applications

Table 5.2. ITL Advanced Parameter Search Algorithm Summary (From [224])

Acronym Description Modifications
Adaptive  Performance Relative Error
Kernel Tracking Adjustment
Size

GD Gradient Descent X

GDA GD w/Adaptive Learning X X

Rate

GDX GDA w/Momentum X

RP Resilient Backpropagation

LM Levenberg—Marquardt X X

LMSC LM — Scaled Step Size X X

LMLS LM — Line Search X X

SCG Scaled Conjugate Gradient X

CGB CG — Powell-Beale X

CGF CG — Fletcher—Reeves X

CGP CG — Polak—Ribiere X

0SS One Step Secant X

BFGS BFGS Quasi-Newton X
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Fig. 5.5. Frequency doubler (a) input and desired signals; (b) TDNN (From [223]).

Training was conducted using a set of 30 different initial conditions for
backpropagation. At least two local minima of the performance surface were
identified during the training of this system, with a narrow global minimum.
Due to the simplicity of the input one could identify the effect of the local
minima, with one corresponding to a flat half-cycle (positive or negative de-
pending upon the runs) and a staircase signal with level changes at each zero
crossing of the desired signal as illustrated in Figure 5.6.

Figure 5.7 plots the average of the 30 learning curves against the num-
ber of floating point operations/s (FLOPS) required for the various search
algorithms.
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In this example, GD is clearly the least efficient algorithm. Some computa-
tional efficiency is achieved by each of the advanced algorithms, however, the
most dramatic improvement is realized by RP and the various Levenberg-
Marquardt methods. Notice that the gradient descent, conjugate gradient,
and quasi-Newton methods tend to get trapped in the first local minima
most frequently as illustrated by their high average terminal value of around
—0.035 to —0.04. After this group, the LM-SC, RP, LM, and LM-LS meth-
ods demonstrate progressively better terminal values. Of particular interest
is the efficiency of the RP method, especially in the early stages of training.
Although exhibiting a very good terminal average, RP has the steepest initial
phase of learning. In terms of final performance, however, the LM-LS method
performs the best overall.

5.5 Application: Prediction of the Mackey—Glass
Chaotic Time Series

The goal in dynamic modeling is to identify the nonlinear mapping that pro-
duced the given input—target data. This is traditionally achieved in a predic-
tive framework as shown in Figure 5.8.

Minimization of MSE in the criterion block simply constrains the square
difference between the original trajectory and the trajectory created by the
adaptive system (TDNN in this case), which does not guarantee capturing
all the structure about the underlying dynamics. Hence, we illustrate here
the minimization of the EEC as a more robust criterion for dynamic mod-
eling, and an alternative to MSE in other supervised learning applications
using nonlinear systems, such as nonlinear system identification with neural
networks [140].

Our first example is the single-step prediction of the well-known Mackey—
Glass chaotic time series, which often serves as a benchmark in testing pre-
diction algorithms in the literature. The Mackey—Glass system is a chaotic
system (for T = 30 or higher) given by

0.2z(t — 30)

&(t) = —0.1z(t) + T+ 2(t —30)10

(5.30)

Unknown ] Xk
System

+
€k . .
f ()—b— Criterion

Fig. 5.8. Time-delav neural network prediction scheme.
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that was proposed to model irregular behavior in biological systems [113].
After transients die out the system response approaches its limit dynamics
(the attractor). The dimension of the attractor for a chaotic system is nor-
mally a real number, and it is possible to embed the attractor onto a suffi-
ciently large Euclidean space such that there is a one-to—one mapping (with
a unique inverse) between the trajectories in the attractor and the system
output (i.e. the attractor trajectories never cross each other). If the dimen-
sion of the attractor is D, the embedding space dimension is selected higher
than 2D + 1 [140]. When the embedding is implemented with time delays,
the number of time delays should be 2D, which for the MG30 is 7 [253]. For
our simulations, we use samples drawn at 7" = 1s intervals from the MG30
system of Eq. (5.30), using the Runge-Kutta method with time-step equal
to 0.1s, and then the generated series was down-sampled by 10, to get the
desired sampling period of 1s. Figure 5.9 illustrates a segment of the MG30
time series.

In all the following simulations regarding the MG30 data, we used 200 sam-
ples for training and 10,000 new test samples are generated using a different
initial condition, thus are from a different trajectory on the same attractor.

As the aim of our first set of simulations is to compare the generalization
properties of learning with MSE versus learning with MEE, we train two
identical TDNNs on the same data: one of them uses MSE as the criterion
and the other uses EEC. In addition, in order to make sure that the results
we obtain are not dependent on the specific TDNN architecture we choose
its capabilities; we include eight different two-layer TDNNs in each group
with seven delays and whose number of hidden neurons varies from three
to ten. To increase the speed of training for all 16 TDNNs we use the scaled
conjugate gradient approach explained above. However, in order to avoid local
minima we take the Monte Carlo approach to select the initial conditions for
the weight vectors and use 1000 (uniformly distributed) randomly selected sets
of weights for each TDNN. After all 16 TDNNs are trained, the weight vectors
of the solution that yielded the smallest MSE were selected to be the optimal
solution. Similarly, the optimal weight vector for the TDNNs trained with the
EEC criterion was selected as the run that yielded the smallest error entropy.

Fig. 5.9. A segment of the Mackey-Glass (1 = 30) system.
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Afterwards, these solutions were iterated a couple of more epochs to guarantee
their convergence to the minimum; in fact, visual inspection of the learning
curves for all TDNNs showed that with the conjugate gradient approach, all
TDNNs using the BP algorithm converged in less than 100 iterations and
all TDNNs using the MEE-BP algorithm criterion converged in less than 30
iterations. It must be noted, however, that the computational complexity of
the MEE-BP is greater than that of the BP. The Gaussian kernel was used
to estimate entropy in all simulations with size o = 0.01 because it provided
experimentally the best results. In addition, the output bias of the linear
output PE is set as the sample mean of the desired output for both MSE and
EEC criteria. In this first set of simulations, we use Renyi’s quadratic entropy
definition. Surprisingly, the MEE-BP algorithm achieves smaller variance for
all sizes of the network except for six hidden neurons. For this reason, in
the following, we elaborate on this special case, where the TDNN has six
hidden PEs.

The first question is how to compare the two approaches fairly. Indeed if we
use MSE as our comparison criterion, we may be favoring the TDNN trained
with MSE, and vice versa. A possible approach used here evaluates how close
to the delta function are the error PDF's trained with the two distinct methods.
One can expect that the delta function will not be achieved due to imprecision
in the estimation of optimal parameters, and because the mapping capabilities
of the TDNN with a finite number of units may not include the system that
generated the MG30 system. Figure 5.10 shows the estimated error PDFs of
the best—performing TDNNs for each cost. Clearly, the TDNN that is trained
using the MEE-BP algorithm provided errors more concentrated around zero
(i.e. higher number of smaller errors and fewer large errors), which corresponds
to a better model. In this case there are no noticeable ripples in the error PDF.
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Fig. 5.10. Comparisons of reconstructed error PDFs for MEE and MSE training
(from [87]).
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Fig. 5.11. Probability density estimates of the 10000-sample MG30 test series
(solid) and its predictions by MEE-trained (thick dots) and MSE-trained (dotted)
TDNNs. All PDFs are normalized to zero-mean (from [87]).

Figure 5.11 shows the estimated PDF of the data generated in the test
set by the two different models and clearly demonstrates that the PDF of the
TDNN trained predictions with MEE-BP follows very closely the PDF of
the data. In this case it seems an L fit, but this is not guaranteed, because
the EEC criterion favors a large concentration of errors (delta functions have
negligible entropy) so there are many possible local minima, and how to avoid
them without using brute force is still unknown.

Our second set of simulations was aimed at investigating the effect of
entropy order on the performance of the final solution obtained. The effect
of the kernel size was studied as well. For each set of free parameters (kernel
size and entropy order) we ran 100 Monte Carlo runs using randomly selected
initial weight vectors. At the end of the training, which used 200 samples, the
information potential of the error on the test set consisting of 10,000 samples
corresponding to each TDNN was evaluated using a Gaussian kernel of size
o = 1072 to provide a good basis for a comparison (i.e. there are plenty of
data to obtain a good estimate of the true statistical quantity).

For the final error signals obtained, this value of the kernel size allows the
kernels to cover on average 10 samples in 36 (this is another simple rule of
thumb to establish the kernel size). The results are summarized in Table 5.3 in
the form of normalized information potentials (maximum value is one). There
are a total of 12 trained TDNNs, using the designated entropy orders and
kernel sizes given in the first column. The performances of these TDNNs are
then evaluated and compared using two different entropy orders, presented in
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Table 5.3. Normalized Information Potential Evaluation (From [87])

Evaluation
Parameters Va(e) Va(e)
Training a=101 a=2
Parameters o=10"3 o=1073
o =0.01 0.976 0.099
a=1.01 oc=0.1 0.976 0.104
oc=1 0.969 0.047
o =0.01 0.977 0.112
a=1.5 oc=0.1 0.977 0.109
o=1 0.976 0.105
o =0.01 0.979 0.135
a=2 oc=0.1 0.979 0.133
oc=1 0.978 0.126
o =0.01 0.977 0.124
a=3 oc=0.1 0.977 0.117
oc=1 0.976 0.105

each column. The first thing to notice is that, as expected, the information
potential estimates (and therefore the entropy estimates) change a lot with the
selected o and kernel size, the two free parameters of the method. This reflects
the fact that the estimates are a function of the kernel size, and therefore
quoting an estimated entropy value at the optimal solution should be avoided.
But notice that once the parameters are selected and during the adaptation
process, this dependence is immaterial, because the goal of adaptation is to
seek the extremes (either maximum or minimum) for the same data with a
preselected choice of the free parameters.

It is comforting to see that irrespective of the column (entropy order in
the evaluation) the best results occur for the networks trained with the same
entropy order (o0 = 2 in this case), so this means that the IP estimator is
accurate when the number of samples is large. But the difference in values
across the rows means that different optimal points in parameter space are
obtained for different o, and the best for this example is o = 2. The variability
of the IP estimate within each a for the range of kernel sizes tried is small,
perhaps showing that using smaller kernel sizes in training improves the final
set of optimal coefficients. The dynamic range of the IP values is much higher
for oo = 2 than oo = 1.01.

Our third set of simulations investigates the validity of the conjecture on
the global optimization capabilities of the MEE algorithm. In these simula-
tions, we use the quadratic entropy criterion on the MG30 training data again.
This time, however, the size of the Gaussian kernel is annealed during the
training from a large value to a smaller one. Once again the Monte Carlo ap-
proach is taken with 100 randomly selected initial weight vector assignments.
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Fig. 5.12. Probability distributions of the final normalized information potential
values obtained on the training set when the kernel size is (a) large; static kernel
(solid), slow annealing (4); (b) small; static kernel (solid), fast annealing (+), slow
annealing (dots) (from [88]).

The results of these experiments are summarized in Figure 5.12 as a PDF
estimate of the final normalized information potential values (so that the
maximum value is one) obtained on the training data. In Figure 5.12a, the
distributions of the final performances for two experiments (fixed and an-
nealed kernel sizes) are shown. In the static kernel case the kernel size is kept
fixed at o = 1072, whereas the changing kernel has an exponentially annealed
size 0 = 1071 — 1072, during a training phase of 200 iterations. For the large
static kernel size of ¢ = 1072, approximately 10% of the time the algorithm
got trapped in a local maximum of the information potential with a normal-
ized value of about 0.1. The annealed kernel size algorithm avoided this local
optimum in all the runs and achieved a better (possibly the global) maximum,
with a normalized value of 0.9.

In Figure 5.12b, the distributions of the performances for three experi-
ments are shown, but now the static kernel has a size of ¢ = 1073 throughout
the training. The slow- and fast-annealed kernels, on the other hand, have
exponentially decreasing sizes of o = 107! — 1073 for a training phase of
500 and 200 iterations, respectively. This annealing scheme is the same for
all initial conditions. Because the kernel size is smaller now, we can expect
more local maxima in the normalized information potential surface, but more
accurate performance if global maximum is achieved.

In this small kernel case with ¢ = 1073, it is observed that the static kernel
gets trapped in local maxima quite often (90% of the time), whereas the fast
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annealed kernel shows some improvement in avoiding local optima (70% of
the time achieves global optimum), and eventually the slow annealed kernel
consistently achieves the global maximum (100% of the time).

These experiments showed that, by annealing the kernel size, one is likely
to improve the algorithm’s chances of avoiding local optimum solutions. How-
ever, there is no prescription yet for how to anneal the kernel size. The expo-
nential annealing scheme and the decay rates assumed in the above simulations
were determined by trial and error.

5.6 Application: Nonlinear Channel Equalization

In digital communications, the transmission of messages is plagued by the
intersymbol interference (ISI) due to the finite bandwidth of the channel. The
most popular equalizer is the linear transversal equalizer (LTE), trained to
minimize the MSE between its output and the desired sequence by means
of the LMS or the recursive least square algorithm [255]. An interesting and
powerful alternative to the LTE is the decision feedback equalizer (DFE).
In this case, the past decisions are included in the equalization process to
improve the margin against noise and performance, mainly in channels with
deep nulls. Although the DFE structure is nonlinear, it can only cope with very
moderate nonlinear distortion. Moreover, it suffers from error propagation due
to the feedback part. The received signal x; at the input of the equalizer can
be expressed as

€xr; = Z hisi_k + €4, (5.31)
k=0

where the transmitted symbol sequence is assumed to be an equiprobable bi-
nary sequence {1,—1}, hy are the channel coefficients (we assume here an
FIR channel), and the measurement noise e; can be modeled as zero-mean
Gaussian with variance ¢?,,. The equalization problem reduces to correctly
classify the transmitted symbols s; based on the observation vector. For in-
stance, LTE estimates the value of a transmitted symbol as

§i_q = sgn(y;) = sgn(w’!x;), (5.32)
where y; = wlx; is the output of the equalizer, w = [wo, ..., wy_1]T are the
equalizer coefficients, x; = [z;, .. ., $i,M+1]T are the observations and d is the

equalizer delay. The LTE implements a linear decision boundary; however, it
is well known that even if the channel is linear, the optimal (Bayesian) decision
border is nonlinear, which becomes more noticeable when the noise increases.

On the other hand, when the channel is nonlinear, in order to eliminate
the ISI, it is necessary to consider a nonlinear equalizer. Recently, artificial
neural networks have been proven to be attractive alternatives for nonlinear
equalization, in particular, the multilayer perceptron (MLP) and the radial
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basis function (RBF) have demonstrated good performance [31]. In this case,
the output of the equalizer is given by

yi = g(xi, W), (5.33)

where ¢(.) is a nonlinear mapping and W denotes the parameters of the
equalizer. After the mapping, a hard threshold is still needed in order to
decide the symbols; in this way, Eq. (5.32) can be viewed as a mapping from
the input space to an output space, where the classification becomes possible
and hopefully easier. Here an MLP will be employed to perform that mapping.
Assuming a single hidden layer MLP, Eq. (5.33) reduces to

yi = wa tanh(Wyx; + by) + ba, (5.34)

where W7 is an N x M matrix connecting the input layer with the hidden
layer, by is an NV x L vector of biases for the hidden layer PEs, ws is an N x L
vector of weights connecting the hidden layer to the ouptut PE and by is the
output bias. The training of this structure to minimize the MSE criterion can
be done using the BP algorithm [253].

Alternatively, Renyi’s quadratic entropy can also be used as the cost func-
tion. Obviously, the minimum of Renyi’s entropy is obtained when p(e) =
d(e — ¢) for any € (i.e., when the error is a constant signal). On the other
hand, the PDF of the equalizer’s output y = s + e, given the training se-
quence s (considered as deterministic), is

p(yls) = pe(y — 5). (5.35)

In this way, the output of the equalizer converges to y = s+ ¢ with proba-
bility one. In practice, a finite training sequence is used; in this case, by max-
imizing the information potential, each error sample interacts with all other
errors, pushing the solution towards a constant error signal. The constant
term has no influence because it can be easily eliminated using an additional
bias term in the equalizer. This argument supports the use of an error entropy
minimization criterion in equalization problems, but a closer analysis shows
an even better picture.

To gain some more insight into the appeal of the error entropy criterion for
this problem, it is interesting to write the information potential as a function
of the output of the equalizer (linear or nonlinear) y;. Considering a binary
signal, the set of outputs y; for the training set can be partitioned according
to the desired output s;_4 = +1 into the following two subsets:

REYD = {y; si_q = +1}. (5.36)
Now, taking into account that

€ —€j =38d—i — Sd—j + Y; — Yi- (537)
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it is easy to show that

Vi) => > Gui—-y)+>, Y. Glyi—y))
6J €RHD i,j eR(-1)

+2 Y Y Gui-ui-2) (5:38)

i€R(HD jER(-D

The first two terms in Eq. (5.38) are maximized when y; = y; for 4,5 € R(+1)
and 7,7 € R(=Y respectively. This process can be viewed as minimizing the
“intraclass” output entropy; that is, the equalizer tries to cluster the outputs
in delta functions for inputs belonging to R and R(-1). On the other hand,
the third term is maximized when y; — y; = 2, for ¢ € RH"Y and j € RV,
therefore, it tries to separate the outputs for each class. As a comparison, the
MSE criterion in terms of the equalizer outputs is given by

MSE(y)= Y (1—9)’+ > (1+w)™ (5.39)

i€ R(+1) i€R(=1)

It can be concluded that the entropy criterion forces additional constraints by
exploiting the relationship between each pair of equalizer outputs. Moreover,
although the MSE criterion forces a constant modulus for the output signal
as in Eq. (5.39), the entropy criterion ensures that the difference between the
outputs for the two classes has a constant value. The advantages of MEE for
equalization are particularly useful for the nonlinear channel case [31].

The nonlinear channel used here is composed of a linear channel followed
by a memoryless nonlinearity often encountered in digital satellite communi-
cations [279] and as nonlinear channel models for digital magnetic recording
[280]. The linear channel considered is H(z) = 0.3482+0.87042 714 0.348272,
and the nonlinear function applied is z = £+ 0.222 —0.123, where z is the lin-
ear channel output. Finally, white Gaussian noise for SNR 16 dB was added.
The nonlinear equalizer structure is an MLP with seven PEs in the input layer
and three PEs in the hidden layer, and the equalization delay is d = 4.

For this example, the online MEE-BP algorithm is applied with a short
sliding window of just N = 5 error samples. At each iteration a single step
was taken. For both criteria, a fixed stepsize = 0.01 was used, which is the
largest stepsize for which the algorithms converged in all trials. The results
provided by a linear (FIR) equalizer with coefficients and trained with an
MSE criterion were also obtained. In this case, a conventional LMS algorithm
with a fixed stepsize was used.

Figure 5.13 shows the convergence of the normalized information potential
and the MSE evaluated over the sliding window for the three algorithms. These
results were obtained by averaging 100 independent simulations. It can be seen
that the MLP trained with the MEE-BP achieves the best results, and it also
provides the fastest convergence, whereas the linear equalizer is not able to
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Fig. 5.14. Error PDF for the MLP equalizer trained with MSE and MEE (from

[281]).

remove the nonlinear IST part. It is interesting that even though the entropy
criterion does not directly minimize the MSE it achieves a lower MSE than
direct minimization of this criterion.

The explanation is that, in comparison to the MSE, the entropy criterion
yields a spiky error with more abrupt changes (higher kurtosis) but with a
lower MSE, and this was experimentally verified, see Figure 5.14.
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The error sequence PDF was estimated using the Parzen windowing
method with 62 = 0.01 and as expected the minimization of the error en-
tropy tries to push the PDF of the error closer to a delta function.

The important parameter in communications is not the equalization but
the bit error rate (BER). The convergence of the BER with the number of
training symbols is shown in Figure 5.15. Experience with the MSE criterion
shows that better equalization implies a better (smaller) BER. However, the
entropy criterion achieves a very fast decrease in BER, but the final BER is
slightly worse than the BER obtained by the MSE criterion. This result was
not expected, given the better equalization of the channel achieved with the
EEC, and it may be explained by the spikiness of the error achieved with
minimization of error entropy [281]. This problem requires a better control
of the kernel size. Our suggestion at this point is to switch between MEE
and MSE during equalization but an entropy order oo < 1 has the potential
to improve the BER, although it can slow down the training. This example
demonstrates that each practical application has its own peculiarities that
require attention when testing a new cost criterion.

5.7 Error Correntropy Criterion (ECC) in Regression

Recall that Eq. (3.36) defines still another cost function (the ECC) that is
based on the correntropy criterion. In Section 3.6, ECC was shown equivalent
to the EEC if one works with the difference in errors instead of the individual
errors. The appeal of the ECC and its MCC algorithm is its much faster
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computation when compared with EEC, the automatic centering of the error
PDF at zero, but one loses the information—theoretic interpretation. Just by
looking at the CIM metric in Figure 3.9 we can anticipate that the ECC
may pose problems during adaptation because the errors saturate and so
the search algorithms based on this cost function become less sensitivity to
change in errors (which gives rise to plateaus also called flat spots, or even local
minima). To elucidate the practical application of these two alternate costs, we
compare them on a simple linear and nonlinear regression problem, along with
the more conventional LAR (least angle regression) and the bisquare weights
(BW) mentioned in Chapter 3. The same algorithms can be used for filtering,
although we do not pursue this application here.

Linear Regression

Let us consider the general model of regression Z = f(X) + v where f is
an unknown function, v is a noise process and Z is the observation. Here
{(zi,2)} X, are the training data. A parametric approximator g(z;w) (speci-
fied below) is used to discover this function and alleviate the effect of noise as
much as possible. Let the noise probability density function be an impulsive
Gaussian mixture (Middleton model) p,(v) = 0.9G(0,0.1) + 0.1G(4,0.1). In
MSE, the optimal solution is found by Eq. (3.2) and for the MCC algorithm,
the optimal solution is found as

N
max J(w) = — Y kg (g(xi;w) — 2) (5.40)

i=1

The first example implements a first—degree polynomial system for simplic-
ity; that is, g(z; w) = wiz+ws. f(x) = az+b with ¢ = 1 and b = 0. Inasmuch
as the ultimate performance of the MCC algorithm is under investigation here,
the kernel size is chosen by systematically searching for the best result. Per-
formance sensitivity with respect to kernel size is quantified experimentally in
Table 5.4 and is compared with the kernel size estimated by Silverman’s rule.
The data length is set small on purpose: N = 100. Steepest descent is used for

Table 5.4. Regression Results Summary (From [201])

Algorithms a Standard b Standard  Intrinsic ~ Standard
Deviation Deviation Error Deviation of
of a of b Power Intrinsic Error

Power

MSE 1.0048 0.1941 0.3969 0.1221 0.1874 0.1121

MCC 0.9998 0.0550 0.0012 0.0355 0.0025 0.0026

MEE 0.9964 0.0546 0.3966 0.1215 0.1738 0.1049

LAR 1.0032 0.0861 0.0472 0.0503 0.0072 0.0066

BW 1.0007 0.0569 0.0010 0.0359 0.0025 0.0025




210 5 Nonlinear Adaptive Filtering with MEE, MCC, and Applications

1.2

— MCC
---- MSE
1 MEE |

0.6

Intrinsic Error Power

i A N

T

0 100 200 300 400 500
epochs

Fig. 5.16. Average learning curves with error bars of MCC, MSE and MEE
(from [201]).

both criteria. Under the MSE criterion, the learning rate is set to 0.001 and
the system is trained for 500 epochs (long enough to guarantee it reaches its
global solution). For the MCC algorithm, we first train the system with the
MSE criterion during the first 200 epochs (which is an extreme case of a large
kernel size in kernel size annealing), and switch the criterion to ECC during
the next 300 epochs. The learning rate is set to 0.001 and the kernel size is
0.5 which performs best on test data. We run 50 Monte Carlo simulations
for the same data by changing the initial conditions. The average estimated
coefficients for MSE are [0.484 0.679] and [0.020 0.983] for MCC. The average
learning curves for the intrinsic error power (E[(g(X;w)— f(X))?]) are shown
in Figure 5.16, along with its standard deviation. We observe that after the
switching between criteria, the learning curve drops rapidly to a new value
with small variability after 300 iterations, which means that the ECC criterion
found a better set of weights.

When the MSE criterion is used, g(x) is shifted by the nonzero-mean noise
and slanted by the outliers due to the global property of MSE (Figure 5.17).
Now we see the importance of correntropy with its local property. In other
words, correntropy has the ability of being insensitive to the shape of the noise
PDF tail. For comparison, we also include the result of the MEE algorithm
with the bias set at the mean of the desired response. Although MEE is also
insensitive to outliers, the error is not symmetric and the resulting regressor
will be biased, which explains the large final error.

Although the main purpose of this example is to highlight the robust-
ness of correntropy, we also compare performance with the existing ro-
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Fig. 5.17. Regression results with criteria of MSE, MCC, and MEE respec-
tively. The observation Y is corrupted with positive impulsive noise; the fit from
MSE (dash-dot line) is shown shifted and skewed; the fit from MCC (solid line)
matches the desired (dotted) quite well; the fit from MEE is shifted but not skewed
(from [201]).

bust fitting methods such as least absolute residuals (LAR) (which uses
an L1 norm penalty) and bi-square weights (BW) [128]. The parameters of
these algorithms are the recommended settings in MATLAB. All the results
(50 Monte Carlo for each) are summarized in Table 5.4 in terms of intrinsic
error power on the test set. Recall that the intrinsic error power compares the
difference between the model output and the true system (without the noise).
The performance of MCC is much better than LAR, and when regarded as
a 1 norm alternative, correntropy is differentiable everywhere and to every
order. Furthermore, notice that there is no threshold for MCC, just the selec-
tion of the kernel size. Moreover, the algorithm complexity of MEE is O(N?)
whereas MSE, MCC, BS and LAR are all O(N).

We have to remember that the kernel size plays an important and perhaps
contradictory role here, representing the statistics of the data and attenuating
the outlier noise. In [201] we test the performance as a function of the kernel
size, mean and variance of outliers, and the major conclusion is that the
MCC algorithm performs at the same level or better than BS and LAR and
that there is a relatively large range of kernel sizes that provides very similar
performance. Moreover, the standard Silverman’s rule for density estimation
falls within the good performance range. If the data are plentiful, there is
basically no compromise and good outlier rejection can be achieved, however,
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a compromise must be struck for small datasets (because the kernel size cannot
be made arbitrarily small). Nevertheless, MCC using large kernel sizes will
perform no worse than MSE due to the correntropy unique metric structure.
The shortcoming of the MCC algorithm is in the adaptation, because of its
local nature. We recommend that the kernel size be started large compared
with Silverman’s rule for the data, and slowly annealed to the Silverman value.
Otherwise the adaptation is very slow, or can even stall due to local minima.
Alternatively, one can start the adaptation with MSE to bring the weights to
a reasonable value close to the optimal solution, and then switch to the ECC
cost as we illustrated in the example.

Nonlinear Regression

A second, more complex and nonlinear, regression experiment is conducted
to demonstrate the efficiency of the MCC algorithm. Let the noise PDF be
the same as above and f(X) = sinc(X), X € [-2,2]. An MLP is used as the
function approximator g(z;w) with one input unit, seven hidden units with
tanh nonlinearity and one linear output. The MLP is trained with MEE-BP
(Eq. (3.36)), using an online update implemented with the stochastic gradient
(see Eq. (4.61)). The data length is N = 200. Under the MSE criterion, the
MLP is trained for 500 epochs with learning rate 0.01 and momentum rate
0.5. Under the LAR criterion, 600 epochs are used with learning rate 0.002
and momentum rate 0.5. In the MCC case, the MSE criterion is used for the
first 200 epochs and switched to MCC for the next 400 epochs with learning
rate 0.05 and momentum rate 0.5. Different values of € are tried to test the
efficiency of MCC against LAR. Fifty Monte Carlo simulations are run for
each value. The results are shown in Table 5.5. The kernel size in MCC is
chosen as 6 = 1 for best results. A nice feature of MCC is that it can attain
the same efficiency as MSE when the noise is purely Gaussian due to its unique
property of “mix norm” whereas LAR can not.

Experimentally, the behavior of MCC for nonlinear systems is very similar
to the linear case considered above. Figure 5.18 shows the good fit to the

Table 5.5. Nonlinear Regression Results Summary (From [201])

€ Intrinsic Intrinsic Intrinsic Standard Standard Standard
Error Error Error Deviation of  Deviation of  Deviation of
Power Power Power Intrinsic Error Intrinsic Error Intrinsic Error
by MCC by MSE by LAR Power by Power by MSE Power by LAR

MCC

0.1 0.0059 0.2283 0.0115 0.0026 0.0832 0.0068

0.05 0.0046 0.0641 0.0083 0.0021 0.0325 0.0041

0.01 0.0039 0.0128 0.0058 0.0017 0.0124 0.0025

0 0.0040  0.0042  0.0061 0.0019 0.0020 0.0028
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Fig. 5.18. Nonlinear regression results by MSE, MCC and LAR respectively
(from [201]).

true regression of MCC and LAR across the whole domain, and the poorer
approximation obtained with MSE due to the outliers.

5.8 Adaptive Kernel Size in System Identification
and Tracking

In Chapter 3 we introduced the concept of online adaptation of the kernel
size, and here we illustrate its performance in nonlinear adaptive filtering.
For our first application, we train a TDNN with the MEE-BP algorithm (see
Section 5.2) with an adaptive kernel, for prediction the Lorenz system output
which is a well-known chaotic dynamical system [204]. We focus on evaluating
the effects of using different values of G, including the adaptive kernel size
algorithm of Section 3.7. The kernel size update technique is incorporated
by continuously updating ¢ using Eq. (3.70) and the weights, but using a
smaller (10 times) learning rate for 6. Using this framework, we trained a
6-tap TDNN, with a single hidden layer and six processing elements in the
hidden layer with a sigmoid nonlinearity. Two hundred time samples from
the Lorenz attractor were used in the one-step—ahead prediction training set.
Therefore, the neural network was trained to predict the next sample in the
time series, by using the six previous samples. The system was trained for 20
epochs over the training set.

Figure 5.19 shows the evolution of the prediction error (difference between
the desired sample and the predicted value) over all the iterations (cumulated
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Fig. 5.19. Evolution of prediction error during the training of the neural network.
The kernel width adapts to the values of the error.

over the 20 epochs). As expected, the kernel widths adapt to the values of the
error. The adaptation automatically results in annealing of the kernel size,
which is useful in smoothing out local optima, as elaborated in an earlier
discussion.

To quantify the advantage of an adaptive kernel width over fixed ones, we
compare how the prediction error evolves during training for different values
of kernel size. Figure 5.20 shows the error MSE (averaged over 200 Monte
Carlo runs) over the 20 epochs, for three different fixed kernel sizes, 0.1, 1, 3,
and also using the adaptive kernel.

As discussed, a large kernel size such as 6 = 3, results in a high gradient,
and therefore faster adaptation speed early on. However, as the optimal point
approaches, the adaptation speed reduces, as seen from the plot. For a small
kernel size such as ¢ = 0.1, there is relatively lesser gradient initially, but the
rate of convergence is comparatively higher as the error power reduces, as can
be seen in Figure 5.20. Because the adaptive kernel starts initially with a high
kernel width, and an annealing of the kernel as the error reduces, a higher
overall convergence rate is attained, shown by the solid curve in the plot.

Figure 5.21 shows the prediction result from the last epoch of the training,
superimposed on the original Lorenz attractor time series that was used in
the experiment.

System Tracking Using the MCC Algorithm

Our second experiment demonstrates the effectiveness of the proposed kernel
adaptation method while identifying and tracking a time—varying linear sys-
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Fig. 5.21. Evolution of prediction results for the Lorenz time series for the trained
TDNN with adaptive kernel size.

tem using the MCC algorithm in the presence of impulsive observation noise.
The corresponding weight update equation, after using a stochastic approx-
imation of the gradient is given as Eq. (4.63), which is strikingly similar to
the LMS algorithm except for the Gaussian multiplicative factor evaluated



216 5 Nonlinear Adaptive Filtering with MEE, MCC, and Applications

10

7 ;¢u4¢«u\ PULITW AT IRV o
1

eIV \444fn\,,ﬂw‘;'»"w"v"*'\\,‘\,‘”;
. 1 h

Weight SNR (db)
|
o

15} i
20} i
''''' c=5
-25| -==-0= R
Adaptive ¢
-30 500 1000 1500 2000

Iterations

Fig. 5.22. Weight SNR learning curves while identifying and tracking a nonstation-
ary system using the maximum correntropy criterion, with different kernel widths.
The plots have been obtained after averaging over 200 Monte Carlo runs with dif-
ferent initializations.

at e(n). Depending on the kernel width, the Gaussian evaluates to a small
quantity if a large outlier error sample is encountered. This small value keeps
the weight update stable, which would otherwise make a very large update
if a strong outlier were encountered. Therefore, in the above weight update
rule, having a small kernel size makes the algorithm more robust to impulsive
noise. But, due to reasons mentioned earlier, a small kernel width also results
in slower adaptation. We therefore expect that adapting the kernel size would
lead to an optimal trade—off between these two factors.

For our simulation, we used a 4-tap adaptive filter to track another
4-tap filter. After 800 iterations, the original filter weights are changed from
w* = 5[0.1, 0.5, 0.3, 0.2] to w* = 0.4[0.1, 0.5, 0.3, 0.2]. The input to the
original filter and the adaptive filter is unit power Gaussian noise. The follow-
ing impulsive noise is added as observation noise 0.95G(0, 0.4) + 0.05G(0, 5).
Figure 5.22 shows the weight SNR (see Section 4.9) values for different choices
of kernel sizes. As expected, a small kernel width such as ¢ = 1 results in
slower adaptation, but has higher WSNR, values after convergence due to
more robustness to impulsive noise. A large kernel width such as 6 = 5 causes
faster adaptation, but loses the robustness to impulsive noise, and therefore
has lower WSNR values after convergence. This is a clear tradeoff between
speed and robustness for fixed values of kernel size. An adaptive kernel width,
however, results in a better learning curve as it has better robustness and
faster learning than ¢ = 1. It has a much higher WSNR value as compared to
o =5.
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Fig. 5.23. The error signal obtained while tracking using an adaptive kernel size
in the cost function. The values of the kernel width over all the iterations are
also shown.

Figure 5.23 shows how the kernel width adapts with the values of the error.
When the filter weights are changed after 800 iterations, the errors become
large. The kernel width adapts to this change and anneals again as the errors
reduce. The increase in the kernel size improves the convergence speed, and
the annealing results in more robustness to impulsive noise, after convergence.

5.9 Conclusions

This chapter shows how the EEC and ECC and in particular their MEE and
MCC algorithms can be extended to nonlinear signal processing quite easily.
The simplicity is based on the fact that EEC and ECC are differentiable costs,
therefore the chain rule applies and the MEE/MCC can be easily brought into
the backpropagation framework to train any nonlinear system (in particular
neural networks) with gradient descent learning. In this respect the MCC is
slightly simpler because the same code for BP can be used; we just need to
change the injected error. We present the equations for backpropagation of the
information forces as done in Chapter 2. We also present an overview of how
to apply advanced search techniques to EEC, which is of practical importance
for nonlinear systems in as much as gradient descent learning is commonly
too slow and too brittle for nonlinear signal processing applications.

We included in the chapter four practical examples: the first in system
identification, the second in channel equalization using decision feedback, both
using the MEE, the third in linear and nonlinear regression and the fourth
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showing the performance of the adaptive kernel size algorithm in system iden-
tification and tracking using both the MEE and the MCC algorithms to il-
lustrate the fact that the same strategy works for both. These examples show
performance comparisons with MSE and also provide a more detailed view
of why MEE and MCC can be advantageous in practical problems. But they
also point out that there is no universally better tool, and sometimes current
thinking needs to be changed to explain the results (i.e. better equalization
does not necessarily mean better error rates using the MEE criterion). The ef-
fect of o in the performance of MEE has not been thoroughly investigated, but
the equalization example shows that o may play a role in practical problems.

One other conclusion is that the MCC is comparable to the MEE per-
formance with a much reduced computational complexity, so it may show
practical advantages in real-world scenarios. One issue to be resolved is the
local minima in the cost function. Either kernel annealing or switching be-
tween MSE and ECC seem the best strategies.

Finally, the online adaptation of the kernel size seems to be an impor-
tant addition to this set of cost functions, because it anneals the kernel size
naturally during adaptation due to the decrease of error power. Although
the cost function is proposed from the bias—variance dilemma perspective, in
the examples tested it provides good overall adaptation characteristics; fast
convergence with small final misadjustment. But ultimately, the kernel size
evolution in adaptation depends upon the PDF of the error that is not un-
der the control of the designer, so its use should be carefully tested in each
practical scenario.
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Classification with EEC, Divergence Measures,
and Error Bounds

Deniz Erdogmus, Dongxin Xu, and Kenneth Hild II

6.1 Introduction

The previous chapters provided extensive coverage of the error entropy
criterion (EEC) especially in regard to minimization of the error en-
tropy (MEE) for linear and nonlinear filtering (or regression) applications.
However, the spectrum of engineering applications of adaptive systems is
much broader than filtering or regression. Even looking at the subclass of
supervised applications we have yet to deal with classification, which is an
important application area for learning technologies. All of the practical
ingredients are here to extend EEC to classification inasmuch as Chapter 5
covered the integration of EEC with the backpropagation algorithm (MEE-
BP). Hence we have all the tools needed to train classifiers with MEE. We
show that indeed this is the case and that the classifiers trained with MEE
have performances normally better than MSE-trained classifiers. However,
there are still no mathematical foundations to ascertain under what conditions
EEC is optimal for classification, and further work is necessary.

The second aspect that we have yet to explore is the training of systems
with divergence measures. In this chapter, we present learning algorithms
based on the generalized information potential and the generalized informa-
tion forces that implement the Euclidean and Cauchy-Schwarz divergence
measures. In spite of the fact that divergence can train systems in any of
the supervised or unsupervised learning frameworks, we concentrate in this
chapter only on the supervised case and provide examples of its use in feature
extraction and classification.

By extending Fano’s bound with Renyi’s entropy formalism, we can show
that it is possible to bracket the probability of error in classification using
Renyi’s oo mutual information for a0 < 1 and > 1. This reinforces the argument
that training a classifier with entropy measures should yield good classification
performance.

J.C. Principe, Information Theoretic Learning: Renyi’s Entropy and Kernel 219
Perspectives, Information Science and Statistics, DOI 10.1007/978-1-4419-1570-2_6,
(© Springer Science+Business Media, LLC 2010
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6.2 Brief Review of Classification

The minimization of error entropy was motivated for regression in Chapter 3
from the point of view of minimizing the uncertainty in the error PDF. Is it
possible to derive a similar solid framework for EEC in classification problems?
Of course, it is always possible to use EEC as a cost function for classification,
but this question goes beyond the engineering application and attempts to
study the optimality of the criterion; that is, does the EEC yield a solution
close to the minimum probability of error? It is therefore important to review
briefly the theory of classification.

Consider the problem of assigning a pattern x to one of L classes, repre-
sented by labels C'y, ..., Cp. According to Bayes rule, the probability that
x belongs to class C}, is given by

P(Cy)p(x|Cy)

PP =705

: (6.1)

where P(Cy|x) is the posterior probability of class Cj given that x was ob-
served, P(C}) is the prior probability of class Ci, p(x|Cy) is the likelihood
function and p(x) is the PDF of x which plays the role of a normalization
factor. According to Fisher [101] the decision that minimizes the classifier’s
error probability can be written as

x € Cp if k=argmax P(C;|x). (6.2)
I=1,..L

This became known as the maximum a posteriori (MAP) classifier. The
decision rule provides a hypersurface in pattern space, effectively dividing the
space in regions that are associated with each class. A proper discriminant
function for class Cy is defined as any function that provides a large value
for points x € Cf and low values for any other points in pattern space. The
discriminant function plays a central role in classifier design because the class
decision is made with respect to it. Effectively the optimal classifier uses the
posterior density as the discriminant function, but any other function that
preserves the class boundaries can be used instead. The wellknown linear
and quadratic discriminant functions arise from Eq. (6.2) under a Gaussian
assumption for the classes (with equal and different class covariance matrices,
respectively) [80].

Instead of designing classifiers by fitting a Gaussian model to the like-
lihood function of the data (parametric design of classifiers), one can use
nonlinear adaptive systems (commonly called neural networks) to construct
the discriminant function. The classes of multilayer perceptrons (MLPs) or
radial basis function (RBF) networks are commonly used because they are
universal function approximators [38]. The nonparametric nature brings the
need to find a figure of merit (cost function) to fit the model parameters to
the training data.
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The natural figure of merit in classification is the probability of error.
However, this is hardly ever used as a cost function in classification because
it is very difficult to evaluate in practice (effectively an integral over tails
of class posteriors). Hence, researchers have used other costs as proxies for
probability of error. Perhaps the most widely used method is to constrain the
error power (MSE) between the output of the classifier and the correct targets
in a training set [108].

Let us consider the usual classification problem where a pattern x € RP
is to be assigned to one of L classes by a learning machine (here we focus on a
multilayer perceptron (MLP) with one hidden layer built from sigmoid nonlin-
earities and weight vector w). The MLP is trained using a set of training vector
pairs {(x;,¢;),i = 1,..., N}, where each target vector ¢; = [c;i1,...,cir]T is
of length L and describes the class to which x; belongs in a 1-out-of-L coding,
with ¢; ; € [0,1]. Hence, the MLP has an output layer described by a vector
y: = [Viz,---,vir]T that produces for each x; its corresponding output y,; The
mean square error (MSE) function

N
1
Juse = 5 D llei = yill” (6:3)

i=1

is probably the most common error cost used for neural network training.
Originally derived for regression, the MSE cost corresponds to applying the
principle of maximum likelihood when the regression model is linear and the
error is Gaussian distributed, zero-mean, and uncorrelated across exemplars.
However, in classification the Gaussianity assumption on the error is invalid,
due to the finite domain and multimodal nature of classification errors. It
has been shown that classifier outputs trained with the MSE approximate
the conditional average of the target data given the input, which under some
conditions [38] means that the classifier outputs approximate the Bayesian
posterior probabilities. However, in practice it is difficult to bound how far
MSE training is from the minimum probability of error, and the simplicity
of the procedure has been the main force behind its wide applicability. It is
therefore important to look at alternative cost functions for classification.

The Cross-Entropy Cost in Classification

Any differentiable function of the targets and outputs with a minimum for
y = ¢ (as does the MSE) is in principle an appropriate cost function for clas-
sification, but one generally seeks a choice based on solid statistical reason-
ing. One of the early alternatives that can also be derived from the maximum
likelihood principle utilizes the crossentropy (CE) cost function [334]. Each
component yr, k = 1,..., L of the output vector is interpreted as an esti-
mate of the posterior probability that input pattern x belongs to class Cyg
represented by cx, yr = P(Ck|x), where the “true” marginal distributions of
c given z, p = (ps, ..., pr) are
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pk:P(Ck‘X), k:].,...,L (64)

For mutually exclusive classes, the true conditional distribution p(c|x),
and the MLP estimate y = pw(c|x) (the dependence on the weights w is
made explicit) can be described by multinomial distributions:

plelx) =pi'py’ ....pT" (6.5)
pw(c|x) =yi'ys? ... ysh . (6.6)

We would like the MLP output in Eq. (6.6) to approximate the true distribu-
tion Eq. (6.5). Considering a set of observed pairs {x;, ¢;} one can define the
cross-entropy cost function between the true and estimated conditionals as

N

p(e|x) p C2|Xz < p(ei| %) >
Jog =log——= =1o lo ,
8T pulel®) gI{ (ci %) Z s )

pw C; ‘Xz

N L
== crilog(yei) + chk,i log(pr,i) (6.7)

i=1 k=1 i=1 k=1

where we assume that the class labels are conditionally independent and c¢;
depends only on x;. The goal is then to minimize Eq. (6.7) with respect to the
weights; min,, Jog. Note that the second term does not depend on the MLP
parameters w which means that the minimization of Eq. (6.7) is equivalent
to the minimization of

N L
Jog = — Z Z Ck,i log(yr,i)- (6.8)

i=1 k=1

Equation (6.8) is known in the literature as the cross-entropy cost function,
because of its analogy with cross entropy (—E.[log(p(y)]) in spite of the fact
that ¢y, are not necessarily probabilities [145]. If we take the gradient of
Eq. (6.8) with respect to the weights of a perceptron with tanh nonlinearities
we find that the weight update becomes just dependent upon the error (ex =
¢k — yx) and independent of the derivative of the nonlinearity [145]. As we
recall from Chapter 5, Eq. (5.2), the gradient of the MSE cost is multiplied
by the derivative of the nonlinearity, which slows down training when the PE
is even slightly saturated. Therefore we can expect much faster convergence
with the cross-entropy cost when compared with MSE training. Experience
has also shown that the CE cost normally works slightly better than the MSE
for many problems [145].

6.3 Error Entropy Criterion in Classification

Another alternative is to use the EEC described in Chapters 3 and 4 that can
be applied to both discrete and continuous error distributions and fully utilizes
(for training) the shape of the error distribution. In Chapter 5 we saw how to
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train nonlinear systems with EEC and its MEE algorithms, so the algorithm
presented in Section 5.2 can be used directly here. However, classification is
more complex than regression, so there are some important issues that need
to be addressed to evaluate how appropriate EEC is for classification.

Silva et al. [298] have studied theoretically the EEC for the case of uni-
variate data passing through a classifier with threshold nonlinearities that
produce a discrete error random variable. For the special case of a two-class
problem with a single parameter classifier this is equivalent to the Stoller
split [309]. First, they proved that the EEC can only be related to the min
P(E) if the class priors are equal, which is a reasonable assumption in many
practical problems (equal number of exemplars in each class). Furthermore,
the min P(E) always corresponds to a stationary point of the EEC cost but,
depending upon the class separation, may correspond to either a minimum
of entropy when the classes are well separated or to a maximum when the
classes have large overlap. This is an unexpected result if we use our under-
standing from EEC in regression, and raises questions about the applicability
of EEC for classification. It also does not corroborate experimental evidence
that the EEC outperforms MSE in practical classification problems as these
researchers and others have reported [86,283].

In order to understand this difficulty, we take the continuous variable set-
ting as in [299] because the discrete case is perhaps less appropriate to the
information potential method described in this book, inasmuch as the error
PMF is composed of only three values (e.g., for ¢ = {l, —1} the possible
errors occur at (—2, 0, 2) with different magnitudes). Let us consider a two-
class problem from one dimensional data x with support Dx to be classified
in two classes C_; and C1, using targets ¢ = { — 1,41}, and a classifier pro-
ducing continuous outputs y. We will assume that the classifier performs a
mapping y = ¢ (x),y € Dy that depends upon the parameters w and the
PE nonlinearity ¢(z) = tanh(z). The PDF of the input can be written as

px () =7 pxp(®) + B px|-1(z), = € Dx (6.9)

where v and [ are the prior class probabilities (y = 1 — 8) and the notation
px|1(z) = px(z|c = 1) is used. So the error is a continuous random variable
defined as E = C — ¢,,(X). In this setting it is not difficult to write the error
PDF as

ple) =y pyp(l —e)+ B pyj—1(~=1—e), ec[-2,2]. (6.10)

We present here just the simplest of the cases (see [299] for a complete
treatment), with a single-parameter perceptron; that is, y = tanh(x — wy)
where wy is the bias. Renyi’s entropy of the output error can be decomposed as

1 o
H, = log/ p*(e)de

l1-«a o

og [ [ pviact-epaes [ - ayae] .

l-«a _9
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Notice that due to the nonoverlapping domains in the two integrals, the
information potentials are effectively separable and the minimization of
Eq. (6.11) is equivalent to the maximization of the sum of the information
potentials for a > 1 which is much simpler. For a0 = 2 we get

0 2
W(B) = [ Bovia(-1=ePdes [ Govnli—epde. (612

—2

Before actually presenting the result, let us compare the form of this V(E)
with the regression case. We see that now there are two data distributions,
one for each class and therefore, the distribution of the error is conditioned
not only on the input data as it was in regression, but also on the class label
C. Tt is still possible to evaluate Eq. (6.12) in closed form for simple den-
sities such as the uniform and for the tanh nonlinearity (that has a range
between [—1,1]). Assume we have two input overlapping classes, one uni-
form over [a,b] (class C_1) and the other over [¢,d] (class C1) with a < ¢ <
b < d. Then the information potential of the error for the one-parameter
perceptron is

) - -5 |

2+4e(e+2)log(le| /(2+¢€)) + 26} —1—tanh(a—wo)
(b—a)?(2+e)e

—1—tanh(b—wo)

+

2 {2 +e(e —2)log(le| /(e —2)) — 26} e (6.13)

4 (d - C)Q(e - 2)6 1—tanh(d—wq)

Silva [299] showed theoretical results with Eq. (6.13) that contradict the
principle of minimization of the error entropy when the two classes overlap
sufficiently, in the sense that the theoretical minimum probability of error
occurs at the maximum of the error entropy for the one-parameter perceptron
(wp). Likewise for the case of a two-parameter perceptron, there are many
cases of poor class separability.

Perhaps the biggest conundrum is to conciliate these theoretical results
with the experience that in practical problems (see Section 6.3), the classifi-
cation results with EEC are often better than the same classifier trained with
MSE. First and foremost, we have to realize that we do not train MLPs in
the same way as implied by the theoretical analysis of Eq. (6.12). Indeed this
cost function does not implement discriminative training because the errors
are computed independently for each class, while in MLP training with EEC
the error is computed in batch mode summing contributions of errors across
classes. Second, one uses kernel estimation. In fact using Eq. (5.5), the infor-
mation potential %(E) can be written in the following way,
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where c¢ is a normalizing constant for the number of samples in each class, N_1
and N7 are the number of exemplars having class —1 and 1, respectively, and
S_1 and S are the set of indices corresponding to class —1 and 1, respectively.

Just by looking at Eq. (6.14) we see that the IP estimator differs from
the theoretical calculations of Eq. (6.12) because there is an extra term (the
last term) that effectively computes the interactions between the errors of the
two classes. For large kernel sizes this third term may be sufficiently large to
change the cost function landscape. Silva [299] has shown that in some of the
cases where the theoretical probability of error corresponds to a maximum of
the entropy, the function estimated by Eq. (6.14) corresponds to a minimum,
more in line with what we would expect from the EEC principle. Therefore,
the conclusion is that the information potential of the error in batch mode is
richer as a cost function for classification than the theoretical calculation of
Eq. (6.12) which involves only the individual class entropies.

If we recall the estimation of the Euclidean or Cauchy—Schwarz diver-
gences in Chapter 2 and apply it in a classifier setting, the cross-information
potential is responsible for estimating the distance between the target and the
classifier output densities. Notice that the third term in Eq. (6.14) can also
be interpreted as a cross-information potential but now between the errors
of each class. Although there are marked differences between the two expres-
sions (Eq. (6.14) applies to errors, whereas the cross-information potential
works directly with the density of targets and classifier outputs), this analogy
deserves a more in-depth study to understand the difference between the the-
oretical EEC results and the practical applications of MEE, but it will not be
pursued here.

Performance of Classifier Trained with MEE

We illustrate here some of the published results of the application of EEC
and its MEE algorithm in classification which have generally yielded better
results than classification with the MSE cost function. However, we are not
currently in a position to state under what conditions EEC is a better cost in
classification so proper validation is required.
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Generalized Exclusive OR

We start with a simple example that shows the importance of kernel smoothing
in classification. The generalized XOR problem is designed to provide an ex-
perimental demonstration of the global optimization property of the entropy-
training algorithm we propose. Namely, the 5-bit parity problem in the class
of generalized XOR problems is considered. In this case study, a 5-5-1 MLP
with tanh nonlinearities in the hidden layer and a linear output PE is used.
The five inputs take the values +1 according to the considered bit sequence
and the desired output is also £1, corresponding to the case of even (+1) or
odd (—1) number of ones. The training set consists of all possible 32 input
sequences. In the constant kernel case, the kernel size is set to 0 = 10~ and
the MLP is trained for 1000 iterations starting from 100 random initial weight
vectors. In the annealed kernel case, the kernel size is annealed down expo-
nentially as ¢ = 10 — 107! in 1000 iterations for the same initial conditions
(these values were experimentally obtained). The results of these experiments
are summarized in Figure 6.1.
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Fig. 6.1. Results for the XOR problem: (a) estimated probability densities of the
final information potential values for the static kernel (dotted) and the annealed
kernel (solid) cases; (b) annealing of the kernel size versus iterations; (c¢) annealed
kernel case, desired output (solid), MLP output (dotted) (perfect match); (d) local
optimum from the static kernel case, desired output (solid), MLP output (dotted)
(from [86]).
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In Figure 6.1a, the probability distribution of the final (normalized) infor-
mation potential values is presented. Clearly, with the annealed kernels, the
final information potential values are concentrated around the global maxi-
mum, whereas with the static kernels the algorithm is often trapped at lo-
cal maxima. Figure 6.1b shows how the kernel size is exponentially annealed
down in 1000 iterations. Figures 6.1c and d show optimal MLP outputs, one
that exactly matches the desired output and a local optimum that produces
a low-grade output. Therefore, the MLP trained using the annealed kernels
achieved global optimum in all trials (100% of the time), whereas the MLP
trained using the static kernels could only achieve the global optimum 10% of
the time.

MEE in Real Word Classification Tasks

The EEC criterion was also used to train single hidden layer MLPs with a
different number of hidden units in the Diabetes, Wine, and Iris datasets of the
UC Irvine repository by Santos, [283]. Each MLP was trained 20 times for 150
epochs with two fold cross-validation, both for MEE and MSE. The number of
patterns for each of the databases is, respectively, 768, 178, 150. Santos et al.
suggest an empiric formula to choose the kernel size, ¢ = 25\/L/N where
L is the dimension of the classifier output and N the number of samples.
This value is normally much larger than the one found by density estimation
formulas (e.g., Silverman’s rule), and the author states that it consistently
outperformed the Silverman’s value in a large number of datasets (Ionosphere,
Sonar, WDBC, IRIS, Wine, 2 Vowels PB, Olive). This result may be related
to the discussion surrounding Eq. (6.14). Table 6.1 shows the results on the
test set as a function of the number of hidden processing elements (PE).

Table 6.1. Average Error Counts with MEE/MSE (From [283])

# PE Diabetes Diabetes Wine Wine Iris Iris
MEE MSE MEE MSE MEE MSE

2 23.89 28.40 3.62 9.72 4.36 4.72

3 23.94 27.25 3.81 4.27 4.43 4.75

4 23.99 26.42 1.94 3.03 4.38 4.15

5 23.80 25.10 2.54 3.20 4.30 3.97

6 24.10 24.70 2.47 3.06 4.42 5.18

7 24.10 24.40 2.44 2.39 4.31 4.65

8 23.90 23.90 2.16 2.92

9 24.30 24.00 2.22 2.50

10 23.60 24.10 2.31 2.95

11 24.02 27.41

12 24.93 27.64

STD 0.35 1.69 0.65 2.29 0.05 0.44
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The authors concluded that the MLP trained with MEE has a more
consistent performance across topologies; it seems to be less sensitive to the
dimension of the hidden layer, and tends to have the best performance with
fewer PEs. Finally, its performance also compares favorably with the MSE in
two out of the three cases.

6.4 Nonparametric Classifiers

Neural networks are still parametric mappers (i.e., universal topologies with
free parameters), but they are nonparametrically trained by means of a cost
function; that is, one does not need generative models of the data to config-
ure the free parameters to the problem at hand. This section addresses still
another class of classifiers that works directly with the data to make classifi-
cation decisions and that we appropriately call nonparametric classifiers. The
PDF and the concepts of Renyi’s o-norm, information potential, and informa-
tion forces outlined in Chapter 2 are utilized directly for classification. In fact,
as we stated in Section 6.2, a valid discriminant function is any function that
provides a large value for the partition of the space where the samples from
the class reside and low values for any other part of the space. When the data
classes do not overlap significantly, the PDF itself for each class estimated in a
training set is such a function because it measures the density of samples in a
region of the space. When class conditional PDFs are used as the discriminant
functions then classification is performed using the maximum likelihood prin-
ciple. Given an unlabeled sample in a test set, the maximum likelihood (ML)
principle can decide which class it belongs to and therefore perform classifi-
cation. A simple max operator is sufficient to implement the ML principle for
many classes because partnership is discrete (Figure 6.2). The problem is that
this method may not be very accurate in high-dimensional spaces, particularly
when data are scarce; therefore it is only applicable to a subset of the cases
of practical importance.

X1 L
Discriminant 1 >
X f M
2
Discriminant 2 > A —>
class
X
« N\
d-l Discriminant L >
X4

Fig. 6.2. General classifier built from discriminate functions.
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However, it is very simple because it yields a nonparametric classifier;
that is, one does not need a parametric system (neural network) to be
trained to construct the appropriate discriminant function. We propose to
utilize the o—information potential that are intrinsically related to Renyi’s o
entropies, so we are indirectly using an information theoretic classifier. With
the o—information potential we have two parameters to be set from the train-
ing set: the kernel size ¢ and the oo norm. Alternatively, two approaches are
also possible that extend the range of applications for short datasets and/or
high dimensional data: estimating the change in class divergence to include
discriminative information; and projecting the data to a subspace that pre-
serves discriminability with respect to the class labels, and then deciding class
partnership based on the max operator (maximum likelihood).

Information Potential and Force in Classification
Substituting Bayes rule into Eq. (6.2) we get

xg € Cf if k =argmax P(C))P(x0|Ci),
I=1,...L

where we disregard p(x) because it is common to all classes. If we as-
sume that the a priori probabilities are the same across the classes, the
MAP rule for classification defaults to a test of likelihoods (i.e., xo € Cj
if k = argmax; P(x0|C;)). This rule is very simple to implement with labeled
data and Parzen estimators (the information potential field of Chapter 2).
In fact, if we define p(z|Cy) = 1/Ny, szeck k(x — x;), the test of likelihood
becomes

xg € Cp if k= argmaxp(xo|C;) (6.15)

I=1,...,L

That is, we estimate the probability density at p(x = x¢|C)) from all the L
likelihood functions and attribute the class partnership to the one that has
the highest value. Figure 6.3 shows a simple 2D example of this rule for the
two-class half-moon data where the decision rule defaults to sign(p(x|C4) —
p(x|C2)). The kernel is a Gaussian with 6 =1 and o = 2.

Figure 6.3 also depicts the information forces to illustrate the “attraction”
force created in pattern space due to the simple existence of the samples
(information particles). In particular, notice the forces that are exerted at the
tips of the half-moons that “attract” these samples to each cluster of samples.
This is where the kernel size is critical because an inappropriate value may
reverse the direction of the forces and then the classification for the samples
at the boundary will be wrong. Moreover, the adaptation of the kernel size
presented in Chapter 3, and illustrated in Chapter 5 can be readily applied
here to fine tune the kernel size in the training set.

If one recalls the discussions in Chapter 2, the order o of the norm also af-
fects the forces because it weights differently regions of higher sample density
versus regions of lower sample density dependent upon the o selected. Indeed,
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Fig. 6.3. The information potential field (IP) and the information forces for each
class (left panel), the combined IPF and the boundary defined by the maximum
likelihood rule (right panel).

from Eq. (2.68) we can conclude that the o-IP field is built at every sam-
ple using a weighted Parzen estimation, where the weights are automatically
defined by the density of samples in the neighborhood;

N
Valox)) = 5% 206)Valoxy) = 0 3wy i = x5) w0y =% 2(x) (6.16)

Equation (6.16) can be used in the training set to find out which value of
o produces the best results. In order to be less sensitive to the scarcity of the
data, one can pose the classification problem in terms of divergences. Assume
first a two-class problem, and that f (z) and g(zx) are, respectively, the PDF
estimates for class 1 and class 2 obtained from a training set. For a new test
sample x;, we can estimate the incremental change in divergence when x; is
placed in f(x) or in §(x), denoted as ft(w),ﬁt(:c), respectively. For instance,
according to the Euclidean distance, we should place

Ty €Cp / (ft(x) — Q(w))Qdaj > / (f(x) — gt(x)fdx. (6.17)

In words, we should place the sample in the class that most increases the
divergence between the two classes (for mutual information the argument



6.5 Classification with Information Divergences 231

is that the sample should be placed in the class that most decreases the
mutual information). We show in Chapter 9 that this argument is also related
to support vector machine classification. Moreover, the computation can be
easily carried out with the IP of Chapter 2, and indeed without having to
do much computation if the recursive information potential of Eq. (4.4) is
utilized.

6.5 Classification with Information Divergences

Instead of training neural networks with MSE, EEC, or using the PDF as the
discriminant function in nonparametric classification, one can use the concept
of information divergence in classification, which includes the KL divergence,
Euclidean and Cauchy—Schwarz divergences, as well as Shannon mutual in-
formation and the two quadratic mutual information algorithms defined in
Chapter 2. In fact, the Fano bound is a strong theoretical result which shows
that the probability of error in classification is lower bounded by the mutual
information between data classes [97]. This link between mutual information
and classification error means that mutual information is able to quantify
separability between classes and suggests that it may be a very appropriate
choice as a cost function for classification to improve upon the bound. The ITL
techniques discussed in this book are readily applicable here as we have briefly
mentioned in Eq. (6.17), which essentially is using the conditional entropy to
implement a nonparametric classifier. Finally, the concept of information di-
vergence also leads to the very interesting topic of discriminative projections
that we frame as information filtering. These topics are expanded below.

Discriminative Projections

The problem we treat in this section has wide applicability in pattern recog-
nition when classifiers need to be implemented in large data spaces and the
data are scarce. We present a methodology to adapt linear or nonlinear pro-
jection networks that find the most discriminative subspace for classification,
taking full advantage of the fact that the labels in classification are indicator
functions; that is, they are discrete random variables [340].

X denotes a continuous multivariate random variable for the input data,
and C the class label vector which is discrete. We are given a set of training
data and their corresponding class labels {(x;,¢;),7 = 1,..., N}, and the task
is to design a classifier that assigns the correct class reliably when given an
unseen input x. Again, classification can be formulated as a MAP problem as
in Eq. (6.2):

¢ =argmax P(C;|x)=argmax pxc(X,c),
1 C

where P(C;|z) is the a posteriori probability of the class label ¢ given the
data x, and pxc(x, c) is their joint PDF. Normally, a neural network or other
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nonlinear system is trained to estimate directly the posteriors P(C;|z), but
conceptually one can also estimate the joint PDF pxc(x,c). However, when
the data x are high-dimensional and scarce, it is often difficult to obtain a
reliable estimation of the joint PDF. Dimensionality reduction (or feature ex-
traction) is therefore appropriate. A multiple-input multiple-output (MIMO)
information filter y = f(x,w) (where w is a parameter set) is needed with
dim(y) << dim(x) such that its outputs y can convey the most information
about the class label and discard all the other irrelevant information. To be
practical the dimensionality of y should also be decoupled from the number
of classes ¢, so solutions that create an error by subtraction (as MSE or EEC)
are inappropriate. The information filter outputs define a space for classifi-
cation, but the difficulty is to design a method that projects the data and
preserves discriminability.

Subspace projection is conventionally implemented with PCA (principal
component analysis) due to its simplicity, but PCA does not preserve dis-
criminability among classes [108]. Linear discriminant analysis (LDA) is an
alternative, but it is restricted to linear projections and Gaussian classes so
it suffers from these limitations [80]. The method outlined here seeks a pro-
jection that maximizes the mutual information of the projector output with
the targets to preserve as much discriminability as possible in the reduced
subspace, followed by a simple classifier (Figure 6.4). Based on the feature
vector y, the classification problem can be reformulated by the same MAP
strategy of Section 6.4 as

¢=argmax pyo(y,c) y = f(xw), (6.18)
where p(y, c) is the joint PDF of the classification feature y and c the class

label. The performance for this classification scheme crucially depends on how
good the feature vector y really is. The problem of reliable PDF estimation in
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Fig. 6.4. Training a classifier with QMIgp (from [349]).
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a high-dimensional space is now converted to the problem of building a reliable
information filter for classification based only on the given training dataset.
This goal is achieved again with the mutual information and the problem of
finding an optimal information filter is formulated as

w* =argmax I(Y = f(X,w),C), (6.19)

that is, to find the optimal parameter set w* such that the mutual information
between the classification feature Y and the class identity C' is maximized. Of
course the two optimization steps can be combined. To implement this idea,
mutual information should be estimated nonparametrically to avoid restrictive
assumptions, and this estimation is now done in the projected space, which is
simpler. When there is a large difference in dimensionality between X and Y
the information filter will be a simple linear projector although the method is
also applicable with minor modifications to nonlinear mappers.

Notice that one of the important aspects of this formulation is that the
dimensionality of y is not restricted to be equal to the dimensionality of ¢
because Eq. (6.19) is working with the joint and each of the marginal distri-
butions. This also is an indication that we suddenly are independent of the
actual dimensionality of the variables, and are only interested in their PDFs.

6.6 ITL Algorithms for Divergence and Mutual
Information

It should be apparent to the attentive reader that the learning procedures
of Chapters 4 and 5 can be easily modified to include the Cauchy-Schwarz
or Euclidean divergences or the corresponding mutual information definitions
introduced in Chapter 2 because they are defined as additive combinations of
different information potential fields. The big difference is that the error is
not constructed; instead, the class labels and the output of the classifier are
directly utilized to change the system parameters to match the label statistics.

In the ITL class of cost functions I'(X'), the general gradient form to train
system parameters w (implementing a smooth map) is

(ot (o) - i)
VkF(U)‘(@(u(z‘)u(m)( e B

which is calculated by the chain rule over the combination of the system topol-
ogy and cost function. Recall that the partial derivative in the first bracket
is the information force that depends on the specific cost function (the cost
variable u), and the second term is the partial derivative of u with respect to
the parameters of the system and depends upon the topology. If we want to
substitute the EEC cost function with any of the Dgp, Dcs, or QMIgp or
QMIcg the modifications are restricted to the first term (which may or may
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not imply a modification in the second term because by the chain rule they
need to be compatible). To illustrate, let us compute the gradient for Dgp
(Eq. (2.87)).

Remember that all the potentials in Dgp work with a pair of random
variables, unlike the EEC that only works with a single (the error) variable.
To demonstrate the method, let us assume that we have two functions f(x)
the system output and the desired response g(z). As shown in Eq. (2.99)
the potential field of Dgp, VED, is a combination of three different fields
created by the samples of f(z), the samples of g(z), and the crossiinformation
potential among them. The corresponding information potentials are written
for the case of N samples and where f(i) and g(4) refer to samples from f(x)
and g(x), respectively, assuming an arbitrary kernel k.

) | XX 5 N N
Vip = mzzﬂ(f(i) - fG) - N—ZZH(f(i) —9(j))

=1 j=1
1 N N
+z Do D hlali) -
i=1 j=1

In order to adapt a system with VED, the injected error (first term in
Eq. (6.20)) will be the information forces, that is, the partial derivative of
Vip with respect to the system output variable f(x). Therefore we just need
to substitute the numerator of the first partial derivative in Eq. (6.20) with
Vip and noticing that g(x) is independent of the system weights this yields

. G)) (OG) — F(7))
ViVep = N2ZZ <y>>< du )
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The minimization of the distance between f(z) and g(x) in linear systems
for weight k at iteration n uses the update equation (move in the opposite
direction of the gradient).

wi(n) = w(n — 1) — Vi Vep(n — 1). (6.22)

Similar equations can be written for Cauchy-Schwarz divergence and extended
to nonlinear systems (see Section 5.2).

Information Filtering with QMI

In this section, we implement with quadratic mutual information the pro-
jection procedure that ideally preserves class discriminability. We show how
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to adapt linear and nonlinear systems with quadratic mutual information
using the generalized information potential. As we saw in Chapter 2, the
case of the QMI is a bit more detailed than the divergences because we now
have three different information fields in the joint and marginal spaces. The
quadratic mutual information based on Euclidean distance QMIgp and its cor-
responding generalized information potential Igp are employed to illustrate
the procedure. No assumption is made on the data density and when there
is a large difference in dimensionality between X and Y the information
filter is a simple linear projector. The method is also applicable with mi-
nor modifications to nonlinear mappers (the term in the right bracket of
Eq. (6.16) will have to be substituted by the delta rule or backpropagation
algorithm).

In the case study that follows the input are images of size 64 x 64 (4096
dimensions), and there are three classes in a two-dimensional space, so we
use a two-dimensional projection space to derive the equations for QMIgp.
In classification, the three labels are discrete and define a probability mass
function that can be written as p(c) = N1/Nd(c — ¢1) + Na/Nd(c — co) +
N3/Nd(c — c3) where N; represents the cardinality of class i divided by the
number of samples, c; are the values of the class labels and the delta function
is defined as f(zo) = [d(z — xo) f(x)dz. Recall that QMIgp is specified by
the generalized information potential that for this case is given by

Ipp = // / (pyc (v,¢) — py (¥)pc (€))? dyy dys de

= ///pyc (y,¢)? dy1 dya de — 2///pyc(y,c)py(y)pc(c)dy1 dys dc,

+ [ [ [ v 0wc @y dyzdc (6.23)

where y; and y2 are the two outputs and c¢ is the class label. Because each
term is a quadratic function of PDFs we can use the IP as the estimator, and
obtain

V; ///ﬁyc %(y,c)dy,dyadc

N N
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i=1j=1

(6.24)

where 0 (c) = 1, iff ¢ = 0 is called the Kronecker delta (the discrete version of
the delta function). Alternatively, one could have used the fact that labels are
discrete and work directly with a mixed (discrete/continuous) joint density.
For the other terms we have
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By noting the property of the delta function, the sums are nonzero only
when i and j are drawn from the same class. So, the calculation of V; defaults
to the marginal PDF of Y estimated at the sample pairs that belong to the
class, which saves computation. Assuming in general that there are L classes,
that the samples are ordered from each class as N1, Na, ..., Nr, and a vector
representation for the outputs is utilized with an index that refers to the class
(when needed) then Eq. (6.24)—(6.26) become
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Once Igp is estimated, then we still need to adapt the projector param-
eters. The concept is exactly the same as explained in Section 6.6, with Iep
substituing I" in Eq. (6.20). Because we are interested in performing gradient
ascent in the Igp field (maximizing mutual information), the weight update
equation Eq. (6.22) uses a plus sign instead of the minus sign and Vip sub-
stituted by fED as

wk(n):wk(n—l)—i—nvkiED(n—i—l), fED ZVJ—QVC—FVM. (6.28)

The QMIgp information force in this particular case can be interpreted
as repulsion among the information particles with different class identity, and
attraction among the information particles within the same class.
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The appeal of this methodology is that once the projector to a small
feature space is adapted, it is easy to estimate the joint PDF pyc(y,c) by
Parzen windowing because the dimensionality now is low, which immediately
yields the MAP decision rule of Eq. (6.18). Moreover, the class label is a
discrete variable, thus the search for the maximum in Eq. (6.19) can be simply
implemented by comparing each value of pyc(y, ¢) to find the maximum.

There is a free variable in this method that is the best dimension M of the
subspace that obviously affects the quality of the final classification. One can
adopt the concepts of dimensionality analysis in dynamical systems and mod-
ify them to our setting. Potentially, Fano’s bound can be used to help select the
projection space dimensionality (see Section 6.8). The information divergence
formulation frees us from the use of EEC and allow us to truly start exploring
cost functions that manipulate divergences in probability spaces which is the
true appeal of information-theoretic learning (ITL). It is worth mentioning
another interesting feature of the divergence-based cost functions. As noted
in Chapter 1, the same criterion can be used for unsupervised learning, which
is fully exploited in Chapter 7.

6.6.1 Case Study: Automatic Target Recognition (ATR) with ITL

Before we actually describe the data it is necessary to explain briefly the
characteristics of automatic target recognition as open set classification. Au-
tomatic target recognition (ATR) is more demanding than the conventional
classification problems where all the data belong to one of the trained classes
(as illustrated in Section 6.3), which is normally called close set classification.
When an ATR classifier is deployed in the real world, it is very likely that new
vehicles (called confusers) will be encountered, that is, vehicles that belong
to none of the vehicle classes used in the training set (open set classification).
Therefore, the testing of ATR classifiers requires one or more confuser classes
to verify their performance. The issue can be understood in terms of false
positives (detection of confusers as belonging to one of the trained classes),
and missed detections (i.e., to reject the confusers some of the test vehicles
may not be classified because the confidence level of the classifier may be too
low to make a decision).

The aspect angle of a target (i.e., the angle from which the target is viewed)
is unknown, therefore ATR classifiers have to be trained for all 360 degrees of
aspect angles. Because the SAR image of a target is based on radar reflections
on the target, different aspect angles of the same target will result in quite
different SAR signatures. Instead of training a single classifier for the full 360
degrees of aspect angle, several classifiers can be trained for different aspect
angle sectors (this is a divide and conquer strategy), although it requires a
good estimator for the aspect angle. In this divide and conquer approach
better classification accuracy is obtained in this difficult problem [349].

Finally to evaluate better the generalization ability it is common practice
to create a test set of the same vehicles that is taken at a different depression
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Fig. 6.5. The SAR images of three vehicles for training classifier (0-30 degree)
(from [349]).

angle (the angle between the sensor line of sight and ground) of the training
set. This increases the difficulty of the task inasmuch as the radar returns in
angular objects change drastically with the depression angle.

The experiment is conducted on the MSTAR database [324]. There are
three classes of vehicles, BMP2, BTR70, and T72, classified from 64 x 64
pixel synthetic aperture radar (SAR) images with the approach described in
Section 6.6. The system diagram is shown in Figure 6.4.

Figure 6.5 shows the training images (22, 21, 19 images per class, respec-
tively) to illustrate the difficulty of the task.

Here, two types of confusers were used, so the test set was built from
images taken at a 15 degree depression angle of the following vehicles (for
each class, there are some different configurations) as shown below.

BMP2 BMP2_C21, BMP2_9563, BMP2_9566
BTR70——BTRI7_C71

T72—T72_132, T72_S7, T72_812

Confuser 251, D7

Aspect Angle Estimation with QMI

The design of the aspect angle estimator is done first to show the large ap-
plicability of this nonparametric MAP approach in pattern recognition appli-
cations. For instance, the problem of aspect angle (pose) in an image set can
be framed as the following maximum a posteriori problem. From the input
image x find a projection y that is maximally informative with respect to the
unknown aspect angle 0 (the latency variable) of the vehicle in the image:
0= arg meaxpyg(y, 0) y = f(x,w). For this particular case, because the pose
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Fig. 6.6. Performance of the pose estimator based on QMIgp when trained on a
vehicle and tested in another. In (a), diamonds are the training set poses and the
triangles the test set results. The axis in (b) shows the estimated angle (vertical)
versus the test image number ordered by increasing aspect angle (from [340]).

angle is a one-dimensional periodic variable we code it as a two-dimensional
vector a = [ay1, ag], where a; = sin(260) and as = cos(20) and construct a lin-
ear projector from 4096 dimensions to a 2D space of outputs [y1, y2] trained
to maximize the QMIgp between y and a. The difficulty of distinguishing
between front and back views in the SAR images of targets led us to use the
double of the angle to wrap around the angles between 0-180 instead of 0-360.
Once the system is trained with 53 exemplars (3.5 degree resolution), a new
image of a different vehicle is input to the system, the maximum value of y is
found, and the true pose is this angle divided by two to compensate for a. The
kernel size was selected at 6 = 0.01 (Silverman’s rule) and a large range of
kernel sizes (an order of magnitude in both directions) gave basically the same
results. Figure 6.6 shows an example of the pose estimator performance when
it is trained in one vehicle (BMP2) and tested in another (T72), while the
vehicle is being rotated from 0 to 360 degrees.

The left panel with diamonds shows the training performance, and the
triangles the test results. The right panel shows the pose estimation on the
y—axis versus the image number (ordered by increasing value of the aspect
angle) denoted as stars, and the true pose in the solid line. Due to the fact
that we only trained for 0-180 degrees, there is a wraparound phenomenon
with a jump of 180 degrees due to the confusion between front and back views.
If this jump is discounted the average pose error is 6.18 degrees and the s.d.
is 5.18 degrees. When the same network is trained with MSE the training set
error is slightly smaller, but the test results are much worse. The big advantage
of QMIgp training versus the MSE was obtained when the image was occluded
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Fig. 6.7. Occlusion results. Top row shows the overall results of the pose through
progressive occlusions in polar coordinates (left) and in value (right). The bottom
figures show two instances (c) and (e). Numbers on top represent (left to right) the
true pose and two different pose estimators (ML or mean of estimated PDF) (from
[340)).

with increasing amounts of background. As shown in Figure 6.7 the vehicle
image can be mostly occluded but the pose estimator is still reasonable.

Figure 6.7 shows in the top left panel the changes of pose estimation across
progressively larger occlusions. It is noticeable that the values (triangles) de-
crease towards the center of the circle but maintain more or less the same
angle. In the top right panel a more detailed view of the estimation is pro-
vided, where the true pose is shown (the solid horizontal line at 60 degrees),
and the estimations at different occlusions (horizontal axis). Two of the cases
(c) and (e) are shown in the bottom two panels. It is remarkable that it is
sufficient to observe a tiny part of the boundary of the object for the system
to estimate its pose.
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Training the Projector for Classification

The training of the discriminability-preserving projection is accomplished in
the same way as the pose estimator, except that now the labels are the three
target classes. That is, a linear network with 4096 inputs is trained to maxi-
mize the mutual information between the output of the projector in 2D space
and the class labels, using gradient ascent learning Eq. (6.28). Although there
are three classes, a two-dimensional feature space gave very good results and
is the one used for visualization. A training set built from 62 exemplars of the
three classes within the 0-30 degree sector were used for training (Figure 6.5
depicts the images from each vehicle included in the training set). The ker-
nel size was kept at the same value as for the pose estimator, the step size
was 1 = b x 107°, training was stopped at 200 iterations, and the class label
positions were chosen as the vertices of an equilateral triangle embedded in a
circumference of unit radius.

Snapshots of the network during training displaying the information forces
acting on the samples of each class are depicted in Figure 6.8 at different
phases of training. Panel A shows the initial phase with the three classes still
mixed together, but the forces are already pointing outward; Panel B shows
the result after 50 iterations with classes starting to separate, and the forces
are very strong at this stage. Panel C shows the output data distribution at
the final stage of the training where the three classes are clearly separated,
each class tends to shrink to one point, and the forces decrease towards zero.

After the projector is trained, the class PDFs estimated with the infor-
mation potential field (Eq. (6.16)) are used to assign the test set exemplars
to the classes using the MAP rule. Table 6.2 shows the classification result
for the sector 0-30 degrees. In spite of the limited number of training data, the
classifier still shows very good generalization ability because only two errors
occur in the test set.

For comparison purposes, an SVM classifier using the Gaussian kernel was
trained with cross-validation for the slack variables for best performance [349).

-7 L L L -2 " " L -2 "
-2 -1 [ 1 2 -2 -1 ] 1 F 2 = 1 2

b E ERN ,ﬁ-/ﬁ 3

Fig. 6.8. Information forces acting on the samples of each class during training
(from [254]).
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In this particular sector the SVM had higher errors (7 versus 2), but the overall
error rate of both classifiers in all the quadrants was statistically equivalent
and it is shown in Table 6.2.

The open set classification results for this sector with the two confuser
vehicles were also established by setting a threshold on the probability of
detection (Pd = 90%). Table 6.3 shows the detection performance for the
classifier trained with ITL and SVM. ITL records four false positives for the
two confusers, but SVM rejects them all. However, SVM misses more T 72
targets, so we conclude that the classification result of QMIgp is only slightly
worse than the support vector machine [349].

In terms of overall performance in all the sectors, Table 6.4 shows the
overall error rate for the test set (724 samples) of the template matcher (which
is the most widely used classifier for this problem using 36 templates per
target), a multiresolution PCA projector [349], the QMIgp classifier, and the
SVM. As the table shows, the QMI and SVM have comparable performance,

Table 6.2. Confusion Matrices for the ITL and SVM Classification (from [349])

ITL BMP2 BTR70 T72 SVM BMP2 BTR70 T72
BMP2-C21 18 0 0 BMP2-C21 18 0 0
BMP2-9563 11 0 0 BMP2-9563 11 0 0
BMP2-9566 15 0 0 BMP2-9566 15 0 0
BTR70 0 17 0 BTR70 0 17 0
T72-132 0 0 18 T72-132 0 0 18
T72-812 0 2 9 T72-812 5 2 4
T72-S7 0 0 15 T72-S7 0 0 15
Table 6.3. Confusion Matrices for Detection (Pd = 0.9) (from [349])
ITL BMP2 BTR70 T72 Reject SVM BMP2 BTR70 T72 Reject
BMP2-C21 18 0 0 0 BMP2-C21 18 0 0 0
BMP2-9563 11 0 0 2 BMP2-9563 11 0 0 2
BMP2-9566 15 0 0 2 BMP2-9566 15 0 0 2
BTR70 0 17 0 0 BTR70 0 17 0 0
T72-132 0 0 18 0 T72-132 0 0 18 0
T72-812 0 2 9 7 T72-812 0 1 2 8
T72-S7 0 0 15 0 T72-S7 0 0 12 3
251 0 3 0 24 251 0 0 0 27
D7 0 1 0 14 D7 0 0 0 16

Table 6.4. Overall Classification Results (from [349])

Classifier Error Rate (%)
Template 9.60
PCA-M 10.3
QMI-ED 5.93

SVM 5.13
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but they achieve classification in totally different ways: the SVM uses 400
support vectors to represent the classes, whereas the QMIgp chooses the best
2D projection that separates the classes.

This test with SAR ATR classification highlights the differences that we
have mentioned between training with EEC and training with QMI. The
training of the classifier really can be thought of as a projection to a lower-
dimensional space that preserves discriminability followed by classification in
the subspace. Hence, each one of the classes is mapped independently of the
other, unlike the case of the EEC which combines the errors of each class and
changes the weights with this combined information. We have only presented
results where the IP is used for both projecting the data and classification,
but any other classifier can be used in the projected space.

Case Study: Training (deep) Networks Layer by Layer with QMI

The conventional paradigm to train multilayer networks is by backpropagating
the errors across the network layers. This is a clever and well-studied proce-
dure that brings error information from the top (i.e., closer to the output)
layers back to the bottom (i.e., closer to the input) layers and trains the mul-
tilayer system in a cohesive way. However, in computational neuroscience, the
biological plausibility of the error backpropagation step has been questioned,
and in more general terms, it is conceptually important to know if a purely
feedforward training procedure is able to discover complex mappings one stage
at a time (e.g., deep and growing networks). We show here that maximizing
quadratic mutual information (using QMIgp) at each layer of a nonlinear
network (MLP) with respect to a desired signal is able to discover complex
mappings. In a sense the maximization of the mutual information with respect
to the training signal at each layer substitutes for the backpropagated error
from the top layers. We basically use the methodology of Section 6.5 to find
subspace projections. We consider each network layer as an information filter
that is trained to convey in its output (Y') as much input information (X)
about the desired response Z as possible (Figure 6.9).

Input x(n) Desired z(n)

Fig. 6.9. TDNN trained one stage a time without error backpropagation.
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w* =argmax I(Y = f(X,w), Z).
w

Equation (6.23) is the one that applies to QMIgp, except now the class
labels ¢ are substituted by the desired signal z(n) which is a continuous vari-
able, so there are no simplifications in the kernel estimation of VJ, Vc, Vs
(see Eq. (2.103)). Because each layer of the MLP is nonlinear, Eq. (6.20) needs
to be applied with an update for nonlinear PEs, which results in the following
gradients (GIFs) for each one of the field components
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We demonstrate this training in the so-called frequency doubler, already men-
tioned in Chapter 5: a TDNN that duplicates the frequency of any periodic
signal presented at its input (Figure 6.9).

A system that doubles the frequency of its input must be nonlinear be-
cause, by definition, linear systems do not create new frequencies. Here we
construct a TDNN with four delays in the input layer, two nonlinear process-
ing elements (tanh) in the hidden layer, with a single linear processing element
in the output layer. The number of delays should be selected to create a proper
embedding of the input signal dynamics (for a sinewave one single delay is
sufficient, but more delays simplify the discovery of the mapping).

The input sinewave x(n) has 80 samples per cycle, and the desired response
z(n) has 40 samples per cycle. QMIgp and gradient ascent learning with kernel
annealing are used here as the criterion and adaptive algorithm to train the
parameters of the TDNN, except that the training proceeds as follows. The
input layer weights are trained first until convergence, are fixed, and only then
the output weights are trained. Although it is possible to train all the weights
at the same time, this procedure is wasteful because the output layer learns its
part of the mapping only after the first layer training stabilizes. The kernel size
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Fig. 6.10. Left panel: input to the two nonlinear PEs. Middle panel: output of the
two nonlinear PEs showing the saturation that corresponds to the maximum QMI
solution for this problem and system. Right panel: The final solution obtained in
the output layer, which just flips one signal and adds the other.

starts at a large value (6 = 10) and is annealed through training to 6 = 0.5
which is appropriate for the statistics of the sinewave with unit amplitude,
and it is hoped, avoids the local minima of the performance surface. We select
a batch size at least as large as one period of the input to provide a good
description of the input PDF. Another slight modification is to use just the
sign of the gradient (instead of the actual value) as suggested in Chapter 5 in
the resilient backpropagation, because it makes training less dependent upon
the actual structure of the performance surface (the existence of plateaus is
one of the difficulties of neural network training). The stepsize is 0.01, and
the number of training epochs is heuristically selected at 200.

Figure 6.10 shows from left to right the inputs to the nonlinear PEs and
the corresponding hidden PE outputs that are trained first with QMIgp. The
mapping is very similar to the one found by conventional backpropagation
learning [253]. Basically the solution requires that the hidden PEs saturate
opposite sides of the input signal, and the output layer flips one and adds
them as shown in the rightmost panel of the figure. We can now state that
this solution also maximizes the mutual information at every layer of the
deep network. It is particularly surprising that the saturation produced in the
hidden layer, which is critical to build the double frequency, is a maximum
mutual information solution for this problem with this type of nonlinearity.

Training the TDNN with QMIgp is not simple, due to the local minima
and shallow slopes. Figure 6.11 shows the effect of the kernel size in the perfor-
mance surface to adapt the output weights and demonstrates the advantage
of the kernel annealing. The two top panels obtained with a large kernel size
show basically a convex performance surface but with a very flat and broad
convexity, and the bottom panels, obtained with a smaller kernel size com-
patible with the data variance, show a well-defined global minimum but with
many other local minima. Kernel annealing therefore helps avoid local minima
but the current state solution still needs to be close to the optimum (hence
the advantage of working just with the sign of the gradient).
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Fig. 6.11. The performance surface for the output layer obtained with different
kernel sizes sigma =10, 5,1, 0.5 (clockwise from top left). Note the smoothing effect:
for large kernel sizes, the solution is basically convex but with a very broad minimum.
When the kernel size is reduced, the basin where the minimum exists is reduced, but
other minima pop out, making the search much harder if the kernel is not annealed.

The QMIgp solution also has a few drawbacks with respect to the conven-
tional training of the MLP with backpropagation. In fact, the cost function
evaluates statistics of the input and desired responses, not matching sample-
by-sample differences. Moreover, it works with pairs of samples of each signal
so it is insensitive to the dc value, polarity, and to a certain extent also am-
plitude of the desired signal. Only the “PDF shapes” matter, which may be
a hindrance or a great advantage, depending upon the application. So we are
not yet ready to give up on backpropagation to adapt deep networks, but
the proof of concept of adaptation with maximizing mutual information is
established.

6.7 The Role of ITL Feature Extraction in Classification

In the previous section we showed how to use QMI to find an information
theoretic linear subspace to represent data for classification (it can be a man-
ifold if the projector is nonlinear). However, we loose the ability to determine
the importance of each input as is required in feature selection. Here we com-
pare ITL with more traditional methods of selecting and ranking individual
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Fig. 6.12. Block diagram of a generic classification system (from [151]).

features, and with the design of optimal classifiers. We also introduce a more
computationally efficient algorithm to train the projector.

The feature extractor and the classifier are shown in Figure 6.12, where
sc(i), xc(4), and y.(¢) are the inputs (size N; x 1), the output features (size
No x 1), and classifier outputs (size N¢ x 1), respectively, for the ith exemplar,
which happens to belong to class ¢ (s(i) and x(i) are used to denote the ith
exemplar irrespec