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To my wife, Jeannette



There are many branches of learning theory that have not yet been analyzed and that are important
both for understanding the phenomenon of learning and for practical applications. They are waiting
for their researchers.

—Vladimir Vapnik

Geometry is illuminating; probability theory is powerful.
—Pal Rujan
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Series Foreword

One of the most exciting recent developments in machine learning is the discovery
and elaboration of kernel methods for classification and regression. These algo-
rithms combine three important ideas into a very successful whole. From mathe-
matical programming, they exploit quadratic programming algorithms for convex
optimization; from mathematical analysis, they borrow the idea of kernel repre-
sentations; and from machine learning theory, they adopt the objective of finding
the maximum-margin classifier. After the initial development of support vector
machines, there has been an explosion of kernel-based methods. Ralf Herbrich’s
Learning Kernel Classifiers is an authoritative treatment of support vector ma-
chines and related kernel classification and regression methods. The book examines
these methods both from an algorithmic perspective and from the point of view of
learning theory. The book’s extensive appendices provide pseudo-code for all of the
algorithms and proofs for all of the theoretical results. The outcome is a volume
that will be a valuable classroom textbook as well as a reference for researchers in
this exciting area.

The goal of building systems that can adapt to their environment and learn from
their experience has attracted researchers from many fields, including computer
science, engineering, mathematics, physics, neuroscience, and cognitive science.
Out of this research has come a wide variety of learning techniques that have the
potential to transform many scientific and industrial fields. Recently, several re-
search communities have begun to converge on a common set of issues surround-
ing supervised, unsupervised, and reinforcement learning problems. The MIT Press
series on Adaptive Computation and Machine Learning seeks to unify the many di-
verse strands of machine learning research and to foster high quality research and
innovative applications.

Thomas Dietterich
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Preface

Machine learning has witnessed a resurgence of interest over the last few years,
which is a consequence of the rapid development of the information industry.
Data is no longer a scarce resource—it is abundant. Methods for “intelligent”
data analysis to extract relevant information are needed. The goal of this book
is to give a self-contained overview of machine learning, particularly of kernel
classifiers—both from an algorithmic and a theoretical perspective. Although there
exist many excellent textbooks on learning algorithms (see Duda and Hart (1973),
Bishop (1995), Vapnik (1995), Mitchell (1997) and Cristianini and Shawe-Taylor
(2000)) and on learning theory (see Vapnik (1982), Kearns and Vazirani (1994),
Wolpert (1995), Vidyasagar (1997) and Anthony and Bartlett (1999)), there is no
single book which presents both aspects together in reasonable depth. Instead,
these monographs often cover much larger areas of function classes, e.g., neural
networks, decision trees or rule sets, or learning tasks (for example regression
estimation or unsupervised learning). My motivation in writing this book is to
summarize the enormous amount of work that has been done in the specific field
of kernel classification over the last years. It is my aim to show how all the work
is related to each other. To some extent, I also try to demystify some of the recent
developments, particularly in learning theory, and to make them accessible to a
larger audience. In the course of reading it will become apparent that many already
known results are proven again, and in detail, instead of simply referring to them.
The motivation for doing this is to have all these different results together in one
place—in particular to see their similarities and (conceptual) differences.

The book is structured into a general introduction (Chapter 1) and two parts,
which can be read independently. The material is emphasized through many ex-
amples and remarks. The book finishes with a comprehensive appendix containing
mathematical background and proofs of the main theorems. It is my hope that the
level of detail chosen makes this book a useful reference for many researchers
working in this field. Since the book uses a very rigorous notation systems, it is
perhaps advisable to have a quick look at the background material and list of sym-
bols on page 331.
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Preface

The first part of the book is devoted to the study of algorithms for learning
kernel classifiers. This part starts with a chapter introducing the basic concepts of
learning from a machine learning point of view. The chapter will elucidate the ba-
sic concepts involved in learning kernel classifiers—in particular the kernel tech-
nique. It introduces the support vector machine learning algorithm as one of the
most prominent examples of a learning algorithm for kernel classifiers. The second
chapter presents the Bayesian view of learning. In particular, it covers Gaussian
processes, the relevance vector machine algorithm and the classical Fisher discrim-
inant. The first part is complemented by Appendix D, which gives all the pseudo
code for the presented algorithms. In order to enhance the understandability of the
algorithms presented, all algorithms are implemented in R—a statistical language
similar to S-PLUS. The source code is publicly available at ht t p: / / www. ker nel -
machi nes. or g/ . At this web site the interested reader will also find additional
software packages and many related publications.

The second part of the book is devoted to the theoretical study of learning algo-
rithms, with a focus on kernel classifiers. This part can be read rather independently
of the first part, although I refer back to specific algorithms at some stages. The first
chapter of this part introduces many seemingly different models of learning. It was
my objective to give easy-to-follow “proving arguments” for their main results,
sometimes presented in a “vanilla” version. In order to unburden the main body,
all technical details are relegated to Appendix B and C. The classical PAC and
VC frameworks are introduced as the most prominent examples of mathematical
models for the learning task. It turns out that, despite their unquestionable gener-
ality, they only justify training error minimization and thus do not fully use the
training sample to get better estimates for the generalization error. The following
section introduces a very general framework for learning—the luckiness frame-
work. This chapter concludes with a PAC-style analysis for the particular class of
real-valued (linear) functions, which qualitatively justifies the support vector ma-
chine learning algorithm. Whereas the first chapter was concerned with bounds
which hold uniformly for all classifiers, the methods presented in the second chap-
ter provide bounds for specific learning algorithms. I start with the PAC-Bayesian
framework for learning, which studies the generalization error of Bayesian learn-
ing algorithms. Subsequently, I demonstrate that for all learning algorithms that
can be expressed as compression schemes, we can upper bound the generalization
error by the fraction of training examples used—a quantity which can be viewed
as a compression coefficient. The last section of this chapter contains a very re-
cent development known as algorithmic stability bounds. These results apply to all
algorithms for which an additional training example has only limited influence.
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Preface

As with every book, this monograph has (almost surely) typing errors as well
as other mistakes. Therefore, whenever you find a mistake in this book, I would be
very grateful to receive an email at her bri ch@er nel - machi nes. or g. The list of
errata will be publicly available at ht t p: / / www. ker nel - machi nes. or g.

This book is the result of two years’ work of a computer scientist with a
strong interest in mathematics who stumbled onto the secrets of statistics rather
innocently. Being originally fascinated by the the field of artificial intelligence, I
started programming different learning algorithms, finally ending up with a giant
learning system that was completely unable to generalize. At this stage my interest
in learning theory was born—highly motivated by the seminal book by Vapnik
(1995). In recent times, my focus has shifted toward theoretical aspects. Taking
that into account, this book might at some stages look mathematically overloaded
(from a practitioner’s point of view) or too focused on algorithmical aspects (from
a theoretician’s point of view). As it presents a snapshot of the state-of-the-art, the
book may be difficult to access for people from a completely different field. As
complementary texts, I highly recommend the books by Cristianini and Shawe-
Taylor (2000) and Vapnik (1995).

This book is partly based on my doctoral thesis (Herbrich 2000), which I wrote
at the Technical University of Berlin. I would like to thank the whole statistics
group at the Technical University of Berlin with whom I had the pleasure of
carrying out research in an excellent environment. In particular, the discussions
with Peter Bollmann-Sdorra, Matthias Burger, Jorg Betzin and Jiirgen Schweiger
were very inspiring. I am particularly grateful to my supervisor, Professor Ulrich
Kockelkorn, whose help was invaluable. Discussions with him were always very
delightful, and I would like to thank him particularly for the inspiring environment
he provided. I am also indebted to my second supervisor, Professor John Shawe-
Taylor, who made my short visit at the Royal Holloway College a total success.
His support went far beyond the short period at the college, and during the many
discussions we had, I easily understood most of the recent developments in learning
theory. His “anytime availability” was of uncountable value while writing this
book. Thank you very much! Furthermore, I had the opportunity to visit the
Department of Engineering at the Australian National University in Canberra. |
would like to thank Bob Williamson for this opportunity, for his great hospitality
and for the many fruitful discussions. This book would not be as it is without the
many suggestions he had. Finally, I would like to thank Chris Bishop for giving all
the support I needed to complete the book during my first few months at Microsoft
Research Cambridge.
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Preface

During the last three years I have had the good fortune to receive help from
many people all over the world. Their views and comments on my work were
very influential in leading to the current publication. Some of the many people I
am particularly indebted to are David McAllester, Peter Bartlett, Jonathan Bax-
ter, Shai Ben-David, Colin Campbell, Nello Cristianini, Denver Dash, Thomas
Hofmann, Neil Lawrence, Jens Matthias, Manfred Opper, Patrick Pérez, Gunnar
Ritsch, Craig Saunders, Bernhard Scholkopf, Matthias Seeger, Alex Smola, Pe-
ter Sollich, Mike Tipping, Jaco Vermaak, Jason Weston and Hugo Zaragoza. In
the course of writing the book I highly appreciated the help of many people who
proofread previous manuscripts. David McAllester, Jorg Betzin, Peter Bollmann-
Sdorra, Matthias Burger, Thore Graepel, Ulrich Kockelkorn, John Krumm, Gary
Lee, Craig Saunders, Bernhard Scholkopf, Jiirgen Schweiger, John Shawe-Taylor,
Jason Weston, Bob Williamson and Hugo Zaragoza gave helpful comments on the
book and found many errors. I am greatly indebted to Simon Hill, whose help in
proofreading the final manuscript was invaluable. Thanks to all of you for your
enormous help!

Special thanks goes to one person—Thore Graepel. We became very good
friends far beyond the level of scientific cooperation. I will never forget the many
enlightening discussions we had in several pubs in Berlin and the few excellent
conference and research trips we made together, in particular our trip to Australia.
Our collaboration and friendship was—and still is—of uncountable value for me.
Finally, I would like to thank my wife, Jeannette, and my parents for their patience
and moral support during the whole time. I could not have done this work without
my wife’s enduring love and support. I am very grateful for her patience and
reassurance at all times.

Finally, I would like to thank Mel Goldsipe, Bob Prior, Katherine Innis and
Sharon Deacon Warne at The MIT Press for their continuing support and help
during the completion of the book.



1 Introduction

This chapter introduces the general problem of machine learning and how it re-
lates to statistical inference. It gives a short, example-based overview about super-
vised, unsupervised and reinforcement learning. The discussion of how to design a
learning system for the problem of handwritten digit recognition shows that kernel
classifiers offer some great advantages for practical machine learning. Not only are
they fast and simple to implement, but they are also closely related to one of the
most simple but effective classification algorithms—the nearest neighbor classi-
fier. Finally, the chapter discusses which theoretical questions are of particular, and
practical, importance.

1.1 The Learning Problem and (Statistical) Inference

It was only a few years after the introduction of the first computer that one
of man’s greatest dreams seemed to be realizable—artificial intelligence. It was
envisaged that machines would perform intelligent tasks such as vision, recognition
and automatic data analysis. One of the first steps toward intelligent machines is
machine learning.

The learning problem can be described as finding a general rule that explains
data given only a sample of limited size. The difficulty of this task is best compared
to the problem of children learning to speak and see from the continuous flow of
sounds and pictures emerging in everyday life. Bearing in mind that in the early
days the most powerful computers had much less computational power than a cell
phone today, it comes as no surprise that much theoretical research on the potential
of machines’ capabilities to learn took place at this time. One of the most influential
works was the textbook by Minsky and Papert (1969) in which they investigate
whether or not it is realistic to expect machines to learn complex tasks. They
found that simple, biologically motivated learning systems called perceptrons were
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incapable of learning an arbitrarily complex problem. This negative result virtually
stopped active research in the field for the next ten years. Almost twenty years later,
the work by Rumelhart et al. (1986) reignited interest in the problem of machine
learning. The paper presented an efficient, locally optimal learning algorithm for
the class of neural networks, a direct generalization of perceptrons. Since then,
an enormous number of papers and books have been published about extensions
and empirically successful applications of neural networks. Among them, the most
notable modification is the so-called support vector machine—a learning algorithm
for perceptrons that is motivated by theoretical results from statistical learning
theory. The introduction of this algorithm by Vapnik and coworkers (see Vapnik
(1995) and Cortes (1995)) led many researchers to focus on learning theory and its
potential for the design of new learning algorithms.

The learning problem can be stated as follows: Given a sample of limited
size, find a concise description of the data. If the data is a sample of input-
output patterns, a concise description of the data is a function that can produce
the output, given the input. This problem is also known as the supervised learning
problem because the objects under considerations are already associated with target
values (classes, real-values). Examples of this learning task include classification of
handwritten letters and digits, prediction of the stock market share values, weather
forecasting, and the classification of news in a news agency.

If the data is only a sample of objects without associated target values, the
problem is known as unsupervised learning. A concise description of the data
could be a set of clusters or a probability density stating how likely it is to
observe a certain object in the future. Typical examples of unsupervised learning
tasks include the problem of image and text segmentation and the task of novelty
detection in process control.

Finally, one branch of learning does not fully fit into the above definitions:
reinforcement learning. This problem, having its roots in control theory, considers
the scenario of a dynamic environment that results in state-action-reward triples
as the data. The difference between reinforcement and supervised learning is that
in reinforcement learning no optimal action exists in a given state, but the learning
algorithm must identify an action so as to maximize the expected reward over time.
The concise description of the data is in the form of a strategy that maximizes the
reward. Subsequent subsections discuss these three different learning problems.

Viewed from a statistical perspective, the problem of machine learning is far
from new. In fact, it can be related to the general problem of inference, i.e., go-
ing from particular observations to general descriptions. The only difference be-
tween the machine learning and the statistical approach is that the latter considers
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description of the data in terms of a probability measure rather than a determin-
istic function (e.g., prediction functions, cluster assignments). Thus, the tasks to
be solved are virtually equivalent. In this field, learning methods are known as es-
timation methods. Researchers long have recognized that the general philosophy
of machine learning is closely related to nonparametric estimation. The statistical
approach to estimation differs from the learning framework insofar as the latter
does not require a probabilistic model of the data. Instead, it assumes that the only
interest is in further prediction on new instances—a less ambitious task, which
hopefully requires many fewer examples to achieve a certain performance.

The past few years have shown that these two conceptually different approaches
converge. Expressing machine learning methods in a probabilistic framework is
often possible (and vice versa), and the theoretical study of the performances of
the methods is based on similar assumptions and is studied in terms of probability
theory. One of the aims of this book is to elucidate the similarities (and differences)
between algorithms resulting from these seemingly different approaches.

1.1.1 Supervised Learning

In the problem of supervised learning we are given a sample of input-output pairs
(also called the training sample), and the task is to find a deterministic function
that maps any input to an output such that disagreement with future input-output
observations is minimized. Clearly, whenever asked for the target value of an object
present in the training sample, it is possible to return the value that appeared
the highest number of times together with this object in the training sample.
However, generalizing to new objects not present in the training sample is difficult.
Depending on the type of the outputs, classification learning, preference learning
and function learning are distinguished.

Classification Learning

If the output space has no structure except whether two elements of the output
space are equal or not, this is called the problem of classification learning. Each
element of the output space is called a class. This problem emerges in virtually
any pattern recognition task. For example, the classification of images to the
classes “image depicts the digit x”” where x ranges from “zero” to “nine” or the
classification of image elements (pixels) into the classes “pixel is a part of a cancer
tissue” are standard benchmark problems for classification learning algorithms (see
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Figure 1.1 Classification learning of handwritten digits. Given a sample of images from
the four different classes “zero”, “two”, “seven” and “nine” the task is to find a function
which maps images to their corresponding class (indicated by different colors of the

border). Note that there is no ordering between the four different classes.

also Figure 1.1). Of particular importance is the problem of binary classification,
i.e., the output space contains only two elements, one of which is understood
as the positive class and the other as the negative class. Although conceptually
very simple, the binary setting can be extended to multiclass classification by
considering a series of binary classifications.

Preference Learning

If the output space is an order space—that is, we can compare whether two
elements are equal or, if not, which one is to be preferred—then the problem of
supervised learning is also called the problem of preference learning. The elements
of the output space are called ranks. As an example, consider the problem of
learning to arrange Web pages such that the most relevant pages (according to a
query) are ranked highest (see also Figure 1.2). Although it is impossible to observe
the relevance of Web pages directly, the user would always be able to rank any pair
of documents. The mappings to be learned can either be functions from the objects
(Web pages) to the ranks, or functions that classify two documents into one of three
classes: “first object is more relevant than second object”, “objects are equivalent”
and “second object is more relevant than first object”. One is tempted to think that
we could use any classification of pairs, but the nature of ranks shows that the
represented relation on objects has to be asymmetric and transitive. That means, if
“object b is more relevant than object a”” and “object ¢ is more relevant than object
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Figure 1.2 Preference learning of Web pages. Given a sample of pages with different
relevances (indicated by different background colors), the task is to find an ordering of the
pages such that the most relevant pages are mapped to the highest rank.

b, then it must follow that “object ¢ is more relevant than object «”. Bearing this
requirement in mind, relating classification and preference learning is possible.

Function Learning

If the output space is a metric space such as the real numbers then the learning
task is known as the problem of function learning (see Figure 1.3). One of the
greatest advantages of function learning is that by the metric on the output space
it is possible to use gradient descent techniques whenever the functions value
f (x) is a differentiable function of the object x itself. This idea underlies the
back-propagation algorithm (Rumelhart et al. 1986), which guarantees the finding
of a local optimum. An interesting relationship exists between function learning
and classification learning when a probabilistic perspective is taken. Considering
a binary classification problem, it suffices to consider only the probability that a
given object belongs to the positive class. Thus, whenever we are able to learn
the function from objects to [0, 1] (representing the probability that the object is
from the positive class), we have learned implicitly a classification function by
thresholding the real-valued output at % Such an approach is known as logistic
regression in the field of statistics, and it underlies the support vector machine
classification learning algorithm. In fact, it is common practice to use the real-
valued output before thresholding as a measure of confidence even when there is
no probabilistic model used in the learning process.
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Figure 1.3 Function learning in action. Given is a sample of points together with asso-
ciated real-valued target values (crosses). Shown are the best fits to the set of points using
a linear function (left), a cubic function (middle) and a 10th degree polynomial (right).
Intuitively, the cubic function class seems to be most appropriate; using linear functions
the points are under-fitted whereas the 10th degree polynomial over-fits the given sample.

1.1.2 Unsupervised Learning

In addition to supervised learning there exists the task of unsupervised learning. In
unsupervised learning we are given a training sample of objects, for example im-
ages or pixels, with the aim of extracting some “structure” from them—e.g., iden-
tifying indoor or outdoor images, or differentiating between face and background
pixels. This is a very vague statement of the problem that should be rephrased bet-
ter as learning a concise representation of the data. This is justified by the following
reasoning: If some structure exists in the training objects, it is possible to take ad-
vantage of this redundancy and find a short description of the data. One of the most
general ways to represent data is to specify a similarity between any pairs of ob-
jects. If two objects share much structure, it should be possible to reproduce the
data from the same “prototype”. This idea underlies clustering algorithms: Given a
fixed number of clusters, we aim to find a grouping of the objects such that similar
objects belong to the same cluster. We view all objects within one cluster as being
similar to each other. If it is possible to find a clustering such that the similarities of
the objects in one cluster are much greater than the similarities among objects from
different clusters, we have extracted structure from the training sample insofar as
that the whole cluster can be represented by one representative. From a statistical
point of view, the idea of finding a concise representation of the data is closely re-
lated to the idea of mixture models, where the overlap of high-density regions of the
individual mixture components is as small as possible (see Figure 1.4). Since we
do not observe the mixture component that generated a particular training object,
we have to treat the assignment of training examples to the mixture components as
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Figure 1.4 (Left) Clustering of 150 training points (black dots) into three clusters (white
crosses). Each color depicts a region of points belonging to one cluster. (Right) Probability
density of the estimated mixture model.

hidden variables—a fact that makes estimation of the unknown probability mea-
sure quite intricate. Most of the estimation procedures used in practice fall into the
realm of expectation-maximization (EM) algorithms (Dempster et al. 1977).

1.1.3 Reinforcement Learning

The problem of reinforcement learning is to learn what to do—how to map situa-
tions to actions—so as to maximize a given reward. In contrast to the supervised
learning task, the learning algorithm is not told which actions to take in a given sit-
uation. Instead, the learner is assumed to gain information about the actions taken
by some reward not necessarily arriving immediately after the action is taken. One
example of such a problem is learning to play chess. Each board configuration, i.e.,
the position of all figures on the 8 x 8 board, is a given state; the actions are the
possible moves in a given position. The reward for a given action (chess move) is
winning the game, losing it or achieving a draw. Note that this reward is delayed
which is very typical for reinforcement learning. Since a given state has no “op-
timal” action, one of the biggest challenges of a reinforcement learning algorithm
is to find a trade-off between exploration and exploitation. In order to maximize
reward a learning algorithm must choose actions which have been tried out in the
past and found to be effective in producing reward—it must exploit its current
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Figure 1.5 (Left) The first 49 digits (28 x 28 pixels) of the MNIST dataset. (Right)
The 49 images in a data matrix obtained by concatenation of the 28 rows thus resulting in
28 - 28 = 784—dimensional data vectors. Note that we sorted the images such that the four
images of “zero” are the first, then the 7 images of “one” and so on.

knowledge. On the other hand, to discover those actions the learning algorithm has
to choose actions not tried in the past and thus explore the state space. There is no
general solution to this dilemma, but that neither of the two options can lead ex-
clusively to an optimal strategy is clear. As this learning problem is only of partial
relevance to this book, the interested reader should refer Sutton and Barto (1998)
for an excellent introduction to this problem.

1.2 Learning Kernel Classifiers

Here is a typical classification learning problem. Suppose we want to design a
system that is able to recognize handwritten zip codes on mail envelopes. Initially,
we use a scanning device to obtain images of the single digits in digital form.
In the design of the underlying software system we have to decide whether we
“hardwire” the recognition function into our program or allow the program to
learn its recognition function. Besides being the more flexible approach, the idea of
learning the recognition function offers the additional advantage that any change
involving the scanning can be incorporated automatically; in the “hardwired”
approach we would have to reprogram the recognition function whenever we
change the scanning device. This flexibility requires that we provide the learning
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Figure 1.6 Classification of three new images (leftmost column) by finding the five
images from Figure 1.5 which are closest to it using the Euclidean distance.

algorithm with some example classifications of typical digits. In this particular case
it is relatively easy to acquire at least 100—-1000 images and label them manually
(see Figure 1.5 (left)).

Our next decision involves the representation of the images in the computer.
Since the scanning device supplies us with an image matrix of intensity values at
fixed positions, it seems natural to use this representation directly, i.e., concatenate
the rows of the image matrix to obtain a long data vector for each image. As a
consequence, the data can be represented by a matrix X with as many rows as
number of training samples and as many columns are there are pixels per image
(see Figure 1.5 (right)). Each row x; of the data matrix X represents one image o