Wang, Jun et a "Frontmatter"

Computational Intelligence in Manufacturing Handbook
Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Library of Congress Cataloging-in-Publication Data

Wang, Jun.
Computational intelligence in manufacturing handbook / Jun Wang and Andrew Kusiak.
p. cm. — (Mechanical engineering)

Includes bibliographical references and index.

ISBN 0-8493-0592-6 (alk. paper)

1. Production management—Data processing. 2. Computational intelligence—Industrial
applications. 3. Manufacturing processes—Automation. |. Title. Il. Advanced topics in
mechanical engineering series

TS155.6 .W36 2000
658.5'14—dc21 00-049826
CIP

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

All rights reserved. Authorization to photocopy items for internal or personal use, or the personal or internal use of specific

clients, may be granted by CRC Press LLC, provided that $.50 per page photocopied is paid directly to Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923 USA. The fee code for users of the Transactional Reporting Service is
ISBN 0-8493-0592-6/01/$0.00+$.50. The fee is subject to change without notice. For organizations that have been granted
a photocopy license by the CCC, a separate system of payment has been arranged.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0592-6
Library of Congress Card Number 00-049826
Printed in the United States of America 1 2 3 4 56 7 8 9 0
Printed on acid-free paper

©2001 CRC Press LLC

Preface

Computational intelligence involves science-based approaches and technologies for analyzing, designing,
and developing intelligent systems. The broad usage of this term was formalized by the IEEE Neural
Network Council and the IEEE World Congress on Computational Intelligence in Orlando, Florida in
the summer of 1994. It represents a union of neural networks, fuzzy systems, evolutionary computation
techniques, and other emerging intelligent agents and technologies.

The past two decades have witnessed the resurgence of studies in neural networks, fuzzy logic, and
genetic algorithms in the areas we now call computational intelligence. Advances in theory and meth-
odology have overcome many obstacles that previously hindered the computational intelligence research.
The research has sparked considerable interest among scientists and engineers from many disciplines. As
evidenced by the appealing results of numerous studies, computational intelligence has gained acceptance
and popularity. In addition, computational intelligence techniques have been applied to solve numerous
problems in a variety of application settings. The computational intelligence research opened many new
dimensions for scientific discovery and industrial/business applications. The desirable features of com-
putationally intelligent systems and their initial successes in applications have inspired renewed interest
in practitioners from industry and service organizations. The truly interdisciplinary environment of the
research and development offers rewarding opportunities for scientific breakthrough and technology
innovation.

The applications of computational intelligence in manufacturing, in particular, play a leading role in
the technology development of intelligent manufacturing systems. The manufacturing applications of
computational intelligence span a wide spectrum including manufacturing system design, manufacturing
process planning, manufacturing process monitoring control, product quality control, and equipment
fault diagnosis. In the past decade, numerous publications have been devoted to manufacturing appli-
cations of neural networks, fuzzy logic, and evolutionary computation. Despite the large volume of
publications, there are few comprehensive books addressing the applications of computational intelligence
in manufacturing. In an effort to fill the void, this comprehensive handbook was produced to cover
various topics on the manufacturing applications of computational intelligence. The aim of this handbook
is to present the state of the art and highlight the recent advances on the computational intelligence
applications in manufacturing. As a handbook, it contains a balanced coverage of tutorials and new
results.

This handbook is intended for a wide readership ranging from professors and students in academia
to practitioners and researchers in industry and business, including engineers, project managers, and
R&D staff, who are affiliated with a number of major professional societies such as IEEE, ASME, SME,
IIE, and their counterparts in Europe, Asia, and the rest of the world. The book is a source of new
information for understanding technical details, assessing research potential, and defining future direc-
tions in the applications of computational intelligence in manufacturing.

©2001 CRC Press LLC

This handbook consists of 19 chapters organized in five parts in terms of levels and areas of applications.
The contributed chapters are authored by more than 30 leading experts in the fields from top institutions
in Asia, Europe, North America, and Oceania.

Part I contains two chapters that present an overview of the applications of computational intelligence
in manufacturing. Specifically, Chapter 1 by D. T. Pham and P. T. N. Pham offers a tutorial on compu-
tational intelligence in manufacturing to lead the reader into a broad spectrum of intelligent manufac-
turing applications. Chapter 2 by Wang, Tang, and Roze gives an updated survey of neural network
applications in intelligent manufacturing to keep the reader informed of history and new development
in the subject of study.

Part IT of the handbook presents five chapters that address the issues in computational intelligence for
modeling and design of manufacturing systems. In this category, Chapter 3 by Ulieru, Stefanoiu, and
Norrie presents a metamorphic framework based on fuzzy logic for intelligent manufacturing. Chapter
4 by Suresh discusses the neural network applications in group technology and cellular manufacturing,
which has been one of the popular topics investigated by many researchers. Chapter 5 by Kazerooni et
al. discusses an application of fuzzy logic to design flexible manufacturing systems. Chapter 6 by Luong
et al. discusses the use of genetic algorithms in group technology. Chapter 7 by Chang and Tsai discusses
intelligent design retrieving systems using neural networks.

Part III contains three chapters and focuses on manufacturing process planning and scheduling using
computational intelligence techniques. Chapter 8 by Lee, Chiu, and Fang addresses the issues on optimal
process planning and sequencing of parallel machining. Chapter 9 by Zhang and Nee presents the appli-
cations of genetic algorithms and simulated annealing algorithm for process planning. Chapter 10 by
Cheng and Gen presents the applications of genetic algorithms for production planning and scheduling.

Part IV of the book is composed of five chapters and is concerned with monitoring and control of
manufacturing processes based on neural and fuzzy systems. Specifically, Chapter 11 by Lam and Smith
presents predictive process models based on cascade neural networks with three diverse manufacturing
applications. In Chapter 12, Cho discusses issues on monitoring and control of manufacturing process
using neural networks. In Chapter 13, May gives a full-length discussion on computational intelligence
applications in microelectronic manufacturing. In Chapter 14, Du and Xu present fuzzy logic approaches
to manufacturing process monitoring and diagnosis. In Chapter 15, Li discusses the uses of fuzzy neural
networks and wavelet techniques for on-line monitoring cutting tool conditions.

Part V has four chapters that address the issues on quality assurance of manufactured products and
fault diagnosis of manufacturing facilities. Chapter 16 by Chen discusses an in-process surface roughness
recognition system based on neural network and fuzzy logic for end milling operations. Chapter 17 by
Chinnam presents intelligent quality controllers for on-line selection of parameters of manufacturing
systems. Chapter 18 by Chang discusses a hybrid neural fuzzy system for statistical process control. Finally,
Chapter 19 by Khoo and Zhai discusses a diagnosis approach based on rough set and genetic algorithms.

We would like to express our gratitude to all the contributors of this handbook for their efforts in
preparing their chapters. In addition, we wish to thank the professionals at CRC Press LLC, which has
a tradition of publishing well-known handbooks, for their encouragement and trust. Finally, we would
like to thank Cindy R. Carelli, the CRC Press acquiring editor who coordinated the publication of this
handbook, for her assistance and patience throughout this project.

Jun Wang Andrew Kusiak
Hong Kong Iowa City

©2001 CRC Press LLC

Editors

Jun Wang is an Associate Professor and the Director of Computational Intelligence Lab in the Department
of Automation and Computer-Aided Engineering at the Chinese University of Hong Kong. Prior to this
position, he was an Associate Professor at the University of North Dakota, Grand Forks. He received his
B.S. degree in electrical engineering and his M.S. degree in systems engineering from Dalian University
of Technology, China and his Ph.D. degree in systems engineering from Case Western Reserve University,
Cleveland, Ohio. Dr. Wang’s current research interests include neural networks and their engineering
applications. He has published more than 60 journal papers, 10 book chapters, 2 edited books, and
numerous papers in conference proceedings. He serves as an Associate Editor of the IEEE Transactions
on Neural Networks.

Andrew Kusiak is a Professor of Industrial Engineering at the University of Iowa, Iowa City. His interests
include applications of computational intelligence in product development, manufacturing, and health-
care informatics and technology. He has published research papers in journals sponsored by AAAI, ASME,
IEEE, IIE, INFORMS, ESOR, IFIP, IFAC, IPE, ISPE, and SME. Dr. Kusiak speaks frequently at interna-
tional meetings, conducts professional seminars, and consults for industrial corporations. He has served
on the editorial boards of 16 journals, has written 15 books and edited various book series, and is the
Editor-in-Chief of the Journal of Intelligent Manufacturing.

©2001 CRC Press LLC

Contributors

K. Abhary
University of South Australia
Australia

F. T. S. Chan
University of Hong Kong

China

C. Alec Chang

University of Missouri-Columbia
US.A.

Shing I. Chang

Kansas State University
US.A.

Joseph C. Chen

Iowa State University
US.A.

Runwei Cheng
Ashikaga Institute of Technology

Japan

Ratna Babu Chinnam
Wayne State University
US.A

Nan-Chieh Chiu

North Carolina State University
U.S.A.

Hyung Suck Cho

Korea Advanced Institute
of Science and Technology
South Korea

R. Du

University of Miami
US.A.

Shu-Cherng Fang
North Carolina State University
US.A.

©2001 CRC Press LLC

Mitsuo Gen
Ashikaga Institute of Technology
Japan

A. Kazerooni
University of Lavisan
Iran

M. Kazerooni
Toosi University of Technology
Iran

Li-Pheng Khoo
Nanyang Technological University
Singapore

Sarah S. Y. Lam

State University of New York
at Binghamton

U.S.A.

Yuan-Shin Lee
North Carolina State University
US.A.

Xiaoli Li
Harbin Institute of Technology
China

L. H. S. Luong
University of South Australia
Australia

Gary S. May
Georgia Institute of Technology

US.A.

A. Y. C. Nee
National University of Singapore
Singapore

Douglas Norrie
University of Calgary
Canada

D. T. Pham
University of Wales

Cardiff, UK.

P. T. N. Pham
University of Wales

Cardiff, UK.

Catherine Roze
IBM Global Services
US.A.

Alice E. Smith

Auburn University
U.S.A.

Dan Stefanoiu
University of Calgary
Canada

Nallan C. Suresh

State University of New York
at Buffalo

U.S.A.

University of Groningen

The Netherlands

Wai Sum Tang
The Chinese University

of Hong Kong
China

Chieh-Yuan Tsai
Yuan-Ze University
Taiwan

Michaela Ulieru
University of Calgary

Canada

Jun Wang

The Chinese University
of Hong Kong

China

Yangsheng Xu Lian-Yin Zhai Y. FE. Zhang

The Chinese University Nanyang Technological University National University of Singapore
of Hong Kong Singapore Singapore
China

©2001 CRC Press LLC

Table of Contents

PART I Overview

1 Computational Intelligence for Manufacturing
D. T. Pham - P. T. N. Pham
1.1 Introduction
1.2 Knowledge-Based Systems
1.3 Fuzzy Logic
1.4 Inductive Learning
1.5 Neural Networks
1.6 Genetic Algorithms
1.7 Some Applications in Engineering and Manufacture
1.8 Conclusion

2 Neural Network Applications in Intelligent Manufacturing:
An Updated Survey
Jun Wang - Wai Sum Tang - Catherine Roze
2.1 Introduction
2.2 Modeling and Design of Manufacturing Systems
2.3 Modeling, Planning, and Scheduling of Manufacturing Processes
2.4 Monitoring and Control of Manufacturing Processes
2.5 Quality Control, Quality Assurance, and Fault Diagnosis
2.6 Concluding Remarks

3 Holonic Metamorphic Architectures for Manufacturing: Identifying
Holonic Structures in Multiagent Systems by Fuzzy Modeling
Michaela Ulieru - Dan Stefanoiu - Douglas Norrie
3.1 Introduction
3.2 Agent-Oriented Manufacturing Systems
3.3 The MetaMorph Project
3.4 Holonic Manufacturing Systems
3.5 Holonic Self-Organization of MetaMorph via Dynamic Virtual Clustering
3.6 Automatic Grouping of Agents into Holonic System: Simulation Results
3.7 MAS Self-Organization as a Holonic System: Simulation Results
3.8 Conclusions

©2001 CRC Press LLC

PART II Manufacturing System Modeling and Design

4 Neural Network Applications for Group Technology and Cellular
Manufacturing
Nallan C. Suresh

4.1
4.2
4.3
4.4

Introduction

Artificial Neural Networks

A Taxonomy of Neural Network Application for GT/CM
Conclusions

5 Application of Fuzzy Set Theory in Flexible Manufacturing
System Design
A. Kazerooni - K. Abhary - L. H. S. Luong - F. T. S. Chan

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Introduction

A Multi-Criterion Decision-Making Approach for Evaluation of Scheduling Rules
Justification of Representing Objectives with Fuzzy Sets

Decision Points and Associated Rules

A Hierarchical Structure for Evaluation of Scheduling Rules

A Fuzzy Approach to Operation Selection

Fuzzy-Based Part Dispatching Rules in FMSs

Fuzzy Expert System-Based Rules

Selection of Routing and Part Dispatching Using Membership Functions and
Fuzzy Expert System-Based Rules

6 Genetic Algorithms in Manufacturing System Design
L. H. S. Luong - M. Kazerooni - K. Abhary

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Introduction

The Design of Cellular Manufacturing Systems

The Concepts of Similarity Coefficients

A Genetic Algorithm for Finding the Optimum Process Routings for Parts
A Genetic Algorithm to Cluster Machines into Machine Groups

A Genetic Algorithm to Cluster Parts into Part Families

Layout Design

A Genetic Algorithm for Layout Optimization

A Case Study

6.10 Conclusion

7 Intelligent Design Retrieving Systems Using Neural Networks
C. Alec Chang - Chieh-Yuan Tsai

7.1
7.2
7.3
7.4
7.5

Introduction

Characteristics of Intelligent Design Retrieval
Structure of an Intelligent System
Performing Fuzzy Association
Implementation Example

©2001 CRC Press LLC

PART III Process Planning and Scheduling

8 Soft Computing for Optimal Planning and Sequencing of
Parallel Machining Operations
Yuan-Shin Lee - Nan-Chieh Chiu - Shu-Cherng Fang
8.1 Introduction
8.2 A Mixed Integer Program
8.3 A Genetic-Based Algorithm
8.4 Tabu Search for Sequencing Parallel Machining Operations
8.5 Two Reported Examples Solved by the Proposed GA
8.6 Two Reported Examples Solved by the Proposed Tabu Search
8.7 Random Problem Generator and Further Tests
8.8 Conclusion

9 Application of Genetic Algorithms and Simulated Annealing
in Process Planning Optimization
Y. F. Zhang - A. Y. C. Nee
9.1 Introduction
9.2 Modeling Process Planning Problems in an Optimization Perspective
9.3 Applying a Genetic Algorithm to the Process Planning Problem
9.4 Applying Simulated Annealing to the Process Planning Problem
9.5 Comparison between the GA and the SA Algorithm
9.6 Conclusions

10 Production Planning and Scheduling Using Genetic Algorithms
Runwei Cheng - Mitsuo Gen
10.1 Introduction
10.2 Resource-Constrained Project Scheduling Problem
10.3 Parallel Machine Scheduling Problem
10.4 Job-Shop Scheduling Problem
10.5 Multistage Process Planning
10.6 Part Loading Scheduling Problem

PART IV Manufacturing Process Monitoring and Control

11 Neural Network Predictive Process Models:

Three Diverse Manufacturing Applications

Sarah S.Y. Lam - Alice E. Smith

11.1 Introduction to Neural Network Predictive Process Models
11.2 Ceramic Slip Casting Application

11.3 Abrasive Flow Machining Application

11.4 Chemical Oxidation Application

11.5 Concluding Remarks

©2001 CRC Press LLC

12 Neural Network Applications to Manufacturing Processes:
Monitoring and Control
Hyung Suck Cho
12.1 Introduction
12.2 Manufacturing Process Monitoring and Control
12.3 Neural Network-Based Monitoring
12.4 Quality Monitoring Applications
12.5 Neural Network-Based Control
12.6 Process Control Applications
12.7 Conclusions

13 Computational Intelligence in Microelectronics Manufacturing
Gary S. May
13.1 Introduction
13.2 The Role of Computational Intelligence
13.3 Process Modeling
13.4 Optimization
13.5 Process Monitoring and Control
13.6 Process Diagnosis
13.7 Summary

14 Monitoring and Diagnosing Manufacturing Processes
Using Fuzzy Set Theory
R. Du - Yangsheng Xu
14.1 Introduction
14.2 A Brief Description of Fuzzy Set Theory
14.3 Monitoring and Diagnosing Manufacturing Processes Using Fuzzy Sets
14.4 Application Examples
14.5 Conclusions

15 Fuzzy Neural Network and Wavelet for Tool Condition Monitoring
Xiaoli Li
15.1 Introduction
15.2 Fuzzy Neural Network
15.3 Wavelet Transforms
15.4 Tool Breakage Monitoring with Wavelet Transforms
15.5 Identification of Tool Wear States Using Fuzzy Method
15.6 Tool Wear Monitoring with Wavelet Transforms and Fuzzy Neural Network

©2001 CRC Press LLC

PART V Quality Assurance and Fault Diagnosis

16 Neural Networks and Neural-Fuzzy Approaches in an In-Process

Surface Roughness Recognition System for End Milling Operations
Joseph C. Chen

16.1 Introduction

16.2 Methodologies

16.3 Experimental Setup and Design

16.4 The In-Process Surface Roughness Recognition Systems

16.5 Testing Results and Conclusion

17 Intelligent Quality Controllers for On-Line Parameter Design
Ratna Babu Chinnam

17.1 Introduction

17.2 An Overview of Certain Emerging Technologies Relevant to On-Line
Parameter Design

17.3 Design of Quality Controllers for On-Line Parameter Design

17.4 Case Study: Plasma Etching Process Modeling and On-Line Parameter Design

17.5 Conclusion

18 A Hybrid Neural Fuzzy System for Statistical Process Control

Shing I Chang

18.1 Statistical Process Control

18.2 Neural Network Control Charts

18.3 A Hybrid Neural Fuzzy Control Chart

18.4 Design, Operations, and Guidelines for Using the Proposed Hybrid Neural Fuzzy
Control Chart

18.5 Properties of the Proposed Hybrid Neural Fuzzy Control Chart

18.6 Final Remarks

19 RClass*: A Prototype Rough-Set and Genetic Algorithms Enhanced
Multi-Concept Classification System for Manufacturing Diagnosis
Li-Pheng Khoo - Lian-Yin Zhai
19.1 Introduction
19.2 Basic Notions
19.3 A Prototype Multi-Concept Classification System
19.4 Validation of RClass*

19.5 Application of RClass* to Manufacturing Diagnosis
19.6 Conclusions

©2001 CRC Press LLC

Pham, D. T. et al "Computational Intelligence for Manufacturing"
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Computational
Intelligence for
Manufacturing

1.1 Introduction

1.2 Knowledge-Based Systems
1.3 Fuzzy Logic

1.4 Inductive Learning

D. T. Pham 1.5 Neural Networks

University of Wales 1.6 Genetic Algorithms

P. T. N. Pham 1.7 Some Applications in Engineering and Manufacture
University of Wales 1.8 Conclusion

1.1 Introduction

Computational intelligence refers to intelligence artificially realised through computation. Artificial intel-
ligence emerged as a computer science discipline in the mid-1950s. Since then, it has produced a number
of powerful tools, some of which are used in engineering to solve difficult problems normally requiring
human intelligence. Five of these tools are reviewed in this chapter with examples of applications in
engineering and manufacturing: knowledge-based systems, fuzzy logic, inductive learning, neural net-
works, and genetic algorithms. All of these tools have been in existence for more than 30 years and have
found many practical applications.

1.2 Knowledge-Based Systems

Knowledge-based systems, or expert systems, are computer programs embodying knowledge about a
narrow domain for solving problems related to that domain. An expert system usually comprises two
main elements, a knowledge base and an inference mechanism. The knowledge base contains domain
knowledge which may be expressed as any combination of “If-Then” rules, factual statements (or asser-
tions), frames, objects, procedures, and cases. The inference mechanism is that part of an expert system
which manipulates the stored knowledge to produce solutions to problems. Knowledge manipulation
methods include the use of inheritance and constraints (in a frame-based or object-oriented expert
system), the retrieval and adaptation of case examples (in a case-based expert system), and the application
of inference rules such as modus ponens (If A Then B; A Therefore B) and modus tollens (If A Then B;
Not B Therefore Not A) according to “forward chaining” or “backward chaining” control procedures and
“depth-first” or “breadth-first” search strategies (in a rule-based expert system).

With forward chaining or data-driven inferencing, the system tries to match available facts with the If
portion of the If-Then rules in the knowledge base. When matching rules are found, one of them is

©2001 CRC Press LLC

KNOWLEDGE BASE

(Initial State)
Fact :
F1 - A lathe is a machine tool
Rules :

R1 - If Xis power driven Then X requires a power source
R2 - If X is a machine tool Then X has a tool holder
R3 -If X is amachine tool Then X is power driven

ﬁ F1 & R2 match

KNOWLEDGE BASE
(Intermediate State)

Fact :
F1 - A lathe is a machine tool
F2 - A lathe has a tool holder
Rules :
R1 - If X is power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If X is a machine tool Then X is power driven

u F1 & R3 match

KNOWLEDGE BASE
(Initial State)

Fact :
F1 - A lathe is a machine tool
F2 - A lathe has a tool holder
F3 - A lathe is power driven
Rules :
R1 -If Xis power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If X is a machine tool Then X is power driven

u F3 & R1 match

KNOWLEDGE BASE
(Initial State)

Fact :
F1 - A lathe is a machine tool
F2 - A lathe has a tool holder
F3 - A lathe is power driven
F4 - A lathe requires a power source
Rules :
R1 - If Xis power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If X is a machine tool Then X is power driven

FIGURE 1.1(a) An example of forward chaining.

©2001 CRC Press LLC

KNOWLEDGE BASE

(Initial State)
Fact :
F1 - A lathe is a machine tool
Rules :

R1 -If X is power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 -If X is a machine tool Then X is power driven

KNOWLEDGE BASE
(Final State)

Fact :

F1 - A lathe is a machine tool

F2 - A lathe is power driven

F3 - A lathe requires a power source
Rules :

R1 -If X is power driven Then X requires a power source

GOAL STACK R2 -If X is a machine tool Then X has a tool holder
Goal : Satisfied R3 - If X is a machine tool Then X is power driven
G1 - A lathe requires a power source ? GOAL STACK
Goal : Satisfied
Gl - A lathe requires a power source Yes
ﬂ Gl & R1 ﬂ F2 & R1
KNOWLEDGE BASE KNOWLEDGE BASE
(Intermediate State) (Intermediate State)
Fact : Fact :
F1 - A lathe is a machine tool F1 - A lathe is a machine tool
Rules : F2 - A lathe is power driven

R1 -If Xis power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If Xis amachine tool Then X is power driven

Rules :
R1 - If X is power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder

GOAL STACK R3 - If X is a machine tool Then X is power driven

Goal : Satisfied GOAL STACK

G1 - A lathe requires a power source ? Goal : Satisfied

G2 - A lathe is a power driven ? G1 - A lathe requires a power source ?

G2 - A lathe is power driven Yes
[G2 & R3 1I’J? F1 & R3
KNOWLEDGE BASE KNOWLEDGE BASE
(Intermediate State) (Intermediate State)

Fact : Fact :

F1 - A lathe is a machine tool F1 - A lathe is a machine tool
Rules : Rules :

R1 -If X is power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If X isamachine tool Then X is power driven

GOAL STACK
Goal : Satisfied
G1 - A lathe requires a power source ?
G2 - A lathe is power driven ?
G3 - A lathe is a machine tool ?

R1 -If X is power driven Then X requires a power source
R2 -If X is a machine tool Then X has a tool holder
R3 - If X is amachine tool Then X is power driven

GOAL STACK
Goal : Satisfied
G1 - A lathe requires a power source ?
G2 - A lathe is power driven ?
G3 - A lathe is a machine tool Yes

f

FIGURE 1.1(b) An example of backward chaining.

“fired,” i.e., its Then part is made true, generating new facts and data which in turn cause other rules to
“fire.” Reasoning stops when no more new rules can fire. In backward chaining or goal-driven inferencing,
a goal to be proved is specified. If the goal cannot be immediately satisfied by existing facts in the
knowledge base, the system will examine the If-Then rules for rules with the goal in their Then portion.
Next, the system will determine whether there are facts that can cause any of those rules to fire. If such
facts are not available they are set up as subgoals. The process continues recursively until either all the
required facts are found and the goal is proved or any one of the subgoals cannot be satisfied, in which
case the original goal is disproved. Both control procedures are illustrated in Figure 1.1. Figure 1.1(a)
shows how, given the assertion that a lathe is a machine tool and a set of rules concerning machine tools,
a forward-chaining system will generate additional assertions such as “a lathe is power driven” and “a
lathe has a tool holder.” Figure 1.1(b) details the backward-chaining sequence producing the answer to
the query “does a lathe require a power source?”

©2001 CRC Press LLC

In the forward-chaining example of Figure 1.1(a), both rules R2 and R3 simultaneously qualify for
firing when inferencing starts as both their If parts match the presented fact F1. Conflict resolution has
to be performed by the expert system to decide which rule should fire. The conflict resolution method
adopted in this example is “first come, first served": R2 fires, as it is the first qualifying rule encountered.
Other conflict resolution methods include “priority,” “specificity,” and “recency.”

The search strategies can also be illustrated using the forward-chaining example of Figure 1.1(a).
Suppose that, in addition to F1, the knowledge base also initially contains the assertion “a CNC turning
centre is a machine tool.” Depth-first search involves firing rules R2 and R3 with X instantiated to “lathe”
(asshown in Figure 1.1(a)) before firing them again with X instantiated to “CNC turning centre.” Breadth-
first search will activate rule R2 with X instantiated to “lathe” and again with X instantiated to “CNC
turning centre,” followed by rule R3 and the same sequence of instantiations. Breadth-first search finds
the shortest line of inferencing between a start position and a solution if it exists. When guided by
heuristics to select the correct search path, depth-first search might produce a solution more quickly,
although the search might not terminate if the search space is infinite [Jackson, 1999].

For more information on the technology of expert systems, see [Pham and Pham, 1988; Durkin, 1994;
Jackson, 1999].

Most expert systems are nowadays developed using programs known as “shells.” These are essentially
ready-made expert systems complete with inferencing and knowledge storage facilities but without the
domain knowledge. Some sophisticated expert systems are constructed with the help of “development
environments.” The latter are more flexible than shells in that they also provide means for users to
implement their own inferencing and knowledge representation methods. More details on expert systems
shells and development environments can be found in [Price, 1990].

Among the five tools considered in this chapter, expert systems are probably the most mature, with
many commercial shells and development tools available to facilitate their construction. Consequently,
once the domain knowledge to be incorporated in an expert system has been extracted, the process of
building the system is relatively simple. The ease with which expert systems can be developed has led to
a large number of applications of the tool. In engineering, applications can be found for a variety of
tasks including selection of materials, machine elements, tools, equipment and processes, signal inter-
preting, condition monitoring, fault diagnosis, machine and process control, machine design, process
planning, production scheduling and system configuring. The following are recent examples of specific
tasks undertaken by expert systems:

+ ldentifying and planning inspection schedules for critical components of an offshore structure
[Peers et al., 1994]

Training technical personnel in the design and evaluation of energy cogeneration plants [Lara
Rosano et al., 1996]

Configuring paper feeding mechanisms [Koo and Han, 1996]

Carrying out automatic remeshing during a finite-elements analysis of forging deformation [Yano
et al., 1997]

Storing, retrieving, and adapting planar linkage designs [Bose et al., 1997]
Designing additive formulae for engine oil products [Shi et al., 1997]

1.3 Fuzzy Logic

A disadvantage of ordinary rule-based expert systems is that they cannot handle new situations not
covered explicitly in their knowledge bases (that is, situations not fitting exactly those described in the
“If” parts of the rules). These rule-based systems are completely unable to produce conclusions when
such situations are encountered. They are therefore regarded as shallow systems which fail in a “brittle”
manner, rather than exhibit a gradual reduction in performance when faced with increasingly unfamiliar
problems, as human experts would.

©2001 CRC Press LLC

The use of fuzzy logic [Zadeh, 1965] that reflects the qualitative and inexact nature of human reasoning
can enable expert systems to be more resilient. With fuzzy logic, the precise value of a variable is replaced
by a linguistic description, the meaning of which is represented by a fuzzy set, and inferencing is carried
out based on this representation. Fuzzy set theory may be considered an extension of classical set theory.
While classical set theory is about “crisp” sets with sharp boundaries, fuzzy set theory is concerned with
“fuzzy” sets whose boundaries are “gray."

In classical set theory, an element u; can either belong or not belong to a set A, i.e., the degree to which
element u belongs to set A is either 1 or 0. However, in fuzzy set theory, the degree of belonging of an
element u to a fuzzy set A is a real number between 0 and 1. This is denoted by p,(u;), the grade of
membership of u;in A. Fuzzy set A is a fuzzy set in U, the “universe of discourse” or “universe” which
includes all objects to be discussed. L, (u;) is 1 when u; is definitely a member of A and 1, (u;) is 0 when
u; is definitely not a member of A. For instance, a fuzzy set defining the term “normal room temperature”
might be as follows:

/eIOW10°C /O°C 16°C /6°C 18°C
/8°C 22°C /ZC 24°C /4°C 30°C /bove30°

Equation (1.1)

normal room temperature

The values 0.0, 0.3, 0.8, and 1.0 are the grades of membership to the given fuzzy set of temperature
ranges below 10°C (above 30°C), between 10°C and 16°C (24°C to 30°C), between 16°C and 18°C (22°C
to 24°C), and between 18°C and 22°C. Figure 1.2(a) shows a plot of the grades of membership for “normal
room temperature.” For comparison, Figure 1.2(b) depicts the grades of membership for a crisp set
defining room temperatures in the normal range.

Knowledge in an expert system employing fuzzy logic can be expressed as qualitative statements (or
fuzzy rules) such as “If the room temperature is normal, Then set the heat input to normal,” where
“normal room temperature” and “normal heat input” are both fuzzy sets.

A fuzzy rule relating two fuzzy sets A and B is effectively the Cartesian product A x B, which can
be represented by a relation matrix [R]. Element R; of [R] is the membership to A x B of pair (u,v),
u; OA andv; OB. Rjisgiven by

Rj :minE('lA(ui)vHB(Vj)g Equation (1.2)
For example, with “normal room temperature” defined as before and “normal heat input” described by

normal heat input =0-2 Equation (1.3)

0.9 0.2
o Yo " Zatow
[R] can be computed as:

00 003

03 0.2

08 020

09 0.20 Equation (1.4)
i

08 020

0.3 0.20

%)o 0.0 0.0H

8=

e =
N NN DN DN O

A reasoning procedure known as the compositional rule of inference, which is the equivalent of the
@EBH?L @ﬁ@?—’%@% 'Lrléule—based expert systems, enables conclusions to be drawn by generalization

1.0
0.5
>
10 20 30 40 Temperature
(°C)
(@
A
:
1.0
>
10 20 30 40 Temperature
(°C)
(b)

FIGURE 1.2 (a) Fuzzy set of “normal temperature.” (b) Crisp set of “normal temperature.”

(extrapolation or interpolation) from the qualitative information stored in the knowledge base. For
instance, when the room temperature is detected to be “slightly below normal,” a temperature-controlling
fuzzy expert system might deduce that the heat input should be set to “slightly above normal.” Note that

©2001 CRC Press LLC

this conclusion might not be contained in any of the fuzzy rules stored in the system. A well-known
compositional rule of inference is the max-min rule. Let [R] represent the fuzzy rule “If A Then B” and

as z 1; /u; afuzzy assertion. A and a are fuzzy sets in the same universe of discourse. The max-
I

min rule enables a fuzzy conclusion b= Z)\J— /vj to be inferred from a and [R] as follows:
]
b= ao[R] Equation (1.5)

A :miax[min(,ui Rjj)] Equation (1.6)

For example, given the fuzzy rule “If the room temperature is normal, Then set the heat input to

normal” where “normal room temperature” and “normal heat input” are as defined previously, and a
fuzzy temperature measurement of

¢ t Eo.y +oy +o.s/
emperature below 10°C /10°C-16°C~ /16°C—18°C

+0.8/ +o.2/ +o.y +o.y
18°C-22°C " /22°C-24°C " /24°C—-30°C /‘above 30°C

the heat input will be deduced as

Equation (1.7)

heatinput=temperatureo[R]

=02 0.8 0.2 i
1kW+ KW /3kW Equation (1.8)

For further information on fuzzy logic, see [Kaufmann, 1975; Zimmermann, 1991].

Fuzzy logic potentially has many applications in engineering, where the domain knowledge is usually
imprecise. Notable successes have been achieved in the area of process and machine control, although
other sectors have also benefited from this tool. Recent examples of engineering applications include:

+ Controlling the height of the arc in a welding process [Bigand et al., 1994]

+ Controlling the rolling motion of an aircraft [Ferreiro Garcia, 1994]

+ Controlling a multi-fingered robot hand [Bas and Erkmen, 1995]

+ Analysing the chemical composition of minerals [Da Rocha Fernandes and Cid Bastos, 1996]
+ Determining the optimal formation of manufacturing cells [Szwarc et al., 1997]

+ Classifying discharge pulses in electrical discharge machining [Tarng et al., 1997]

1.4 Inductive Learning

The acquisition of domain knowledge to build into the knowledge base of an expert system is generally
a major task. In some cases, it has proved a bottleneck in the construction of an expert system. Automatic
knowledge acquisition techniques have been developed to address this problem. Inductive learning is an
automatic technique for knowledge acquisition. The inductive approach produces a structured represen-
tation of knowledge as the outcome of learning. Induction involves generalising a set of examples to yield
a selected representation that can be expressed in terms of a set of rules, concepts or logical inferences,
or a decision tree.

©2001 CRC Press LLC

TABLE 1.1 Training Set for the Cutting Tool Problem

Example Sensor_1 Sensor_2 Sensor_3 Tool State
1 0 -1 0 Normal
2 1 0 0 Normal
3 1 -1 1 Worn
4 1 0 1 Normal
5 0 0 1 Normal
6 1 1 1 Worn
7 1 -1 0 Normal
8 0 -1 1 Worn

An inductive learning program usually requires as input a set of examples. Each example is charac-
terised by the values of a number of attributes and the class to which it belongs. In one approach to
inductive learning, through a process of “dividing and conquering” where attributes are chosen according
to some strategy (for example, to maximise the information gain) to divide the original example set into
subsets, the inductive learning program builds a decision tree that correctly classifies the given example
set. The tree represents the knowledge generalised from the specific examples in the set. This can
subsequently be used to handle situations not explicitly covered by the example set.

In another approach known as the “covering approach,” the inductive learning program attempts to
find groups of attributes uniquely shared by examples in given classes and forms rules with the If part
as conjunctions of those attributes and the Then part as the classes. The program removes correctly
classified examples from consideration and stops when rules have been formed to classify all examples
in the given set.

A new approach to inductive learning, inductive logic programming, is a combination of induction and
logic programming. Unlike conventional inductive learning which uses propositional logic to describe
examples and represent new concepts, inductive logic programming (ILP) employs the more powerful
predicate logic to represent training examples and background knowledge and to express new concepts.
Predicate logic permits the use of different forms of training examples and background knowledge. It
enables the results of the induction process — that is, the induced concepts — to be described as general
first-order clauses with variables and not just as zero-order propositional clauses made up of
attribute—value pairs. There are two main types of ILP systems, the first based on the top-down gener-
alisation/specialisation method, and the second on the principle of inverse resolution [Muggleton, 1992].

A number of inductive learning programs have been developed. Some of the well-known programs
are ID3 [Quinlan, 1983], which is a divide-and-conquer program; the AQ program [Michalski, 1990],
which follows the covering approach; the FOIL program [Muggleton, 1992], which is an ILP system
adopting the generalisation/specialisation method; and the GOLEM program [Muggleton, 1992], which
is an ILP system based on inverse resolution. Although most programs only generate crisp decision rules,
algorithms have also been developed to produce fuzzy rules [Wang and Mendel, 1992].

Figure 1.3 shows the main steps in RULES-3 Plus, an induction algorithm in the covering category
[Pham and Dimov, 1997] and belonging to the RULES family of rule extraction systems [Pham and
Aksoy, 1994, 1995a, 1995b]. The simple problem of detecting the state of a metal cutting tool is used to
explain the operation of RULES-3 Plus. Three sensors are employed to monitor the cutting process and,
according to the signals obtained from them (1 or 0 for sensors 1 and 3; -1, 0, or 1 for sensor 2), the
tool is inferred as being “normal” or “worn.” Thus, this problem involves three attributes which are the
states of sensors 1, 2, and 3, and the signals that they emit constitute the values of those attributes. The
example set for the problem is given in Table 1.1.

In Step 1, example 1 is used to form the attribute—value array SETAV which will contain the following
attribute—value pairs: [Sensor_1 = 0], [Sensor_2 = -1] and [Sensor_3 = 0].

In Step 2, the partial rule set PRSET and T_PRSET, the temporary version of PRSET used for storing
partial rules in the process of rule construction, are initialised. This creates for each of these sets three
expressions having null conditions and zero H measures. The H measure for an expression is defined as

©2001 CRC Press LLC

Step 1. Take an unclassified example and form array SETAV.
Step 2. Initialise arrays PRSET and T_PRSET (PRSET and T_PRSET will consist of m,,,. expressions
with null conditions and zero H measures) and set n oo =0.
Step3. IFnco<ng
THEN n¢o=nc¢o+ 1 and set m = 0;
ELSE the example itself is taken as a rule and STOP.
Step4. DO
m=m-+1;
Specialise expression m in PRSET by appending to it a condition from SETAV
that differs from the conditions already included in the expression;
Compute the H measure for the expression;
IF its H measure is higher than the H measure of any expression in T_PRSET
THEN replace the expression having the lowest H measure with the newly
formed expression;
ELSE discard the new expression;
WHILE m <=m .
Step 5. IF there are consistent expressions in T_PRSET
THEN choose as a rule the expression that ha s the highest H measure and
discard the others;
ELSE copy T_PRSET into PRSET;
initialise T_PRSET and go to Step 4.

nco - number of conditions; n 5- number of attributes;
Mypeer - NUMber of expressions stored in PRSET (m .. is user-provided);
T_PRSET - a temporary array of partial rules of the same dimension as PRSET.

FIGURE 1.3 Rule-formatting procedure of RULES-3 Plus.

o0 .- | 0
EC ES U gcg g O
E \/— E _Eo Equation (1.9)

:\v‘?%

where E°© is the number of examples covered by the expression (the total number of examples correctly
classified and misclassified by a given rule), E is the total number of examples, E; is the number of
examples covered by the expression and belonging to the target class i (the number of examples correctly
classified by a given rule), and E; is the number of examples in the training set belonging to the target
class i. In Equation 1.1, the first term

C
G= E? Equation (1.10)

relates to the generality of the rule and the second term

/7

A=2-2 ‘E_E__ El_E_CED _ED Equation (1.11)
vee \F e ER |

indicates its accuracy.

©2001 CRC Press LLC

In Steps 3 and 4, by specialising PRSET using the conditions stored in SETAYV, the following expressions
are formed and stored in T_PRSET:

1: [Sensor_3 = 0] J [Alarm = OFF] H = 0.2565
2: [Sensor_2 = -1] O [Alarm = OFF] H = 0.0113
3: [Sensor_1 = 0] [J [Alarm = OFF] H = 0.0012

In Step 5, a rule is produced as the first expression in T_PRSET applies to only one class:
Rule 1: If [Sensor_3 = 0] Then [Alarm = OFF], H = 0.2565

Rule 1 can classify examples 2 and 7 in addition to example 1. Therefore, these examples are marked as
classified and the induction proceeds.

In the second iteration, example 3 is considered. T_PRSET, formed in Step 4 after specialising the
initial PRSET, now consists of the following expressions:

1: [Sensor_3 = 1] [J [Alarm = ON] H = 0.0406
2: [Sensor_2 = -1] [J [Alarm = ON] H = 0.0079
3: [Sensor_1 = 1] [J [Alarm = ON] H = 0.0005

As none of the expressions cover only one class, T_PRSET is copied into PRSET (Step 5) and the new
PRSET has to be specialised further by appending the existing expressions with conditions from SETAV.
Therefore, the procedure returns to Step 3 for a new pass. The new T_PRSET formed at the end of Step
4 contains the following three expressions:

1: [Sensor_2 = -1] [Sensor_3 = 1] [J [Alarm = ON] H = 0.3876
2: [Sensor_1 = 1] [Sensor_3 = 1] [J [Alarm = ON] H =0.0534
3: [Sensor_1 = 1] [Sensor_2 = -1] OJ [Alarm = ON] H = 0.0008
As the first expression applies to only one class, the following rule is obtained:
Rule 2: If [Sensor_2 = -1] AND [Sensor_3 = 1] Then [Alarm = ON], H = 0.3876.

Rule 2 can classify examples 3 and 8, which again are marked as classified.
In the third iteration, example 4 is used to obtain the next rule:

Rule 3: If [Sensor_2 = 0] Then [Alarm = OFF], H = 0.2565.

This rule can classify examples 4 and 5 and so they are also marked as classified.
In iteration 4, the last unclassified example 6 is employed for rule extraction, yielding

Rule 4: If [Sensor_2 = 1] Then [Alarm = ON], H = 0.2741.

There are no remaining unclassified examples in the example set and the procedure terminates at this point.

Due to its requirement for a set of examples in a rigid format (with known attributes and of known
classes), inductive learning has found rather limited applications in engineering, as not many engineering
problems can be described in terms of such a set of examples. Another reason for the paucity of
applications is that inductive learning is generally more suitable for problems where attributes have

©2001 CRC Press LLC

FIGURE 1.4 Model of a neuron.

discrete or symbolic values than for those with continuous-valued attributes as in many engineering
problems. Some recent examples of applications of inductive learning are

* Controlling a laser cutting robot [Luzeaux, 1994]

+ Controlling the functional electrical stimulation of spinally injured humans [Kostov et al., 1995]
* Classifying complex and noisy patterns [Pham and Aksoy, 1995a]

+ Analysing the constructability of a beam in a reinforced-concrete frame [Skibniewski et al., 1997]

1.5 Neural Networks

Like inductive learning programs, neural networks can capture domain knowledge from examples.
However, they do not archive the acquired knowledge in an explicit form such as rules or decision trees
and they can readily handle both continuous and discrete data. They also have a good generalisation
capability, as with fuzzy expert systems.

A neural network is a computational model of the brain. Neural network models usually assume that
computation is distributed over several simple units called neurons that are interconnected and operate
in parallel (hence, neural networks are also called parallel-distributed-processing systems or connectionist
systems). Figure 1.4 illustrates a typical model of a neuron. Output signal y; is a function f of the sum
of weighted input signals x;. The activation function f can be a linear, simple threshold, sigmoidal,
hyberbolic tangent or radial basis function. Instead of being deterministic, f can be a probabilistic
function, in which case y; will be a binary quantity, for example, +1 or —1. The net input to such a
stochastic neuron — that is, the sum of weighted input signals x; — will then give the probability of y;
being +1 or -1.

How the interneuron connections are arranged and the nature of the connections determine the
structure of a network. How the strengths of the connections are adjusted or trained to achieve a desired
overall behaviour of the network is governed by its learning algorithm. Neural networks can be classified
according to their structures and learning algorithms.

In terms of their structures, neural networks can be divided into two types: feedforward networks and
recurrent networks. Feedforward networks can perform a static mapping between an input space and an
output space: the output at a given instant is a function only of the input at that instant. The most
popular feedforward neural network is the multi-layer perceptron (MLP): all signals flow in a single
direction from the input to the output of the network. Figure 1.5 shows an MLP with three layers: an
input layer, an output layer, and an intermediate or hidden layer. Neurons in the input layer only act as
buffers for distributing the input signals x; to neurons in the hidden layer. Each neuron j in the hidden
layer operates according to the model of Figure 1.4. That is, its output y; is given by

Y, :f(ZWjiXi) Equation (1.12)

©2001 CRC Press LLC

Output Layerm

Hidden Layerm

W11

Input Layer —m

FIGURE 1.5 A multi-layer perceptron.

The outputs of neurons in the output layer are computed similarly.

Other feedforward networks [Pham and Liu, 1999] include the learning vector quantisation (LVQ)
network, the cerebellar model articulation control (CMAC) network, and the group-method of data
handling (GMDH) network.

Recurrent networks are networks where the outputs of some neurons are fed back to the same neurons
or to neurons in layers before them. Thus signals can flow in both forward and backward directions.
Recurrent networks are said to have a dynamic memory: the output of such networks at a given instant
reflects the current input as well as previous inputs and outputs. Examples of recurrent networks [Pham
and Liu, 1999] include the Hopfield network, the ElIman network and the Jordan network. Figure 1.6
shows a well-known, simple recurrent neural network, the Grossberg and Carpenter ART-1 network.
The network has two layers, an input layer and an output layer. The two layers are fully interconnected,
the connections are in both the forward (or bottom-up) direction and the feedback (or top-down)
direction. The vector W, of weights of the bottom-up connections to an output neuron i forms an
exemplar of the class it represents. All the W, vectors constitute the long-term memory of the network.
They are employed to select the winning neuron, the latter again being the neuron whose W, vector is
most similar to the current input pattern. The vector V, of the weights of the top-down connections from
an output neuron i is used for vigilance testing, that is, determining whether an input pattern is sufficiently
close to a stored exemplar. The vigilance vectors V; form the short-term memory of the network. V; and
W, are related in that W, is a normalised copy of V,, viz.

W, Equation (1.13)

Vi
_s+zvji

©2001 CRC Press LLC

output layer

bottom up

weights W ——— top down weights V

input layer

FIGURE 1.6 An ART-1 network.

where € is a small constant and Vj;, the jth component of V; (i.e., the weight of the connection from
output neuron i to input neuron j).

Implicit “knowledge” is built into a neural network by training it. Neural networks are trained and
categorised according to two main types of learning algorithms: supervised and unsupervised. In addition,
there is a third type, reinforcement learning, which is a special case of supervised learning. In supervised
training, the neural network can be trained by being presented with typical input patterns and the
corresponding expected output patterns. The error between the actual and expected outputs is used to
modify the strengths, or weights, of the connections between the neurons. The backpropagation (BP)
algorithm, a gradient descent algorithm, is the most commonly adopted MLP training algorithm. It gives

the change Aw; in the weight of a connection between neurons i and j as follows:
A =ndX; Equation (1.14)

where n is a parameter called the learning rate and g is a factor depending on whether neuron j is an
output neuron or a hidden neuron. For output neurons,

s =2 of o :
Il rwpvanin = 2 —ng Equation (1.15)
gonet ; [
and for hidden neurons,
0 —D of o) E i 1.16
I = Dot Wq; 9 quation (1.16)

o

©2001 CRC Press LLC

In Equation 1.15, net; is the total weighted sum of input signals to neuron j and y,® is the target output
for neuron j.

As there are no target outputs for hidden neurons, in Equation 1.16, the difference between the target
and actual output of a hidden neuron j is replaced by the weighted sum of the ¢, terms already obtained
for neurons g connected to the output of j. Thus, iteratively, beginning with the output layer, the d term
is computed for neurons in all layers and weight updates determined for all connections. The weight
updating process can take place after the presentation of each training pattern (pattern-based training)
or after the presentation of the whole set of training patterns (batch training). In either case, a training
epoch is said to have been completed when all training patterns have been presented once to the MLP.

For all but the most trivial problems, several epochs are required for the MLP to be properly trained.
A commonly adopted method to speed up the training is to add a “momentum” term to Equation 1.14
which effectively lets the previous weight change influence the new weight change, viz.

Aw ; (k+1) =03 x; +pdw (k) Equation (1.17)

where Aw;(k + 1) and Aw;(k +) are weight changes in epochs (k + 1) and (k), respectively, and u is
the “momentum” coefficient.

Some neural networks are trained in an unsupervised mode where only the input patterns are provided
during training and the networks learn automatically to cluster them in groups with similar features. For
example, training an ART-1 network involves the following steps:

1. Initialising the exemplar and vigilance vectors W; and V; for all output neurons by setting all the
components of each V; to 1 and computing W, according to Equation 1.13. An output neuron
with all its vigilance weights set to 1 is known as an uncommitted neuron in the sense that it is
not assigned to represent any pattern classes.

2. Presenting a new input pattern Xx.

Enabling all output neurons so that they can participate in the competition for activation.

4. Finding the winning output neuron among the competing neurons, i.e., the neuron for which
x.W, is largest; a winning neuron can be an uncommitted neuron as is the case at the beginning
of training or if there are no better output neurons.

5. Testing whether the input pattern x is sufficiently similar to the vigilance vector V; of the winning
neuron. Similarity is measured by the fraction r of bits in x that are also in V,, viz.

w

r=

AVA
XY Equation (1.18)
i

z X

x is deemed to be sufficiently similar to V; if ris at least equal to vigilance threshold p(0 < p < 1).

6. Going to step 7 if r = p (i.e., there is resonance); else disabling the winning neuron temporarily

from further competition and going to step 4, repeating this procedure until there are no further
enabled neurons.

7. Adjusting the vigilance vector V; of the most recent winning neuron by logically ANDing it with

X, thus deleting bits in V; that are not also in x; computing the bottom-up exemplar vector W,

using the new V; according to Equation 1.13; activating the winning output neuron.
8. Going to step 2.

The above training procedure ensures that if the same sequence of training patterns is repeatedly
presented to the network, its long-term and short-term memories are unchanged (i.e., the network is
stable). Also, provided there are sufficient output neurons to represent all the different classes, new
patterns can always be learned, as a new pattern can be assigned to an uncommitted output neuron if it
does not match previously stored exemplars well (i.e., the network is plastic).

©2001 CRC Press LLC

In reinforcement learning, instead of requiring a teacher to give target outputs and using the differences
between the target and actual outputs directly to modify the weights of a neural network, the learning
algorithm employs a critic only to evaluate the appropriateness of the neural network output correspond-
ing to a given input. According to the performance of the network on a given input vector, the critic will
issue a positive or negative reinforcement signal. If the network has produced an appropriate output, the
reinforcement signal will be positive (a reward). Otherwise, it will be negative (a penalty). The intention
of this is to strengthen the tendency to produce appropriate outputs and to weaken the propensity for
generating inappropriate outputs. Reinforcement learning is a trial-and-error operation designed to
maximise the average value of the reinforcement signal for a set of training input vectors. An example
of a simple reinforcement learning algorithm is a variation of the associative reward—penalty algorithm
[Hassoun, 1995]. Consider a single stochastic neuron j with inputs (X;, X, X, - - ., X,). The reinforcement
rule may be written as [Hassoun, 1995]

w;i(k + 1) = w(k) + I r(k) [y;(k) = E(y;(k))] xi(k) Equation (1.19)

w;; is the weight of the connection between input i and neuron j, I is the learning coefficient, r (which is
+1 or-1) is the reinforcement signal, y; is the output of neuron j, E(y;) is the expected value of the output,
and x;(k) is the ith component of the kth input vector in the training set. When learning converges,
w;i(k + 1) = w;(k) and so E(y;(k)) = y;(k) = +1 or -1. Thus, the neuron effectively becomes deterministic.
Reinforcement learning is typically slower than supervised learning. It is more applicable to small neural
networks used as controllers where it is difficult to determine the target network output.

For more information on neural networks, see [Hassoun, 1995; Pham and Liu, 1999].

Neural networks can be employed as mapping devices, pattern classifiers, or pattern completers (auto-
associative content addressable memories and pattern associators). Like expert systems, they have found
a wide spectrum of applications in almost all areas of engineering, addressing problems ranging from
modelling, prediction, control, classification, and pattern recognition, to data association, clustering,
signal processing, and optimisation. Some recent examples of such applications are:

* Modelling and controlling dynamic systems including robot arms [Pham and Liu, 1999]
* Predicting the tensile strength of composite laminates [Teti and Caprino, 1994]

+ Controlling a flexible assembly operation [Majors and Richards, 1995]

* Recognising control chart patterns [Pham and Oztemel, 1996]

+ Analysing vibration spectra [Smith et al., 1996]

» Deducing velocity vectors in uniform and rotating flows by tracking the movement of groups of
particles [Jambunathan et al., 1997]

1.6 Genetic Algorithms

Conventional search techniques, such as hill-climbing, are often incapable of optimising nonlinear or
multimodal functions. In such cases, a random search method is generally required. However, undirected
search techniques are extremely inefficient for large domains. A genetic algorithm (GA) is a directed
random search technique, invented by Holland [1975], which can find the global optimal solution in
complex multidimensional search spaces. A GA is modelled on natural evolution in that the operators
it employs are inspired by the natural evolution process. These operators, known as genetic operators,
manipulate individuals in a population over several generations to improve their fitness gradually.
Individuals in a population are likened to chromosomes and usually represented as strings of binary
numbers.

The evolution of a population is described by the “schema theorem” [Holland, 1975; Goldberg, 1989].
A schema represents a set of individuals, i.e., a subset of the population, in terms of the similarity of bits
at certain positions of those individuals. For example, the schema 1*0* describes the set of individuals

©2001 CRC Press LLC

whose first and third bits are 1 and 0, respectively. Here, the symbol “*” means any value would be
acceptable. In other words, the values of bits at positions marked “*” could be either 0 or 1. A schema
is characterised by two parameters: defining length and order. The defining length is the length between
the first and last bits with fixed values. The order of a schema is the number of bits with specified values.
According to the schema theorem, the distribution of a schema through the population from one
generation to the next depends on its order, defining length and fitness.

GAs do not use much knowledge about the optimisation problem under study and do not deal directly
with the parameters of the problem. They work with codes that represent the parameters. Thus, the first
issue in a GA application is how to code the problem, i.e., how to represent its parameters. As already
mentioned, GAs operate with a population of possible solutions. The second issue is the creation of a
set of possible solutions at the start of the optimisation process as the initial population. The third issue
in a GA application is how to select or devise a suitable set of genetic operators. Finally, as with other
search algorithms, GAs have to know the quality of the solutions already found to improve them further.
An interface between the problem environment and the GA is needed to provide this information. The
design of this interface is the fourth issue.

1.6.1 Representation

The parameters to be optimised are usually represented in a string form since this type of representation
is suitable for genetic operators. The method of representation has a major impact on the performance
of the GA. Different representation schemes might cause different performances in terms of accuracy
and computation time.

There are two common representation methods for numerical optimisation problems [Michalewicz,
1992]. The preferred method is the binary string representation method. This method is popular because
the binary alphabet offers the maximum number of schemata per bit compared to other coding tech-
nigues. Various binary coding schemes can be found in the literature, for example, uniform coding, gray
scale coding, etc. The second representation method uses a vector of integers or real numbers with each
integer or real number representing a single parameter.

When a binary representation scheme is employed, an important step is to decide the number of bits
to encode the parameters to be optimised. Each parameter should be encoded with the optimal number
of bits covering all possible solutions in the solution space. When too few or too many bits are used, the
performance can be adversely affected.

1.6.2 Creation of Initial Population

At the start of optimisation, a GA requires a group of initial solutions. There are two ways of forming
this initial population. The first consists of using randomly produced solutions created by a random
number generator, for example. This method is preferred for problems about which no a priori knowledge
exists or for assessing the performance of an algorithm.

The second method employs a priori knowledge about the given optimisation problem. Using this
knowledge, a set of requirements is obtained and solutions that satisfy those requirements are collected
to form an initial population. In this case, the GA starts the optimisation with a set of approximately
known solutions, and therefore convergence to an optimal solution can take less time than with the
previous method.

1.6.3 Genetic Operators

The flowchart of a simple GA is given in Figure 1.7. There are basically four genetic operators: selection,
crossover, mutation, and inversion. Some of these operators were inspired by nature. In the literature,
many versions of these operators can be found. It is not necessary to employ all of these operators in a
GA because each operates independently of the others. The choice or design of operators depends on

©2001 CRC Press LLC

Initial Population

ﬁ

Evaluation

v

Selection

v

Crossover

'

Mutation

'

Inversion

|

FIGURE 1.7 Flowchart of a basic genetic algorithm.

the problem and the representation scheme employed. For instance, operators designed for binary strings
cannot be directly used on strings coded with integers or real numbers.

1.6.3.1 Selection

The aim of the selection procedure is to reproduce more of individuals whose fitness values are higher
than those whose fitness values are low. The selection procedure has a significant influence on driving
the search toward a promising area and finding good solutions in a short time. However, the diversity
of the population must be maintained to avoid premature convergence and to reach the global optimal
solution. In GAs there are mainly two selection procedures: proportional selection, also called stochastic
selection, and ranking-based selection [Whitely, 1989].

Proportional selection is usually called “roulette wheel” selection, since its mechanism is reminiscent
of the operation of a roulette wheel. Fitness values of individuals represent the widths of slots on the
wheel. After a random spinning of the wheel to select an individual for the next generation, slots with
large widths representing individuals with high fitness values will have a higher chance to be selected.

One way to prevent premature convergence is to control the range of trials allocated to any single
individual, so that no individual produces too many offspring. The ranking system is one such alternative
selection algorithm. In this algorithm, each individual generates an expected number of offspring based
on the rank of its performance and not on the magnitude [Baker, 1985].

1.6.3.2 Crossover

This operation is considered the one that makes the GA different from other algorithms, such as dynamic
programming. It is used to create two new individuals (children) from two existing individuals (parents)
picked from the current population by the selection operation. There are several ways of doing this. Some
common crossover operations are one-point crossover, two-point crossover, cycle crossover, and uniform
Crossover.

©2001 CRC Press LLC

Parent 1 100010011110

Parent 2 001]011000110
New string 1 100|011000110
New string 2 001]010011110
FIGURE 1.8 Crossover.
Old string 1100]0]1011101
New string 1100]1]1011101
FIGURE 1.9 Mutation.
Old string 10]1100|11101
New string 10]0011|111012

FIGURE 1.10 Inversion of a binary string segment.

One-point crossover is the simplest crossover operation. Two individuals are randomly selected as
parents from the pool of individuals formed by the selection procedure and cut at a randomly selected
point. The tails, which are the parts after the cutting point, are swapped and two new individuals
(children) are produced. Note that this operation does not change the values of bits. An example of one-
point crossover is shown in Figure 1.8.

1.6.3.3 Mutation

In this procedure, all individuals in the population are checked bit by bit and the bit values are randomly
reversed according to a specified rate. Unlike crossover, this is a monadic operation. That is, a child string
is produced from a single parent string. The mutation operator forces the algorithm to search new areas.
Eventually, it helps the GA to avoid premature convergence and find the global optimal solution. An
example is given in Figure 1.9.

1.6.3.4 Inversion

This operator is employed for a group of problems, such as the cell placement problem, layout problem,
and travelling salesman problem. It also operates on one individual at a time. Two points are randomly
selected from an individual, and the part of the string between those two points is reversed (see Figure 1.10).

1.6.3.5 Control Parameters

Important control parameters of a simple GA include the population size (number of individuals in the
population), crossover rate, mutation rate, and inversion rate. Several researchers have studied the effect
of these parameters on the performance a GA [Schaffer et al., 1989; Grefenstette, 1986; Fogarty, 1989].
The main conclusions are as follows. A large population size means the simultaneous handling of many
solutions and increases the computation time per iteration; however, since many samples from the search
space are used, the probability of convergence to a global optimal solution is higher than with a small
population size.

©2001 CRC Press LLC

The crossover rate determines the frequency of the crossover operation. It is useful at the start of
optimisation to discover promising regions in the search space. A low crossover frequency decreases the
speed of convergence to such areas. If the frequency is too high, it can lead to saturation around one
solution. The mutation operation is controlled by the mutation rate. A high mutation rate introduces
high diversity in the population and might cause instability. On the other hand, it is usually very difficult
for a GA to find a global optimal solution with too low a mutation rate.

1.6.3.6 Fitness Evaluation Function

The fitness evaluation unit in a GA acts as an interface between the GA and the optimisation problem.
The GA assesses solutions for their quality according to the information produced by this unit and not
by directly using information about their structure. In engineering design problems, functional require-
ments are specified to the designer who has to produce a structure that performs the desired functions
within predetermined constraints. The quality of a proposed solution is usually calculated depending on
how well the solution performs the desired functions and satisfies the given constraints. In the case of a
GA, this calculation must be automatic, and the problem is how to devise a procedure that computes
the quality of solutions.

Fitness evaluation functions might be complex or simple depending on the optimisation problem at
hand. Where a mathematical equation cannot be formulated for this task, a rule-based procedure can
be constructed for use as a fitness function or in some cases both can be combined. Where some
constraints are very important and cannot be violated, the structures or solutions that do so can be
eliminated in advance by appropriately designing the representation scheme. Alternatively, they can be
given low probabilities by using special penalty functions.

For further information on genetic algorithms, see [Holland, 1975; Goldberg, 1989; Davis, 1991; Pham
and Karaboga, 2000].

Genetic algorithms have found applications in engineering problems involving complex combinatorial
or multiparameter optimisation. Some recent examples of those applications follow:

+ Configuring transmission systems [Pham and Yang, 1993]

+ Generating hardware description language programs for high-level specification of the function
of programmable logic devices [Seals and Whapshott, 1994]

Designing the knowledge base of fuzzy logic controllers [Pham and Karaboga, 1994]

Planning collision-free paths for mobile and redundant robots [Ashiru et al., 1995; Wilde and
Shellwat, 1997; Nearchou and Aspragathos, 1997]

Scheduling the operations of a job shop [Cho et al., 1996; Drake and Choudhry, 1997]

1.7 Some Applications in Engineering and Manufacture

This section briefly reviews five engineering applications of the aforementioned computational intelli-
gence tools.

1.7.1 Expert Statistical Process Control

Statistical process control (SPC) is a technique for improving the quality of processes and products
through closely monitoring data collected from those processes and products and using statistically based
tools such as control charts.

XPC is an expert system for facilitating and enhancing the implementation of statistical process control
[Pham and Oztemel, 1996]. A commercially available shell was employed to build XPC. The shell allows
a hybrid rule-based and pseudo object-oriented method of representing the standard SPC knowledge
and process-specific diagnostic knowledge embedded in XPC. The amount of knowledge involved is
extensive, which justifies the adoption of a knowledge-based systems approach.

©2001 CRC Press LLC

Range Chart Mean Chart

UCL: 9 CL: 4 LCL: 0.00 | [UCL: 93 CL: 78 LCL: 63

15 30 45 60 75 98 15 30 45 60 75 98
Mean : 4.5 St. Dev : 1.5 PCI: 1.7 Mean : 72.5 St. Dev : 4.4 PSD : 4.0

State of the process: in-control State of the process: in-control

Process going out of control!

press any key to continue

the pattern is normal (%) 0.00
the pattern is inc. trend (%) : 0.00
the pattern is dec. trend (%) : 100.00
the pattern is up. shift (%) 0.00
the pattern is down. shift (%) : 0.00
the pattern is cyclic (%) 0.00

press 999 to exit

FIGURE 1.11 XPC output screen.

XPC comprises four main modules. The construction module is used to set up a control chart. The
capability analysis module is for calculating process capability indices. The on-line interpretation and
diagnosis module assesses whether the process is in control and determines the causes for possible out-
of-control situations. It also provides advice on how to remedy such situations. The modification module
updates the parameters of a control chart to maintain true control over a time-varying process. XPC has
been applied to the control of temperature in an injection molding machine producing rubber seals. It
has recently been enhanced by integrating a neural network module with the expert system modules to
detect abnormal patterns in the control chart (see Figure 1.11).

©2001 CRC Press LLC

1.7.2 Fuzzy Modelling of a Vibratory Sensor for Part Location

Figure 1.12 shows a six-degree-of-freedom vibratory sensor for determining the coordinates of the centre
of mass (Xg, Ys) and orientation y of bulky rigid parts. The sensor is designed to enable a robot to pick
up parts accurately for machine feeding or assembly tasks. The sensor consists of a rigid platform (P)
mounted on a flexible column (C). The platform supports one object (O) to be located at a time. O is
held firmly with respect to P. The static deflections of C under the weight of O and the natural frequencies
of vibration of the dynamic system comprising O, P, and C are measured and processed using a mathe-
matical model of the system to determine Xg, ys, and y for O. In practice, the frequency measurements
have low repeatability, which leads to inconsistent location information. The problem worsens when y
is in the region 80° to 90° relative to a reference axis of the sensor, because the mathematical model
becomes ill-conditioned. In this “ill-conditioning” region, an alternative to using a mathematical model
to compute y is to adopt an experimentally derived fuzzy model. Such a fuzzy model has to be obtained
for each specific object through calibration.

A possible calibration procedure involves placing the object at different positions (xg, Yg) and orien-
tations y and recording the periods of vibration T of the sensor. Following calibration, fuzzy rules relating
Xa Y and T to ycould be constructed to form a fuzzy model of the behaviour of the sensor for the given
object. A simpler fuzzy model is achieved by observing that x5 and y, only affect the reference level of
T and, if X5 and yg are employed to define that level, the trend in the relationship between T and y is
the same regardless of the position of the object. Thus, a simplified fuzzy model of the sensor consists
of rules such as “If (T-T,;) is small Then (y—y,) is small” where T, is the value of T when the object
is at position (Xg, Yg) and orientation ¥, . ¥ could be chosen as 80°, the point at which the fuzzy model
is to replace the mathematical model. T, could be either measured experimentally or computed from
the mathematical model. To counteract the effects of the poor repeatability of period measurements,
which are particularly noticeable in the “ill-conditioning” region, the fuzzy rules are modified so that
they take into account the variance in T. An example of a modified fuzzy rule is “If (T-T,;) is small and
oy issmall, Then (y—Vy,) issmall.” In this rule, o; denotes the standard deviation in the measurement of T.

Fuzzy modelling of the vibratory sensor is detailed in Pham and Hafeez (1992). Using a fuzzy model,
the orientation y can be determined to +2° accuracy in the region 80° to 90°. The adoption of fuzzy
logic in this application has produced a compact and transparent model from a large amount of noisy
experimental data.

1.7.3 Induction of Feature Recognition Rules in a Geometric Reasoning
System for Analysing 3D Assembly Models

Pham et al. (1999) have described a concurrent engineering approach involving generating assembly
strategies for a product directly from its 3D CAD model. A feature-based CAD system is used to create
assembly models of products. A geometric reasoning module extracts assembly oriented data for a product
from the CAD system after creating a virtual assembly tree that identifies the components and subas-
semblies making up the given product (Figure 1.13(a)). The assembly information extracted by the
module includes placement constraints and dimensions used to specify the relevant position of a given
component or subassembly; geometric entities (edges, surfaces, etc.) used to constrain the component
or subassembly; and the parents and children of each entity employed as a placement constraint. An
example of the information extracted is shown in Figure 1.13(b).

Feature recognition is applied to the extracted information to identify each feature used to constrain
a component or subassembly. The rule-based feature recognition process has three possible outcomes

1. The feature is recognised as belonging to a unigue class.
2. The feature shares attributes with more than one class (see Figure 1.13(c)).
3. The feature does not belong to any known class.

Cases 2 and 3 require the user to decide the correct class of the feature and the rule base to be updated.
The updating is implemented via a rule induction program. The program employs RULES-3 Plus, which

©2001 CRC Press LLC

Platform P Object O

Nl \Orientation
ZG oo

Ye Y

Column C

End of robot arm

FIGURE 1.12 Schematic diagram of a vibratory sensor mounted on a robot wrist.

automatically extracts new feature recognition rules from examples provided to it in the form of char-
acteristic vectors representing different features and their respective class labels.

Rule induction is very suitable for this application because of the complexity of the characteristic
vectors and the difficulty of defining feature classes manually.

1.7.4 Neural-Network-Based Automotive Product Inspection

Figure 1.14 depicts an intelligent inspection system for engine valve stem seals [Pham and Oztemel,
1996]. The system comprises four CCD cameras connected to a computer that implements neural-
network-based algorithms for detecting and classifying defects in the seal lips. Faults on the lip aperture
are classified by a multilayer perceptron. The inputs to the network are a 20-component vector, where
the value of each component is the number of times a particular geometric feature is found on the
aperture being inspected. The outputs of the network indicate the type of defect on the seal lip aperture.
A similar neural network is used to classify defects on the seal lip surface. The accuracy of defect
classification in both perimeter and surface inspection is in excess of 80%. Note that this figure is not
the same as that for the accuracy in detecting defective seals, that is, differentiating between good and
defective seals. The latter task is also implemented using a neural network which achieves an accuracy
of almost 100%. Neural networks are necessary for this application because of the difficulty of describing
precisely the various types of defects and the differences between good and defective seals. The neural
networks are able to learn the classification task automatically from examples.

©2001 CRC Press LLC

Dhjoct Boowrsor
File Edit Sesech Optiens Heip
+*
P_RAINBODY j
P_493450018, ;
MEMBRAIN
SASURASESS |58 _ASSTESTIR—{P_NEWSAFETY
P _COMPLENS]
HUT_ &l
~P_HEWCOVER
SAASSTESTS < goine o
y J P_REWSTOPS
Madn_ASM R SA_ASSTEST< P REWRUBSTI
{P_WASHER_20) ', {5A_SIIBASST) P_NEWRIGST)
' (P_WRSIER 21 'w{ {5A_ASSTESTA} :I:__—j;?f:f:ﬂﬁ‘lJ
.:@ WASHER 2] P_KEWRUT 18 ‘{ga assTesti | ~oiMPLESPR
WP wnsIER_7
UP_AOLTS 24|
[F HOLTS
|+
[=

FIGURE 1.13(a) An assembly model.

Bolt:
- Child of Block
- Placement constraints
1: alignment of two axes
2: mating of the bottom surface of the bolt
head and the upper surface of the block
- No child part in the assembly hierarchy

Block:

- No parents

- No constraints (root component)
- Next part in the assembly: Bolt

FIGURE 1.13(b) An example of assembly information.

1.7.5 GA-Based Conceptual Design

TRADES is a system using GA techniques to produce conceptual designs of transmission units [Pham
and Yang, 1992]. The system has a set of basic building blocks, such as gear pairs, belt drives, and
mechanical linkages, and generates conceptual designs to satisfy given specifications by assembling the
building blocks into different configurations. The crossover, mutation, and inversion operators of the

©2001 CRC Press LLC

New Form Feature through Slot (BSL_2)

< >

Detected Similar S
Feature Classes

Rectangular Non- ,

through Slot (BSL_1) | 3

FIGURE 1.13(c) An example of feature recognition.

Ethernet link
Vision system Host
PC
4 CCD cameras
512 x 512 resolution
Lighting Databus

Material handling
and lighting

Bowl

controller

Indexing machine

FIGURE 1.14 Valve stem seal inspection system.

GA are employed to create new configurations from an existing population of configurations. Config-
urations are evaluated for their compliance with the design specifications. Potential solutions should
provide the required speed reduction ratio and motion transformation while not containing incompat-
ible building blocks or exceeding specified limits on the number of building blocks to be adopted. A
fitness function codifies the degree of compliance of each configuration. The maximum fitness value is
assigned to configurations that satisfy all functional requirements without violating any constraints. As
in a standard GA, information concerning the fitness of solutions is employed to select solutions for

©2001 CRC Press LLC

reproduction, thus guiding the process toward increasingly fitter designs as the population evolves. In
addition to the usual GA operators, TRADES incorporates new operators to avert premature convergence
to nonoptimal solutions and facilitate the generation of a variety of design concepts. Essentially, these
operators reduce the chances of any one configuration or family of configurations dominating the solution
population by avoiding crowding around very fit configurations and preventing multiple copies of a
configuration, particularly after it has been identified as a potential solution.

TRADES is able to produce design concepts from building blocks without requiring much additional
a priori knowledge. The manipulation of the building blocks to generate new concepts is carried out by
the GA in a stochastic but guided manner. This enables good conceptual designs to be found without
the need to search the design space exhaustively.

Due to the very large size of the design space and the quasi random operation of the GA, novel solutions
not immediately evident to a human designer are sometimes generated by TRADES. On the other hand,
impractical configurations could also arise. TRADES incorporates a number of heuristics to filter out
such design proposals.

1.8 Conclusion

Over the past 40 years, computational intelligence has produced a number of powerful tools. This chapter
has reviewed five of those tools, namely, knowledge-based systems, fuzzy logic, inductive learning, neural
networks, and genetic algorithms. Applications of the tools in engineering and manufacture have become
more widespread due to the power and affordability of present-day computers. It is anticipated that many
new applications will emerge and that, for demanding tasks, greater use will be made of hybrid tools
combining the strengths of two or more of the tools reviewed here [Medsker, 1995]. Other technological
developments in computational intelligence that will have an impact in engineering include data mining,
or the extraction of information and knowledge from large databases [Limb and Meggs, 1994], and
multi-agent systems, or distributed self-organising systems employing entities that function autono-
mously in an unpredictable environment concurrently with other entities and processes [Wooldridge
and Jennings, 1994; Rzevski, 1995; Markus et al., 1996; Tharumarajah et al., 1996; Bento and Feijé, 1997].
The appropriate deployment of these new computational intelligence tools and of the tools presented in
this chapter will contribute to the creation of more competitive engineering systems.

Acknowledgments

This review was carried out as part of the Innovation in Manufacturing and Innovative Technologies for
Effective Enterprises projects supported by the European Regional Development Fund. The Fund is
administered by the Welsh Assembly, the Welsh Office, and the Welsh European Programme Executive
for the European Commission. Information for the review was also obtained from work on the INFOMAN
project and the CONFLOW project funded by the European Commission under the ESPRIT and INCO-
COPERNICUS Programmes.

References

Ashiru 1., Czanecki C. and Routen T., (1995), Intelligent operators and optimal genetic-based path
planning for mobile robots, Proc. Int. Conf. Recent Advances in Mechatronics, Istanbul, Turkey,
August, 1018-1023.

Baker J. E., (1985), Adaptive selection methods for genetic algorithms, Proc. First Int. Conf. Genetic
Algorithms and Their Applications, Pittsburgh, PA, 101-111.

Bas K. and Erkmen A. M., (1995), Fuzzy preshape and reshape control of Anthrobot-111 5-fingered robot
hand, Proc. Int. Conf. Recent Advances in Mechatronics, Istanbul, Turkey, August, 673-677.

Bento J. and Feijo B., (1997), An agent-based paradigm for building intelligent CAD systems, Artificial
Intelligence in Engineering, 11(3), 231-244.

©2001 CRC Press LLC

Bigand A., Goureau P. and Kalemkarian J., (1994), Fuzzy control of a welding process, Proc. IMACS Int.
Symp. Signal Processing, Robotics and Neural Networks (SPRANN 94), Villeneuve d’Ascq, France,
April, 379-342.

Bose A., Gini M. and Riley D., (1997), A case-based approach to planar linkage design, Artificial Intelligence
in Engineering, 11(2), 107-119.

Cho B. J,, Hong S. C. and Okoma S., (1996), Job shop scheduling using genetic algorithm, Proc. 3rd
World Congress Expert Systems, Seoul, Korea, February, 351-358.

Da Rocha Fernandes A. M. and Cid Bastos R., (1996), Fuzzy expert systems for qualitative analysis of
minerals, Proc. 3rd World Congress Expert Systems, Seoul, Korea, February, 673-680.

Davis L., (1991), Handbook of Genetic Algorithms, Van Nostrand, New York.

Drake P. R. and Choudhry 1. A., (1997), From apes to schedules, Manufacturing Engineer, 76 (1), 43-45.

Durkin J., (1994), Expert Systems Design and Development, Macmillan, New York.

Ferreiro Garcia R., (1994), FAM rule as basis for poles shifting applied to the roll control of an aircraft,
Proc. IMACS Int. Symp. Signal Processing, Robotics and Neural Networks (SPRANN 94), 375-378.

Fogarty T. C., (1989), Varying the probability of mutation in the genetic algorithm, Proc. Third Int. Conf.
on Genetic Algorithms and Their Applications, George Mason University, 104-109.

Goldberg D. E., (1989), Genetic Algorithms in Search, Optimisation and Machine Learning, Addison-\Wesley,
Reading, MA.

Grefenstette J. J., (1986), Optimization of control parameters for genetic algorithms, IEEE Trans. on
Systems, Man and Cybernetics, 16(1), 122-128.

Hassoun M. H., (1995), Fundamentals of Artificial Neural Networks, MIT Press, Cambridge, MA.

Holland J. H., (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor, Ml.

Jackson P., (1999), Introduction to Expert Systems, 3rd ed., Addison-Wesley, Harlow, Essex, U.K.

Jambunathan K., Fontama V. N., Hartle S. L. and Ashforth-Frost S., (1997), Using ART 2 networks to
deduce flow velocities, Artificial Intelligence in Engineering, 11(2), 135-141.

Kaufmann A., (1975), Introduction to the Theory of Fuzzy Subsets, vol. 1, Academic Press, New York.

Koo D. Y. and Han S. H., (1996), Application of the configuration design methods to a design expert
system for paper feeding mechanism, Proc. 3rd World Congress on Expert Systems, Seoul, Korea,
February, 49-56.

Kostov A., Andrews B., Stein R. B., Popovic D. and Armstrong W. W., (1995), Machine learning in control
of functional electrical stimulation systems for locomotion, IEEE Trans. Biomedical Engineering,
44(6), 541-551.

Lara Rosano F., Kemper Valverde N., De La Paz Alva C. and Alcantara Zavala J., (1996), Tutorial expert
system for the design of energy cogeneration plants, Proc. 3rd World Congress on Expert Systems,
Seoul, Korea, February, 300-305.

Limb P. R. and Meggs G. J., (1994), Data mining tools and techniques, British Telecom Technology Journal,
12(4), 32-41.

Luzeaux D., (1994), Process control and machine learning: rule-based incremental control, IEEE Trans.
Automatic Control, 39(6), 1166-1171.

Majors M. D. and Richards R. J., (1995), A topologically-evolving neural network for robotic flexible
assembly control, Proc. Int. Conf. Recent Advances in Mechatronics, Istanbul, Turkey, August, 894-
899.

Maérkus A., Kis T., Vancza J. and Monostori L., (1996), A market approach to holonic manufacturing,
CIRP Annals, 45(1), 433-436.

Medsker L. R., (1995), Hybrid Intelligent Systems, Kluwer, Boston.

Michalewicz Z., (1992), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag,
Berlin.

Michalski R. S., (1990), A theory and methodology of inductive learning, in Readings in Machine Learning,
Eds. Shavlik, J. W. and Dietterich T. G., Kaufmann, San Mateo, CA, 70-95.

Muggleton S. (Ed.), (1992), Inductive Logic Programming, Academic Press, London.

©2001 CRC Press LLC

Nearchou A. C. and Aspragathos N. A., (1997), A genetic path planning algorithm for redundant
articulated robots, Robotica, 15(2), 213-224.

Peers S. M. C., Tang M. X. and Dharmavasan S., (1994), A knowledge-based scheduling system for
offshore structure inspection, Artificial Intelligence in Engineering 1X (AIEng 9), Eds. Rzevski G.,
Adey R. A. and Russell D. W., Computational Mechanics, Southampton, 181-188.

Pham D. T. and Aksoy M. S., (1994), An algorithm for automatic rule induction, Artificial Intelligence in
Engineering, 8, 277-282.

Pham D. T. and Aksoy M. S., (1995a), RULES : A rule extraction system, Expert Systems Applications, 8,
59-65.

Pham D. T. and Aksoy M. S., (1995b), A new algorithm for inductive learning, Journal of Systems
Engineering, 5, 115-122.

Pham D. T. and Dimov S. S. (1997), An efficient algorithm for automatic knowledge acquisition, Pattern
Recognition, 30 (7), 1137-1143.

Pham D. T., Dimov S. S. and Setchi R. M. (1999), Concurrent engineering: a tool for collaborative
working, Human Systems Management, 18, 213-224.

Pham D. T. and Hafeez K., (1992), Fuzzy qualitative model of a robot sensor for locating three-dimen-
sional objects, Robotica, 10, 555-562.

Pham D. T. and Karaboga D., (1994), Some variable mutation rate strategies for genetic algorithms, Proc.
IMACS Int. Symp. Signal Processing, Robotics and Neural Networks (SPRANN 94), 73-96.

Pham D. T. and Karaboga D., (2000), Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search,
Simulated Annealing and Neural Networks, Springer-Verlag, London.

Pham D. T. and Liu X., (1999), Neural Networks for Identification, Prediction and Control, Springer-Verlag,
London.

Pham D. T., Onder H. H. and Channon P. H., (1996), Ergonomic workplace layout using genetic
algorithms, J. Systems Engineering, 6(1), 119-125.

Pham D. T. and Oztemel E., (1996), Intelligent Quality Systems, Springer-Verlag, London.

Pham D. T. and Pham P. T. N., (1988), Expert systems in mechanical and manufacturing engineering,
Int. J. Adv. Manufacturing Technol., special issue on knowledge based systems, 3(3), 3-21.

Pham D. T. and Yang Y., (1993), A genetic algorithm based preliminary design system, Proc. IMechE, Part
D: J Automobile Engineering, 207, 127-133.

Price C. J., (1990), Knowledge Engineering Toolkits, Ellis Horwood, Chichester, U.K.

Quinlan J. R., (1983), Learning efficient classification procedures and their applications to chess end
games, in Machine Learning, An Artificial Intelligence Approach, Eds. Michalski R. S., Carbonell
J. G. and Mitchell T. M., Morgan Kaufmann, Palo Alto, CA, 463-482.

Rzevski G., (1995), Artificial intelligence in engineering: past, present and future, Artificial Intelligence in
Engineering X, Eds. Rzevski G., Adey R. A. and Tasso C., Computational Mechatronics, Southamp-
ton, UK, 3-16.

Schaffer J. D., Caruana R. A., Eshelman L. J. and Das R., (1989), A study of control parameters affecting
on-line performance of genetic algorithms for function optimisation, Proc. Third Int. Conf. on
Genetic Algorithms and Their Applications, George Mason University, 51-61.

Seals R. C. and Whapshott G. F,, (1994), Design of HDL programmes for digital systems using genetic
algorithms, Al Eng 9 (ibid.), 331-338.

Shi Z. Z., Zhou H. and Wang J., (1997), Applying case-based reasoning to engine oil design, Artificial
Intelligence in Engineering, 11(2), 167-172.

Skibniewski M., Arciszewski T. and Lueprasert K., (1997), Constructability analysis: machine learning
approach, ASCE J Computing Civil Eng., 12(1), 8-16.

Smith P.,, MacIntyre J. and Husein S., (1996), The application of neural networks in the power industry,
Proc. 3rd World Congress on Expert Systems, Seoul, Korea, February, 321-326.

Szwarc D., Rajamani D. and Bector C. R., (1997), Cell formation considering fuzzy demand and machine
capacity, Int. J. Advanced Manufacturing Technology, 13(2), 134-147.

©2001 CRC Press LLC

Tarng Y. S., Tseng C. M. and Chung L. K., (1997), A fuzzy pulse discriminating systems for electrical
discharge machining, Int. J. Machine Tools Manufacture, 37(4), 511-522.

Teti R. and Caprino G., (1994), Prediction of composite laminate residual strength based on a neural
network approach, Al Eng 9 (ibid), 81-88.

Tharumarajah A., Wells A. J. and Nemes L., (1996), Comparison of the bionic, fractal and holonic
manufacturing system concepts, Int. J. Computer Integrated Manfacturing, 9(3), 217-226.

Wang L. X. and Mendel M., (1992), Generating fuzzy rules by learning from examples, IEEE Trans. on
Systems, Man and Cybernetics, 22(6), 1414-1427.

Whitely D., (1989), The GENITOR algorithm and selection pressure: Why rank-based allocation of
reproductive trials is best, Proc. Third Int. Conf. on Genetic Algorithms and Their Applications,
George Mason University, 116-123.

Wilde P. and Shellwat H., (1997), Implementation of a genetic algorithm for routing an autonomous
robot, Robotica, 15(2), 207-211.

Wooldridge M. J. and Jennings N. R., (1994), Agent theories, architectures and languages: a survey, Proc.
ECAI 94 Workshop on Agent Theories, Architectures and Languages, Amsterdam, 1-32.

Yano H., Akashi T., Matsuoka N., Nakanishi K., Takata O. and Horinouchi N., (1997), An expert system
to assist automatic remeshing in rigid plastic analysis, Toyota Technical Review, 46(2), 87-92.

Zadeh L. A., (1965), Fuzzy sets, Information Control, 8, 338-353.

Zimmermann H. J., (1991), Fuzzy Set Theory and Its Applications, 2nd ed., Kluwer, Boston.

©2001 CRC Press LLC

Wang, Jun et a "Applicationsin Intelligent Manufacturing: An Updated Survey"
Computational Intelligence in Manufacturing Handbook
Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Neural Network
Applications in
Intelligent
Manufacturing:

An Updated Survey

2.1 Introduction

n Wan . . .
Ju & 2.2 Modeling and Design of Manufacturing Systems

The Chinese University

of Hong Kong 2.3 Modeling, Planning, and Scheduling of Manufacturing
. Processes

Wai Sum Tang 2.4 Monitoring and Control of Manufacturing

The Chinese University Processes

of Hong Kong 2.5 Quality Control, Quality Assurance, and

Catherine Roze Fault Diagnosis

IBM Global Services 2.6 Concluding Remarks

Abstract

In recent years, artificial neural networks have been applied to solve a variety of problems in numerous
areas of manufacturing at both system and process levels. The manufacturing applications of neural
networks comprise the design of manufacturing systems (including part-family and machine-cell for-
mation for cellular manufacturing systems); modeling, planning, and scheduling of manufacturing
processes; monitoring and control of manufacturing processes; quality control, quality assurance, and
fault diagnosis. This paper presents a survey of existing neural network applications to intelligent man-
ufacturing. Covering the whole spectrum of neural network applications to manufacturing, this chapter
provides a comprehensive review of the state of the art in recent literature.

2.1 Introduction

Neural networks are composed of many massively connected simple neurons. Resembling more or less
their biological counterparts in structure, artificial neural networks are representational and computational
models processing information in a parallel distributed fashion. Feedforward neural networks and recur-
rent neural networks are two major classes of artificial neural networks. Feedforward neural networks,

©2001 CRC Press LLC

such as the popular multilayer perceptron, are usually used as representational models trained using a
learning rule based on a set of input-output sample data. A popular learning rule is the widely used
backpropagation (BP) algorithm (also known as the generalized delta rule). It has been proved that the
multilayer feedforward neural networks are universal approximators. It has also been demonstrated that
neural networks trained with a limited number of training samples possess a good generalization capa-
bility. Large-scale systems that contain a large number of variables and complex systems where little
analytical knowledge is available are good candidates for the applications of feedforward neural networks.
Recurrent neural networks, such as the Hopfield networks, are usually used as computational models for
solving computationally intensive problems. Typical examples of recurrent neural network applications
include NP-complete combinatorial optimization problems and large-scale or real-time computation
tasks. Neural networks are advantageous over traditional approaches for solving such problems because
neural information processing is inherently concurrent.

In the past two decades, neural network research has expanded rapidly. On one hand, advances in
theory and methodology have overcome many obstacles that hindered the neural network research a few
decades ago. On the other hand, artificial neural networks have been applied to numerous areas. Neural
networks offer advantages over conventional techniques for problem-solving in terms of robustness, fault
tolerance, processing speed, self-learning, and self-organization. These desirable features of neural com-
putation make neural networks attractive for solving complex problems. Neural networks can find
applications for new solutions or as alternatives of existing methods in manufacturing. Application areas
of neural networks include, but are not limited to, associative memory, system modeling, mathematical
programming, combinatorial optimization, process and robotic control, pattern classification and rec-
ognition, and design and planning.

In recent years, the applications of artificial neural networks to intelligent manufacturing have attracted
ever-increasing interest from the industrial sector as well as the research community. The success in utilizing
artificial neural networks for solving various computationally difficult problems has inspired renewed
research in this direction. Neural networks have been applied to a variety of areas of manufacturing from
the design of manufacturing systems to the control of manufacturing processes. One top-down classification
of neural network applications to intelligent manufacturing, as shown in Figure 2.1, results in four main
categories without clearly cut boundaries: (1) modeling and design of manufacturing systems, including
machine-cell and part-family formation for cellular manufacturing systems; (2) modeling, planning, and
scheduling of manufacturing processes; (3) monitoring and control of manufacturing processes; (4) quality
control, quality assurance, and fault diagnosis. The applications of neural networks to manufacturing have
shown promising results and will possibly have a major impact on manufacturing in the future [1, 2].

Neural Network Applications
in Intelligent Manufacturing

. Quality Control,
System Modeling gfoce_ss Moilelmg, Process Monitoring Quality Assurance,
and Design Sc?lr;rzillill%nan and Control and Fault
& Diagnosis

FIGURE 2.1 Hierarchy of neural network applications in intelligent manufacturing.

©2001 CRC Press LLC

This chapter provides a comprehensive survey of recent neural network applications in intelligent
manufacturing based on the aforementioned categorization. The aim of the chapter is to review the state
of the art of the research and highlight the recent advances in research and applications of neural networks
in manufacturing. Because of the vast volume of publications, this chapter considers only the works
published in major archival journals and selected edited books.

2.2 Modeling and Design of Manufacturing Systems

As representational models, artificial neural networks are particularly useful for modeling systems whose
underlying properties are too complex, too obscure, too costly, or too time-consuming to be modeled
analytically using traditional methods. The use of neural networks for modeling and design of manu-
facturing systems includes manufacturing decision making, product design storage and retrieval in group
technology, and formation of part families and machine cells for the design of cellular manufacturing
systems.

Chryssolouris et al. [3] applied neural networks, in conjunction with simulation models, for resource
allocation in job-shop manufacturing systems. Feedforward neural networks called multilayer perceptrons
trained using the popular backpropagation (BP) algorithm were used to learn the inverse mapping of the
simulation task: given desired performance measure levels, the neural networks output suitable values for
the parameters of resources. Based on results generated by a simulator, the neural networks were demon-
strated to be able to find a suitable allocation for the resources to achieve given performance levels. In a
related work, Chryssolouris et al. [4] applied neural networks, also in conjunction with simulation models,
to determine operational policies for hierarchical manufacturing systems under a multiple criteria decision
making framework called MAnufacturing DEcision MAking (MADEMA). Multilayer perceptrons were
used to generate appropriate criterion weights for an entire sequence of multiple criteria decisions on
manufacturing policies. This neural network approach is more appropriate for complex applications entail-
ing chains of decisions, such as job-shop scheduling, whereas conventional methods are preferable for single
or isolated decisions. Madey et al. [5] used a neural network embeded in a general-purpose simulation
system for modeling Continuous Improvement Systems (CIS) policies in manufacturing systems. A mul-
tilayer feedforward neural network trained using the BP algorithm was used to facilitate the identification
of an effective CIS policy and to provide a realistic simulation framework to enhance the capabilities of
simulations. The trained neural network was embedded in the simulation model code, so that the model
had intrinsic advisory capability to reduce time or complexity for linking with external software. The results
demonstrated not only the feasibility, but also the promising effectiveness of the combination of neural
computation within simulation models for improving CIS analysis.

The crux behind group technology (GT) is to group similar parts that share common design and/or
manufacturing features into part families and bring dissimilar machines together and dedicate them to
the manufacture of one or more part families. GT is an important step toward the reduction of throughput
time, work-in-process inventory, investment in material handling, and setup time, thus resulting in an
increase of productivity vital to survive in an increasingly competitive environment and changing customer
preferences. The success of GT implementation depends largely on how the part families are formed and
how machines are grouped. Numerous methods exist to solve the GT problem, each with its own
limitations. As alternatives, neural networks have been proposed to provide solutions to the GT problem.

Kamarthi et al. [6] used a multilayer perceptron as an associative memory for storage and retrieval of
design data in group technology. Design data in the gray-level pixel representations of design drawings
were stored in the neural associative memory. The simulation results reported in this paper showed that
the neural network trained using the BP algorithm was able to generate the closest stored part given the
geometric characteristics of new parts. The fault tolerance capability of neural networks is particularly
instrumental for cases where only partial or inexact information is available. The neural network approach
is useful for the standardization of product design and process planning. A weakness of the proposed

©2001 CRC Press LLC

approach is the lack of ability for translation, scale, and rotation invariant recognition of parts, which
are essential for handling part drawings.

In Kaparthi and Suresh’s work [7], a multilayer feedforward neural network trained with the BP
algorithm was employed to automate the classification and coding of parts for GT applications. Given
the pixel representation of a part drawing extracted from computer-aided design (CAD) systems, the
neural network was able to output the Opitz codes related to the part geometric information. The work
is not limited to rotational parts and may be used for nonrotational parts. Nevertheless, code generation
based on features other than shapes (e.g., material type) would require the neural network to be supple-
mented with other algorithms/procedures.

Moon and Roy [8] introduced a neural network approach to automating part-family classification in
conjunction with a feature-based solid modeling system. The part features extracted from a model or
object database were used to train and test a multilayer feedforward neural network. Trained using the
BP algorithm, the neural network neurons signify an appropriate part family for each part. Besides
overcoming some limitations of traditional coding and classification methods, this approach offers more
flexibility and faster response.

Venugopal and Narendran [9] applied the Hopfield network to design storage and retrieval for batch
manufacturing systems. Binary matrix representations of parts based on geometric shapes were stored
in the Hopfield network. Test cases carried out on rotational and nonrotational parts showed the high
percentage of correct retrieval of stored part information using the neural network. The retrieval rapidity
is another major advantage of the neural network model. Such a storage/retrieval system could benefit
the design process by minimizing duplications and variety, thus increasing productivity of both designer
and planner, aiding standardization, and indirectly facilitating quotations. Furthermore, this approach
offers flexibility and could adjust to changes in products. Unfortunately, the limited capacity of the
Hopfield network constrained the possible number of stored designs.

Chakraborty and Roy [10] applied neural networks to part-family classification based on part geo-
metric information. The neural system consisted of two neural networks: a Kohonen’s SOM network
and a multilayer feedforward network trained using the BP algorithm. The former was used to cluster
parts into families and provide data to train the latter to learn part-family relationships. Given data not
contained in the training set, the feedforward neural network performed well with an accuracy of 100%
in most of test cases.

Kiang et al. [11] used the self-organizing map (SOM) network for part-family grouping according to
the operation sequence. An operation sequence based similarity coefficient matrix developed by the
authors was constructed and used as the input to the SOM network, which clustered the parts into
different families subsequently. The performance of the SOM network approach was compared with two
other clustering techniques, the k-th nearest neighbor (KNN) and the single linkage (SLINK) clustering
methods for problems varying from 19 to 200 parts. The SOM-network-based method was shown to
cluster the parts more uniformly in terms of number of parts in each family, especially for large data set.
The training time for the SOM network was very time-consuming, though the trained network can
perform clustering in very short time.

Wu and Jen [12] presented a neural-network-based part classification system to facilitate the retrieving
and reviewing similar parts from the part database. Each part was represented by its three projection
views in the form of rectilinear polygons. Every polygon was encoded into a feature vector using the
skeleton standard tree method, which was clustered to a six-digit polygon code by a feedforward neural
network trained by the BP algorithm. By comparing the polygon codes, parts can be grouped hierarchi-
cally into three levels of similarity. For parts with all three identical polygon codes, they were grouped
into a high degree similarity family. For parts shared one identical polygon code, they were grouped into
a low degree similarity family. The rest of the parts were put into a medium degree similarity family.
Searching from the low degree of similarity family to the high degree of similarity family would help
designers to characterize a vague design.

Based on the interactive activation and competitive network model, Moon [13] developed a competitive
neural network for grouping machine cells and part families. This neural network consists of three layers

©2001 CRC Press LLC

of neurons. Two layers correspond respectively to the machines (called machine-type pool) and parts
(called part-type pool), and one hidden layer serves as a buffer between the machine-type pool and part-
type pool. Similarity coefficients of machines and parts are used to form the connection weights of the
neural network. One desirable feature of the competitive neural network, among others, is that it can
group machine cells and part families simultaneously. In a related work, Moon [14] showed that a
competitive neural network was able to identify natural groupings of part and machine into families and
cells rather than forcing them. Besides routing information, design similarities such as shapes, dimensions,
and tolerances can be incorporated into the same framework. Even fuzziness could be represented, by
using variable connection weights. Extending the results in [13, 14], Moon and Chi [15] used the com-
petitive neural network developed earlier for both standard and generalized part-family formation. The
neural network based on Jaccard similarity coefficients is able to find near-optimal solutions with a large
set of constraints. This neural network takes into account operations sequence, lot size, and multiple
process plans. This approach proved to be highly flexible in satisfying various requirements and efficient
for integration with other manufacturing functions. Currie [16] also used the interactive activation and
competition neural network for grouping part families and machines cells. This neural network was used
to define a similarity index of the pairwise comparison of parts based on various design and manufacturing
characteristics. Part families were created using a bond energy algorithm to partition the matrix of part
similarities. Machine cells were simply inferred from part families. The neural network simulated using
a spreadsheet macro showed to be capable of forming part families.

Based on the ART-1 neural network, Kusiak and Chung [17] developed a neural network model called
GT/ART for solving GT problems by block diagonalizing machine-part incidence matrices. This work
showed that the GT/ART neural network is more suitable for grouping machine cells and part families
than other nonlearning algorithms and other neural networks such as multilayer neural networks with
the BP learning algorithm. The GT/ART model allows learning new patterns and keeping existing weights
stable (plasticity vs. stability) at the same time. Kaparthi and Suresh [18] applied the ART-1 neural
network for clustering part families and machine cells. A salient feature of this approach is that the entire
part-machine incidence matrix is not stored in memory, since only one row is processed at a time. The
speed of computation and simplicity of the model offered a reduction in computational complexity
together with the ability to handle large industrial size problems. The neural network was tested using
two sets of data, one set from the literature and the other artificially generated to simulate industrial size
data. Further research is required to investigate and enhance the performance of this neural network in
the case of imperfect data (in the presence of exceptional elements).

Liao and Chen [19] evaluated the ART-1 network for part-family and machine-cell formation. The
ART-1 network was integrated with a feature-based CAD system to automate GT coding and part-family
formation. The process involves a three-stage procedure, with the objective of minimizing operating
and material handling costs. The first stage involved an integer programming model to determine the
best part routing in order to minimize operating costs. The first stage results in a binary machine-part
incidence matrix. In the second stage, the resulting incidence matrix is then input to an ART-1 network
that generates machine cells. In the last stage, the STORM plant layout model, an implementation of a
modified steepest descent pairwise interchange method is used to determine the optimal layout. The
limitation of the approach was that the ART-1 network needs an evaluation module to determine the
number of part families and machine cells.

Extending their work in [18], Kaparthi et al. [20] developed a robust clustering algorithm based on a
modified ART-1 neural network. They showed that modifying the ART-1 neural network can improve
the clustering performance significantly, by reversing zeros and ones in incidence matrices. Three perfectly
block diagonalizable incidence matrices were used to test the modified neural network. Further research
is needed to investigate the performance of this modified neural network using incidence matrices that
result in exceptional elements.

Moon and Kao [21] developed a modified ART-1 neural network for the automatic creation of new
part families during a part classification process. Part families were generated in a multiphase procedure
interfaced with a customized coding system given part features. Such an approach to GT allows to

©2001 CRC Press LLC

maintain consistency throughout a GT implementation and to perform the formation and classification
processes concurrently.

Dagli and Huggahalli [22] pointed out the limitations of the basic ART-1 paradigm in cell formation
and proposed a modification to make the performance more stable. The ART-1 paradigm was integrated
with a decision support system that performed cost/performance analysis to arrive at an optimal solution.
It was shown that with the original ART-1 paradigm the classification depends largely on order of
presentation of the input vectors. Also, a deficient learning policy gradually causes a reduction in the
responsibility of patterns, thus leading to a certain degree of inappropriate classification and a large
number of groups than necessary. These problems can be attributed to the high sensitivity of the paradigm
to the heuristically chosen degree of similarity among parts. These problems can be solved by reducing
the sensitivity of the network through applying the input vectors in the order of decreasing density
(measured by the number of 1’s in the vector) and through retaining only the vector with the greatest
density as the representative patterns. The proposed modifications significantly improved the correctness
of classification.

Moon [23] took into account various practical factors encountered in manufacturing companies,
including sequence of operations, lot size, and the possibility of multiple process plans. A neural network
trained with the BP algorithm was proposed to automate the formation of new family during the
classification process. The input patterns were formed using a customized feature-based coding system.
The same model could easily be adapted to take more manufacturing information into consideration.

Rao and Gu [24] combined an ART neural with an expert system for clustering machine cells in
cellular manufacturing. This hybrid system helps a cell designer in deciding on the number and type
of duplicate machines and resultant exceptional elements. The ART neural network has three purposes.
The first purpose is to group the machines into cells given as input the desired number of cells and
process plans. The second purpose is to calculate the loading on each machine given the processing
time of each part. The last purpose of the neural network is to propose alternative groups considering
duplicate machines. The expert system was used to reassign the exceptional elements using alternate
process plans generated by the neural network based on processing time and machine utilization. The
evaluation of process plans considered the cost factors of material handling, processing, and setup.
Finally, the neural network was updated for future use with any changes in machine utilization or cell
configuration.

Rao and Gu [25] proposed a modified version of the ART-1 algorithm to machine-cell and part-family
formation. This modified algorithm ameliorates the ART-1 procedure so that the order of presentation
of the input pattern no longer affects the final clustering. The strategy consists of arranging the input
pattern in a decreasing order of the number of 1’s, and replacing the logic AND operation used in the
ART-1 algorithm, with an operation from the intersection theory. These modifications significantly
improved the neural network performance: the modified ART-1 network recognizes more parts with
similar processing requirements than the original ART-1 network with the same vigilance thresholds.

Chen and Cheng [26] added two algorithms in the ART-1 neural network to alleviate the bottleneck
machines and parts problem in machine-part cell formation. The first one was a rearrangement algorithm,
which rearranged the machine groups in descending order according to the number of 1’'s and their
relative position in the machine-part incidence matrix. The second one was a reassignment algorithm,
which reexamined the bottleneck machines and reassigned them to proper cells in order to reduce the
number of exceptional elements. The extended ART-1 neural network was used to solve 40 machine-
part formation problems in the literature. The results suggested that the modified ART-1 neural network
could consistently produce a good quality result.

Since both original ART-1 and ART-2 neural networks have the shortcoming of proliferating categories
with a very few patterns due to the monotonic nonincreasing nature of weights, Burke and Kamal [27]
applied the fuzzy ART neural network to machine-part cell formation. They found that the fuzzy ART
performed comparably to a number of other serial algorithms and neural network based approaches for
part family and machine cell formation in the literature. In particular, for large size problem, the resulting
solution of fuzzy ART approach was superior than that of ART-1 and ART-2 approaches. In an extended

©2001 CRC Press LLC

work, Kamal and Burke [28] developed the FACT (fuzzy art with add clustering technique) algorithm
based on an enhanced fuzzy ART neural network to cluster machines and parts for cellular manufac-
turing. In the FACT algorithm, the vigilance and the learning rate were reduced gradually, which could
overcome the proliferating cluster problem. Also, the resultant weight vector of the assigned part family
were analyzed to extract the information about the machines used, which enabled FACT to cluster
machines and parts simultaneously. By using the input vector that combining both the incidence matrix
and other manufacturing criteria such as processing time and demand of the parts, FACT could cluster
machines and parts with multiple objectives. The FACT was tested with 17 examples in the literature.
The results showed that FACT outperformed other published clustering algorithms in terms of grouping
efficiency.

Chang and Tsai [29] developed an ART-1 neural-network-based design retrieving system. The design
being retrieved was coded to a binary matrix with the destructive solid geometry (DSG) method, which
was then fed into the ART-1 network to test the similarity to those in the database. By controlling the
vigilance parameter in the ART-1 network, the user can obtain a proper number of reference designs in
the database instead of one. Also, the system can retrieve a similar or exact design with noisy or incomplete
information. However, the system cannot process parts with protrusion features where additional oper-
ations were required in the coding stage.

Enke et al. [30] realized the modified ART-1 neural network in [22] using parallel computer for
machine-part family formation. The ART-1 neural network was implemented in a distributed computer
with 256 processors. Problems varying from 503 50 to 2563 256 (machines3 parts) were used to evaluate
the performance of this approach. Compared with the serial implementation of the ART-1 neural network
in one process, the distributed processor based implementation could reduce the processing time from
84.1t0 95.1%. Suresh et al. [31] applied the fuzzy ART neural network for machines and parts clustering
with the consideration of operation sequences. A sequence-based incidence matrix was introduced, which
included the routing sequence of each part. This incidence matrix was fed into the fuzzy ART neural
network to generate the sequence-based machine-part clustering solution. The proposed approach was
used to solve 20 problems with size ranging from 503 250 to 703 1400 (machines3 parts) and evaluated
by the measure clustering effectiveness defined by the authors. The results showed that the approach had
a better performance for smaller size problems.

Lee and Fisher [32] took both design and manufacturing similarities of parts into account to part-
family grouping using the fuzzy ART neural network. The design attributes, i.e., the geometrical features
of the part were captured and digitalized into an array of pixels, which was then normalized to ensure
scale, translation, and rotation invariant recognition of the image. The normalized pixel vectors were
transformed into a five-digit characteristics vector representing the geometrical features of the part by
fast Fourier transform and a dedicated spectrum analyzer. Another 8-digit vector containing the manu-
facturing attributes—including the processing route, processing time, demand of the part, and number
of machine types—was added to the 5-digit characteristic vector to form a 13-digit attribute. By feeding
the 13-digit attribute vector into a fuzzy ART network, the parts could be clustered based on both the
geometric shape and manufacturing attributes. The approach was found successful in parts grouping
based on both design and manufacturing attributes. However, the three input parameters in the fuzzy
ART network were determined by time-consuming trial and error approach, and cannot provide opti-
mum values when large data sets are used, since the combination of these parameters nonlinearly affected
the classification results.

Malavé and Ramachandran [33] proposed a self-organizing neural network based on a modified
Hebbian learning rule. In addition to proper cell formation, the neural network also identifies bottleneck
machines, which is especially useful in the case of very large part-machine incidence matrices where the
visual identification of bottlenecks becomes intractable. It was also possible to determine the ratio in
which bottleneck machines were shared among overlapping cells. The number of groups was arbitrarily
chosen, which may not result in the best cellular manufacturing system. Lee et al. [34] presented an
improved self-organizing neural network based on Kohonen’s unsupervised learning rule for part-family
and machine-cell formation, bottleneck machine detection, and natural cluster generation. This network

©2001 CRC Press LLC

is able to uncover the natural groupings and produce an optimal clustering as long as homogeneous
clusters exist. Besides discovering natural groupings, the proposed approach can also assign a new part
not contained in the original machine-part incidence matrix to the most appropriate machine cell using
the generalization ability of neural networks to maximize the cell efficiency.

Liao and Lee [35] proposed a GT coding and part family forming system composed of a feature-based
CAD system and an ART-1 neural network. The geometrical and machining features of a machining part
were first analyzed and identified by the user using the feature library in the feature-based CAD system,
which in turn generated a binary code for the part. The assigned codes for parts were clustered into
different families according to the similarity of the geometrical and machining features by the ART-1
neural network. After the part classification is completed, each part would assign a 13-digit GT code
automatically, which can be used to retrieve part drawing from the database or process plan from a variant
process planning system. The feasibility of the proposed system has been demonstrated by a case study.
However, the system was limited to those users who knew the machining operations, since machining
features of parts were required when using the feature-based CAD system.

Malakooti and Yang [36] developed a modified self-organizing neural network based on an improved
competitive learning algorithm for machine-part cell formation. A momentum term was added to the
weight updating equation for keeping the learning algorithm from oscillation, and a generalized Euclidean
distance with adjustable coefficients were used in the learning rule. By changing the coefficients, the
cluster structure can be adjusted to adopt the importance preference of machines and parts. The proposed
neural network was independent of the input pattern, and hence was independent of the initial incidence
matrix. On average, the neural network approach gave very good final grouping results in terms of
percentage of exceptional elements, machine utilization, and grouping efficiency compared with two
popular array-based clustering methods, the rank order clustering and the direct clustering analysis, to
ten problems sizing from 53 7 to 163 43 (machines3 parts) in the literature.

Arizono et al. [37] applied a modified stochastic neural network for machine-part grouping problem.
A simplified probability function was used in the proposed neural network, which reduced the compu-
tation time compared with other stochastic neural networks. The presented neural network overcame
the local minimum problem existing in deterministic neural networks. The proposed neural network
was comparable to conventional methods in solving problems in the literature. However, some system
parameters in the neural network were decided on trial and error basis. A general rule for determining
these parameters was not found. Zolfaghari and Liang [38] presented an ortho-synapse Hopfield network
(OSHN) for solving machine grouping problems. In OSHN the oblique synapses were removed to
considerably reduce the number of connections between neurons, and hence shortening the computa-
tional time. Also, the objective-guided search algorithm was adopted to ease the local optima problem.
The proposed neural network approach was able to automatically assign the bottleneck machines to the
cells, which they had the highest belongingness without causing large cells.

Kao and Moon [39] applied a multilayer feedforward neural network trained using the BP learning
algorithm for part-family formation during part classification. The proposed approach consists of four
phases: seeding, mapping, training, and assigning. Learning from feature-based part patterns from a
coding system with mapped binary family codes, the neural network is able to cluster parts into families,
resembling how human operators perform the classification tasks. Jamal [40] also applied a multilayer
feedforward neural network trained with the BP algorithm for grouping part families and machine cells
for a cellular manufacturing system. The original incidence matrices and corresponding block diago-
nalized ones are used, respectively, as inputs and desired outputs of the feedforward neural network for
training purposes. The quality of the solutions obtained by using the trained neural network is compa-
rable to that of optimal solutions. The benefits of using neural networks were highlighted again: speed,
robustness, and self-generated mathematical formulation. Nonetheless, care must be taken because the
efficiency of the neural network depends on the number and type of examples with which it was trained.
Chung and Kusiak [41] also used a multilayer feedforward neural network trained with the BP algorithm
to group parts into families for cellular manufacturing. Given binary representations of each part shape
as input, the neural network trained with standard shapes is to generate part families. The performance

©2001 CRC Press LLC

Legends

System Modeling ART: Adaptive Resonance Theory
and Design BP: Backpropagation

HN: Hopfield Network
SOM: Self-organizing Map

System-level Decision Group Technology &
Making Cellular Manufacturing
Part Classification Part—Family and
and Coding Machine—Cell Formation
Chryssolouris /BP (1990, '91) Kamarthi et al. /Bp (1990) Moon et al. /ART, BP (190, '92, 93)
Madley et al. /BP (1992) Kaparthi and Suresh /BP (1991) Kusiak and Chung /ART (1991, '94)
Moon and Roy /BP (1992) Malave et al. /SOM (1991)
Venugopal and Naredran /HN (1992) Rao and Gu /ART (1992), BP (1995)
Chakraborty and Roy /BP&SOM (1993) Kaparthi and Suresh /ART (1992, '93)
Kiang et al. /SOM (1994) Dagli and Huggahalli /ART (1993)
Wu and Jen /BP (1996) Liao and Chen /ART (1993)

Jamal /BP (1993)

Liao and Lee /ART (1994)
Chen and Cheng /ART (1995)
Burke and Kamal /ART (1995)
Chang and Tsai /ART (1997)
Euke et al. /ART (1998)
Suresh et al. /ART (1999)

Lee and Fischer /ART (1999)

FIGURE 2.2 Hierarchy of neural network applications for manufacturing system modeling and design.

of the neural network was tested with partial and distorted shapes. The results show the effect of various
design parameters on the groupings.

In summary, the applications of neural networks to modeling and design of manufacturing systems
include resource allocation in job-shop manufacturing, operational policy determination for hierarchical
manufacturing systems, modeling of continuous improvement systems, part classification and coding,
part-family and machine-cell formation, as shown in Figure 2.2. In system-level decision making appli-
cations, simulation was used in combination with neural networks to generate data used by the neural
network to implicitly model the system. In cellular manufacturing applications, neural networks used
to classify parts and machines permit easy identification of part families, machine cells, and exceptional
elements. Neural networks could also be used to assign new parts to an existing classification. Feedfor-
ward neural networks trained using the BP algorithm were popular for this application. Other types of
neural networks included ART networks, Hopfield networks, and SOM neural networks. Weaknesses of
neural networks for modeling and design of manufacturing systems result from neural networks them-
selves. Some parameters or constants must be determined on a trial-and-error basis. Also, neural network
methods cannot always guarantee an optimal solution, and several searches must often be taken to
improve the quality of the solution. Nevertheless, neural networks offer a promising alternative design
method with highly computational efficiency and are able to address some of the limitations of traditional
methods.

Given the ability to learn from experience and inherent parallel processing of neural networks, a neural
network approach allows the implicit modeling of systems using representative data, thus eliminating
the need for explicit mathematical analysis and modeling. Neural networks also have the unique ability
to solve problems with incomplete or noisy data. Furthermore, neural networks are not significantly
influenced by the size of the problem, because global computing is done in parallel and the local computat
ion in each neuron is very simple. Neural networks are therefore appropriate for solving large industrial
problems. As dedicated neurocomputing hardware emerges and improves, neural networks will become
more beneficial for solving large-scale manufacturing modeling and design applications.

©2001 CRC Press LLC

2.3 Modeling, Planning, and Scheduling
of Manufacturing Processes

Typical tasks in process planning include material selection, process selection, process sequencing, and
machining parameter selection. Planning and scheduling generally require two steps: the input—output
process modeling and the selection of parameters to optimize the process with given constraints. Flexible
on-demand scheduling and planning can provide a vital competitive advantage by reducing waste,
improving efficiency and productivity, meeting customer due date, and reflecting the dynamic nature of
increasingly competitive markets. Most planning and scheduling problems in manufacturing are NP-
complete, with precedence constraints among tasks, setup costs, timing requirements, and completion
deadlines. The scheduling and shop management are even more complex in flexible manufacturing
systems (FMS) with on-demand production. Classical heuristic methods approach the problem by
applying some priority rules based upon some easily calculated job parameters, such as due date, setup
times, arrival times. Classical methods obviously cannot take into account all the variables interacting
in manufacturing systems, and lack the time-dependent decision capability needed in production plan-
ning and scheduling, especially in FMS and computer-integrated manufacturing (CIM) environments,
which both require an ability to deal with uncertainty and dynamic behavior. The ability of neural
networks to understand temporal patterns is essential for efficient modeling, planning, and scheduling
of manufacturing processes.

Andersen et al. [42] used a multilayer feedforward neural network trained with the BP algorithm to
model bead geometry with recorded arc welding data. The neural network was a fairly accurate static
model of the welding process and could be directly used to determine the parameters necessary to
achieve a certain tool geometry. The accuracy of the neural network modeling was fully comparable
with that of traditional modeling schemes. Tansel [43] developed two neural networks to model three-
dimensional cutting dynamics in cylindrical turning operations. The first neural network was used to
simulate the cutting-force dynamics for various operating speeds. Multilayer feedforward neural models
were trained using the BP algorithm to predict the resulting cutting force given cutting speed and present
(inner modulation) and previous (outer modulation) feed direction tool displacement. The neural
network approach was capable of very good predictions with less than 7% errors. This approach was
more advantageous than traditional methods such as time series models, which usually allow modeling
of three-dimensional cutting dynamics only at one given speeds rather than over a wide range of cutting
speeds and cannot represent systems nonlinearity as opposed to neural networks. In addition, the use
of neural networks permits introduction of additional parameters in the model, such as the cutting
speed and varying spindle speeds, that would not be easily modeled with traditional methods. A second
neural network was developed to estimate the frequency response of the cutting operation. A multilayer
feedforward neural network was trained using the BP algorithm with data of frequency and cutting
speed to estimate inner and outer modulations at any frequency and speed in the training process. The
neural network was a very accurate model of the frequency response of the cutting process realizing
errors less than 5% of the defined output range. Both neural networks achieved greater accuracy for
higher speeds, in contradiction to the fact that variations in cutting force are larger at higher speeds,
than at lower speeds.

Dagli et al. [44] proposed an intelligent scheduling system that combined neural networks with an
expert system for job scheduling applied to a newspaper printing process. The scheduling system was
made of the union of two neural networks: a Hopfield network for determining the optimal job sequence
and a multilayer feedforward neural network trained with the BP algorithm for job classification. The
system could schedule sequence-dependent jobs given setup and processing times. The computational
speed and time-dependent capability of the system make it applicable for many planning and scheduling
applications including process control, cutting and packing problems, and feature-based designs. The
proposed system could be modified, or integrated with additional neural networks to suit for various
planning and scheduling tasks.

©2001 CRC Press LLC

Arizono et al. [45] adapted a stochastic neural network for production scheduling with the objective
of minimizing the total actual flow time of jobs with sequence-dependent setup times. The neural network
used was a Gaussian machine. The system dynamics were designed to lead the neural network convergence
to the scheduling sequence that would minimize the total actual flow-time of the system given processing
and setup times. The proposed neural network was shown to converge to near-optimal (if not optimal)
schedules in terms of total actual flow time. The only significant problem is that of specifying the network
parameters.

Cho and Wysk [46] developed an intelligent workstation controller (IWC) within a shop floor control
system. The IWC performs three main functions: real-time planning, scheduling, and execution of jobs
in a shop floor. The IWC consists of a preprocessor, a feedforward neural network, and a multiprocessor
simulator. The preprocessor generates input vectors for the neural network based on the workstation
status, the off-line trained neural network plays the role of a decision support system in generating several
part dispatching strategies, and the multi-pass simulator then selects the best strategy to maximize the
system efficiency. The efficiency of this IWC was reportedly much better than that of a single-pass
simulator because the choice of strategies took all the performance criteria into account.

Lo and Bavarian [47] extended the Hopfield network to job scheduling. A three-dimensional neural
network called Neuro Box Network (NBN) was developed with job, machine, and time as three dimen-
sions. The NBN is responsible for determining a sequence while minimizing the total setup costs and
total time for job completion. The superiority of the NBN is that it is able to evolve in time and provide
on-demand schedules each time new circumstances arise such as new job arrival or machine breakdown.

Lee and Kim [48] adopted a neural network for choosing the scaling factors to be used as a dispatching
heuristic for scheduling jobs on parallel machines with sequence-dependent setup times. A multilayer
feedforward neural network was trained using the BP algorithm to model the manufacturing process.
Fed with various process characteristics (such as due dates, due dates range, setup times, and average
number of jobs per machine), the neural network was able to determine the optimal scaling factors. The
schedules generated using the predicted scaling factors were much more efficient than those generated
using the scaling factors found with traditional rules. Improvements were made in at least 96% of the
cases and up to 99.8% depending on the rule used to generate the schedules.

Satake et al. [49] used a stochastic neural network to find feasible production schedules in the shortest
time while incorporating several manufacturing constraints. The neural network presented in this work
was a Hopfield network using a Boltzmann machine mechanism to allow escapes from local minimum
states. The energy function incorporated one of the constraints of the problem, while the threshold values
represented the objective function and the remaining constraints. The salient feature of the Hopfield network
used was that the threshold values were not predetermined but revised at each iteration. This approach
circumvents the lack of guidelines for choosing the network design parameters reported elsewhere. The
schedules generated by the neural system were compared with schedules generated by the branch and bound
method. Results proved that the neural network solution was optimal in 67% of the cases and near optimal
the rest of the time.

Wang et al. [50] proposed an FMS scheduling algorithm that determined the scheduling rules by neural
network and the rule decision method used in expert system, the inductive learning. In their approach,
the necessary knowledge for scheduling were obtained in two stages. In the first stage, the training
examples for knowledge acquisition were generated by a simulation model that maximized the resource
utilization. The generated training examples consisted of the shop floor status and dispatching rules and
were classified by a neural network composed of adalines. The classified groups were used to form the
decision tree by the inductive learning method to determine the scheduling rules. The approach was,
however, only feasible for linearly clustered training examples.

Sabuncuoglu and Gurgun [51] applied a simplified Hopfield network to scheduling problems. The
modified Hopfield network has an external processor, which was used to perform both feasibility and
cost calculations. Compared with the original Hopfield network, the revised Hopfield network eliminated
most of the interconnections and was more suitable to be implemented in serial computer. The relative

©2001 CRC Press LLC

performance of the simplified Hopfield network was evaluated against the benchmark Wilkerson and
Irwin algorithm with two scheduling problems, the single machine scheduling with minimum mean
tardiness, and the job shop scheduling with minimum job completion time. The results were promising
that the proposed approach improved the mean tardiness in general and could find the optimal schedules
in 18 out of 25 job shop scheduling problems.

Similar to the approach in [50], Li et al. [52] and Kim et al. [53] also applied neural network and the
inductive learning method for FMS scheduling with multi-objectives. However, Li et al. [52] employed
the ART-2 neural network to cluster the simulated training examples while Kim et al. [53] used the
competitive neural network to group the unclassified training examples. Both approaches were found
promising. However, systematic procedures for finding the optimal values of the parameters for ART-2
neural network and optimal number of output nodes of the competitive neural network were not
developed.

Knapp and Wang [54] used two cooperative neural networks to automate the process selection and task
sequencing in machining processes. After the acquisition of process planning knowledge, process sequencing
was automatically prescribed using neural networks. In the first stage, a multilayer feedforward neural
network trained with the BP algorithm was used to generate operation alternatives. In the second stage, a
laterally inhibited MAXNET was used to make a decision among competing operation alternatives. In the
last stage, the output of the MAXNET was fed back to the feedforward neural network to provide a basis for
deciding the next operation in the machining sequence. Chen and Pao [55] discussed the integration of a
neural network into a rule-based system applied to design and planning of mechanical assemblies. An ART-
2 neural network was used to generate similar designs automatically given desired topological and geometric
features of a new product. A rule-based system was then used to generate an assembly plan with the objective
to minimize tool changes and assembly orientations. The rule-based system consisted of five submodules:
preprocessing, liaison and detection, obstruction detection, plan formulation, and adaptation and modifi-
cation. The last submodule compares existing assembly sequences with the sequence generated by the first
four submodules and adapts the most similar sequences to best match the required assembly task. The
proposed integrated system can increase speed and efficiency in the design and planning of mechanical
assemblies.

Shu and Shin [56] formulated the tool path planning of rough-cut of pocket milling into a traveling
salesman problem (TSP), in which the removal area is decomposed into a set of grid points or tool points
to be visited by the tool only once, and the tool starts and ends at the same point. Then the self-organizing
map was used to solve the combinatorial problem to generate the near optimal path. The simulation and
real machining results showed the neural network approach can effectively and efficiently optimize the
tool path regardless of the geometric complexity of pockets and the existence of many islands.

Osakada and Yang [57] applied four multilayer feedforward neural networks for process planning in
cold forging. In the first module, a multilayer feedforward neural network trained using the BP algorithm
was used to learn to recommend a cold forging method in order to produce a workpiece of given shape.
Predictions were perfect for pieces very similar to the training set. If the neural network indicated the
piece could not be produced in one stroke the next module came into action to predict the optimal
number of production steps. The evaluation of the different process candidates with more than one
forming step was done by using another neural network. The second neural network was trained using
the BP algorithm given information on shape complexities, number of primitives, billet and dye material.
The trained neural network performed perfect ranking of the different process candidates, as opposed
to 68% accuracy achieved by statistical methods, as long as products were similar enough to the training
patterns. The last evaluation module was to predict die fracture and surface defect of the piece in the
order of priority. Two neural networks were trained using the BP algorithm with finite elements method
simulations. One neural network was able to predict die fracture given important surface parameters.
The other neural network was able to predict surface defect given the same surface parameters, in addition
to billet and die material. The predictions of both neural networks were very reliable with accuracies of
99% for die fracture and 99% for surface defect, in contrast to 90 and 95% with statistical methods.

©2001 CRC Press LLC

Eberts and Nof [58] applied a multilayer feedforward neural network trained using the BP algorithm
for planning unified production in an integrated approach. The planning procedure was demonstrated
through an example of advanced flexible manufacturing facility controlled by a computerized system.
The neural network provided a knowledge base containing information on how to combine human and
machine intelligence in order to achieve integrated and collaborative planning. The assistance of the
neural network will help improve flexibility, reliability, utilization of machine, and human/machine
collaboration. However, the rules to combine machines and human inputs and the effect of these rules
on the neural network need to be elaborated.

Rangwala and Dornfeld [59] applied a neural network to predict optimal conditions (cutting parameters
such as cutting speed, feed rate, and depth of cut) in turning operations by minimizing a performance index.
A multilayer feedforward neural network was trained using the BP algorithm. The learning and optimization
in the neural network were performed in either batch or incremental mode. The latter learns the process
mappings and optimizes cutting parameters simultaneously and is therefore more suitable for real-time
applications. Cook and Shannon [60] applied a multilayer feedforward neural network to process parameter
selection for bonding treatment in a composite board manufacturing process. The neural network was trained
with the BP algorithm using several process parameters to learn to model the state of control of the process.
The performance of the neural network was fair, with a prediction rate of approximately 70%. The sensitivity
of the performance was investigated for various network designs and learning parameters.

Sathyanarayan et al. [61] presented a neural network approach to optimize the creep feed grinding
of super alloys. A multiple-objective optimization problem was formulated and transformed into a single
objective one using a weighting method. Each single objective function was then easily optimized
individually using the branch and bound method. A multilayer feedforward neural network was then
trained using the BP algorithm to associate cutting parameters of a grinding process (feed rate, depth of
cut) with its outputs (surface finish, force, and power). The neural network was able to predict the system
outputs within the working conditions and overcome major limitations of conventional approaches to
this task.

Matsumara et al. [62] proposed an autonomous operation planning system to optimize machining
operations in a turning process. The system could accumulate machining experience and recommend
process parameters of each machine tool. Machining conditions such as flank wear and surface roughness
were predicted using the combination of an analytical method based on metal cutting theory and a
multilayer feedforward network trained with the BP algorithm. Operations planning with adaptive pre-
diction of tool wear and surface roughness was effective because machining processes could be evaluated
simultaneously with machining time. The machining operation was optimized by minimizing the total
machining cost.

Wang [63] developed a neural network approach for optimization of cutting parameters in turning
operations. Considering productivity, operation costs, and cutting quality as criteria, the cutting param-
eter selection in turning operations was formulated as a multiple-objective optimization problem. A
multilayer feedforward neural network trained using an improved learning algorithm was used to rep-
resent the manufacturer’s preference structure in the form of a multiattribute value function. The trained
neural network was used along with the mappings from the cutting parameter space to the criteria space
to determine the optimal cutting parameters. The proposed neural network approach provides an auto-
mated paradigm for multiple-objective optimization of cutting parameters.

Roy and Liao [64] incorporated a three-layer preceptron into an automated fixture design (AFD)
system for machining parameters selection. The geometry, topology, feature, and technological specifi-
cation of the workpiece were given to the AFD in which the workpiece materials, hardness, carbon
composition, and cutting tool materials were extracted and directed to a feedforward neural network
trained by the BP algorithm to determine the cutting speed, feed rate, and depth of cut for the milling
process. The estimated cutting parameters were not only for the milling process control, but also for the
cutting force evaluation, which was indispensable to the stress analysis of the fixture, and hence directly
help the AFD system to come up with the best fixture configuration.

©2001 CRC Press LLC

Legends

ART: Adaptive Resonance Theroy
BM: Boltzmann Machine

BP: Backpropagation

GM: Gaussian Machine

HN: Hopfield Network Il:{\’%?S MOdgling,
NBN: Neuro Box Network S 1"21‘“1% an
SOM: Self-organizing Map cheduling

Process Process Job
Modeling Planning Scheduling

Process Process Machining Process
Selection Sequencing Optimization

Andersen ct al. /BP (1990) Osakada and Yang /BP (1991)| [Kapp and Wang /BP (1992)| [Rangwala ct al. /BP (1989) Dagli et al. /HN&BP (1991)
Tansel /BP (1992) Eberts and Nof /BP (1993) Chen and Pao /ART (1993) | | Sathyanavayan et al. /BP (1992) Arizono et al, /GM (1992)
Shu and Shin /SOM (1996) | | Matsamara et al. /BP (1993) Cho and Wyskc /BP (1997)
Wang /BP (1993) Lo and Bayarian /NBN (1993)
ReveLal [(1o Leend K B0
Chen and Kumara /BP (1998) ARAARR I (1%95)
Sabuncuoglu et al. /HN (1996)
Li et al. /ART (1997
Kim et al. /ART (1998)

FIGURE 2.3 Hierarchy of neural network applications for process modeling, planning, and scheduling.

Chen and Kumara [65] demonstrated that fuzzy logic and neural networks are effective means for
grinding process parameters selection. They built a fuzzy grinding optimizer, which can design a set of
grinding process parameters to achieve desirable process conditions based on the user-defined process
conditions. The fuzzy grinding optimizer was then used to generate the training sets for a multilayer
feedforward neural network with the BP learning algorithm. In order to shorten the training time, they
developed a procedure to decompose the neural network into a number of smaller ones, and introduced
a fuzzy accelerator to adjust the learning rate, momentum coefficient, and the steepness parameter of
the activation function during training. However, the theoretical analysis of the convergence of the weight
due to the proposed fuzzy accelerator was not provided.

In summary, present applications of neural networks to process modeling, planning, and scheduling
include process selection, process sequencing, machining process optimization, and job scheduling, as
shown in Figure 2.3. The neural network models used were multilayer feedforward networks, MAXNET,
Hopfield networks, ART networks, and stochastic networks. The knowledge acquisition capabilities of
neural networks made them legitimate alternatives to conventional methods for most planning and
scheduling applications. Some weaknesses of neural networks were due to the lack of explanation for
intrinsic causal relationships existing in complex planning and scheduling applications. In order to solve
such complex planning and scheduling problems, neural networks ought to be combined with knowledge-
based systems such as expert systems.

2.4 Monitoring and Control of Manufacturing Processes

In driving toward automation and computer integrated manufacturing (CIM), industries are constantly
seeking effective tools to monitor and control increasingly complicated manufacturing processes. The
success of human operators in process monitoring and control tasks suggests that one possible approach
to designing computer-based monitoring and control systems is to model the learning and decision-
making abilities of human operators. An intelligent controller should possess abilities to learn from
examples and use knowledge gained during a learning process to optimize the operation of machines
[66]. This is analogous to the process by which a novice human machinist becomes an expert. Neural
networks are promising tools for on-line monitoring of complex manufacturing processes. Their superior
learning and fault tolerance capabilities enable high success rates for monitoring the machining processes.

©2001 CRC Press LLC

Among the manufacturing applications of neural networks, monitoring and control can be considered
in two dimensions: the monitoring and control of workpieces (e.g., surface finish, automatic setups)
and machines (e.g., vibration, tool wear, thermal deflection). Neural networks are taught by examples,
thus eliminating the need for explicit mathematical modeling. Neural networks can serve as black boxes
that avoid an extensive study and easily lead to results.

Rangwala and Dornfeld [67] applied a multilayer feedforward neural network to recognize the occur-
rence of tool wear in turning operations. The neural network trained with the BP algorithm learned to
perform tool-wear detection given information from the sensors on acoustic emission and cutting force.
Experiments were conducted with fresh and worn data on a Tree lathe and the information was trans-
formed between time and frequency domains using fast Fourier transformation. The superior learning
and fault tolerance capabilities of the neural network contribute to the high success rates in the recognition
of tool wear. However, design parameters (such as training parameters, network structure, and sensors
used) affect the performance of the system.

Burke and Rangwala [68] discussed the application of neural networks for monitoring cutting tool
conditions. The authors compared the performance of supervised feedforward neural networks with the
BP algorithm and unsupervised ART networks for in-process monitoring of cutting tools. The raw sensor
data were time representations of cutting force and acoustic emission signals. Besides excellent classifi-
cation accuracy by both neural networks, the results showed that the unsupervised ART networks held
greater promise in a real-world setting, since the need for data labeling is eliminated, and also the cost
associated with the data acquisition for a supervised neural network was reduced. In addition, the ART
networks can also remain adaptive after initial training and could easily incorporate additional patterns
into the memory without having to repeat the entire training stage. Interestingly, the ART networks
could distinguish between fresh and worn tools after being trained using fresh tool patterns only.

In a related work, Burke [69, 70] developed competitive learning approaches for monitoring tool-wear
in a turning operation based on multiple-sensor outputs using the ART-1 network. The unsupervised
system was able to process the unlabeled information with up to 95% accuracy, thus providing more
efficient utilization of readily available (unlabeled) information. The success of partial labeling may lead
to significant reduction in data analysis costs without substantial loss of accuracy. The speed of the system
coupled with its ability to use unlabeled data rendered it a flexible on-line decision tool. Possible
extensions include detection of degrees of tool wear, feature selection, and integrated neural net-
work/expert system to incorporate higher-level capabilities.

Yao and Fang [71] applied a multilayer feedforward network to predict the development of chip breakability
and surface finish at various tool wear states in a machining process. In the initial phase, chip forming patterns
(i.e., chip breaking/shapes) were estimated under the condition of an unworn tool. Then the neural networks
were trained with input features such as dispersion patterns, cutting parameters, and initial prediction of
breakability and outputs in terms of fuzzy membership value of chip breakability and surface roughness.
After off-line training using the BP algorithm, the neural network was able to successfully predict on-line
machining performance such as chip breakability, chip shapes, surface finish, and tool wear. The neural
network is capable of predicting chip forming patterns off line as well as updating them on line as tool wear
develops. This method can be applied to any tool configuration, and/or rough machining conditions.

Tarng et al. [72] used a multilayer feedforward neural network trained with the BP algorithm to
monitor tool breakage in face milling. Normalization of the cutting force signal was performed to reduce
the training time required by the neural network. The output of the neural network represented the
probability of having a tool breakage. The neural network was shown to be able to classify tool breakage
successfully. The performance of the neural network was insensitive to variations in cutting conditions:
variations in cutting speed, radial depth of cut, feed rate, and workpiece material. In other related works,
Koetal. [73, 74] used, respectively, an ART-2 neural network and a four-layer feedforward neural network
trained by the BP algorithm to monitor the tool states in face milling. The cutting force signals were
put into an eighth-order adaptive autoregressive function that was used to model the dynamics of the
milling process. The signal patterns were classified using the ART-2 neural network [73] and the mul-
tilayer perceptron [74] to indicate the breakage of cutting tools. Both neural-network-based tool wear

©2001 CRC Press LLC

monitoring systems were able to successfully detect the wear of milling tools in a wide range of cutting
conditions. However, the ART-2-based system had unsupervised learning capability.

Chao and Hwang [75] integrated the statistical method into the BP trained neural network for
cutting tool life prediction. The variables that related to the tool life—including cutting velocity, feed
rate, depth of cut, rake angle, material hardness of tool, and work material composition—were first
analyzed by statistical method to identify the significant data and remove the correlation between
variables. The screened data were used as the inputs of a three-layer feedforward neural network, which
consequently estimated the tool life. Compared with the backward stepwise regression method, the
proposed approach was shown more robust to the changes of input variables and resulted in more
accurate predictions.

Jemielniak et al. [76] presented an approach for tool wear identification based on process parameters,
cutting forces, and acoustic emission measures of the cutting process using a three-layer feedforward
neural network with the BP learning algorithm. The multilayer perceptron initially had eight input nodes,
16 hidden nodes, and one output node that gave the crater depth to signify the tool state. A systematic
pruning procedure was executed to eliminate the inputs and hidden nodes that did not affect the resulting
errors. A refined neural network with five inputs, three hidden nodes, and one output resulted, which
provided comparable accuracy and more uniform error distribution.

Purushothaman and Srinivasa [77] applied the BP trained multilayer feedforward neural network with
an input dimension reduction technique to the tool wear monitoring. In their approach, the original
six-dimensional inputs, which consisted of the cutting forces and the machining parameters, were com-
bined to a two-dimensional input vector by using a linear mapping algorithm. The reduced dimension
input vector was fed into a three-layer perceptron to evaluate the tool wear condition. Compared with
the full dimension input vector approach, the proposed approach was shown to drastically reduce the
number of arithmetic operations and could achieve the same accuracy of tool wear prediction.

Alguindigue et al. [78] applied a multilayer feedforward neural network for monitoring vibration of
rolling elements bearings. A multilayer feedforward neural network trained with the BP algorithm learned
to predict catastrophic failures to avoid forced outrages, maximize utilization of available assets, increase
the life of machinery, and reduce maintenance costs. The salient asset of such a system is the possibility
of automating monitoring and diagnostic processes for vibrating components, and developing diagnostic
systems to complement traditional phase sensitive detection analysis.

Hou and Lin [79] used a multilayer feedforward neural network trained with the BP algorithm for
monitoring manufacturing processes. Frequency domain analysis (fast Fourier transforms) was per-
formed on periodic and aperiodic signals to detect vibrations generated by machine faults including
imbalance, resonance, mechanical looseness, misalignment, oil whirl, seal rub, bearing failure, and com-
ponent wear. The neural network achieved accuracy of over 95%.

Tansel et al. [80] used an ART-2 neural network in conjunction with wavelet transform to monitor drill
conditions for a stepping-motor-based micro-drilling machine. Cutting force signals were sampled at two
different rates to capture either two or three table-step motions (fast sample rate) or the complete drilling
cycles (slow sample rate). After sampling and digitizing, cutting force signals were encoded in wavelet
coefficients. The ART-2 neural network was used to classify the tool condition given as an input either
22 wavelet coefficients (direct encoding method) or six parameter representatives of the 22 wavelet coef-
ficients (indirect encoding method). The trained neural network was able to detect severe tool damage
before tool breakage occurred with both encoding methods. The direct encoding method, even though
two or three times slower, was more reliable, with an accuracy greater than 98% compared with an accuracy
of 95% for the indirect encoding method. Interestingly, the ART-2 network was able to classify more easily
the wavelet coefficients of the data collected at the fast sampling rate, which reduces the data collection
time to only a fraction of seconds and enables detection of the tool condition significantly earlier.

Lee and Kramer [81] used a neural network called the cerebellar model articulation controller (CMAC)
for monitoring machine degradation and detecting faults or failures. The method integrates learning,
monitoring, and recognition in order to monitor machine degradation and schedule maintenance.
Machine degradation analysis and fault detection was provided by a pattern discrimination model, based

©2001 CRC Press LLC

on the cerebellar model articulation controller network. The controller network is in charge of the
adaptive learning and the pattern discrimination model monitors the machine behavior. Machine faults
are detected by comparing the conditional probability of degradation with a threshold confidence value.
The innovative approach proved capable of learning fault diagnosis and performing effective mainte-
nance, thus providing an active controller that enables preventive maintenance. The neural network
played the role of a feedforward controller, which generates the conditional probabilities of machine
degradation that were then compared with a threshold confidence value. The neural network learned
to recognize normal machine conditions given various machine parameters such as position accuracy
and straightness.

Currie and LeClair [82] applied a neural network to control product/process quality in molecular
beam epitaxy processing. The neural network used was a functional-link network trained using the BP
algorithm. The self-improvement, fault tolerance, and complete mapping characteristics of neural net-
works made the proposed system a good candidate for manufacturing process control. The trained neural
network was able to predict the recipe parameters needed to achieve some desired performance. Signif-
icant misclassifications occurred due to measurement errors inherent to the complexity of the process.
After enhancements, the proposed system should be able to circumvent the inaccuracies.

Balazinski et al. [83] applied a multilayer feedforward neural network trained using the BP algorithm
to control a turning process. Given feed rate error and change in the error, the trained neural network
was able to recommend the control actions necessary to maintain a constant cutting force (static case)
in order to assure proper wear of the cutting tool. The performance of the neural network was similar
to that of a fuzzy controller. The main difference between the two systems is that the neural network
allowed crisp values rather than fuzzy values in input/output data. The neural network controller is
more desirable than the fuzzy controller in terms of response time, steady states errors, and adaptivity.
Furthermore, neural networks were more flexible (adaptive) and did not exhibit the oscillations observed
with the fuzzy controller in steady states.

Lichtenwalner [84] used a neural network to control laser heating for a fiber placement composite
manufacturing process. For this task, a modified version of the cerebellar model articulation controller
was chosen for its unequaled speed of learning through localized weight adjustment. The neural network
plays the role of a feedforward controller generating control voltage given the desired temperature and
measured feed rate. The neurocontroller has superior capabilities over traditional feedforward controller,
since it allows on-line learning of the control functions and accurate modeling of both linear and
nonlinear control laws. The enhanced control allows fabrication of complex structures while preserving
the quality of consolidation.

Ding et al. [85] applied a neural network for predicting and controlling a leadscrew grinding process.
The neural network was a multilayer neural network trained with a variant of the BP algorithm called
“one-by-one algorithm” that expedites the supervised learning. The neural network was used as a
controller to predict and compensate for the transmission error in the grinding operation of precision
leadscrews.

Chen [86] developed a neural-network-based thermal spindle error compensation system. The tem-
peratures at 11 locations of a milling machine were monitored and fed into a multilayer feed forward
neural network trained by the BP algorithm to predict the thermal deflections of the three principal
spindles. The estimated thermal errors were adopted by the CNC controller, which sent out the com-
pensated control signals to drive the milling machine. The neural network demonstrated a prediction
accuracy of more than 85% in varying and new cutting conditions. In two evaluation tests, the neural-
network-based system reduced the thermal spindle errors from 34 um to 9 um. In [87], Vanherck and
Nuttin, however, used a multilayer feedforward neural network trained by the BP algorithm with momen-
tum and adaptive learning rate for machine tools thermal deformation compensation. Unlike Chen’s
approach, the presented approach estimated the thermal error of each spindle by an independently
multilayer perceptron. The proposed approach reduced the thermal deviations from 75 u to 16 u in
two experimental milling tests. However, the error compensation failed in extreme high environment
temperatures.

©2001 CRC Press LLC

Legends
ART: Adaptive Resonance Theory
BP: Backpropagation
CMAC: Cerebellar Model Articulation Controller

Process Monitoring
and Control

Process Process
Monitoring Control

Tool Wear Machining Process Failure
Monitoring Monitoring Detection

Alguindigue et al. /BP (1993)
993)

‘Lee and Kramer /CMAC (1993) ‘ Currie and LeClair /BP (1993)
Burke /ART (1992), '93) Hou and Lin /BP (19 Balazinski /BP (1993)

Yao and Fang /BP (1994) Tansel et al. /ART (1993) Lichtenwalner /CMAC (1993)
Tarng et al. /BP (1994) Chen /BP (1996)

Ko et al. /ART (1995) Vancherck et al. /BP (1997)
Ko and Cho /BP (1996)

Chao and Hwang /BP (1997)
Jemielniak et al. /BP (1998)
Purushothaman et al. /BP (1998)

Rangwala et al. /BP (1990)

FIGURE 2.4 Hierarchy of neural network applications for process monitoring and control.

In summary, the present applications of neural networks for process monitoring and control include
tool wear monitoring, machining process monitoring, process modeling, and process control. The neural
network models used were multilayer feedforward networks, ART networks, and cerebellar model artic-
ulation controller, as shown in Figure 2.4. Neural networks are promising tools for on-line monitoring
of complex manufacturing processes. They are appropriate in modeling cases where some information
is missing, or where analytical modeling would be too complex. In addition, their superior learning and
fault tolerance capabilities enable high success rates for monitoring machining processes. One important
characteristic of neural networks that makes them good candidates for monitoring and control is their
adaptive capability. A neural network monitor could serve as one of the most efficient tools in finding
the optimum set of manufacturing parameters by predicting the effect of machining parameters to the
machining process beforehand. Applications of neural networks also appear promising for real-time
nonlinear mapping of distorted input data vectors. Recognition of techniques as a package of tools that
could be combined in a particular application may be the key to future intelligent control. Systems
analysis incorporating neural networks into real-time control systems should permit the latter to optimize
the performance on line using variables that otherwise would require sophisticated models, algorithms,
and complex computation. The parallel computation abilities of neural networks offer the potential for
developing intelligent systems that are able to learn from examples, recognize process patterns, and initiate
control actions in real-time manufacturing environment.

2.5 Quality Control, Quality Assurance, and Fault Diagnosis

Quiality control and quality assurance aim at identifying defects when production is in progress or over
and defective parts are being or are already manufactured. Because neural networks are especially
powerful for identifying patterns and hidden relationships, they are also proposed and used for fulfilling
various quality control, quality assurance, and fault diagnostics tasks.

Thomsen and Lund [88] applied a multilayer feedforward neural network trained with the BP algo-
rithm to evaluate quality control status of composite materials based on ultrasonic test measurements.
The neural network was tested on glass-epoxy laminated plates with frequently occurring flaws. Given
ultrasonic power spectra of stress wave signals measured from the laminated plates, the neural network

©2001 CRC Press LLC

learned to classify the plate as belonging to either flaw category. The neural network performed well in
classifying the different flaws. The occurring misclassifications were due to measurement configuration.

Villabos and Gruber [89] coupled a neural network with a laser scattering technique to inspect
machined surface quality. A modified ART-2 neural network was used to identify surface roughness
based on features extracted from the scattered angular spectrum resulting from various samples with
uniform surface texture. The surface roughness determined by the neural network was compared with
that determined by a profilometer measurement. The predictions of the neural network satisfied the
ANSI accuracy standard with a discrepancy between 6.6 and 10.9% depending on the features used as
inputs. In a related work to [89], Yan et al. [90] proposed to use a three-layer feedforward neural network
with the BP learning algorithm to measure, in real time, the maximum peak-to-valley surface roughness
Rmax generated during surface finishing. The scattered angular laser light patterns reflected from the
workpiece are recognized by the trained neural network to predict the R,,,,. The measurement system
implemented by high-speed hardware can complete one measurement in 125 ms, which is adequate for
real-time surface roughness measurement. The estimated R, values have a maximum error of 10%
when compared to the conventional stylus measurements.

Pugh [91] compared the performance of a multilayer feedforward neural network, trained using the
BP algorithm under several conditions, with a standard bar control chart for various values of process
shift. The performance of the neural network was almost equal to that of the control charts in type |
(alpha) error, and was superior in type Il (beta) error. Performance could be improved by careful
contouring of the training data. Interestingly, if trained with the shift contour according to the Taguchi
cost curve, the neural network offered a slight improvement over the traditional bar chart.

Wang and Chankong [92] developed a stochastic neural network for determining multistage and multi-
attributes acceptance sampling inspection plans for quality assurance in serial production systems. A
Bayesian cost model was formulated to take into account the interaction among defective attributes and
between production stages. A stochastic algorithm simulated the state transition of a stochastic neural
network to generate acceptance sampling plans minimizing the expected cost. This neural network
generated high-quality (if not optimal) acceptance sampling plans in a reasonably short period of time.
In Cook et al. [93, 94], a multilayer feedforward neural network was presented to predict the occurrence
of out-of-control conditions in particle board manufacturing. Given current and past process condition
parameters, the neural network was trained using the BP algorithm to predict the development of out-
of-control conditions in the manufacturing process, with a success rate of up to 70%. These results were
very encouraging, considering that a relatively small training set was used not representative of all possible
process conditions. Payne et al. [95] used a multilayer perceptron trained with the BP algorithm to predict
the quality of parts in a spray forming process. Given various process parameters, the neural network
learned to predict part quality in terms of porosity and yield of future runs. The neural network
predictions helped defining optimal process conditions and the correlation between input process param-
eters and part quality.

Wang et al. [96] applied a multilayer feedforward neural network for predicting wire bond quality in
microcircuits manufacturing. The neural network trained with the BP algorithm and learned to model
the relationship between process measurements (ultrasonic pulses) and bond quality. A multiple regres-
sion analysis helped identify the variables with significant influence on the wire bond quality. The
performance of the system was reasonable and could be enhanced by incorporating additional variables
and validating the neural network using the jackknife method. The results demonstrated the feasibility
of neural networks for a high-reliability and low-cost quality assurance system for wire bonding process
control.

Joseph and Hanratty [97] presented a multilayer feedforward neural network for shrinking horizon
model predictive control of a batch manufacturing process. This work discusses a simulated autoclave
curing process for composite manufacturing. The method was based on the model predictive control
method. The models employed were derived by regressing past operational data using a feedforward
neural network. The purpose of the model was to predict the outcome of a batch (a product quality)
in terms of the input and processing variables. Incremental learning provided on-line adaptation to

©2001 CRC Press LLC

changing process conditions. The combination of the neural network, a shrinking horizon model pre-
dictive algorithms, and incremental learning strategies offered a convenient paradigm for imitating, at
least in part, the role of skilled operators who learn from operational history and use the knowledge to
make feedback control decisions during processing. This method is of interest in improving the batch-
to-batch variation of product quality.

Smith [98] used a multilayer feedforward neural network to predict product quality from thermoplastic
injection molding. The neural network trained using the BP algorithm was used to predict quality of
several thermoplastic components in terms of both state and variability of the quality. The trained neural
network was able to predict product quality with 100% accuracy, comparable to control charts and
statistical techniques. Neural networks were advocated as more desirable than traditional quality control
methods for real-world manufacturing since they allow real-time training and processing. In a related
work, Smith [99] used a multilayer feedforward neural network trained using the BP algorithm to model
mean X and range (R) control charts simultaneously for diagnosing and interpreting the quality status
of manufacturing processes. Given statistics on product samples, the neural network was able to recognize
process shifts in terms of state and variability. The performance of the neural network was sensitive to
the number and type of input statistics and to the subgroup size of the raw data. For instance, the neural
network performed better when trained using raw data and statistics rather than only statistics. Even
with sparse and noisy data, the neural network successfully identified various shapes, with up to 99%
success in the best conditions. The neural network was shown to be a good alternative to control charts
and even outperformed control charts in the case of small shifts of variance and/or means and improved
type Il error rate.

Zhang et al. [100] applied a three-layer perceptron trained with the BP algorithm to approximate the
correlation between optimal inspection sampling size and three relevant factors including machining
process, hole size, and tolerance band for hole making. The neural network was shown to be capable of
accurately estimating the sampling size. The deviation between the actual sample size and the estimated
sample size for most tested samples was within 6 1.

Su and Tong [101] incorporated the fuzzy ART network into the quality control process for inte-
grated circuit fabrication to reduce the false alarms. The reported wafer defects are fed into the fuzzy
ART network, which generates a number of cluster of defects. Each cluster is regarded as one defect.
The resulted clusters are then used to construct the ¢ chart for quality control of wafers. The neural
network-based c chart was compared with the Neyman-based ¢ chart and the conventional ¢ chart.
The proposed approach could take account of the defect clustering phenomenon and hence reducing
the false alarms.

Cook and Chiu [102] used the radial basis function (RBF) neural networks trained by the least-mean-
squares algorithm for statistical process control of correlated processes. The trained RBF neural networks
were used to separate the shifted and unshifted correlated papermaking and viscosity data in literature.
The neural networks successfully identified data that were shifted 1.5 and 2 standard deviations from
nonshifted data for both the papermaking and viscosity processes. The network for the papermaking
data was able to also classify shifts of one standard deviation, while the traditional statistical process
control (SPC) technique cannot achieve this because it requires a large average run length.

Guh and Tannock [103] employed a multilayer feedforward neural network trained by the BP algo-
rithm to recognize the concurrent patterns of control chart. The trained neural network can identify the
shift, trend, and cycle patterns in the control chart by taking 16 consecutive points from the control
chart. The neural network was tested and the results showed it can improve the type Il error perfomance
while keeping the number of concurrent pattern training examples to a minimum.

Yamashina et al. [104] applied feedforward neural networks to diagnose servovalve failures. Several
three-layer feedforward neural networks were trained using a learning algorithm based on the combina-
tion of the conjugate gradient and a variable metric method to expedite convergence. The neural networks
learned to diagnose three types of servovalve failures given time-series vibration data with reliability of
over 99%. As expected, the most reliable diagnosis was obtained for neural networks with nonlinear

©2001 CRC Press LLC

classification capabilities. The neural network diagnosis system was useful to circumvent the weaknesses
of visual inspection, especially for multiple causes faults.

Spelt et al. [105] discussed neural networks and rule-based expert systems (ES) in a hybrid artificial
intelligence system to detect and diagnose faults and/or control complex automated manufacturing
processes. The hybrid system was an attempt to build a more robust intelligent system rather than using
either ES or neural network alone by combining the strengths of ES and neural networks. The original
hybrid system was designed for intelligent machine perception and production control. The system was
tested with simulated power plant data to demonstrate its potential for manufacturing process control.
A particularly useful feature of the system was its capability for self-organization through a feedback loop
between the neural network and the ES. This loop allowed the modification of the knowledge contained
in the neural network and/or in the ES. Further research is investigating whether the hybrid architecture
would be capable of unsupervised learning without destroying or invalidating its knowledge base. The
proposed system represents a significant step toward creating an intelligent, automated consultant for
automated process control.

Ray [106] developed a neural-network/expert system for engine fault diagnosis in an integrated steel
industry. A multilayer feedforward neural network was trained with engine fault information including
maintenance history, symptoms, typical questions asked for each symptom, and causes of faults. The
resulting weights of the neural network represented the knowledge base of the engine fault system. The
inference was done in two steps, starting with forward chaining based on symptoms of faults and then
backward chaining based on the questions asked to the user. The trained system was able to perform
fairly reliable diagnosis with a 75% accuracy.

Knapp and Wang [107] used a multilayer feedforward neural network trained with the BP algorithm
for machine fault diagnosis. Training data (frequency domain data of vibration signals) were collected
over a period of time under artificially created machining conditions and input to the neural network.
The neural network had excellent performance, correctly identifying the fault class in all test cases.
Possible extensions include multiple simultaneous fault conditions, multisensor integration, and active
identification of fault conditions.

Hou et al. [108] applied a multilayer feedforward neural network for quality decision making in an
automated inspection system for surface mount devices on printed circuit boards (PCB). The system
included a Hough transform and a multilayer neural network trained using the BP algorithm. The neural
network learned to classify the quality status from image information. Hough transformation reduced
the amount of data to expedite the training and recognition process, while preserving all vital information.
The automated inspection system was very effective for surface-mounted assemblies and had a signifi-
cantly higher detection accuracy than the traditional template-matching approach. Major defects were
detected such as missing component, misaligned components, and wrong component. This automated
inspection system is particularly promising, since it could lead to streamlining the entire PCB production
process, from assembly to inspection.

Liu and lyer [109] used a multilayer feedforward neural network trained with the BP algorithm to
diagnose various kinds of roller bearing defects. Trained with radial acceleration features on five types
of defective roller bearings as well as a normal bearing, the neural network was able to separate normal
and defective bearings with a 100% accuracy, and to classify the defects into the various defect categories
with an accuracy of 94%. The proposed method was demonstrated to be more reliable than traditional
diagnosis techniques in identifying defective bearings.

Huang and Wang [110] used an ART-2 neural network with parametric modeling of vibration signals
for machine faults monitoring and diagnosing. The parametric methods considered were the autore-
gressive and autoregressive and moving average models. The ART-2 neural network perfectly identified
testing patterns with both models. However, the autoregressive model was shown more desirable for
real-world applications in terms of computational speed and frequency resolution.

Wang et al. [111] used the multilayer feedforward neural network with the BP learning algorithm to
detect the surface flaws of products. The surface images of products were skeletonized and encoded into

©2001 CRC Press LLC

Legends

ART: Adaptive Resonance Theroy
BP: Backpropagation
ES: Expert Systems

HN: Hopfield Network Quality Control,
RBF: Redial Basis Function Quality Assurance,
SN: Stochastic Neural Networks and Fault Diagnosis
Quality Quality Fault
Control Assurance Diagnosis

‘ Comosite

Surface Roughness
Flaw Detection i

Inspection

Sampling Plan
Determination

Thomsen and Lung /BP (1991) Villalobos et al. /ART (1991) ‘ Wang and Chankong /SN (1991) ‘ Cook et al. /BP (1991, '92) Yamashina et al. /BP (1990)
Yan et al. /BP (1995 = Panyne et al. /BP (1993) Spelt et al. /ES&BP (1991)
Wang et al. /BP (1993) Knapp and Wang /BP (1992)
Joac%h ctal. /BP (1993) Hou et al. /BP (1993)
Smith /BP (1993, '94) Liu and Iyer /BP (1993)
Zhang et al. /BP (1996) Huang and Wang /ART (1993)
Su and Tong /ART (1997) Wang et al. /BP(1995)
Cook and Chiu /RBF (1998)| | Wang and Huang /BP (1997)
Guh et al. /BP (1999) Kim and Kumara /BP (1997)
Jagannathan /BP (1997)

FIGURE 2.5 Hierarchy of neural network applications for quality control, quality assurance, and fault diagnosis.

a fixed number of inputs for the trained neural network to determine the surface having flaws or not.
The approach was shown promising in identifying surface flaws that were not at the product boundary.
In a further work, Wang and Huang [112] added to the parent inspection process an auxiliary subskeleton
matching process for double confirmation of flaws, which resulted in a 97.5% correct boundary flaws
identification. Moreover, the neural network connection weights were determined by the adaptive
conjugate gradient learning algorithm for reducing the training time.

Kim and Kumara [113] compared the effectiveness between neural networks and traditional pattern
classifiers for identification of defective boundary of casting parts. The visual image of the part boundary
was captured and represented by a combination of linear and circular features using a quintuple vector.
Two neural networks, multilayer perceptron trained by the BP algorithm and Hopfield network, and two
traditional statistics-based methods—Ilinear discriminant analysis and C-means algorithm—were applied
to recognize whether the part boundary is defective based on the quintuple vector. The experimental
results showed that the correct recognition of the multilayer perceptron and the Hopfield network ranged
from 81 to 100% and 75 to 93%, respectively, while that of both the linear discriminant analysis and the
C-means algorithm ranged from 57 to 75%.

Jagannathan [114] applied a multilayer feedforward neural network with the BP learning algorithm
to identify and classify the defective solder joints. A modified intelligent histogram regrading technique
developed by the author was used to divide the gray-level histogram of the captured image from a joint
into different modes. Each mode was identified by the trained neural network to indicate the joint welding
conditions of good, no solder, or excess solder. The neural-network-based inspection system was found
promising in that it operated in near real-time on a 80386-based microcomputer.

In summary, the present applications of neural networks to quality control, quality assurance, and
fault diagnosis include composite floor detection, surface roughness inspection, out-of-control predic-
tion, sampling plan determination, and process and machine fault diagnosis, as shown in Figure 2.5.
The neural network models used were multilayer feedforward networks, ART, and stochastic networks.
Neural networks, especially when combined with expert systems, demonstrated promise as a tool for
quality control, quality assurance, and fault diagnosis. The pattern recognition and parallel computation
abilities of neural networks are especially beneficial for these applications.

©2001 CRC Press LLC

2.6 Concluding Remarks

The factory of the future and the quality of its products will depend largely on the full integration of
intelligent systems for designing, planning, monitoring, modeling, and controlling manufacturing sys-
tems and processes. Neural networks have proved able to contribute to solving many problems in
manufacturing. In addition to the ability to adapt and learn in dynamic manufacturing environments,
neural networks make weak assumptions regarding underlying processes. They are applicable for a wide
range of real-world problems. Neural networks, however, are not a substitute for classical methods.
Instead, they are viable tools that can be supplementary and used in cooperation with traditional
methods, especially in instances where the expense of in-depth mathematical analysis cannot be justified.
Furthermore, neural networks by no means replace the computational capabilities provided by digital
computers. Instead, neural networks would provide complementary capabilities to existing computers.

A number of characteristics of some neural networks seem to limit their use in real-time, real-world
manufacturing settings. Problems include lengthy training time, uncertainty of convergence, and the
arbitrariness of choosing design parameters. Moreover, neural networks lack the capability for explana-
tion of the learning outcome, and it is almost impossible to discern what has been learned from exam-
ination of the weights matrices that result from learning. Further research and development are needed
before neural networks can be completely and successfully applied for real-world manufacturing. Because
neural networks hardware devices are not yet commercially available for manufacturing applications, the
use of neural networks is still constrained to simulations on sequential computing machines. Training
a large network using a sequential machine can be time-consuming. Fortunately, training usually takes
place off line, and the efficiency of training can be improved using more efficient learning algorithms.
Furthermore, software tools and insert boards are currently available that permit neural network pro-
grams to run on desktop computers, making them applicable to a wide range of manufacturing appli-
cations. The advances in VLSI neural chips will eventually accelerate computation and generate solutions
with minimum time, space, and energy consumption.

References

1. Wu, B., An introduction to neural networks and their applications in manufacturing, Journal of
Intelligent Manufacturing, 3, 391, 1992.

2. Udo, G. J., Neural networks applications in manufacturing processes, Computers and Industrial
Engineering, 23, 97, 1992.

3. Chryssolouris, G., Lee, M., Pierce, J., and Domroese, M., The use of neural networks for the design
of manufacturing systems, Manufacturing Review, 3, 187, 1990.

4. Chryssolouris, G., Lee, M., and Domroese, M., The use of neural networks in determining oper-
ational policies for manufacturing systems, Journal of Manufacturing Systems, 10, 166, 1991.

5. Madey, G. R., Weinroth, J., and Shah, V., Integration of neurocomputing and system simulation
for modeling continuous improvement systems in manufacturing, Journal of Intelligent Manufac-
turing, 3, 193, 1992.

6. Kamarthi, S. V., Kumara, S. T., Yu, F T. S., and Ham, I., Neural networks and their applications
in component design data retrieval, Journal of Intelligent Manufacturing, 1, 125, 1990.

7. Kaparthi, S., and Suresh, N. C., A neural network system for shape-based classification and coding
of rotational parts, International Journal of Production Research, 29, 1771, 1991.

8. Moon, Y. B., and Roy, U., Learning group-technology part families from solid models by parallel
distributed processing, International Journal of Advanced Manufacturing Technology, 7, 109, 1992.

9. Venugopal, V., and Narendran, T. T., Neural network model for design retrieval in manufacturing
systems, Computers in Industry, 20, 11, 1992.

10. Chakraborty, K., and Roy, U., Connectionist models for part-family classifications, Computers and
Industrial Engineering, 2, 189, 1993.

©2001 CRC Press LLC

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

Kiang, M. Y., Kulkarni, U. R., and Tam, K. Y., Self-organizing map network as an interactive
clustering tool: An application to group technology, Decision Support Systems, 15, 351, 1995.

Wu, M. C,, and Jen, S. R., A neural network approach to the classification of 3D prismatic parts,
International Journal of Advanced Manufacturing Technology, 11, 325, 1996.

Moon, Y. B., Forming part-machine families for cellular manufacturing: A neural-network
approach, International Journal of Advanced Manufacturing Technology, 5, 278, 1990.

Moon, Y. B., Establishment of a neurocomputing model for part family/machine group identifi-
cation, Journal of Intelligent Manufacturing, 3, 173, 1992,

Moon, Y. B., and Chi, S. C., Generalized part family formation using neural network techniques,
Journal of Manufacturing Systems, 11, 149, 1992.

Currie, K. R, An intelligent grouping algorithm for cellular manufacturing, Computers and Indus-
trial Engineering, 23, 109, 1992.

Kusiak, A., and Chung, Y., GT/ART: Using artificial neural networks to form machine cells, Manu-
facturing Review, 4, 293, 1991.

Kaparthi, S., and Suresh, N. C., Machine-component cell formation in group technology: A neural
network approach, International Journal of Production Research, 30, 1353, 1992.

Liao, T. W,, and Chen, L. J., An evaluation of ART-1 neural networks for GT part family and
machine cell forming, Journal of Manufacturing Systems, 12, 282, 1993.

Kaparthi, S., Suresh, N. C., and Cerveny, R. P, An improved neural network leader algorithm for
part-machine grouping in group technology, European Journal of Operational Research, 69, 342,
1993.

Moon, Y. B, and Kao, Y., Automatic generation of group technology families during the part
classification process, International Journal of Advanced Manufacturing Technology, 8, 160, 1993.
Dagli, C. H., and Huggahalli, G., A neural network approach to group technology, Neural Networks
in Design and Manufacturing, Wang, J., and Takefuiji, Y., Eds., World Scientific, Singapore, 1993, 1.
Moon, Y. B., Neuroclustering for group technology, Neural Networks in Design and Manufacturing,
Wang, J., and Takefuji, Y., Eds., World Scientific, Singapore, 1993, 57.

Rao, H. A, and Gu, P., Expert self-organizing neural network for the design of cellular manufac-
turing systems, Journal of Manufacturing Systems, 13, 346, 1994.

Rao, H. A., and Gu, P, A multi-constraint neural network for the pragmatic design of cellular
manufacturing systems, International Journal of Production Research, 33, 1049, 1995.

Chen, S. J,, and Cheng, C. S., A neural network-based cell formation algorithm in cellular manu-
facturing, International Journal of Production Research, 33, 293, 1995.

Burke, L., and Kamal, S., Neural networks and the part family/machine group formation problem
in cellular manufacturing: A framework using fuzzy ART, Journal of Manufacturing Systems, 14,
148, 1995.

Kamal, S., and Burke, L., FACT: A new neural network-based clustering algorithm for group
technology, International Journal of Production Research, 34, 919, 1996.

Chang, C. A,, and Tsai, C. Y., Using ART-1 neural networks with destructive solid geometry for
design retrieving systems, Computers in Industry, 34, 27, 1997.

Enke, D., Ratanapan, K., and Dagli, C., Machine-part family formation utilizing an ART-1 neural
network implemented on a parallel neuro-computer, Computers and Industrial Engineering, 34,
189, 1998.

Suresh, N. C., Slomp, J., and Kaparthi, S., Sequence-dependent clustering of parts and machines:
A fuzzy ART neural network approach, International Journal of Production Research, 37, 2793,
1999.

Lee, S. Y., and Fischer, G. W., Grouping parts based on geometrical shapes and manufacturing
attributes using a neural network, Journal of Intelligent Manufacturing, 10, 199, 1999.

Malavé, C. O., and Ramachandran, S., Neural network-based design of cellular manufacturing
systems, Journal of Intelligent Manufacturing, 2, 305, 1991.

©2001 CRC Press LLC

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

Lee, H., Malavé, C. O., and Ramachadran, S., A self-organizing neural network approach for the
design of cellular manufacturing systems, Journal of Intelligent Manufacturing, 3, 325, 1992.

Liao, T. W.,, and Lee, K. S., Integration of a feature-based CAD system and an ART-1 neural model
for GT coding and part family forming, Computers and Industrial Engineering, 26, 93, 1994.
Malakooti, B., and Yang, Z., A variable-parameter unsupervised learning clustering neural network
approach with application to machine-part group formation, International Journal of Production
Research, 33, 2395, 1995.

Arizono, 1., Kato, M., Yamamoto, A., and Ohta, H., A new stochastic neural network model and
its application to grouping parts and tools in flexible manufacturing systems, International Journal
of Production Research, 33, 1535, 1995.

Zolfaghari, S., and Liang, M., An objective-guided ortho-synapse hopfield network approach to
machine grouping problems, International Journal of Production Research, 35, 2773, 1997.

Kao, Y., and Moon, Y. B., A unified group technology implementation using the backpropagation
learning rule of neural networks, Computers and Industrial Engineering, 20, 425, 1991.

Jamal, A. M. M., Neural networks and cellular manufacturing: The benefits of applying a neural
network to cellular manufacturing, Industrial Management and Data Systems, 93, 21, 1993.
Chung, Y., and Kusiak, A., Grouping parts with a neural network, Journal of Manufacturing Systems,
13, 262, 1994.

Andersen, K., Cook, G. E., Karsai, G., and Ramaswamy, K., Artificial neural networks applied to
arc welding process modeling and control, IEEE Transactions on Industrial Applications, 26, 824,
1990.

Tansel, 1. N., Modelling 3-D cutting dynamics with neural networks, International Journal of
Machine Tools and Manufacture, 32, 829, 1992.

Dagli, C. H., Lammers, S., and Vellanki, M., Intelligent scheduling in manufacturing using neural
networks, Journal of Neural Networks Computing, 2, 4, 1991.

Arizono, ., Yamamoto, A., and Ohta, H., Scheduling for minimizing total actual flow time by
neural networks, International Journal of Production Research, 30, 503, 1992.

Cho, H., and Wysk, R. A., A robust adaptive scheduler for an intelligent workstation controller,
International Journal of Production Research, 31, 771, 1993.

Lo, Z. P, and Bavarian, B., Multiple job scheduling with artificial neural networks, Computers and
Electrical Engineering, 19, 87, 1993.

Lee, Y. H., and Kim, S., Neural network applications for scheduling jobs on parallel machines,
Computers and Industrial Engineering, 25, 227, 1993.

Satake, T., Morikawa, K., and Nakamura, N., Neural network approach for minimizing the
makespan of the general job-shop, International Journal of Production Economics, 33, 67, 1994.
Wang, L. C., Chen, H. M., and Liu, C. M., Intelligent scheduling of FMSs with inductive learning
capability using neural networks, The International Journal of Flexible Manufacturing Systems, 7,
147, 1995.

Sabuncuoglu, 1., and Gurgun, B., A neural network model for scheduling problems, European
Journal of Operational Research, 93, 288, 1996.

Li, D. C., Wu, C,, and Torng, K. Y., Using an unsupervised neural network and decision tree as
knowledge acquisition tools for FMS scheduling, International Journal of Systems Science, 28, 977,
1997.

Kim, C. O., Min, H. S., and Yih, Y., Integration of inductive learning and neural networks for
multi-objective FMS scheduling, International Journal of Production Research, 36, 2497, 1998.
Knapp, G. M., and Wang, H. P. B., Acquiring, storing and utilizing process planning knowledge
using neural networks, Journal of Intelligent Manufacturing, 3, 333, 1992.

Chen, C. L. P, and Pao, Y. H., An integration of neural network and rule-based systems for design
and planning of mechanical assemblies, IEEE Transactions on Systems, Man, and Cybernetics, 23,
1359, 1993.

©2001 CRC Press LLC

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

Shu, S. H.,and Shin, Y. S., Neural network modeling for tool path planning of rough cut in complex
pocket milling, Journal of Manufacturing Systems, 15, 295, 1996.

Osakada, K., and Yang, G., Application of neural networks to an expert system for cold forging,
International Journal of Machine Tools Manufacturing, 31, 577, 1991.

Eberts, R. E., and Nof, S. Y., Distributed planning of collaborative production, International Journal
of Manufacturing Technology, 8, 258, 1993.

Rangwala, S. S., and Dornfeld, D. A., Learning and optimization of machining operations using
computing abilities of neural networks, IEEE Transactions on Systems, Man and Cybernetics, 19,
299, 1989.

Cook, D. F, and Shannon, R. E., A sensitivity analysis of a back-propagation neural network for
manufacturing process parameters, Journal of Intelligent Manufacturing, 2, 155, 1991.
Sathyanaryanan, G., Lin, 1. J., and Chen, M. K., Neural networks and multiobjective optimization
of creep grinding of superalloys, International Journal of Production Research, 30, 2421, 1992.
Matsumara, T., Obikawa, T., Shirakashi, T., and Usui, E., Autonomous turning operation planning
with adaptive prediction of tool wear and surface roughness, Journal of Manufacturing Systems, 12,
253, 1993.

Wang, J., Multiple-objective optimization of machining operations based on neural networks,
International Journal of Advanced Manufacturing Technology, 8, 235, 1993.

Roy, U., and Liao, J., A neural network model for selecting machining parameters in fixture design,
Integrated Computer-Aided Engineering, 3, 149, 1996.

Chen,Y.T.,and Kumara, S. R. T., Fuzzy logic and neural networks for design of process parameters:
A grinding process application, International Journal of Production Research, 36, 395, 1998.
Barschdorff, D., and Monostori, L., Neural networks—Their applications and perspectives in
intelligent machining, Computers in Industry, 17, 101, 1991.

Rangwala, S. S., and Dornfeld, D. A., Sensor integration using neural networks for intelligent tool
condition monitoring, Journal of Engineering for Industry, 112, 219, 1990.

Burke, L. I., and Rangwala, S. S., Tool condition monitoring in metal cutting: A neural network
approach, Journal of Intelligent Manufacturing, 2, 269, 1991.

Burke, L. 1., Competitive learning based approaches to tool-wear identification, IEEE Transactions
on Systems, Man, and Cybernetics, 22, 559, 1992.

Burke, L. I., An unsupervised neural network approach to tool wear identification, I1E Transactions,
25, 16, 1993.

Yao, Y. L., and Fang, X. D., Assessment of chip forming patterns with tool wear progression in
machining via neural networks, International Journal of Machine Tools and Manufacture, 33, 89,
1993.

Tarng, Y. S., Hseih, Y. W., and Hwang, S. T., Sensing tool breakage in face milling with a neural
network, International Journal of Machine Tools and Manufacture, 34, 341, 1994.

Ko, T. J., Cho, D. W,, and Jung, M. Y., On-line monitoring of tool breakage in face milling using
a self-organized neural network, Journal of Manufacturing Systems, 14, 80, 1995.

Ko, T.J.,and Cho, D. W., Adaptive modeling of the milling process and application of a neural network
for tool wear monitoring, International Journal of Advanced Manufacturing Technology, 12, 5, 1996.
Chao, P. Y., and Hwang, Y. D., An improved neural network model for the prediction of cutting
tool life, Journal of Intelligent Manufacturing, 8, 107, 1997.

Jemielniak, K., Kwiatkowski, L., and Wrzosek, P., Diagnosis of tool wear based on cutting forces
and acoustic emission measures as inputs to a neural network, Journal of Intelligent Manufacturing,
9, 447, 1998.

Purushothaman, S., and Srinivasa, Y. G., A procedure for training an artificial neural network with
application to tool wear monitoring, International Journal of Production Research, 36, 635, 1998.
Alguindigue, 1. E., Loskiewicz-Buczak, A., and Uhrig, R. E., Monitoring and diagnosis of rolling
element bearing using a neural network, IEEE Transactions on Industrial Electronics, 40, 209, 1993.

©2001 CRC Press LLC

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

Hou, T. H., and Lin, L., Manufacturing process monitoring using neural networks, Computers and
Electrical Engineering, 19, 129, 1993.

Tansel, I. N., Mekdeci, C., Rodriguez, O., and Uragun, B., Monitoring drill conditions with wavelet
based encoding and neural networks, International Journal of Machine Tools and Manufacture, 33,
559, 1993.

Lee, J., and Kramer, B. M., Analysis of machine degradation using a neural network based pattern
discrimination model, Journal of Manufacturing Systems, 12, 379, 1993.

Currie, K. R,, and LeClair, S. R., Self-improving process control for molecular beam epitaxy,
International Journal of Advanced Manufacturing Technology, 8, 244-251, 1993.

Balazinski, M., Czogala, E., and Sadowski, T., Modeling of neural controllers with application to
the control of a machining process, Fuzzy Sets and Systems, 56, 273, 1993.

Lichtenwalner, P. F.,, Neural network-based control for the fiber placement composite manufactur-
ing process, Journal of Materials Engineering and Performance, 2, 687, 1993.

Ding, H., Yang, S., and Zhu, X., Intelligent prediction and control of a leadscrew grinding process
using neural networks, Computers in Industry, 23, 169, 1993.

Chen, J. S., Neural network-based modeling and error compensation of thermally-induced spindle
errors, International Journal of Advanced Manufacturing Technology, 12, 303, 1996.

Vancherck, P., and Nuttin, M., Compensation of thermal deformations in machine tools with
neural network, Computers in Industry, 33, 119, 1997.

Thomsen, J. J,, and Lund, K., Quality control of composite materials by neural network analysis
of ultrasonic power spectra, Materials Evaluation, 49, 594, 1991.

Villabos, L., and Gruber, S., Measurement of surface roughness parameter using a neural network
and laser scattering, Industrial Metrology, 2, 33, 1991.

Yan, D., Cheng, M., Popplewell, N., and Balakrishnan, S., Application of neural networks for surface
roughness measurement in finish turning, International Journal of Production Research, 33, 3425,
1995.

Pugh, A. G., A comparison of neural networks to SPC charts, Computers and Industrial Engineering,
21, 253, 1991.

Wang, J., and Chankong, V., Neurally-inspired stochastic algorithm for determining multi-stage
multi-attribute sampling inspection plans, Journal of Intelligent Manufacturing, 2, 327, 1991.
Cook, D. F, Massey, J. G., and Shannon, R. E., A neural network to predict particleboard manu-
facturing process parameters, Forest Science, 37, 1463, 1991.

Cook, D. F,, and Shannon, R. E., A predictive neural network modeling system for manufacturing
process parameters, International Journal of Production Research, 30, 1537, 1992.

Payne, R. D., Rebis, R. E., and Moran, A. L., Spray forming quality predictions via neural networks,
Journal of Materials Engineering and Performance, 2, 693, 1993.

Wang, Q., Sun, X., Golden, B. L., DeSilets, L., Wasil, E. A., Luco, S., and Peck, A., A neural network
model for the wire bonding process, Computers and Operations Research, 20, 879, 1993.

Joseph, B., and Hanratty, F. W., Predictive control of quality in a batch manufacturing process
using artificial neural networks models, Industry and Engineering Chemistry Research, 32, 1951,
1993.

Smith, A. E., Predicting product quality with backpropagation: A thermoplastic injection molding
case study, International Journal of Advanced Manufacturing Technology, 8, 252, 1993.

Smith, A. E., X-bar and R control chart integration using neural computing, International Journal
of Production Research, 32, 309, 1994.

Zhang, Y. F, Nee, A. Y. C., Fuh, J. Y. H., Neo, K. S., and Loy, H. K., A neural network approach to
determining optimal inspection sampling size for CMM, Computer Integrated Manufacturing Sys-
tems, 9, 161, 1996.

Su, C.T.,and Tong, L. I., A neural network-based procedure for the process monitoring of clustered
defects in integrated circuit fabrication, Computer in Industry, 34, 285, 1997.

©2001 CRC Press LLC

102.

103.

104.

105.

106.

107.

108.

109.

110.

111

112.

113.

114,

Cook, D. F, and Chiu, C. C., Using radial basis function neural networks to recognize shift in
correlated manufacturing process parameters, 11E Transactions, 30, 227, 1998.

Guh, R. S., and Tannock, J. D. T., Recognition of control chart concurrent patterns using a neural
network approach, International Journal of Production Research, 37, 1743, 1999.

Yamashina, H., Kumamoto, H., Okumura, S., and Ikesak, T., Failure diagnosis of a servovalve by
neural networks with new learning algorithm and structure analysis, International Journal of
Production Research, 28, 1009, 1990.

Spelt, P. F, Knee, H. E., and Glover, C. W., Hybrid artificial intelligence architecture for diagnosis
and decision making in manufacturing, Journal of Intelligent Manufacturing, 2, 261, 1991.

Ray, A. K., Equipment fault diagnosis: A neural network approach, Computers in Industry, 16, 169,
1991

Knapp, G. M., and Wang, H. P. B., Machine fault classification: A neural network approach,
International Journal of Production Research, 30, 811, 1992.

Hou, T. H., Lin, L., and Scott, P. D., A neural network-based automated inspection system with
an application to surface mount devices, International Journal of Production Research, 31, 1171,
1993.

Liu, T. I., and lyer, N. R., Diagnosis of roller bearing defects using neural networks, International
Journal of Advanced Manufacturing Technology, 8, 210, 1993.

Huang, H. H., and Wang, H. P, Machine fault classification using an ART-2 neural network,
International Journal of Advanced Manufacturing Technology, 8, 194, 1993.

Wang, C., Cannon, D., Kumara, S. R. T., and Lu G., A skeleton and neural network-based approach
for identifying cosmetic surface flaws, IEEE Transactions on Neural Networks, 6, 1201, 1995.
Wang, C., and Huang, S. Z., A refined flexible inspection method for identifying surface flaws using
the skeleton and neural network, International Journal of Production Research, 35, 2493, 1997.
Kim, T., and Kumara, S. R. T., Boundary defect recognition using neural networks, International
Journal of Production Research, 35, 2397, 1997.

Jagannathan, S., Automatic inspection of wave soldered joints using neural networks, Journal of
Manufacturing Systems, 16, 389, 1997.

©2001 CRC Press LLC

Ulieru, Michaela et a "Architectures for Manufacturing: Identifying Holonic Structures ...
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et a

Boca Raton: CRC Press LLC,2001

Holonic Metamorphic
Architectures

for Manufacturing:
Identitying Holonic
Structures in Multiagent
Systems by Fuzzy
Modeling

3.1 Introduction

3.2 Agent-Oriented Manufacturing Systems
3.3 The MetaMorph Project

3.4 Holonic Manufacturing Systems

Michaela Ulieru 3.5 Holonic Self-Organization of MetaMorph
The University of Calgary via Dynamic Virtual Clustering
Dan Stefanoiu 3.6 Automatic Grouping of Agents into

Holonic Clusters

3.7 MAS Self-Organization as a Holonic System:
Douglas Norrie Simulation Results

The University of Calgary 3.8 Conclusions

The University of Calgary

3.1 Introduction

Global competition and rapidly changing customer requirements are forcing major changes in the pro-
duction styles and configuration of manufacturing organizations. Increasingly, traditional centralized and
sequential manufacturing planning, scheduling, and control mechanisms are being found to be insuffi-
ciently flexible to respond to changing production styles and highly dynamic variations in product require-
ments. In these traditional hierarchical organizations, manufacturing resources are grouped into
semipermanent, tightly coupled subgroups, with a centralized software supervisor processing information
sequentially. Besides plan fragility and increased response overheads, this may result in much of the system
being shut down by a single point of failure. Conventional-knowledge engineering approaches with large-
scale or very-large-scale knowledge bases become inadequate in this highly distributed environment.

©2001 CRC Press LLC

The next generation of intelligent manufacturing systems is envisioned to be agile, adaptive, and fault
tolerant. They need to be distributed virtual enterprises comprised of dynamically reconfigurable pro-
duction resources interlinked with supply and distribution networks. Within these enterprises and their
resources, both knowledge processing and material processing will be concurrent and distributed. To
create this next generation of intelligent manufacturing systems and to develop the near-term transitional
manufacturing systems, new and improved approaches to distributed intelligence and knowledge man-
agement are essential. Their application to manufacturing and related enterprises requires continuing
exploration and evaluation.

Agent technology derived from distributed artificial intelligence has proved to be a promising tool for
the design, modeling, and implementation of distributed manufacturing systems. In the past decade
(Jennings et al. 1995; Shen and Norrie 1999; Shen et al. 2000), numerous researchers have shown that
agent technology can be applied to manufacturing enterprise integration, supply chain management,
intelligent design, manufacturing scheduling and control, material handling, and holonic manufacturing
systems.

3.2 Agent-Oriented Manufacturing Systems

The requirements for twenty-first century manufacturing necessitate decentralized manufacturing facilities
whose design, implementation, reconfiguration, and manufacturability allow the integration of production
stages in a dynamic, collaborative network. Such facilities can be realized through agent-oriented
approaches (Wooldridge and Jennings 1995) using knowledge sharing technology (Patil et al. 1992).

Different agent-based architectures have been proposed in the research literature. The autonomous
agent architecture is well suited for developing distributed intelligent design and manufacturing systems
in which existing engineering tools are encapsulated as agents and the system consists of a small number
of agents. In the federation architecture with facilitators or mediators, a hierarchy is imposed for every
specific task, which provides computational simplicity and manageability. This type of architecture is
quite suitable for distributed manufacturing systems that are complex, dynamic, and composed of a large
number of resource agents. These architectures, and others, have been used for agent-based design and/or
manufacturing systems, some of which are reviewed in the remainder of this section.

In one of the earliest projects, Pan and Tenenbaum (1991) described a software intelligent agent (1A)
framework for integrating people and computer systems in large, geographically dispersed manufacturing
enterprises. This framework was based on the vision of a very large number of computerized assistants,
known as intelligent agents (IAs). Human participants are encapsulated as personal assistants (PAs), a
special type of IA.

ADDYMS (Architecture for Distributed Dynamic Manufacturing Scheduling) by Butler and Ohtsubo
(1992) was a distributed architecture for dynamic scheduling in a manufacturing environment.

Roboam and Fox (1992) used an enterprise management network (EMN) to support the integration of
activities of the manufacturing enterprise throughout the production life cycle with six levels: (1) Network
Layer provides for the definition of the network structure; (2) Data Layer provides for inter-node queries;
(3) Information Layer provides for invisible access to information spread throughout the EMN; (4) Orga-
nization Layer provides the primitives and elements for distributed problem solving; (5) Coordination Layer
provides protocols for coordinating the activities of EMN nodes; and (6) Market Layer provides protocols
for coordinating organizations in a market environment.

The SHADE project (McGuire et al. 1993) was primarily concerned with the information-sharing
aspect of concurrent engineering. It provides a flexible infrastructure for anticipated knowledge-based,
machine-mediated collaboration among disparate engineering tools. SHADE differs from other
approaches in its emphasis on a distributed approach to engineering knowledge rather than a centralized
model or knowledge base. SHADE notably avoids physically centralized knowledge, but distributes the
modeling vocabulary as well, focusing knowledge representation on specific knowledge-sharing needs.

©2001 CRC Press LLC

PACT (Cutkosky et al. 1993) was a landmark demonstration of both collaborative research efforts and
agent-based technology. Its agent interaction relies on shared concepts and terminology for communicating
knowledge across disciplines, an interlingua for transferring knowledge among agents, and a communi-
cation and control language that enables agents to request information and services. This technology allows
agents working on different aspects of a design to interact at the knowledge level, sharing and exchanging
information about the design independent of the format in which the information is encoded internally.

SHARE (Toye et al. 1993) was concerned with developing open, heterogeneous, network-oriented
environments for concurrent engineering. It used a wide range of information-exchange technologies to
help engineers and designers collaborate in mechanical domains.

Recently, PACT has been replaced by PACE (Palo Alto Collaborative Environment)

[http://cdr.stanford.edu/PACE/] and SHARE by DSC (Design Space Colonization)

[http://cdr.stanford.edu/DSC/].

First-Link (Park et al. 1994) was a system of semi-autonomous agents helping specialists to work on
one aspect of the design problem. Next-Link (Petrie et al. 1994) was a continuation of the First-Link
project for testing agent coordination. Process-Link (Goldmann 1996) followed on from Next-Link and
provides for the integration, coordination, and project management of distributed interacting CAD tools
and services in a large project.

Saad et al. (1995) proposed a production reservation approach by using a bidding mechanism based
on the contract net protocol to generate the production plan and schedule. SiFA (Brown et al. 1995),
developed at Worcester Polytechnic, was intended to address the issues of patterns of interaction, com-
munication, and conflict resolution. DIDE (Shen and Barthes 1997) used autonomous cognitive agents
for distributed intelligent design environments. Maturana et al. (1996) described an integrated planning-
and-scheduling approach combining subtasking and virtual clustering of agents with a modified contract
net protocol.

MADEFAST (Cutkosky et al. 1996) was a DARPA DSO-sponsored project to demonstrate technologies
developed under the ARPA MADE (Manufacturing Automation and Design Engineering) program.
MADE is a DARPA DSO long-term program for developing tools and technologies to provide cognitive
support to the designer and allow an order of magnitude increase in the explored alternatives in half the
time it currently takes to explore a single alternative.

In AARIA (Parunak et al. 1997a), manufacturing capabilities (e.g., people, machines, and parts) are
encapsulated as autonomous agents. Each agent seamlessly interoperates with other agents in and outside
of its own factory. AARIA uses a mixture of heuristic scheduling techniques: forward/backward sched-
uling, simulation scheduling, and intelligent scheduling. Scheduling is performed by job, by resource,
and by operation. Scheduling decisions are made to minimize costs over time and production quantities.

RAPPID (Responsible Agents for Product-Process Integrated Design) (Parunak et al. 1997b) at the
Industrial Technology Institute was intended to develop agent-based software tools and methods for
using marketplace dynamics among members of a distributed design team to coordinate set-based design
of a discrete manufactured product. AIMS (Park et al. 1993) was envisioned as integrating the U.S.
industrial base and enabling it to rapidly respond, with highly customized solutions, to customer require-
ments of any magnitude.

3.3 The MetaMorph Project

At the University of Calgary, a number of research projects in multiagent systems have been undertaken
since 1991. These include IAO (Kwok and Norrie 1993), Mediator (Gaines et al. 1995), ABCDE (Bala-
subramanian et al. 1996), MetaMorph | (Maturana and Norrie 1996; Maturana et al. 1998), MetaMorph
Il (Shen et al. 1998a), Agent-Based Intelligent Control (Brennan et al. 1997; Wang et al., 1998), and
Agent-Based Manufacturing Scheduling (Shen and Norrie 1998). An overview of these projects with a
summary of techniques and mechanisms developed during these projects and a discussion of key issues
can be found in (Norrie and Shen 1999). The MetaMorph project is considered in some detail below.
For additional details on the MetaMorph | project see (Maturana et.al. 1999).

©2001 CRC Press LLC

MetaMorph incorporates planning, control and application agents that collaborate to satisfy both local
and global objectives. Virtual clusters of agents are dynamically created, modified, and destroyed as
needed for collaborative planning and action on tasks. Mediator agents coordinate activities both within
clusters and across clusters (Maturana and Norrie, 1996.)

3.3.1 The MetaMorphic Architecture

In the first phase of the MetaMorph project (Maturana and Norrie 1996) a multiagent architecture for
intelligent manufacturing was developed. The architecture has been named MetaMorphic, since a primary
characteristic is reconfigurability, i.e., its ability to change structure as it dynamically adapts to emerging
tasks and changing environment.

In this particular type of federation organization, intelligent agents link with mediator agents to find
other agents in the environment. The mediator agents assume the role of system coordinators, promoting
cooperation among intelligent agents and learning from the agents’ behavior. Mediator agents provide
system associations without interfering with lower-level decisions unless critical situations occur. Medi-
ator agents are able to expand their coordination capabilities to include mediation behaviors, which may
be focused upon high-level policies to break decision deadlocks. Mediation actions are performance-
directed behaviors.

The generic model for mediators in MetaMorph includes the following seven meta-level activities:
Enterprise, Product Specification and Design, Virtual Organizations, Planning and Scheduling, Execu-
tion, Communication and Learning, as shown in Figure 3.1. Each mediator includes some or all of these
activities to a varying extent. Prototyping with this generic model and related methodology facilitates
the creation of diverse types of mediators. Thus, a mediator may be specialized for organizational issues
(enterprise mediator) or for shop-floor production coordination (execution mediator). Although each
of these mediator types will have different manufacturing knowledge, both conform to a similar generic
specification. The activity domains in Figure 3.1 are further described as follows:

* The enterprise domain globalizes knowledge of the system and represents the facility’s goals
through a series of objectives. Enterprise knowledge enables environment recognition and main-
tenance of organizational associations.

+ The product specification and design domain includes encoding data for manufacturing tasks to
enable mediators to recognize the tasks to be coordinated.

The virtual organization domain is similar to the enterprise domain, but its scope is detailed
knowledge of resource behavior at the shop-floor level. This activity domain dynamically estab-
lishes and recognizes dynamic relationships between dissimilar resources and agents.

The planning and scheduling domain plays an important role in integrating technological con-
straints with time-dependent constraints into a concurrent information-processing model (Bala-
subramanian et al. 1996).

The execution domain facilitates transactions among physical devices. During the execution of
tasks, it coordinates various transactions between manufacturing devices and between the devices
and other domains to complete the information requirements.

* The communication domain provides a common communication language based on the KQML
protocol (Finin et al. 1993) used to wrap the message content.

The learning domain incorporates the resource capacity planning activity, which involves repetitive
reasoning and message exchange and that can be learned and automated.

Manufacturing requests associated with each domain are established under both static and dynamic
conditions. The static conditions relate to the design of the products (geometrical profiles). The dynamic
conditions depend upon times, system loads, system metrics, costs, customer desires, etc. A more detailed
description of the generic model for mediator design can be found in (Maturana 1997).

©2001 CRC Press LLC

OMMUNICATIGN

LEARNING

I
%)
x
[a8

[d
w

=

z
w

IS G
L W
WNING g scrEoV™

FIGURE 3.1 Generic model for mediators.

Mediators play key roles in the task decomposition and dynamic virtual clustering processes described
below.

3.3.2 Agent Coalition (Clustering)

The agents may be formed into coalitions (clusters) in which dissimilar agents can work cooperatively
into harmonious decision groups. Multistage negotiation and coordination protocols that can efficiently
maintain the stability of these coalitions are required. Each agent has its individual representation of the
external world, goals, and constraints, so diverse heterogeneous beliefs interact within a coalition through
distributed cooperation models.

In MetaMorph, core reconfiguration mechanisms are based on task decomposition and dynamically
formed agent groups (clusters). Mediators acting at the corresponding information level initially decom-
pose high-level tasks. Each subtask is distributed to a subcluster with further task decomposition and
clustering as necessary. As the task decomposition process is repeated, subclusters are formed and then
sub-subclusters, and so on, as needed, within a dynamically interlinked structure. As the respective tasks
and subtasks are solved, the related clusters and links are dissolved. However, mediators store the most
relevant links, with associated task information, for future reuse. This clustering process, as described,
provides scalability and aggregation properties to the system. Mediators learn dynamically from agent
interactions and identify coalitions that can be used for distributed searches for the resolution of tasks.

Agents are dynamically contracted to participate in a problem-solving group (cluster). Where agents
in the problem-solving group (cluster) are only able to partially complete the task’s requirements, the
agents will seek outside their cluster and establish conversation links with the agents in other clusters.

Mediator agents use brokering and recruiting communication mechanisms (Decker 1995) to find
appropriate agents for the coordination clusters (also called collaborative subsystems or virtual clusters).
The brokering mechanism consists of receiving a request message from an agent, understanding the
request, finding suitable receptors for the message, and broadcasting the message to the selected group
of agents. The recruiting mechanism is a superset of the brokering mechanism, since it uses the brokering

©2001 CRC Press LLC

mechanism to match agents. However, once appropriate agents have been found, these agents can be
directly linked. The mediator agent can then step out of the scene to let the agents proceed with the
communication themselves. Both mechanisms have been used in MetaMorph 1. To efficiently use these
mechanisms, mediator agents need to have sufficient organizational knowledge to match agent requests
with needed resources. In Section 3.6, we present a mathematical solution for the grouping of agents
into clusters. This can be incorporated as an algorithm within the mediator agents, to enable them to
create a holonic organizational structure when forming agent coalitions.

3.3.3 Prototype Implementation

The MetaMorph architecture and coordination protocols have been used to implement a distributed
concurrent design and manufacturing system in simulated form. This virtual system dynamically inter-
connects heterogeneous manufacturing agents in different agent-based shop floors or factories (physically
separated) for concurrent manufacturability evaluation, production planning and scheduling. The system
comprises the following multiagent modules: Enterprise Mediator, Design System, Shop Floors, and
Execution Control & Forecasting, as shown in Figure 3.2. Each multiagent module uses common enter-
prise integration protocols to allow agent interoperability.

The multiagent modules are implemented within a distributed computing platform consisting of four
HP Apollo 715/50 workstations, each running an HP-UX 9.0 operating system (Maturana and Norrie,
1996). The workstations communicate with each other through a local area network (LAN) and TCP/IP
protocol. Graphical interfaces for each multiagent module were created in the VisualWorks 2.5 (Smalltalk)
programming language, which was also used for programming the modules. The KQML protocol (Finin
et al. 1993) is used as high-level agent communication language. The whole system is coordinated by
high-level mediators, which provide integration mechanisms for the extended enterprise (Maturana and
Norrie 1996). The Enterprise Mediator acts as the coordinator for the enterprise, and all of the manu-
facturing shop floors and other modules are registered with it. Registration processes are carried out
through macro-level registration communications. Each multiagent-manufacturing module offers its
services to the enterprise through the Enterprise Mediator. A graphical interface has been created for the
Enterprise Mediator. Both human users and agents are allowed to interact with the Enterprise Mediator
and registered manufacturing modules via KQML messages. Decision rules and enterprise policies can
be dynamically modified by object-call protocols through input field windows by the user. Action buttons
support quick access to any of the registered manufacturing modules, shown as icon-agents, as well as
to the Enterprise Mediator’s source code. The Enterprise Mediator offers three main services: integration,
communication, and mediation. Integration permits the registration and interconnection of manufac-
turing components, thereby creating agent-to-agent links.

Communication is allowed in any direction among agents and between human users and agents.
Mediation facilitates coordination of the registered mediators and shop floor resources. The design system
module is mainly a graphical interface for retrieving design information and requesting manufacturability
evaluations through the Enterprise Mediator (which also operates as shop-floor manager and message
router). Designs are created in a separate intelligent design system named the Agent-Based Concurrent
Design Environment (ABCDE), developed in the same research group (Balasubramanian et al. 1996).

Different shop floors can be modeled and incorporated in the system as autonomous multiagent
components each containing communities of machines and tools agent. Shop-floor resources are regis-
tered in each shop floor using macro-level registration policies. Machine and tool agents are incorporated
into the resource communities through micro-level registration policies. The shop-floor modules encap-
sulate the planning activity of the shop floor. Each shop floor interface is provided with a set of icon-
agents to represent shop-floor devices. Shop-floor interfaces provide standardized communication and
coordination for processing manufacturability evaluation requests. These modules communicate with
the execution control and simulation module to refine promissory schedules.

The execution control and forecasting module is the container for execution agents and process-
interlocking protocols. Shop floor resources are introduced as needed, thereby instantiating icon-agents

©2001 CRC Press LLC

Local Area Network

FIGURE 3.2 Prototype implementation of MetaMorph architecture.

and specifying data files for each resource. This module includes icon-agents for its graphical interface
to represent machines, warehouses, collision avoidance areas, and AGV agents. Standard operation times
(i.e., loading, processing, unloading, and transportation times) are already provided but can be scaled
to each resource’s desired characteristics. Each resource can enforce specific dispatching rules (i.e.,
weighted shortest processing time, earliest due date, shortest processing time, FIFO, LIFO, etc.). Parts
are modeled as part agents that are implemented as background processes. A local execution mediator
is embedded in the module to integrate and coordinate shop-floor resources. This local execution
mediator communicates with the resource mediator to get promissory plans and to broadcast forecasting
results.

The system can be run in different time modes: real-time and forecasting. In the real-time mode, the
speed of the shop-floor simulation is proportional to the execution speed of the real-time system. In the
forecasting mode, the simulation speed is 40 to 60 times faster than the real-time execution.

Learning mechanisms are incorporated to learn from the past as well as the future. The most significant
interactions among agents are recorded during problem-solving processes, for subsequent reuse
(Maturana et al. 1997).

3.3.4 MetaMorph II

The second phase of the MetaMorph project started at the beginning of 1997. Its objective is the
integration of design, planning, scheduling, simulation, execution, material supply, and marketing ser-
vices within a distributed intelligent open environment. The system is organized at the highest level
through “subsystem” mediators (Shen et al. 1998). Each subsystem is connected (integrated) to the system
through a special mediator. Each subsystem itself can be an agent-based system (e.g., agent-based man-
ufacturing scheduling system), or any other type of system such as a functional design system or knowl-
edge-based material management system. Agents in a subsystem may also be autonomous agents at the
subsystem level. Some of these agents may also be able to communicate directly with other subsystems
or the agents in other subsystems.
MetaMorph Il is an extension of MetaMorph | in multiple dimensions (Shen and Norrie 1998):

©2001 CRC Press LLC

a. Integration of Design and Manufacturing: Agent-based intelligent design systems are integrated
into the MetaMorph 1. Some features and mechanisms used in the DIDE project (Shen and
Barthes, 1995) and ABCDE project (Balasubramanian et al. 1996) will be utilized in developing
this subsystem. Each such subsystem connects within MetaMorph 11 with a Design Mediator that
serves as the coordinator of this subsystem and its only interface to the whole system. Several
design systems can be connected to MetaMorph Il simultaneously. Each design system may be
either an agent-based system or other type of design system.

b. Extension to Marketing: This is realized by several easy-to-use interfaces for marketing engineers
and end customers to request product information (performance, price, manufacturing period,
etc.), select a product, request modifications to a particular specification of a product, and send
feedback to the enterprise.

c. Integration of Material Supply and Management System: A Material Mediator was developed to
coordinate a special subsystem for material handling, supply, stock management, etc.

d. Improvement of the Simulation System: Simulation Mediators carry out production simulation
and forecasting. Each Simulation Mediator corresponds to one Resource Mediator and therefore
to one shop floor.

e. Extension to Execution Control: Execution Mediators coordinate the execution of the machines,
transportation AGVs, and workers as necessary. Each shop floor is, in general, assigned with one
Execution Mediator.

3.3.5 Clustering and Cloning in MetaMorph II

Clustering and cloning approaches for manufacturing scheduling were developed during the MetaMorph
I project (Maturana and Norrie 1996). To reduce scheduling time through parallel computation, resources
agents are cloned as needed. These clone agents are included in virtual coordination clusters where agents
negotiate with each other to find the best solution for a production task. Decker et al. (1997) used a
similar cloning agent approach as an information agent’s response to overloaded conditions.

In MetaMorph 11, both clustering and cloning have been used, with improved mechanisms (Maturana
and Norrie 1996). When the Machine Mediator receives a request message from the Resource Mediator
(following a request by a part agent), it creates a clone Machine Mediator, and sends “announce” messages
to a group of selected machine agents according to its knowledge of their capabilities. After receiving the
announce message, each machine agent creates a clone agent and participates in the negotiation cluster.
During the negotiation process, the clone machine agent needs to negotiate with tool agents and worker
agents. It sends a request message to the Worker Mediator and the Tool Mediator. Similarly to the Machine
Mediator, the Worker Mediator and the Tool Mediator create their clone mediator agents. They send
announce messages that call for bidding to worker agents and tool agents. The concerned worker agents
and tool agents create clones that will then participate in the negotiation cluster

In the MetaMorph project, both clustering and cloning have proved very useful for improving man-
ufacturing scheduling performance. When the system is scheduling in simulation mode, the resource
agents are active objects with goals and associated motivations. They are, in general, located in the same
computer. These clone agents are, in fact, clone objects. In the case of real on-line scheduling, the cloning
mechanism can be used to “clone” resource agents from remote computers (like NC machines, manu-
facturing cells, and so on) to the local computer (where the resource mediators reside) so as to reduce
communication time and consequently to reduce the scheduling and rescheduling time. This idea is
related to mobile agent technology (Rothermel and Popescu-Zeletin 1997).

In the following, we illustrate the dynamic virtual clustering mechanism in a case study. For more
details on this project see (Shen et al. 1999).

©2001 CRC Press LLC

3.3.6 Case Study: Multi-Factory Production Planning

The internationally distributed manufacturing enterprise or a virtual enterprise in this case study has a
headquarter (with a General Manager/CEO), a production planning center (with a Production Manager),
and two factories (each with a Factory Manager), see Figure 3.3. This case study can be extended to a
larger manufacturing enterprise with additional production planning centers and worldwide-distributed
factories.

A Production Order A is received for 100 products B with due date D, whose description is as follows:

* One product B is composed of one part X, two parts Y, and three parts Z.
* Part Z has three manufacturing features (Fa, Fb, Fc), and requires three operations (Oa, Ob, Oc).

Scenario at a Glance

* CEO receives a Production Order A from a customer for 100 products B with delivery due date D.
* CEO sends the Production Order A to the Production Manager. (Actually it would not be a CEO
who would handle such an order, but instead it would be staff at an order desk. The CEO appears
on Figure 3.3, since this case study is to be expanded to include higher-level management activities.)
Production Manager finds an appropriate agent for the task who arranges for Production Order
A is decomposed into parts production requests.

Production Manager sends parts production requests to suitable factories, for parts production.

Factory Manager(s) receives a part production request, finds competent agent(s) for further (sub-)
task decomposition and each part production request is decomposed into manufacturing features
(with corresponding machining operations).

Factory Manager(s) negotiates with resource agents for machining operations, awards machining
operation tasks to suitable resource agents, and then sends relevant information back to Production
Manager.

During this process, the virtual clustering mechanism is used in creating a virtual coordination group;
the partial agent cloning mechanism is used to allow resource agents to be simultaneously involved in
several coordination groups; and an extended contract net protocol is used for task allocation among
resource agents. If the factories are not able to produce the requested parts before the due date, a new
due date will be negotiated with the customer, or some subtasks will be subcontracted to other factories
outside the manufacturing enterprise (e.g., through the virtual enterprise network).

3.4 Holonic Manufacturing Systems

The term “holonic” is used to characterize particular relationships that exist between holon-type agents.
Autonomy and cooperativeness characterize these relationships. Holons are structured agents that act
synergistically with other holon-type agents. Research in holonic systems is being carried out by the
holonic manufacturing systems (HMS) research consortium, as well as by various academic and industrial
researchers. The HMS consortium is industrially driven and is addressing standardization, deployment,
and support of architectures and technologies for open, distributed, intelligent, autonomous and coop-
erating (i.e., “holonic") systems. It is one of the consortia endorsed by the Intelligent Manufacturing
Systems (IMS) Steering Committee in 1995 (Parker 1997; www.ims.org). The HMS consortium includes
partners from all IMS regions (Australia, Canada, Japan, EC, EFTA and the U.S.), comprising industrial
companies, research institutes, and universities. Its principal goal is the advancement of the state-of-the-
art in discrete, continuous and batch manufacturing through the integration of highly flexible, reusable,
and modular manufacturing units.

Holon architecture and related properties — including autonomy, cooperativeness, and recursivity —
have been considered by Gou et al. (1998), Mathews (1995), Brussel et al. (1998), and Bussmann (1998).
Maturana and Norrie (1997) suggested an agent-based view of a holon. In the PROSA architecture

©2001 CRC Press LLC

Headquarter Production Center Factory 1 Factory 2

CEO Production Manager Factory Manager 1 Factory Manager 2

FIGURE 3.3 Multi-factory production planning scenario.

(Brussel et. al. 1998), a HMS is built from three basic holons: order holon, product holon, and resource
holon. A centralized staff holon is used to assist the basic holon with expert knowledge. In the model of
Gou et al. (1998), five types of holons at the factory level were suggested: product, parts, factory
coordinator holons, and cell coordinator holons. The factory coordinator holon coordinates scheduling
activities across cells, gathers the status of cell and product holons, and generates coordination informa-
tion to guide these holons’ scheduling activities for overall system performance. The cell coordinator
holon gathers the status of machine-types and part holons in the cell, and coordinates scheduling activities
to achieve the cell’s objective.

3.4.1 Origin of the Holonic Concept

The Hungarian author and philosopher Arthur Koestler proposed the word “holon” to describe a basic
unit of organization in biological and social systems (Koestler 1989). Holon is a combination of the Greek
word holos, meaning whole, and the suffix on meaning particle or part. Koestler observed that in living
organisms and in social organizations entirely self-supporting, noninteracting entities did not exist. Every
identifiable unit of organization, such as a single cell in an animal or a family unit in a society, comprises
more basic units (plasma and nucleus, parents and siblings) while at the same time forming a part of a
larger unit of organization (a muscle tissue or a community). A holon, as Koestler devised the term, is
an identifiable part of a system that has a unique identity, yet is made up of subordinate parts and in
turn is part of a larger whole.

The strength of holonic organization, or holarchy, is that it enables the construction of very complex
systems that are nonetheless efficient in the use of resources, highly resilient to disturbances (both internal
and external), and adaptable to changes in the environment in which they exist. All these characteristics
can be observed in biological and social systems.

The stability of holons and holarchies stems from holons being self-reliant units, which have a degree
of independence and handle circumstances and problems on their particular level of existence without

©2001 CRC Press LLC

asking higher level holons for assistance. Holons can also receive instruction from and, to a certain extent,
be controlled by higher-level holons. The self-reliant characteristic ensures that holons are stable, and
able to survive disturbances. The subordination to higher-level holons ensures the effective operation of
the larger whole.

3.4.2 Holonic Concepts in Manufacturing Systems

The task of the holonic manufacturing systems (HMS) consortium is to translate the concepts that
Koestler developed for social organizations and living organisms into a set of appropriate concepts for
manufacturing systems. The goal of this work is to attain in manufacturing the benefits that holonic
organization provides to living organisms and societies, e.g., stability in the face of disturbances, adapt-
ability and flexibility in the face of change, and efficient use of available resources (Christensen 1994);
(Norrie and Gaines 1996).

A holonic manufacturing system should utilize the most appropriate features of hierarchical (“top
down”) and heterarchical (“bottom up,”“cooperative™) organizational structures, as the situation dictates
(Dilts et al. 1991). The intent is to obtain at least some of the stability of a hierarchy while providing the
dynamic flexibility of a heterarchy.

The HMS consortium has developed the following definitions to guide the translation of holonic
concepts into a manufacturing setting:

Holon: An autonomous and cooperative building block of a manufacturing system for transforming,
transporting, storing, and/or validating information and physical objects. The holon consists of
an information processing part and often a physical processing part. A holon can be part of another
holon.

Autonomy: The capability of an entity to create and control the execution of its own plans and/or
strategies.

Cooperation: A process whereby a set of entities develops mutually acceptable plans and executes these
plans.

Holarchy: A system of holons that can cooperate to achieve a goal or objective. The holarchy defines
the basic rules for cooperation of the holons and thereby limits their autonomy.

Holonic manufacturing system (HMS): A holarchy that integrates the entire range of manufacturing
activities from order booking through design, production, and marketing to realize the agile
manufacturing enterprise.

Holonic attributes: The attributes of an entity that make it a holon. The minimum set is autonomy
and cooperativeness.

Holonomy: The extent to which an entity exhibits holonic attributes.

From the above, it is clear that a manufacturing system having the MetaMorphic architecture is, in fact,
a holonic system. In the following, we will illustrate this using MetaMorph’s dynamic virtual clustering
mechanism.

3.5 Holonic Self-Organization of MetaMorph via Dynamic
Virtual Clustering

3.5.1 Holonic MetaMorphic Architecture

Within the HMS consortium, part of our research has focused on how to dynamically reconfigure a
multiagent system, according to need, so that it develops or retains holonic structures (Zhang and Norrie
1999). For this, we have developed a mathematical framework (see Sections 3.6 and 3.7) that enables
automatic holonic clustering within a generic (nonholonic) multiagent system (MAS). The method is
based on uncertainty minimization via fuzzy modeling of the MAS. This method appears to have promise

©2001 CRC Press LLC

for reconfiguring distributed manufacturing systems as holonic structures, as well as for investigating
the potential for a nonholonic manufacturing system to migrate toward a holonic one.

In this section, using metamorphic mechanisms for distributed decision-making in an agent-based
manufacturing system, the concept of dynamic virtual clustering is extended to manufacturing process
control at the lower levels (Zhang and Norrie 1999). Event-driven dynamic clustering of resource control
services and cooperative autonomous activities are emphasized in this approach.

As mentioned in Section 3.3, virtual clustering in MetaMorph is a dynamic mechanism for organiza-
tional reconfiguration of the manufacturing system during run-time. An organization based on virtual
clusters of entities can continually be reconfigured in response to changing task requirements. These
tasks can include orders, production requests, as well as planning, scheduling, and control. A cluster
exists for the duration of the task or subtask it was created for and is destroyed when the task is completed.
Mediators play key roles in the process and manage the clusters. Instead of having preestablished and
rigid layers of hierarchically organized mechanisms, a mediator-based metamorphic system can use
reconfiguration mechanisms to dynamically organize its manufacturing devices. The necessary structures
of control are then progressively created during the planning and execution of any production task. In
this dynamically changing virtual organization, the partial control hierarchies are dynamic and transient
and the number of control layers for any specific order task are task-oriented and time-dependent. It
will be seen that holonic characteristics such as “clusters-within-clusters” groupings exist at different
organizational levels.

3.5.2 Holon Types in MetaMorph’s Holarchy

A basic HMS architecture can be based on four holon types: product holon (PH), product model holon
(PMH), resource holon (RH), and mediator holon (MH). A product holon holds information about the
process status of product components during manufacturing, time constraint variables, quality status,
and decision knowledge relating to the order request. A product holon is a dual of a physical “component”
and information “component.” The physical component of the product holon develops from its initial
state (raw materials or unfinished product) to an intermediate product, and then to the finished one,
i.e., the end product. A product model holon holds up-to-date engineering information relating to the
product life cycle (configuration, design, process plans, bills of materials, quality assurance procedures,
etc.). A resource holon contains physical and information components. The physical part contains a
production resource of the manufacturing system (machine, conveyor, pallet, tool, raw material, and end
product, or accessories for assembling, etc.), together with controller components. The information part
contains planning and scheduling components.

In the following development of a reconfigurable HMS architecture using the four basic holon types,
a mediator holon serves as an intelligent logical interconnection to link and manage orders, product data,
and specific manufacturing resources dynamically. The mediator holon can collaborate with other holons
to search for and coordinate resource, product data, and related production tasks. A mediator holon is
itself a holarchy. A mediator holon can create a dynamic mediator holon (DMH) for a new task such as
a new order request or suborder task request. The dynamic mediator holon then has the responsibility
for the assigned task. When the task is completed, the DMH is destroyed or terminates for reuse. DMHs
identify order-related resource clusters (i.e., machine group) and manage task decomposition associated
with their clusters.

3.5.3 Holonic Self-Organization

The following example will illustrate holonic clustering within this architecture. Figure 3.4 shows the
initial activity sequence following the release to production of an order for 100 of a particular product.
This product is composed of three identical parts (to be machined) and two identical subassemblies (each
to be assembled). As shown in Figure 3.4, following the creation of the appropriate product holon, there
are created the relevant part and subassembly holons. The requests for manufacturing made by these

©2001 CRC Press LLC

Product
Model

Order
Rel Request: Create Product Holon (100) >
Holon
Creates
Product Holon
Batch Size = 100

Creates

Sub_Assy

Part Holon Holon

Batch Size = 200

Batch Size=300,

Request: Request:
300 Part - X 200 Sub_Assy-Y
Y Y
Production Production
Holon Holon
Machining Assembling
Creates Creates
Y Y
Dynamic Dynamic
Mediator Mediator
Production Production
Task: P-632 Task: P-6895

FIGURE 3.4 Holonic clustering mechanism.

latter holons to appropriate production holons (which function as high-level Production Managers for
a manufacturing shop-floor plan or part dispatch) result in the creation of dynamic mediators for the
machining and assembly tasks. Subsequently, each production holon coordinates inspection or assembly
of the parts or subassemblies according to the production sequence prescribed by the production model
holon (from its stored information). More complex situations will occur, when products having many
components requiring different types of production processes are involved.

After physical and logical machine groups are derived (for example, via group-technology approaches),
the necessary control structures are created and configured using control components cloned from
template libraries by a DMH. The machine groups, their associated and configured controllers, then form
a temporary manufacturing community, termed a virtual cluster holon (VCH), as shown in Figure 3.5.
The VCH exists for the duration of the relevant job processing and is destroyed when these production
processes are completed. The physical component of a VCH is composed of order-related parts, raw
materials or subproducts for assembly, manufacturing machines and tools, and associated controller
hardware. Within these manufacturing environments, parts develop from their initial state to an inter-
mediate product and then to the finished one. The information component of a VCH is composed of
cluster controller software-components, the associated DMH, and intermediate information on the order
and the related product. Each cluster controller is further composed of multilayer control functions that
execute job collaboration, control application generation and controller dynamic reconfiguration, process
execution, and process monitoring, etc.

3.5.4 Holonic Clustering

The life cycle of a dynamic virtual cluster holon has four stages: resource grouping; control components
creation; execution processing; and termination/destruction. The dynamic mediator holon is involved
in the stages 1 and 2. The first cluster that is created is the schedule-control cluster shown in Figure 3.5.
A cluster can be also considered to be a holonic grouping. The controller cluster next created is composed
of three holonic parts: collaboration controller (CC), execution controller (EC), and control execution
(CE) holon. One CE holon can be associated with more than one physical controller (execution platform
such as real-time operation system and its hardware support devices) and functions as a distributed-
node transparent-resource platform for execution of cluster control tasks at the resource level. In the
prototype system under development, the CC, EC, and CE holons collaborate to control and execute the

©2001 CRC Press LLC

PATTERN
- Vi | Cluste
P irtual Cluster
Holon
GD
S

Machine Logical
Group and Associated
Order and Product Information

rtual Cluster

Grouping Configuration
(GT-based methods)

Dynamic
Mediator
Holon

Machine
Physical Group

L

Task-driven Machine

Groups Identified by

GT-based methods i Physical Mar

FIGURE 3.5 Virtual Cluster Holon.

distributed tasks or applications on a new type of distributed real-time operating system recently imple-
mented (Zhang et al. 1999). The distributed tasks or applications are represented using the Function
Block (FB)-1499 specification, which is a draft standard described by the 1EC for distributed industrial-
process measurement and control systems.

As shown in Figure 3.5, the dynamic mediator holon records and traces local dynamic information
of the individual holons in its associated virtual cluster community. It is important to note that during
the life cycle of the DMH, this mediator may pass instantaneous information of the partial resource
holons to some new virtual cluster communities while the assigned tasks on these resource holons are
being completed.

The dynamic characteristics of the event-driven holon community become more complicated as the
population grows. In the next section, we present an approach for automatic grouping into holonic
clusters depending on the assigned task. This approach, due to its strong mathematical foundation, should
be applicable to large multiagent systems.

3.6 Automatic Grouping of Agents into Holonic Clusters

3.6.1 Rationale for Fuzzy Modeling of Multiagent Systems

In Section 3.5 we showed how resources and the associated controller components can be reconfigured
dynamically into holonic structures. In the present and following sections, a novel approach to holonic
clustering in a multiagent system is presented. This is applicable to systems that already have clusters as
well as to those that are non-clustered.

Although there have been considerable advances in agent theory (Russell and Norwig 1995; O’Hare
and Jensen 1996), a rigorous mathematical description of agent systems and their interaction is yet to
be formulated. Agents can be understood as autonomous problem solvers, in general heterogeneous in
nature, that interact with other agents in a given setting to progress towards solutions. Thus, capability
for interaction and evolution in time are prime features of an agent. Once a meaningful framework is
established for these interactions and evolution, it is natural to view the agents (in isolation and in a
group) as dynamical systems. The factors that influence agent dynamics are too many and too complex
to be tackled by a classical model. Also, the intrinsic stochastic nature of many of these factors introduces
the dimension of uncertainty to the problem. Given the nature of the uncertainty dealt with in such a
multiagent system, fuzzy set theory may be a promising approach to agent dynamics (Klir and Folger
1988; Zimmermann 1991; Subramanian and Ulieru 1999).

©2001 CRC Press LLC

As already noted in Section 3.3.2, and illustrated by examples in Sections 3.3.6 and 3.5.3, agents can
dynamically be contracted to a problem-solving group (cluster), through the virtual clustering mecha-
nism. In the following, it is shown how agents can automatically be selected for such holonic clusters,
using a new theoretical approach.

To model the multiagent system (MAS), we will use set theoretical concepts that extend to fuzzy set
theory. Consider the set of all agents in the MAS. As already mentioned, in our metamorphic architecture,
clusters and partitions or covers can change any time during the MAS evolution, according to a global
strategy which aims to reach a goal.

Each group of clusters that covers the agents set is actually a partition of it, provided that clusters are
not overlapping. Here by cover of a set, one understands a union of subsets at least equal to the set.
Whenever an agent can belong to more than one cluster at the same time, we refer to the clusters union
just as a cover of the agent set. Let us denote by a > b the relation “a and b are in the same cluster.” Two
types of clusters could be then defined, based on this relation: disjoint or not (i.e., overlapping), as follows:

a. If a cluster is constructed using the following axiom:

+ the agents a and b are in the same cluster ifa> b orb > aor itexistsc so thata> cand b > c,
then the clusters are disjoint and their union is a partition of the agents set.

b. If a cluster is defined by another axiom:

+ the agents a and b are in the same cluster ifa> b or b a,
then, when a > ¢, b > ¢ and no relation exists between a and b, the pairs {a,c} and {b,c} belong
to different clusters, but ¢ belongs to two clusters at the same time. In this case, clusters could
overlap and their union is just a cover of the agents set.

Consider an MAS that evolves, transitioning from an initial state through a chain of intermediate
states until it reaches its goal in a final state. A main driving force for MAS dynamics during this transition
is information exchange among agents. While the MAS evolves through its states toward the goal, its
agents associate in groups referred to as clusters, each cluster of agents aiming to solve a certain part of
the overall task assigned to the MAS. Let us consider now the set of all agents within a MAS. Each possible
group of clusters that covers the (agents) set is actually a partition of this set, provided that clusters are
not overlapping. We name a plan as the succession of all states through which the MAS transitions until
it reaches its goal. Each MAS state is described by a certain configuration of clusters partitioning the
agent set. So, a plan is in fact a succession of such partitions describing the MAS clustering dynamics on
its way toward reaching a goal. In the following discussion, we assume that clusters are not overlapping.
Our findings extend to the case when one or more agents belong to different clusters simultaneously.

The succession of clusters dynamically partitioning the agent set during MAS evolution from its initial
state to a final one is not known precisely. All we can do at this stage is to assign a “degree of occurrence”
for each possible partition supposed to occur.

Thus, the problem we intend to solve can be stated in general terms as follows:

+ Given an MAS and some vague information about the occurrence of agent clusters and parti-
tions (or covers) during the system’s evolution toward a goal, construct a fuzzy model that
provides one of the least uncertain source-plans.

3.6.2 Mathematical Statement of the Problem

Denote by sy = {a,} the set of N > 1 agents acting as an MAS and by 2 = {P,} a set of
n,N mC1,M

M = 1 partitions of .y, that seem to occur during the MAS evolution toward its goal. Notice that the

number of all possible partitions covering <, denoted by %, increases faster with N than the number

of all possible clusters (which is 2N), as proves Theorem 1 from Appendix A. For example, if N = 12,

then ¥y, = 4,213,597, whereas the number of all clusters is only 212 = 4,096,

©2001 CRC Press LLC

In our framework, one can refer to & as a source-plan in the sense that % can be a source of partitions
for a MAS plan. The main difference between a plan and a source-plan is that, in a plan the succession of
partitions is clearly specified and they can repeat in time, whereas in a source-plan the partitions order
is, usually, unknown (the time coordinate is not considered) and the partitions are different from each
other. The only available information about 2 is that to each of its partitions, P,,, one can assign a number
a,, [[0,1], assumed to represent a corresponding degree of occurrence during the MAS evolution.

Assume that a family {ka} , containing K = 1 source-plans, is constructed starting from the
kK
uncertain initial information. For each k [J1,K, the source-plan %, contains M, [J1, % partitions:

P = { Py m} . The corresponding degrees of occurrence are now members of a two-dimensional
m.M,

family {ak‘m} , the source plan and its constituent partitions (each Py, has the degree of
KOLK 0 1M
occurrence ay), that quantifies all available information about MAS.
In this framework, the aim is to construct a sound measure of uncertainty, V (from “vagueness”),
fuzzy-type, real-valued, defined on the set of all source-plans of sy, and to optimize it in order to select
the least uncertain source-plan of the family {9]> k}

K

a
Py, :argﬂ:)tv(g’k),where Ko Dl,_K. Equation (3.1)
k1,K

k

The cost function V will be constructed by using a measure of fuzziness (Klir and Folger 1988). We present
hereafter the steps of this construction. The fuzzy notions used in this construction are defined in (Klir
and Folger 1988; Zimmermann 1991).

3.6.3 Building an Adequate Measure of Uncertainty for MAS

3.6.3.1 Constructing Fuzzy Relations between Agents

The main goal of this first step is to construct a family of fuzzy relations, {Q% k} , between the agents
KOLK

of MAS (s#) using the numbers {O’k,m} and the family of source-plans {9)’,(}
KK 1M, koK

In order to describe how fuzzy relations between agents can be constructed, consider k 1K and
m Dl,_Mk arbitrarily fixed. In construction of the fuzzy relation %,, one starts from the remark that
associating agents in clusters is very similar to grouping them into equivalence classes, given a (binary)
equivalence relation between them (that is a reflexive, symmetric and transitive relation, in the crisp sets
sense). It is, thus, natural to consider that every partition Py ., is a cover with equivalence classes of sfy.
The corresponding (unique) equivalence relation, denoted by Ry ,, can be described very succinctly: “two
agents are equivalent if they belong to the same cluster of the partition Py ,” Express by “aRy ,b” and
“a = Ry nb” the facts that a and b, respectively, are not in the relation Ry ,, (where a,b [7 sfy). The relation
Rqm can also be described by means of a N x N matrix H,, [%#V*N— the characteristic matrix —
whose elements are only 0 or 1, depending on whether the agents are or are not in the same cluster.
(Here, % points to the real numbers set.) This symmetric matrix with unitary diagonal allows us to
completely specify Ry ,,, by enumerating only the agent pairs, which are in the same cluster (i.e., deter-
mined by the positions of the 1s inside our matrix).

Example 1

If a partition Py, is defined by three clusters: «fy = {a;,a4}[{a,,as}[H{az}, then the corresponding
(5 x5) matrix (Hy) and equivalence relation (Ry ,, O sy x sfy) are

©2001 CRC Press LLC

od
15
o

O
0

1H

P O O k»r O
o O B O O
O b O O -

and, respectively,

Rim = {(a1, a1), (a2, @;), (83, @3), (@4, A4), (a5, @s), (A1, @4), (@, 1), (32 @5), (a5, @)}

Denote by X, , the characteristic function of Ry , (the matrix form of X, ., is exactly Hy .,):

Sty x oy - {0

O _ED aRb
E (a,b) = Xim (a,b) = a 2R b

Each equivalence relation Ry, can be uniquely associated to the degree of occurrence assigned to its
partition: ay . Together, they can define a so-called a-sharp-cut of the fuzzy relation %,.

From (Klir and Folger 1988) we know that if A is a fuzzy set defined by the membership function p,
: X - [0,1] (where X is a crisp set), then the grades set of A is the following crisp set:

def .
AW ={a D[O,l”[b(D X:uA(x)=a} Equation (3.2)
Moreover, the a-cut of A is also a crisp set, but defined as

def
A, —{x DX‘uA a} fora OA,. Equation (3.3)

According to these notions, the a-sharp-cut of A can be defined here as the crisp set:

def
A{a] —{x DX‘uA a} fora OA,. Equation (3.4)

Thus, one can consider that the a-sharp-cut of Ji, defined for ay ,, is exactly the crisp relation Ry . This
can be expressed as %, (akm) = Riom- Next we define a fuzzy relation %, ,, with membership function L,
expressed as the product between the characteristic function X, ,, and the degree of occurrence oy,
that is th, = orkm Xim- This fuzzy set of sy x s is uniquely associated to R [ay ,]. More specifically,

S sy sl ~{o1

O , aR, b Equation (3.5)
0 (ab)o e (an)= e e
E g), a“Rk’mb

The matrix form of L, is exactly oy nHym.
If k 01K is kept fixed, but m varies in the range LM, M,, then a family of fuzzy elementary relations
is associated to Ry. Denote by {%) m} — thls family. Naturally, %, is then defined as the fuzzy union:

©2001 CRC Press LLC

def M«
R, = ngk,m . Equation (3.6)
=1

Usually, the fuzzy union in Equation 3.6 is computed by means of max operator (although some other
definitions of fuzzy union could be considered as well (Klir and Folger 1988). This involves the mem-
bership function of %, being expressed as follows (using the max operator):

def

Uy (a,b) = mrgtm{ukym(a,b)} , Oa,id of . Equation (3.7)

Consequently, the matrix form of 14 is obtained (according to Equation 3.7) by applying the max operator
on the matrices oy \Hy . for m 0 1,M:

def
My = mﬂ~{akvakm} OgNN | Equation (3.8)
ML M,

where “ maxe ” means that the operator acts on matrix elements and not globally, on matrices.
Actually,

Ry :‘uk(ai,aj)‘ Equation (3.9)

i, LN

and it is often referred to as the membership matrix of the fuzzy relation %,.

Equation 3.6 is very similar to the resolution form of %, as defined in (Klir and Folger 1988). Indeed,
if we consider that the numbers {an} miw, are arranged in increasing order and that they are all
grades of %, (which is not always verified, as shown in Example 2 below), then all the a—cuts of %, are

My
Ra, =i£JmRk,m, Equation (3.10)

where, here, the union is classical, between crisp sets. Consequently, the fuzzy sets from the resolution

form of % (ie., aynPRygq, . for mOLM,) are defined by the membership functions below

(denoted simply i ,, for mO1,M . and very similar to those expressed in Equation 3.5):

ity % sty - {0
Hem, 000 er:aRk,ib

(a,b)Hﬁk,m(a'b)zé)l a-Ry;b,00 m,M,

oOoOoO

This property is due to the fact that the characteristic function of % Kay o is

Xim(ah)= max x,;(ab), Datdl sy

im M

©2001 CRC Press LLC

and ay,; < Oy < ... Qimke (As stated in (Klir and Folger, 1988), i are defined by Ly, = 0y Xim»
Ondd L,M,)
The resolution form is then:

My
Ry :mglak'm%k'ak’m : Equation (3.11)

preserving the same fuzzy union as in Equation 3.6 (max-union, in fact). Moreover, each a-cut of %,
is, actually, a (crisp) union of its a-sharp-cuts:

M M,
%k,ak‘m = ign%k [ak]

U Reir Onid 1, M, Equation (3.12)

If oy, disappear from membership grades of %,, then the corresponding a-cut are identical with other
a-cut (for a superior grade) and cannot be revealed. This vanishing effect of ay ., is due to the fact that
the corresponding equivalence relation Ry, is included in the union of next equivalence relations:

MK
U Ry (remember that oy, < 0y, < . . . Gk, my)-

I=m
The following example shows how a fuzzy relation between agents can be constructed, starting from
a source-plan and the associated degrees of occurrence.

Example 2

Consider oy = {a;, a,, a3, a4, as} and the following set of partitions with corresponding degrees of
occurrence:

aa{af ads). a=015

3=||
{{al { 2 a} 34,?}5} . @,=025
"=

ay az,as,a4 }} , a3=057

P, :{{al,a4}{ az,a} { 2}3 } , a,=07

Then the four corresponding 5 x 5 matrices H , describing the associated equivalence relations are

H, H, H,

100001 0000 1110 00 1 00
N 0 N O

100039 110084 111030100 175

(NN 0 dJ O
00 1 1 00m 111600 01 0 OO
U

N N
0011%0011%1110%0010%
0011%0011%0001%10018

Actually, H;~, are the matrix forms of characteristic functions 2 The matrix form of the membership
function deflnlng the fuzzy relation % is then

= I N =Y E RN
o
-
o

©2001 CRC Press LLC

070 057 057 070 0 O

0 0

1057 070 057 057 0703

def 0 0
A =max{a,H,} =057 057 070 057 0 O
mCL4 0 0
970 057 057 070 0253

0 0

g0 070 0 025 0700

Thus, for example, the agents a, and as share the same cluster with the degree of occurrence 0.25, whereas
a, and ag share the same cluster with the degree of 0.7. We have chosen a set of partitions and corre-
sponding degrees of occurrence such that the degree 0.15 vanishes in /(. It is easy to remark that the
equivalence relation R, is included in the union R, U R; and this forces a; to vanish in /. It is suitable
to set the degrees of occurrence so that all of them appear in ./(; otherwise some partitions can be removed
from the source-plan (those for which the degrees of occurrence do not appear in /(). Here, the partition
P, vanishes completely, if we look only at .. If for example, 0.57 is replaced by 0.07, then all degrees of
occurrence will appear in J, because the increasing order of as is now a; <a; < a, < a, and no
equivalence relation is included in the union of “next” equivalence relations (according to the order of a's).

Obviously, since all matrices ay ,Hyn, are symmetric ., from Equation 3.8 is symmetric as well,
which means that %, is a fuzzy symmetric relation. The fuzzy reflexivity is easy to ensure, by adding to
each source-plan the trivial partition containing only singleton clusters, with the maximum degree of
occurrence, 1. Naturally, this could be considered the partition associated to the initial state, when no
clusters are yet observed. Thus, %, is at least a proximity relation (i.e., fuzzy reflexive and symmetric)
between agents.

The manner in which the degrees of occurrence are assigned to partitions greatly affects the quality
of the fuzzy relation. Although all its a-sharp-cuts are equivalence relations, it is not necessary that the
resulting fuzzy relation be a similarity relation (i.e., fuzzy reflexive, symmetric, and transitive). But it is
at least a proximity relation, as explained above.

The fuzzy transitivity expressed (for example) as follows (for each k [71,K),

uk(ap,aq)2?ﬂ%min{uk(ap,an),uk(an,aq)} =[p, ¢! 1_N Equation (3.13)

is the most difficult to ensure. This is the max—min (fuzzy) transitivity. (Notice that other forms of fuzzy
transitivity properties could be defined (Klir and Folger 1988). A matrix form of the Equation 3.13 can
be straightforwardly derived (due to Equation 3.9)):

My = (Myoty). Equation (3.14)

Here, “°” points to fuzzy multiplication (product) between matrices with compatible dimensions, involved
by the composition of the corresponding fuzzy relations (see Klir and Folger 1988 for details). This
multiplication is expressed starting from classical matrix multiplication, where max operator is used
instead of summation and min operator is used instead of product. The equivalent Equations 3.13 and
(especially) 3.14 suggest an interesting procedure to construct similarity relations starting from proximity
relations, using the notion of transitive closure (Klir and Folger 1988). A transitive closure of a fuzzy
relation % is, by definition, the minimal transitive fuzzy relation that includes . (Here, “minimal” is
considered with respect to inclusion on fuzzy sets.)

It is interesting that the composition of fuzzy relations preserves both reflexivity and symmetry, if the
relations are not necessarily identical, and it preserves even the transitivity, if relations are identical. This
is proven by the Theorem 2 in Appendix B.

©2001 CRC Press LLC

It is very important if we preserve the proximity property of relation %, by composition with itself,
because, thus, the following simple procedure allows us to transform %, into a similarity relation:

Step 1. Compute the following fuzzy relation: 2, =%, U(Q‘ik o%k).

Step 2. If 9 # R, then replace R, by 2, ie., R, « 2,,and go to Step 1. Otherwise, 2, = Ry is
the transitive closure of the initial %,.

The first step consists of two operations: one fuzzy matrix multiplication and one fuzzy union (expressed
by the “maxe” operator, as in Equation 3.8, in matrix notation). The second step is actually a simple and
efficient test of fuzzy transitivity, for any fuzzy relation, avoiding the inequality Equation 3.13 or 3.14.
To clarify this we give the following example:

Consider the fuzzy relation %, constructed at the previous example. A very simple test using one single
pass of the steps in procedure before shows that the new relation 2 is different of %, so that % is not
transitive. Indeed, the matrix membership of Ro %R is Mol , whereas the matrix membership of 2
is# U (Mot). Both matrices are depicted below and, obviously, . # 4 U (Al). But if a second
pass is initiated, the matrix 2 is unchanged. Thus, 2 is the transitive closure of %.

[0.70 0.57 057 0.70 0570
g g

%).57 0.70 057 057 0.705

g g
MoAM=10.57 057 0.70 0.57 0.57 [F/%U(/%o/%) zM
O

0
@.70 057 057 0.70 0.57%

O
957 070 057 025 0700

Observe that 2 is coarser than 2, because the membership grade 0.25 is also disappeared. On one
hand, this is probably the price for transitivity: the loss of refinement. On the other hand, the transitive
closure may eliminate those degrees of occurrence that are parasites, due to subjective observations.

The argument presented in the above paragraph can be used identically to construct proximity relations
starting from covers of «fy (with overlapping clusters), but, this time, the crisp relations are only
compatibility (tolerance) type (i.e., only reflexive and symmetric). However, the procedure before could
be invoked to transform the resulting proximity relations into similarity ones, if desired.

In conclusion, at this step, a family of fuzzy relations (at least of proximity type) was defined for further
constructions, {%k} o Obviously, a one-to-one map between {@k} and {97% k} ,say T,
was thus constructed: KOLK kALK

T(20)=%, DO 1K Equation (3.15)

3.6.3.2 Building an Appropriate Measure of Fuzziness

3.6.3.2.1 On Measures of Fuzziness

The next step aims to construct a measure of fuzziness over the fuzzy relations on the Cartesian product

Ay % . This measure will be used to select the “minimally fuzzy” relation within the set constructed above.
According to Klir and Folger 1988, in general, if X is a crisp set and F(X) is the set of its fuzzy parts,

then a measure of fuzziness is a map f : #(X) - R, that verifies the following properties:

fa) f(A)=0 =« AO FHX) - isacrisp set.

fb) Suppose that a “sharpness relation” between fuzzy sets is defined and denote it by “ <” (A < B
meaning “A is sharper than B,” where A, B 0 % (X)). Then with A, B 00 % (X) with A < B, f
must verify the inequality f(A) < f(B).

©2001 CRC Press LLC

c) Suppose that, according to the “sharpness relation” defined before, there is at least a fuzzy set
that is maximally fuzzy, i.e., AMAX O & (X) for which A < AMAX 01 A 00 % (X).Then A O F (X)
is maximally fuzzy if and only if f(B) < f(A), O B O % (X).

Accordingly, we can define A OY O % (X) as minimally fuzzy in Y if, given f, the following property
is verified: f(A) < f(B), O B O Y. Minimally fuzzy sets are the closest to the crisp state, according to f a),
that is they have the least fuzzy intrinsic structure. All the crisp sets of Y (if exist) are minimally fuzzy
and none of its fuzzy sets are minimally fuzzy. However, it is not mandatory that Y have a minimally
fuzzy set, and several related definitions about “infimumly fuzzy” sets could be stated. But if Y is a finite
set — and this is the case in our framework — then always at least one minimally fuzzy set can be pointed
out.

3.6.3.2.2 The Role of Sharpness in our Construction

It is not necessary either that a maximally fuzzy set exists for the entire Z(X), because the sharpness
relation is only a partial ordering defined on Z(X). In this case, when constructing the measure of
fuzziness, we can skip the requirement f c). Since the classical ordering of numbers is a total ordering
relation on 2, there are only two possibilities that we may have:

a. Theset {f(A) | A O F(A)} O R, is not bounded and, thus, maximally fuzzy sets do not exist.
b. It exists A O F(X) so that f(B) < (A), O B O & (X) and, in this case, A can be considered as
maximally fuzzy.

But, even so, minimally fuzzy sets (as defined before) exist in finite subsets of F(X). However, it is
important to define the sharpness relation so that maximally fuzzy sets exist, because the measure of
fuzziness is, thus, bounded on F(X). The existence of the maximally fuzzy sets is determined not only
by the sharpness relation itself, but also by the set Z(X).

One of most usual (classical) sharpness relations between fuzzy sets is the following:

. A(X)s uB(x) , for x OX so that uB(x) <

A<B in F(x) if:
%A(X)Z IJB(X) , for x OX so that uB(x) =

Equation (3.16)

N~ N -

Figure 3.6 shows an example of classical sharpness order between two sets. Obviously, the maximally
fuzzy set is defined by the constant membership function equal with 1/2. This sharpness relation is not
a total ordering relation, because there are fuzzy sets, which are non-comparable. Looking again at Figure
3.6, the sets A and B become non-comparable if, for example, g has the maximum value equal with 1,
atx= . 2

This sharpness relation is not the most unique that we can define, but it helps us to select an interesting
measure of fuzziness. One very important class consists of measures that evaluate “the fuzziness” of a
fuzzy set by taking into consideration both the set and its (fuzzy) complement.

3.6.3.2.3 Shannon Entropy as an Adequate Measure of Fuzziness

From this large class, we have selected the Shannon measure, based on Shannon’s function:
@:[0,1] - R
O

E X S(x)d:—xlogzx—(l—x)logz(l—x).

It is easy to observe that S has one maximum, (0.5;1), and two minima, (0;0) and (1;0). It looks very
similar to p, of Figure 3.6, only the aperture is bigger because the marginal derivatives are infinite.

©2001 CRC Press LLC

FIGURE 3.6 An example of classical sharpness relation.

If the argument of S is replaced by a (vectorial) set of variables, then its definition extends as follows:

%:[0,1] .

0 def M M Equation (3.17)
X »—>S(x) =— me log, X, — Z (1—xm)logz(1—xm)
B m=1 m=1
where X = (Xq, X, . . ., X\). This function also has one single maximum (equal by M for x in the middle

of the hyper-cube[0,1]™) and 2M null minima (one for each apex of the hyper-cube). For example, if
M = 2, the shape of the Shannon function looks like that in Figure 3.7(a).

The gradient of the function 3.17 is also useful for some interpretations. Its expression can be derived
by simple manipulations:

def

O - - ~xpy O

DS(X): asa—s---a—sax):aogzl X1I0921 XZ---Iogzl Xm Equation (3.18)
X1 0X, OXp Xy Xy XM E

for x,, O (0,1), Om O 1,M. If there is Xmo D{O,]} , but not all x,,, are 0 or 1, then the m,-th component
of 0OS(x] is a priori null. If all x,, are 0 or 1, then all components of S(x) are infinity.

As in Subramanian and Ulieru [1999], we refer to this gradient as force, for reasons that we will explain
later. For M = 2, this force has the shape in Figure 3.7(b). It is infinite for each apex of the hyper-cube
and null in the middle of hyper-cube.

When the argument of Shannon function 3.17 is a discrete probability distribution, it is referred to
as Shannon entropy.” This denomination extends even if the argument is a discrete membership function
defining a fuzzy set, in which case it is denoted by S, and named Shannon fuzzy entropy [Zimmermann,
1991]:

8,:7(x) - 0.

[l

O : Equation (3.19
E xi>S,(A)d—f—ZuA()logzuA [1 ta ()] tog [t p1a (¥ auation (319

*In the continuous case, the sum in Equation 3.17 is replaced by the integral.

©2001 CRC Press LLC

(b)

FIGURE 3.7 (a) Shannon’s function (M = 2). (b) Amplitude of the gradient for Shannon’s function (M = 2).

It is easy to prove that S, is a measure of fuzziness, according to requirements f a), f b), and f c), for the
sharpness relation given by Equation 3.16. If the fuzzy complement of a set A 0 F(X) is classically defined
(i.e., by A O F(X) with the membership function iz - Ha), then S,(A) can be viewed as a total
entropy of the set and its complement. As a matter of fact, S, (A) = S,,(K). There are some other measures
of fuzziness, e.g., based on sharpness relations that evaluate the distance between the fuzzy set and a
well-defined complement (or even “the closest” crisp set; see Klir and Folger 1988).

In our framework, X is identified with the Cartesian product Ay x Ay and the fuzzy sets are fuzzy
relations between agents. Thus, according to Equation 3.19, for each k 01, K, the Shannon (fuzzy)
entropy of the relation %, can be evaluated as follows:

N N

Su(%k):—iNZuk(a, J)Iogzuk 3,3, ZZ[l u(a;, J]Iogz[l uk . J)] Equation (3.20)

i=1 j=1 i=1 j=1

Two main reasons motivate this choice (and they reside in the fact that Shannon fuzzy entropy provides
very interesting interpretations, closely related to the concept of “uncertainty”). First, S helps us to make
a direct connection between “how fuzzy” is a set and “how much uncertainty” it contains (using the

©2001 CRC Press LLC

property f (b)). Thus, since S computes the quantity of information of an informational entity (like, e.g.,
a set of events or a fuzzy set) as the estimated uncertainty that the entity contains, the minimally fuzzy
sets contain also the minimally uncertain information.” Secondly, the “total ignorance” (or uncertain)
information is pointed out by the unique maximum of S (see Figure 3.7), whereas multiple minimum
points (actually, the apexes of the hyper-cube) belong to the “perfect knowledge zone” (as less uncertain
information as possible). Between “total ignorance” (which, interestingly, is unique) and “perfect knowl-
edge zone” (which is always multiple) there are many intermediate points associated with different
knowledge/uncertainty levels about the entity. The hyper-surface S, can be considered as a potential
knowledge surface, where the minimum potential stands for the knowledge area, whereas the (unique)
maximum potential is the ignorance point. Moreover, according to this interpretation, a force driving
toward knowledge can be determined, by computing the gradient of the potential knowledge surface.
Obviously, using Equations 3.18 and 3.20 the expression of the amplitude (the Euclidean norm) of this
force can be straightforwardly derived (for each k 0 1,K):

\df
E . Equation (3.21)

The amplitude increases very fast in the vicinity of any “perfect knowledge” point.

3.6.3.3 Constructing and Optimizing the Uncertainty Measure

Despite that a unique maximum of Shannon fuzzy entropy exists, we are searching for one of its minima.
More specifically, at this step one can construct the required measure of uncertainty, V, by composing
S, (definition 3.20) with T (Equation 3.15), that is: V = S;;» T. Notice that V is not a measure of fuzziness,
because its definition domain is the set of source-plans (crisp sets) and not the set of fuzzy relations
between agents (fuzzy sets). But, since T is a bijection, the optimization problem (1) (stated in the
previous section) becomes equivalent with

Py, :Ttlgaigmin S*’(@k)g' where k 01, K Equation (3.22)
(LK

Normally, this new problem does not require a special optimization algorithm, since K is a finite
number and the maximum point is not the focus, but rather a minimum point. Problems could appear
only if K is very large. This may happen because, as mentioned before, the number of possible partitions
covering Ay increases rapidly with N. In this case, a genetic algorithm can be used to find the optimum.
According to the previous interpretations, Py is the least fuzzy (minimally fuzzy), i.e., the least uncertain
source-plan from the family and the most attracted by the knowledge zone. Its corresponding optimum
fuzzy relation Ry, might be useful in the construction of a least uncertain plan of MAS.

3.6.3.4 Identifying Holonic Structures by Constructing the Least Uncertain Source-Plan

Once one pair (@ko, Q'Zko) has been selected by solving the problem 3.22 (multiple choices could be
possible), two options are available:

1. Stop the procedure, by listing all the partitions/covers of Py

Py, ={Pk0’1,Pk0Y2, PKOYMKO} .

“Notice, however, that only the vagueness facet of the uncertainty is measured here. Ambiguity requires more
sophisticated measures.

©2001 CRC Press LLC

Although these partitions/covers are most likely to appear during the MAS evolution, the order
in which they succeed remains unknown and their consistency is often very poor, corrupted by
parasite partitions/covers due to subjective observations. This is the main drawback of the option.

2. Construct a source-plan starting not from 2, , but from %ko. This option will be detailed below.
Its main drawback is that the plan could contain also other partitions/covers, not included in 2, .
Moreover the plan may not contain any of the partitions/covers of &, . Also, the succession order
of partitions/covers is still unknown, in general.

There is a reason for the second option. Usually, the initial available information about MAS is so
vague that it is impossible to construct even consistent source-plans. This is the case, for example, when
all we can set are the degrees of occurrence corresponding to clusters created only by couples of agents.
(Case Study 1 in Section 3.7.1 shows this situation). However, it is suitable to point out at least a source-
plan, in order to solve the problem.

The main idea in constructing source-plans other than the initial ones is to evaluate the a -cuts of %ko
(recall Equation 3.3), and to arrange them in decreasing order of membership grades o D/\%ko. This
ordering is unigue. Since the time dimension of MAS evolution was not taken into consideration when
constructing the model, no time ordering criterion is yet available. Thus, basically, plans are not con-
structible with this model. However, it is possible for a plan to be coincident with the source-plan
generated in this manner (especially when the relation is a similarity one).

Two categories of source-plans can be generated using the a-cuts of %koz

1. If within the source-plan there are clusters that overlap, then, obviously, the a-cuts are compati-
bility/tolerance (crisp) relations (that is, reflexive and symmetric, but not necessarily transitive).
In this case, we refer to covers as tolerance covers and to the source-plan as the compatibility source-
plan.

2. If the source-plan contains only partitions (covers with disjoint clusters), then it is easy to prove
that the a-cuts are equivalence (crisp) relations (that is, reflexive, symmetric, and transitive).
(Actually, the crisp transitivity is not obvious, but it follows straightforwardly from fuzzy
(max—min) transitivity, after some elementary manipulations.) In this case, we refer to the source-
plan as the equivalence source-plan or the holonic source-plan.

If %ko is a proximity relation, two source-plans can be generated: one from the compatibility category
(using %ku) and another from the equivalence (holonic) category (using the transitive closure of %ko).
The fact that clusters could be overlapped reveals the capacity of some agents to play multiple roles
simultaneously by being involved in several actions at the same time, and this is not necessarily a
drawback.

If %ko is a similarity relation, then the succession of partitions reveals an interesting behavior of the
MAS, where clusters are associated in order to form new clusters, as if MAS would be holonic type.
(Obviously, the same behavior is proven by the transitive cover of a proximity relation, which is a similarity
relation.) In this case, the source-plan may indicate exactly the evolution of MAS and it could be identified
by a holonic plan (with clusters within clusters). This important result gives the mathematical framework
for identifying holonic (potential) structure within a multiagent system and can be successfully used as
well to isolate holonic systems out of less structured multiagent systems in manufacturing organizations,
as the following simulation studies prove.

3.7 MAS Self-Organization as a Holonic System:
Simulation Results

Two examples are presented here by using a simulator designed in MATLAB. Both are founded on a
MAS with N = 7 agents.

©2001 CRC Press LLC

The MAS is considered initially as a totally unknown black box, a system about which we know
nothing. We can stimulate it by setting some goals and letting it reach them. When the goals have been
input, the observed output is the succession of agent clusters that occur each time the MAS transitions
from the initial state to the final one. In order to get the best response from the MAS (in terms of having
it go through as many states as possible), we shall stimulate it with a set of goals equivalent to the “white
noise” in systems identification (i.e., a class of goals, as large as possible, that might be set for the system).
By inputting these goals one by one (or in a mixed manner — if this is possible), we can count the
number of occurrences for each cluster. By normalizing the numbers (i.e., dividing them by their sum),one
obtains the occurrence degrees of each cluster, i.e., the numbers {a, m}k oy that are, in fact, occur-
rence frequencies of clusters. For these simulation experiments, quasi-random (Gauss type) numbers
were generated as occurrence degrees. After ~200 simulations, the final holonic clustering patterns
emerged. Moreover, some information about the nature of the agents (i.e., whether they are knowledge
agents, or yellow-page agents, or interface agents, etc.) became revealed without any a priori knowledge
about the agent’s type, from their cluster involvements.

In these experiments, we considered the most general case and the most parsimonious in our knowl-
edge about it. Therefore, we chose to determine the occurrence degrees by using a system identification
technique of stimulation, as being the most general one applicable. If more is known about the agents,
different clustering criteria will emerge and the agents will group according to these. For example, if we
have information on the agents’ knowledge bases, internal goals, and the global goal of the system, then
on their way to reaching the global goal of the system those agents with similar knowledge about some
specific topic will cluster together, agents with similar partial goals will also cluster together, and the
degrees of cluster occurrence will be determined and assigned accordingly.

3.7.1 Case Study 1

The first example starts from very parsimonious information about clusters created by couples of agents.
Every degree of occurrence is associated with only a pair of agents. Although this information is vague
enough, compatibility and holonic plans are still constructed.

+ Since N =7, there are maximum C% =21 possible couples between agents. Each couple of agents

has a certain degree of occurrence but, in general, it is not necessary that all 21 couples appear

during the MAS evolution. A null degree of occurrence will be assigned to every impossible couple.

However, in the example, all 21 couples were graded by non-null values, in order to avoid triviality.

Starting from this vague information, one constructs first the corresponding fuzzy relation %

between the seven agents. None of the occurrence degrees has disappeared in %. Then, since this

relation is only proximity one, its transitive cover 2 is generated, according to two-step the
procedure proposed in the previous section. Actually, 2 is a similarity relation between agents.

Finally, two types of source-plans are generated: one emerging from % and including (tolerance)

covers (with overlapped clusters) and another — from 2, including partitions (with disjoint

clusters).

* The MAS evolution starts from the highest degree of occurrence (which is of course 1) and
completes when the smallest degree is reached. Only the first six tolerance covers are presented
starting from %, but all seven partitions constructed from 2 are depicted. The possible holonic
plan generated by 2 is shown also in Figure 3.8.

+ Shannon fuzzy entropy of the source-plan: 36.6784 (max = 49) (N =7 agents)
Amplitude of force toward knowledge: 12.2942 (max = oo).

©2001 CRC Press LLC

* The membership matrix of the corresponding proximity relation %:

1.0000
0.5402
0.6343
M 01877
0.3424
0.2001
0.4862

0.5402
1.0000
0.3561
0.4797
0.7651
0.2092
0.2794

0.6343
0.3561
1.0000
0.4780
0.1389
0.6858
0.6414

0.1877
0.4797
0.4780
1.0000
0.3191
0.4888
0.3347

0.3424
0.7651
0.1389
0.3191
1.0000
0.2784
0.4291

0.2001
0.2092
0.6858
0.4888
0.2784
1.0000
0.1666

+ The membership matrix of the corresponding proximity relation 2:

1.0000
0.5402
0.6343
M ,:0.4888
0.5402
0.6343
0.6343

0.5402
1.0000
0.5402
0.4888
0.7651
0.5402
0.5402

0.6343
0.5402
1.0000
0.4888
0.5402
0.6858
0.6414

0.4888
0.4888
0.4888
1.0000
0.4888
0.4888
0.4888

0.5402
0.7651
0.5402
0.4888
1.0000
0.5402
0.5402

0.6343
0.5402
0.6858
0.4888
0.5402
1.0000
0.6414

« First five tolerance covers generated by the proximity relation %:

Characteristic matrix
(a =1.0000)
1000000
0100000
0010000
0001000
0000100
0000010
0000001

Characteristic matrix
(a =0.7651)
1000000
0100100
0010000
0001000
0100100
0000010
0000001

Characteristic matrix
(a =0.6858)
1000000
0100100
0010010
0001000
0100100
0010010
0000001

©2001 CRC Press LLC

Clusters:

{al}
{a2}
{a3}
{ad}
{aS}
{a6}
{a7}

Clusters:

{al}
{a2,a5}
{a3}
{ad}

{a6}
{a7}

Clusters:

{al}
{a2,a5}
{a3,a6}

{ad}

{ar}

0.4863
0.2794
0.6414
0.3347
0.4291
0.1666
1.0000

0.6343
0.5402
0.6414
0.4888
0.5402
0.6414
1.0000

a,

=

a, as a, a; a4 a,
©Om

N

a, a, a; a,

4
©= ¢ =205
A
a, a, a, a, a5 ag a,

& SEQ0E=E =

HOO¢E=E=

FIGURE 3.8 An illustration of the holonic plan revealed by Case Study 1.

Characteristic matrix

(a =0.6414) Clusters:
1000000 {a1}
0100100 {a2,a5}
0010011 {a3,a6,a7}
0001000 {a4}
0100100

0010010 {a3,a6}
0010001 {a3,a7}

Characteristic matrix

(a =0.6343) Clusters:
1010000 {al1,a3}
0100100 {a2,a5}
1010011 {al,a3,a6,a7}
0001000 {a4}
0100100

0010010 {a3,a6}
0010001 {a3,a7}

©2001 CRC Press LLC

« Partitions generated by the similarity relation 2
Characteristic matrix

(a =1.0000) Clusters:
1000000 {al}
0100000 {a2}
0010000 {a3}
0001000 {a4}
0000100 {a5}
0000010 {a6}
0000001 {a7}

Characteristic matrix

(o =0.7651) Clusters:
1000000 {al}
0100100 {a2,a5}
0010000 {a3}
0001000 {a4}
0100100

0000010 {a6}
0000001 {a7}

Characteristic matrix

(a =0.6858) Clusters:
1000000 {al}
0100100 {a2,a5}
0010010 {a3,a6}
0001000 {ad}
0100100

0010010

0000001 {a7}

Characteristic matrix

(a =0.6414) Clusters:
1000000 {a1}
0100100 {a2,a5}
0010011 {a3,a6,a7}
0001000 {a4}
0100100

0010011

0010011

Characteristic matrix

(a =0.6343) Clusters:
1010011 {al,a3,a6,a7}
0100100 {a2,a5}
1010011

0001000 {a4}
0100100

1010011

1010011

©2001 CRC Press LLC

Characteristic matrix

(a = 0.5402)
1110111
1110111
1110111
0001000
1110111
1110111
1110111

Characteristic matrix

(a = 0.4888)
1111111
1111111
1111111
1111111
1111111
1111111
1111111

Clusters:
{al,a2,a3,a5,a6,a7}

{ad}

Clusters:
{al,a2,a3,a4,a5,a6,a7}

* Holonic structure: The holonic behavior can be observed for the equivalence source-plan: clusters
associate together in order to form larger clusters and, finally, the whole agents set is grouped in
one single cluster. In Figure 3.8, one starts from a MAS with one manager (a,), two executive
agents (a, and a3) and four resource agents (a4, as, ag, and a;). Recall that all we know about the
clustering capacity of these agents is the degree of occurrence of their couples (see the matrix g
before). For example, the manager is tempted to work in association with the executive a, (0.4797)
rather than with a; (0.4780), but also is oriented to solve problems by himself using the resource
g (0.4888). In our example, first, the manager states a goal. Immediately, the executives a, and a;
reach for resources as and ag respectively (that they prefer mostly, see the matrix .y before).
The executive a; realizes that he needs more resources and he starts to use both a; and a; (therefore,
maybe, the manager prefers a,). The next step shows that the two executives associate together
(including their resources) in order to reach the goal. The manager associates with them only in
the final phase, when the goal is reached.

3.7.2 Case Study 2

The second example operates with vaguer information than the previous one (in the sense of Shannon
fuzzy entropy, which is larger), although, apparently, it reveals more about the agents clustering capacity
(clusters with two agents can appear simultaneously and even clusters with three agents have non-null
occurrence degrees). The construction steps are similar and the holonic behavior is presented also in

Figure 3.9.
+ Shannon fuzzy entropy of the source-plan: 39.5714 (max = 49) (N =7 agents)
Amplitude of force towards knowledge: 7.7790 (max = o).

©2001 CRC Press LLC

* The membership matrix of the corresponding proximity relation %:

1.0000 0.3420 0.6988 0.5666 0.5179 0.2372 0.6694
0.3420 1.0000 0.3568 0.4340 0.4802 0.7034 0.6032
0.6988 0.3568 1.0000 0.3543 0.6901 0.5926 0.4601
M5:05666 0.4340 0.3543 1.0000 0.4028 0.3538 0.6791
0.5179 0.4802 0.6901 0.4028 1.0000 0.6358 0.3887
0.2372 0.7034 05926 0.3538 0.6358 1.0000 0.4275
0.6694 0.6032 0.4601 0.6791 0.3887 0.4275 1.0000

+ The membership matrix of the covering similarity relation 2:

1.0000 0.6358 0.6988 0.6694 0.6901 0.6358 0.6694
0.6358 1.0000 0.6358 0.6358 0.6358 0.7034 0.6358
0.6988 0.6358 1.0000 0.6694 0.6901 0.6358 0.6694
M4:0.6694 0.6358 0.6694 1.0000 0.6694 0.6358 0.6791
0.6901 0.6358 0.6901 0.6694 1.0000 0.6358 0.6694
0.6358 0.7034 0.6358 0.6358 0.6358 1.0000 0.6358
0.6694 0.6358 0.6694 0.6791 0.6694 0.6358 1.0000

* First seven tolerance covers generated by the proximity relation %:
Characteristic matrix

(a =1.0000) Clusters:
1000000 {a1}
0100000 {a2}
0010000 {a3}
0001000 {ad}
0000100 {a5}
0000010 {a6}
0000001 {a7}

Characteristic matrix

(a =0.7034) Clusters:
1000000 {al}
0100010 {a2,a6}
0010000 {a3}
0001000 {a4}
0000100 {a5}
0100010

0000001 {a7}

Characteristic matrix

(a =0.6988) Clusters:
1010000 {al,a3}
0100010 {a2,a6}
1010000

0001000 {a4}
0000100 {a5}
0100010

0000001 {a7}

©2001 CRC Press LLC

Characteristic matrix

(a =0.6901) Clusters:
1010000 {al,a3}
0100010 {a2,a6}
1010100 {al,a3,a5}
0001000 {a4}
0010100 {a3,a5}
0100010

0000001 {a7}

Characteristic matrix

(a=0.6791) Clusters:
1010000 {al,a3}
0100010 {a2,a6}
1010100 {al,a3,a5}
0001001 {a4,a7}
0010100 {a3,a5}
0100010

0001001

Characteristic matrix

(a =0.6694) Clusters:
1010001 {al,a3,a7}
0100010 {a2,a6}
1010100 {al,a3,a5}
0001001 {a4,a7}
0010100 {a3,a5}
0100010

1001001 {al,a4,a7}
Characteristic matrix

(o =0.6358) Clusters:
1010001 {al,a3,a7}
0100010 {a2,a6}
1010100 {al,a3,a5}
0001001 {a4,a7}
0010110 {a3,ab,a6}
0100110 {a2,a5,a6}
1001001 {al,a4,a7}

« Partitions generated by the similarity relation 2:

Characteristic matrix
(a = 1.0000)Clusters:

1000000 {al}
0100000 {a2}
0010000 {a3}
0001000 {ad}
0000100 {a5}
0000010 {a6}
0000001 {a7}

©2001 CRC Press LLC

Characteristic matrix

(a =0.7034) Clusters:
1000000 {a1}
0100010 {a2,a6}
0010000 {a3}
0001000 {a4}
0000100 {a5}
0100010

0000001 {a7}

Characteristic matrix

(o =0.6988) Clusters:
1010000 {al,a3}
0100010 {a2,a6}
1010000

0001000 {a4}
0000100 {a5}
0100010

0000001 {a7}

Characteristic matrix

(a =0.6901) Clusters:
1010100 {al1,a3,a5}
0100010 {a2,a6}
1010100

0001000 {ad}
1010100

0100010

0000001 {a7}

Characteristic matrix

(a =0.6791) Clusters:
1010100 {al,a3,a5}
0100010 {a2,a6}
1010100

0001001 {a4,a7}
1010100

0100010

0001001

Characteristic matrix

(a =0.6694) Clusters:
1011101 {al,a3,a4,a5,a7}
0100010 {a2,a6}
1011101

1011101

1011101

0100010

1011101

©2001 CRC Press LLC

a, as a, a, a, as a,

O ON_JON_J._

./

a, a, a; a, as a, a,

CeEOE nhE

2N

FIGURE 3.9 An illustration of the holonic plan revealed by Example 2.

Characteristic matrix

(a =0.6358) Clusters:
1111111 {al,a2,a3,a4,a5,a6,a7}
1111111

1111111

1111111

1111111

1111111

1111111

+ Holonic Structure: In Figure 3.9, the MAS includes one manager (a,), two executive agents (a;
and a,), one transmitter agent (ag), and three resource agents (as, as, and a;). Once the manager
has established the goal, the executive a, starts its job together with the resource az. But the other
executive is not yet informed about the goal, because he only can receive information from the
manager through a transmitter. Thus, the manager a, associates to the transmitter ag to inform
his second executive about the goal. Meantime, the executive a; realizes that he needs more
resources and he also starts to use as. Once the information reaches the receiver a,, this one starts

©2001 CRC Press LLC

to work together with the resource a;. Next, the two executives associate together (including their
resources) in order to reach the goal. Finally, the manager and the transmitter associate to the
cluster above, when the goal is reached.

In both examples, the amplitude of the force driving toward knowledge is also computed (according
to (21)) and depicted. The second amplitude represents only 63% of the first one. Thus, we can say that
the second available information is 37% closer to ignorance than the first one, although we would be
tempted to say that, in the second case, we know more about MAS than in the first case.

3.8 Conclusions

This chapter described a holonic metamorphic architecture for distributed reconfigurable manufacturing
systems, together with a novel approach for identifying holonic structures in generic multiagent systems,
using uncertainty minimization. Fuzzy sets theory has proven to be a very suitable tool in the construction
of appropriate models able to extract adequate structural properties in multiagent systems. Depending
on the measure of fuzziness used to minimize the uncertainty in the initial information about the system,
several fuzzy models can be used.

To the best of our knowledge this is the first time that a fuzzy set theoretic approach has been used
successfully to extract structural information about multiagent systems. Currently we are working on a
comparative study between different measures of fuzziness that could be developed starting from a real
application. We are also developing a more complex analysis by focusing on the ambiguity facet of the
uncertainty. So far, we considered here only the aspect of vagueness that deals with inconsistency in the
information. Ambiguous information is consistent, but the facts revealed are mixed in an unclear manner.
For an MAS this can be useful when it cannot be decided which plan should be chosen as the most
efficient due to a lack of information regarding plan costs. In this case, one may use quasi-empirical
information on the degree of evidence that a plan belongs to a well-defined group of plans having similar
estimated costs. At present, we are extending our model to embrace, as well, the ambiguity facet of
uncertainty. To this we will add time as a supplementary coordinate, to more accurately model the
dynamics of MAS evolution, which develops in time.

It may be noted that the approach described can be used not only for an initially non-clustered system,
but also for a system that already has clusters, to investigate system evolution from that stage onwards.

References

Balasubramanian, S., Maturana, F. and Norrie, D.H. (1996). Multiagent Planning and Coordination for
Distributed Concurrent Engineering, International Journal of Cooperative Information Systems,
Vol. 5, Nos. 2-3, pp. 153-179.

Brennan, R., Balasubramanian, S. and Norrie, D.H. (1997). Dynamic Control Architecture for Advanced
Manufacturing Systems, Proceedings of International Conference on Intelligent Systems for Advanced
Manufacturing, Pittsburgh, PA, pp. 213-223.

Brown, D., Dunskus, B., Grecu, D. and Berker, 1. (1995). SINE: Support for Single Function Agents,
Proceedings of AIENG’95, Applications of Al in Engineering, Udine, Italy.

Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L. and Peeters, P. (1998). Reference Architecture for
Holonic Manufacturing Systems: PROSA, Computer in Industrial, Vol. 37, pp. 255-274.

Bussmann, S. (1998). An Agent-Oriented Architecture for Holonic Manufacturing Control, Proceedings
of the 1st Int. Workshop on Intelligent Manufacturing Systems, EPFL, Lausanne, Switzerland.

Butler, J. and Ohtsubo, H. (1992). ADDYMS: Architecture for Distributed Dynamic Manufacturing
Scheduling, Artificial Intelligence Applications in Manufacturing, (Eds. Famili, A., Nau, D.S. and
Kim, S.H.), The AAAI Press, pp. 199-214.

Christensen, J.H. (1994). Holonic Manufacturing Systems: Initial Architecture and Standard Directions,
First European Conference on HMS, Hanover, Germany.

©2001 CRC Press LLC

Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genesereth, M.R., Gruber, T.R., Mark, W.S., Tenenbaum,
J.M. and Weber, J.C. (1993). PACT: An Experiment in Integrating Concurrent Engineering Systems,
IEEE Computer, Vol. 26, No. 1, pp. 28-37.

Cutkosky, M.R., Tenenbaum, J.M. and Glicksman, J. (1996). Madefast: Collaborative Engineering over
the Internet, Communication of the ACM, Vol. 39, No. 9, pp. 78-87.

Decker, K. (1995). Environment Centered Analysis and Design of Coordination Mechanisms, Ph.D. thesis,
Dept. of Computer Science, University of Massachusetts, Amherst.

Decker, K., Sycara, K. and Williamson, M. (1997). Cloning for Intelligent Adaptive Information Agents,
Multi-Agent Systems: Methodologies and Applications, Lecture Notes in Artificial Intelligence 1286,
(eds. Zhang, C. and Lukose, D.), Springer-Verlag, pp. 63-75.

Dilts, D.M., Boyd, N.P. and Whorms, H.H. (1991). The Evolution of Control Architectures for Automated
Manufacturing Systems, Journal of Manufacturing Systems, Vol. 10, No. 1.

Finin, T., Fritzon, R., McKay, D. and McEntire, R. (1993). KQML — A Language and Protocol for
Knowledge and Information Exchange, Tech. Report, University of Maryland, Baltimore.

Gaines, B.R., Norrie, D.H. and Lapsley, A.Z. (1995). Mediator: An Intelligent Information System Sup-
porting the Virtual Manufacturing Enterprise, Proceedings of 1995 IEEE International Conference
on Systems, Man and Cybernetics, New York, IEEE, pp. 964-969.

Goldmann, S. (1996). Procura: A Project Management Model of Concurrent Planning and Design,
Proceedings of WET ICE’96, Stanford, CA.

Gou, L., Luh, P. B. and Kyoya, Y. (1998). Holonic Manufacturing Scheduling: Architecture, Cooperation
Mechanism, and Implementation, Computer in Industrial, Vol. 37, pp. 213-231.

Jennings, N.R., Corera, J.M. and Laresgoiti, 1. (1995). Developing Industrial Multiagent Systems, Pro-
ceedings of the First International Conference on Multi-Agent Systems, San Francisco, CA, AAAI
Press/MIT Press, pp. 423-430.

Klir, GJ. and Folger, T.A. (1988). Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, Englewood
Cliffs, NJ.

Koestler, A. (1967). The Ghost in the Machine, Arkana Books, London.

Kwok, A. and Norrie, D.H. (1993). Intelligent Agent Systems for Manufacturing Applications, Journal of
Intelligent Manufacturing, Vol. 4, pp. 285-293.

Mathews, J. (1995). Organization Foundations of Intelligent Manufacturing Systems — The Holonic
Viewpoint, Computer Integrated Manufacturing Systems, Vol. 8, No. 4, pp. 237-243.

Maturana, F. (1997). MetaMorph: An Adaptive Multi-Agent Architecture for Advanced Manufacturing
Systems, Ph.D. thesis, University of Calgary.

Maturana, F. and Norrie, D.H. (1996). Multi-Agent Mediator Architecture for Distributed Manufacturing,
Journal of Intelligent Manufacturing, Vol. 7, pp. 257-270.

Maturana, F. and Norrie, D.H. (1996). Multi-Agent Coordination Using Dynamic Virtual Clustering in
a Distributed Manufacturing System, Proceedings of Fifth Industrial Engineering Research Conference
(IERCYS), Institute of Industrial Engineering, Minneapolis, May 18-20, pp. 473-478.

Maturana, F.P. and Norrie, D.H. (1997). Distributed Decision-Making Using the Contract Net within a
Mediator Architecture, Decision Support Systems, Vol. 20, pp. 53-64.

Maturana, F., Balasubramanian, S. and Norrie, D.H. (1997). Learning Coordination Patterns from Emer-
gent Behavior in a Multi-Agent Manufacturing System, Intelligent Systems and Semiotics '97: A
Learning Perspective, Gaithersburg, Maryland, September 23-25.

Maturana F., Shen, W. and Norrie, D.H. (1998). MetaMorph: An Adaptive Agent-Based Architecture for
Intelligent Manufacturing, International Journal of Production Research.

Maturana, F., Shen, W. and Norrie, D.H. (1999). MetaMorph: An Adaptive Agent-Based Architecture for
Intelligent Manufacturing, International Journal of Production Research, Vol. 37, No. 10, pp. 2159-
2174,

McGuire, J., Huokka, D., Weber, J., Tenenbaum, J., Gruber, T. and Olsen, G. (1993). SHADE: Technology
for Knowledge-Based Collaborative Engineering, Journal of Concurrent Engineering: Applications
and Research, Vol. 1, No. 3.

©2001 CRC Press LLC

Norrie, D.H. and Gaines, B. (1996). Distributed Agents Systems for Intelligent Manufacturing, Canadian
Artificial Intelligence, No. 40, pp. 31-33.

Norrie, D.H. and Shen, W. (1999). Applications of Agent Technology for Agent-Based Intelligent Man-
ufacturing Systems, Proceedings of 1MS’99, Leuven, Belgium.

O’Hare, G.M.P. and Jennings, N.R. (1996). Foundations on Distributed Artificial Intelligence, John Wiley
& Sons Interscience, New York.

Pan, J.Y.C. and Tenenbaum, M.J. (1991). An Intelligent Agent Framework for Enterprise Integration,
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, No. 6, pp. 1391-1408.

Park, H., Tenenbaum, J. and Dove, R. (1993). Agile Infrastructure for Manufacturing Systems (AIMS):
A Vision for Transforming the US Manufacturing Base, Defense Manufacturing Conference.

Parker, M. (1997). The IMS Initiative, Manufacturing Engineer, February.

Parunak, H.V.D., Baker, A.D. and Clark, S.J. (1997a). The AARIA Agent Architecture: An Example of
Requirements-Driven Agent-Based System Design, Proceedings of the First International Conference
on Autonomous Agents, Marina del Rey, CA.

Parunak, H.V.D., Ward, A., Fleischer, M. and Sauter, J. (1997b). A Marketplace of Design Agents for
Distributed Concurrent Set-Based Design, Proceedings of the Fourth ISPE International Conference
on Concurrent Engineering: Research and Applications, Troy, M.

Patil, R., Fikes, R., Patel-Schneider, P., Mckay, D., Finin, T., Gruber, T. and Neches, R. (1992). The DARPA
Knowledge Sharing Effort: Progress Report, Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference (Eds. Rich, C., Nebel, B. and Swartout, W.),
Morgan Kaufmann, Cambridge, MA.

Petrie, C., Cutkosky, M., Webster, T., Conru, A. and Park, H. (1994). Next-Link: An Experiment in
Coordination of Distributed Agents, Position Paper for the AID-94 Workshop on Conflict Reso-
lution, Lausanne.

Roboam, M. and Fox, M.S. (1992). Enterprise Management Network Architecture, Artificial Intelligence
Applications in Manufacturing, (Eds. Famili, A., Nau, D.S. and Kim, S.H.), The AAAI Press,
pp. 401-432.

Rothermel, K. and Popescu-Zeletin, R. (Eds.) (1997). Mobile Agents, Lecture Notes in Computer Science
1219, Springer-Verlag, New York.

Russell, S. and Norvig, P. (1995). Artificial Intelligence — A Modern Approach, Prentice-Hall, Upper
Saddle River, NJ.

Saad, A., Biswas, G., Kawamura, K., Johnson, M.E. and Salama, A. (1995). Evaluation of Contract Net-
Based Heterarchical Scheduling for Flexible Manufacturing Systems, Proceedings of the 1995 Inter-
national Joint Conference on Artificial Intelligence (1JCAI'95), Workshop on Intelligent Manufac-
turing, Montreal, Canada, pp. 310-321.

Shen, W. and Barthés, J.P. (1995). DIDE: A Multi-Agent Environment for Engineering Design, Proceedings
of the First International Conference on Multi-Agent Systems, San Francisco, USA, The AAAI
Press/MIT Press, pp. 344-351.

Shen, W. and Barthés, J.P. (1997). An Experimental Environment for Exchanging Engineering Design
Knowledge by Cognitive Agents, Knowledge Intensive CAD-2, (Eds. Mantyla, M., Finger, S. and
Tomiyama, T.), Chapman & Hall, London, pp. 19-38.

Shen, W.,, Xue, D. and Norrie, D.H. (1998). An Agent-Based Manufacturing Enterprise Infrastructure for
Distributed Integrated Intelligent Manufacturing Systems, Proceedings of PAAM’98, London,
pp. 533-548.

Shen, W. and Norrie, D.H. (1996). A Hybrid Agent-Oriented Infrastructure for Modeling Manufacturing
Enterprises, Proceedings of KAW?98, Banff, Canada.

Shen, W. and Norrie, D.H. (1998). An Agent-Based Approach for Dynamic Manufacturing Scheduling,
Working Notes of the Agent-Based Manufacturing Workshop, Minneapolis, MN, pp. 117-128.
Shen, W. and Norrie, D.H. (1999). Agent-Based Systems for Intelligent Manufacturing: A State-of-the-

Art Survey, Knowledge and Information Systems: An International Journal, Vol. 1, No. 2, pp. 129-156.

©2001 CRC Press LLC

Shen, W,, Norrie, D.H. and Kremer, R. (1999). Developing Intelligent Manufacturing Systems Using
Collaborative Agents, Proceedings of IMS’99, Leuven, Belgium.

Shen W.,, Barthés, J-P. and Norrie, D.H. (2000). Multi-Agent Systems for Concurrent Design and Manu-
facturing, Taylor & Francis, London.

Subramanian, R. and Ulieru, M. (1999). An Approach to the Modeling of Multi-Agent Systems as Fuzzy
Dynamical Systems, International Conference on Systems Research, Informatics and Cybernetics,
Baden-Baden, Germany, August 2-7.

Toye, G., Cutkosky, M., Leifer, L., Tenenbaum, J. and Glicksman, J. (1993). SHARE: A Methodology and
Environment for Collaborative Product Development, Proceedings of 2nd Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, IEEE Computer Press.

Wooldridge, M. and Jennings, N.R. (1995). Intelligent Agents: Theory and Practice, The Knowledge
Engineering Review, Vol. 10, No. 2, pp.115-152.

Zimmermann, H.J. (1991). Fuzzy Set Theory and Its Applications, Kluwer Academic Publishers, Boston.

Zhang, X. and Norrie, D.H. (1999). Holonic Control at the Production and Controller Levels, IMS'99,
Leuven, Belgium, Sept. 22-24.

Zhang, X., Balasubramanian, S. and Norrie, D.H. (1999). An Intelligent Controller Implementation for
Holonic Systems: DCOS-1 Architecture, Submitted to 14th IEEE International Symposium on
Intelligent Control, Cambridge, MA, September 15-17.

Appendix A The Number of All Possible Source-Plans

Theorem 1
Let P\ be the number of distinctive partitions with n clusters over N members of the agents set s/ and
F\ the total number of partitions (source-plans) over . Then:

1. P4 =1 (obviously) and

PL =CY PR +CL PL3 +.. +CNTPMY N2 20E 2,N.

2. % =1, by convention, and
— 0 1 N-2 N-1
In=Cnay I tCN g I o HCN T S O T S, N2 1.

def

Here, CY = ﬁ is the combinations number of n taken over N (n 00 O,N).
n'{N-n)!

Proor

1. The rationale for this step is inductive, according to n O IN. First, let n = 1. Then the only
partition with one single cluster is .o itself and, thus Pf, = 1. Moreover, if n = N, then P\ =1
as well, because,this time, the partition consists of exactly N singleton clusters.

Let n = 2. In this case, only two clusters share all members of «fy. If one of them includes m O
1,N — 1 members of ¢y, the other one includes N — m members. The casesm = 0 and m = N are
removed since they were considered when n = 1. Then, we will show next that

IND, 0
B H o (Nwe1) JH2 H
N

2352

PS =Cp, +C% +..+C +2 C

where [@[]is the integer part of a [0 % and N%p is the reminder of N when divided by p (here, p = 2).

©2001 CRC Press LLC

a. When m =1, only C} = N singleton clusters (or, equivalently, only CN™ = N clusters with
N — 1 members) are available.

b. Form =1, only C{ clusters with m members (or, equivalently, only Cﬁ"m clusters with

N — m members) are available. Each cluster points to a partition, in this case. In order to
avoid repetitions (i.e., not to count partitions that have been already considered), m cannot

overpass N Moreover,
& H |

¥

, o INO ,
b1. If N is even, then the two clusters with B—Emembers each can constitute only 1CN
distinct partitions. 2 2

b2. If N is odd, then one cluster has % members and the other one has % members;

s INO
in this case, - N1 , S0 that the number of distinct partitions constituted by this
2H
n]
O
couple of clustersis Cy2 =Cg° "

IND
G, O
2 . . . I
Only half of C{” " partitions are considered when N is even, because all combination of clusters

0 oNO [
[Epal|
starting from the E%Cﬁz D+1E-th have been considered previously. More specifically, if A;=
u U

{aj} _and A, = {ak} —(where J O 1,N is an arbitrary subset), then the combination
jo kLN

B = {aj} o and B, = {ak} ANV , where | = 1N, J, is identical with {A;,A,}, because A= B,
and A,= B,. This cannot happen when N is odd, since the cardinals of Jand I = 1,N\J are different.

In conclusion,

i
N%2-1) cl = N%2-1)

C 1 =

IND
EE
N2

NDO
2 1 2 DD E
P2 =Cl +CZ +..+C 3

NO
DIl +Cy, +...%CN2 2-1, when N iseven

:DE =
+ +..— =1, wnenNISO

20E +Cy, 2CN2 [J2-1, when N is odd

5 H

= 1 P N ;
_1@:N+C +.C¢ +C2 +..+CN -2, when N is even
_2 N-1 N+ =

g:N +CL +..C\2 +Cp2 +..+CN =2, when N is odd
-2 =Nt 41 =Cl +Ch +. N HCNT 4 =
T T N-1 TVNA N—l N- =

_~0 pl 1 pl N-2p51
=CnaPna tC 4Py + O P

©2001 CRC Press LLC

In these manipulations, the identity C :C,’\\,'_m was used. The concluding identity is thus verified for
n=2.

Consider now the general case, n 0 3,N (where N >3). When we are computing Py, , the main problem
is how to avoid repetitions in partition counting. This can be solved by an appropriate rationale, that we
detail hereafter.

From the start, the set &/ can be cut into two parts: one containing (N — 1) agents, say «/_;, and
another one including the remaining agent, say a. It will be shown later that the index of the agent a is
not important. So «f = ., O {a}. We can interpret this union as follows: to the existent set .«fy_, is
added a new agent a, in order to constitute the whole agents set <. We know that «/_; can generate

N_l distinctive partitions (with (n — 1) clusters each). It follows that < can generate PN_l =
CO_1 PN_ldIS'[InC'[IVE partitions (with n clusters each, because the cluster [a} just has been added).
However, these are not all possible partitions off <y, since a can be clustered not only with itself, but
also with another members of «fy_;. Thus, the next step is to extract one member from «fy_;, say b, and
to clustering it with a. Denote the remaining set by &/ _»(b). Now oy = _»(b) O {a,b}. In this case,
n_o(b) can generate PN _, distinctive partitions (the number of clusters for each partition is still (n — 1),
because a and b construct together one single cluster). Since the cluster {a,b} never appeared in the
partitions counted before extracting b (so far, a was never clustered with any member of «fy_,), the

N—2 partltlons of sy considered by adding {a,b} to each partition of «f_,(b) are different from the
previous P . But, this time, any member of s#y_, can be clustered with a, so one generates ci _1PN
new dlstlnctlve partitions of &y, because there are C1 N1 Possibilities to extract one member from sy _;.

The argument continues by putting back b inside «_; and by extracting two members instead,
provided that this operation doesn’t empty «/_;. Denote these members by b and c. The remaining set
is now sfy_s (b,c)(assumed non-empty) and it can generate Py dlstlnctlve partitions (still with (n—1)
clusters, obviously). Any of these partitions, together with the cluster {a,b,c}, is a new partition of oy,
not counted before (because a was never clustered with any couple of members from fy_;). The new
generated partitions of s are in number of C3_; P, because there are C%_; possibilities to extract
two members from sfy_;.

By repeating this procedure, where the number of members extracted from «fy_; is each time incre-
mented by 1, finally, the maximum number of members available for extraction is (N — n). In this case,
the remaining set has only (n —1) members and it generates one single partition (P"‘1 =1) with (n-1)
clusters (which are smgletons) But the number of new partitions generated for sy is CN 7 Pn”‘1 =
C “—1 , because there are Cp N possibilities to extract (N — n) members from s/y_;.

Why does «fy_; hot depend actually on a? Because reinserting a inside «fy_;, extracting another
member, say b, and repeating the argument before, any partition of) that can be generated now has
been already counted when a was clustered exactly with the same members as it is clustered now, in this
partition.

Thus the total numbers of partitions with n clusters is exactly

0 1 -npn-1
N =CRaPUG +CN4PIS +.. +CUT P

It is interesting to verify if Py’ =1.Indeed: PV =C%_ P\ =P\F =..=P}=1.

©2001 CRC Press LLC

SU T T 1000 T T T

>
o

C{o)and S {*
3
o

Cio)and S (")

821047

ey
(=
(]

Ciojand S {"}
Co)and & (")

ot
w

FIGURE A-1 Variation of partitions number (S = %) and clusters number (C = 2N),

2. The identity proved before is exceedingly useful in verifying the second identity of the theorem.
More specifically, the identities below can be added:

gml P, =1

U - - ~

=2 P& = CRaPNa*ChaPi *o *CU TPy +. #CNT P +CNTR

a

@:3 PE = CQPA, +CY P2, +..+CNTPZ, +. . +CNZPP?

g .

ik

|:| _ n — 0 n 1 n-. N-npn-1

%"—” PN = CNaPna tCnaPhe + #CNa R

t

O

d _ _ -

M=N-1|P{™" = CRLPIT +CRaPN:

U

=N [Py = CRaPNT

Thus,

N N-1 N-2 m-1

SN = ZPIG :C(l)\l—lzplg—l +C}\1—1z Pl *... ¥CRNT" zpnrwl—l +. HCNZR A -
=1 =1 N e

_ 0 1 N-m N-2 N-1
o INZCONaF NatCRaF N2+ FCN g Pt ACy 1 1 +C 1 .

This concludes the proof.

©2001 CRC Press LLC

Note: Actually, the expression of % generalizes the well-known Newton’s identity:

2N =(1+1)N =CY +C} +...+C\ .

The number of all distinctive partitions that can cover the agents set is increasingly faster with N than
the number of all distinctive cIustersEN),_if N > 4. This can be observed in the four graphics of Figure
A-1 where N varies among the sets: 1,5, 1,7, 1,9, 1,12.

Appendix B Properties of Composition between Fuzzy Relations

The main properties of the composition operation between fuzzy relations are summarized by Theorem
2. In order to prove this result, two interesting and helpful lemmas are proven before. They show
interesting similarities between numerical operations where the operators max and min are involved and
same operations using the summation and, respectively, the product instead.

LEMMA 1

Let {a,} and {bm} be two finite sets of arbitrarily chosen real numbers. Then the following

nd,N
inequality holds:

min{max {a,}, max {by,}} = max max {min{a, by}

n1,N m1,M nd,N md,M
ProoF
Since the two sets are finite, there exists a pair of numbers (a, ,a,) so that a, = max {a,} and
bm, = max {bp}. Then, the conclusion follows immediately by observing that NN
m1,M
O
minO max {a,}, max {bm}[] min{a, , by} < max max {min{a,b,}}

OnanN mi M NN miM

because

0 0
minQd a,,b, [] < max max O min{a,,b,} D, O 1L,N, Ond L,M
U O naN maM

If the operators are replaced as mentioned, then the corresponding well-known equality below holds:

As it will be observed also in the further results, in general, the equality symbol between expressions with
sums and products is replaced by an inequality symbol between expressions using max and min operators
instead, but the equality symbol could be unchanged (as in Lemma 2 below).

LEMMA 2
Let {an} and {bn} be two finite sets of arbitrarily chosen real numbers and ¢ O 9, a constant.

Then the followmg |dent|ty holds:

©2001 CRC Press LLC

max min{a,,b,,c} = max min{min{a,,b,},c} = min{max min{a,,b.},c}.
nC1,N nCL,N nC1,N

Proor
The proof uses an induction argument, following N.
For N =1, the equality

max min{a;,b;,c} = min{a,b;,c} = min{min{a;,b;},c} = min{max min{a;,b,},c}

is obviously verified and, thus, the concluding identity holds. It is based on the fact that min (or max)
applied to a string of numbers can be computed recursively, by considering only two arguments simul-
taneously.

Consider now the case N = 2. Then, we have to prove that the identity below holds:

max{min{a,,b,,c}, min{a;,b;,c}} = min{max{min{a;,b;}, min{a,,b,}},c}.

Obviously, if the constant ¢ is < or = than both min{a;,b;} and min{a,,b,}, then the identity is verified.
If min{a;,b,} <c < minfa,b,},then the left term is c; but the right term is also c. A similar argument
holds if min{a;,b;} =c¢ = min{a,,b,}. These are all possibilities here.

Suppose that the concluding equality of lemma holds for a fixed N = 2. Then, when N - N + 1, one
can evaluate the expression below:

max min{a,, b,, ¢} = max{max min{a,,b,,c},min{ay.1.bn+1.C}}-
n1,N n1,N

The induction hypothesis applied to the first N terms of max operator leads to the identity below:

max min{a,,b,,c} = max{min{ max min{a,,b,},c},min{ay.1.bn+1.C}}-
n1,N n1,N

Next, if the case N = 2 is used, it follows that

max min{a,,b,,c} = min{max{max min{a,,b,},min{ay.1,bn+1}},c} = min{max min{a,,b,},c},
n,N n,N n,N

which concludes the proof.
If, again, the operators are replaced as mentioned, then the corresponding obvious next identity holds:

N N
annbn :CZanbn.
n=1 n=1

Both results above show the computation rules when operators max and min are inverted with each other.

THEOREM 2

Let 2 and % be two binary fuzzy relations and .,, /4 their N x N membership matrices, respectively.
Denote by € the composition between 2 and R, that is € = 2oR . Then My = M4 ol g (fuzzy
product) and

1. If 2 and Z are reflexive relations, € is reflexive as well.
2. If 2 and & are symmetric relations, € is symmetric as well.
3. If 2 and A is a transitive relation, then € is transitive as well.

©2001 CRC Press LLC

ProoF
The fact that the corresponding matrix of € is the fuzzy product between ./, and ./ is well known
in fuzzy sets theory. Denote by (5);;, Ui,[1 1,N the elements of the matrix /{5, where I 0 {2,%,€}.
Assume that 2 and % are both fuzzy reflexive relations. This means that the main diagonals of the
corresponding matrices ./, and /g are unitary. Compute the elements of ./ the main diagonal in /:

(Me)ij= max min{(Mo);;,(Mz)ij}=1, OO 1N,
n1,N

since min{(#y);; ,(Mz)i;}=1, OO 1,N, due to the reflexivity of the original relations.
Assume that 2 and % are both fuzzy symmetric relations. This means that the corresponding matrices
My and Mg are symmetric. Compute the elements of ./, according to this property:

(Me)ij = max min{(Mo); n,(Mz)n;} = max min{(Mo)nj, (M)}
n1,N n1,N

= Tl% Min{(Mz)in, (Mo)n i} = (Mg);j Ui 1N

Thus, the matrix J is symmetric as well, i.e., € is a symmetric fuzzy relation.

Suppose now that the fuzzy relation 2 = R is transitive. In matrix terms this property is equivalent
with g =* (Ji/L g oM g) = JM¢. We have to prove that € = R o %R preserves the transitivity of 2. More
specifically, any of the following equivalent inequality must hold:

/M(gz (M@OM%)Z. (M%OM%) o (M%OM%) = (;/%cg 0/%(@) <

= (i = (el g > maxming (g ot Jim (Mg ot)n b DL IN =

< max min{(Mgz); n,(Mz)n;}=
naN

> max min{max min{(.Ug); p,(Az)pn}: max mln{(/%Ji)nq (Mz)q;}}, 01 1N
ni1,N p1,N

In order to prove this inequality, start from the right term. According to Lemma 1, one can derive the
following inequality:

max mm{max mm{(/”%)| pv(/%%)p n} max mln{(/%gi)n ,q (J%%)q]}} <
n1,N p,N

< max max max min{min{(/z); p,(Uz)pn}, MiN{(Mz)n g, (Mz)gi}t =
NN pN gL N
(B.1)

= max max max min{(Ugp); o, (Mz)pn (Mz)ng(Mz)gjt =
NN pN gaN

max max max min{min{(tg)p o, (M) g} (Map)ip(Ma)ei} 0i 7 LN
ndN paN ¢aAN

©2001 CRC Press LLC

where the last term was obtained from previous one by computing min recursively and by inverting the

order of max operators (which, obviously, is always possible).
Assume that i, j, p, g 0 1,N are fixed. Then (/ly); p and (), are constant when n varies in the range

1,N. This remark allows us to use Lemma 2 for expressing the identity below:

r?l% min{min{(/%%)p,n’(/%gi)n,q}l(/%%)i,pv(/M%)q,j} =

= mm{nglaT)\I(min{(/%%)p,n:(/%%)n,qL(/%%)i,p’(*/%%)q,j} =

= min{ (M g ol g,)p g (Me)i o (M) }-

Now, recall that 2 is transitive and thus

min{ (M g ol g)p,ql(/%%)i,p1(/%%)q,j} < min{(Mgz)pn, (M) g}

Return to (B.1) above. This inequality is now equivalent with

max min{max min{(./z); p,(-Uz)pn}: maX mlﬂ{(/%@)nq (g1}

NN pN
(B.2)

max_ max min{(l);p (M) q(Mz)gid Oi 1 LN
pN g N
In this inequality, all terms depending on n [1,N have disappeared and one single element of matrix

Mz was specified instead. The same argument can be invoked once again to cancel the presence of p [J
1,N or g0 1,N in (B.2). Thus, the following inequality is also equivalent with (B.1) and (B.2):

<

max min{max min{(./z); p,(-Uz)pn}. maX mln{(/%yz)nq (Mz)q}} <
naN paN

rga%\l(min{(Ug); o, (Mz)q,i}= (/‘/L.%"M@R)i,j = (M), UL LN
q,

<

This completes the proof.

©2001 CRC Press LLC

Suresh, Nallan C. "Neural Network Applications for Group Technology and Cellular Manufacturing”
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Neural Network
Applications for
Group Technology

and Cellular
Manufacturing

4.1 Introduction

Nallan C. Suresh 4.2 Artificial Neural Networks

State University of New York 4.3 A Taxonomy of Neural Network Application
at Buffalo for GT/CM

University of Groningen 4.4 Conclusions

4.1 Introduction

Recognizing the potential of artificial neural networks (ANNSs) for pattern recognition, researchers first
began to apply neural networks for group technology (GT) applications in the late 1980s and early 1990s.
After a decade of effort, neural networks have emerged as an important and viable means for pattern
classification for the application of GT and design of cellular manufacturing (CM) systems. ANNs also
hold considerable promise, in general, for reducing complexity in logistics, and for streamlining and
synergistic regrouping of many operations in the supply chain. This chapter provides a summary of
neural network applications developed for group technology and cellular manufacturing.

Group technology has been defined to be, in essence, a broad philosophy that is aimed at (1) identi-
fication of part families, based on similarities in design and/or manufacturing features, and (2) systematic
exploitation of these similarities in every phase of manufacturing operation [Burbidge, 1963; Suresh and
Kay, 1998].

Figure 4.1 provides an overview of various elements of group technology and cellular manufacturing.
It may be seen that the identification of part families forms the first step in GT/CM. The formation of
part families enables the realization of many synergistic benefits in the design stage, process planning
stage, integration of design and process planning functions, production stage, and in other stages down-
stream.

In the design stage, classifying parts into families and creating a database that is easily accessed during
design results in:

« Easy retrieval of existing designs on the basis of needed design attributes
+ Avoidance of “reinvention of the wheel” when designing new parts

©2001 CRC Press LLC

GROUP TECHNOLOGY &
CELLULAR MANUFACTURING

U

Part Family
Identification

. . Production: Production
Engineering Process . Other
Design Planning CeIIuIar. Planning & Functions
Manufacturing Control

FIGURE 4.1 Elements of GT/CM. (From Suresh, N.C. and Kay, J.M. (Eds.), 1998, Group Technology and Cellular
Manufacturing: State-of-the-Art Synthesis of Research and Practice, Kluwer Academic Publishers, Boston. With
permission.)

+ Countering proliferation of new part designs
* Reduction in developmental lead times and costs
* Better data management, and other important benefits.

Likewise, in the downstream, production stage, part families and their machine requirements form
the basis for the creation of manufacturing cells. Each cell is dedicated to manufacturing one or more
part families. The potential benefits from (properly designed) cellular manufacturing systems include:

* Reduced manufacturing lead times and work-in-process inventories

* Reduced material handling

+ Simplified production planning and control

+ Greater customer orientation

* Reduced setup times due to similarity of tool requirements for parts within each family
* Increased capacity and flexibility due to reduction of setup times, etc.

For implementing GT and designing cells, early approaches relied on classification and coding systems,
based on the premise that part families with similar designs will eventually lead to identification of cells.
Classification and coding systems involve introducing codes for various design and/or manufacturing
attributes. A database is created and accessed through these “GT codes.” This offers several advantages,
such as design rationalization and variety reduction and better data management, as mentioned above.
But the codification activity involves an exhaustive scrutiny of design data, possible errors in coding, and
the necessity for frequent recoding. The need for classification and coding systems has also been on the
decline due to advances in database technologies, especially the advent of relational databases.

Therefore, in recent years, cell design methods have bypassed the cumbersome codification exercise.
They have relied more on a direct analysis of part routings, to identify parts with similar routings and
machine requirements. Part families and machine families are identified simultaneously by manipulating
part-machine incidence matrices.

©2001 CRC Press LLC

Output of neuron j: y,= f, (Sj),
where f_ is activation function and
SJ: (xlwlj+ .. +Xanj)

Yj

n-1 n

Input Vector

FIGURE 4.2 Neural computation.

The application of neural networks for GT/CM has undergone a similar evolution. As described below,
early efforts for utilizing ANNs for GT/CM were devoted to identification of part families based on design
and manufacturing process features, while much of the later efforts have been devoted to the use of
neural networks for part-machine grouping based on direct analysis of part routings.

The objective of this chapter is to provide a systematic, and state-of-the-art overview of various neural
network architectures developed to support group technology applications. A taxonomy of this literature
is provided, in addition to a summary of the implementation requirements, pros and cons, computational
performance and application domain for various neural network architectures.

4.2 Artificial Neural Networks

Artificial neural networks have emerged in recent years as a major means for pattern recognition, and it
is this particular capability that has made ANNSs a useful addition to the tools and techniques applicable
for group technology and design of cellular manufacturing systems.

ANNSs are “massively parallel, interconnected networks of simple processing units (neurons), and their
hierarchical organizations and connections which interact with objects in the real world along the lines
of biological nervous systems” [Kohonen, 1984]. The basic elements of a neural network are the processing
units (neurons), which are the nodes in the network, and their connections and connection weights.

The operation of a neural network is specified by such factors as the propagation rule, activation/trans-
fer function, and learning rule. The neurons receive weighted input values, which are combined into a
single value. This weighted input is transformed into an output value through a nonlinear activation
function. The activation function could be a hard limiter, sigmoidal nonlinearity or a threshold logic
limit. This neuro-computing process is illustrated in Figure 4.2.

©2001 CRC Press LLC

In a neural network, the nodes respond to information converging from other layers via the connec-
tions. The connection weights represent almost all the stored information in a network, and these weights
are updated in response to new information entering the system. The learning rule specifies how the
weights are to be updated in response to new information. For further details on basics of neural networks,
readers are referred to works such as Wasserman [1989] and McClelland and Rumelhart [1988]. It must
be stressed that all the above networks, though based on massive parallelism, are all still simulated using
conventional, sequential computing, awaiting the development of neuro-computing hardware in the
future.

Among the many properties of ANNs, their pattern recognition capability is of foremost relevance in
the context of GT/CM. Unlike traditional artificial intelligence (Al) methods, employing logic and rule-
driven procedures for pattern recognition, ANNs are adaptive devices that recognize patterns more
through experience. Neural networks also have the ability to learn complex patterns and to generalize
the learned information faster. They have the ability to work with incomplete information. Compared
to rule-driven expert systems, neural networks are applicable when [Burke, 1991]

¢ The rules underlying decisions are not well understood
* Numerous examples of decisions are available
+ A large number of attributes describe the inputs.

In contrast to traditional, statistical clustering, ANNs offer a powerful classification option when
[Burke, 1991]

* The input generating distribution is unknown and probably non-Gaussian
« Estimating statistical parameters can be expensive and/or time consuming
* Nonlinear relationships, and noise and outliers in the data may exist

+ On-line decision making is required.

Neural networks are characterized by parallelism: instead of serially computing the most likely classi-
fication, the inputs, outputs, as well as internal computations are performed in parallel. The internal
parameters (weight vectors) are typically adapted or trained during use. In addition to this ability to
adapt and continue learning, neural network classifiers are also nonparametric and make weaker assump-
tions regarding underlying distributions.

Based on the direction of signal flow, two types of neural networks can be identified. The first type
of architecture is the feedforward network, in which there is unidirectional signal flow from the input
layers, via intermediate layers, to an output stage. In the feedback network, signals may flow from the
output of any neuron to the input of any neuron.

Neural networks are also classified on the basis of the type of learning adopted. In supervised learning,
the network is trained, so that the inputs, as well as information indicating correct outputs, are presented
to the network. The network is also “programmed” to know the procedure to be applied to adjust the
weights. Thus, the network has the means to determine whether its output was correct and the means
to apply the learning law to adjust its weights in response to the resulting errors. The weights are modified
on the basis of the errors between desired and actual outputs in an iterative fashion.

In unsupervised learning, the network has no knowledge of what the correct outputs should be, since
side information is not provided to convey the correct answers. As a series of input vectors are applied,
the network clusters the input vectors into distinct classes depending on the similarities. An exemplar
vector (representative vector) is used to represent each class. The exemplar vector, after being created, is
also updated in response to a new input that has been found to be similar to the exemplar. As all inputs
are fed to the network, several exemplars are created, each one representing one cluster of vectors.
Combined unsupervised—supervised learning first uses unsupervised learning to form clusters. Labels are
then assigned to the clusters identified and a supervised training follows.

Many types of neural network models have been developed over the years. The taxonomy of neural
network models proposed by Lippmann [1987] is widely used in the literature. This classifies ANNs first

©2001 CRC Press LLC

TABLE 4.1 Pattern Classification Based on Design and Manufacturing Features

Supervised Learning Unsupervised Learning
g s B
g P g) §
53 o = 2 2 T &
5 2 g 8 5 S 3
S =3 IS S < = N
Application Area 3 T 3 = N E @
Facilitate Classification and Coding .
Kaparthi & Suresh [1991]
Design Retrieval Systems
Kamarthi et al. [1990] .
Venugopal & Narendran [1992] .
Part Family Formation
Kao & Moon [1990, 1991] .
Moon & Roy [1992] .
Chakraborty & Roy [1993] .
Liao & Lee [1994] .
Chung & Kusiak [1994] .
Support GT-Based Design Process
Kusiak & Lee [1996] .

into those that accept binary-valued inputs and those accepting continuous-valued inputs. Secondly,
these are classified on the basis of whether they are based on supervised or unsupervised training. These
are further refined into six basic types of classifiers. However, within ART networks, with the emergence
of Fuzzy ART, which accepts continuous values, and other developments, this taxonomy requires revision.

4.3 A Taxonomy of Neural Network Application for GT/CM

The application of neural networks for GT/CM can be classified under several major application areas
along with the types of neural network used within each context. Reviewing the literature, three broad
application areas for neural networks can be seen in the context of group technology: (1) pattern
classification (part family formation) based on design and manufacturing features; (2) pattern classifi-
cation (part-and-machine family formation) from part-machine incidence matrices; and (3) other clas-
sification applications such as part and tool grouping, which are also useful in the context of flexible
manufacturing systems (FMS).

Within each of the above application areas, a wide range of networks have been applied, and we classify
them into the schemes shown in Table 4.1 and Table 4.2. A taxonomy of neural networks and fuzzy set
methods for part-machine grouping was also provided by Venugopal [1998]. The sections below are
based on the three broad application areas mentioned above.

4.3.1 Pattern Classification Based on Design and Manufacturing Features

The application of neural networks based on design and manufacturing features can be placed within
the contexts of part family identification, engineering design, and process planning blocks shown in
Figure 4.1. Based on a review of ANNs developed for these application areas, they may be classified
further into four subcategories. These include the use of neural networks primarily to

1. Facilitate classification and coding activity

2. Retrieve existing designs based on features required for a new part
3. Form part families based on design and/or manufacturing features
4. Support GT-based design and process planning functions.

©2001 CRC Press LLC

TABLE 4.2 Pattern Classification Based on Part—-Machine/Tool Matrix Elements

Supervised Learning Unsupervised Learning

Back-Propagation
Hopfield

Competitive Learning
Interactive Activation
Kohonen’s SOFM
ART1 and Variants
Fuzzy ART

Other Models

Application Area

Block Diagonalization

Jamal [1993] .

Malave & Ramachandran [1991] .

Venugopal & Narendran [1992a, 1994] . . .

Chu [1993] .

Malakooti & Tang [1995] .

Moon [1990a, 1990b] .

Moon & Chi [1992] .

Currie [1992] .

Lee et al. [1992]

Kiang, Hamu & Tam [1992]

Kiang, Kulkarni & Tam [1995]

Kulkarni & Kiang [1995]

Kusiak & Chung [1991]

Dagli & Huggahalli [1991]

Kaparthi & Suresh [1992, 1994]

Dagli & Sen [1992]

Kaparthi, Cerveny & Suresh [1993]

Liao & Chen [1993]

Dagli & Huggahalli [1995]

Chen & Chung [1995]

Burke & Kamal [1992, 1995]

Suresh & Kaparthi [1994]

Kaparthi & Suresh [1994]

Kamal & Burke [1996]
Capacitated Cell Formation

Rao and Gu [1994, 1995] .

Suresh, Slomp & Kaparthi [1995] .
Sequence-Dependent Clustering

Suresh, Slomp & Kaparthi [1999] .
Part-Tool Matrix Elements

Arizono et al. [1995] .

Traditionally, the identification of part families for group technology has been via a classification and
coding system which, as stated earlier, has generally given way to more direct methods that analyze process
plans and routings to identify part families. Neural network applications for GT/CM have undergone a
similar evolution. Table 4.1 presents a classification of the literature based on the above four categories.
Table 4.1 also categorizes them under various supervised and unsupervised network categories. As seen
in the table, most of the methods developed for this problem are based on supervised neural networks,
especially the feedforward (back-propagation) network.

The work of Kaparthi and Suresh [1991] belongs to the first category. This study proposed a neural
network system for shape-based classification and coding of rotational parts. Given the fact that classi-
fication and coding is a time-consuming and error-prone activity, a back-propagation network was
designed to generate shape-based codes, for the Opitz coding system, directly from bitmaps of part
drawings. The network is first trained, using selected part samples, to generate geometry-related codes
of the Opitz coding system. The examples demonstrated pertained to rotational parts, but extension to

©2001 CRC Press LLC

Family 1 Family 2 Family 3

Output layer

Middle (hidden) layer

Input layer

Input Patterns: Feature Vector

FIGURE 4.3 Feedforward network.

prismatic parts was seen to be feasible. The network was viewed as an element of a computer-aided design
(CAD) system, serving to facilitate design procedures in general, and to retrieve existing designs and
foster standardization and variety reduction among parts.

Works such as Kamarthi et al. [1990] and Venugopal and Narendran [1992b] have addressed the
problem of design retrieval. Kamarthi et al. [1990] used the feedforward neural network model trained
with the back-propagation algorithm. It was shown that neural networks can be effectively utilized for
design retrieval even in the presence of incomplete or inexact design data. Venugopal and Narendran
[1992b] applied a Hopfield network to model design retrieval systems in terms of a human associative
memory process. Test cases involved both rotational and nonrotational parts.

The third category of methods involve the use of neural networks for forming part families based on
design and/or manufacturing features. Instead of resorting to the laborious part classification and coding
activity, these methods are aimed at clustering directly from part features presented to the networks.
Almost all these methods have utilized the three-layer feedforward network, with part features forming
the input. The network classifies the presented features into families and helps assign new parts to specific
families. The basic mode of operation is as follows.

First, design features are identified to cover design attributes of all the parts. Features are design
primitives or low-level designs, along with their attributes, qualifiers and restrictions which affect func-
tionality or manufacturability. Features can be described by form (size and shape), precision (tolerances
and finish) or material type. The feature vector can either be extracted from a CAD system or codified
manually based on part features. Almost all the works have considered the feature vectors as binary-
valued inputs (with an activation value of one if a specified feature is present and a value of zero
otherwise). However, future implementations are expected to utilize continuous-valued inputs.

The neural network is constructed as shown in Figure 4.3. The processing units (neurons) in the input
layer correspond to all the part features. The number of neurons in the input layer equals the number
of features codified. The output layer neurons represent the part families identified. The number of
neurons in the output layer equals the expected (or desired) number of families. The middle, hidden

©2001 CRC Press LLC

layer provides a nonlinear mapping between the features and the part families. The number of neurons
required for the middle layer is normally determined through trial and error. Neural networks are at
times criticized for the arbitrariness, or absence of guidelines for the number of neurons to be used in
middle layers.

The input binary-valued vector is multiplied by the connection weight w;;, and all the weighted inputs
are summed and processed by an activation function f'(net,;). The output value of the activation function
becomes the input for a neuron in the next layer. For more details on the basic operation of three-layer
feedforward networks and back-propagation learning rule, the reader is referred to standard works of
Wasserman [1989] and McClelland and Rumelhart [1988].

The net input, net;, to a neuron i, from a feature pattern p, is calculated as

net, = ; wy

ay; Equation (4.1)

ay, = f(net,) = 1/[1 + exp(-net,)] Equation (4.2)

where a,; is the activation value of processing unit p from pattern p. This is applied for processing units
in the middle layer. The net input is thus a weighted sum of the activation values of the connected input
units (plus a bias value, if included). The connection weights are assigned randomly in the beginning
and are modified using the equation

a

Aw;= €9 Equation (4.3)

pi “pj

These activation values are in turn used to calculate the net inputs and activation values of the processing
units in the output layer using Equations 4.1 and 4.2. Next, the activation values of the output units are
compared with desired target values during training. The discrepancy between the two is propagated
backwards using

O, = (L, — ay) fi(nety) Equation (4.4)

pi

For the middle layer, the following equation is used to compute discrepancy:
O = fi(nety) ; Oy Wy Equation (4.5)

With these discrepancies, the weights are adjusted using Equation 4.3. Based on the above procedure,
Kao and Moon [1991] presented a four-phased approach for forming part families, involving (1) seeding
phase, (2) mapping phase, (3) training phase, and (4) assigning phase. In the seeding phase, a few very
distinct parts are chosen from the part domain to identify basic families. In the mapping phase, these
parts are coded based on their features. The network is trained in the training phase utilizing the back-
propagation rule. In the assigning phase, the network compares a presented part with those with which
it was trained. If the new part does not belong to any assigned family, a new family is identified.

Moon and Roy [1992] developed a feature-based solid modelling scheme for part representations.
Again, part features are input to a three-layer feedforward network and classified into part families by
the output layer. The training proceeds along conventional lines using predetermined samples of parts
and their features. The network can then be used to classify new parts. The new part needs to be
represented as a solid model, and the feature-extraction module presents the features to the input layer
of the neural network. The system was found to result in fast and consistent responses. This basic
procedure is followed in other works shown in Table 4.1.

A fourth application area of neural networks is to support engineering functions more generally.
Several researchers have approached the design process in fundamental terms as a mapping activity, from
a function space, to a structure space and eventually to a physical space. The design activity is based on
an associative memory paradigm for which neural networks are ideally suited. Works such as Coyne and

©2001 CRC Press LLC

Desired Features

Output layer
Feature Level

Second Hidden Layer
Manufacturing System Level

First Hidden Layer
Feature Family Level

Input layer
Feature Level

Input Patterns: Feature Vector

FIGURE 4.4 ANN for design of components for GT/CM. (From Kusiak, A. and Lee, H., 1996, Int. J. Prod. Res.,
34(7): 1777-1790. With permission.)

Postmus [1990] belong to this type of application, which falls somewhat outside the realm of group
technology. Similarly, neural networks are beginning to be applied in the context of computer-aided
process planning (CAPP) in fundamental terms. The reader is referred to Zhang and Huang [1995] for
a review of these closely related works.

A promising new application of neural networks is to utilize them to support GT-based design activity,
within a concurrent engineering framework. A related aim is design for manufacturability (DFM), to ensure
that new designs can be produced with ease and low cost, using existing manufacturing resources of a firm.

The procedure developed by Kusiak and Lee [1996] represents a promising new approach in this
context. It utilizes a back-propagation network to design components for cellular manufacturing, keeping
a concurrent engineering framework in mind. It utilizes two middle layers, as shown in Figure 4.4.

The inputs for the network include design features of a component, extracted from a CAD system.
After passing through the input layer, the feature vectors are fed into the first hidden layer, referred to
as the feature family layer. The second hidden layer corresponds to manufacturing resources. The output
layer yields desired features to fully process the part within a manufacturing cell. Thus the system provides
immediate feedback for the designer regarding producibility and potential manufacturing problems
encountered with a proposed new design.

The procedure consists of three phases: (1) formation of feature families, (2) identification of machine
resources (cells), and (3) determination of a set of features required.

The number of neurons in input layer corresponds to n, the total number of features derived for parts
from a CAD system. The inputs are in the form of a binary n-dimensional vector. The number of neurons
in the first hidden layer (feature family level) equals the number of feature families. Features of all existing
parts are collected and a feature—part incidence matrix is formed. The hidden layer neurons, representing
feature families, are connected only to related input neurons that represent the various sets of features.

©2001 CRC Press LLC

The number of neurons in the second hidden layer (manufacturing system level) equals the number
of machine resources to process the feature families. The selection of manufacturing resources (which
may be machines, tools, fixtures) is made based on the features. This may be performed in two phases:
first, an operation (e.g., drilling) may be selected based on a feature, followed by selection of a machine
resource to perform the operation. Thus, for a feature family, a set of machines and tools is identified
and grouped together into a machine cell.

The number of neurons in the output layer (feature level) equals the number of features, like the input
layer. Each neuron in the second hidden layer is connected to the output layer neurons. The output layer
neurons are connected to the machine neurons only when the features can be performed on the machine.
Given this network structure, the following sequence of operation takes place:

1. The binary feature vector for a part, extracted from CAD system, is input to the first layer.
2. A feature family is identified by computing

§;=Ziwy X Equation (4.6)
y;= max (Sy,.. Sy) Equation (4.7)

where x; is the input to neuron i, S; is the output of neuron j, w; is the connection weight between
an input and hidden layer neuron, and y; is the output value of the activation function.
3. Next, machine resources to process the selected feature family are identified by computing

Sk = 5 Wy Vi Equation (4.8)
Ve =T(S) =17 (1+exp(- (S,+ D)) Equation (4.9)

where @, is the activation threshold of a sigmoidal transfer function and w,; is the connection
weight between the hidden layer neurons.

4. Next, features that can be processed by the current manufacturing system are identified by
computing

Si = 2 Wy Vi Equation (4.10)
yi=1(S)=1/(1+exp(- (5+ @P)) Equation (4.11)

Thus, the network processes the input features and generates desired features as an output, based on
current manufacturing resources and their capabilities, fostering design for manufacturability and con-
current engineering.

Itis very likely that further development of neural networks for design and process planning functions
will be along these lines.

4.3.2 Pattern Classification Based on Part—-Machine Incidence Matrices

The part—machine grouping problem is one of the first steps in the design of a cellular manufacturing
system. It was first identified by Burbidge [1963, 1989] as group analysis within the context of production
flow analysis (PFA). A description of the overall cell formation problem, referred to here as the capacitated
cell formation problem, may be found in Suresh et al. [1995], Rao and Gu [1995], and other works. The
larger problem involves the consideration of several real-world complexities such as part demand volumes,
presence of multiple copies of machines of each type, alternate routings, the need to balance work loads
among various cells, and ensuring flexibility.

In the part-machine grouping problem, a binary-valued incidence matrix is first extracted from the
routings. A value of one in this matrix denotes the requirement of a particular machine by a part; a value

©2001 CRC Press LLC

Machine Machine
Parts 637159842 Parts 546/312(879
9 1. .11 4 11 1].
4 1. ..1..1 6 111
1 1.1. .. .1 5 11
5 1. .1 2 1111
8 1..11 1 111].
2 1.1. . 1 3 11.]. ..
3 1.1. .. 9 J1 11
6 1 1.1 8 Jr 11
7 1 7 11

FIGURE 4.5 (a) Part-machine matrix (zeros shown as “” for clarity). (b) Part-machine matrix in block diagonal form.

of zero indicates that a machine is not required by the part. Figure 4.5a shows a matrix of machine
requirements for nine parts, processed on nine machines. Part—-machine grouping involves a reorgani-
zation of the rows and columns of this matrix so that a block diagonal form is obtained. Figure 4.5b shows
a block diagonal form of the matrix obtained through a traditional algorithm such as the rank order
clustering (ROC2) method of King and Nakornchai [1982]. These diagonal blocks are, ideally, mutually
exclusive groups of parts and machines, with no overlapping requirements. In Figure 4.5b, it may be
noted that for part 2 one operation has to be performed outside the “cell,” resulting in an “inter-cell
movement.” Each of these blocks is potentially a manufacturing cell, and is subjected to further evaluation
as a feasible cell in subsequent steps in cell formation.

The intractability of this subproblem, despite its simplicity, has led to the development of numerous
heuristic procedures over the years. Chu (1989) classified the literature under the categories of (1) array-
based methods, (2) hierarchical clustering techniques, (3) nonhierarchical clustering methods, (4) math-
ematical programming formulations, (5) graph-theoretic approaches, and (6) other, heuristic methods.
However, neural networks, as we see below, have emerged as a powerful method, especially for rapid
clustering of large, industry-size data sets.

4.3.2.1 Evolution of Neural Network Methods for Part—-Machine Grouping

A wide variety of neural network methods have been applied, and Table 4.2 summarizes the literature
based on the type of network used and the specific application. It may be seen that most of these methods
(unlike those seen earlier, in Table 4.1) are based on unsupervised learning methods. This may be
understood given the fact that given a set of part routings, patterns of similar routings are not always
known completely a priori and, from a practical standpoint, unsupervised networks are much more
desirable.

Jamal [1993] represents the sole example so far for the application of a supervised network for
part-machine grouping. The three-layer feedforward network is used, and the rows of a part-machine
incidence matrix form the input to the network. The outputs, obtained by propagating the inputs via
the middle layer, are compared with target (desired) values based on a training sample. The errors are
measured and propagated back toward the input layer, and the weights of the interconnections are
iteratively modified in order to reduce the measured error, in the customary manner.

The practical limitations and inflexibility of supervised, back-propagation systems have encouraged
the development of numerous unsupervised methods, which take advantage of the natural groupings
that may exist within a data set. Unsupervised methods do not require training and supervised prior
learning, and they also have the capability of processing large amounts of input data.

©2001 CRC Press LLC

Unsupervised neural networks can be classified as (1) competitive learning model; (2) interactive
activation and competitive learning model; (3) methods based on adaptive resonance theory (ART); (4)
Kohonen'’s self-organizing feature maps (SOFM); or (5) Fuzzy ART method, which is an extension of the
ART methods.

4.3.2.2 Competitive Learning Model

Competitive learning models use a network consisting of two layers — an input layer and an output
layer — which are fully connected, as shown in Figure 4.6. First, the weight vectors are initialized using
small random or uniform values. The input vector, X, is one row of the part-machine incidence matrix.
The output for each node in the output layer is computed as the weighted sum of the inputs and weight
vectors in the customary manner.

The output node with the largest net input, j* is selected as the winning node. In this “winner-take-
all” approach, the weight vector associated with the winning node, w(j*) is updated as w’(j*) = w(j*) +
g {x —w(j*)}, where g is a learning rate which assumes values between zero and one.

Malave and Ramachandran [1991], Venugopal and Narendran [1992a, 1994] and Chu [1993] simulated
the competitive learning model and reported good results on a few, relatively small problems. Malave
and Ramachandran [1991] utilized a modified version of the Hebbian learning rule for the competitive
learning algorithm. Malakooti and Yang [1995] modified competitive learning algorithm by using general-
ized Euclidean distance, and a momentum term in the weight vector updating equation to improve
stability of the network.

The competitive learning algorithm, with its simple structure, emulates the k-means clustering algo-
rithm. This network is known to be very sensitive to the learning rate. Instead of indicating the need for
a new group for significantly different parts (machines), the model tends to force an assignment to one
of the existing groups [Venugopal, 1998]. Adaptive resonance theory (ART) networks, developed later,
extend the competitive learning methods by introducing additional properties of stability and vigilance,
as we see below.

4.3.2.3 Interactive Activation and Competition Model

In the interactive activation and competition (IAC) model, the processing units are organized into several
pools of neurons. Each pool represents specific characteristics of the problem. In each pool, all the units
are mutually inhibitory. Between pools, units may have excitatory connections. The model assumes that
these connections are bi-directional. For more details of this network, the reader is referred to McClelland
and Rumelhart [1988].

Moon [1990a, 1990b] applied the interactive activation and competition network, with three pools of
neurons: one for parts, one for machines, and one for part instances. The entries in the machine similarity
matrix were used as connection weights among units in the machine pool. Similarly, entries in the part-
similarity matrix were used as connection weights among units in the part pool. The method was
illustrated using two small examples, but it was also envisioned that larger problems can be solved through
the parallel processing capability of ANN.

The above network was generalized further in Moon and Chi [1992]. This network utilizes connection
weights based on similarity coefficients. Operation sequences were also considered while computing the
similarities among machines, and other generalizing features such as alternate process plans. Currie
[1992] used the activation levels as similarity measure of parts and then used bond-energy algorithm
[McCormick et al., 1972] to reorganize the activation level matrix (similarity matrix) to find part families.
Like competitive learning, interactive activation models are also precursors to ART networks, which are
described below.

4.3.2.4 Kohonen’s Self-Organizing Feature Map Model

The self-organizing feature map (SOFM) network was developed by Kohonen [1984]. The unique feature
of the SOFM network is the use of a two-dimensional output layer (Kohonen layer). It utilizes the same
competitive learning framework described above and, when a winning output node is selected, its weight

©2001 CRC Press LLC

Output layer

Input layer

‘ Incidence matrix

FIGURE 4.6 ART networks for part—-machine grouping.

vectors are updated as mentioned above. However, the weights of nearby nodes, within a specified
neighborhood, are also updated using the same learning rule. The size of the neighborhood is made to
decrease progressively. The net result is that eventually each output node has an associated topological
relationship with other nodes in the neighborhood. The SOFM essentially implements a clustering
algorithm that is similar to the classical k-means clustering algorithm [Lippmann, 1987].

Venugopal and Narendran [1992a] simulated and compared SOFM model with competitive learning
algorithm and ART1. Using small example problems, they demonstrated the applicability of all three
networks for the part-machine grouping problem. The ART1 method seemed to perform well for some
problems, while SOFM performed better for others. The SOFM model was also shown to be applicable
and promising by Lee et al. [1992], Kiang, Hamu and Tam [1992], Kiang et al. [1995] and Kulkarni and
Kiang [1995]. Based on these later studies, it appears that SOFM, along with the Fuzzy ART network,
which is described below, are among the most effective networks for part-machine grouping.

4.3.2.5 Adaptive Resonance Theory (ART) Model

Adaptive resonance represents an advancement over competitive learning and interactive activation
models. This model uses the same two-layer architecture shown in Figure 4.6, but introduces a vigilance
measure and stability properties. This model implements a clustering algorithm that is similar to the
sequential leader algorithm [Lippmann, 1987].

Adaptive resonance theory (ART) has led to a series of networks for unsupervised learning and pattern
recognition. Among these, ART1 [Carpenter and Grossberg, 1987] is the earliest development. The inputs
for ART1 network are still the binary-valued rows of the part-machine incidence matrix. As the inputs
are presented to the network, the model selects the first input as belonging to the first family. The first
neuron in the output layer is made to represent this family. The weight vector associated with this neuron
becomes the exemplar (representative vector) for the first family. If the next input is similar to this vector,
within a specified vigilance threshold (), then it is treated as a member of the first group. The weights
connected to this group are also updated in light of the new input vector. If the new input is not similar
to the exemplar, it becomes the exemplar for a new group, associated with the second neuron in the
output layer. This process is repeated for all inputs. This same process is followed in all ART networks,
including Fuzzy ART, which represents the latest development in the series. The specific steps involved
are explained in Section 4.3.2.6. For a more detailed description of ART1 for this application, the reader

©2001 CRC Press LLC

is referred to Dagli and Huggahalli [1991], Kaparthi and Suresh [1992] and other works shown under
ART1 in Table 4.2.

Dagli and Huggahalli [1991] analyzed the performance of ART1 and encountered the category prolif-
eration problem, which is frequently encountered with ART networks. This problem refers to a prolifer-
ation in the number of clusters formed due to contraction of the exemplar vector, especially when varying
norms (i.e., varying number of ones in the input vector) are present. To overcome this problem, Dagli
and Huggahalli [1991] suggested presenting the inputs in decreasing order of the number of ones, and
to update the weights in a different way.

In Kaparthi and Suresh [1992], it was shown that ART1 network can effectively cluster large, industry-
size data sets. The data sets tested included a matrix of 10,000 parts and 100 machine types — by far the
largest data set considered in the literature — which was clustered in about 60 seconds on a mainframe
computer. The low execution times are due to the fact that it is a leader algorithm, which does not require
the entire part-machine matrix to be stored and manipulated.

The category proliferation problem was encountered again in Kaparthi and Suresh [1992], and their
solution was to process the data set in reverse notation, i.e., the zeros and ones were reversed in the
part—-machine incidence matrix to increase the norm. In Kaparthi et al. [1993], use of reverse notation
with ART1 was justified further based on several test cases.

Dagli and Sen [1992] investigated the performance of the improvements for ART1 mentioned in Dagli
and Huggahalli [1991] on larger problems (1200 x 200 and 2000 % 200 part—-machine incidence matrices).
Dagli and Huggahalli [1995] have suggested a procedure to determine near-optimal value of vigilance
parameter and supplementary procedures to improve the solutions. Venugopal and Narendran [1992a,
1994] used the ART1 model, along with competitive learning and SOFM, for small-sized problems, and
demonstrated the applicability of ART1 for this problem.

4.3.2.6 Fuzzy ART Model

The Fuzzy ART network was introduced by Carpenter et al. [1991]. It represents an improvement over
ARTL. It incorporates fuzzy logic and can handle both analog and binary-valued inputs. In addition, it
uses a different learning law and permits a fast-commit—slow-recode option.

Like other ART networks, Fuzzy ART is also based on unsupervised learning. No training is performed
initially to provide correct responses to the network. The network is operated as a leader algorithm. As
each part routing is read, the network clusters each routing into a distinct class. An exemplar vector (a
representative vector) is created and maintained for each new class. If a new input is found to be similar
(within a specified limit, referred to as vigilance threshold) to an existing exemplar, the input is classified
under the category of that exemplar. The matching exemplar is also updated in the light of the new input.
If a new input is not similar to any of the existing exemplars, it becomes a new exemplar. Thus, the
routings information is scanned one row at a time, without having to store the entire data in memory.
After all inputs are fed to the network, several exemplars are created, each representing one part family.

For the part-machine grouping problem, as demonstrated in Suresh and Kaparthi [1994], Fuzzy ART
solutions tend to be superior to traditional algorithms such as BEA and ROC2 as well as those of ART1,
and ART1 using reverse input notation of Kaparthi and Suresh [1992]. The execution times were also
found to be much less than traditional algorithms, making them particularly suitable to cluster large,
industry-sized data sets. This study was performed on large data sets, and the robustness of the algorithm
was also tested by randomly reordering the inputs and presenting them several times, in a replicated
clustering experimental framework, which is desirable for evaluating leader algorithms.

Burke and Kamal [1992, 1995] and Kamal and Burke [1996] showed that Fuzzy ART is a viable
alternative that is superior to ART1 and several traditional algorithms. But they concluded that comple-
ment coding of inputs, an option recommended for Fuzzy ART, did not result in superior solutions, at
least for the binary matrices involved in part-machine grouping.

Fuzzy ART is operated as follows. It utilizes the two-layer structure shown in Figure 4.6. Each upper
layer is made to correspond to one class (part family identified). Associated with each of these neurons
is an exemplar vector. The neurons required in this recognition layer are dynamically created whenever

©2001 CRC Press LLC

a new class is identified. The number of neurons required in the upper layer is situation-dependent, and
also need not be known beforehand. The lower, input layer neurons interact with the routings input.
The number of neurons in the input layer equals the number of machine types. The steps involved in
Fuzzy ART are as follows:

Step 1. Initialization
Connection weights: w;(0) = 1 [i =0 to (N -1), j = 0 to (M - 1)]. Select values for choice
parameter, a > 0; learning rate, 3 O [0, 1]; and vigilance parameter, p O [0, 1].
Step 2. Read new input vector I consisting of binary or analog elements (binary values have been used
so far).
Step 3. For every output node j, compute choice function
(T) =[O Ow; 01/ [a + Ow; O] for nodes j = 0 to (M — 1), where s the fuzzy AND operator,
defined as (x Oy) = min (x;, V)
Step 4. Select best-matching exemplar (maximum output value): T = max; {T;}
Step 5. Resonance test (i.e., degree of similarity with best-matching exemplar)
If similarity = [O1 Owg O/ 01 0] = p go to learning step 7; else go to the next, step 6.
Step 6. Mismatch reset: Set T, = -1 and go to step 4.
Step 7. Update best-matching exemplar (learning law):
Wenew = B (| Dweold) + (1 _ B) W9°|d
Step 8. Repeat: go to step 2.

Consider the results of applying Fuzzy ART (with a = 0.5, 3 = 0.1, and p = 0.7) to the matrix shown in
Figure 4.5a. Each row is presented to the network starting with the input vector of part 9. The clustering
results are shown in Figure 4.7. The sequence of operation is as follows:

* When the first input vector (part 9) is presented, it is coded as belonging to cluster 1, and the first
neuron in the output layer is made to identify this class.

+ Next, part 4 is coded as belonging to a new, cluster 2, since its vector is quite dissimilar to the
exemplar of neuron 1. Likewise, part 1 is clustered as belonging to a new, family 3, since its vector
is dissimilar to the exemplars of both the first and second neurons.

 Next, part 5 vector is classified as cluster 2 based on the level of similarity with the class-2 exemplar;
the class-2 exemplar is also updated as a result of this step.

* Part 8 is coded as a class-1 vector, while parts 2 and 3 get coded as cluster-3 vectors; similarly,
parts 6 and 7 are clustered within families 2 and 1, respectively.

Thus, after all the parts are processed, three clusters have been identified with Fuzzy ART. In order to
present these results in the traditional form, a separate routine was written to reconstruct the matrix in the
traditional, block diagonal form. The reconstructed matrix is shown in Figure 4.8. It is seen to be identical,
in terms of part and machine families, to the one in Figure 4.5b using the traditional, ROC2 algorithm.

Figure 4.7 also shows the solutions obtained with ART1, and ART1 with inputs in reverse notation
(referred to as ART1/KS in Suresh and Kaparthi [1994]). ART1/KS results in a solution identical to Fuzzy
ART for this case. However, it is seen that ART1 algorithm results in four clusters, which is attributable
to the category proliferation problem.

In Fuzzy ART, category proliferation can be dampened with slower learning in step 7, with B < 1. A
further modification to Fuzzy ART involves the fast-commit—slow-recode option. This involves a fast
update of the exemplar in the first occurrence, i.e., a new exemplar is made to coincide with an input
vector (using a B value of one) in the first instance, but subsequently the updating process is dampened
(using a B value less than one). This change is likely to improve clustering efficiency. Fuzzy ART thus
provides additional means to counter the category proliferation problem, and is likely to yield better
solutions than ART1. Replicated clustering experiments based on large data sets [Suresh and Kaparthi,
1994] show that Fuzzy ART solutions do tend to be superior to those of algorithms such as ROC2 as
well as those of ART1 and ART1 with the reverse notation.

©2001 CRC Press LLC

Clusters Assigned Using
Fuzzy ART ART1/KS ART1
Parts Input Vectors (a=05B=0.1, (P=0.7) (p=0.7)
and p=0.7)
9 A O | 1 1 1
4 1. ..1..1 2 2 2
1 1.1....1 3 3 3
5 R B | 2 2 2
8 O N | 1 1 1
2 l1.1. 1 3 3 3
3 1.1.. 3 3 3
6 1...1..1 2 2 4
7 T 1 1 1

FIGURE 4.7 Clustering with Fuzzy ART, ART1/KS, and ART1. (From Suresh, N.C. and Kaparthi, S., 1994, Int. J.
Prod. Res., 32(7): 1693-1713. With permission.)

Parts |79 8{6543 12
9 111

8 111

7 L

4 111

5 11

6 111. .
1 111
2 1 111
3 11 .

FIGURE 4.8 Reconstructed matrix. (From Suresh, N.C. and Kaparthi, S., 1994, Int. J. Prod. Res., 32(7): 1693-1713.
With permission.)

4.3.3 Sequence-Dependent Clustering

We next consider the use of Fuzzy ART for sequence-dependent clustering based on the recent work of
Suresh et al. [1999]. In an earlier section, it was mentioned that Moon and Chi [1992] utilized an
interactive activation network in which the connection weights were based on similarity coefficients.
While computing the similarity coefficients among machines, operation sequences were also considered,
along with other generalizing features such as alternate process plans. However, here we consider the
application of neural networks to discern clusters based on sequences by themselves.

In the traditional part-machine incidence matrix, assuming binary values, sequence information is
ignored. To include sequence information, a sequence-based incidence matrix is introduced, as shown in
Table 4.3. The elements of the matrix are general integer values, representing the serial number of the
requirement in the part’s operation sequence. A value of zero indicates non-requirement of a machine
type. For instance, for part 5, the row vector is“1 4235000000000 0” (the zeroes are shown as
“” for clarity). This specifies that part 5 requires machine type 1 for its first operation, machine type 3
for its second operation, machine type 4 for its third operation, etc. Machine types 6 through 15 are not
required, as indicated by the zeros under these machine types.

©2001 CRC Press LLC

TABLE 4.3 Sequence-Based Incidence Matrix

Machine Type

Part 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 1 3 5 4
2 3 1 2 4 5
3 1 3 2 5 4
4 1 2 4 5 3
5 1 4 2 3 5 . . .
6 1 3 4 2 5
7 1 3 4 2 5
8 1 3 2 5 4
9 2 1 4 3 5
10 2 1 3 5 4 . . .
11 1 3 2 5 4
12 1 2 5 3 4
13 2 3 1 4 5
14 1 2 4 5 3
15 1 3 2 5 4
Note: Zeros shown as “” for clarity.
Source: Suresh, N.C. et al., 1999, Int. J. Prod. Res., 37(12): 2793-2816. With permission.
TABLE 4.4 Precedence Matrices for Parts 5 and 3
Part 5 Part 3
Mfc 1 2 3 4 5 6 7 8 . 14 15 Mfc 1 2 3 4 5 6 7 8 . 14 15
1 1 1 1 1 1 1 1 1 1
2 . 1 2 . 1 1
3 1 . 1 1 3 1 1 1
4 1 1 4 .
5 5 1
6 6
7 7
8 . 8
9 e . . 9
10 e . . . 10
11 e . . . 11
12 e . . 12
13 e . . . 13
14 e . . . 14
15 e . . . 15

Source: Suresh, N.C. et al., 1999, Int. J. Prod. Res., 37(12): 2793-2816. With permission.

When a part routing is read from the routings database, a binary-valued precedence matrix is created.
The precedence matrix is a mapping of the operation sequence. Table 4.4 shows the precedence matrices
for parts 5 and 3. This binary-valued, machine type by machine type matrix is specified such that, in a
given row, the ones indicate all machine types visited subsequently. Consider the precedence matrix for
part 5 in Table 4.4. Part 5 requires the machine types in the following order: <13 4 2 5 >. For the row
corresponding to machine type 3, machine types 4, 2, and 5 have ones, as follower machines.

Part 3 requires the same set of machine types, but in a slightly different order: <1325 4 >. Comparing
the matrix elements for parts 3 and 5, it is seen that there are eight matching ones, out of a total ten
nonzero elements each. In traditional clustering, the similarity coefficient would have been equal to one.
However, given the few backtracks, part 3 is not totally similar in terms of machine types required and
material flows, to part 5. The similarity coefficient specified (p), and a similarity measure computed
determine if parts 3 and 5 may be grouped under the same family. Thus, this measure determines

©2001 CRC Press LLC

- output layer

- input layer

- precedence matrix

A

Routing Sequences

Machine type

Part — Routing sequence

FIGURE 4.9 Fuzzy ART for sequence-based part-machine grouping. (From Suresh, N.C. et al., 1999, Int. J. Prod.
Res., 37(12):2793-2816. With permission.)

similarity in machine requirements and the extent of backtracks that may be tolerated among two parts,
to be grouped within the same family.

The network structure also has to be modified slightly. In the input layer, a matrix of neurons is
introduced, as shown in Figure 4.8. When a new part routing is read from the database, a precedence
matrix containing the sequence information generated. The precedence matrix interacts with the neurons
in the two-dimensional lower layer. Otherwise, the steps involved with Fuzzy ART remain practically the
same as with non-sequence-based clustering. The basic network connections and properties are unaltered
by this modification.

Experiments with past data sets, and replicated clustering with larger data sets, confirm the usefulness
of this network for sequence-based clustering. Further details on the operation of this network are
provided in Suresh et al. [1999].

4.3.4 Capacitated Cell Formation

Going beyond the part-machine grouping subproblem, researchers have attempted to utilize neural
networks for the larger, capacitated cell formation problem. The larger problem requires the consideration
of part demand volumes, machine capacities, multiple machines of each type, alternate process plans, etc.

©2001 CRC Press LLC

It appears that neural networks by themselves cannot adequately address all of these issues, and they
necessarily have to be utilized with other tools, within a decision support or expert system framework.
Rao and Gu [1994, 1995] illustrate the use of a neural-network-based expert system that considers
additional constraints such as duplicate machines of each type and capacity constraints. A three-layer
network is considered that forms an interesting adaptation of ART networks for such constrained
grouping.

In Suresh et al. [1995], a Fuzzy ART network is utilized for rapid clustering of parts and machine
types, followed by the application of a goal programming formulation for multi-objective cell formation
that considers part demands, capacity constraints, duplicate machines, alternate routings, etc. This
method represents possibly a new application area for neural networks, namely pattern detection and
reduction of problem sizes prior to the application of traditional mathematical programming methods. It
is likely that neural networks will be utilized for this purpose for many other applications as well.

4.3.5 Pattern Classification Based on Part-Tool Matrix Elements

Finally, neural networks are beginning to be utilized in other, related grouping applications as well.
Arizono et al. [1995] presented a stochastic neural network to solve the part-tool grouping problem for
flexible manufacturing systems (FMS). Deterministic neural network models do not have the capability
to escape from local optimal solution. Stochastic neural network models attempt to avoid local optimal
solutions. Stochastic neural network models include the Boltzmann machine model and Gaussian
machine model. Arizono et al. [1995] formulated the part-tool grouping problem as a 0-1 integer
programming problem, and utilized a recurrent network, stochastic network along the lines of the
Boltzmann machine.

4.4 Conclusions

In summary, artificial networks have emerged as a useful addition to the set of tools and techniques for
the application of group technology and design of cellular manufacturing systems. The application of
neural networks for the part-machine grouping problem, in particular, have produced very encouraging
results. Neural networks also hold considerable promise, in general, for pattern classification and com-
plexity reduction in logistics, and for streamlining and synergistic regrouping of many operations in the
supply chain.

This chapter provided a taxonomy of the literature, tracing the evolution of neural network applications
for GT/CM. A concise summary of the workings of several supervised and unsupervised networks for
this application domain was provided along with a summary of their implementation requirements, pros
and cons, computational performance, and domain of applicability. Along with the contents of this chapter,
and the references cited, the interested reader is referred to Zhang and Huang [1995] for a review of
artificial neural networks for other, closely related areas in manufacturing.

References

Arizono, |., Kato, M., Yamamoto, A. and Ohta, H., 1996, A new stochastic neural network model and its
application to grouping parts and tools in flexible manufacturing systems, Int. J. Prod. Res., 33(6):
1535-1548.

Burbidge, J.L., 1963, Production flow analysis, Prod. Eng., 42:742.

Burbidge, J.L., 1989, Production Flow Analysis, Clarendon Press, Oxford, UK.

Burke, L.1., 1991, Introduction to artificial neural systems for pattern recognition, Comp. Ops. Res. 18(2):
211-220.

Burke, L.I. and Kamal, S., 1992, Fuzzy ART and cellular manufacturing, ANNIE 92 Conf. Proc., 779-784.

Burke, L.I. and Kamal, S., 1995, Neural networks and the part family/machine group formation problem
in cellular manufacturing: A framework using Fuzzy ART, J. Manuf. Sys., 14(3): 148-159.

©2001 CRC Press LLC

Carpenter, G.A. and Grossberg, S., 1987, A massively parallel architecture for a self-organizing neural
pattern recognition machine, Computer Vision, Graphics and Image Processing, 37: 54-115.
Carpenter, G. A, Grossberg, S. and Rosen, D. B., 1991, Fuzzy ART: Fast stable learning and categorization

of analog patterns by an adaptive resonance system, Neural Networks, 4: 759-771.

Chakraborty, K. and Roy, U., 1993, Connectionist models for part-family classifications, Comp. Ind. Eng.,
24(2): 189-198.

Chen, S.-J. and Cheng, C.-S., 1995, A neural network-based cell formation algorithm in cellular manu-
facturing, Int. J. Prod. Res., 33(2): 293-318.

Chu, C.H., 1989, Clustering analysis in manufacturing cell formation, OMEGA: Int. J. Mgt. Sci., 17: 289-
295.

Chu, C.H., 1993, Manufacturing cell formation by competitive learning, Int. J. Prod. Res., 31(4): 829-843.

Chung, Y. and Kusiak, A., 1994, Grouping parts with a neural network, J. Manuf. Systems, 13(4): 262-275.

Coyne, R.D. and Postmus, A.G., 1990, Spatial application of neural networks in computer aided design,
Artificial Intelligence in Engineering, 5(1), 9-22.

Currie, K.R., 1992, An intelligent grouping algorithm for cellular manufacturing, Comp. Ind. Eng., 23(1):
109-112.

Dagli, C. and Huggahalli, R., 1991, Neural network approach to group technology, in Knowledge-Based
Systems and Neural Networks, Elsevier, New York, 213-228.

Dagli, C. and Huggahalli, R., 1995, Machine-part family formation with the adaptive resonance theory
paradigm, Int. J. Prod. Res., 33(4): 893-913.

Dagli, C. and Sen, C.F,, 1992, ART1 neural network approach to large scale group technology problems,
in Robotics and Manufacturing: Recent Trends in Research, Education and Applications, 4, ASME
Press, New York, 787-792.

Jamal, A.M.M., 1993, Neural network and cellular manufacturing, Ind. Mgt. Data Sys., 93(3): 21-25.

Kamal, S. and Burke, L.I., 1996, FACT: A new neural network based clustering algorithm for group
technology, Int. J. Prod. Res., 34(4): 919-946.

Kamarthi, S.V., Kumara, S.T., Yu, FT.S. and Ham, I., 1990, Neural networks and their applications in
component design data retrieval, J. Intell. Manuf., 1(2), 125-140.

Kao, Y. and Moon, Y.B., 1991, A unified group technology implementation using the back-propagation
learning rule of neural networks, Comp. Ind. Eng., 20(4): 425-437.

Kaparthi, S. and Suresh, N.C., 1991, A neural network system for shape-based classification and coding
of rotational parts, Int. J. Prod. Res., 29(9): 1771-1784.

Kaparthi, S. and Suresh, N.C., 1992, Machine-component cell formation in group technology: Neural
network approach, Int. J. Prod. Res., 30(6): 1353-1368.

Kaparthi, S., Suresh, N.C. and Cerveny, R., 1993, An improved neural network leader algorithm for
part—-machine grouping in group technology, Eur. J. Op. Res., 69(3): 342-356.

Kaparthi, S. and Suresh, N.C., 1994, Performance of selected part-machine grouping techniques for data
sets of wide ranging sizes and imperfection, Decision Sci., 25(4): 515-539.

Kiang, M.Y., Hamu, D. and Tam, K.Y., 1992, Self-organizing map networks as a clustering tool — An
application to group technology, in V.C. Storey and A.B. Whinston (Eds.), Proc. Second Annual
Workshop on Information Technologies and Systems, Dallas, TX, 35-44.

Kiang, M.Y., Kulkarni, U.R. and Tam, K.Y., 1995, Self-organizing map network as an interactive clustering
tool — An application to group technology, Decision Support Sys., 15(4): 351-374.

King, J.R. and Nakornchai, V., 1982, Machine-component group formation in group technology: Review
and extension, Int. J. Prod. Res., 20(2): 117.

Kohonen, T., 1984, Self-Organisation and Associative Memory, Springer-Verlag, Berlin.

Kosko, B., 1992, Neural Networks and Fuzzy Systems, Prentice-Hall International, Englewood Cliffs, NJ.

Kulkarni, U.R. and Kiang, M.Y., 1995, Dynamic grouping of parts in flexible manufacturing systems —
A self-organizing neural networks approach, Eur. J. Op. Res., 84(1): 192-212.

©2001 CRC Press LLC

Kusiak, A. and Chung, Y., 1991, GT/ART: Using neural networks to form machine cells, Manuf. Rev.,
4(4): 293-301.

Kusiak, A. and Lee, H., 1996, Neural computing based design of components for cellular manufacturing,
Int. J. Prod. Res., 34(7): 1777-1790.

Lee, H., Malave, C.O. and Ramachandran, S., 1992, A self-organizing neural network approach for the
design of cellular manufacturing systems, J. Intell. Manuf., 3: 325-332.

Liao, T.W. and Chen, J.L., 1993, An evaluation of ART1 neural models for GT part family and machine
cell forming, J. Manuf. Sys., 12(4): 282-289.

Liao, TW. and Lee, K.S., 1994, Integration of feature-based CAD system and an ART1 neural model for
GT coding and part family forming, Comp. Ind. Eng., 26(1): 93-104.

Lippmann, R.P.,, 1987, An introduction to computing with neural nets, IEEE ASSP Mag., 4-22.

Malakooti, B. and Yang, Z., 1995, A variable-parameter unsupervised learning clustering neural network
approach with application to machine-part group formation, Int. J. Prod. Res., 33(9): 2395-2413.

Malave, C.O. and Ramachandran, S., 1991, A neural network-based design of cellular manufacturing
system, J. Intell. Mfg., 2: 305-314.

McClelland, J.L. and Rumelhart, D.E., 1988, Explorations in Parallel Distributed Processing: A Handbook
of Models, Programs and Exercises, MIT Press, Cambridge, MA.

McCormick, W.T., Schweitzer, P.J. and White, T.W., 1972, Problem decomposition and data reorganization
by a clustering technique, Op. Res., 20(5), 992-1009.

Moon, Y.B., 1990a, An interactive activation and competition model for machine-part family formation
in group technology, Proc. Int. Joint Conf. on Neural Networks, Washington, D.C., vol. 2, 667-670.

Moon, Y.B., 1990b, Forming part families for cellular manufacturing: A neural network approach, Int. J.
Adv. Manuf. Tech., 5: 278-291.

Moon, Y.B., 1998, Part family identification: New pattern recognition technologies, in N.C. Suresh and
J.M. Kay, (Eds.), Group Technology and Cellular Manufacturing: State-of-the-Art Synthesis of Research
and Practice, Kluwer Academic Publishers, Boston.

Moon, Y.B. and Chi, S.C., 1992, Generalised part family formation using neural network techniques, J.
Manuf. Sys., 11(3): 149-159.

Moon, Y.B. and Roy, U., 1992, Learning group technology part families from solid models by parallel
distributed processing, Int. J. Adv. Mfg. Tech., 7: 109-118.

Rao, H.A.and Gu, P,, 1994, Expert self-organizing neural network for the design of cellular manufacturing
systems, J. Manuf. Sys., 13(5): 346-358.

Rao, H.A. and Gu, P.,, 1995, A multi-constraint neural network for the pragmatic design of cellular
manufacturing systems, Int. J. Prod. Res., 33(4): 1049-1070.

Suresh, N.C. and Kaparthi, S., 1994, Performance of Fuzzy ART neural network for group technology
cell formation, Int. J. Prod. Res., 32(7): 1693-1713.

Suresh, N.C. and Kay, J.M. (Eds.), 1998, Group Technology and Cellular Manufacturing: State-of-the-Art
Synthesis of Research and Practice, Kluwer Academic Publishers, Boston.

Suresh, N.C., Slomp, J. and Kaparthi, S., 1995, The capacitated cell formation problem: a new hierarchical
methodology, Int. J. Prod. Res., 33(6): 1761-1784.

Suresh, N.C., Slomp, J. and Kaparthi, S., 1999, Sequence-dependent clustering of parts and machines: A
Fuzzy ART neural network approach, Int. J. Prod. Res., 37(12): 2793-2816.

Venugopal, V., 1998, Artificial neural networks and fuzzy models: New tools for part-machine grouping,
in N.C. Suresh, and J.M. Kay, (Eds.), Group Technology and Cellular Manufacturing: State-of-the-
Art Synthesis of Research and Practice, Kluwer Academic Publishers, Boston.

Venugopal, V. and Narendran, T.T., 1992a, A neural network approach for designing cellular manufac-
turing systems, Advances in Modelling and Analysis, 32(2): 13-26.

Venugopal, V. and Narendran, T.T., 1992b, Neural network model for design retrieval in manufacturing
systems, Comp. Industry, 20: 11-23.

©2001 CRC Press LLC

Venugopal, V. and Narendran, T.T., 1994, Machine-cell formation through neural network models, Int.
J. Prod. Res., 32(9): 2105-2116.

Wasserman, D., 1989, Neural Computing — Theory and Practice, Van Nostrand Reinhold.

Zhang, H.-C. and Huang, S.H., 1995, Applications of neural networks in manufacturing: A state-of-the-
art survey, Int. J. Prod. Res., 33(3), 705-728.

©2001 CRC Press LLC

Kazerooni, A. et a "Application of Fuzzy Set Theory in Flexible Manufacturing System Design”
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Application of Fuzzy Set
Theory in Flexible
Manufacturing

System Design

5.1 Introduction

5.2 A Multi-Criterion Decision-Making Approach
for Evaluation of Scheduling Rules

A. Kazerooni 5.3 Justification of Representing Objectives with
o . Fuzzy Sets
University of Lavisan . . .
5.4 Decision Points and Associated Rules
K. Abhary 5.5 A Hierarchical Structure for Evaluation
University of South Australia of Scheduling Rules
L. H. S. Luong 5.6 A Fuzzy Approach to Operation Selection

5.7 Fuzzy-Based Part Dispatching Rules in FMSs
5.8 Fuzzy Expert System-Based Rules

FE. T. S. Chan 5.9 Selection of Routing and Part Dispatching Using
University of Hong Kong Membership Functions and Fuzzy Expert
System-Based Rules

University of South Australia

5.1 Introduction

In design of a flexible manufacturing system (FMS), different combinations of scheduling rules can be
applied to its simulation model. Each combination satisfies a very limited number of performance measures
(PM). Evaluation of scheduling rules is an inevitable task for any scheduler. This chapter explains a
framework for evaluation of scheduling using pair-wise comparison, multi-criterion decision-making tech-
niques, and fuzzy set theory.

Scheduling criteria or performance measures are used to evaluate the system performance under
applied scheduling rules. Examples of scheduling criteria include production throughput, makespan, system
utilization, net profit, tardiness, lateness, production cost, flow time, etc. Importance of each performance
measure depends on the objective of the production system. More commonly used criteria were given
by Ramasesh [1990].

Based on the review of the literature on FMS production scheduling problems by Rachamadugu and
Stecke [1988] and Gupta et al. [1990], the most extensively studied scheduling criteria are minimization
of flow time and maximization of system utilization. However, some authors found some other criteria to
be more important. For example, Smith et al. [1986] observed the following criteria to be of most
importance:

©2001 CRC Press LLC

* Minimizing lateness/tardiness

* Minimizing makespan

* Maximizing system/machine utilization
* Minimizing WIP (work in process)

* Maximizing throughput

* Minimizing average flow time

* Minimizing maximum lateness/tardiness

Hutchison and Khumavala [1990] stated that production rate (i.e., the number of parts completed per
period) dominates all other criteria. Chryssolouris et al. [1994] and Yang and Sum [1994] selected total
cost as a better overall measure of satisfying a set of different performance measures.

One of the most important considerations in scheduling FMSs is the right choice of appropriate
criteria. Although the ultimate objective of any enterprise is to maximize the net present value of the
shareholder wealth, this criterion does not easily lend itself to operational decision making in scheduling
[Rachamadugu and Stecke 1994]. An example of conflict in these objectives is minimizing WIP and
average flow time necessitates lower system utilization. Similarly, minimizing average flow time necessi-
tates a high maximum lateness, or minimizing makespan can result in higher mean flow time. Thus,
most of the above listed objectives are mutually incompatible, as it may be impossible to optimize the
system with respect to all of these criteria. These considerations indicate that a scheduling procedure that
does well for one criterion, is not necessarily the best for some others. Furthermore, a criterion that is
appropriate at one level of decision making may be unsuitable at another level. These issues raise further
complications in the context of FMSs due to the additional decision variables including, for example,
routing, sequencing alternatives, and AGV (automatic guided vehicle) selections.

Job shop research uses various types of criteria to measure the performance of scheduling algorithms.
In FMS studies usually some performance measures are considered more important than the others such
as throughput time, system output, and machine utilization [Rachamadugu and Stecke 1994]. This is not
surprising, since many FMSs are operated as dedicated systems and the systems are very capital-intensive.
However, general-purpose FMSs operate in some ways like job shops in the manner that part types may
have to be scheduled according to customer requirements. In these systems due-date-related criteria such
as mean tardiness and number of tardy parts are important too.

But from a scheduling point of view, all criteria do not possess the same importance. Depending on
the situation of the shop floor, importance of criteria or performance measures varies over the time.
Virtually no published paper has considered performance measures bearing different important weights.
They have evaluated the results by considering the same importance for all performance measures.

5.2 A Multi-Criterion Decision-Making Approach
for Evaluation of Scheduling Rules

Scheduling rules are usually involved with combination of different decision rules applied at different
decision points. Determination of the best scheduling rule based on a single criterion is a simple task,
but decision on an FMS is made with respect to different and usually conflicting criteria or performance
measures. The simple way to consider all criteria at the same time is assigning a weight to each criterion.
It can be defined mathematically as follows [Hang and Yon 1981]: Assume that the decision-maker assigns
a set of important weights to the attributes, W = {wy, w,, . .., w,}. Then the most preferred alternative,
X*, is selected such that

m m
X* = %Xi | max ijxij / ij %i =1,....n Equation (5.1)
B ' = = B

©2001 CRC Press LLC

where X;; is the outcome of the ith alternative (X;) related to the jth attribute or criterion. In the evaluation
of scheduling rules, x;; is the simulation result of the ih alternative related to the j™" performance measure
or criterion and w; is the important weight of the jth performance measure. Usually the weights of
performance measures are normalized so the Zw; = 1. This method is called simple additive weighting
(SAW) and uses the simulation results of an alternative and regular arithmetical operations of multipli-
cation and addition.

The simulation results can be converted to new values using fuzzy sets and through building mem-
bership functions. In this method, called modified additive weighting (MAW), x;; from Equation 5.1 is
converted to the membership value mvx;;, which is the simulation results for the ith alternative related
to the jth performance measure. Therefore, Xj;in Equation 5.1 is replaced with its membership value mvx;;.

m m
X* = %Xi | max szmVXij / sz %i =1,...n Equation (5.2)
B e = B
Considering the objectives, Aj, A,, . . ., Ay, each of which associated with a fuzzy subset over the set of
alternatives X = [Xy, X,, . . ., X,], the decision function D(x) can be denoted, in terms of fuzzy subsets,
as [Yager 1978]
D(X) = Al(X) n Az(X)ﬂ e Aﬂ1(><) x 0X Equation (5.3)
or
D(X) - min{Al(X)Az(X),---,%(X)} x OUX Equation (5.4)

D(x) is the degree to which x satisfies the objectives, and the solution, of course, is the highest {D(x)| x
OX}. For unequal important weights ai associated with the objectives, Yager represents the decision
model D as follows:

D(x)= A% (x) n A2 (x)n.....n A% (x) x OX Equation (5.5)
D(x):min[Aja" (x)|j:1,...,m} x 00X Equation (5.6)

This method is also called max—min method. For evaluation of scheduling rules, objectives are perfor-
mance measures, alternatives are combinations of scheduling rules and aj is the weight of the j™ perfor-
mance measure w;. For this model, the following process is used:

1. Select the smallest membership value of each alternative X; related to all performance measures
and form D(x).
2. Select the alternative with the highest member in D as the optimal decision.

Another method, the max—max method, is similar to the MAW in the sense that it also uses member-
ship functions of fuzzy sets and calculates the numerical value of each performance measure via multi-
plying the value of the corresponding membership function by the weight of the related performance
measure. This method determines the value of an alternative by selecting the maximum value of the
performance measures for that particular alternative, and mathematically is defined as

X*= @(i |mia1x§njax(wjmvxij)§ =1,..,nandj =1, m@ Equation (5.7)

©2001 CRC Press LLC

5.3 Justification of Representing Objectives with Fuzzy Sets

Unlike ordinary sets, fuzzy sets have gradual transitions from membership to nonmembership, and can
represent both very vague or fuzzy objectives as well as very precise objectives [Yager 1978]. For example,
when considering net profit as a performance measure, earning $200,000 in a month is not simply earning
twice as much as $100,000 for the same period of time. With $100,000 the overhead cost can just be
covered, while with $200,000 the research and development department can benefit as well. Membership
functions can show this kind of vagueness. The membership functions play a very important role in
multi-criterion decision-making problems because they not only transform the value of outcomes to a
nondimensional number, but also contain the relevant information for evaluating the significance of
outcomes. Some examples of showing outcomes with membership values are depicted in Figure 5.1.

5.4 Decision Points and Associated Rules

Evaluation of scheduling rules always involves the evaluation of a combination of different decision rules
applied at different decision points. Some decision points are explained by Montazeri and Van Wassenhove
[1990], Tang et al. [1993], and Kazerooni et al. [1996] that are general enough for most of the simulation
models; however, depending on the complication of the model, even more decision points can be
considered. A list of these decision points (DPi) is as follows:

DP1. Selection of a Routing.

DP2. Parts Select AGVs.

DP3. Part Selection from Input Buffers.
DP4. Part Selection from Output Buffers.
DP5. Intersections Select AGVs.

DP6. AGVs Select Parts.

The rules of each decision point can have different important weights, say AGV selection rules SDS
(shortest distance to station), CYC (cyclic), and RAN (random). In a general case, a scheduling rule can
be a combination of p decision rules, and the possible number of these combinations, n, depends on the
number of rules at each level or decision point. A combination of scheduling rules can be shown as rule;
Iruley /... /rule, in which rule, is a decision rule applied at DP, 1 < k < p. This combination of rules is
one of the possible combinations of rules. If three rules are assumed for each decision point, the number
of possible combinations would be 3°. Each combination of rules, namely an alternative, is denoted by
¢i, whose simulation result for performance measure j is shown by x; and the related membership value
by mvx;;, where i varies from 1 to n and j varies from 1 to m. Mwe; is the product of important weights
of the rules participated in c;.

5.5 A Hierarchical Structure for Evaluation of Scheduling Rules

As described previously, evaluation of scheduling rules depends on the important weight of performance
measures and decision rules applied at decision points. Figure 5.2 shows a hierarchical structure for
evaluation of scheduling rules. There are m performance measures and six decision points. The number
of decision points can be extended, and depends on the complexity of the system under study.

Regarding the hierarchical structure of Figure 5.2, the mathematical equation of different multi-
criterion decision-making (MCD) methods are reformulated and customized for evaluation of scheduling
rules as follows:

SAW method:

0 Om !
D:m_axél'lwci %ij XS XX % i=1,...,n Equation (5.8)
1 -
=

©2001 CRC Press LLC

Delay at IB

400 550 700
Time (S)

WIP in IB

0.8

0.6 1

0.4

0.2

0 } }
0 5 8 10

Number of parts

Machine Utility

1
08 T
06 T
04 |
02 T
(] I
0 ' !
50 75 100

%

FIGURE 5.1 Some examples of outcomes with membership values.

©2001 CRC Press LLC

Evaluation of

Scheduling Rules

Rulei1 Rule12

Y

Ruleint
—

Rule21 Rule22

¢

Rulez2 ‘

|

Rulest Rules2

Y

Rulesns

Rulest

Rulem

Rulest Rules2

¢

Rulesns

Rulest Rules2

(
C
C
-
C
e

¢
N N 7N 7N N
e || = || o || = || ' | |

¢

FIGURE 5.2 Hierarchical structure for evaluation of scheduling rules.

where %j =1 if the PM j is to be maximized
Bj=-1 if the PM,; is to be minimized
MAW method:

nl

- || &= || & || & || & || &=
'
'
'

Rulesms

U

D= maxél‘lwc zw XMVX;; % i=1...,n Equation (5.9)

Max—Min method:
a . a.
D :miaxE[njln(mvxij (wj / Twe;))H i =

©2001 CRC Press LLC

=1,..,m Equation (5.10)

Max—Max method:

_ O O _ . .
D—m_aanJax(ﬂwci XW meX”)Er =1,...,nj=1,...m Equation (5.11)

where it is assumed that 2w; = 1. The value inside the outermost parenthesis of each of the above equations
shows the overall scores of all scheduling rules with respect to the related method.

5.5.1 Important Weight of Performance Measures and Interval Judgment

The first task of the decision-maker is to find the important weight of each performance measure. Saaty
[1975, 1977, 1980, 1990] developed a procedure for obtaining a ratio scale of importance for a group of
m elements based upon paired comparisons. Assume there are m objectives and it is desired to construct
a scale and rate these objectives according to their importance with respect to the decision, as seen by
the analyst. The decision-maker is asked to compare the objectives in pairs. If objective i is more important
than objective j then the former is compared with the latter and the value a;; from Table 5.1 shows how
objective i dominates objective j (if objective j is more important than objective i, then a; is assigned).
The values a;; and a;; are inversely related:

;i = 1/g; Equation (5.12)

When the decision-maker cannot articulate his/her preference by a single scale value that serves as an
element in a comparison matrix from which one drives the priority vector, he/she has to resort to
approximate articulations of preference that still permit exposing the decision-makers underlying pref-
erence and priority structure. In this case, an interval of numerical values is associated with each
judgment, and the pairwise comparison is referred to as an interval pairwise comparison or simply
interval judgment [Saaty and Vargas 1987; Arbel 1989; Arbel and Vargas 1993]. A reciprocal matrix of
pairwise comparisons with interval judgment is given in Equation 5.13 where | and u;; represent the
lower and upper bounds of the decision-maker’s preference, respectively, in comparing element i versus
element j using comparison scale (Table 5.1). When the decision-maker is certain about his/her judgment,
lijand uj; assume the same value. Justifications for using interval judgments are described by Arbel and
Vargas [1993].

1 [I12 ,ulz] [Ilm !ulm]

A] D@UH'/E 1 IZm’:UZm
@“w%ma Yot § o

A preference programming is used to find the important weight of each element in matrix [A], Equation
5.13 [Arbel and Vargas 1993].

Equation (5.13)

OooOoOoooOodQ

5.5.2 Consistency of the Decision-Maker’s Judgment

In the evaluation of scheduling rules process, it is necessary for the decision-maker to find the consistency
of his/her decision on assigning intensity of importance to the performance measures. This is done by
first constructing the matrix of the lower limit values [A], and the matrix of the upper limit values [A],,
Equation 5.14 below, then calculating the consistency index, Cl, for each of the matrices:

©2001 CRC Press LLC

TABLE 5.1 Intensity of Importance in the Pair-Wise Comparison Process

Intensity of Importance Definition
Value of aj;

Equal importance of i and j

Between equal and weak importance of i over j

Weak importance of i over j

Between weak and strong importance of i over j

Strong importance of i over j

Between strong and demonstrated importance of i and j
Demonstrated importance of i over j

Between demonstrated and absolute importance of i over j
Absolute importance of i over j

©O© o0 ~NO O WN P

Equation (5.14)

Saaty [1980] suggests the following steps to find the consistency index for each matrix in Equation 5.14;

1. Find the important weight of each performance measure (w;) for the matrix:
a. Multiply the m elements of each row of the matrix by each other and construct the column-
wise vector (X;):

{Xi} = DI_I A O i=1,..m Equation (5.15)

b. Take the nth root of each element X; and construct the column-wise vector {Y;}:

{Yi} :{Q/YI} i=1,..,m Equation (5.16)

c. Normalize vector {Y;} by dividing its elements by the sum of all elements (XY;) to construct
the column-wise vector w;:

oOoo
=<

Equation (5.17)

3

=<

——
=

=
1

I [e

1l

=
3

ooo
I

©2001 CRC Press LLC

TABLE 5.2 The Random Index (RI) for the Order of Comparison Matrix

m 1 2 3 4 5 6 7 8 9 10 11 12
RI 0 0 0.58 0.9 112 124 132 141 145 149 151 158
2. Find vector {F;} by multiplying each matrix of Equation 5.14 by {w;}:
m
{Fi} = Z(Aij ij) i=1,..m Equation (5.18)
=L
3. Divide F; by w; to construct vector {Z;}:
OF O , .
{z} =00 i=1,.,m Equation (5.19)
Wi O
4. Find the maximum eigenvalue (A, for the matrix by dividing the sum of elements of {Z;} by m:
m
27
A max = —— Equation (5.20)
m
5. Find the consistency index (Cl) = (A2 — M)/(m — 1) for the matrix.
6. Find the random index (RI) from Table 5.2 for m = 1 to 12.
7. Find the consistency ratio (CR) = (CI)/(RI) for each matrix. Any value of CR between zero and

0.1 is acceptable.

5.5.3 Advantages and Disadvantages of Multi-Criterion

Decision-Making Methods

Results of evaluation of scheduling rules depend on the selected MCD method. Each MCD method has
some advantages and disadvantages, as follows:

SAW Method: This method is easy to use and needs no membership function, but for evaluation of

scheduling rules it can be applied only to those areas in which performance measures are of the
same type and of close magnitudes. Even the graded values will not be indicative of the real
difference between two successive values. This method is not appropriate for evaluation of sched-
uling rules, because the preference measure whose values prevail over the other performance
measures’ values is selected as the best rule regardless of its poor values in comparison with those
of the other performance measures.

Max—Max Method: In this method, membership functions are used to interpret the outcomes. Its

disadvantage is that only the highest value of one performance measure determines which com-
bination of scheduling rules is selected, regardless of poor values of other performance measures.

Max-Min Method: Like max—max method, membership functions are used to interpret the outcomes.

Sometimes max—min method will lead to bad decisions. For example, in a situation where a
combination of scheduling rules leads to a poor value for one performance measure but extremely
satisfactory values for the other ones, the method rejects the combination. The advantage of this
method is that the selected combination of rules does not lead to a poor value for any performance
measure.

©2001 CRC Press LLC

Procedure for
Evaluation of Scheduling Rules

Run the
simulation model

Find results of all scheduling
combinations

v

Apply pairwise comparison and find the
importance of each performance
measure
|

v

Construct membersip functions for all
performance measures

v

Find membership values for
simulation results using membership

functions
|

V

Apply MAW & Max-Min
methods

Interpret the results

FIGURE 5.3 Procedure for evaluation of scheduling rules.

MAW Method: Like the two immediately previous methods, membership functions are used to interpret
the outcomes. This method does not have the shortcomings of the three preceding methods;
however, it does not guarantee non-poor values for all performance measures.

The procedure for evaluation of scheduling rules is depicted in Figure 5.3.

©2001 CRC Press LLC

5.6 A Fuzzy Approach to Operation Selection

Due to the flexibility of FMSs, alternative operations are common. The real-time scheduling schemes use
simulation techniques and dispatching rules to schedule parts in real time. The advantage of this kind
of scheduling over analytical approaches is its capability to consider any unexpected events in the
simulation model. This section presents a fuzzy approach to a real-time operation selection. This
approach uses membership functions to find the share of each goal in the final decision rule.

5.6.1 Statement of the Problem

Production management and scheduling problems in an FMS are more complex than those problems in
job shops and transfer lines. Each machine is versatile and capable of holding different tools to perform
different operations; therefore, several alternative part types can be manufactured at any given time. An
operation is capable of being performed on a number of alternative machines with possibly different
process times. Therefore, production is continuous even under unexpected events such as breakdown of
machines. Alternative operations give more flexibility to control the shop floor [Wilhelm and Shin 1985].
An alternative operation could be used if one workstation is overloaded. One machine may be preferred
to another for a particular operation due to its queue length, job allocation cost, set-up time, and/or
processing time. These objectives appear to be particularly important because of substantial investment
required to install an FMS, and using the system in the most efficient way should compensate for this
investment. Consequently, an FMS is viewed as a dynamic system.

The problem is to investigate the influence of a multi-criterion operation selection procedure on the
performance of an FMS. The solution to the problem via the application of fuzzy set theory is explained
below.

5.6.2 The Main Approach

Each traditional operation-selection rule, sometimes known as next-station-selection rule, is aimed at a
particular objective and considers one attribute. For example, the work in queue (WINQ) rule searches
the queues of next stations to find a queue with the least total work content. In other words, this rule
finds the queue with the minimum total processing time of all waiting jobs. This will assure that flow
time will be reduced. The number of parts in queue (NINQ), sometimes known as shortest number in
gueue (SNQ) rule searches the queues of next stations to find a queue with the minimum number of
jobs. This will assure the reduction in number of blockage of queues. The lowest utilization of local input
buffer (LULIB) rule searches all queues and selects the one with the lowest utilization level. This will
provide a balance between utilization of queues and consequently workstations.

Production scheduling in an automated system is a multi-criterion task. Therefore, a more complicated
operation-selection rule that can satisfy more objectives, by considering more attributes of queues, should
be designed. For example, using the designed rule, a queue can be selected such that it has

+ Fewest jobs

* Least total work content
 Lowest utilization level

+ Lowest job allocation rate

To achieve this, a decision rule (an operation-selection rule) should be defined to include all of the above
criteria. This decision rule should be able to react to the changes in the system in real time and has to
be consistent with a multiple criteria approach. It can be a combination of traditional rules to consider
all attributes of the queues.

There are several ways to combine the operation-selection rules. The simplest one is to apply the rules
one after another. For example, one can give highest priority to those queues with least jobs; if there is
any tie (i.e., two or more queues with the same length), then the queues with highest priority are searched

©2001 CRC Press LLC

for the least total work content until the last rule selects the queue of highest priority. This approach
cannot be so effective, because most of the time a queue is selected after the application of the first or
the second rule, leaving no reason for applying the other rules.

To overcome the above-mentioned difficulty, the problem is approached by constructing “a compro-
mise of traditional rules” such as WINQ, SNQ, and LULIB. For this purpose, a multi-criterion approach
combining all the above-mentioned criteria is used in conjunction with fuzzy set theory to model a
compromise of the criteria and to achieve a balance between elementary (traditional) rules.

5.6.3 Operation-Selection Rules and Membership Functions

Bellman and Zadeh (1970) pointed out that in a fuzzy environment, goals and constraints normally have
the same nature and can be presented by fuzzy sets on a set of alternatives, say X whose elements are
denoted by x. Let C, be the fuzzy domain delimited by the kth constraint (k =1, ...,) and G; the fuzzy
domain associated with the it goal (i =1, ..., n). When goals and constraints have unequal importance,
membership functions can be weighted by x-dependent coefficients a, and f3; such that

Oxd X,Zak(x)+gﬁi(x)=l Equation (5.21)

Bellman and Zadeh then called the fuzzy set D, a fuzzy decision on X

O

D==-n CanD N G-D Equation (5.22)

=ltol 0 mzlton ‘0

whose membership function can be defined as

Up (x)= Zak(x)uck (><)+Zﬁi(x)/,16i (x) Equation (5.23)

k=1

where Lip, is the membership of alternative x with respect to all goals and constraints, (g, is the membership
of alternative x to goal i, and (i, is the membership of alternative x to constraint k. In the alternative
operation problem no constraint is considered as a separate function, i.e., the coefficients a, do not exist,
therefore, the first term of Equation 5.21 and Equation 5.23 would vanish, i.e.,

Ho (%)= iﬁi (x) s, (x) Equation (5.24)
i=1
and
iBi (X):l Equation (5.25)
i=1

which means (s are normalized. Non-normalized weight of goals can be normalized by using the
following equation:

©2001 CRC Press LLC

B =—— Equation (5.26)

where w; is the non-normalized weight of goal i.
Based on Equations 5.23 through 5.26, the following equation can be derived:

0
0
< (1) %3 i) Equation (5.27)

where j =1, ..., m alternative operations
i =1,..,ngoals
(j) = membership of operation j to goal i
Up(i) = membership of operation j to all goals
w; = weight of goal i

SO) _ Hp if Hi(j) is negative
Ho G)_El if 1;(j) is non- negative

In Equation 5.27, S(j) will assure that a job will not be sent to a full queue (blocked queue). Finally, the
queue with Max{tp(j)} will be selected.

To clarify Equation 5.27, let us consider a case where there are two different workstations on which a
job can be processed. To find the better option, the following goals are to be achieved:

1. Minimizing number of jobs in queue.

2. Minimizing job allocation cost.

3. Minimizing lead time through the system.
4. Balancing machine utilization.

Not all the above goals can be achieved together, but it is desirable to achieve them to the greatest degree
possible.

For the above goals, four fuzzy membership functions should be built to evaluate Li(j). Membership
functions have to be built to evaluate the contribution of alternative operations to the goals. First, to find
the contribution of all alternatives to goal 1, the function can be defined as follows:

(i) :(QCAPj ~NIQ; - SR,)/ QCAP, Equation (5.28)
where QCAP; = capacity of queue |
NIQj = number of jobs in queue j
SR, = ED .|f Workstat-lon! .|s idle
1 if workstation j is busy

Assume two queues, say q1 with 6 jobs and g2 with 9 jobs, with capacity of 10 and 15 jobs, respectively,
and both queues are busy at the decision-making time. The values of 14(1) and py(2), for q1 and g2,
respectively, are calculated as follows:

©2001 CRC Press LLC

(1) = (10-6-1)/10 = 0.3 and (2) = (15-9-1)/15 = 0.33

Therefore, g2 is preferred to ql as far as goal 1 is concerned.
For goal 2, the following membership function is defined:

w, (i)= (MAXJR— IAR,)/ (MAXIR-MINIR) Equation (5.29)

where MAXJR = maximum job allocation rate of all alternative operations
JAR; = job allocation rate of operation]
MINJR = minimum job allocation rate of all alternative operations

Suppose the job allocation rate for g1 and g2 are $0.6/min and $0.7/min, respectively, while the maximum
job allocation rate is $1.2/min and the minimum one is $0.4/min, respectively. The values t,(1) and
Uy(2) are calculated as follows:

(1) = (1.2-0.6)/(1.2-0.4) = 0.75 and 16(2) = (1.2-0.7)/(1.2-0.4) = 0.63

Therefore, ql is preferred to g2 as far as goal 2 is concerned.
For goal 3, the following membership function can be defined in a similar way:

s (i) = (MAXPT ~TPT,)/ (MAXPT - MINPT) Equation (5.30)

where MAXPT = maximum possible total processing time of jobs in a queue
TPT; = total processing time of queue j
MINPT = minimum possible total processing time of jobs in a queue, i.e., zero

Assume maximum possible total processing time of jobs in g1 and g2 to be 300 and 450 minutes,
respectively, and at the decision-making time the total processing time of six jobs in gl is 180 minutes
and total processing time of nine jobs in g2 is 250 minutes. The values of p;(1) and p;(2) are calculated
as follows:

115(1) = (300-180)/(300) = 0.4 and 11s(2) = (450-250)/(450) = 0.44

Therefore, g2 is preferred to gl as far as goal 3 is concerned.

It should be noted that the maximum total processing time of jobs in each queue depends on the
dispatching rule applied to the input buffers and is determined by using pilot runs.

The membership value for goal 4 is:

w4 (i) =1-(AVGUTIL; /100) Equation (5.31)

where AVGUTIL,; = average utilization level of workstation j. For example, if the utilization of workstation
1is 60% and that of workstation 2 is 78%, then i,(1) and 1,(2) are 0.4 and 0.22, respectively. This shows
preference of gl to g2 as far as goal 4 is concerned.

Assuming that wy = 0.55, w, = 0.45, w3 = 0.25, and w, = 0.05, tip(1) and up(2) are calculated as follows:

©2001 CRC Press LLC

=055 40.3+245 4075 4025 0.4 4205 ><04Hx1 =0.48
13 13 13

= oss, %033+ 2% 50,63 +22° »0.44 20 5o 225x1 =0.45
Hiz =% "3 13 13

Therefore, gl is selected, because its membership value to all goals (up(1)) is greater than that of g2

(Hp(2))-

5.7 Fuzzy-Based Part Dispatching Rules in FMSs

This section explains a fuzzy real-time routing selection and an intelligent decision-making tool using
fuzzy expert systems for machine loading in an FMS. In the complex environment of an FMS, proper
expertise and experience are needed for decision making. Artificial intelligence, along with simulation
modeling, can help imitate human expertise to schedule manufacturing systems [Baid and Nagarur 1994].
Machine centers in FMSs have automatic tool-changing capability. This means that a variety of machining
operations can be done on the same machine. This facility introduces alternative routings and operations
in FMSs. Alternate routings give more flexibility to control the shop floor. Chen and Chung [1991]
evaluated loading formulations and routing policies in a simulated environment and concluded that an
FMS is not superior to a job shop if routing flexibility is not utilized.

One routing may be preferred to another due to the number of parts in its queues, total work in its
queues, and/or processing time. These objectives appear to be particularly important because of substan-
tial investment required to install an FMS, and using the system in the most efficient fashion should
compensate for this investment.

On the basis of fuzzy logic, founded by Zadeh [1965], many control applications were developed.
Some examples are control of subways, cranes, washing machines, cameras, televisions, and many other
devices. The literature on scheduling FMSs includes a few works in which fuzzy logic and fuzzy sets have
been used, especially in simulation applications.

Karwowski and Evans [1986], Watanabe [1990], Raoot and Rakshit [1991], and Dweiri and Meier
[1996] found that a fuzzy decision-making approach to evaluating the traditional facilities layout planning
and fuzzy facilities layout planning leads to better results than the other approaches. O’Keefe and Rao
[1992], Grabot and Geneste [1994], and Petrovic and Sweeney [1994] concluded that from an analytical
and computational point of view, the fuzzy knowledge-based approach was relatively simple and efficient.

Dispatching rules are extensively used in the literature, and tested by many authors. There is no
consensus on an individual rule that outperforms all others regarding multiple performance measures.
According to Montazeri and Van Wassenhove [1990]:

©2001 CRC Press LLC

McCartney and Hinds [1981] tested three priority rules (FIFO (first in first out), SIO (shortest
imminent operation time), and SLACK/RO (slack per number of remaining operations)) to assign
workpieces to machines in an FMS consisting of seven machines and a transport system. They
concluded that for average tardiness, SLACK/RO performs better than two other rules when due-
dates are loose. Alternatively, when due-dates are tight, the SIO rule leads to better results than the
two other rules.

Blackstone et al. [1982], in their survey of the state of the art of dispatching rules, mentioned that SIO
was the best priority rule in minimizing mean flowtime (with a few very late parts) when

+ The shop has no control over due-dates, or
* The shop has control over due-dates and due-dates are tight, or

» The shop has control over due-dates and due-dates are loose, and there is a great congestion in
the shop.

They defined a tight due date as less than six times the total processing time. They recommended that
when due dates are loose, a modified SIO rule that also takes account of due dates (e.g., SIOX (truncated
SIO)) or a due-date-oriented rule (e.g., SLACK (shortest remaining slack time)) performs better on the
criterion of tardiness than the other rules.

Ballakur and Steudel [1984], in their review of the state of the art of job shop control systems, compared
several dispatching rules and indicated that the SIO rule appears to be the best dispatching rule for
relatively loose due-dates and moderate machine utilization.

Based upon the above summary, it can be concluded that when due dates are tight, SIO rule is more
effective than due-date based rules even with respect to the tardiness measures of performance. However,
when due dates are loose, slack-based rules perform better than SIO rule, and among these, SLACK/RO
rule seems to be the most promising one. But the main problem is that, in a dynamic and real-time
system in which the parts arrive at the system over a period of time and in an irregular way, the tightness
of the due dates is hard to determine, as due-date tightness depends on two factors, K and Tpt;, described
in the following paragraphs.

A variety of division rules have been used for setting due dates in simulation studies. The reader can
find a classified table of due-date setting policies by Ramasesh [1990]. Among the due-date setting policies,
total work content (TWK) is the best approach to set the due dates internally. The TWK approach usually
is set up as

d; = At;+ K x Tpt; Equation (5.32)

where d; = due date of part i
At; = arrival time of part i
Tpt; = total processing time of part i

The value of the multiplier K, assumed between 1 to 9 by most authors, determines the degree of
tightness of the due dates. According to Equation 5.32, a higher value of K results in a lower degree of
tightness, but this is not always true. In other words, there is another important concern related to the
interdependency of the due-date tightness and the shop-load level or utilization. Studies by Baker [1984]
and Elvers and Tabue [1983] show that these two dimensions are closely connected and their effects
cannot be separated, at least with respect to due-date related measures of performance. The interdepen-
dency of the due-date tightness and the shop-load level can be stated as follows: If the shop-load level is
high, due dates may be tight even when K = 7.0, although in most studies this value is used to represent
moderate or loose due dates. Conversely, a value of K = 3.0 may not necessarily represent tight due dates
if the shop-load levels are very low.

Scheduling in FMSs is different from scheduling in job shops or transfer lines. In FMSs, utilization
level of each machine can be different. For example, if a machine is dedicated to packaging only and is
used as the final process, its time could be very tight because all parts should be packed on this unique

©2001 CRC Press LLC

machine. In this case, shop-load level cannot show the utilization level of this particular machine and
machine utilization level should be used instead of shop-load level. Using machine utilization level, due-
date tightness of each machine’s input buffer queue can be determined. In subsequent sections machine
utilization levels are used to construct the fuzzy expert-based rules.

5.8 Fuzzy Expert System-Based Rules

5.8.1 Fuzzy Set, Fuzzy Logic

Fuzzy set theory, introduced by Zadeh [1965], is a concept that can bring the reasoning used by computers
closer to that used by human beings. Fuzzy set theory was invented to deal with vague, imprecise, and
uncertain problems. The lack of certain data is the reason for uncertainty in many problems. While a
conventional or a crisp set has sharp boundaries (such as the set of all numbers greater than 10), the
transition between membership and nonmembership in a fuzzy set is gradual, and the degree of mem-
bership is specified by a number between 1 (full member) and 0 (full nonmember). Figure 5.4 shows
the distinction between a traditional set and a fuzzy set.

The rationale behind any fuzzy system is that truth-values (in fuzzy logic) or membership values (in
fuzzy sets) are indicated by a value in the range [0.0, 1.0], with 0.0 representing absolute falseness and
1.0 representing absolute truth. For example, “the truth value of 0.85” may be assigned to the statement
“the value of M is high” if M = 7; likewise, “the truth value of 0.35” may be assigned to the statement
“the value of M is high” if M = 4. This statement could be translated into set terminology as “M is a
member of the set of high values.” This statement would be rendered symbolically with fuzzy sets as

m(HIGH VALUES(7))=0.85 or m(HIGH VALUES(4))=0.35

where m in this example is the membership function, operating on the fuzzy set of high values, and
returning a value between 0.0 and 1.0.

5.8.2 Fuzzy Expert Systems

In the late 1960s to early 1970s, a special branch of artificial intelligence (Al) known as expert systems,
began to emerge. It has grown dramatically in the past few years and it represents the most successful
demonstration of the capabilities of Al [Darvishi and Gill 1990; Mellichamp et al. 1990; Naruo et al.
1990; Singh and Shivakumar 1990]. Expert systems are the first truly commercial application of work
done in the Al field and have received considerable publicity. Due to the potential benefits, there is
currently a major concentration in the research and development of expert systems compared to other
efforts in Al.

Reflecting human expertise, much of the information in the knowledge base of a typical expert system
is imprecise, incomplete, or not totally reliable. Due to this reason, the answer to a question or the advice
rendered by an expert system is usually qualified with a “certainty factor” that gives the user an indication
of the degree of confidence in the outcome of the system. To arrive at the certainty factor, the existing
expert systems employ what are essentially probability-based methods. However, since much of the
uncertainty in the knowledge base of a typical expert system are due to the fuzziness and incompleteness
of data, rather than from its randomness, the computed values of the certainty factor frequently lack
reliability. This is still one of the serious shortcomings of expert systems. By providing a single inferential
system for dealing with the fuzziness, incompleteness, and randomness of information in the knowledge
base, fuzzy logic furnishes a systematic basis for the computation of certainty factors in the form of fuzzy
numbers. At this juncture, fuzzy logic provides a natural framework for the design of expert systems.
Indeed, the design of expert systems may well prove to be one of the most important applications of
fuzzy logic in knowledge engineering and information technology.

©2001 CRC Press LLC

Traditional set Fuzzy set

A A

M H L M H

e e

m m

b b

e e

r r

s s

h h

i i

p 0 © - p O >

10 10
Numbers greater or equal to 10 Numbers around 10

FIGURE 5.4 Traditional set vs. fuzzy set.

A fuzzy expert system is an expert system that applies reasoning to data via a number of fuzzy mem-
bership functions and rules, instead of Boolean logic. The rules in a fuzzy expert system are usually of a
form similar to the following:

If ‘x is low’ and ‘y is high’ then ‘z is mediun’

where x and y are input variables (known data values), z is an output variable (a value to be computed),
low is a membership function (fuzzy subset) defined on x, high is a membership function defined on vy,
and medium is a membership function defined on z. The antecedent (the rule’s premise) describes to
what degree the rule applies, and the conclusion (the rule’s consequent) assigns a membership function
to each of one or more output variables. Most tools for working with fuzzy expert systems allow for
more than one conclusion per rule. The set of rules in a fuzzy expert system is known as the rule base
or knowledge base. A closely related application is the use of fuzzy expert system in simulation and
models that are intended to aid decision-making.
The general inference process proceeds in three (or four) steps, as follows:

1. Under fuzzification, the membership functions defined on the input variables are applied to their
actual values, to determine the degree of truth for each rule premise. In other words, under
defuzzification the values of the input variables are transferred into natural language like high,
low, etc.

2. Under inference, the truth-value for the premise of each rule is computed and applied to the
conclusion part of each rule. This results in one fuzzy subset to be assigned to each output variable
for each rule. Usually only MIN or PRODUCT is used as inference rules. In MIN inferencing the
output membership function is clipped off at a height corresponding to the rule premise’s com-
puted degree of truth (fuzzy logic AND). In PRODUCT inferencing the output membership
function is scaled by the rule premise’s computed degree of truth.

3. Under composition, all of the fuzzy subsets assigned to each output variable are combined together
to form a single fuzzy subset for each output variable. Usually MAX or SUM are used as compo-
sition rules. In MAX composition, the combined output fuzzy subset is constructed by taking the
point-wise maximum over all of the fuzzy subsets assigned to the output variable by the inference
rule (fuzzy logic OR). In SUM composition, the combined output fuzzy subset is constructed by
taking the point-wise sum over all of the fuzzy subsets assigned to the output variable by the
inference rule.

©2001 CRC Press LLC

1 0
N Crisp-to-fuzzy Inference — U
. Fuzzy -to-crisp
- & COMPOSITION |- T
P |FUZZIFICATION max-min, - DEFUZZIFY | 5
U etc

T U

Membership Rule Max. S Max, T
functions base ax, sum average,
centroid,

FIGURE 5.5 A typical fuzzy system.

4. Finally is the (optional) defuzzification that is used when it is useful to convert the fuzzy output-
set to a crisp number. There are a number of defuzzification methods (at least 30). Two of the
more common techniques are the CENTROID and MAXIMUM methods. In the centroid method,
the crisp value of the output variable is computed by finding the variable value of the center of
the gravity of the membership function for the fuzzy value. In the maximum method, one of the
variable values at which the fuzzy subset has its maximum truth-value is chosen as the crisp value
for the output variable. Figure 5.5 shows a typical fuzzy system.

5.8.3 Decision Points

In real-time scheduling, a decision point arises whenever seizing of one available production resource is
necessary. A resource can be any individual production unit such as a single machine, a transport vehicle,
an operator, or even a path of transportation.

Six decision points are considered herein for part processing, Figure 5.6. As a part arrives at the system,
it should select a routing between several alternative routings (decision point 1). Then it requests for an
AGYV for traveling (decision point 2). All parts transferred to the input buffer queues will be selected by
machines for processing (decision point 3). After completion of the process, parts reside in output buffer
queues and compete to access idle AGVs (decision point 4). When more than one AGV tries to occupy
an intersection, a decision is made to determine which AGV can proceed (decision point 5). When
multiple parts are requesting the same idle AGV from different queues, the tie should be broken by a
decision making to determine which queue is to be serviced first (decision point 6). These decision points
are described below.

5.8.3.1 Selection of a Routing
After being released from the loading station, the part will select a routing as a fixed sequence of operations
among alternative routings. A routing is selected such that the following goals are achieved:

* Minimizing number of blocked machines.

* Minimizing total processing time.

* Minimizing number of processing steps

Four different routing selection rules used herein are SNQ (or NINQ), STPT (shortest total processing

time), WINQ, and FUZZY. In previous sections it was explained how fuzzy set can be employed for

selecting alternative routing as an alternative operation selection rule (FUZZY rule). It must be noted
that alternative routing is different from alternative operation.

©2001 CRC Press LLC

Alternative

: Routings ;
Routin: g Link
gt e 9 4 —
Selection —— Sefleefon Selection
Point 1 Points 2 & 6 Point 5

OB Part selection Next
Machine |} (OO0 | ———P
From IB From OB
Point 3 Points 4 & 6

Part Selection

step

FIGURE 5.6 Decision points.

5.8.3.2 Parts Select AGVs

After selection of appropriate routing, the part will select an AGV to be transferred to the next station.
The transporter selection rules, commonly used herein, include CYC, RAN, LDS (longest distance), SDS,
and POR (preferred order).

5.8.3.3 Part Selection from Input Buffers

When a machine becomes idle and more than one part is waiting in its preceding queue, a part has to
be selected to be processed next. The decision rules applied to this decision point include FIFO, SPT
(shortest processing time), SRPT (shortest remaining processing time), SLRO (ratio of slack to remaining
operation time), SIO, and FUZZY (fuzzy expert-based rules).

5.8.3.4 Part Selection from Output Buffers

When more than one part is waiting in one output buffer queue, they compete to obtain an idle AGV
to be transported to the next station. The decision rules employed for this decision point include SPT,
EDD (earliest due date), FIFO, SIO, and LPT (longest processing time).

5.8.3.5 Intersections Select AGVs

When more than one AGV tries to seize an intersection, the following rules (link selection rules)
determine which one goes first: FCFS (first come first served), LCFS (last come first served), CLSD (closest
distance), and FRTD (further distance).

5.8.3.6 AGYVs Select Parts

When multiple parts are requesting the same AGV from different queues, the following steps are taken
to break the tie:

1. The part with the highest priority is selected. All parts in output buffers of machines have the
same priority. When the number of parts in the loading station queue is greater than or equal to
ten, the highest priority is given to these parts rather than the parts sitting in the output buffers
of machines.

2. When the number of parts in the loading queue is less than ten, the closest part to the AGV is
selected.

3. If ties exist, select the part, which belongs to the queue of highest number of parts.

©2001 CRC Press LLC

5.9 Selection of Routing and Part Dispatching Using
Membership Functions and Fuzzy Expert System-Based Rules

In this section, the routing selection and the part dispatching rules based on fuzzy set and fuzzy logic
are explained.

5.9.1 Routing Selection Using Fuzzy Set

Alternative routings are considered in advance for each incoming part. When a routing is selected for
the part, it does not change during the simulation. Membership functions are employed to find the
contribution of a routing to a goal. For each routing the following goals can always be set:

1. The possible minimum number of parts in queues of each routing will be zero while the maximum
number will not reach Qg.

2. The total possible minimum processing time of each routing for each part will be TPT,, while the
maximum time will not reach TPTj.

3. The possible minimum number of processing steps of each routing will be Py, while the maximum
number of processing steps will not reach Pg.

4. The possible minimum total work in queues of any routing is zero, while the maximum total work
in queues of any routing will not reach TWC;.

To illustrate the method, an example of FMS with seven parts and six machines is considered according
to Table 5.3.

To evaluate the contribution of a routing to a goal, a fuzzy membership function is set up. When goal
1 is considered for, say, part type 3, four alternative routings are to be observed. Routings number 1 and
3 have four operations on four different machines. Assuming the maximum length of a queue is 10, parts
for routings number 1 and 3 is Qg = 41 (= 4 x 10 + 1) and for routings number 2 and 4 is Qg = 31 (=
3x10+1).

A simple function can be set up to evaluate the contribution of a routing to goal 1:

IJl(j)z(QB_Qj)/(QB) Equation (5.33)

where Q; = the number of parts in input buffers of routing j. The membership of routings is shown in
Figure 5.7.
For goal 2, the following membership function is defined:

w, (i)= (TPTB ~TPT,)/ (TPTs-TPT,) Equation (5.34)

where TPT; = the total processing time needed for the part if routing j is selected.
For goals 3 and 4, similar membership functions can be set up as follows:

Us (j):(PB—Pj)/(PB—PA) Equation (5.35)

Ly (j):(TWCB —TWCJ-)/(TWCB) Equation (5.36)

where P; = the number of processing steps needed for the part if routing j is selected; TWC; = the total
work of parts in input buffers of routing j.

Each goal can be weighted using pairwise comparison [Saaty 1980]. The following formula is used to
determine the final membership value of all alternatives.

©2001 CRC Press LLC

TABLE 5.3 Operation Times (min) for Part Types and the Given Routings

Machine No.
Part Type 1 2 3 4 5 6 Routing No.

1 — 30 — 70 — 40 1
40 —_— 55 —_— 50 —_— 2

o e 45 60 e 75 3

2 — 40 40 — — 50 1
—_— 70 —_— 60 50 —_— 2

70 o —_— 80 30 — 3

3 40 — 50 30 — 60 1
—_— 50 —_— —_— 70 80 2

60 40 30 —_— 50 —_— 3

 — 50 — 30 40 — 4

4 30 —_— —_— 40 20 —_— 1
—_— 15 35 e 65 o 2

 — 20 — 35 15 — 3

5 —_— 40 —_— 70 —_— —_— 1
e e 25 e 45 15 2

15 25 35 — — —_— 3

6 —_— 75 —_— 40 35 —_— 1
o 45 40 25 o o 2

 — 30 25 — 40 — 3

7 —_— —_— —_— —_— 65 50 1
—_— 65 45 o 25 e 2

—_— 25 — 15 — 40 3

Total number of jobs in queues of an alternative routing
with four sequences

o wn o Yol o Y] o w
~ - N N ™ [sp] < <

1¢

0.8 1

Membership value
o
[0}
,
}

0.2 1

0 {

FIGURE 5.7 Membership function for goal 1.

©2001 CRC Press LLC

O O
n D . D
Hp (j): Zg(nWI) X [y (J)E Equation (5.37)
B B
i=1
where j =,..., malternative routings
i=,...,ngoals

() = membership of routing j to goal i
Up () = membership of routing j to all goals
w; = weight of goal i

Finally, the routing with Max{up(j)} will be selected.

5.9.2 Fuzzy Expert System-based Rule Approach for Dispatching of Parts

It was previously shown that selection of a scheduling rule heavily depends on the production system’s
due-date tightness, which itself depends on multiplier K and machine utilization. It was assumed that
the due-date is assigned to the parts by the TWK policy.

Here, a fuzzy logic approach is proposed to determine the tightness of the production system. For this
purpose the following rules are defined:

Rule 1: If multiplier K is low, and the machine utilization level is high, then the due-date tightness of
the preceding queue is high.

Rule 2: If multiplier K is high, and the machine utilization level is low, then the due-date tightness of
the preceding queue is low.

The fuzzy propositions of the antecedent of the rule 1 and 2 are represented by membership functions
as described in Figures 5.8 and 5.9, respectively, and fuzzy propositions of the concluding parts are
presented in Figure 5.10.

Mamdani’s min-max method [1974] is used herein to perform fuzzy inference rules in which the
membership functions of the concluding parts of the rules are cut at min g (v) where k = 1 or 2 and
v=KorL (Figures5.11 and 5.12). The global conclusion is given by the maximum value of these graphs.

To demonstrate the implementation of the procedure, assume that multiplier K is set to 6.0 and at the
moment that the rules are being applied, machine utilization level is 90%. The due-date tightness of the
preceding queue can be found as follows:

1. Construct the graphical representation of membership functions to represent the fuzzy declaration,
Figures 5.8 through 5.10.

2. Find the membership for each fuzzy proposition, Figures 5.11 and 5.12 (the left and the middle
one).

3. Use min—-max method to perform fuzzy inference rule, Figures 5.11 and Figure 5.12 (the right ones).

To determine the priority of parts in the queue using areas S1 and S2, a combination of SIO rule and
SLACK/RO rule is used. The contribution of each rule to the final decision rule will depend on the areas
S1 and S2. It can be seen from Figures 5.11 and 5.12 that when a machine center is completely tight, i.e.,
K =1, and the machine center utilization level is 100%, S1 is equal to Al and S2 is zero, as a consequence
of which the final rule is determined to be SIO. While when the tightness of a machine center is completely
loose, i.e., K =9, and the machine center utilization level is close to 10%, S2 is close to A2 and S1 is close
to zero, as a consequence of which the final rule is determined to be SLACK/RO. In general, the final

©2001 CRC Press LLC

Multiplier K is low

K

1.0 9.0

FIGURE 5.8 Membership functions for antecedent rule 1.

Multiplier K is high

K

1.0 9.0

FIGURE 5.9 Membership functions for antecedent rule 2.

Due-date tightness is high

1.0 10.0
Due-date tightness

Machine utilisation level (L) is high

L

10% 100%

Machine utilisation level (L) is low

M
A
1
0 -
10% 100% L
Due-date tightness is low
v
A
1
0 >
1.0 10.0

Due-date tightness

FIGURE 5.10 Conclusion modelling for rule 1 (left) and rule 2 (right).

©2001 CRC Press LLC

90% 100% 1 1

S

[=))

=]
©
ovw
o

Due-date tightness

FIGURE 5.11 Conclusion modification for rule 1.

u m H
rF % 'S F'S
[/ :
0 - 0 N, L

1.0 6.0 9.0 10% 90% 100%

Due-date tightness

FIGURE 5.12 Conclusion modification for rule 2.

rule is calculated on the basis of both areas S1 and S2. For example, when K is 6 and the machine center
utilization level is 90%, Figures 5.11 and 5.12, the final decision rule is determined as follows:

(Priority with LVF),, j:(Sl)j ><(|0T)n]j +(sz)j x(SLRO) ~ Equation (5.38)

n,j

where j = queue number
n = part number in the preceding queue of machine center j (or simply queue j)
LVF = low value first
(10T),; = imminent operation time of part n in queue j

(SLRO),; = slack/remaining number of operation (SLACK/RO) of part n in queue j

It can be seen from Equation 5.38 that when S2 is zero, priority = IOT, i.e., SIO rule applies, and when
S1 is zero then priority = SLRO, i.e., SLACK/RO rule applies.

Defining Terms

AGV Automatic guided vehicle
Al Artificial intelligence
CLSD Closest distance

CYC Cyclic

EDD Earliest due date

FCFS First come first served
FIFO First in first out

©2001 CRC Press LLC

FMS Flexible manufacturing system

FRTD Further distance

LCFS Last come first served

LDS Longest distance

LPT Longest processing time

LULIB Lowest utilization of local input buffer
MAW Modified additive weighting

MCD Multi-criterion decision making
NINQ Number of parts in queue

PM Performance measure

POR Preferred order

RAN Random

SAW Simple additive weighting

SDS Shortest distance to station

SIO Shortest imminent operation time
SIO* or SIX Truncated SIO

SLACK Shortest remaining slack time
SLACK/RO Slack per number of remaining operations
SLRO Ratio of slack to remaining operation time
SNQ Shortest number in queue

SPT Shortest processing time

SRPT Shortest remaining processing time
STPT Shortest total processing time

TWK Total work

WINQ Work in queue

WIP Work in process

References

Arbel, A. 1989, Approximate articulation of preference and priority derivation, European Journal of
Operational Research, vol. 43, pp. 317-326.

Arbel, A. and Vargas, G. L. 1993, Preference simulation and preference programming: robustness issues
in priority derivation, European Journal of Operational Research, vol. 69, pp. 200-209.

Baid, N. K. and Nagarur, N. N. 1994, An integrated decision support system for FMS: using intelligent
simulation, International Journal of Production Research, vol. 32, no. 4, pp. 951-965.

Baker, K. R. 1984, Sequencing rules and due-date assignments in a job shop, Management Science, vol. 30,
no. 9, pp. 1093-1104.

Ballakur, A. and Steudel, H. J. 1984, Integration of job shop control systems: a state-of-the-art review,
Journal of Manufacturing Systems, vol. 3, no. 1, pp. 71-79.

Bellman, R. E. and Zadeh, L. A. 1970, Decision making in a fuzzy environment, Management Science,
vol. 17, pp. 141-164.

Blackstone, J. H., Philips, D. T. and Hogg, G. L. 1982, A state of the art survey of dispatching rules for
job shop operations, International Journal of Production Research, vol. 20, no. 1, pp. 27-45.
Chen, I. J. and Chung, C. H. 1991, Effects of loading and routing decisions on performance flexible
manufacturing systems, International Journal of Production Research, vol. 29, pp. 2209-2225.
Chryssolouris, G., Dicke, K. and Moshine, L. 1994, An approach to real-time flexible scheduling, Inter-
national Journal of Flexible Manufacturing Systems, vol. 6, pp. 235-253.

Darvishi, A. R. and Gill, K. F. 1990, Expert system design for fixture design, International Journal of
Production Research, vol 28, no. 10, pp. 1901-1920.

Dweiri, F. and Meier, F. A. 1996, Application of fuzzy decision-making in facilities layout planning,
International Journal of Production Research, vol. 34, no. 11, pp. 3207-3225.

©2001 CRC Press LLC

Elvers, D. A. and Tabue, L. R. 1983, Time completion of various dispatching rules in job shops, Omega,
vol. 11, no. 1, pp. 81-89.

Grabot, B. and Geneste, L. 1994, Dispatching rules in scheduling: a fuzzy approach, International Journal
of Production Research, vol. 32, no. 4, pp. 903-915.

Gupta, Y. P, Gupta, M. C. and Bector, C. R. 1990, A review of scheduling rules in flexible manufacturing
systems, International Journal of Computer Integrated Manufacturing, vol. 2, no. 6, pp. 356-377.

Hang, C. L. and Yon, K. 1981, Multiple Attribute Decision Making, Springer-Verlag, New York.

Hutchison, J. and Khumavala, B. 1990, Scheduling random flexible manufacturing systems with dynamic
environments, Journal of Operations Management, vol. 9, no. 3, pp. 335-351.

Karwowski, W. and Evans, G. W. 1986, Fuzzy concepts in production management research: a review,
International Journal of Production Research, vol. 24, no. 1, pp. 129-147.

Kazerooni, A., Chan, F. T. S., Abhary, K. and Ip, R. W. L. 1996, Simulation of scheduling rules in a flexible
manufacturing system using fuzzy logic, IEA-AIE96 Ninth International Conference on Industrial
and Engineering Application of Artificial Intelligence and Expert System, Japan, pp. 491-500.

Mamdani, E. H. 1974, Application of fuzzy algorithms for control of simple dynamic plant, Proceeding
of IEE, vol. 121, no. 12, pp. 1585-1588.

McCartney, J. C. and Hinds, B. K. 1981, Interactive scheduling procedures for FMS, Proceedings of 22nd
International Machine Tool Design and Research Conference, Manchester, U.K., pp. 47-54.

Mellichamp, J. M., Kwon, O. J. and Wahab, A. F. A. 1990, FMS designer: an expert system for flexible
manufacturing system design, International Journal of Production Research, vol. 28, no. 11,
pp. 2013-2024.

Montazeri, M. and Van Wassenhove, L. N. 1990, Analysis of scheduling rules for an FMS, International
Journal of Production Research, vol. 28, no. 4, pp. 785-802.

Naruo, N., Lehto, M. and Salvendy, G. 1990, Development of a knowledge-based decision support system
for diagnosing malfunctions of advanced production equipment, International Journal of Produc-
tion Research, vol. 28, no. 12, pp. 2259-2276.

O’Keefe, R. M. and Rao, R. 1992, Part input into a flexible input flow system: an evaluation of look-
ahead simulation and a fuzzy rule base, International Journal of Flexible Manufacturing Systems,
vol. 4, pp. 113-127.

Petrovic, D. and Sweeney, E. 1994, Fuzzy knowledge-based approach to treating uncertainty in inventory,
Computer Integrated Manufacturing Systems, vol. 7, no. 3, pp. 147-152.

Rachamadugu, R. and Stecke, K. E. 1988, Classification and review of FMS scheduling procedures,
Working paper # 481 c, The University of Michigan, Ann Arbor.

Rachamadugu, R. and Stecke, K. E. 1994, Classification and review of FMS scheduling procedures,
Production Planning and Control, vol. 5, no. 1, pp. 2-20.

Ramasesh, R. 1990, Dynamic job shop scheduling: a survey of simulation research, Omega International
Journal of Management Science, vol. 18, no. 1, pp. 43-57.

Raoot, A. D. and Rakshit, A. 1991, A fuzzy approach to facilities lay-out planning, International Journal
of Production Research, vol. 29, no. 4, pp. 835-857.

Saaty, T. L. 1975, Hierarchies and priorities-eigenvalue analysis, internal report, University of Pennsyl-
vania, Wharton School, Philadelphia, PA.

Saaty, T. L. 1977, A scaling method for priorities in hierarchical structures, Journal of Mathematical
Psychology, vol. 15, pp. 234-281.

Saaty, T. L. 1980, The Analytic Hierarchy Process, McGraw-Hill, New York.

Saaty, T. L. 1990, How to make a decision: the analytic hierarchy process, European Journal of Operational
Research, vol. 48, no. 1, pp. 9-26.

Saaty, T. L.and Vargas, L. G. 1987, Uncertainty and rank order in the Analytic Hierarchy Process, European
Journal of Operational Research, vol. 32, no. 3, pp. 107-117.

Singh, R. and Shivakumar, R. 1990, METEX — an expert system for machining planning, International
Journal of Production Research, vol. 30, no. 7, pp. 1501-1516.

©2001 CRC Press LLC

Smith, M. L., Ramesh, R., Dudeck, R. and Blair, E. 1986, Characteristic of US flexible manufacturing
systems, Computers and Industrial Engineering, vol. 7, no. 3, pp. 199-207.

Tang, L. L., Yih, Y. and Liu, C. Y. 1993, A study on decision rules of scheduling model in an FMS,
Computers in Industry, vol. 22, 1-13.

Watanabe, T. 1990, Job shop scheduling using fuzzy logic in a computer integrated manufacturing
environment, 5th International Conference on System Research, Information and Cybernetics, Baden-
Baden, Germany, pp. 1-7.

Wilhelm, W. E. and Shin, H. M. 1985, Effectiveness of alternate operations in a flexible manufacturing
system, International Journal of Production Research, vol. 23, no. 1, pp. 65-79.

Yager, R. R. 1978, Fuzzy decision making including unequal objectives, Fuzzy Sets and Systems, vol. 1,
pp. 87-95.

Yang, K. K. and Sum, C. C. 1994, A comparison of job dispatching rules using a total cost criterion,
International Journal of Production Research, vol. 32, no. 4, pp. 807-820.

Zadeh, L. A. 1965, Fuzzy sets, Information and Control, vol. 8, pp. 338-353.

For Further Information

Jamshidi, M., Vadaiee, N. and Ross T. J. 1993, Fuzzy Logic and Control: Software and Hardware Applications,
Prentice-Hall, Englewood Cliffs, NJ.

Parsaei, H. R. 1995, Design and Implementation of Intelligent Manufacturing Systems: From Expert Systems,
Neural Networks, to Fuzzy Logic, Prentice-Hall, Englewood Cliffs, NJ.

Chen, C. H. 1996, Fuzzy Logic and Neural Network Handbook, McGraw-Hill, New York.

©2001 CRC Press LLC

Luong, L. H. S. et a "Genetic Algorithms in Manufacturing System Design”
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Genetic Algorithms
in Manufacturing
System Design

6.1 Introduction
6.2 The Design of Cellular Manufacturing Systems
6.3 The Concepts of Similarity Coefficients

6.4 A Genetic Algorithm for Finding the Optimum Process
Routings for Parts

6.5 A Genetic Algorithm to Cluster Machines
L. H. S. Luong into Machine Groups
University of South Australia 6.6 A Genetic Algorithm to Cluster Parts into
Part Families

6.7 Layout Design
6.8 A Genetic Algorithm for Layout Optimization
K. Abhary 6.9 A Case Study

University of South Australia 6.10 Conclusion

M. Kazerooni
Toosi University of Technology

6.1 Introduction

Batch manufacturing is a dominant manufacturing activity in many industries due to the demand for
product customization. The high level of product variety and small manufacturing lot sizes are the major
problems in batch manufacturing systems. The improvement in productivity is therefore essential for
industries involved in batch manufacturing.

Group technology is a manufacturing philosophy for improving productivity in batch production
systems and tries to retain the flexibility of job shop production. The basic idea of group technology
(GT) is to divide a manufacturing system including parts, machines, and information into some groups
or subsystems. Introduction of group technology into manufacturing has many advantages, including a
reduction in flow time, work-in-process, and set-up time. One of the most important applications of
group technology is cellular manufacturing system. A cellular manufacturing system is a manufacturing
system that is divided into independent groups of machine cells and part families so that each family of
parts can be produced within a group of machines. This allows batch production to gain economic
advantages of mass production while retaining the flexibility of job shop methods. Wemmerlov and Hyer
[1986] defined cellular manufacturing as follows:

A manufacturing cell is a collection of dissimilar machines or manufacturing processes dedicated to
a collection of similar parts and cellular manufacturing is said to be in place when a manufacturing
system encompasses one or more such cells.

©2001 CRC Press LLC

PARTS
]2 (3[4 [5 [6]7 [8 [9[10[11[12 13 [14[15 [16 [17[18 [19 [20] 21 |22 23] 24] 25 | 26] 27] 28] 29] 30] 31 32] 33| 34 35| 36] 37] 38 [39] 40|
1 1 1 11 1

N

1 1 1 11

©

1 1
1 1
1

1
1

N

1
1
1

e

oy

~

®

©

o

12 11 1 1 1 1
13] 11 1 1 1 1

14| 1 1 1 1

15 1 1 1 1 1

wEZ=TAO» 2
> 2

17| 11 1 1 1 1 1
18| 1 1 1 1 1 1

s

20|
21 1

22| 1 1 1 1 11 11

23| 1 1 1 1
24| 1 1 1 1 11 11

25| 1 11

ok

27| 1 1 1 1 1
28, 1 1 1 1
29| 1 11 1

lw
=

FIGURE 6.1 An initial ma chine—component matrix.

When some forms of automation are applied to a cellular manufacturing system, it is usually referred
to as a flexible manufacturing system (FMS). These forms of automation may include numerically
controlled machines, robotics, and automatic guided vehicles. For these reasons, FMS can be regarded
as a subset of cellular manufacturing systems, and the design procedures for both cellular manufacturing
systems and FMS are similar.

The benefits of cellular manufacturing system in comparison with the traditional functional layout
are many, including a reduction in set-up time, work-in-process, and manufacturing lead-time, and an
increase in product quality and job satisfaction. These benefits are well documented in literature. This
chapter presents an integrated methodology for the design of cellular manufacturing systems using genetic
algorithms.

6.2 The Design of Cellular Manufacturing Systems

The first step in the process of designing a cellular manufacturing system is called cell formation. Most
approaches to cell formation utilize a machine-component incidence matrix, which is derived and
oversimplified from the information included in the routing sheets of the parts to be manufactured. A
typical machine-component incidence matrix is shown in Figure 6.1. The a;, which is the (j,/)™ entry of
this matrix, is 1 if the part i requires processing on machine j and a;; is otherwise 0. Many attempts have
been made to convert this form of matrix to a block diagonal form, as shown in Figure 6.2. Each block
in Figure 6.2 represents a potential manufacturing cell. Not all incidence matrices can be decomposed
to a complete block diagonal form. This problem can come from both exceptional elements and bot-
tleneck machines. There are two possible ways to deal with exceptional elements. One way is to investigate
alternative routings for all exceptional elements and choose a process route that does not need any
machine from another cell. However, this solution cannot be achieved in most cases. Another way is
subcontracting the exceptional elements to other companies. If there are not many exceptional elements,
this way seems more reasonable, although it may incur extra handling costs and create problems with
production planning and control.

In the presence of bottleneck machines, the system cannot be decomposed into independent cells, and
some intercellular movements are inevitable. The impact of bottleneck machines on the system is increas-
ing usage of material handling devices due to parts moving amongst the cells. Obviously a high number
of intercellular movements will lead to an increase in material handling costs. Therefore, to decrease the

©2001 CRC Press LLC

PARTS
T27] 21139 24 14] 18] 1] 13[35]16] 11] 2] 31]20] 26] 3] 10]12]22]29]23] 15] 4] 17]19] 28]25] 8] 5] 33]38] 30] 40] 6] 7]32] 37]34] 36]
1

|m

oo

NN N RN NEERNNN
Nommmow|m|a =
R Y

4|w

emzZz=ZAar 2

o [no] o] [[o feo NN
w [0 [N a5 0f S|P |5 |S]~ | RIS |

FIGURE 6.2 A block diagonal form (BDF) of machine—component matrix.

number of intercellular movements, some or all bottleneck machines should be duplicated. However,
duplicating of bottleneck machines is not always economical. To justify which machine is to be duplicated,
some subproblems including clustering procedure, intracell layout, and intercell layout of machines
should be considered simultaneously in any attempt to optimize the design.

The above discussion indicates that the design of cellular manufacturing systems can be divided into
two major stages: cell formation and system layout. The activities in the cell formation stage include
constructing a group technology database of parts and their process routings, finding the most suitable
routings among parts’ alternative routings, grouping machines into machine groups, and forming parts
into part families dedicated to the machine groups. In the system layout stage, the activities are selecting
candidates for machine duplication, designing intercellular and intracellular layout, and detailed design.

As in any design process, the design of cellular manufacturing systems should take into consideration
all relevant production parameters, design constraints, and design objectives. The relevant production
parameters are process routings of parts, parts’ production volume or annual demand, parts’ alternative
routings, processing time of each operation, and machine capacity or machine availability. There are also
some constraints that should be considered while designing a cellular manufacturing system, such as
minimum and/or maximum cell size, minimum and/or maximum number of cells, and maximum
number of each machine type. In design optimization, there are many design objectives with regard to
a cellular manufacturing system that can be considered individually or combinatorially. The design
objectives may include minimizing intercellular movements, minimizing set-up time, minimizing
machine load variation or maximizing machine utilization, and minimizing the system’s costs. Some of
these objectives can be conflicting. The goal of attaining all of these objectives, and at the same time
satisfying the relevant design constraints, is a challenging task and may not be achievable because of
conflicting objectives.

Many analytical, heuristic, cost-based and artificial intelligence techniques have been developed for
solving the cell formation problem. Some examples are branch and bound method [Kusiak et al., 1991],
nonlinear integer programming [Adil et al., 1996], cellular similarity [Luong, 1993], fuzzy technique [Lee
et al., 1991], and simulated annealing [Murthy and Srinivasan, 1995]. There are also a number of review
papers in this area. Waghodekar and Sahu [1983] provide an exhaustive bibliography of papers on group
technology that appeared from 1928 to 1982. They also have classified the bibliography into four cate-
gories relating to both design and operational aspects. Another extensive survey with regard to different
aspects of cellular manufacturing systems can be found in Wemmerlov and Hyer [1987]. Kusiak and
Cheng [1991] have also reviewed some applications of models and algorithms for the cell formation

©2001 CRC Press LLC

process. A review of current works in literature has revealed several drawbacks in the existing methods
for designing cellular manufacturing systems. These drawbacks can be summarized as follows:

+ Most methods work only with binary data or binary machine-component matrix. These
approaches are far from real situations in industry, as they do not take all relevant production
data into consideration in the design process. For example, production volumes, process sequences,
processing times, and alternative routings are neglected in the majority of methods.

Most methods are not able to handle design constraints such as minimum or maximum cell size
or the maximum number of each machine type.

+ Most methods are heuristic, and there is no optimization in the design process. Although many
attempts have been made to optimize the design process using traditional optimization techniques
such as integer programming, their scope of application is very limited as they can only deal with
problems of small scale.

This chapter presents an integrated methodology for cellular manufacturing system design based on
genetic algorithms. This methodology takes into account all relevant production data in the design
process. Other features of this methodology include design optimization and the ability to handle design
constraints such as cell size and machine duplication.

6.3 The Concepts of Similarity Coefficients

The basic idea of cellular manufacturing systems is to take the advantages of similarities in the process
routings of parts. Most clustering algorithms for cell formation rely upon the concept of similarity
coefficients. This concept is used to quantify the similarity in processing requirements between parts,
which is then used as the basis for cell formation heuristic methods. This section introduces the concept
of machine chain similarity (MCS) coefficient and part similarity coefficient that can be used to quantify
the similarities in processing requirements for use in the design process. A unique feature of these
similarity coefficients is that they take into consideration all relevant production data such as production
volume, process sequences, and alternative routings in the early step of cellular manufacturing design.

6.3.1 Mathematical Formulation of the MCS Coefficient

The MCS;;, which presents machine chain similarity between machines i and j, can be expressed math-
ematically as follows:

OM O [N N
O ingy P, p
il > jl %
QBRI
MCS; =[] TN iti#] Equation (6.1)
g z Z(Vkl +Vkl)
=T k=
H ifi=j

where V,; = volume of k* part moved out from machine 1

Vi = volume of k™ part moved in to machine [
N = number of parts

M = number of machines

r _ production volume for part k moved between machines i and [if i #1
il =

production volume for part k moved between machines i and [if i =1

or mathematically,

©2001 CRC Press LLC

ON Gy

EIZZCM if i=1
Pillc S

N Gy
k [P
O W,V ifiZl

Equation (6.2)

L if{l =1 orl =G},
C = .
otherwise
G, = the last machine in processing route of part type k

where

V. = production volume for part type k

W”k = number of trips that part type k makes between machines i and /, directly or indirectly

The extreme values for an MCS coefficient are 0 and 1. When the value of MCS; is 1, it means that
all production volume transported in the system are moving between machines i and j. On the other
hand, an MCS; with a value of zero means that there is no part transported between machines i and j
whether directly or indirectly. In order to illustrate the concept of MCS coefficient, consider Table 6.1,
which shows an example of five parts and six machines. The relationship between these six machines
can be depicted graphically as in Figure 6.3. As can be seen from Figure 6.3, there is no direct part
movement between machines M, and M. However, these two machines are indirectly connected together
by machine Mg, implying that machines M, and M; can be positioned in the same cell. Consequently,
the MCS coefficient for these machines is more than zero. On the other hand, if these two machines are
in separate cells, then their MCS coefficient would be zero.

Table 6.2 is the production volume matrix showing the volume of parts transported between any pair
of machines. The element g; in this table indicates the production volume transported between machines
i and j (i #]), which has been calculated using Equation 6.2. For example:

5
a,0= "y Paig = 11150 (part 2) + 3*70 (part 3) = 360.
k=1

TABLE 6.1 Production Information for the Six-Machine/Five-Part Problem

Parts
P, P, P, P, P,
Production volume 100 150 70 150 160
Routing sequence M,-M;-Ms-M, M,-M,-M, M,-M-M,-My; M-M;-M¢-M,-M, M;-M,;-M,

TABLE 6.2 Production Volume Transported between Pair of Machines

M, M, M, M, M, M,
M, 720 0 560 0 410 250
M, 0 360 0 150 0 360
M, 560 0 810 0 410 400
M, 0 150 0 300 0 150
M, 410 0 410 0 510 250
M 250 360 400 150 250 760

ES

©2001 CRC Press LLC

FIGURE 6.3 Graphical presentation of the example shown in Table 6.1.

It should be noted that the first term in the above calculation (part 2) is due to the indirect relationship
between machines 2 and 6, while the second term indicates that there are three trips between these two
machines. In the case of i =j, a; indicates the sum of parts transported to and from machine i. For example,

5
a,, = z Pllfl = 1*100 (part 1) + 2*150 (part 4) + 2¥160 (part 5) = 720.
k=1

Having computed all machine pair similarities, MCS coefficients for all machines can then be written
in a MCS matrix (Table 6.3) in which element a;; indicates the MCS coefficient between machines i and
j. For example, the MCS coefficient between machines M; and M, can be computed as follows:

min(ZSO,560)+min(360,0)+min(400,810)+min(150,0)+min(250,410)+min(760,400)
720+3604810+300+510 4760

MCS,v, = =0.3757

Once the MCS matrix is obtained, it can be normalized by dividing all elements in the matrix by the
largest element in that matrix (Table 6.4). In comparison with McAuley’s similarity coefficient [1972],
the results in Table 6.4 indicate that production volume and process sequence can make a significant
difference in the pairwise similarity between machines.

6.3.2 Parts Similarity Coefficient

For each pair of parts, the parts similarity coefficient is defined as:

M
PS; = PSijZmin(Nki, Nkj) Equation (6.3)
=

where PS; = the similarity between parts i and j
N,; = k™ element of MRV,
N,; = k™ element of MRV;
M = number of machines

MRV; is the machine required vector for part 7, which is defined as
MRV, = [N,;, N,, Nj;, ..., Niy» .., N,i Equation (6.4)

where k is k" machine and m is the total number of machines. N;is defined as follows:.

©2001 CRC Press LLC

TABLE 6.3 The Initial MCS M atrix between a Pair of Machines

Machines
M, M, M, M, M; M
M, 1 0.0723 0.5144 0.0434 0.4277 0.3324
M, 1 0.1040 0.1301 0.0723 0.2514
M, 1 0.0434 0.4277 0.3757
M, 1 0.0434 0.1300
M; SYMMETRIC 1 0.3324
M, 1
TABLE 6.4 The Normalized MCS Matrix
Machines
M, M, M, M, M; M
M, 1 0.1404 1 0.0843 0.8315 0.6461
M, 1 0.2022 0.2528 0.1405 0.4888
M, 1 0.0843 0.8315 0.7303
M, 1 0.0843 0.2528
M; SYMMETRIC 1 0.6461
M, 1

[Ny if parti meets machire

N .=
k if parti does not meet machine

1

N, shows the frequency that part i travels to and from machine k multiplied by the production volume
required for part i. For example, consider the problem of six machines and five parts shown in Table 6.1,
and lets assume that the machines have been sequenced in the order of [M,, M3, Mg, M;, M, Mg]; then
the MRV for part 1 is [0, 200, 200, 100, 0, 100].

The MCS matrix and the parts similarity coefficients discussed above are used as the tools to identify
the best routings of parts that yield the most independent cells. In addition, they are also used for
clustering the machines and the parts into machine groups and part families, respectively. Figure 6.4
depicts the three major stages in the cell formation process, using the concept similarity coefficients and
genetic algorithms (GA). The details of each stage are described in the following sections.

6.4 A Genetic Algorithm for Finding the Optimum Process
Routings for Parts

The aim of a cellular manufacturing system design is minimizing the cost of the system. It can be gained
by dividing the system into independent cells (machine groups and part families) to minimize the costs
of material handling and set-up. Accordingly, in a case where there are alternative process routings for
parts, it is therefore necessary to identify the combination of parts’ process routings, which minimizes
the number of intercellular movements, and consequently maximizes the number of independent cells.
It has been shown [Kazerooni, Luong, and Abhary, 1995a and 1995b] that maximum clusterability of
parts can be achieved by maximizing the number of zero elements (or number of elements below a
certain threshold value) in the MCS matrix. A genetic algorithm for this purpose is described below.

6.4.1 Chromosome Representation for Different Routings

Suppose a problem including n parts in which each part can have d different alternative routings where
1 £d < p, and p is the maximum number of alternative routings a part can possess. For such a problem

©2001 CRC Press LLC

A GA-based algorithm to find the optimum process routings for parts
Aim: Minimizing the number of intercellular movements of parts.
Input: Normalized MCS matrix.

Objective: Maximize the number of zerosin the MCS matrix.

Output: A MCS matrix which represents the selected process routings

for parts which yield the maximum number of independent cells.

A GA-based algorithm to cluster machinesinto machine groups

Aim: Clustering machines into machine groups.

Input: An MCS matrix for the selected process routings for parts.

Objective: Maximize the similarity of adjacent machines in the optimized
MCS matrix.

Output: A diagona MCS matrix that represents groups of machines.

I

A GA-based algorithm to cluster partsinto part families

Aim: Clustering partsinto part families.

Input: Diagonal MCS matrix and parts similarity coefficients.

Objective: Maximizing parts similarity coefficient of adjacent partsin
the diagonal MCS matrix.

Output: Fina machine-component matrix.

FIGURE 6.4 The three stages in the ll formation process.

Car Xz X a0 0 a0 o aneXan X ar)

FIGURE 6.5 Chromosome representation of parts process moutings.

the following chromosome representation shown in Figure 6.5 is used. In Figure 6.5, a; represents the
selected process routing for part i, and can be any number between 1 and p for part i. However, all parts
do not have the same number of routings and every number between 1 and p cannot be valid for all
parts. To overcome such a drawback, the following procedure is done to validate the value of all genes
regardless of the number of routings that the corresponding part has.

1. Set the counter i to 1.
2. Read p;, the maximum number of routings that part i can have.

©2001 CRC Press LLC

3. Read a;, the value of gene 1.

4. a,= .
m—p; ifa;2p;

5. If a; 2 p;, go to step 4 =, otherwise increment i by one.
6. If i > n (number of parts), stop, otherwise go to step 2.

With this procedure, for example if the value of the first gene in Figure 6.5 is 5 and there are only
three different alternative routings for part 1, then the gene value is changed to 2 (i.e., 5 — 3). Using the
above procedure, the gene values in the chromosome will be valid. It should be noted that if a part has
only one process plan, it should not participate in the chromosome, because its process routing has been
already specified.
6.4.1.1 The Crossover Operator

Since a gene in the chromosome can take any number between 1 and p, and repeated value for gene is
allowed, any normal crossover technique such as two-point crossover or multiple-point crossover can be
used in this algorithm.

6.4.1.2 The Fitness Function
The fitness function for this algorithm is to maximize the number of zeros in the MCS matrix.

6.4.1.3 The Convergence Policy

The entropic measure H;, as suggested by Grefenstette [1987], is used for this algorithm. H; in the current
population can be computed using the following equation:

P Dnij Dnij O

DX»
“28sH *gseH
H. =

! Log(p)

Equation (6.5)

where n;is the number of chromosomes in which process plan j is assigned to part i in the current
population, SP is the population size, and p is the maximum number of process plans for part i. The
divergence (H) is then calculated as

n
H= ZT’ Equation (6.6)

=1
where 7 is the number of parts.

6.4.1.4 The Algorithm

A genetic algorithm, which is described below, has been developed to find those parts’ routings, which
yield the maximum number of zero elements (or number of elements below a certain threshold value)
in the MCS matrix.

Step 1. Read the input data:

+ Number of parts.

+ Number of process plans for each part.

+ L, threshold value to count small values in MCS matrix.
Step 2. Initialize the problem:

+ Assign an integer number to each process plan for each part.

+ Initialize the value of GA control parameters, including population size, crossover probability,
low and high mutation probability, maximum generation, maximum number of process plans.

©2001 CRC Press LLC

Step 3. Initialize the first population:
+ Create the first population at random.

+ Decode the chromosome and modify those process plans, which are more than the number of
their corresponding maximum parts’ process plans.

+ For each member of the population, evaluate the fitness (i.e., the number of elements in the
MCS matrix that have a value equal to zero or below a certain limit).

Step 4. Generate new population while termination criterion not reached:

+ Select a new population from the old population according to a selection strategy. For this
study, the tournament strategy has shown good performance.
+ Apply two-cut-point crossover and low mutation with respect to their associated probability.
+ For each member of the population evaluate the fitness value (number of zero in the corre-
sponding MCS matrix).
Step 5. Measure the diversity of new population and applying high probability mutation if the pop-
ulation’s diversity passes the threshold value.
Step 6. Evaluate the fitness of new population’s members.
Step 7. Report the best chromosome.
Step 8. Go to Step 4, if maximum generation has not been reached.

6.5 A Genetic Algorithm to Cluster Machines
into Machine Groups

The second step in the cell formation process is to group the machines in machine groups. As previously
discussed, the objective here is to maximize the similarity of machines that belong to the same cell. A
genetic algorithm described below has been developed for this purpose.

6.5.1 Chromosome Representation

The path representation method is used for chromosome representation. For example, the following
sequence of machines [5—-1-7 -8 -9 — 4 — 6 — 2 — 3] is represented simply as (517 8 94 62 3). In
other words, machine 5 is the first and machine 3 is the last machine in the MCS matrix.

6.5.2 The Crossover Operator

A crossover technique called advanced edge recombination (AER) that has been developed based on the
traditional edge recombination (ER) crossover [Whitley et al., 1989] is used for this algorithm. The AER
crossover operator can be set up as follows:

1. For each machine m, make an edge list including all other machines connected to machine #1 in
at least one of the parent.

Select the first machine of parent p, to be the current machine m of the offspring.

Select the connected edges to the current machine .

Define a probability distribution over connected edges based on their similarity.

Select a new machine m from the previous m edge list, according to roulette wheel probability
distribution. If previous m edge list has no member, selection is done at random from all nonse-
lected machines.

6. Extract the current machine m from all edges list.

7. If the sequence is completed, stop, otherwise, go to step 3.

ANl o

©2001 CRC Press LLC

6.5.3 The Fitness Function

A cell is a set of machines with maximum similarity among the machines within the cell. Accordingly,
the following term should be maximized:

O
Max%z z zMCS %sub]ect to i# Equation (6.7)

i=1 j=1 c=1

where k is the number of machines in each cell, C is the number of cells, and MCS,; ; is the MCS
coefficient between machines 7 and j in cell c.

Since the number of cells and the number of machines within the cells are not known beforehand,
the search space for Equation 6.5 can become very large. To reduce the search space, which can signifi-
cantly affect the optimum result and computational time, consider a MCS matrix in which the rows (or
columns) are permuted to achieve maximum similarity between any two adjacent machines. The
machines with high similarity coefficients must therefore be placed close to each other. As a result, the
following maximization is employed instead of Equation 6.5 to obtain maximum similarity between
adjacent machines in the machine chain similarity matrix:

Eﬂmml O Om m-1

e
MMCS = Max%zz o il m@*@XZ],a,ﬂ,] % Equation (6.8)
i=1 j =1 i=1

where g;; is the MCS coefficient between machine i and machine j. Equation 6.7 is used as the fitness
functlon in this algorithm.

6.5.4 The Convergence Policy

The convergence policy used for this algorithm is the same as the policy used for finding the optimum
process routings (Equations 6.5 and 6.6). The only differences are that in this case n; is the number of
chromosomes in which machine j is assigned to gene 7 in the current population, and p is the number
of machines.

6.5.5 The Replacement Strategy

The replacement strategy is that if either the first or the last chromosome of the new generation is better
than the best of the old generation, then all the offsprings will form the new population. On the other
hand, if the first and the last chromosome of the new population are not as fit as the best chromosome
of the previous population, then the best chromosome of the previous population will form the next
generation.

6.5.6 The Algorithm

Step 1. Read the input data.

Step 2. Initialize the GA control parameters.

Step 3. Set the generation counter, G; = 1.

Step 4. Initialize the first population at random.

Step 5. Report the situation of the first population, including maximum, minimum, and average fitness
value of the population.

Step 6. Increment the generation counter, G, = G, + 1.

Step 7. While the mating pool is not full:
Step 7.1 Select two chromosomes using tournament strategy.

©2001 CRC Press LLC

Step 7.2 Crossover the parent and generate corresponding offspring considering crossover
probability.
Step 7.3 Apply the mutation to all genes of offspring considering mutation probability.
Step 7.4 Evaluate the population diversity; if it is less than threshold value, apply the high
value mutation probability.
Step 7.5 Evaluate the fitness of new generated chromosomes.
Step 8. Replace the best chromosome of the old population with the first and last newly generated
chromosome according to the replacement strategy.
Step 9. Report the statistical situation of the new generation.
Step 10. Record the chromosome and its associated fitness.
Step 11. Go to step 6 if the termination criteria are not met.

6.6 A Genetic Algorithm to Cluster Parts into Part Families

The third step in the process is the clustering of machines and components into a machine—component
matrix. The objective function for this genetic algorithm is to maximize the similarity of adjacent parts
in the machine—component matrix in which machines have been sequenced according to MCS coefficients
as described in the previous section. This step will produce a machine-component matrix by which the
cells, machine groups, and part families can be recognized.

6.6.1 Chromosome Representation

The path representation technique is used to represent the sequence of parts in the final machine—com-
ponent matrix. For example, a sequence of [5—-1—-7—-8—-9—-4—-6—2— 3] is represented as (517 8
9462 3). In other words, part 5 is the first and part 3 is the last part in the machine-component matrix.

6.6.2 The Crossover Operator

The AER crossover technique described in the previous section is also used for this genetic algorithm.

6.6.3 The Fitness Function

The objective here is to rearrange parts to yield maximum parts similarity coefficients for adjacent parts
in the machine—component matrix. This can be done by using the following equation:

OM N-1 O
Maximize (APS) = Maximize %Z Z(PSI»’].) Equation (6.9)
=1 %=1

where APS is the sum of any two adjacent parts’ similarity coefficients in the machine—component matrix,
and PS;; is as defined by Equation 6.3.

6.6.4 The Convergence Policy

The convergence policy used for this algorithm is the same as the policy used for finding the optimum
process routings (Equations 6.5 and 6.6). The only differences are that in this case n; is the number of
chromosomes in which part j is assigned to gene i in the current population, and p is the number of parts.

6.6.5 The Replacement Strategy

The replacement strategy for this algorithm is the same as the strategy used for machine grouping
previously described.

©2001 CRC Press LLC

6.6.6 The Algorithm

Step 1. Read the input data.

Step 2. Enter the initial value for the GA control parameters.

Step 3. Set the generation counter, G; = 1.

Step 4. Initialize the first population at random.

Step 5. Report the situation of the first population, including maximum, minimum, and average fitness
value of the population.

Step 6. Increment the generation counter, G, = G, + 1.

Step 7. While the mating pool is not full:
Step 7.1 Select two chromosomes using tournament strategy.
Step 7.2 Crossover the parent and generate corresponding offspring considering crossover

probability.
Step 7.3 Apply the mutation to all genes of offspring considering mutation probability.
Step 7.4 Evaluate the population diversity; if it is less than threshold value, apply the high
value mutation probability.

Step 7.5 Evaluate the fitness of new generated chromosomes.

Step 8. Replace the best chromosome of the old population with the first and last newly generated
chromosome according to the replacement strategy.

Step 9. Report the statistical situation of new generation.

Step 10. Record the best chromosome and its associated fitness.
Step 11. Go to step 6, if the termination criteria are not met.

6.7 Layout Design

6.7.1 Machine Duplications

Layout design, which includes both intracellular and intercellular layout, is the next step after machines
have been clustered into machine groups and parts in part families. This step often involves the duplication
of some machines. Machine duplications can be classified into two categories: compulsory duplication
and economic duplication. Compulsory duplication refers to those cases where the processing time carried
out on a particular machine exceeds the availability of the machine. In those cases the number of machines
to be duplicated can be easily calculated based on the required processing time and set-up time. Economic
duplication of machines, on the other hand, aims to reduce intercellular movements of parts, resulting
in a reduction in the total material handling cost.

In most cases of cell formation, it is not always possible to have perfectly independent cells. This is
due to some exceptional parts that need one or more machines outside the cells to which they belong.
The machines associated with these exceptional parts are bottleneck machines, which become the source
of intercellular moves. To eliminate intercellular moves, one or more machines need to be duplicated in
one or more appropriate cells. However, machine duplication is often expensive, and is justified only if
the savings achieved by the reduction in intercell movements outweighs the initial expenditure for
purchasing the extra machines. It is therefore necessary to correctly identify those machines whose
duplications are feasible economic options. Finally, it should be noted that layout design could not be
considered as a hierarchical process because the duplication of machines will change the number of
machines in the system, and therefore will alter the layout design.

6.7.2 Methodology for Layout Design

The objective of the layout design can be mathematically expressed as follows:

©2001 CRC Press LLC

Minimize (mh_cost + dup_cost) Equation (6.10)

where mh_cost = material handling cost
dup_cost = duplication cost

The iterative procedure for layout design and machine duplication process is as follows:

Step 1. Determine the machine groups and the part families.
Step 2. Calculate the number of machines of each type (compulsory duplication).
Step 3. For the current number of machines, optimize the machines’ layout with respect to system
handling costs, using the genetic algorithm described in Section 6.8.
Step 4. Evaluate the system cost (Sc) including material handling cost and machine duplication cost.
Step 5. Determine the bottleneck machines.
Step 6. Duplicate the bottleneck machine, which is required by the most number of machines.
Step 7. For the current number of machines, optimize the machines’ layout with respect to system
handling costs, using the genetic algorithm described in Section 6.8.
Step 8. Evaluate the system cost including material handling cost and machine duplication cost (Scy,,,)-
Step 9 Lf Scpy,, is less than Scyy; the bottleneck machine is duplicated
i Eptherwise the bottleneck machine cannot be duplicated
Step 10. If there are any other bottleneck machines go to step 5.
Step 11. The layout is the final layout.

6.8 A Genetic Algorithm for Layout Optimization

This section presents a genetic algorithm for the optimization of layout design for a given cell composition.

6.8.1 The Chromosome Representation

In this algorithm, a factory site is divided into k grids (positions) where k = m (m = number of machines).
This enables the calculation of geometric distances between machines. In this representation, the length
of the chromosome is equal to the number of machines. The location of a gene in the chromosome
indicates the position of a machine on the grids, while the value of the gene indicates the machine. As
a result, the chromosome consists of a set of integer string; each indicates a machine number and its
position number. For example, Figure 6.6 shows a chromosome representation for nine machines and
its corresponding positions on the grids. It is worth mentioning that, if the number of positions is more
than the number of machines, some dummy machines are used to fill the chromosome. For example, if
a site comprises of 16 positions and there are only 14 machines, then machines 15 and 16 are created as
dummy machines.

6.8.2 The Crossover Operator

The AER crossover technique previously described is also used for this genetic algorithm. However, in
this algorithm the string ordering has a two-dimensional aspect, and accordingly any gene’s neighborhood
is not restricted to one previous gene and one next gene. It can be seen from Figure 6.7 that the
neighborhood of genes depends on their position in the site. The AER crossover operator can be set up
as follows:

1. For each machine m, make an edge list including all other machines connected to machine m in
at least one of the parent.

2. Select the first machine of parent p, to be the current machine m of the offspring.

Select the connected edges to the current machine m.

4. Define a probability distribution over connected edges based on their similarity.

w

©2001 CRC Press LLC

Gene 1 2 3 4 5 6 7 8 9
position
Gene 9 3 4 2 7 5 8 6 1
value

3[4
2| 7
8161

FIGURE 6.6 Chromosome representation (top) and its corresponding int erpretation (bottom).

|:| Site position
I:' Neighbors

FIGURE 6.7 Genes neighborhood for two-dimensional problems.

5. Select a new machine m from the previous m edge list, according to roulette wheel probability
distribution. If the previous m edge list has no member, selection is done at random from all
nonselected machines.

6. Extract the current machine m from all edges list.

7. If the sequence is completed, stop, otherwise, go to step 3.

6.8.3 The Fitness Function

The transportation cost for a cellular manufacturing system can be defined as:

=

nf p,

TTC=Z %

M
Zdl" xCTlfj XYPV, xXZj Equation (6.11)
n=l i=1 [=1 j

]
=1

—_
—

where CTl]l = the unit transportation cost for part i to be moved from machine / to machine j per unit

of distance ($/m)
= is a safety factor in this genetic algorithm, for placing the machines, belong to the same

cell, in adjacent positions

1
X

©2001 CRC Press LLC

(b1 if part i needs machine j after meeting machine ! in different cells
X 11] =[if partineeds machine j after meeting machine / in the same cell

otherwise

TTC = total transportation cost ($/year)
dy; = the distance between machine j and machine / (m)
YPV; = the production volume required for part i (unit/year)

pf, = number of parts in n'" part family
nf = number of part families

The facility layout problem aims at minimizing the cost of transportation between the various machines
in different cells. Since the fitness function in a genetic algorithm is a measure of goodness of the solution
to the objective function, the following fitness function, which is an inverse of the TTC, is employed:

6.8.4

Fitness = TTC -Log (TTC) Equation (6.12)

The Replacement Strategy

The replacement strategy for this algorithm is the same as the strategy used for machine grouping
previously described.

6.8.5
Step 1.
Step 2.
Step 3.
Step 4.
Step 5.

Step 6.
Step 7.

Step 8.

Step 9.
Step 10.
Step 11.

The Algorithm

Read input data, including the number of machines, parts, cells, number of machines and
parts in each cell, the processing routes and production volume of each part.

Enter GA parameters (including crossover and mutation probability, population size, number
of generation, and seed number).

Set the generation counter, G; = 1.

Initialize the first population at random.

Report the situation of the first population, including maximum, minimum, and average fitness
value of the population.

Increment the generation counter, G; = G, + 1.

While the mating pool is not full:

A. Select two chromosomes using tournament or roulette-wheel strategy.

B. Crossover the parent and generate corresponding offspring considering crossover probability.
C. Apply the mutation to all genes of offspring considering mutation probability.

D. Evaluate the fitness of the new generated chromosomes.

Replace the best chromosome of the old population with the first and last newly generated
chromosomes according to the replacement strategy.

Report the statistical situation of the new generation.

Record the best chromosome and its associated fitness.

Go to step 6 if the termination criteria are not met.

6.9 A Case Study

This case

6.9.1

It can be

study consists of 30 parts and 17 machines with the relevant production data shown in Table 6.5.

Finding the Best Alternative Routings

seen from Table 6.5 that there are alternative routings for several parts. The first step toward a

cellular manufacturing system design is to select a process plan for each part. This can be done using

©2001 C

RC Press LLC

TABLE 6.5 Production Data for a Case Study That Includes 30 Parts and 17 Machines

Part PV.x Routing Part PV.x Routing
No. 100 No. Process Sequences No. 100 No. Process Sequences
1 110 1 11 6 13 15 4 14 125 1 4 11 6 13 1210
2 6 13 1 8 2 10 5 9 4 12 6
3 14 7 3 15 2 15 100 1 1210 5 9
2 95 1 11 13 12 6 10 2 8 1 5 6 11
2 11 15 13 12 3 4 12 6 13 10
3 100 1 4 15 12 6 4 10 5 9 4 3
2 17 1 9 16 105 1 7 3 2 15
3 6 13 1 8 17 95 1 14 7 3 15 2 11
95 1 11 6 13 12 18 105 1 1 5 6 11
5 130 1 11 6 13 12 10 2 14 7 3 15 2
2 8 1 5 6 11 19 110 1 11 6 13 1210
6 130 1 11 6 13 4 12 2 8 1 5 6 11
2 11 15 13 12 20 100 1 11 12 5 7 8
3 14 7 13 15 2 2 17 1 9
4 11 15 5 6 13 21 100 1 11 6 13 12
7 130 1 8 1 5 6 2 1210 5 9
2 11 15 5 6 22 100 1 8 4 16 5
3 8 5 4 2 12 10 5 9
8 80 1 16 8 5 4 23 90 1 17 1 9
130 1 14 7 3 15 2 2 1210 5 9
2 8 1 5 6 9 24 100 1 14 3 15 2
10 105 1 8 1 5 6 11 25 90 1 17 1 8 9
2 11 6 13 4 12 2 11 15 13 12
3 11 15 13 12 3 1 5 6 11
4 11 6 13 12 10 26 100 1 10 5 9 13 12
11 115 1 16 8 5 4 2 14 7 3 15 2
2 8 1 5 6 11 27 90 1 11 6 12 10
12 120 1 11 12 5 7 2 5 9 13 12
2 17 9 28 90 1 11 6 13 1210
13 105 1 14 7 3 15 2 29 110 1 14 7 15 2
2 13 12 10 5 9 2 11 12 5 7 8
30 120 1 5 16 8

TABLE 6.6 The Best Alternative Routings for Each Part

Part No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Routing No. 3 1 2 1 1 3 3 1 1 4 1 2 1 1 3
Part No. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Routing No. 1 1 2 1 2 1 1 1 1 1 2 1 1 1 1

the genetic algorithm discussed previously. The GA simulation is shown in Figure 6.8, and the corre-
sponding optimum routing for each part is shown in Table 6.6. The MCS matrix for the selected process
routings is shown in Table 6.7.

6.9.2 Machine Grouping

The next step in the cell formation process is to group machines into a diagonal MCS matrix using
genetic algorithm as previously discussed. The objective here is to maximize the MCS coefficients of
adjacent machines. The simulation result for the genetic algorithm can be seen in Figure 6.9, and the
corresponding diagonal MCS matrix is shown in Table 6.8.

©2001 CRC Press LLC

o Optimum Alternative Routings
=
1001
4
Q
=
=
=
80 T
60 7
B
401 Y
A l
,,,/ o]
20 1
— Max
————— Min
Generation No. Average
0 T T T T T T T T T T
- = I~ I = a

FIGURE 6.8 The GA simulation to find parts’ optimum process routings.

Diagonalization of MCS matrix

-

6 1
‘ w
(2 — Max
@ .
E -
Generation No. Average
4 T T T T T T T T T
— — — - = -
— (o] o A 0

FIGURE 6.9 The GA simulation for machine grouping.

©2001 CRC Press LLC

6.9.3 Clustering Parts into Part Families Using Parts’ Similarity Coefficients

After the sequencing of machines as indicated in the diagonal MCS matrix, parts are then rearranged to
produce maximum parts’ similarity between any adjacent parts in the final machine-component matrix
using the genetic algorithm. The GA simulation result is depicted in Figure 6.10, and the final
machine—component matrix can be seen in Table 6.9. The results of the cell formation process are
summarized in Table 6.10.

6.9.4 Layout Design

Figure 6.11 shows the factory site for positioning the 17 machines in this case study. The site has been
divided into 24 positions to cater to compulsory and economic machine duplications. In this case, there
is no need for compulsory machine duplication, and the layout of the 17 machines can be optimized
using the genetic algorithm previously described. The resultant layout is shown in Figure 6.12. This result
has been achieved after 155 generations using a population size of 120. The material handling cost for
this layout is $12,765 per year.

The next step is to consider machine duplication in order to minimize the number of intercellular
movements (economic machine duplication). Table 6.11 indicates the number of intercellular movements
due to each bottleneck machine. It can be seen from this table that machine 13 creates the most number
of intercellular movements. Therefore, this should be the first machine to be considered for duplication
in cell 4. There is now a total of 18 machines (instead of 17 machines), and the layout for these 18
machines needs to be optimized again, using the same GA as in the case of 17 machines. Figure 6.13
shows the layout for 18 machines. The difference in material handling cost between this layout and the
previous layout is $1845 per year, which is $580 more than duplication cost of machine 13. As a result,
the duplication of machine 13 is justified. Next, machine 4 is selected to be duplicated in cell 3, resulting
in a total of 19 machines. The genetic algorithm is run again, and the optimum layout for these 19
machines is shown in Figure 6.14. The difference in material handling cost between this layout and the
previous layout (for 18 machines) is $956, which is $193 less than the duplication cost of machine 4. As
a result, this duplication is not economically justified. For the same reason, machines 11 and 8 cannot
be economically duplicated. Therefore, the final layout design is as indicated in Figure 6.13, with a total
of 18 machines.

6.10 Conclusion

This chapter has presented an integrated methodology cellular manufacturing system design that covers
both the cell formation process and cellular layout. The methodology is based on a new concept of
similarity coefficients, and the use of genetic algorithms as an optimization tool. In comparison with
previous works, this methodology takes into account in the design process all relevant production data
such process routings and production volumes of parts. The issue of the interaction between layout
procedure and machine duplication to justify economic machine duplications is also addressed.

The GA-based optimization tool used in this work is not only robust and able to handle large-scale problems,
but also parallel in nature, and hence can reduce computational time significantly. Another advantage of the
genetic algorithm is that it is independent of the objective function and the number constraints.

Defining Terms

Bottleneck machine: A machine that is required by parts from different part families.

Clustering procedure: A procedure for clustering machines into machine groups and parts into part
families.

Exceptional element: A part that needs one or more machines from different cells in its process routing.

Intercell layout: Arrangement of machines for the whole cellular manufacturing system, which may
include many machine cells.

Intracell layout: Arrangement of machines within a cell.

©2001 CRC Press LLC

TABLE 6.7 The MCS Matrix for the Selected Process Routings

Machines

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 0 0 0.004 0.004 0 0 0.016 0.073 0 0 0 0 0 0 0.004 0.073
2 0 1 0.194 0.01 0 0.015 0.244 0 0 0.015 0.036 0.015 0.038 0.225 0.244 0 0
3 0 0.194 1 0.004 0 0.009 0.194 0 0 0.009 0.03 0.009 0.032 0.189 0.194 0 0
4 0.004 0.01 0.004 1 0.094 0.057 0.01 0.094 0.004 0.057 0.053 0.057 0.057 0.029 0.01 0.076 0.004
5 0.004 0 0 0.094 1 0.01 0 0.094 0.004 0.01 0.006 0.01 0.01 0 0 0.076 0.004
6 0 0.015 0.009 0.057 0.01 1 0.015 0.01 0 0.199 0.212 0.235 0.218 0.036 0.015 0.01 0
7 0 0.244 0.194 0.01 0 0.015 1 0 0 0.015 0.036 0.015 0.038 0.225 0.244 0 0
8 0.016 0 0 0.094 0.094 0.01 0 1 0.016 0.01 0.006 0.01 0.01 0 0 0.076 0.016
9 0.073 0 0 0.004 0.004 0 0 0.016 1 0 0 0 0 0 0 0.004 0.073
10 0 0.015 0.009 0.057 0.01 0.199 0.015 0.01 0 1 0.19 0.199 0.195 0.36 0.015 0.01 0
11 0 0.036 0.03 0.053 0.006 0.212 0.036 0.006 0 0.19 1 0.212 0.225 0.058 0.036 0.006 0
12 0 0.015 0.009 0.057 0.01 0.235 0.015 0.01 0 0.199 0.212 1 0.218 0.036 0.015 0.01 0
13 0 0.038 0.032 0.057 0.01 0.218 0.038 0.01 0 0.195 0.225 0.218 1 0.06 0.038 0.01 0
14 0 0.225 0.189 0.029 0 0.036 0.225 0 0 0.036 0.058 0.036 0.06 1 0.225 0 0
15 0 0.244 0.194 0.01 0 0.015 0.244 0 0 0.015 0.036 0.015 0.038 0.225 1 0 0
16 0.004 0 0 0.076 0.076 0.01 0 0.076 0.004 0.01 0.006 0.01 0.01 0 0 1 0.004
17 0.073 0 0 0.004 0.004 0 0 0.016 0.073 0 0 0 0 0 0 0.004 1

©2001 CRC Press LLC

TABLE 6.8 The Diagnonal MCS M atrix for Machine Grouping

Machines

17 9 1 16 8 5 4 10 12 6 13 11 14 15 2 7 3
17 1 0.0727 0.0727 0.0041 0.0165 0.0041 0.0041
9 0.0727 1 0.0727 0.0041 0.0165 0.0041 0.0041
1 0.0727 0.0727 1 0.0041 0.0165 0.0041 0.0041
16 0.0041 0.0041 0.0041 1 0.0759 0.0759 0.0759 0.0103 0.0103 0.0103 0.0103 0.0057
8 0.0165 0.0165 0.0165 0.0759 1 0.0938 0.0938 0.0103 0.0103 0.0103 0.0103 0.0057
5 0.0041 0.0041 0.0041 0.0759 0.0938 1 0.0938 0.0103 0.0103 0.0103 0.0103 0.0057
4 0.0041 0.0041 0.0041 0.0759 0.0938 0.0938 1 0.0572 0.0572 0.0572 0.0572 0.0526 0.029 0.0103 0.0103 0.0103 0.0043
10 0.0103 0.0103 0.0103 0.0572 1 0.1992 0.1992 0.1951 0.1901 0.0364 0.0146 0.0146 0.0146 0.0087
12 0.0103 0.0103 0.0103 0.0572 0.1992 1 0.2349 0.2184 0.212 0.0364 0.0146 0.0146 0.0146 0.0087
6 0.0103 0.0103 0.0103 0.0572 0.1992 0.2349 1 0.2184 0.212 0.0364 0.0146 0.0146 0.0146 0.0087
13 0.0103 0.0103 0.0103 0.0572 0.1951 0.2184 0.2184 1 0.2253 0.0602 0.0384 0.0384 0.0384 0.0325
11 0.0057 0.0057 0.0057 0.0526 0.1901 0.212 0.212 0.2253 1 0.0581 0.0364 0.0364 0.0364 0.0304
14 0.029 0.0364 0.0364 0.0364 0.0602 0.0581 1 0.2246 0.2246 0.2246 0.1892
15 0.0103 0.0146 0.0146 0.0146 0.0384 0.0364 0.2246 1 0.2438 0.2438 0.194
2 0.0103 0.0146 0.0146 0.0146 0.0384 0.0364 0.2246 0.2438 1 0.2438 0.194
7 0.0103 0.0146 0.0146 0.0146 0.0384 0.0364 0.2246 0.2438 0.2438 1 0.194
3 0.0043 0.0087 0.0087 0.0087 0.0325 0.0304 0.1892 0.194 0.194 0.194 1

©2001 CRC Press LLC

TABLE 6.9 The Final M achine—~Component Matrix

Parts

23 3 12 20 25 8 7 1 30 22 27 28 4 21 10 19 5 14 15 2 29 6 1 9 13 18 24 26 17 16
17 90 100 120 100 90
9 90 100 120 100 90
1 180 200 240 200 180
16 80 115 240 200
8 180 160 130 230 240 100
5 160 260 230 120 100

80 130 115 120 200 125 100

10 90 90 105 110 130 125 100 95
12 180 180 95 100 210 220 260 250 200 190
6 180 180 190 200 210 220 260 250 200 190
13 180 180 190 200 210 220 260 250 200 190 260
11 90 90 95 100 105 110 130 250 95 95
14 190 110 130 110 130 105 105 100 100 95
15 220 260 220 260 210 210 200 200 190 105
2 110 130 110 130 105 105 100 100 190 210
7 220 260 220 260 210 210 200 200 190 105
3 220 260 210 210 200 200 190 210

©2001 CRC Press LLC

TABLE 6.10 Machine Groups and Associated Part Families for the Case Study

Cell No. Machines Parts

1 14,2,15,7,3 29,13,24,9,1,26,18,17,16,6
2 11,6,12,13,10 21,4,27,2,10,5,28,14,15
3 16,8,5,4 7,22,11,30,8

4 17,1,9 25,20,12,23,3

maximizing adjacent parts' similarity in machine-
17000 component matrix
15000
%)
=
£ 13000
g
£
= 110001
9000 o/
[—Max
i --==-Min
7000 A—r— [Average
- = & 2 = @ T =
Generation No.

FIGURE 6.10 The GA simulation for maximizing a djacent parts’ similarity in the machine—part matrix.

FIGURE 6.11 The site of a factory divided into 24 positions of equal size.

©2001 CRC Press LLC

| 17 1 8 16 12 10
9 5 4 11 6
14 7 13

2 15 3

FIGURE 6.12 The first layout design with no machine duplicat ion.

17 1 9 [10

14 15 2 12 13
7 3 5 4 11 6

13 8 16

FIGURE 6.13 The layout for 18 machines, after the duplication of machine 13 in cell 4.

17 1 9 10 13
14 15 2 12 6
7 3 5 4 11 4
13 8 16

FIGURE 6.14 The new layout after duplication of machine 4 in cell 3, giving a total of 19 machines.

TABLE 6.11 Number of Intercellular M ovements Created by the Bottleneck Machines

Machine no. 8 4 13 11

From cell no. 2 2 3

Duplicated in cell no. 1 3 4

For part no. 25 5,14 6 17

Number of intercellular movements 180 225 260 95
References

Adil, G.K,, D. Rajamani, and D. Strong, 1996, Cell Formation Considering Alternate Routings, Interna-
tional Journal of Production Research, vol. 34, no. 5, pp. 1361-1380.

Grefenstette, J.J., 1987, Incorporating Problem-Specific Knowledge into Genetic Algorithms in Genetic
Algorithms and Simulated Annealing, Davis, L. (Ed.), Morgan Kaufman.

Kazerooni, M., L.H.S. Luong, and K. Abhary, 1995a, Cell Formation Using Genetic Algorithms, Interna-
tional Journal of Flexible Automation and Integrated Manufacturing, vol. 3, pp. 219-235.

Kazerooni, M., L.H.S. Luong, and K. Abhary, 1995b, Machine Chain Similarity, A New Approach to Cell
Formation, Proceedings of the 11th International Conference on Computer Aided Production Engi-
neering, London, pp. 97-105.

Kusiak, A., W. Boe, and C.H. Cheng, 1991, Designing Cellular Manufacturing Systems: Branch-and-
Bound Approaches, IIE Transaction, vol. 25, no. 4, pp. 46-56.

©2001 CRC Press LLC

Kusiak, A. and C.H. Cheng, 1991, Group Technology: Analysis of Selected Models and Algorithms, PED-
Design, Analysis, and Control of Manufacturing Cells ASME, vol. 53, pp. 99-114.

Lee, S., C. Zhang, and H.P. Wang, 1991, Fuzzy Set-Based Procedures for Machine Cell Formation, PED-
Design, Analysis, and Control of Manufacturing Cells ASME, vol. 53, pp. 31-45.

Luong, L.H.S., 1993, A Cellular Similarity Coefficient Algorithm for the Design of Manufacturing Cells,
International Journal of Production Research, vol. 31, no. 8, pp. 1757-1766.

McAuley, J., 1972, Machine Grouping for Efficient Production, The Production Engineer, vol. 51, no. 2,
pp. 53-57.

Murthy, C.V.R. and G. Srinivasan, 1995, Fractional Cell Formation on Group Technology, International
Journal of Production Research, vol. 33, no. 5, pp. 1323-1337.

Waghodekar, P.H. and S. Sahu, 1983, Group Technology: A Research Bibliography, OPSEARCH, vol. 20,
no. 4, pp. 225-249.

Wemmerlov, U. and N.L. Hyer, 1986, Procedures for the Part Family/Machine Group Identification
Problem in Cellular Manufacturing, Journal of Operations Management, vol. 6, no. 2, pp. 125-147.

Wemmerlov, U. and N.L. Hyer, 1987, Research Issues in Cellular Manufacturing, International Journal of
Production Research, vol. 25, no. 3, pp. 413-431.

Whitley, D., T. Strakweather, and D.A. Fuquay, 1989, Scheduling Problems and Traveling Salesman: The
Genetic Edge Recombination, Proceedings of the Third International Conference on Genetic Algo-
rithms, Los Altos, CA, pp. 133-140.

For Further Information

A more complete discussion on genetic algorithms, including extensions and related topics, can be found
in The Handbook of Genetic Algorithms by L. Davis, Van Nostrand Reinhold, New York, 1991 and
Genetic Algorithms + Data Structure = Evolution Programs by Z. Michalewicz, Springer-Verlag, New
York, 1994.

The International Journal of Production Research frequently publishes articles on advances in cellular
manufacturing systems.

©2001 CRC Press LLC

Chang, C. Alec et a " Intelligent Design Retrieving Systems Using Neural Networks®
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al

Boca Raton: CRC Press LLC,2001

Intelligent Design
Retrieving Systems
Using Neural Networks

7.1 Introduction

C. Alec Chang 7.2 Characteristics of Intelligent Design Retrieval
University of Missouri ~ Columbia 7.3 Structure of an Intelligent System
Chieh-Yuan Tsai 7.4 Performing Fuzzy Association

Yuan-Ze University 7.5 Implementation Example

7.1 Introduction

Design is a process of generating a description of a set of methods that satisfy all requirements. Generally
speaking, a design process model consists of the following four major activities: analysis of a problem,
conceptual design, embodiment design, and detailing design. Among these, the conceptual design stage
is considered a higher level design phase, which requires more creativity, imagination, intuition, and
knowledge than detail design stages. Conceptual design is also the phase where the most important
decisions are made, and where engineering science, practical knowledge, production methods, and
commercial aspects are brought together. During conceptual design, designers must be aware of the
component structures, such as important geometric features and technical attributes that match a par-
ticular set of functions with new design tasks.

Several disciplines, such as variant design, analogical design, and case-based design, have been explored
to computerize the procedure of conceptual design in CAD systems. These techniques follow similar
problem-solving paradigms that support retrieval of an existing design specification for the purpose of
adaptation. In order to identify similar existing designs, the development of an efficient design retrieval
mechanism is of major concern. Design retrieval mechanisms may range from manual search to com-
puterized identification systems based on tailored criteria such as targeted features. Once a similar design
is identified, a number of techniques may be employed to adapt this design based upon current design
goals and constraints. After adapting the retrieved design, a new but similar artifact can be created.

7.1.1 Information Retrieval Systems vs. Design Retrieving Systems

An information retrieval system is a system that is capable of storage, retrieval, and maintenance of
information. Major problems have been found in employing traditional information retrieval methods
for component design retrieval. First, these systems focus on the processing of textual sources. This type
of design information would be hard to describe using traditional textual data.

Another major problem with using traditional information retrieving methods is the use of search
algorithms such as Boolean logic. In a typical Boolean retrieval process, all matched items are returned,

©2001 CRC Press LLC

and all nonmatched documents are rejected. The component design process is an associative activity
through which “designers retrieve previous designs with similar attributes in memory,” not designs with
identical features for a target component.

7.1.2 Group Technology-Based Indexing

Group technology (GT) related systems such as Optiz codes, MICLASS, DCLASS, KK-3, etc., and other
tailored approaches are the most widely used indexing methods for components in industry. While these
methods are suitable as a general search mechanism for an existing component in a database, they suffer
critical drawbacks when they are used as retrieval indexes in the conceptual design task for new components.

Lately, several methods have been developed to fulfill the needs for component design such as indexing
by skeleton, by material, by operation, or by manufacturing process. However, indexing numbers chosen
for these design retrieving systems must be redefined again and again due to fixed GT codes for part
description, and many similar reference designs are still missed. In the context of GT, items to be
associated through similarity are not properly defined.

7.1.3 Other Design Indexing

Several researchers also experiment with image-bitmap-based indexing methods. Back-propagation neu-
ral networks have been used as an associative memory to search corresponding bitmaps for conceptual
designs. Adaptive resonance theory (ART) networks are also explored for the creation of part families in
design tasks (Kumara and Kamarthi, 1992). Other researchers also propose the use of neural networks
with bitmaps for the retrieval of engineering designs (Smith et al., 1997). However, these approaches are
not proper tools for conceptual design tasks because bitmaps are not available without a prototype design,
and a prototype design is the result of a conceptual design. The limitations in hidden line representation
as well as internal features also make them difficult to use in practice.

7.1.4 Feature-Based Modeling

A part feature is a parameter set that has specified meanings to manufacturing and design engineers.
Using proper classification schemes, part features can represent form features, tolerance features, assembly
features, functional features, or material features. Comprehensive reviews on feature-based modeling and
feature recognition methods can be found in recent papers (Allada, 1995). There are important works
related to feature mapping processes that transform initial feature models into a product model (Chen,
1989; Case et al., 1994; Lim et al., 1995; Perng and Chang, 1997; Lee and Kim, 1998; and Tseng, 1999).

7.2 Characteristics of Intelligent Design Retrieval

There is no doubt that design is one of the most interesting, complicated, and challenging problem-
solving activities that human beings could ever encounter. Design is a highly knowledge-intensive area.
Most of the practical problems we face in design are either too complex or too ill defined to analyze
using conventional approaches. For the conceptual design stage of industrial components, we urgently
need a higher level ability that maps processes from design requirements and constraints to solution
spaces. Thus, an intelligent design retrieving system should have the characteristics detailed in the
following subsections.

7.2.1 Retrieving “Similar” Designs Instead of Identical Designs

Most designers start the conceptual design process by referring to similar designs that have been developed
in the past. Through the process of association to similar designs, designers selectively retrieve reference
designs, defined as existing designs that have similar geometric features and technological attributes.

©2001 CRC Press LLC

They then modify these referenced designs into a desired design. Designers also get inspiration from the
relevant design information.

7.2.2 Determining the Extent of Reference Corresponding to Similarity
Measures

Design tasks comprise a mixture of complicated synthesis and analysis activities that are not easily
modeled in terms of clear mathematical functions. Defining a clear mathematical formula or algorithm
to automate design processes could be impractical. Thus, methods that retrieve “the” design are not
compatible with conceptual design tasks.

Moreover, features of a conceptual design can be scattered throughout many past designs. Normally
designers would start to observe a few very similar designs, then expand the number of references until
the usefulness of design references diminishes. An intelligent design retrieving system should be able to
facilitate the ability to change the number of references during conceptual design processes.

7.2.3 Relating to Manufacturing Processes

An integrated system for CAD/CAPP/CAM includes modules of object indexing, database structure,
design retrieving, graphic component, design formation, analysis and refinement, generation for process
plan, and finally, process codes to be downloaded. Most computer-aided design (CAD) systems are
concentrated on the integration of advanced geometric modeling tools and methods. These CAD systems
are mainly for detailed design rather than conceptual design. Their linking with the next process planning
stage is still difficult. An intelligent design retrieving system should aim toward a natural linking of the
next process planning and manufacturing stages.

7.2.4 Conducting Retrieval Tasks with a Certain Degree of Incomplete Query
Input

Currently, users are required to specify initial design requirements completely and consistently in the
design process utilization CAD systems. During a conceptual design stage, designers usually do not know
all required features. Thus a design retrieving system that relies on complete query input would not be
practical. It is necessary to provide designers with a computer assistant design system that can operate
like human association tasks, using incomplete queries to come up with creative solutions for the
conceptual design tasks.

7.3 Structure of an Intelligent System

There have been some studies to facilitate design associative memory, such as case-based reasoning,
artificial neural networks, and fuzzy set theory. As early as two decades ago, Minsky at MIT proposed
the use of frame notion to associate knowledge, procedural routines, default contents, and structured
clusters of facts. Researchers have indicated that stories and events can be represented in memory by
their underlying thematic structures and then used for understanding new unfamiliar problems.

CASECAD is a design assistance system based on an integration of case-based reasoning (CBR) and
computer-aided design (CAD) techniques (Maher and Balachandran, 1994). A hybrid intelligent design
retrieval and packaging system is proposed utilizing fuzzy associative memory with back-propagation
neural networks and adaptive resonance theory (Bahrami et al., 1995). Lin and Chang (1996) combine
fuzzy set theory and back-propagation neural networks to deal with uncertainty in progressive die designs.

Many of these presented methods do not integrate associative memory with manufacturing feature-
based methods. Others still use GT-based features as their indexing methods and suffer the drawbacks
inherited from GT systems. These systems try to use a branching idea to fulfill the need for “similarity”
queries. This approach is not flexible enough to meet the need in conceptual design tasks.

©2001 CRC Press LLC

7.3.1 Associative Memory for Intelligent Design Retrieval

According to these recent experiences, the fuzzy ART neural network can be adopted as a design associative
memory in our intelligent system. This associative memory is constructed by feeding all design cases
from a database into fuzzy ART. After the memory has been built up, the query of a conceptual design
is input for searching similar reference designs in an associative way. By adjusting the similarity parameter
of a fuzzy ART, designers can retrieve reference designs with the desired similarity level. Through the
process of computerized design associated memory, designers can selectively retrieve qualified designs
from an immense number of existing designs.

7.3.2 Design Representation and Indexing

Using a DSG or CSG indexing scheme, a raw material with minimum covered dimension conducts
addition or subtraction Boolean operations with necessary form features from the feature library .
Based on either indexing scheme, design case d, can be represented into a vector format ak in terms of
form features from . Accordingly, this indexing procedure can be described as

d > d, = [RK1),... . m(KiD),..., m(k,M)] Equation (7.1)

where 1i(k,i) O[0,1] is a membership measurement associated with the appearance frequency of form
feature i O in design case k and M is the total number of form features.

After following the similar indexing procedure, all design cases in vector formats are stored in a design
database A:

A={d,,...,d,,...,dy} Equation (7.2)

where N is the total number of design cases.
The query construction procedure can be represented as

q—q=[me (¢ 1),..., 7% (c,i),..., TE (c,M)] Equation (7.3)

where 7£(c,i) O[0,1] is a membership measurement defined in Equation 7.1 for conceptual design c.

7.3.3 Using a Fuzzy ART Neural Network as Design Associative Memory

Introduced as a theory of human cognitive information processing, fuzzy art incorporates computations
from fuzzy set theory into the adaptive resonance theory (ART) based models (Carpenter et al. 1991;
Venugopal and Narendran, 1992). The ART model is a class of unsupervised as well as adaptive neural
networks. In response to both analog and binary input patterns, fuzzy ART incorporates an important
feature of ART models, such as the pattern matching between bottom-up input and top-down learned
prototype vectors. This matching process leads either to a resonant state that focuses attention and triggers
stable prototype learning or to a self-regulating parallel memory search. This makes the performance of
fuzzy ART superior to other clustering methods, especially when industry-size problems are applied
(Bahrami and Dagli, 1993; Burke and Kamal, 1992).

Mathematically, we can view a feature library as a universe of discourse. Let R be a binary fuzzy
relation in Y x Y if

R={(x.y), i (x.y)|(x.y) CW *x Y} Equation (7.4)

where 7% (x,y) O [0,1] is the membership function for the set R.

©2001 CRC Press LLC

7.4 Performing Fuzzy Association

After the fuzzy feature relation has been defined, a feature association function is activated for a query
vector and design vectors (Garza and Maher, 1996; Liao and Lee, 1994). To combine the fuzzy feature
relation into vectors, operating a composition operation to them is necessary. Through max—-min com-
position, a new query vector and design vectors contain not only feature-appearing frequency but also
associative feature information. Specifically, proposed fuzzy feature association procedure, FFA, can be
defined as

FFA [a R - ™", Equation (7.5)
where a is the vector, R is the fuzzy feature relation, and a™" is the modified vector containing associ-

ation information.
By implementing max—min composition, the FFA[] can be accomplished as

a™ =[meg (k1),..., &g (K,Y), ... 7T g (K,M)] Equation (7.6)

where Tg (K, y)=0O,[Te K, X2 1R, Y)]= ma>>§E-wmin[7K, X), R(X,y)]. Therefore, fuzzy feature asso-
ciation for design vectors and query vector can be conducted as

FFA[ak ,R] dm 0K A Equation (7.7)

Fuzzy ART cluster vectors are based on two separate distance criteria, choice function and match function.
To categorize input patterns, the output node j receives input pattern | in the form of a choice function,
T;, which is defined as Tj(l) = | |I DWJ-|/(CX+ |Wi|) where w; is an analog-valued weight vector associated
with cluster j and is a choice parameter that is suggested to be close to zero. The fuzzy AND operator [is
defined by (p Oq);= min(p;q;) and where the norm || is defined by |p|= i|pi | The system makes a
category choice when at most one node can become active at a given time. The output node, J, with the
highest value of T;is the candidate to claim the current input pattern. For node J to code the pattern,
the match function should exceed the vigilance parameter. That is, |I iy |/|Ifz P, where the vigilance
parameter p is a constant, 0< p<1. Once the search ends, the weight vector, w, of the winning node
J learns according to the equation

w e =B(| DW(Jold))J,(l_ﬁ)W(Jo'd) Equation (7.8)

To perform associative searching, designers specify a desired similarity parameter p and sequentially
feed the design vectors evaluated from Equation 7.1 into fuzzy ART to construct the geometric associative
memory of achieve design cases. By varying the similarity parameter from 0 to 1, the similarity level of
design cases in fuzzy ART can be adjusted.

7.5 Implementation Example

A database of industrial parts is used in this chapter to demonstrate the proposed system (Figure 7.1).
There are 35 form features defined for this database, as shown in Table 7.1.

©2001 CRC Press LLC

W
W@
@
N

design 001 design 002 design 003 design 004

Y i®
&8
BN

design 013 design 014 design 015 design 016

[,
G
Qo

design 041 design 042 design 043

FIGURE 7.1 Sample designs in database.

TABLE 7.1 Sample Features for Prismatic Parts

Name Name
1 Hole thru 19 Slot blind cylinder
2 Hole blind flat bottomed 20 T slot
3 Hole blind conic bottomed 21 Dove tail slot
4 Bore thru 22 Step thru
5 Bore blind flat 23 Step blind
6 Bore blind conic 24 Step thru round

7.5.1 Constructing Geometric Memory

Using the DSG coding scheme and the predefined feature library, these designs are coded in the design
coding module first (Chang and Tsai, 1997; Chen, 1989). After completing the coding process, a set of
normalized arrays based on the largest number of same features is obtained and stored in the existing
part database, as shown in Table 7.2.

TABLE 7.2 Sample Arrays with Normalized Feature Codes for Current Designs

Feature Design
2 3 4 5 6 7 8 9 10 11 12 13 14 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0. 0 0 0 0 0 0 0 0.25 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 05 0 0 0 0 0 0 0 0
5 0.2 0 0.25 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0

©2001 CRC Press LLC

7.5.2 Generating a Design Description Vector

Conceptual design 48 shown in Figure 7.2 is provided as an implementation example for this proposed
system. The feature, HOLE-THRU, is selected first from the feature library. This design has four through
holes; thus the first number in the input feature array is a “4.” Then, as there are two blind holes with
flat bottom, a“2” is registered as the second number of the input feature array, and so forth. The complete
array can be shownasA=4{4,2,2,3,2,2,3,2,2,0,0,0,0,0,0,000000000000,0,1,1,
1,0,0,0,0}

design 048

FIGURE 7.2 A conceptual design.

After being normalized by the largest number of this input array, which is “4,” the input array for the
system is | = {1, 0.5, 0.5, 0.75, 0.5, 0.5, 0.75, 0.5, 0.5, 0, 0, 0, 0, 0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, 0.25,
0.25,0.25, 0, 0, 0, 0}.

7.5.3 Retrieving Reference Designs

One of the main advantages of the proposed design retrieving system is that users can easily control the
number of retrieved designs. By adjusting the vigilance parameter, the user can get the proper number
of similar designs. Designs retrieved at similarity parameter = 0.5 are 31, 37, 38, 43, 44, and 45 as shown
in Figure 7.3.

7.5.4 Similarity Parameter to Control the Similarity of References

To perform associative searching, designers specify a desired similarity parameter and sequentially feed
the design vectors evaluated from Equation 7.1 into fuzzy ART to construct the geometric associative
memory of achieve design cases. Fuzzy ART automatically clusters design cases into design categories,
based on their geometric likeness. When the query vector depicted in Equation 7.7 is input into the fuzzy
ART, design cases are claimed as “retrieved” if they are in the design category having the highest similarity
to the query. This searching task is expressed as

FFA[{d™ |k OALG™ o} {k|KJ B} Equation (7.9)

where FFA[] is a fuzzy ART neural network, p = [0,1] is the similarity parameter of FFA, and B is the
set of reference design retrieved from A.

©2001 CRC Press LLC

p O

design 031 design 037

design 043 design 044 design 045
FIGURE 7.3 Retrieve reference designs for the conceptual design 048 using similarity = 0.5.

By varying the similarity parameter from 0 to 1, the similarity level of design cases in fuzzy ART can
be adjusted. When adapting a higher value of similarity parameter, designers tend to retrieve fewer
designs, but the designs received have higher similarity. When adapting a lower value of similarity
parameter, designers often receive a longer list of designs, but with lower similarity.

After receiving similar designs, designers decide whether retrieved reference designs are suitable. If they
are, designers can adapt and modify these designs into a new design. Otherwise, they can request the fuzzy
ART FFA[] again by using a different similarity parameter until satisfactory designs are retrieved.

7.5.5 Testing Robustness

When the user wants to retrieve a design that exists in the existing parts database, a well-designed retrieval
system should have the ability to quickly retrieve that existing design. A new design, which is identical
to Design 13 but not known beforehand, is fed into the neural-based retrieval module. The experiment
result shows that no matter how the vigilance parameter is changed, from 0.001 to 0.999, the user will
always receive Design 13 as a design candidate.

A designer may not always remember all the details of a design. Some of the information may be
missed or neglected. Therefore, a design retrieving system should be able to retrieve a design based on
slightly incomplete coding. Experiments also show that even with some noisy or lost information imbed-
ded, a similar or exact design can still be retrieved.

7.5.6 Comparison with GT-Based Methods

The GT-based indexing approach considers the geometric and technological information of a design.
However, because the procedure of coding and classification is completed simultaneously, users are not
allowed to change the number of retrieved designs. That is, whenever a design is assigned a unique code
according to the geometric and technological rules, the classification is also completed. This makes the
number and similarity of retrieved designs unchangeable. Also, inaccurate and incomplete queries are
not allowed in GT-based methods.

©2001 CRC Press LLC

In the proposed method, the tasks described are solved separately, while in GT-based methods they
are all merged together. The separated procedures provide the ability to change the similarity and number
of retrieved designs. Also, the proposed associative models can relieve the problem of incomplete and
inaccurate query/input.

7.5.7 Comparison with Hopfield Neural Network Approach

In comparison to the work of Venugopal and Narendran (1992), who use a Hopfield neural network to
conduct design retrieval, the proposed system provides users more flexibility in choosing retrieved
reference designs. The major disadvantage of their design retrieving system is that only one design case
can be retrieved at a time, due to a mathematical property of the Hopfield neural network. In many
practical situations, however, users want to receive several reference designs instead of only one. In the
proposed system, users simply adjust a similarity parameter, and a list of reference designs with the
desired similarity will be received. Thus, users have more flexibility when using the proposed system.

7.5.8 Comparison with Adaptive Resonance Theory (ART) Systems

In comparison to three published research works that utilize adaptive resonance theory (ART1) for design
retrieval, the proposed method shows better results. Bitmap images of engineering designs can be adapted
in the research to represent a design. One major disadvantage of using image-based indexing is that the
disappearance of hidden features and internal lines is inevitable. Also, constructing an image-based query
may be very cumbersome and time consuming. Liao and Lee (1994) utilize a feature-based indexing
system for GT grouping and classification. In their research, only appearance or disappearance of form
features is considered. However, ignoring the appearance frequency of a specific form feature could
dramatically reduce the capability to discriminate between retrieved designs, especially as the design
database grows. Using the proposed fuzzy ART neural network, the system is capable of dealing with the
appearance frequency of a specific form feature, while keeping the advantage of adaptive resonance theory.

Acknowledgments

This work is partially supported by National Science Foundation Grant No. DMI-9900224 and National
Science Council 89-2213-E-343-002.

Defining Terms

Conceptual design: M. J. French presents a four-stage model for engineering design process; analysis
of problem, conceptual design, embodiment of schemes, and detailing for working drawings. In
the conceptual design stage, designers generate broad solutions in the form of schemes that solve
specified problems. This phase makes the greatest demands for engineering science and all related
knowledge.

Bitmap: A bitmap file is an image data file that generally encodes a gray-level or color image using up
to 24 bits per pixel.

Group technology (for industrial parts): An approach that groups parts by geometric design attributes
and manufacturing attributes. Groups of parts are then coded with a predetermined numbering
system, such as Optiz codes or MICLASS codes, etc.

©2001 CRC Press LLC

References

Allada, V. and S. Anand, (1995) Feature-based modelling approaches for integrated manufacturing: state-
of-the-art survey and future research directions, International Journal of Computer Integrated Man-
ufacturing, 8(6):411-440.

Bahrami, A. and C.H. Dagli, (1993) From fuzzy input requirements to crisp design, International Journal
of Advanced Manufacturing Technology, 8:52-60.

Burke, L. and S. Kamal, (1995) Neural networks and the part family/machine group formation problem
in cellular manufacturing: a framework using fuzzy ART, Journal of Manufacturing Systems,
14(3):148-159.

Carpenter, G.A., S. Grossberg, and D.B. Rosen, (1991) Fuzzy ART: fast stable learning and categorization
of analog patterns by an adaptive resonance system, Neural Networks, 4(6):759-771.

Case, K., J.X. Gao, and N.N.Z. Gindy, (1994) The implementation of a feature-based component repre-
sentation for CAD/CAM integration, Journal of Engineering Manufacture, 208(B1):71-80.

Chang, C.A. and C.-Y. Tsai, (1997) Using ART1 neural networks with destructive solid geometry for
design retrieval systems, Computers in Industry, 34(1):27-41.

Chen, C.S. (1989) A form feature oriented coding scheme, Computers and Industrial Engineering, 17(1-
4):227-233.

Garza, A.G. and M.L. Maher, (1996) Design by interactive exploration using memory-based techniques,
Knowledge-Based Systems, 9:151-161.

Kumara, S.R.T. and S.V. Kamarthi, (1992) Application of adaptive resonance networks for conceptual
design, Annals of the CIRP, 41(1):213-216.

Lee J.Y. and K. Kim, (1998) A feature based approach to extracting machining features, Computer-Aided
Design, 30(13):1019-1035.

Liao, TW. and K.S. Lee, (1994) Integration of a feature-based CAD system and an ART1 neural network
model for GT coding and part family forming, Computers and Industrial Engineering, 26(1):93-104.

Lim, S.S., et al., (1995) Multiple domain feature mapping: a methodology based on deep models of
features, Journal of Intelligent Manufacturing, 6(4):245-262.

Lin, Z.-C. and H. Chang, (1996) Application of fuzzy set theory and back-propagation neural networks
in progressive die design, Journal of Manufacturing Systems, 15(4):268-281.

Maher, M.L. and M.B. Balachandran, (1994) A multimedia approach to case-based structural design,
ASCE Journal of Computing in Civil Engineering, 8(3):137-150.

Perng, D.-B. and C.-F. Chang, (1997) A new feature-based design system with dynamic editing, Computers
and Industrial Engineering, 32(2):383-397.

Smith, S.D.G., et al., (1997) A deployed engineering design retrieval system using neural networks, IEEE
Transactions on Neural Networks, 8(4):847-851.

Tseng, Y.-J., (1999) A modular modeling approach by integrating feature recognition and feature-based
design, Computers in Industry, 39(2):113-125.

Venugopal, V. and T.T. Narendran, (1992) Neural network model for design retrieval in manufacturing
systems, Computers in Industry, 20(1):11-23.

For Further Information

A good introduction to engineering design is presented in Engineering Design Methods: Strategies for
Product Design by Nigel Cross. A recent survey about part/machine classification and coding can be found
in Part B of Group Technology and Cellular Manufacturing: State-of-the-Art Synthesis of Research and
Practice, edited by Nallan C. Suresh and John M. Kay. Introduction to Artificial Neural Systems by Jacek
M. Zurada is a thorough, easy-to-read introductory text with plenty of numerical examples. Detlef Nauck,
Frank Klawonn, and Rudolf Kurse present a more recent introduction to fuzzy neural systems in Foun-
dations of Neuro-Fuzzy Systems. Several chapters in Part Il of Associative Neural Memories: Theory and
Implementation, edited by Mohamad H. Hassoun, present essential discussion about artificial associative
neural memory models. To track progress in related areas, readers should refer to future publications of

technical journals cited in references.
©2001 CRC Press LLC

Lee, Yuan-Shin et al "Soft Computing for Optimal Planning and Sequencing of Parallel Machining Operations®
Computational Intelligence in Manufacturing Handbook

Edited by Jun Wang et al
Boca Raton: CRC Press LLC,2001

Soft Computing for
Optimal Planning and
Sequencing of Parallel
Machining Operations

8.1 Introduction

8.2 A Mixed Integer Program

8.3 A Genetic-Based Algorithm

8.4 Tabu Search for Sequencing Parallel Machining

Yuan-Shin Lee* Operations
North Carolina State University 8.5 Two Reported Examples Solved
Nan-Chieh Chiu by the Proposed GA

8.6 Two Reported Examples Solved by the Proposed
Tabu Search

North Carolina State University

Shu-Cherng Fang 8.7 Random Problem Generator and Further Tests
North Carolina State University 8.8 Conclusion
Abstract

Parallel machines (mill-turn machining centers) provide a powerful and efficient machining alternative
to the traditional sequential machining process. The underutilization of parallel machines due to their
operational complexity has raised interests in developing efficient methodologies for sequencing the
parallel machining operations. This chapter presents a mixed integer programming model for the prob-
lems. Both the genetic algorithms and tabu search methods are used to find an optimal solution. Testing
problems are randomly generated and computational results are reported for comparison purposes.

8.1 Introduction

Process planning transforms design specifications into manufacturing processes, and computer-aided
process planning (CAPP) uses computers to automate the tasks of process planning. The recent intro-
duction of parallel machines (mill-turn machining centers) can greatly reduce the total machining cycle
time required by the conventional sequential machining centers in manufacturing a large batch of mill-
turn parts [13, 14]. In this chapter, we consider the CAPP for this new machine tool.

“Dr. Lee’s work was partially supported by the National Science Foundation (NSF) CAREER Award (DMI-
9702374). E-mail: yslee@cos.ncsu.edu

©2001 CRC Press LLC

Main spindle —

FIGURE 8.1 An example of a parallel machine equipped with two turrets (MUs) and two spindles (WLs). (From
Lee, Y.-S. and Chiou, C.-]., Computers in Industry, vol. 39, 1999. With permission.)

One characterization of parallel machines is based on the location of the cutting tools and workpiece.
As shown in Figure 8.1, a typical parallel machine is equipped with a main spindle, a subspindle (or
work locations), and two or more turrets (or machining units), each containing several cutting tools.
For a given workpiece to be machined on parallel machines, the output of the CAPP generates a set of
precedent operations needed for each particular workpiece to be completed. A major issue to be resolved
is the sequencing of these precedent operations.

The objective is to find a feasible operation sequence with an associated parallel machining schedule
to minimize the total machining cycle time. Because of the relatively new trend of applying parallel
machines in industrial manufacturing, only a handful of papers are found on sequencing machining
operations for parallel machines [3, 22]. The combinatorial nature of sequencing and the complication
of having precedence constraints make the problem difficult to solve.

A definition of such parallel machines can be found in [11, 22]:

DerNITION 1 (Workholding Location (WL)): WL refers to a workholding location on a machine tool.
DEerINITION 2 (Machining Unit (MU)): MU refers to a toolholding location on a machine to